
Lecture Notes in Computer Science 5127
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

David Hausheer
Jürgen Schönwälder (Eds.)

Resilient Networks
and Services

Second International Conference on Autonomous
Infrastructure, Management and Security, AIMS 2008
Bremen, Germany, July 1-3, 2008
Proceedings

13

Volume Editors

David Hausheer
University of Zurich, UZH
Department of Informatics, IFI
Communication Systems Group, CSG
Binzmühlestrasse 14, 8050 Zurich, Switzerland
E-mail: hausheer@ifi.uzh.ch

Jürgen Schönwälder
Jacobs University Bremen
School of Engineering and Science
Electrical Engineering and Computer Science
Campus Ring 1, 28759 Bremen, Germany
E-mail: j.schoenwaelder@jacobs-university.de

Library of Congress Control Number: 2008930170

CR Subject Classification (1998): C.2, D.4.4, H.3, H.4

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

ISSN 0302-9743
ISBN-10 3-540-70586-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70586-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12324514 06/3180 5 4 3 2 1 0

Preface

This volume of the Lecture Notes in Computer Science series contains the papers
accepted for presentation at the Second International Conference on Autonomous
Infrastructure,Management and Security (AIMS 2008).The conference took place
in Bremen, Germany, hosted by the Jacobs University Bremen. AIMS 2008 was or-
ganized and supported by the EC IST-EMANICS Network of Excellence (#26854)
in cooperation with ACM SIGAPP and ACM SIGMIS and co-sponsored by IFIP
WG 6.6 and Jacobs University Bremen.

This year’s AIMS 2008 constituted the second edition of a single-track and
standalone conference on management and security aspects of distributed and
autonomous systems, which took place initially in Oslo, Norway in June 2007.

The first objective of the AIMS conference series is to stimulate the exchange
of ideas in a cross-disciplinary forum where there is sufficient time for discussion
of novel ideas. A second objective is to provide a forum for doctoral students
to discuss their research ideas in a wider audience and to receive training to
help make their research careers successful. To this end, AIMS includes a PhD
workshop and a tutorial program that is offered as part of the main conference
program.

The theme of the Second AIMS conference was “Resilient Networks and
Services” with a specific focus on novel technologies that can provide resilience in
a scalable, economic, secure, and autonomic way. The research papers included
in the AIMS proceedings discuss topics such as autonomy, incentives and trust,
overlays and virtualization, load balancing and fault recovery, traffic engineering
and analysis, and convergent behavior of distributed systems.

For the main conference program, we received a total number of 33 sub-
missions from 15 countries (according to the affiliation of the first author). All
submissions were initially checked using an automated tool to identify text frag-
ments that can be found in already published papers. The Chairs of the Tech-
nical Program Committee (TPC) then went over all papers to identify papers
that should not enter the review process, e.g., because the topic was out of
scope or the paper length was inappropriate, or the paper contained a large
amount of already published data. The remaining 25 papers were assigned to
TPC members for review. The majority of papers received four independent
reviews and no paper had less than three reviews. At the end of the review
phase, authors were given access to the reviews and invited to write a rebuttal,
while the TPC members were invited to discuss their reviews online. Based on
the reviews, the rebuttals, and the online TPC discussions, the TPC Chairs se-
lected 13 full papers for presentation at the AIMS conference. We note here that
overall the submissions were of good quality and the number of clear reject pa-
pers or out of scope papers was remarkably small. Additionally, a number of four

VI Preface

work-in-progress papers, which are not included in these proceedings, were pre-
sented as posters during the conference.

The AIMS PhD workshop is a venue for doctoral students to present and dis-
cuss their research ideas, as well as, and most importantly, obtain feedback from
the audience about their investigation carried out so far. This year, the workshop
was organized in two technical sessions where selected PhD investigations were
presented and discussed. The PhD papers included in this volume describe the
current state of such investigations, including their research problem statements,
investigation approaches, and outlines of the results achieved so far. For AIMS
2008, 12 papers were submitted to the workshop. Each of them was assigned for
review to three members of the PhD workshop TPC, composed of experienced
researchers in the field. After the review phase, the PhD Workshop Chairs to-
gether with the PhD workshop TPC identified eight papers to be included in
these proceedings and to be presented during the conference.

We would like to thank the many people who helped make AIMS 2008 such
a high-quality and successful event. Our thanks first go to the PhD Workshop
Chairs Lisandro Granville and Aiko Pras and to the Tutorial and Keynote Chair
Arosha Bandara for all their efforts in constructing the technical program. In
addition, we would like to acknowledge the great review work performed by the
members of the TPCs and the additional reviewers. Another special thanks goes
to all authors who submitted their contributions to AIMS 2008. Furthermore,
we would like to express our thanks to the submission system handler, who
performed an excellent job. Finally, we would like to extend our thanks to the
Springer team, namely, Alfred Hofmann and Anna Kramer, for the smooth co-
operation on finalizing these proceedings. Last but not least special thanks go
to the local organization handled by Renate Knappe, Ha Manh Tran, and Iyad
Tumar, and to Jacobs University for hosting the AIMS 2008 conference on their
fascinating campus.

April 2008 David Hausheer
Jürgen Schönwälder

Organization

AIMS 2008 was organized by the EC IST-EMANICS Network of Excellence
(#26854) in cooperationwith ACM SIGAPP and ACM SIGMIS and co-sponsored
by IFIP WG 6.6 and Jacobs University Bremen.

General Chair

Jürgen Schönwälder Jacobs University Bremen, Germany

Program Chairs

David Hausheer University of Zurich, Switzerland
Jürgen Schönwälder Jacobs University Bremen, Germany

PhD Workshop Chairs

Lisandro Granville UFRGS, Brazil
Aiko Pras University of Twente, The Netherlands

Tutorial/Keynote Chair

Arosha Bandara The Open University, UK

Steering Committee

Arosha Bandara The Open University, UK
Mark Burgess Oslo University College, Norway
Olivier Festor INRIA, France
David Hausheer University of Zurich, Switzerland
Aiko Pras University of Twente, The Netherlands
Jürgen Schönwälder Jacobs University Bremen, Germany
Rolf Stadler KTH, Sweden

Technical Program Committee

Panayotis Antoniadis Pierre and Marie Curie University, France
Arosha Bandara The Open University, UK

VIII Organization

Jan Bergstra University of Amsterdam, The Netherlands
Mark Burgess Oslo University College, Norway
Georg Carle Univeristy of Tübingen, Germany
Isabelle Chrisment Nancy University, France
Alva L. Couch Tufts University, USA
Costas A. Courcoubetis Athens University of Economics and Business,

Greece
Vasilios Darlagiannis EPFL, Switzerland
Hermann de Meer University of Passau, Germany
Zoran Despotovic DoCoMo Euro-Labs, Germany
Gabi Dreo Rodosek Universität der Bundeswehr München, Germany
Olivier Festor INRIA, France
Thomas Fuhrmann University of Karlsruhe, Germany
Lisandro Granville UFRGS, Brazil
Heinz-Gerd Hegering Leibniz Supercomputing Center, Germany
James Won-Ki Hong POSTECH, Korea
Alexander Keller IBM, USA
Jorge Lobo IBM Research, USA
Emil Lupu Imperial College London, UK
Hanan Lutfiyya University of Western Ontario, Canada
David A. Maltz Microsoft Research, USA
Martin May ETH Zurich, Switzerland
George Pavlou University College London, UK
Aiko Pras University of Twente, The Netherlands
Bruno Quoitin Universite Catholique de Louvain, Belgium
Danny Raz Technion, Israel
Helmut Reiser Leibniz Supercomputing Center, Germany
Giancarlo Ruffo Università di Torino, Italy
Joan Serrat UPC, Spain
Radu State INRIA, France
Burkhard Stiller University of Zurich, Switzerland
Maarten van Steen VU University Amsterdam, The Netherlands
Kurt Tutschku NICT, Japan
Marcel Waldvogel University of Konstanz, Germany
Felix Wu University of California at Davis, USA

PhD Workshop Committee

Gabi Dreo Rodosek Universität der Bundeswehr München, Germany
Olivier Festor INRIA, France
Hanan Lutfiyya University of Western Ontario, Canada
Joan Serrat UPC, Spain
Rolf Stadler KTH, Sweden
Burkhard Stiller University of Zurich, Switzerland

Organization IX

Local Organization

Renate Knappe Jacobs University Bremen, Germany
Ha Manh Tran Jacobs University Bremen, Germany
Iyad Tumar Jacobs University Bremen, Germany

Reviewers

Detailed reviews for papers submitted to AIMS 2008 were made by all of our
reviewers, which correspond to the full Program Committee members as stated
above and those reviewers listed below. Therefore, it is of great pleasure to the
Program Co-chairs to thank all those reviewers for their important work.

Ali Fessi University of Tübingen, Germany
Marc Fouquet University of Tübingen, Germany
Georgios Karagiannis University of Twente, The Netherlands
Franck Legendre ETH Zurich, Switzerland
Marco Milanesio Università di Torino, Italy
Rossano Schifanella Università di Torino, Italy

Table of Contents

Autonomy, Incentives and Trust

A Role-Based Infrastructure for the Management of Dynamic
Communities . 1

Alberto Schaeffer-Filho, Emil Lupu, Morris Sloman,
Sye-Loong Keoh, Jorge Lobo, and Seraphin Calo

PSH: A Private and Shared History-Based Incentive Mechanism 15
Thomas Bocek, Wang Kun, Fabio Victora Hecht,
David Hausheer, and Burkhard Stiller

Cooperation under Scarcity: The Sharer’s Dilemma 28
Michael Rogers and Saleem Bhatti

Overlays and Virtualization

A Distributed Certification System for Structured P2P Networks 40
François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

N2N: A Layer Two Peer-to-Peer VPN . 53
Luca Deri and Richard Andrews

Secure Sharing of an ICT Infrastructure through Vinci 65
Fabrizio Baiardi and Daniele Sgandurra

Load Balancing and Fault Recovery

Statistical Behaviors of Distributed Transition Planning 79
Ning Wu and Alva L. Couch

Service Load Balancing with Autonomic Servers: Reversing the
Decision Making Process . 92

Remi Badonnel and Mark Burgess

An Architecture for Supporting Network Fault Recovery
Management . 105

Feng Liu, Antonis M. Hadjiantonis, Ha Manh Tran, and Mina Amin

Network Traffic Engineering and Analysis

RLTE: Reinforcement Learning for Traffic-Engineering 120
Erik Einhorn and Andreas Mitschele-Thiel

XII Table of Contents

SNMP Trace Analysis Definitions . 134
Gijs van den Broek, Jürgen Schönwälder, Aiko Pras, and
Matúš Harvan

Convergent Behavior

Dynamic Consistency Analysis for Convergent Operators 148
Alva L. Couch and Marc Chiarini

A Theory of Closure Operators . 162
Alva L. Couch and Marc Chiarini

PhD Workshop

Entwined Influences of Users’ Behaviour and QoS: A Multi-model
Approach . 175

Julien Siebert, Vincent Chevrier, and Laurent Ciarletta

Business-Driven Management of Policies in DiffServ Networks 180
Antonio Astorga and Javier Rubio-Loyola

Token-Based Payment in Dynamic SAML-Based Federations 185
David J. Lutz and Burkhard Stiller

Conceptual Integration of Flow-Based and Packet-Based Network
Intrusion Detection . 190

Gregor Schaffrath and Burkhard Stiller

Towards Resilient Community Wireless Mesh Networks 195
Sara Bury and Nicholas J.P. Race

Resource Management of Disruption Tolerant Networks 200
Iyad Tumar and Jürgen Schönwälder

Design of an IP Flow Record Query Language . 205
Vladislav Marinov and Jürgen Schönwälder

Enabling Next Generation Peer-to-Peer Services . 211
Fabio Victora Hecht and Burkhard Stiller

Author Index . 217

A Role-Based Infrastructure for the

Management
of Dynamic Communities

Alberto Schaeffer-Filho1, Emil Lupu1, Morris Sloman1,
Sye-Loong Keoh1, Jorge Lobo2, and Seraphin Calo2

1 Department of Computing, Imperial College London
180 Queen’s Gate, SW7 2AZ, London, England

{aschaeff, e.c.lupu, m.sloman, slk}@doc.ic.ac.uk
2 IBM T. J. Watson Research Center

19 Skyline Drive, Hawthorne, NY, 10532
{jlobo, scalo}@us.ibm.com

Abstract. This paper defines an operational framework for specifying
and establishing secure collaborations between autonomous entities that
need to interact and depend on each other in order to accomplish their
goals, in the context of mobile ad-hoc networks. We call such collabo-
rations mission-oriented dynamic communities. We propose an abstract
model for policy-based collaboration that relies on a set of task-oriented
roles. Nodes are discovered dynamically and assigned to one or more
roles, and then enforce the policies associated with these roles accord-
ing to the description of the community. In this paper we focus on the
roles that are needed to provide management and security functions for
dynamic communities.

1 Introduction

This paper seeks to address the problem of specifying and establishing a se-
cure collaboration between autonomous entities that depend on each other and
need to interact in order to accomplish their goals. We call such collaborations
mission-oriented dynamic communities. Dynamic communities of autonomous
entities, such as unmanned autonomous vehicles or robots in general, can be
used to perform tasks that are dangerous or even impossible for humans. Such
communities can be deployed in emergency operations after floods or earth-
quakes where teams of agents coming from different organizations are assembled
for a mission; for reconnaissance of areas where hazardous chemicals or explo-
sives may be present; or search and rescue missions involving teams of unmanned
vehicles and rescue personnel. In these examples, the collaboration between the
autonomous entities is crucial to accomplish the intended goals. Our objective is
to dynamically create a secure collaboration between initially untrusted nodes
without manually pre-configuring all nodes for their desired functions. Instead,
a community must autonomously evolve and manage itself without human in-
tervention. Thus, the main challenge is to devise a flexible infrastructure for

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 1–14, 2008.
c© IFIP International Federation for Information Processing 2008

2 A. Schaeffer-Filho et al.

community specification and management that can cater for such various re-
quirements of many different applications.

Our approach is based on previous work on doctrines [1], which has been
extended to cater for both management and application roles. In particular we
focus on security management within the community. A community specifies a
dynamic collection of roles to which nodes are assigned dynamically when dis-
covered or as the mission context changes. Roles define two classes of policies,
obligations and authorizations [2], that specify how the roles interact with each
other in the scope of the community, as well as the services and resources that
they allow other roles to access. Role assignment may be subject to constraints
defined in the community specification that guarantee the integrity of the com-
munity. The doctrine approach concentrated management functions into a single
coordinator node, whereas we explicitly identify a set of security management
roles and their policies, and we split the management tasks across distributed
collaborating nodes that are assigned to these roles. Our approach is flexible
in that new roles can be easily defined for different management functions, de-
pending on the risk context or the security requirements associated with each
mission-oriented community. We also propose a methodology using policies to
define flexible protocols for role interactions based on finite state machines which
can be easily adapted to specific application requirements.

This paper caters for three important aspects regarding the community man-
agement: firstly, how our approach devolves management roles to community
members by dynamically loading management tasks across distributed nodes;
secondly, how to build a secure collaboration relying on a set of basic security
mechanisms, which may be easily extended to address new security requirements;
thirdly, how our infrastructure scales-down and can be deployed in resources with
limited computational power and memory, typical of search and rescue applica-
tions (collaborations of autonomous robots or rescue personnel carrying small
computing devices in the field).

The implementation of the framework defined here uses the infrastructure pro-
vided by Self-Managed Cells (SMCs) and the Ponder2 policy framework, which
were developed at Imperial College [3], [4]. We use a scenario of a reconnaissance
community of unmanned autonomous vehicles (UAVs), which form a mobile ad-
hoc network. Typical examples of UAVs in this community are video surveil-
lance and information aggregation vehicles that need to collaborate in order to
achieve their goals [5], [6]. With respect to our past work, this paper extends
[1] with: an enhanced role model for security management, an implementation
on Gumstix and Koala robots rather than in a simulation, overhead/evaluation
measurements, a formalization of community behavior and revisions based on
Ponder2 rather than Ponder. Additionally, this paper also explores the uses of
the middleware described in [3], [4].

The paper is structured as follows: Section 2 describes our role-based commu-
nity model. Section 3 presents the security requirements and how protocols for
management and security of communities can be specified using policies. Section 4

A Role-Based Infrastructure for the Management 3

describes our prototype and Section 5 outlines the related work. Finally, Section 6
presents the concluding remarks.

2 Role-Based Community Model

A community specification describes a set of task-oriented roles that need to
collaborate in order to achieve their goals. The specification contains a number
of policies that must be enforced by different entities, according to their roles
in the community. Nodes are assigned to roles in order to perform specific tasks
in the community, based on their credentials and capabilities. The community
specification also defines a set of constraints relating to role assignments. Policies
are of two types: obligation and authorization policies.

Obligation policies are of the form:

on < event > do
if < conditions > then

< target >< action >;

Obligations cater for the adaptive behavior of nodes. They specify what man-
agement actions (also referred to as methods) must be performed in response
to events, provided a set of conditions is satisfied. The event is a term of the
form e(a1,...,an), where e is the name of the event and a1,...,an are the names
of its attributes. The condition is a boolean expression that may check local
properties of the nodes and the attributes of the event. The target is the name
of a role where the action will be executed and so the target must support an
implementation of the action. The action is a term of the form a(a1,...,am),
where a is the name of the action and a1,...,am are the names of its attributes.1

The attributes of an event may be used for evaluating the condition (to decide
whether to invoke the action or not), or they may be passed as arguments to
the action itself. Implicitly the role to which this policy belongs is the subject
of the obligation i.e. the entity enforcing the policy, and the action is invoked
on a target role. Note the target may be the same as the subject i.e. a role may
perform actions on itself.

Authorization policies are of the form:

auth[+/−] < subject >−→ if < condition > then
< target >< action >;

These policies are access control rules that specify what actions a subject is
allowed (positive authorization) or forbidden (negative authorization) to invoke
on a target. The subject and the target are role names. The action and the
condition are defined like in obligations. Authorization decisions could be made
by one or more specific roles in the community, but our current implementation
is based on the target making decisions and enforcing the policy as we assume
target nodes wish to protect the resources they provide to the community.
1 To simplify notation an obligation policy can have a list of target-action pairs, all

evaluated when the event is true and the condition holds.

4 A. Schaeffer-Filho et al.

Let R be a set of roles, A a set of authorization policies and O a set of
obligation policies. For any role r in R, r is defined in (O, A) as the collection of
obligation policies in O and authorization policies in A such that the subject in
the obligation policies is r and the target in the authorization policies is also r.

A community may also specify a set of constraints expressing additional con-
ditions on role assignments. We currently support two types of constraints: car-
dinality and separation of duty constraints. Cardinality constraints (CC) are
defined as a relation between a role and a minimum and a maximum number of
instances that the role can have in the community. Hence:

CC ⊆ R × � × �

Where � denotes the set of natural numbers, and for any tuple (r, n, m) ∈
CC, n ≤ m, and r cannot appear in more than one tuple in CC.

Separation of duty constraints (SC) [7] are defined by a relation which spec-
ifies that a node cannot be assigned to a set of roles at the same time (e.g. the
same node may not perform roles for “handling hazardous chemicals” and for
“supplies delivery” simultaneously). Hence:

SC ⊆ ℘(R)

Where ℘(R) denotes the power set of R. A set s in SC indicates that no node
in the community can be assigned to all the roles in s simultaneously.

The set of constraints C of a community is defined by the union of its car-
dinality constraints and separation of duty constraints, CC ∪ SC. Finally, a
community description i is defined by the set of roles R, the sets of policies O
and A, and the set of constraints C:

Communityi = < R, O, A, C >

The abstract model representing a community is illustrated in Fig. 1. Although
there is some similarity with the RBAC model [8], our roles are not just limited to

Fig. 1. Dynamic community (solid lines represent the community specification and
dashed lines represent the dynamic assignment of new nodes to this community)

A Role-Based Infrastructure for the Management 5

defining authorizations in terms of privileges, but they also cater for obligations.
We do not support role inheritance in our community model because of runtime
penalties it may incur in a distributed environment and also because such inheri-
tance would not apply to the obligations which are also part of the roles [9].

Nodes are dynamically assigned to one or more roles defined in the commu-
nity specification. As described in the next section, this assignment is usually
undertaken by a coordinator role and most flexibly defined by a set of policies
determining to which role a newly discovered entity should be assigned based
on its capabilities. In order to characterize the assignment of nodes to roles,
we rely on the abstraction of interfaces. An interface itf is defined by a tuple
< Cap, Met, Eve >, representing the sets of capability descriptions Cap associ-
ated with this interface, and also the sets of methods Met and events Eve that
it offers.

– Met : the collection {Metk : 1 ≤ k ≤ o} represents a set of method names
offered by this interface.

– Eve : the collection {Evel : 1 ≤ l ≤ p} represents a set of event names
offered by this interface.

– Cap : the collection {Capi : 1 ≤ i ≤ m} represents a set of high-level
capability names that this interface offers. Each capability Capi is associated
with a subset of the collection {Metk : 1 ≤ k ≤ o} of methods and a subset
of the collection {Evel : 1 ≤ l ≤ p} of events.

While capabilities represent the functionality of an interface at an abstract
level (e.g. “video”, “storage”), methods and events describe its functionality at
the implementation level.

An interface definition may be associated with a role, thus identifying the
functionality expected of a node before it can be assigned to that role or with
a node itself, thus identifying the functionality provided by that node. The uses
are also referred to as expected interfaces and provided interfaces respectively.
A node can be assigned to a role if its provided interface entails the expected
interface of the role. The entailment operator for interfaces is defined as follows:
for any itfa < Capa, Meta, Evea >, itfb < Capb, Metb, Eveb >, we say that itfa

entails itfb, or itfa |= itfb, if:

(Capb ⊆ Capa) ∧ (Metb ⊆ Meta) ∧ (Eveb ⊆ Evea)

Therefore, itfa |= itfb if all the elements of itfb are also present in itfa. Infor-
mally, a node can be assigned to a role if its provided interface is more general
than the role’s expected interface.

3 Secure Community Management

This section describes how the community model presented in Section 2 can be
applied for the management of secure components in a dynamic community. We
start by outlining the security requirements and the community operations, and
then introduce a methodology for the specification of management protocols in
dynamic communities.

6 A. Schaeffer-Filho et al.

3.1 Security Requirements and Management Roles

Security management in dynamic communities requires supporting the functions
of authentication, membership management and access control. In addition, a set
of management procedures is required for the coordination of communities. These
are essential mechanisms because they ensure that all members are authenticated
before joining the community, that the community keeps track of all participants
and their roles (and can detect failures), that access control restrictions apply to
all resources and services offered by nodes, and that the vital management pro-
cedures for community maintenance are performed. We describe in this section
how the basic security management requirements for communities are fulfilled.

The coordinator role specifies the overall management of the community and
groups tasks related to community bootstrapping and assignment of new mem-
bers to roles, as well as the validation of constraints. Initially, the coordinator role
is responsible for broadcasting messages advertising the community to nearby
nodes. It enforces policies that govern the preferred assignment strategy of nodes
to roles based on their capabilities (but which remains subject to the node’s in-
terface satisfying the assignment condition described in Section 2). Whenever a
node is assigned to a role, the policies associated with that role are loaded into
the node. The coordinator checks whether the minimum requirements for the
community are met and whether separation of duty constraints are satisfied. If
the coordinator detects that the constraints are not being met, it may try to re-
assign roles in the community. If this is not possible the coordinator may decide
to dissolve the community. At bootstrap, the node that instantiates the commu-
nity specification is automatically assigned to the coordinator role. In addition,
at this point the coordinator node may be also assigned to other critical man-
agement roles (e.g. authenticator role): however, the coordinator may delegate
one or more of these roles as the community evolves and new members join it.

The authenticator role validates the identity and attributes of nodes that wish
to join the community. A typical approach for authentication is based on the use
of public-key certificates and we assume that only nodes possessing certificates
signed by trusted CAs are able to join a community. To this end, public-keys
of the certification authorities (CAs) that are relevant to the community may
be pre-loaded in the community specification. This avoids the need to contact
a CA and is necessary in deployed environments where access to a network
infrastructure may be intermittent or non existent. Our initial implementation
is based on a PKI solution and uses X.509 digital certificates. Non-PKI based
approaches are currently also being investigated.

The membership manager role keeps track of the members in the community.
The community must deal with nodes which move out of communication range,
run out of battery or disconnect. If a member does not signal its presence within
a given time period, it is considered to have left or become disconnected and
the membership manager informs the other members that a node has left. This
causes the constraints of the community to be reevaluated by the coordinator,
as the departure of a member may violate the cardinality constraints.

A Role-Based Infrastructure for the Management 7

Finally, access control is our last basic security requirement. Our current im-
plementation distributes the access control enforcement amongst all (target)
roles to allow them to protect their resources and permit access to specific sub-
ject roles (see Section 2). However, if an entity is not able to enforce its own
access control policies, it may outsource these control decisions to a specific
role in the community or to its own trusted agent. Note that the community is
not limited to these management roles; new roles can be specified to perform
additional security or management procedures as required.

3.2 Community Management Overview

When receiving the community broadcast sent by the coordinator, a node presents
its X.509 digital certificate to the community’s authenticator, which then performs
the node validation. The node also validates the authenticator’s credentials and
the community description and decides whether to join the community or not. If
mutual authentication is successful, potential roles for assignment are selected by
the coordinator, according to the node’s capabilities: policies specify the preferable
assignment strategy by listing one or more “required” capabilities for each role.
These are matched against the node’s capabilities. The matching is performed by
selecting the roles whose list of required capabilities is contained in the node’s list
of actual capabilities. Among these roles, only those satisfying the cardinality and
separation of duty constraints are selected, and the node is finally assigned to these
roles by the coordinator.

The assignment process includes transferring to the node the obligation and
authorization policies that are part of a role specification, event definitions
needed by those policies, and a subset of the domain structure of the coordinator
is copied to the node: this contains a list of all roles defined by the community
(which can be seen as placeholders) and the members currently assigned to each
role (i.e., nodes associated with each placeholder).

The consistency of the membership database is kept using a soft-state strat-
egy, where nodes that do not periodically renew their entry with the membership
manager are automatically removed, using the algorithm described in [1]. No-
tice, however, that this algorithm is solely performed by the membership manager
role. There is obviously a trade-off on how frequently nodes should revalidate
their soft-state and how often updates in the membership list should be propa-
gated by the membership manager to the other members. For this reason, these
actions are modeled by policies which can be easily changed to adapt updating
rates to different community requirements.

3.3 A Methodology for Modeling Community Management

The interaction between the roles in the community is defined in terms of the
obligation policies each (subject) role enforces. These policies specify actions that
must be performed in response to events, and such actions can be seen as steps
in the protocol that defines the interaction between roles. We can model such
interactions in a community by defining a finite state machine (FSM), where
arrows represent the generation of events and states are actions that represent

8 A. Schaeffer-Filho et al.

Fig. 2. Modeling community management

protocol steps. We only focus on modeling interactions between management
roles, but the same approach can be used for application-specific interactions.

The FSM in Fig. 2 exemplifies an interaction protocol in a community that
supports the three management roles previously described: coordinator, authen-
ticator and membership manager. The protocol specifies that after the commu-
nity specification is loaded into the coordinator, the community broadcasts its
presence and waits for node replies. A reply triggers the authentication step;
if the node is successfully authenticated, the potential roles for assignment are
selected; then, constraints are checked and the node is assigned to the roles that
satisfy both maximum cardinality and separation of duty constraints, provided
the node possesses the required capabilities for the roles. At this point, if the
minimum cardinality constraints are satisfied, the community changes to the
state “established”, otherwise it remains in a “broadcasting/waiting” state. The
protocol may have other steps, but our intended contribution is not in terms
of defining a specific management protocol, but to illustrate the methodology
for modeling community interactions: each step in the protocol can be seen as
an action (or set of actions) performed by a policy triggered by the event that
corresponds to the incoming arrow – if a step also generates the event required
to trigger the policy which specifies the next step, we can “chain” the steps of
the protocol.

We are therefore specifying the community management in terms of poli-
cies that perform steps in the protocol. This is similar to the approach used in
PDL [10], where internal events are used to link the execution of policies. How-
ever, in PDL only local events were considered, whereas here events can be sent
to remote nodes performing a given role. This flexibility is clearer if we consider
the addition of entirely new management roles to the community. These can be
used then to enhance the protocol, by adding new management steps to it in
terms of additional obligation policies.

A Role-Based Infrastructure for the Management 9

4 Implementation and Evaluation

The work on dynamic communities was implemented in Java, relying on the
infrastructure provided by Self-Managed Cells (SMCs) [3], which uses the Pon-
der22 policy framework. An SMC consists of hardware and software components
forming an autonomous administrative domain which supports both obligation
and authorization policies. Policies can be added, removed, enabled and dis-
abled to change the behavior of an SMC without interrupting its functioning.
We assume the nodes assigned to roles within a community are SMCs.

The evaluation described in this section intends to show how our infrastruc-
ture for community management scales-down and can be deployed in resources
with limited computational power and memory, which are likely to be found in
search and rescue applications such as collaborations of autonomous robots or
rescue personnel carrying small computing devices in the field. We deployed our
prototype in two classes of lightweight, constrained devices: Gumstix3 and Koala
robots4 (Fig. 3). The Gumstix has a 400 MHz Intel XScale PXA255 processor
with 16 MB flash memory and 64 MB SDRAM, running Linux and Wi-Fi enabled.
The Koala robot has a Motorola 68331, 22 MHz onboard processor, 1 MB ROM
and 1 MB RAM. The robot is extended with a KoreBot module which has a 400
MHz ARM PXA255 processor, 64 MB SDRAM and 32 MB flash memory, running
Linux and also Wi-Fi enabled. In addition, the robot has 16 infrared proximity
sensors around its body, and a video camera. Both run the lightweight JamVM5.

Either a Gumstix, which is a very portable device, or a robot can discover
other Gumstix or robots, assign them to roles, and deploy the policies pertaining
to the role on them. New members are authenticated using X.509 digital certifi-
cates before a policy-based decision on their admission to the community and
role assignment is made. Assignment policies, enforced by the coordinator role,

Fig. 3. Gumstix (left) and Koala robot with video capability (right)

2 http://www.ponder2.net
3 http://www.gumstix.com
4 http://www.k-team.com
5 http://jamvm.sourceforge.net

10 A. Schaeffer-Filho et al.

obliCoord := root/factory/ecapolicy create.
obliCoord event : root/event/nodeAuthenticated.
obliCoord condition : [: cap | interface hasCapabilities : ”video” from : cap].
obliCoord action : [: name : address | role/coordinator assign : name

from : address to : ”surveyor” community : reconnaissance].

Fig. 4. Policy specifying assignment rule for nodes possessing video capability

are used to specify preferences for the assignment of nodes to roles. Member-
ship is also managed. Members of the community must periodically signal their
presence with the membership manager and should a node become disconnected
from the community (e.g. a robot runs out of battery) its role can be re-assigned
to one of the existing devices, provided it has the capabilities to fulfil that role.

We show in Fig. 4 an obligation policy, to illustrate the kind of policies loaded
across SMCs participating in a community. The policy is a typical assignment
policy, specifying that nodes possessing the capability “video” must be preferably
assigned to the role surveyor (and would normally belong to the coordinator role
specification).

A discussion on the Ponder2 syntax is out of the scope of this paper, but es-
sentially this snippet creates an event-condition-action policy (ecapolicy) named
obliCoord, which is triggered by an event of the type nodeAuthenticated. The
condition verifies if “video” is among the set of capabilities “cap” provided as
argument of the event. If the condition evaluates to true, the action to be ex-
ecuted is the assignment (action assign) of the node whose name and address
were provided as parameters of the event to the role surveyor with respect to
the object reconnaissance (which is an instance of Community). The target of
the assign action is the coordinator role.

The size of the bytecodes required for running the prototype, including Pon-
der2 and necessary libraries, is 710 KB. The size of a typical policy written in
Ponder2 syntax is about 620 bytes (but this obviously depends on the complexity
of the policy). The size of a typical community specification (with 5 roles, each
role specifying 5 policies) written in Ponder2 is about 20.4 KB (but it is also sub-
ject to the complexity of the policies, number of policies, and number of roles in
the specification). In terms of memory usage during runtime, we observed that a
Gumstix running the coordinator role, and keeping the community specification
loaded in memory, required 15 MB for the Ponder2 process and 9224 KB for the
rmiregistry process6 (RMI is one of the communication protocols supported by
SMCs). On the other hand, a Koala robot running an application role (contain-
ing 5 policies) required 8384 KB for the Ponder2 process and 4492 KB for the
rmiregistry process. Increasing the number of policies loaded in the robot from 5
to 10 caused a negligible overhead in terms of memory consumption. The small

6 By comparison, an empty JamVM and rmiregistry uses about 3200 KB and 5900
KB respectively, and a JamVM running an empty Ponder2 instance and rmiregistry
uses about 8200 KB and 5900 KB respectively.

A Role-Based Infrastructure for the Management 11

Fig. 5. Total assignment time versus policy loading and deployment time

footprint needed for our role management infrastructure highlights that other
devices with a similar configuration and capacity could also have been used.

The graph in Fig. 5 depicts some initial performance measurements running
our prototype on devices with very constrained computational power. The tests
consisted in measuring the time taken for a Gumstix running the coordinator role
to assign a nearly discovered Koala robot to another role, containing a variable
number of policies. We have measured both the time taken to transfer and deploy
only the policies, as well as the whole assignment process The latter involves the
transfer of the policies, the transfer of additional community information such as
event definitions, the creation of role placeholders in the remote node, sending an
event informing that a new node has joined the community, and the attribution
of the discovered node to the role in question by the coordinator.

Our results show that for roles with a small number of policies the total cost of
assignment is dominated by the cost of tasks not related to policy transfer, but
as we increase the number of policies per role, this fixed cost tends to become
negligible in comparison to the cost of loading and deploying policies (which
increases linearly). This suggests that the prototype is able to support more
complex roles where the only significant cost is the policy transfer, because the
residual component of the assignment time remains constant. We also observed
that most of this time (about 97% on average) is spent on RMI serialization
and network delay when transferring data from the Gumstix to the robot, and
only a small part corresponds to the time that is actually spent by the robot to
instantiate the policies. We expect that Ponder2’s ability of supporting alter-
native communication protocols will mitigate this overhead. The evaluation of
other aspects of the community strategy, in particular the cost of role replace-
ment when a node fails, remains to be done as future work.

12 A. Schaeffer-Filho et al.

5 Related Work

Although related work exists in the area of ad-hoc communities, we are not aware
of any that similarly addresses structural community issues based on dynamic
roles and assignment policies. The industrial work on autonomic computing, led
primarily by IBM [11] but also addressed by Motorola [12] and HP [13], usually
tends to focus on network management of large clusters and web servers. Self-
managed cells are suitable for more dynamic and mobile pervasive settings, e.g.
communities of ad-hoc unmanned autonomous vehicles. The control-loop per-
formed by SMCs is much simpler than the control-loop used by those projects,
as it does not depend on planning techniques or ontologies in order to support
self-management. Mobile UNITY [14] provides a notation system for expressing
the coordination among mobile unities of computation. It focuses on the formal-
ization of coordination schemas, and not on the management of communities.

Research on policies has been active for several years, especially regarding
policies for network and systems management. Examples include PCIM [15],
PDL [16] and PMAC [17]. Although they use similar event-condition-action rules
for encoding adaptation, these approaches are targeted for management of large-
scale and networked systems, and do not scale-down for managing small devices.

Finally, the management of dynamic communities may be enhanced with the
inclusion of additional security and management mechanisms: threshold cryp-
tography [18] for preventing a compromised authenticator from accepting rogue
members and intrusion detection [19] for monitoring potential risks and attacks
are some of the options, but their inclusion in our dynamic communities still re-
quires further investigation. Our focus however is not on developing such mech-
anisms but instead on the management infrastructure they require.

6 Discussion and Concluding Remarks

As well as application-specific roles, a community infrastructure must define a
flexible framework for the management of the community itself. This is most
flexibly achieved by: (a) identifying roles corresponding to the community man-
agement functions, (b) defining the community operation in a higher level FSM
based model, and (c) dividing and deploying the management steps as dynami-
cally replaceable policies.

Our strategy of splitting the management tasks in several different roles, which
will be then assigned to different nodes, caters for the distributed management of
a community. Typically, in search and rescue missions, the coordinator is assigned
based on chain of command and on capabilities. It may constitute a single point of
failure, however a community is not under threat if the coordinator fails – the com-
munity is stable and continues to operate, but new members cannot join until a new
coordinator is assigned. This is mitigated by assigning a replacement node to the
role. Replicating the coordinator (or any management role) would require replica
consensus and would significantly increase messaging (with power consumption
and security implications), and therefore the role replacement strategy is prefer-
able. Our model caters for an extensible infrastructure for management of dynamic

A Role-Based Infrastructure for the Management 13

communities, where new roles can be added, according to the management and se-
curity requirements of each mission-oriented dynamic community.

The work presented in this paper significantly extends our past results and
shows how Ponder2 and Self-Managed Cells offer a flexible infrastructure for
self-management and autonomy in such MANETs. The overall implementation
overhead shows that our prototype scales well and can be deployed in constrained
resources with limited computational power and memory, which are likely to be
found in mobile ad-hoc communities.

To apply our model in larger scale scenarios, we will require the ability to
cater for communities that interact with other communities. For example, we
can think of hierarchical composition of communities, where a rescue team has
as one of its members a medical team, which is a community itself. The in-
ner community would encapsulate its management and the outer would not be
concerned with the details of the management in the inner community. This ar-
chitecture of hierarchical communities allows the management to scale-up, with
self-managed, encapsulated communities, but future work still has to investigate
the abstractions required to support cross-community interactions.

Acknowledgments

Research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry
of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the author(s) and should
not be interpreted as representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments are authorized
to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation here on. We also acknowledge financial support in part from the
EC IST EMANICS Network of Excellence (#26854). Finally, the authors wish to thank
Eskindir Asmare for his contributions in defining the reconnaissance scenario for UAVs
used in this paper.

References

1. Keoh, S.L., Lupu, E., Sloman, M.: Peace: A policy-based establishment of ad-
hoc communities. In: Proc. of the 20th Annual Computer Security Applications
Conference (ACSAC), Washington, DC, pp. 386–395. IEEE Computer Society,
Los Alamitos (2004)

2. Sloman, M., Lupu, E.: Security and management policy specification. IEEE Net-
work 16(2), 10–19 (2002)

3. Lupu, E., Dulay, N., Sloman, M., Sventek, J., Heeps, S., Strowes, S., Twidle, K.,
Keoh, S.L., Schaeffer-Filho, A.: AMUSE: autonomic management of ubiquitous
systems for e-health. J. Concurrency and Computation: Practice and Experience
(May 2007)

14 A. Schaeffer-Filho et al.

4. Schaeffer-Filho, A., Lupu, E., Dulay, N., Keoh, S.L., Twidle, K., Sloman, M., Heeps,
S., Strowes, S., Sventek, J.: Towards supporting interactions between self-managed
cells. In: 1st International Conference on Self-Adaptive and Self-Organizing Sys-
tems (SASO), Boston, USA, pp. 224–233. IEEE Computer Society, Los Alamitos
(2007)

5. Asmare, E., Dulay, N., Lupu, E., Sloman, M., Calo, S., Lobo, J.: Secure dynamic
community establishment in coalitions. In: MILCOM, Orlando, FL (2007)

6. Asmare, E., Dulay, N., Kim, H., Lupu, E., Sloman, M.: A management architecture
and mission specification for unmanned autonomous vehicles. In: 1st SEAS DTC
Technical Conference, Edinburgh, Scotland (2006)

7. Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer
security policies. In: IEEE Symposium on Security and Privacy (1987)

8. Sandhu, R.: Rationale for the rbac96 family of access control models. In: RBAC
1995: Proceedings of the first ACM Workshop on Role-based access control, p. 9.
ACM Press, New York (1996)

9. Lupu, E., Sloman, M.: A policy based role object model. In: Proc. 1st Int. En-
terprise Distributed Object Computing Workshop, Gold Coast, Queensland, Aus-
tralia, pp. 36–47. IEEE, Los Alamitos (1997)

10. Bhatia, R., Lobo, J., Kohli, M.: Policy evaluation for network management. In:
INFOCOM, Tel-Aviv, Israel, pp. 1107–1116. IEEE CS-Press, Los Alamitos (2000)

11. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

12. Strassner, J., Agoulmine, N., Lehtihet, E.: Focale a novel autonomic network-
ing architecture. In: Latin American Autonomic Computing Symposium, Campo
Grande, MS, Brazil (July 2006)

13. HP: Hp utility data center: Enabling enhanced datacenter agility (May 2003),
http://www.hp.com/large/globalsolutions/ae/pdfs/udcenabling.pdf

14. Roman, G.C., Payton, J.: Mobile unity schemas for agent coordination (March
2003)

15. Moore, B., Ellesson, E., Strassner, J., Westerinen, A.: Policy core information
model, version 1 specification. request for comments 3060, network working group
(2001), http://www.ietf.org/rfc/rfc3060.txt

16. Lobo, J., Bhatia, R., Naqvi, S.: A policy description language. In: Proceedings of
the 16th National Conference on Artificial Intelligence, Orlando, FL, July 1999,
pp. 291–298 (1999)

17. Agrawal, D., Calo, S., Giles, J., Lee, K.W., Verma, D.: Policy management for net-
worked systems and applications. In: Proceedings of the 9th IFIP IEEE Interna-
tional Symposium on Integrated Network Management, Nice, France, pp. 455–468.
IEEE CS-Press, Los Alamitos (2005)

18. Zhou, L., Haas, Z.: Securing ad hoc networks. Technical report, Cornell University,
Ithaca, NY, USA (1999)

19. Lunt, T.F.: A survey of intrusion detection techniques. Computers and Secu-
rity 12(4), 405–418 (1993)

PSH: A Private and Shared History-Based

Incentive Mechanism

Thomas Bocek1, Wang Kun2, Fabio Victora Hecht1, David Hausheer1,
and Burkhard Stiller1,3

1 Department of Informatics IFI, University of Zurich, Switzerland
{bocek,hecht,hausheer,stiller}@ifi.uzh.ch

2 Research Institute of Telecommunication Transmission RITT, China
Telecommunication Technology Labs, China

wangkun@chinattl.com
3 Computer Engineering and Networks Laboratory TIK, ETH Zurich, Switzerland

Abstract. Fully decentralized peer-to-peer (P2P) systems do not have
a central control mechanism. Thus, different forms of control mecha-
nisms are required to deal with selfish peers. One type of selfish behavior
is the consumption of resources without providing sufficient resources.
Therefore, incentive schemes encourage peers to share resources while
punishing selfish peers. A well-known example of an incentive scheme
is Tit-for-Tat (TFT), as used in BitTorrent. With this scheme, a peer
can only consume as much resources as it provides. TFT is resilient to
collusion due to relying on private histories only. However, TFT can only
be applied to peers with direct reciprocity.

This paper presents a private and shared history (PSH) based in-
centive mechanism, which supports transitive relations (indirect reci-
procity). Furthermore, it is resilient to collusion and it combines private
and shared histories in an efficient manner. The PSH approach uses a
shared history for identifying transitive relations. Those relations are ver-
ified using private histories. Simulations show that the PSH mechanism
has a higher transaction success ratio than TFT.

1 Introduction

Peer-to-peer (P2P) systems have numerous advantages over centralized sys-
tems. Load balancing, robustness, scalability, and fault tolerance are properties
that a P2P system can offer. However, challenges in P2P systems include free-
riders [1], malicious peers, Sybil attacks [4], self-interest [13], and other forms
of attacks [11]. Incentive mechanisms are used to address those challenges and
encourage peers to act cooperatively.

A simple incentive scheme is Tit-for-tat (TFT) as used in BitTorrent [2]. In
this scheme, a peer can only consume as much resources as it provides. The TFT
mechanism keeps, for each peer, a history of past resource exchanges or transac-
tions. This history is private, that is, it contains only first-hand information; conse-
quently, peers have a limited view on transactions to peers with direct reciprocity.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 15–27, 2008.
c© IFIP International Federation for Information Processing 2008

16 T. Bocek et al.

Thus, private history is suitable for symmetric resource interest [5], for example
in a file-sharing system with many popular files. With a TFT mechanism based
on shared history, transaction information is shared and accessible by other peers,
with the result that indirect reciprocity is detectable. Thus, TFT based on shared
history (transitive TFT) is suitable for asymmetric resource interest. However,
shared history approaches are prone to false reports and collusion [5].

This paper proposes a new incentive mechanism which is a combination of
private and shared history. While shared history is used to propagate resource
exchange information, private history is applied to verify its correctness. This
approach is termed private shared history incentive mechanism (PSH). Addi-
tionally, PSH uses an efficient mechanism to propagate history by including it
in resource request and response messages.

The evaluation of PSH requires two steps. First, to show that the mechanism
works as expected in general. Second, to test this mechanism in a distributed
environment such as PlanetLab. This paper presents the first step. PSH incentive
mechanism simulations show that this approach has a transaction success ratio of
up to 73% higher than TFT. Message count is, in average, 46% higher. Message
size is 288% larger, in average.

There are several possible applications of PSH. In file-sharing systems with
many unpopular files, there are few direct relations between peers for which TFT
does not work well. In this case, PSH shows its strength. Additionally, PSH can
be applied for trading resources such as computing power, memory capacity, or
bandwidth in a computational Grid. In such a Grid, it is rarely the case that
Grid nodes have symmetric resource interests, since those resources shared in a
Grid are typically non-replicable and exclusive, i.e. resource usage diminishes the
total amount of available resources [6]. PSH enables a Grid node to contribute
resources to the Grid in idle times, and to consume additional resources from
other Grid nodes during peak times.

The remainder of this paper is structured as follows. Section 2 discusses related
work while Section 3 introduces the design of the incentive scheme. Section 4
provides the implementation details and presents results, while Section 5 draws
conclusions.

2 Related Work

Incentive schemes can be divided into two groups: (1) trust-based and (2) trade-
based incentive schemes [12]. With a trust-based incentive scheme, peers are
encouraged to act in a certain way to gain as much trust as possible. With a
trade-based incentive scheme, resources are traded and peers are encouraged
to provide as much resources as they consume. This can be based on direct
reciprocity as in TFT, or indirect reciprocity as in transitive TFT.

2.1 Trust-Based Incentive Schemes

Kamvar et al. [8] propose a global unique trust value based on a peer’s history.
The EigenTrust algorithm can effectively identify malicious peers and isolate

PSH: A Private and Shared History-Based Incentive Mechanism 17

them. The authors have showed in simulations that their approach can reduce
the number of peers providing inauthentic files.

Lian et al. [9] propose multi-level TFT to achieve robust incentives. This
approach is a balance between EigenTrust and TFT. The authors have imple-
mented and tested their approach in the Maze [18] system. Multi-level TFT
introduces limited indirect trust levels, to reduce the trust metric size. As in
EigenTrust, multi-level TFT aggregates transitive trust values. The evaluation
shows that a two-level matrix performs better than relying on private history
only, while efficiently dealing with malicious peers.

Another enhancement of EigenTrust is described in [3]. The authors compared
EigenTrust with the following different extensions: inverse EigenTrust, truncated
PageRank, bit propagation, and badness based on BadRank. Simulations showed
that EigenTrust with badness based on BadRank performs always better than
EigenTrust alone with respect to authentic downloads.

A similar approach to EigenTrust is described in [10]. The authors propose a
voting reputation system, in which opinions of other peers are considered. Those
peers can vote on a peer’s reputation. A highly reputable peer vote has a higher
value. However, this approach is prone to whitewashing, and a high cost for
initial joining is a side effect.

PeerTrust [16] compares the trustworthiness of peers using a new trust metric.
This metric uses three important trust parameters: feedback, number of trans-
actions, and the credibility of the feedback. The authors showed in simulations
the feasibility of their approach.

2.2 Trade-Based Incentive Schemes

Trade-based incentive schemes, such as KARMA [15] and the mechanism used
by PPay [17] introduce a broker role. PeerMint [7] uses multiple remote peers to
store and aggregate accounting information in a trustworthy and scalable way.
It applies a structured P2P overlay network to map accounts onto a redundant
set of peers and organizes them in an efficient and scalable manner. The scheme
uses session mediation peers to maintain and aggregate session information about
transactions between peers. This minimizes the possibility of collusion. However,
malicious peers acting as a brokers or mediators are an open issue.

Feldman et al. [5] proposed to use the MaxFlow algorithm for collusion free
data propagation. The authors suggest to modify the MaxFlow algorithm to
evaluate paths in constant time. However, not all paths will be found (indirect
reciprocity).

Ngan et al. [14] present an architecture to enforce fair sharing of storage
resources, which is robust against collusion. The architecture uses auditing and
usage records, which are publicly available. A peer can be randomly audited by
any other peer. The authors show in simulations that the overhead of auditing is
small and scales in large networks, and that peers have an incentive to provide
correct data.

18 T. Bocek et al.

Table 1. Related work comparison

Algorithm Aggregation Transitive exchange Collusion resistance Local data
PSH no yes yes yes
Eigentrust yes yes no yes
ML-TFT yes yes no yes
Feldman et al. no yes yes no
Ngan et al. no no yes yes

2.3 Comparison of Incentive Schemes

Table 1 shows a comparison of related work. Since PeerMint, KARMA and PPay
require a broker, and PeerTrust focus on metrics, they are not included in this
table. Unlike multi-level TFT, PSH does not aggregate the propagated values.
PSH verifies each information directly on a peer, thus detecting collusion. The
path finding algorithm presented by Feldman et al. requires many contacts with
other peers, while PSH requires few contacts because transaction data is locally
available, as this data is propagated with each request. The work presented by
Ngan et al. uses auditing to verify resource information, while PSH tries to find
a transitive resource exchange path.

3 Design

PSH uses shared history to find peers with indirect reciprocity and private his-
tory to verify the reciprocity for those peers.

3.1 Requirements

Although PSH uses shared history, the mechanism shall be collusion resistant.
In addition, data propagation must be scalable, robust, and fault tolerant. To
allow an initial transaction, a peer may consume resources until a credit limit is
reached. The credit limit must be low enough to discourage peers from creating
new identities (white-washing). A last requirement is the workload to be placed
on the requesting peer, preventing DoS attacks. If load is placed mostly on the
answering peer, too many requests may cause an overload.

3.2 Assumptions

It is assumed that peers have asymmetric resource interests, i.e. a peer that
provides resources to another peer has no interest in the resources that peer has
to offer. Furthermore, each peer’s public key is assumed to be known or able
to be requested. Since signatures are verified directly on the respective peer, no
trusted third party is required.

3.3 Algorithm

PSH behaves like TFT if two peers are about to exchange resources and pre-
vious transaction information is present in the other’s private history. If it is

PSH: A Private and Shared History-Based Incentive Mechanism 19

Fig. 1. General PSH incentive mechanism

not present, PSH looks for a path, that is, a linked list of peers with transitive
history information, from the source peer to the target peer. Each of those peers
in the path is requested to issue a check, that means, to transfer their signed
credit balance between the source and the next in the path or the target.

Figure 1 shows the general architecture of the request / response handling
in PSH. Arrows between grey boxes indicate a TCP or UDP connection. The
figure shows that the workload is mainly on the requesting peer, because path
searching is done on the requesting peer.

In Figure 1, peer s sends a resource request to peer t. If the request succeeds,
then both private histories from peer s and t are updated as in TFT. If it fails,
peer s searches for a path. If a path cannot be found, the request fails. If the
path cannot be traversed, the request fails as well. If the path can be traversed
and a valid check can be returned, peer s asks peer t again with this valid check.

3.4 Shared History Data Propagation

Each peer stores two tables of history information, a direct transaction informa-
tion (DTI) table and an indirect transaction information (IT I) table. A DTI
table contains information based on direct reciprocity (private history). An IT I
table is based on indirect reciprocity (shared history). A DTI entry for peer x
and peer y DTIx(y) is defined as the amount of exchanged resources. For a suc-
cessful resource transaction from peer x to peer y, the former stores DTIx(y),
while peer y stores DTIy(x), where DTIx(y) = −DTIy(x). Along with each
request and response message, a subset of DTI entries with the highest times-
tamp is exchanged to avoid creating new connections. The IT I table contains
accumulated DTI from other peers, e.g., peer x has IT Iy(z) = 3, which means
peer x knows about transactions between peer y and peer z. The IT I and DTI

20 T. Bocek et al.

Fig. 2. Initial states of peer t, w, x, y, z, and s, showing DTI and ITI tables

tables are used to find a path from a given source to a target. If such a path
exists, then indirect reciprocity can be inferred.

Since many paths may exist, the size of a complete IT I table has polynomial
complexity O(n2), where n is the total number of peers in the system. A reduc-
tion of complexity can be achieved by evaluating a limited path length L instead
of |n|, where L < n. Further complexity reduction can be achieved by expiring
transactions in the IT I table using a time decay function fdecay(transaction).
Therefore, not all existing paths are found.

A transaction between two peers x and y is defined as Tx(y) = z, z being
the transaction value. Each transaction contains a timestamp. Figure 2 shows
example values of DTI and IT I in a state in which transactions T have already
happened. In this example, peer s is the source and peer t is the target. For
better readability, the IT I table is only displayed for peer s.

3.5 Private History Verification

Once a path has been found using the shared history, the verification process
starts. This process queries every intermediate peer on that path P (s, x, . . . , t),
where s is the source, t is the target and x, . . . are intermediate peers, to is-
sue a check. An intermediate peer receives a request containing the source, the
predecessor and successor peers. The intermediate peer checks and accounts the
balance of the predecessor and successor peers, with the effect that the interme-
diate peer transfers its debts from the predecessor to the source. The interme-
diate peer sends a signed check with the new balance to the source peer. Each

PSH: A Private and Shared History-Based Incentive Mechanism 21

Fig. 3. Example: Peer s requests resources form peer t

intermediate peer is requested sequentially to send a check to the requesting peer
until the successor peer is the target peer. If an intermediate peer fails to send
a check, e.g., because of an imbalance due to old history data, then the path is
invalid.

In Figure 3, peer s requests a resource with value 2 from peer t (1), assuming
the initial state in Figure 2. Since the credit limit has been set to 1, peer t
reports (2) that this exceeds the credit limit. Peer s evaluates its DTI and IT I
tables. The IT I table of peer s contains the DTI from peer x (cf. Figure 2). The
negative response for the request contains the DTI of peer t, so peer s updates
its IT I accordingly in (2). Then, peer s searches a path using the IT I and DTI
tables using breadth-first search and finds s → x → w → t.

In Figure 3 peer s requests from peer x (3) a check. Peer x settles and updates
its DTIs for peer w and peer s to DTIx(s) = 0 and DTIx(w) = 0. The check
that is sent back (4) contains a signed message with STw(s) = 1, where ST
stands for settled transaction. Peer s contacts peer w (5) with this check and
asks peer w to settle and update its DTIs for peer t and peer x, which results in
DTIw(x) = 0 and DTIw(s) = 0, respectively. Then a check STt(s) = 1 is sent
back (6). Peer s requests resources from peer t (7) and provides the check from
peer w. Peer t settles and updates its DTI to DTIt(s) = 1 and DTIt(w) = 0.
The request for a resource with value 2 is granted (8). After this transaction,
peer t updates its DTI table with DTIt(s) = −1.

4 Implementation and Simulation

PSH has been implemented and tested using Java 1.6. Message communication
between peers is asynchronous. For short messages UDP is used, otherwise TCP.

4.1 Implementation

The time decay function fdecay(transaction) is implemented as a queue with
up to 100 entries to keep memory usage low. This means that the DTI and
IT I tables contain up to 100 transaction entries each. The oldest entry will be

22 T. Bocek et al.

removed if this limit is exceeded. An entry contains credit amount and node
address. The transferred subset of DTI values is limited to 6 as a compromise
between message size and data propagation.

Two versions of PSH have been simulated and compared to TFT: PSH as de-
scribed in Section 3, and PSH with a reduced number ofmessage transfers (PSH r),
both with L = 3. The reduction has been achieved by sending a subset of the DTI
only if a request failed. PSH r does not retry to send the request after a failed trans-
action, while PSH retries up to 3 times. A retry in PSH can be successful if a path
can be found and verified. A retry in TFT would always fail because a peer only
updates its history after a successful transaction. In contrast, PSH may update its
history with a check from another peer and a retry may be successful.

4.2 Simulation

All simulations have been performed with 100 peers that share resources. Every
peer has always exactly one resource, and requests 10 times a randomly chosen
resource. Each simulation is run 10 times; averaged results are displayed. The
simulation is repeated with the number of unique resources in the system varying
from 1 to 100. In a system with only one unique resource, every peer requests

Fig. 4. Transaction success ratio for PSH, PSH(r), and TFT

PSH: A Private and Shared History-Based Incentive Mechanism 23

the same resource, thus the interest is symmetric. With 100 unique resources on
100 nodes, there is a high probability that interest is asymmetric.

The success ratio is defined as s/(f + s), where s is the number of successful
transactions and f is the number of failed transactions. As shown in Figure 4, the
success ratio of PSH is always higher than TFT, particularly when the number
of unique resources is around 32. The higher success ratio is due to the shared
history data. PSH r is at an intermediate position, performing better than TFT,
but worse than PSH, since the algorithm does not retry transactions.

The message count represents the total number of messages per transaction
sent through the network. The total message size shows the total amount of bytes
sent over the network. The message count and size include resource request and
response messages, and for PSH additionally check request and reply messages.

In Figure 5, the message count for TFT is constant at 2 messages per trans-
action, since a transaction consists of a request and a reply message. In PSH,
besides resource requests, peers also exchange checks, therefore, the number of
messages is higher — up to twice as many as TFT, peaking on 32 unique re-
sources. An important factor that contributes to this high number is the PSH
retry behavior. Since PSH r does not perform retries, its number of messages
are, on average, only 2.22% above TFT, at maximum 6.4%.

Fig. 5. Message count of PSH, PSH(r), and TFT per transaction

24 T. Bocek et al.

Fig. 6. Total message size of PSH, PSH(r), and TFT

In Figure 6, the message size is higher for PSH and PSH r than for TFT due
to two factors: (1) the message count is larger, and (2) messages contain also
history information. The message size of PSH r is smaller than PSH because of
fewer history information.

Both Figures 5 and 6 show a similar behavior for PSH. First message size
and count increases. This is due to the fact that the number of unique resources
decreases. This leads to a decrease of the success ratio, which leads to message
retries, with up to 3 retries. At the peak level, for about 33 unique resources
(32 in our particular simulation), one resource is kept by approximately 3 peers.
From that point on less than 3 peers have the same resource, thus, PSH sends
fewer retry messages and the message size and count decreases.

5 Summary, Discussion, Conclusion, and Future Work

This paper presents PSH, a transitive TFT incentive mechanism, which has a
higher transaction success ratio than TFT for peers with indirect reciprocity.
Simulations show the trade-off between a higher success ratio and a higher

PSH: A Private and Shared History-Based Incentive Mechanism 25

message size and count. PSH has a success ratio that is up to 73% higher than
TFT. The message size is up to 5.6 times higher and the message count up to
2 times higher. However, with PSH modifications such as PSH r, the success
ratio can be increased, when compared to TFT, with only a small overhead with
respect to message size (49% larger than TFT in average) and count (2.2% larger
than TFT in average).

5.1 Discussion

A subset of history information is propagated together with request and response
messages. Thus, if a peer does not interact with any other peer, history informa-
tion does not flow and already stored information becomes inaccurate. A path
that relies on inaccurate data will fail. In such cases, PSH retries the request,
which result in a higher message size and count. To avoid this problem, a proper
time decay function is applied.

A check from a peer has to be signed and thus, the public key has to be
transferred first. Besides the message overhead, signing a message is a CPU
intensive task. Thus, PSH is not suitable for micro-trading, i.e. trading many
small resources in short time.

5.2 Conclusion

PSH works better than TFT in systems with many different resources, i.e. in
systems with an asymmetry of interest. This paper shows that there is potential
to improve TFT by introducing PSH. The cost of a higher transaction success
ratio is an increased message size. If a high transaction rate is more important
than bandwidth constraints, then PSH should be preferred over TFT.

5.3 Future Work

The PSH mechanism could also be used for trust and reputation management.
As the collected history information is locally available, the trust value can be
calculated for each request and additional variables could be considered in the
trust calculation.

The PSH mechanism has been thoroughly tested and simulated. While this
first step of the evaluation shows that the mechanism works as expected, for the
second step of the evaluation, further measurements in a distributed environment
such as PlanetLab with more than 100 nodes are needed, in order to show that
PSH is robust, fault and delay tolerant, and scalable. Future work will measure
how PSH works with collusion and false reports, while varying the number of
retries and the credit limit.

Acknowledgement

This work has been performed partially in the framework of the EU IST Project
EC-GIN (FP6-2006-IST-045256) as well as of the EU IST NoE EMANICS

26 T. Bocek et al.

(FP6-2004-IST-026854). The authors acknowledge valuable feedback from their
colleagues and project partners.

References

1. Adar, E., Huberman, B.A.: Free Riding on Gnutella. First Monday, Internet Jour-
nal 5(10) (October 2000)

2. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Workshop on Economics
of Peer-to-Peer Systems, Berkeley, CA, USA (June 2003)

3. Donato, D., Paniccia, M., Selis, M., Castillo, C., Cortese, G., Leonardi, S.: New
Metrics for Reputation Management in P2P Networks. Technical report, Banff,
Alberta, Canada (May 2007)

4. Douceur, J.R.: The sybil attack. In: IPTPS 2001: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, London, UK, pp. 251–260.
Springer, Heidelberg (2002)

5. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust Incentive Techniques for Peer-
to-Peer Networks. In: EC 2004: Proceedings of the 5th ACM conference on Elec-
tronic commerce, pp. 102–111. ACM Press, New York (2004)

6. Hausheer, D.: PeerMart: Secure Decentralized Pricing and Accounting for Peer-to-
Peer Systems, Number 16200. Shaker Verlag, Aachen, Germany (2006)

7. Hausheer, D., Stiller, B.: PeerMint: Decentralized and Secure Accounting for Peer-
to-Peer Applications. In: IFIP Networking Conference, Ontario, Canada, May 2005,
pp. 40–52 (2005)

8. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for
reputation management in P2P networks. In: WWW 2003: Proceedings of the 12th
international conference on World Wide Web, pp. 640–651. ACM Press, New York
(2003)

9. Lian, Q., Peng, Y., Yang, M., Zhang, Z., Dai, Y., Li, X.: Robust Incentives via
Multi-level Tit-for-tat. In: 5th Int. Workshop on Peer-to-Peer Systems (IPTPS),
Santa Barbara, CA, USA (February 2006)

10. Marti, S., Molina, H.G.: Limited Reputation Sharing in P2P Systems. In: 5th ACM
Conference on Electronic Commerce (EC 2004), pp. 91–101. ACM Press, New York
(2004)

11. Nielson, S.J., Crosby, S., Wallach, D.S.: A Taxonomy of Rational Attacks. In: Cas-
tro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640. Springer, Heidelberg
(2005)

12. Obreiter, P., Nimis, J.: A Taxonomy of Incentive Patterns - The Design Space of
Incentives for Cooperation. In: Moro, G., Sartori, C., Singh, M.P. (eds.) AP2PC
2003. LNCS (LNAI), vol. 2872. Springer, Heidelberg (2004)

13. Shneidman, J., Parkes, D.C.: Rationality and Self-Interest in Peer to Peer Net-
works. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735. Springer,
Heidelberg (2003)

14. Wallach, D.S., Ngan, T.-W., Druschel, P.: Enforcing Fair Sharing of Peer-to-Peer
Resources. In: 2nd International Workshop on Peer-to-Peer Systems (IPTPS),
Berkeley, California (February 2003)

15. Vishnumurthy, V., Chandrakumar, S., Sirer, E.: KARMA: A Secure Economic
Framework for Peer-to-Peer Resource Sharing. In: Workshop on Economics of Peer-
to-Peer Systems, Berkeley, CA, USA (June 2003)

PSH: A Private and Shared History-Based Incentive Mechanism 27

16. Xiong, L., Liu, L.: Peertrust: supporting reputation-based trust for peer-to-peer
electronic communities. IEEE Transactions on Knowledge and Data Engineer-
ing 16(7), 843–857 (2004)

17. Yang, B., Garcia-Molina, H.: PPay: Micropayments for Peer-to-Peer Systems. In:
CCS 2003: Proceedings of the 10th ACM conference on Computer and communi-
cations security, pp. 300–310. ACM Press, New York (2003)

18. Yang, M., Chen, H., Zhao, B.Y., Dai, Y., Zhang, Z.: Deployment of a large-scale
peer-to-peer social network, Boston, MA, USA (June 2004)

Cooperation under Scarcity: The Sharer’s Dilemma

Michael Rogers1 and Saleem Bhatti2

1 University College London, London WC1E 6BT, UK
m.rogers@cs.ucl.ac.uk

2 University of St. Andrews, Fife KY16 9SS, UK
saleem@cs.st-andrews.ac.uk

Abstract. Many researchers have used game theory to study the problem of en-
couraging cooperation in peer-to-peer and mobile ad hoc networks, where re-
sources are provided collectively by the users. Previous work has modelled the
problem as either a multi-player social dilemma or a network of two-player pris-
oner’s dilemmas, but neither of these approaches captures a crucial aspect of the
problem, namely scarcity: when resources are limited, players must not only con-
sider how to establish and sustain cooperation with each opponent, but how to
allocate resources among their opponents in order to maximise the total coopera-
tion received.

This paper presents a new game theoretic model of cooperation under scarcity,
the sharer’s dilemma, and a simple expected utility strategy that is shown to per-
form well against a wide range of opponents. The expected utility strategy can
easily be applied to file sharing networks to create an incentive for users to con-
tribute resources.

1 Introduction

Any system with infrastructure that is provided collectively by the users faces the
problem of encouraging users to contribute resources as well as consuming them. In
other words, users must cooperate with one another. Cooperation in peer-to-peer and
mobile ad hoc networks has received a great deal of attention from researchers in
recent years, and many incentive mechanisms to encourage cooperation have been
proposed. However, in this paper we will argue that such mechanisms have so far
lacked a suitable theoretical foundation: some use ad hoc methods that may be vul-
nerable to manipulation by selfish users, while others are based on game theoretic
models that fail to capture the problem of allocating scarce resources among neigh-
bours. We develop a new game theoretic model of this problem and show that a strat-
egy based on strict utility-maximisation creates an incentive for selfish users to
cooperate.

The next section of this paper reviews existing models of cooperation in networks,
including the prisoner’s dilemma and multi-player dilemmas. Section 3 introduces our
new model, the sharer’s dilemma, and describes the expected utility strategy. Section
4 presents the results of simulations comparing a number of strategies. We discuss the
limitations of our findings in section 5, and conclude the paper in section 6 with some
directions for future work.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 28–39, 2008.
c© IFIP International Federation for Information Processing 2008

Cooperation under Scarcity: The Sharer’s Dilemma 29

2 Game Theoretic Models of Cooperation

If a communication network is viewed as a group of self-interested individuals inter-
acting according to rules specified by the protocol designer, then game theory provides
tools for modelling the behaviour of rational participants, and mechanism design can
be used to create protocols that reward cooperation, encouraging rational participants
to behave in ways that benefit the network [1,2,3].

It might seem reductive to regard the participants in a communication network as sim-
ple egoists – even economists no longer believe that people are motivated purely by self-
interest [4,5,6] – but here we are concerned with the behaviour of nodes rather than the
intentions of users: game theory is not appropriate for modelling all human interactions,
but it is well suited to modelling those interactions in which humans delegate routine
decisions to software, reducing complex social considerations to a choice between pro-
grammatic ‘strategies’. Even if most participants have the best interests of the network
at heart, game theory allows us to assess the network’s vulnerability to exploitation by a
selfish minority. Mechanisms that prevent free riding may also be able to prevent denial-
of-service attacks in which malicious users exhaust the resources provided by others.

2.1 The Prisoner’s Dilemma

Simple games can embody surprisingly complex problems, and perhaps no simple game
has received more attention than the prisoner’s dilemma, a single-round game for two
players, each of whom chooses between two actions, cooperation and defection, and
receives a payoff that depends on the choices of both players: T is the ‘temptation’
payoff for unilateral defection, R is the ‘reward’ payoff for mutual cooperation, P is
the ‘punishment’ payoff for mutual defection, and S is the ‘sucker’ payoff for unilateral
cooperation [7].

The dilemma arises because T > R > P > S, which means a rational player
will defect regardless of her opponent’s choice. The players cannot escape the dilemma
by communicating about their intentions, because a rational player will claim that she
intends to cooperate, but will then defect. Thus rational players always defect, leading
to a suboptimal payoff P < R for both players.

The prisoner’s dilemma has been used to model a wide range of situations in nature
and society where the benefit of cooperation is greater than the cost. Wahl and Nowak [8]
describe the prisoner’s dilemma in terms of the cost of cooperating, c, and the benefit of
receiving cooperation, b. The restriction b > c > 0 leads to the payoff structure described
above. Roberts and Sherratt [9] describe the dilemma using a single parameter, k = b/c.

Public goods problems, social dilemmas [10] and reciprocal altruism [11] find natu-
ral expression in the form b > c > 0, but not all prisoner’s dilemmas can be expressed
in this way: for example, many studies use the payoffs T = 5, R = 3, P = 1, S = 0.
In this paper we will only consider dilemmas that arise from the costs and benefits of
cooperating and can therefore be expressed in the form b > c > 0.

2.2 The Shadow of the Future

Although rational players always defect in the single-round prisoner’s dilemma, it may
be possible to establish cooperation if the game is repeated for more than one round.

30 M. Rogers and S. Bhatti

Players who expect to interact for many rounds must consider the long-term effects of
their short-term decisions: automatic defection is no longer necessarily the best strategy,
because players have the chance to recognise cooperative opponents and gain a higher
payoff through mutual cooperation (although each player will still be tempted to defect
once her opponent has started to cooperate).

Simple strategies for the repeated prisoner’s dilemma include Tit For Tat, which co-
operates in the first round and thereafter copies its opponent’s action from the previous
round [12]; Win Stay Lose Shift, which cooperates in the first round and thereafter re-
peats its previous action if it receives cooperation, or switches to the other action if it
suffers defection [13]; and Stochastic Tit For Tat, which cooperates with a probability
equal to the fraction of rounds in which the opponent has cooperated [14]. All of these
strategies create an incentive for rational opponents to cooperate, while minimising
losses against uncooperative opponents.

2.3 Multi-player Dilemmas

When a dilemma involves more than two players, the model must specify which actions
affect which players. If each player chooses one action that affects all her opponents,
the situation is a social dilemma [10]; encouraging cooperation is harder than in two-
player games, because it is not possible to cooperate with cooperators while defecting
against defectors [15,16].

In a networked social dilemma, each player chooses one action that affects her neigh-
bours in a spatial lattice or other network [17,18,19,20]. Cooperation can succeed if
cooperative players’ interactions with other cooperators sufficiently outnumber their
interactions with defectors.

Finally, if each player can choose a different action for each opponent, the situation
can be modelled as a network of two-player games. Several networked variants of the
prisoner’s dilemma have been developed [21,22,23,24], all based on the assumption
that a player’s choices and payoffs in her pairwise games are independent. However, if
the payoffs represent the costs and benefits of cooperating, we may ask whether the as-
sumption of pairwise independence is always realistic: there may be situations in which
a player has limited resources for cooperation, but can allocate them freely among her
pairwise interactions. In such cases no two-player strategy indicates how best to allocate
her scarce resources.

We argue that many of the situations modelled as networked dilemmas fit this pattern:
players can allocate their resources unevenly, cooperating more with some opponents
than with others. Hunters sharing food, animals grooming one another, and network
nodes uploading files are all faced with opportunities to strengthen or weaken coopera-
tive relationships by choosing how much to share, and with whom.

3 The Sharer’s Dilemma

To explore the problem of allocating resources in networked dilemmas we propose
a simple extension to the prisoner’s dilemma, incorporating scarcity into the game by

Cooperation under Scarcity: The Sharer’s Dilemma 31

limiting the number of times a player can cooperate in each round. We call this new
game the sharer’s dilemma. The prisoner’s dilemma can be viewed as a special case
in which the limit is high enough that cooperation with every opponent is possible in
every round.

As with the prisoner’s dilemma, many variants of the game are possible, but here we
will only consider the simplest case: in each round, a player can either cooperate with
one of her opponents or defect against them all. While simple, this starting point cap-
tures the essential problem of cooperation under scarcity: when resources are limited,
the problem is not only how to establish and sustain cooperation with each opponent,
but how to prioritise opponents in order to maximise the total cooperation received.

Strategies from the prisoner’s dilemma can be adapted to the sharer’s dilemma by
specifying how to choose between neighbours when more than one neighbour is eligible
for cooperation.

3.1 The Expected Utility Strategy

If a player expects that cooperating with an opponent will result in a higher level of co-
operation in return, she can weigh the expected benefit of her opponent’s reciprocation
against the cost of cooperating, and compare the incentives offered by different oppo-
nents. This idea is the basis of our expected utility strategy for the sharer’s dilemma.

A player using the expected utility strategy estimates the benefit of cooperating with
each opponent, under the assumption that all the benefit received from the opponent so
far is a result of reciprocation – in other words the cooperation received can be attributed
to the cooperation given. The benefit of all the cooperation received in previous rounds
divided by the cost of all the cooperation given in previous rounds is the expected benefit
per unit of cost of cooperating in the current round. A player maximises her expected
benefit by cooperating with whichever opponent will provide the greatest benefit in
return.

When comparing her opponents in this way, a player does not need to know the
cost or benefit of cooperation from the opponent’s point of view – she only needs to
estimate the cost to herself of cooperating, and the benefit to herself of the resulting
reciprocation, so costs and benefits may be subjective.

If it is possible to measure costs and benefits in the same units then the cost of earning
reciprocation can be subtracted from the expected benefit, and a player may defect if the
cost of cooperating exceeds the expected benefit. However, even if costs and benefits
are not commensurable, a player can still use the expected utility strategy to maximise
her benefit by earning the most reciprocation per unit of cost.

Like any cooperative strategy, the expected utility strategy faces the problem of
bootstrapping: when two players first meet, one or both of them must risk cooper-
ating without knowing how much reciprocation (if any) will result. In the prisoner’s
dilemma, Tit For Tat and Win Stay Lose Shift take the simple approach of always
cooperating in the first round, but this may not be possible in the sharer’s dilemma
due to the limit on the amount of cooperation per round. The expected utility strat-
egy could assign a high expected benefit to first-time interactions, but this might be
vulnerable to exploitation by whitewashers who can continually change identities [25];

32 M. Rogers and S. Bhatti

alternatively, the benefit could be estimated using the average benefit of previous first-
time interactions [26].

Uncertainty about the duration of the game can be incorporated into the strategy by
applying a discount factor to future payoffs, reducing the expected benefit of recipro-
cation if games tend to be short-lived [25]. The discount factor need not be the same
for all opponents; if old players can be expected to outlive new players, as in many
peer-to-peer networks [27,28,29], then it may be appropriate to use a heavier discount
factor for new opponents.

4 Simulations

This section describes simulations to compare various strategies for the sharer’s
dilemma. Our model is a population of n players connected uniformly at random so
that each player has d neighbours on average. In each round of the game, each player
either cooperates with one of her neighbours, increasing the neighbour’s payoff by b,
or defects, increasing her own payoff by c. The players make their choices in a random
order each round.1

We simulate two strategies adapted from the prisoner’s dilemma: the first, Tit For
Tat (TFT), cooperates with a randomly chosen neighbour that cooperated with it in the
previous round, or defects if no neighbours cooperated. The second, Stochastic Tit For
Tat (STFT), cooperates with one randomly chosen neighbour, choosing each neighbour
with a probability proportional to the fraction of rounds in which the neighbour has
cooperated. To bootstrap cooperation, TFT and STFT treat new neighbours as if they
cooperated in the previous round.

We also simulate a strategy based on BitTorrent’s incentive mechanism, which uses
reciprocation to encourage peers in a file sharing network to upload [30]. Each peer
maintains an active set of connections, with all other connections ‘choked’ (nothing
is uploaded). The peer updates its active set periodically, unchoking those connections
that have recently provided the best download speeds, so neighbours that upload more
quickly are more likely to be unchoked. To bootstrap cooperation, the active set also
includes one randomly chosen connection.

To model this behaviour in the sharer’s dilemma, the BitTorrent (BT) strategy coop-
erates in each round with a randomly chosen member of its active set, which contains
one randomly chosen neighbour and the s other neighbours that have provided the most
cooperation in recent rounds. A new active set is chosen every r rounds, using an expo-
nential moving average to measure the cooperation received from each neighbour.2

Finally, we simulate the expected utility (EXU) strategy described in the previous
section, which cooperates with whichever neighbour has provided the highest bene-
fit/cost ratio in previous rounds, unless the highest ratio is less than 1 (meaning that the
cost exceeds the benefit), in which case EXU defects. Cooperating with a neighbour
lowers its benefit/cost ratio, while receiving cooperation raises its ratio. To bootstrap

1 In all the simulations presented here, n = 1, 000, d = 10 and c = 1. Three different values of
b are simulated, as explained in the text.

2 The results presented here use s = 1 and r = 5, which appear to give the best payoff for the
BT strategy in this setting.

Cooperation under Scarcity: The Sharer’s Dilemma 33

cooperation, EXU assigns new neighbours a benefit of b and a cost of c, as if they have
cooperated once and received cooperation once.

4.1 Fixed Population Proportions

Each simulation consists of 20 independent runs of 2,000 rounds each. At the end of
each round a randomly chosen player is removed and replaced with a new player using
the same strategy, who is connected to d randomly chosen neighbours. To allow the
initial conditions to fade, no measurements are taken during the first half of the run.
The payoff received by each strategy is averaged over the second half of the run.

In the first set of simulations the population contains equal proportions of the four
reactive strategies described above and the simple strategies Always Cooperate (AC)
and Always Defect (AD). We vary the strength of the dilemma by simulating three
different values of b, the benefit of cooperation; the cost c = 1 is held constant. The
first frame of Figure 1 shows the payoff received by each strategy for b = 1.5, b = 2.5
and b = 3.5. When b is close to c, AD narrowly outperforms all the reactive strategies
except EXU. Increasing b favours the cooperative strategies at the expense of AD. For
all values of b, EXU receives the highest payoff.

We also evaluate each reactive strategy separately against AC and AD, as shown in
the small frames of Figure 1. Each population contains equal proportions of AC, AD
and the strategy being tested. Once again the outcome depends on the value of b. For
b = 1.5, none of the reactive strategies does better than AD, although EXU comes
close. However, as b increases, all the reactive strategies except TFT do better than AD.

The poor performance of TFT can be ascribed to its short memory: even in a perfectly
cooperative population, the probability of receiving cooperation from a given neighbour
in a given round is only 1/d. TFT only considers the previous round, so it is often unable
to distinguish between cooperators and defectors. The other reactive strategies evaluate
their neighbours over longer periods.

 0

 100

 200

 300

 400

 500

 600

1.5 2.5 3.5

Pa
yo

ff
 r

ec
ei

ve
d

by
 s

tr
at

eg
y

Benefit of receiving cooperation

AC
AD
BT

EXU
STFT

TFT

 0

 600

 1200
BT

 0

 600

 1200
EXU

 0

 600

 1200
STFT

 0

 600

 1200
TFT

Fig. 1. Fixed population proportions. The payoff received by each strategy as a function of b,
the benefit of receiving cooperation, averaged over 20 runs. The large figure shows a population
containing all six strategies; the small figures show populations containing AC, AD and each of
the four reactive strategies.

34 M. Rogers and S. Bhatti

 0

 200

 400

 600

 800

 1000

 0 20000 40000 60000 80000 100000

Pl
ay

er
s

us
in

g
st

ra
te

gy

Rounds

b = 1.5AC
AD
BT

EXU
STFT

TFT

 0

 500

 1000

 0 50000 100000

b = 2.5

 0

 500

 1000

 0 50000 100000

b = 3.5

Fig. 2. Evolution of the population. The number of players using each strategy as a function of
the number of rounds, averaged over 50 runs, for b = 1.5 (left), b = 2.5 (top right) and b = 3.5
(bottom right).

All the results shown in Figure 1 are significant at the 99% level using the two-tailed
Mann-Whitney U test.3

4.2 Evolutionary Simulations

To further investigate how each strategy fares in a mixed population, we now allow the
population proportions to evolve. As before, at the end of each round a single player is
chosen uniformly at random and replaced with a new player, but now the new player’s
strategy is chosen using the roulette wheel method: the probability of the new player
adopting each strategy is proportional to the total payoff received by that strategy in
the previous round. Thus the mixture of strategies in the population evolves according
to the payoffs received: a player’s payoff can be interpreted as her reproductive fitness
[31].

To prevent any strategy from becoming extinct, if the strategy of the player being
replaced is used by five or fewer players, the new player always adopts the endangered
strategy. This allows strategies that are unsuccessful under certain conditions to re-
emerge later in the game, and prevents strategies from being eliminated by random
drift.

Figure 2 shows the evolution of the population for b = 1.5, b = 2.5 and b = 3.5,
averaged over 50 independent runs of 100,000 rounds each. AC is quickly pushed to the
edge of extinction: by cooperating equally with all its neighbours, it wastes resources on
AD that could have been used to earn reciprocation from reactive neighbours. TFT has

3 Student’s t test is not suitable for making comparisons between strategies because the sam-
ples are not independently and randomly drawn from normally distributed populations. The
Mann-Whitney U test was chosen because it makes fewer assumptions about the population
distribution.

Cooperation under Scarcity: The Sharer’s Dilemma 35

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

Pl
ay

er
s

us
in

g
st

ra
te

gy

Rounds (thousands)

AC
AD
BT

EXU
STFT

TFT

(a) AC is invaded by AD, then by EXU

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

Pl
ay

er
s

us
in

g
st

ra
te

gy

Rounds (thousands)

(b) BT is invaded by AD, EXU and TFT

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

Pl
ay

er
s

us
in

g
st

ra
te

gy

Rounds (thousands)

(c) STFT resists invasion by any strategy

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

Pl
ay

er
s

us
in

g
st

ra
te

gy

Rounds (thousands)

(d) AD is invaded by EXU

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

Pl
ay

er
s

us
in

g
st

ra
te

gy

Rounds (thousands)

(e) EXU resists invasion by any strategy

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

Pl
ay

er
s

us
in

g
st

ra
te

gy

Rounds (thousands)

(f) TFT is invaded by BT, EXU and STFT

Fig. 3. Invasion simulations. The number of players using each strategy as a function of the num-
ber of rounds, averaged over 50 runs, for b = 1.5. EXU can invade any strategy except STFT;
EXU and STFT both resist invasion.

trouble distinguishing between cooperators and defectors due to its short memory, and
it too is quickly defeated.4 Once AC has been eliminated, the other reactive strategies
all outperform AD. It might seem paradoxical that any strategy would benefit from the

4 This is not a weakness of the Tit For Tat strategy as such, but only of our method of adapting
it to the sharer’s dilemma. STFT, which is also based on the Tit For Tat strategy from the
prisoner’s dilemma, does not have the same weakness.

36 M. Rogers and S. Bhatti

elimination of altruists, but in evolutionary simulations it is relative payoffs, rather than
absolute payoffs, that are decisive: the defeat of AC makes the environment harsher for
the reactive strategies, but harsher still for AD, which receives most of its cooperation
from AC.

Despite their selfishness, BT, EXU and STFT succeed in establishing almost full
cooperation: after 20,000 rounds the fraction of players cooperating in each round is
always above 95%. As in the simulations with fixed population proportions, EXU out-
performs all the other strategies for all values of b.

To test the significance of the results we use the two-tailed Mann-Whitney U test to
compare the number of players using each strategy at the end of the 50 runs. All the
differences between strategies are significant at the 99% level, with the exception of
AD and TFT, which are not significantly different when b = 1.5 or b = 2.5.

4.3 Invasion Simulations

The previous sections have shown that the expected utility strategy performs well when
played by a substantial fraction of the population, but we would also like to know
whether it is suitable for use in populations dominated by other strategies. To find out,
we simulate the evolution of six populations, each containing 975 players of one strat-
egy and five players of each of the other strategies. As before, no strategy is allowed to
drop below five players. The results are averaged over 50 runs of 100,000 rounds each.

The results for b = 1.5 are shown in Figure 3. EXU is able to invade any strategy
except STFT. This is a strong result – clusters of Tit For Tat players can invade other
strategies in networked variants of the prisoner’s dilemma [12], but in our simulations
there are no clusters: new players are connected to every existing player with equal
probability.

STFT and EXU can each resist invasion by any other strategy. In 50 longer runs of
1 million rounds each, EXU stabilises at 80% of the population when it starts as the
dominant strategy, while STFT stabilises at 90% when it is initially dominant. This
shows that each strategy does better against itself than it does against the other, making
both strategies evolutionarily stable, at least among the strategies considered here [31].

5 Discussion

This paper is only a preliminary exploration of the sharer’s dilemma – many inter-
esting aspects of the game remain to be investigated. For example, we have assumed
that all players possess equal resources for cooperation, but the dynamics of cooper-
ation may change when some players have more resources than others. Piatek et al.
[32] have shown that when high-capacity BitTorrent nodes are able to participate in
multiple swarms they benefit from allocating their resources between swarms, to the
detriment of the low-capacity nodes in each swarm. The sharer’s dilemma gives us a
theoretical framework for investigating whether such issues apply to cooperation un-
der scarcity in general. We can simulate variation in capacity by updating the play-
ers at different rates, with high-capacity players making their choices more frequently
than low-capacity players, allowing them to cooperate more often in a given period of
time.

Cooperation under Scarcity: The Sharer’s Dilemma 37

In the simulations presented here we have also assumed that all players assign the
same subjective cost to cooperating and the same subjective benefit to receiving coop-
eration. This restriction is not required by the model, and we would like to explore the
effect of variation within the population: for example, free riding might be an appeal-
ing strategy to players who consider the cost of cooperating to be high, while altruism
might appeal to those who consider the cost to be low. However, when players can re-
ceive different payoffs from the same outcomes, it becomes difficult to compare the
success of different strategies in a meaningful way, and the use of evolutionary simula-
tions becomes problematic; we will need to consider new ways of comparing strategies
before we can explore subjective payoffs.

A third simplifying assumption concerns network structure: we have only considered
random graphs where a new player is connected to each existing player with equal
probability. This rules out the formation of clusters, for example, which might help
to establish cooperation in otherwise hostile networks; on the other hand, if players
are able to choose their neighbours, defectors might be able to exploit the first-time
cooperation of reactive strategies. The structure and dynamics of the network are clearly
relevant to the outcome of the game, so when using the sharer’s dilemma to model any
scenario we will need to make sure that we are modelling the network, as well as the
individual players, realistically.

6 Conclusions and Future Work

We have seen that a simple extension to a well-known game can provide a new perspec-
tive on the problem of cooperation in networks: incorporating scarcity into the prisoner’s
dilemma reframes the problem of cooperation as a problem of prioritisation and suggests
new strategies based on maximising expected utility. The sharer’s dilemma provides a
game theoretic model for many situations in nature and society where the benefit of
cooperation is higher than the cost, and where resources for cooperation are scarce.

It is easy to see how the strategies described in this paper could be applied to peer-to-
peer file sharing networks such as BitTorrent; our simulations, though simplified, show
that the expected utility strategy performs well in a mixed population of other strategies,
indicating that it may be possible to deploy it incrementally in existing networks.

We are also interested in the possibility of using the expected utility strategy in multi-
hop networks, such as peer-to-peer overlays and mobile ad hoc networks, to create an
incentive for nodes to forward messages. However, this will require a more complex
utility model that can incorporate actions whose outcome depends on the choices of
other nodes. We are currently investigating the use of Savage’s concept of subjective
expected utility to choose between actions with uncertain outcomes [33].

References

1. Gibbons, R.: Game Theory for Applied Economists. Princeton University Press, Princeton
(1992)

2. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: Recent results and
future directions. In: Proceedings of the 6th International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, pp. 1–13 (2002)

38 M. Rogers and S. Bhatti

3. Shneidman, J., Parkes, D.: Rationality and self-interest in peer to peer networks. In:
Kaashoek, M., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 139–148. Springer, Hei-
delberg (2003)

4. Bolton, G., Ockenfels, A.: ERC: A theory of equity, reciprocity, and competition. American
Economic Review 90(1), 166–193 (2000)

5. Fehr, E., Schmidt, K.: A theory of fairness, competition and cooperation. Working Paper 4,
Institute for Empirical Research in Economics, University of Zurich (April 1999)

6. Fehr, E., Gachter, S.: Altruistic punishment in humans. Nature 415(6868), 137–140 (2002)
7. Kuhn, S.: Prisoner’s dilemma. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philos-

ophy (2003), http://plato.stanford.edu/archives/fall2003/entries/
prisoner-dilemma/

8. Wahl, L., Nowak, M.: The continuous prisoner’s dilemma: I. linear reactive strategies. Jour-
nal of Theoretical Biology 200, 307–321 (1999)

9. Roberts, G., Sherratt, T.: Development of cooperative relationships through increasing in-
vestment. Nature 394(6689), 175–179 (1998)

10. Dawes, R.: Social dilemmas. Annual Review of Psychology 31, 169–193 (1980)
11. Trivers, R.: The evolution of reciprocal altruism. Quarterly Review of Biology 46(1), 35–57

(1971)
12. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)
13. Nowak, M., Sigmund, K.: The alternating prisoner’s dilemma. Journal of Theoretical Biol-

ogy 168(2), 219–226 (1994)
14. Nowak, M., Sigmund, K.: Oscillations in the evolution of reciprocity. Journal of Theoretical

Biology 137(1), 21–26 (1989)
15. Félegyházi, M., Hubaux, J., Buttyán, L.: Equilibrium analysis of packet forwarding strate-

gies in wireless ad hoc networks - the dynamic case. Technical Report IC/2003/68, EPFL
(November 2003)

16. Félegyházi, M., Hubaux, J., Buttyán, L.: Nash equilibria of packet forwarding strategies in
wireless ad hoc networks. IEEE Transactions on Mobile Computing 5(5), 463–476 (2006)

17. Nowak, M., May, R.: Evolutionary games and spatial chaos. Nature 359(6398), 826–829
(1992)

18. Nowak, M., Bonhoeffer, S., May, R.: Spatial games and the maintenance of cooperation.
Proceedings of the National Academy of Sciences USA 91, 4877–4881 (1994)

19. Epstein, J.: Zones of cooperation in the demographic prisoner’s dilemma (1997), Santa Fe
Institute Working Paper 97-12-094

20. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.: A simple rule for the evolution of coop-
eration on graphs and social networks. Nature 441, 502–505 (2006)

21. Grim, P.: The greater generosity of the spatialized prisoner’s dilemma. Journal of Theoretical
Biology 173(4), 353–359 (1995)

22. Cohen, M., Riolo, R., Axelrod, R.: The role of social structure in the maintenance of cooper-
ative regimes. Rationality and Society 13, 5–32 (2001)

23. Axelrod, R., Riolo, R., Cohen, M.: Beyond geography: Cooperation with persistent links in
the absence of clustered neighborhoods. Personal and Social Psychology Review 6(4), 341–
346 (2002)

24. Nowak, M., Sigmund, K.: Evolutionary dynamics of biological games. Science 303, 793–799
(2004)

25. Feldman, M., Chuang, J.: The evolution of cooperation under cheap pseudonyms. In: 7th
International IEEE Conference on E-Commerce Technology, Munich, Germany (July 2005)

26. Lai, K., Feldman, M., Stoica, I., Chuang, J.: Incentives for cooperation in peer-to-peer net-
works. In: Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA (June
2003)

Cooperation under Scarcity: The Sharer’s Dilemma 39

27. Stutzbach, D., Rejaie, R., Sen, S.: Characterizing unstructured overlay topologies in modern
P2P file-sharing systems. In: Internet Measurement Conference (IMC 2005), Berkeley, CA,
USA (October 2005)

28. Bustamante, F., Qiao, Y.: Friendships that last: Peer lifespan and its role in P2P protocols.
In: 8th International Workshop on Web Content Caching and Distribution, Hawthorne, NY,
USA (September-October 2003)

29. Guha, S., Daswani, N., Jain, R.: An experimental study of the Skype peer-to-peer VoIP sys-
tem. In: Proceedings of the 5th International Workshop on Peer-to-Peer Systems (IPTPS
2006), Santa Barbara, CA, USA, pp. 1–6 (February 2006)

30. Cohen, B.: Incentives build robustness in BitTorrent. In: Workshop on Economics of Peer-
to-Peer Systems, Berkeley, CA, USA (June 2003)

31. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press, Cambridge
(1982)

32. Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., Venkataramani, A.: Do incentives
build robustness in BitTorrent? In: Proceedings of the 4th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 2007), Cambridge, MA, USA, pp. 1–14
(April 2007)

33. Savage, L.: The Foundations of Statistics. Wiley, Chichester (1954)

A Distributed Certification System for

Structured P2P Networks

François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

SUPELEC, SSIR Group (EA 4039)
Avenue de la Boulaie - CS 47601 - 35576 Cesson-Sévigné cedex - France

firstname.lastname@supelec.fr

Abstract. In this paper, we present a novel distributed certification
system in which signing a certificate needs the collaboration of a fixed
ratio of the nodes, hence a varying number of nodes. This number is dy-
namically adjusted to enforce the ratio in a fully distributed way, which
is mandatory for decentralized varying-size P2P networks. A certifi-
cate allows then to link the key pair of a node to some rights granted to it.

Keywords: P2P, Security, Distributed Certification.

1 Introduction

P2P networks have been widely used for the last few years as they allow the
design of low cost and high availability systems. These large networks are based
on a fully distributed architecture, in which every user has an equivalent role.

There are two types of P2P networks: unstructured ones and structured ones.
In unstructured P2P networks (Gnutella [1]), requests are broadcasted or routed
through random walks. In structured ones (Chord [2]), requests are routed using
generated routing tables. We consider here structured P2P networks security.

Since security techniques used in traditional centralized systems rely on
trusted entities, directly using such techniques would break the P2P basics. It is
thus crucial to provide fully distributed security mechanisms for P2P networks.

In this paper, we present a novel distributed certification mechanism. This
certification mechanism fully distributes a Certification Authority: signing a
certificate needs the collaboration of t% of the nodes. Then, considering such
a certificate valid is similar to trusting t% of the nodes would not collude to
create a false certificate. This mechanism relies on agreements by a static ratio
of the nodes (and hence a dynamic number of nodes) and not by a static number
of nodes as in [3]. Moreover, this adaptation is done in a fully distributed way, as
opposed to [4]. A certificate contains the public key of its owner and any rights
that may be needed by this owner (access rights, name ownership, . . .). As far
as we know, this is the first approach proposing a dynamic threshold in a large
and distributed environment.

We also briefly present three applications for this distributed certification,
mitigating the sybil attack [5], excluding misbehaving nodes and providing in-
telligible names for P2P Voice over IP rather than cryptographic key hashes.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 40–52, 2008.
c© IFIP International Federation for Information Processing 2008

A Distributed Certification System for Structured P2P Networks 41

In Section 1, we present some related work. Then, in Section 2, we present
our distributed certification system. In Section 3, we discuss the security of our
system against attackers. In Section 4, we present experimental results. In Sec-
tion 5, we present the suggested applications. Finally, we conclude and propose
some future work.

2 Related Work

We first introduce structured P2P networks and we then present previous work
on distributed certification.

2.1 Structured P2P Networks

Fig. 1. Simplified repre-
sentation of Chord with
identifiers going from 0 to
26 − 1 = 63. �, � and
� are nodes (PC) and ◦
are resources (files). Node
A, which nodeId is 15, is
responsible for resources 60,
6 and 8.

Structured P2P networks provide a virtual space
called overlay. Each node (PC) is uniquely iden-
tified by a nodeId ∈ KeyIds; in the same way,
each resource (file, . . .) is uniquely identified by a
key identifier keyId, keyId ∈ KeyIds (for a file,
the key is usually its SHA1 fingerprint). Nodes
and resources thus share the same identifier space
KeyIds, which is finite but supposed large enough
(often 2160 elements due to the size of SHA1 fin-
gerprints). Each node is responsible for the man-
agement of a part of the resources and the overlay
provides routing facilities with a logarithmic cost
for a node to access a specific identifier.

In Chord for instance, the identifiers space is
represented as a ring going from 0 to 2160 − 1
and each node is responsible for all the resources
between it and its preceding node in the overlay.
This organization is illustrated in Figure 1.

2.2 Distributed Certification

We first present threshold cryptography which is the basis of previous work on
distributed certification as well as of our proposition. We then study previous
work on distributed certification in peer groups.

Threshold Cryptography. In threshold cryptography, based on Shamir se-
cret sharing [6], the enciphering of a message can only be achieved through the
collaboration of a given number of entities. Threshold cryptography consists in
splitting a secret key and distributing the resulting shares on different entities.
We present here threshold cryptography based on [7].

42 F. Lesueur, L. Mé, and V. Viet Triem Tong

(t, n)-threshold cryptography allows for enciphering a message with any t
shares chosen among those issued to n entities, each entity usually owning one
distinct share. t and n are predefined constants, set up at the initialization.
If nobody knows the secret key, this key is better protected from misbehaving
people. t shares are needed to encipher a message, but t − 1 shares hold no
information on the secret key. An attacker must thus obtain t shares of the
secret key to be able to recover the full key.

When some entity wants to obtain the signature of some data d, it asks t other
entities to sign d with their own share. The signature of d by the secret key is then
a combination of the t partial signatures. For instance, if the signature function f
is homomorphic, i.e., f(x+y) = f(x)×f(y) (the RSA function is homomorphic),
the combination of the partial signatures is simply their multiplication. Only the
partial signatures are public and not the key shares. Such threshold cryptography
schemes have been previously used to provide distributed certification.

Distributed Certification in Peer Groups. Distributing a certification pro-
cess can be achieved through threshold cryptography. In [3], Kong et al. propose
a distributed certification based on the cooperation of t nodes, t being a fixed
number of nodes during the whole life of the system. The choice of t is a problem
since t = 3 might for instance be a correct value for a network composed of 10
nodes but is clearly too small when the same network has grown to 1000 nodes:
t should be a ratio of the number of nodes.

In [4], Saxena et al. propose to adapt the threshold t dynamically using al-
gorithms proposed by Frankel et al. in [8]. A server manages a counter of the
network size and detects the need for changing the threshold. Besides scaling and
robustness problems in threshold changing algorithms, the reliance on a server is
opposed to P2P bases and lowers the availability of the network. None of these
schemes is thus sufficient for distributing certification in a P2P network.

In this paper, we propose a novel distributed certification scheme. In this
scheme, the threshold is dynamically adjusted in a fully distributed way, which
is mandatory for decentralized varying-size networks such as P2P ones.

3 A Distributed Certification System

In this section, we present our distributed certification mechanism in a struc-
tured P2P network. First, we describe the principle of the proposed certification
system. Then, we present the sharing of the secret key used to distribute the
certification process. Finally, we explain the distributed certification algorithm.

3.1 Principle

The network is characterized by an RSA public/secret key pair (P, S): P is
publicly known and S is shared among the nodes (no node knows S). This key
pair is generated by founding members using a distributed algorithm as Boneh
and Franklin proposed in [9]. Certificates follow the X.509 format and contain

A Distributed Certification System for Structured P2P Networks 43

in particular the public key of their owners and some rights granted to these
owners. They are signed with S through a novel threshold cryptography scheme.

Each solicited node of the P2P network decides locally if it should partici-
pate in the certification process. Such decisions are based on local observations,
security policy or proofs included in the certification request (see Section 6). Ob-
taining a valid certificate requires the agreement and cooperation of a fixed ratio
t of the members of the network. Then, trusting the validity of this certificate is
equivalent to trusting that such a ratio of node would not collude to lie.

In the following, we make the assumption that there is no successful Sybil
Attack [5] in the network, i.e., each person has only one connected node and its
identifier is truly random. We discuss in Section 6.1 a self-healing node admis-
sion control, rejecting sybil nodes using our distributed certification operated by
already accepted ones (which are thus non-sybil).

3.2 Sharing the Network Secret Key

The sharing of the network secret key is based on the homomorphic property of
the RSA enciphering function. Generally, if S = (e, m) denotes the RSA network
secret key, we can pick s shares e1, . . . , es such that e =

∑s
i=1 ei and then for

any data d:

de[m] = d
∑ s

i=1 ei [m] =
(s∏

i=1

dei [m]
)
[m]

In other words, the RSA signature of d with S, which is de[m], is equal to the
product of the signatures with each share modulo m, m being publicly known
since it appears in the network public key P = (d, m).

If the security policy of the network defines that a certification has to be
controlled by a ratio t of the nodes (t ∈ [0, 1]) and if n is the size of the network,
then the secret key must be split in s = t×n shares. To provide a share to each
member, each share ei is then replicated on g = 1

t members composing a sharing
group, each member knowing the list of his group. In order to sign a certificate,
each share has to be involved and so a ratio t of the nodes must cooperate.

When the network grows (resp. shrinks), the number s of shares must grow
(resp. shrink) in order to maintain s = t × n, since t is a static ratio. However,
each share should still be replicated on g = 1

t members, which is independent
of the network size n. So, a sharing group can detect without knowing n (and
hence without a central counter) if it is too small or too large.

When nodes join (resp. leave) the network, if a sharing group detects it is
too large (resp. too small) to maintain s = t × n, i.e., this group is composed
of more (resp. less) than 1

t members, it splits and generates a new share (resp.
merges with another group and discards one share). To create two shares ei0

and ei1 from a single share ei, ei0 and ei1 must simply be chosen such that
ei0 + ei1 = ei and ei must be discarded. To prevent an attacker from keeping
ei and thus having a larger share than others, ei is rendered useless by mixing
ei0 and ei1 with two other randomly chosen shares ex and ey: a chosen random
value Δ0 (resp. Δ1) is added to ei0 (resp. ei1) and subtracted from ex (resp. ey).

44 F. Lesueur, L. Mé, and V. Viet Triem Tong

After this operation, the sum of shares is still e but ei is not part of the sharing
anymore. Creating one share from two shares is exactly the opposite operation
of splitting. These operations only involve members of the concerned sharing
groups and not the whole network.

However, only creating two sharing groups from one (resp. one from two) does
not allow to have each group composed of exactly 1

t members. In fact, we define
two bounds gmin and gmax for merging and splitting sharing groups, which are
respectively the minimum and maximum size of a sharing group. We thus have

1
gmax

< t < 1
gmin

and we expect s to roughly equal t×n. Finally, when a sharing
group grows to gmax members, it is split in two groups of size gnew = gmax

2 .
If gnew was lower than gmin, then these two groups would both have to join
another group right after having split, so we must have gmax > 2 × gmin.

Fig. 2. Distribution of three shares e0,e10

and e11 with e = e0 + e10 + e11. Each node
knows the list of members of his sharing
group.

Each share is uniquely identified
by a binary shareId and is known
by nodes which identifiers are such
that nodeId = shareId∗ in binary
form (i.e., shareId is a binary pre-
fix of nodeId). Each node knows
only one share and nobody knows S
entirely. Splitting a group knowing
ei (resp. merging two groups know-
ing ei0 and ei1) creates two groups
knowing respectively ei0 and ei1

(resp. one group knowing ei).
In Figure 2, there are three

shares e0, e10 and e11. Nodes which
identifiers begin with 0 know e0,
those with 10 know e10 and those
with 11 know e11. To get some data

signed with S, one must obtain and multiply this data signed with e0, e10 and
e11, and thus need the cooperation of three nodes which identifiers begin respec-
tively with 0, 10 and 11.

3.3 Distributed Certification Process

We first present an efficient certification algorithm and we then calculate the
probability of success of this algorithm in presence of attackers.

Certification Algorithm. Given the sharing illustrated in Figure 2, we now
explain the associated distributed certification process. This explanation is il-
lustrated in Figure 3, on which the node A wants to obtain a certificate for a
request Req. It has to obtain the cooperation of one node of each sharing group
to obtain the signature Reqe[m]. This certification is realized in two steps.

The first step is to deploy a covering tree on the sharing groups. The node
A requests two nodes whose binary identifiers begin respectively with 0 and 1:
A is itself eligible for 0 and finds C to handle the shareId 1. Since A owns the

A Distributed Certification System for Structured P2P Networks 45

share e0, A stops here; C does not handle the share e1 (which does not exist)
so it forwards the request to two nodes B and C whose binary identifiers begin
respectively with 10 and 11. B (resp. C) owns e10 (resp. e11) so both nodes stop
here (Figure 3(a)).

The second step is to create the certificate. B and C partially sign with e10

and e11 and send their results Reqe10 [m] and Reqe11 [m] to C (Figure 3(b)). C
multiplies these two partial signatures, obtains Reqe1 [m] = Reqe10+e11 [m] and
sends it back to A. A partially signs with e0 to obtain Reqe0 [m] (Figure 3(c))
and finally multiplies the partial signatures with e0 and e1, obtaining Reqe[m]
which is the signature of Req with S = (e, m) (Figure 3(d)).

Since the public key corresponding to each share is unknown and partial signa-
tures are thus unverifiable, each node involved in the certification can corrupt the
signature. Misbehaving nodes can produce wrong exponentiations with owned
share or wrong multiplications. We propose to ask nbAsks nodes instead of one
for a partial signature, following the hypothesis that there are less misbehaving
nodes than well behaving ones. Asking several nodes, one can decide and return
the most likely partial signature.

(a) A sends Req to other nodes (b) B and C partially sign

(c) C multiplies the two partial signa-
tures and A partially signs

(d) A obtains the signature of Req with
S = (e,m)

A (e0)

B (e10)

C (e11)

1

0

10

11

Req

Req

A (e0)

B (e10)

C (e11)

Reqe10[m]

Reqe11[m]

A (e0)

B (e10)

C (e11)

Reqe10+e11[m]

Reqe0[m]

A (e0)

B (e10)

C (e11)

Reqe0+e10+e11[m]
=

Reqe[m]

Fig. 3. Certification of Req with S = (e,m). Shares do not trans it.

46 F. Lesueur, L. Mé, and V. Viet Triem Tong

Probability of Success of the Certification Algorithm. We calculate here
the probability of success of a legitimate certification in the case where every
honest node accepts to participate in the certification and every attacker tries
to corrupt this process. Let k ∈ [0, 1] be the rate of attackers in the network.
Each request for a partial signature is sent to nbAsks nodes, nbAsks odd, and
the used result is the value returned by more than half of the nodes (we sup-
pose the worst case where attackers collude to return the same incorrect partial
signature).

Let us consider the tree representing the recursive calls to partially sign with
a given shareId. The leafs of this tree correspond to the shares of the secret
key which identifiers are prefixed by the given shareId. The internal nodes of
this tree correspond to the share identifiers that are not present in the network
and which provoke two recursive calls with longer identifiers, so this tree is
binary. Each node of this tree coincide with one or several P2P members (if
nbAsks > 1) asked for the corresponding shareId. We define the probability of
success of a partial signature recursively on the height of the tree representing
its recursive calls: P (h) is the probability for a partial signature to succeed in
a tree of height h (note that it includes the probability that the root node is
honest).

If h = 0 (leaf), the certification succeeds if and only if this node is honest:
P (0) = 1 − k. If h > 0, the certification succeeds if and only if the root node
is honest and the two recursive calls succeed. Since the root node is eligible for
one of the calls, the probability of this node being honest and this first call
succeeding is P (h− 1). The second call is sent to nbAsks nodes and this partial
certification succeeds if the majority of calls succeed. A call succeeds with the
probability P (h − 1) and fails with 1 − P (h − 1): i calls thus succeed with the
probability Ci

nbAsksP (h−1)i(1−P (h−1))nbAsks−i. This second partial signature
succeeds when more than half of the requests succeed, yielding a probability of∑nbAsks

i= nbAsks+1
2

Ci
nbAsksP (h−1)i(1−P (h−1))nbAsks−i. Putting it all together gives

P (h) = P (h − 1) ×
nbAsks∑

i= nbAsks+1
2

Ci
nbAsksP (h − 1)i(1 − P (h − 1))nbAsks−i

To obtain the complete signature, the root of the tree is called on the empty
share identifier and the leafs correspond thus to the s shares of the secret key
present in the network. Since this tree is binary, its height is h = log2(s). If n is
the number of nodes and gmin (resp. gmax) is the minimal (resp. maximal) size
of a sharing group, then the average number of shares is s = 2n

gmin+gmax
. The

probability of success of the certification is thus P
(
log2

(
2n

gmin+gmax

))
. We can

conclude that the bigger the network is, the harder the certifications are. This
probability is graphed in Section 5.

4 Security Analysis

In this section, we discuss the robustness of our system against attackers.

A Distributed Certification System for Structured P2P Networks 47

4.1 Obtaining a Fake Certificate

How to Obtain a Fake Certificate ? An attacker can create a fake certificate
through obtaining the secret key of the network S. Since S is initially generated
through a distributed algorithm, no member knows S at any moment. So, the
attacker has to obtain every share to rebuild S, which means corrupting a node
or inserting himself or an accomplice in every sharing group. Due to the large
number of sharing groups (more than n

gmax
= n

40 with the values proposed in
Section 5), we think that corrupting a node in each group is quite hard. Inserting
himself in each sharing group involves creating multiple identities which is a sybil
attack (we made the assumption there is no such attack in Section 3.1). The only
other possibility is a group of attackers getting every share and we thus calculate
the probability of such a successful attack.

Probability for Colluding Attackers to get Every Share. Let k be the
ratio of attackers. If a given sharing group is composed of gi members, then the
probability that there is no attacker in this group is (1 − k)gi . The probability
that there is at least one attacker in this group is thus 1 − (1 − k)gi .

Consider now a network composed of s sharing groups of resp. g1, . . . , gs

members (hence the number of nodes is
∑s

i=1 gi). Then the probability that there
is an attacker in each sharing group is

∏s
i=1 1− (1−k)gi. Since 1− (1−k)gi < 1,

this probability decreases when the number of shares s increases, i.e., when the
network grows. Moreover, for a given network size, reducing the size of the groups
gi and hence increasing the number of shares s results in a lower probability of
such an attack. This probability is graphed in Section 5.

4.2 Attacking an Honest Certification

How to Attack an Honest Certification ? An attacker can prevent a cer-
tification process through intercepting the certification request. This attack is
prevented by requesting several nodes instead of one. An attacker can also try
to make a share unavailable, through crashing all the nodes in a given sharing
group or creating enough nodes or having enough accomplices to control all the
nodes in such a group. We exclude here the case of crashing gmin = 20 nodes
(value proposed in Section 5) and leave a potential countermeasure to future
work. Creating enough nodes to control a full sharing group is a sybil attack,
which is not handled here as stated in Section 3.1. The only other case is a group
of attackers controlling all the nodes in a sharing group, which is discussed below.

Probability for Colluding Attackers to Control all the Nodes in a
Sharing Group. Let k be the ratio of attackers. If a given sharing group is
composed of gi members, then the probability that there is only attackers in
this group is kgi . The probability that there is at least one well-behaving node
is thus 1 − kgi .

Consider now a network composed of s sharing groups of resp. g1, . . . , gs

members. Then the probability that there is at least one well-behaving node
in each sharing group is

∏s
i=1 1 − kgi . The probability that there is one group

48 F. Lesueur, L. Mé, and V. Viet Triem Tong

containing only attackers is thus the complementary probability 1−∏s
i=1 1−kgi.

Since 1− kgi < 1, this probability increases when the network grows. Moreover,
for a given network size, reducing the size of the groups gi and hence increasing
the number of shares s results in a higher probability of such an attack. Given
the probability presented in 4.1, the size of the groups implies thus a trade-off
between these two possible attacks. This probability is graphed in Section 5.

5 Experimental Results

In this section, we present simulations results and compare them to theoretical
results provided in Sections 3.3 and 4. We simulated our distributed certification
system using PeerSim [10], an extensible P2P simulator. Parameters of our sim-
ulations are the number of nodes in the network, the percentage of attackers and
the number of nodes nbAsks asked for each partial signature. Sharing groups
are composed of gmin = 20 to gmax = 40 members, yielding 0.025 < t < 0.05
(certification is only possible through the collaboration of 2.5 to 5% of the nodes).

In these simulations, we do not handle attacks on nodes. For instance, a
worm attack could allow some attacker to take control of a large number of
honest nodes. However, we think that protecting against such attacks is out
of our current scope. Considered nodes are thus well-behaving or misbehaving
depending only on the local user choice.

In Figure 4(a), we vary the number of nodes in the network with a constant
percentage of attackers (10%, which is already a very large part since we do
not consider worm attacks). As stated in Section 3.3, the larger the network
is, the harder it is to achieve a successful certification. With 500 nodes, 20%

(a) Percentage of success of the different
algorithms in function of the number of
nodes. Each experiment contains 10% of
misbehaving nodes and each node asks
1, 3 or 5 other nodes for partial signa-
tures. Corresponding theoretical curves
are also drawn.

(b) Percentage of success of the differ-
ent algorithms in function of the per-
centage of attackers. Each experiment
contains 5000 nodes and each node asks
1, 3 or 5 other nodes for partial signa-
tures. Corresponding theoretical curves
are also drawn.

Fig. 4. Certification results

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 4000 6000 8000 10000

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Number of nodes

nbAsks = 5
nbAsks = 3
nbAsks = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Percentage of attackers

nbAsks = 5
nbAsks = 3
nbAsks = 1

A Distributed Certification System for Structured P2P Networks 49

of the certifications with nbAsks = 1 succeed. With more than 1500 nodes, no
certification with nbAsks = 1 succeeds. Even if certification with nbAsks = 5
allows to handle more attackers, it is clear that it will be important to exclude
attackers to maintain an efficient certification service.

In Figure 4(b), we vary the percentage of misbehaving nodes with a constant
total number of nodes (5000, which is a median value of Figure 4(a)). With 1% of
attackers, only 20% of certifications with nbAsks = 1 succeed. With more than
2% of attackers, this algorithm is not usable with nbAsks = 1. Certifications
with nbAsks = 3 or nbAsks = 5 are able to tolerate much more attackers.

Figure 5(a) shows the probability for colluding attackers to obtain every share
of the secret key in function of the percentage of attackers. The experimental
curve with sharing groups composed of gmin = 20 to gmax = 40 members is
bounded by the two theoretical curves where all groups are composed of 20
(resp. 40) nodes. In the worst case, 2.5% of the nodes (1

gmax
= 0.025) should

be able to obtain every share. However, obtaining every share requires not only
to have more attackers than shares but also to specifically have an attacker
in each sharing group. The theoretical probability of such an attack is in fact
infinitesimal for less than 10% of attackers (theoretical curve with g = 40).
Moreover, the experimental curve is much closer to the theoretical one with
g = 20 than to the one with g = 40. This is due to the fact that, in the
experiment, there are groups of different sizes between 20 and 40. It is then less
probable for an attacker to get into those containing only 20 members: these
small groups have a critical impact on this probability. Given that, the effective
probability of such an attack is infinitesimal for less than 20% of attackers.

Figure 5(b) shows the probability for colluding attackers to be the only mem-
bers of a sharing group and thus to be able to make this share unavailable.
The experimental curve is also bounded by the two theoretical curves where

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100P
ro

ba
bi

lit
y

of
 a

n
at

ta
ck

er
 in

 e
ac

h
gr

ou
p

Percentage of attackers

Experimental, 20 < g < 40
g = 20
g = 40

(a) Probability for colluding attackers
to obtain every share of the secret key
in function of the percentage of attack-
ers. Corresponding theoretical curves
are also drawn.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

of
 a

 g
ro

up
 o

f a
tta

ck
er

s

Percentage of attackers

Experimental, 20 < g < 40
g = 20
g = 40

(b) Probability for colluding attackers
to be the only members of a shar-
ing group in function of the percentage
of attackers. Corresponding theoretical
curves are also drawn.

Fig. 5. Robustness results in a 10,000 nodes network

50 F. Lesueur, L. Mé, and V. Viet Triem Tong

all groups are composed of 20 (resp. 40) nodes. It appears that the probability
of such an attack is infinitesimal for less than 60% of attackers. For the same
reasons as in the previous figure, the experimental curve is much closer to the
theoretical one with g = 20 than to the one with g = 40.

6 Applications of Distributed Certification

In this section, we briefly introduce three applications of our distributed certifica-
tion. These applications aim at preventing sybil attacks, excluding misbehaving
nodes and finally providing a secure naming service.

6.1 Sybil Protection through Admission Control to the Network

In the sybil attack [5], an attacker creates many node identifiers and possibly
picks a specific subset. With many node identifiers, an attacker can alter the
overall performance of the network. Moreover, even with a few well-chosen iden-
tifiers, an attacker can isolate nodes or censor resources. First, he can isolate a
victim node from the network and filter his requests by choosing precisely the
node identifiers the victim node uses in its routing table: this victim node then
sends all his requests to this attacker. Second, an attacker can take the control
of a resource and of all its replicas by choosing identifiers close to the attacked
resource identifier (if replication is done on nearby nodes). The problem is thus
not only to limit the number of identifiers a user can create but also to enforce
truly random identifiers.

Relying on friendship relations, SybilGuard [11] allows each node to decide
whether another node is genuine or not and so limits the number of sybil nodes
an attacker can create. However, the identifier of a node is the hash of its public
key. An attacker can thus generate many key pairs and choose a specific one
which hashes to an identifier in the desired part of the overlay: SybilGuard does
not enforce random identifiers. We propose thus to combine our distributed
certification with SybilGuard. To join the network, a new member must obtain
a certificate containing his public key signed with the network secret key and
thus needs the cooperation of a fixed ratio t of the nodes. Each of these nodes
tests the new node with SybilGuard and cooperates only if the new node is
detected as genuine: if the newcomer is detected as sybil, he does not obtain
a certificate which prevents an attacker from creating many identifiers. Then,
node identifiers are derived from the unpredictable signatures of the certificates.
Each new member thus generates a key pair, registers his public key, and finally
obtains his node identifier: a user cannot predict his identifier which ensures
random ones. Accepted members are checked as non-sybil and the network is
self-protected from sybil attacks.

6.2 Detection and Exclusion of Misbehaving Nodes

To prevent some adversarial behaviors in the P2P network, it is interesting to de-
tect and exclude misbehaving nodes. For instance, in our certification algorithm,

A Distributed Certification System for Structured P2P Networks 51

nodes ask several other nodes for the same partial signature and compare the
results to cope with attackers returning fake partial signatures. Also, to obtain
a resource, nodes may use redundant routing to prevent an attacker present on
a route to this resource from forging a fake response. However, asking several
nodes for a partial signature or using redundant routing generates overhead on
the network. Excluding such attackers allows to reduce the number of nodes
asked or redundant routes used for an identical success probability.

We propose thus to detect and exclude some types of misbehaving nodes. We
make the assumption that the majority of the nodes are honest and we thus
detect attackers which exhibit a minority behavior. Each node monitors some
traffic and compares messages which should be the same. For instance, a minority
partial signature or a minority response for a given resource requested through
different routes is considered as an attack. If some traffic reveals an attack, then
the victim sends the messages proving this attack to a ratio t of the nodes and
these nodes revoke the membership certificate of the attacker with the network
secret key (revocation is a special case of certification). This attacker is then
globally excluded from the network.

6.3 Secure Naming of Resources

In [12], Bryan et al. propose to use a cheap and highly available P2P network as a
VoIP directory. Each user inserts an entry in the P2P network mapping his name
such as “John Smith” to his IP address. When a user wants to phone John Smith,
he requests the resource identified by h(”John Smith”) and obtains the IP ad-
dress of John Smith. However, they do not propose any mechanism to prevent an
attacker from intersecting such a request and replying a fake IP address. The only
solution, to our best knowledge, is to call John Smith by a hash of his public key
rather than by his name. This is not convenient to remember.

We propose that each new user obtains a certificate binding his user name to
his public key, using distributed certification. Each node involved in this certifi-
cation first checks if there is already a user with the same name by requesting
this username in the DHT. Cache mechanisms of DHT should be able to manage
this peak of identical requests. If and only if the name is free, then this node pro-
ceeds with the distributed certification: a certificate for a given name can only
be obtained if this name is free. Then, a node wanting to phone “John Smith”
requests the resource identified by h(”John Smith”), obtains the certified public
key of John Smith and his IP address, and can then challenge John Smith about
his private key to authenticate him.

7 Conclusion and Future Work

We proposed here a distributed certification system for structured P2P networks.
This mechanism provides the ability to leverage the local knowledge of a ratio t
of the nodes to a global knowledge recognized by all the nodes in the network.
Subsequent verifications of the certificates are simple checks on digital signatures.

52 F. Lesueur, L. Mé, and V. Viet Triem Tong

We evaluated and validated this distributed certification in the presence of
attackers through probabilities and simulations. We now plan on stressing a real
implementation of our system under dynamics using the PlanetLab testbed.

We finally briefly presented three applications of distributed certification in
structured P2P networks. These applications involve controlling the access of new
nodes, excluding misbehaving nodes and providing a secure naming service. We
now have to precise these applications and study interactions of the different steps.

Acknowledgments. The authors thank Orange Labs for partially funding this
work and especially Hervé Debar for his involvement in the project and his advice
and valuable comments.

References

1. Clip2: The gnutella protocol specification v0.4 (2000),
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf

2. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of the
ACM SIGCOMM Conference (SIGCOMM). Computer Communication Review,
pp. 149–160. ACM Press, New York (2001)

3. Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L.: Providing robust and ubiquitous
security support for mobile ad hoc networks. In: Proceedings of the 9th IEEE
International Conference on Network Protocols (ICNP). IEEE Computer Society,
Los Alamitos (2001)

4. Saxena, N., Tsudik, G., Yi, J.H.: Experimenting with admission control in P2P. In:
Proceedings of the International Workshop on Advanced Developments in System
and Software Security (WADIS) (2003)

5. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

6. Shamir, A.: How to share a secret. Communications of the ACM 22(11) (1979)
7. Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Okamoto,

E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 158–173. Springer, Heidelberg (1998)
8. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal-resilience proactive

public-key cryptosystems. In: Proceedings of the 38th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society, Los Alamitos
(1997)

9. Boneh, Franklin,: Efficient Generation of Shared RSA Keys. In: Kaliski Jr., B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997)

10. Jelasity, M., Jesi, G.P., Montresor, A., Voulgaris, S.: PeerSim P2P Simulator
(2004), http://peersim.sourceforge.net/

11. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: Sybilguard: Defending against
sybil attacks via social networks. In: Proceedings of the ACM SIGCOMM Confer-
ence (SIGCOMM), pp. 267–278. ACM Press, New York (2006)

12. Bryan, D.A., Lowekamp, B.B., Jennings, C.: SOSIMPLE: A serverless, standards-
based, P2P SIP communication system. In: Proceedings of the International Work-
shop on Advanced Architectures and Algorithms for Internet Delivery and Appli-
cations (AAA-IDEA) (2005)

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 53–64, 2008.
© IFIP International Federation for Information Processing 2008

N2N: A Layer Two Peer-to-Peer VPN

Luca Deri1 and Richard Andrews2

1 ntop.org, Pisa, Italy
2 Symstream Technologies, Melbourne, Australia

{deri,andrews}@ntop.org

Abstract. The Internet was originally designed as a flat data network delivering
a multitude of protocols and services between equal peers. Currently, after an
explosive growth fostered by enormous and heterogeneous economic interests,
it has become a constrained network severely enforcing client-server
communication where addressing plans, packet routing, security policies and
users’ reachability are almost entirely managed and limited by access providers.
From the user’s perspective, the Internet is not an open transport system, but
rather a telephony-like communication medium for content consumption.

This paper describes the design and implementation of a new type of peer-
to-peer virtual private network that can allow users to overcome some of these
limitations. N2N users can create and manage their own secure and
geographically distributed overlay network without the need for central
administration, typical of most virtual private network systems.

Keywords: Virtual private network, peer-to-peer, network overlay.

1 Motivation and Scope of Work

Irony pervades many pages of history, and computing history is no exception. Once
personal computing had won the market battle against mainframe-based computing,
the commercial evolution of the Internet in the nineties stepped the computing world
back to a substantially rigid client-server scheme. While it is true that the today’s
Internet serves as a good transport system for supplying a plethora of data interchange
services, virtually all of them are delivered by a client-server model, whether they are
centralised or distributed, pay-per-use or virtually free [1].

Direct, free and private interoperation between domestic Internet users - for
example a direct file transfer or a point-to-point server-less message exchange - is
generally prevented by the market-driven characteristics of typical corporate and
domestic Internet access systems. These tend to mask the user’s IP identity and limit
peer accessibility:

• In many cases, end users do not have any control over their connection
configuration, which is totally managed by Internet service providers (ISPs).

• ADSL, fibre or cable Internet users are generally hidden through chains of NAT
[35] devices that may even start at the customer’s premises with the ubiquitous
home access gateway. In some cases, a domestic user connection has a private,

54 L. Deri and R. Andrews

i.e. non-public, IP address, which prevents an external peer initiating a direct IP
session. This kind of access is generally acceptable to a domestic content
consumer, given the client-server nature of most Internet services. In this
scenario, a NAT-ed access appears indistinguishable in performance with
respect to a “premium service” offering permanent, public IP assignment.

• Firewalls outside the user’s control, greatly reduce the possibility of a user
being contacted by a direct session initiated elsewhere. Furthermore these
devices limit the protocols that can be used in a direct information transfer
between geographically distributed peers.

All of these facts lead to the conclusion that for the vast majority of users, the
Internet is a severely constrained IP transport system that hinders visibility and data
exchange. Even when users are visible, dynamic addressing techniques and roaming
issues prevent them from being consistently addressed by a unique name and having
equal capabilities regardless of the access connection that they are using. The
consequence is that the increasing success of social networks and communities is
restricted to selected service models. Users can for instance exchange files only
through a specialised application (e.g. Microsoft Messenger) instead of pushing files
onto a user’s public folders.

User experience is restricted to a consumer-provider model. Even user-to-user
communications are defined within the bounds of users connecting to a common
server. Partial solutions for the set of problems outlined above are already offered by
many peer-to-peer (P2P) applications, but they approach the problem at the
application level, rather than at network level. In general, these solutions rely upon
distributed hash tables (DHTs) [2] for setting up a so-called network overlay among
peers. This overlay network is in turn used as a communication means for specific,
overlay-network-aware services typically file sharing and instant messaging.

P2P has become a truly disruptive approach that has changed the way the Internet
is used: it has allowed users to create an application-based closed network in which
data can be exchanged even with the limitations of the “closed” Internet such as
firewalls, dynamic IPs and NAT [36]. Usually P2P is limited to a specific service (e.g.
file sharing) rather than attacking the problem of generic IP communications through
firewall restrictions. True IP users target an IP address and a service (e.g.
http://www.google.com) for datagram exchange, while P2P users target an application
token (e.g. song xyz or skype user abc). The fact that P2P applications are able to
cross most firewalls is not perceived by their end-users as a security hole but rather as
a desirable property. In fact people do not care about IP configuration, but they do
care about permanent service availability regardless of the connection type (cable,
wifi, phone) and physical location (e.g. at home, on the street or at work).

Unfortunately P2P has been used predominantly at the application level, and the
above-listed beneficial properties of P2P protocols are limited to solving particular
application-level problems. Based on these considerations, the authors decided to
exploit P2P principles in order to interconnect network resources that otherwise
would not be reachable due to network configuration and security restrictions [3].

N2N (network to network) is a novel layer-two over layer-three P2P virtual private
network (VPN) application developed by the authors, which allows users to exploit
properties typical of P2P applications at the network level instead of application level.
This means that users can gain unrestricted IP visibility and be reachable with the

 N2N: A Layer Two Peer-to-Peer VPN 55

same address regardless of their current network environment. In a nutshell, as
OpenVPN moved SSL [11] from application (e.g. used to implement the https
protocol) to network protocol, N2N moves P2P from application to network level.

2 The Design of N2N

A virtual private network [4] is a secure logical network that is tunnelled though
another network. VPNs are often used for implementing secure point-to-point
communications through the public Internet. Therefore they usually feature user
authentication and content encryption. Network administrators use VPNs for securely
and permanently connecting remote sites through the Internet without the need for
expensive leased lines. Mobile users and telecommuters use VPNs to connect to their
private office. The key elements of VPNs are (a) encryption (which protects sensitive
data while travelling on the public Internet) and (b) encapsulation (which allows
transport between cooperating tunnel end-points).

Permanent VPNs are often implemented at layer two with protocols such as 802.1q
[5], and at layer three with BGP/MPLS [6] and are often static in terms of topology
and peers. Semi-permanent VPNs such as those used by mobile users can be based on
standard protocols such as PPTP [7] and L2TP over IPSEC [8] or de-facto products
such as Cisco VPN and OpenVPN [9]. VPNs are implemented either using complex
(to implement, administer and use) protocols such as IPSEC [10] or using SSL/TLS
[11] that were originally designed to securely interconnect applications such as web
servers with browsers.

Regardless of the VPN type, the key concept is that network administrators
configure the VPN and users must use the setups specified by administrators in order
to use it. VPN servers must be accessible by means of a public IP address such that
the client can reach the VPN server. VPNs therefore form a star-topology with the
service located at the publically reachable nexus. Server reachability can be an issue
as many VPN systems use non-TCP/UDP protocol, or use privileged low (< 1024)
ports (e.g. ISAKMP used by IPSEC uses port 500) that are often blocked by firewalls.
This means that VPN clients can be unusable from many places like public hotspots,
hotels and many GPRS connections. User mobility and remote access often do not
work with a VPN model.

The above limitations of the current VPN systems have been the driving force for
the authors for the design of N2N. In a nutshell we ask: “Is it possible to have
decentralised, network-administrator-free, secure and permanent network access with
a single/uniform address regardless of the current user’s location, local IP address and
network type?”.

The authors designed N2N to give N2N users the ability to create dynamic private
networks. As happens with community networks, users should be able to create their own
overlay network which other users are invited to join. With VPN the network
administrator chooses who may join the VPN and what interactions will be tolerated. N2N
is somewhat similar to Hamachi [12], a popular application mostly used for creating
private networks on which to play games. With N2N users can choose their IP address and
the encryption keys, whereas with Hamachi this is not possible and all the security is
delegated to Hamachi, making the whole solution weak from a security point of view.

56 L. Deri and R. Andrews

The main design features of N2N are:

• N2N is an encrypted layer two private network using a P2P protocol. Each N2N
node has a name and a common encryption key pre-shared among the users that
have been invited to join the network (community).

• Encryption is performed at edge nodes using open ciphers with user-defined
encryption keys. This differs from popular applications like Skype and Hamachi
where the traffic is encrypted by the application with no control by the
application user. Skype developers can decode Skype traffic [13], which gives
users a false sense of security. This does not happen with N2N where only users
holding the private keys can decrypt the traffic.

• Each N2N user can simultaneously belong to multiple communities. Users will
have an encryption key, MAC and IP address for each N2N community.

• Like most P2P protocols, N2N has one or more supernodes and several edge
nodes. Supernodes are used to introduce edge nodes and to cross symmetric
NAT. N2N packets are encrypted/decrypted only by edge nodes and supernodes
forward packets based on a clear-text packet header without inspecting the
packet payload. This is a core differentiator of N2N.

• N2N can cross NAT and firewalls in the reverse traffic direction (i.e. from
outside to inside) so N2N nodes become directly reachable from the community
even if running on a private network.

• N2N communities are meant to be self-contained, but it is possible to route
traffic across N2N communities. Packet forwarding through N2N is disabled by
default, as this can be a security flaw. N2N users can enable it if necessary but
doing so requires explicit user awareness.

The need to cross NAT and firewall devices motivated the use of P2P principles
for interconnecting N2N nodes. During the design phase, the authors analysed several
popular P2P protocols [14] ranging from proprietary (e.g. Skype SDK) to open (e.g.
BitTorrent [15]) protocols. Unfortunately most protocols have been created for file
sharing and are not suitable for N2N because PDUs (Protocol Data Units) have been
designed to carry file information (e.g. name, length, type, attributes such as MP3
tags) and perform distributed file searches. Even though existing P2P protocols were
not immediately usable for N2N without modification, some concepts already present
in other P2P architectures [16] have been utilised as is explained in the following
chapter. In addition to the properties listed so far, N2N presents further differences
from other approaches [28] [29] [30]:

• Unlike most P2P overlay networks such as Chord [25] and Pastry [26] that are
affected by the problem or locating objects/peers in a limited number of overlay
hops, in N2N this is not a problem as, by design, peers are reachable either
directly or in one hop when passing through the N2N community. This design
choice has dramatically simplified peer lookup and membership information
without requiring complex algorithms for information bookkeeping [27].

• N2N node membership is rather static. Nodes usually register with a N2N
community and stick with it as long as the node is operational. In other
networks such as Gnutella or Napster the membership change rate is much
higher and can lead to issues as the network topology might need to be changed
in order to handle new members.

 N2N: A Layer Two Peer-to-Peer VPN 57

• N2N nodes themselves do not store, cache, replicate or manage any content.
This is because N2N connects network peers rather than content and consumers.

• The goal of N2N is not to share files but rather to allow peers to communicate
generically in a secure way and to locate each other by consistent addressing
regardless of their physical network location. Data sharing is accomplished by
higher layer protocols as the Internet design intended.

3 N2N Architecture and Implementation

Edge nodes run on a host that can be placed in a private or public LAN. Supernodes
are used to introduce edge nodes and relay packets to an edge behind symmetrical
NAT (which prevents it from being directly reachable by peers). With symmetric
NAT all requests from the same internal IP:port to a specific IP destination:port are
mapped to an external IP:port. If the same internal host sends a request with the same
source address and port to a different destination, a different external mapping is
used. This prevents the arrival of packets from any other remote socket.

Edge
Node

Super
Node

Edge
Node

Edge
Node

Edge
Node Edge

Node

Super
Node

Edge
Node

Edge
Node

Fig. 1. N2N architecture

Edge nodes have a list of supernodes to which they register at startup. Supernodes
temporarily store information about the edge nodes; such information needs to be
periodically refreshed by the edge node. Edge nodes register to the first available
supernode; registration to additional supernodes happens if the supernode to which
the edge node is registered becomes unresponsive.

As N2N is a layer two VPN, edge nodes are identified uniquely by a 6 byte MAC
address and a 16 byte community name. Edge nodes use TAP [17] devices that act as
virtual ethernet devices implemented in the operating system kernel. In TAP devices,
the ethernet driver is implemented in a user-space application. N2N provides such a
driver implementation, which encapsulates encrypted ethernet frames within UDP
packets as in Figure 2.

The kernel sees the TAP device as the path through which to send ethernet frames
(based on LAN routing). UDP capsules arriving on the IP side are decrypted and the
ethernet frames injected into the kernel as if they had arrived from an ethernet
adapter. The use of TAP devices reduces the design of the architecture to familiar

58 L. Deri and R. Andrews

tap0
1.2.3.4

n2n
Edge

tap0
1.2.3.5

n2n
Edge

Host A (192.168.0.1) Host B (192.168.0.2)

U
se

r
S

pa
ce

K
er

ne
l

UDP Tunnel

Fig. 2. N2N node communications

LAN concepts. The use of UDP encapsulation simplifies firewall and NAT traversal
compared to other encapsulations such as GRE [18] that are often blocked by
firewalls.

When an edge node is started, it registers with the first configured supernode and
sends an acknowledged registration packet. If the acknowledgement is not received,
the edge node retries then move on to another supernode. Registrations are sent
periodically in order to refresh the edge registration and make sure that any firewalls
between the edge and the supernode do not block the connection due to inactivity.
This means the supernode can relay packets to the edge node as long as the firewall
stays open. This is the technique used by N2N to traverse NAT in the reverse
direction. Each supernode keeps a list of paths to each edge node keyed by
{community, MAC}. N2N provides layer-2 broadcast via the supernodes, which act
to forward broadcast and multicast packets to all edge nodes in the community. As
edge nodes receive remote packets they also build a list of {MAC, UDP socket} for
peers in the community, and send registration requests directly to the peers. Figure 3
shows how this can lead to a NAT traversal in the reverse traffic direction.

Peer registration provides a mechanism for edges to form direct connections thereby
removing the supernode from the path. If the sender edge node receives an
acknowledgement for a register message previously sent directly to a remote node, then
the nodes can reach each other directly. If one of the peers is behind symmetric NAT, the
act of sending a registration request directly to the other peer opens a return path through
the firewall. If both peers are behind symmetric NAT, direct connectivity is not possible.
As happens with ARP [21], dynamic peer registrations expire if not renewed. Note that:

n2n
Edge A

n2n
Edge B

Super
Node

Symmetrical
NAT

Asymmetrical
NAT

Fig. 3. N2N communications through NAT

 N2N: A Layer Two Peer-to-Peer VPN 59

• The N2N community name is conceptually similar to the 802.1q VLAN ID.
• Dynamic peer registration may fail, e.g. due to firewalling. In this case packets

can use asymmetric routing, e.g. A to B via S but direct from B to A.

N2N uses Twofish [19] as its encryption algorithm. The authors chose this
symmetric key block cipher as it is fast, unpatented and its source is uncopyrighted
and licence-free. Each N2N community has a shared key that is used to
encrypt/decrypt N2N packet payloads. If a supernode is compromised, injected traffic
will be discarded as supernodes do not ever know community keys. layer-2 frames are
also compressed using the Lempel-Ziv-Oberhumer (LZO) [20] algorithm that, like
Twofish, is fast, efficient and available under the GNU GPL license. The N2N packet
header is not compressed (nor encrypted) which allows supernodes to forward
packets.

MAC address duplication within N2N can lead to the same problems that occur in
ethernet networks so care must be taken to avoid conflicts. Edge nodes can have
dynamic IP addresses by means of a DHCP server attached to an edge node in a
community. As N2N TAP interfaces behave like real (e.g. ethernet) interfaces, it is
also possible to run other services such as those defined by the IETF Zeroconf
Working Group including, but not limited to, multicast DNS (mDNS) and DNS
Service discovery [22]. Unlike most P2P systems, a node naming scheme [33] for
locating peers is redundant in N2N.

4 N2N Evaluation and Testing

As N2N is a technology that is designed to interconnect heterogeneous computers, the
authors ported it to three common platforms: Linux, MacOS X including BSD
variants, and Windows. From the software point of view the code base is the same.
Platform-specific code was needed for supporting the various TAP APIs. The authors
acknowledge that the OpenVPN project has done a significant amount of work, so
that today it is relatively simple to use TAP devices in a multivendor environment.

In the test setup, the supernode was installed on a Linux PC with a public IP
address although this is not really necessary as long as the supernode UDP port is
publically reachable. N2N nodes were placed behind several types of NAT/firewall
devices, including symmetric NAT and multi-NAT (i.e. cascaded NAT devices) that
are often used by ISPs. Edge nodes have been used on all above listed platforms in
order to evaluate interoperability. As soon as the edge application starts, the node is
part of the N2N community and can communicate with remote N2N peers. Several
protocols were tested successfully, ranging from SSH to dynamic FTP.

As N2N uses TAP devices, it is possible to run popular tools such as tcpdump and
wireshark on the TAP interfaces. Edge-to-supernode traffic is both encrypted and
compressed, but traffic at the TAP interface is clear-text.

All existing IP-based applications can run on N2N without any change or
recompilation. Even multicast works within N2N communities as long as the routing
tables are correctly configured. Nevertheless the full power of N2N is unleashed
when using community-based applications such as Retroshare [23] or I Hear You
[24], the latter being a P2P VoIP application.

60 L. Deri and R. Andrews

While N2N’s throughput is similar to other VPN implementations such as
OpenVPN and PPTP as they share the basic building blocks, its major advantages
compared to those technologies are:

• The ability to create a private network without a central control point.
• Direct packet exchange, which increases network efficiency and reduces

latency.
• Applications see N2N as just another ethernet LAN.
• The code base is extremely small with no dependencies on external libraries

(e.g. OpenSSL) or proprietary software, so it can be embedded into small
devices and appliances.

N2N is a major step ahead compared to application layer P2P networks because it
is transparent and usable by all applications without any N2N awareness. If N2N had
been implemented at a higher layer, it would have been usable only by applications
aware of it; as happens with most P2P applications.

N2N may appear as a way to circumvent many management mechanisms for
security and privacy, and allow subcultures to share information free of monitoring.
In this respect N2N might appear more as a problem rather than a solution to
connectivity issues. The authors have not designed N2N to be a tool for defending
users against network surveillance, but rather as utilitarian network overlays through
which information can flow directly, securely and reliably.

4.1 Comparing N2N and Mobile IP

Mobile IP [33] is a scheme to allow global dynamic routing of IP packets to a static
IP address when the host holding the static address is mobile. This is done by a series
of routing tricks involving NAT and tunneling. It requires a central holder of the static
IP address to be present to relay all packets destined for the mobile host. The presence
of a packet relay node presents scalability and reliability problems. The types of
problems to expect can be found extrapolating the lessons learned from GPRS, where
the GGSN forms a bottleneck to traffic and a single-point of failure. N2N by contrast
drastically alleviates these problems for participating communities of hosts. When a
member of an N2N community changes its public IP address, all other members begin
utilising the new address on ARP refresh and direct peer-to-peer communication is
transparently restored without the need for a packet relay node such as the home agent
in Mobile IP. Mobile IP is designed for use with telco-provided services where the
care-of IP address assigned to a roaming device is routable and not firewalled. As a
result Mobile IP is of little value when the mobile host changes its IP address to that
of a host on a LAN which is isolated from the public internet by a firewall. N2N by
contrast will pierce the firewall and transparently provide peer-to-peer
communications once more. For the symmetric NAT case, N2N reduces to a similar
situation as Mobile IP where the supernode must act as a packet relay. The peer-to-
peer nature of N2N should deliver far better interactive performance due to the
drastically reduced round-trip time and the removal of a queueing point which exists
at the home agent in Mobile IP. The shortening of the packet path reduces the average

 N2N: A Layer Two Peer-to-Peer VPN 61

round-trip time as there are fewer hops to cover. The removal of the packet relay
reduces the variance of round-trip time which - in Mobile IP - is influenced by
momentary load associated with packet forwarding for other nodes.

Community in the N2N sense refers to a set of participating hosts which elect to be
part of the community by maintaining registrations with the community supernodes.
The uses of such communities are many. The pattern describes the internal communi-
cations of most small businesses, peer groups, affiliations, etc. N2N provides a LAN
extension to a mobile community. No matter where a participating host roams to and
what transport it uses, it remains a member of the N2N L2 network. Traditional road-
warrior setups depend on client-server models with the mobile host being the client.
Network security and resource access rely heavily on this model making it difficult to
provide true peer-to-peer applications. Indeed the availability and uptake of true peer-
to-peer applications may be hindered by the difficulty in providing such applications
across network boundaries. N2N provides an enabling technology for true peer-to-
peer IP communications models such as push-to-talk type conferencing, information
synchronisation by push (rather than pull-from-server) or by broadcast.

Being a direct peer-to-peer technology N2N scales much better than solutions such
as Mobile IP which rely on a single point of packet aggregation and forwarding [32].
The N2N model makes use of the supernodes only when required - typically at the
time when a host must be contacted but its location is unknown. The supernode has
minimal participation in packet delivery and as such is not a limiting factor on host-
to-host round-trip time or throughput.

4.2 N2N Scalability

N2N has been designed to be simple and address connectivity limitations present in
most networks as explained in the previous sections. By no means has N2N been
designed to implement a large overlay networks where thousand of nodes can join for
a few reasons:

• Large overlays create a significant traffic load on supernodes which can lead to
performance degradation.

• In order to optimise the overlay and increase the number of supernodes, some
edge nodes (e.g. those that are not behind a symmetrical NAT) should become a
hybrid edge-supernode as happens with most P2P applications. Yet this would
impact on node performance.

• Efficient supernode selection based on criteria like round trip time and available
bandwidth is necessary for a large overlay. However this would significantly
add complexity to the N2N code and produce extra node traffic in order to
periodically calculate supernode section metrics.

That said, the authors are aware that the next N2N release should address some
issues, including better scalability. In any case, this planned evolution will not upset
the core N2N principles, which were designed to be simple, reliable, and usable for
business activities.

62 L. Deri and R. Andrews

4.3 Network Management and N2N

Most management protocols have not been designed to run across firewalls and NAT.
However in some cases, network administrators are forced to use them in this
scenario and often the solution is to setup the firewall with static access rules. This
however is not a clean solution as it is rather simple to forge packets, in particular
UDP-based protocols such as SNMP. However TCP-based used to administer remote
hosts protocols such as VNC [34] and RDC (Remote Desktop Connection), are not
suggested to run across firewalls as a protocol flaw could compromise the whole
network.

Network management applications can take advantage of N2N for creating secure
WAN management networks on which protocols can flow without having to take into
account security and network constraints. Using different community names,
administrators can add extra security by creating several overlays one for each group
of homogeneous management resources, so that management traffic is further
partitioned. Implementing the same partitioning scheme using traditional techniques
such as VLAN or VPNs would have been much more difficult and in some cases (e.g.
on WANs) probably not feasible at all.

5 Open Issues and Future Work

Although fully operational, the N2N development is not over. The authors are:

• Implementing N2N tunneling over other protocols such as HTTP and DNS in
order to give users the ability to run N2N even on those partially open networks
where only a few protocols such as email and web are allowed.

• Designing security mechanisms to avoid intruders and bugged edge nodes
which could disable a community with node registration bombing.

• Enhancing supernode selection and registration algorithms, so that edge nodes
dynamically select the fastest reachable supernode among the list of available
supernodes [31].

• Evaluating the porting of N2N onto small devices such as Apple iPhone and
Linux-based network devices including DreamBox and Android phones when
available.

In a nutshell the plan is to allow N2N to run on:

• Most partially-open networks and give mobile users the ability to have secure
access with a fixed N2N IP address, if configured, regardless of their location,
e.g. at the airport lounge, in a hotel room or at the office.

• Hostile networks where attackers can try to break N2N community security.
• Embedded portable devices that can be used for letting users access their own

private network from all applications in a secure way, without having to cope
with the limitations of most networks that often allow only reduced Internet
access.

 N2N: A Layer Two Peer-to-Peer VPN 63

6 Final Remarks

This paper has described a novel type of P2P VPN that enables the creation of secure,
private networks regardless of the peer locations, network access type, or operating
system. Unlike the current VPN generation, N2N is fully decentralised and uses
supernodes only at start-up or whenever peers are behind symmetric NATs that
prevent direct peer communication. Existing applications do not need to be changed
in any way to exploit N2N. The ability to tunnel N2N traffic over protocols such as
HTTP and DNS makes it a very useful technology for allowing users to overcome
restrictions in many networks. N2N users can be partitioned into networks and have a
permanent, unique N2N IP address regardless of the current address of the device
running N2N. This makes N2N suitable for creating overlay networks of users
sharing homogeneous information. Finally, traffic encryption at the edge and not by
any controlling entity, enables users to securely exchange sensitive information with
much less risk of being intercepted or observed by unwanted peers.

Acknowledgment and Code Availability

The authors would like to thank Simone Benvenuti, Carlo Rogialli and Maria Teresa
Allegro for their help and suggestions during N2N development.

N2N is distributed under the GNU GPL 3 licence and is available at the ntop home
page http://www.ntop.org/n2n/ and other mirrors on the Internet.

References

1. Fuggetta, A.: The Net is Flat, Cefriel Technical Report (2007),
http://alfonsofuggetta.org/mambo/images/stories/Documents/
Papers/TheNetIsFlat.pdf

2. Maymounkov, P., Mazières, D.: Kademilia: A Peer-to-peer Information System Based on
XOR Metric. In: 1st Intl. Workshop on Peer-to-Peer Systems (2002)

3. Deri, L.: Empowering peer-to-peer services. In: EFNIW Workshop (2007)
4. Gleeson, B., et al.: IP Based Virtual Private Networks. RFC 2764 (2000)
5. McPherson, A., Dykes, B.: VLAN Aggregation for Efficient IP Address Allocation. RFC

3069 (2001)
6. Rosen, E., Rekhter, Y.: BGP/MPLS IP Virtual Private Networks. RFC 4364 (2006)
7. Hamzeh, K., et al.: Point-to-Point Tunneling Protocol (PPTP). RFC 2637 (1999)
8. Patel, B., et al.: Securing L2TP using IPsec. RFC 3193 (2001)
9. Hosner, C.: Open VPN and the SSL VPN Revolution. Sans Institute (2004)

10. Kent, S., et al.: Security Architecture for the Internet Protocol. RFC 2401 (1998)
11. Dierks, T., Allen, C.: The TLS Protocol. RFC 2246 (1999)
12. LogMe In, Hamachi Security – an Overview, White Paper (2007)
13. Skype Ltd, Skype Public API (2008), https://developer.skype.com/
14. Khan, K., Wierzbicki, A. (eds.): Foundation of Peer-to-Peer Computing, vol. 31(2) (2008),

Special Issue, Elsevier Journal of Computer Communication

64 L. Deri and R. Andrews

15. BitTorrent Protocol Specification (2008),
http://www.bittorrent.org/protocol.html

16. Balakrishnan, H., et al.: Looking up data in P2P systems. Communications of the ACM
(2003)

17. Krasnyansky, M.: Universal TUN/TAP Driver (2001),
http://vtun.sourceforge.net/

18. Hanks, S., et al.: Generic Routing Encapsulation (GRE). RFC 1701 (1994)
19. Schneider, S., et al.: Twofish: A 128-Bit Block Cipher. Couterpane Labs (1998)
20. Oberhumer, M.: LZO Compression Library (2005)
21. Plummer, D.: An Ethernet Address Resolution Protocol. RFC 826 (1982)
22. Cheshire, S., Steinberg, D.: Zero Configuration Networking: The Definitive Guide.

O’Reilly Media, Sebastopol (2005)
23. The Retroshare Team, Retroshare (2007),

http://retroshare.sourceforge.net/
24. Trotta, M.: I Hear You (2008), http://ihu.sourceforge.net/
25. Stoica, I., et al.: Chord: A Scalable Peer-To-Peer Lookup Service for Internet

Applications. In: Proceedings of ACM SIGCOMM (2001)
26. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing

for Large-Scale Peer-to-peer Systems. In: Proc. of IFIP/ACM Middleware (2001)
27. Gupta, A., et al.: One Hop Lookups for Peer-to-Peer Overlays. In: Ninth Workshop on Hot

Topics in Operating Systems (2003)
28. Wang, C., Li, B.: Peer-to-Peer Overlay Networks: A Survey, Technical Report, Dept. of

Computer Science, HKUST (2003)
29. Keong Lua, E., et al.: A Survey and Comparison of Peer-to-Peer Overlay Network

Schemes. IEEE Communications Surveys (2005)
30. Castro, M., et al.: Exploiting Network Proximity in Peer-to-peer Overlay Networks,

Technical Report MSR-TR-2002-82, Microsoft Research (2002)
31. Jovanovic, M., et al.: Scalability Issues in Large Peer-to-peer Networks - A Case Study of

Gnutella. Technical Report, Univ. of Cincinnati (2001)
32. Li, X., Plaxton, C.: On Name Resolution in Peer to Peer Networks. In: Proceedings of 2nd

Intl. Workshop on Principles of Mobile Computing (2002)
33. Perkins, C.: IP Mobility Support. RFC 2202 (1996)
34. Richardson, T.: The RFC Protocol (2007),

http://www.realvnc.com/docs/rfbproto.pdf
35. Touch, J.D.: Those pesky NATs. IEEE Internet Computing, 96 (July/August 2002)
36. Information Sciences Institute, TetherNet (2002),

http://www.isi.edu/tethernet/

Secure Sharing of an ICT Infrastructure through Vinci

Fabrizio Baiardi1 and Daniele Sgandurra2

1 Polo G. Marconi, La Spezia
2 Dipartimento di Informatica

Università di Pisa
{baiardi, daniele}@di.unipi.it

Abstract. Virtual Interacting Network CommunIty (Vinci) is a software archi-
tecture that exploits virtualization to share in a secure way an information and
communication technology infrastructure among a set of users with distinct secu-
rity levels and reliability requirements. To this purpose, Vinci decomposes users
into communities, each consisting of a set of users, their applications, a set of ser-
vices and of shared resources. Users with distinct privileges and applications with
distinct trust levels belong to distinct communities. Each community is supported
by a virtual network, i.e. a structured and highly parallel overlay that intercon-
nects virtual machines (VMs), each built by instantiating one of a predefined set
of VM templates. Some VMs of a virtual network run user applications, some
protect shared resources, and some others control traffic among communities to
discover malware or worms. Further VMs manage the infrastructure resources
and configure the VMs at start-up. The adoption of several VM templates enables
Vinci to minimize the complexity of each VM and increases the robustness of
both the VMs and of the overall infrastructure. Moreover, the security policy that
a VM applies depends upon the community a user belongs to. As an example, dis-
cretionary access control policies may protect files shared within a community,
whereas mandatory policies may rule access to files shared among communities.
After describing the overall architecture of Vinci, we present the VM templates
and the performance results of a first prototype.

1 Introduction

Among the benefits of virtualization, the most well known one is the cost saving
achieved by consolidating several servers on a single physical machine [1]. We be-
lieve that a further noticeable advantage is an increase of system robustness because we
can include in a virtual architecture components that check and control the other ones
in a transparent way. As an example, a virtual network can include nodes, i.e. virtual
machines (VMs), which run the applications and other nodes that monitor the previ-
ous ones in a completely unobtrusive way [2]. Furthermore, the ability of accessing
any component of a virtual node enables the definition of more rigorous and complete
checks to detect anomalies or intrusions, as when special purpose hardware units are
available. Finally, an architecture composed of a large number of virtual nodes can
increase the robustness of each node, and of the overall system, by minimizing the soft-
ware each node runs.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 65–78, 2008.
c© IFIP International Federation for Information Processing 2008

66 F. Baiardi and D. Sgandurra

These considerations have led to the definition of Virtual Interacting Network Com-
munIty (Vinci), a software architecture that aims to exploit at best virtualization tech-
nologies to share in a secure way an information and communication technology (ICT)
infrastructure. To this purpose, Vinci adopts a two-tier approach where several virtual
networks, or overlays, are introduced and each overlay is highly parallel because it
composes a large number of VMs. To increase the robustness of each overlay, Vinci
minimizes the functionalities of each VM by defining several VM templates. As an ex-
ample, Vinci instantiates Application VMs to run user applications, according to the
applications trust level and to the user privileges, i.e. user security levels, so that each
Application VM only runs the smallest number of software packages and libraries to
support the considered applications. Other VM templates are introduced to control re-
sources shared among Application VMs of the same overlay or of distinct ones, or in-
formation flowing among VMs. In Vinci, each physical node of the infrastructure runs a
virtual machine monitor (VMM) [3] on top of the hardware-firmware level to multiplex
the node physical resources among VMs and strongly confine them.

The number of overlays that share the infrastructure depends upon user communi-
ties, because a distinct overlay, or virtual community network (VCN), is introduced for
each community. A community consists of a set of users that execute applications and
of services that these applications exploit. The users and applications in a community
can be handled in a uniform way because they have homogeneous security and relia-
bility requirements. Communities can also cooperate and exchange information. Proper
consistency and security checks are applied within a community, while more severe
checks are enforced to cross the community border. When defining a community, an
administrator pairs it with a global level, which defines the set of users that can join
the community, the applications they can run and the resources they can access. In this
way, the global level is the same for all the VMs in a community and they can be ho-
mogeneously managed because they have similar requirements. Hence, the notion of
community simplifies the management of the VMs, because VMs of the same com-
munity require the same reliability level and the data they exchange can be protected
through the same mechanisms.

The rest of the paper is organized as follows. Section 2 presents the overall archi-
tecture of Vinci and discusses the various VM templates introduced to run user appli-
cations, to build the overlays and to support the correct sharing of the infrastructure
among VMs and among communities. Section 3 presents a first set of performance
results. Section 4 reviews some related works. Finally, Sect. 5 draws some conclusions.

2 Vinci Overall Architecture

An example of an infrastructure where Vinci can be applied is the one of a hospital
that is shared, at least, among the doctor community, the nurse community and the
administrative community. Since each community manages its private information but
also shares some information with the other ones, a community should be able to de-
fine its own security policy, its reliability requirements and to control information to
be shared with the other ones. As an example, users in a doctor community can update
the information about prescriptions whereas those in the nurse community can read but

Secure Sharing of an ICT Infrastructure through Vinci 67

not update the same information. The nurse community and the doctor one share some
other information with the administrative community, which has to bill the patient in-
surances. In the most general case, each user belongs to several communities according
to the applications she needs to run and the data she wants to access. Consider a doctor
that is the head of the hospital: as a doctor she belongs to the doctor community but,
because of her administrative duties, she belongs to the administrative community as
well. Furthermore, the community the doctor joins to access critical health information
differs from that she joins when surfing the Internet.

In the general case, we assume that the infrastructure architecture is a private network
that spans several locations, it includes a rather large number of physical nodes, and it is
centrally managed by a set of administrators. We also assume that most of the nodes of
the infrastructure are personal computers that are only accessed by one person at time
and that the infrastructure includes a set of server nodes, which store shared data and
execute server applications. Vinci requires that each node runs a virtual machine moni-
tor (VMM), a thin software layer on top of the bare machine that creates and manages
several concurrent emulation environments, the VMs. The VMM is responsible of the
confinement among the VMs and guarantees a fair access to the node resources.

One of the main advantages of virtualization is the ability of choosing the appropri-
ate combination of OS and applications for each VM to minimize the overall complex-
ity. To exploit at best this feature, Vinci defines a set of highly specialized and simple
VM templates that are dynamically instantiated and connected into overlays, i.e. virtual
community networks (VCNs). A Vinci VCN includes both VMs that run applications
and VMs that support and monitor the previous ones. A VCN strongly resembles a vir-
tual private network (VPN) but an important difference lies in the granularity of the
computation because we are interested in minimizing the complexity of the services
each VM implements. As an example, some VMs are introduced in a VCN just to ap-
ply consistency and security checks to the overall computation.

In Vinci, each VCN is built by composing VMs that are instances of the following
templates:

1. Application VM: it runs a set of applications on behalf of a single user;
2. Community VM: it manages the private resources of a community by enforcing

mandatory and/or discretionary access control (MAC/DAC) policies;
3. File System VM: it belongs to several VCNs to protect files shared among the cor-

responding communities. It can implement MAC and Multi-Level Security policies
and a tainting mechanism to prevent illegal information flows across communities;

4. Communication and Control VM: it implements and monitors information flows
among communities, i.e. flows among Communication and Control VMs of distinct
communities, or private flows among VMs of the same community;

5. Assurance VM: it checks that Application VMs only run authorized software and
attests the software of a VM.

Moreover, Vinci introduces Infrastructure VMs that do not belong to any VCN and ex-
tend the VMMs with new functionalities to manage the overall infrastructure. As shown
in Fig. 1, since VMs that are instances of the same template have homogeneous require-
ments and system configurations, they are easy-to-deploy virtual appliances created on

68 F. Baiardi and D. Sgandurra

Fig. 1. VM Templates

demand from a generic baseline image. Moreover, when a VM is instantiated, its run-
time environment is highly customized [4] according to the user and the community of
interest through parameters such as the amount of memory, the running kernel modules,
and the OS and applications versions. This results in the ability of strengthening each
VM by tailoring its configuration to minimize the software it runs and avoid useless
functionalities.

In the following, we describe the current implementation of Vinci that exploits Xen
[5] to create the VMs and connect them into VCNs. NFSv3 [6] and Security-Enhanced
Linux (SELinux) [7] [8] have been modified to apply security policies based upon the
security levels of users or the global levels of communities. Finally, interconnections
among VMs are handled through iptables [9] and OpenVPN [10].

2.1 Community and VCN

The key concepts of Vinci are those of community and of virtual community network
(VCN). A community is composed by users and applications having the same secu-
rity and reliability requirements. Users run their applications in Application VMs and,
therefore, a community can also be seen as built around a set of Application VMs that
share the same global level, i.e. the community level. This level constrains the security
and reliability requirements of users that can join a community and the applications
they can run. The number of communities reflects the distinct classes of users that share
the private infrastructure. As an example, an administrator of a corporate enterprise
can configure Vinci to support the following communities: sales, marketing, manage-
ment, finance, R&D, engineering, customer support, Internet, etc. The adopted defini-
tion stresses the notion of a community as a collaborative environment where sharing
of information among applications does not result in a loss of security or reliability. A
VCN includes both the set of Application VMs of a community and further VMs that
manage the resources of a community and interaction among communities.

Secure Sharing of an ICT Infrastructure through Vinci 69

2.2 Application VMs

Each Application VM runs applications of a single user and is paired with the global
level inherited from the corresponding community. In general, the resources and ser-
vices an Application VM can access depend upon the user security level and the global
level of the community the VM belongs to. Since a user can join distinct communities
through distinct Application VMs, she can access distinct resources/services according
to the global level of each community. In some cases, there may exist some resources a
user can access regardless of the community she currently belongs to. As an example,
each user can always access its private files. While the global level of a community
constrains the users that can join the community and the applications they can run, an
administrator can also dictate which resources a community can access and/or share
with other communities. Thus, when a user wishes to join a community, and she has
the rights to do so, the community statically defines the set of applications that the
Application VM can run and the resources it can access.

In Vinci, during the login phase, a user chooses the community she wants to join.
Then, the Infrastructure VM of the local node configures and starts up a correspond-
ing Application VM to run those applications that the community policy allows and
it inserts the Application VM into the proper VCN. A user can run several Applica-
tion VMs on the same node concurrently, each belonging to the same community or to
distinct ones.

In the current prototype, each Application VM is associated with a minimal partition
on one of the disks in the physical node, which stores the OS kernel loaded during the
boot-up of the Application VM. Other files may be stored either locally, in a Community
VM in the same VCN, or in a File System VM shared with other VCNs. To simplify the
implementation of security policies, at boot time an IP address is statically assigned to
an Application VM and both the VM global level and the user security level are paired
with this address. Since the IP address uniquely determines the resources the VM and
the user can access, Communication and Control VMs implement proper checks to
detect any spoofed traffic in a VCN.

2.3 Community VMs

A Vinci VCN always includes at least one Community VM to manage and control the
resources shared within the corresponding community, i.e. among its Application VMs
only. This VM stores the community private files, which includes configuration files,
system binaries, shared libraries and user home directories.

In the current prototype, files shared through Community VMs are protected by
MAC and DAC security policies where the subject of the policy is the user security
level, which is deduced from the IP address of the requesting Application VM. To this
purpose, we have extended SELinux and NFS so that the NFS server enforces a policy
where the subject is the user paired with the IP address of the requesting Application
VM. In more detail, SELinux labeling and access rules have been extended to introduce
a new subject that corresponds to an Application VM, and to define the operations it can
invoke. We have also extended the object class of SELinux network object (node) to in-
sert the operations that the NFS server executes on behalf of the requesting Application
VM such as read, write or create files or directories. A node object is used to control

70 F. Baiardi and D. Sgandurra

the network traffic, for example to grant or deny a process the permissions to exchange
data with a specific IP address and it is associated with the IP address of an Application
VM. In this way, the administrator can define a distinct protection domain for each Ap-
plication VM by dynamically pairing the NFS server process with the security context
of the Application VM currently requesting the operation on a file.

SELinux stores most runtime security information about the running processes in the
task security struct structure. We have extended this structure to include the
security identifier bound to the node type and, therefore, to the corresponding subject.
Moreover, we have introduced a function, map_ip, which maps the Application VM IP
address into a security identifier (SID) according to the current policy in the SELinux
security policy database. In this way, the security context can be deduced from the
IP address of the Application VM that is trying to access a shared file. Every time
the NFS server processes a request, if the policy pairs the requesting IP address with
a node type, map_ip returns the SID of the requesting Application VM. Otherwise,
map_ip returns a default unprivileged SID. Before invoking the file system operation,
the Application VM SID is copied into the task security struct paired with the
NFS daemon process serving the request. In this way, anytime the NFS server invokes
an operation on a shared file system on behalf of Application VMs, the Community VM
kernel triggers a Linux Security Module (LSM) hook to delegate the security controls
to SELinux. Accordingly, we have modified the LSM hooks paired with file system
operations so that the subject of the security policy is the SID paired with the IP address
of the Application VM that has invoked the operation rather than the NFS server.

2.4 File System VMs

A community can share some files with other communities through a file system imple-
mented by a File System VM that belongs to several VCNs. The security policies that
this VM enforces extend those of a Community VM by considering both the user secu-
rity level and the community each user belongs to. Furthermore, File System VMs ex-
ploit the capabilities of a Tainting module to prevent the flowing of information among
predefined communities. This module has been introduced to: (i) confine information
flows among communities; (ii) increase the robustness with respect to contamination
attacks; (iii) log the actual flow of information among communities. To this end, the
Tainting module pairs each community with a bit mask, i.e. the community mask, with
exactly one bit set to 1 that represents the community. Furthermore, it pairs each file
with a mask that represents the communities that either have interacted with the file
or have exchanged some information through the file. Anytime a user tries to apply an
operation on a file, the module computes an OR of the masks of the file and of the user
community. If the result shows an illegal information flow among communities, then
the operation is forbidden, otherwise the result becomes the new mask of the file, in the
case of a write operation, or of the community, in the case of a read operation. In any
case, the Tainting module logs into a file the operation type, the name of the community
and of the file and the original and the new masks.

Periodically, the Tainting module parses the log file and updates in an incremental
way the dependency graph [11] that represents the information flows among communi-
ties and files. Each node in the graph represents either a file or a community and it is

Secure Sharing of an ICT Infrastructure through Vinci 71

Fig. 2. File System VM Policy Enforcement and Query Generation

paired with a unique identifier of the community or of the file as well as with the corre-
sponding mask. A node that represents a file is created the first time the file is involved
in an operation. An arc represents an operation and is associated with the information
about the requested operation. To identify how information flows, a read operation is
represented by an arc from a node that represents a file to one that represents a commu-
nity, while a write operation by an arc from a community to a file. As shown in Fig. 2,
an administrator can query the module to analyze the dependency graph to discover
those communities that have exchanged some information, to trace the source of a con-
tamination and track all the files/communities that may have been contaminated by a
community/file.

Since the implementation of a File System VM generalizes that of a Community
VM, the same extensions of Community VMs have been applied to File System VMs
as well. Moreover, we have extended the File System VM Linux kernel to insert the
Tainting module in-between the NFS server and the Virtual File System (see Fig. 2). To
this purpose, we have modified the nfsd permission function, which verifies file
requests, and nfsd_vfs_read and nfsd_vfs_write to check, respectively, read
and write requests.

2.5 Communication and Control VMs

A Communication and Control VM protects and monitors information flows by im-
plementing and managing a local virtual switch that supports communications among
VMs. Communication and Control VMs can be further specialized in: (i) Virtual Pri-
vate Network (VPN) VMs, which create an authenticated and protected communication
channel among VMs of the same community on distinct physical nodes of the infras-
tructure; (ii) Firewall VMs, which filter information flows so that only authorized Ap-
plication VMs can access the infrastructure and interact with other communities; (iii)
IDS VMs, which monitor information flowing among VMs in the same community or
in distinct ones. The introduction of a Firewall VM enables the administrators to de-
fine which communities can interact and, hence, to define the legal interconnections
among distinct VCNs. As an example, a community can be isolated or communities
with a lower global level may not be allowed to communicate with those with higher

72 F. Baiardi and D. Sgandurra

global levels. Firewall VMs can decide whether to forward a packet, based on the source
and destination communities. Furthermore, Firewall VMs support the authentication of
shared resource requests through the IP address of the originating VM because they
control that Application VMs do not spoof traffic on the virtual switches interconnect-
ing the VMs. Finally, IDS VMs monitor information flows among VMs in the same or
in distinct communities to discover attacks. An IDS VM can also retrieve and corre-
late partial information from other IDS VMs in the same VCN or in distinct ones to
minimize the time to detect a distributed attack [12].

2.6 Assurance VMs

Assurance VMs exemplify the advantages of virtualization to build a robust system.
In fact, these VMs have been introduced just to monitor critical Application VMs and
the VMs of a VCN that manage critical components, to attest their integrity and to
authenticate their configuration as well. Furthermore, to define severe tests, Assurance
VMs use virtual machine introspection [13] to retrieve critical data structures in the VM
memory and evaluate assertions on these structures. Each assertion is an invariant for
the original application and it is false only if the application has been attacked.

The software attestation implemented by Assurance VMs enables a VM to verify the
integrity of critical code in another VM. As an example, an Assurance VM can compare
a hash of the software of a VM against a value computed offline to discover anomalous
updates of the configuration of the VM. Consider a critical server in an Application VM
that is remotely accessed by other Application VMs. In this case, the server Application
VM may require not only the client authentication but also have some assurance that
the software stack of the client VM is not compromised and that the client version is
correct.

2.7 Infrastructure VMs

Infrastructure VMs extend the VMMs to configure and manage the VCNs. In particular,
distinct Infrastructure VMs cooperate to monitor the overall infrastructure and update
the topology of the virtual overlays and their mapping. The adoption of these VMs
simplifies the implementation of some functionality too complex to be applied at the
VMM level, thus minimizing the VMM size. An Infrastructure VM runs a minimal
kernel, it does not run any Internet service and the functionalities it implements cannot
be directly accessed by any user but the administrators.

As shown in Fig. 3, all the Infrastructure VMs, one per node, belong to a Manage-
ment Community that does not interact with any other community. During the creation
of the Management Community, one Infrastructure VM is designated as the Master
Infrastructure VM that contacts the other Infrastructure VMs to set up proper com-
munication channels to support cooperation in the Management Community. To prop-
erly configure the Vinci runtime environment, Infrastructure VMs can: (i) create/kill,
freeze/resume any VM in their node or request this operation to another Infrastructure
VM; (ii) configure a VM through specific parameters such as network configuration,
amount of memory, the number of VCPUs; (iii) retrieve information about the current
mapping of VMs and the resulting resource usage; (iv) update the mapping by migrat-
ing VMs, which requires an interaction with some Communication and Control VMs

Secure Sharing of an ICT Infrastructure through Vinci 73

Fig. 3. Example of Communities and VCNs

to manage the resulting communications; (v) setup, compile and deliver to each File
System and Community VM the general security policy it has to enforce.

Among the challenges that the Management Community has to face, one is con-
cerned with data management issues, to enable a fast access of a community to its data
[14], or with VMs mapping. Alternative mapping strategies may evenly distribute Ap-
plication VMs running server applications on the available nodes, or map Community
VMs onto physical nodes directly connected to those that run the Application VMs of
the corresponding community. The Management Community may migrate VMs among
physical nodes to handle errors and faults, to reduce the communication latency or to
balance the computational load.

Infrastructure VMs also authenticate users through a centralized authentication pro-
tocol, so that users can log on Application VMs with the same combination of user-
name and password anywhere in the infrastructure. In this way, the association among
users and privileges is managed in a centralized way. The set of users of all the com-
munities that share the infrastructure is globally known so that Vinci can uniquely iden-
tify users through their user-name or their associated user identifier (UID). The UID
is paired with the privileges of the user, i.e. with its security level. Whenever a user
has been authenticated and has chosen the community she wants to join, the Infrastruc-
ture VM starts up an Application VM, which includes only those applications that the
community policy allows and with the proper global level. After the login and boot-up
phases, the local Infrastructure VM contacts the proper Communication and Control
VMs to update the topology of the VCN to insert this Application VM into a VCN and
to add communication rules to handle the corresponding information flows. Finally, the
security policies of Community VMs and File System VMs may be updated. Figure 4

74 F. Baiardi and D. Sgandurra

Fig. 4. Interactions among Communities

shows the various interactions among the VMs running on a physical node. Currently,
Infrastructure VMs are assigned to Xen Domain 0 VMs, i.e. they are privileged VMs
that can access the control interface to manage a physical node and the VMs that the
node runs.

If a high degree of assurance is required, Vinci may require that some nodes of the
infrastructure are equipped with a Trusted Platform Module (TPM) subsystem [15],
which can also be virtualized on the VMs the node runs [16]. The TPM acts as a root of
trust to build and setup the software environment and its mechanisms may be exploited
to ensure that a platform has loaded its software properly and that the VMM and the
Infrastructure VM of the local node are started in a safe state. Moreover, the TPM can
protect secrets such as the asymmetric and symmetric keys to establish secure commu-
nications among VMs, to authenticate the VMs or to remotely attest the software that a
VM runs. If a high degree of assurance is required but a TPM is not available, admin-
istrator should guarantee that each node cannot be physically tampered with so that the
VMM and the Infrastructure VM can be safely initialized. In this case, the Infrastruc-
ture VM may emulate the features of the TPM and export it to other VMs through the
virtual TPM.

3 Performance Results

This section shows a preliminary performance evaluation of the current Vinci prototype.
The tests were performed on several machines equipped with Intel Core 2 Duo E6550
2.33GHz CPUs. A first experiment evaluated in an integrated way the performance
of file sharing through File System VMs and Communication and Control VMs. An
Application VM on a node ran the IOzone [17] NFS test while a File System VM, on
a distinct physical node, stored the requested files. Requests were transmitted along a
communication channel implemented by two Firewall VMs and the physical nodes were
connected through a 100MB Ethernet. Fig. 5 compares the throughput of the write
test against the one of the insecure version that does not apply the security checks. The
overhead due to the enforcement of the security policies, in the average case, is lower

Secure Sharing of an ICT Infrastructure through Vinci 75

Fig. 5. IOzone NFS Read Performance without (left) and with (right) Policy Enforcement

than 9%. Instead, the tests on the enforcement of security policies by a Community VM
resulted in a reduction of the final throughput lower than 5%. The same tests executed
on an Application VM connected to a remote File System VM through two VPN VMs
resulted in an overhead that, in the worst case, is lower than 13%.

We also evaluated the overhead due to the security checks enforced by an Assurance
VM on the kernel code of an Application VM. To this purpose, an Application VM ex-
ecuted the command tar -xjf linux-2.6.20.tar.bz2 while an Assurance
VM, which runs on the same node, checked an increasing number of Application VM
kernel pages by computing their hashes and comparing them against their original val-
ues. The period of time between two consecutive executions of the consistency checks
was set to 2 seconds. The relative overhead was lower than 8% in the worst case. The
coverage of these checks is rather satisfactory, because they quickly detect, for instance,
any attempt to install a rootkit.

4 Related Works

[18] proposes an architecture where computing services can be offloaded into Trusted
Virtual Domains, i.e. execution environments that meet a set of security requirements.
Trusted Grid Architecture [19] is a framework to build a trustworthy grid architecture
by using a combination of Trusted Computing and virtualization technologies. The pro-
posed approach allows a user to check that a selected provider is in a trusted state before
accessing a submitted grid job. Both the previous architectures consist of a grid of nodes
where clients require services, using some form of negotiation to locate a trustworthy
provider. Vinci, on the other hand, is more resemblant of a traditional client/server ap-
proach, where services and applications are mostly statically bound to physical nodes.
Moreover, in Vinci users are managed by a central authority that also administers the
whole architecture. [20] proposes an access control architecture that enables corpora-
tions to verify client integrity properties using a TPM, and to establish trust upon the
capability of the client to enforce the policy before allowing the client to access the cor-
porate Intranet. This framework could be easily integrated into Vinci, for example when
a remote user tries to access the corporate infrastructure. SVGrid [21] introduces distinct
execution environments for the applications and the storage areas, to protect file systems
and network services from untrusted grid applications. In addition to these features,

76 F. Baiardi and D. Sgandurra

Vinci aims also to provide assurance on the running software on critical VMs. More-
over, Vinci introduces a large number of VMs templates, so that each VM only runs a
small amount of software. Poly2 [22] is a framework aimed at segregating applications
and networks and at minimizing OSes. The proposed approach separates network ser-
vices onto different systems and it isolates specific types of network traffic. To this pur-
pose, administrative and application-specific traffic are mapped onto distinct networks.
Moreover, minimized OSes should only provide the services required by a specific net-
work application. Vinci shares with this framework the minimization of OSes and appli-
cations but it introduces distinct overlay networks for each community and dynamically
manages the configuration of these overlays. Moreover, Vinci applies introspection to
provide assurance on the running software. [23] considers VMs as sandboxes that sim-
plify the deployment of collaborative environments over wide-area networks. Each VM
sandbox can be seen as a virtual appliance made available to several users by the ad-
ministrator, so that new nodes can easily join and be integrated into the virtual network.
A feature that characterizes Vinci with respect to the previous framework is the con-
cept of community, which simplifies the management of users with similar security and
reliability requirements. PlanetLab [24] is a global overlay network that runs concur-
rently multiple services in slices, i.e. networks of VMs that include some amount of
processing, memory, storage and network resources. A slice is conceptually similar to
a Vinci VCN, but in Vinci resources are those of a private infrastructure and their al-
location is mostly static, whereas PlanetLab exploits the concept of an open grid of
machines where resources can be dynamically allocated and discovered. Furthermore,
Vinci introduces the concept of community, which allows administrators to define flex-
ible security policies. Another important difference is that PlanetLab exploits OS-level
virtualization, while Vinci exploits hardware-level virtualization and, therefore, it intro-
duces a VMM that results in a better confinement among the VMs of the same node.

5 Conclusion

The focus of Vinci is on the definition of highly parallel overlays, i.e. VCNs, which
simplify management and sharing of a private ICT infrastructure. Moreover, VCNs in-
crease the overall robustness due to the introduction of specialized VMs that enforce
security checks within and across VCNs. Each VCN supports a user community, i.e. a
set of users with similar security and reliability requirements. This approach requires
that each physical node runs a virtual machine monitor that manages and protects the
physical resources and it results in the definition of several VM templates. Distinct
templates are used to support the execution of user applications, to enforce consistency
checks or to apply security policies that protect resources shared within or across dis-
tinct communities. We have shown that proper components can be introduced to protect
the communities from contamination as well as to trace any contamination that can
arise. Moreover, a specialized community includes a set of VMs that manage the con-
figuration of the other VMs to achieve the required level of reliability and security.
Preliminary results of our prototype show that Vinci can be adopted in a real-world
scenario, such as the one of a hospital, a bank, or a corporate enterprise, which need to
guarantee high security requirements and confine critical resources.

Secure Sharing of an ICT Infrastructure through Vinci 77

Concerning the shortcomings of state-of-the-art virtualization, we note that manag-
ing and configuring a node to support virtualization and to run a set of VMs, each with
a customized OS, requires more effort than managing a node that only runs a standard
OS, especially in the case of a para-virtualization approach that requires the OSes to
be modified to run inside the virtual environment. However, since virtualization is be-
coming increasing popular, there is a large amount of tools that help the administrator
to set-up and manage virtual nodes. Another counterpart of the advantages of virtual,
highly parallel and secure overlays is the overhead due to the context switching that the
VMM applies to multiplex the physical resources. A multi-core architecture [25] can
strongly reduce this overhead because of the native support for multiplexing. Moreover,
it can run several VMs in consolidation and assign a dedicated core to some VMs. This
guarantees that VMs that implement critical tasks, such as management and protection
of other VMs, are never delayed. Moreover, the virtualization overhead can be strongly
reduced because of the extension of hardware instruction sets to efficiently support vir-
tualization technology [26].

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments and
suggestions.

References

1. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A., Marting, F., Anderson, A., Bennett, S., Kagi,
A., Leung, F., Smith, L.: Intel Virtualization Technology. Computer 38(5), 48–56 (2005)

2. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling intrusion
analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev. 36(SI), 211–
224 (2002)

3. Goldberg, R.P.: Survey of virtual machine research. IEEE Computer 7(6), 34–45 (1974)
4. Huang, W., Abali, B., Panda, D.: A case for high performance computing with virtual ma-

chines. In: Proc. of the 20th annual international conference on Supercomputing, pp. 125–
134 (2006)

5. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., Barham, P.,
Neugebauer, R.: Xen and the art of virtualization. In: Proceedings of the ACM Symposium
on Operating Systems Principles (October 2003)

6. Callaghan, B., Pawlowski, B., Staubach, P.: NFS V3 Protocol Specification. RFC 1813
7. Loscocco, P., Smalley, S.: Integrating flexible support for security policies into the linux

operating system. In: Proceedings of the FREENIX Track: 2001 USENIX Annual Technical
Conference, Berkeley, CA, USA, pp. 29–42. USENIX Association (2001)

8. Loscocco, P.A., Smalley, S.D.: Meeting critical security objectives with security enhanced
linux. In: Proceedings of the 2001 Ottawa Linux Symposium. (2001)

9. Netfilter.org: Netfilter/Iptables project, www.netfilter.org/
10. OpenVPN: OpenVPN - An Open Source SSL VPN Solution, http://openvpn.net/
11. King, S.T., Chen, P.M.: Backtracking intrusions. ACM Trans. Comput. Syst. 23(1), 51–76

(2005)
12. Cheetancheri, S.G., et al.: A distributed host-based worm detection system. In: LSAD 2006:

Proc. of the 2006 SIGCOMM workshop on Large-scale attack defense, pp. 107–113. ACM
Press, New York (2006)

78 F. Baiardi and D. Sgandurra

13. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture for intru-
sion detection. In: NDSS (2003)

14. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A case for grid computing on virtual machines.
In: ICDCS 2003: Proceedings of the 23rd International Conference on Distributed Comput-
ing Systems, Washington, DC, USA, p. 550. IEEE Computer Society, Los Alamitos (2003)

15. Pearson, S.: Trusted Computing Platforms, the Next Security Solution. Trusted Computing
Group Administration, Beaverton (2002)

16. Berger, S., Cáceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM: virtual-
izing the trusted platform module. In: USENIX-SS 2006: Proceedings of the 15th conference
on USENIX Security Symposium, Berkeley, CA, USA, pp. 21. USENIX Association (2006)

17. IOzone: IOzone Filesystem Benchmark, http://www.iozone.org/
18. Griffin, J.L., Jaeger, T., Perez, R., Sailer, R., van Doorn, L., Caceres, R.: Trusted Virtual

Domains: Toward secure distributed services. In: Proc. of 1st IEEE Workshop on Hot Topics
in System Dependability (HotDep) (2005)

19. Löhr, H., Ramasamy, H.V., Sadeghi, A.R., Schulz, S., Schunter, M., Stüble, C.: Enhancing
Grid Security Using Trusted Virtualization. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer,
C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 372–384. Springer, Heidelberg (2007)

20. Sailer, R., Jaeger, T., Zhang, X., van Doorn, L.: Attestation-based policy enforcement for
remote access. In: CCS 2004: Proceedings of the 11th ACM conference on Computer and
communications security, pp. 308–317. ACM Press, New York (2004)

21. Zhao, X., Borders, K., Prakash, A.: SVGrid: a secure virtual environment for untrusted grid
applications. In: MGC 2005: Proceedings of the 3rd international workshop on Middleware
for grid computing, pp. 1–6. ACM Press, New York (2005)

22. Bryant, E., Early, J., Gopalakrishna, R., Roth, G., Spafford, E., Watson, K., William, P., Yost,
S.: Poly2 Paradigm: A Secure Network Service Architecture. In: Proceedings 19th Annual
Computer Security Applications Conference, 2003, pp. 342–351 (2003)

23. Wolinsky, D.I., Agrawal, A., Boykin, P.O., Davis, J., Ganguly, A., Paramygin, V., Sheng, P.,
Figueiredo, R.J.: On the Design of Virtual Machine Sandboxes for Distributed Computing in
Wide Area Overlays of Virtual Workstations. In: First Workshop on Virtualization Technolo-
gies in Distributed Computing (VTDC) (November 2006)

24. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.:
Planetlab: an overlay testbed for broad-coverage services. SIGCOMM Comput. Commun.
Rev. 33(3), 3–12 (2003)

25. Gepner, P., Kowalik, M.F.: Multi-core processors: New way to achieve high system perfor-
mance. In: PARELEC 2006: International symposium on Parallel Computing in Electrical
Engineering, pp. 9–13. IEEE Computer Society Press, Washington (2006)

26. Leung, F., Neiger, G., Rodgers, D., Santoni, A., Uhlig, R.: Intel Virtualization Technology:
Hardware support for efficient processor virtualization. Intel Technology Journal 10(3), 167–
178 (2006)

Statistical Behaviors of Distributed Transition

Planning

Ning Wu and Alva L. Couch

Tufts University, Medford, 02155, USA
{ningwu,couch}@cs.tufts.edu

Abstract. The transition planning problem is to move a system from an
existing starting configuration to a desired final configuration at the low-
est possible cost. Prior work shows that the transition planning problem
can be reduced to a bipartite matching problem and the stable marriage
algorithm can be used to approximate a minimum cost transition in
a distributed environment. In this paper, we study the efficiency of this
mapping, including its best-case, worst-case, and statistical behavior. We
discuss the relationship between algorithm performance and the distribu-
tion of the input data. We show that while there are cases in which this
algorithm performs poorly, works well when the costs of transitioning be-
tween distributed resources follow a normal distribution. We discuss the
applicability of this algorithm to real-world situations in which resources
are thus distributed.

1 Introduction

The transition planning problem for a system (such as a network) is to design a
plan of operations that – when executed – will move the system from its existing
configuration to a new configuration having desirable properties. In a previous
paper [8], we discussed the distributed transition planning mechanism. Transi-
tion planning is reduced to a matching problem whose solution is approximated
by solving the stable marriage problem. We apply distributed algorithms to com-
pute the transition plan. We show that although these algorithms do not always
achieve optimal solutions, they return acceptable results in most cases. Thus
they can be used for system management.

For example, suppose that there are three physical servers X, Y, and Z that
act as web servers and serve three types of content that we call A, B, and C.
Each server initially serves one form of content: server X serves content A, Y
serves content B, and Z serves content C. We think of each kind of content as
a role for the server. Initially, each server is matched to a unique role and the
cost of changing roles is more than the cost of remaining at the same role. This
is depicted as a bipartite graph, with X, Y, Z on one side and A, B, C on the
other(Figure 1(a)). Edges represent cost of transition, which can be estimated
by a variety of methods. In this bipartite graph, the cost of keeping the current
server-role mapping is zero so we say that the system is at a fixed point [1, 2].

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 79–91, 2008.
c© IFIP International Federation for Information Processing 2008

80 N. Wu and A.L. Couch

C

0

100
150

0

0

100

150

80 100

X

Y

Z

A

B

(a) Before catastrophe

C

500

150

0

0

150

80 100

100

100

X

Y

Z

A

B

(b) After catastrophe

Fig. 1. The bipartite graph before and after the catastrophe

When the environment changes (e.g., the users of content A increase), the
processing power of servers serving content A may not be enough. We call such
a change a transition catastrophe [8], to distinguish it from policy changes that
do not incur configuration change and incur no cost. To provide the same level
of service, some servers serving other content need to be transitioned to serve
content A. The goal is to find a plan to meet the new requirements so that the
transition happens at minimum cost. The difference between this and the prior
state is that remaining at the current roles now has a nonzero cost, e.g., including
the cost of violating a service-level agreement(Figure 1(b)). The minimum cost
matching for this graph will not be the status quo. The Hungarian method
[4] can be used to compute the minimum cost matching, which represents the
minimum cost solution. The new minimum-cost matching is shown with bold
lines. The roles have been rearranged so that SLAs are again met. The resulting
reconfiguration achieves a fixed point again, because the cost of remaining in
this state is again zero.

3

X

Y

Z

A

B

C

1 1

2
3 23

1
2

3

1
2

3

1

2
3

1

2

(a) Before catastrophe

1
X

Y

Z

A

B

C

1

3 2

1
2

3 3

1

2
3

1

2 3

3

2
1

2

(b) After catastrophe

Fig. 2. The bipartite graph using rankings before and after the catastrophe

Statistical Behaviors of Distributed Transition Planning 81

However, in a distributed environment, the bipartite matching method for
transition planning may not work properly for several reasons. Agents might
not agree on how the costs are computed, or their units for cost may differ. We
proposed in [8] to use a stable marriage algorithm, the Gale-Shapley algorithm
[3], to solve the distributed transition planning problem. The first step in using
this method is to convert costs to rankings. Each node ranks the edges connected
to it in order of preference, from lowest cost to highest cost. For example, for
Figure 1(a), the rankings are shown in Figure 2(a). If costs are at a fixed point,
so are rankings. When a catastrophe arises, instead of considering costs (as in
Figure 1(b)), agents will consider rankings, as illustrated in Figure 2(b). Thinking
of agents as representing both sides, agents will attempt to form a set of stable
marriages, so that there is no advantage to any server switching roles. Such a
matching is shown again in bold.

2 Hospitals/Residents Problem

The stable marriage problem results in a one-to-one mapping. Another related
problem is the Hospitals/Residents problem (a.k.a college admission problem)
[3], which computes a one-to-many mapping. The hospitals/residents problem de-
scribes the matching process that is used to match medical students and hospitals
having openings for residents; because a hospital only has limited positions, only
the top candidates ranked by that hospital will be admitted. This problem is also
called the college admission problem. The hospital/residents problem can again
be solved by the Gale-Shapley algorithm [3]. In each round, each unmatched ap-
plicant proposes to the most preferred hospital that has not rejected his proposal.

We can investigate the resource allocation and transition problem by reduc-
ing it to the hospitals/residents problem. Let us use the virtual machine assign-
ment problem as an example. In virtual machine (VM) management, a common
task is determining how to assign a VM to an appropriate physical machine.
Figure 3 shows an example of assigning virtual machines to physical machines.

2

2

1

4
1 2

3

1

3

2
4

physical
host1

physical
host2

VM1

VM2

VM3

VM41

1

2

1

2

Fig. 3. Assign virtual machines to physical hosts

82 N. Wu and A.L. Couch

One challenge of applying the Gale-Shapley algorithm to VM assignment is
how to determine the ranking of the VMs. An agent representing a physical
host can rank VMs by many standards, such as the importance of the VM, the
resource-utilization profile (e.g., CPU-bound, disk-bound) of the VM, or user
preferences. We start from the simplest cases and build to a discussion of how
to handle various kinds of constraints.

For example, suppose that there are four virtual machines V M1, V M2, V M3,
and V M4, and two physical hosts PHY1 and PHY2 (Figure 3). The attributes
of physical hosts are memory size, storage size, and network bandwidth. There
are also several constraints that limit matching between the VMs and PHYs.

Suppose that our task is to deploy new applications to VMs that are hosted
by physical hosts. First, the resources needed for applications are estimated,
though these estimates can be adjusted later. The goal is to find steps (ideally
in a distributed way) to provide resources for the new application and ensure
minimum cost.

In the bipartite graph, the virtual machines are listed on the right side; the
physical hosts are listed on the left side. Each node has a ranking of all the
nodes on the other side, based on its own standard. The right side proposes to
the agents representing the physical hosts and current VMs. As in the one-to-
one case, once stabilized, the left side ranks current bindings the highest. The
ranks among current bindings are decided by the physical host based on its own
standard. The same three-step process applies here: first use the Gale-Shapley
algorithm to get a stable matching; then change the bindings according to the
matching; finally change the rankings on the left side to reflect the new bindings.
This transition process is a deterministic fixed-point operator.

When a catastrophe arises, some VMs will be chosen to be served by other
physical servers; this is called “swinging the physical servers to serve new VMs”.
Once transitioned, these VMs may be adjusted to meet the new requirements.
For example, one problem might be to find enough bandwidth for a new appli-
cation (by moving some existing applications around in the physical hosts).

Failover can be characterized as a transition catastrophe: when a physical
server fails, the VMs running on it will try to locate new physical servers for
their host environment. Agents monitoring these VMs will notice the outage
and reflect it in their stable marriage rankings. Then these agents will propose
to the rest of the physical hosts and determine whether the matching is feasible,
because the capacity of each physical server is limited.

3 Quality of Stable Marriage and Hospital/Resident
Solutions

The Gale-Shapley algorithm always produces a stable marriage, but there is some
question as to how well that marriage substitutes for the more ideal transition
plan based upon costs rather than ranks. We first develop a measure of how well
stable marriage works compared to the theoretical best solution.

Statistical Behaviors of Distributed Transition Planning 83

Definition 1. The approximation ratio of a stable marriage solution is the ratio
of the cost of the stable marriage solution to the cost of the ideal solution obtained
through minimum bipartite matching.

The ratio is always >= 1.0. Values near 1.0 indicate that the stable marriage
algorithm is working well, while high values indicate that it is working poorly. A
value of 1.0 means that the stable marriage algorithm did as well as a bipartite
matching solution in which all weights (costs) are collected in a central location.
The approximation ratio may be thought of as the “cost of distributing” the
algorithm onto an agent network.

The approximation ratio is highly distribution dependent; it differs with the
statistical distribution of the input weights.

Theorem 1. When all the weights in the bipartite graph are identical, the ratio
of the total cost computed through stable marriage to the optimal solution is 1.0.

Proof. Suppose that d edges need to be selected. When all the weights are the
same, the total cost in any mapping is always d·weight. Thus the approximation
ratio is always one. ��

Theorem 2. Suppose the maximum ratio of two weights in the bipartite graph is
k. In the worst case, the ratio of the total cost computed through stable marriage
to the optimal solution (i.e. the approximation ratio) is less than or equal to k.

Proof. Let max(weight) and min(weight) represent the maximum and mini-
mum weights in the graph. Let k = max(weight)/min(weight). In the worst
case, the stable marriage or the hospital/resident algorithm selects the worst
solution possible. Suppose that d edges need to be selected in the solution. The
optimal solution has a total weight greater than or equal to d ·min(weight), and
the stable marriage or hospital/resident solution has a total weight less than or
equal to d ·max(weight). Thus the maximum ratio is less than or equal to k. ��

The worst scenario is illustrated in the following example (Figure 4).

1.01

1

1000

1.01

(a) weights
2

1 1

2 2

1 1

2
(b) ranking

Fig. 4. The solution of the stable marriage problem vs. the solution of the assignment
problem. Bold lines represent the matchings derived in each case.

84 N. Wu and A.L. Couch

1.001

1

1.01
1.01

1.02

1000

1.02

1.01

(a) weights

3

1

1

2

1

2

1

2

2
3

4

4

2

1

1

2

(b) ranking

Fig. 5. The solution of the hospitals/residents problem vs. the solution of the matching
problem. Bold lines represent the matchings derived in each case.

Theorem 3. Suppose that for one side of the bipartite graph, we select the max-
imum and minimum labels maxi and mini for each node i on that side. Suppose
that max and min are the sums of maxi and mini over all i, respectively. Then
the approximation ratio cannot be greater than max/min.

Proof. The best possible outcome of a bipartite matching includes the minimum
edge taken from every node, yielding a minimal score. The worst outcome of
stable marriage includes the maximum edge taken from every node, yielding a
maximum score. ��
In this example, the optimal solution has a total cost of 1.01 + 1.01 = 2.02,
whereas the stable marriage algorithm yields a total of 1000 + 1 = 1001. The
ratio is almost 500, which is less than 1000/1 = 1000.

In the worst case, the approximation ratio can also be arbitrarily large in
the hospitals/residents problem (Figure 5). In the figure, on the left side, each
physical host has two slots and there are four VMs. The approximation ratio is
almost 250.

In practice, the upper bound is tighter because there is no case in which the
optimal solution chooses all minimum weights and the stable marriage solution
chooses all maximum weights, because the stable marriage algorithm chooses at
least one edge that has minimum weight.

4 Simulations

In the following we study the approximation ratio of the Gale Shapley algorithm
and that of a variant utilizing a heuristic strategy.

Statistical Behaviors of Distributed Transition Planning 85

4.1 The Gale-Shapley Algorithm

In the previous section, we showed several examples where the approximation
ratio for stable marriage depends upon the choice of weights. In this section, we
consider how the approximation ratio for stable marriage changes as we change
the statistical distribution of the weights in the original bipartite matching prob-
lem. For some distributions, stable marriage yields low approximation ratios
that are nearly optimal. For others, high approximation ratios are observed.
We tested the stable marriage transition planning scheme in simulation and
compared the resulting matching to that obtained from bipartite matching. We
used different probability distributions to determine the weights of the transition
edges. The results for the uniform, normal, and Pareto distributions are shown in
Figure 6. We tried two uniform distributions. The first setting (uniform distri-
bution 1) has a mean of 1000 in range (0,2000], and the second setting (uniform
distribution 2) has a mean of 10000 in range (0,20000]. These yield almost iden-
tical results.

Next we simulated approximately normally distributed weights with mean
10000 and 3 different standard deviation parameters. The first setting (normal
distribution 1) has a standard deviation of 2000; the second setting (normal dis-
tribution 2) has a standard deviation of 5000; the third setting (normal distribu-
tion 3) has a standard deviation of 10000. In the experiments, when a negative

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120 140 160 180 200

A
pp

ro
xi

m
at

io
n

ra
tio

Number of nodes

normal distribution 1
normal distribution 2
normal distribution 3

uniform distribution 1
uniform distribution 2
Pareto distribution 1
Pareto distribution 2
Pareto distribution 3

Fig. 6. The approximation ratio for weights following the uniform, normal, and Pareto
distributions

86 N. Wu and A.L. Couch

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
pp

ro
xi

m
at

io
n

ra
tio

Sequence of data (seq 0-9999 11 nodes)

(a) 11 nodes (AVG=2.21)

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
pp

ro
xi

m
at

io
n

ra
tio

Sequence of data (seq 0-9999 for 21 nodes)

(b) 22 nodes (AVG=1.97)

Fig. 7. 10000 data points collected from simulation for approximation ratio

random number is generated following these settings, we discard it and choose
another with the same distribution function. So the actual distribution function
slightly tilts toward positive numbers. The coefficient of variation (the ratio of
the standard deviation to the mean) is an important factor. When the coefficient
of variation is small (for example, 0.2 in normal distribution 1), the weights are
relatively clustered and the performance is near-optimal. When the coefficient of
variation increases, the approximation ratio moves towards that of the uniform
distribution.

We also tried the Pareto distribution. The Pareto distribution function is
P (x) = aba/xa+1 [7]. We use several cases: distributions with a = 1 b = 0.6
(Pareto distribution 1), a = 2 b = 0.6 (Pareto distribution 2), and a = 3 b = 0.6
(Pareto distribution 3). The larger the value of a, the shorter the tail is in the
PDF function. In the case of Pareto distributions 2 and 3, the efficiency is near
optimal, but in the first case (Pareto distribution 1), the approximation ratio is
undesirable when the number of nodes is small.

For the above scenarios, the approximation ratio is good in most case, but
some cases have a high approximation ratio. Because of the long tail of the Pareto
distribution (especially with a = 1, where the probability distribution function
curve is relatively flat), a weight can be far away from other weights, and as we
have shown, this may results in a large ratio. In our experiment, because there is
no upper limit for the weights in the Pareto distribution, one case can generate
a large approximation ratio. Figure 7 shows the raw simulation data. While
most of the points in Figure 7(a) have low approximation ratios, there are many
with ratios that reach into the hundreds. By contrast, Figure 7(b) shows much
fewer ratios in the hundreds, but also uncovers a ratio high in the thousands.
For 21 nodes, there are less points with approximation ratios in the hundreds
but there is one data point whose approximation ratio is in the thousands. The
figure demonstrates that the long-tail distribution leads to poor approximation
ratios.

Statistical Behaviors of Distributed Transition Planning 87

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120 140 160 180 200

A
pp

ro
xi

m
at

io
n

ra
tio

Number of nodes

Pareto distribution 1
Pareto distribution 1 with greedy heuristic

Normal distribution 3
Normal distribution 3 with greedy heuristic

Fig. 8. The approximation ratio with and without using the greedy heuristic

4.2 The Gale-Shapley Algorithm Plus a Greedy Heuristic

To address the issue that occurs in the worst-case scenario, we propose a simple
heuristic that could improve the efficiency of the stable marriage approximation.
After running the Gale-Shapley algorithm once, the most expensive edge in
the result is marked “infeasible”, and the right side of that edge is forced to
take its first preference as its match. Then the rest of the nodes use the Gale-
Shapley algorithm to determine a stable marriage of the remaining bipartite
graph. This process continues until the total cost can no longer be decreased.
In practice, each agent will determine its own criteria for marking edges as
expensive. The exclusion of edges will not be as close to optimal as that obtained
in our simulation, which utilizes global knowledge. The simulation results can
be viewed as the best-case result for this heuristic.

We selected two weight distributions to verify the effectiveness of this heuris-
tic. First we use the long-tail Pareto distribution (Pareto distribution 1). Then
we use the normal distribution with a large coefficient of variation (normal dis-
tribution 3). The greedy heuristic works very well for the Pareto distribution,
but only slightly improves the result in the case of normal distribution. The
result is shown in Figure 8.

4.3 Simulating Real Cases

In the first experimental simulations, the left and right sides of the graph share the
same weight. In the next simulations, we try to evaluate the stable-marriage-based

88 N. Wu and A.L. Couch

scheme under a more realistic environment. We now estimate their cost based on
different formulas and use a cost function to derive the cost incurred by the bipar-
tite matching.

We estimate the cost of a transition in two parts: file transfer cost and usage
time lost due to downtime during the transition. The first part can be estimated
based on the size of files transferred, and the second part can be estimated
based on CPU cycles. It is known that in practice, file sizes follow the Pareto
distribution. CPU speed follows a Moore’s law [5] growth pattern. We estimate
the speed of computer servers through a 3-year cycle. One third of the CPUs
are the latest fastest, one-third are middling, and the last third are the slowest.
The total cost formula is as follows:

totalCost = fileSize ∗ coefficient1 + CPUSpeed ∗ coefficient2 (1)

We collect the RPM package size on a typical Linux server and show the raw
sizes and their counts in Figure 9. The X axis shows the package size and the Y
axis shows the number of packages of that size. The distribution is Pareto; we
use another distribution function 0.6/x2 to fit the curve. The Pareto distribution
function is P (x) = aba/xa+1, where a = 1, b = 0.6. Figure 10 shows these two
PDFs.

For CPU, we select three products: AMD Athlon 64 3800+ X2 (Dual Core)
(14,564 MIPS), Intel Core 2 X6800 (27,079 MIPS), and Intel Core 2 Extreme
QX6700(57,063 MIPS) [6]. To normalize file sizes and CPU speeds, we multiply
file size by 10 and average with CPU MIPS. For example, a 3MB file and a Intel

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

N
um

be
r

of
 p

ac
ka

ge
s

MB bytes

Number of packages

Fig. 9. The package size distribution on a typical Linux server

Statistical Behaviors of Distributed Transition Planning 89

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100 120

P
ro

ba
bi

lit
y

MB bytes

file size pdf
0.6/x**2

Fig. 10. The probability distribution function and the fitted curve of the package size
distribution

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 20 40 60 80 100 120 140 160 180 200

A
pp

ro
xi

m
at

io
n

ra
tio

Number of nodes

without the greedy heuristic
with the greedy heuristic

Fig. 11. Simulated approximation-ratio results when each side ranks according to a
different cost standard, comparing that result to the minimum-cost transition based
on a combined cost function

Core 2 CPU will give us (3000*10 + 27079)/2 = 28539.5. We use this model
to explore the relationship between a cost function and individually decided
rankings until we can find a more accurate cost model.

90 N. Wu and A.L. Couch

In this experiment, each side of the bipartite graph ranks the other side dif-
ferently; the left side ranks using the file size, and the right side ranks using the
CPU speed. The minimum cost transition uses weights computed from the cost
function. The result is shown in Figure 11.

5 Conclusion and Future Work

In this paper, we investigate the statistical behaviors of transition planning mech-
anisms in a decentralized environment. The Gale-Shapley algorithm can be used
to find transition plans. Theoretically, we can create an arbitrarily large ap-
proximation ratio by using the Gale-Shapley algorithm to simulate the optimal
solution. But in practice, the worst case rarely arises and can be prevented via
heuristics. We use simulation to study the impact of different probabilistic dis-
tributions. The result shows that the normal distribution has a very good perfor-
mance when the coefficient of variation is low. When the coefficient of variation is
high (for example, 1) the performance is similar to that of the uniform distribu-
tion. The uniform distribution has an average performance. But in a probability
distribution that is flat and has a long tail, such as the Pareto, some settings
(for example, a = 1) will produce a poor approximation ratio when the number
of nodes is small. The performance improves dramatically when the number of
nodes is increased. Thus, a minimum node size above 50 is recommended or the
greedy heuristic should be used.

Although better stable marriage algorithms exist, which might address these
issues, these algorithms take more time to settle than the Gale-Shapley algo-
rithm. We propose a simple heuristic that greedily removes the most expensive
edge from the mapping, and thus improves the stable marriage performance. In
the future, heuristics can be investigated, that leave out some options in order
to avoid obviously bad marriages.

Acknowledgement

We wish to thank Marc Chiarini for reading several versions of the paper and
making timely comments.

References

1. Burgess, M.: An approach to understanding policy based on autonomy and volun-
tary cooperation. In: Schönwälder, J., Serrat, J. (eds.) DSOM 2005. LNCS, vol. 3775,
pp. 97–108. Springer, Heidelberg (2005)

2. Burgess, M., Couch, A.: Autonomic computing approximated by fixed-point
promises. In: 1st IEEE International Workshop on Modelling Autonomic Commu-
nications Environments (MACE 2006) (2006)

3. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American
Mathematical Monthly (1962)

Statistical Behaviors of Distributed Transition Planning 91

4. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistic Quarterly (1955)

5. Moore, G.: Cramming more components onto integrated circuits. Electronics Mag-
azine 38(8) (1965)

6. Voelkel, F.: Intel’s core 2 quadro kentsfield: Four cores on a rampage (2006),
http://www.tomshardware.com/reviews/cores-rampage,1316-13.html

7. Weisstein, E.W.: Pareto distribution. from mathworld–a wolfram web resource
8. Wu, N., Couch, A.: Transition planning via matchings and marriages. In: The 2nd

IEEE International Workshop on Modelling Autonomic Communications Environ-
ments (MACE 2007) (2007)

Service Load Balancing with Autonomic Servers:

Reversing the Decision Making Process

Remi Badonnel1,2 and Mark Burgess1

1 Oslo University College
St Olavs plass, 0130 Oslo, Norway

badonnel@loria.fr
2 LORIA - INRIA Grand Est, Nancy University
Campus Scientifique, 54500 Vandoeuvre, France

burgess@iu.hio.no

Abstract. Load balancing faces new challenges in the framework of au-
tonomic servers deployed in data centers. With traditional push-based
strategies, the authoritative decision is made by the load balancer, which
decides to which server the requests are forwarded. However, the auton-
omy of servers is often incompatible with these strategies, as they may
accept or refuse to process a request on a voluntary basis. We present in
this paper the benefits and limits of a pull-based load balancing strategy
for transferring the authority from the load balancer to the autonomic
servers. We describe the underlying functional architecture with two dif-
ferent schemes and quantify the performances through an extensive set
of experiments.

1 Introduction

Autonomic computing has become a major paradigm for dealing with the grow-
ing complexity of systems and networks and simplifying their maintenance [1].
In particular, we can consider autonomic servers that are capable of managing
themselves based on closed control loops in order to: configure their components,
detect and correct their failures, monitor and control their own resources in an
optimal manner, and diagnose and protect themselves against attacks. These
servers can typically be deployed in data centers. They may provide support for
multi-tier applications and services, and share the load of client requests.

A variety of algorithms [2] has been proposed in order to balance the work-
load among servers in an optimal manner. However, autonomic computing favors
autonomous components that are weakly coupled rather than traditional hierar-
chical systems with strong couplings (based on an obligation model). Autonomic
servers seem therefore to pose new challenges with regard to this load balancing.

In traditional approaches, the load balancing strategy is performed in a push-
based (obligation) manner (see Sub-figure 1(a)), which means the decision of
whether a server should receive a request or not made exclusively by the load
balancer. Autonomics skeptics often imagine that this kind of approach is fun-
damental to the idea of “control” and the idea of component autonomy stands

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 92–104, 2008.
c© IFIP International Federation for Information Processing 2008

Service Load Balancing with Autonomic Servers 93

User Client
Push-Based

Load-Balancer

Server 1
(address 1)

Server 2
(address 2)

Server N
(address N)

.....

states

(a) Push-Based Load Balancing

User Client
Pull-Based

Load-Balancer

Server 1
(address 1)

Server 2
(address 2)

Server N
(address N)

.....

(b) Pull-Based Load Balancing

Fig. 1. Push-Based vs Pull-Based Load Balancing with Autonomic Servers

in the way of proper resource sharing if servers will not do as they are told by
an authoritative controller. We have already argued against this viewpoint [3]
and show this belief to be erroneous below.

One might argue that a push-based load balancer can easily estimate server
resources by observing network parameters such as on-going connections. Moni-
toring agents can also be deployed on the servers to evaluate their performance.
While server-state information can improve the load balancing mechanism with
traditional servers, this adds an unnecessary overhead with autonomic servers.
The authoritative decision is kept by the load balancer, which decides to which
server the request is forwarded. Moreover, this authority is in conflict with an
autonomic server’s preference to make decisions by itself and to interacting on
a purely voluntary basis. So there are two reasons why push based sharing is
undesirable in autonomic networks.

Why then should we preserve a push-based strategy for balancing load among
autonomic servers? In this paper we explore the arguments in favor of pull-
based load balancing strategy (see Sub-figure 1(b)) where autonomic servers can
manage load at their own convenience. Each server knows its own capabilities
and state more quickly and accurately than any external monitor, so it seems
reasonable to explore the idea that it is the best judge of its own performance.

By pulling service requests from a load balancer servers can decide to take
on work depending not only on their available resources but also on many other
internal parameters including their willingness to interact, their internal sched-
uled management operations, protection procedures when attacks are detected,
and any policy. The authoritative decision is therefore transferred from the load
balancer to the autonomic servers.

The paper is structured as follows: we present in Section 2 our pull-based load
balancing strategy for autonomic servers. We describe the underlying architecture
and showhow this scheme canbe instantiatedwith twodifferent returnpath strate-
gies. We evaluate the performance and scalability of the solution through an exten-
sive set of experimentations in Section 3.A survey of relatedwork is given in Section
4. Finally, Section 5 concludes the paper and presents future research efforts.

94 R. Badonnel and M. Burgess

2 Pull-Based Load Balancer

In this work, we explore the benefits of a pull-based load balancer for distributing
workload among autonomic servers. The key motivation is to make the load
balancing strategy more flexible and adaptive with respect to the servers. This
is compatible with the goals of autonomic computing. Autonomic servers interact
only on a voluntary basis. Their autonomy contradicts the basic tenets of push-
based load balancing.

With the push-based strategy, the decision of whether a host should receive a
request or not, is taken by the load balancer. Some solutions permit to a load bal-
ancer to exploit state information transmitted (voluntarily and hopefully on time)
by the servers, but the push-based load balancer takes the final decision. In [4]
with traditional servers, it was shown in actual hardware that this decision mak-
ing could be a limitation on the dispatch rate. For instance, the least-connections
algorithm [5] keeps track of the number of active connections each server currently
has. The dispatcher then forwards requests (i.e., new connections) to the server
with the fewest active connections. Another example consists of sending server-
state information to the balancer using a dedicated protocol such as the Dynamic
Feedback Protocol [6]. The balancer then determines based on that information
which server will handle the request. This adds overhead to the process. By con-
sidering a pull-based strategy, the authoritative decision is transferred from the
balancer to the servers themselves since this is where the important information
is located. Indeed, we can view the interaction between balancer and server as a
competitive game. If the balancer acts first, it has imperfect information about
its opponent’s condition and the coalition of dispatcher and servers can lose pro-
ductivity through poor forwarding decisions, but if the server acts first it does not
need information about the dispatcher’s state to make the most economically mo-
tivated decision since there is no penalty if there is “no work to be done”. Hence,
the servers have effectively perfect information as far as the overall productivity
is concerned. The load balancer role can typically be played by the client itself, by
a DNS server or by a dedicated dispatcher (interacting as a proxy).

We consider the pull-based load balancer to be a dispatcher with a central queue.
All of the requests from clients are kept by the dispatcher so that the autonomic
servers canpull requests from this queue at their own convenience i.e., whenever the
server makes a voluntary decision to process a request. This includes whenever the
server has free resources, but is not limited to that particular condition. A server
may refuse to process requests for other reasons: when failures have been detected,
when new components have to be installed and configured, when attacks have been
detected and protection procedures have to be executed, or when the server simply
does not want to (unable or unwilling to comply). In any event, the other servers
adapt automatically to the best of their own ability and policy.

2.1 Underlying Architecture

We will detail in this section how this pull-based strategy can be instantiated
using two different return path strategies. A first possible architecture consists

Service Load Balancing with Autonomic Servers 95

in using a dispatcher with NAT (Network Address Translation). Let consider
the application example of web servers. The dispatcher receives multiple HTTP
requests from clients via its public address. When a client sends such a request
to the load balancer, the request is first stored into the central queue of the
load balancer. The requests are usually processed according to a FCFS (First
Come First Serve) queue scheduling discipline [7]. The key difference with the
push-based scheme is that the requests have to stay at the load balancer stage
until autonomic web servers start to pull requests.

Each of the servers can pull requests from the dispatcher at any time. If client
requests have been issued and are waiting in the balancer central queue, the web
server is dynamically served by the dispatcher. We can observe that the load
balancing process has been reversed and that server pulls have to be managed
by the dispatcher. The dispatcher uses the NAT mechanism to transfer a client
request to a given web server. The dispatcher translates the target IP address
to the one of the client using Reverse NAT and sends the reply to the client.

The NAT mechanism requires that the load balancer keeps state of each ongo-
ing connection. This may contribute to a bottleneck effect [8] at the load balancer
when the traffic rate is high.

With the NAT mechanism, the web server has to send the resulting reply back
to the pull-based load balancer. An alternative solution consists in modifying
the return path. Three different strategies [9] can usually be considered to send
the reply to the client: (1) the bridge path strategy when the dispatcher is
implemented at level 2 and interacts as bridge, (2) the route path strategy when
the dispatcher is implemented at level 3 and interacts as an intermediate router,
and (3) the direct server routing strategy when the reply is directly sent back by
the server to the client. The pull-based load balancer with NAT corresponds to
the second strategy. We propose to deploy the pull-based scheme using a direct
server return, in order to decrease the bottleneck effect i.e., so that the reply is
not forwarded by the load balancer.

User

Pull-Based
Load-Balancer

with IP Tunneling

Server 1
(IP address 1)

Server 2
(IP address 2)

Server N
(IP address N)

2, 4, 51

3

6

7

8

.....

Step 1: Client Request
Step 2: Request in Queue at the Load-Balancer
Step 3: Server 2 (IP address 2) Pulls Requests
Step 4: Request Allocation to Server 2
Step 5: IP Encapsulation (IP Tunneling LB - Server 2)
Step 6: Request Forwarding
Step 7: IP Decapsulation (IP Tunneling LB - Server 2)
Step 8: Reply Sent to the Client (Direct Server Routing)

(IP address 0)

Client

Fig. 2. Pull-Based Load Balancer with Direct Server Return

96 R. Badonnel and M. Burgess

This second architecture is depicted in Figure 2. It requires to establish IP
tunneling between the pull-based load balancer and the web servers. The load
balancing process essentially differs from the previous one by the manner how
requests are forwarded among components. The pull-based load balancer is also
implemented as a dispatcher, but uses IP tunneling instead of NAT. When re-
ceiving client requests (Step 1), the dispatcher first stores them into the central
queue (Step 2) according to a FCFS scheduling. A server can then pull requests
from the dispatcher (Step 3). It may be served by the dispatcher if client requests
are queuing (Step 4). In that case, the dispatcher establishes IP tunneling with
the web server: the request is encapsulated into another IP packet (Step 5) and
is forwarded to the web server (Step 6). The server then decapsulates the request
(Step 7). When it has successfully processed the request, the server can directly
send the reply back to the client using a direct server return. This return path
increases the load balancer performance as it does not require to keep state of
the connections at the load balancer.

3 Experimental Results

We evaluated the performance of our pull-based load balancing scheme through
an extensive set of experiments, which can be compared directly with earlier
physical experiments performed in [4] (these previous experiments were how-
ever limited to push-based load balancing with regular servers). The simulations
were performed with the JMT open source suite for queuing network modeling
and workload analysis [10] developed by the Performance Evaluation Lab at the
Polytechnic University of Milan. We extended it so that we can model the behav-
ior of a pull-based load balancer with direct server return. We considered during
the experiments a system composed of a load balancer L at the front office and
a set of n servers S = {S1, S2, ..., Sn} at the back office. The load balancer L
implements either a push-based scheme or a pull-based scheme depending on
the scenario. We assume that the arrival and completion process distributions
follow a typical Poisson distribution in discrete time. Despite the controversy
regarding the inter-arrival times, we use Poisson distributed arrivals, this allows
a direct comparison with [4] and we would not expect the choice to affect the
broad conclusions of our results.

3.1 Performance with Homogeneous Servers

In a first series of experiments, we were interested in analyzing the performance of
our solution with homogeneous servers. We modeled a system with three servers
{S1, S2, S3} of same capabilities. Each server is capable of processing an average
of 100 requests per second. We measured the average response time obtained
with the pull-based load balancer while varying the request rate from 5 to 300
requests per second. We assume here the natural notion of response time per-
ceived by users, that is, the time interval between the instant of the submission

Service Load Balancing with Autonomic Servers 97

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

R
es

po
ns

e
T

im
e

(m
s)

Request Rate (requests/s)

Pull-Based Load Balancer
Push-Based Load Balancer

(a) Homogeneous Servers

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

R
es

po
ns

e
T

im
e

(m
s)

Request Rate (requests/s)

Pull-Based Load Balancer
Push-Based Load Balancer

(b) Heterogeneous Servers

Fig. 3. Response Time with Autonomic Servers

of a request and the instant the corresponding reply arrives completely at the
user. We compared these values with the response time provided by a load bal-
ancer implementing a classic push-based scheme where servers are taken without
consideration of their current queue length or latency. Indeed, autonomic servers
may refuse to provide any server-state information, and we consider that they
interact in a voluntary basis making least-connection algorithms inefficient. The
experimental results are summarized in Figure 3(a). The horizontal axis cor-
responds to the different request rate values. We plotted for each of them the
average response time obtained with the pull-based load balancer (plain line)
compared to the one obtained with the push-based load balancer (dotted line).
The two graphs show the same tendency when we increase the request rate: the
response time first stays relative low and stable (on the left of the figure), then
grows exponentially when we tends to 300 requests per second (on the right of
the figure). This value corresponds to the theoretical maximal processing rate of
the system (the sum of three servers capable of processing 100 requests per sec-
ond each). When comparing the two load balancing schemes, we can observe that
the performance is quite similar at a low response rate (from 5 to 100 requests
per second). The push-based load balancer is even better than the pull-based
strategy at the lowest rates. However, at high response rates (from 100 requests
per second), we clearly see that the pull-based load balancer produces faster
response times than the push-based load balancer.

Additional parameters need to be taken into account to complete and refine
this comparison. In particular, as load balancer and servers have finite queue
sizes, we measured the request drop rate while varying the request rate values.
The drop rate is the number requests per second never processed at all by an
element of the system. We plotted these rates in Figure 4 for respectively the load
balancer and each of the three servers. When looking at these results, we first
can observe that the system starts to drop requests at around 300 requests per

98 R. Badonnel and M. Burgess

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

D
r
o

p
 R

a
te

 (
r
e

q
u

e
s
ts

/s
)

Request Rate (requests/s)

Pull-Based Scheme
Push-Based Scheme

(a) Load Balancer

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

D
r
o

p
 R

a
te

 (
r
e

q
u

e
s
ts

/s
)

Request Rate (requests/s)

Pull-Based Scheme
Push-Based Scheme

(b) Server S1

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

D
r
o

p
 R

a
te

 (
r
e

q
u

e
s
ts

/s
)

Request Rate (requests/s)

Pull-Based Scheme
Push-Based Scheme

(c) Server S2

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

D
r
o

p
 R

a
te

 (
r
e

q
u

e
s
ts

/s
)

Request Rate (requests/s)

Pull-Based Scheme
Push-Based Scheme

(d) Server S3

Fig. 4. Drop Rates with Homogeneous Servers by using the Pull-Based Strategy (plain
line) and the Push-Based Strategy (dotted line)

second (compare to [4]), when the request rate exceeds the maximal processing
rate. However, the dropped requests are not distributed in the same manner in
the system. In the push-based scenario (dotted line), the dropped requests are
equally distributed among the three servers. The load balancer does not drop
any requests during the experiments, even with high request rates. The reason
for these results is that all the requests are dispatched by the load balancer to
one of the servers whatever the server is overloaded or not (i.e., it simply pushes
the problem downstream).

Intuitively, the pull based mechanisms needs a longer queue at the dispatcher
since this is where waiting builds up at the system bottleneck, but this does
not imply that greater resources are needed. The pull strategy is like an air-
port check-in queue: servers pull passengers from a single line that fills the same
space as would multiple lines. The same resources are simply organized differ-
ently. Moreover, the reliance on a single dispatcher should not be a problem if
redundancy is factored into the calculation [11].

As the servers have homogeneous capabilities and the load balancer takes
servers each in turn, the dropped rate is almost identical for the three servers
and corresponds to the third of the total drop rate in the system. In the pull-
based scenario (plain line), requests are only dropped by the load balancer.
The servers process requests on demand by pulling the load balancer. As a
consequence, the servers are not overloaded and do not need to drop requests
during the experiments. The requests are waiting at the load balancer and are
directly dropped by it when the request rate is too high for the system.

Service Load Balancing with Autonomic Servers 99

3.2 Performance with Heterogeneous Servers

In a second series of experiments, we analyzed the same scenario with hetero-
geneous servers. The average service rate for servers S1, S2, S3 is respectively
of 50, 100 and 150 requests per second. The graphs in Figure 3(b) represent, as
previously, the comparison of response times with the pull-based strategy and
the push-based strategy. This scenario produces worst performances than the
scenario with homogeneous servers. However, the impact has not the same scale
on the two strategies: the difference is minor with the pull-based strategy while
the difference is major with the push-based scheme. In the push-based scenario,
the response time grows faster when the arrival rate tends to 150 requests per
second. The server S1 with the smallest capacity becomes overloaded earlier than
the two other servers. The push-based load balancer is not capable of transferring
the workload on servers S2 and S3. The workload is equally distributed on the
three servers (a third per server). The response time therefore increases signifi-
cantly at around 150 requests per second when server S1 is overloaded (a third
of 150 requests per second). In the pull-based scenario, server S1 can reduce its
workload by pulling less requests from the load balancer. In that manner, the
load balancer can maintain the requests on its queue and dispatches them to
the higher capacity servers. As the total processing capacity (50 + 100 + 150) is
the same than in the homogeneous scenario (3 × 100), the response time grows
exponentially when the arrival rate tends to the same saturation value of 300
requests per second.

We observe the same phenomenon by measuring the drop rates of servers (see
Figure 5). In the push-based strategy, the load balancer does not drop requests.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

D
r
o

p
 R

a
te

 (
r
e

q
u

e
s
ts

/s
)

Request Rate (requests/s)

Pull-Based Scheme
Push-Based Scheme

(a) Load Balancer

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

D
r
o

p
 R

a
te

 (
r
e

q
u

e
s
ts

/s
)

Request Rate (requests/s)

Pull-Based Scheme
Push-Based Scheme

(b) Server S1

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

D
r
o

p
 R

a
te

 (
r
e

q
u

e
s
ts

/s
)

Request Rate (requests/s)

Pull-Based Scheme
Push-Based Scheme

(c) Server S2

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

D
r
o

p
 R

a
te

 (
r
e

q
u

e
s
ts

/s
)

Request Rate (requests/s)

Pull-Based Scheme
Push-Based Scheme

(d) Server S3

Fig. 5. Drop Rates with Heterogeneous Servers by using the Pull-Based Strategy (plain
line) and the Push-Based Strategy (dotted line)

100 R. Badonnel and M. Burgess

The drop rate is unequally distributed among the three servers, as they start
to drop requests when they becomes overloaded e.g., when the total workload is
three times equal to their processing capacity. Server S1 drops requests earlier
(at 150 requests per second) than servers S2 and S3 (at around 300 and 450
requests per second). In the pull-based strategy, the load balancer is the only
element which drops requests in the system (at 300 requests per second), as the
servers can reduce the workload by their own in order not to be overloaded.

3.3 Scalability and Bottleneck Effect

The third series of experiments evaluates the scalability of our pull-based load
balancer when adding extra servers. We measured the average response time
while varying the number of servers from 2 to 6 in the system and calculated the
profit in percentage of the pull-based strategy compared to the push-based one.
We considered during the experiments that the servers are homogeneous with
a same processing capacity of 100 requests par second on average. We plotted
the experimental results for four different request rates {100, 200, 400, 600} in
Figure 6.

We can first observe that the profit generated by the pull-based load balancer
for a given request rate decreases when we add extra servers. For instance, Sub-
figure 6(a) shows that the profit at a rate of 100 requests per second goes from
around 12 percents with 2 homogeneous servers to around 2 percents with 6
homogeneous servers. The pull-based strategy is therefore much more valuable
if the server resources are scarce. Indeed, the push-based strategy with homoge-
neous servers stays relatively competitive as long as the resources are sufficiently
dimensioned. Heterogeneous servers may produce a better profit with the same
scenario, in particular when one of the servers has a significantly smaller ca-
pacity. In that case, the smaller server can regulate the request rate so that
the load balancer forwards the requests to the other servers. Another natural
question is to what extent the request rate impacts on the pull-based strategy.
When comparing the four sub-figures, we can distinguish two major phases. In
a first phase (Sub-figure 6(a) and Sub-figure 6(b)), increasing the request rates
improves the profit generated by the pull-base strategy. For instance, with three
homogeneous servers, the profit grows from around 7 percents with a rate of
100 requests per second to around 28 percents with a rate of 200 requests per
second. However, in a second phase (Sub-figure 6(c) and Sub-figure 6(d)), the
profit starts to decrease when we continue to increase the request rate. The profit
with three servers decreases to 19 percents at 400 requests per second and to 16
percents at 600 requests per second. The pull-based load balancer becomes even
less interesting than the push-based load balancer in the worst cases. We mean,
by worst cases, scenarios when the request rate is high and the server resources
are sufficiently scaled. Both the pull-based and push-based load balancers suffer
from the bottleneck effect at a high load. However, this phenomenon is signif-
icantly more important with the pull-load strategy. These experimental results
are confirmed by the drop rates presented in figures 4 and 5, where we observed
the requests are maintained and then dropped by the load balancer.

Service Load Balancing with Autonomic Servers 101

 0

 10

 20

 30

 40

 50

 60

65432

P
ro

fit
 (

pe
rc

en
ta

ge
)

Number of Servers

(a) 100 requests/s

 0

 10

 20

 30

 40

 50

 60

65432

P
ro

fit
 (

pe
rc

en
ta

ge
)

Number of Servers

(b) 200 requests/s

 0

 10

 20

 30

 40

 50

 60

65432

P
ro

fit
 (

pe
rc

en
ta

ge
)

Number of Servers

(c) 400 requests/s

 0

 10

 20

 30

 40

 50

 60

65432

P
ro

fit
 (

pe
rc

en
ta

ge
)

Number of Servers

(d) 600 requests/s

Fig. 6. Profit of the Pull-Based Strategy Compared to the Push-Based Strategy on
Adding Extra Servers. Results can be compared to [4].

We also analyzed the behavior of our pull-based strategy, by comparing ex-
perimental results to queuing theoretical models [12]. In our experiments, the
authoritative decision of servers is limited to a simple condition on a given re-
source (maximal processing rate). As a consequence, the system converges to
a behavior very similar to a set of servers processing the same queue (M/M/k
queuing model). This convergence may be less evident if we consider the full
autonomy of servers. Moreover, our research group attempted in [5] a direct
implementation of a pull-based load balancer using a Java application in an at-
tempt to demonstrate that pull-based methods would be superior to push meth-
ods. The prototype showed performance can often be hostage to implementation
issues.

102 R. Badonnel and M. Burgess

4 Related Approaches

A large variety of algorithms and techniques were proposed for balancing work-
load to traditional back end servers [5]. Dynamic algorithms can exploit client-
state and server-state information. The server-state information can be obtained
in an implicit manner: the load balancer estimates the load on the servers by
passively monitoring network parameters such as ongoing connections or by acti-
vating probes. For instance, we previously mentioned that the least-connections
scheme selects the server with the lowest number of ongoing connections. In all
of these approaches, the load balancing is performed in a push-based manner.
We have already described in [4] (but with traditional servers) a comparative
study of these push-based load balancing algorithms used to distribute packets
among a set of web servers. Server-state information can also be obtained in an
explicit manner. For instance, the Dynamic Feedback Protocol (DFP) [6] per-
mits a dispatcher to deploy agents directly on the back end servers. These agents
periodically report relative weights to the load balancer in the form of load vec-
tors. The load balancer then exploits the reported weights to select more efficient
servers. This requires a substantial overhead and infrastructure. In distributed
systems and grid computing, management platforms [13] and service middle-
wares [14,15] can dynamically align the allocation of resources to infrastructure
and business requirements. A significant amount of effort has been expended
to design resource management methods based on analytical queuing models
[11], decision theory [16], and planning and scheduling techniques [17]. These
optimizations are made possible thanks to server-state information collected by
agents. In our approach, we show that there is no need for these feedback loops,
completely autonomous behavior suffices to solve the problem effectively by vol-
untary cooperation [3].

5 Conclusions and Future Work

We have explored the motivation for the use of pull-based load balancing be-
tween autonomic servers and have quantified the benefits and limits of such a
scheme, as one approaches the theoretical limit of a perfect implementation.
Autonomic computing advocates greater decentralization of autonomy and only
weak coupling of components through cooperative communication. It makes tra-
ditional server-state and least-connection inapplicable or inefficient. Our study
shows that relaxing the desire for mandatory control of servers using a central
controller, and instead allowing them to cooperate voluntarily through only weak
coupling, is not the disadvantage that skeptics imagine; quite the opposite, it has
the potential to exceed the performance of a push approach, while maintaining
better security for each component.

Comparing experimental results to push-based results with autonomic servers
we find, as expected, that the pull-based balancer is more sensitive to the bot-
tleneck’s resources than the push-based balancer. It surpasses the push-based
balancer when the workload is high compared to the expected server accep-
tance rate (i.e., at high ”voluntary utilization”), and when it is sufficiently low

Service Load Balancing with Autonomic Servers 103

to avoid the bottleneck limitation. When we restrict the decision of autonomic
servers to a simple condition on a given local resource, the pull-based load bal-
ancer converges as expected to an M/M/k model. This convergence may be less
evident with servers having a full autonomy. In future work, we are interested in
measuring the performance of voluntary dispatch in a large scale virtualization
environment [18] where these considerations are especially relevant. We are also
planning to model the behavior of autonomic servers using high order internal
chain architectures, and in evaluating how these new parameters impact on our
pull-based load balancer.

Acknowledgment

This work was supported by the EC IST-EMANICS Network of Excellence.

References

1. Murch, R.: Autonomic Computing. IBM Press (2004)

2. Yu, P.S., Cardellini, V., Colajanni, M.: Dynamic Load Balancing on Web-Server
Systems. IEEE Internet Computing 3(3) (June 1999)

3. Burgess, M.: An Approach to Understanding Policy Based on Autonomy and Vol-
untary Cooperation. In: Schönwälder, J., Serrat, J. (eds.) DSOM 2005. LNCS,
vol. 3775, pp. 97–108. Springer, Heidelberg (2005)

4. Burgess, M., Undheim, G.: Predictable Scaling Behaviour in the Data Centre with
Multiple Application Servers. In: State, R., van der Meer, S., O’Sullivan, D., Pfeifer,
T. (eds.) DSOM 2006. LNCS, vol. 4269, pp. 49–60. Springer, Heidelberg (2006)

5. Berggren, A.: Presenting a Prototype for Pull Based Load Balancing of Web
Servers. Oslo University College, Norway (May 2007)

6. Kersey, C.: Dynamic Feedback Protocol (DFP), IETF Internet Draft (August
2005), http://dfp.berlios.de/draft-eck-dfp-00.txt

7. Gross, D., Gross, D., Harris, C.M.: Fundamentals of Queueing Theory, 3rd edn.
Wiley Interscience, New York (1998)

8. Jung, G., Swint, G.S., Parekh, J., Pu, C., Sahai, A.: Detecting Bottleneck in n-Tier
IT Applications Through Analysis. In: State, R., van der Meer, S., O’Sullivan, D.,
Pfeifer, T. (eds.) DSOM 2006. LNCS, vol. 4269, pp. 149–160. Springer, Heidelberg
(2006)

9. Bourke, T.: Server Load Balancing. O’Reilly and Associates (August 2001)

10. Bertoli, M., Casale, G., Serazzi, G.: An Overview of the JMT Queueing Network
Simulator. Technical Report TR 2007.2, Politecnico di Milano - DEI (2007)

11. Cunha, I.S., Almeida, J.M., Almeida, V., Santos, M.: Self-Adaptive Capacity Man-
agement for Multi-Tier Virtualized Environments.. In: Proc. of the 10th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2007), Munich,
Germany, May 2007, pp. 129–138 (2007)

12. Badonnel, R., Burgess, M.: Dynamic Pull-Based Load Balancing for Autonomic
Servers. In: Proc. of the 11th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2008), Salvador, Brazil, Short Paper. IEEE Press, Los Alami-
tos (2008)

104 R. Badonnel and M. Burgess

13. Singhal, S., Arlitt, M.F., Beyer, D., Graupner, S., Machiraju, V., Pruyne, J., Rolia,
J., Sahai, A., Santos, C.A., Ward, J., Zhu, X.: Quartermaster - a Resource Utility
System. In: Proc. of the 9th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2005), Nice, France, pp. 265–278 (2005)

14. Magaña, E., Lefèvre, L., Serrat, J.: Autonomic Management Architecture for Flex-
ible Grid Services Deployment Based on Policies. In: Lukowicz, P., Thiele, L.,
Tröster, G. (eds.) ARCS 2007. LNCS, vol. 4415, pp. 157–170. Springer, Heidelberg
(2007)

15. Adam, C., Stadler, R., Tang, C., Steinder, M., Spreitzer, M.: A Service Middleware
that Scales in System Size and Applications.. In: Proc. of the 10th IFIP/IEEE
International Symposium on Integrated Management (IM 2007) (May 2007)

16. Nassif, L.N., Nogueira, J.M.S., de Andrade, F.V.: Distributed Resource Selection
in Grid Using Decision Theory. In: Proc. of the 7th IEEE Symposium on Cluster
Computing and Grid (CCGrid 2007), Rio de Janeiro, Brazil, May 2007, pp. 327–334
(2007)

17. Diao, Y., Keller, A., Parekh, S.S., Marinov, V.V.: Predicting Labor Cost through
IT Management Complexity Metrics. In: Proc. of the 10th IEEE International
Symposium on Integrated Management (IM 2007), Germany, May 2007, pp. 274–
283 (2007)

18. Begnum, K.M.: Xen Virtualization and Multi-Host Management using MLN. In:
Bandara, A.K., Burgess, M. (eds.) AIMS 2007. LNCS, vol. 4543, p. 229. Springer,
Heidelberg (2007)

An Architecture for Supporting Network Fault

Recovery Management

Feng Liu, Antonis M. Hadjiantonis, Ha Manh Tran, and Mina Amin

MNM Team, Ludwig-Maximilians-University Munich, Germany
liufeng@nm.ifi.lmu.de

Centre for Communications Systems Research, University of Surrey, UK
{a.hadjiantonis,m.amin}@surrey.ac.uk

Computer Science, Jacobs University Bremen, Germany
h.tran@jacobs-university.de

Abstract. Highly available and resilient networks play a decisive role
in today’s networked world. As network faults are inevitable and net-
works are becoming constantly intricate, finding effective fault recovery
solutions in a timely manner is becoming a challenging task for adminis-
trators. Therefore, an automated mechanism to support fault resolution
is essential towards efficient fault handling process. In this paper we
propose an architecture to support automated fault recovery in terms
of traffic engineering, recovery knowledge discovery and automated re-
covery planning. We base our discussion on an application scenario for
recovery from border router failure to maintain optimized configuration
of outbound inter-domain traffic.

Keywords: Fault Management, Fault Recovery, Automated Planning,
Policy-Based Management, Case-Based Reasoning, Peer-to-Peer, Inter-
Domain, Traffic Engineering.

1 Introduction

Availability of networks is becoming more essential in today’s networked world.
Whereas network faults are inevitable facts, an efficient fault management pro-
cess is decisive to decrease the fault resolution time and to increase the avail-
ability of the network. In case of failure, an efficient fault recovery process is
expected to find fault resolutions quickly and recover the impacted network in
a timely manner. Hence, recognizing the importance of minimum system down-
time to maintain compliance with accepted Service Level Agreements (SLA),
we propose a dual stage fault recovery process. The first stage is a short-term
system reaction to minimize the immediate effects of a fault. In order to allow
for quick system response, this first reaction is pre-planned in sets of recovery
policies able to anticipate faults. The second stage is the long-term recovery plan
and aims to discover the recovery knowledge and plans the recovery process.

The presented architecture involves traffic engineering, policy-based manage-
ment and artificial intelligence approaches. Our research focuses on providing

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 105–119, 2008.
c© IFIP International Federation for Information Processing 2008

106 F. Liu et al.

a comprehensive framework to facilitate an automated fault recovery process
in large-scale networks. The motivations of the architecture are: (1) providing
short-term recovery plans through fast recovery solutions, (2) providing long-
term recovery plans through an efficient recovery knowledge discovery approach
and (3) automating recovery planning for the long-term recovery process.

Application Scenario: To demonstrate the applicability of our approach, we
choose a scenario related to inter-domain Traffic Engineering (TE) and exam-
ine a case study of automated recovery from an egress point (EP) failure. Since
inter-domain links are the most common bottlenecks in the Internet [1], an ef-
ficient plan for fault recovery is necessary. We focus our interest on planning
the recovery from border router faults to maintain optimized configuration of
outbound inter-domain traffic. Once a border router (EP) fails, we follow a dual
stage recovery process that will be detailed in section 4.

The first stage is to switch affected traffic flows to another EP, while at the
same time optimize the EP selection (border router selection) for all outbound
inter-domain traffic of a domain. To achieve a quick reaction that would minimize
disruption, we execute in advance an outbound TE algorithm and store short-
term recovery plans in a repository. The algorithm is designed with the goal of
inter-domain link load-balancing and creates configuration sets for each case of
the EP failures. In addition, the algorithm creates the initial configuration set
for normal operation which is used until a failure is detected. Having responded
to the border router failure and minimizing short-term disruption, the second
recovery stage begins to discover a long-term solution and recover from the
failure. Once notified about the failure, the recovery system relies on proposed
policies and actions to decide an appropriate recovery plan. More specifically,
the planning subsystem receives high-level directives and actions as input, then
combines the input with received state information from the monitoring system
in order to generate the appropriate sequence of actions for remedying the failed
EP and recovering normal network operation.

This paper is organized as follows: in section 2 we present our proposed ar-
chitecture and discuss the involved subsystems and their interactions. Section 3
summarizes the methodologies applied to our approaches and in section 4 we
analyze our system based on the application scenario. Section 5 provides an
overview on the related work and the paper concludes with section 6.

2 System Architecture

Our proposed system contains three subsystems: Automated Recovery Planning
(ARP), Knowledge Discovery (KD) and Policy-based Management (PBM), see
Fig.1. The planning subsystem obtains status reports from the monitoring com-
ponent in order to carry out analyzing and executing recovery plans for the
managed system with the support of the other subsystems that provide appro-
priate actions and policies respectively. The introduction of each subsystem is
presented in the following subsections.

An Architecture for Supporting Network Fault Recovery Management 107

Fig. 1. Overview of System Architecture

Automated Recovery Planning: This central subsystem provides fault re-
covery plans for the managed system. Its tasks involve analyzing the status
report from the monitoring component, collecting relevant information from the
other subsystems for the recovery activities, producing relevant recovery plans
and provisioning for plan executions on the managed system. In Fig. 1, the three
modules responsible for these tasks include:

Domain Analysis (DA): This central module connects to KD, PBM subsystems
and the monitoring component for aggregating the relevant information as plan
knowledge to facilitate the operation of the automated planner module. Such
plan knowledge includes the description on the current system state, e.g. which
components are impacted by the failures and which components are still oper-
ational etc. Depending on the impacted components, it contacts KD for a set
of relevant recovery measurements attached with meta-information. The meta-
information describes under which situations a particular solution step could be
applied and what consequences could be expected from it, i.e. how a particular
solution step is going to affect the current system state. DA also contacts PBM to
retrieve recovery policies.

Automated Planner (AP): This module derives recovery plans based on plan
domain descriptions provided by DA. It contains an automated planning algo-
rithm, which correlates relevant recovery knowledge and produces recovery plans
by reasoning. Note that the selected planning algorithm is domain-independent
and generic. The rationale to use domain knowledge as input is to accelerate the
planning process and to increase the efficiency of the planning algorithm.

Plan Execution (PE): This module makes provision for the recovery plan execu-
tions. Plans generated by AP are described in a specific plan description language,

108 F. Liu et al.

therefore, to enable the plan executions, it is necessary to convert the format of
the plan and map the recovery plan into executable actions. Since PE relies on
PBM for plan execution, it converts the generated plan into a PBM-compatible
format and sends the plan to PBM, where the mapping and execution of the plan
take place. The results will be observed by the monitoring component and sent
back to DA to see if further recovery measurements are necessary.

Knowledge Discovery: Case-Based Reasoning (CBR) [2] resolves a problem
by searching for similar problems and reasoning on their solutions found in the
past. The reasoning capability of a conventional CBR system is restricted by
a local case database. A distributed CBR system takes advantage of compu-
tation power and problem-solving knowledge at various sites, thus improving
performance and maintaining huge federated case databases better. This system
exploits the integrated framework of Peer-to-Peer (P2P) and CBR [3], which
involve retrieving problems and inferring solutions, respectively.

This subsystem acts as a distributed CBR system to provide actions for recov-
ery plans. Its tasks involve communicating with various knowledge sources (e.g.
the Internet, the operators), dealing with various requests from and responses to
other modules, inferring proper actions corresponding to the failed status of the
managed system and managing a case database (e.g. failure cases and actions).
These tasks belong to three modules, shown in Fig. 1:

Action Repository (AR): This module involves storing cases and maintaining the
case database. It regularly checks the usage of cases and the similarity of cases
in order to deactivate obsolete cases or consolidate cases. Maintaining the case
database is essential since the CBR system tends to be lumbering and inefficient
with a large number of cases.

Action Provision: This module serves as an independent CBR engine which takes
requests and the case database as input to provide actions. Its main tasks include
(i) retrieving similar cases from AR, (ii) reasoning on these cases to figure out
the most promising case, and (iii) updating the case database. To improve AR,
the module regularly updates new cases from various sources including adapting
instructions from operators to solutions, or updating cases by learning problems
from monitoring systems, or extracting cases from the response of peers.

Interaction Processing: This module is responsible for establishing and maintain-
ing a P2P network. Its main tasks are to interact with various sources including
operators, surveillance systems or other peers for information exchange, resource
search and lookup. Particularly, it deals with requests from peers forwarded to
other peers, instructions and updates from the operators processed to update AR.

Policy-Based Management: PBM simplifies the complex management tasks
of large scale systems, since high-level policies can be automatically enforced as
appropriate network management [4]. In general, policies are defined as Event-
Condition-Action (ECA) clauses, where on event(s) E, if condition(s) C is true,
then action(s) A is executed. The components of PBM are shown in Fig. 1 along

An Architecture for Supporting Network Fault Recovery Management 109

with their interactions with ARP and the managed system. The four functional
elements, as defined by IETF, are described below:

Policy Management Tool (PMT): PMT is the interface between the operators
and PBM. It allows the introduction and editing of policies and also provides
notification about critical events requiring a manager’s attention. Using this
interface, the operators carry out the specification of operational policies by
selecting the appropriate policies from the supported policy types and selecting
the required parameters. We extend PMT’s functionality by interfacing it with
ARP. PMT provides relevant policies to ARP to assist the planning process.

Policy Repository (PR): PR encapsulates the management logic to be enforced
on all networked entities, as expressed in policies. It is the central point where
policies are stored by managers using PMT and can be subsequently retrieved
either by the Policy Decision Point (PDP) or by PMT.

Policy Decision Point (PDP): PDP is responsible for evaluating policy condi-
tions and deciding when and where policy actions need to be enforced. Once
relevant policies have been retrieved from PR, they are interpreted and PDP in
turn provisions any decisions or actions to the controlled Policy Enforcement
Point (PEP). PDP receives input from the monitoring component of PEP to form
a closed control loop.

Policy Enforcement Point (PEP): PEP enforces policy decisions, as instructed
by PDP. Within our framework, PEP is enhanced by the monitoring component
that reports local information to assist decision making.

The monitoring component is integrated to provide feedback to both PBM and
ARP for decision making. It is not formally part of our architecture since fault
detection and diagnosis are out of the scope of this paper. Critical events such
as failures are reported to both subsystems in order to initiate the dual stage
recovery process.

3 Methodology

In this section, we give detailed views on the methodologies the subsystems
apply. The discussion focuses not only on individual subsystems, but also tries
to provide an overview on the interactions between them.

3.1 PBM and ARP Collaboration

As networks become more and more complex, unavoidably faults occur more fre-
quently. It is evident that frameworks with automated recovery capabilities can
significantly expedite and simplify management tasks. Within our framework,
policies work in two layers to express on one hand high-level business objectives
and on the other hand, low-level configuration policies to anticipate faults. Poli-
cies can encapsulate the overall management logic at two functional layers: the

110 F. Liu et al.

business layer and the device layer. Using sophisticated algorithms, we translate
high-level policies defined at the business layer to low-level configuration poli-
cies at the device layer. At the same time, the PBM interacts with ARP to provide
policies and constraints to be used in the planning procedure.

By executing an outbound TE algorithm in advance, we create different policy
sets that express those high-level goals in normal operation and in addition an-
ticipate possible system failures. These low level policies, constitute short-term
plans for the EP selection aiming for the recovery of outbound inter-domain traf-
fic when an EP fails. The created recovery policy sets are stored in the Policy
Repository and the policy set for normal operation is enforced. An outbound
inter-Autonomous System (AS) TE algorithm that is able to optimize the EP
selection (border router selection) for outbound inter-domain traffic of a domain
has been developed in [5]. The algorithm is designed with the goal of inter-domain
link load balancing. The output is |L|+1 (|L| number of border routers) sets of
EP selection configurations, one set for normal operation (i.e. no failure) that can
be called PrimaryEgressPoint selection and one set for each case of EP failures
that can be called BackupEgressPoint selections. In other words, PrimaryE-
gressPoint selection determines EP selection under no inter-domain link failure
and BackupEgressPoint selection determines EP selection under Failure States.
A common implementation of EP selection is by adjusting the local-preference
value in the Border Gateway Protocol (BGP) route attribute [6]. According to
the BGP route selection process, local-preference has the highest priority and
its value indicates the preference of the route. The higher the local-preference,
the more preferred is the route. The algorithm takes inter-domain connectivity,
BGP routing information, inter-domain traffic matrix as inputs and then de-
terministically calculates the EP selection through local search heuristics. The
reader is referred to [5] for more details.

High-level policies are used to express goals of inter-domain traffic manage-
ment, e.g. ”optimize EP selection to achieve inter-domain load balancing”, or
”optimize EP selection avoiding routing traffic to destination prefix p1 using do-
main D2”. For security reasons we may wish to avoid routing the inter-domain
traffic flows towards some particular destinations through some specific domains.
The benefit of policy-based management is the ability to use different policies
to achieve different goals, e.g. minimize peering cost. Furthermore, high-level or
recovery policies could also be used by ARP in order to find the recovery plans
which are in compliance with the management goals. It is possible that the fault
recovery plan composition may result in several alternative plans to reach the
same goal. In such cases, ARP should refer to policies in order to choose the right
one which complies with the management objectives. A recovery policy can be
interpreted as constraints for plan composition. Considering the previous exam-
ple on EP optimisation, obviously a link failure recovery plan that involves the
step which uses domain D2 to reach destination prefix p1 could not be consid-
ered as valid, because there is a management policy which forbids using this
step. In this case, ARP has to search for other alternatives. Another example
of using high-level policies to recover from router failure, assuming there are

An Architecture for Supporting Network Fault Recovery Management 111

alternative steps involved to recover the router failure: one of them involves us-
ing router B as temporal fallback router, to which the traffic could be shifted
to, while another step requires recalculating and applying the alternative links
to route the current traffic. Obviously, both steps lead to same goal, namely,
keeping the disruption on the current traffic to minimum. Nevertheless, the fall-
back solution maybe preferred in terms of shorter traffic disruption compared to
link recalculation. If we assume that there is a policy that states Router B can
only be used as temporal failover for A between time 20:00 - 23:00 and the link
failure on router A happens on 10 : 00, apparently, the first alternative cannot
be considered by the automated planner, because the constraint derived from
the high-level policy restricts the usage of router B as failover router at the time
of failure on A.

3.2 KD and ARP Collaboration

KD contains a P2P network for knowledge exchange and update. A peer shares
resources (e.g. failure cases and actions) with other peers and provides search
facilities for other peers. A peer also bears a CBR engine for choosing best
solutions. The CBR engine, upon receiving requests from ARP, works on the case
database to propose solutions for ARP. The design of KD below explains core
issues related to building P2P network, case retrieval and reasoning in CBR
regarding the focused problem domain. Some detail has been addressed in our
related studies.

Communication: KD uses a Gnutella-style backbone network of super peers as
an appropriate overlay [7]. The overlay sticks to the characteristics of Gnutella
super-peer networks. Such networks organize peers into several clusters, any
cluster contains peers connected to a super peer, and the connections among
super peers form an unstructured overlay network. Any peer communicates with
its super peer for sending queries, publishing resources or receiving answers. Any
super peer, upon joining the overlay, has to perform several non-trivial tasks such
as search and lookup, reasoning, or maintenance.

Case Retrieval : This issue involves case representation and similarity function.
A case including failures and actions is represented by field-value vectors, where
values are binary, numeric or symbolic. In particular, a case contains a vector
vf with symptoms symi for failure descriptions, a number of vectors va with an
action act and conditions cndi for action descriptions, and a goal vector vg with
symptoms symi for verification descriptions. The following example explains how
a case is represented:

– vf = < sym1: link to dest failed, sym2: no traffic flow, sym3: primary
router not running, sym4: second brouter exist, sym5: second brouter ok,
sym6: bandwidth reserv required>

– vg = < sym1: link to dest ok, sym2: traffic flow ok, sym3: bandwidth ok>
– va = < act: use alternative link, cnd1: link to dest failed>
– va = < act: failover to secondary router, cnd1: second brouter exist, cnd2:

second brouter ok>

112 F. Liu et al.

– va = < act: establish link>

– va = < act: reserve bandwidth, cnd1: bandwidth reserv required>

Note that a request sent to the subsystem only contains vf and vg, the sub-
system works on symptoms appeared in the request by communicating with
other peers and looking into the local case database for similar symptoms and
actions. Using this representation, evaluating case similarity is straightforward
since it depends on comparing pairs of symptom and value; values avoid using
textual fuzzy descriptions and the expert determines the weight values of symp-
toms. Similar cases are evaluated by the global similarity method sim(r, c) =∑n

i=1 wisim(ri, ci), where n is the number of matched symptoms; ri and ci are
symptoms of request r and case c, respectively; sim(ri, ci) is the distance be-
tween ri and ci, wi is a weight value of the ith feature such that

∑n
i=1 wi = 1

with wi ∈ [0, 1] ∀i.

Case Reasoning: This issue involves case adaptation (or reasoning, inference)
and decision making. The conventional inference process carries out distinguish-
ing a retrieved case from the problem to clarify main differences, modifying the
retrieved case following the differences to obtain the final case. There are several
alternative inference methods depending on problem domains, such as proba-
bilistic inference using Bayesian network, classification using machine learning,
optimization technique using genetic algorithms (GA). For the focused problem
domain, the reasoning engine in KD employs optimization techniques to search
for an optimal set of actions that satisfies symptoms from the request provided
constraints from the goal vector and conditions from the action vectors.

To enable the planning process, ARP needs to aggregate the recovery knowl-
edge from KD. After receiving the fault report from the monitoring component,
the domain analysis module dispatches the knowledge search request regarding
the impacted component to the interaction processing module of KD. The search
results are returned by KD in the field-value vectors format. They include knowl-
edge such as fault symptoms and solution steps. However, the results cannot be
directly used by planner algorithm, the domain analysis module needs to convert
the received data into some specific planning language, such as Plan Domain De-
scription Language (PDDL) [8]. In the next section, we present examples on the
representation of recovery domain knowledge.

As mentioned in section 2, the core of this subsystem is the automated plan-
ner module. This module utilizes the AI-based planning algorithm to generate
plans accordingly to the domain description. A planning problem is based on
the restricted state-transition system[9]. A state-transition system Σ could be
represented as Σ = (S, A, E, γ), where S = {s0, s1, s2, . . .} is the finite set of
states; A = {a1, a2, . . .} is set of actions; E = {e1, e2, . . .} is set of events and
γ : S × A × E → 2S denotes a state transition function.

A planning problem can be defined as a triple P = (Σ, s0, g), where s0 ∈ S is
the initial state of a problem and g ⊂ S is the set of states which satisfy the goal.
Provided with problem domain descriptions, a planning algorithm operates on
the provided information and finds one or more plans accordingly. Additionally,

An Architecture for Supporting Network Fault Recovery Management 113

a planning algorithm observes different constraints if they are provided. The use
of constraints serves two purposes: first, it reduces the plan searching space and
second, it guides the plan searching in a correct way, e.g. some of the actions
should be avoided according to constraints (policies).

4 System Analysis - Case Study

An outbound inter-domain TE scenario is chosen to investigate recovery from EP
failure using the introduced architecture. Normally, upon an EP failure, traffic is
shifted to another available EP in accordance to the BGP route selection policies.
However, if a large amount of traffic is shifted, congestion is likely to occur on
these new serving EPs. An intuitive approach to minimize this congestion is
to redirect the traffic to another EP by adjusting BGP routing policies in an
online manner until the best available EP has been found. Such online trial-and-
error approach, however, may cause router misconfiguration, unpredicted traffic
disruption and BGP route flooding, leading to route instability. It is desirable
to have an efficient fault recovery plan and an optimization algorithm in order
to proactively produce a configuration for optimal performance under normal
and failure scenarios. Therefore, we focus our interest on outbound inter-domain
TE and recovery planning in case of any EP failure. Once one of the EP fails,
our recovery plan follows the proposed dual stage recovery process. First, PBM
enforces appropriate policies (Table 2,P1-3) and a short-term solution is used
to minimize disruption. Then ARP, through its interaction with KD, attempts to
discover a long-term solution to recover from the fault. The topology for the
described scenario is shown in Fig. 2.

4.1 Automated Recovery Using Outbound TE Algorithm

Based on the proposed architecture, the first step after a failure is detected
is to react with a short-term solution to minimize disruption. This solution is
preplanned by executing an EP selection algorithm in advance and storing its
output as policies on the Policy Repository. The algorithm’s output is based
on a generated synthetic inter-domain traffic matrix. The traffic matrix consists

Fig. 2. Scenario Topology: (a) EP selection problem inputs, (b) PrimaryEgressPoint
selection, (c) BackupEgressPoint selection if j1 fails

114 F. Liu et al.

Table 1. Assignment of Primary and Backup Egress Point selection

Prefix Primary Backup

if J1 fails if J2 fails if J3 fails

k1 J1 J2 J1 J1
k2 J3 J3 J3 J2
k3 J2 J2 J3 J2
k4 J1 J3 J1 J1

of a set of inter-domain traffic flows that originates from each ingress point
towards each of the considered destination prefixes. Each inter-domain traffic
flow is associated with a randomly generated bandwidth demand according to
uniform distribution. We use a sample topology and traffic flow to demonstrate
the applicability of our recovery methodology. Details about the algorithm and
evaluation results can be found in [5].

For a better understanding of our EP selection algorithm, we provide an exam-
ple in Fig. 2. Figure2(a) illustrates the inputs for the EP selection problem, com-
prising ingress routers i1 and i2, EP j1, j2 and j3, inter-domain traffic demands
t1 = t(i1, k1), t2 = t(i1, k2), t3 = t(i2, k3) and t4 = t(i2, k4). The destination
prefixes k1, k2, k3 and k4 that can each be reached through all the three EP are
also shown. Recall that the task of the EP selection problem is to determine, for
each destination prefix, both a PrimaryEgressPoint to be used under no failure
and a BackupEgressPoint to be used when its PrimaryEgressPoint has failed.
Figure2(b) shows a potential solution of PrimaryEgressPoint selection, where t1
and t4 reach their destination prefix k1 and k4 respectively through EP j1, t2
reaches its destination prefix k2 through EP j3 and t3 reaches its destination
prefix k3 through EP j2. This assignment corresponds to Table 1 column 2. In
addition, Figure2(c) illustrates a potential solution of BackupEgressPoint selec-
tion when EP j1 has failed. As shown, t1 has been re-assigned to EP j2 to reach
k1 and t4 has been re-assigned to EP j3 to reach k4 as their BackupEgressPoint.
This assignment corresponds to Table 1 column 3 and according to the high-level
goal, this solution achieves inter-domain link load balancing. To implement this
solution, e.g. for prefix k1 the largest value of BGP local-preference, e.g. 100,
should be assigned to its selected PrimaryEgressPoint (i.e. EP j1), the second
largest value, e.g. 80, should be assigned to its selected BackupEgressPoint (i.e.
EP j2) and any BGP local-preference value less than 80, e.g. 50, can be assigned
to the remained EP (i.e. EP j3).Also for prefix k4 the largest value of BGP
local-preference, e.g. 100, should be assigned to its selected PrimaryEgressPoint
(i.e. EP j1), the second largest value, e.g. 80, should be assigned to its selected
BackupEgressPoint (i.e. EP j3) and any BGP local-preference value less than
80, e.g. 50, can be assigned to the remained EP (i.e. EP j2).Moreover since the
other two prefixes reachable through j1 (i.e. k2 and k3) are assigned to j1 for
neither Primary nor Backup, their BGP local preference should be any value less
than 80 e.g. 50. Table 2 shows the assignment of BGP local-preference setting

An Architecture for Supporting Network Fault Recovery Management 115

Table 2. Local-pref setting and policies for prefixes on Egress Points

Egress Point Prefix BGP local Policies
preference (Event==setupEP()

J1 if (EP==j1)
k1 100 then[(set-local-pref(k1)=Prim-val)
k2 50 (set-local-pref(k2)=Low-val)
k3 50 (set-local-pref(k3)=Low-val)
k4 100 (set-local-pref(k4)=Prim-val)][P1]

J2 if (EP==j2)
k1 80 then[(set-local-pref(k1)=Back-val)
k2 80 (set-local-pref(k2)=Back-val)
k3 100 (set-local-pref(k3)=Prim-val)
k4 50 (set-local-pref(k4)=Low-val)][P2]

J3 if (EP==j3)
k1 50 then[(set-local-pref(k1)=Low-val)
k2 100 (set-local-pref(k2)=Prim-val)
k3 80 (set-local-pref(k3)=Back-val)
k4 80 (set-local-pref(k4)=Back-val)][P2]

Initial configuration policy

Event==BGP-conf
if (-)
then [(set-local-prefs([Prim-val,Back-val,Low-val],[100,80,50]))
,gen-event-setupEP(j1,j2,j3)] [P0]

for prefixes k1 to k4 on all EPs. These configuration settings are enforced on the
EPs by their PEP based on policies (P1,P2,P3). An initial configuration policy
(P0) is used by the network administrator, to configure the proper values for
BGP local-preference. The benefit of combining a TE algorithm with a PBM
approach is the creation of a flexible management environment able to quickly
react to failures. In parallel, our framework automatically works to recover from
the failure and recovery policies are used as input to the ARP subsystem. With
the cooperation of KD, ARP outputs a new recovery plan that PBM can enforce to
the network and reinstate normal operation.

4.2 Automated Recovery Using Planning Algorithm

To show how the planning and knowledge discovery subsystems collaborate,
we present here an example based on the aforementioned border router (EP)
failure scenario. The objective of collaboration between the two subsystems is
to produce long-term fault recovery solutions.

After the router failure is recognized, the first stage recovery procedure is
activated in order to sustain the current traffic and minimize the disruption of
the failure. Whereas such a solution can be regarded as a short-term measure, a
long-term recovery measure is still needed to completely recover from the failure
and reinstate normal operation.

116 F. Liu et al.

Algo. 1: Automated Planning
Input: O: set of actions
s0, g: initial state, goal state
Output: π sequence of actions

1 s← s0
2 π ← ∅
3 while True do
4 if s satisfies g then
5 return π
6 A ← {a|a ∈ O & precond(a) true in s}
7 applicable ← A
8 if applicable= ∅ then
9 return failure
10 choose a ∈ applicable
11 s← γ(s, a)
12 π ← π.a

Algo. 2: Action Optimization
Input: C: set of retrieved cases ci;
R, τ : request with symptoms rj , threshold
Output: σ optimal set of actions

1 Σ ← ∅
2 Σ∗ ← ∅
3 for each ci ∈ C & rj ∈ R do
4 σ ← {a|a ∈ ci & a satisfies any rj ∈ R}
5 Σ ← Σ ∪ σ
6 while True do
7 for each σ ∈ Σ do
8 evaluate f(σ)
9 if σ is optimal then

10 return σ
11 Σ∗ ← {σ|σ ∈ Σ & f(σ) > τ }
12 Σ ← {σ|σ generalized by σ∗ & σ∗ ∈ Σ∗}

The long-term recovery process is activated by the reports from then moni-
toring component. The domain analysis module analyzes the monitoring report
and extract the current global state. The current global state includes the infor-
mation on the impacted component and other relevant information. Note that
the granularity of monitoring information will affect the later planning process.
For example, a report states The primary router is impacted by failure and it has
OS version 2.3 will be more useful for planner to compose a better plan than
just states The primary router is impacted. The global states are represented by
the set of predicates.

After the failure source is known, the domain analysis module dispatches a
search request to KD in order to find possible resolution steps to recover the
component. KD collects solutions from various sources, then runs the reasoning
engine on the retrieved solutions before returning the proposed actions to the
analysis module. The reasoning engine uses the optimization technique based on
the GA algorithm to provide an optimal set of actions, see Algo. 2. The discovered
recovery actions have to be translated into a planning-specific language. For
example, if a recovery action involves upgrading the router OS, this action could
be described in PDDL [8] as:

(:action fetch_update

:parameters(?r - router ?p - patch ?cv - currentversion

?nv - latest version)

:precondition(and ((failed ?r) (patch_at ?r ?p ?cv)

(< (?cv ?nv))))

:effect(and ((updated ?r ?nv ?p) (= (?cv ?nv)))))

The parameter field denotes which parameters are needed for this action. The
field precondition describes the conditions, under which the fetch update ac-
tion could be applied. The effect field denotes the consequence of this action,
i.e. how this action is going to effect the global state. The question mark denotes
the variables. The initial state, goal state and recovery options formulate a plan-
ning domain. The automated planner operates on the planning domain for one
or more feasible plans. The planning algorithm[9] is described by Algo. 1. Note
that only those actions (a ∈ O) which cause state changes and the current state

An Architecture for Supporting Network Fault Recovery Management 117

s are considered as parameters of γ function in this algorithm, events are left
out for the sake of simplicity.

Recovery actions are selected based on their preconditions and current global
state. Each action leads the current global state into a new state, this iteration
finishes when the new state equals goal state. The generated plan is a sequence
of actions which transit the initial state into the goal state.

5 Related Work

The study of Mark et al. [10] has proposed an automatic system for finding
known software problems. The system matches the symptoms of the current
problems with the symptom database to find the closest matches. The matching
algorithm is designed to work with structured symptoms that contain program
call stack, not arbitrary data. The recent study of Stefania et al. [11] has proposed
a CBR system for self-healing in software systems. The description of the system
lacks some details. Any case is represented in features which contain binary
and symbolic values. Cases are retrieved by using the k-NN algorithm; where
the similarity distance function evaluates case features with the corresponding
weight values, but the weight function for features is not provided. The system
mainly depends on the retrieval process to classify problems.

Policy-Based Management (PBM) simplifies the complex management tasks
of large scale systems, since high-level policies monitor the network and auto-
matically enforce appropriate actions [4,12,13]. Industry and PBM have been
closely related in autonomic computing and self-management approaches [14].
The main advantage which makes a policy-based system attractive is the func-
tionality to add controlled programmability in the management system without
compromising its overall security and integrity. Policies can be viewed as the
means to extend the functionality of a system dynamically and in real time in
combination with its pre-existing hard-wired management logic [4,13]. Policies
are introduced to the system and parameterized in real time, based on man-
agement goals and gathered information. Policy decisions generate appropriate
actions on the fly to realize and enforce those goals.

Outbound inter-Autonomous System (AS) Traffic Engineering [5,6,1] is a set
of techniques for controlling inter-AS traffic exiting an AS by assigning the traf-
fic to the best egress points (i.e. routers or links from which the traffic is for-
warded to adjacent ASes towards destinations. The general problem formulation
of outbound TE is: given the network topology, BGP routing information and
inter-domain Traffic Matrix (TM), determine the best Egress Point (EP) for
each traffic demand so as to optimize the overall network performance,such as
inter-AS link load balancing [1].

Srivastava et al. [15] discussed the feasibility and theoretical aspects on using
planning methods in autonomic computing. They concluded that automated
planning is an evolutionary next step for autonomic systems that possess the
self-managing capabilities. Kephart [14] addresses in his paper the challenges
of using AI-based planning methods to the autonomic computing. Arshad et al.

118 F. Liu et al.

[16] presented a planning based recovery system for distributed system. However
the proposed approach has several disadvantages; e.g. the recovery knowledge
elicitation is not considered and lack of details in many aspects of applying
automated planning methods in fault recovery.

6 Conclusion

Motivated by the need for an efficient fault recovery management, we have pre-
sented our initial efforts towards an integrated architecture. By combining the
strengths of three paradigms: Automated Recovery Planning, Knowledge Dis-
covery and Policy-based Management, we attempt to provide an automated
framework. We have demonstrated a dual stage recovery process based on a case
study of border router (EP) failure, aiming to maintain optimized configuration
of outbound inter-domain traffic and quickly reinstate normal operation.

Beyond initial architecture design, we intent to investigate further interactions
among subsystems and define generic and reusable interfaces. This will allow the
extension of the architecture to a variety of case studies. We will aim to increase
the automation of recovery and plan execution, thus minimizing human inter-
vention and recovery times. Our future work will focus on intelligent planning
algorithms that will combine system knowledge and business goals, aiming to
gradually migrate to fully automated fault recovery management.

Acknowledgments. The work reported in this paper is supported by the EC
IST-EMANICS Network of Excellence (#26854).

References

1. Bressoud, T., Rastogi, R., Smith, M.: Optimal configuration for bgp route selection.
In: Proc. IEEE INFOCOM (2003)

2. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Communications 7(1), 39–59 (1994)

3. Tran, H.M., Schönwälder, J.: Distributed Case-Based Reasoning for Fault Man-
agement. In: Proc. 1st International Conference on Autonomous Infrastructure,
Management and Security, pp. 200–203. Springer, Heidelberg (2007)

4. Verma, D.C.: Simplifying network administration using policy-based management.
IEEE Network 16(2) (2002)

5. Amin, M., Ho, K., Howarth, M., Pavlou, G.: An integrated network management
framework for inter-domain outbound traffic engineering. In: Helmy, A., Jennings,
B., Murphy, L., Pfeifer, T. (eds.) MMNS 2006. LNCS, vol. 4267, pp. 208–222.
Springer, Heidelberg (2006)

6. Feamster, N., Borkenhagen, J., Rexford, J.: Guidelines for interdomain traffic en-
gineering. SIGCOMM Comput. Commun. Rev. 33(5), 19–30 (2003)

7. Tran, H.M., Schönwälder, J.: Heuristic Search using a Feedback Scheme in Unstruc-
tured Peer-to-Peer Networks. In: Proc. 5th International Workshop on Databases,
Information Systems and P2P Computing. Springer, Heidelberg (2007)

8. McDermott, D., et al.: Pddl - the planning domain definition language (1998)

An Architecture for Supporting Network Fault Recovery Management 119

9. Nau, D., Traverso, P., Ghallab, M.: Automated Planning - Theory and Practic.
Morgan Kaufmann, San Francisco (2004)

10. Brodie, M., Ma, S., Lohman, G., Syeda-Mahmood, T., Mignet, L., Modani, N.,
Champlin, J., Sohn, P.: Quickly finding known software problems via automated
symptom matching. In: Proc. 2nd International Conference on Automatic Com-
puting, Washington, DC, USA, pp. 101–110. IEEE Computer Society Press, Los
Alamitos (2005)

11. Montani, S., Anglano, C.: Case-based reasoning for autonomous service failure
diagnosis and remediation in software systems. In: Proc. 8th European Conference
on Case-Based Reasoning, pp. 489–503. Springer, Heidelberg (2006)

12. Hadjiantonis, A.M., Charalambides, M., Pavlou, G.: A policy-based approach for
managing ubiquitous networks in urban spaces. In: Proc. IEEE International Con-
ference on Communications (ICC 2007) (2007)

13. Flegkas, P., Trimintzios, P., Pavlou, G.: A policy-based quality of service manage-
ment system for ip diffserv networks. IEEE Network 16(2) (2002)

14. Kephart, J.O.: Research challenges of autonomic computing. In: Proc. 27th In-
ternational Conference on Software Engineering (ICSE 2005). ACM, New York
(2005)

15. Srivastava, B., Kambhampati, S.: The case for automated planning in autonomic
computing. IEEE, Los Alamitos (2005)

16. Arshad, N., Heimbigner, D., Wolf, A.L.: A planning based approach to failure
recovery in distributed systems. In: Proc. 1st ACM SIGSOFT workshop on Self-
managed systems, pp. 8–12. ACM, New York (2004)

RLTE: Reinforcement Learning for

Traffic-Engineering

Erik Einhorn and Andreas Mitschele-Thiel

Technical University Ilmenau,
Integrated Hardware and Software Systems Group,

98684 Ilmenau, Germany
{erik.einhorn,mitsch}@tu-ilmenau.de

Abstract. Quality of service (QoS) is gaining more and more impor-
tance in today’s networks. We present a fully decentralized and self-
organizing approach for QoS routing and Traffic Engineering in connec-
tion oriented networks, e.g. MPLS networks. Based on reinforcement
learning the algorithm learns the optimal routing policy for incoming
connection requests while minimizing the blocking probability. In con-
trast to other approaches our method does not rely on predefined paths
or LSPs and is able to optimize the network utilization in the pres-
ence of multiple QoS restrictions like bandwidth and delay. Moreover,
no additional signaling overhead is required. Using an adaptive neural
vector quantization technique for clustering the state space a consider-
able speed-up of learning the routing policy can be achieved. In different
experiments we are able to show that our approach performs better than
classical approaches like Widest Shortest Path routing (WSP).

1 Introduction

Network traffic has become very versatile within the last few years. Each
network application makes different demands on the underlying network

infrastructure. Streaming Video on Demand (VoD) for instance requires a high
bandwidth while for Voice over IP (VoIP) a small delay is more important. The
ability to guarantee certain network parameters like bandwidth, delay, jitter, loss
or availability usually is referred to as Quality of Service (QoS). However, most
networks are still IP-based. Since IP is a connectionless protocol, IP packets do
not use specific paths between two communicating endpoints. This results in
unpredictable QoS in a best-effort network. In contrast, the connection oriented
Multiprotocol Label Switching (MPLS) standard [1] allows a better control for
traffic routing and Traffic Engineering [2]. Traffic Engineering decides how to
map the traffic requirements to the physical network in order to optimize the
whole network resource utilization [3].

However, the problem of optimal routing in the presence of multiple inde-
pendent QoS requirements is known to be NP-hard [4]. Therefore, heuristic or
approximation algorithms are applied to solve this problem. The most often used
algorithm for routing LSPs is the Min-Hop-Algorithm [5]. From all possible paths

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 120–133, 2008.
c© IFIP International Federation for Information Processing 2008

RLTE: Reinforcement Learning for Traffic-Engineering 121

between a source and a destination of a connection that fulfill the desired QoS
constraints, the one with the least number of links is chosen. This behavior
often results in bottlenecks and consequently connection requests are rejected
although other parts of the network still have enough resources available. The
widest-shortest path routing (WSP) [6] tries to solve this problem by choosing
the path with the largest residual bandwidth from all possible paths for a con-
nection. Thus, it avoids the usage of heavily loaded links. One major drawback
of this approach is the necessity for each node to have global knowledge about
the current load situation of the network. It therefore imposes an additional sig-
naling and information flooding overhead on the network. A more sophisticated
technique is used for the Minimum Interference Routing Algorithms MIRA [4],
LMIR [7] and DORA [8]. The main idea of these approaches is to route an in-
coming connection along a path that least interferes with other routes that may
be crucial to satisfy possible future requests. For this purpose, MIRA manages a
list of critical links and tries to preserve these links as long as alternative paths
are available. As a consequence, some links will remain underutilized leading to
a suboptimal usage of the network resources. Similar to WSP these approaches
also require global knowledge about the network state and therefore increase the
additional signaling overhead.

Apart from the aforementioned “classical” routing approaches a couple of al-
ternative methods have been researched recently. Some of them use Ant Colony
Optimization (ACO) for QoS routing in MPLS networks [9]. Other researchers
have studied how reinforcement learning can be used to solve routing prob-
lems. In contrast to the classical routing protocols based on heuristics, where
the routing decision is explicitly specified within the routing algorithm, rout-
ing approaches based on reinforcement learning are able to learn the routing
on their own depending on a feedback given by the network. At first reinforce-
ment learning was used for routing in IP networks. Boyan and Littman [10]
use Q-Learning to learn an optimal routing policy that minimizes the delay for
packet transmissions. In [11] the optimal policy is obtained using policy search
via gradient ascent. In both publications the authors are able to show that
their approach performs better than shortest path routing. In [3] a “Distributed
Adaptive Path Selection Scheme” for MPLS networks (MAPS) is presented. This
method uses reinforcement learning agents located at the networks edge routers.
In comparison with Widest Shortest Path (WSP) MAPS significantly reduces
the blocking probability without having global knowledge about the core net-
work and hence without additional signaling traffic. However, the approach only
focuses on the selection of predefined paths. Feasible paths must be established
using a k-shortest path algorithm beforehand [3]. Therefore, the approach can
not dynamically react to changes in the network topology or link failures. The
same disadvantage applies for an approach that is described in [12] and that
uses reinforcement learning to obtain a set of load-sharing factors for optimal
load-sharing among different LSPs in MPLS networks.

In this paper we present a novel QoS routing algorithm based on reinforcement
learning which can be used in MPLS networks or other connection oriented

122 E. Einhorn and A. Mitschele-Thiel

networks that support QoS. In contrast to the approaches mentioned above
our algorithm does not rely on predefined paths. Instead it learns feasible paths
depending on the connection requests while minimizing the blocking probability.
Our approach is distributed and does neither need any global knowledge about
the network topology nor the current load situation of the whole network, instead
local information is sufficient. Moreover, it does not only consider the bandwidth
as one QoS parameter as most of the above approaches do, instead it also takes
delay restrictions into account. Furthermore, our approach should attain the
following goals that we consider important:

1. Compared to heuristic routing approaches like WSP that rely on global
knowledge about the network, the approach should at least achieve a similar
performance although it uses local information only.

2. The learning time - a major drawback of reinforcement learning approaches
- must be reduced to a minimum and should scale well if the network size
increases.

3. The approach must be able to react dynamically on changes in the network
topology such as link and node failures.

The organization of this paper is as follows. In the next sections the QoS routing
problem is defined. Thereafter our algorithm is described in detail and we present
techniques to achieve the goals mentioned above. In section 4 we present the
results of different simulations and experiments before we conclude the paper
with a summary.

2 Problem Definition

We consider a network described by the quadruple G = (N, L, B, D) consist-
ing of a set of n nodes (routers) N = {1, . . . , n} and a set of m links (arcs)
L = {1, . . . , m}. Furthermore, the functions B : L �→ R and D : L �→ R assign
a certain bandwidth B(l) and some delay D(l) to each link l ∈ L. In contrast to
other approaches, neither bandwidth nor delay need to be integers. Furthermore,
it is not necessary to distinguish between ingress, egress and core routers. In our
approach each node n ∈ N actually can be sending or receiving node. However,
if the algorithm is used in MPLS networks, the differentiation between core and
edge routers will be induced by the MPLS network.

Let R = (r0, . . . , ri, . . .) be the (generally infinite) sequence of connection
requests that arrive at the network, where each connection request or call ci =
(d, β, δ) sent from some source node s ∈ N specifies the address of the destination
node d ∈ N a bandwidth demand β ∈ R and a maximum delay restriction δ ∈ R

for the desired connection. Since we do not rely on predefined paths or LSPs,
the QoS routing algorithm has to find an appropriate path p = (l1, l2, . . . , lk)
of adjacent links that connects the ingress-egress pair (s, d) and that fulfills the
desired QoS requirements, namely:

1. the required bandwidth demand:
k

min
i=1

B̌(li) ≥ β

RLTE: Reinforcement Learning for Traffic-Engineering 123

2. the maximal delay constraint:

k∑

i=1

D(li) ≤ δ

where B̌(li) denotes the residual bandwidth that is available for link li. If the
path does not satisfy these constraints, the connection request is blocked and re-
jected. Otherwise the connection can be established and the required bandwidth
is reserved. The resources remain reserved until the connection is released.

The concern of an optimal QoS routing approach now is to find an optimal
routing policy that maximizes the number of accepted requests or in other words
minimizes the blocking probability of the connection requests.

3 Reinforcement Learning for Traffic Engineering

Our reinforcement learning approach for finding such a routing policy is based
on the SARSA-Learning algorithm [13], a variant of Q-Learning. Since SARSA-
Learning and Q-Learning are quite common techniques for reinforcement learn-
ing they will not be described in detail here. Further information can be found
in [13,14] and [15].

Reinforcement learning (RL) is one type of Machine Learning, where a RL-
agent learns how to map situations (states) to actions to maximize a numerical
reward signal [15]. This mapping of states S to actions A is called policy π :
S �→ A. In SARSA- and Q-Learning the policy can be determined by learning
an action-value function Q : S×A �→ R. This function gives the expected reward
Q(st, at) for starting in state st ∈ S, taking action at ∈ A and then following
policy π thereafter. For choosing action at in state st the RL-agent receives a
reward rt and attains to state st+1 where it again selects some action at+1. The
SARSA-Learning rule will then update the Q-values as follows [15]:

Q(st, at)← (1− β)Q(st, at) + β
[
rt + γQ(st+1, at+1)

]
(1)

where the β notates the learning rate and γ the so-called discount rate.
For selecting an action the softmax action selection can be used. It is based

on the Boltzmann distribution and chooses a certain action a ∈ A in state s with
the following probability:

P (a) =
exp

(
Q(s,a)

T

)

∑
b∈A exp

(
Q(s,b)

T

) (2)

where the parameter T is called the temperature. High temperatures cause the
actions to be all (nearly) equi-probable [15]. For low temperatures the softmax
action selection converges to a greedy action selection that chooses the action
with the highest Q-value. In our experiments a temperature between 0.1 and
0.25 gives the best results.

124 E. Einhorn and A. Mitschele-Thiel

Overview

In our approach we use one RL-agent A that is distributed over the network.
Each node (router) i ∈ N of the network contains one part Ai of the RL-agent
that is responsible for learning just one part πi : Si �→ Ai of the whole policy
π. Without loss of generality we assume that adjacent links for each node i are
renumbered in ascending order from 1 to mi. Moreover, we assume that the
partial agent Ai at each node is able to measure the residual bandwidth B̌(j)
and the delay D(j) of each adjacent link j ∈ (1, . . . , mi).

For signaling the connection requests and for establishing the paths we use
a simple protocol similar to RSVP-TE [16]. The protocol uses a few messages
only, that are described afterwards. For each incoming connection request a
PathResv-message is sent hop-by-hop to the destination node. Analogous to [10]
the partial RL-agent Ai at each node i ∈ N has to select one of its outgoing
links for forwarding the PathResv-message to the next hop (see Fig. 1a). If the
PathResv-message successfully arrives at its targeted node, a ResvAcc-message
is sent back to the sender of the connection request. This ResvAcc-message
takes the reverse path as the corresponding PathResv-message and reserves the
required resources for the connection. Additionally, this ResvAcc-message con-
tains a positive reward, that reinforces the action each partial agent has selected
(see Fig. 1b). If one of the demanded QoS parameters could not be satisfied at
some chosen link, a ResvReject-message is sent back to the sender taking the
reverse path of the PathResv-message. In contrast to the ResvAcc-message the
ResvReject-message contains a negative reward. By including the reward into
the necessary signaling messages any additional signaling overhead is avoided.

In a real world implementation the reward can be easily included as additional
object into the signaling messages of the RSVP-TE protocol.

Detailed Algorithm

As stated above, for each incoming PathResv-message containing a connection
request ct = (d, β, δ) the agent Ai chooses one of its outgoing links as action
at ∈ Ai using the softmax action selection. Since the links are numbered in as-
cending order, the discrete action space can be described by Ai = {1, . . . , mi}.
The action selection depends on the current state of the agent, which is deter-
mined by taking the destination address d, the bandwidth requirement β and
the delay restriction δ of the connection request ct = (d, β, δ) into account. Ad-
ditionally, the residual bandwidths B̌(1), . . . , B̌(mi) of all of adjacent links are
measured. Using this information a state vector st ∈ Si is formed:

st =
(
d, β, δ, B̌(1), . . . , B̌(mi)

)�
(3)

Please note, that no global knowledge about the network state is required here
at all.

Each partial RL-agent keeps track of its chosen action and the state which led
to that action. This allows the agent to associate the correct state-action pairs to

RLTE: Reinforcement Learning for Traffic-Engineering 125

the delayed reward that arrives later with the corresponding ResvAcc-message
or ResvReject-message. However, although the RL-agent attains a new state
with each arriving connection request, it does not need to maintain all of these
states. In practice the state and the chosen action can be recovered when the
ResvAcc-message or ResvReject-message returns to the agent and do not need
to be stored inside of each agent.

Corresponding to the selected action at the PathResv-message is forwarded
along the chosen link j to the next node k ∈ N and its partial agent Ak. Thereby,
the delay restriction δ of the PathResv-message is decreased by the delay D(j)
of the chosen link. The connection request that arrives at node k can then
be described by ct+1 =

(
d, β, δ − D(j)

)
. It will bring the distributed agent

A into a new state st+1 that is observed by the partial agent Ak according to
equation 3 again using local information only. Once more an action at+1 is chosen
for forwarding the message (see Fig. 1a).

Using this forwarding mechanism the PathResv-message will finally arrive
at its destination node d. As described earlier a ResvAcc-message containing a
positive reward r will be sent back to the sender taking the reverse path as the
corresponding PathResv-message.

The PathResv-message is also used by each partial agent to propagate its Q-
value Q(s, a) of the observed state s and the taken action a back to the previous
node on the path. Therefore, each partial agent that was involved in forwarding
the PathResv-message will receive a corresponding ResvAcc-message containing
a reward rt and the Q-value Q(st+1, at+1) of its subsequent node (see Fig. 1b).
Together with its own state st and its chosen action at each agent is able to
adapt its own Q-values Q(st, at) according to the SARSA-learning rule using
equation 1. The same mechanism is used for ResvReject-messages, that are

i

k

PathResv:
ct = (d, β, δ)

st =
(
d, β, δ, B̌(1), . . . , B̌(mi)

)�
at = j

PathResv:
ct+1 =

(
d, β, δ − D(j)

)

(st+1, at+1)

B̌(1)
...

B̌(mi)
B̌(j)

j

(a) PathResv-message

i

k

ResvAcc:
rt, Q(st+1, at+1)

(st, at)

(st+1, at+1)

j

(b) ResvAcc-message

Fig. 1. a: The PathResv-message containing the connection request ct is sent hop-by-
hop towards the destination node. Depending on the current state st each partial agent
selects one link as action at for forwarding the message. This will bring the distributed
agent into the state st+1. Each state is observed by only taking local information of the
concerning partial agent into account. b: The ResvAcc-message takes the reverse path
as the PathResv-message and carries the reinforcement rt and the Q-value Q(st+1, at+1)
of each subsequent node.

126 E. Einhorn and A. Mitschele-Thiel

sent if one of the QoS restriction is not satisfied during the path selection. The
only difference is that ResvReject-messages contain a negative reward. If the
ResvReject-message finally arrives at the sending node it depends on the upper
layer protocols if the request is sent again or definitely rejected.

At the beginning all Q-values are initialized uniformly and each partial RL
agent begins its learning tabula rasa. Hence, for the first arising connection re-
quests the routing in the network will be random. After some time of exploration
and learning the agents will develop a feasible routing policy and perform better
with each new request. In section 4 we show that the required time for learning
is acceptable in comparison to classical routing approaches.

State Space Clustering

Most related RL-based algorithms for routing [3][10] use a table where the Q-
values of each state-action pair are stored. However, since our state space is
continuous we cannot use such a table based Q-Learning approach here. Addi-
tionally, as seen in equation 3 each state consists of 3 + m elements, where m
is the number of outgoing links. Hence, the dimension of the state space can
become very high depending on the valency of the nodes. This would lead to a
slow convergence while learning the optimal routing policy. Therefore, we have
to apply some kind of state space clustering.

Similar to [17] we use a variant of Growing Neural Gas (GNG) [18] as adaptive
neural vector quantization technique for optimal clustering of the continuous
state space. The neurons of the GNG store the Q-values for the actions of the
action space A and they are associated to reference vectors in the state space,
which can be regarded as positions of the corresponding neurons. Depending on
its position wn ∈ S each neuron n is responsible for a certain (voronoi) region
in the state space S.

To obtain the Q-value Q(s, a) for a given state-action pair (s, a) the best-
matching neuron of the GNG is chosen, i.e. the neuron whose reference vector
wn has the smallest Euclidean distance to the state s. Finally, the desired Q-
value stored in the best-matching neuron can be obtained as seen in Fig. 2.

sn

a1 . . . am

Q
(s

n
,a

i
)

..
.

Q
(s

n
,a

m
)

s

wn

best-matching neuron

Fig. 2. The state space is clustered using a GNG (left). For obtaining a certain Q-value
Q(s, a) the best-matching neuron for the state s is chosen. It contains a table with the
corresponding Q-values for each action (right). The different colors indicate, that the
Q-values of neurons close to the state s are adapted more than the values of neurons
in larger distances during a learning step.

RLTE: Reinforcement Learning for Traffic-Engineering 127

Similar to [19] we insert new neurons if the distance between the best-matching
neuron and the state exceeds a certain threshold. While learning we do not only
adapt the Q-values of the best-matching neuron according to the learning rule
in equation 1 but also the Q-values of the topologically neighboring neurons,
since they represent similar states. Neurons close to the best-matching neuron
are adapted more (with a higher learning rate) than neurons in larger distances.
This method is elaborately described in [17] and increases the speed of learning
dramatically as shown in section 4.

In our approach each partial RL-agent at each node uses its own GNG to cluster
its state space. However, the destination address of the connection request that is
specified in each state is not yet included into the state space clustering. Hence, our
next step will be to perform the clustering over the whole state space comprising
the destination addresses. To do so a topological addressing scheme and an appro-
priate metric must be chosen. If two nodes in the network were separated by one or
a few hops only, the metric should yield a small distance for the addresses of both
nodes. If - on the other hand - both nodes were separated by many hops, the met-
ric should yield a big distance for the addresses. Geographic addressing [20,21] and
the Euclidean distance e.g. satisfy these requirements but do not support mobility.
Therefore, we have to research other suitable addressing schemes first.

Convergence of the Approach

It has been shown that Q-Learning will converge to an optimal policy if certain
conditions are met. One requirement is that the whole decision process must be
Markovian and fully observable. However, we apply SARSA-Learning although
we are dealing with a Markovian decision process that is only partial observable
(POMDP). Additionally, our state space is not discrete. Therefore, the conver-
gence to the optimal policy can not be guaranteed. Nevertheless, in section 4
we show that our approach at least converges to a routing policy that performs
better than classical approaches.

Analysis of the Runtime and Learning Complexity

One advantage of our reinforcement learning routing approach is that it is com-
putationally inexpensive and does not require extensive router hardware. The
whole algorithm is distributed over all routers of the network. For a connection
request each router merely has to look up some Q-values, select an action and
adapt the Q-values afterwards. The adaption according to the learning rule is
cheap. The look-up of the Q-values is more expensive since it includes finding the
best-matching neuron in the GNG which usually is done by a nearest neighbor
search. For a very high dimensional state space an approximate nearest neighbor
search based on locality sensitive hashing is suitable. Using this method a query
time of O(dNO(1)) [22] can be achieved, where N is the number of neurons in
the GNG and d = 3 + m is the dimension of the state space of a router with
m outgoing links as described earlier. Obviously, the runtime does neither de-
pend on the number of routers nor the amount of links, therefore the runtime
complexity of each routing decision is O(1) in terms of the network size.

128 E. Einhorn and A. Mitschele-Thiel

Unfortunately, the biggest problem of reinforcement learning based approaches
is the required time for learning a feasible routing policy if they are applied to a
completely new network without any prior knowledge. As stated earlier the rout-
ing will be random during the bootstrapping at the beginning and many requests
will not reach their destination, which results in a high blocking rate. Depending
on the network layout the number of possible paths between a source-destination
pair that have to be learned by each RL-agent usually increases with the square
of the distance between both nodes. Therefore, the learning complexity and time
for bootstrapping increases according to O(r2) where r is the average number of
hops between all source-destination pairs. However, in practice the size of net-
works increases incrementally by adding few new nodes or links only and hence
the learning complexity will be smaller.

4 Results

We have implemented our QoS-routing approach and simulated the packet flow,
the routing and the resource reservation using a discrete event network simula-
tor. In our tests we have compared our RLTE approach to the often used Widest-
Shortest-Path routing (WSP). As mentioned in section 1 WSP chooses the path
with the largest residual bandwidth from all possible shortest paths between a
source and a destination. Additionally, WSP needs information about the current
load situation of the network. If a high refresh rate for updating this information is
chosen, WSP will perform better but imposes a larger signaling overhead and vice
versa. In the following results we have used different refresh intervals for WSP.

Since bandwidth and delay are inherently guaranteed by the routing approach,
the blocking probability, i.e. the ratio of blocked and requested connections
within a certain period of time, remains the most important measure of the
routing performance. In the first test we have compared the blocking probabil-
ity of our approach with WSP. We have used the topology shown in Fig.3a. It

S1

S2

S3

D1

D2

1 2

4 5

6 7

3

100

10

20

(D1, 4, 1..5)

(D2, 3, 1..5)

(D2, 4, 5..10)

(a) topology for the first test

r

S

D1

D2D4r

......

(b) regular meshed topology

Fig. 3. Different topologies that were used in our experiments. The radius r of the
right topology can be changed to simulate different network sizes.

RLTE: Reinforcement Learning for Traffic-Engineering 129

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

number of requests

b
lo

ck
in

g
p
ro

b
a
b
il
it
y

+

+
+

+
+ + + + +

+

+ +
+ + + + + + +

link failure
RLTE (GNG)

RLTE (table)

WSP (1)

WSP (∞)

+

Fig. 4. Comparison of the blocking probability of our RLTE approach with WSP. State
space clustering using GNGs speeds up the learning and our approach even performs
better than WSP with an unlimited refresh rate. It is also able to handle link failures
autonomously.

consists of three source nodes S1, . . . , S3 and two destination nodes D1, D2. The
bandwidth of the outgoing links of the source nodes is set to 100 in order to
avoid bottlenecks here. The bandwidth for the two links between the nodes 6, 7
and D2 is set to 20, the bandwidth of the remaining links is set to 10. The delay
of all links is 1. Each source node continuously sends connection requests to the
destination nodes. The connection requests are shown left to each source node.
S1 for example requests connections to node D1 with an allowed delay of 4 and a
randomly chosen bandwidth between 1 and 5. The arrival and the holding time
of new connections is exponentially distributed using an arrival rate of λ = 1
and an average holding time of μ = 1, i.e. on average each source node requests
one connection within one time unit and a duration of one time unit.

In Fig.4 our RLTE approach is compared to WSP. The blue graph marked
with +’s shows the blocking probability for RLTE with table based SARSA-
learning and the red graph marked with diamonds shows RLTE with state space
clustering using GNGs. In both cases the RL-agents start without any knowl-
edge about the network and cause high blocking rates at the beginning. It is
obvious that the clustering dramatically speeds up the learning and reduces the
blocking probability much faster. Hence, a smaller number of learning steps and
therefore less connection requests are necessary to achieve a certain blocking
probability.

After 100 requests and learning steps our proposed RLTE(GNG) approach
performs better than WSP(1) with a refresh interval of 1 time unit (dashed
green graph). Remember that the average inter arrival time of new requests
also is 1 time unit, hence for WSP(1) the refreshs occur as often as connection
requests and would impose a lot of signaling overhead in practice. After 4000

130 E. Einhorn and A. Mitschele-Thiel

learning steps our approach even performs better than WSP(∞) with an infinite
refresh rate, where each WSP router has access to the current global network
state at any time (solid green graph). Of course an infinite refresh rate for WSP is
not possible in practice. After 10000 requests we simulate a link failure between
node 6 and 7. Hence the connections must be rerouted. Right after the link
failure the blocking probability of our RLTE approach increases slightly more
than WSP(∞) but stays below WSP(1). A few requests later our approach has
adapted its routing policy and again performs better than WSP(∞). These tests
reveal that our approach can achieve the goals mentioned in the introduction to
this paper and performs better than WSP although it uses local information only.
Moreover in comparison to WSP the learning time of RLTE is not a problem.
100 request for bootstrapping are negligible and right after the link failure RLTE
still performs better than WSP(1).

To ascertain the impact of the network size on the required learning time
during the bootstrapping phase we use the meshed network topology shown in
Fig.3b. The radius r of the network graph can be varied in order to change
the number of nodes and links in the network. Both increase with the square
of the radius. At the center of the network we placed a source node S that
continuously sends connection requests to a randomly chosen destination node
Di at the periphery of the network. The bandwidth of all links is 10.0. It is
the advantage of the chosen network topology that all shortest paths between
the source node and the destination nodes have the same length r. Therefore,
at least r routing decisions have to be made in order to establish a connection
between the source S and one destination Di. For this network we use an arrival
rate of λ = 1 and an average holding time of μ = 2. As QoS parameters for each
connection the allowed delay is set to r + 2 to allow slightly longer paths than
the shortest ones and the required bandwidth is again chosen randomly between
1.0 and 5.0.

In Fig.5 the number of learning epochs and requests, that are needed to achieve
a blocking probability below a certain value, is plotted against the radius of
the network. As reference we use the blocking probability that WSP(1) and
WSP(10) with a refresh time of 1 and 10 respectively produce in the network
with the given size. The solid red graph for example shows, that after 200
learning epochs RLTE(GNG) starts to perform better than WSP with a refresh
time of 10 for a network with the radius r = 4. Again RLTE with state space
clustering outperforms its table based variant. As expected at the end of the
previous section the learning time increases with the square of the network size.
To reduce the learning complexity we have tried a different way for initializing
the Q-values. Instead of initializing the RL-agents tabula rasa, we provide them
with rudimental information about the network topology. At the beginning of
each simulation we apply the Dijkstra algorithm to compute the distance to each
destination node and initialize the Q-values of each agent depending on these
distances. The two green graphs marked with circles show that this significantly
reduces the necessary time for learning.

RLTE: Reinforcement Learning for Traffic-Engineering 131

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8

network size (radius r)

n
u
m

b
er

o
f
re

q
u
es

ts
(l
ea

rn
in

g
ep

o
ch

s)

+

+

+
table based

RLTE(GNG)

∼ Dijkstra init

RLTE(GNG)

∼ Dijkstra init

+
relating to
WSP(10.0)

WSP(1.0)

Fig. 5. Influence of the network size on the necessary time for learning. The graphs
show the required learning epochs to achieve at least the same blocking probability as
WSP with an refresh interval of 1 (dashed lines) and 10 (solid lines). Again state space
clustering reduces the learning time (red graphs). Initialization of the Q-values using
the Dijkstra algorithm leads to a further reduction (green graphs).

5 Conclusion and Future Work

In this paper we have presented a novel distributed and self-organized QoS rout-
ing approach that is based on reinforcement learning. In contrast to other re-
inforcement learning approaches our algorithm combines optimal path planing
and path selection and does not depend on predefined paths.

We have shown that our approach performs better than WSP routing al-
though it uses local information only and therefore does not impose any addi-
tional signaling overhead. Since we use a constant learning rate to achieve life
long learning our algorithm is able to react to link failures. While learning an al-
ternative optimal routing policy a differentiation between local and global repair
is no longer necessary. For the first time we have applied state space clustering
in a routing approach based on reinforcement learning. We have shown that the
state space clustering dramatically reduces the necessary time for learning the
routing policy to an acceptable level. This is essential if reinforcement learning
approaches shall be used for routing in “real life” networks. Moreover, we have
shown that the time for learning can be reduced if the RL agents are initialized
using basic network knowledge obtained by applying the Dijkstra algorithm.

In the future the learning time can be further decreased if a topological ad-
dressing scheme is used and the destination addresses are included in the clus-
tering as described in section 3. Then each agent will automatically cluster the
destination addresses and build its own optimal subnets. In contrast to most
other approaches our algorithm already takes two QoS constraints into account.
However, it can easily be extended to handle much more parameters just by

132 E. Einhorn and A. Mitschele-Thiel

expanding the state vector. In addition to the continuous state space a contin-
uous action space can be used. This will allow the agents to learn an optimal
load sharing policy. Thus, routing approaches based on reinforcement learning
have a high potential and provide many more possibilities that are worth to be
investigated in future research.

References

1. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architec-
ture. IETF RFC 3031 (2001)

2. Evans, J., Filsfils, C.: Deploying IP and MPLS QoS for Multiservice Networks:
Theory and Practice. Morgan Kaufmann, San Francisco (2007)

3. Liu, Y., Tham, C., Hui, T.: MAPS: A Localized and Distributed Adaptive Path
Selection Scheme in MPLS Networks. In: Proc. of IEEE Workshop on High Per-
formance Switching and Routing (HPSR) (2003)

4. Kodialam, M.S., Lakshman, T.V.: Minimum Interference Routing with Applica-
tions to MPLS Traffic Engineering. In: INFOCOM, vol. (2), pp. 884–893 (2000)

5. Awduche, D., Malcolm, J., Agogbua, J., O’Dell, M., McManus, J.: Requirements
for Traffic Engineering Over MPLS. IETF RFC 2702 (1999)

6. Guerin, R., Williams, D., Orda, A.: QoS Routing Mechanisms and OSPF Exten-
sions. In: Proc. of Globecom (1997)

7. Figueiredo, G., da Fonseca, N., Monteiro, J.A.S.: A minimum interference routing
algorithm. In: Proc. of the IEEE Int. Conf. on Communications, vol. 4 (2004)

8. Boutaba, R., Szeto, W., Iraqi, Y.: DORA: Efficient Routing for MPLS Traffic En-
gineering. Journal of Network and Systems Management, Special Issue on Internet
Traffic Engineering and Management 10, 309–325 (2002)

9. Carrillo, L., Marzo, J., Vilà, P., Fàbrega, L., Guadall, C.: A Quality of Service
Routing Scheme for Packet Switched Networks based on Ant Colony Behavior.
In: Proc. of the Int. Symposium on Performance Evaluation of Computer and
Telecommunication Systems, pp. 637–641 (2004)

10. Boyan, J.A., Littman, M.L.: Packet Routing in Dynamically Changing Networks: A
Reinforcement Learning Approach. In: Advances in Neural Information Processing
Systems, vol. 6, pp. 671–678. Morgan Kaufmann Publishers, Inc., San Francisco
(1994)

11. Peshkin, L., Savova, V.: Reinforcement learning for adaptive routing. In: Proc. of
the International Joint Conference on Neural Networks (IJCNN) (2002)

12. Heidari, F., Mannor, S., Mason, L.: Reinforcement learning-based load shared se-
quential routing. In: Proc. of the IFIP Networking (2007)

13. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering
Department (1994)

14. Watkins, C.: Learning from Delayed Rewards. PhD thesis, King’s College, Cam-
bridge University, UK (1989)

15. Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

16. Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RSVP-TE:
Extensions to RSVP for LSP Tunnels. IETF RFC 3209 (2001)

17. Gross, H.M., Stephan, V., Krabbes, M.: A Neural Field Approach to Topological
Reinforcement Learning in Continuous Action Spaces. In: Proc. 1998 IEEE World
Congress on Computational Intelligence WCCI 1998, pp. 1992–1997 (1998)

RLTE: Reinforcement Learning for Traffic-Engineering 133

18. Fritzke, B.: A Growing Neural Gas Network Learns Topologies. In: Tesauro, G.,
Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing
Systems 7, pp. 625–632. MIT Press, Cambridge (1995)

19. Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows when
required. Neural Networks 15, 1041–1058 (2002)

20. Watteyne, T., Auge-Blum, I., Dohler, M., Barthel, D.: Geographic Forwarding in
Wireless Sensor Networks with Loose Position-Awareness. In: Personal, Indoor and
Mobile Radio Communications, PIMRC, pp. 1–5 (2007)

21. Navas, J.C., Imielinski, T.: GeoCast – Geographic Addressing and Routing. In:
Mobile Computing and Networking, pp. 66–76 (1997)

22. Andoni, A., Indyk, P.: Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. In: 47th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2006, pp. 459–468 (2006)

SNMP Trace Analysis Definitions

Gijs van den Broek1, Jürgen Schönwälder2, Aiko Pras1, and Matúš Harvan3

1 Computer Science, University of Twente, Netherlands
j.g.vandenbroek@student.utwente.nl,

a.pras@utwente.nl
2 Computer Science, Jacobs University Bremen, Germany

j.schoenwaelder@jacobs-university.de
3 Computer Science, ETH Zurich, Switzerland

mharvan@inf.ethz.ch

Abstract. The Network Management Research Group (NMRG) started
an activity to collect traces of the Simple Network Management Protocol
(SNMP) from operational networks. To analyze these traces, it is neces-
sary to split potentially large traces into more manageable pieces that
make it easier to deal with large data sets and simplify the analysis of
the data. This document introduces some common definitions that have
been found useful for implementing tools to support trace analysis.

Keywords: simple network management protocol, traffic modeling.

1 Introduction

The Simple Network Management Protocol (SMMP) was introduced in the late
1980s. Since then, several evolutionary protocol changes have taken place, re-
sulting in the SNMP version 3 framework (SNMPv3), published as full standard
in 2002 [1,2]. Extensive use of SNMP has led to significant practical experience
by both network operators and researchers. However, up until now only little
research has been done on characterizing and modeling SNMP traffic.

Since recently, network researchers are in the possession of network traces,
including SNMP traces, captured on operational networks. The availability of
SNMP traces enables research on characterizing and modeling real world SNMP
traffic. Experience with SNMP traces has shown that traces must be large enough
in order to make proper observations. A more detailed motivation for collecting
SNMP traces and guidelines how to capture SNMP traces can be found in [3].

The analysis of large SNMP traces can take a large amount of processing time.
Therefore, it is often desirable to focus the analysis on smaller, relevant sections
of a trace. This in turn requires a proper way to identify these smaller sections
of a trace. This document describes a number of identifiable sections within a
trace which make specific research on these smaller sections more practical.

The rest of the paper is structured as follows. An overview of the definitions is
given in the next section and subsequent sections define messages, traces, flows,
slices, slice prefixes, and slice types. Related and future work is discussed before
the paper concludes.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 134–147, 2008.
c© IFIP International Federation for Information Processing 2008

SNMP Trace Analysis Definitions 135

Message Trace Flow

Slice Slice TypeWalk

belongs to0..* 1 contains1 0..*

contains

1

0..*

of type 10..*is a 10..1

Fig. 1. Relationship between messages, traces, flows, slices and slice types

2 Overview

Fig. 1 shows the various entities associated with an SNMP trace and how they
relate to each other.

The most central entity in Fig. 1 is an SNMP trace, consisting of a potentially
large set of SNMP messages. An SNMP trace is the result of recording SNMP
traffic on a specific network for a specific time duration. Such a trace may, de-
pending on the number of hosts in the respective network, contain SNMP mes-
sages exchanged between possibly many different SNMP engines. The messages
contained in a trace may be represented in different formats. For the purpose of
this document, the simple comma separated values (CSV) format defined in [3]
contains sufficient information to split a trace into smaller sections.

The SNMP messages belonging to an SNMP trace may have been exchanged
between many different SNMP engines running on different hosts. Therefore, a
first obvious way of separating a trace into smaller sets of SNMP messages is the
separation of a trace into flows. Each flow contains only those SNMP messages of
an SNMP trace that have been exchanged between two network layer endpoints.
Such a separation may be necessary in case one wants to analyze specific SNMP
traffic characteristics (e.g., number of agents managed by a management station)
and wants to rule out network endpoint specific behaviour (e.g., different SNMP
management stations may have different polling configurations).

Flows within traces can still be quite large in terms of the number of messages
they contain. Therefore, it may be necessary to split a flow into even smaller
sections called slices. A slice contains all SNMP messages of a given flow that
are related to each other in time and referenced information. Splitting a flow into
slices makes it possible to separate SNMP messages within traces that belong
to each other.

For example, a slice may contain the SNMP messages exchanged between
an agent and a manager, which polls that agent in a single polling instance.
The manager may be configured to poll that agent every once in a while. If the
requested information from the agent remains unchanged, then the respective
slices of SNMP traffic occurring between this manager and agent will be highly
comparable. In such a case the slices will be of the same slice type. Similar slices

136 G. van den Broek et al.

will thus be considered of the same slice type and incomparable slices will not
be of the same slice type.

Besides the fact that each slice is of specific slice type, slices can also be of
a specific form with respect to the messages encompassing a slice. For example,
slices containing a sequence of linked GetNext or GetBulk requests are commonly
called an SNMP walk. Note that only a subset of all slices will be walks.

3 Messages

SNMP messages carry protocol data units (PDUs) realizing a small set of well
defined protocol operations [4]. The PDUs can be used to classify SNMP mes-
sages.

Notation 1. The properties of an SNMP message M are denoted as follows:
M.type = operation type of message M (get, getnext, ...)
M.class = class of message M (according to RFC 3411)
M.tsrc = transport layer source endpoint of message M
M.tdst = transport layer destination endpoint of message M
M.nsrc = network layer source endpoint of message M
M.ndst = network layer destination endpoint of message M
M.reqid = request identifier of message M
M.time = capture timestamp of message M
M.oids = OIDs listed in varbind list of message M
M.values = values listed in varbind list of message M

These properties of an SNMP message can be easily extracted from the ex-
change formats defined in [3].

Definition 1. This definition establishes the following message classes:

1. A read request message is a message M containing a PDU of type Get-
Request, GetNextRequest, or GetBulkRequest.

2. A write request message is a message M containing a PDU of type Set-
Request.

3. A notification request message is a message M containing a PDU of
type InformRequest.

4. A notification message is a message M containing a PDU of type Trap
or InformRequest.

5. A request message is a message M which is either a read request message,
a write request message, or a notification request message.

6. A response message is a message M containing a PDU of type Response
or of type Report.

7. A non-response message is a message M which is either a read request
message, a write request message, or a notification message.

8. A command message is a message M which is either a read request mes-
sage or a write request message.

SNMP Trace Analysis Definitions 137

Report messages are treated like Response messages since the SNMPv3 specifi-
cations currently use Report messages only as an error reporting mechanism, al-
ways triggered by the processing of some request messages. In case future SNMP
versions or extensions use Report messages without having a request triggering
the generation of Report messages, we may have to revisit the definition above.

Definition 2. A set of command group messages consists of all messages
M satisfying either of the following two conditions:

1. M is a command message
2. M is a response message and there exists a command message C such that

the following holds:

M.reqid = C.reqid
M.tdst = C.tsrc
M.tsrc = C.tdst
(M.time − C.time) < t

The parameter t defines a maximum timeout for response messages.

This definition requires that the response message originates from the trans-
port endpoint over which the request message has been received. This is not
strictly required by SNMP transport mappings and in particular the UDP trans-
port mapping allows to send responses from different transport endpoints. While
sending response messages from a different transport endpoint is legal, it is also
considered bad practice causing interoperability problems, since some manage-
ment systems do not accept such messages.

It was decided to require matching transport endpoints since doing so signifi-
cantly simplifies the procedures below and avoids accidentally confusing requests
and responses. Implementations responding from different transport endpoints
will lead to (a) a larger number of requests without related responses (and likely
no retries) and (b) a similarly large number of responses without a matching re-
quest. If such behavior can be detected, the traces should be investigated and if
needed the transport endpoints corrected. The requirement for matching trans-
port endpoints only affects request / response pairs. It is perfectly fine for a
manager to use different transport layer endpoints in different polling instances,
or even different operations (i.e., slices) within the same polling instance.

Definition 3. A set of notification group messages consists of all messages
M satisfying either of the following two conditions:

1. M is a notification message
2. M is a response message and there exists a notification request message N

such that the following holds:

M.reqid = N.reqid
M.tdst = N.tsrc
M.tsrc = N.tdst
(M.time − N.time) < t

The parameter t defines a maximum timeout for response messages.

138 G. van den Broek et al.

This definition again requires matching transport endpoints for notification
group messages.

4 Traces and Flows

Traces are (large) sets of SNMP messages that are the result of recording SNMP
traffic using a single traffic recording unit (e.g., using tcpdump) on a network
segment carrying traffic of one or more managers and agents. Traces being used
in the remainder of this document may be altered as a result of anonymization,
which may result in some message information loss.

Traces may contain SNMP messages that have been exchanged between pos-
sibly many different network layer endpoints. One way of making an initial sep-
aration of such a trace into more manageable pieces is by splitting the messages
into flows. Each flow contains only messages that have occurred between two
network layer endpoints.

4.1 Trace and Flow Definition

Definition 4. An SNMP trace (or short “trace”) T is an ordered set of zero
or more SNMP messages M . All messages M in T are chronologically ordered
according to the capture timestamp M.time.

Definition 5. A flow F is the set of messages of an SNMP trace T with the
following properties:

1. All response messages originate from a single network endpoint.
2. All non-response messages originate from a single network endpoint.
3. All messages are either command group messages with parameter t or noti-

fication group messages with parameter t.

Parameter t defines the maximum timeout for response messages. The value
of t should be chosen such that only response messages to the respective non-
response messages are considered part of the same flow. Analysis of a large
number of traces shows that 25 seconds is a proper default value for t.

It is possible that response messages of a trace cannot be classified to belong to
any flow. This can happen if request messages triggering the response messages
were not recorded (for example due to asymmetric routing), or because response
messages were originating from transport endpoints different from the endpoint
used to receive the associated request message.

This definition of a flow indicates that it can be either unidirectional (e.g., a
manager sending non-response messages to a non-responding agent), or bidirec-
tional (e.g., a manager reading a table from an agent). This is different from other
flow definitions, like the NetFlow definition [5]. The flow definition is mostly con-
sistent with the definition of an SNMP flow used in [6]. The difference is that the
tool used to generate the data reported in [6] did only require that the network
layer source endpoint of the response messages matches the destination network
layer endpoint of the associated request messages.

SNMP Trace Analysis Definitions 139

Definition 6. A flow initiator is the network layer endpoint of the two end-
points involved in a flow, which is responsible for sending the first non-response
message.

Notation 2. The properties of a flow F are denoted as follows:
F.type = type of the flow F (command/notification)
F.nsrc = network layer source endpoint of F
F.ndst = network layer destination endpoint of F
F.start = timestamp of the first message in F
F.end = timestamp of the last message in F
F.init = initiator of the flow F
F.t = parameter t of F (maximum timeout for response messages)

Subsequently, flows containing only command group messages are called com-
mand flows. Similarly, flows containing only notification group messages are
called notification flows.

4.2 Trace and Flow Example

Table 1 shows an example of a trace consisting of SNMP messages that were ex-
changed between different network layer endpoints. The network layer endpoints
are represented by A, B, C and D.

The first flow F1 consists of SNMP messages that have been exchanged be-
tween network layer endpoints A and B, where all response messages originate
from B and all non-response messages originate from A. The minimum value of
parameter t for this flow is 0.07 seconds, since that is the longest time between
a request and its subsequent response message.

The second flow F2 contains SNMP messages exchanged between network
layer endpoints C and D, where all response messages originate from D and all
non-response messages originate from C. The minimum value of parameter t for
this flow is 0.04 seconds.

The third flow F3 contains the remaining SNMP messages of the trace that
occurred between network layer endpoints C and D. In this case the non-response
message originates from D. There is no parameter t applicable to this flow,
because there are no response messages.

Table 1. Example trace containing two flows

Message Time [s] Direction Type Reqid Flow

0 0.00 A → B GetNext 1 F1

1 0.04 C → D Get 10 F2

2 0.05 B → A Response 1 F1

3 0.08 D → C Response 10 F2

4 0.11 A → B GetNext 2 F1

5 0.15 B → A Response 2 F1

6 0.18 A → B GetNext 3 F1

7 0.22 D → C Trap 14 F3

8 0.25 B → A Response 3 F1

140 G. van den Broek et al.

5 Slices

Flows can still contain a large amount of SNMP messages. A flow should there-
fore be split up into even smaller sets of messages. One way of identifying mean-
ingful subsets of messages of a flow would be by considering the behavior of
managers and agents. In the case of managers, they are usually configured to
perform regular polling instances. In such a polling instance, the manager might
poll a number of agents. Since a flow contains only the messages exchanged be-
tween two network layer endpoints, a flow therefore probably consists of only a
subset of the messages that are part of a polling instance. So, one option of find-
ing smaller, meaningful subsets of messages within flows, would be by looking
for messages that belong to a particular polling instance. Such a smaller set of
messages is called a slice.

5.1 Slice Definition

Definition 7. A slice S with parameter e is a subset of messages in a flow F
for which the following properties hold:

1. All messages are exchanged between the same two transport endpoints (a
single transport endpoint pair).

2. All non-response messages must have a PDU of the same type.
3. All messages with a PDU of type Get, Set, Trap, or Inform must contain the

same set of OIDs.
4. Each GetNext or GetBulk message must either contain the same set of OIDs

as the preceding request or it must be linked to a response of the last previously
answered request (i.e., the request must contain at least one OID that has
been contained in the (repeater) varbind list of a preceding response message
of the last answered request message).

5. All Response messages must follow a previous request message that is part
of the same slice.

6. For any two subsequent non-response messages Q1 and Q2 with Q1.time <
Q2.time, the following condition must hold:

(Q2.time− Q1.time) < e

The first item in the slice definition requires that the messages of a single slice
are exchanged between a single transport layer endpoint pair. This is different
from the flow definition, which requires a single network layer endpoint pair. The
choice of looking at the transport layer endpoints in the case of slices is based
on the assumption that, for instance, multiple managers and agents might be
operating from the same respective network layer endpoint. Another assumption
is that a manager and an agent will only use a single transport layer endpoint
respectively when they communicate for the duration of a slice (or even a polling
instance). A previous section already mentioned some issues when a manager or
agent uses different transport layer endpoints within a single polling instance.

SNMP Trace Analysis Definitions 141

The parameter e defines the maximum time between two non-response mes-
sages that belong to a slice. This parameter should be chosen such that unrelated
non-response messages within a flow are not considered to be of the same slice.
Unrelated non-response messages are those that, for instance, belong to different
polling instances. The parameter e should therefore be larger than the retrans-
mission interval in order to keep retransmissions within a slice and smaller than
the polling interval used by the slice initiator.

The value of parameter e might be closely related to parameter t of the re-
spective flow the slice is part of. For instance, if parameter e is very large, than
t is also likely to be very large and vice versa. Also, if parameter e is very small,
then t is probably also very small. However, it is not possible to strictly state
that e and t are always closely related to each other, because parameter e is
specific for a slice. This is in contrast with parameter t which is specific for a
much larger set of messages, a flow.

Definition 8. A slice initiator is one of the two transport layer endpoints
involved in a slice, which is responsible for sending the chronologically first non-
response message.

Notation 3. The properties of a slice S are denoted as follows:
S.type = type of non-response messages in S
S.tsrc = transport layer endpoint of initiator of S
S.tdst = transport layer endpoint of non-initiator of S
S.start = timestamp of the chronologically first message in S
S.end = timestamp of the chronologically last message in S
S.init = initiator of slice S
S.e = parameter e of S (maximum time between two

non-response messages)

5.2 Slice Example

Table 2 shows an example of a flow containing messages exchanged between
transport layer endpoints A, B, and C. Considering the timing of the messages,
a proper value of e should be 0.14 ≤ e ≤ 299.82 seconds. Such a value for
parameter e will separate the flow into two apparent polling instances, which
each contain the same set of messages.

The first slice S1 consists of a Get request and its subsequent response. A
similar request is recorded later in slice S3 but since we assume e as discussed
above, the slices S1 and S3 are distinct. The second slice S2 also contains a
Get request and its subsequent response. This slice is different from S1 since a
different OID is requested. The slice S4 consists of a Set request that has not
been answered. (A potential reason is that the SNMP engine listening on the
transport layer endpoint C did not grant write access and dropped the message.)

The last slice S5 contains a sequence of linked GetNext requests. The GetNext
request message 10 is likely a retransmission of the GetNext request message 9.
This example demonstrates that retransmissions are recorded in the slice that
contains the original request.

142 G. van den Broek et al.

Table 2. Example flow containing three slices

Message Time [s] Direction Type Reqid OIDs Slice

0 0.00 A → B Get 1 alpha.1 S1

1 0.06 B → A Response 1 alpha.1 S1

2 0.12 A → B Get 2 beta.1 S2

3 0.17 B → A Response 2 beta.1 S2

4 300.00 A → B Get 3 alpha.1 S3

5 300.05 B → C Set 4 gamma.1 S4

6 300.07 B → A Response 3 alpha.1 S3

7 300.14 A → B GetNext 5 beta S5

8 300.19 B → A Response 5 beta.1 S5

9 300.32 A → B GetNext 6 beta.1 S5

10 300.52 A → B GetNext 7 beta.1 S5

11 300.58 B → A Response 7 delta.1 S5

6 Slice Signature and Prefix

As noted in the beginning of this document, it is desirable that slices can be
tested for equality/comparability. This is where the slice prefix comes in. The
slice prefix provides one of the means to compare slices. Using the slice prefix
and a few other parameters of a number of slices, one can determine which slices
should be considered “equal” and which of them are incomparable. This will
assist in the process of finding potentially other relations.

The slice prefix is a set of OIDs. This set is constructed from the messages
that make up a single slice. So, for example, a slice that is the result of a manager
requesting the contents of a particular table (with OID alpha) on an agent using
a simple single varbind GetNext walk, starting at the table OID alpha, shall
yield a slice prefix which consists of the OID alpha.

Because the aim is to compare various slices using the slice prefix (along
some other characteristics of a slice), this implicitly suggests the need to know
whether a number of slices are the result of the same behaviour (i.e., specific
configuration) of the initiating party of these slices. For example, one may want
to know whether a number of slices that involve a single manager and a single
agent were the result of just one specific configuration of that manager. Multiple
slices, that may all be initiated by that same manager and each slice possibly
occurred in different polling instances, may in fact be the result of the same
specific configuration of that particular manager. So, since in this case the specific
configuration of the manager is only relevant for determining the behaviour, the
slice prefix should be constructed based on OIDs in messages originating from
that manager only. More generally, only the messages within slices that are
sent by the initiating party (the non-response messages) are considered for the
determination of the respective slice prefix of a slice.

SNMP Trace Analysis Definitions 143

6.1 Slice Signature and Prefix Definition

Definition 9. A slice signature S.sig of a slice S is a set of OIDs derived from
the OIDs contained in the non-response messages of a slice. Let r(S) denote the
set of response messages of slice S and n(S) the set of non-response messages
of S. Then the set S.sig consists of the following OIDs:

S.sig =

⎧
⎨

⎩

⋃
n∈n(S)(n.oids) \ ⋃

r∈r(S)(r.oid) S.type is GetNext or GetBulk

⋃
n∈n(S)(n.oids) otherwise

The slice signature summarizes which OIDs have been carried in a slice and is
straightforward to compute. However, there are situations in some GetNext or
GetBulk sequences where the signature might contain some unwanted OIDs as
will be demonstrated by an example below.

To further condense signatures, it is necessary to introduce a prefix relation-
ship between OIDs. This prefix relationship can then be used to reduce a slice
signature to a slice prefix.

Definition 10. An OID a = a1.a2...an is a prefix of OID b = b1.b2...bm if and
only if n < m and ai = bi for 1 ≤ i ≤ n.

Definition 11. The slice prefix S.slice is the set of all OIDs o in S.sig for
which there is no p in S.sig such that p is a prefix of o.

6.2 Slice Signature and Prefix Example

The following example demonstrates how a slice prefix is determined. Consider
the case that a single manager A is set to poll a specific agent B. Manager A
is programmed to retrieve some values from B. A single slice may contain the
messages shown in Table 3.

The slice shown in Table 3 has a number of interesting properties. First, not
all columns in the retrieved table have an equal length. Second, the manager

Table 3. Example slice for calculating a slice prefix

Message Direction Type OIDs

0 A → B GetNext alpha, beta
1 B → A Response alpha.1, beta.1
2 A → B GetNext alpha.1, beta.1
3 B → A Response alpha.2, beta.3
4 A → B GetNext beta.2, alpha.2, sysUpTime
5 B → A Response beta.3, alpha.3, sysUpTime.0
6 A → B GetNext beta.3, alpha.3
7 B → A Response gamma.1, alpha.4
8 A → B GetNext alpha.4
9 B → A Response delta.1

144 G. van den Broek et al.

is set to request the sysUpTime on an irregular basis (i.e., every few requests).
Third, the manager attempts to fill “holes” in the table and finally the order of
referenced OIDs in GetNext messages changes.

All of these properties do not influence the process for determining the slice
signature. The slice prefix is constructed as follows:

1. The union of all OIDs in non-response messages is the following set:

N = { alpha, beta, alpha.1, beta.1, beta.2, alpha.2,
sysUpT ime, beta.3, alpha.3, alpha.4 }

2. The union of the OIDs in response messages is the following set:

R = { alpha.1, beta.1, alpha.2, beta.3, alpha.3,

sysUpT ime.0, gamma.1, alpha.4, delta.1 }
3. Subtracting the two sets results in the slice signature S.sig:

S.sig = N − R = { alpha, beta, beta.2, sysUpT ime }
The element beta.2 exists, because the manager was trying to fill a “hole”
in a table. Since these “holes” reside in the tables on the agent side and may
change dynamically, they do not really help in describing the behavior of the
initiating party.

4. Since beta is a prefix of beta.2, the slice prefix becomes the following set:

S.prefix = { alpha, beta, sysUpT ime }
The slice prefix does not include beta.2 anymore and thus a manager retriev-
ing the same columns alpha and beta with and without “holes” will produce
slices with the same slice prefix.

7 Slice Types

As described previously, the slice type allows for comparing slices. This means
that any number of slices that are of the same slice type may be considered an
equivalence class and may therefore be considered to be the result of the same
behaviour of the slice initiator.

7.1 Slice Type Definition

Definition 12. Two slices A and B satisfy the binary slice equivalence rela-
tion A ∼ B if the following properties hold:

1. All messages in A and B have been exchanged between the same network
layer endpoints.

2. All read request messages, write request messages, and notification messages
in A and B originate from the same network layer endpoint.

SNMP Trace Analysis Definitions 145

3. All non-response messages in A and B are of the same type.
4. The slices A and B have the same prefix, that is A.prefix = B.prefix.

It can be easily seen that the relation ∼ is reflexive, symmetric, and transitive
and thus forms an equivalence relation between slices.

Definition 13. Let S be a set of slices, then all slices in the equivalence class

[A] = {s ∈ S|s ∼ A}
with A ∈ S, are of the same slice type.

7.2 Slice Type Example

The flow shown in Table 4 contains two slices. The first slice S1 contains messages
that have been exchanged between transport layer endpoints A and B while the
second slice S2 contains messages that have been exchanged between transport
layer endpoints C and D. However, the network layer endpoints of this slice are
the same as the first slice and all non-response messages in both slices originate
from the same network layer endpoint.

Table 4. Example for slice equivalence and slice types

Message Direction Type OIDs Slice

0 A → B GetNext alpha, beta S1

1 B → A Response alpha.1, beta.1 S1

2 A → B GetNext alpha.1, beta.1 S1

3 B → A Response alpha.2, beta.2 S1

4 A → B GetNext alpha.2, beta.2 S1

5 B → A Response gamma.1, delta.1 S1

6 C → D GetNext alpha, beta S2

7 D → C Response alpha.1, beta.1 S2

8 C → D GetNext alpha.1, beta.1 S2

9 D → C Response gamme.1, delta.1 S2

As can be verified easily, the slices S1 and S2 satisfy the slice equivalence
relationship, that is S1 ∼ S2 and they form an equivalence class under ∼, which
we call a slice type.

8 Related and Future Work

The performance of SNMP has been the subject of several studies. Some papers
such as [7,8] compare the performance of centralized SNMP management to dis-
tributed management approaches while other papers compare the performance of
the SNMP protocol with middleware systems such as CORBA or Web Services
[9,10,11]. The impact of security protocols on SNMP performance has been studied
in [12,13,14]. Some authors have formulated models for the SNMP protocol [15,16].

146 G. van den Broek et al.

All these studies have in common that they make assumptions how SNMP
is used in practice, due to a lack of commonly accepted models how SNMP is
used in practice. To address this issue, some researchers active in the Network
Management Research Group (NMRG) of the Internet Research Task Force
(IRTF) started an effort to collect traces from operational networks and to build
the necessary tools to analyze them [3]. First results were published in [6] and it
became clear that precise definitions of basic concepts, such as those provided in
this paper, are needed in order to produce meaningful and comparable results.
The authors are currently using and extending these definitions in order to study
the periodicity of SNMP traffic [17] and table retrieval algorithms.

9 Conclusions

The analysis of SNMP traces requires a collection of common and precise def-
initions in order to establish a basis for producing meaningful and compara-
ble results. This paper provides such a collection of basic definitions that have
been developed over time and are also being reviewed and discussed within the
NMRG of the IRTF. This paper is a condensed summary of a more detailed
document [18] submitted to the NMRG and written to provide an early stable
reference while the work in the NMRG continues and to foster discussion within
the broader network management research community.

Acknowledgement

The work reported in this paper is supported by the EC IST-EMANICS Network
of Excellence (#26854).

References

1. Case, J., Mundy, R., Partain, D., Stewart, B.: Introduction and Applicability State-
ments for Internet Standard Management Framework. RFC 3410, SNMP Research,
Network Associates Laboratories, Ericsson (December 2002)

2. Harrington, D., Presuhn, R., Wijnen, B.: An Architecture for Describing Simple
Network Management Protocol (SNMP) Management Frameworks. RFC 3411, En-
terasys Networks, BMC Software, Lucent Technologies (December 2002)

3. Schönwälder, J.: SNMP Traffic Measurements and Trace Exchange Formats. In-
ternet Draft (work in progress) <draft-irtf-nmrg-snmp-measure-04.txt>, Jacobs
University Bremen (March 2008)

4. Presuhn, R.: Version 2 of the Protocol Operations for the Simple Network Man-
agement Protocol (SNMP). RFC 3416, BMC Software (December 2002)

5. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954, Cisco
Systems (October 2004)

6. Schönwälder, J., Pras, A., Harvan, M., Schippers, J., van de Meent, R.: SNMP
Traffic Analysis: Approaches, Tools, and First Results. In: Proc. 10th IFIP/IEEE
International Symposium on Integrated Network Management (May 2007)

SNMP Trace Analysis Definitions 147

7. Zapf, M., Herrmann, K., Geihs, K.: Decentralized SNMP Management with Mobile
Agents. In: Proc. 6th IFIP/IEEE International Symposium on Integrated Network
Management, Boston, May 1999, pp. 623–635 (1999)

8. Fuggetta, A., Picco, G., Vigna, G.: Understanding Code Mobility. IEEE Transac-
tions on Software Engineering 24(5), 342–361 (1998)

9. Gu, Q., Marshall, A.: Network Management Performance Analysis and Scalability
Tests: SNMP vs. CORBA. In: Proc. 2004 IEEE/IFIP Network Operations and
Management Symposium, Seoul, April 2004, pp. 701–714 (2004)

10. Pras, A., Drevers, T., van de Meent, R., Quartel, D.: Comparing the Performance
of SNMP and Web Services based Management. IEEE Transactions on Network
and Service Management 1(2) (November 2004)

11. Pavlou, G., Flegkas, P., Gouveris, S., Liotta, A.: On Management Technologies
and the Potential of Web Services. IEEE Communications Magazine 42(7), 58–66
(2004)

12. Du, X., Shayman, M., Rozenblit, M.: Implementation and Performance Analysis of
SNMP on a TLS/TCP Base. In: Proc. 7th IFIP/IEEE International Symposium
on Integrated Network Management, Seattle, May 2001, pp. 453–466 (2001)

13. Corrente, A., Tura, L.: Security Performance Analysis of SNMPv3 with Respect
to SNMPv2c. In: Proc. 2004 IEEE/IFIP Network Operations and Management
Symposium, Seoul, April 2004, pp. 729–742 (2004)

14. Marinov, V., Schönwälder, J.: Performance Analysis of SNMP over SSH. In: State,
R., van der Meer, S., O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006. LNCS, vol. 4269,
pp. 25–36. Springer, Heidelberg (2006)

15. Pattinson, C.: A study of the behaviour of the simple network management proto-
col. In: Proc. 12th IFIP/IEEE Workshop on Distributed Systems: Operations and
Management, Nancy (October 2001)

16. Chen, T., Liu, S.: A Model and Evaluation of Distributed Network Management
Approaches. IEEE Journal on Selected Areas in Communications 20(4), 850–857
(2002)

17. van den Broek, J.G.: Periodicity of SNMP Traffic. BSc Thesis (August 2007)
18. van den Broek, J.G., Schönwälder, J., Pras, A., Harvan, M.: SNMP Trace Analysis

Definitions. Internet Draft (work in progress) <draft-schoenw-nmrg-snmp-trace-
definitions-02.txt>, University of Twente, Jacobs University Bremen, ETH Zurich
(April 2008)

Dynamic Consistency Analysis for Convergent

Operators

Alva L. Couch and Marc Chiarini

Tufts University, Medford, Massachusetts, USA
alva.couch@cs.tufts.edu, marc.chiarini@tufts.edu

Abstract. It has been shown that sets of convergent operators with
a shared fixed point can simulate autonomic control mechanisms, but
many questions remain about this management technique. We discuss
how an autonomous agent can reason about whether its convergent op-
erators share a fixed point with the operators of other agents. Using a
concept of time based upon operator repetition, we show that a fail-
ure to achieve convergence within specific time limits can be used as
a probabilistic indicator of inconsistencies in local policy. We describe
a statistical inference technique that determines if an agent’s promise
strategy is feasible. The strengths of this technique are that it is both
scale-invariant and exterior to the operators whose consistency is being
evaluated.

1 Introduction

How does a configuration agent in a highly complex and distributed network
reason about the workability of its choices? What reasoning techniques work
best in a situation in which agents have only local information? What strategies
other than global information exchange can help agents reason? We attack these
questions in a novel way.

This paper arose from a question asked at AIMS 2007 by Jan Bergstra: “How
can you be sure that your [operators are] consistent?”. By this, he meant “logical
consistency”, i.e., that the goals of the operators cannot embody a contradiction.
We thought about this question for some time, and then decided upon a novel
response: logical consistency of operators is useless in a ubiquitous computing
environment, and statistical notions of consistency make more sense and are
more useful.

To start to understand what consistency might mean in a ubiquitous comput-
ing environment, we combine and expand two threads of prior work: convergent
operators and self-organizing precedences.

An operator is a management operation on a host or network. A convergent
operator P is an operator with the specific behavior that – when repeatedly
applied to a host or network – modifies the host or network so that it exhibits
a state in some known set SP of desirable states. A convergent operator P is
idempotent on states in its result set SP , i.e., it does not change any state that

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 148–161, 2008.
c© IFIP International Federation for Information Processing 2008

Dynamic Consistency Analysis for Convergent Operators 149

is already considered desirable. Thus every s ∈ SP is a fixed point of P , i.e.
P (s) = s, and every convergent operator is also a fixed-point operator.

Convergent operators can take many forms, e.g., one operator might prune
disk space for users who are over quota, while another might act on process space
to prune runaway processes, and a third might modify the number of threads in
a web server to optimize response time.

Prior work shows that autonomic computing can be “approximated” by a
collection of convergent operators applied repeatedly at random, provided that
these operators all share some common fixed-point state [1]. Each operator – in
effect – embodies its own isolated control loop, and the set of operators behaves
like a composition of multiple control loops.

2 Operator Consistency

To understand what consistency might mean for a set of operators O, we point
out that the set of fixed points SP of an operator P is a representation of
the policy of P . While we might be accustomed to expressing policies as a set
of logical rules RP , the set of states SP that happen to obey those rules is a
reasonable (though more sizable) substitute. Two sets of rules RP and RQ are
consistent if their structure does not contain a logical contradiction. By analogy,
we define:

Definition 1. Two operators P and Q are consistent if the intersection of their
fixed point sets is nonempty.

Note that trivially, operator consistency is equivalent with rule consistency, in
the sense that states matching contradictory rules have no intersection, and
vice-versa 1. Likewise,

Definition 2. A set of operators O is consistent if the intersection of all fixed
point sets of operators in O is non-empty.

One must also ensure that consistency is practical as well as theoretically possi-
ble:

Definition 3. A set of operators O is reachably consistent (with respect to a set
of baseline states S) if, through random applications of operators in O, starting
at a state in S, the operators always achieve a common fixed point.

If all operators are at a fixed point, then clearly their policies do not contradict
one another, so reachable consistency is a sufficient condition for logical consis-
tency. The converse, however, is not true. There may be a consistent state that,
though it be fixed for all operators, can never be achieved. Suppose, e.g., that one
operator’s policy is that the web server serves subdirectories of students’ home
directories, but that no operator exists to actually set up a web server. Then
the desired state is consistent with that of other operators, but not reachably
consistent, because no operator exists that can achieve that state.
1 Expanded definitions of consistency are explored in [5].

150 A.L. Couch and M. Chiarini

This notion of consistency is reasonable for a small, known set of operators,
but in a ubiquitous computing environment, with no true centralized control,
there is no clear notion of which operators are active at a given time. The
contents of O is a moving target. From the point of view of any specific agent,
the total set of operators and policies in effect cannot be known, because any
snapshot of that state could potentially have changed since the snapshot.

Thus the concept of logical consistency – while well-defined – is simply not very
useful. A new notion of consistency is needed; one that is useful to an agent with
incomplete knowledge of the space of operators and/or policies being enforced.

3 Operator Precedence

Convergent operators only work properly if the precedences between operators
are satisfied. For example, one operator might mount a filesystem, while another
might start a service depending upon that filesystem. We refer to an active
operator whose preconditions are fulfilled as being operative; an active operator
with at least one unmet precondition is inoperative.

The effects of operators often depend upon precedences between them. For
example, consider operator O1 that mounts a filesystem on a host, and operator
O2 that sets up a web service on that filesystem. These operators have a prece-
dence relationship: O1 must precede O2. Once O1 completes its task, it has no
further effect unless some other entity unmounts the filesystem, in which case
O1 mounts it again. Thus the mounted filesystem is a fixed point of operator O1.
Once this fixed point is achieved, operator O2 can achieve its fixed point and
we conclude that the set {O1, O2} has a fixed point as well. The result of both
operators is an emergent fixed point that is fixed for both operators, but fixed in
different ways for each operator. Thus each operator can be thought of as acting
on an aspect of the network, and the composition of operators into a set can be
viewed as similar to aspect composition as defined in [6,7,8].

By contrast, consider an operator O3 that removes any web service present.
The set {O1, O2, O3} has no fixed point, because O2 and O3 conflict, and are
thus inconsistent. This is analogous to a set of policy rules that are logically
inconsistent. Anything O2 does, O3 undoes, and vice versa. Note that conflicts
can be more subtle; it is just as damaging if O3 simply breaks O2’s web server
so that O2 is forced to continually repair it. As another example, consider, e.g.
operator O4 that moves the service set up by O2 to another filesystem. This can
only happen after O2 achieves a fixed point. Does O4 conflict with O2? This
depends very much upon how O2 is defined, and the difference between what it
assures and the states it accepts as conforming to its needs. It is possible that
a set of operators is consistent even though no consistent state is reachable via
application of the operators.

As a first step in understanding precedences between operators, [2] shows that
if operators are applied serially, and each operator is aware of its own needs, then
it is possible to satisfy the precedences between operators without codifying the
precedences separately or centrally. Instead, one applies n (distinct) operators in

Dynamic Consistency Analysis for Convergent Operators 151

sequence n times. Since this sequence contains every permutation of the opera-
tors, it contains at least one permutation satisfying the actual precedences of the
operators. If the operators are constructed to do no harm unless their precon-
ditions are met, then all operators will become operative in the course of O(n2)
trials, where n is the number of operators. We will call this result the maelstrom
theorem, after the cyclic “whirlwind” motion of operators in the proof.

Reasons for this perhaps counter-intuitive result are twofold: facts about per-
mutations and assumptions about operators. Operators are assumed to be aware
of their precedences and idempotent unless precedences are fulfilled. An operator,
applied to a network that is not ready for it because preconditions are lacking, will
not affect network state or other operators. Likewise, an operator applied to a net-
work to which it has already been successfully applied will do no harm. Changes
will occur only in the case where an operator’s preconditions have been fulfilled
and the network does not already conform to the operator’s expected outcomes.

This is the context in which prior results end and this paper begins.

4 Consistency as an Emergent Property

So far, we have translated the problem of rule consistency into the problem of
determining whether fixed-point sets intersect. This change does not yet sim-
plify matters. It remains difficult to analyze whether a given set of operators
shares a fixed point, particularly when the operators act upon different parts of
a distributed network. Static analysis of operator fixed-points is difficult enough
when we have complete knowledge of the operators (the problem is equivalent to
policy consistency[3]), and virtually impossible when we have incomplete knowl-
edge of the operators[4]. Based upon prior work, without further assumptions, we
conclude that the problem of statically determining whether a particular set of
distributed operators share a fixed point is intractable, in the same way that it is
computationally hard to determine consistency of an unconstrained set of rules.

But the maelstrom theorem described above provides a possible alternative to
this quandary. If we know that a hidden order (e.g., a total ordering, or logical
consistency) must emerge in a certain number of steps of a process (or in a known
time interval), and it does not emerge, then it must not be present. If we can
then determine when that order should emerge, then its emergence is a necessary
and sufficient proof of its existence, while lack of emergence within time limits
constitutes statistical (but not deterministic) proof of its non-existence. We call
this last statement the emergent ordering principle.

The emergent ordering principle serves as a starting point for a very different
notion of consistency than before. Prior attempts at determining consistency
(of operators or – equivalently – of the policies that they enforce) relied upon
describing the intent of operators (or, equivalently, the constraints of policy).
The emergent ordering principle conveniently circumvents this requirement; we
need not compute a total order of operators in order to know that such an order
exists. Similarly, a proof of the existence of a set of consistent operators need
not inform us as to exactly how or why they are consistent.

152 A.L. Couch and M. Chiarini

Perhaps most important, whether consistency and order emerge globally is
relatively unimportant; what is important is whether consistency and order arise
from one’s own actions or not. From an agent’s point of view, there is no meaning
to global consistency; what the agent manages is either consistent or not. Thus
we study how to test for consistency without describing intent, computing global
information, or deriving causal information.

5 Kinds of Operators

In describing the properties of statistical consistency, there are many kinds of
convergent operators and it will help us to consider each kind of operator sepa-
rately.

Every result in this paper presumes the existence of a set of convergent oper-
ators, each of which has one or more fixed points, in the sense that once some
fixed point is achieved (through some finite number of applications of the oper-
ator), the operator makes no further changes to the network unless some other
force moves the network away from the operator’s fixed point.

Many common operators are single-step, in the sense that they perform only
one change if their precedences are fulfilled, and are idempotent on both sides of
that step. Examples of a single-action operator include “mounting a filesystem”
or “setting up a service”. A single-step operator acts upon a non-conforming
part of a network, checks that necessary preconditions have been fulfilled, and
then effects a state change in that part to make it acceptable.

A “multiple-step” operator, by contrast, takes several steps to achieve a fixed
point. Examples of a multiple-step operator include incrementing (or decrement-
ing) the number of threads for a web server until response time is optimal. In this
case, each operator invocation adds one thread, and the fixed point is achieved
when a desired number of threads w (according to some externally defined crite-
ria) have been invoked. This is one example of a bounded multiple-step operator,
in which the number of invocations before achieving a fixed point is bounded by
some constant L. In this case, L is the absolute bound on the number of threads
the web server can support, which is always finite. Common “autonomic” oper-
ators, e.g., performance tuning, are all multi-step operators.

Note that neither of these definitions truly conforms to the definition of
Burgess, who allows an operator to function in a continuous domain[1]. Burgess’
definition of a fixed point operator is one whose result approaches a fixed point
as the number of operator applications increases, possibly without bound. By
contrast, we require an operator to approach a fixed point after a finite and
constant number of iterations L. Thus, the results below cannot be extended to
operators under Burgess’ definition.

6 Fixed Points and Policies

Note in the above examples that the existence of a fixed point for a set of
operators is in some sense semantic rather than syntactic. Whether O2 and O4

Dynamic Consistency Analysis for Convergent Operators 153

conflict depends upon what they mean or intend, rather than how they are coded.
While the reader may suggest that they could be coded such that the fixed point
of a set becomes a syntactic property, this would not simplify the problem of
determining whether a fixed point exists. The reason for this is that the codings
– and their semantics – are distributed in a network, and centrally collecting that
information in a ubiquitous network is both intractable and unreasonable.

There is a strong relationship between “operator fixed points” in the semantic
view of network management, and “policies” in the syntactic view. Presumably,
the reason for constructing an operator is to enforce some (perhaps vaguely
defined) policy. A policy, by contrast, is a very specific description of what should
happen, independent of how it might be arranged to happen.

While it is quite obvious that one can construct an operator to implement a
policy, the converse is not so obvious. By nature, an operator is imperative, while
a policy is declarative. The difficulty arises in codifying what an operator does
in declarative terms. For example, consider an operator that – through some
complex and unknown process, perhaps enabled by machine learning – decides
which user processes to kill. This is a perfectly usable operator, but might not
be possible to codify in a policy by any more useful language than “do what
this operator says to do.” Thus we consider operators to be a more general
mechanism than policies for managing network function.

We diverge from current work on policy consistency and take a new path. The
problem of policy consistency is to determine – given a syntactic description of
the desired fixed points of a policy – whether those fixed points conflict or not.
Instead, we step sideways (figuratively speaking) and avoid syntactic coding of
intent entirely. For us, consistency of a policy expressed as a set of operators
means that they have a semantic fixed point that emerges over time, and is rep-
resented by a network’s state and behavior. Operators are considered consistent
if they together achieve a fixed point, regardless of whether we understand how
they achieve it, and independent of whether we can even codify their intent.

The reason for this seemingly bizarre world-view comes from wanting to be
able to analyze very large networks. In a ubiquitous network consisting of billions
of nodes, determining “how” is intractable, while techniques for determining
consistency may remain tractable.

7 The Quandary of Observability

When dealing with configuration management – and operators in particular –
lack of observability is a common issue[9]. In the above, we are not assuming
there is any concept of a globally observable action; in particular there is no way
to observe global consistency. Agents reason on their own and in isolation. It is
quite possible that each agent manages only one operator. The definition of an
inconsistent set of operators is thus relative to the observer. Suppose, e.g., that
each operator is applied by a different agent. It is plausible that one agent would
discover an inconsistency that another could not observe, because the agent only
sees that its own operator does not approach a fixed point.

154 A.L. Couch and M. Chiarini

As an example of this, consider a simple case in which one operator O1 mounts
an external filesystem and another operator O2 establishes a web server on it.
Suppose that the agents applying these operators cannot otherwise communi-
cate. Suppose further that O1 never achieves a fixed point, perhaps because the
filesystem it desires to mount is improperly exported. Then from the point of
view of O2, the set of operators is inconsistent, while from the point of view of
O1, it is still consistent, because O1 has never been able to observe any incon-
sistency. The fact that its poor view of the world results from its own lack of
capability is not of consequence in the definition of consistency.

We handle this quandary as follows. The agents for which consistency is ob-
served (by approaching a common fixed point) are the “haves”, while the agents
that never achieve a fixed point are “have nots”. An agent who – from its own
point of view – has achieved its aims, has no problems. It is the “have nots” that
need to work on different strategies to achieve their aims. In any sufficiently
complex system, there will always be some “have nots”; the goal is to minimize
these and not allow them to dominate the network.

8 Synchronous Operator Activation

Our first exploration is to understand what happens in an environment in which
operators can be applied in an ordered (synchronous) fashion. Results for syn-
chronized clocks mimic the results in [2], except that non-emergence of order is
now a distinct possibility.

Theorem 1. Suppose that n single-step operators O1, . . . , On are to be applied
in sequential order. Suppose that the longest precedence chain in the n operators
consists of k operators. Suppose that one repeats the sequence k times for a total
of nk invocations. If there are no external effects, and a common fixed point has
not been reached for all operators, then the operators are inconsistent.

Proof. This is in essence the same result as stated in [2], except that this theorem
is stated in converse form and adds the constraint that there are no more than
k operators in any one chain of precedences.

The key to the theorem is that nk invocations contain all k! permutations of
the k operators in each precedence chain. Thus after nk invocations, all permuta-
tions have been tried, and if a fixed point has not been reached, then there is no
permutation that produces consistency, and we can conclude that the operators
are not consistent.

To demonstrate this claim, note that in each of k blocks comprising n steps,
all n operators are tried. Thus one can construct an arbitrary permutation by
choosing one operator from each block of n invocations. Thus nk iterations are
sufficient to try all permutations. ��
It is important in the above proof that there are no functioning external op-
erators about which one has no knowledge. If one is testing the consistency of
{O1, O2, O3} and – unbeknown to us – an operator O4 inconsistent with this

Dynamic Consistency Analysis for Convergent Operators 155

set is sporadically being applied, then one may conclude erroneously that the
set is inconsistent, even when it is consistent. However, the theorem’s conclusion
remains accurate if an unknown operator that is consistent with the set is being
applied sporadically. This does not interfere with the theorem’s inference in the
same way as an inconsistent operator would.

We sidestep this issue in the following sections by changing the way opera-
tors are applied. If all operators are applied in the same fashion, and there are
unknown operators being applied, then inconsistency is a property of the whole
set of operators, not just those that are known. It is not necessary to know how
many operators there are and what they are doing in order to know whether they
are consistent or not. This is a fundamental strength of this form of analysis.

9 Heartbeats and Time

To apply the emergent ordering principle in the distributed case, we must define
what time means in a distributed system. Our definition differs from that of
Lamport[10] and researchers involved in distributed performance analysis; we
have no need to synchronize the actions of agents.

To define our notion of time, we assume that there is a “heartbeat rate”
λ at which, on average, all operators are applied to the network repeatedly.
We assume that the time between applications of the same operator follows an
exponential distribution with mean 1/λ and standard deviation 1/λ. As a result,
operator application is memoryless, in the sense that future frequency of operator
invocations does not depend in any sense on past behavior. For now, we assume
that the process of applying each operator is asynchronous from applying any
other and that all operators share the same application rate λ.

The astute reader will realize that this model matches CFengine’s[11,12,13]
model of operator application; the operators are applied periodically to “immu-
nize” the system against adverse effects[14,15]. As in Cfengine, it is not possible
to assure that an operator occurs at a specific time, but one can assure the sta-
tistical behavior of an operator as it is applied over time. Our statistical model
is chosen arbitrarily and is neither important nor essential, but it is convenient
for the arguments that follow. Any other model of operator invocation can be
substituted without changing the character of the following results.

10 Fixed Points and Time

The purpose of the “heartbeat” is to provide a coordination point for agents
without requiring them to communicate. If an agent does not apply an operator
at the “heartbeat” time, it is presumed to be down or out of compliance. It is
not necessary for the heartbeat to be seen by an agent; one can observe its effect.
The reason for this is the following:

Theorem 2. Suppose we have a set of n single-action operators, repeatedly ap-
plied to a network at the same rate λ, where inter-arrival times are exponen-
tially distributed. Suppose that in these operators there are chains of precedence

156 A.L. Couch and M. Chiarini

of at most length k. Then the probability that the operators are consistent af-
ter time t, given that the network has not achieved a fixed point, is less than
1 − (1 − e−λt/k)

nk
, which approaches 0 as t → ∞.

Proof. The proof utilizes Bayesian relationships between several hypotheses. Let
t represent elapsed time since the reference time t0 at which operators began to
be applied. Let H be the hypothesis that the operators are consistent, let R(t)
be the hypothesis that all operators have been repeated in all permutations at
time t, and let F (t) be the hypothesis that a fixed point for all operators has
been observed at time t.

At the outset, no operators have been applied, and we have no information
about the likelihood of H except for its relationships with the other hypotheses
R(t) and F (t), for which we also initially have no information.2 Clearly, F (t)
implies H and – since F (t) can only be observed over time – the probability
Prob(H) that the operators are consistent is a time-varying quantity.

If at a particular time t, R(t) is true, and F (t) is false, then H is false by
Theorem 1. Thus R(t) ∧ ¬F (t) → ¬H .

Now suppose at a particular time t that F (t) is false. It follows that the only
way that H can be true is if R(t) is false; otherwise H is false by the above. Thus
Prob(H |¬F (t)) ≤ Prob(¬R(t)) = 1 − Prob(R(t)). The reason for the inequality
is that R(t) is sufficient but not necessary to disprove H . One might be able to
infer that H was false long before R(t) is true, e.g., by observing two operators
conflicting over a short time.

Prob(R(t)) is difficult to compute, but we can bound it by approximation.
Consider the hypothesis S(t) which represents that all n operators have been
applied each t/k seconds, so that each operator has been applied k times in
t seconds. By Theorem 1, S(t) → R(t), so Prob(S(t)) ≤ Prob(R(t)) and 1 −
Prob(S(t)) ≥ 1 − Prob(R(t)).

To understand this relationship, consider the Venn diagram in Fig. 1. The
circles in the diagram represent overlaps in probability space. If one hypoth-
esis implies another, this is a containment relationship. In our case, we know
that S(t) ∧ ¬F (t) → R(t) ∧ ¬F (t) → ¬H , which is depicted as a containment
relationship between their probability masses.

The probability of S being true, unlike that of R, is easily computed. The
probability of S(t) with respect to elapsed time t is the result of k independent
sets of events, each of which are composed of n independent events, where each
event has probability (1 − e−λt/k). Thus the composite probability of these nk

events is Prob(S(t)) = (1 − e−λt/k)
nk

, and we conclude that at time t,

Prob(H |¬F (t)) ≤ 1 − Prob(R(t)) ≤ 1 − Prob(S(t)) = 1 − (1 − e−λt/k)
nk

The exponential dominates the constant power, so this quantity approaches 0 as
t → ∞. �

2 One reviewer felt that the estimates would be greatly improved by use of a priori
estimates of the likelihood of H . We agree, but at the outset of this process, we have
no such information.

Dynamic Consistency Analysis for Convergent Operators 157

Fig. 1. If all permutations of operators have been tried and a fixed point was not
observed (R ∧ ¬F), then the set of operators is inconsistent (¬H), but this is not the
only way to prove ¬H

In the theorem, n is the number of operators and k is the maximum dependency
between them. In regular practice, the number of operators managing a network
might be in the thousands, while the dependencies between them remain rather
limited; an average service depends on at most 10 others.3

The practical uses of this theorem are easier to describe than the theorem.
By assumption, all operators try to operate on average once each 1/λ seconds.
There is a precedence chain of length k, where n is the number of operators. In
this case,

1. After time 1/λ, on average, one has operated.
2. After time 2/λ, on average, a second has operated (depending upon the

first).
3. . . .

4. After time k/λ, on average, the last in the chain has operated.

On average, within time kλ, a set of operators is either proved consistent or there
is enough evidence of inconsistency to safely assume that the set is inconsistent.

The key to the usefulness of this theorem in practice is that the agent discov-
ering the inconsistency is exactly the agent whose operators should change to
react to it. If an agent has been listening for time t, and can be 99% sure that the
current set of operators is inconsistent, then it can act to preserve consistency. If
we want Prob(¬H) ≥ .99, we know that is true if (1 − e−λt/k)

nk ≥ .99. In turn,
this is true when t ≥ −k · ln(1 − nk

√
.99)/λ. In general, .99 can be replaced with

any confidence limit. A graph of time versus confidence for λ = 1, k = 10, and
n = 10, 20, 30 is shown in Fig. 2. An alternate view is shown in Fig. 3.

3 This estimate is based on the combined system and network administration experi-
ence of the authors, and is roughly the maximum depth of dependencies exhibited
in software packages for Linux distributions.

158 A.L. Couch and M. Chiarini

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
im

e
(

λ
=

 1
 H

z
)

Prob(¬ H)

n = 10
n = 20
n = 30

Fig. 2. The probability of inconsistency over time, given that a fixed point has not
been observed, for sets of n = 10, n = 20, n = 30 operators containing no precedence
chain over k = 10 operators long

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

T
im

e
(

λ
=

 1
 H

z
)

Number of Operators n

90% confidence
99% confidence

99.9% confidence
99.99% confidence

Fig. 3. Time taken to disprove H, given that a fixed point is not observed, for a
precedence chain limit of k = 10 and increasing numbers of operators

Dynamic Consistency Analysis for Convergent Operators 159

Note also that the construction of the theorem is invariant of the particular
distribution of operator invocations:

Corollary 1. If invocations of operators in Theorem 2 are distributed according
to a cumulative distribution function c(t) (rather than the exponential distribu-
tion), and invocations are independent events, then the probability that the oper-
ators are not consistent at time t, given that consistency has not been observed,
is less than 1 − c(t/k)nk.

Proof. Substitute c(t) for the exponential cumulative distribution function 1 −
e−λt in the proof of Theorem 2. �

Note that in our model, a security violation is modeled as an operator; it is just
like any other operator, except that we do not have knowledge of its contents. It
is typical for such an operator to introduce inconsistencies in policies, by trying
to assert states that other operators attempt to prevent. Since our model does
not require codification of the intent of each operator, it can be used to model
effects of security violations without knowing the exact effect of a violation.
Thus it is possible to model a security violation as the emergence of disorder in
a previously ordered environment.

11 Multiple Time Bases

The assumptions in Theorem 2 are still too limiting for most practical cases. For
example, we assume in Theorem 2 that all operators are applied at the same
rate. The case in which different operators are applied at different rates is easy
to handle:

Corollary 2. Suppose operators O1, . . . , On are applied at rates λ1, . . . , λn and
that λ = min(λi). Then Theorem 2 applies to this system with rate λ and, given
that a fixed point has not been observed after time t, the probability that the set
of operators is consistent is less than 1 − (1 − e−λt/k)

nk
, which approaches 0 as

t → ∞.

Proof. Exponential inter-arrival rates are additive; e.g., a process that is the
sum of two rates λa and λb has a composite rate that is the sum λa + λb. Thus
every operator Oi is applied at a rate λ plus (additionally) a rate λi − λ > 0.
The extra rate does not improve the results of Theorem 2, but it does not hurt,
either. Repeat the proof of Theorem 2 to obtain the result. �

Thus a “common time base” assumption can be utilized without harm for the
slowest rate in a set of rates.

12 Bounded Operators

Suppose we have a set of operators that are not single-step, but instead are
guaranteed to find a fixed point in at most L steps, where L is a constant. We
can still predict the time at which they will become stable, if any, as follows:

160 A.L. Couch and M. Chiarini

Corollary 3. Suppose operators O1, . . . , On achieve fixed points in at most L
steps each. Then we can model this system as containing nL operators, and the
probability that the operators are consistent, given that consistency has not been
observed after time t, is 1 − (1 − e−λt/k)

nkL
, which approaches 0 as t → ∞.

Proof. Model each operator that achieves a fixed point in L steps as L separate
operators, one per step. Apply Theorem 2 to the resulting set of nL operators
to obtain the result. �

Corollary 4. Suppose every operator Oi has a different constant limit Li. Let
L be the maximum of the Ki. Then the result of Corollary 3 holds for L.

Proof. Model each operator in the base set as L operators in a new operator
set, where some of these are identity operators. The proof above then applies
without change. �

Note that these bounds are loose and can be easily tightened. The important
point of these corollaries is that these bounds – and even tighter bounds – are
easy to compute.

13 Conclusions

In this paper, we turn the problem of analyzing policy consistency somewhat
upside-down, viewing consistency as an emergent property of a self-organizing
system of operators that try to implement policy. We demonstrate that there
are Bayesian hypothesis-testing techniques that aid one in determining whether
consistency is present, and discuss their limitations. But this is just the tip of a
much larger iceberg.

First, the Bayesian inference techniques we use are just a small part of the true
Bayesian lattice of hypotheses for the problem. We are only considering one way
of analyzing the hypotheses, based upon one path through the lattice, and are
only concentrating upon upper bounds for consistency hypotheses. The theorems
in this paper can be thought of as “existence proofs of upper bounds on the prob-
ability of hypotheses”. These are extremely conservative bounds and ignore much
information that might be available. There are many other statistical relationships
yet to be explored, and the bounds described herein are not optimal.

Second, it is relatively straightforward (though laborious) to extend these
results to test whether a new operator is consistent with an existing fabric of
operators. This gives the individual agent the ability to make reasoned choices as
to whether it should change its management strategy (by changing the operators
that it applies). This requires precisely defining the hypotheses to be tested from
an individual agent’s point of view, and is left for future work.

One impact of this work is that autonomous agents can use bounds in their
reasoning processes that have a reasonable mathematical meaning. This paper
shows how – in deciding upon a course of action – an agent can determine when
it has waited “long enough” for external events. This is a small first step toward
reasoning processes with strong statistical properties.

Dynamic Consistency Analysis for Convergent Operators 161

Acknowledgments

This paper draws its inspiration from the AIMS community, including Mark
Burgess, Jan Bergstra, and many others.

References

1. Burgess, M., Couch, A.: Autonomic computing approximated by fixed-point
promises. In: Proceedings of the First IEEE International Workshop on Modeling
Autonomic Communication Environments (MACE), pp. 197–222. Multicon Verlag
(2006)

2. Couch, A.L., Daniels, N.: The maelstrom: Network service debugging via ”ineffec-
tive procedures”. In: LISA, USENIX, pp. 63–78 (2001)

3. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management.
IEEE Trans. Software Eng. 25(6), 852–869 (1999)

4. Dunlop, N., Indulska, J., Raymond, K.: Dynamic conflict detection in policy-based
management systems. In: EDOC, pp. 15–26. IEEE Computer Society, Los Alamitos
(2002)

5. Couch, A., Chiarini, M.: A theory of closure operators. In: AIMS (submitted, 2008)
6. Burgess, M., Couch, A.L.: Modeling next generation configuration management

tools. In: LISA, USENIX, pp. 131–147 (2006)
7. Anderson, P.: Configuration Management. SAGE Short Topics in System Admin-

istration. USENIX (2007)
8. Couch, A.: Configuration management. In: Bergstra, J., Burgess, M. (eds.) Hand-

book of Network and System Administration, pp. 75–133. Elsevier, Inc., Amster-
dam (2007)

9. Couch, A.L., Sun, Y.: On observed reproducibility in network configuration man-
agement. Sci. Comput. Program 53(2), 215–253 (2004)

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978)

11. Burgess, M.: A site configuration engine. Computing Systems 8(2), 309–337 (1995)
12. Burgess, M., Ralston, R.: Distributed resource administration using cfengine.

Softw., Pract. Exper. 27(9), 1083–1101 (1997)
13. Burgess, M.: Theoretical system administration. In: LISA, USENIX, pp. 1–13

(2000)
14. Burgess, M.: Computer immunology. In: LISA, USENIX, pp. 283–298 (1998)
15. Burgess, M.: Cfengine as a component of computer immune-systems. In: Proceed-

ings of the Norwegian Conference on Informatics (1998)

A Theory of Closure Operators

Alva L. Couch and Marc Chiarini

Tufts University, Medford, Massachusetts, USA
alva.couch@cs.tufts.edu, marc.chiarini@tufts.edu

Abstract. We explore how fixed-point operators can be designed to
interact and be composed to form autonomic control mechanisms. We
depart from the idea that an operator is idempotent only for the states
that it assures, and define a more general concept in which acceptable
states are a superset of assurable states. This modified definition permits
operators to make arbitrary choices that are later changed by other op-
erators, easing their composition and allowing them to maintain aspects
of a configuration. The result is that operators can be used to implement
closures, which can in turn be used to build self-managing systems.

1 Introduction

Cfengine[1,2,3,4,5] is a widely used tool for managing computing systems.
Cfengine’s basic building block is the “convergent operator”, an operation that
enforces a policy by modifying any non-conforming system state. Operators
affect a broad range of system entities, including configuration and dynamic
runtime state. Convergent operators immunize a system against potential dete-
rioration, by repeatedly repairing any state found to be non-conforming. They
are also idempotent on properly conforming systems, in the sense that they will
do nothing unless nonconformity is discovered. Thus, each operator comprises a
tiny autonomic “control-loop” that checks for policy conformity and implements
changes if they are needed.

Primitive operators in the current Cfengine-II (and the upcoming Cfengine-
III[6]) are simple in structure. It is best to think of Cfengine as an “assembly
language” for building convergent operators. Statements in Cfengine’s policies
affect files, processes, and other entities in straightforward ways, and can be
composed to accomplish high-level tasks such as “implementing services”. These
statements are implemented by local agents running on each managed system.

This paper is about the “next level”. While Cfengine embodies Burgess’ the-
ories, it does not implement Burgess’ more general theoretical definition of con-
vergent operators[7,8]. In that definition, a convergent operator assures that a
system attribute has a value in some set of acceptable values, while most Cfengine
operators assure that a system attribute has one value.

The effect of this limitation is that it is difficult for Cfengine to collaborate
with other entities in assuring a goal1. Cfengine policies are centered around
1 As Q of Star Trek: the Next Generation would say, “I don’t work well in groups. It’s

difficult to work in groups when you’re omnipotent.”

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 162–174, 2008.
c© IFIP International Federation for Information Processing 2008

A Theory of Closure Operators 163

creating some specific state, not an acceptable one. Thus, if some other entity
creates another acceptable state, Cfengine will often detect and revert that state
to the one and only state that it considers acceptable.

For example, suppose we set up a web server with Cfengine and then decide to
tune its performance (either manually, or via some other software mechanism).
Cfengine will – when invoked – revoke the changes we make to tune the server
according to its own definition of “health,” which is defined in terms of the
contents and positions of specific files. To make the tuning “permanent”, we
have to inform Cfengine itself about the changes we want, and let it enforce these
rules. This is an extra and potentially costly step if the changes are widespread.

In this paper, we ask the question, “how can convergent operators collabo-
rate?” We explore collaboration as a composition of operators that does not re-
quire the step of coding knowledge from one operator (e.g., tuning) into another
(e.g., setup). We define a new concept of operator that conforms to Burgess’ the-
oretical definition but is broader than Cfengine’s definition, and we explore the
effects of composing such operators. We seek a situation in which two operators
– one which sets up a web server and another that tunes it – can be composed
and efficiently collaborate without knowledge of one another. This includes the
human kind of operator as well. We explore a concept of convergent operator
that encodes intelligence without requiring rigid conformity to a policy, so that
the configuration agent becomes a “partner” rather than a controller. The de-
sirable end result of this work is an autonomic control model that involves a
partnership between humans and agents rather than a master-slave relationship
in either direction.

How does one construct a well-designed convergent operator for network man-
agement? So far, the Cfengine model provides the only answer to this question.
In this paper, we look beyond Cfengine’s capabilities to a more general definition
of convergent operators inspired by the theory of closures. All Cfengine operators
comply with this definition, but the definition allows new kinds of operators to
be created with desirable properties. Our conclusion is that this broader defini-
tion provides kinds of behavior that are otherwise difficult to describe or codify.
In particular, while one can translate a policy to an operator, the converse seems
intractable for some of the operators in this new class.

In the pages that follow, please keep in mind that fixed-point operators do not
abandon the autonomic computing mechanism of closed-loop control; instead,
they encapsulate control loops into smaller packages called operators. An oper-
ator includes a precondition-checking step that decides what control to apply,
followed by an implementation step that makes appropriate changes. This can
be viewed as a control loop operating inside the operator.

For example, consider two approaches to performance tuning of a web server,
one based upon fixed-point operators and one based upon traditional control
loops. The fixed-point version still contains a control loop, inside the operator,
which is implemented through multiple invocations of the operator. This includes
data collection, planning, and execution phases, but in the context of a single
operator, rather than in the context of managing a whole system.

164 A.L. Couch and M. Chiarini

2 Convergent and Closure Operators

All the ideas in this paper presume the existence of a set of convergent operators
O operating on a system that possesses a set of potential states S.

Definition 1. A convergent operator O over a set of potential states S (that can
be present in a network) is a function from S to S that, when applied repeatedly,
eventually assures that a subset Sa of assurable states of S is present in the
network, where O is idempotent over Sa, i.e., for s ∈ Sa, O(s) = s.

In other words, there exists some k > 0 such that for n > k and any state s ∈ S,
On(s) ∈ Sa, or, equivalently, On(S) = Sa (and O(Sa) = Sa).

This is fairly close to the Cfengine definition of a convergent operator, but is
more limited than Burgess’ general definition of convergence, in which k might be
infinite. Also, note that the existence of k in a static environment does not assume
that there is a k for an environment that is dynamically changing, perhaps in
opposition to the goals of the operator. For example, an operator that seeks to
limit the number of user processes would never converge if a user attempted
consciously to circumvent the operator by creating a steady supply of processes.

We broaden this definition in one fundamental way, inspired by the theory
of closures, to admit a new kind of idempotence. A closure[9,10,11] is a domain
of semantic predictability in a larger system that may exhibit unpredictability
in other ways. Creating a closure requires separating behavior from configura-
tion, so that configuration data can be classed as either crucial to behavior or
incidental. An incidental configuration parameter’s value does not affect behav-
ior, while a crucial parameter changes observable behavior. This classification
of parameters determines which configuration parameters should be part of the
interface to the closure, and which should be internal and unexposed.

In particular, the first definition does not account for the fact that an oper-
ator may accept (that is, be idempotent over) more states than it assures. The
assurable states of an operator are those that it has the power to create, while
the acceptable states of an operator are those that it finds acceptable, but might
not be able to create itself. More formally,

Definition 2. A closure operator O over a set S is defined by two sets of states,
Sa ⊆ Si ⊆ S, so that O is idempotent over Si but assures a perhaps smaller
subset Sa.

For most Cfengine operators, Si = Sa, though there are some advanced operators
(e.g., file editing) for which Si is a proper superset of Sa.

The fact that assurance is different than acceptance is a core idea in the
theory of closures. Many states are “acceptable” simply because they embody
arbitrary (or “incidental”) choices that do not affect the outcome of the goal.
Other choices might be crucial.

For example, the actual location of the web server document tree has little
to do with the basic behavior of a web server, so an operator O1 that sets up
a web server might well make an arbitrary choice[10] about those details. But
one operator’s “arbitrary” might be another operator’s “crucial”; consider an

A Theory of Closure Operators 165

Fig. 1. (a) O1 accepts some subset of states that are assurable by O2. (b) O1 only
accepts the states that it assures.

operator O2 whose goal is to tune the performance of the web server. Then the
choice of document root – unimportant to the basic act of setting up the web
server – changes from incidental to crucial and is no longer so flexible. However,
the first operator O1 does not care about the location, so it should not override
the operator O2’s changes to its original design.

The difference between what an operator accepts and what it assures can
lead to fixed points that are not readily apparent. If O1 assures that the web
service is located on the mounted filesystem, but accepts that it could be located
anywhere, then the set of operators {O1, O2} has a fixed point. If O1 does not
accept anything except what it assures, then operators in the set share no fixed
point and are not consistent. These two situations are described in Fig. 1. In one
case, O1 accepts states set up by O2; in the other, it does not.

Thus, the concept of incidental complexity in closures – conceived within a
theory based upon syntactic consistency – is reflected in the theory of operators
as an acceptance set that allows greater flexibility for incidental choices than
those in an assurance set. A third operator O3 might set up and assure the
operation of a particular virtual server, without conflicting with O1 or O2.

3 Strategy and Tactics

One way of understanding this new distinction is that the acceptance set reflects
a general strategy for accomplishing an aim or goal, while the assurance set re-
flects specific tactics for achieving that goal. A strategy is declarative knowledge,
in the sense that it is about describing acceptable states, while a tactic represents
procedural knowledge about how to achieve one or more assurable states.

In the above example, the strategy of O1 is to “create a working web server,”
while the strategy of O2 is to “create a fast web server.” O1 has a tactic for
creating at least one version of a “working web server” in which it makes a
number of choices that might be incidental to the web server’s function. To

166 A.L. Couch and M. Chiarini

O2, though, some choices (e.g., the locations of particular content) are no longer
incidental, because O2’s strategy differs from O1’s strategy. However, a “fast web
server” is indeed some subclass of a “working web server”, so there is strategy
overlap between O1 and O2. O1 and O2 can “collaborate” if O2’s tactic for
creating a “fast web server” is also consonant with O1’s definition of a “working
web server.” In this case, we can compose O1 and O2 to get “a working and fast
web server”.

The concept of closure operators may seem abstract and unrealistic at first
glance, but it is a more direct mimicry of what humans do in administering sys-
tems than the actions performed by current configuration tools. We break down
installation of a service into multiple steps, each of which requires prerequisites.
We tune each step separately, making sure we do not break the function of any
prior step. One person might set up a web server, another might populate its
content, and a third might tune it. This is exactly what a set of closure opera-
tors are meant to do, and one might thus characterize closure operators as “what
humans do” to create and then continue to assure a functioning system.

The Cfengine way to construct O1 and O2 is to employ assurance sets that
equal their acceptance sets. In that case, O1 must embody all of the complexity
of O2, or the operators are inconsistent. If, instead, we can determine a method
that allows O2 to embrace what O1 has done, without understanding it, and for
O1 to embrace what O2 will do, then we can compose O1 and O2 into a whole
greater than the sum of its parts.

4 Operator Consistency

One important question for a set of convergent operators (each of which has a
set of fixed points) is whether the set shares a fixed point or not.

Definition 3. A set of convergent operators O is consistent if the set shares a
set of fixed points F that is a subset of all states S in the domain of the set of
operators.

Note that this is a set intersection problem: the set of fixed points F for a set of
operators O, if it exists, is the intersection of the sets of fixed points A = {Ai}
that each individual operator Oi assures. O is consistent exactly when A is
non-empty2.

The above definition applies to operators with preconditions in a perhaps
unexpected way. Such an operator does nothing until its preconditions are met.
For example, one cannot tune a web server (O2) until it has been installed (O1).
Thus O2 is idempotent both when its preconditions are not met and after its
acceptable states have been achieved.

Definition 4. Operators with preconditions are consistent only if they exhibit a
fixed point after all operator preconditions have been met.

2 Extended notions of consistency are explored in [12].

A Theory of Closure Operators 167

In other words, the trivial fixed point for operators that have not become active
does not count as a fixed point for the set of operators.

It is often important to know whether consistency is a concrete or abstract
property of a set of operators. It is only concrete if it can actually arise in
practice:

Definition 5. A set of operators O is reachably consistent (with respect to a
set of baseline states B) if they are consistent, and for any state b ∈ B of the
network before the operators, there is some sequence of operator applications that
leads to a consistent state.

We denote the reachable states for a set of operators O with respect to a set of
baseline (initial) states B as O∗(B).

Reachable consistency of closure operators is not a simple set intersection
problem unless the acceptance and assurance sets for operators are equal; there
are sets of closure operators that are consistent but not reachably consistent,
because reachability requires some outside force to be applied. Consider the case
where O1 and O2 share an acceptable point that is not reachable. For example
suppose that O1 can locate the web server in /usr/web, O2 can locate the web
server anywhere in /opt, and some third operator O3 can put the web server
in /var/www, which is acceptable to both of the others. The set {O1, O2} is
consistent but not reachably consistent, because the common acceptable state
/var/www cannot be reached by virtue of the knowledge contained in O1 or
O2. The set {O1, O2, O3} is reachably consistent (with respect to the set of all
states S) because an assurable state of O3 can satisfy at least one acceptable
state of both O1 and O2. Thus a set that is not reachably consistent can be
made reachably consistent by adding operators, a fact that is on the surface
quite counter-intuitive and that cannot happen if assurable and acceptable states
happen to match (Figure 2).

Reachable consistency depends upon the possible initial states B of a system
before operators are applied. This is a rather trivial assertion in the sense that
if the baseline states are fixed points of all operators, then the set of operators

Fig. 2. Operators O1 and O2 can never reach a fixed point without O3, which joins
their acceptable states with a common assurable state. An ’i’ (idempotent) superscript
denotes an operator’s set of acceptable states, while an ’a’ denotes its assurance set.

168 A.L. Couch and M. Chiarini

is consistent even though they might not be able to assure that particular state
themselves. If, for example, the set of operators never moves the system outside a
baseline state, then for all practical purposes, the set of all states is the baseline
set.

In the above example, the result of the three operators is an emergent fixed
point that is fixed for all three operators, but fixed in different ways for each
operator. Thus each operator can be thought of as acting on an aspect of the
network, and the composition of operators into a set can be viewed as similar to
aspect composition as defined in [13,14,15]. An aspect is one facet of coordination
within a configuration; any configuration management tool must compose aspects
to create a valid configuration.

5 Implementing Closure Operators

One reason that closure operators have not been explored so far is that they
are more difficult to implement than simple convergent operators. But there are
things that simply cannot be done without them, including management opera-
tions that exploit aspect composition. Further, the extra machinery required to
implement a closure operator is necessary anyway, for other reasons.

Closure operators are more difficult to construct than, e.g., automation scripts
that accomplish similar goals. The closure operator, unlike a simple script, must
be aware of its surroundings and have knowledge of its preconditions and post-
conditions. An ideal closure operator is safe under all conditions, in the sense that
it is safe to invoke the operator with the network in any conceivable state, and
as a result, the operator will not damage the network through lack of knowledge
(though it might not be capable of improving the network either).

Note first that the acceptance set of a closure operator can only be determined
by use of a validation model that determines what is acceptable. This model
is different from the assurance model that determines which settings will be
changed if the current configuration is not valid. Both of these models could be
specified as rulesets.

Consider, for example, how one would implement the operators O1 and O2

above. O1 is straightforward enough; installing the RPM for Apache might do
nicely as a first approximation. But O2 is a much more sophisticated operator
than has ever been written before. O2 must validate the install of O1 and then
operate in such a way that this validation is not lost by its changes. This is a
matter of coordinating settings in files with positions on disk, so that everything
one moves is matched with a parameter change in a file. Further, for O1 to accept
this change, it must share with O2 an underlying validation model that accepts
more states than what it can assure. Thus the key to implementing O1 and O2

is that both must agree (at some level) on what constitutes a valid web server,
invariant of how that validity was reached3.
3 Of course, RPM sets a flag that keeps a web server from being installed on top of

another, but this also allows that web server to be manually broken and not repaired.
So RPM does not really implement a closure operator.

A Theory of Closure Operators 169

With this validation model in hand (ostensibly, modeled as a set of “valid web
server configurations”), O1 checks whether this model is satisfied, and takes steps
to satisfy it if not. O2, by contrast, does nothing if the web server configuration is
invalid, but if it is valid, changes it to perhaps another valid state that responds
more quickly.

Why would we want to structure operators in this way? One answer is that the
monolithic construction of an operator that both installs and tunes a web server
is more complex than two operators, each of which handles one aspect, and that
there may in fact be different concepts and models of tuning that one might
wish to apply. Further, the added complexity of a validation model is desirable
whether we implement the tuning as one operator or two, because the alternative
is that the web server may be unintentionally rebuilt for no particularly good
reason, simply because “incidental” (and meaningless) changes in configuration
have occurred out of band. In order to satisfy the spirit of Cfengine, that ”if
it isn’t broken, don’t fix it”, one must have a model of what it means to be
functional or broken.

6 Validation Models

What is a “valid” web server? This is a complex question that has been studied in
some detail. First, inside the server, there are a set of data relationships that must
be preserved. But there is another validation model that depicts how certain data
must be present outside the web server.These are related via a closuremodel ofweb
service[10] that expresses external behavior as a set of exterior maps. But in con-
structing this mapping, many incidental choices are made that have nothing to do
with the mapping, though they may affect performance. These incidental choices
must be coordinated so that the result is a functional web server. Thus there are
two kinds of validation models: an interior model that depicts data (static) rela-
tionships, and an exterior model that depicts behavioral (dynamic) relationships.

An example of an interior model (reprinted from [10]) is given in Fig. 3. A
web server configuration contains many parameters that must agree in order
for the webserver to function properly. The directory in which content appears
must both be accessible as a directory and mapped to an appropriate virtual
server. Likewise, the name of each file must correspond to the appropriate MIME
type, etc. Many of these parameters are “incidental” in the sense that choices for
internal location of a set of files seldom affects the externally observable behavior
of a web server.

The good news is that the internal model of a valid web server is a purely declar-
ative description of data relationships, similar to database integrity constraints,
and that it is both package-specific and policy-neutral, in the sense that any pol-
icy can be enforced while obeying the model. The bad news is that no such model
has yet been constructed for many configurable packages in current use. This is a
bad thing, because such models are necessary in order to know whether configu-
ration management operators are working properly or not. An instance that does
not conform to the basic model for behavior cannot possibly function properly.

170 A.L. Couch and M. Chiarini

 /some/where/index.htmlTypesConfig /etc/mime.types

<VirtualHost 192.168.0.1:80>
 DocumentRoot /some/where
 ServerName www.foo.edu
 DirectoryIndex index.cgi
 index.html
</VirtualHost>

<Directory /some/where>
 Options all
 Order allow,deny
 Allow from all
</Directory>

httpd.conf Filesystem

/etc/mime.types

 text/html html htm

Content-type: text/html

Server output

http://www.foo.edu/

..content..

..content..

Request URI

Fig. 3. A relational model of a specific web server’s data dependencies (reprinted
from [10])

Note that a model of validity is not an information model (e.g. CIM), but
rather a relational model, similar to a set of database constraints or an XML
schema. An overall model of a valid web server is (at some level) a version of the
server’s user manual, while a model of a “fast web server” is an embodiment of
best practices for increasing service speed while obeying the user manual.

It might be best to think of each of these models as an XML document
conforming to a particular XSchema; this seems to describe the models in the
web server example, among others. The O1 XSchema simply defines what is
valid as a configuration according to the user manual, while the O2 XSchema
(which might change over time) eliminates some valid configurations that exhibit
poor performance. In the manner of BCFG2 or LCFG, information in an XML
configuration file (conforming to the XSchema) corresponds with information
stored in package configuration files, wherever they might be located. We do not
endorse the use of XML and XSchema for this purpose; we merely remark that
they seem powerful enough to serve as a modeling language for this purpose.

To make closure operators practical, we need some form of “strategic schema”
for each managed package or unit. This schema serves as a trigger for “tactics” that
enforce one way to obey the schema. The true purpose of the schema, however, is
to allow an operator to leave “well enough” alone. By defining a notion of “health”
that is independent of the mechanism of assurance, one admits other potentially
clever assurance mechanisms that arise from outside the operator in question.

A Theory of Closure Operators 171

7 Properties of Closure Operators

Creating schemas for common packages (or perhaps one might say, “frequently
encountered intents”) seems a daunting task. Why would one want to do this? In
this section, we discuss some of the properties of closure operators as motivation
for the work ahead.

First we describe several “composition theorems”, that show when a set of
closure operators O = {O1, . . . , Ok} can be thought of as a single closure op-
erator O, where applying O consists of randomly choosing and applying one of
O1, . . . , Ok.

First,

Theorem 1. Suppose we have a set of k closure operators O = {O1, . . . , Ok}
with the same acceptance set Oi. Then the set of operators, viewed as one oper-
ator, is a closure operator.

Proof. View the set of operators as one operator that randomly chooses which
sub-operator to call. The acceptance set of this operator is Oi, while the assur-
ance set is the union of the individual assurance sets Oa

j . �

This is just tactic composition in the presence of shared strategy. The most
important property of closure operators – as compared to regular Cfengine op-
erators – is flexibility of response. Most current operators correspond to “one
tactic” for assuring a behavior. “Multiple tactics” can be tried by one closure
operator to achieve a coherent aim.

Moreover,

Theorem 2. Suppose the acceptance sets of O1, . . . , Ok intersect in some non-
empty set Oi. If O contains the assurance set of one operator Oj , then the set
of these operators, viewed as one random operator, is a closure operator.

Proof. As before, consider the operator O that randomly calls some Om when
invoked. When Oj is invoked, it assures a state inside the acceptance set. Since
operators are chosen randomly to be invoked, it is only a matter of time until it
is invoked, and other operators in O, once it assures an appropriate state, will
not modify Oj ’s tactics. �

Agreement is not always necessary; orthogonality is sufficient:

Theorem 3. Suppose that two operators O1, O2 operate on orthogonal regions
S1, S2 of a product space S1 ⊗S2, so that O1 affects the chosen subset of S1 and
O2 affects S2 only. Then {O1, O2} is a closure operator.

Proof. Suppose O1 assures Sa
1 , a subset of its acceptance set Si

1, while O2 assures
Sa

2 , a subset of its acceptance set Si
2. Then {O1, O2} assures Sa

1 ⊗Sa
2 and accepts

Si
1 ⊗ Si

2, so it is a closure operator. �

In other words, closure operators acting on independent entities can be composed
into one closure operator.

In general,

172 A.L. Couch and M. Chiarini

Theorem 4. Suppose that a set of operators O = {O1, . . . , Ok} can be factored
into subsets of operators, each of which acts on an orthogonal part of config-
uration, where each subset satisfies the conditions of Theorem 2. Then O is a
closure operator.

Proof. Apply Theorem 2 to infer that each subset is a closure operator, and then
use Theorem 3 inductively to get the result. �

Conversely,

Theorem 5. Any set of operators that is reachably consistent can be considered
as a single closure operator.

Proof. If a set of operators is reachably consistent, then it shares an acceptance set
that is the intersection of all operators’ acceptance sets, and for any initial state,
the operators achieve some element of that subset, so that at least one operator
in the set must have each state in the intersection in its assurance set. �

We have shown, thus, that under a variety of conditions, closure operators com-
pose to make a single closure operator. What, then, is inconsistency? We take
the approach of [16], that inconsistency indicates that the operators in a set rep-
resent two or more distinct strategies, so that sets of operators can be factored
into strategic groups.

Two operators O1 and O2 are inconsistent if there is some state in O1’s as-
surance set that is not in O2’s acceptance set, and vice-versa. It is necessary
for lack of acceptance to be symmetric, or the operators would settle among
themselves upon the more stringent acceptance set and become consistent. Thus
inconsistency is a “flip-flop” situation in which two operators feel compelled to
undo each other’s tactics.

Detecting inconsistency is difficult if not impossible for distributed operators
that do not necessarily have knowledge of each others’ strategies and/or goals.
We study this problem in [12] and conclude that consistency is best considered
to be a statistical rather than logical property. We demonstrate methods for eval-
uating the hypothesis that a set of operators is consistent, and relate probability
of consistency to time of observation.

8 Conclusions

So far, autonomic computing has been asserted by hierarchical means, in which
more limited control loops are part of a larger hierarchy of control. In this paper,
we propose a boldly different strategy, of composing control loops as peers in a
control strategy. In this paper, we have explored the structure of such a set of
operators, from a practical and an algebraic standpoint. In a second paper[12],
we explore notions of operator consistency that are meaningful and useful in this
context.

Closure operators are difficult to build, but have some really nice properties.
The most significant of these is that they can be composed with other closure

A Theory of Closure Operators 173

operators without tactical agreement, and the results can emerge as a new control
strategy that is the composition of several less-general control strategies. It can
be extremely difficult to extend a given operator to create a new function, while
that function may be added by another consistent operator with less effort,
provided that the two operators share the same basic behavioral model. The
behavioral model is thus the pivot upon which effective composition is based,
and is needed whether composition is desired or not. The result is a compositional
model of autonomics in which operators compose simply because they agree on
strategy, but not necessarily on tactics.

There are several directions for future work. First, the theory suggests an
extension to Cfengine that allows assurance sets to be smaller than acceptance
sets. This is a task of significant complexity, however, because Cfengine currently
lacks the modeling machinery required to define acceptance as a concept sep-
arate from assurance. Using this extension, we can develop practical examples
of cooperative management, such as performance tuning. Aside from inspiring
new capabilities for Cfengine, this theory allows other autonomic control loops
to be composed in like manner – as peers in an operator calculus. It remains to
be seen whether this is better, worse, or just different than composing control
loops via hierarchy.

But the theory is most powerful in that it offers a method for dealing with
open management situations in which there is no way to establish sufficient
closed control loops. By expressing management tools and user actions (including
intrusions) as operators, we have one coherent theoretical model for everything
that can happen in a network. The future promise of closure operators is that
we can express mitigating influences for network problems in terms of closure
operator activations and deactivations, rather than in terms of selecting features
in a monolithic management tool. This enables highly dynamic management
strategies, including intelligent operators whose nature evolves with changing
conditions, and that can be deployed, erased, recompiled, and redeployed in a
live environment. We believe this high level of dynamism will be required to deal
with the ubiquitous computing networks of tomorrow.

Acknowledgements

This paper would not exist without the inspiration of the Cfengine community,
including Mark Burgess and the many users of Cfengine who have dared to learn
a different way of thinking.

References

1. Burgess, M.: A site configuration engine. Computing Systems 8(2), 309–337 (1995)
2. Burgess, M., Ralston, R.: Distributed resource administration using cfengine.

Softw., Pract. Exper. 27(9), 1083–1101 (1997)
3. Burgess, M.: Computer immunology. In: LISA, pp. 283–298. USENIX (1998)
4. Burgess, M.: Theoretical system administration. In: LISA, pp. 1–13. USENIX

(2000)

174 A.L. Couch and M. Chiarini

5. Burgess, M.: Cfengine as a component of computer immune-systems. In: Proceed-
ings of the Norwegian Conference on Informatics (1998)

6. Burgess, M., Frisch, A.: Promises and cfengine: A working specification for cfengine
3. Technical report, Oslo University College (November 2005)

7. Burgess, M.: An approach to understanding policy based on autonomy and vol-
untary cooperation. In: Schönwälder, J., Serrat, J. (eds.) DSOM 2005. LNCS,
vol. 3775, pp. 97–108. Springer, Heidelberg (2005)

8. Burgess, M., Couch, A.: Autonomic computing approximated by fixed-point
promises. In: Proceedings of the First IEEE International Workshop on Modeling
Autonomic Communication Environments (MACE), pp. 197–222. Multicon Verlag
(2006)

9. Couch, A., Hart, J., Idhaw, E.G., Kallas, D.: Seeking closure in an open world:
A behavioral agent approach to configuration management. In: LISA 2003: Pro-
ceedings of the 17th USENIX conference on System administration, Berkeley, CA,
USA, pp. 125–148. USENIX (2003)

10. Schwartzberg, S., Couch, A.: Experience implementing a web service closure. In:
LISA 2004: Proceedings of the 18th USENIX conference on System administration,
Berkeley, CA, USA, pp. 213–230. USENIX (2004)

11. Wu, N., Couch, A.: Experience implementing an ip address closure. In: LISA 2006:
Proceedings of the 20th USENIX conference on System administration, Berkeley,
CA, USA, pp. 119–130. USENIX (2006)

12. Couch, A., Chiarini, M.: Dynamic consistency analysis for convergent operators.
In: AIMS (submitted, 2008)

13. Burgess, M., Couch, A.L.: Modeling next generation configuration management
tools. In: LISA, pp. 131–147. USENIX (2006)

14. Anderson, P.: Configuration Management. SAGE Short Topics in System Admin-
istration. USENIX (2007)

15. Couch, A.: Configuration management. In: Bergstra, J., Burgess, M. (eds.) Hand-
book of Network and System Administration, pp. 75–133. Elsevier, Inc., Amster-
dam (2007)

16. Couch, A., Sun, Y.: On the algebraic structure of convergence. In: Brunner, M.,
Keller, A. (eds.) DSOM 2003. LNCS, vol. 2867, pp. 28–40. Springer, Berlin (2003)

Entwined Influences of Users’ Behaviour and

QoS: A Multi-model Approach

Julien Siebert, Vincent Chevrier, and Laurent Ciarletta

LORIA: MADYNES & MAIA teams - Campus Scientifique - BP 239 - 54506
Vandœuvre-lès-Nancy Cedex

{julien.siebert,vincent.chevrier,laurent.ciarletta}@loria.fr

Abstract. In distributed, dynamic networks and applications, such as
Peer-to-Peer (P2P), users’ behaviour and quality of service/quality of ex-
periment1 are known to influence each other. In worst cases, these mutual
influences could lead the system to crash. We propose a novel approach
to model relationships between users and QoS. It is based upon multi-
agent systems in order to study the impact of situated behaviours on the
global network and to integrate different levels of representation (users’
behaviour, overlay protocols, network topology). This paper describes
our approach to represent the different models required in such systems
and a first implementation in an existing overlay simulator with the first
results of experimentations.

1 Motivation

For the last couple of years, distributed applications (such as P2P file sharing)
have rapidly expanded. In these applications [1,2], users’ behaviour is known
to have a great impact on the quality of service (QoS), as for instance the
problems of free-riding and poisoning (studied in section 3). QoS also impacts the
users’ behaviour. For example, a user can stop or defer the use of an application
because of a large bandwidth consumption. Moreover, applications are expected
to become ubiquitous and to be able to guide user’s behaviour.

Understanding these mutual influences can help to foresee the behaviours
which can be dangerous/beneficial for the network performance (NP) and the
impact of NP on these behaviours. This work can also be useful to quantify the
dysfunctions based on the frequency/ratio of these behaviours, or to test future
applications.

To do this, we argue that we need to take into account different levels of
representation. Indeed, the users’ behaviour depends on the objective QoS and
on the local user’s environment (moment, location, stress,...). For the QoS (see
[3]), it depends mostly on NP and on the media environment. In short, we claim
it is needed to study relations between models of (1) user, (2) application and
(3) environment in order to assess the mutual influences (fig. 1).

1 In this article, we use the term QoS to design both quality of service and quality of
experiment.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 175–179, 2008.
c© IFIP International Federation for Information Processing 2008

176 J. Siebert, V. Chevrier, and L. Ciarletta

Fig. 1. Relations between the different levels of representation

Models and simulators, in the network domain (such as NS, etc. see review [4]),
are well fitted to study QoS and network performances. The users’ behaviour,
if present, is just an input for these models. It is often reduced to a quantity
of traffic generated. As a consequence, it seems difficult to model dynamic and
heterogeneous users’ behaviour, and to take into account the mutual influences
of QoS and behaviour with such a limited approach.

Obviously, models and simulators in the field of cognitive sciences (economy,
social sciences, game theory,...) are well suited to represent user’s behaviours,
goals, actions and interactions [5,6]. However, modelling realistic network’s pa-
rameters is not the primary objective of this field. As a consequence, parameters
such as delays, bandwidth or overlay protocols are seldom if ever represented.

After looking at each domain, we conclude that a single point of view does not
seem sufficient. Since models already exist for each level, we need to integrate
and make them interact.

2 Proposition of Study

We propose to use the multi-agent (MA) paradigm [7] to describe P2P systems
and to make interact our different levels of abstraction. MA is appropriate to
simulate complex distributed systems such as, for example, societies [8]. It could
be defined as a set of organised autonomous entities (the agents) interacting with
and within an environment to achieve some goals. In our case, we define users
as agents2, protocols as interactions and underlying networks as the (media)
environment (see fig. 2).

Our goal is to implement, to test our multi-agent approach and to compare it
with existing models and real data. Then, we want to build a generic framework
enabling us to assess the mutual influences of users’ behaviour and QoS, not only
in P2P but also in other distributed, dynamic networks and applications (ad-
hoc, mesh). We wish to test different heterogeneous behaviours and/or different
overlay protocols and/or different network topologies. This last point highlights
2 We now use node, agent, user or peer as the same.

Entwined Influences of Users’ Behaviour and QoS 177

Fig. 2. Multi-agent for P2P [9]

multi-model issues: how several models at different space and time scales can
interact ?

3 A First Case Study

As a first case study of our approach, we restrict the domain to P2P file sharing
applications (see [9]). We are studying the problems of free-riding: people that
do not share their resources; and poisoning: content that differs from the original
copy (also called pollution). We would like to assess the impact of sharing and
poisoning awareness on the content spreading. These problems are known to be
quite hard to solve in decentralised systems and methods to avoid free-riding
and poisoning are still an open area (see [10,6,2]).

MA approach enables us to understand the impact of local behaviours on the
global state of the system. However, we were firstly interested in its feasibility:
we build a simulator and make experiments to answer the questions of realism
and scalability of our implementation.

Due to time constraints3, we chose to adapt an existing overlay simulator:
PeerFactSim.KOM4(PFS). This tool had several advantages for the study of our
problematic. The first one is the scalability (up to 105 nodes) and the second
one is its architecture that separates each level of abstraction and facilitates the
implementation of a user model.

We adapted PFS to fit with our approach by explicitly modelling data and
their concrete exchanges (each node has now a list of files which can be shared
over the network), by modelling pollution within these files and adding new
metrics such as, for example, number of polluted files per node.

3 This work was done during my Master Thesis.
4 http://www.peerfact.org

178 J. Siebert, V. Chevrier, and L. Ciarletta

Fig. 3. Perception Decision Action cycle in our model [9]

The user, in our model has a relatively simple behaviour with few internal
states and a compact representation of their external environment and neigh-
bours. It decides which action to undertake considering its local perception and
its internal states (see fig 3).

We establish a first experiment’s scenario in order to test our approach: we
mainly look at technical feasibility (debug), realism and scalability. We take an
initial network of N nodes in which P peers publish each f resources. The sce-
nario is composed of five steps: one agent looks for a file; after a while the agent
asks one of the available sources for a download; then it checks the download pro-
cess; if it gets the file, it can check the pollution and decides to share, otherwise
it can decide to restart the whole process.

On scalability: we perform experiments over kademlia networks from N = 25 to
50000 nodes (Java 6, 2GbRAM, core duo 2.4GHz). Simulating 50000 nodes with
our model of user nearly tooks 15 minutes.

On realism: we studied the impact of the number of initial publishers P in
an ideal case (no pollution, no selfish users). The basic idea is that, when P
increases, the load per node spreads equally over the networks (ideal P2P be-
haviour). We measure the number of received messages per nodes as the load
carry by each peer. We saw that effectively, in our tool, the more people publish
(a greater P), the more equally the load spreads. This means that the modified
tool behave correctly.

4 Conclusion and Future Work

We have presented the basis of a multi-model approach to study the entwined
influences of user’s behaviour and QoS within the field of distributed, dynamic,
ubiquitous network and applications. We integrate and make interact an agent-
based model with an application and a network one. We implemented this pro-
posal on a kademlia network to build a proof of concept.

Entwined Influences of Users’ Behaviour and QoS 179

Results obtained show that approach enables to study the impact of situ-
ated users’ behaviours on the global P2P network. We aim now at continuing
experiments over P2P file sharing applications. We have recently undertaken
experiments to study the impact of poisoning peers: we look at the number of
peers that poison the network and how they do it (e.g. number of decoy files
they inject). The goal here is to show the conceptual benefits of our approach.
We also aim at comparing our results to existing models and real data (in order
to validate our model of user).

Currently, underlying network topology and user model are quite simple. How-
ever, our long term goal is to build a generic framework to implement and test
different models of users and/or different overlay protocols and/or different net-
work topologies. The scientific questions behind is to make interact several mod-
els at different time and space scales.

References

1. Hughes, D., Coulson, G., Walkerdine, J.: Free riding on gnutella revisited: The bell
tolls? IEEE Distributed Systems Online 6(6), 1 (2005)

2. Lee, U., Choiz, M., Choy, J., Sanadidiy, M.Y., Gerla, M.: Understanding pollu-
tion dynamics in p2p file sharing. In: 5th International Workshop on Peer-to-Peer
Systems (IPTPS 2006), Santa Babara, CA, USA (2006)

3. Teletraffic engineering handbook. Technical report, ITU-D Study Group 2 Question
16/2 (2006)

4. Naicken, S., Livingston, B., Basu, A., Rodhetbhai, S., Wakeman, I., Chalmers,
D.: The State of Peer-to-Peer Simulators and Simulations. Accepted for editorial
publication in ACM SIGCOMM journal for Computer Communication Review
(2007)

5. Hales, D.: From Selfish Nodes to Cooperative Networks - Emergent Link-Based
Incentives in Peer-to-Peer Networks. In: P2P 2004: Proceedings of the Fourth In-
ternational Conference on Peer-to-Peer Computing (P2P 2004), Washington, DC,
USA, pp. 151–158. IEEE Computer Society, Los Alamitos (2004)

6. Feldman, M., Papadimitriou, C., Chuang, J., Stoica, I.: Free-riding and whitewash-
ing in peer-to-peer systems. In: PINS 2004: Proceedings of the ACM SIGCOMM
workshop on Practice and theory of incentives in networked systems, pp. 228–236.
ACM Press, New York (2004)

7. Ferber, J.: Multi-Agent Systems. In: An Introduction to Distributed Artificial In-
telligence. Addison Wesley, Reading (1999)

8. Phan, D., Amblard, F.: Agent-Based Modelling and Simulation in the Social and
Human Sciences. Bardwell Press, Oxford (2007)

9. Siebert, J., Chevrier, V., Ciarletta, L.: Modélisation multimodèle des réseaux dy-
namiques: cas des réseaux pair-à-pair (in french). In: JDIR 2008 - 9èmes Journées
Doctorales en Informatique et Réseaux, Villeneuve d’Ascq, France (2008)

10. Thommes, R., Coates, M.: Epidemiological Modelling of Peer-to-Peer Viruses and
Pollution. In: IEEE Infocom, Barcelona, Spain (2006)

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 180–184, 2008.
© IFIP International Federation for Information Processing 2008

Business-Driven Management of Policies in DiffServ
Networks

Antonio Astorga and Javier Rubio-Loyola

Network Management Group, Departament de Teoria del Senyal i Comunicacions,
Universitat Politècnica de Catalunya

{aastorga, jrubio}@nmg.upc.edu

Abstract. This paper presents a framework to control the life cycle of enforce-
able policies aligned to business directives. The framework relies on three main
aspects: the formalization of measurable business indicators underpinning the
management cycle of policies, a holistic approach to conceal Quality of Service
delivery with business alignment, and the use of policy-based management as
the vehicle to control system behavior accordingly. The core contribution of
this research lies in the network management area whose most widespread solu-
tions for QoS delivery have been systematically decoupled from business value,
although the research community recognizes business profit as the main moti-
vation for any management solution. The ultimate goal of this research is to
develop a management framework that allows exploiting business value in tele-
communications infrastructures. As each application domain may have intrinsic
peculiarities we propose to validate our approach in the context of DiffServ
networks. Simulations will be conducted to evaluate and to optimize the
performance of diverse business directives under different patterns of service
invocations and patterns of inter-domain traffic exchange between autonomous
systems. To the best of our knowledge no other approach has dealt with the
above research area in such a holistic view.

Keywords: business driven management, business indicators, policy life cycle,
network incidents, profit maximization.

1 Introduction

In networks supporting different classes of services it is expected that users will enjoy
different levels of service for the traffic injected into the network. On the one hand,
users should be encouraged by service providers to exploit the managed network
resources. On the other hand, the allocation of resources to assess the arranged quality
of service may need to be adjusted accordingly. The same behavioural pattern applies
with inter-domain traffic exchange.

It is widely accepted that without control of any kind like price, admission control,
resources limitation, etc, traffic injection would produce resources starvation and
consequently network congestion [1]. Statistical phenomena like congestion may
eventually cause service degradation which in turn would have some impact on the

 Business-Driven Management of Policies in DiffServ Networks 181

business value. From an economical view, SLA violation would have some impact on
the profit, reward, and refund strategies of the administrative parties.

In the network management area, the research community has directed some ef-
forts developing mechanisms to deliver end-to-end Quality of Service in the Internet.
Mechanisms for network congestion prevention and solving, control of service sub-
scriptions and invocations, and dynamic traffic engineering functions have been the
centre of study in potential intra-domain [2] and inter-domain [3] network manage-
ment solutions. Moreover, although these solutions have been proved to be efficient
to guarantee QoS delivery, the requirements, implications and the incremental efforts
to elevate their business value have remained almost unexplored.

The ability to carry out business- and QoS-oriented network management intro-
duces several challenging problems addressed in this work. Initially, business strate-
gies must be properly modelled with appropriate business indicators, pivotal for the
management of policies. Second, business indicators should be monitored and mod-
elled as functions of measurable parameters of the managed systems. Third, the dy-
namicity of events occurring in the managed network should be constantly evaluated
as to define proactive and corrective management actions enforced through policy.
The creation, deployment and modification of policies in runtime should be devoted
to optimise business value, all in all under QoS delivery constraints. These problems
make this research highly challenging, mainly when we consider a holistic approach
to optimise business value under different patterns of resources utilization, patterns of
traffic exchange between administrative domains and diverse network topologies. We
intend to evaluate the framework in the DiffServ Network Management application
domain.

2 Application Domain – Particular Objectives of Our Research

We strongly believe that each application domain should have inherent peculiarities to
both maximize business profit and to provide QoS. Developing a bi-directional
framework of this kind, valid for any application domain may be very difficult if not
impossible. This research lies in the DiffServ Network Management application do-
main. In principle we propose a framework that exploits the mechanisms of the TE-
QUILA architecture [2] – Traffic Engineering for Quality of Service for the Internet
at Large Scale – which to the best of our knowledge is the only validated network
management approach that brings together Service Management and Traffic Engi-
neering functionalities for QoS support in next generation IP Networks. TEQUILA
uses policy based management as the key enabler for programmability.

The Service Management part of the TEQUILA architecture has two objectives: to
control the traffic entering the network and to commit with the service provider’s QoS
guarantees. This research deals with the critical nature of achieving these two objec-
tives relying on the dynamic evaluation of business indicators affected by the amount
of traffic entering the network. In this sense we propose an overlay approach to dy-
namically enforce the most optimal admission control settings for service subscrip-
tions and service invocations. Similarly, our proposed overlay approach dynamically
enforces the most optimal preventive and corrective actions due to statistical network

182 A. Astorga and J. Rubio-Loyola

conditions affecting the business indicators, for example resource starving users (or
other service providers), or potential states of network congestion.

The Traffic Engineering functionality of the TEQUILA architecture is concerned
with the management of physical network resources. An off-line dimensioning proc-
ess is responsible for mapping the predicted traffic demand to the physical network
resources. In addition, real-time operations are implemented as the means to first,
balance the load amongst the established Label Switched Paths (LSPs) in the network,
and second, to ensure that link capacities are appropriately distributed among the
different Per-Hop-Behaviours (PHBs) sharing each link in the core network. In this
functionality our proposed approach dynamically triggers the most suitable policies
for the centralized off-line dimensioning process devoted to maximize business value.
In addition, our overlay approach dynamically evaluates the business indicators af-
fected by statistical fluctuations of traffic in the core network and enforces real-time
operations accordingly.

So far, the policy refinement process in this particular application domain [4] has
been carried out taking into account pure QoS-oriented aspects, isolated completely
from any business considerations. In summary this research work proposes to intro-
duce a business optimization overlay that dynamically activates the most appropriate
set of service management and traffic engineering enforceable policies as a result of a
dynamic evaluation of the business indicators.

3 Business Indicators and Management of Policies – Foreseen
Technical Approach

The chosen approach to address the research problems of this work is inspired in
game theory principles which in turn have enabled recent business-oriented advances
in IT Service Management [5], [6]. The proposed solution is an overlay environment
in which business strategies are formalised through measurable business indicators.
The approach is devoted to prioritise active changes in the managed network in order
to prevent negative effects on the business indicators due to statistical changes of the
network. The active changes are enforced through policies. More concrete, the
framework basically consists in a multi-thread environment that collects information
from the managed network, analyses it against the business indicators and enforces
changes in the active policies as to maximise the business value due to actual states of
the network threatening business value.

Consider for instance a business indicator linked to “the profit generated from a
certain type of customers”. The overlay framework will produce appropriate sets of
policies devoted to maximize the profit obtained from that type of customers under
statistical changes in the network utilisation, taking into account Quality of Service
constraints. The approach is intended to handle several business indicators.

A critical issue in this research is the modelling that formalises the relationships
between the business indicators and pure technological aspects of the DiffServ man-
agement domain. Initially, the overlay framework considers the identification of
potential incidents affecting the business. In the DiffServ domain incidents may be
simple ones like a “service rate threshold crossing”, or composed like “a service rate
threshold crossing under network congestion state”. A model establishes formal

 Business-Driven Management of Policies in DiffServ Networks 183

relationships to link incidents both, simple or composed, with business value threat-
ens. For example, the fact that the network is congested or in normal state may have a
measurable impact on service level degradation. Also, traffic injection threshold
crossings may imply that users may be starving the network, under-utilising it or
injecting traffic according to the pre-signed SLA. In this context the modelling for-
malises the effects of an incident up to the SLAs. For instance, an incident may affect
a set of Per-Hop-Behaviours (PHBs) in a network link. Each PHB affected by an
incident may in turn affect a set of services and finally, a service may have some
effect on a given SLA. SLAs may eventually be linked with user information or with
other service provider’s information. Incident effect trees are the source of informa-
tion to carry out the analysis and consequently this information should be modelled
properly.

The complexity of the analysis stage of the framework lies in the generation of
policies aimed at minimising the negative effect of the above incidents on the busi-
ness indicators throughout system execution. The central part of the analysis deals
with the formalisation of the effect, from now on referred to as impact, of incidents
over the business indicators. The total impact of an incident i should consider all the
business indicators affected by such incident. As an incident may have different im-
pact on different business indicators, the chosen approach considers the formalisation
of this situation by means of weights [6], [7]. Weights represent the degree of impor-
tance ω that an incident i has on a business indicator j.

The analysis stage evaluates the total impact of incidents occurring on the network
affecting all the business indicators and defines priority actions enforced with QoS
policies. An automatic policy refinement approach [4] deploys QoS-oriented policies
for this last enforcement step.

The evaluation of priority actions is by no means a trivial task. The DiffServ appli-
cation domain is a multi-service environment with shared resources. Priority actions
committed to some user’s (or administrative domains) may have some influence on
other business indicators, most probably linked to other users of the network. A trade-
off processing step committed to stability is mandatory at this stage of this work. As
priority actions are enforced through policy, stability passes through the management
cycle of policies. An event handler enables the communication amongst the monitor-
ing sub-systems of the managed network and the overlay system itself. This way the
incidents affecting our business indicators are correlated dynamically and in case of
further priority actions are needed those can be effectively scheduled.

4 Concluding Remarks

This paper has described our ongoing research work towards controlling the life cycle
of enforceable policies aligned to business directives for the DiffServ network man-
agement area. We rely on game theory principles applied to the business area in
which business indicators underpin the prioritization of corrective actions through
policy once threatening incidents affecting the business are detected. The approach is
to be validated with an overlay framework embedded to the network management
functions of the described application domain.

184 A. Astorga and J. Rubio-Loyola

So far we have built a strong knowledge in the DiffServ network management ap-
plication domain, in particular the QoS-oriented policy refinement process [4] with a
validated methodology and appropriate tools. We are currently defining the model to
bring QoS DiffServ Network Management and business alignment into a unified
framework.

Our immediate future work will be the definition of a holistic scenario in which we
demonstrate our approach with realistic business indicators. Implementing our over-
lay framework and integrate it with our existing functional refinement solution is also
part of our future work. Our intentions are to validate and refine our solution through
OPNET simulations. We intend to execute scenarios to analyze different patterns of
user's utilization and patterns of traffic exchange between different administrative
domains. The ultimate objective of our research is to define patterns of policy man-
agement procedures to minimize profit losses and possibly to maximize profit due to
patterns of behavior from users and eventually from other service providers e.g. for
inter-domain issues. The results of this research can be further validated in real life
scenarios in which traffic traces collected from real-life capturing process may be
used to prove the effectiveness of the patterns induced in this holistic study.

We strongly believe that the management of policies constrained to business per-
spectives is an issue that is tightly coupled to application domains. With this regard,
our contribution lies in the network management area in which to the best of our
knowledge, not a single approach to manage policy in this context has been proposed
so far as agreed by the research community.

Acknowledgments. This paper is supported in part by the IST-EMANICS Network
of Excellence (#26854).

References

1. Chang, X., Petr, D.W.: A survey of pricing for integrated service networks. Elsevier Com-
puter Communications 24(18) (December 1, 2001)

2. EU IST TEQUILA – Traffic Engineering for the Internet at Large Scale,
http://www.ist-tequila.org

3. EU IST MESCAL – Management of End-to-End Quality of Service Across the Internet at
Large Scale, http://www.mescal.org

4. Loyola, J.R., et al.: A Methodological Approach towards the Refinement Problem in Policy-
based Management Systems. IEEE Communications Magazine (October 2006)

5. Aib, I.: A business-driven approach to policy optimization. University Pierre & Marie Curie
(July 2007)

6. Bartolini, C., Salle, M.: Business Driven Prioritization of Service Incidents. In: Sahai, A.,
Wu, F. (eds.) DSOM 2004. LNCS, vol. 3278, pp. 64–75. Springer, Heidelberg (2004)

7. Buco, M.J., Chang, R.N., Luan, L.Z., Ward, C., Wolf, J.L., Yu, P.S.: Utility computing SLA
management based upon business objectives. IBM Systems Journal 43(1) (2004)

Token-Based Payment in

Dynamic SAML-Based Federations

David J. Lutz1 and Burkhard Stiller2

1 Rechenzentrum Universitaet Stuttgart
Allmandring 30, 70550 Stuttgart, Germany

David.Lutz@rus.uni-stuttgart.de
2 University of Zurich, Department of Informatics (IFI)

Binzmühlestr. 14, CH-8050 Zürich, Switzerland
stiller@ifi.uzh.ch

Abstract. The newly developed approach on token-based payments in-
troduces an integration of payments with current schemes for Identity
Federations based on SAML. This new design utilizes an established fed-
eration infrastructure as well as its protocols. Only relevant mechanisms
to support the payment on the federation infrastructure level are ex-
tended.

Keywords: Payment Token, Payment Assertion, Identity Federation,
Payment.

1 Introduction

The concept of Identity Federation is quite well known and understood in the
academic [8] as well as in the business area [4]. Within such a federation, several
service providers agree on accepting user authentication not at their systems,
but on the user’s home institution, e.g., the user’s universtity or his/her tele-
com operator. This leads to a reduced efford regarding the administration of
credentials on both the user’s side (only one account at the idenity provider and
not several at each service provider) and the service provider’s side (only simple
account management needed). Almost all of these federations focus on authen-
tication and authorization1, an essential aspect is missing today: payment. Cur-
rently, payment is build on top of the federation structure using specific payment
protocols, which means additional work and security concerns for the implemen-
tation itself. It is quite obvious that an implementation of payment solutions on
the federation level would allow for an easy setup of business federations without
considering payment solutions separately. Therefore, this work, partly developed
in the SWIFT [7] project, focuses on the development of a payment scheme for
identity federations without touching the federation structure itself to allow for
an easy use of payment structures without the need of rebuilding the federation.
This means that the former high-level payment could now be done by using the
1 For both purposes mainly the Security Assertion Markup Language (SAML) is used.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 185–189, 2008.
c© IFIP International Federation for Information Processing 2008

186 D.J. Lutz and B. Stiller

federation language (SAML [2], XACML [6]), its protocols (e.g., HTTP, SOAP)
and its structure (service provider, identity provider, user), whereas the original
federation concept should be kept unchanged as far as possible.

2 Related Work

Since the token-based payment approach builds on Identity Federations and the
payment for electronic business, this section briefly introduces Identity Federa-
tions and discusses possible electronic payment mechanisms.

Many different Identity Federation approaches have been developed over the
last years, like CAS, PERMIS, VOMS, all related to the Grid area, and Shibbo-
leth [8], Liberty Alliance [4] and Web Service Federation [5] from within the web
community. The key concept of such an Identity Federation is the Single Sign-on
(SSO) principle, which means that a user has to log in only once. To do so, the
user’s profile is stored at a component called Identity Provider (IdP). Whenever
a user wants to access a service, he authenticates himself at his IdP and receives
after a successfully login an assertion or a token that is used as an identifier
inside this federation. If a user requests a service at a Service Provider (SP), he
presents the token/assertion from the IdP to claim his identity. Since all IdPs
and SPs in such a federation have a contractually established trust relationship,
the SP can trust the token/assertion based on the IdP’s signature. If the SP
needs specific user attributes, he requests them directly from the user’s IdP,
which releases them based on the release policy the user has chosen. Afterwards,
the SP evaluates submitted attributes to decide on the access.

In electronic commerce, three different schemes of handling electronic pay-
ments exist: the transmission of payment-related information, the transmission
of exchange information, and the transmission of digital cash. Although the im-
plementation of the two firstly mentioned approaches in a federation infrastruc-
ture would also show some improvement regarding the convenience of payment,
our work applies the third scheme. The transmitted information can be used as
cash within the federation. Early approaches like NetCash and Digital Cash [1]
covered ideas that a piece of information may be interpreted and used like money.
These ideas of digital cash determine the foundation for the payment-enabled
Identity Federation.

3 Payment-Enabled Identity Federation

The key idea of this work is to enable a payment within an Identity Federation
and without changing the federation’s infrastructure, protocols, or languages.
Since most important federations today are based on SAML and an architecture
including an Identity Provider, a Service Provider, and the User, it is straight-
forward that the new payment-enabled federation is also based on SAML and
supports this common infrastructure.

The concept of the Identity Provider (IdP) does not have to be changed
compared to its functions in usual SAML-based federations. It authenticates the

Token-Based Payment in Dynamic SAML-Based Federations 187

user based on contracts as well as credentials and sends after a successfully login
a token or assertion for further authentication to the consumer. It also sends
attribute information for authorization purposes to the Service Provider.

The Service Provider (SP) has to be extended, because it needs the pos-
sibility to use additional hardware and software. Besides this, policy decision
functions have to be changed in a way that a request for payment is sent to the
user and upon the reception of a valid payment it has to be evaluated.

The Payment Provider (PP) determines the new component that enables
the payment within an Identity Federation. It hosts the user’s account, thus, it
may become part of a banking institute, but it could also be integrated into the
administrative structure of an IdP. The PP issues SAML Payment Assertions
[3] for validating payment transactions and SAML Payment Tokens that are
handled like cash within the federation.

Besides the contractual binding with his IdP, the Consumer needs addition-
ally an account at a PP and possibly special hardware or software that has to
be used for the token handling and other payment procedures.

The Payment Token can be considered to be like a banknote or a coin
within the federation. It contains information about the identity of payer, payee
and the PP as well as information on currency and the payment’s amount. Also,
related to security aspects, a lifetime, an identification number, and an issuer’s
signature are added. The token is issued by the PP on request of a consumer
and send by the consumer to the SP for paying requested service access. The
SP, in turn, can use the token for other business purposes. Due to the crucial
nature of the token, a sufficient security level has to be achieved.

A scenario within such a payment-enabled identity federation can be split
up into three different steps: the authentication, the authorization, and the
payment. Since authentication and authorization are already established within
usual federations, those processes are reused. When the authorization was suc-
cessful, the SP sends a payment offer back to the consumer, who, in turn, contacts
his PP requesting a payment token. After being authorized at the PP, the con-
sumer receives his token, which he may now present to the SP. The SP checks
the validity of the token, stores it for further purposes in his database, and allows
the user to consume the resource protected.

4 Security Analysis

This chapter considers key security issues for the token-based payment scheme,
since a high security level is required for productive uses of the new approach.

The Identity Provider cannot start any attack related to the payment,
which has not been avoided by standard federation techniques, since the IdP
has not been extended with respect to its functionality regarding a non-payment
federation.

The Consumer shows the weakest piece of the chain in this concept, since
he can copy the token and try to double-spend it. Therefore, two approaches
can deal with this threat: Detect a misuse or prevent it. If only the detection

188 D.J. Lutz and B. Stiller

of misuse is required, it provides for a sufficient security level to ensure that
the token is signed correctly to identify the consumer, if he tampered with the
token. If the SP wants to exchange the token into money, the PP is able to
detect the double-spending. He will hand over the money to the SP, but will
charge the consumer for this misbehavior. The prevention of misuse requires
hardware-related security such as a Trusted Platform Module or Smart Cards.
These systems are able to protect tokens and the application that is used for
payment against any attacks from the user. It is an interesting research topic,
which of both solutions may fit best.

The Payment Provider could try to issue invalid tokens or to refuse ex-
changing valid tokens. The PP’s signature determines the protection against
both attacks. If the PP issues an invalid token, this misbehavior will be detected
due to its signature. And a valid token must be exchanged by the issuing PP,
who can also be detected by its signature on the token.

The Service Provider can try to violate the contract. This attack is not
specific to the approach of payment in a federation and would invoke penalties.
But besides this, the SP can try to attack the infrastructure in the same way as
a consumer may do. Thus, further research is needed here as well.

Eavesdropping and the man-in-the-middle attacks are not specific to the
payment scenario and may be prevented by using common underlying security
technologies, such as X.509 certificates in a trustful Public Key Infrastructure.

A hardware theft or data loss on consumer’s side would be problematic,
if the thief is able to pay with the stolen hardware or a data loss would lead
to money loss. Basic security ideas like an additional check with a PIN and the
revocation of amount reservation if a token is not presented for exchange at the
PP within the stated lifetime can avoid that. If the hardware is stolen at SP’s
side, the thief is not able to reuse the tokens, since they contain information
about the payee’s identity. But the SP will lose its money because of theft or
data loss, if he has no other proof about a transaction, because he cannot claim
for exchanging the tokens.

5 Conclusions and Outlook

This paper describes the idea of integrating payment mechanisms into currently
established SAML-based federations, which can be done by including the com-
ponent of a Payment Provider into the federation architecture. Since only few
changes in language, protocols, and infrastructure have to be made, this idea is
a viable solution to resolve the lack of functionality detected in current identity
federations. Apart from the normal payment usage in a federation without hav-
ing the need to trust an add-on software solution, another important use-case
for this approach is the possibility of using micro-payment within the academic
Shibboleth-Federations (e.g., [10], [9]). This provides an incentive for many small
commercial service providers to join such a federation.

Since the federation architecture and its infrastructure is already sketched
above and designed, the three main topics of further work include the analysis

Token-Based Payment in Dynamic SAML-Based Federations 189

of the exact information that has to be transmitted inside of the Payment Token,
a security validation on a high level, and due to the business impact of the idea
a cost and acceptance estimation. The analysis of exact information deals with
the problem, which information is needed in the token to allow a secure payment
process without violating privacy aspects. Security validation is very important
within this approach, since a successful attack may lead directly to a loss of
money. Regarding the business view, a cost and acceptance estimation should
predict, whether the idea could be implemented in practice. Apart from those
analytic steps, the approach will also be implemented within a prototype to
prove its practicability as well as to take measurements in a validation scenario.

Acknowledgement

The approach published in this paper was partly developed in the project SWIFT
[7], funded by the EC under the FP7-ICT programme. The authors thank all
partners involved in that project.

References

1. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

2. Hughes, J., Maler, E.: Security Assertion Markup Language (SAML) V2.0 Tech-
nical Overview (October 2006) (2008), http://www.oasis-open.org/committees/
download.php/14361/sstc-saml-tech-overview-2.0-draft-08.pdf

3. Jennings, C., Fischl, J., Tschofening, H., Jun, G.: Payment for Services in Session
Initiation Protocol (SIP), 2007: Document ID draft-jennings-sipping-pay-05 (2008),
http://www.ietf.org/ID.html

4. Liberty Alliance Project: Liberty Alliance Project Whitepaper: Personal Identity
(2006) (2008), http://www.projectliberty.org/liberty/content/download/
395/2744/file/Per-sonal Identity.pdf

5. Lockhart, H., et al.: Web Services Federation Language (WS-Federation). Version
1.1, IBM Corporation (December 2006) (2008),
http://www.ibm.com/developerworks/library/specification/ws-fed/

6. OASIS eXtensible Access Control Markup Language (XACML) TC (2008),
http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml

7. Secure Widespread Identities for Federated Telecommunications (SWIFT). Funded
by the EC under the FP7-IST programme (2008), http://ist-swift.org/

8. Shibboleth (2008) Website, http://shibboleth.internet2.edu/
9. Switch,TheSwissEducation&ResearchNetwork:AAI IntroductoryTutorial (2008),

http://www.switch.ch/proxy/aai/support/presentations/infoday-2006/

AAI-ID06-20-Intro.pdf

10. Verein zur Foerderung eines Deutschen Forschungsnetzes e. V.: DFN-AAI - Au-
thentifikation Autorisierungs Infrastruktur (2008), https://www.aai.dfn.de/

Gregor Schaffrath and Burkhard Stiller

Department of Informatics IFI, University of Zürich
Communication Systems Group CSG

Binzmühlestrasse 14, CH—8050, Zürich, Switzerland
schaffrath@ifi.uzh.ch, stiller@ifi.uzh.ch

Abstract. Network-based Intrusion Detection Systems aim at the detection of
malicious activities by an inspection of network traffic. Since network link
speeds and traffic volume grew over the last years, payload-based analysis be-
came difficult, leading to the development of alternative approaches for flow-
based analysis. Although each approach alone suffers a set of drawbacks, a few
experiments with hybrid approaches show potential for synergies. This work
analyses these drawbacks in order to develop a conceptual framework for hy-
brid approaches, integrating the two concepts in a fashion to compensate for
their respective weaknesses proposed.

1 Introduction, Motivation, and Goals

Network-based Intrusion Detection Systems (NIDS) aim at the detection of malicious
activities by inspection of network traffic. As network link speeds and traffic volume
continued to grow, the traditional approach of Packet-based (or Payload-based) NIDS
(PNIDS) became difficult [2]. Alternate Flow-based NIDS (FNIDS) approaches were
developed, but while the development of evaluation methods are still ongoing [6], they
are generally recognized as featuring a reduced confidence level expressed by higher
false positive rates and do not allow for a fine grained labelling, as PNIDS concepts do.

Although few experiments with hybrid approaches indicate synergy potential [4],
PNIDS and FNIDS seem to be rarely considered in combination in current research lit-
erature and seem to be perceived rather as competing than complementary concepts.

The goal of this work is the development of a conceptual framework for hybrid ap-
proaches. Strengths and weaknesses of both PNIDS and FNIDS are analyzed. Sample
scenarios are developed, in which characteristics of PNIDS and FNIDS may be mapped
onto requirements in order to compensate for respective drawbacks. These are general-
ized into abstract use templates based on a conceptional understanding of common
issues and requirements, enabling easier design of security concepts by instantiation

Conceptual Integration of Flow-Based and
 Packet-Based Network Intrusion Detection
D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 190–194, 2008.
© IFIP International Federation for Information Processing 2008

rather than complete redesign for each scenario.

2 Analysis

In an ideal world without any resource constraints, the set of attacks detectable by
FNIDS, both on suspicion as well as on certainty level, are a full subset of attacks

Conceptual Integration of Flow-Based and Packet-Based Network Intrusion Detection 191

detectable by PNIDS. This is the consequence of FNIDS operating on a subset of infor-
mation available to PNIDS. However, in real world environments, PNIDS is confronted
with several problems reducing its effectiveness, resulting in a separation the of sets of
detectable attacks for both approaches, as presented in Figure 1. These problems can be
summarized in two categories:

• Resources: Packet-based inspection in high volume networks requires many re-
sources in terms of memory and usually also CPU time. This is due to the low lev-
el of abstraction of the data basis in combination with the high frequency of data
arrival and possible large data quantities per information instance.

• Availability: The placement of monitoring devices is crucial. However, if analy-
sis requires transfer of monitored packets to a remote location, availability easily
becomes an issue to several respects. Examples are bandwidth constraints for
these transfers or privacy concerns on the transmission of actual payload informa-
tion from production systems.

While the resource issue has been recognized by the research community, attempts to
solve it (e.g., [6]) have been largely focused on the OS and tool level. No work address-
ing it by a conceptual combination with other approaches has been established on the
analysis level.

FNIDS is in a better position to handle large traffic volumes, since it processes a
smaller amount of information and allows for the delegation of assembly work of input
data even to regular network devices like switches. These two characteristics also
increase their potential w.r.t. data availability, since device installation is less of a prob-
lem, data transfer is easier to handle and privacy concerns are less important. Nonethe-

Fig. 1. Detection Coverage [3]
less, it suffers a set of problems as well, which can be summarized by the following
three categories:

• Confidence: In a complex context like security, where every arbitrary detail may
by crucial to accurate analysis, the reduced amount of information can be expect-
ed to result in the experienced drop of confidence (resulting in higher false posi-
tive rates) or alert expressiveness (e.g., allowing statements only about activity
categories, instead of concise attack labelling)

192 G. Schaffrath and B. Stiller

• Underdeveloped understanding: Attack characteristics on the flow level are not
yet thoroughly analyzed. This is also reflected by the fact that available research
documentation shows a trend to visualization concepts (e.g., [5]) and almost all
work in FNIDS remains anomaly-based. Misuse model-based concepts remain
underdeveloped and are the exception in FNIDS research.

• Real-time: When information assembly is delegated to the network infrastructure
delivering, e.g., NetFlow records in order to take full advantage of the resource
requirement reduction advantage, reports will be delayed after flow’s end w.r.t.
reported activities, severely reducing FNIDS usability for real-time intrusion
detection.

3 Proposed Combination Angles

Since flow information reflects a high level view on the interaction behavior of network
nodes with each other, but seldomly allow for statements about specific instances of
these interactions, they can be deemed predestined for high level characterizations of
host behavior or roles, while packet information can be expected to be fit for directed
in-depth investigations.

Considering distribution issues and classifying along resource and availability issues
mentioned in the PNIDS analysis yields to two basic combination angles, where syner-
gy effects may be expected:

• Multi-stage concepts for resource efficiency and
• Coordination concepts in distributed environments.

Multi-stage concepts for resource efficiency use results of one approach as the input for
directed investigations on the basis of the other approach. Depending on the network
environment and specific protection goals determined in advance, this can be beneficial
in both directions:

FNIDS may be used as a selection filter for PNIDS activities for CPU or memory
requirement reasons. Example use cases (to be evaluated) for this include the isolation
of P2P traffic, recognized by flow level characteristics, for packet level inspection of
suspicious flows, in order to tell regular P2P traffic apart from P2P botnet traffic, or the
use of PNIDS for labelling purposes upon FNIDS based worm recognition. Depending
on scenario requirements and available capacities to capture and cache all relevant
packet data, the follow-up inspection may either be restricted to the subsequent com-
munication of hosts involved or be performed on the actual data that triggered the flow-
based alert.

Critical assets may be protected by PNIDS for real-time reasons, whose alert confi-

dence upon a signature trigger could be increased by judgement on the overall behav-
iour of hosts involved. Example use cases for this include (a) the search for repetitive
host behavior upon a alert triggered from a generic payload signature indicating worm
activities, or (b) the flow-based search for control streams upon botnet detection, where
flows of hosts involved are checked for common communication partners and proper-
ties. This is exemplified in [4], while the analysis encompasses possibly the communi-
cation between different administrative zones and additional subsequent PNIDS.

Conceptual Integration of Flow-Based and Packet-Based Network Intrusion Detection 193

In some scenarios, coordination concepts in distributed environments are related to
multi-stage concepts. This may be based on network resource-related problems, where
efficiency depends on which information is analyzed locally w.r.t. each site and which
information is forwarded to another site. An example of this is a scenario, in which a
customer is connected to the Internet via two different Internet service providers, for
load balancing or redundancy reasons, and parts of attacks are distributed over uplinks.
In this case, flow information could be exchanged in order to correlate flows on both
links and start packet transfers for PNIDS-based inspection of suspicious traffic. E.g.,
upon the detection of flows with equal endpoints, these flows might be checked locally
for packet-level fragmentation, followed by a potential packet data exchange for
reassembly.

However, in many scenarios, coordination concepts involve additional concerns and
issues not covered by scenarios for multi-stage concepts: While the transfer of informa-
tion may not be a technical issue, payload transfer from one site to another may be
impossible and even the transfer of flow-based information may be restricted, e.g., by
policies. This shift of focus w.r.t. concerns can be expected to result in shifted use con-
cepts of PNIDS and FNIDS. An example for this is a scenario, where an administrative
domain A registers an anomaly triggered by a host in domain B, and suspects a corre-
lation to the activity registered from domain C. Since the domains are prohibited to ex-
change payload information, they are restricted to tentative correlation via FNIDS or
delegation of PNIDS tasks to individual sites.

4 Evaluation

While evaluation of the effectiveness of the hybrid approaches may be relatively
straightforward for experimentation w.r.t. resource efficiency, at the time of writing, it
is yet an open point, how to evaluate the quality of distributed scenarios and their re-
spective templates and solutions.

Resource efficiency of multi-stage concepts may be determined by running both a
simple packet-based IDS and the combined approach simultaneously in the same envi-
ronment on equal infrastructure and measuring respective resource consumption, as
well as altert, false positive and false negative rates. If the processed traffic is reduced
to an amount manageable by both approaches, the direct correlation of overall resource
consumption with achieved results concerning alert correctness may serve as quality
measure.

However, while quality in distributed environments may be measurable by similiar
metrics to some extend, several aspects are yet unaddressed and, therefore, still open in
terms of the evaluation. E.g., the scenario choice, especially in terms of environments,

detection goals, and attack scopes, needs to be validated for realism. Solutions need to
be validated w.r.t. policy compatibility (and, therefore, applicability), and real world
evaluation will depend on the availability of cooperation partners.

As these scenarios are potentially arbitrarily numerous and complex, it is intended to
start by isolating motivations for distributed Intrusion Detection and mapping them to
real world instances of distributed systems. Thereby, a break down of the problem into
a manageable complexity will follow a practical track of solutions.

194 G. Schaffrath and B. Stiller

5 Preliminary Conclusions, Tasks, and Issues

Following the two combination angles, the work will be split into two parts. The inves-
tigation into the resource effectiveness of multi-stage approaches consists of:

• the definition of use scenarios for comparative evaluation of resource and detec-
tion efficiency in a real world test environments,

• the generalization into use templates, if results confirm the efficiency hypothesis,
• re-instantiation of templates into different use scenarios for validation of the gen-

eralization.

Investigations of coordination concepts in distributed environments consist of:

• generation of realistic prototypical cooperation scenarios,
• development of approaches to handle political, legal, and operational issues,
• integration of concepts into use templates based on respective scenarios

Investigations and evaluations w.r.t. multi-stage approaches for resource efficiency are
currently ongoing in the context of [3].

Acknowledgements. The work of Fabian Hensel in support of first steps for
developing the evaluation scenarios and implementation environments is
acknowledged.

References

[1] Brauckhoff, D., May, M., Plattner, B.: Flow-Level Anomaly Detection - Blessing or Curse?
In: IEEE INFOCOM 2007, Student Workshop, Anchorage, Alaska, U.S.A (May 2007)

[2] Dreger, H., Feldmann, A., Paxson, V., Sommer, R.: Operational experiences with high-
volume network intrusion detection. In: 11th ACM Conference on Computer and
Communications Security, Washington, U.S.A (2001)

[3] Hensel, F.: Flow-based and Packet level-based Intrusion Detection as Complementary
Concepts, Diploma Thesis, University of Zurich, Department of Informatics IFI,
Switzerland (April 2008)

[4] Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-scale Botnet Detection and
Characterization. In: HotBots 2007, Usenix Workshop on Hot Topics in Understanding
Botnets, Cambridge, Massachusetts, U.S.A (April 2007)

[5] Lakkaraju, K., Yurcik, W., Lee, A.J.: NVisionIP: netflow visualizations of system state for
security situational awareness. In: 2004 ACM Workshop on Visualization and Data Mining
for Computer Security, Washington D.C., U.S.A (2004)

[6] Schneider, F.: Performance evaluation of packet capturing systems for high-speed networks,

Diploma Thesis, Technische Universitä t Mü nchen, Munich, Germany (November 2005)

Towards Resilient

Community Wireless Mesh Networks

Sara Bury and Nicholas J.P. Race

Computing Department, Lancaster University, Lancaster LA1 4WA, UK
{sara.bury,race}@comp.lancs.ac.uk

Abstract. Wireless Mesh Networks are an increasingly common tech-
nology providing connectivity in many communities, particularly where
Internet access is unavailable or restricted via more conventional means.
Their comparative ease of installation and relatively low cost makes this
especially true for communities which might previously have lacked the
technical knowledge or skill to attempt such an endeavour. In such a
situation it is important that the operation of the network should be
easily manageable; to this end the overall resiliency of the network is a
key factor, enabling the network to resolve and remediate problems as
they arise without requiring external technical understanding or input.
This research aims to improve the resilience of community mesh networks
by improving their security, initially examining the use of risk analysis
techniques in this environment to identify potential attack vectors. This
understanding will then be used to investigate intrusion detection tech-
niques for operation specifically in a community environment.

1 Introduction

Wireless mesh networks (WMNs) are becoming increasingly common, particu-
larly to provide network connectivity to communities where wired deployment
strategies are either not possible or are prohibitively expensive. The prolifera-
tion of ‘off the shelf’ mesh hardware and software [1,2] has resulted in communi-
ties creating wireless mesh networking installations themselves where previously
they might not have possessed the understanding or technical skill. These fac-
tors combined with the many potential issues which might occur throughout the
operation of a wireless mesh have led to a requirement for increased resiliency,
enabling the network to resolve and remediate against problems as and when
they arise without the need for external technical understanding or input.

Resilience in this context can be thought of as the aim to provide an accept-
able level of service when challenges to network operation occur, whatever the
adverse event or condition might be [3]. A resilience strategy to address potential
problems has been developed as part of the EU FP6 ANA Project – D2R2+DR.
This consists of two ongoing phases, firstly (D2R2) Defence against potential
challenges and Detection of their presence as and when they occur, Remediation
of the effects and eventual Recovery of the system back to normal operation.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 195–199, 2008.
c© IFIP International Federation for Information Processing 2008

196 S. Bury and N.J.P. Race

Secondly, (DR) consists of Diagnosis and Refinement of the system based on the
results of previous first phase iterations.

WMNs are intended to be resilient by design. Their infrastructure is created
using a combination of wireless networking technology and ad-hoc routing pro-
tocols to create a self-managing network in which all nodes act as routers [5],
able to route traffic either directly or via a multi-hop path. Unfortunately, whilst
WMNs are considered to be functional the technology and protocols behind these
mechanisms are still relatively new and research is ongoing to improve their de-
pendability and efficiency [4]. Security is a necessary facet of resiliency in wireless
mesh networking; resilient routing protocols and autonomous configuration can
only go so far if these processes can be abused by attackers. Due to this security
has been chosen as the main focus of this research.

2 The Research Problem

The specific scenario being investigated is that of community wireless mesh net-
working – situations where mesh networking technology has been introduced
into a community environment, rather than through any commercial applica-
tion, and where it is operated by the users themselves. An example of this is
the situation at Wray, a small rural village in the North West of England. In
2003, members of the community approached academics at Lancaster University
searching for a solution to their lack of broadband Internet access. The result
was the deployment of a WMN throughout the village with nodes owned and
hosted by individual members of the community, making available an Internet
connection fed into the local school via a 5.8Ghz radio link [6]. In this situation,
though the University has access to use the network for research purposes, the
villagers themselves oversee and operate the network on a daily basis and users
with a range of expertise and computer literacy have responsibility and control
over how the network runs. The resilience of the network is incredibly important.
In many cases the users rely on the network as their sole method of access to
the Internet, but they lack the technical experience and knowledge of computer
networking to manually fix problems if they arise.

For generic network security there are goals which applications aim to achieve:
confidentiality, integrity, availability, authentication, authorisation and account-
ability - in a WMN there are specific challenges to these goals over and above
those found in more conventional wired networks. The shared wireless medium
exists such that any one with suitable wireless hardware has the ability to listen
to traffic on the network, launch jamming attacks to deny network functionality,
or even to send out malicious control traffic to other routing nodes [7]. Also, a lack
of physical protection for the mesh nodes themselves could result in legitimate
mesh infrastructure becoming compromised; this is emphasised by the nature of
ubiquitous access within a community mesh, all members of the community are
offered network access, but with no specific assurance that attackers won’t come
from within the community group, potentially hosting the infrastructure they
have compromised. In a community WMN scenario, attack vectors can occur

Towards Resilient Community Wireless Mesh Networks 197

externally and internally to the network infrastructure and this results in an
extremely wide scope of potential attacks to combat. Another factor alongside
this is the diversity of needs, requirements and backgrounds within the com-
munity. A single community group may contain home users, small businesses,
people making use of the network for educational purposes and so on, all with
different understandings of what the network provides and what functionality is
most important to them. Also each of these users may have particular security
requirements, for stored data or important communications.

Without a clear idea of these requirements, the security needs for the network
are both vague and wide in scope. This makes the development of a security
strategy for use in this scenario incredibly difficult. An understanding of the uses,
priorities, and necessary services would substantially aid the creation of security
systems, procedures, and policies by narrowing the problem space involved.

3 Chosen Approach

In order to gain an insight into the utilisation of the network and the require-
ments of individual users, we need to understand from the perspective of the
users themselves what they consider to be their most important assets and what
they feel are most vulnerable to attack. The concept of risk analysis within com-
puter networking is not new; there are many tried and tested frameworks for the
assessment of such factors, particularly within enterprise scale networks used
for businesses or academia. Examples include the OCTAVE risk based strate-
gic assessment process [8], or STRIDE, a practice for computer security threat
modelling [9]. Unfortunately due to the distinct operational nature and require-
ments of community mesh networks, such proven formalised methods are not
directly applicable, even in scenarios for which the processes were designed each
individual method has strengths and weaknesses for it’s application depending
on the exact circumstance, as shown by Vorster and Labuschagne [10].

Other work in the area of mesh network resilience has often focussed on specific
perceived threats, from low level control and management improvements [11] to
multiple radio hardware and protocol solutions for increased throughput [12]
[13]; little work has been carried out which takes the opinions and concerns of
the mesh users into account when identifying threats to resilience. This research
intends to apply risk analysis techniques in a community wireless mesh network
setting, with the aim identifying the most important risks for the users from their
own perspective, what assets exist and are most appealing to an attacker, and the
weighted probability of the occurrence of types of attack aimed at specific assets.

This approach has been chosen firstly because of the benefits of being able
to narrow down the attack vectors present in a WMN, but secondly to investi-
gate whether risk analysis techniques can be formalised for use in similar situa-
tions. Such a formalised process would enable community users of mesh networks
to perform risk analysis themselves, looking for ways to improve their security
without involving external consultants. The process of consulting members of
the community about their own security concerns also fits well with the way

198 S. Bury and N.J.P. Race

that community WMNs operate – everyone having a hand in their continued
functionality and contributing to the project as a whole.

Before involving network users in the project, certain decisions must be made
regarding the suitability of particular risk analysis techniques and assumptions
within this community scenario. For example, the concept of an ‘asset’ is likely
to be different when compared with an enterprise setting – users may consider
the safety of their children on the Internet of the utmost importance, whereas
within a company employees would be expected to in many respects look after
themselves. The community risk analysis will be carried out through small focus
groups and discussion sessions with real world users, using carefully selected
scenarios and lines of questioning to help explain the project. The research is in
its preliminary stages and over the course of the next year sessions are planned
with members of the community at Wray.

4 Conclusion

Resiliency in WMNs is a complex area and security is a critical factor. This
research aims to improve the resilience of WMNs by examining improvements in
the area of security. Firstly by reducing the problem space involved, then leading
to the development of a security strategy with relevant and appropriate security
systems for use in community WMNs. In order to reduce the problem space, a
breakdown of assets and risks from the perspective of community WMN users
will be produced; the process of creating which should indicate the feasibility
of formalising this risk analysis procedure for users themselves to carry out
as a community project. This information will be used to narrow down the
number of attack vectors necessary to anticipate, prevent and detect in the
target development of an IDS to demonstrate the functionality in a community
WMN environment.

Acknowledgements

The authors are grateful to the resilient networking group for their work in
developing the D2R2+DR resilience strategy, which will guide this work. More
information available from: http://www.comp.lancs.ac.uk/resilinets

References

1. LocustWorld, http://www.locustworld.com/
2. Kiyon Autonomic Networks, http://www.kiyon.com/
3. Sterbenz, J.P.G., Schller, M., Jabbar, A., Hutchison, D.: Resiliency and Security

Framework, First Draft. ANA - Autonomic Network Architecture, Deliverable FP6-
IST-27489/WP3/D3.2 (2007)

4. Lee, M.J., Zheng, J., Ko, Y.-B., Shrestha, D.M.: Emerging Standards for Wireless
Mesh Technology. IEEE Wireless Communications 13, 56–63 (2006)

Towards Resilient Community Wireless Mesh Networks 199

5. Akyildiz, I.F., Wang, X., Wang, W.: Wireless Mesh Networks: A Survey. Computer
Networks 47, 445–487 (2005)

6. Ishmael, J., Race, N.J.P.: Building a Rural Community Mesh Network. In: IST
Broadband Europe Conference, Geneva, Switzerland (2006)

7. Zhang, W., Wang, Z., Das, S.K., Hassan, M.: Security Issues in Wireless Mesh
Networks. In: Houssain, E., Leung, K. (eds.) Wireless Mesh Networks: Architecture
and Protocols. Springer, Heidelberg (2008)

8. Alberts, C., Dorofee, A., Stevens, J., Woody, C.: Introduction to the OCTAVE
Approach (2003), http://www.cert.org/octave/approach intro.pdf

9. Hernam, S., Lambert, S., Ostwald, T., Shostack, A.: Uncover Security Design Flaws
Using The STRIDE Approach. MSDN Magazine (2006), http://msdn.microsoft.
com/msdnmag/issues/06/11/ThreatModeling/default.aspx

10. Vorster, A., Labuschagne, L.: A framework for comparing different Information
security risk analysis methodologies. In: SAICSIT 2005: Proceedings of the 2005
annual research conference of the South African institute of computer scientists
and information technologists on IT research in developing countries, Republic of
South Africa, pp. 95–103 (2005)

11. Quercia, D., Lad, M., Hailes, S., Capra, L., Bhatti, S.: Survivable Wireless Net-
working - Autonomic Bandwidth Sharing in Mesh Networks. BT Technology Jour-
nal 24(3), 99–107 (2006)

12. Kyasanur, P., So, J., Chereddi, C., Vaidya, N.H.: Multichannel Mesh Networks:
Challenges and Protocols. IEEE Wireless Communications 13(2), 30–36 (2006)

13. Draves, R., Padhye, J., Zill, B.: Routing in Multi-Radio Multi-Hop Wireless Mesh
Networks. In: ACM Annual Conference of the Special Interest Group on Data
Communication (SIGCOMM), pp. 133–144 (2004)

Resource Management of

Disruption Tolerant Networks

Iyad Tumar and Jürgen Schönwälder

Computer Science, Jacobs University Bremen, Germany
{i.tumar,j.schoenwaelder}@jacobs-university.de

Abstract. Disruption tolerant networks (DTNs) differ from traditional
networks due to their special characteristics such as frequent partitions,
intermittent connectivity, and message delivery delay. This paper
presents a new idea for the resource management of sparse disruption
tolerant networks where the density of nodes is insufficient to support
direct end-to-end communications. The idea combines an asynchronous
approach, where nodes work on their own wake up schedules without
synchronized clocks, with an on-demand scheme, where a low power
radio (LPR) is used to search about contacts and a high power radio
(HPR) undertakes the actual data transmission.

Keywords: Disruption Tolerant Networks, Power Management.

1 Introduction

Disruption tolerant networks (DTNs) is a research area aiming at developing
network communication when connectivity is intermittent and prone to disrup-
tions. In general, DTNs are applicable in remote and hazardous areas where the
energy sources are constrained. They are also assumed to operate over a long
period of time. Therefore, several research efforts have been started to develop
power management schemes for disruption tolerant networks.

In DTNs, nodes need to discover neighbors to establish communication.
Searching for neighbors in sparse DTNs can consume a large amount of power
compared to the power consumed by infrequent data transfers. Banerjee et al. [1]
show that using an 802.11 radio to search for contacts consumes 99.5% of the
total energy. Therefore, novel power management schemes are needed to address
this problem and to save energy in the neighbor searching mode. Designing such
power management schemes is challenging because nodes need to know when
to sleep to save power and when to wake up to search for neighbors. Ideally,
power management schemes should not reduce network connectivity opportuni-
ties, which would negatively affect the overall performance of the network.

There are three categories for wake-up based power management approaches.
The first category are scheduled rendezvous, in which sleeping nodes wake up at
the same time based on deterministic wake-up patterns (assuming synchronized
nodes). The second category are asynchronous approaches with overlapping ac-
tive periods within a specific number of sleep cycles for any two neighbor nodes.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 200–204, 2008.
c© IFIP International Federation for Information Processing 2008

Resource Management of Disruption Tolerant Networks 201

The third category are on-demand approaches where nodes can be awakened
on-demand at any point of time. For example, an additional low power radio
can be used to trigger a high power radio.

A new power management scheme is developed in this proposal. This scheme
tries to save energy in searching mode with a minimum degradation of the over-
all network performance. It is based on the context aware power management
(CAPM) scheme [2], and it also uses an additional low power radio interface
(LPR) [3]. The rest of this paper is structured as follows: Section 2 details the
research questions and outlines the proposed power management scheme and
how it is being evaluated. Related work is discussed in Section 3 before we con-
clude the paper in Section 4.

2 Research Questions and Proposed Approach

The goal of this work is to develop a new power management scheme for sparse
disruption tolerant networks that saves energy and extends the network life time
with minimum reduction of the network connectivity opportunities. The specific
research questions are:

1. What are efficient approaches to save energy in sparse DTNs?
2. Can we design power management schemes without affecting the network

performance?
3. More precisely what are efficient approaches to save the maximum amount

of energy in sparse DTNs with the minimum degradation of network perfor-
mance?

4. What is the impact of traffic load and node speed on power management
scheme in DTNs?

Our approach combines the on-demand scheme and the asynchronous scheme.
It uses an additional low power radio to search about contacts and it allows each
node to work on its own wake up schedule without synchronized clocks. Each
node uses a fixed duty cycle. Within this duty cycle, each node wakes up for a
fixed or adaptive period and sleeps for the rest of the time. When a node wakes
up, it broadcasts a beacon that includes its identifier and the time it will stay
active. If this node has data to deliver, it will piggyback a notification delivery
(destination identifier) to the beacon. We assume that there will be overlapping
active periods between nodes within a certain number of duty cycles.

We do not consider the energy consumption of computations; we only con-
sider the energy consumption of wireless interfaces in searching mode when nodes
search about each other to communicate. Two alternative operations are con-
sidered in this scheme: neighbor discovery in which a node wakes up to search
about neighbor nodes for data forwarding, and data delivery in which data is
exchanged among nodes. Data delivery uses the HPR to transfer the data, while
neighbor discovery is based on both radios to find contacts.

There are two scenarios when using LPR and HPR radios to search about
contacts. The first one is based on the LPR waking up once each duty cycle to

202 I. Tumar and J. Schönwälder

 Node 3

 Node 2

 Node 1
LPR

HPR

C C C C

S SW

w - Wakeup s – Sleep c – Duty cycle

Fig. 1. Low and high power radios random wake up

search about contacts and uses the HPR on demand to transfer data after a com-
munication link between two nodes has been established. The second scenario
alters between LPR and HPR to search about contacts. In this scenario, the LPR
wakes up once each two duty cycles, and the HPR wakes up each two duty cycles
or when it is triggered by the LPR to undertake the data transmission after a
connection is established between two nodes (see Fig. 1). Using an additional
low power radio in an asynchronous manner to search about contacts leads to
overlapping periods between HPR and LPR. In order to enable both radios to
communicate with each other, we assume that both radios use the same MAC
layer and the same frequency (only one radio will be active at any point of time).
By allowing both radios to communicate with each other and by utilizing both
radios to search about contacts, we expect that a significant amount of power
can be saved in searching mode.

The proposed power management scheme will be implemented and evaluated
by simulation. In order to evaluate our power management scheme, two DTN
routing protocols will be implemented (Epidemic [4], PRoPHET [5]). We will
first evaluate the performance of Epidemic and PRoPHET in the absence of
power management based on the delivery ratio and the delivery delay. Then,
we will investigate the impact of our power management scheme on the delivery
ratio and the delivery delay for both routing schemes under different traffic loads,
and node movement speeds. The following metrics will be considered:

– The Delivery Ratio is the amount of successfully received data over the total
amount of delivered data.

– The Delivery Delay is the average delay per delivered message.
– The Energy Cost is the total energy consumption over the number of deliv-

ered messages (the average energy consumption to deliver a message).
– The Normalized Energy Consumption is the ratio of the energy consump-

tion with power management over the energy consumption without power
management.

We will use the network scenario that has already been used to evaluate
CAPM [2]. This scenario consists of 40 nodes that are distributed over a square

Resource Management of Disruption Tolerant Networks 203

of size 1km × 1km. These nodes move according to the random waypoint model
with a maximum speed of 5m/s and a pause time in each waypoint of 10 seconds.
The communication range for HPR is 250 m with data rate 2 Mbps, while the
communication range for LPR is 100 m with data rate 76.8 Kbps. To be sure that
simulation results are correct, they will be compared with published results in [2].

3 Related Work

Several power management schemes have been proposed for ad hoc networks.
These schemes allow nodes to disable their radios when they are not used to save
energy and to prolong the network life time while keeping network connectiv-
ity [6, 7]. Unlike our work, these schemes assume that a node has another node
within its communication range most of time.

There have been several efforts to develop energy efficient medium access
control (MAC) protocols [8, 9]. These efforts are motivated by the observation
that transmissions of multiple nodes in a wireless network may interfere with
each other. To avoid this interference, only two nodes can communicate with
each other at any point in time. Therefore, significant energy can be saved if a
node sleeps while others communicate, thereby in many cases improving overall
network performance. These MAC protocols propose mechanisms to increase
sleeping time based on the traffic in the neighborhood. However, these MAC
protocols are designed for dense networks rather than sparse networks.

There are three approaches for power management of sparse disruption toler-
ant networks. These approaches focus on saving energy in searching mode when
nodes search about each other to communicate. The first approach presented
by Jun et al. [10] assumes synchronized clocks and allows nodes to be in one of
three modes, dormant (sleep) mode, search mode, and contact mode based on
knowledge of future contacts. There are three levels of knowledge: (i) complete
knowledge in which nodes know everything about their future contacts so they
know exactly when to wake up and when to sleep, (ii) zero knowledge in which
nodes have no information about each other and so they need to search about
each others, (iii) partial knowledge in which nodes wake up and sleep based on
probability metrics derived from statistical information. The second approach
described by Jun et al. [3] tries to minimize the power consumed in searching
mode by using an additional low power radio to discover contacts and to awake
the high power radio to undertake the data transmission. The third approach
introduced by Chuah et al. [2] is an asynchronous mechanism in which each
node works on its own wake-up schedule independently. It has a fixed duty cycle
which consists of a wake-up and a sleep period. Each node wakes up for a fixed
or adaptive period and sleeps for the remaining time.

4 Conclusion

This paper presents a new power management scheme for sparse disruption toler-
ant networks (DTNs) where the density of nodes is insufficient to support direct

204 I. Tumar and J. Schönwälder

end-to-end communication. We formulate the research questions, outline a novel
power management scheme approach combining on-demand and asynchronous
schemes, and we describe how this new scheme will be evaluated.

Acknowledgement

The work reported in this paper is supported by the EC IST-EMANICS Network
of Excellence (#26854).

References

1. Banerjee, N., Corner, M., Levine, B.: An Energy-Efficient Architecture for DTN
Throwboxes. In: Proceeding of IEEE INFOCOM 2007, Anchorage, Alaska, USA,
May 6-12 (2007)

2. Chuah, M., Xi, Y., Chang, K.: Performance Evaluation of a Power Management
Scheme for DTNs. In: Proceedings of IEEE QShine, Vancouver, British Columbia,
Canada, August 14-17 (2007)

3. Jun, H., Ammar, M.H., Corner, M.D., Zegura, E.W.: Hierarchical Power Manage-
ment in Disruption Tolerant Networks with Traffic-Aware Optimization. In: Pro-
ceedings of the 2006 SIGCOMM Workshop on Challenged Networks (CHANTS
2006), pp. 245–252. ACM Press, New York (2006)

4. Vahdat, A., Becker, D.: Epidemic Routing for Partially Connected Ad Hoc Net-
works. Technical Report CS-200006, Duke University (April 2000)

5. Lindgren, A., Doria, A., Schelen, O.: Probabilistic routing in intermittently con-
nected networks, pp. 239–254 (August 2004)

6. Tseng, Y.C., Hsu, C.S., Hsieh, T.Y.: Power-Saving Protocols for IEEE 802.11-
Based Multi-Hop Ad Hoc Networks. In: Proceedings of the Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM 2002), June 23-27, 2002, vol. 1, pp. 200–209 (2002)

7. Zheng, R., Hou, J.C., Sha, L.: Asynchronous Wakeup for Ad Hoc Networks. In: Pro-
ceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2003), pp. 35–45. ACM Press, New York (2003)

8. Singh, S., Raghavendra, C.S.: PAMAS: Power Aware Multi-Access protocol with
Signalling for Ad Hoc Networks. ACM Computer Communication Review 28(3),
5–26 (1998)

9. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC protocol for Wireless
Sensor Networks. In: Proceedings of the IEEE INFOCOM, New York, NY, USA,
June 2002, pp. 1567–1576 (2002)

10. Jun, H., Ammar, M., Zegura, E.: Power Management in Delay Tolerant Networks:
A Framework and Knowledge-Based Mechanisms. In: IEEE SECON 2005 Second
Annual IEEE Communications Society Conference on Sensor and Ad Hoc Com-
munications and Networks, pp. 418–429 (September 2005)

Design of an IP Flow Record Query Language

Vladislav Marinov and Jürgen Schönwälder

Computer Science, Jacobs University Bremen, Germany
{v.marinov,j.schoenwaelder}@jacobs-university.de

Abstract. Internet traffic is often summarized by collecting Net-
Flow/IPFIX flow records. Several tools exist to filter or to search for
specific flows in a collection of flow records. However, there is a need
for a framework (filter language) which allows certain types of traffic
patterns to be defined and matched in a collection of flow records. The
goal of this project is to research the various filter/query languages used
by tools or proposed in the literature and to extract a common basis
for a new orthogonal flow record query language. We present research
motivation and state of the art in this paper.

Keywords: NetFlow, IPFIX, network traffic analysis, query language.

1 Introduction

The analysis of network traffic and more specifically Internet traffic has become
an important area of research. Cisco has designed the Netflow/IPFIX protocol
[1,2], which allows to create a summary for the traffic flows that traverse a router.
A network flow is defined as an unidirectional sequence of packets between given
source and destination endpoints. Flow records include details such as IP ad-
dresses, packet and byte counts, timestamps, Type of Service (ToS), application
ports, input and output interfaces, etc. Network elements (routers and switches)
gather flow data and export it to collectors for analysis.

Although the flow records carried by NetFlow/IPFIX provide aggregated in-
formation about the packets traversing a specific router, this information still
contains too many details for network administrators and is not useful unless
processed by network analysis tools. Most of the existent tools provide mech-
anisms for selecting specific flows in a collection of flow records. This makes
possible some simple tasks like filtering by an IP address or port number or
generating Top N talkers reports. However, identifying more complex flow pat-
terns resembles a search for a pin in a haystack. In order to describe complex
traffic patterns and match a collection of flow records against the description,
one needs a useful flow record query language.

The rest of this paper is structured as follows: Section 2 presents the state
of the art in query languages used by network analysis tools. In Section 3, we
present the research motivation for a new filter/query language and we conclude
in Section 4.

D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 205–210, 2008.
c© IFIP International Federation for Information Processing 2008

206 V. Marinov and J. Schönwälder

2 State of the Art in Query/Filter Languages

Several early implementations of network analysis tools used a Relational
Database Management System (RDBMS) to store the data contained in flow
records and therefore they use SQL-based query languages for selecting flows.

B.Nickless [3] describes a system which uses standard MySQL and Oracle
DBMS for storing the attributes from NetFlow records. Using powerful SQL
queries, the tool was able to provide good support for basic intrusion detection
and usage statistics. With the advance of high-speed links, however, network
managers could not rely on pure DBMS anymore because of performance issues.
There was also a semantic mismatch between the traffic analysis operations and
the operations supported by the commercial DBMS. The data used by network
analysis applications can be best modeled as transient data streams as opposed
to the persistent relational data model used by traditional DBMS. It is rec-
ognized that continuous queries, approximation and adaptivity are some key
features that are common for such stream applications. However, none of these
is supported by standard DBMS. Based on these requirements B.Babcock et
al. [4] propose the design of a Data Stream Management System (DSMS). To-
gether with the model the authors also extend the SQL query language so that
the DSMS can be queried over time and provide examples of network traffic
reports that are generated based on flow data that is stored in such a DSMS.
Gigascope [5] is another stream database for network monitoring applications.
It uses GSQL for query and filtering which is yet another modification of the
SQL query language adopted in a way so that time windows can be defined in-
side the query. Tribeca [6] is another extensible, stream-oriented DBMS designed
to support network traffic analysis. It is optimized to analyze streams coming
from the network in real time as well as offline traces. It defines its own stream
query language which supports operations such as projection, selection, aggre-
gation, multiplexing and demultiplexing of streams based on stream attributes.
The query language also defines a windowing mechanism to select a timeframe
for the analysis.

The Berkeley Packet Filter (BPF) [7] specifies simple rules which are widely
used among network analysis tools to filter a stream of packets. BPF allows
users to construct simple logical expressions for filtering network traces by IP
address, port number, protocol etc. and translates them into a small program
executed by a generic packet filtering engine. One popular use of the BPF is
in the tcpdump utility. The BPF rules for constructing filter expressions are
also used in nfdump [8], which is a powerful and fast filter engine used to an-
alyze network flow records. nfdump is currently one of the de facto standard
tools for analyzing NetFlow data and generating reports. BPF expressions are
also used in the CoralReef network analysis tool described in [9,10] in order
to generate traffic reports from collected trace files. The Time Machine tool
described in [11] uses BPF expressions to define classes of traffic and BPF is
also part of the query language used by the engine for retrieval of interesting
traffic.

Design of an IP Flow Record Query Language 207

The flow-tools package [12] is another widely-used collection of applica-
tions for collecting and analyzing NetFlow data. Two of the flow-tools appli-
cations are responsible for filtering flows and generating reports: flow-filter
and flow-report. The former application uses the Cisco Access Control List
(ACL) format to specify a filter for IP addresses and command line arguments
for specifying other filtering parameters such as port numbers, ASes etc. The
latter uses a configuration file where reports can be defined by using a number
of primitives.

FlowScan described in [13] is a collection of perl scripts which glues together a
flow-collection engine such as the flow-capture application from flow-tools,
a high performance RRD database, which is specifically designed for time series
data [14], and a visualization tool. FlowScan has the capability of generating
powerful high-level traffic reports, which might help operators to detect interest-
ing traffic patterns. However, reports must be specified as separate perl modules,
which is not trivial and might involve some heavy scripting.

C.Estan et al. [15] proposes an approach for detecting high-level traffic pat-
terns by aggregating NetFlow records in clusters based on the flow record at-
tributes. Aggregation on several flow attributes results in a multidimensional
cluster. Initially all possible multidimensional clusters are constructed. Then
an algorithm is executed which selects only clusters that are interesting to the
network administrator. It aims at retaining clusters with the least degree of ag-
gregation (so that a bigger number of flow attributes is contained). Interesting
activities are considered to be exceeding a certain threshold of traffic volume of
a cluster or significant change of the traffic volume inside the cluster. Finally,
all clusters are prioritized by being tagged with a degree of unexpectedness and
presented to the network administrator as a traffic report.

The SiLK Analysis Suite [16] is another script-based collection of command-
line tools for querying NetFlow data. It provides its own primitives for defin-
ing filtering expressions. Unlike other network analysis tools, SiLK contains

Table 1. Query languages used by network traffic analysis tools

Tool Query Language Input Data Format

B.Nickless et. al. [3] SQL RDBMS

B.Babcock et. al. [4] extended SQL DSMS

Gigascope GSQL DSMS

Tribeca proprietary DSMS

tcpdump BPF pcap files

nfdump BPF nfcapd raw NetFlow files

CoralReef BPF pcap and crl files

Time Machine BPF indexed pcap files

Flow-Tools ACL/proprietary flow-capture raw NetFlow files

FlowScan perl script flow-capture raw NetFlow files

AutoFocus proprietary packet header traces/raw NetFlow files

SiLK proprietary raw NetFlow files

208 V. Marinov and J. Schönwälder

two applications that allow an analyst to label a set of flows sharing common
attributes with an identifier. The rwgroup tool walks through a file of flow records
and groups records that have common attributes, such as source/destination IP
pairs. This tool allows an analyst to group together all flows in a long lived
session such as a FTP connection. rwmatch creates matched groups, which con-
sist of an initial record (a query) followed by one or more responses. Its most
basic use is to group records into both sides of a bidirectional session, such as
a HTTP request. From the huge collection of tools that we have surveyed SiLK
is the only one, which is capable of declaring some correlation between flows.
Therefore, we believe that it might serve as a good basis for a new flow query
language.

A summary of the query languages used by the various network traffic analysis
tools is presented in Table 1.

3 Research Issues

Given the large number of flow records collected on high-speed networks, it is
necessary to reduce their number to a comprehensible scale using filtering and
aggregation mechanisms. Each flow or aggregated flow has a set of properties
attached to it that characterize the flow. It is to be expected that flows that
correspond to similar network activities (certain applications or certain attacks)
have similar properties. In addition to the properties recorded in flow records,
one can derive further properties that are even more suitable to characterize
the behavior of a flows. One objective when investigating traces is to detect
regularities such as repeating patterns. These patterns typically spread over
several flows. For example, if an intensity peak in flow X always occurs after an
intensity peak in flow Y with a fixed delay, they form a pattern describing a
certain network behavior. The goal of network administrators is to detect such
patterns of correlated flows.

For example, one would be interested in finding out where, when, and how
often a certain Internet service is used. A concrete scenario is a network admin-
istrator who wants to detect VoIP applications by finding STUN flows generated
by VoIP applications when they try to discover whether they are located behind
a Network Address Translator (NAT). If one knew the pattern that is created
when a service is trying to establish a connection, one could search for this
specific pattern in the selected flows.

The goal of this project is to design a flow record query language, which
allows to describe patterns in a declarative and easy to understand way. The
language should be able to define filter expressions (needed to select relevant
flows) and relationships (needed to relate selected flows). Another requirement
is that it should be possible to express causal dependencies between flows as well
as timing and concurrency constraints. Existent query languages as discussed in
Section 2 are not suitable for detecting complex traffic patterns because of either
performance issues (SQL-based query languages) or because they lack a time
and concurrency dimension (BPF expressions and the other query languages

Design of an IP Flow Record Query Language 209

we discussed). Furthermore, the new query language should provide support for
network specific aggregation functions, such as IP address prefix aggregation, IP
address suffix aggregation, port number range aggregations, etc. which are not
part of many standard query languages.

4 Conclusions

We presented the state of the art in query languages used by network traffic
analysis tools and motivated the need for developing a new declarative language
that allows to define and identify high level traffic patterns in a collection of
network flow records. We plan to collect a comprehensive set of interesting traffic
patterns from network operators and base our new query language on the needs
to express these patterns.

Acknowledgement

The work reported in this paper is supported by the EC IST-EMANICS Network
of Excellence (#26854).

References

1. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954 (October
2004)

2. Claise, B.: Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101 (January 2008)

3. Nickless, B.: Combining Cisco NetFlow Exports with Relational Database Tech-
nology for Usage Statistics, Intrusion Detection, and Network Forensics. In: Proc.
of LISA 2000, pp. 285–290. USENIX Association (2000)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
Data Stream Systems. In: Proc. of PODS 2002, pp. 1–16. ACM, New York (2002)

5. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: A Stream
Database for Network Applications. In: Proc. of SIGMOD 2003, pp. 647–651. ACM,
New York (2003)

6. Sullivan, M., Heybey, A.: Tribeca: a System for Managing Large Databases of
Network Traffic. In: Proc. of ATEC 1998, pp. 13–24. USENIX Association (1998)

7. McCanne, S., Jacobson, V.: The BSD Packet Filter: A New Architecture for User-
level Packet Capture. In: Proc. of USENIX 1993, pp. 259–270. USENIX Association
(1993)

8. Nfdump, http://nfdump.sourceforge.net/
9. Moore, D., Keys, K., Koga, R., Lagache, E., Claffy, K.: The Coral Reef Software

Suite as a Tool for System and Network Administration. In: Proc. of LISA XV,
pp. 133–144. USENIX Association (2001)

10. Keys, K., Moore, D., Koga, R., Lagache, E., Tesch, M., Claffy, K.: The Architecture
of CoralReef: an Internet Traffic Monitoring Software Suite. In: Proc. of PAM 2001,
CAIDA, RIPE NCC (April 2001)

210 V. Marinov and J. Schönwälder

11. Kornexl, S., Paxson, V., Dreger, H., Feldmann, A., Sommer, R.: Building a Time
Machine for Efficient Recording and Retrieval of High-Volume Network Traffic. In:
Proc. of IMC 2005, USENIX Association (2005)

12. Flow-tools, http://www.splintered.net/sw/flow-tools/
13. Plonka, D.: FlowScan: A Network Traffic Flow Reporting and Visualization Tool.

In: Proc. of LISA 2000, pp. 305–318. USENIX Association (2000)
14. Rrdtool, http://oss.oetiker.ch/rrdtool/
15. Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource

Consumption in Network Traffic. In: Proc. of SIGCOMM 2003, pp. 137–148. ACM,
New York (2003)

16. Collins, M., Kompanek, A., Shimeall, T.: Analysts Handbook: Using SiLK for
Network Traffic Analysis. CERT. 0.10.3 edn. (November 2006)

Enabling Next Generation Peer-to-Peer Services

Fabio Victora Hecht and Burkhard Stiller

Department of Informatics IFI, University of Zurich
Binzmü hlestrasse 14, CH—8050 Zü rich, Switzerland

{hecht,stiller}@ifi.uzh.ch

Abstract. Peer-to-peer (P2P) applications have the potential to improve net-
work scalability and create a community in which resources are under the
shared responsibility of its members. Current popular solutions target specific
applications, such as file sharing and VoIP (Voice-over-IP), but important chal-
lenges prevent P2P technology from having wider acceptance in other services.
Overwhelmed by interdomain traffic generated by P2P applications that build
overlays asymmetric to the network topology, ISPs offer at a home user level
only connections with asymmetric bandwidth. This measure efficiently hinders
P2P applications. This paper introduces a new incentive model for overlay ap-
plications and ISPs to collaborate and to create at the same time a win-win situ-
ation. The approach combines two principles: (1) ISPs and P2P applications
communicate to correct overlay asymmetry and (2) ISPs diminish bandwidth
asymmetry by providing users additional bandwidth reserved for intradomain
traffic.

1 Introduction, Motivation, Goal

Peer-to-peer (P2P) applications, such as [2], have emerged in the last decade provid-
ing many technical advantages over the client/server model; for instance, scalability in
respect to resources, fault tolerance, and load balance. Recent surveys show that P2P
traffic is currently responsible for more than 50% of Internet Traffic [7]. Applications
that use the Peer-to-peer paradigm provide, for instance, file sharing, Voice-over-IP
(VoIP), and real-time video distribution, relying on resources from the end-user to
form an overlay network without necessary presence of central servers. The success of
those applications causes reactions from Internet Service Providers (ISP). Alleging
traffic excess, ISPs take several measures to reduce the use of P2P.

From the user point of view, however, the use of P2P applications brings many ad-
vantages. Besides these technical advantages listed above, there are other reasons for
its popularity, e.g., anonymity, lack of censorship, vast content variety, performance,
D. Hausheer and J. Schönwälder (Eds.): AIMS 2008, LNCS 5127, pp. 211–215, 2008.
© IFIP International Federation for Information Processing 2008

forming of communities, and lower (usually zero) price.
Typically, ISPs differentiate between two types of customers: (1) end-users, who

receive unreliable downstream bandwidth for a low price, and (2) content or service
providers, who pay more for a more reliable connection with large upstream capacity.
In a P2P model, end-users also become providers, thus negatively affecting ISP reve-
nue. Additionally, traffic costs increase, since P2P applications offer content and serv-
ices not available through other means. Nevertheless, the popularity of P2P suggest

212 F.V. Hecht and B. Stiller

that services and content offered by it is a strong factor for users to contract the ISP in
the first place.

Taking those conflicting factors into account, ISPs currently take measures to di-
minish peer-to-peer traffic [5], while not blocking it. Measures include closing cer-
tain client ports, using ISP-level Network Address Translation, shaping traffic, and
offering only low upstream bandwidth. P2P applications can, at a certain level, work
around those measures, except the latter one. For example, Swisscom [9] – market
leader in Switzerland – offers for home users ADSL (asymmetric) connections
through which end-users may only upload at rates 5% to 33% of their download band-
width, efficiently hindering peer-to-peer applications. This is due to the fact that P2P
applications have mechanisms to enforce that a peer is only able to downloads at rates
it can upload [4]. Facing those limits imposed, some users are migrating to central-
ized alternatives [7] in order to explore all their download link capacity. ISPs usually
do offer an option for symmetric access, but it is aimed at corporate clients and the
relevant market price is much higher. At Swisscom, while prices per month currently
start at 390 CHF for a 1.200 kbit/s symmetric connection, an asymmetric connection
costs only 49 CHF, with 3.500 kbit/s download and 300 kbit/s upload capacities.

Analyzing these arguments outlined in this introductory chapter, the imbalance of
incentives at the ISP level is clear. It is crucial, in order to see P2P applications being
used at their full potential, that incentives are in equilibrium. The main question is on
how ISPs and end users can cooperate to create a win-win situation.

2 Approach

Connections between ISPs are usually established through commercial agreements
[6]. Traffic leaving ISP boundaries (interdomain) represents costs for the ISP. intrado-
main traffic is expected to cost less for ISPs and to be faster for users, since it does
not leave the ISP, travels a smaller distance and has less chance of congestion.

One of the major factors that contributes to high cost of ISPs [8] with P2P applica-
tion regards the latter's method of establishing an overlay network oblivious to the net-
work topology. This situation can be referred to as overlay asymmetry. By building an
overlay asymmetrical to the underlay topology, P2P applications waste resources by
establishing a high number of interdomain connections. Optimizing overlay would, in
this case, be an incentive for both end users and ISPs.

In order to manage this issue, many papers propose optimization on the peer side,
not taking the ISP side into consideration [8]. Peers should establish connections pref-
erentially with peers that are closer to them, from a network point of view, according
to different metrics. Some papers suggest peers to make measurements – for exam-

ple, ping, traceroute, a geographical database or IP prefix matching. The use of those
techniques causes, however, a significant overhead and can be inaccurate.

[1] proposes an interesting model in which peers query ISPs to check for peers
that are located within the same provider. The algorithm improves overall download
speed of peers, while lowering ISP cost by reducing interdomain traffic. The work,
however, addresses overlay asymmetry without considering bandwidth asymmetry. The

Enabling Next Generation Peer-to-Peer Services 213

incentive for an ADSL end-user to prefer P2P applications instead of client/server ones
is still missing.

ISPs must have an incentive to reduce bandwidth asymmetry without raising price,
to allow home users to benefit from P2P. By coping with P2P applications, ISPs will
enable users to benefit from new cutting-edge services, for example Internet TV and
online gaming, possibly increasing number of customers.

The ideal method for users and ISPs to cooperate for locality exploitation requires
actions on both parties. The new newly developed approach combines two principles:

1. Peers explore locality, with the cooperation of the ISP, favouring intradomain
connections, and

2. ISPs provide end users with additional reserved upload bandwidth for intrado-
main traffic only; ideally, the total upload bandwidth is equivalent to the total
download bandwidth.

ISPs must provide a helper service for P2P applications to communicate with, ob-
taining information about peer locality (whether intradomain or interdomain), which
can be coupled with useful information, like delay, jitter, packet loss, hop count, and
available bandwidth, since applications might have different requirements. For in-
stance, in a file transfer, applications ambition maximization of bandwidth, while, for
application layer multicast or voice over IP, low delay and jitter is required, while a
constant bandwidth is enough. In this sense, a protocol must be designed for the com-
munication, and P2P applications would have to be modified to use such service.

The P2P helper service can be implemented as an XML-based (eXtended Mark-up
Language) Web Service in a fully decentralized and redundant manner. This technol-
ogy allows for an easier development over different platforms. The protocol works as
follows: the P2P application sends a request message to the helper service, containing
the desired application class, and a list of IP addresses from possible peers the appli-
cation may choose to connect to. Application classes are predefined as part of the de-
signed protocol, and contain a set of characteristics that influence the decisions of the
helper service; they may include, for example, different quality levels. The helper
service responds with a list containing every peer in the request and a 0-100 integer
number, representing a grade for each peer, according to the specified class. Peers
from the same ISP will naturally receive a high grade. It is up to the application to use
that information in its own benefit.

In general, peers with a higher grade should be preferred, although some random-
ness may be beneficial for the application to keep its P2P network well connected and
more robust. It is important that the grade be an absolute value so peers can cache the
value for some time, saving the effort of reevaluating the whole candidate set every
time a new peer is discovered. Some metrics might be too volatile to make caching

useful, but such inconsistent metrics have very limited usability and should be avoid-
ed. Exactly what metrics benefit most each P2P application is an interesting and open
research question, together with the method for the ISP to gather such information
from its own network.

Technical realization of additional bandwidth for intradomain traffic is trivial. Since
ISPs already throttle bandwidth according to several factors, it would be necessary only

214 F.V. Hecht and B. Stiller

to add the appropriate rules at the bandwidth broker. By reserving upload bandwidth for
intradomain traffic, impact on ISP's costs are foreseen to be minimal, since intrado-
main traffic has much lower cost if compared to interdomain. Users of mobile phones
are already familiar with this scheme, since calls to users within the same company usu-
ally cost less. It can also be used as a marketing tool, since users that have several Inter-
net connections are likely to keep loyal to the same ISP and to convince friends to join
the same. Further studies in a socioeconomic environment may become necessary at
this point.

3 Challenges

Setting up such new service raises important questions and challenges on both sides.
One concern regards customer and strategic data protection by the ISP. The helper
service does not need to provide information on a detailed level, but instead general
application classes are present in the request, and only an absolute grade is part of the
reply. The right trade off must be found not to reveal information that are sensitive
about customers, but that are still useful for applications.

By supporting P2P traffic, it is also feared that total traffic could increase. Al-
though preference will be given to intradomain traffic, it is possible to reach a point
that interdomain traffic will also increase. Further investigation is required to find this
exact point.

What is considered a major issue regards legality of content. Anonymity, provided
by some P2P applications to support censorship free information, is also used by
some to offer a range of illegal content – mostly due to copyright infringement. Yet,
anonymized networks are not necessarily the focus of P2P networks, as it is possible
to use authentication methods as in a client/server approach if wanted.

4 Simulation Scenario

In order to validate the proposed approach, it is imperative to define a realistic scenar-
io and perform simulations and measurements. Ideally, the solution should be de-
ployed in an ISP and implemented on one or more popular P2P applications. Results
must include several measurements. On the user side, quality of experience (QoE) is a
key metric – depending on the application chosen, it may include start-up or buffer-
ing time, delay, and total bandwidth. On the helper service, the overhead created by
introduction of the proposed protocol, together with its scalability and fault-tolerance
can be measured. Benefits to the ISP must also be accounted, comparing volume of

intradomain and interdomain traffic, preferentially from a cost perspective.

In addition to making measurements on a P2P application with and without the
proposed mechanisms, it would be useful to also compare it to classical client/server
(C/S) distribution paradigm. The results could be an incentive for ISPs to actually
support P2P, assuming that a customer has the choice of obtaining content from ei-
ther a P2P or C/S system. Possibly, it can be shown that, with locality aware mecha-
nisms in place, hindering P2P traffic may not be a good decision.

Enabling Next Generation Peer-to-Peer Services 215

5 Preliminary Conclusions

Although it is believed that the approach presented in this paper represents a major
improvement over the state of the art due to the combined approach, extensive and re-
alistic simulations must be done to prove its assertions. A more detailed protocol
specification must be developed, with predefined service classes. Although there are
different P2P applications, they share similar concepts. Since there are marketing
issues involved with the approach as well, research on their evaluation must be
performed.

Acknowledgment. The authors appreciate many discussions with Dr. David
Hausheer on this paper's topic.

References

1. Aggarwal, V., Feldmann, A., Scheideler, C.: Can ISPS and P2P users cooperate for im-
proved performance? ACM SIGCOMM Computer Communication Review 37(3), 29–40
(2007)

2. Bit Torrent (last visited: February 22, 2008), http://www.bittorrent.com
3. Brecht, S., Racz, P., Stiller, B. (eds.): Investigation of Application-level Routing, Universi-

ty of Federal Armed Forces Munich (UniBwM), Information Systems Laboratory IIS,
Master Thesis (2003)

4. Cohen, B.: Incentives build robustness in BitTorrent. In: First Workshop on the Econom-
ics of Peer-to-Peer Systems, Berkeley, California, U.S.A (June 2003)

5. Constantinou, F., Mavrommatis, P.: Identifying Known and Unknown Peer-to-Peer Traf-
fic. In: Fifth IEEE International Symposium on Network Computing and Applications
(NCA 2006), Cambridge, Massachusetts, U.S.A, pp. 93–102 (2006)

6. Huston, G.: Interconnection, Peering, and Settlements. The Internet Protocol Journal 2(1),
2–16 (1999)

7. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K.C., Faloutsos, M.: Is P2P dying or
just hiding? In: IEEE Global Telecommunications Conference, 2004 (GLOBECOM 2004),
Dallas, Texas, U.S.A, December 2004, vol. 3, pp. 1532–1538 (2004)

8. Le, H., Hong, D., Simmonds, A.: A self-organising model for topology-aware overlay for-
mation. In: 2005 IEEE International Conference on Communications (ICC 2005), Seuol,
Korea, May 2005, vol. 3, pp. 1566–1571 (2005)

9. Swisscom (last visited: February 22, 2008), http://www.swisscom.com
10. Zink, M., Mauthe, A.: P2P streaming using multiple description coded video. In: 16th Eu-

romicro Conference, Sicily, Italy, August/September 2004, pp. 240–247 (2004)

Author Index

Amin, Mina 105
Andrews, Richard 53
Astorga, Antonio 180

Badonnel, Remi 92
Baiardi, Fabrizio 65
Bhatti, Saleem 28
Bocek, Thomas 15
Burgess, Mark 92
Bury, Sara 195

Calo, Seraphin 1
Chevrier, Vincent 175
Chiarini, Marc 148, 162
Ciarletta, Laurent 175
Couch, Alva L. 79, 148, 162

Deri, Luca 53

Einhorn, Erik 120

Hadjiantonis, Antonis M. 105
Harvan, Matúš 134
Hausheer, David 15
Hecht, Fabio Victora 15, 211

Keoh, Sye-Loong 1
Kun, Wang 15

Lesueur, François 40
Liu, Feng 105

Lobo, Jorge 1
Lupu, Emil 1
Lutz, David J. 185

Marinov, Vladislav 205
Mé, Ludovic 40
Mitschele-Thiel, Andreas 120

Pras, Aiko 134

Race, Nicholas J.P. 195
Rogers, Michael 28
Rubio-Loyola, Javier 180

Schaeffer-Filho, Alberto 1
Schaffrath, Gregor 190
Schönwälder, Jürgen 134, 200, 205
Sgandurra, Daniele 65
Siebert, Julien 175
Sloman, Morris 1
Stiller, Burkhard 15, 185, 190, 211

Tran, Ha Manh 105
Tumar, Iyad 200

van den Broek, Gijs 134
Viet Triem Tong, Valérie 40

Wu, Ning 79

	Front matter
	Chapter 1
	A Role-Based Infrastructure for the Management of Dynamic Communities
	Introduction
	Role-Based Community Model
	Secure Community Management
	Security Requirements and Management Roles
	Community Management Overview
	A Methodology for Modeling Community Management

	Implementation and Evaluation
	Related Work
	Discussion and Concluding Remarks

	Chapter 2
	PSH: A Private and Shared History-Based Incentive Mechanism
	Introduction
	Related Work
	Trust-Based Incentive Schemes
	Trade-Based Incentive Schemes
	Comparison of Incentive Schemes

	Design
	Requirements
	Assumptions
	Algorithm
	Shared History Data Propagation
	Private History Verification

	Implementation and Simulation
	Implementation
	Simulation

	Summary, Discussion, Conclusion, and Future Work
	Discussion
	Conclusion
	Future Work

	Chapter 3
	Cooperation under Scarcity: The Sharer’s Dilemma
	Introduction
	Game Theoretic Models of Cooperation
	The Prisoner's Dilemma
	The Shadow of the Future
	Multi-player Dilemmas

	The Sharer's Dilemma
	The Expected Utility Strategy

	Simulations
	Fixed Population Proportions
	Evolutionary Simulations
	Invasion Simulations

	Discussion
	Conclusions and Future Work

	Chapter 4
	A Distributed Certification System for Structured P2P Networks
	Introduction
	Related Work
	Structured P2P Networks
	Distributed Certification

	A Distributed Certification System
	Principle
	Sharing the Network Secret Key
	Distributed Certification Process

	Security Analysis
	Obtaining a Fake Certificate
	Attacking an Honest Certification

	Experimental Results
	Applications of Distributed Certification
	Sybil Protection through Admission Control to the Network
	Detection and Exclusion of Misbehaving Nodes
	Secure Naming of Resources

	Conclusion and Future Work

	Chapter 5
	N2N: A Layer Two Peer-to-Peer VPN
	Motivation and Scope of Work
	The Design of N2N
	N2N Architecture and Implementation
	N2N Evaluation and Testing
	Comparing N2N and Mobile IP
	N2N Scalability
	Network Management and N2N

	Open Issues and Future Work
	Final Remarks
	References

	Chapter 6
	Secure Sharing of an ICT Infrastructure through Vinci
	Introduction
	Vinci Overall Architecture
	Community and VCN
	Application VMs
	Community VMs
	File System VMs
	Communication and Control VMs
	Assurance VMs
	Infrastructure VMs

	Performance Results
	Related Works
	Conclusion

	Chapter 7
	Statistical Behaviors of Distributed Transition Planning
	Introduction
	Hospitals/Residents Problem
	Quality of Stable Marriage and Hospital/Resident Solutions
	Simulations
	The Gale-Shapley Algorithm
	The Gale-Shapley Algorithm Plus a Greedy Heuristic
	Simulating Real Cases

	Conclusion and Future Work

	Chapter 8
	Service Load Balancing with Autonomic Servers: Reversing the Decision Making Process
	Introduction
	Pull-Based Load Balancer
	Underlying Architecture

	Experimental Results
	Performance with Homogeneous Servers
	Performance with Heterogeneous Servers
	Scalability and Bottleneck Effect

	Related Approaches
	Conclusions and Future Work

	Chapter 9
	An Architecture for Supporting Network Fault Recovery Management
	Introduction
	System Architecture
	Automated Recovery Planning:
	Knowledge Discovery:
	Policy-Based Management:

	Methodology
	PBM and ARP Collaboration
	KD and ARP Collaboration

	System Analysis - Case Study
	Automated Recovery Using Outbound TE Algorithm
	Automated Recovery Using Planning Algorithm

	Related Work
	Conclusion

	Chapter 10
	RLTE: Reinforcement Learning for Traffic-Engineering
	Introduction
	Problem Definition
	Reinforcement Learning for Traffic Engineering
	Results
	Conclusion and Future Work

	Chapter 11
	SNMP Trace Analysis Definitions
	Introduction
	Overview
	Messages
	Traces and Flows
	Trace and Flow Definition
	Trace and Flow Example

	Slices
	Slice Definition
	Slice Example

	Slice Signature and Prefix
	Slice Signature and Prefix Definition
	Slice Signature and Prefix Example

	Slice Types
	Slice Type Definition
	Slice Type Example

	Related and Future Work
	Conclusions

	Chapter 12
	Dynamic Consistency Analysis for Convergent Operators
	Introduction
	Operator Consistency
	Operator Precedence
	Consistency as an Emergent Property
	Kinds of Operators
	Fixed Points and Policies
	The Quandary of Observability
	Synchronous Operator Activation
	Heartbeats and Time
	Fixed Points and Time
	Multiple Time Bases
	Bounded Operators
	Conclusions

	Chapter 13
	A Theory of Closure Operators
	Introduction
	Convergent and Closure Operators
	Strategy and Tactics
	Operator Consistency
	Implementing Closure Operators
	Validation Models
	Properties of Closure Operators
	Conclusions

	Chapter 14
	Entwined Influences of Users’ Behaviour and QoS: A Multi-model Approach
	Motivation
	Proposition of Study
	A First Case Study
	Conclusion and Future Work

	Chapter 15
	Business-Driven Management of Policies in DiffServ Networks
	Introduction
	Application Domain – Particular Objectives of Our Research
	Business Indicators and Management of Policies – Foreseen Technical Approach
	Concluding Remarks
	References

	Chapter 16
	Token-Based Payment in Dynamic SAML-Based Federations
	Introduction
	Related Work
	Payment-Enabled Identity Federation
	Security Analysis
	Conclusions and Outlook

	Chapter 17
	Conceptual Integration of Flow-Based and Packet-Based Network Intrusion Detection
	Introduction, Motivation, and Goals
	Analysis
	Proposed Combination Angles
	Evaluation
	Preliminary Conclusions, Tasks, and Issues
	References

	Chapter 18
	Towards Resilient Community Wireless Mesh Networks
	Introduction
	The Research Problem
	Chosen Approach
	Conclusion

	Chapter 19
	Resource Management of Disruption Tolerant Networks
	Introduction
	Research Questions and Proposed Approach
	Related Work
	Conclusion
	References

	Chapter 20
	Design of an IP Flow Record Query Language
	Introduction
	State of the Art in Query/Filter Languages
	Research Issues
	Conclusions

	Chapter 21
	Enabling Next Generation Peer-to-Peer Services
	Introduction, Motivation, Goal
	Approach
	Challenges
	Simulation Scenario
	Preliminary Conclusions
	References

	Back matter

