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Preface

This book grew out of an effort to salvage a potentially useful idea for

greatly simplifying traditional quantitative risk assessments of the human

health consequences of using antibiotics in food animals.  In 2001, the

United States FDA’s Center for Veterinary Medicine (CVM) (FDA-CVM,

2001) published a risk assessment model for potential adverse human health

consequences of using a certain class of antibiotics, fluoroquinolones, to

treat flocks of chickens with fatal respiratory disease caused by infectious

bacteria.  CVM’s concern was that fluoroquinolones are also used in human

medicine, raising the possibility that fluoroquinolone-resistant strains of

bacteria selected by use of fluoroquinolones in chickens might infect humans

and then prove resistant to treatment with human medicines in the same class

of antibiotics, such as ciprofloxacin.

As a foundation for its risk assessment model, CVM proposed a

dramatically simple approach that skipped many of the steps in traditional

risk assessment.  The basic idea was to assume that human health risks were

directly proportional to some suitably defined exposure metric.  In symbols:

Risk = K × Exposure,

where “Exposure” would be defined in terms of a metric such as total

production of chicken contaminated with fluoroquinolone-resistant bacteria

that might cause human illnesses, and “Risk” would describe the expected

number of cases per year of human illness due to fluoroquinolone-resistant

bacterial infections caused by chicken and treated with fluoroquinolones.

If it could be made to work correctly, this simple approach would have

a lot to recommend it.  It obviates the need to develop complex simulation

models for exposure or sophisticated dose-response models for human
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infection and illnesses caused by foodborne bacteria.  It roots the estimate of

a single parameter, K, firmly in empirical data on concurrent levels of

Exposure and Risk.  It provides a simple, easily communicated basis for

estimating how a reduction in exposure would affect human health risk.

And yet, there appeared to be potentially fatal conceptual flaws in the

approach.  First, it implied a positive value of K whenever Risk and

Exposure were both positive… and yet, available data showed that handling,

cooking, and eating fresh chicken were associated with a reduced level of

risk for the bacterial illnesses (resistant or susceptible) of concern.  How

could such a protective effect be reconciled with the model?  (Adding an

intercept term to the model was one obvious possibility, but even that would

not suffice to explain protective effects for low-level exposures and

increased risks for relatively rare, high exposures. Perhaps some nonlinearity

was needed, but that would threaten the simplicity of the model.)  The

approach estimated K from historical levels of Risk and Exposure, but did

not appear to give valid predictions of how changes in Exposure would

change future levels of Risk… the chief concern for practical risk

management.  And it relied on exposure metrics, such as prevalence of

bacterial contamination in chicken carcasses, that could be estimated from

historical data, but that are fundamentally inadequate for predicting risks that

depend on the quantity of contamination rather than just on its prevalence,

i.e., its presence or absence. Most of all, the model assumed a direct

proportional causal relation between its selected Risk and Exposure metrics

without validation, and then focused on quantifying their ratio, K, without

validating that the ratio had causal significance or predictive power in real

data sets.  It thus skipped the traditional (and rather important) role of hazard

identification in human health risk assessment.

And yet, the simplicity and intuitive appeal of the approach are strong.

Can its technical limitations be remedied and the benefits of simplicity and

direct estimation of parameters from data be achieved while allowing valid

causal interpretations of the results and useful predictions of human health

impacts of changing exposures?  This book presents a lengthy, but

essentially affirmative, answer.  The key steps are to:  (a) Allow for other

sources of exposure (represented by a “Background” intercept term to be

estimated from data); (b) Acknowledge that changes in animal antibiotic use

typically affect multiple types of exposures (e.g., reducing resistant bacteria

but perhaps increasing susceptible bacteria in processed food commodities);

(c) Focus on causal impacts on risk arising from changes in exposures; and

(d)  Recognize that the changes in risk predicted by the simple linear model

for a given set of changes in exposure can provide valid bounds on the true

changes that will occur with a more complex but more realistic model.  With

these enhancements, the mathematical model becomes slightly more
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complex.  For example, the “Risk = K × Exposure” equation must now be

generalized to include additional terms, as in:

Current Risk = Background + K1 × (exposure to susceptible bacteria) +

K2 × (exposure to resistant bacteria)

To be interpreted causally, its parameters must be estimated by appropriate

statistical methods for causal models, such as structural equations modelling,

rather than by straightforward statistical regression. The model’s predictions

give bounds on true but unknown changes in risk.  With these modifications,

the goal of obtaining a practical, simple, data-driven approach to estimating

probable human health impacts caused by risk management interventions

that change exposures to microbial loads can be substantially met.

Many other advances are also possible, such as modeling the systems

dynamics of bacteria flows over time between resistant and susceptible types

and between ill and well subpopulations of humans and animals.  These and

other extensions of the basic model are explored in the present book.  The

methods developed here may also prove useful in other areas of health risk

analysis where complex simulation models of risk are difficult or impractical

and simpler formulae can produce useful bounds on the human health

consequences of alternative risk management interventions.

The public health implications of this new approach to risk assessment

are striking.  As demonstrated in this book, considering the effects of animal

antibiotics on susceptible bacteria as well as on resistant bacteria makes clear

that banning current uses of animal antibiotics is not necessarily an effective

way to preserve the efficacy of human antibiotics or to protect human health,

as one might at first suppose.  To the contrary, withdrawing current animal

antibiotics appears to have the potential to create more ill animals per year,

more human illnesses per year, and thus greater use of antibiotics in human

medicine, where the opportunity to select resistant strains of bacteria may be

far more threatening than in animal uses.  Applying a systems dynamics

perspective to animal antibiotic use and human health suggests that

interventions designed to protect human health by reducing or banning

animal antibiotic use may unintentionally increase human health risks.  This

possibility appears sufficiently strong so that it should be carefully evaluated

before policies are made that assume that restricting animal antibiotic use

will promote human health.

Since the FDA-CVM, 2001 risk assessment of fluoroquinolones was

completed, the world has moved on.  Some, including this author, objected

to the use of the “Risk = K × Exposure” framework as giving incorrect

predictions, being inconsistent with available epidemiological data, and

postulating a causal relation where none was apparent in real data.  FDA

defended its approach, denied the credibility of these technical objections,
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and insisted that its risk assessment justified withdrawing approval for

fluoroquinolones used in poultry.  As this book goes to press, the dispute has

proceeded through litigation (with FDA’s Administrative Law Judge finding

for FDA’s CVM in 2004). This litigation clearly demonstrated to both sides

and to many stakeholders the need for clearer, sounder, and simpler methods

to understand the relevant risks and to improve the basis for risk

management decision in this challenging area in the future.

The perspective of this book is that risk is fundamentally quantitative,

and when an intervention has some helpful and some harmful effects, it is

necessary to use quantitative analysis (at least to place bounds on the sizes of

different effects) to compare them and to determine the course of action

yielding the largest human health benefits.  The major goal of this book is to

provide and illustrate methods for quantitative risk assessment and for

comparing alternative risk management actions, given realistic limitations on

scientific knowledge and available data.
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Chapter 1

Qualitative and Quantitative Risk Analysis

1. INTRODUCTION:  A NEED FOR NEW METHODS

In late 2003, the World Health Organization (WHO), the Food and

Agricultural Organization of the United Nations (FAO), and the World

Animal Health Organisation (OIE) issued a joint report on risk analysis of

human health risks arising from the use of antibiotics in food animals.

Written by an expert group that included prominent opponents of animal

antibiotic use and regulators from several countries, the report stated that

traditional quantitative risk assessment methods are inadequate for

antimicrobial resistance risk assessment, due primarily to the uncertainty,

complexity and dynamic nature of biological risks and of the evolution and

spread of antibiotic resistance among bacteria. It advocated using a more

qualitative, expert judgment-based approach instead as a primary basis for

risk management decision-making and to categorize animal antibiotics for

regulatory action on the basis of human medical need.  This approach was to

be based largely on precautionary principles and on expert judgments about

the importance of drug classes in human medicine, with classes of antibiotics

judged “critically important” to be considered for maximal restriction in

applications to animals. The report concluded that:

“Antimicrobial resistance issues crosses (sic) many disciplines, including

microbiology, toxicology and pharmacology, and risk assessment approaches

for chemical and microbial contamination are not currently adequate for risk

assessment on antimicrobial resistance.  Therefore, when issues pertaining to

antimicrobial resistance arise… the questions may need to be referred to a
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WHO/FAO expert body for risk assessment, preferably JEMRA” (WHO, 2003,

emphasis added.  JEMRA is the Joint Expert Microbial Risk Assessment group

that drafted the report.)

It further recommended that:

“A qualitative approach for risk assessment should be used to make the pre-

marketing or postmarketing decision [about approval of animal antibiotics].

Depending on the outcome, the drug sponsor has the option to develop a

quantitative risk assessment. ….When dealing with a high level of uncertainty,

precaution should be applied in risk management.” “The consequences of

antimicrobial resistance are particularly severe when pathogens are resistant to

antimicrobials critically important in humans. Therefore, the expert workshop

recommends that an expert clinical medical group appointed by WHO defines

which antimicrobials are considered critically important in humans. …

Antimicrobial classes could be classified as critically important when the drug is

in a class that is the only available therapy or one of a limited number of drugs

available to treat serious human disease or enteric pathogens that cause food

borne disease. … Based on the criteria listed previously, a list of critically

important classes of antimicrobials should include: the fluoroquinolones and 3rd

generation cephalosporins for Salmonella spp. and other Enterobacteriaceae;

the fluoroquinolones and macrolides for Campylobacter spp.; and glycopeptides,

oxazolidinones and streptogramins for Gram positive bacteria such as

Enterococcus spp.”

These recommendations reflect an increasingly popular movement

among many public health experts and health and safety regulators and

professionals away from traditional quantitative risk analysis methods and

toward more qualitative and judgment-based approaches.

1.1  Challenges and Goals

Qualitative judgment-based approaches to health risk analysis are

often perceived as being easier to learn, understand, apply, and explain than

quantitative risk analysis methods.  They are sometimes also recommended

as being more realistic and flexible than quantitative methods in avoiding

spurious precision and in dealing with the data gaps and knowledge gaps that

inevitably arise for poorly understood and complex health risk phenomena,

ranging from human health effects of cigarette smoking (Surgeon General’s

Report, 2004) to emergence of antibiotic resistance in bacteria infecting

human populations to the emergence and spread of BSE among cattle.

Indeed, expert judgment-based classification and qualitative characterization

of human health risks at first seems appealing for such applications because
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of its apparent simplicity, transparency, ease of use, and opportunities for

building consensus among groups of experts.

But qualitative judgment-based analyses of public health risks have

until now received remarkably little formal evaluation.  How well do they

work in practice?  Do they produce better (e.g., less expensive, more certain,

and more effective) risk management decisions than quantitative risk

analysis methods?  When applied to real data sets, with realistically

incomplete, incorrect, and inconsistent information typical of complex health

risk applications, do they produce greater or less clarity than quantitative

methods?  What are the theoretical and practical limitations of qualitative

and judgment-based risk assessment?  With the exception of related work on

the psychology of judgment and decision-making (e.g., Plous 1993), there

has been little direct comparison of the performance of quantitative, data-

driven risk analysis methods against the performance of more qualitative risk

analyses driven by expert judgments.  Psychologists have discovered that

many lay and expert judgments about causality and risks are often strongly

biased by prior beliefs (White et al., 1995) and by cognitive heuristics and

biases (Bornstein and Emler, 2001), including the perceived plausibility of

envisioned causal mechanisms (Ahn and Bailenson, 1996).  These biases can

lead to severe under-weighting of empirical evidence and excessive

resistance to new evidence and data (Plous, 1993); unawareness of the

sources of beliefs and the influence of preconceptions (Fugelsang and

Thompson, 2003) and maladaptive causal inferences and decisions.

However, in many cases, even relatively simple quantitative methods based

on empirical data give more useful and reliable insights and conclusions than

expert judgment-based approaches (Grove et al., 2000).  The extent to which

these insights apply in animal antibiotic risk analysis is an open question.

This chapter reviews past qualitative risk analysis approaches and

identifies limitations in the performance of the current generation of

qualitative risk rating systems.  It appears that all such systems face some

important theoretical limitations.  Quantitative risk analysis may often be

essential for producing information useful for improving risk management

decision-making.  But, to be most useful, quantitative risk analysis methods

must overcome the deficiencies of qualitative approaches and borrow their

strengths, especially simplicity and practicality.  Bearing in mind current

perceptions about the limitations of quantitative risk assessment – especially,

that it is inadequate for animal antibiotic risk assessment because of the

complexities and scientific uncertainties inherent in the relevant causal

pathways and mechanisms (WHO, 2003) – the following chapters therefore

seek to develop, clarify, and illustrate principles of quantitative human

health risk analysis, using animal antibiotic risks as specific examples.

This book seeks to show that quantitative health risk analysis can be

far less limited than its critics sometimes suppose, and that failure to use it
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for public health risk management decision-making is likely to produce

inferior decisions and fewer public health benefits than could be achieved by

using it.  The main purposes of this book are:

• To show how to carry out quantitative assessment of human health

impacts (both risks and benefits) of alternative risk management

interventions using logically and mathematically sound principles of

quantitative risk assessment.  Although these principles also apply to

many other areas of health risk analysis, the examples and applications

in this book focus on animal antibiotic use as a particularly important,

controversial, and challenging application area where a need for

improved risk assessment methods for informing national and

international policies has been strongly felt (WHO, 2003).

• To examine and compare the usefulness of qualitative and quantitative

risk assessments in informing regulatory decisions about animal

antibiotic use;

• To apply quantitative risk assessment methods and to compare results

from qualitative and quantitative risk assessment approaches for several

antibiotic classes (fluoroquinolones, macrolides, and streptogramins)

that are of practical importance in agriculture for preventing and/or

treating bacterial diseases in poultry, cattle, swine, or other food animals.

All were suggested to be “critically important” for human medicine on

qualitative grounds in the WHO report, quoted above.

• To contrast the risk management decisions and probable consequences

for public health of using qualitative vs. quantitative approaches.

A major theme explored in this book is that public health policy-making is

often best served by quantitative risk assessment. Such risk assessment is

both practical and essential for informing decisions that will bring about

their intended consequences with high probability.  Conversely, qualitative

and judgmental risk management decisions made without sound quantitative

analysis are often too easily swayed by seemingly plausible accounts of how

threats to human health might work, rather than factual evidence about how

they do work, leading to perceptions and decisions that give undeserved

weight to envisioned hypothetical harms and insufficient weight to real ones.

Quantitative risk assessment can help to promote more realistic and effective

public health decision-making.

1.2  Overview of Contents

The chapters that follow introduce both qualitative and quantitative

risk assessment approaches and illustrate them with simple calculations and

examples.  This chapter reviews qualitative risk analysis and its theoretical

limitations. Chapters 2 through 5 examine the traditional quantitative risk
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assessment steps of hazard identification, exposure assessment, exposure-

response or dose-response modeling, and risk characterization, including

uncertainty and sensitivity analyses. They also explain and illustrate how to

do quantitative risk assessment of animal antibiotics using a relatively

simple Rapid Risk Rating Technique (RRRT) framework developed for

practical applications. Chapters 6 through 8 provide case studies for the

streptogramin combination quinupristin-dalfopristin (QD). Fluoroquinolones

and macrolides are also addressed briefly in Chapter 8.  These three classes

of antibiotics have been the focus of many political, regulatory, and activist

efforts to remove antibiotics used in human medicine from use in animals.

Throughout the book, a key decision-relevant question addressed is:

What would be the probable human health consequences of withdrawing or

restricting current animal antibiotic uses?  Simple analytical models can

help to answer this question.  Chapters 6-8 also introduce more advanced

topics, such as models for long-term emergence of human antibiotic

resistance under selection pressure from animal antibiotic uses (Chapter 7).

2.  BACKGROUND AND MOTIVATION

2.1  Difficult Tradeoffs

How can antibiotics best be used to promote human health?  The

answer has been controversial in many countries, in part because of growing

fears that using antibiotics now in any application, whether treating human

patients or promoting growth in food animals, will make antibiotics less

effective in all applications in the future (APUA, 2002).  This creates a

perceived conflict between current and future uses, as well as between

competing current uses.  Various interest groups have created strong national

and international pressures to preserve the effectiveness of hard-to-replace

antibiotics by reducing uses that they consider non-essential, especially

growth promotion in food animals, and eliminating practices such as the

widespread supply of prescriptions to consumers who may have viral or

other illnesses not likely to benefit from antibiotic prescriptions.

Failing to use antibiotics appropriately now may also increase future

health risks, as well as creating preventable present harm to current patients.

For example, if failure to treat or prevent an infection in a person or animal

allows an infection to spread to others, it may end up causing more total

antibiotic use than it initially avoids, as well as increasing days of illness for

the original victim.  Whether it will do so depends on aspects of infectious

disease dynamics that are often uncertain and hard to estimate accurately,

such as animal-to-person and person-to-person transmission rates of
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infectious bacteria; infectious periods and recovery times; and the

effectiveness of antibiotics in reducing transmission rates and recovery times

and in hastening the emergence and dissemination of resistance.

The following simplified examples illustrate some of the issues and

trade-offs involved in assessing how animal antibiotic use (AAU) can affect

public health.  When an AAU is effective in preventing or reducing animal

illnesses, and when these illnesses lead to increased microbial loads in the

meat from these animals, then using the animal antibiotic can benefit public

health by reducing microbial loads in meat, thus improving the microbial

safety of the meat supply.  [This can occur, for example, if animals from ill

flocks or herds tend to be underweight or in poor condition, and therefore

encounter more processing errors and contamination during processing

(Russell, 2003; Dawe, 2004).] On the other hand, animal antibiotic use tends

to select for antibiotic-resistant bacteria in animals, and such bacteria may

pose increased risks to consumers. Which effect on public health dominates

requires a quantitative comparison of the reduction in human health risk due

to reduced susceptible bacterial loads in meats vs. the increase in risk due to

increased resistant bacteria.  As suggested by the examples, the outcome of

the comparison can go either way, depending on quantitative details of how

the AAU affects susceptible and resistant illnesses.

Example:  Prevention vs. Treatment

Setting:  Suppose that introducing a new animal antibiotic would increase the

resistance rate to that antibiotic among bacteria in animal food products from 0 to

50% while reducing the total number of human foodborne illnesses per year caused

by bacteria on meat servings from ill or underweight animals from 100,000 cases per

year to 80,000 cases per year.  Each susceptible case of illness causes an average of

6 days of diarrhea and each resistant case causes an average of 8 days of diarrhea

(e.g., due to greater virulence of resistant strains).

Problem 1:  What is the net human health impact, measured in illness-days per year

of diarrhea, of introducing the animal antibiotic?

Solution:  Before introducing the animal antibiotic, the average number of illness-

days per year in the population from this animal food source is: (100,000 susceptible

cases per year) × (6 illness-days per susceptible case) = 600,000 illness-days per

year.  After introduction, the number of cases falls to 80,000 per year, but each case

has a longer expected duration, of (0.5 × 8 + 0.5 × 6) = 7 days instead of 6, due to

the postulated 50% antibiotic resistance level among cases.  The average number of

illness-days per year is therefore:  (80,000 cases per year) × (7 illness-days per case)

= 560,000 illness-days per year.  In this example, the net impact of introducing the
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animal antibiotic use is to decrease the average illness-days per year from this food

source in the population by 40,000, from 600,000 to 560,000.

Problem 2:  In the previous example, suppose that 50% of human illness cases are

prescribed a human antibiotic as an empiric treatment, without waiting for a

confirmed diagnosis, and that such prescriptions do not affect clinical outcomes for

this particular bacterial illness (although they are effective against other types of

infectious diarrhea with similar symptoms, motivating the empiric treatment).  For

simplicity, assume that each prescription directly causes R additional resistant

illness case, due to release and spread of the antibiotic (and resistant bacteria

selected by it) in sewage or via other pathways.  How large would R have to be for

the introduction of the animal antibiotic to reduce resistant cases per year?

Solution:  Let S denote the expected total number of resistant cases (direct plus

indirect) created per case that is prescribed the antibiotic. Each prescription directly

produces R new resistant cases. Each of these has a 50% probability of being

prescribed the antibiotic, causing R further cases, and so on.  Thus, S satisfies the

recursion:  S = R × (0.5 × 1 + 0.5 × S).  That is, there is a 50% chance of a new

resistant case not receiving a prescription, so that the branching process terminates

with only 1 resistant case (the first) being formed. There is a 50% probability that

the case does receive a prescription, in which case it generates S expected additional

resistant cases. Each prescription produces a total of 0.5R + (0.5R)
2

 + (0.5R)
3

 + … =

0.5R/(1 – 0.5R) expected new resistant cases (for R < 2), as may be confirmed by

solving the above equation (i.e., S = 0.5R + 0.5RS) for S. Before the animal

antibiotic is introduced, 50% of 100,000 susceptible cases per year are prescribed

the human antibiotic, while afterwards, 50% of 80,000 cases per year are prescribed

the antibiotic.  The difference is a reduction of 10,000 × [0.5R/(1 – 0.5R)] secondary

resistant cases prevented per year.  Introducing the antibiotic also directly causes

(80,000 × 50%) = 40,000 additional resistant cases per year.  The reduction of

10,000 × [0.5R/(1 – 0.5R)] resistant cases exceeds the 40,000 increase in resistant

cases if and only if 0.5R > 0.8. So, introducing the animal antibiotic decreases

resistant cases in the human population if and only if R > 1.6, although it always

reduces total cases (and illness-days) per year.

These simple hypothetical calculations show that an exclusive focus on

reducing resistant cases may sometimes work against the public health goal

of reducing the total number of foodborne cases and illness-days per year.

2.2  Recent History

Such tradeoffs are not necessarily confined to hypothetical

calculations.  Figure 1 shows how resistance rates in Campylobacter  (a

common cause of foodborne infectious diarrhea in humans) to various
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antibiotics changed following Danish efforts, starting around 1998, to reduce

resistance by taxing and effectively banning antibiotic growth promoters

(AGPs). Disappointingly, total animal antibiotic use and human antibiotic

resistance rates both increased dramatically, even if only transiently.

Although establishing cause and effect from trend data is challenging, such

results, coupled with increases in human foodborne illness rates in many

parts of Europe following a European Union ban on antibiotics used as

growth promoters (Eurosurveillance, 2002), suggest that simply banning

animal antibiotic uses is not a panacea for protecting human health in

practice.  (Bans may not even be a sensible precautionary measure if they

cause increased human health risks, as discussed further in Chapter 8.)

Understanding the quantitative causal relations between animal drug use and

human health effects may be necessary to predict the probable human health

consequences of bans and other measures and to identify more effective

ways to protect and improve human health.

Figure 1:  Animal drug use and antimicrobial resistance rates among

domestically acquired C. jejuni campylobacteriosis cases in Denmark.

Source: Hayes and Jensen, 2003

In any country, the interacting choices and behaviours of many agents

– farmers, truck drivers, slaughterers and meat processors, wholesalers,

retailers, importers, restaurant kitchen workers and food handlers, inspectors,

consumers, institutional workers and inhabitants, patients and doctors and
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hospital workers – all affect how many food borne illnesses occur per year

and how quickly antibiotic-resistant strains of food-borne bacteria develop

and spread.  Effective management of these risks requires crossing

jurisdictional boundaries and coordinating the interests and interventions of

multiple regulatory agencies, decision-makers, and stakeholders.  This

requirement can be difficult or impossible to meet in practice without huge

coordination costs.  Coordination and harmonization of food safety standards

and animal drug use policies across countries is similarly challenging.

These political and organizational challenges, technical uncertainties,

and difficult value trade-offs among competing goals such as food safety,

treatment of current human illnesses, prevention of future food-borne

illnesses, and ability to treat current and future illnesses effectively, have

made it difficult to agree on what policies to follow to manage antibiotic

uses and risks of resistance – and perhaps even more difficult to devise

policies that will effectively protect and promote human health.  Yet,

policies now being developed in many countries will affect how antibiotics

are used and managed in human and animal medicine for years to come.  It

is therefore important to determine whether and how to use risk analysis to

improve risk management decisions and policies.

Some dramatic actions have already been taken, including phasing out

routine uses of animal antibiotic growth promoters in various European

countries starting around 1997, and a widely publicized decision by

McDonald’s corporation in 2003 to buy meat only from producers who do

not use them.  The human health impacts of such measures are still being

studied.  So far, it appears that the European interventions to eliminate AGPs

were followed by disappointing increases in some human food-borne

bacterial illness rates (Eurosurveillance, 2002) and antimicrobial resistance

rates in clinical isolates from humans with food poisoning (Hayes and

Jensen, 2003); by decreases in resistant bacteria in animals and in healthy

humans, as hoped (Wegener, 2003); and by transient surges of some

antibiotic-susceptible bacterial infections in food animals to unprecedented

levels (VLA, 2004).  It remains to be seen whether a more science-based

strategy, rooted in causal analysis of the relation between actions and their

probable human health consequences in the domain of animal antibiotic use,

can produce more beneficial results.

There is reason for optimism.  From 1996 to the present, even as rates

for some food-borne bacterial illness were reaching new heights in Europe,

they plummeted in the United States – by over 25% for campylobacteriosis

(CDC, 2003).  Possible contributors to the decrease may have included:

successful implementation of the Hazard Analysis Critical Control Point

(HACCP) principles summarized in Box 1 to help identify and control

bacterial contamination throughout the food production, processing,
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distribution, and commercial preparation chain; increasing public awareness

and education; and perhaps continued prudent use of key animal antibiotics

by US farmers to help reduce animal illnesses and promote uniform animal

weights at slaughter.  In Iceland, a concerted effort that included public

education, enhanced on-farm biological security measures, and freezing of

chicken carcasses, as well as changes in uncontrollable factors (such as the

weather) was followed by a more than two-thirds reduction in poultry-borne

campylobacteriosis between 1999 and 2000 (Stern and Robach, 2003).

Although cause and effect are difficult to unravel in such trend data, it

appears plausible that a mix of interventions can reduce human health risks

and need for subsequent treatment with antibiotics.

Box 1:  Summary of Seven HACCP Principles

• “Analyze hazards. Potential hazards associated with a food and measures to

control those hazards are identified. The hazard could be biological, such as a

microbe; chemical, such as a toxin; or physical, such as ground glass or metal

fragments.

• Identify critical control points. These are points in a food's production--

from its raw state through processing and shipping to consumption by the

consumer--at which the potential hazard can be controlled or eliminated.

Examples are cooking, cooling, packaging, and metal detection.

• Establish preventive measures with critical limits for each control point.

For a cooked food, … this might include… minimum cooking temperature

and time required to ensure the elimination of any harmful microbes.

• Establish procedures to monitor the critical control points. Such

procedures might include determining how and by whom cooking time and

temperature should be monitored.

• Establish corrective actions to be taken when monitoring shows that a

critical limit has not been met – for example, reprocessing or disposing of

food if the minimum cooking temperature is not met.

• Establish procedures to verify that the system is working properly – for

example, testing time-and-temperature recording devices to verify that a

cooking unit is working properly.

• Establish effective recordkeeping to document the HACCP system. This

would include records of hazards and their control methods, the monitoring

of safety requirements and action taken to correct potential problems. Each of

these principles must be backed by sound scientific knowledge: for example,

published microbiological studies on time and temperature factors for

controlling foodborne pathogens.

Source:  USDA/FDA, 2004; http://www.cfsan.fda.gov/~lrd/bghaccp.html
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2.3  The Role of Risk Analysis

Risk analysis provides a framework for systematically identifying the

factors and processes that affect human health risks from antibiotic use in

food animals and for partitioning them into manageable components that can

be modeled and quantified using available data.  The component modules or

sub-models can be combined to give an overall quantitative risk assessment

model for predicting and/or explaining the probable human health impacts of

different risk management interventions.  Validated risk assessment models

can also be used to help identify risk management policies and interventions

that correspond to desirable predicted risk profiles – those with relatively

high human health benefits and low human health losses.

While such risk analysis information cannot by itself solve the political

and coordination problems of antibiotic risk management, it does provide the

technical information needed to identify which interventions are most likely

to protect and promote human health, and which are least likely to do so.

3. QUALITATIVE RISK ANALYSIS

Qualitative risk analysis increasingly provides the foundation for

practical risk rating systems and regulatory guidance and requirements

documents used in international trade, food safety, and health risk

assessment work, including regulatory analyses of the human health risks

associated with food animal antibiotic uses (AAUs). These systems assign

ratings such as “High”, “Medium”, or “Low” to dimensions of exposure and

potential harm and then combine these component ratings to determine an

overall rating of risk, to be used as an input to decision-making.  Qualitative

risk rating systems simplify risk assessments by reducing the required inputs

and calculations to a manageable set of judgments, while making the rating

logic transparent and easy to apply. They usually require only a few

qualitative judgments as inputs, together with supporting reasoning and

documentation, and usually produce simple categorizations of risk as outputs

that can be communicated easily to policy makers and stakeholders.

3.1  Some Examples of Qualitative Risk Rating Frameworks

Motivated in part by concerns that quantitative risk assessment of

human health risks from animal antibiotic use (AAU) might prove to be

overly burdensome to implement, produce insufficiently credible or

excessively assumption-dependent conclusions, and/or require data that are

not readily available or else have to make assumptions of doubtful validity to
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bridge important data gaps, several regulatory risk analysis groups

worldwide have proposed qualitative rating approaches designed to avoid

these pitfalls.  For example, a three-component risk rating with components

of “Hazard”, “Exposure” and “Impact” has been developed in Australia to

assist in assessing and characterizing the risks associated with resistant

bacteria from animal antibiotic use.  Risk is profiled with the help of the

following matrix:

Qualitative Risk Assessment Framework from Australia (Each factor is

rated N = negligible, L = low, M = medium, or H = high)

Factor Definition

Hazard =

source of

risk

Antibiotic resistant microorganisms or their resistance plasmids (that

have the potential to transfer to humans) within an animal species,

arising from the use of an antibiotic in an animal species

Exposure Amount and frequency of exposure of susceptible humans to

antibiotic-resistant microorganisms (or their plasmids) from animal

sources

Impact The evaluation of infections (caused by antibiotic-resistant pathogens

of animal origin) in susceptible humans.  Considers:  a) Perceived or

known clinical importance of the class of antibiotics to humans; b)

Dose-response assessment of relationship between frequency and

magnitude of exposure of humans (dose) to antibiotic-resistant food-

borne microorganisms and severity and/or frequency of the impact

(response); including an estimate of the critical threshold of exposure

required to cause infection in susceptible humans. c) Antibiotic-

resistant disease severity, morbidity, mortality. d) Expected numbers

of infections and deaths. e) The impact on human health and quality

of life including the range of the susceptible humans expected to be

affected. Probability of antibiotic-resistant infection development in

susceptible humans (N = negligible, L = low, M = medium, H = high)

Source:  Adapted from Australia National Registration Authority Veterinary Requirements

Series, Part 10 http://www.apvma.gov.au/guidelines/vetguideline10.pdf.

This framework is used as part of “the general requirements for

submitting antibiotic resistance data for the registration of veterinary

chemical products that contain antibiotics as active constituents”,

specifically “any proposed use in Australia of a product containing a new

antibiotic” or “any proposed extension of use in Australia of a registered

product containing an existing approved antibiotic where the NRA [National

Registration Authority] considers that there is likely to be a significant

increase in the volume of usage or that there may be an increased risk to

public health as a result of the use of that antibiotic” (Australian Pesticides



Qualitative and Quantitative Risk Analysis 13

and Veterinary Medicines Authority, Part 10 of Veterinary Requirements

Series, www.apvma.gov.au/guidelines/vetguideline10.pdf).  Assessments in

this framework may include separate narrative risk summaries for different

bacterial species and discussions of uncertainty in the supporting data used

in the risk assessment and of possible benefits of use of antibiotic in

Australian animal health (so that these impacts may be considered in parallel

with risks of adverse impacts). “Risk” is characterized as “Probability of

disease due to infection in susceptible humans after exposure of humans to

antibiotic-resistant microorganisms (and genetic material) of animal origin

and the severity of the impact of exposure on susceptible humans”. This

conceptualization of risk, although referring to probability, omits details

typically included in quantitative risk assessments, such as a specified time

interval or denominator (e.g., per year or per capita-year) for the “probability

of disease”; a clear distinction between “after” and “caused by”; and

specification of how the number of susceptible humans (or the causes of

susceptibility) are to be included in assessing risk. The qualitative “impact”

category contains items (e.g., dose-response relation and clinical importance

of human antibiotics) that might be redundant for quantitative risk

assessment, once the expected number and severity of additional morbidities

and mortalities caused by a change in AAU are known. However, the

framework contains many ideas that are useful in any risk assessment,

including consideration of expected illnesses and deaths; distinctions among

illnesses of different severities; and identification of (perhaps multiple)

susceptible subpopulations and multiple bacterial species if required to

adequately characterize risk.

In Ontario, Canada, risk analysts at the Ontario Ministry of

Agriculture and Food (OMAF) (McNab and Alvas, 2003) have commented

as follows on the relation between qualitative and quantitative risk

assessment: “Quantitative risk assessments are preferred. Unfortunately,

detailed quantitative data are frequently not available. In such cases, the

OMAF framework strongly encourages the organization of qualitative

assessments in a format that is aligned with quantitative risk assessment.”

They propose a qualitative rating system for risk analysis of various threats,

including bacteria, using H = high, M = medium, L = low, N = negligible for

risk, its components, and its impacts. The process is described as follows:

“When reliable quantitative data is available, assessors use quantitative

multiplicative mathematical models to estimate risk. Often, the desired

quantitative data are not available. In such cases a more qualitative approach

is used. In either case, quantitative and qualitative assessments are

summarized using a rating system to help categorize risks. The final rating

assigned to a given hazard/commodity situation is derived from six sub-
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ratings, each rated as negligible, low, medium or high.  The first three sub-

ratings are concerned with the probability of a human health impact being

realized. This is influenced by several factors including the exposure

characteristics of the situation. The final three sub-ratings are concerned with

the impact of the disease, which is influenced by several factors including

dose-response characteristics. This scoring system is used to help categorize

risks in terms of their general importance. It is not used to rank individual

risks in numerical sequence, but does attempt to place them in broad

categories of negligible, low, medium or high risk.”

The proposed framework has the attractive feature of comparing

probabilities of consequences with and without different risk management

interventions. It uses multiplication to aggregate the components of the risk

rating when adequate data are available, appropriately implying that a

microbial hazard that creates negligible human exposure or for which

exposure has negligible adverse human health impact can have a risk rating

of negligible even if other factors are large.

An important aspect of this system is that it considers the changes in

estimated probabilities of risk components if different risk actions are taken.

This concept – using risk rating systems to link proposed risk management

actions to their probable consequences, defined as changes in the

probabilities (or of statistical frequencies in affected populations) of the

outcomes of interest – can be applied to many settings.  In particular, it

suggests that the human health risk of a proposed change in AAU, such as

introduction of a new product or withdrawal of an existing one, should be

assessed by considering how human health impacts are likely to change if

the proposed action is taken.  This emphasis on the human health

consequences of risk management decisions is consonant with many

recommendations that risk analyses should be decision-focused and provide

information useful for assessing risk management decision options.

The Brenner Scheme for order-of-magnitude risk rating

The UK’s Brenner scheme for genetically modified organisms

(GMOs) (http://www.hse.gov.uk/biosafety/gmo/acgm/acgmcomp/2a1.pdf) assigns

to each of the following three factors an order-of-magnitude weight (such as

10
-3

, 10
-6

, or 10
-9

):

• ACCESS = probability that the GMO, or DNA contained within, it

will be able to enter the human body and survive.

• EXPRESSION = measure of the anticipated or known level of

expression of the inserted DNA
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• DAMAGE = measure of the likelihood of harm being caused to a

person by exposure to a GMO, independently of access and

expression

Multiplying these three factors yields an overall risk factor, which is used to

look up a provisionally recommended containment level for a GMO

experiment.  Although this approach is considered to be only one component

to help inform risk management, not a comprehensive risk assessment

approach by itself, the following ideas may be applicable outside the GMO

context to AAU risk analysis: using order-of-magnitude numerical estimates

of risk factors or risk components (see Darwiche and Goldsmitz, 1994 for a

formalization of order-of-magnitude probabilistic reasoning via the “kappa

calculus”); multiplying the results to get a rough quantitative estimate of

overall risk; and mapping this rough quantitative risk estimate into a

provisional risk management decision category.

US FDA-CVM’s Guidance Document # 152 and its limitations

In 2003, the US FDA (FDA, 2003) provided a guidance document on

qualitative risk assessment to the animal antibiotic industry, Guidance

Document #152.  This serves as the default approach for organizing and

presenting risk information in seeking approval for new animal antibiotics in

the US. The FDA Center for Veterinary Medicine (CVM) considers

qualitative risk assessments provided in accord with Guidance #152 in

making decisions about whether and under what conditions to approve new

drug applications (NDAs) and product line extensions for animal antibiotics.

The guidance document conceptualizes risk as a probability of human

illness (over an unspecified time frame and population) caused by certain

antimicrobial-resistant bacteria of interest and treated by resisted

antimicrobials.  Specifically, it defines risk as “The probability that human

food-borne illness is caused by an antimicrobial resistant bacteria (sic), is

attributable to an animal-derived food commodity, and is treated with the

human antimicrobial drug of interest.”

Example:  Some Limitations of Qualitative Risk Definitions

Question:  What are the limitations of the preceding definition of risk?

Answer:  The preceding definition of risk has the following limitations:

• It does not specify the frequency of the risk event.  “The probability” referred to

in the definition lacks a specified denominator (e.g., probability per capita-year,

or per century for the whole exposed population, etc.)  Yet, an intervention that

reduces the frequency of occurrence from one occurrence per person-year to one
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occurrence per million person-years should be considered to have reduced risk,

even if the probability that some cases occur each year remains constant at 1.

• It ignores human health consequences and the severity component of risk.  By

this definition, a bacterium that has a 99% probability of causing 1000 deaths

per day could have a lower “risk” (i.e., lower probability) than one that has

100% probability of causing one excess day of mild diarrhea in the population

per century.  “Risk” refers to both probability (or frequency) and magnitude (or

severity) of harm.  Any definition of risk should incorporate both components.

• It omits any reference to human health harm.  For example, if treatment with the

antimicrobial drug of interest were always completely effective (e.g., because

the normal therapeutic dosage is sufficient to kill even resistant bacteria), then

risk should be less than if all treatments are always ineffective for resistant

bacteria.  Similarly a very mild illness poses less risk than one that is very

severe or fatal, other aspects (e.g., frequency of occurrence) being the same.

• The phrase “attributable to an animal-derived food commodity” is ambiguous.

For example, suppose that the resistant bacteria originate in sewage from

hospitals, but reach farm animals in drinking water and are found on meat

products from the animals.  Should such bacteria be considered “attributable to

an animal-derived food commodity”?  In practice, “attributable to” is often

interpreted to mean “is statistically associated with”.  But there may be no

causal relation between a risk and the source(s) to which it is attributed.  For

example, consider the causal graph:  Z ← Y ← X → W → V → Risk, where an

arrow from one variable to another indicates that the first causes the second.  If

the empirical relations among these variables are that Z = Y, Y = X, Risk = V,

V = W, and W = X, then the “attributable risk” as defined in epidemiology will

be identical for all five variables (and each will be equal to 100%, if all

variables are 0-1 binary variables), even though only X is exogenously

determined and only V is a direct cause of Risk. Thus, the risk attributable to a

variable (such as 100% for Z) does not necessarily reflect the risk caused by it

(which is zero for Z, in this example).

• The definition does not consider causality.  If the presence of the resistant

bacteria in the specified food commodity is not affected by the animal antibiotic

use (AAU) of concern, for example, then it should not be considered part of the

risk from that AAU.  For example, suppose that banning the AAU would cause

more resistant bacteria to be ingested per capita-year by susceptible humans

(e.g., because the AAU is not the source of resistant bacteria, which instead

reach animals via drinking water, flies, wild birds, or other pathways; and

ceasing the AAU would amplify microbial loads, including the resistant portion,

reaching consumers.)  Then the mere presence of such bacteria in an animal-

derived food commodity, which is all that the definition requires, should not be

considered part of the risk attributed to the AAU.
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Like the other qualitative systems, Guidance #152 rates risks based on

ratings of their components – in this case, “Release”, “Exposure”, and

“Consequence” components.  Following the related conceptual framework

proposed at a World Health Organization workshop WHO (2003), the

“Consequence” component refers not to actual human health consequences,

but to qualitatively judged “importance” of drugs in human medicine.

Unlike the Australian and Ontario systems, the US Guidance #152 approach

does not include a separate zero or “negligible” (N) qualitative value.  Risk

is always rated “High” if the consequence component is rated “Critically

important”, even if there is negligible or zero release potential, exposure, and

adverse human health consequence from exposure.  Thus, the risk rating is

dominated by the Consequence rating.

The criteria for being “critically important” proposed by WHO 2003

include having only a limited number of available alternatives and being

used to treat human foodborne illnesses.  On these grounds, WHO suggests

that important classes of animal antibiotics including streptogramins (which

CVM labels as “highly important”), fluoroquinolones, and macrolides

should all be categorized as “critically important”, and therefore “High” risk.

A limitation of this approach is that it neglects information on how often

these drugs are used.  As it turns out, other drugs are often preferred to and

used instead of these for the specific bacterial food-borne illnesses of

concern. [Thus, linezolid (Zyvox™) is increasingly used instead of the

streptogramin combination Synercid™ for vancomycin-resistant E. faecium

infections. Antimicrobial therapy for the few exceptionally severe cases of

campylobacteriosis that most warrant antibiotic treatment (e.g., in

bacteremic and immunocompromised patients) may begin with gentamicin,

imipenem, third-generation cephalosporins, or chloramphenicol until

susceptibility test results are available, rather than with macrolides or

fluoroquinolones (Ang and Nachman, 2003).  However, Benson et al. (2005)

suggest that, “As with non-HIV-infected patients, the optimal treatment of

campylobacteriosis among persons with HIV-1 infection is poorly defined.

Among patients with mild disease, certain clinicians might opt to withhold

therapy unless symptoms persist for more than several days. Increasing

resistance to fluoroquinolones makes the choice of therapy especially

problematic. For mild-to-moderate disease, initiating therapy with a

fluoroquinolone (ciprofloxacin) or a macrolide (azithromycin), pending

susceptibility test results, and treating for 7 days is a reasonable approach”.]

In general, the human health consequences of resistance cannot be estimated

from the above criteria for judged human medical importance of each

antibacterial drug, as these criteria do not include how often the drugs are

prescribed (e.g., always vs. never) to cases with resistant bacteria.
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The risk rating directly determines suggested risk management action

categories (e.g., strictly limited use, intermediate restriction, or least

restriction).  Antibiotics classified as “High” risk are identified as typically

subjected to the most restrictive use conditions (e.g., “strictly limited” use),

without considering whether such limitations benefit or harm human health

or whether different risk management options would better protect human

health.  In general, as emphasized in the Ontario approach, rational risk

management decision-making should consider the changes in frequencies

and severities of human health effects caused by proposed risk management

interventions.  Since Guidance #152 does not consider such changes, it may

be less useful for decision-making than other approaches.  However, this

reflects limitations of the particular approach, rather than an intrinsic

limitation of all qualitative approaches.

3.2  Lessons from Previous Approaches

Comparing the risk rating systems above suggests several worthwhile

ideas and components to include in any (qualitative or quantitative) risk

rating system for animal antimicrobials.  A list of potentially valuable

concepts to include in future risk rating systems follows.

1. Frequency of adverse human health impacts.  Frequency of harm

should be part of the definition of risk in any system, quantitative or

qualitative.  As discussed further in Chapter 2, the conceptual units of

frequency are expected number of illnesses per year (in an identified

exposed population), for population risks; and expected number of

illnesses per capita-year for individual risks.

Technical Note: Population heterogeneity.  Frequencies should ideally be estimated

for relatively homogeneous subpopulations, i.e., subpopulations whose members

have approximately equal risks; otherwise inter-individual heterogeneity in risks

must be addressed.  Statistical techniques such as classification tree analysis (Zhang

and Singer, 1999; Lemon et al., 2003) and finite mixture distribution modeling can

help to identify homogeneous subpopulations and to estimate frequencies for them

from case-control, cohort, and longitudinal survey data. Cox, 2001, especially

Chapter 3, provides a survey of relevant statistical techniques for risk analysts.

2. Severity of adverse human health impacts from different risk

management decisions (e.g., proposed changes in AAU).  As suggested

by the Impact portion of Australia’s qualitative risk assessment template,

the severity of human health impacts from preventable illnesses should

be a key component of the risk assessment.  The conceptual units for

severity are expected adverse impacts per illness (e.g., mortalities,
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morbidities, illness-days, life-years lost, etc.), perhaps with morbidities

further broken down by severity class (e.g., mild, moderate, severe) and

with mortalities further classified by age group or number of life-years

lost.  Quality-adjusted life-years (QALYs) lost may also be used if the

required assumptions (Hazen, 2003;  Miyamoto, 1999) are accepted and

if it is desired to aggregate diverse health impact metrics into a single

summary measure.  (As with frequency, severity of health impacts

should be assessed for multiple subpopulations, e.g., based on age,

immune status, etc., if impact severity distributions differ significantly

among them.  Classification tree analysis and other modern statistical

methods can help to identify relevant subpopulations from data.)

The motivation for considering severity of human health impacts in rating

risks is illustrated by the following example.  Suppose that “probability of

human illness caused by a specified resistant bacteria, attributable to a

specified animal-derived food commodity, and treated with the human

antimicrobial drug of interest” = 1, but that treatment with the human

antimicrobial drug of interest is completely effective clinically (i.e.,

resistance makes no difference to clinical outcome).  This situation should

presumably be rated as less severe (lower risk) than one in which the

corresponding probability is less than 1 but the impact is treatment failure

and death due to resistance.  To assure that the second situation is rated as

more severe, human health impacts must be considered.

3. Causality for adverse human health impacts created by proposed

changes in animal antibiotic use (AAU).  As suggested by the Ontario

approach, it is useful to be able to assess the change in expected adverse

human health consequences per year or per capita-year as a result of

proposed risk management interventions.

4. Uncertainty about the changes in frequency and severity of adverse

human health effects caused by a proposed risk management intervention.

For example, what overall rating should be assigned to a situation that has

a 50% chance of an “L” risk rating, a 30% chance of an “M” rating and a

20% chance of an “H” rating, depending on how scientific uncertainties

are resolved?  In the Ontario system, uncertainty is summarized along

with risk characterization information before a final overall risk rating is

applied.  In the Brenner system, uncertainty about the component ratings

is indicated by order-of-magnitude estimates and these uncertain estimates

are then used to identify risk management responses.

5. Cumulative risk assessment, i.e., total risk summed over the multiple

pathways by which effects of risk management decisions (e.g., changes

in animal antibiotic use) accumulate to cause resulting changes in

adverse human health effects.  These pathways may include multiple
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bacterial species and/or multiple drugs with co-resistance or cross-

resistance; multiple food products; and perhaps multiple human

subpopulations affected.  They must typically also include susceptible as

well as resistant strains of bacteria if both are affected by proposed

changes, so that total human health impact can be considered.

6. Potential risk reduction benefits to humans and animals.  To inform

rational risk management, both reductions and increases in risk from

proposed interventions must be assessed.  Animal health benefits can

also be listed separately in the overall assessment of impacts of proposed

risk management interventions, as described in the Australian system.

7. Necessary and sufficient information.  The systems considered list

many potentially relevant and informative data elements to be

considered in the rating process.  Exactly how these data elements

should be assembled to build up a coherent account of the overall human

health risk caused by a propose change in AAU is less clearly specified.

It is therefore possible that several overlapping or partly redundant

pieces of information that address essentially the same bottom-line

concern (e.g., exposure, response probability, etc.) might be considered

while leaving unaddressed other key information (e.g., on the human

health impacts specifically caused by resistance-related treatment

failures) needed for decision-makers to understand how changes in AAU

will affect human health risks.

8. Multiplicative aggregation.  As stated by McNab and Alves, 2003 and

many other sources, multiplication is appropriate for aggregating

suitably defined quantitative components to form an overall risk

estimate.  As an example, suppose that the following quantities can be

estimated, perhaps to the nearest order of magnitude:

• Exposure factor = ∆Exposure = (change in contaminated servings

ingested per year) caused by the change in animal antibiotic use,

∆AAU.  (If the dose-response relation increases from near zero below

a “minimal infectious dose” threshold to near 1 above it, then a

“contaminated” serving is one that carries at least the threshold

number of bacteria, i.e., enough to increase the probability of illness

in a susceptible individual. If illness probability is approximately

proportional to number of bacteria ingested, with no threshold, then

the exposure factor is the number of bacteria ingested per serving.)

• Dose-Response factor = (∆Illnesses/∆Exposure) = (expected number

of additional illnesses) per (contaminated serving ingested) (or per

bacterium ingested, for linear no-threshold dose-response functions.)

• Consequence factor = (∆Human health impacts/∆Illnesses) =

expected number of adverse health consequences per illness case

resulting from ingestion of a contaminated serving.  If multiple
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impacts are considered, then separate consequence factors can be

estimated for the different types of impacts (e.g., illness-days by

severity category, mortalities, QALYs lost, etc.)

Then for a given change in animal antibiotic use on the farm, the

corresponding human health risk would have an estimated value

determined by the product:

Risk =  Exposure factor × Dose-Response factor × Consequence factor

where the variables on the right-hand side are the factors just described.

The conceptual units of risk are change in adverse human health

consequences per year (or per capita-year, for individual risks) in the

exposed population from the proposed change in animal drug use.

This product is appropriate for a single combination of the

exposure, dose-response, and consequence factors, e.g., for a specific

animal drug, bacterium, strain (susceptible or resistant), food

commodity, exposed susceptible subpopulation, and adverse effect

category.  To estimate total risks, it is necessary to sum the risks over all

combinations in the intended scope of the risk assessment.  Thus,

multiplicative aggregation of component estimates is natural for each

combination, while additive aggregation is natural across combinations.

Technical Note:  Combinations may be thought of as cells of a large

contingency table (or as leaf nodes in a classification tree) of factor

combinations determining expected illnesses per capita-year for exposed

individuals.  Given the number of individuals in each cell (its “size”) and the

estimated expected illnesses per capita-year for individuals in that cell (its

“risk” rate), the expected total illnesses per year in the population is the sum

over all cells of the size × risk product. The probability distribution of total

illnesses will be approximately Poisson, and hence determined by the expected

number of illnesses.  The sum-of-products framework is useful for uncertainty

analysis, as products of uncertain factors tend to be approximately log-normal,

sums of uncertain products are approximately normally distributed, and sums of

products may be insensitive to specific numbers (Henrion et al., 1996).

Example:  Calculating Quantitative Impacts of a Proposed Ban

Setting:  Suppose that the human health impacts of banning a particular animal

antibiotic are estimated to be as follows:

• Exposure factor:  Average number of infectious bacteria ingested per serving of

the food commodity increases by a factor of 1.09 due to increased average

bacteria contamination per meal following the ban.  The proportion of resistant

bacteria declines from 15% to 0%.
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• Dose-response factor:  Expected number of illnesses per year caused by

ingesting contaminated servings of the animal food commodity is directly

proportional to the amount of infectious bacteria ingested per serving (i.e., the

dose-response relation is a linear no-threshold relation.)  Since exposure

increases by 1.09, so do expected illnesses per year.  (The linear no-threshold

dose-response relation justifies use of average microbial load per serving as the

exposure variable, rather than fraction of servings with at least a certain level of

contamination, for example.)

• Consequence factor:  Each resistant illness causes an average of 8 days of

diarrhea.  Each susceptible illness causes an average of 6 days of diarrhea.

Problem:  What is the human health impact of the ban, under these assumptions?

(Compare the change in steady-state illness-days per year in the population before

and after the ban, without attempting to model the transient adjustment process or

indirect effects due to use of human antibiotics to treat illness-days.)

Solution:  In this example, there are only two groups of bacteria, susceptible and

resistant, to be summed over.  It is convenient to handle the summation by simply

taking weighted averages of appropriate terms.  Before the ban, the average value of

the Consequence factor is: 0.85 × 6 days + 0.15 × 8 days = 6.3 days.  After the ban,

this decreases to 1.00 × 6 + 0 × 8 days = 6 days, assuming that the ban is completely

effective in eliminating all resistant cases from this food source.  Thus, the illness-

days-per case decreases by a factor of (6/6.3) = 0.9524.  On the other hand, the ban

increases the expected total number of illnesses per year by 9%, due to increased

exposures to microbial loads in food. In this model, illnesses are proportional to

microbial loads, with the proportionality factor, which is the Dose-Response factor,

remaining the same before and after the ban.  Population risk is proportional to

Exposure Factor × Dose-Response Factor × Consequence Factor; therefore, the net

result is an increase in risk from this food source of:  1.09 × 0.9524 = 1.038, i.e., an

approximately 4% increase in illness-days per year (and per capita-year) in the

population, provided that other factors (e.g., consumption and cooking habits)

remain unchanged.

Mathematical justifications for multiplication as the way to combine

component values can be found in multiattribute value and utility theory

(e.g., Hazen, 2003 for QALYs); in dimensional analysis (e.g., Buckingham’s

Pi Theorem) and fundamental measurement theory (Luce and Suppes, 2001);

or in applied probability laws for decomposing joint probabilities and

expected values into products of marginal and conditional probabilities and

expected values.  To apply multiplicative aggregation to qualitative ratings,

it is necessary to have a zero or negligible rating (such that products of rated

factors are negligible whenever at least one of the factors is).  In fact, as

developed next, even with such zero ratings, there is in general no
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mathematically sound way to combine ordered categorical ratings to mimic

multiplication.  This will provide an incentive to consider stronger rating

scales, including those used in quantitative risk analysis approaches, while

still allowing for realistic uncertainties in the input component values.

4. A MATHEMATICAL THEORY OF QUALITATIVE

RISK RATING

Risk rating systems such as those above can be formally modeled by

mathematical functions z = f(x1, x2, …, xn), or z = f(x), where x is a vector of

input attribute levels to which a risk level or rating is to be assigned and z =

f(x) is the risk rating assigned to x.  In the qualitative rating systems

reviewed, a detailed description x is first mapped to a coarse description, y =

g(x), where y is a small (e.g., three-component) set of labels for qualitative

risk components such as release, exposure, and consequence.  Each

component of y is a qualitative label (e.g., H, M, or L).  The component

rating vector y is then assigned a final risk rating label z (e.g., H, M, or L) by

some other function, h, which is often represented in practice as a look-up

table.  The whole rating process may thus be summarized by the following

diagram: x ⎯g→ y ⎯h→ z.  In a quantitative risk assessment, the

quantitative risk associated with situation x, denoted by r(x), is a numerical

function of its quantitative attributes, i.e., the components of x.  These

attributes (e.g., exposure, dose-response potency, and consequence

attributes) are typically oriented so that more is worse.  As just discussed, the

quantitative risk associated with x is often a product of such numerical

factors, or a sum of such products over multiple hazards, exposure pathways,

and exposed individuals.

Most qualitative risk rating systems use direct qualitative ratings of

quantitative factors, defined as follows.  The domain of each quantitative

factor is partitioned into consecutive contiguous intervals, each of which is

assigned a qualitative label from an ordered set of labels.  Each qualitative

label corresponds to an interval of values for the quantitative factor.  A

label’s interval lies to the right of all the intervals for lower-ranked labels

and to the left of the intervals for all higher-ranked labels. Generally, a direct

qualitative rating system may use different sets of qualitative labels for

different components of x, and the cardinalities of these label sets may

differ. We assume that all components of x have been oriented so that higher

values are worse (i.e., risk is a non-decreasing function of its components,

for both qualitative and quantitative ratings).  This assumption will be called

monotonicity.  L and H will denote the least and greatest of the ordered

qualitative labels, respectively, in the range of f.
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A basic consistency requirement for qualitative and quantitative risk

assessments is soundness, which states that higher quantitative risks should

receive higher qualitative risk labels, or, at least, should not receive lower

ones.  The Appendix proves the following mathematical result:

THEOREM 1:  No direct qualitative rating system satisfying monotonicity is

sound for arbitrary quantitative risk functions, or even for those functions of

greatest practical interest, such as the product function, rp(x) = x1x2…xn =

product of components of x.

In other words, given any direct qualitative rating system f(x) and a

quantitative risk function such as rp(x) = x1x2…xn, it is always possible to

choose two inputs, say x and w, such that x is assigned a higher qualitative

risk rating than w, even though x has a lower quantitative risk than w.  The

following simple numerical example illustrates the problem.

Example:  Qualitative vs. quantitative risk reversals

Suppose that each of three components of x has discrete possible values of 0,

1, 2, or 3, and that these quantitative values are mapped to corresponding qualitative

labels as follows:  g(0) = L, g(1) = g(2) = M, g(3) = H. Then, if quantitative risk is a

product of the component values, the quantitative vector x = (1, 1, 3) has a

qualitative rating of g(x) = (M, M, H) and a quantitative risk of r
p
(x) = 1*1*3 = 3.

The vector w = (2, 2, 2) has a qualitative rating of g(w) = (M, M, M) and a

quantitative rating of r
p
(w) = 2*2*2 = 8. By monotonicity of qualitative ratings, x

must be assigned a qualitative risk rating f(x) that is at least as high as f(w) (since

g(x) ≥ g(w) component-by-component) even though its quantitative risk is less than

half as great.  Thus, f(x) ≥ f(w), even though r(x) < r(w), i.e., the qualitative and

quantitative ratings are inconsistent.  The theorem shows that such contradictions

always exist, i.e., they cannot be eliminated by using more rating levels or by more

careful coding of quantitative values as qualitative labels.  Thus, for example, if the

qualitative coding is changed to:  g(0) = g(1) = L, g(2) = M, g(3) = H., then by

monotonicity of qualitative ratings, f(1, 1, 3) = h(L, L, H) ≤ h(L, M, H) = f(0, 2, 3),

i.e., f(1, 1, 3) ≤ f(0, 2, 3) even though the quantitative risks are r
p
(1, 1, 3) = 1*1*3 =

3 for the first and r
p
(0, 2, 3) = 0*2*3 = 0 for the second.  Thus, again, f(x) ≥ f(w),

even though r(x) < r(w), i.e., the qualitative and quantitative ratings are inconsistent

(where x = (1, 1, 3) and w = (0, 2, 3)).  In general, no direct qualitative rating system

satisfying monotonicity can represent the product risk function.

Some qualitative risk rating systems now in general use (FDA, 2003)

add additional layers of qualitative rating, e.g., by basing the exposure

component of the rating process on qualitative ratings of subsidiary factors,

as shown in Table 2.  Other components likewise are calculated from
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subsidiary components by qualitative rating tables, often expressed in terms

of corresponding contiguous intervals of quantitative values, such as “Low

(< 5%), Medium (5-25%), High (> 25%)”.

Table 2:  Qualitative Rating of Probability of Human Exposure

Amount of food commodity being consumed

Amount of food commodity

contamination

High Medium Low

High H H M

Medium H M L

Low M L L

Source:  FDA, 2003, Table 5, page 19

Such indirect or hierarchical rating systems may be diagrammed as

follows: x ⎯q→ v ⎯g→ y ⎯h→ z.  Here, a detailed quantitative attribute

vector x is first mapped to an array v of qualitative attribute values (such as

High, Medium, or Low for the attributes “Amount of food commodity

contamination” and “Amount of food commodity being consumed” in Table

2). This mapping is denoted by q in the diagram.  Then, v is mapped to a

higher-level set of qualitative attribute values, such as H, M, or L for

“Probability of Human Exposure” in Table 2.  This mapping is denoted by g.

Finally, possibly after several such layers of qualitative mapping and

aggregation, the top-level qualitative attribute value vector y (such as H, M,

and L values for release, exposure, and consequence qualitative attributes) is

mapped to a qualitative risk label (such as H, M, or L) via another look-up

table, denoted by h (e.g., Table 6, p. 22 of FDA, 2003).

Successive layers of qualitative coding can introduce loss of

information and inconsistency in the interpretation of labels.  The following

example illustrates that numerical probabilities cannot be assigned

consistent qualitative labels by partitioning the unit interval [0, 1] into sub-

intervals (each corresponding to a qualitative label such as H, M, or L) that

allow the qualitative labels to be consistent both with the underlying

quantitative probabilities and with commonly used rules for combining

qualitative labels.

Example: Qualitative Aggregation Rules Inconsistent with Probabilities

Consider a two-layer risk-rating hierarchy with two first-level variables (e.g.,

risk = x
1
x

2
, where x

1
 = probability of exposure and x

2
 = conditional probability of an

adverse consequence given exposure), each derived from two subsidiary (lower-

level) input variables (e.g., x
11

 = probability of purchasing a contaminated serving

and x
12

 = probability of not cooking it adequately, for exposure; and x
21

 =

conditional probability of infection given ingestion of a contaminated serving and
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x
22

 = conditional probability of illness given infection, for consequence). Suppose

that aggregation of qualitative ratings satisfies the following unanimity condition:  if

all of the subsidiary variables from which a higher-level variable is derived have the

same qualitative value (e.g., H, M, or L), then the aggregate rating of the higher-

level variable has the same qualitative value as its inputs.  (Thus, as in Table 2, the

diagonal elements have the same qualitative labels as the corresponding row and

column variables.)  Finally, suppose that some specific desired interpretation of

qualitative labels is intended for the input probabilities and the output probability

(“risk” = x
1
x

2
) in terms of ranges of corresponding quantitative values, such as “Low

= probability < 5%; Medium = probability between 5% and 25%; High = probability

> 25%”.  Since all of the probabilities in question, x
1
, x

2
, x

11
, x

12
, x

21
, and x

22
 refer to

probabilities of adverse events, we assume for simplicity that the same quantitative-

to-qualitative coding is to be used for each of them (although the argument can be

generalized).  In general, in a hierarchical risk rating system satisfying unanimity, no

such consistent quantitative interpretation of qualitative labels is possible.  The

reason is that products of quantitative probabilities that belong to the lowest extreme

of the “Medium” range, for example, should not receive the same qualitative value

as the product of probabilities at the upper extreme of the “Medium” range, and

similarly for other ranges.  For example, set all four inputs (x
11

, x
12

, x
21

, x
22

) equal to

0.26 in the above example.  Then the quantitative risk for the product function r
p
(x)

is r
p
(0.26, 0.26, 0.26, 0.26) = (0.26)

4

= 0.0046, corresponding to a qualitative

probability label of L.  But unanimity implies that f(0.26, 0.26, 0.26 0.26) = h(H, H,

H, H) = H.  Thus, the qualitative and quantitative risk ratings give opposite results.

Hierarchical aggregation of qualitative labels even in this small example

results in upward-biased qualitative risk ratings that do not allow a qualitative rating

of H to discriminate between quantitative risks of 0.0046 and 1.  If each of the four

inputs x
11

, x
12

, x
21

, x
22

 is independently sampled from the unit interval U[0, 1], then

simulation shows that a qualitative risk rating of H is highly likely to be mistaken

(probability of almost 95%) when compared to its intended quantitative definition.

By increasing the number of inputs in this example, the error probability can be

made arbitrarily close to 1 (and the sizes of quantitative risks that are labeled “H” by

any rating system incorporating unanimity can be made arbitrarily close to 0).

Example:  Qualitative vs. Quantitative Risk Ratings in Practice

The potential discrepancies between qualitative and quantitative risk ratings

are of more than purely theoretical interest.  As previously noted, qualitative

reasoning and risk ratings of fluoroquinolones, streptogramins, and macrolides have

suggested that all three are “critically important” in human medicine and so should

be rated as “High” risks typically recommended for maximally restricted use (WHO,

2003, p. 17).  But quantitative assessments using r
p
(x) models with uncertain input

values represented by upper bounds (for human health risks) and lower bounds (for

human health benefits), as discussed in Chapter 8, suggest that banning uses of these
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drugs in chickens, for example, is expected to cause at least hundreds of excess

illness-days for each illness-day prevented for enrofloxacin; thousands of excess

illness-days per illness-day prevented for macrolides; and tens of thousands of

excess cases of campylobacteriosis per E. faecium infection treatment failure

prevented for virginiamycin, due to increased animal and human bacterial illnesses

caused by terminating current uses.  Thus, qualitative and quantitative approaches

can lead to very different risk management recommendations in practice, as well as

to contrasting results in theory.

How much of this discrepancy between qualitative and quantitative

results is intrinsic to the use of qualitative rating methods, as opposed to

particular implementations?  For example, would including a “Negligible”

category, adding more rating levels, or changing the number of attributes

used necessarily reduce the discrepancy between qualitative and quantitative

risk rating results?  As shown below, the general answer is that no change in

how individual attributes are rated qualitatively can guarantee that a

qualitative risk rating system will give accurate or useful results.

4.1  Results for Uncertain Inputs

An often-perceived potential advantage of qualitative over quantitative

risk rating systems is that their inputs (i.e., qualitative ratings of inputs using

labels such as H, M, and L) better reflect the rough, imprecise, but useful

knowledge available in practice than do overly-precise numerical inputs.

This section examines how well qualitative rating systems perform in the

presence of uncertain inputs.  While many qualitative systems do not specify

how to rate uncertain inputs (e.g. what label to assign to an input that is

judged to have a value of “H” with probability 25% and a value of “L”

otherwise), mathematical constraints can be used to bound the performance

of any system that rates each input separately and then combines these

ratings to determine an overall rating of risk.

Qualitative rating systems in widespread use, including all the ones

reviewed earlier in this chapter, require rating each component of risk

separately.  None considers the joint distribution of component values in

assigning values to each component.  However, in general, the discrepancy

between qualitative and quantitative results depends on the joint distribution

of attribute values.  As illustrated in the following examples, neglecting

statistical dependencies among inputs can leave a rating system unable to

distinguish between quantitative risks that differ by arbitrarily large

amounts, e.g., between probabilities of 0 and 1 for an adverse event.
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Example:  Marginal Distributions of Inputs Do Not Determine Risks

Suppose that risk depends on only two inputs, x
1
 and x

2
, and that the

quantitative relation is:  Risk = r
p
(x) = x

1
x

2
.  For example, the variables could be

interpreted as: risk = illness probability, x
1

= Pr(exposure > 0) and x
2

= Pr(illnesss |

exposure > 0).  Let the two input values be uncertain, with x
1

and x
2

each being

equally likely to be 0 or 1 for each individual and their values across different

individuals being statistically independent.  (Thus, only about half the population is

susceptible.)  Any rating system that assigns an overall risk rating based only on this

information (i.e., on the marginal distributions of the inputs) omits information

essential for correct risk assessment.  Thus, if x
2
 = x

1
 (susceptibility and exposure

are perfectly positively correlated), each individual has a risk of 0.5 = Pr(x
1
 = 1);

whereas if x
2
 = 1 – x

1
 (susceptibility and exposure are perfectly negatively

correlated), then each individual has a risk of 0.  A rating system that ignores such

correlation information must assign the same risk rating to these very different

situations; the assigned ratings, therefore, may not be very informative about the true

risk when the components of risk are correlated.

Analogous examples with different risk functions (e.g., r(x) = max(x
1
, x

2
) and

r(x) = min(x
1
, x

2
)) show that qualitative risk ratings that depend only on the marginal

distributions of the inputs must assign the same ratings to joint distributions of x

giving quantitative risks as low as 0 or as high as 1, depending on the correlations

among components (because their marginal distributions are the same).

A similar lack of discriminatory power can be demonstrated even if no

quantitative risk function is considered.   Suppose that qualitative labels are assigned

to risk factors and combined according to the pattern in Table 2 (i.e., component

ratings of (H, H), (H, M) and (M, H) are assigned risk ratings of H; (L, L), (L, M)

and (M, L) are assigned risk ratings of L; and (L, H), (M, M) and (H, L) are assigned

risk ratings of M.)  Then distributing all probability density uniformly over the three

cells (L, L), (M, H) and (H, M) gives the same uniform marginal distributions for

the qualitative ratings of each component as distributing it uniformly over the three

cells (H, H), (M, L), and (L, M).  In other words, the first joint distribution, which

gives a 2/3 probability of an H risk rating and a 1/3 probability of an M risk rating,

would have to be assigned the same qualitative risk label as the second joint

distribution, which gives a 1/3 probability of an H risk rating and a 2/3 probability of

an L risk rating, by any procedure that rates each component based only on its own

marginal distribution of probabilities for qualitative values.  Yet, the first

distribution clearly dominates the second.

4.2  Other Possibilities for Qualitative Risk Rating

The preceding analysis examined qualitative risk analysis approaches

that attempt to assign ordered categorical values (labels) to risks and to their
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components.  Other qualitative and semi-quantitative approaches might use

different evaluation scales, such as a rank-ordering of risky prospects from

most- to least-risky, or assignment of intervals on a “risk scale” to uncertain

prospects (Bilgic, 1997; Neapolitan, 1991; Davidson and Ryks, 2003).

Mathematical analysis can help to identify the limitations of what any risk

rating system can achieve.

For example, suppose that a rating system is to be used to compare

two alternatives, A and B, to determine which should be ranked higher in

competing for scarce risk-management resources or regulatory concern.  If

the overall rating of risk is to be based on component ratings developed for

several risk components or factors, as in all of the above examples, then how

should the overall risk rating of alternatives A and B depend on the

component ratings?  Some apparently reasonable properties might include

the following.

  Box 2:  Possible Desiderata For Qualitative Rating Systems

1. Which of alternatives A and B is rated higher in the overall risk rating should

depend only on their component ratings.  Thus, the components used to rate

risk should be sufficient to do the job: together, they should determine

whether A is assigned a higher, equal, or lower rating than B.

2. Which of A and B is rated higher on overall risk should be able to depend on

each of their component ratings.  Specifically, if A and B are identical in all

respects except that A rates higher or worse than B on one factor (e.g.,

exposure), then B should not be rated higher than A in the overall risk rating.

This property should hold for all the risk components:  none of them is

irrelevant.

3. If A rates higher (or worse) than B on every component rating, then B should

be rated no higher (or worse) than A in the overall risk rating.  For example if

A involves greater exposure, more illnesses, and more severe consequences

than B, then A should receive a risk rating at least as high as B’s.

4. Risk ratings of A and B should be based only on their own data, i.e., whether

A is rated higher or worse than B should not depend on what other

alternatives (other than A and B) are also being rated, if any.

5. If one or more component ratings are zero (e.g., for exposure potential or for

human health impact potential of exposure), then the overall risk rating

should be zero (or “Negligible” in systems with that category).

6. If the rating for a component is uncertain (e.g., if it has a 0.2 probability of

being “L”, 0.5 probability of being “M”, and 0.3 probability of being “H”),

then the single “equivalent” rating assigned to it (i.e., H, M, or L after

considering its uncertainty) should not depend on the ratings assigned to the

other components.
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Although such logical relations among the component ratings and the

overall risk rating may be desirable, they can impose strong constraints on

possible rating systems.  For example, if quantitative ratings are used, then

conditions such as 5 and 6 imply that the aggregation formula used to

combine component ratings into an overall risk rating must be multiplicative,

i.e., the overall risk rating is proportional to a product of its component

ratings (see Miyamoto, 1999 for details).  Such multiplicative aggregation of

quantitative ratings satisfies properties 1-6.  On the other hand, if only

ordinal rankings are used for the components, then Arrow’s impossibility

theorem implies that there is no qualitative ranking system that can assign

coherent overall risk rankings (meaning complete, transitive rank-orderings

with ties allowed), based on arbitrary component rank-orderings, in such a

way that apparently reasonable principles such as 1-4 are satisfied.  Similar

limitations may hold for aggregating fuzzy ratings of linguistic labels or

scales (e.g., H, M, L, and N), depending on how they are formalized (Bilgic,

1997).  In other words, qualitative component ratings may not contain

enough information to be coherently aggregated into an overall qualitative

risk rating that is related to them in desirable ways.

Another possible concern is that a risk rating system with only a few

possible outcome categories may not produce enough information to make a

good decision if it is not complex enough to adequately reflect the input

information.  The minimum amount of complexity in the input-output

mapping required for a classification system (including a risk rating system)

to make few errors can be rigorously analyzed via techniques from

information theory and computational learning theory (see e.g., Goldman,

1991, Chapter 7 and Burges, 1998).  A key insight from such analysis is that

a classification system that lacks enough complexity to discriminate well

among essentially different situations may lead to poor decisions, i.e., ratings

with high error rates and high expected losses from decision errors.

In summary, additional mathematical analysis approaches, perhaps

including axiomatic and complexity-theoretic methods, may provide

additional insights into the possible properties and limitations of qualitative

risk analysis systems.  However, the present generation of qualitative

approaches is based primarily on assignment and aggregation of ordered

labels, as analyzed above.  The theoretical limitations of such systems

suggest that it would be premature to abandon quantitative risk analysis if

quantitative (especially, multiplicative and sum-of-products) risk assessment

models can be made to work well in practice by giving easily calculated,

robust, correct results.   That is the central task of the following chapters.
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5. WHAT SHOULD BE DONE INSTEAD?

The preceding examples have explored some basic limitations of

qualitative risk analysis systems, emphasizing that they can perform poorly

even in simple situations, such as when quantitative risks are well described

by a product of factors.  To improve the usefulness of results in such cases,

simple quantitative risk models should be used instead of qualitative risk

models.  For example, in general, any joint probability density of random

variables x = (x1, x2, …, xn) (which might represent risk and its components)

can be factored into the product form:

Pr(x) = Pr(x1) × Pr(x2 | x1) × …. × Pr(xn | x1, x2, …, xn-1).

This is of the product form rp(x) if we re-define the components of x to be

the respective conditional probabilities. To deal with uncertainties, risk

analysts often use conservative (upper-bound) estimates of the components

of such products, recognizing that doing so gives estimates of Pr(x) that may

be too high but that are unlikely to be too low.  Rough but useful upper-

bound estimates can often be obtained from currently available data, at least

in applications to animal antimicrobial risk assessment (see Chapters 6-7).

The product model rp(x) then gives an upper-bound estimate on the risk from

continuing a current practice such as an animal antibiotic use.  If desired,

analogous calculations can be used to obtain a lower-bound estimate for the

risk of not continuing the current practice.  If the upper-bound estimate of

the risk of continuing is much smaller than the lower-bound estimate of the

risk of ceasing the current practice, then continuing is a risk-minimizing

strategy.  Similarly, if an upper-bound estimate of the risk of ceasing is much

smaller than the lower-bound estimate of the risk of continuing, then ceasing

minimizes risk.  If neither condition holds, more information is needed to

make a confident choice that is robust to the relevant uncertainties.

In summary, simple quantitative models such as product-form models

(or, more generally, comparisons of sums and differences of products) with

data-driven upper-bound and/or lower-bound estimates of components of the

products will often be more accurate and more useful than qualitative risk

ratings, while requiring no more information than would be needed to assess,

justify and interpret qualitative ratings.  Instead of estimating and comparing

qualitative ratings such as H, M, and L, it may be more practical and more

meaningful to estimate, combine, and compare interval-valued estimates for

risk and its components (Neapolitan, 1991;  Davidson and Ryks, 2003).
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6. DISCUSSION AND CONCLUSIONS

This chapter has presented some initial results toward a formal

mathematical analysis of the performance of qualitative risk rating systems.

The main conclusion is that such systems have potentially important

limitations, both in theory and in practice. They can create ranking reversal

errors (assigning larger qualitative risk ratings to quantitatively smaller risks)

for some pairs of inputs and produce qualitative risk ratings that have no

clear quantitative meanings and that provide little or no information about

true (quantitative) risks.

How well qualitative rating systems work in practice depends on the

joint distributions of the components being rated.  For example, if cases can

be clearly separated into three clusters, with the risks (and risk components)

in cluster A all being larger than those in B which are all larger than those in

C, then qualitative rating using H, M, and L can discriminate perfectly

among these three clusters.  Similarly, a qualitative rating system in which a

rating of “Negligible” for any component (such as Exposure or

Consequence) reliably implies that the total quantitative risk must be small

enough to lie below an action threshold, while ratings of “High” for all

components reliably imply that action is needed, might serve as a useful and

economical screening test that makes further quantitative analysis

unnecessary in some cases (WHO, 2003). However, qualitative rating may

perform extremely poorly for problems that do not naturally cluster in a way

that justifies reliable qualitative ratings.  This underscores the importance of

carefully evaluating the performance of proposed risk assessment

approaches (using mathematical analysis or simulation or empirical test sets

or a combination of approaches) before encouraging their widespread use.

This chapter has also introduced several needs for improved human

health risk analysis methods identified in the application area of animal

antibiotic use.  These needs focus on practicality of input requirements,

simplicity and clarity of calculations, and ease of explanation of outputs.

They have motivated several qualitative approaches to health risk analysis.

But the theoretical criticisms of qualitative approaches just summarized

suggest that, despite their desirable motivations and simplicity, such

approaches may often produce misleading results and/or fail to provide

essential information needed to improve the choice among risk management

interventions with uncertain health consequences.

These results suggest that it is important to continue to develop and

apply practical quantitative risk assessment methods for broad classes of

situations in which qualitative methods are not necessarily reliable.  The

following chapters therefore seek methods of risk assessment that retain the

advantages of simplicity while producing more informative and useful –

usually quantitative – answers.
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APPENDIX:  PROOF OF THEOREM 1

For simplicity, assume that the quantitative attributes of risk, i.e., the

component dimensions of x, are scaled so that each component has a minimum

value of 0 and a maximum value of 1; thus, the set of possible x values, denoted by

X, is the unit cube.  This is formalized by the following condition:

Monotonicity:  The qualitative risk rating function f(x) is a non-decreasing function

of its arguments, with f(0) = L and f(1) = H, where L and H denote the least and

greatest of the ordered qualitative labels, respectively, in the range of f.  [Here, 0

denotes the vector in X consisting of all zeroes and 1 is the vector in X consisting of

all ones. f is the qualitative risk rating functions mapping qualitative component

values (i.e., ordered categorical labels) to risk value.]  Similarly, the component-

rating and risk-rating functions g and h are non-decreasing function of their

arguments.

A qualitative rating function f will be called a sound representation of a quantitative

risk function r if it satisfies the following consistency condition expressing

compatibility between f and r:

Soundness:  f is a sound qualitative representation of the quantitative function r if

and only if, for any two quantitative vectors w and x in X, f(w) ≥ f(x) if r(w) ≥ r(x).

Thus, to be sound, f must not assign x a higher qualitative risk label than w if x has a

smaller quantitative risk than w.  (Here, ≥ denotes numerical ordering for r values

and ordering of the qualitative labels for f values.)

Consider the product function, r
p
(x) = x

1
x

2
…x

n
 = product of components of x.

Theorem 1 states that no direct qualitative rating system satisfying monotonicity can

give a sound qualitative representation of this simple quantitative function.

THEOREM 1:  No sound, monotonic, direct qualitative rating representation exists

for the product function r
p
(x) on the unit cube X = [0, 1]

n

, for n > 1.

Proof: We first give the proof for the unit square, n = 2, with X = [0, 1] × [0, 1]; see

Figure A1.    Suppose that there were a sound, monotonic, direct qualitative rating

representation.  Then X would be partitioned into a grid of rectangular cells by the

partitions of x
1
 and x

2
 into contiguous intervals that are assigned the same qualitative

labels (i.e., by lines of the form x
1
 = m

i
, x

2
 = m

j
, where m

i
 is the boundary point

between contiguous intervals i and i + 1 for x
1
 and m

j
 is the boundary point between

contiguous intervals j and j + 1 for x
1
 and indices i and j range over the sets of

ordered qualitative labels for x
1
 and x

2
, respectively.)  Let (x, y) > (0, 0) be the lower

left corner point and let (u,v) > (x, y) be the upper right corner point of some cell

that is labeled H, Figure A1.  (The upper right-most cell, corresponding to f(1)= H,

is one such cell.)  Then f(x + ε, y + ε) = H for any feasible ε > 0, such as point ♦ in

Figure A1, while for all sufficiently small ε > 0, r
p
(x + ε, y + ε) ≤ r

p
(x – ε, v – ε)

(since xv > xy), as at point * in Figure A1.  Thus, for f to be a sound representation

of r
p
, it must be the case that f(x – ε, v – ε) ≥ f(x + ε, y + ε) = H, and so f(x – ε, v– ε)
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= H.  Thus, if any cell receives a qualitative risk rating of H, then soundness and

monotonicity imply that any cell immediately to the left of it must also receive a

rating of H.  By a symmetric argument, the cell directly below it (if any) must also

receive a rating of H.  Iterating, all cells must receive a rating of H.  But this

contradicts the requirement that f(0) = L.  Thus, assuming that a representation

satisfying the conditions of the Theorem exists leads to a contradiction, showing that

no such representation exists.  For arbitrary n > 1, the proof is similar:  starting from

the “top right corner” cell, corresponding to f(1) = H, for f to be a sound

representation of r
p
, the cells adjacent to it must be labeled H. This argument is

continued until the contradiction f(0) = H is obtained.  <>

 x
2

                                          X

  1

  v

  y

      0                                  x             u                       1                     x
1

Figure A1:  Geometry of Theorem 1

The above proof depended only on the existence of a “top-most” cell (weakly

outranking all others on all components) corresponding to f(1) = H and on the

existence of a “bottom-most” cell (weakly outranked by all others on all

components) corresponding to f(0) = L, and on comparing the lower left corner of

each cell mapping onto H to the upper right corner of the cell to its left (or below it).

Hence, it holds for any compact (closed, bounded) set, X, provided that the

definition of “monotonic” is extended to imply that top-most and bottom-most cells

receive different qualitative labels.  Moreover, it can be extended from the product

function to any continuous function that increases in all of its arguments.  The equal-

value contours of any such function slope downward (from upper left to lower

right).  In the neighborhood of any point where such a contour intersects the

midpoint of a cell edge between two adjacent cells, there will be points above the

contour curve (i.e., numerically greater risk) and other points below it (i.e.,

numerically smaller risk) in each cell.  Soundness and monotonicity therefore

require the two adjacent cells to have the same qualitative label.  Iterating, all cells

must have the same label, contradicting the monotonicity assumption that f(0) = 0,

f(1) = H.   Thus:

*

   H

♦
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COROLLARY:  There is no sound, monotonic, direct qualitative rating

representation of any quantitative risk function that is a continuous, increasing

function of its arguments.

Although this result is ostensibly more general than Theorem 1, it only points out

that a discrete step function cannot give a completely accurate representation of any

continuous increasing function.  By contrast, the proof of Theorem 1 shows that

qualitative ratings can also make “large” errors (e.g., by rating a risk of size xY as

qualitatively no higher than a risk of size xy, even if Y is quantitatively much greater

than y.)   Moreover, such errors can occur fairly frequently:  when the unit square is

partitioned into M x M squares by M qualitative labels for each component, for

example, then the reversal probabilities can be as high as about 18% (plus or minus

1.5% as M varies from 1 to 10, respectively) when a worst-case distribution,

corresponding to the maximum values of ε, is considered according to Figure A1

and the proof of Theorem 1 above, although they are only about 4% for a bivariate

uniform distribution with M = 3 as obtained by computer simulation.
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Risk Analysis: Goals and Methods

1.   INTRODUCTION TO HEALTH RISK ANALYSIS

Health risk analysis quantifies probable human health consequences,

both positive and negative, of alternative risk management actions. It

provides methods, principles, and high-level procedures for using scientific

data to assess and compare the probable human health consequences of

different exposures to hazards (i.e., sources of risk); to assess the likely

changes in exposures and risks arising from alternative risk management

decisions or interventions; and to evaluate and choose among alternative risk

management interventions based on their probable health consequences.

Health risk analysis is often divided into the stages of risk assessment, risk

management, and risk communication, organized as an iterative process.

Table 1 summarizes several traditionally defined steps in this process.

1.1  Risk Assessment

The first stage, health risk assessment estimates the health risks to

individuals, to the entire population, and to selected subpopulations (e.g.,

infants, the elderly, immunocompromised patients, and so forth) caused by

hazardous exposures and by the decisions and activities that create them.

Health risks of sporadic illnesses due to exposures to bacteria are defined as

the changes in the frequencies and severities of adverse health effects caused

by the exposures.
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Table 1:  Traditional Steps in Health Risk Analysis

Step Purpose and Description Relevant information and

techniques

Hazard

identification

Identify potential sources of harm

or loss.  These sources are called

hazards.  Hazard identification

identifies possible adverse health

effects of activities or exposures

and possible causes of observed

adverse effects.

• Human data:  Epidemiology,

clinical and public health

statistics; surveillance data.

• Animal tests and bioassays

• In vitro tests

• Structure-activity patterns,

molecular modeling, pattern

recognition and statistical

classification techniques

Exposure

assessment

Quantify the number of people

receiving various levels or

intensities of exposure to a hazard

over time. Relevant exposure

metrics may depend on dose-

response relations.

Environmental fate and transport

models, possibly summed over

multiple media (paths) and

sources

Studies of human activity patterns

Biological monitoring of exposed

individuals and receptors

Quantitative

exposure-

response and

dose-response

modeling

Quantify the magnitude of risk

created by exposure of a target to

a hazard.  Characterize the

probable frequency and severity

of adverse health outcomes or

losses caused by exposure to the

hazard.

A quantitative risk assessment

(QRA) runs multiple exposure

scenarios through dose-response

models to predict likely health

impacts.  Statistical, simulation,

or biomathematical models of

biological processes are used to

quantify dose-response relations.

Risk

characterization

and uncertainty

analysis

Combine estimated probabilities

and severities of health harm

(adverse consequences), together

with indications of uncertainty or

confidence, to create an overall

summary and presentation of risk.

Monte Carlo simulation calculates

risks by sampling many scenarios.

Risk profiles, probability

distributions, and trade-off and

sensitivity analyses display risk,

uncertainty, and variability.

Risk

communication

Deals with how to present risk

information to stakeholders.

Considers how different types of

recipients perceive risks and

internalize/act on messages about

them, in deciding what messages

to send via what media.

Psychological theories and

models and behavioral/

experimental findings on risk

perception and effective risk

communication.

Risk

management

decision-making

Decide what actions to take to

control risks and hazards – i.e.,

accept, ban, abate, monitor,

further research, reduce, transfer,

share, mitigate, or compensate.

Risk-cost-benefit analysis, formal

decision analysis for groups and

individuals, risk quantification

and comparison
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Quantitative Definition of Risk

For sporadic illnesses, as opposed to epidemics, individual and

population health risks can be defined more specifically as follows:

• The individual risk of sporadic illnesses caused by an exposure is the

expected number and severity of additional adverse health effects per

capita-year caused by that exposure. It can be tabulated or plotted as the

expected number of cases per year in each severity category (e.g., mild,

moderate, severe, or fatal, as defined in Buzby, et al., 1996 based on

illness-days and mortality). To avoid having to carefully define, describe

and compare the severities of different illnesses, one may simplify by

using illness-days per year for each type of illness (e.g., mild, moderate,

or severe diarrhea) to summarize morbidity impacts. Both morbidity and

mortality probabilities can also be given for different age groups or other

population sub-groups.  Alternatively, and often more conveniently, the

expected loss of quality-adjusted life-years (QALYs) per case due to

increased mortality and morbidity can be used as a single summary

measure of severity, if the preference assumptions justifying QALYs are

accepted (Hazen, 2003; Miyamoto, 1999).  Individual risk is then given

by the joint probability distribution of the number of cases per capita-

year and the severities (i.e., QALYs lost per case) of these cases.

• Population risks are expressed as expected numbers of additional

adverse health effects per year of each type or clinical severity category

occurring in the population.  They are the sum of individual risks over

all person-years in the population.  Population risks may also be further

described by identifying subpopulations with especially high individual

risks from exposure.

Technical Note: Use of Expected Values   Use of the expected number of events per

year to quantify risk is justified for sporadic illnesses that occur independently, or

with only weak statistical dependence, in large populations, when the Poisson

approximation (Janson, 1994) or compound Poisson approximation (Barbour, 2000)

hold.  The expected number of cases per year then determines the full probability

distribution of the number of illnesses per year, to a close approximation (made

precise in these references).  Moreover, the Poisson probability distribution is

stochastically increasing in its mean; thus, more expected cases correspond to less

preferred distributions for all decision-makers who prefer fewer cases per year to

more.  If total illness-days per year result from a random number of cases, N, each

independently creating a random number of illness-days, Q, then the total number of

illness-days expected is E(N) × E(Q), independent of the specific probability

distributions of the random variables N and Q. In this context, for a fixed

distribution of Q, population risk can be interpreted as being proportional to E(N).
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The formulas Individual risk = E(illnesses per year) × E(QALYs lost per illness) and

Population risk = sum of individual risks are useful for sporadic illnesses, although

they must be generalized for other types of risks, e.g., to allow for risk aversion

(Cox, 2001).  (If QALYs lost per year in the population are the sole quantity of

concern, its mean is E(N)E(Q) and its variance is E(N)Var(Q) + Var(N)E
2

(Q)

(Feller, 1968). For Poisson-distributed N, E(N) = Var(N), and total QALYs lost per

year in a large population will be approximately normally distributed with mean µ =

E(N)E(Q) and variance σ2

 = E(N)[E
2

(Q) + Var(Q)].  Mean and variance increase

with E(N), so that, regardless of how they are combined to form certainty-

equivalents, smaller values of E(N) will be preferred by any decision maker who

prefers smaller means and variances of N to larger ones.)

Example:  Tabulating Population Risk by Age and Sex

The following table, reproduced from Christensen et al., 2001, shows the

empirical estimates of population risk of campylobacteriosis in Denmark for 1999,

broken down by age group and gender.

Incidence of Infections with Campylobacter, by Age and Sex in Denmark, 1999

Source:  Christensen et al., 2001

http://www.foodriskclearinghouse.umd.edu/poultry_campylobacter.cfm

In most age groups, men have a higher average risk (cases per 100,000 capita-year)

than women.  The total population risk of 78 cases per 100,000 capita-year (a size-

weighted average of the rates in the different age- and gender-specific groups) is

considerably higher that the reported rate in the United States of about 13.4 cases

per 100,000 capita-year (CDC, 2003).  Infants and young children have relatively

high risks, and young adults (20-29) have anomalously high risks, perhaps because

of changes in eating habits or exposures (e.g., home-cooked vs. other meals) and/or

kitchen hygiene (Altekruse et al., 1999).  For both males and females, risk decreases
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with age after age 29.  Whether this reflects acquisition of immunity, decreases in

exposure, or other factors is not yet known.

Example:  Individual and Population Risks Caused by an Exposure

Problem:  Suppose that in a population of 50 men and 50 women, 100% of the men

and 20% of the women regularly eat a certain food (e.g., a raw or undercooked meat

or dairy product) that exposes them to low levels of a bacterial pathogen.  If women

are not vulnerable to infection from this low-level source (i.e., risk from this food

for exposed women = 0), and if men acquire immunity from it that protects them

against larger exposures from other sources (e.g., in untreated milk or drinking

water), thus cutting the expected number of illness cases per man-year due to this

type of bacterium from 1 to 0.5, then what are the individual and population risks

caused by eating this food?  Is exposure positively or negatively associated with risk

in this population?  What would be the public health consequence in this population

of reducing exposure to the food to zero?

Solution:  For women, the food has no effect, and therefore the individual risks for

women are zero.  For men, the effect of the food is to reduce the expected illness

cases per year from 1 to 0.5, for a total reduction in individual risk of 0.5 expected

cases prevented per man-year.  For the entire population, the reduction in risk for a

randomly selected individual is Pr(woman) × (risk reduction for women) + Pr(man)

× (average risk reduction for men) = 0.5 × 0 + 0.5 × 0.5 = 0.25 expected cases

prevented per capita-year.

Despite these beneficial causal effects, exposure is statistically associated with

increased risk.  The risk to a randomly selected exposed person (who has 5/6

probability of being a man, since 50 men and only 10 women are exposed) is

Pr(woman | exposed) × (risk for woman) + Pr(man | exposed) × (risk for man) =

(1/6) × 0 + (5/6) × (0.25) = 0.21.  But the risk to an unexposed person (who must be

a woman) is 0.  Thus, exposure is statistically associated with an increase in risk

from 0 to 0.21, although it causes a reduction in risk from 1 to 0.5 for men (and has

no effect for women.)  For risk assessment and risk management, it is the causal

effect of exposure, rather that the statistical association of risk with exposure, that

should be used to quantify impacts of interventions that change exposure.  Thus, for

example, the impact of reducing exposure to zero would not be to prevent (0.21

excess cases per exposed individual) × (60 exposed individuals) = 13 expected cases

prevented per year, as a naïve causal interpretation of the statistical relation between

exposure and risk might suggest.  Instead, it would be to increase risk in the

population (and, specifically, in the subpopulation of men) by (50 men) × (0.5

excess cases per man-year) = 25 expected additional cases per year.

As shown in Table 1, following a National Academy of Sciences

framework for risk analysis (Jaykus, 1996), the US Food and Drug
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Administration (FDA), Centers for Disease Control and Prevention (CDC)

and US Department of Agriculture (USDA) have defined risk assessment as

a process that “consists of the following steps: hazard identification,

exposure assessment, hazard characterization (dose-response), and risk

characterization” (http://www.foodsafety.gov/~dms/lmriskgl.html). Dose-

response assessment, in turn, consists of “The determination of the

relationship between the magnitude of exposure and the magnitude and/or

frequency of adverse effects.”  Similar concepts have been adopted

internationally in WHO/FAO guidelines and OIE guidelines.

Chapters 3 through 5 discusses risk assessment more fully.  The main

goal of risk assessment is to produce information to improve risk

management decisions. It does so by identifying and quantifying valid cause-

effect relations between alternative risk management decisions and their

probable total human health consequences and by identifying decisions that

make preferred outcomes more likely. Health risk assessments typically use

explicit – and, if possible, validated – analytic models (e.g., statistical,

biomathematical, or simulation models) of causal relations between actions

and their probable health effects. In general, quantitative risk assessment

applies specialized models and methods to quantify likely exposures and the

frequencies and severities of their resulting health consequences.

1.2  Risk Management

Health risk management (Section 6 of this chapter, page 64) applies

decision analysis principles and other principles of rational choice to help

identify and choose among alternative policies or actions that affect

exposures, health risks, or their consequences.  Risk management is often

viewed as a process that takes scientific information obtained from risk

assessment as an input, along with value judgments and policy goals and

constraints, and that recommends choices of risk management actions as

output.  Alternative risk management approaches may include risk

acceptance, prevention or avoidance (e.g., by reduction of microbial loads

during processing or food preparation), mitigation of consequences (e.g., by

appropriate clinical screening, diagnosis, and prescription procedures),

transfer (e.g., health insurance), or compensation.

1.3  Risk Communication

Health risk communication (Section 7 of this chapter) characterizes

and presents information about health risks and uncertainties to decision-

makers and stakeholders.  Risk assessment and risk communication should

support effective risk management decision-making by providing the

scientific information needed to compare alternative risk management
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interventions in terms of their probable impacts on exposures and resulting

changes in the frequency and severity of adverse health effects.  For

example, if animal antibiotics reduce the frequency and severity of some

adverse human health effects, then these impacts should be included in the

complete risk assessment and communication package and should be taken

into account in risk management decision-making.

2. PURPOSES AND OUTPUTS OF RISK ANALYSIS

The primary purpose of health risk analysis is to support improved

risk management decision-making.  By definition, “better” risk management

decisions are those that are more likely to produce preferred consequences,

i.e., fewer illnesses, mortalities, illness-days, and treatment failures per

person-year.  Health risk analysis helps to identify such decisions, given

whatever information is available when the decisions must be made.  Health

risk analysis also provides a framework for rational deliberation,

information-seeking, conflict resolution, policy-making, and international

and inter-agency harmonization about human health risks of commercial

activities.  When well conducted, health risk analysis can allow better-

informed and more effective regulation of the production, distribution,

preparation, and use of antimicrobials in food animals than approaches that

are not driven by analysis of probable consequences of alternative decisions.

Risk analysis models can predict how such activities interact with human

behaviors – e.g., consumer or food worker behaviors in food handling and

kitchen hygiene; physician decisions about what tests and treatments to

recommend to which patients; and patient decisions about seeking and

complying with physician instructions on antibiotic use – in determining the

frequencies and magnitudes of adverse health outcomes.

The risk management decision alternatives to be evaluated by risk

assessment typically include the following types:

• Status quo option:  Do not take actions to change current exposures.

• Restriction or ban:  Intervene to reduce current exposures to hazards.

Examples of interventions may also include training and education

programs, monitoring and enforcement activities, and Hazard Analysis

and Critical Control Point (HACCP) programs (USDA/FDA, 2004), as

well as prudent use practices for antibiotics on farms and bans or

restrictions on current uses of antibiotics.

• Approval of new product or process:  Take action that may modify

current exposure patterns (e.g., approve a new animal antibiotic product,

use, or product line extension).
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Different data are typically available for evaluating these three types of

options.  Changes in uses of products that have already been used for many

years typically have the most data.  Approvals of new products may have to

rely more on plausible worst-case assumptions, models, and/or analogies to

existing products to identify and bound potential risks.  However, the same

general logical assessment process applies to all risk management options.  It

is worth emphasizing that risk assessment intended to support improved

decision-making should assess the changes in risks created by alternative

decision options or actions, rather than the risks from the status quo alone or

from specific products, classes of antibiotics, or situations.  In other words,

rational choice requires comparing alternatives.

Example:  Comparing Predicted Effects of Alternative Interventions

Figure 1 shows model-predicted risks from eating Gulf Coast oysters, for

several potential risk management interventions (status quo, rapid cooling, heating,

freezing), by season of the year. These curves were produced via Monte Carlo

simulation using a microbial risk assessment model detailed in FDA-CFSAN, 2001.

The predicted changes in corresponding population risks are proportional to these

changes in risk-per-serving, multiplied by servings consumed per season, and

summed over all four seasons.

Figure 1:  Predicted effects of alternative mitigations on mean illnesses per serving

from V. parahaemolyticus (Vp) in Gulf Coast oysters.

Key: Top curve = no intervention, triangles = rapid cooling, circles = heat treatment,

open diamonds = freezing

Source:  FDA-CFSAN, 2001.  http://vm.cfsan.fda.gov/~dms/vprisk6.html
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As explained in the FDA-CFSAN report, “The effect of three Post Harvest

mitigations was evaluated in the simulation: (a) mild heat treatment (5 min at 50°C),

(b) freezing (-30°C), and (c) rapid cooling immediately following harvest (e.g.,

aboard ship). … The effect of mild heat treatment has been shown to reduce the

density of V. parahaemolyticus to nondetectable levels (at least a 4.5 log
10

reduction) and freezing at -30°C has been shown to reduce the density by

approximately 2 logs. All three potential mitigation strategies have a substantial

effect on the distribution of probable number of illnesses. The effect of these

mitigations was evaluated under the assumption of the Beta-Poisson dose-response

model [see Chapter 5, Figure 2]. For the Gulf Coast summer harvest, a shift in the

distribution of probable number of illnesses down from a mean of 3,000 illnesses to

approximately 240 illnesses is predicted under the mitigation of rapid cooling. The

mean number of illnesses projected to occur under the freezing mitigation is

approximately 15. …The simulation results suggest that in the absence of

subsequent post harvest mitigations, ‘at harvest’ guidance levels of 5 log (10
5

), 3 log

(10
3

) and 2 log (10
2

) total V. parahaemolyticus per g could (potentially) reduce the

illness rate by 2%, 50% and 90% with corresponding losses of 0.3%, 25% and 70%

of the harvest, respectively.”

Example:  Assessing Risk Impacts of a Non-Specific Intervention

Even if specific interventions have not been identified, a risk model can be

used to show the potential gains in public health from interventions that reduce

exposures by stated amounts.  For example, the following table shows the model-

predicted change in population risk caused by an intervention that reduces

Salmonella enterica (non-typhoid Salmonella) concentrations in servings of broiler

chicken by 50%.  How such a reduction might be achieved in practice is left

unspecified.  The value of the model is to show how large an effect on public health

such an intervention would have – a reduction in expected illnesses per 100,000

capita-years from 29 to 11 – even before any detailed means for achieving it have

been proposed.  (For details of this risk assessment model, see WHO/FAO, 2002.)

Summary of risk before and after a 50% reduction in Salmonella concentrations

Before After Intervention

Prevalence 20% 20%

Expected risk per serving 1.13E-05 4.28E-06

Number of servings in year 26 26

Annual expected risk 2.94E-04 1.11E-04

Rate of illness per 100 000 29 11

Source:  WHO/FAO, 2002
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Example:  Decision-Relevant Scope for a Risk Assessment

Suppose that a regulatory agency publishes a risk assessment of an animal

antibiotic, A, that it suspects might cause resistance in bacteria B.  These bacteria

can be transferred to humans via food, where they may cause A-resistant infections.

Antibiotic A is also used in human medicine to treat foodborne infections caused by

bacteria of type B, so A-resistant strains of B are of concern.

The agency states that “This risk assessment seeks to inform decision-making

about whether to permit continued use of antibiotic A in food animals, by providing

an estimate of the number of cases of human bacteremias per year caused by

bacterium B that are resistant to antibiotic A, where the resistance is potentially

linked to food animal uses of A.”  Is this an appropriate scope for the risk

assessment of animal antibiotic use A?  Why or why not?

Solution:  The announced scope can be improved in the following respects:

1. It identifies only one decision option to be assessed, namely the status quo:

continuation of “food animal uses of A”.  It does not identify or assess any

alternative actions (e.g., discontinuing food animal uses of A) for comparison.

Thus, the results will not provide decision-makers with the information needed

to compare and choose among competing options.

2. This scope does not address human health harm.  For example, suppose that

resistance has no effect on human health or on treatment efficacy.  (This can

happen in practice when “resistance” is defined via an elevated mean inhibitory

concentration (MIC) for the antibiotic in in vitro tests, but therapeutic doses are

high enough to kill even the resistant bacteria.)  Then, logically, the risk

attributed to resistance should be zero since, by assumption, it has no effects.

Yet, the “number of cases of human bacteremias per year caused by bacterium

B that are resistant to antibiotic A” might nonetheless be large.  Thus, it is not

the right quantity to estimate to understand risk.  Instead, cases of failed or

compromised treatment are the appropriate quantity.

3. The risk assessment should be based on the change in human health harm

caused by bacterium B due to use of antibiotic A in food animals.  The number

of cases in which there is a change in human health harm is not the same as (and

may be much smaller than) the total number of resistant cases.  For example, if

the adverse human health effect of concern is treatment failure brought about by

resistance to drug A in bacteria infecting human patients, then cases in which

the patient is not prescribed antibiotic A, or would not benefit from treatment

with A for reasons not related to resistance (e.g., inability to tolerate A), cannot

lead to additional treatment failures, and so should not be counted.

4. The number of cases that are “potentially linked to food animal uses of A” may

be much larger than the number of cases actually caused by use of A.  While the

meaning of “potentially linked to” is not given, it might be interpreted as
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“attributable to” in the sense of epidemiological measures of attributable risk.

These measures typically reflect statistical association, rather than causation.

But effective risk analysis requires quantification of the causal relation between

changes in exposures (or in the actions leading to them) and changes in

probable human health consequences.

In summary, the stated scope seeks to estimate a quantity that is larger than the

number of cases in which use of A in animals causes excess harm in humans.  It

does not compare the harm that would occur for alternative actions (e.g., banning vs.

continuing animal use of A).  These comparisons are needed to inform rational

(consequence-driven) risk management decisions.

The main value and purpose of risk assessment is usually to quantify

and compare the probable human health risks (i.e., changes in the expected

number and/or severity of foodborne illness cases per year in exposed

populations) for each risk management decision option considered,

conditioned on whatever information is available about it.  Computational-

statistical, mathematical and probability modeling, and computer simulation

methods enable risk assessors to estimate quantitative bounds on human

health risks and uncertainties from realistic (incomplete, imprecise,

inaccurate and perhaps inconsistent and incorrect) measurements and data.

3. RISK ANALYSIS WITH UNCERTAIN DATA

Risk analysis maps technical inputs, describing how decision

alternatives affect the number of people exposed to a hazard and the likely

adverse consequences of such exposures, into quantitative assessments of

risk (e.g., expected illness cases per year and QALYs lost per case) for each

alternative.  In practice, many of these inputs are uncertain.  For example,

Table 2 summarizes data gaps identified in risk assessment for campy-

lobacter in broiler chicken.  Similar data gaps have been identified for other

microbial risk assessments of Listeria in ready-to-eat foods, Escherichia coli

in ground beef, Salmonella spp. in eggs and in broiler chickens, and Vibrio

parahaemolyticus in fish and shellfish (RAC, 2004).

A pragmatic perspective on risk analysis with uncertain input data is

that (a) Risk model inputs are almost always uncertain in practice; but (b)

Risk management decisions can still be informed and improved by uncertain

inputs (e.g., based on imperfect measurements and incomplete facts,

knowledge and data) so long as they provide some statistical information

about probable human health consequences of alternative decisions.
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Table 2:  Data Gaps in Risk Assessment of Campylobacter

Information Type Specific Need

Dose-response Additional data on dose-response.

Strain variability Data on strain variability in relation to virulence and pathogenicity.

Strain variability Data on strain variability in relation to survival during processing.

Virulence/

pathogenicity

Studies on the mechanisms of infectivity, virulence/pathogenicity of

Campylobacter in the human host.

Virulence/

pathogenicity

Studies/data on the development of antimicrobial resistance;

transference to human host

Pathogenicity Data/studies on links to cancer in human host

Dose-response Quantitative information about infection and illness rates at low doses

of C. jejuni, and also at a range of doses of different strains of C. jejuni

and strains of  C. coli.

Epidemiology Complete epidemiological data from outbreak studies including

enumeration of thermophilic Campylobacter in suspected food items

or in drinking water, numbers of people exposed, attack rates, and

demographics of those exposed, particularly immunocompromised

population groups and children under the age of five.

Epidemiology Enhanced surveillance and outbreak investigations

Immunity Data describing the impact of and longevity of acquired immunity

resulting from recent exposure to thermophilic Campylobacter.

Exposure

Survival Information about the influence of strain-specific variation on

Campylobacter survival on poultry meat.

Prevalence Survey data on the prevalence of Campylobacter-positive flocks for

slaughter, that includes information on sample size, test methods etc.

Contamination Data on the routes of Campylobacter colonization of broilers at the

farm level so that farm interventions can be appropriately targeted.

Contamination Data on the probability of contamination of birds during transport.

Contamination Studies on dynamics of within-flock transmission of Campylobacter.

Prevalence/

enumeration

Prevalence and enumeration data for Campylobacter on carcasses

before and after various processing steps such as scalding,

defeathering, evisceration, washing and chilling.

Prevalence/

enumeration

Prevalence and enumeration data for Campylobacter on carcasses

comparing various methods of chilling (e.g. air chilling, water chilling,

water chilling with chlorine).

Prevalence/

enumeration

Prevalence and enumeration data for Campylobacter on carcasses

comparing different scalding temperatures or alternate scalding

configurations (e.g. multi-tank scalding systems).

Contamination Data describing actual cross-contamination between positive and

negative flocks and within flocks during different slaughter processes.

Handling/

preparation

Additional data on the cooking of chicken that addresses areas of the

chicken where Campylobacter may be protected from heat.

Handling/

preparation

Survey and direct observational data on consumer practices in

preparing and handling chicken that detail frequency and degree that

transfer and subsequent ingestion of Campylobacter could occur.

Source:  Adapted from RAC, 2004
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This perspective is sometimes formalized in “value-of-information” (VoI)

calculations and sensitivity analysis calculations (Yokota and Thompson,

2004).  It allows risk assessment to deliver useful results about probable

risks and remaining uncertainties based on currently available empirical

information, while also showing the potential for these results to change as

further information is collected.  A thorough analysis also indicates which

new information is likely to lead to the greatest changes in current estimates.

This information, in turn, is what risk management decision-makers need to

make rational interim decisions and to identify what new empirical

information would be required to justify future changes.

Example:  Displaying an Uncertain Population Risk

Figure 2, from FDA-CFSAN, 2001, shows an estimated probability

distribution for the number of septicemia cases per year in the United States caused

by eating oysters contaminated with V. parahaemolyticus (Vp), assuming that no

risk management interventions are undertaken.  Its mean value is 6 cases per year.  If

this were a Poisson distribution, then the mean would fully determine the entire

probability distribution, and it would be unnecessary to specify anything other than

this mean value to fully characterize risk.  But in reality, the probability distribution

was generated via a Monte Carlo uncertainty analysis in which many input

parameters and assumptions were sampled from input probability distributions,

resulting risks were then calculated, and the process was repeated thousands of times

to estimate the entire probability distribution of risk.  (See FDA-CFSAN, 2001 for

details.)  Thus, in effect, there is uncertainty about the true risk.

Figure 2: (FDA-CFSAN, 2001) Model-predicted probability distribution of Vp-

related septicemia cases per year in United States if no interventions are made
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To interpret such a model-based probability distribution for risk, it is

important to understand what assumptions have been made – and which of

these assumptions are held fixed (i.e., “conditioned on”) – in generating the

displayed risk distribution.  Sensitivity analysis plots (see Chapter 5, Section

5) can help to unravel the web of assumptions behind the distribution and

indicate which assumptions most affect the uncertainty distribution of risk

and how much higher or lower than the estimated mean value the true value

in any year is likely to be.  Before looking at the sensitivity analyses, one

should only infer from a summary plot such as Figure 2 that the estimated

number of cases per year predicted by the model (and by the assumptions

and input distributions behind it) is likely to be in the range from 0 to 14 and

relatively unlikely to exceed 20.

It is also important (and is now standard practice) to distinguish

between uncertainty and variability in presenting distributions of risk.  For

example, some people eat more oysters than the average consumption level,

increasing their risk of Vp-related illness.  Others may be more susceptible

than average (e.g., due to reduced immune system function), or live in areas

with warmer water and air (where bacteria multiply more quickly).  These

factors create differences in the risk per capita-year for different people that

cannot be eliminated by taking larger sample sizes or more accurate

measurements.  They result in true differences in the exposures and risks

experienced by different individuals.  Such heterogeneity in individual risks

is called variability in the risk. It can be described by a population frequency

distribution of values.  Each individual has an expected number of illnesses

per year based on his or her own exposures, attributes, behaviors, and other

covariates, and the frequency distribution of risk in the population specifies

the fraction of the population having at most each level of individual risk.

When both uncertainty and variability in risk are present, as is usually

the case in practice, the expected number of cases per capita-year can be

thought of as having a true but unknown frequency distribution in the

population, with individual values that may depend on individual covariates

such as age, sex, weight, immune status, and geographic location, as well as

on exposure.  Uncertainty about this true frequency distribution can be

conceptualized as a set of probabilities for different frequency distributions

(see Chapter 5).  Even if the probabilities of different frequency distributions

are uncertain, simply displaying the conditional frequency distributions

based on alternative sets of assumptions can provide decision-makers with

useful information about the plausible range of population risks.  For

example, Figure 3 shows the effects of assuming three different dose-

response models on the predicted frequency distribution of risk (illnesses per

year) from Louisiana Gulf Coast summer oysters. Clearly, the Gompertz

dose-response model predicts a higher probability for large numbers of
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illnesses (e.g., > 25,000 illnesses per year) than the other two dose-response

models.  This type of information can be useful for understanding the range

of possibilities, even if Bayesian model-averaging (BMA) or other statistical

methods for quantifying model uncertainties (Cox, 2001) have not been used

to assess the relative  probabilities of the different dose-response models.

Figure 3:  Effect of dose-response model on predicted illnesses per year

from V. parahaemolyticus (Vp) consumption in Louisiana Gulf Coast

summer harvest

Source:  FDA-CFSAN, 2001. http://vm.cfsan.fda.gov/~dms/vprisk6.html

Example:   A Risk Distribution for Salmonella Risk in Broiler Chickens

Figure 4a illustrates a model-based prediction of the probability distribution

(gray histogram) and corresponding cumulative probability distribution (s-shaped

black curve) for average illness risk per serving of broiler chicken caused by

contamination with Salmonella enterica (non-typhoid Salmonella.) This figure is

described in the WHO/FAO, 2002 risk assessment report as follows:  “Assuming a

20% prevalence of contaminated broilers, the estimated frequency and cumulative

distribution of average risk per serving are shown in [the figure]. The expected risk

per serving is 1.13E-5, or 1.13 illnesses per 100 000 servings. This value represents

the average risk for all individuals in the population that consume servings of

chicken that are stored, transported and prepared in the manner described in the

model, and also accounts for the probabilities that the serving was from a chicken

contaminated with Salmonella, and that the meal was undercooked. It should be
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recognized that some individuals consuming a serving on certain occasions would

experience a much higher risk than others who might be consuming servings with no

salmonellosis risk at all, since the serving would be free of the pathogen.”

Figure 4a:  Distribution of Average Salmonella Risk per Serving of Chicken

Source:  WHO/FAO, 2002

Figure 4b. Effects of parameter uncertainties on per-serving risk distribution.

Source:  WHO/FAO, 2002
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Figure 4b shows the sensitivity of the probability distribution of average risk

in Figure 4a to several sources of uncertainty.  The explanation in the WHO/FAO

report is as follows:

“Several of the parameters in the cooking module were considered uncertain and

are listed in [the following table]:

Uncertain parameters in the cooking module

Consumption relationship Mean Min. Max.

Probability [that a serving is] not adequately cooked 0.1000 0.0500 0.1500

Proportion [of bacteria] in protected area [of chicken

carcass, where they may survive cooking]

0.1567 0.1000 0.2000

Exposure time to cooking temperature of cells in

protected areas

1.00 1.50 0.50

Cooking temperature reached in protected areas. 63.50 65.00 60.00

The impact of uncertainty in these parameters was investigated in order to

evaluate their influence on the risk estimate. To do this, the model was re-

simulated using a fixed single value for each of the uncertain parameters while

allowing the other parameters of the model to vary within their defined

distributions. Three simulations were performed: in the first, the parameters

listed in [the above table] were set at their mean value[s]. The fixed values used

for the second simulation were those that would generate a "worst case"

scenario, i.e. the maximum value for probability that the chicken was

undercooked, the maximum value for proportion of cells in a protected region,

the minimum heat exposure time, and the minimum value for the temperature

reached in a protected region (0.15, 0.2, 0.5 minutes and 60°C, respectively). It

is recognized that such a scenario may not occur in reality, but it gives an upper

bound to the range of possible values. The third simulation used the values that

would give a "best case" scenario, i.e. minimum value for probability

undercooked, etc. This approach allowed the extremes in the risk distribution,

driven by the uncertain parameters, to be highlighted. The results of performing

the analysis on the uncertain parameters influencing consumption risk are shown

in [Figure 4b].

When the uncertain parameters were fixed at their mean values (Uncertainty

fixed @ mean) and compared with the risk distribution generated by the model

when all parameters were allowed to vary (Variable and Uncertain), it appears

that within the range of uncertainty that was assumed to define the parameters,

the impact of variation is not very large. The resulting risk distributions are

similar and the tails of the currently defined uncertainty distributions do not

have a dramatic impact on the overall risk uncertainty distribution. In other

words, the range and shape of the distributions defining uncertainty do not

influence the risk uncertainty significantly.
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Alternatively, if the assumptions made were incorrect and the uncertain

parameters actually spanned a different range, e.g. if the true values are centered

nearer to the min. or max. values rather than at the value assumed to be the

mean, the distribution of risk would approach the extreme distributions shown.

… A complete quantitative uncertainty analysis of the model and all input

parameters was beyond the scope of this work. This type of analysis is time

consuming and not necessarily more informative for the purposes of this

document. Many of the inputs are generic approximations in order to provide a

representative risk scenario. Nevertheless, it is important to recognize these two

characteristics – uncertainty and variability – in the probability distributions

used in quantitative risk assessments. It is also readily recognizable that several

input parameters in this model are both variable and uncertain, and, if the

individual parameters are important in determining the magnitude of the risk

estimate, it may be necessary to separate the uncertainty and variability in the

quantitative analysis in order to understand their impacts and arrive at proper

risk estimations.” (WHO/FAO, 2002 )

In summary, although the distribution in Figure 4a conflates uncertainty and

variability, the sensitivity analysis in Figure 4b helps to unravel their separate

contributions, indicating the extent to which further information might eventually

change the estimated risk per serving.

4.  DESIRED OUTPUTS OF RISK ANALYSIS

A successful risk analysis shows the estimated changes in the

frequencies and magnitudes of adverse human heath consequences resulting

from different risk management decision options.  (Of course, if hazard

identification and risk management reveal that the risk from the status quo is

so small that no risk management action is needed, then risk analysis may

stop there. A full risk analysis is usually carried out when a risk management

intervention is being contemplated, and we will henceforth assume that this

is the case.) Risk analysis uses probability distributions, confidence

intervals, and other displays to show uncertainties about the human health

consequences of different decisions.  It identifies a subset of one or more

decision options leading to preferred probability distributions of health risks

and other outcomes.  Thus, a successfully completed risk analysis should

allow a decision-maker to answer the following questions for each risk

management decision alternative being evaluated or compared:

• What probable change in human health risk would result from each risk

management intervention?  If the risk management decision option or

action being assessed is implemented, how will the probable adverse

human health effects (e.g., expected numbers of mild, moderate, severe,
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and fatal illnesses per year; expected numbers of illness-days and, if

desired, quality-adjusted life-years (QALYs) lost per year) change in the

whole population and in subpopulations with distinct risks?

• How certain is the change in human health risk that would be caused by

each risk management action?  Instead of a single value, i.e., a “point

estimate” of risk, uncertain risks are characterized by intervals or

probability distributions indicating how closely the change in human

health risk caused by a proposed risk management intervention can be

predicted.  There are several technical options for expressing uncertainty

around point estimates (e.g., plausible upper and lower bounds or

confidence limits, coefficients of variation, tolerance intervals,

prediction intervals, Bayesian probability intervals, Bayesian posterior

distributions, etc.) More elaborate uncertainty displays (e.g., confidence

contours for the joint distribution of frequency and severity components

of risk) are available for specialists.  The essential information to

provide about uncertainty in any risk assessment is how large or how

small the true risks might be, consistent with the data and with the

specified assumptions of the risk assessment.  Point estimates that are

“best” with respect to various technical statistical criteria will typically

fall between these extremes.

Technical note:  Statistical point estimates and interval estimates.  Many

criteria have been used to define and identify “best” point estimates in risk

models, e.g., maximum likelihood estimates (MLE), maximum a posteriori

(MAP) Bayesian estimates, maximum entropy, minimum description length,

least squares, minimum absolute deviation, and minimum expected loss (for

various loss functions) (see Cox, 2001 for a survey of methods for risk

analysts).  While these criteria have led to useful theory and algorithms for

estimating the parameters of risk models, none of them is satisfactory as the sole

output from a risk assessment.  It is essential to provide intervals or probability

distributions around any point estimate of risk to inform the users of a risk

assessment about the full range of risks that might be caused by a risk

management intervention.  This principle applies to qualitative and fuzzy risk

ratings as well.  If a point estimate of a risk is “High”, then some indication

must be given of how certain this value is and of how compatible the frequency

and severity components of the risk are with other qualitative labels, such as

“Low”.  A risk assessment that produces a single overall value for risk with no

indication of uncertainty should be avoided.

• What are the key drivers of risks and uncertainties for each option?  The

analysis should make clear to the user the main reasons why the

estimated risk from each decision option is as high or low as it is.  Are

the results driven mainly by predicted exposure levels, by the responses

of sensitive subpopulations, by genetic or epidemiological data that
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establish tight constraints on the plausible values, or by other factors?

Sensitivity analyses that plot how estimated risks would change as input

assumptions and estimates vary within plausible ranges (e.g., within a

few standard deviations of their median values) can help to identify the

combinations of input values that drive the main conclusions and the

extent to which these could be changed without changing the

comparison of different risk management interventions.  Chapter 5

provides examples of such sensitivity analysis displays.

• Which risk management interventions are undominated?  One risk

management intervention dominates another if it produces smaller

probabilities of exceeding any specified level of adverse consequences

per year.  For example, if two different interventions lead to different

expected numbers of sporadic salmonellosis cases per year (with the

actual number being a Poisson random variable), and if the probable

health consequences per case (e.g., the distribution of the number of

days of illness of given severity) is the same for each intervention, then

the one giving the smaller expected number of illnesses per year

dominates the other. If the expected number of cases per year for each

intervention is uncertain, and if the probability that it exceeds any

specified value is smaller for intervention A than for intervention B (for

all possible specified values), then A dominates B.  Scientific risk

assessment can, at most, identify undominated risk management

alternatives for risk managers to further assess and choose among, but

stops short of being able to recommend an objectively “best” choice

among multiple undominated interventions.

5.  INTRODUCTION TO RISK ASSESSMENT

Risk assessment is the part of risk analysis that uses facts and data to

predict the probable consequences of alternative risk management decisions.

It builds and validates predictive causal models of risk, and uses them to

predict how different interventions will change the probable frequencies and

severities of adverse health consequences in a population.  This section

illustrates some key ideas of quantitative risk assessment, while Chapters 3

through 5, respectively, provide a more thorough treatment of hazard

identification, exposure assessment, and risk characterization.

5.1  A Rapid Risk Rating Technique (RRRT)

Although risk assessment models often use technically sophisticated

statistical, probabilistic, and simulation-based analytic methods to estimate
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and validate the probabilistic input-output relations between actions and

exposures and between exposures and health effects, the main logic of most

health risk assessments is straightforward.  For example, as explained in

Chapter 1, the risk of a foodborne illness in a population can often be

modeled as a product of a few high-level factors, as follows:

Population Risk = Expected adverse human health consequences per year in

the population = (expected number of contaminated units, e.g., servings or

bacteria, depending on the dose-response relation, ingested per year) ×

(expected illnesses per contaminated unit ingested) × (expected illness-days

or other adverse consequences per illness).

This can be abbreviated, as in Chapter 1, as:

Risk = exposure factor × dose-response factor × consequence factor.

Such a multiplicative, “top-down” approach, meaning an approach that starts

with estimates of high-level factors instead of with the more detailed

network of low-level factors that determine them, has been recommended on

methodological grounds (Bailar and Travers 2002; FSRC, 2003) and has

long been used by risk assessment practitioners (e.g., McNab and Alves,

2003). While detailed review of past studies and data and modeling

calculations are usually required to estimate and document the estimated

values and uncertainty intervals (or approximate probability distributions)

for these factors, the overall multiplicative logic is relatively simple and

transparent.  It can be applied to many risks caused directly by foodborne

pathogens.  Any intervention that changes one or more of these factors will

change the predicted population risk correspondingly.

If a risk management intervention simultaneously affects multiple

contaminants (e.g., multiple pathogens, or both susceptible and resistant

strains of a pathogen), multiple food commodities, and/or multiple

subpopulations having distinct exposure-response relations, then summing

the above product over all combinations of these multiple components gives

the total impact on population risk.  This is the basis of the Rapid Risk

Rating Technique (RRRT), introduced here and discussed and developed

further in Chapters 6 and 8.  The RRRT approach expresses the risk of

interest as a sum of products of factors.  Each factor is estimated from data.

Uncertainties in the estimates are expressed via intervals, bounds,

uncertainty factors, or probability distributions.  Each product of factors

corresponds to a causal path leading from risk management actions, and/or

changes in exposures that they cause, to resulting changes in health effects in

a population.  The sum over many such products allows the impacts for
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different combinations of pathogens, food commodities, subpopulations, and

so forth caused by a risk management intervention to be totaled.

Table 3 shows the beginning of a risk assessment calculation made in

the RRRT framework.  The example shown is estimation of the likely human

health consequences of banning macrolides, a class of antibiotics used in

both veterinary and human medicine, from further use in animal feed.  (This

example is developed further in Chapter 8.)

Table 3:  Example Risk Assessment for Macrolide Use in Chickens

Variable Values, Uncertainty Factors (UF) Data Sources

Total current campylo-

bacteriosis cases reported

per 100,000 people/yr.

13.37 cases/100,000 in 2002 for

FoodNet surveillance sample in US,

UF ≈ 1 (i.e., little uncertainty)

CDC, 2003

United States population 292E6 = 2,920 × 100,000 people in

US, UF ≈ 1

US Census

Bureau

Fraction of C. jejuni cases

severe enough to warrant

antibiotic treatment

0.00595

(Uncertainty about this factor is

analyzed via sensitivity analysis.)

Buzby, et

al., 1996

Average total severe cases

per reported severe case

8  (Ranges from 2 for severe cases to

38 for mild cases; UF ≈ 5)

Mead et al.

(1999)

Fraction of severe cases

that are C. jejuni

0.99  (May be as low as 0.95), UF ≈
1, i.e., there is little uncertainty

CDC

DBMD

Fraction of severe C.

jejuni cases caused by

chicken products (or via

cross-contamination of

other foods)

 0.10, uncertainty factor = 3-10,

estimate based on competing risk,

genetic, epidemiological, and

historical data, as discussed further in

Section 4 of Chapter 4.

Chapter 4;

Stern and

Robach,

2003

Fraction of chicken-

caused severe cases that

are antibiotic-resistant

0.01 for erythromycin resistance, UF

= 2

CDC, 2000

Resistant severe C.

jejuni cases per year

= product of above

1.84 cases/yr. for macrolides =

(13.37E-5)*0.00595*8*292E6*0.99*

0.10*0.01; UF = 18 (from component

UFs of 5, 10, 2)

Product of

above.

The portion of the calculation shown estimates the expected number of

C. jejuni cases per year that are:  (a) severe enough so that they might

potentially benefit from antibiotic treatment; but (b) macrolide-resistant; and

(c) caused by consumption of chicken meat (or other food products that have

been cross-contaminated by contaminated chicken).  Like all RRRT

calculations, this one is organized as a product of factors.  The calculations

use population average values of several of the factors, and no summation

over multiple combinations of risk factors is performed to more fully

describe risks to subpopulations.  The bottom-line number in Table 3 is the
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product of the factors above it.  As described momentarily, uncertainties are

also assessed using multiplicative “uncertainty factors”, one of several

options for uncertainty analysis of products.

Logically, the correct value of the total number of macrolide-resistant

severe C. jejuni cases per year from chicken, estimated in this table as 1.84

cases per year, puts an upper bound on the number of such cases that could

experience harm (e.g., more illness-days) due to resistance-related macrolide

treatment failures that might be prevented by reducing macrolide-resistant

Campylobacter in chicken products.  It is an upper bound because not all

such cases will actually be prescribed macrolides (e.g., some may be

prescribed fluoroquinolones), nor will all cases that are prescribed

macrolides necessarily result in lost health benefits.  In addition, a ban on

macrolide use in chickens probably would not eliminate all such resistant

cases, at least in the foreseeable future. Nonetheless, estimating even a rough

upper bound can provide useful information about the potential size of the

human health benefits to be expected from a ban,

For purposes of illustrating risk assessment calculations, the most

important points about the RRRT framework are as follows:

• The scope of the assessment is matched to the specific risk management

decision options being evaluated and compared:  The scope of the risk

assessment calculation in Table 3 is to estimate the incremental number

of macrolide-resistant C. jejuni cases per year that: (a) Might be caused

by (or, more precisely, preventable by discontinuing) current use of

current macrolide products in chickens; and (b) Are severe enough to

warrant treatment with erythromycin or another human macrolide in

current clinical practice, i.e., some clinical benefit might be achieved if

the treatment is effective.  Such a calculation can help bound potential

human health benefits (risk reductions) from restricting or eliminating

use of macrolides in chickens.  It would not be appropriate for

evaluating a ban on all macrolides used as growth promoters, nor for

evaluating introduction of a new product (e.g., a macrolide product line

extension). To complete the risk assessment, it is necessary to carry out

similar calculations for other pathogens (e.g., macrolide-susceptible C.

jejuni, and both susceptible and resistant C. coli) affected by the risk

management intervention being assessed.  Rather than pursuing this in

detail, an initial rapid screening assessment might simply assume that

risks from chicken-borne C. coli are not greater than those from chicken-

borne C. jejuni, and use this assumption to bound the additional

contribution from C. coli.

• Transparent calculation logic (Bailar and Travers, 2002).  The

calculations are based on multiplying factors estimated from

documented data sources.  Thus, if someone considers any of the cited
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values to be inappropriate, or when more recent data become available,

the specified values of the factors can be easily updated and the results

recalculated.  Although estimation of the values of the individual factors

(and their corresponding uncertainty factors) from available data may

involve a great deal of research and detailed statistical calculation, and

the supporting arguments should be carefully documented and discussed

in any full analysis, this does not obscure the simple multiplicative

framework for combining the results to obtain a final risk estimate.

• Clearly interpretable output.  The main result in Table 3 is that the

number of “Resistant severe C. jejuni cases per year caused by chicken

products” is estimated to be 1.84 cases per year.  This point estimate is

accompanied by an uncertainty factor (explained below) of about 18,

corresponding to a subjective Bayesian 95% probability interval of

[1.84/18, 1.84 × 18] = [0.1, 33] cases per year.  In contrast to qualitative

designations such as “high”, “low”, “acceptable”, “unacceptable”, and so

forth, the result “1.84 cases per year” has a clear meaning that is directly

useful for informing decisions.

• Modular calculations.  The intermediate result of 1.84 cases per year

does not yet consider the consequence component of risk, i.e., what

fraction of these cases will seek medical care, be prescribed a macrolide

antibiotic, experience treatment failure due to resistance, and suffer

excess days of illness. Nor does it consider the preventable fraction of

the exposures, i.e., the fraction of macrolide-resistant C. jejuni-

contaminated chicken servings that would be removed (and presumably

replaced by macrolide-susceptible C. jejuni-contaminated servings) in

the event of a risk management intervention. By organizing the

calculations as a multiplicative sequence, however, it becomes possible

to stop the calculation part way through, yielding an upper-bound

estimate of the final result of the complete exposure, illness, and

consequence product calculation (since multiplication by additional

fractions between 0 and 1 can only reduce the current result.)  Thus, 1.84

is an upper bound in this sense (i.e., including additional factors will

only reduce it further) for the point estimate of the preventable number

of cases per year that may experience a loss of clinical benefits due to

macrolide-resistant C. jejuni from macrolide-exposed chickens.  (This

should not be confused with a statistical upper confidence limit.

Statistical uncertainty analysis is discussed below and in Chapter 5.)

• Sensitivity analyses.  Sensitivity analysis is especially simple for product

models.  Inspection of the numerical values of the factors in the product

shows which ones have greatest impact on the final results.  In

conjunction with uncertainty factors indicating how many times too high

or low the estimated values might plausibly be compared to the true
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values, the estimated point values show what changes in factors might

occur as additional information is collected and by how much such

changes could increase or decrease the current point estimate of risk.  In

Table 3, for example, the estimated fraction of cases that are severe

enough to potentially benefit from antibiotic therapy is obviously a

crucial parameter, as it reduces the overall product by a factor of

0.00595.  This value is obtained from Buzby et al., 1996.  Increasing or

decreasing it to reflect more recent data, when they become available,

will increase or decrease estimated risks proportionally.

• Uncertainty analysis. Uncertainty factors of about 1 (UF ≈ 1) in Table 3

indicate quantities that are known with enough precision and confidence

so that better information about them is not expected to make a large

change in the results.  Uncertainty factors greater than 1 indicate that the

point estimate may plausibly be too high or too low by the amount of the

uncertainty factor.  This is only one way to indicate approximate

uncertainties, but is often useful for multiplicative models.  Combining

the quantified uncertainty factors using a central limit theorem

(discussed in the following technical note) gives an estimated

uncertainty factor of 18 to the point estimate of 1.84 cases per year.  This

provides an indication of how many times larger or smaller than 1.84 the

true but unknown rate of cases per year might plausibly be, based on the

quantified uncertainties and point estimates in Table 3.  In addition to

these quantified uncertainties, as already mentioned, changing the

0.00595 point estimate of the fraction of severe cases (from Buzby et al.,

1996), or changing the scoping assumption that only these severe C.

jejuni cases warrant treatment with antibiotics and might receive clinical

benefits from such treatment, could lead to proportional changes in the

point estimate of risk.

Technical Note:  Simplified multiplicative uncertainty factors.  To enable quick

approximate uncertainty analysis without Monte Carlo simulation, it is convenient to

make the artificial restriction that uncertainty about each parameter is approximated

by a single multiplicative uncertainty factor.  In other words, uncertainty about the

point estimate x of an uncertain parameter X is expressed by an uncertainty factor,

UF, such that the true value of X is considered equally likely to be above or below

its point-estimated value, x, and there is a subjective 95% probability that the true

value of X lies between x/UF and x × UF.  The interval [x/UF, x × UF] is interpreted

as a subjective Bayesian confidence interval for X.  Although this simplified

approach to uncertainty assessment is not flexible enough to represent arbitrary

beliefs (e.g., it is inappropriate for representing quantities with zero as a plausible

value, or proportions for which x*UF > 1), it does allow uncertainty about each

model parameter to be expressed, at least approximately, by a single number.
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Moreover, formulas for the human health benefits and risks from risk management

interventions are often expressed as products of uncertain parameters, and thus may

have approximately log-normal uncertainty distributions (Druzdzel, 1994).

Uncertainty factors for components, say, u
1
, u

2
,…, u

n
,  of a product combine

to yield the uncertainty factor for the product via the formula:

Uncertainty factor for product

= exp{2*[(0.5*ln(u
1
))

2

 + (0.5*ln(u
2
))

2

 + … + (0.5*ln(u
n
))

2

]
0.5

}

(based on approximating the normal distribution on the log scale as a sum of normal

distributions for the different components, each with an approximate 95%

probability interval of 2 standard deviations.)  For example, the uncertainty factors

of 2, 5, and 10 Table 3 combine according to this formula to give a total uncertainty

factor of 18 for their product.  This uncertainty factor approach is used only to make

uncertainty calculations more transparent.  Monte Carlo uncertainty analysis is more

flexible and general, but is less easy to verify by manual checking of calculations.

Technical Note:  Monte Carlo uncertainty analysis.  Instead of uncertainty factors,

conditional probability distributions for model variables can be calculated via exact

algorithms in the Bayesian Network (BN) formalism discussed in Chapter 3 (Zhang,

1998; Dechter, 1999).  A simpler approximate method, widely applied in health risk

assessment, is Monte Carlo simulation (Cheng and Drudzdel, 2000).   If no Bayesian

inference is required, then computer-aided risk assessment tools such as @RISK™,

Analytica™, and Crystal Ball™ can be used to randomly sample values from the

probability distributions of input variables and to propagate them forward through

the deterministic formulas and conditional probability look-up tables (CPTs) for the

other variables in a risk model to create approximate distributions for the values of

all other variables. If Bayesian inference is to be used to condition on data while

propagating input distributions to obtain output distributions, then specialized

software such as the Bayesian Net Toolbox or WinBUGS can be used to perform the

more computationally intensive stochastic sampling algorithms (typically, Gibbs

Sampling and other Markov Chain Monte Carlo (MCMC) methods) required for

accurate approximate inference in BN models (Cheng and Drudzdel, 2000; Chang

and Tien, 2002;  Andrieu et al., 2003).

Table 3 has illustrated the calculations and an intermediate result for

one risk management decision option:  doing nothing, i.e., the status quo

option.  In other words, 1.84 cases per year is a preliminary upper-bound

point estimate (ignoring uncertainty factors, health consequences, and

preventable fractions, as explained above) of the number of severe

macrolide-resistant C. jejuni cases that may be deprived of clinical benefits

of macrolide treatment each year in the absence of intervention.  However,

as previously emphasized, to support rational decision-making, it is essential



Risk Analysis: Goals and Methods 63

to evaluate more than one option, i.e., to inform the decision-maker about

the consequences of alternative choices.  Policy makers do not always heed

this principle.  For example, one common alternative approach to decision-

making is to apply “situation-action” rules in which surveillance and

monitoring data can trigger pre-specified interventions whenever certain

conditions are detected, without comparing the probable human health

consequences of alternatives.  However, risk analysis generally strives to

support “rational” decision-making, i.e., decisions made by comparing the

likely consequences of alternative decision options and choosing the one that

yields the most preferred achievable probability distribution of

consequences.  (See Cox, 2001, Chapters 5-7 for a survey of rational choice

theory and decision analysis for risk analysts.)  This book focuses on the use

of risk analysis to support such rational risk management decision-making.

The simplest alternative to the “do nothing” (i.e., status quo) option is

to restrict or ban macrolide uses in chickens.  The probable human health

consequences of such an intervention, measured by the incremental number

of illness-days caused or prevented, show the human health risks or benefits,

respectively, of this option.  As explained in Chapter 8, a similar framework

to that in Table 3 can be used to calculate the human health benefits of

animal antibiotic use for the status quo, i.e., the human health harm per year

now prevented by continued use of animal antibiotics that would occur if

such use were terminated.  In Chapter 8, continued use of macrolides is

estimated to potentially prevent thousands of C. jejuni cases per year by

promoting animal (and hence human) health and increasing microbial safety

of meats. This potential reduction in human health risk significantly

outweighs the 1.84 potential severe macrolide-resistant cases per year

estimated in Table 3 that might be preventable by changing the status quo.

The RRRT example calculations in Table 3 illustrate basic calculation

methods and data that can be used for antimicrobial risk assessment.  More

sophisticated techniques have been developed by and for specialists.  For

example, quantitative risk assessments often apply results from probability

and statistics to calculate the probabilities of conjunctions of events (e.g., as

products of marginal and conditional probabilities, extensively used in the

RRRT approach; see Chapters 6 and 8).  In addition, applied probability and

statistics provides many “limit laws” and accompanying statistical

procedures that allow risk assessors to estimate probability distributions of

population risks (to a close approximation in large populations) based on

very partial knowledge of the probability distributions of the factors that

contribute to them.  For example, as covered in many text books on applied

probability and statistics (e.g., Feller, 1968;  Lange, 2003):

• Rare events, including sporadic cases of foodborne illness, often obey a

Poisson approximation law (e.g., Barbour, 2000).  Statistical methods



64 Chapter 2

such as Poisson regression can then be used to estimate conditional

event rates from data and to test whether a Poisson model is appropriate.

• Sums and averages of independent or almost independent variables (e.g.,

total population risks or average individual risks) typically approach

normal distributions in large populations, under the conditions of any of

several Central Limit Theorems.

• Products and networks of calculations often give results with

approximate log-normal distributions (Druzdzel, 1994).

• Extreme values (e.g., maximum or minimum values) in large populations

or in large numbers of independent trials in many situations follow

special parametric asymptotic distributions (e.g., extreme value or

Gumbel distributions). Similarly, runs of large or small values and times

between successive record values also follow special distributions.

• Deviations around expected values often have the property that “large

deviations” are much (exponentially) rarer than smaller ones.

• First-passage times or first occurrence times in probabilistic transition

networks often obey “sharp-transition” laws and 0-1 laws.

Such results can allow population risks to be approximated with useful

accuracy for large populations and complex models even when there is

considerable uncertainty about the values or probability distributions of

individual factors in the models.  Although this book emphasizes the

application of basic calculation methods and data-driven empirical estimates,

limit laws and sophisticated statistical estimation methods based on them

allow risk assessment methods to be applied to many common practical

situations where quantifying approximate probability distributions for the

health consequences of alternative actions suffices to improve decisions.

6.  RISK MANAGEMENT

6.1   Definition of Risk Management

Formal risk management is a decision process that maps available risk

assessment information about the probable consequences of acts, along with

value judgment and priority information, into choices of which acts to take.

Acts available to risk management decision-makers and policy makers

usually include collecting additional information to reduce uncertainty about

exposures and risks, as well as opportunities to disseminate existing

information and warnings and to require or constrain individual activities.

Risk management decision models can be used to quantify the

expected value of additional information (VoI) for improving decision-
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making (see Chapter 5), and hence can help to set research priorities.  They

also prescribe interim decisions to be made unless and until additional

information becomes available.

6.2   Purposes and Outputs of Risk Management

Risk management decision processes and institutions are used to

prevent, mitigate, transfer, share, and spread risk and to assign liability and

compensate victims of risks.  Societal options for risk management often

include some of the following approaches:

• Warn:  Inform or warn potential participants about risks of activities and

transactions.  For example, putting warning labels on food products

(e.g., stating minimum cooking requirements) may help consumers take

care to avoid risky storage, preparation or consumption practices.

Certifying that a product, process, or facility meets specified microbial

quality standards can help provide information to the market, allowing

some differentiation of food products and informed consumer choice.

• Facilitate voluntary risk management agreements (e.g., between

producers and consumers, importers and exporters, etc.) by verifying and

publicizing relevant risk information, e.g., by defining standards and

grades for food products.

• Insure:  Underwrite producer costs of complying with new standards

(e.g., from inspecting and rejecting food products based on new

microbial quality standards).  Consumer health insurance may also affect

the quality of medical care sought and provided for foodborne illnesses.

• Regulate:  Restrict voluntary activities or transactions (e.g., production,

sale, or use of antimicrobial feed additives or other animal antibiotic

uses) by imposing constraints, standards, and regulatory requirements

based on risk information.

• Litigation and process design:  Design and enforce processes and rules

to help bolster the microbial safety of foods (e.g., tort liability rules;

inspection, labeling or licensing programs; worker compensation)

• Compensate:  Compensate known or suspected victims of hazardous

activities, or compel others (e.g., their known or suspected injurers, or

tax payers) to pay compensation.

6.3  Methods for Risk Management Decision-Making

Formal methods for risk management decision-making apply the

methods and frameworks of decision analysis, optimization, and group

decision-making to clarify value trade-offs among competing goals and to

select risk management options that correspond to preferred probability
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distributions of consequences.  This can be done if relative preference

weights, called utilities, can be assigned to different possible consequences

of the risk management decisions being evaluated (e.g., to different values of

the individual and population risk metrics).  The probabilities of these

different consequences for different risk management decisions are obtained

from the output of the risk assessment.  Each risk management decision

being considered leads to a corresponding set of probabilities for different

consequences and their utilities.  The decision leading to the greatest mean

value of the utility is recommended.

In practice, this formal decision-analytic approach is seldom directly

applied. Different participants may have different preferences for outcomes,

be willing to make different trade-offs among goals (e.g., minimizing

average risk vs. reducing inequities in the distribution of risks), and have

different tolerances for accepting risks.  In such cases, agreed-to utilities for

different consequences may not exist, and risk management decision-making

requires negotiation and compromise as well as analysis and deliberation.

But even when the formal process of decision analysis is not directly

applicable, its conceptual framework is still useful for organizing analysis

and deliberation, separating beliefs from preferences for consequences, and

identifying and resolving relevant conflicts and/or uncertainties about facts

and values. Byrd and Cothern, 2000 and Cox, 2001 further discuss

individual and group decision-making processes and frameworks for risk

management decision-making.

6.4  Methods of Risk Management to Avoid

Well-informed and effective risk management decision-making, i.e.,

risk management that is likely to produce desired consequences, requires

considering all of the most important impacts – good and bad – that an

intervention is likely to create.  Unfortunately, to date, many antimicrobial

risk assessments have ignored the human health risks that proposed risk

management interventions might create, focusing instead entirely on the

human health risks that they might reduce or prevent.  This represents a

breakdown in sound risk assessment and risk management, similar to

assessing financial risks of an investment or acquisition based on only one

side of a balance sheet.  In general, rational risk management requires

considering and comparing the total human health consequences, both

favorable and adverse, of the risk management decision options being

evaluated.  Risk characterization should provide risk managers with a

balanced accounting of the illnesses or adverse human health effects (and

other adverse consequences of interest for decision-making) that a risk

management intervention might cause, as well as of those that it might
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prevent.  As illustrated in Chapters 6 and 8, the same basic format and logic

(multiplicative modeling) can be used to do both.

Risk management decision processes that recommend interventions

based on the status quo and/or based on beliefs about what might constitute

“precautionary” risk management should be avoided if they do not explicitly

identify and compare probable human health consequences of alternative

decision options.  They violate important normative principles of rational

and effective decision-making designed to bring about desired consequences.

A more effective approach, according to widely accepted principles of

decision analysis (see e.g., Cox, 2001, Chapters 5-7 for a review for risk

analysts) is to use quantitative risk assessment information about the

probable consequences of alternative interventions to eliminate dominated

options and to choose the best among those that remain.

6.5  Validating Risk Management Results

A risk assessment model predicts the probable human health effects

and other consequences of different risk management actions by predicting

their impacts on human exposures to hazards.  To maximize learning, these

predictions should be tested both before and after implementation of a risk

management decision.  This is done by conducting an evaluation study to

assess whether the predicted changes in exposures and health effects actually

occurred.  If not, the risk assessment model may need to be refined (see

Validation of Risk Characterization Results in Section 4 of Chapter 5) and

the recommended risk management decision may have to be revised.

7.  COMMUNICATING RISK ANALYSIS RESULTS

Risk communication facilitates the effective participation and

interaction of technical experts, stakeholders, and decision-makers in risk

management decision processes and deliberations.  Risk communication is

also used to present the results of risk analyses to stakeholders, decision-

makers, participants, and other audiences.  Communication and deliberation

drive much of the risk management decision process in many cultures and

are essential for successful outcomes.  Web resources are available on the

sub-field of risk communication within risk analysis generally and for food

safety risk communication in particular.  Examples include the following:

• http://www.belleonline.com/oct_02.pdf

• http://www.foodsafetynetwork.ca/risk.htm#communication

• http://www.sirc.org/publik/revised_guidelines.shtml
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7.1  Steps in Risk Communication

Risk communication should usually begin early in the processes of

risk assessment and risk management. A well-planned, thorough approach to

communicating risk analysis results typically includes the following steps:

(a) Identify explicit goals and define explicit (preferably, measurable)

criteria for success of the communication effort.  The goals specify the

purposes (the why) of the communication effort, while the criteria

specify how success is to be defined and assessed.

(b) Identify target audiences for the communication effort (the whom).

(c) Select messages to be shared (presented, discussed, etc.) with each

audience to achieve the goals.  These messages address what will be

communicated, e.g., “take-home” messages that should be retained by

the audience.

(d) Select framing, presentation media, displays, exhibits, interaction styles

and formats, and scripts for presenting key messages.  These address the

how of risk communication.

(e) Implement the risk communication plan; and

(f) Monitor results and incorporate feedback about the effects of the

communication into a revised plan.

Omitting any of these steps can compromise the effectiveness of risk

communication, no matter how strong the rest of the risk analysis.

7.2  Purposes of Risk Communication

The most common goals for risk communication programs are: to

inform individuals and groups about risks so that they can make better-

informed decisions or seek more information; to influence people to change

their behaviors, their attitudes and beliefs about hazards, and their

acceptance of risk management decisions and policy recommendations; to

involve affected parties in the decision process; and to facilitate their

participation in conflict-resolution, consensus-building, and collective

decision-making about risk management.  The field of risk communication

provides guidelines, derived mainly from experience, analysis of survey

data, and experiments, for how to accomplish these goals by sharing risk

information among stakeholders and decision-makers.

A group convened by OIE (Vose et al., 2001), in a general description

that could be adapted to apply to many business, organizational, and political

discussions and processes, asserts that “The goals of risk communication are

the following:



Risk Analysis: Goals and Methods 69

• to promote awareness and understanding of the specific issues under

consideration during the risk analysis process, by all participants

• to promote consistency and transparency in arriving at and implementing

risk management decisions

• to provide a sound basis for understanding the risk management

decisions proposed or implemented

• to improve the overall effectiveness and efficiency of the risk analysis

process

• to strengthen working relationships and mutual respect among all

participants

• to promote the appropriate involvement of all stakeholders in the risk

communication process

• to exchange information on the knowledge, attitudes, values, practices

and perceptions of stakeholders concerning the risks in question.”

However, in public health decision-making, there is often a tension in risk

communication efforts between informing and influencing or manipulating

target audiences (Ng and Hamby, 1997).  Risk communication programs are

often designed and evaluated based on their success in changing individual

behaviors, e.g., by persuading people to stop eating fish from polluted lakes,

to start using sun block, to participate in vaccination programs, to wear

seatbelts, or to refrain from smoking.  Other risk presentations have as their

main goals to make decisions that have already been reached palatable to

those affected (often a lost cause if those affected did not participate in the

decision or do not perceive the decision process as fair and legitimate) and to

confer legitimacy on decision processes by holding open meetings and

sharing information.

Effective communication and facilitation about food-related risks

enables stakeholders, experts, and decision-makers to participate more

effectively in risk management decision processes.  It does so by structuring

how their beliefs, values, and concerns are elicited, shared, used to create

and evaluate decision options, and acted on. It may also enable the facilitator

to pursue policy goals by setting the agenda and managing the process to

promote certain ends.

7.3  Desired Outputs of Risk Communication

A successful risk communication program summarizes and presents

the results of risk analysis in a way that clearly and credibly answers the

following questions for the intended audience: (a) What should I do now?

(b) Why?/What are the benefits?  (d)  Why should I believe this?
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 The output of a risk communication program should be an exposition

of risk analysis results that is both accurate and effective in changing (or

informing) beliefs, attitudes, and/or behaviors. Communication and

presentation styles that are most effective in changing behaviors typically

differ in structure, content, and emphasis from those that best express the

technical content of risk assessment findings or those that best invite and

elicit fruitful participation and interaction. For example, accurate

communication of technical findings about risks and uncertainties to

technically trained decision makers, and effective internal communication

about facts, assumptions, conclusions, and uncertainties among expert

members of a risk-assessment or risk management team, can greatly benefit

from technical methods.  Bayesian Network models, simulation-based what-

if analyses, sensitivity analyses, risk profiles, and Bayesian posterior

distributions can convey precisely what is known, how it is known, and what

remains unknown or assumed… to audiences well trained in such methods.

But technically accurate risk communication does not necessarily

address other key goals effectively, such as telling people what has been

decided, or what they should do, in a way that is likely to win agreement and

change behaviors (Blaine and Powell, 2001).  It may not even give non-

specialists the information they need to make improved decisions.  It does

not address the need to elicit stakeholder concerns and values or to address

them in risk assessment and decision making.  By contrast, persuasive

communication about risks and risk management decisions to stakeholders,

media, and the public requires different skills and emphases, including:

building trust, gaining and maintaining credibility and perceived legitimacy,

and preparing effective summaries of decision-relevant information using

appropriate framing techniques.  Brevity, clarity, focus, candor, cogent

examples, and deliberate attempts to distance one’s self from negative

stereotypes of risk communicators may be crucial for communicating

technical risks to non-specialist audiences so that the message is listened to

instead of being tuned out or dismissed (e.g., Byrd and Cothern, 2000,

Chapter 12.)  These factors help to establish an audience’s perception of

knowledge and expertise, openness and honesty, and concern and care – all

of which, in turn, tend to promote trust in the speaker and acceptance of his

or her risk messages.  More generally, audience members consider the

source of information, emotional style, framing, and imputed motives of the

speaker in assessing the credibility of the message and in responding to it

along the continuum from outrage to acceptance (Sandman, 1993; Chartier

and Gabler, 2001).
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7.4   Methods for Risk Communication

How risk information is formatted and presented can greatly affect

how recipients assimilate and act on it.  For example, in medical decisions,

people are more likely to elect a medical procedure when it is described as

“99% safe” then when it is described as having “1% chance of

complications” (Gurm and Litaker, 2000).  Presenting relative risks rather

than absolute risks and using loss framing instead of gain framing make it

more likely that patients will adopt screening procedures.  In presenting

chemical risks, the language used to describe risks may trigger speculations

about the presenter’s motives and undermine his or her credibility with the

target audience (MacGregor et al., 1999).  Understanding such effects can

help in preparing the presentation of factual information in ways that are

likely to elicit desired responses.

A striking insight from the framing literature is that there may be no

neutral way to present risk information.  Any presentation carries with it

potential presentation and framing effects and biases that may affect the

recipients’ attention, interpretation, and actions.  Presenting the same

information in different ways and emphasizing fact-rich displays (e.g.,

cumulative risk profiles) that are not strongly associated with known

presentation biases may come as close as possible to providing the

information needed for rational decision-making without influencing the

decision.  Such displays often lack the brevity and focus that are most

effective in action-oriented presentations.

Effective risk communication must be concerned with process as well

as with outcome.  If people believe that identifiable groups are having risks

imposed on them unfairly by identified others having superior power,

authority, or information, the result is likely to be outrage (Ng and Hamby,

1997).  Unresolved outrage can quickly destroy the chances for joint

problem-solving as an approach to risk management decision-making and

conflict resolution.  To resolve such situations, it is important to

acknowledge and address the perceived unfair situation, either by correcting

it or by discussing how decisions should be made when values and interests

genuinely conflict and then demonstrating willingness to abide by agreed-to

principles of fairness in deciding and communicating what will be done.

The following guidelines for communicating regulatory risk analyses

and risk management decisions to the public are representative of much

prescriptive literature on structuring risk communication and management

efforts (e.g., Ng and Hamby, 1997).
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Elements of a Successful Agency Risk Communication Plan

1. Be clear on the roles and goals of the risk management program (e.g., is

the goal to inform, influence, or involve the audience?)

2. Address stakeholder concerns.  What knowledge, beliefs, values,

attitudes, cultures, and contextual factors shape their concerns and

motivate their actions?

3. Study/understand risk perceptions, concerns, and most effective

communication styles.

4. Involve stakeholders. Successful risk communication should be

interactive and participatory, not a one-way broadcast.

5. Develop technical risk assessment content to support effective risk

communication by answering specific questions/addressing specific

concerns.  Emphasize decisions and consequences, not pure science.

6. Organize risk assessments to facilitate effective presentation of content.

Identify outcomes of interest or concern to stakeholders, identify

decision options, show how they affect outcome probabilities, and

quantify trade-offs among likely consequences of different options.

7. Organize risk management decision processes to eliminate outrage,

accomplish goals, serve chosen roles, and reflect Agency values.

7.5  Participatory Risk-Management Decision Processes

Risk management and risk communication intersect in societal risk

management decision processes.  Public health and regulatory risk

management decisions affecting food safety are usually made by multiple

participants and reflect the interests of multiple stakeholders with partially

conflicting interests and beliefs.  The participants interact through decision

processes in which individual proposals, choices, offers, commitments, and

actions or behaviors are iteratively modified until an outcome is reached.  In

general, risk management decision processes refer to procedures by which

multiple participants jointly determine how risks are to be managed.   Each

participant uses information about what others have done, claimed, or

offered to decide what to do next.  Their interacting decisions determine how

risks are managed.

Aspects of a risk management decision process that often contribute to

its perceived legitimacy, and hence its potential effectiveness in changing

people’s attitudes and behaviours, include how well it does each of the

following:

• Identify and involve key players (or “stakeholders”) early on whose

expertise, participation, assent or consent will later be needed.
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• Give each stakeholder opportunities and a positive incentive to

participate (e.g., an expectation of helping to make collective choices).

• Allow individual concerns, preferences and values to be surfaced,

acknowledged, and responded to.  Confront and resolve conflicts among

individual beliefs and/or preferences using stated principles for how

decisions should be made when individuals disagree.

• Partner with stakeholders to build trust in the process, get it used, and

improve it over time.

Techniques for managing group dynamics and for organizing and

running meetings and hearings effectively (e.g. Bazan, 1998) can often

create a broadly shared perception that most of these elements have been

accomplished.  For example, giving all stakeholders a visible, public

opportunity to comment;  recording and systematically responding to (or at

least noting) points raised; and actively encouraging participation are simple

methods that go far toward making a process look and feel legitimate, even

if the information collected is subsequently disregarded or poorly used, and

even if the final decision reached is unlikely to produce desired

consequences.  Allowing participants to take turns speaking, keeping and

publishing notes and written responses to questions and issues raised, and

providing multiple opportunities to review and comment before a final

decision is made can help to create perceived legitimacy for public risk

management processes.

The importance of participatory risk management and communication

for effective risk management decision-making is now well recognized and

broadly accepted in many frameworks for risk analysis.  For example, based

on “a comprehensive analytical review of the risk assessment, risk

management, and risk communication approaches currently being

undertaken by key national, provincial/state, territorial, and international

agencies”, Jardine et al. (2003) offer “the following ‘checklist’ to ensure that

a good risk management decision is proposed:

- Make sure you're solving the right problem.

- Consider the problem and the risk within the full context of the situation,

using a broad perspective.

- Acknowledge, incorporate, and balance the multiple dimensions of risk.

- Ensure the highest degree of reliability for all components of the risk

management process.

- Involve interested and affected parties from the outset of the process.

- Commit to honest and open communication between all parties.

- Employ continuous evaluation throughout the process (formative,

process, and outcome evaluation), and be prepared to change the

decision if new information becomes available.”
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All group decision processes for risk management have some intrinsic

limitations.  For example, those who set the agendas for group decision

processes and process the results may be able to manipulate the probable

outcomes even for decision processes (e.g., voting) that are widely perceived

as fair and legitimate.  If there is private information, then strategic

misrepresentation of interests and beliefs may also hamper the success of

decision processes in obtaining fair, efficient outcomes with high

probability.  Approaching risk management decision processes as exercises

in joint problem-solving by the participants, backed by a commitment to use

mutually agreed-on principles and procedures (e.g., of fairness or voting) to

resolve conflicts when necessary, provides a powerful practical approach for

creating consensus and acceptance of outcomes despite these potential

limitations.

8. SUMMARY AND CONCLUSIONS

This chapter has suggested several goals and criteria for successful

risk analysis, meaning risk analysis that can help to promote improved risk

management decision-making.  A successful risk analysis should do all of

the following:

• Scope the analysis to support decisions by estimating the causal relations

between decisions and probable resulting exposures, and between

exposures and their probable total human health consequences.  To

guide rational regulatory decision-making, traditional quantitative risk

analysis seeks to quantify the uncertain causal relation between

regulatory actions that might be taken and their total probable human

health consequences.

• Evaluate proposed solutions, not problems.  The risk analysis should

yield evaluations and comparisons of proposed risk management actions

and interventions, not simply descriptions of the current situation.  A

successful risk analysis shows the estimated changes in frequencies and

magnitudes (and uncertainties) of human heath consequences resulting

from different proposed risk management decisions.  It is important to

identify an adequate range of risk management options to assure that

dominant alternatives are not overlooked.

• Evaluate total human health impacts.  Total health consequences are

found by summing the impacts of proposed actions on human exposures

to microbial loads of bacterial species (both resistant and susceptible)

over all relevant pathways that contribute significantly to the outcome

(e.g., different food animal species, drinking water, home-cooked meals,
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restaurant dining, etc.)  Applying an exposure-response model to the

changed exposures for different decisions then yields the estimated risks

associated with them (see Chapter 5).

• Communicate clearly and enable effective participation.  A well-

conducted risk analysis enables its recipients to participate more

effectively in risk management deliberations and to communicate

questions and concerns more clearly and concisely than would otherwise

be possible.  It does so by providing them with the relevant information

needed to determine the probable consequences of proposed actions and

by showing how sensitive these predicted consequences are to specific

uncertainties and assumptions in the analysis.

Bailar and Travers (2002) offer additional pragmatic criteria for a

useful antimicrobial risk assessment approach.  They suggest that such an

approach should promote: reduced demand on resources; a common format;

reduced demands for data; easy comprehension by non-experts; and ready

adaptation.  In pursuit of these goals, they recommend a multiplicative

model, similar in concept to the RRRT framework illustrated in Table 3.

They state that such a model should estimate the annual number of

symptomatic infections by the organism of interest in a specific population;

the fraction of those occurrences in which the bacterial strain was clinically

resistant to the antimicrobial or class of antimicrobials under study; the

annual number of occurrences in which infection by a resistant strain led to

the specific adverse health outcome(s) under study; and the fraction of the

adverse outcomes in which the antimicrobial resistance was a result of the

farm use or category of uses under study.  In addition, as discussed in the

following chapters, it is important to consider the fraction of outcomes that

would be prevented (or caused) by a change in animal antibiotic use.



 

 

 

 

 



Chapter 3

Hazard Identification

This chapter expands upon the risk assessment portion of the risk

analysis process.  While Chapter 2 focused on the desired outputs of risk

assessment, this chapter and Chapters 4 and 5 emphasizes the process and

methods for producing those outputs.  After reviewing the definition of risk

assessment and introducing a Bayesian Network formulation of the risk

assessment process, we discuss and illustrate the traditional steps of the

process: hazard identification, exposure assessment, dose-response modeling

(sometimes called hazard characterization), and risk characterization

(including uncertainty analysis and sensitivity analysis.)  Of these steps,

hazard identification, which requires drawing conclusions about causation

from data, often presents the greatest conceptual and technical challenges for

both microbial risk assessment and analysis of the human health effects of

animal antibiotic uses.  It is the focus of most of this chapter.  Chapter 4

addresses exposure assessment and Chapter 5 discusses dose-response

modeling and risk characterization

1.   DEFINITION OF RISK ASSESSMENT

The Codex Alimentarius Commission, an international (FAO/WHO)

body which compiles international food codes and related information,

defines risk assessment as “A scientifically based process consisting of the

following steps: (i) Hazard identification, (ii) Hazard characterization, (iii)

Exposure assessment, and (iv) Risk characterization.”  This chapter defines,

explains and discusses the first of these steps.  Throughout the discussion,

“scientifically based” is interpreted to mean: “Based on specifically

identified, independently verifiable data sources and on explicitly stated,
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empirically testable hypotheses, models, and calculation formulas or

algorithms.”  Information on the Codex Alimentarius Commission and its

work related to food safety and risk assessment, including microbial and

antibiotic risk assessments, can be found on-line, starting from these sites:

• www.codexalimentarius.net/web/index_en.jsp

• www.fao.org/DOCREP/005/Y2200E/y2200e07.htm

As discussed in Chapter 2, risk assessment of animal antibiotics is

used to predict the probable human health consequences of making changes

in animal antibiotic use. It predicts the probable change in the number of

illnesses or other adverse events per year (or per capita-year, for individual

risk) that will be caused by a change in animal antibiotic use.  Hazard

identification deals with how to establish cause-and-effect relations from

data.  Exposure assessment quantifies the changes in exposures caused by

changes in animal drug use, while hazard characterization (better known in

other areas of risk assessment as dose-response modeling or exposure-

response modeling) quantifies the causal relation between changes in

exposures and probable resulting changes in adverse consequences.  Finally,

risk characterization integrates the preceding components to predict the

probable changes in health that will be caused by a risk management action

that changes exposures.

2.  A BAYESIAN NETWORK FRAMEWORK

To support effective risk management decisions, human health risk

assessments must characterize known or suspected potential causal relations

between risk management actions (including the status quo or “do nothing”

option) and probable resulting human health consequences.  The actions

typically affect exposures to sources of risk (i.e., hazards), while the

consequences typically include changes in frequency or severity of resulting

illnesses or deaths in affected populations.

Impacts of changing animal antibiotic uses can potentially be

transmitted to humans by several causal paths, such as resulting changes in

exposures to both susceptible and resistant strains of bacteria in food

commodities, and perhaps transfer of resistance determinants to humans via

these or other bacteria.  The medical consequences of changes in exposures

to microbial hazards depend on resulting changes in illness rates, on patterns

of resistance to human drugs among cases of food-borne illness, and on

treatment and prescription patterns for patients receiving human antibiotics.

Hazard identification identifies causal relations (possibly including

identifying causal paths) leading from risk management actions to their

human health consequences.  Hazard identification often precedes any plan
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to develop a risk management strategy, as effective risk management is often

impossible if causal relations are not present or are not understood.

Figure 1 outlines a causal graph (Shipley, 2000; Greenland and

Brumback, 2002) for assessing risks to humans from changes in animal drug

uses.  In this template, risk management actions that change current practices

or activities such as animal drug use can thereby change exposures of

individuals to potentially harmful agents (the hazards, typically one or more

bacterial strains).  Changes in exposures, in turn, change expected illness

rates and hence adverse health consequences (e.g., illness-days or early

deaths per capita-year) in susceptible members of the exposed population.  If

desired, different human health consequences can be aggregated into a single

summary measure, such as quality-adjusted life-years (QALYs) (Hazen,

2003), but this is optional.  Effects of changes in animal drug use on QALYs

lost per year in the population may be mediated by behaviors (e.g., kitchen

hygiene, cooking, and care-seeking behaviors), individual attributes (e.g.,

immune status, age, sex, and other covariates that affect susceptibility to

infections), physician prescription behaviour, and hospital infection control

practices.  These covariates may also influence each other (indicated by the

brackets [] around them in Figure 1.)  For example, an AIDS patient may

have food consumption and preparation behaviors and receive medical care

and prescriptions that differ from those of a non-AIDS patient. Risk

assessment helps to identify risk management options (acts) that decrease

adverse health consequences, taking into account the distribution of

covariates in the population.

Figure 1:  A Causal Graph for Health Risk Analysis

act → ∆ exposure  →  ∆ illnesses→   ∆ consequences → ∆QALYs

   ↑    ↑        ↑
           [behavior      susceptibility   treatment] = type of case

Technical Note:  Bayesian Network risk model.  A useful mathematical and

statistical framework for Figure 1 interprets it as a Bayesian belief network (BN) or

causal graph model (Greenland and Brumback, 2002;Chang and Tian, 2002).  Each

variable with inward-pointing arrows is interpreted as a random variable with a

conditional probability distribution that depends only on the values of the variables

that point into it.  Because this diagram has a decision node (“act”) and a value node

(“∆QALYs”), it is an example of an influence diagram (Owens et al., 1997).  The

essence of the forward Monte Carlo approach to modeling and evaluating uncertain

risks in this framework is to sample successively from the conditional distribution of

each variable, given the sampled values of its predecessors. Important micro-

biological processes, such as cross-contamination during processing, are represented
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only implicitly, e.g., by conditional probability distributions of microbial loads on

outgoing (processed) carcasses, given the microbial loads on incoming carcasses.

Algorithms to identify possible causal graph structures from data (and hence to test

whether hypothesized causal theories are consistent with data) have been developed

(e.g., Tsamardinos et al., 2003) but are not yet routinely applied in risk assessment.

Each choice of a risk management act in Figure 1 generates an

approximately Poisson-distributed (Feller, 1968) random number of

incremental illness cases (“responses”) caused or prevented each year in

each severity class (e.g., mild, moderate, severe, fatal) in the population (and

in each subpopulation, if there are several).  The expected health

consequences of this change can be calculated from the following three

components models, which are common to most risk assessments:

• An exposure model (the “act → ∆exposure” link in Figure 1).  For

microbial risk assessment, this link quantifies the average number of

contaminated units (e.g., servings or bacteria, depending on the dose-

response function, as discussed in Chapter 2) ingested per year, for

population risk; or average contaminated units ingested per capita-year,

for individual risks.  “Contaminated” here means carrying enough

pathogenic bacteria (possibly just one) to pose an elevated risk of food-

borne illness to susceptible consumers.  The number of contaminated

units ingested per year is typically Poisson-distributed, and so is fully

characterized by its mean.  The exposure model may depend on a

consumer’s “type”, i.e., on individual covariates such as food

purchasing, preparation and consumption variables that affect exposures.

• A dose-response or exposure-response model (the “∆exposure →
∆illnesses” link in Figure 1) that quantifies the probability of illness or

expected number of cases of each given severity (for infectious illnesses)

per contaminated unit ingested.  In general, this relation may also

depend on the consumer’s “type”, i.e., on the combination of covariate

values that affect risk for that individual, as well as on the dose ingested.

• A health consequence model (the “∆illnesses → ∆consequence” link in

Figure 1) quantifying probabilities of different health outcomes (e.g.,

survival vs. fatality, or number of QALYs lost) from each case.  These

outcome probabilities may depend on physician prescription behavior

and hospital infection control standards for different types of cases.

These three sub-models determine the expected illnesses and QALYs lost

per year in each severity class, for each choice of act.  Multiple bacterial

strains, food animals and commodities, and at-risk populations (perhaps

including groups receiving different medical treatments) can be included in a

risk assessment to quantify the total human health impact of changing
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animal drug uses.  Then, summing health impacts over all distinct

combinations of affected bacteria, foods, and target populations (each

combination corresponding to an instance of Figure 1) gives the total

probable change in human health consequences for the act.

Technical Note: Monte Carlo integration. If there are too many combinations for

explicit summation over all of them to be practical, but it is easy to generate random

samples from the joint distribution of the variables that determine risk, then Monte

Carlo simulation methods can be used to obtain accurate numerical approximations

of the average value of risk.  For example, suppose that the risk model is: risk = f(x
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).  Then Markov

Chain Monte Carlo (MCMC) simulation techniques, including Gibbs sampling

(Andrieu et al., 2003; Lange, 2003), can be used to generate random samples from

the joint PDF of x, i.e., from Pr(x) = Pr(x
1
, x

2
, …, x

n
).  Taking a simple arithmetic

average of values of f(x) for a sufficiently large random sample of x tuples will give

an accurate estimate of the true average risk, E
Pr(x)

[f(x)] implied by the risk model

consisting of f(x) and Pr(x).  Commercial risk analysis software tools such as

Analytica™, @RISK™, and Crystal Ball™ include forward-sampling Monte Carlo

simulation routines (including sampling plans and variance-reduction techniques to

reduce CPU time) that can generate estimated means, confidence bands, and entire

estimated probability distributions for f(x) and that facilitate specification and

documentation of risk models.  Vose (1998) and Cassin et al. (1998), respectively,

provide a basic introduction to Monte Carlo simulation in spreadsheet models for

microbial risk assessment and discuss how to use Monte Carlo simulation for tasks

such as research priority-setting and risk management decision-making.

The conceptual framework in Figure 1 can be implemented with more

or less sophistication. Perhaps the simplest useful approach is to estimate

each of the following three quantitative factors by a single number, for each

risk management act and path being evaluated:

• Exposure factor = contaminated servings ingested per capita-year;

• Dose-response factor = expected cases of illness per contaminated

serving ingested;

• Health consequence factor = expected QALYs lost (or illness-days

created, etc.) per case of illness.  (Alternatively, a vector of expected

numbers of different health outcomes can be estimated, e.g., mild,

moderate, severe, and fatal illnesses per case.)

In this “Rapid Risk Rating Technique” (RRRT) approach, each sub-model

corresponding to a horizontal link in Figure 1 is, in effect, reduced to a

single number.  Multiplying these numbers together, and then multiplying by

the number of people affected, for each causal path (i.e., for each bacterium-

food-human subpopulation combination of interest) for a risk management
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action, and then summing the resulting products over all causal paths,

provides an estimate of the total human health impact per year for that

action.  A more refined calculation can be made by considering how factors

change over time and then summing over time periods (perhaps with

discounting).  A simpler expedient is to assess and compare the steady-state

equilibrium annual risks for different risk management scenarios after all

transients have settled down.  Chapters 6 and 8 develop this approach.

At the other end of the sophistication spectrum, instances of Figure 1

can be assessed and applied to risk estimation problems using conditional

probability calculation algorithms developed for Bayesian Networks and

causal graphs (Chang and Tian, 2002).  In this case, hazard identification

can be thought of as identifying instances of Figure 1 that are consistent with

available data.  Statistical methods are available to test whether specified

causal graph models are indeed consistent with data (Greenland and

Brumback, 2002; Shipley, 2000) and practical algorithms have been

developed to identify potential causal graph models from multivariate data

(Aliferis et al., 2003; Tsamardinos et al., 2003).  The remaining steps in the

risk assessment process can be interpreted as quantifying and applying the

Bayesian Network model.  Within the Bayesian Network framework, the

simple approach of multiplying exposure, dose-response, and consequence

factors together generalizes to allowing arbitrary probability distributions for

inputs and conditional probability relations or functions at the nodes to be

combined (composed) via Monte Carlo simulation (Andrieu et al., 2003) to

derive the joint probability distributions of outputs.

Although the Bayesian Network modeling perspective is potentially

very useful in risk assessment, it has not been widely applied in animal

antibiotic risk assessment and microbial risk assessment, although this is

starting to change (e.g., Parsons et al., 2005).  Until recently, many

biological scientists have been unaware of statistical methods for specifying

and testing causal hypotheses objectively using observational data (Shipley,

2000), leading to frequent reliance on expert judgment as the best known

approach.  Empirically, however, human judgments are notoriously

unreliable in matters of statistical and causal inference and risk management

decision-making (Plous, 1993).  They often reflect preconceptions

(Fugelsang and Thomson 2003), perceived plausibility of envisioned

mechanisms (Ahn and Bailenson, 1996; Tangen and Allan, 2004), focus on

human error and blame (Morris et al., 1999), and cognitive heuristics and

biases (Hagmayer and Waldmann, 2002; Bornstein and Emler, 2001),

including evaluating prospects by comparison to inferior (hence, normatively

irrelevant) ones rather than based only on their own consequences (Stewart

et al., 2003; Schwartz and Chapman, 1999, for medical decisions).  These

factors can lead to incorrect inferences and predictions, pursuit and
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inappropriate use of normatively irrelevant information in decision-making

(Bastardi and Shafir, 1998) and ineffective decisions (Elstein, 1999 for

individuals; Jones and Roelofsma, 2000 for teams).

Bayesian Network methods and objective statistical tests for potential

causality, such as conditional independence tests (Shipley, 2000; Greenland

and Brumback, 2002), appear promising for achieving more effective, data-

driven risk assessments.  They can also be used to encode expert judgments

when necessary. Development and use of Bayesian Networks and related

methods for risk assessment and comparison to other approaches (such as

discrete event simulation modeling) has begun (e.g., Parsons et al., 2005).

3. INTRODUCTION TO HAZARD IDENTIFICATION

Risk assessment begins with hazard identification. Hazard

identification specifies the scope of the assessment – what specifically will

be assessed? – and summarizes empirical evidence that exposure to a

specific agent causes specified adverse health effects in exposed individuals

or populations.  Such agents, called hazards, may include food-borne

pathogens that can make consumers sick and resistance determinants that

make bacteria resistant to antibiotic treatment, leading to increased illness-

days, QALYs lost per case, or other clinical harm.

3.1  Definition of Hazard Identification

The Codex Alimentarius Commission defines hazard identification for

food safety as “The identification of biological, chemical and physical agents

capable of causing adverse health effects and which may be present in a

particular food or group of foods” (Procedural Manual of the Codex

Alimentarius Commission - Twelfth Edition).  These agents, i.e., sources of

risk, are the hazards. Thus, a hazard is defined as a potential cause of an

adverse human health effect.  Potential adverse human health effects or

consequences of exposures can include increased frequency, duration, or

severity of food-borne illnesses, or treatment failures resulting in clinical

harm (e.g., increased duration or severity of illnesses).

Example:  Alternative Definitions of Hazard Identification

Problem:  A risk assessment team identifies the hazard that it will investigate as:

“Antibiotic A-resistant Campylobacter in chickens caused by use of antibiotic A as a

growth promoter in chickens”, where “A” is the name of some specific antibiotic or

class of antibiotics (e.g., “A” might be Tylosin Premix or macrolides.)  Does this
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definition give an adequate description of the hazard to be investigated?  Why or

why not?  Does identifying “human illnesses caused by A-resistant Campylobacter

with A-resistance resulting from use of A in chickens” as the hazard of concern meet

the requirements for a useful hazard identification?

Solution:  The phrase “A-resistant Campylobacter in chickens caused by use of

antibiotic A as a growth promoter in chickens” does not specify any adverse human

health effect caused by A-resistance, so it does not adequately define a hazard.  Even

if the phrase is amended to “human illnesses caused by A-resistant Campylobacter

with A-resistance resulting from use of A in chickens”, it is still not fully

satisfactory.  For example, suppose, for purposes of conceptual clarity only, that

resistance does not affect human health (i.e., resistance has no clinical relevance).

Then studying “human illnesses caused by A-resistant Campylobacter with A-

resistance resulting from use of A in chickens” would not be studying a source of

human health harm caused by use of A in chickens (since, by hypothesis, A-

resistance is irrelevant to human health.).  In other words, despite the appeal of the

phrase as apparently referring to a hazard, in fact, no hazard has been identified in

the sense meant in risk analysis – as a potential cause of an adverse human health

effect.  A more satisfactory definition of the hazard in this case would be “A-

resistant Campylobacter in chicken, caused by use of antibiotic A in chickens, that

leads to increased loss of QALYs among human Campylobacteriosis patients treated

with antibiotic A.”  In the hypothetical example where it is known that the increase

in QALYs lost is zero, the hazard identification would show that there is no hazard

and no risk, as common sense requires.

As illustrated in this example, it is important to avoid confusing descriptions

or naming of hazards (real or suspected) with identification of hazards based on

empirical evidence that the specified agents do in fact cause the specified health

harm.  Describing a potential hazard, i.e., one that may or may not cause adverse

effects, can help specify the scope of the problem to be addressed by risk

assessment, but is not the same as identifying an actual hazard.  Unfortunately, many

authoritative discussions of hazard identification for microbial risk assessment

(MRA) propagate confusion on this point.  For example, the Codex Alimentarius

Commission states that “For microbial agents, the purpose of hazard identification is

to identify the microorganisms or the microbial toxins of concern with food.”

(http://www.foodriskclearinghouse.umd.edu/pversion/Codex_MRA.htm). Here, the

implied definition of hazards as agents that cause adverse effects is replaced with a

more ambiguous definition as agents that are “of concern” (to whom and for what

reasons being left unspecified.)  The World Health Organization describes hazard

identification as “The identification of known or potential health effects associated

with a particular agent” (http://www.who.int/foodsafety/micro/riskassessment/en/).

This description drops the crucial ingredient of causality altogether.
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This book will use the definition of hazards as agents that can cause adverse

human health effects, not agents that are of concern for other reasons or that are only

statistically associated with adverse health effects but that do not cause them.

3.2  Purposes and Goals of Hazard Identification

Hazard identification serves the following main purposes:

1. Rapidly screen potential hazards by identifying whether available data

support the hypothesis that specific adverse health effects might be

caused by specific exposures or activities. Hazard identification can

benefit by applying formal methods of causal analysis (e.g., Shipley,

2000) to determine whether hypothesized causal relations linking acts to

exposures and to adverse health responses and consequences are

consistent with available data.

2. Identify causal relations between exposures to specific foodborne

hazards and specific adverse human health effects.  To support risk

management decision-making, it is often helpful to identify exposures or

hazards resulting from controllable decisions or behaviors.

3. Identify risk factors, behaviors, and exposure conditions that increase

risks to specific exposed populations (e.g., the old, the young, the

immuno-compromised, etc.)

4. Present and evaluate empirical evidence for and against the hypothesis

that exposures to specific food-related hazards (typically resulting from

controllable decisions, e.g., on use of feed additives) cause specific

adverse human health effects.   This is somewhat analogous to the US

EPA’s statement that, for environmental hazards, “The objective of

hazard identification is to determine whether the available scientific data

describe a causal relationship between an environmental agent and

demonstrated injury to human health or the environment”

(http://www.bethel.edu/~kisrob/hon301k/readings/risk/RiskEPA/riskepa1.html).

If the hazard is non-zero, what agent should be considered “the cause”

of adverse consequences?  Is it the bacteria involved, the resistance

determinants that they carry, use of animal and/or human antibiotics that

select for those determinants, or failure to properly prepare, cook, or handle

food to eliminate contamination?  In reality, joint causation is common, and

the best answer depends on the specific risk management decisions that the

hazard identification is intended to support.  In general, any event or

condition, such as exposure to a hazard or decreased immunity to the effects

of exposure, that hastens the occurrence of an adverse effect (e.g., by

stochastically reducing the random time until its occurrence) can be viewed

as a contributing “cause” of the effect.  Causes of causes are also (indirect)
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causes.  (For more on the philosophical definition and ambiguities of

“causation”, see Williamson, 2005.)  Thus, “the cause” of an adverse health

effect is often not uniquely defined.  Nonetheless, as a practical matter, it

often suffices for purposes of effective risk management to be able to predict

the effects of alternative risk management interventions on the rates at which

adverse events of different severities occur.  Risk assessment provides

methods to do so.  Hazard identification helps to identify interventions that

might be able to cause desired changes in human health effects, typically by

reducing exposures to hazardous agents.

Example:  Propagation of Causal Effects vs. “But-For” Causation

In the following diagram, a change in animal antibiotic use (∆AAU)

propagates in the direction of the arrows to cause a change in human illnesses per

year:

∆AAU →  ∆ill flocks → ∆CFUs per serving → ∆illnesses per year

That is, a change in AAU causes a change in the fraction of flocks that are ill (e.g.,

airsacculitis-positive or necrotic enteritis positive at the time of slaughter, for a

chicken flock), which changes the microbial load (shifting the frequency distribution

of colony forming units, CFUs, of pathogenic bacteria) on meat reaching consumers,

which in turn affects the number of illnesses per year among people consuming the

food commodity.  The “cause” of the change in illnesses per year in this diagram is

not unique:  any of the preceding changes can be identified as a contributing cause.

(For example, in a legal argument using “but for” causation, it would be true that the

change in ill flocks would have had no impact on illnesses per year if processing or

cooking had been completely effective in killing all bacteria, so that ∆CFUs per

serving would not have changed.  Conversely, the owners of these processes could

correctly claim that the change in illness rates would not have occurred “but for” the

change in animal antibiotic use that changed animal illness rates.)  However, if risk

analysts understand how to quantitatively predict effects of changes in this model,

they can calculate what change in AAU (or other changes at intermediate points) are

needed to reduce illnesses per year by a given amount.  They can determine what

reductions can be achieved (and how) by optimizing over a given set of feasible

interventions.  Thus, what is required for effective risk management is not a unique

definition of the cause of ∆illnesses per year, which does not exist, but only an

adequate quantitative understanding of how changing controllable inputs will affect

the output of concern, illnesses per year.  That is the task of risk assessment.

Ideally, a hazard identification for microbial risk assessment should

identify the microorganism that causes specific diseases or adverse health

effects (e.g., using Koch’s postulates), elucidate the infection and disease
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process (including the conditions under which infection and illness occur);

identify possible transmission routes (e.g., food, water, vectors); and identify

covariates (e.g., host immune status, other risk factors) that can interact with

or affect the relation between exposure and risk (Haas et al., 1999).  A

hazard identification for antimicrobial risk assessment should also identify

the causal relation between use of antimicrobial drugs in animals and the

levels of resistant pathogens in human patients, as well as the causal relation

between these levels and the frequency and magnitude of increased mortality

risks, morbidity risks, and treatment failure rates.

If objective statistical tests for hazard identification do not identify a

causal relation between decisions (or actions), exposures, and human health

risks, then this result should be stated, along with discussion of the statistical

power of the tests used for the data examined.  In this case, risk assessment

can still be carried out, but it becomes contingent on the assumption that a

risk exists.  Such a contingent risk analysis can be useful if it shows that

risks are small, by providing a plausible upper bound on the true

(conjectured but perhaps non-existent) risk.  But it may not be useful for

accomplishing other risk analysis goals, such as guiding rational choice

among expensive risk management alternatives, if the contingent risk

estimates are large enough so that intervention may be warranted.

4. METHODS OF HAZARD IDENTIFICATION

4.1  Causal Inference From Epidemiological Data

Table 1 outlines steps for forming and testing causal hypotheses about

exposure-response relations using epidemiological data, such as case-control

studies of risk factors associated with food-borne illnesses (i.e., comparing

exposure histories of ill cases against those of matched well controls), or

surveillance data on illness rates in groups known to have different

exposures.  As more of these steps are completed, the empirical support

increases for an inference that there is a causal relation between exposure

and risk. Most statistical methods in epidemiological risk analysis focus on

steps 1 to 3, i.e., identifying non-random associations and then eliminating

potential biases and confounders as likely explanations.  These steps can

often be carried out using data from observational studies without requiring

direct manipulations and experimental verification of predictions.  The main

method for doing so is sometimes called the refutationist approach

(Maclure, 1990, 1991).  It consists of systematically enumerating possible

competing, non-causal explanations for the observed data, and then

eliminating each of these alternative potential explanations (if possible)

using statistical tests and available data.
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Table 1:  Steps to Establish a Causal Exposure-Risk Relation

1. Identify a statistically significant exposure-response association.  Demonstrate

that there is a non-random positive statistical association between exposure

histories or events and adverse human health consequences in an

epidemiological data set.  Case-control, prospective cohort, or other cross-

sectional or longitudinal epidemiological data may be used for this purpose.

2. Eliminate confounding as a possible explanation of the association.  Show that

it is not fully explained by other (non-exposure) causes such as differences in

lifestyle factors, age, or exposures to other confounders (Grimes and Shulz,

2002; Feldman, 1998; Greenland and Morgenstern, 2001).

3. Eliminate biases from sampling, information collection, and modeling choices

as possible causes.  Show that the association is not explained by biases in who

was selected (as study subjects or as controls) or in how information about them

was collected and analyzed.  (Choi and Noseworthy, 1992; Deeks et al., 2003)

4. Test and confirm hypothesized causal ordering and conditional independence

relations among observed values of variables.  For example, show that the

response is not conditionally independent of its hypothesized direct causal

predecessors (e.g., exposure), but that it is conditionally independent of more

remote causal predecessors, given its direct predecessors.  (Shipley, 2000)

5. Confirm efficacy of interventions.  Confirm that changes in the levels of direct

causal predecessors (e.g., exposures) are followed by the predicted changes in

the levels of the variables that they affect.  This may often be done from time

series observations, even if direct experimental manipulation is impossible,

using methods for interrupted time series analysis, intervention analysis, change

point detection, and quasi-experiment design and inference (e.g.., Swanson et

al., 2001; Green, 1995).

6. Identify and elucidate causal mechanism(s).  Explain how changes propagate

via one or more causal paths to produce effects.  A "causal path" is a sequence

of steps in which completion of the earlier steps creates conditions that trigger

or increase occurrence rates of subsequent steps.  Such steps may be identified

from experimental data and/or by applying generally accepted laws.

It is traditional in epidemiology to apply a set of criteria or tests

(especially ones usually attributed to Sir Austin Bradford Hill, with

numerous variations and refinements) to help judge whether an observed

statistical association between exposure and adverse health effects is likely

to be causal.  They include the strength, consistency, specificity (to what

extent is the hypothesized cause present in all and only those cases in which

the effect occurs?) temporality (does the hypothesized cause precede its

hypothesized effect?), biological gradient or dose-response (is presence of

more of the hypothesized cause associated with more of the effect?),

biological plausibility, and consistency and coherence with other knowledge
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of the statistical associations between exposures and the effects that they are

hypothesized to cause (e.g., Weed, 2000; Surgeon General’s Report, 2004).

Unfortunately, these traditional criteria or tests have no necessary relation to

causation, since systematic errors in sampling or in modeling may mislead

them, as was well recognized by Hill himself (Phillips and Goodman, 2004).

For example, an erroneous statistical model (such as the linear no-threshold

model E(y | x) = Kx, if x and y are statistically independent random

variables, each uniformly distributed between 0 and 1) can create an

apparent strong, consistent statistical association (e.g., a K value statistically

“significantly” greater than zero in this mis-specified model) that may seem

biologically plausible if prior beliefs incline strongly in this direction (e.g., if

x is interpreted as an exposure that is likely to cause excess risk of adverse

response y).  In a retrospective case-control study where hypothesized causes

always precede observed effects (trivially satisfying a non-demanding

version of the temporality criterion), one might then be well on the way

toward establishing a case for “causality” using traditional criteria, even if

there is in fact no causal or statistical relation between exposures and effects

and the only source of association is an incorrect model.  A variety of other

modeling biases (Table 2), as well as omitted variables and residual

confounding (Feldman, 1998), can also create associations that satisfy the

traditional criteria in the absence of true causation.  Conversely, strong

causal relations may be present that do not satisfy these criteria.

Example:  Unvalidated Modeling Can Create Spurious Associations

The following 2 x 2 table shows the mean days of illness (days of diarrhea)

and numbers of observations in a case-control study of campylobacteriosis.  The two

dimensions are: foreign-travel related vs. domestically acquired cases of

campylobacteriosis; and ciprofloxacin-resistant vs. ciprofloxacin-susceptible cases.

While foreign travel is clearly strongly associated with acquisition of ciprofloxacin-

resistant cases (29/77 of foreign travel cases are resistant compared to only 41/570

among non-foreign travel cases), and also with longer mean durations of diarrhea,

ciprofloxacin resistance is clearly not associated with longer mean duration of

diarrhea among domestically acquired cases 6.9 days vs. 6.9 days).

Ciprofloxacin Resistance

Foreign Travel Yes No

Yes 8.1 days, n = 29 7.6 days, n = 48

No 6.9 days, n = 41 6.9 days, n = 529

Note: Patients not reporting diarrhea, with continued diarrhea, not able to estimate duration of

diarrhea, or not responding to the foreign travel question were not included.

Despite this absence of an empirical relation between fluoroquinolone (here,

ciprofloxacin) resistance and days of illness among domestic cases, Nelson et al.
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(2004) used a statistical model with variable-selection and subset-selection

conditions [but without appropriate model diagnostics, validation tests, or sensitivity

analyses reported (Greenland, 1989)] to conclude that “persons with ciprofloxacin-

resistant infection had a longer mean duration of diarrhea than did the persons with

ciprofloxacin-susceptible infection (P = 0.01); this effect was independent of foreign

travel.”  (Engberg et al. (2004) used a similar modeling methodology to reach

similar conclusions for a different data set.)  The surprising conclusion that the

effect is “independent of foreign travel”, and related policy-relevant conclusions

about domestic use of fluoroquinolones in chickens threatening their efficacy in

human medicine, were apparently based on a misinterpretation of zero regression

coefficients in the unvalidated statistical model as indicating statistical independence

of foreign travel, even though the data clearly show such dependence.  When model

and data disagree this way, the model’s conclusions should be rejected and the

model should be refined to better describe the data (Greenland, 1989).

In general, researchers and risk assessors should be very careful not to

search for and adopt combinations of modeling assumptions that support

specific beliefs but that do not fit the data.  Analysts and decision-makers

alike should start with healthy scepticism toward model-driven conclusions

and not necessarily accept them unless and until appropriate model

diagnostics and results of model validation tests (Gelman et al., 2005) and

sensitivity analyses have been reported (Greenland, 1989) and corrections

for model selection biases and multiple testing biases have been made.

Uncorrected multiple testing bias, in which statistical modeling

generates false positive results at far higher rates than reported significance

levels and P-values suggest when researchers (or computer programs) search

among many alternative sets of modeling assumptions and report only

apparently significantly positive results, has been too common in published

epidemiology studies (Ottenbacher, 1998). Automated stepwise variable

selection routines in logistic and other multivariate regression models can

generate high rates of false-positive associations even in random data and

create spurious non-zero regression coefficients for real-world data sets (e.g.,

Austin and Tu, 2004). Such errors can be avoided in many ways (Cox, 2001,

Chapter 3), e.g., by using non-parametric models, appropriately reduced P-

values, re-sampling (cross-validation or bootstrap) estimates of true error

rates (Romano and Wolf, 2005), and Bayesian Model-Averaging (Wang et

al., 2004).  Risk assessors should apply such methods to avoid drawing false

statistical and causal inferences. (Technically inclined users of risk

assessment can also check that the presented conclusions follow robustly

from the underlying data, rather than being artifacts of modeling, before

accepting them at face value.)  This is a key aspect of the refutationist

approach for identifying genuinely causal exposure-response relations.
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4.2  Refuting Non-Causal Explanations

Many epidemiologists have recognized that, to draw valid causal

inferences, it is necessary to refute competing (non-causal) hypothesized

explanations for observed exposure-response associations (Maclure, 1990,

1991). Table 2 summarizes common competing explanations (mainly,

confounding and/or sampling, information, or modeling biases) and some

suggested statistical methods to refute them (Cox, 2001, Chapter 3.)

Table 2: Potential Non-Causal Explanations for Exposure-Response Associations

Potential Non-Causal

Explanations

Methods to Refute Potential Explanations

(see Cox, 2001 for details)

Modeling Biases

Variable selection bias (includes

selection of covariates in model)

Bootstrap variable selection, Bayesian model averaging

(BMA), cross-validation for variable selection.

Omitted explanatory variables

(including omitted confounders

and/or risk factors)

Include potential confounders in an explicit causal graph

model; test for unobserved latent variables

Variable coding bias (i.e., how

variables are coded may affect

apparent risks)

Use automated variable-coding methods (e.g.,

classification trees, Lemon et al., 2003).  Don’t

code/discretize continuous variables.

Aggregation bias / Simpson’s

paradox

Test hypothesized relations at multiple levels of

aggregation.  Include potential confounders in an

explicit causal graph model.

Multiple testing/multiple

comparisons bias

Use current (step-down) procedures to adjust p-values

(Romano and Wolf, 2005)

Choice of exposure and dose

metrics; choice of response

effect definitions and measures

Use multiple exposure indicators (e.g., concentration

and time). (Don’t combine.)  Define responses as

survival functions and/or transition rates among

observed health states.

Model form selection bias and

uncertainty about the correct

model for exposure-response

relation and other relations.

Use flexible non-parametric models (e.g., smoothers,

wavelets); Bayesian Model-Averaging (BMA).  Report

model diagnostics and sensitivity analyses of results to

model forms (Greenland, 1989).

Missing data values can bias

results

Use data augmentation, EM algorithm, MCMC

algorithms (Schafer, 1997)

Measurement and

misclassification errors in

explanatory variables

Use Bayesian measurement error models, data

augmentation, EM algorithm, and other missing-data

techniques (Schafer, 1997; Ibrahim et al., 2005)

Unmodeled heterogeneity in

individual response

probabilities/parameters

Latent variable and mixture distribution models, frailty

models of inter-individual variability

Biases in interpreting and

reporting results

Report results (e.g., full posterior PDFs) conditioned on

data, models, assumptions, and statistical methods.

Show sensitivities.
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Sample Selection Biases

Sample selection (sample does

not represent population for

which inferences are drawn)

Randomly sample all cohort members if possible

Data set selection bias (i.e.,

selection of a subset of available

studies may affect results)

Use meta-analysis to show sensitivity of conclusions to

studies.

Use causal graph models to integrate diverse data sets

Health status confounding,

Hospital  admission bias (and

referral bias)

If possible, use prospective cohort design.  Use

population-based cases and controls (Choi and

Noseworthy, 1992)

Selective attrition/survival (e.g.,

if exposure affects attrition rates)

Differential follow-up loss

Use a well-specified cohort. "Include non-surviving

subjects in the study through proxy interviews" (Choi

and Noseworthy, 1992). Compare counter-factual

survival curves

Detection/surveillance bias Match cases to controls (or exposed to unexposed

subjects) based on cause of admission.

Membership bias (e.g., lifestyle

bias, socioeconomic history)

• In cohort studies, use multiple comparison cohorts.

• Hard to control in case-control studies.

Self-selection bias;

Response/volunteer bias

• Achieve response rate of at least 80% by repeated

efforts.  Compare respondents with sample of non-

respondents

Information Collection Biases

Intra-interviewer bias Blind interviewers to study hypotheses, subject

classifications

Inter-interviewer bias Use same interviewer for study and comparison groups

Questionnaire bias Mask study goals with dummy questions; avoid leading

questions/ leading response options

Diagnostic suspicion bias

Exposure suspicion bias

Hard to prevent in case-control studies. In cohort

studies, make diagnosis and exposure assessments blind

to each other.

Yet, identifying alternative explanations to be refuted can be perceived

as unhelpful when it is confined to merely listing logical possibilities,

without addressing their plausibility and likely impacts on risk estimates.

For example, Savitz et al. (1990) state that "Biases that challenge a causal

interpretation can always be hypothesized. …It is essential to go beyond

enumerating scenarios of bias by clearly distinguishing the improbable from

the probable and the important from the unimportant."  They argue that those

who do not like a causal interpretation of epidemiological data might readily

raise speculative hypothetical potential biases and confounders that can not

all be refuted with available resources.  This strategy could prevent

conclusions about causation from being drawn when common sense and

sound policy would be better served by accepting that causation is plausible,

even if it is not practical to refute all conceivable alternative explanations.

On the other hand, accepting a statistical association as causal without

rigorously examining and excluding competing hypotheses may make it too

easy to launch expensive risk management control actions that would be
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effective if the association were causal, but that will not produce the

anticipated benefits otherwise.

A partial solution to this dilemma is to focus on those non-causal

explanations that appear to be likely and important (Savitz et al., 1990) i.e.,

those (if any) that might plausibly explain most or all of the observed

exposure-response associations.  Appropriate data analysis methods can

often reveal which potential biases and confounders are most likely to

provide non-causal explanations in specific studies.  They can also help to

eliminate logically conceivable biases that do not play a large role.  Most

importantly, they can help to eliminate the most likely and important non-

causal explanations when they are incorrect.  Evidence that makes non-

causal explanations unlikely makes causal explanations more likely, even if

the evidence is not definitive.

In summary, the refutationist approach to hazard identification

suggests a key necessary criterion that a claim of causation for an observed

exposure-response association must satisfy to be well supported:  have

competing non-causal explanations been eliminated?  If so, then the

hypothesis of causation is supported by the data used to refute them.

Otherwise, the unrefuted potential competing explanations undermine the

conclusion that the association is causal (Maclure, 1991).

Example:  Does Eating Chicken Cause Campylobacteriosis?

It has long been accepted by many food safety regulators and epidemiologists

that the primary cause of campylobacteriosis in the United States and other

developed countries is consumption of chicken (e.g., FDA, 2001).  The underlying

logic is simple:  chicken carry Campylobacter, people eat chicken, therefore people

can get campylobacteriosis from eating chicken.  Many peer-reviewed articles cite

case-control studies showing significant statistical associations between chicken

consumption and risk of campylobacteriosis (e.g., Skirrow, 1991).  Thus, hazard

identification in this case might seem as simple as stating that “obviously” chicken

is a source of Campylobacter that can infect people.  But the refutationist approach

demands more. It requires that associations between chicken consumption and risk

of campylobacteriosis must not be fully explained away by confounding.

Data from some recent case-control studies have revealed that, perhaps

surprisingly, consumption of chicken meals at home (prepared in any of a variety of

ways, as well as purchasing, handling, and preparing raw chicken) are highly

statistically significantly associated with reduced risk of campylobacteriosis,

perhaps due to acquired immunity (Cox, 2002). The relative risk of

campylobacteriosis among people eating chicken at home compared to other people

is as low as 0.6 in some studies (Effler et al., 2001, Table 1).  On the other hand,

eating chicken (and other meats) in restaurants is associated with significantly
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increased risk of campylobacteriosis (e.g., Friedman et al., 2004).  Eating

undercooked chicken is also associated with restaurant dining (and with

consumption of other undercooked meats) and with increased risk of

campylobacteriosis.

Given these patterns, an adequate hazard identification supporting the causal

conclusion that chicken is indeed a likely source of campylobacteriosis risk must

first refute the alternative hypothesis that any positive association between

consumption of (undercooked) chicken and risk of campylobacteriosis is fully

explained away by confounders such as restaurant dining (and other commercial

dining) and kitchen hygiene.  In causal graph terms, it is necessary to show that the

correct diagram looks something like model A:

Model A:  restaurant dining →  undercooked chicken consumption → risk

rather than like model B:

Model B:  undercooked chicken consumption ← restaurant dining → risk.

To empirically test causal graph model A vs. causal graph model B using data, it

suffices to show whether risk is conditionally independent of undercooked chicken

consumption, given restaurant dining information (as in model B but not model A)

or whether risk is conditionally independent of restaurant dining information given

information on undercooked chicken consumption (as in model A but not model B).

Shipley (2000) and Frey et al., 2003 discuss appropriate statistical tests.  Limited

tests done to date tend to support model B rather than model A, suggesting that the

“obvious” and plausible hypothesis that chicken consumption is the predominant

driver of human campylobacteriosis risk may not be correct (Cox, 2002).  Indeed, as

noted by Canadian investigators, “Independent risk factors for campylobacteriosis

(eating raw, rare, or undercooked poultry; consuming raw milk or raw milk

products; and eating chicken or turkey in a commercial establishment) account for <

50% of cases in Quebec. Substantial regional and seasonal variations in

campylobacteriosis were not correlated with Campylobacter in chickens and

suggested environmental sources of infection, such as drinking water.” (Michaud et

al., 2004).

The preceding example illustrates the potential gap between intuitive

judgment-based hazard assessment and formal statistical data-driven hazard

assessment.  A focus on data analysis and refutationist logic has led some

investigators to conclude that chicken consumption has not been established

empirically as a primary source of Campylobacteriosis in the United States

and other developed countries, however appealing the hypothesis may be to

common sense, and despite much supporting opinion and many literature
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citations for it.  (The cited articles generally do not rigorously examine or

refute competing explanations and interpretations of the data, however; see

Phillips et al., 2004)  Many regulators and other stakeholders perceive this

empirical, refutationist approach as unconvincing at best and as mistaken,

misleading, and obstructionist at worst (e.g., Tollefson, 2004).  Opinions are

sharply divided on whether refutationist criteria should be met (e.g., by

carrying out conditional independence tests to discriminate among

competing causal models for the data) before acting on the assumption that

the common-sense interpretation is correct.  Yet, from the standpoint of

sound risk assessment methodology, the answer is clear:  the burden of

hazard identification cannot be adequately met – that is, met in such a way

that risk assessment results can be relied on to help inform and improve risk

management decisions – without presenting empirical evidence of a true

cause-and-effect relation between exposure and adverse effects.  Even

intuitively “obvious” hazard identification hypotheses made without

adequate empirical support often eventually prove to be incorrect, and they

should be treated with scepticism until empirical evidence of causation has

been supplied and plausible competing hypotheses have been ruled out.

Example: Mortality Associated with Foodborne Bacterial Infections

In contrast to conventional clinical wisdom (e.g., Andrews et al., 1998), a

study by Helms et al (2003) reported a surprisingly strong, significant association

(relative mortality ratio = 2.56) between common foodborne illnesses, including

campylobacteriosis and salmonellosis, and increased short term and long term

mortality.  These authors and co-workers have published subsequent studies with

similar methods and findings (e.g., Helms et al., 2005).  However, their analysis

compared ill cases with healthier (general population) controls.  This invites a

plausible alternative hypothesis:  that sick people are more likely to become victims

of foodborne infections and are also likely to die sooner than well people, but

underlying illness causes both, rather than foodborne infections causing early

mortality. In causal graph notation, the following model B competes with model A

as a potential explanation for the reported statistical association between foodborne

infections and mortality risk:

Model A:  underlying illness →  foodborne infection risk → mortality risk

vs.

Model B:  foodborne infection risk ←  underlying illness → mortality risk

To help refute this alternative explanation (model B),  a “comorbidity index” was

used to adjust for the fact that cases were much more likely than controls to be have
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serious underlying illnesses (such as AIDS, metastatic cancers, and lymphomas or

leukemias). However, the comorbidity index adjustment used is far from perfect.

For example, in a study of its use in predicting lung cancer survival, it explained

only 2.0% of the variation in survival (Tammemagi et al., 2003).  It has not been

validated for gastrointestinal infections in AIDS and leukemia patients. Thus, while

Helms et al. relied on an index that may account for very little of the variance in

mortality rates, and attributed the remainder to bacterial pathogens, differences

between cases and controls in the prevalence of serious underlying illness might

provide a more plausible explanation.  This potential confounder was not refuted as a

plausible explanation of the reported association.  Severe underlying illness (such as

AIDS) acts as an incompletely controlled confounder, predicting both increased

mortality rates and increased risk of campylobacteriosis and salmonellosis

infections. The comorbidity index does not fully reflect mortality consequences of

illness.  Hence, residual confounding by illness status, even after conditioning on the

index, can create a statistical association between infection and mortality, even if the

former does not cause the latter.  Unless and until confounding by disease status is

ruled out as a plausible explanation for the reported association between bacterial

infections and subsequently elevated mortality rates, a causal interpretation of the

association would not be justified (Feldman, 1998).

As in the previous example, it is natural to question whether public health is

truly best served by insisting on a rigorous refutation of competing explanations

before accepting a causal interpretation (model A) for the observed statistical

association. However, in this case, the required refutation can be accomplished quite

easily (if the suggested causal interpretation in model A is correct) by showing that

individuals with the same underlying disease status (e.g., otherwise healthy

individuals), who differ only in whether they have foodborne infections, differ

significantly in their subsequent morbidity rates.  This test should be

straightforward, and there seems little reason not to apply it.

Example:  Caveats for Model-Based Epidemiological Associations

One approach to assessing the potential causal relation between chicken

consumption and fluoroquinolone resistance is to examine the associations between

them in case-control data.  For example, Kassenborg et al. (2004) reported that

“When patients with domestically acquired fluoroquinolone-resistant

Campylobacter infection were compared with matched healthy control subjects in a

multivariate analysis, those infected were 10 times more likely to have eaten chicken

or turkey cooked at a commercial establishment (18 [55%] of 33 case patients vs. 7

[21%] of 33 controls; matched OR, 10.0; 95% CI, 1.3-78). … This study provides

additional evidence that poultry is an important source of domestically acquired

fluoroquinolone-resistant Campylobacter infection.”

Such a strong association, if it were truly present in the data set, could be very
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useful as a starting point for hazard identification.  At a minimum, it would

convincingly establish that there is a strong association to be explained.  But

examination of the raw data in this case (from the same case-control study reported

on by Cox, 2002; Friedman et al., 2004; and Nelson et al., 2004, discussed in

previous examples) shows that the reported association is not actually present in the

raw data.  Rather, it appears to be an artifact of the specific statistical modeling

choices and variables selected, and only achieves apparent statistical significance

when the model uncertainty (Viallefont et al., 2001) created by this selection is

improperly ignored.

Reanalysis of the same data (Cox, 2004) reveals that the reported findings are

highly sensitive to the subset of risk factors considered, the choice of variable-

selection algorithms (e.g., forward vs. backward stepwise variable selection), the

selection of a model form (e.g., logistic regression vs. non-parametric alternatives),

and treatment of missing data.  The claimed confidence interval for the matched OR

excludes 1 (no association) only if uncertainties due to these modeling choices are

neglected.  Slight variations in modeling approach (e.g., using backward vs. forward

stepwise variable selection vs. Bayesian model-averaging) eliminate the claimed

finding of a positive association between fluoroquinolone-resistant

campylobacteriosis and poultry consumption.  (Also, of course, 55% is not usually

considered “10 times more likely” than 21%.  The reported matched OR of 10 is not

an empirical finding, but only a model-based prediction from an unvalidated logistic

regression model, for which appropriate model diagnostics (Bagley et al., 2001)

have not been presented.)  Thus, modeling biases have not been refuted as plausible

explanations of the claimed association.

Non-parametric techniques such as classification tree analysis (Lemon et al.,

2003) can help to avoid parametric model-selection biases.  Kassenborg et al. state

that “In our final multivariate model, we examined the following risk factors: eating

chicken or turkey cooked at a commercial establishment, eating in a non–fast food

restaurant, using antacids, and eating nonpoultry meat at home. Using this model, we

found that eating chicken or turkey at a commercial establishment was the only risk

factor that remained independently associated with illness” (emphasis added).  By

contrast, when we examined the same data set using classification tree analysis, we

discovered that exposure to ground beef outside the home and consumption of raw

milk both also appear to be potentially significant risk factors for fluoroquinolone-

resistant campylobacteriosis. Chicken consumption as a whole and chicken

consumption in commercial establishments have non-significantly negative

associations with fluoroquinolone-resistant campylobacteriosis.

In summary, the apparent dramatic association presented is highly sensitive to

specific statistical modeling choices.  Different choices, or use of non-parametric

methods to avoid having to make such choices, lead to very different conclusions.

Thus, the reported significant strong association between poultry consumption and

domestically acquired fluoroquinolone-resistant Campylobacter infection appears to
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be a theoretical implication of the particular unvalidated model selected by the

authors that disappears when less restrictive modeling assumptions are made.  It is

not a robust feature of the raw data.  Therefore, model selection bias remains a

plausible, unrefuted alternative (non-causal) explanation for the reported association.

4.3  Seeking Positive Evidence for a Causal Relation

In addition to statistical tests for refuting hypotheses that offer non-

causal explanations for observed associations, there are several ways to build

positive evidence for a true causal relation when one exists.  On the

biological side, hazard identification can draw on knowledge of infectious

diseases, epidemiological data, and clinical microbiology to create testable

hypotheses about causal relations among decisions, exposures, and health

consequences (Haas et al., 1999).  On the statistical side, hazard

identification can apply methods of causal analysis to identify the decision-

exposure and the exposure-health effects links in the following causal chain:

decisions → exposures → health effects ← covariates.

Technical Note:  Causal graph terminology.  As previously noted, in such a

diagram, the conditional probability distribution of each quantity depends only on

the values of the quantities that point into it, if any.  (See Chapter 1 of Shipley, 2000

or Chapter 4 of Cox, 2001.) A causal chain or graph is identified by using statistical

tests to show that each node (representing a variable, or quantity) is conditionally

independent of all of its more remote ancestors, given the values of the variables that

directly point into it (its “parents”).  It is quantified by specifying the conditional

probabilities of each variable’s possible values, given the values of its parents, if

any.  Input variables (having no parents) may have (unconditional) probability

distributions reflecting uncertainty about their values.  Hazard identification deals

with the identification of causal links and models.  They are then quantified in the

exposure assessment and exposure-response steps.

Categories of objective empirical evidence that are often considered in

antimicrobial risk assessments include:

• Spatial associations between animal antibiotic use and resistance levels

in human patients.  Associations between animal antibiotic use and

human illness rates may also be relevant if the animal antibiotic use

affects microbial loads of pathogens reaching human via meats.

• Temporal associations between the date(s) of introduction of an animal

antibiotic and subsequent changes in animal and human resistance rates

(after controlling for contemporaneous changes in other factors and

potential confounders, e.g., changes in foreign travel).
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• Temporal associations between the date(s) of cessation of an animal

antibiotic (e.g., following the European bans on growth promoters) and

subsequent changes in animal and human antibiotic resistance rates

(after controlling for contemporaneous changes in other factors, e.g.,

consumer awareness and education programs, HACCP interventions).

• Genetic associations between bacteria found in human patients and in

food animals that may indicate whether they are similar enough so that

one might come from the other (or whether both might have a common

environmental source).  Usually, epidemiological data are invoked to

help interpret and complement genetic similarity data, since genetic

similarities alone cannot establish a direction of causation.

• Epidemiological associations between exposures to food animal

products and incidence rates of foodborne illnesses and/or prevalence

rates of resistance in patients, after controlling for potential confounders,

information biases, and modeling biases.

Well-developed statistical methods and algorithms are available to identify

significant statistical associations from such relevant data (e.g., Mather et al.,

2004) and to screen them for potential causality based on the above criteria.

Technical Note:  Statistical tests and algorithms for assessing potential causality.

As mentioned earlier, statistical methods are available to identify exposure-response

associations that are potentially causal, in that they cannot be “explained away” by

conditioning on any other variables, even in very large data sets (Aliferis, 2003).

The following information-theoretic criteria are useful for identifying evidence of

potential causality in epidemiological data that may contain nonmonotonic or

threshold-type dose-response nonlinearities.  Roughly, a data set provides evidence

that exposure variable X is a potential cause of response variable Y if and only if:

(a)  X is INFORMATIVE about Y, i.e., the mutual information between X and Y,

denoted by I(X; Y) and measured in bits, is positive in the data set. (This provides

the required generalization to not-necessarily-monotonic relations of statistical

association measures for monotonic relations.) As a practical algorithmic matter, this

implies that X should appear as a split in classification trees for Y, and vice versa;

see Lemon et al., 2003. [Technically,  uncertainty about any discrete random

variable X taking values x
i
 with corresponding probabilities p

i
 can be quantified by

its entropy, defined as: H(X) = entropy of X = –Σ
i
p

i
log

2

p
i

 = E[log
2

(1/p
i

)] bits.  H(X)

may be interpreted as the average amount of information gained when the value of X

is learned.  The mutual information between two random variables X and Y, denoted

I(Y ; X), is defined as: I(Y ; X) = H(Y) – H(Y | X) where H(Y | X) = ΣxPr(X =

x)H(Y | X = x) = EX[H(Y | X)] is the conditional entropy of Y given X.  For any

specific observed value of X, say, x, the conditional entropy of Y given that X = x

is: H(Y | X = x) = –ΣiPr(Y = yi | X = x)log2Pr(Y = yi | X = x).  Classification tree

algorithms grow trees recursively by starting with the dependent variable and always
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“splitting” (i.e., conditioning) any currently unsplit node on the variable having the

greatest estimated mutual information with the dependent variable, starting from the

unsplit node, i.e., given the splits already performed for the set of cases described by

it.  The process ends when no statistically significant additional splits can be

discovered. The tree many then be pruned back to minimize estimated true errors

using cross-validation.] (b)  UNCONFOUNDED:  X provides information about Y

that cannot be removed by conditioning on other variables, i.e., I(X ; Y | Z) > 0 for

all subsets of variables Z.  (Thus, splitting on Z first does not prevent X from

entering the classification tree for Y.)  (c)  PREDICTIVE: Past values of X are

informative about future values of Y, even after conditioning on past values of Y,

i.e., I(X-(t) ; Y+(t) | Y-(t) ) > 0, where X-(t) denotes the set of X values at times ≤ t,

Y-(t) the set of Y values at times ≤ t, and Y+(t) the set of Y values after t.  [This

generalizes the concept of Granger causality for multiple time series (e.g., Guatama

and Van Hulle, 2003.)] (d)  CAUSALLY ORDERED:  Y is conditionally

independent of the parents of X, given X, i.e., I(P ; Y | X) = 0, for any parent or

ancestor P of X.. These criteria yield practical algorithms for detecting evidence of

potential causation in cohort, case-control, and time series data sets.  (Causation

may be present even if these conditions are not satisfied, but then the data do not

provide evidence of it.)   These algorithms typically require tests for conditional

independence as sub-routines.  Classification tree software (Lemon et al., 2003) can

be used to perform conditional independence tests for one dependent variable at a

time by testing whether conditional mutual information is significantly different

from zero (Friedman, 1996; Frey et al., 2003).  Alternatively, statistical tests of the

residuals in flexible nonparametric (“form-free”) regression models (Shipley, 2000)

can be used to test conditional independence for one dependent variable at a time.

More computationally-intensive commercial software (e.g., BayesiaLab™) will

automatically compute conditional independence relations for entire sets of variables

(Tsamardinos et al., 2003).  These algorithms generalize the requirement that, to be

considered causal, an exposure-response association must not be fully explained by

confounding (Sonis, 1998; Greenland and Morgenstern, 2001; Greenland, 2003) –

or, for that matter, by sample selection biases (Mark, 1997), information biases

(Grimes and Shulz, 2002), or modeling and analysis biases (Cox, 2001).   Formal

tests for statistically significant associations between the timing of one event (e.g.,

introduction or cessation of animal antibiotic use) and subsequent changes in a series

of measurements (e.g., human antibiotic resistance rates in a surveillance program)

can be based on intervention analysis and change point analyses (Green, 1995) for

time series.  Potential causality between two time series of measurements (e.g.,

usage levels of an animal drug and illness rates or resistance rates in human patients)

can be based on extensions of Granger-Sims tests (Swanson et al., 2001) that

include conditional independence and causal graph tests.  These methods represent

the current state-of-the-art in testing for potential causality.  They are entering

common biostatistical and risk analysis practice only slowly, but have been

developed for many decades in other disciplines (Shipley, 2000).
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Example:  Tracking Sources of Resistant E. faecium by Phenotype

It is an a priori plausible hypothesis that antibiotic-resistant E. faecium

isolated from human patients might originate in antibiotic-treated food animals that

carry E. faecium (Wegener et al., 1999).  The hazard identification step of the risk

assessment process rigorously tests and evaluates such hypotheses using data. It may

also use epidemiological, time series, genotype, phenotypic biomarker, and other

mechanistic data to investigate sources of exposures to microbial hazards (e.g.,

antibiotic-resistant E. faecium) even without any specific a priori hypotheses.

How can microbiological hazard identification methods be applied to identify

sources of antibiotic-resistant E. faecium?  One approach is to compare resistance

phenotypes in isolates from different sources.  This is illustrated by a study of

Iversen et al. (2004):

“An ampicillin- and ciprofloxacin-resistant Enterococcus faecium (ARE)

strain, named FMSE1, with a characteristic biochemical phenotype, was in a

recent study found to dominate among faecal ARE isolates from patients in

several Swedish hospitals. In the present study, the prevalence of this strain

among 9676 enterococcal isolates from healthy children, hospital sewage,

urban sewage, surface water, slaughtered animals (broilers, pigs and cattle)

and pig faeces and manure was investigated. Enterococcal isolates having the

same biochemical phenotype as the FMSE1 were most common in samples of

hospital sewage (50%), surface water (35%), treated sewage (28%) and

untreated sewage (17%), but rare in samples from healthy children (0.8%) and

animals (2%). PFGE typing of FMSE1-like isolates from hospital sewage

indicated that they were closely related to the nosocomial FMSE1 strain.

Thus, this study indicated a possible transmission route for nosocomial E.

faecium from patients in hospitals to hospital sewage and urban sewage, and

further via treatment plants to surface water and possibly back to humans.

This proposed route of circulation of drug-resistant enterococci might be

further amplified by antibiotic usage in human medicine. In contrast, such

transmission from food animals seems to play a negligible role in Sweden.”

Such studies can help to identify hazards that were not necessarily expected a priori,

such as resistant bacteria in sewage and surface water. Conversely, they can help

show the extent to which potential hazards that were expected a priori, such as the

food animal transmission pathway, contribute to human illness in reality.  The

conclusion from this study, that transmission from food animals seems to play a

negligible role in Sweden, might not have been anticipated in the absence of data-

driven hazard identification, as many scientists have taken as axiomatic the

assumption that foodborne transmission plays a major or predominant role in human

resistant illnesses (e.g., APUA, 2002; Wegener, 2003).
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The following example illustrates a very different use of biological

information in hazard identification for antimicrobial resistance risk

assessment.  Comparing the rates and understanding the molecular biological

mechanisms by which specific bacteria acquire resistance to specific

antibiotics can indicate whether a hypothesized flow of resistance is

plausible from the standpoint of the level of the organisms and mechanisms

involved, without requiring population-level epidemiological data.

Example:  Antibiotic Resistance Transfer Rates in E. faecium From Pigs

Use of virginiamycin in pigs may select for E. faecium that are both

streptogramin-resistant and macrolide resistant (Aarestrup et al., 2001).  Jensen et

al. (2002) identified vat(E) and erm(B) resistance genes in E. faecium isolates from

pigs in Denmark:

“The genetic background for streptogramin resistance was examined in

Enterococcus faecium isolated from pigs (n = 55) and broilers (n = 207) in 1997

in Denmark. Fifty-one percent and 67%, respectively, of the isolates were

resistant to streptogramins. Among streptogramin-resistant E. faecium (SREF),

the genetic background for streptogramin A resistance could be determined in

96% of the isolates from broilers, compared with 14% among SREF from pigs.

For broiler isolates 89% of SREF contained the vat(E) gene and 10% the vat(D)

gene. Three of these isolates contained both resistance genes. Among SREF

from pigs two isolates contained the vat(E) gene and two others the vat(D)

gene. The genetic background for streptogramin B [resistance] was most often

identified as the erm(B) gene encoding macrolide, lincosamide, and

streptogramin B (MLSB) resistance. Among SREF, 84% and 86% of isolates

from broilers and pigs, respectively, contained the erm(B). In SREF from

broilers, the erm(B) gene was physically linked to the vat(E) gene in 62% of the

vat(E)-positive isolates and 79% of the isolates containing vat(D). erm(A) was

detected in two SREF of broiler origin. Both isolates also contained the erm(B)

gene.”  (Jensen et al., 2002, emphases added)

Simjee et al. (2002) found that resistance to erythromycin, tetracycline, and

streptomycin could be transferred in vitro from poultry-derived E. faecalis to E.

faceium via conjugation and transmission of a plasmid containing the vat(E) gene.

However, analogous in vivo transfer from pig to human bacteria under real

conditions is not known to occur.  To the contrary, as noted by Aarestrup et al.

(1997), “More resistance to streptomycin was observed among C. coli isolates from

swine (48%) than among C. coli isolates from broilers (6%) or humans (0%)”.

Similarly, transfer of vancomycin resistance from food animals to human patients

via E. faecium appears to be rare or non-existent.  For example, in Denmark,

Aarestrup et al. (2000) found that “All E. faecium isolates from humans were

susceptible to vancomycin, whereas 10% and 17% of isolates from broilers and pigs,

respectively, were resistant”, suggesting that the flow of vancomycin resistance from
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food animals to people is not very common.  Since streptogramin resistance causes

no clinical adverse consequences in human patients unless vancomycin resistance is

also present (i.e., a streptogramin drug such as quinupristin-dalfopristin is prescribed

only if vancomycin is not effective), the fact that vancomycin resistance is not

readily transferred from swine to humans via the food chain also limits the potential

human health risk from transfer of streptogramin-resistant E. faecium.  Such data

can thus help to inform human hazard identification for streptogramin use in pigs.

Example:  A Caveat in Interpreting Resistance Rate Data

Problem:  Suppose that a study of resistance rates to an animal antibiotic A in many

different times and locations reveals that isolates of bacterium B from humans show

a significant increase in the proportion of isolates resistant to A in just those

locations where A has been used as an animal antibiotic, and in no other locations.

Moreover, the increase in resistance rates always occurs immediately after antibiotic

A is introduced for use in animals, and never before.  Do these facts suggest that use

of A causes an increase in resistance rates and resistance risks in humans?  (Assume

sample sizes are large enough so that these patterns are statistically significant.)

Solution: These facts do suggest a causal relation between introduction of animal

antibiotic A and increases in the resistance rates, i.e., in the proportions of human

isolates of B that are resistant to A.  However, they do not necessarily suggest that

use of A in animals increases the risk of resistant cases in humans (i.e., the expected

number of resistant cases per year in the population, or per capita-year for any

member of the population.)  As a counterexample, suppose that the only effect of

antibiotic A is to kill all susceptible strains of bacteria B and to kill most, but not all,

of the A-resistant strains of B as well.  Then the proportion of resistant isolates in

humans infected with B bacteria from animals would increase, simply because the

proportion of susceptible isolates has decreased.  But risks (i.e., expected cases per

year) of both susceptible and resistant infections would be decreased by the

introduction of animal antibiotic use of A (Schwaber et al., 2004).

Example:  Using Seasonal Data in Hazard Identification

This example illustrates one way to sharpen and apply the traditional criterion

of “temporality”. In their quantitative risk assessment of Campylobacter jejuni in

chicken products, Christensen et al. (2001) show the comparison of time series in

Figure 2.  They note that “It has been stated that the broiler flocks tend to peak after

the human cases (Kapperud et al., 1993; Berndtson, 1996; Newell et al., 1999). This

tendency is also seen in Denmark (Fig. 9). However, broilers seem to be infected

before humans in 1998 and vice versa in 1999. If poultry are the primary source of

human infection, it should be expected that the broilers peak before or coincident

with the humans and not the other way around.”
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Figure 2:  C. jejuni Peaks in Broilers Lag Those in Humans

The number of registered human Campylobacter cases and the Campylobacter  prevalence in broiler

flocks in 1998 and 1999 (Danish Veterinary Laboratory and Statens Serum Institut, unpublished data).

Source:  Christensen et al., 2001

This example illustrates one basic way to use time series information to test

whether a causal hypothesis is consistent with data:  by examining whether the

hypothesized cause precedes the hypothesized effect.  If not, as in the cited data sets,

then the possibility of reverse causation (e.g., Campylobacter from human sources

flowing to chicken flocks) or of a common cause (e.g., both chickens and human

being exposed to Campylobacter carried via surface water, flies, etc.) should be

considered.  Genetic data can potentially help to clarify whether chickens, humans,

and other warm-blooded animals tend to get the same strains of Campylobacter at

the same time, or whether occurrence in some species (or other reservoirs) tends to

precede occurrence in others.

Example:  Retrospective Impact Assessment of Interventions

A second basic way in which time series information can be used in hazard

identification is to test whether changes in exposures to a hypothesized hazard are

followed by the changes in effects that would be expected if the hypothesized causal

relation between exposure and effects were correct.  For example, it has been widely

hypothesized that use of animal antibiotics, including the fluoroquinolone drug

enrofloxacin in chickens, is largely responsible for emergence of resistance to

fluoroquinolones (such as ciprofloxacin) among human campylobacteriosis patients

(e.g., FDA, 2001; Iovine and Blaser, 2004).  On this basis, regulators have proposed
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to withdraw approval for continued uses of enrofloxacin and other animal

antibiotics, believing that doing so will help to preserve their efficacy in human

medicine by reducing resistant cases of campylobacteriosis and other illnesses in

humans (ibid).  This belief need not remain an article of faith:  it is empirically

testable in countries where animal antibiotic uses have already been discontinued.

Comparing the time series of human antibiotic resistance rates for several

drugs (including fluoroquinolones) before and after animal growth promoter bans in

different countries shows some disappointing increases of resistance in humans and

poultry following bans (e.g., Desmonts et al., 2004 for France; Luber et al., 2003 for

Germany; Hayes and Jensen, 2003, for Denmark; Casewell et al., 2003 for the

European Union).  Formal statistical analyses (e.g., interrupted time series models,

intervention analyses, and evaluation studies) can help to quantify whether and to

what extent these increases are different from what would have been expected in the

absence of intervention (e.g., if bans had not occurred.)  But even without such

formal analysis, it is plain that causal hypothesis-based predictions that

discontinuing animal antibiotic use would soon reduce human antibiotic resistance

levels turned out to be incorrect.

Paying attention to such empirical evidence may help other countries

to learn from European experience and to develop improved causal models,

hazard identifications, and risk assessments as a basis for action, potentially

leading to better public health outcomes.  Formal hazard identification and

risk assessment were not used as a basis for decision-making about the bans

in the European Union.  A “Precautionary Principle” approach was used

instead, based on common-sense perceptions and expert judgments about

cause-and-effect and recommendations for action (Phillips et al., 2004).  A

problem with substituting precautionary principles and judgments for risk

analysis informed by thorough understanding and testing of cause-and-effect

relations is a version of the “law of unintended consequences”: that

interventions may not achieve their desired ends (and may bring about

undesired ones) if they are not based on sound causal models.

The following example illustrates a situation in which historical data

from different countries can be used to examine the human impacts of not

intervening to halt the spread of antibiotic resistance.  In this case, the

evidence appears reassuring, i.e., macrolide resistance levels in humans have

generally remained fairly low and stable, despite continued use of

macrolides in food animals.  Similar patterns hold for streptogramins.  Such

observations tend to falsify the testable prediction that continued use of

animal antibiotics in food animals will rapidly increase human resistance

levels.  Whether historical stability of human resistance rates should be

cause for complacency is less clear; this topic is addressed in Chapter 7.
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Example:  Retrospective Impact Assessment of Non-Intervention:

Historical Macrolide Resistance Trends in Humans

Resistance to macrolides (e.g., erythromycin) in Campylobacter isolates from

humans has remained relatively low in multiple countries over several decades, even

though resistance to fluoroquinolones had increased rapidly (especially in Spain and

parts of Asia).  For macrolides, relevant historical evidence from various countries

includes the following (all emphases added):

• Canada (Gaudreau and Gilbert, 2003): “The rates of resistance of 51 to 72 human

strains of Campylobacter jejuni subsp. jejuni isolated annually from 1998 to 2001 in

Montreal, Quebec, Canada, varied from 1 to 12% for erythromycin, 43 to 68% for

tetracycline, and 10 to 47% for ciprofloxacin. In the last years of the study, there was

a significant increase in the rate of resistance to ciprofloxacin (P = 0.00003) but

not in the rate of resistance to erythromycin (P = 0.056) or tetracycline (P = 0.095)

compared to the rate obtained in the first years.”

• Finland (Rautelin et al., 1991): “The results indicated that susceptibility to

erythromycin, gentamicin, and doxycycline has remained the same during the past

10 years. … Resistance to erythromycin was 3% in both groups of strains. However,

the number of norfloxacin-resistant strains increased from 4 to 11% in the follow-up

period, and ciprofloxacin-resistant strains, which had not occurred 10 years ago,

composed 9% of the strains isolated in 1990.”  The Finnish experience is updated in

Rautelin et al., 2003, which reports that “The growth of all domestic isolates was

inhibited by erythromycin at concentrations of 4 microg/ml. … For the foreign

isolates, the erythromycin MIC(90) was still low (4 microg/ml), but their

susceptibilities to fluoroquinolones were clearly reduced.”

• Norway (Afset and Maeland, 2001):  “We examined retrospectively the in vitro

susceptibility to erythromycin and ciprofloxacin of 296 C. jejuni strains isolated

during the 1998-99 period. … Only one isolate showed resistance to erythromycin.

…Resistance of C. jejuni to erythromycin occurred very rarely.”

• Spain (Sanchez et al., 1994): “We studied the evolution of antimicrobial

susceptibilities of 275 clinical isolates of microorganisms of the genus Campylobacter

isolated in our institution during a 5-year period (1988 to 1992). The microorganisms

studied were C. jejuni (n = 230), C. coli (n = 42), and C. fetus (n = 3). The overall

resistance rates (determined by the agar dilution method and the recommendations of

the National Committee for Clinical Laboratory Standards) were as follows:

erythromycin, 2.3%; clarithromycin, 2.3%; azithromycin, 1.9%; ciprofloxacin, 28.5%;

norfloxacin, 31%; ofloxacin, 26.3%; and nalidixic acid, 36.8%. The evolution of

resistance (percent resistance in 1988 versus percent resistance in 1992) was as

follows: erythromycin, 2.6 versus 3.1; clarithromycin, 2.6 versus 3.1; azithromycin,

2.6 versus 3.1; ciprofloxacin, 0 versus 49.5; norfloxacin, 2.6 versus 55.5; ofloxacin, 0

versus 45.6; nalidixic acid, 2.6 versus 56.8. Our data show stable macrolide activity

against Campylobacter spp. and the rapid development of quinolone resistance over

the last 5 years.”

• Sweden (Osterlund et al., 2003):  “Antibiotic resistance was compared in 844

Campylobacter jejuni/coli strains acquired outside Sweden and 575 acquired in
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Sweden during 1990-2002. There was a clear gradual increase in ciprofloxacin and

tetracycline resistance among C. jejuni/coli strains acquired outside Sweden

during the 13 y period. This trend was not seen for erythromycin or in

domestically acquired strains for any of the 3 antibiotics tested.”  In earlier decades, it

was found that, from 1978-88, “No general increase in in vitro resistance to

antibiotics commonly used for the treatment of human gastroenteritis caused by

C. jejuni or C. coli has occurred during the last 10 years in Sweden, which might

be a consequence of strict antibiotic control. The numbers of strains from 1988 to

1989 resistant to ciprofloxacin and to norfloxacin included in this study (0.7 and 1.4%,

respectively) are still fewer than those that were resistant to erythromycin (7.3%) or

doxycycline (12.4%). There is, however, since 1989 to 1990 an indication of

increasing resistance to these [fluoroquinolone] antibiotics.” (Sjogren et al., 1992).

(From 1992 to 1995, it appeared that “The MIC50 and MIC90 values for doxycycline

and erythromycin have increased markedly through the 4 years studied.” (Sjogren et

al., 1997), although Osterlund et al., 2003 found no long-term increase in the trend for

erythromycin from 1990-2002)

• United States: CDC-NARMS monitoring data using the E-test show that

erythromycin resistance in C. jejuni declined from 8% in 1997 to 3% in 1998, 2%

in 1999, and 1.3% in 2000 (www.cdc.gov/narms/annual/2000/annual_pdf.htm).

(These data are suspect, i.e., a pattern of steady decline over these years may not be

correct, but neither was there an increase.)

Germany may be an exception, however.  Luber et al., 2003, report that:

“Among human C. coli strains the rate of resistance to erythromycin rose from 7.1%

in 1991 to 29.4% in 2001-2002. In comparison, Campylobacter sp. isolates from

poultry already had high rates of resistance in 1991. …Thus, discrepancies in the

antimicrobial resistance rates among Campylobacter isolates originating from

poultry and humans support the hypothesis that at least some of the resistant

Campylobacter strains causing infection in humans come from sources other than

poultry products.”

In summary, although resistance to macrolides in human patients may

increase over time in some geographic areas, especially if human use is high, the

overall pattern of international trends has exhibited relatively low levels of

macrolide resistance in humans in most countries over the past decades, and there

appears to be little evidence of a relation between continued use in animals and

increasing resistance levels in human patients.

Example:  Caveats for Ex Post Interrupted Time Series Analysis

Vellinga and Van Look (2002) reported a fascinating use of an unplanned

interruption in chicken consumption in Belgium to test whether campylobacteriosis

rates declined when chicken consumption decreased.  They report:  “In June 1999,

the dioxin crisis, caused by dioxin-contaminated feed components, exploded in

Belgium, resulting in withdrawal of chicken and eggs from the market. Through the
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sentinel surveillance system, a decrease in Campylobacter infections during June

1999 was noticed. A model was generated with the reports from preceding years

(1994 to 1998), and a prediction of the number of infections in 1999 was calculated.

The model shows a significant decline (40%) in the number of infections, mainly

because of the withdrawal of poultry. The use of a disaster as an epidemiologic tool

offers a unique opportunity to observe exceptional changes in the occurrence of

infections or other diseases.”  This example illustrates a potentially valuable and

valid approach to providing positive evidence that a causal hypothesis is correct.

Unfortunately, in this particular study, the authors did not use standard

methods of interrupted time series analysis to analyze the data, and their conclusions

do not appear to be valid.  The time series of weekly Campylobacter counts shows

enough variability in each year so that the claimed 40% decrease in the weeks

following the withdrawal is not remarkable or unexpected. The analysis does not

demonstrate that the time series behaved significantly differently in June of 1999

compared to June of other years.  [In addition, there may be data integrity issues,

e.g., Vellinga and Van Look report a dramatic decrease from counts in May (weeks

18-21) to counts in June (weeks 22-25), which appears to be inconsistent with data

showing an increase over this interval published by the Belgian Institute of Public

Health (http://www.iph.fgov.be/epidemio/epien/index0000.htm).  The duration of

the ban cited by Vellinga and Van Look also appears to have been mistakenly

increased from about 2 to about 4 weeks.]  Despite these difficulties in the detailed

analysis and conclusions, the basic idea is sound and important:  a causal hypothesis,

such as that chicken consumption causes a large share of campylobacteriosis, can be

tested empirically in situations where exposure is interrupted or otherwise strongly

perturbed.  However, in such cases, it is best to present the results of standard

methods of analysis for interruptions, interventions, or change points in time series,

so as to avoid errors and confusions in the interpretation of the results.

In summary, although it may be difficult or impossible to prove

causation from data, it usually is possible to test, and perhaps refute (if they

are mistaken) competing non-causal hypotheses; and also to test whether the

hypothesized causal relations between decisions and exposures and between

exposures and risk are consistent with available data (Shipley, 2000).  Time

series data, cross-sectional (e.g., case-control) data, and biological data on

microbial phenotypes, genotypes, and resistance rates and mechanisms,

afford a number of opportunities to confirm or refute testable causal

hypotheses and predictions. Candid presentation and discussion of the results

of such tests and of their implications for causal inferences and for the value

of further information that can resolve ambiguities in causal theories are

valuable outputs of a successful hazard identification.

The preceding examples have provided relatively simple illustrations

of principles and methods useful in hazard identification.  In practice,
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however, it may be necessary to combine several techniques.  Even then, the

results may be ambiguous.  The following case study illustrates some of the

practical complexities of hazard identification with partly conflicting, less

than decisive, data.

5. CASE STUDY: DID ENDING AVOPARCIN USE

REDUCE HUMAN ANTIBIOTIC RESISTANCE?

Figure 1 of Chapter 1 showed that, following a ban on macrolides

(tylosin) and other growth promoters in Denmark in 1998, macrolide

(erythromycin) resistance in C. jejuni among domestically acquired human

cases promptly rose in 1999, again in 2000, and still further in 2001 (Hayes

and Jensen 2003).  WHO (2003, p. 28) noted that, in Denmark, “There is

also an indication that since the termination of growth promoters there may

have been an increase in resistance among E. faecalis to the macrolide drug

erythromycin” and remarked (p. 6) that “Direct effects of the termination of

growth promoters on resistance in gram-negative bacteria (e.g., E. coli,

Salmonella) were neither expected nor observed.” For fluoroquinolones

(enrofloxacin), too, as mentioned previously, reductions in use in different

countries have been followed by increases in fluoroquinolone resistance

among both human and animal isolates (e.g., Desmonts et al., 2004; Luber et

al., 2003).  Such empirical observations raise an obvious question for hazard

identification:  Does withdrawing animal antibiotics actually cause

reductions in antibiotic resistance to similar antibiotics among human

patients?  The answer is central to the animal antibiotic debate.

In general, whether and to what extent terminating antibiotic uses in

food animals would cause a quick decline (or any decline) in resistance in

bacteria in either animals or people in any given country is an open question.

The epidemiology of resistance to major classes of antibiotics in human and

animal populations differs significantly across countries and continents, as

revealed by studies of vancomycin-resistant enterococci (VRE) in Europe,

the US, Australia, and elsewhere (e.g. Goossens, 1998; Bell et al., 1998).

European experience following withdrawals of the animal antibiotic

avoparcin (which selects for VRE, since vancomycin and avoparcin are both

glycopeptides) has been mixed.  At first, some investigators claimed that in

Germany, as hoped, VRE rates were declining rapidly and significantly in

food animals and among healthy humans in the community (Klare et al.,

1999; Witte, 2000).  But further data soon raised anomalies.  In Germany,

other investigators had already noticed that the resistance patterns of the

VRE isolates obtained from food (including minced pork) were different

from the resistance patterns of clinical isolates from humans, suggesting that

the food chain might not, after all, be responsible for the incidence of highly
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resistant (vanA) VRE observed in human nosocomial infections (Klein et al.,

1998).  This was soon confirmed by additional observation (Lemck and

Bulte, 2000).

In Italy, Del Grosso et al., 2000 reported that “After the avoparcin ban,

a decrease in the rate of VRE contamination in meat products was observed.

Such a decrease was statistically significant in poultry (from 18.8% to 9.6%)

but not in pork products (from 9.7% to 6.9%). The majority of VRE from all

sources carried the vanA resistance gene and included Enterococcus

faecium, E. faecalis, E. hirae, E. durans, and E. gallinarum. None of the

strains carried the vanB gene, whereas constitutively resistant vanC-positive

strains were frequently found. Our results show that avoparcin withdrawal

has been successful in reducing VRE contamination in meat products.”

In Norway, the highly resistant vanA VRE showed unexpected

persistence on poultry farms.  Even five years after the avoparcin ban, it was

found that “VRE were isolated from 72 of 73 (99%) and eight of 74 (11%)

poultry samples from exposed and unexposed farms, respectively. VRE were

isolated from 13 of 73 (18%) and one of 74 (1%) farmer samples from

exposed and unexposed farms, respectively. All VRE isolates were highly

resistant to vancomycin and possessed the vanA gene, as shown by PCR.

The high prevalence of VRE is in accordance with previous Norwegian

studies, and shows a remarkable stability of the VanA resistance determinant

in an apparently non-selective environment” (Borgen et al., 2000).

In Denmark, a prolific and influential group of researchers had long

argued that animal antibiotic use could significantly increase the rates of

resistance in human bacteria and had advocated banning animal growth

promoters to reduce resistance levels in human patients.  They later

published data and interpretations suggesting that the bans were highly

effective in reducing resistance in food animals and people. For example:

• Bager et al. (1999) stated that “Among isolates from broilers, the

proportion that were resistant to glycopeptides [such as vancomycin] has

shown a statistically highly significant decline between the end of 1995

and the first half of 1998, whereas in pigs the ban appears to have no

such effect.”

• Aarestrup et al. (2001) announced that “The avoparcin ban in 1995 was

followed by a decrease in the occurrence of glycopeptide-resistant E.

faecium (GRE) in broilers, from 72.7% in 1995 to 5.8% in 2000.”

• Wegener, 2003, citing Aarestrup et al. (2001) and other sources, claimed

that “The data shows that although the levels of resistance in animals

and food, and consequently in humans, has been markedly reduced after

the termination of use [of avoparcin], the effects on animal health and

productivity have been very minor.”
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However, other investigators have not independently reproduced these

conclusions.  For example, Heuer et al., 2002 found “no significant decrease

in the proportion of VRE-positive [broiler] flocks during the study period

(1998-2001)” and concluded that “This study demonstrated the extensive

occurrence of VRE in broiler flocks more than 5 years after the avoparcin

ban in Denmark, and indicates that VRE may persist in the absence of the

selective pressure exerted by avoparcin.  The results differ markedly from

previously published Danish surveillance data on VRE in broilers. This may

reflect differences in isolation procedures.”  More recently, persistence of

VRE after withdrawal of avoparcin has also been documented in New

Zealand (Manson et al., 2004), indicating that it is not a Europe-specific

phenomenon.

In Sweden, avoparcin use halted in 1986.  However, Iversen et al.

(2002) found that “Surprisingly, VRE were isolated from 21 of 35 untreated

sewage samples (60%), from 5 of 14 hospital sewage samples (36%), from 6

of 32 treated sewage samples (19%), and from 1 of 37 surface water

samples. … Most of the VRE were multiresistant. …We conclude that VRE

[mostly vanA vancomycin-resistant E. faecium] were commonly found in

sewage samples in Sweden. The origin might be both healthy individuals

and individuals in hospitals. Possibly, antimicrobial drugs or chemicals

released into the sewage system may sustain VRE in the system.”  Thus, it

appears that high levels of VRE, specifically including vanA resistance in E.

faecium, are still frequently found in sewage more than fifteen years after

avoparcin stopped being used in animals.

Finally, whether or not animal antibiotic use contributes to the selection

and maintenance of VRE in pigs, the relevance of such VREs to human

antibiotic resistance and health impacts is unclear.  For example, Willems et

al., 2001 concluded that hospital epidemics of vancomycin-resistant E.

faecium (VREF) on three continents are caused by a genetically distinct

subpopulation (carrying the esp gene) rarely found in animals or healthy

members of the community:

“In the USA, vancomycin-resistant Enterococcus faecium (VREF) is endemic in

hospitals, despite lack of carriage among healthy individuals. In Europe,

however, hospital outbreaks are rare, but VREF carriage among healthy

individuals and livestock is common. We used amplified fragment-length

polymorphism analysis to genotype 120 VREF isolates associated with hospital

outbreaks and 45 non-epidemic isolates from the USA, Europe, and Australia.

We also looked for the esp virulence gene in these isolates and in 98 VREF

from animals. A specific E. faecium subpopulation genetically distinct from

non-epidemic VREF isolates was found to be the cause of the hospital
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epidemics in all three continents. This subpopulation contained a variant of the

esp gene that was absent in all non-epidemic and animal isolates.”

In summary, the temporal relation between withdrawal of avoparcin

and subsequent VRE and VREF levels in animals, healthy people, and

hospitalized patients is at best ambiguous and at worst may be absent.  While

some investigators have announced clear temporal relations between

cessation of animal antibiotic use and subsequent reductions in resistance

rates in food animals and/or people, others have not found any such decline

and instead have commented on the unexpected persistent of resistance

years, and even decades, after withdrawal of the animal antibiotics.

The mixed evidence in this case about effects of avoparcin withdrawal

on glycoprotein antibiotic resistance among bacteria from animals, meats,

member of the community, and hospitalized patients highlights the

importance of distinguishing among these endpoints (only the last of which

ultimately matters for hazard identification for VREF) and between the

fraction of human health impacts per year that are attributed to past animal

drug use and the fraction that would disappear, i.e., would be prevented, if

that drug use were to cease.  It is important not to conflate them.  The

following two questions about causality are distinct: (1) did historical use of

an animal antibiotic (such as enrofloxacin, tylosin, or avoparcin) cause (i.e.,

hasten, contribute to or bring about) increased levels of resistant bacteria in

human patients (e.g., VRE infections or illnesses from resistant strains of C.

jejuni, C. coli, or Salmonella)? vs. (2) would halting the animal antibiotic use

now prevent or reduce future levels of resistant bacteria?  To inform current

risk management decisions, the latter is the more relevant question, and the

one that hazard identification should help to address.

6.  A SYSTEMS DYNAMICS APPROACH TO HAZARDS

On its face, the repeated finding that reducing animal antibiotic use is

soon followed by increased resistance to the antibiotic among isolates from

human patients and/or animals appears paradoxical. How can removing the

selection pressure from an animal antibiotic fail to reduce the resistance

levels in humans and in animals (or at worst, as for avoparcin and VRE,

perhaps, leave them unchanged)? An a priori plausible conjecture might be

that human antibiotic resistance rates increase with or without animal

antibiotic use, e.g., because of human use of similar drugs. Terminating

animal antibiotic use would then slow the increase (or have no effect, if it is

entirely driven by other factors). But while this explanation might be

plausible for some drugs, it appears to be inconsistent with data for others,
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such as Figure 1 of Chapter 1, where resistance to erythromycin and to

streptomycin among human Campylobacter isolates appears to increase

specifically after the ban on macrolides and other growth promoters.

A systems dynamics approach may help to unravel the mystery.   In

dynamical systems theory, “causation” can be described straightforwardly in

terms of changes in a system’s outputs produced (i.e., caused) by changing

its inputs and then applying the dynamic equations linking its inputs to its

outputs.  Hazard identification for antimicrobial risk assessments dealing

with resistance risks can benefit by analyzing the qualitative behaviours of

dynamical systems (or numerical simulations of their behaviours) to predict

and describe the dynamic responses (e.g., outbreaks of antibiotic resistance

epidemics, maintenance of stable endemic resistance levels, transient

increases in resistance levels, etc.) caused by changing controllable inputs

such as animal antibiotic use.  This section illustrates the approach with a

simple conceptual and mathematical model of possible dynamic interactions

among animal and human illnesses and susceptible and resistant bacteria.

6.1  Model Definitions and Equations

A model of the human health impacts of animal antibiotic use should

account for at least the following quantities:

• IH(t) = the fraction of the human population of interest that has a

specified foodborne illness, such as campylobacteriosis or salmonellosis,

at any time t.  (IH = “ill humans” fraction.)

• IA(t) = the fraction of servings of a particular food commodity that

comes from animals with a specified illness or adverse condition (e.g.,

airsacculitis or necrotic enteritis) that the animal antibiotic could help to

prevent, reduce, or control.  (IA = “ill animal” fraction for servings from

processed animals.  Animals not sent to slaughter and animal carcasses

removed during processing are excluded from consideration when IA is

calculated, as they presumably do not affect IH.)

• RH(t) = fraction of human infections that are resistant to the human

antibiotic of interest at time t.  (RH = “resistant human” fraction.)

• RA(t) = fraction of isolates from the food animals of concern (those that

contribute to ingested servings of a meat commodity) that are resistant to

the antibiotic of interest at time t.

For example, in a study of the human health impacts of enrofloxacin use in

chickens, IH(t) might denote the fraction of the population with

campylobacteriosis at time t, while RH(t) = fraction of those illnesses that

are resistant to fluoroquinolones (ciprofloxacin), IA(t) = fraction of chicken

servings from airsacculitis-positive flocks (a condition that can be treated
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effectively with enrofloxacin), and RA(t) = fraction of isolates from chicken

carcasses that are resistant to fluoroquinolones.  In a study of the human

health impacts of virginiamycin (VM) use in poultry, IH(t) might represent

the fraction of immunocompromised intensive care unit (ICU) patients with

VREFA (vanA vancomycin-resistant E. faecium) infections at time t; RH(t)

might represent the fraction of these cases that are resistant to the human

drug Synercid™ (quinupristin-dalfopristin, QD), the human analogue of

VM; and IA(t) and RA(t) might represent the fraction of chicken servings

from necrotic-enteritis positive flocks (controlled with VM) and the fraction

of VREFA isolates from those servings that are QD-resistant, respectively.  It

is not necessary to define these quantities with great precision for purposes

of hazard identification, as the main purpose of hazard identification is

simply to identify qualitatively what human health impacts (i.e., what

changes in IH(t) and RH(t)) are likely to be caused by changes in animal

drug use.  Thus, vexed questions such as the proper definition of “resistant”

(from microbiological and clinical perspectives) need not be resolved before

applying the model.

The four variables IA, RA, IH, and RH interact with each other over

time.  The dynamics of the model are governed by a system of ordinary

differential equations (ODEs) describing how the levels of the quantities

affect each others’ rates of change.  The controllable input to the system is

the level of animal drug use.  For simplicity, we will only consider the

impacts of banning an existing animal drug use or of introducing a new one.

We assume that the effect of the animal drug use is to promptly (within a

few months, as one flock replaces another) reduce the fraction of ill animals

going to slaughter from a higher level, IA0, if no animal drug use is allowed,

to a lower level, IA1 < IA0, if animal drug use is allowed.  In addition, animal

drug use exerts a selection pressure on animal bacteria that tends to increase

RA.  Define the decision variable as: A(t) = 1 if the animal drug is used at

time t, else A(t) = 0.  (A = “animal antibiotic use” or “action”.)  A(t) is the

controllable input to the system, and the purpose of the model is to identify

the potential human health consequences of changing it.  Then the equations

of a basic model are as follows:

IA(t) = A × IA1 +  (1 – A) × IA0    (1)

or, equivalently, IA = IA0 + A*(IA1 – IA0). where short-run transients and

within-flock dynamics of animal illnesses are ignored;

dIH/dt = [a1 + b1(1 – IA) + c1IA + d1IH](1 – IH) – r1IH (2)

dRA/dt = [a2 + b2A + c2IA*A + d2IH + e2RH](1 – RA) – r2RA (3)

dRH/dt = [a3 + b3A + c3IA*A + d3IH + e3RH + fRA](1–RH) – r3RH  (4)
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In these equations, the time dependency of the variables is not shown

explicitly, i.e., we write A, IH, RA, and RH instead of A(t), IH(t), RA(t), and

RH(t), respectively.  Possible differences in virulence between resistant and

susceptible strains of bacteria are not modeled, although the approach could

be extended to include such generalizations.

The three ODEs have similar structures.  In each, the rate at which

some undesirable quantity X changes has the form:

     dX(t)/dt = k[1 – X(t)] – rX(t), abbreviated as:dX/dt = k(1 – X) – rX.

This template applies for X equal to each of IH, RA, and RH.  The

interpretation is that (1 – X) is proportional to the pool of “susceptibles”: it is

the fraction of units (people, animals, or bacteria) that do not currently have

the undesirable condition (illness or resistance) but that may acquire it.  k is

the fractional rate per unit time at which susceptible units acquire the

undesirable condition, while r is the “recovery rate” at which units with the

undesirable condition make a transition back to not having it.

Specific expressions for the multiplier k in the generic template are

given by the summed terms in square brackets on the right sides of equations

(2)-(4).  The coefficients, a1, a2, and a3, represent the spontaneous transition

rates from the susceptible to the affected groups (per susceptible unit, per

unit of time).  b1 reflects the rate at which servings from healthy animals,

represented by (1 – IA) (the fraction of animals that are not ill) make healthy

people (represented by (1 – IH)) become sick; while c1 is the analogous

coefficient for servings from ill animals.  If the disease is infectious, then d1

> 0 represents the rate at which ill humans, IH, infect well ones, (1 – IH).  If

b2 is positive, then the use of the animal antibiotic, e.g., as a prophylactic or

growth promoter, contributes to the flow of animal bacteria from the pool

susceptible to the antibiotic, (1 – RA), to the resistant pool, RA.  b3 allows

for the possibility that such use may also contribute directly to selection of

resistant strains in human, e.g., because use on the farm leads to runoff into

surface water, selection of resistant strains in the environment, and hence an

increase in the resistant fraction RH among isolates from affected humans.

c2 and c3 allow for therapeutic uses of the animal antibiotic in ill animals to

contribute to resistance selection in animals and human, respectively.  d2 and

d3 allow for treatment of ill humans to select for resistant strains that are then

found in animals (as in Iversen et al., 2004) and in humans, respectively,

while e2 and e3 allow for the possibility that patients with resistant strains

may excrete them and contribute differently to such strains in animals and

humans, respectively, than do ill humans in general.  f in equation (4)

reflects the possibility that resistant bacteria are transferred from animals to

humans, perhaps directly via food, or indirectly via transfer of resistance
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determinants.  For simplicity, we assume that the fraction of people with

resistant illnesses at time t is simply IH(t)*RH(t), i.e., ill people are assumed

to have the probability RH(t) of having resistant illnesses at time t.  While

other model structures can be envisioned, equations (1)-(4) suffice to

illustrate the dynamic systems approach to hazard identification.

6.2  Model-Based Analysis of Potential Resistance Hazards

Collecting data from which to estimate all of these effect coefficients

(or even the reduced set obtained by specifying that some of them are zero,

that others are equal to each other, and then using algebra to combine like

terms) could be a considerable undertaking and raise statistical challenges,

such as whether the coefficients are uniquely identifiable from the available

data.   Fortunately, hazard identification does not require such a thorough

approach.  Rather, we care only about how changing the input A (from 1 to 0

for existing animal drug products, or from 0 to 1 for new products) would

affect the levels of IH and RH.  Methods for qualitative analysis of system

behaviours suffice for this purpose.

Rather than considering all of the a priori possibilities expressed in the

above model, it is useful to restrict attention to the following special case of

it (in which d1, b3, c2, e2 and e3 are all made into “structural zeros”, reflecting

an absence of these potential links):

dIH/dt = [a1 + b1(1 – IA) + c1IA](1 – IH) – r1IH (2’)

dRA/dt = [a2 + b2A + d2IH](1 – RA) – r2RA   (3’)

dRH/dt = [a3 + d3IH + fRA](1–RH) – r3RH  (4’)

This sub-model may be appropriate for an animal antibiotic used as a growth

promoter or prophylactic (so that the usage rate is not confined to ill

animals) and a bacterium for which the spread of resistant strains is driven

by animal use (via b2A) and by empiric treatment of ill humans (whether or

not they have resistant strains, via d2IH), perhaps followed by runoff of the

prescribed human antibiotic to sewage and consequent selection and spread

of resistant strains to animals and humans (via fRA) (Iversen et al., 2004).

The dependencies among variables in this model are summarized in

the following directed acyclic graph (“DAG” or “acyclic digraph”):

   A → IA

   ↓       ↓
      RA ← IH

  ↓ ↓
    RH
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In this graph, an arrow from one variable pointing into another means that

the first helps to determine the value of the second (i.e., the first appears on

the right-hand side of the equation for the variable that it points into.)  Each

dynamic variable (with a time course described by an ODE) has an implicit

“self-loop”, i.e., its own current value, X, may help to determine its current

rate of change, dX/dt, and hence its future values.  The graph is acyclic only

because we simplified the system of model equations (making it “recursive”,

in the terminology of econometrics).  This allows an elementary analysis.

Dynamics of systems with cyclic dependency graphs and with complicated

dynamics, perhaps lacking stable steady-state equilibria, can be analyzed

using more powerful mathematical methods of dynamical systems theory.

Equilibrium levels of human illness and resistance before and after a

one-time change in the level of A can be studied by replacing the dynamic

equation template dX/dt = k(1 – X) – rX by the corresponding algebraic

equilibrium condition (on setting dX/dt = 0):

k(1 – X) = rX, which can be rearranged as:  X = k/(k + r)

Clearly, any change that increases k will increase the steady-state value of X

(by moving the ratio k/(k + r) closer to 1, assuming k > 0 and r > 0.)  The

formulas for k for the three ODEs are:

• For IH:   k1 = a1 + b1(1 – IA) + c1IA = (a1 + b1) + (c1 – b1)IA

• For RA:  k2 = a2 + b2A + d2IH

• For RH:  k3 = a3 + d3IH + fRA

Thus, if d3 > 0 and f > 0, then RH increases with both IH and RA.  If b2 > 0

and d2 > 0, then RA increases with both IH and A.  IA decreases with A,

assuming that the animal antibiotic use is successful in reducing or

preventing animal illnesses.  Finally, IH increases with IA if and only if c1 >

b1, for example, if servings from ill animals carry higher microbial loads and

hence greater risk-per-serving than servings from well animals.

Assuming that these inequalities hold, the qualitative directions of the

impacts on human health of a change in animal drug use can be assessed by

assigning signs to the arrows in the dependency digraph, as follows.

 –

   A → IA

  
+↓   +  ↓ 

+

      RA ← IH Signed Digraph Model of Qualitative Impacts

 
+↓ ↓+

    RH
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By hypothesis, changing the value of input A from A = 1 to A = 0 (i.e.,

implementing a ban on an existing use) increases IA (from IA1 to IA0).

However, it tends to decrease RA.  Therefore, while the impact of the

change in A on the equilibrium value of IH is an unambiguous increase

(since reduced A implies increased IA and hence increased IH), the impact

on RH depends on the relative strengths of the impacts from decreases in RA

due to lower A (transmitted via the coefficients b2 and f) and the impacts

from increases in IH (transmitted via d2, f, and d3).

Elaboration:  To simplify further, suppose that the effect of IH on RA is negligible

(d
2
 ≈ 0).  Then the explicit system of steady-state equilibrium equations of the form

X = k/(k + r) becomes:

• IH = {a + c[IA
0
 + A*(IA

1
 – IA

0
)]}/{r

1
 + a + c[A*IA

1
 +  (1 – A)IA

0
]}

• RA = (a
2
 + b

2
A)/(a

2
 + b

2
A + r

2
)

• RH = (a
3
 + d

3
IH + f*RA)/( r

3
 + a

3
 + d

3
IH + fRA)

where for brevity we have introduced the reduced coefficients a = (a
1
 + b

1
) and c =

(c
1
 – b

1
) and we are now working with steady-state equilibrium levels.  The impact

of a change in A on RH is positive if and only if it increases the variable component

of the numerator, d
3
IH + f*RA (since this will increase the ratio defining RH,

moving it closer to 1.)  Changing A from 1 to 0 reduces RA by an amount ∆RA,

from (a
2
 + b

2
)/(a

2
 + b

2
 + r

2
) to a

2
/(a

2
 + r

2
) and increases IH by an amount ∆IH from

(a + cIA
1
)/(r

1
 + a + cIA

1
) to (a + cIA

0
)/(r

1
 + a + cIA

0
).  Thus, the impact on RH is an

increase if and only if d
3
∆IH > f*∆RA, i.e., ∆IH > (f/d

3
)∆RA.

The conclusion is that a ban in animal drug use can increase human

antibiotic resistance levels, even while reducing animal resistance levels, if it

leads to a sufficiently large increase in sick animals, and hence in sick

people.  This provides a possible theoretical explanation of the apparent

paradox that human resistance levels to a drug can increase after animal use

of the drug is banned.  To test whether this explanation is consistent with

data, it would be necessary to check whether the frequency of microbial

loads of bacteria sufficient to cause illness does in fact increase after bans.

7.   HAZARD IDENTIFICATION METHODS TO AVOID

This section provides some examples and brief discussions of common

mistakes to avoid in hazard identification.  As suggested by the preceding

examples, valid hazard identification from data always requires care, and

sometimes requires application of sophisticated statistical and causal

modeling methods to avoid mistaken conclusions. Fortunately, identification

of potential causes from multivariate data and rigorous testing of causal

hypotheses for consistency with data are both increasingly well-supported by
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current statistical methods and algorithms for causal analysis.  However,

these methods have historically been slow to enter the mainstream of

biological and epidemiological thought and practice (e.g., Shipley, 2000).

Many current epidemiological papers and published conclusions about

causation and hazards in microbial and antimicrobial risk assessment depend

on less trustworthy methods, such as Hill-type criteria (which have no

necessary relation to causation and can be misleading in the absence of

careful refutation of competing explanations); traditional epidemiological

“attributable risk” and “attributable fraction” calculations (which are based

on statistical associations rather than on causation, and which also have no

necessary relation to causal impacts); and common-sense judgments or

precautionary assumptions, neither of which necessarily provides a reliable

or useful guide to the truth about causation.

Common errors to avoid in hazard identification are as follows.

• Non-causal hazard identification.  As discussed earlier in this chapter,

simply identifying a microorganism in food without showing that it

causes human health harm in practice does not constitute hazard

identification.  Even if it is known that the identified agent can be

pathogenic under laboratory conditions, it is still necessary for a full

hazard identification to demonstrate that it causes harm in reality.

Likewise, hazard identification should usually not be based on

interpretations of statistical regression coefficients as indicators of causal

influences, since regression models typically deal with association rather

than causation (Freedman, 2004).

• Unspecified harm.  Identifying a pathogen without identifying any

clinically relevant harm that it causes does not constitute adequate

hazard identification. A hazard identification should demonstrate that

exposure to the identified pathogen actually causes some specific

adverse health effect, rather than merely that the agent is present.

Although purely hypothetical or theoretical suppositions about harm

caused by microorganisms or resistance determinants in food can be

useful for hypothesis-generating purposes, hazard identification requires

that the causal hypotheses be tested empirically, and that competing

explanations be identified and refuted.

• Partial or incomplete hazard identification.  Identifying only one

component of hazard (e.g., effects of animal antimicrobial agents on

human health effects of resistant bacteria but not susceptible bacteria)

can give an incomplete description of potential risk that is not suitable

for guiding rational decision-making.

• Hazard identification based on temporal trends.  Discussions of hazard

identification in antimicrobial risk assessment sometimes refer to

temporal “trends” in which adverse health effects occurred after the
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historical introduction of an antimicrobial agent in feeds, and are

therefore suspected of being caused by it (e.g., FDA-CVM, 2001 for

fluoroquinolone resistance in Campylobacter).  Such discussions are

usually inconclusive, neither establishing nor refuting the suggested

causal explanation.  In rigorous analyses of causation, such “temporal

trend” arguments are generally dismissed as instances of post hoc ergo

propter hoc (www.fallacyfiles.org/noncause.html) or “false cause”

fallacies. If sufficient longitudinal data are available, they may be used

in statistical tests for potential causation for hazard identification, as

illustrated in the preceding section.  However, these methods are based

not on trends, but on verifying conditional independence relations and

showing that significant changes in the data-generating process for a

time series occur following interventions, such as introduction of a feed

additive. Statistical methods of intervention analysis and change point

analysis in time series can be used for this purpose.

• Unjustified causal interpretation of statistical associations.

Occasionally, researchers report statistical associations as if they were

causal relations.  For example, Smith et al. (1999) noted that humans

and chickens carry similar strains of fluoroquinolone-resistant campylo-

bacter and concluded that “the number of quinolone-resistant infections

acquired domestically has also increased, largely because of the

acquisition of resistant strains from poultry”.  Yet, logically, identifying

similarities in strains implies nothing about the causes of the similar

strains (e.g., whether poultry are a source for humans, as asserted here;

or human sewage is a source for poultry (reverse causation), or both

come from a common cause, such as surface water.)  (In this example,

finding similar strains among other warm-blooded animals, such as

lambs, would tend to strengthen the hypothesis of a common cause.)

• Meaningless statistics and logical fallacies. A fallacy that is surprisingly

common in antimicrobial risk assessment is to compare data from two

points in time that seem to suggest an increasing trend, even when the

full data show no such trend.  For example, suppose that an animal drug

was introduced in 1997 and that an identical or similar human drug had

been in use since 1990.  If human resistance rates for the drug in

different years are as follows:  12% in 1994; 10% in 1995; 8% in 1996;

12% in 1997; 10% in 1998; 8% in 1999; 12% in 2000; and 10% in 2001,

then it would clearly be a fallacy (a form of “cherry picking”) to

compare the resistance rates in 1996 and 2000 to conclude that human

resistance has increased from 8% before introduction of the animal drug

use to 12% after.  [Likewise, if the human rate had been 0 prior to 1990,

it would be a fallacy (the post hoc fallacy) to assume that the higher rate

in 2000 is caused by animal drug use, rather than by human drug use or
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perhaps by some other cause.]  Similarly, if resistance rates increase

between two years in some areas while decreasing in others, then

referring to an overall “trend” for the whole country based on the pooled

data from those areas is misleading, in that no such trend exists at the

disaggregate level.  These and other logical fallacies in causal inference

(e.g., the “Texas sharp shooter fallacy”, in which random clusters are

pointed to after data have been collected and interpreted as significant)

are well recognized (www.fallacyfiles.org/noncause.html) and easy to

avoid. Yet, critical examination of recent literature (e.g., FDA, 2001;

Angulo et al., 2004; Iovine and Blaser, 2004; Molbak, 2004) suggests

that they are surprisingly prevalent in antimicrobial risk assessments and

risk management discussions and are sometimes even offered as

justifications for recommended risk management policies.

• Literature citations. Most hazard identification sections of risk

assessment reports include reviews of relevant literature.  In preparing

these sections, it is important to bear in mind that (a) It is often possible

to find peer-reviewed literature to support almost any position or

conclusion about a hypothesized health hazard; and (b) The raw data

used in a study may imply conclusions different from those emphasized

by the study authors in writing up results for publication.   Therefore, in

addition to summarizing the range of views reported, with their

supporting rationales, it is usually important to critically review the

rationales and to discuss why conclusions differ (e.g., due to differences

in modeling methods, operational definitions and laboratory methods for

ascertaining endpoints, criteria for causality in stating interpretations and

results, etc.).  A thorough review should seek to reconcile conflicting

results where practicable, e.g., via independent review of raw data.

Simply quoting selected excerpts from articles to support particular

positions about hazards may be more misleading than informative, and

should not be used as an approach to hazard identification.  (Against this

advice, some risk assessors feel that they should simply report what

scientists have said, without attempting to engage in independent

analysis and formation of conclusions.  However, since risk assessment

is peculiarly concerned with creating valid causal models of probabilistic

exposure-response relations to help improve risk management decisions,

risk assessors may have a unique role to play in drawing on available

scientific information and using it to create and validate causal models.)

Example:  Limitations of Literature Quotes

Effler et al. (2001) stated that “In matched logistic regression analyses, eating

chicken prepared by a commercial food establishment in the 7 days before case
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illness onset (adjusted odds ratio [AOR], 1.8; P = .03) and consuming antibiotics

during the 28 days before illness onset (AOR, 3.3; P = .03) were significant

independent predictors of illness.”  However, these authors did not emphasize

another striking result:  that eating chicken prepared at home was associated with a

40% reduction in campylobacteriosis risk (relative risk = 0.6) (ibid, Table 1.)  Thus,

the results that are emphasized are not necessarily all of the significant results.

As a second example, a paper by Tollefson and Karp (2004) begins with the

assertion that “There is accumulating evidence that the use of antimicrobials in food-

producing animals has adverse human health consequences.”  This regulatory

perspective contrasts with conclusions from some other recent publications, such as

that “Even though antibiotics have been fed for nearly 50 years to literally billions of

animals, there is still no convincing evidence of unfavorable health effects in

humans that can be directly linked to the feeding of subtherapeutic levels of

antibiotics to swine or other animals” (Cromwell, 2002).  It is useful for risk

assessors to understand and explain the sources of such disagreements.  The

literature review sections of hazard identifications for specific animal antibiotics can

do so in the context of available facts and data for specific drugs.  This topic is

explored further in the case study below.  [In brief, we believe that the Tollefson-

Karp position, which is echoed by Angulo et al. (2004) and by WHO (2003), is

arrived at by treating unvalidated models and assumptions as if they were data, i.e.,

the “accumulating evidence” referred to consists largely of expert judgments,

speculations, interpretations, and opinions of anti-animal drug use advocates.  By

contrast, the “convincing evidence” referred to by Cromwell appears to refer more

specifically to empirical evidence, i.e., facts and data rather than expert opinion and

judgment or speculation.  This difference in the types of evidence relied on helps to

explain the contrasting conclusions.]

• Dossier approach.  Presenting information about a drug, bacterium, or

other suspected hazard is sometimes called “hazard identification” or

“hazard characterization”, although “hazard description” might be more

accurate.  Describing a hazard does not establish the causal link between

exposures to it and resulting adverse health consequences that is the

essence of hazard identification for applied risk assessment.  Presenting

detailed information about a drug (e.g., its chemical name, mode of

action, pharmacokinetics and pharmacodynamics, and mechanisms of

resistance in relevant bacteria) also does not constitute hazard

identification, although it is sometimes misleadingly referred to as such.

Example:  Information Compilation vs. Hazard Identification

Many regulatory agencies request information elements such as those in the

following example table for antimicrobial risk assessments.
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Table 3:  Examples of Requested Information Elements

Information Element Example

PRODUCT DESCRIPTION

Chemical name and synonyms Tylan soluble, tylosin tartrate, (2R, 3R)-2,3-dihidroxy-

butanedioate (salt), CAS number: 1405-54-5; Tylan

premix, tylosin phosphate, CAS number: 1405-53-4

Class of drug Macrolide. (16-membered-ring) (Avcare, 2003)

MODES OF ACTION Protein synthesis inhibitor.  Some macrolides may also

increase host defenses and interfere with bacterial

adherence, enzyme production, and motility, even below

the MIC. (Avcare, 2003)

Type of action “The action of macrolides is usually bacteriostatic, but at

elevated doses they can be bactericidal, particularly in

the most susceptible species of bacteria.” (Avcare, 2003)

Spectrum of activity and MICs See Avcare, 2003

PHARMACOKINETICS See http://www.elanco.com/us/pdf/mico300.pdf

PHARMACODYNAMICS
bacteriostatic except at high concentrations

USE IN CHICKENS

Route and dosing regimen Feed premix or water

Withdrawal period 1 day for tylan soluble; none for tylan premix

(http://www.elanco.com/us/species_poultry_tylan_sol.jsp)

Extent of use About 9% of broilers

RESISTANCE POTENTIAL
Low.  Macrolide resistance rates in people are relatively

low and stable in most countries.

Potential mechanisms of

resistance in C. jejuni and C. coli

Mutation of 23S rDNA; CmeB multidrug efflux pump

Macrolide-lincosamide-streptogramin (MLS) resistance

Transfer of resistance from

chickens to people

Low for C. coli and C. jejuni (Willems et al., 2000).

Cross resistance to other drugs Streptogramin and MLS cross resistance

Baseline prevalence of

resistance in human patients

About 1%

However, the requested information does not necessarily play any role in the rest of

the risk assessment process.  For example, FDA-CVM (2003) presents a default

regulatory process in which the final risk assessment rating may be entirely driven

by how “important” (in some sense that has no clear relation to these requested

information elements) the antibiotic class in question (such as macrolides) is judged

to be in human medicine. In such systems, the “hazard characterization” information

collection process is in danger of becoming little more than an empty ceremony, in

which information is collected but not used, and the risk assessment process can be

said to have completed this step even though it plays no clear role in identifying

interventions that are likely to cause desirable health outcomes.

• Attributable risk calculations.  A population attributable fraction (PAF)

may indicate a positive exposure-effect association, even if there is no

causal relation between exposure and effect (or even when the relation is
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negative, as in Simpson’s Paradox.)  For example, if men are more likely

than women to eat chicken in restaurants, and if men are also at higher

risk than women of campylobacteriosis (but men who eat chicken are at

lower risk than men who do not), then the PAF for the association

between eating chicken in restaurants and risk of campylobacteriosis

could be significantly positive, even if the causal impact of eating

chicken is to significantly reduce risk.  Unfortunately, it is still common

practice in epidemiology to misinterpret PAFs as the fraction of cases

that would be prevented if exposure were removed.  This interpretation

is incorrect in general, but is very widespread, even in otherwise

reputable textbooks.  The practical implication is that traditional

attributable risk and attributable fraction calculations should not be used

for purposes of hazard identification in risk assessment.

• Opinion- and speculation-based hazard identification.  Occasionally,

researchers present speculations as if they were a factual basis for hazard

identification, or assert that exposure X “may cause” or “can cause”

adverse effect Y when it is only not known that X does not cause Y, or

when it is only known that X might cause Y under extreme or unusual

conditions. Such statements are potentially misleading to decision-

makers and should be avoided by clearly stating when hazards are only

conjectured or depend on unusual conditions.  Good examples of such

clear, appropriately caveated, statements can be found in the FDA-CVM,

2004 draft risk assessment for virginiamycin. Even though current

empirical evidence does not establish that there is a health risk to

humans from use of virginiamycin in animals, it is worth asking how

large the risk might be if it exists. Such contingent risk assessments

allow hazard identification to be bypassed by simply assuming that a

hazard exists.  This can be useful as long as the underlying assumptions

are clearly stated and resulting risks are presented as being contingent on

the assumptions. They should not be presented as if underlying

assumptions were facts, as occurred in the following case study.

7.1  A Case Study: Presenting Real vs. Hypothesized Hazards

The following case study shows how risk estimates that violate the

preceding principles can potentially mislead.  Barza and Travers (2002)

reported that “Calculations based on estimates of the annual infection rates

and attributable fractions of infections [with] Campylobacter jejuni suggest

that resistance to antimicrobial agents results annually in … an additional

17,668 C. jejuni infections, leading to 95 hospitalizations.”  This statement

suggests a causal relation (“results in”) between resistance and additional

adverse health impacts.  It was cited by WHO (2003) (see also Angulo et al.,
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2004) as quantitative evidence of human health harm from resistance to

antimicrobial agents as part of a rationale for recommendations to restrict

continued use of animal antibiotics.  Angulo et al., 2004 subsequently wrote

that “Evidence is also accumulating that the anti-microbial resistance among

bacteria isolated from humans could be the result of using anti-microbial

agents in food animals and is leading to human health consequences. These

human health consequences include: (i) infections that would not have

otherwise occurred and (ii) increased frequency of treatment failures and

increased severity of infection. Increased severity of infection includes

longer duration of illness, increased frequency of bloodstream infections,

increased hospitalization and increased mortality.”  This position has been

echoed by regulators advocating the termination of many current animal

antibiotic uses (e.g., Tollefson and Karp, 2004).

 But the supporting calculations behind the quantitative impact

estimates provided by Barza and Travers are based on the following crucial

judgments and assumptions, presented here with critical commentary:

1. The calculation began with the following statistics: “There are 2,453,926

infections, 13,174 hospitalizations, and 124 deaths caused by C. jejuni

each year in the United States (Mead et al., 1999).”  Even before

examining these specific numbers, it is clear that the term “caused by” is

being used very loosely here.  Any hospitalization or death that occurs in

a patient with campylobacteriosis is assumed to be caused by

campylobacteriosis.  As explained by Mead et al., “To estimate the

number of deaths due to bacterial pathogens, we used the same approach

described for hospitalizations: first calculating the number of deaths

among reported cases, then doubling this figure to account for

unreported deaths, and finally multiplying by the percentage of

infections attributable to foodborne transmission” (emphases added.

Note the conflation of “due to” and “among”.)  Since having

campylobacteriosis does not confer immortality, some patients with

campyobacteriosis will die, but this should not be taken to imply that

campylobacteriosis caused their deaths.  To the contrary, severe illnesses

such as leukemia and AIDS that compromise the immune system are

strong risk factors for Campylobacter infections, as well as for

hospitalization, other infections, and early deaths (Sorvillo et al., 1991,

Cox, 2003).  Thus, attributing hospitalizations and deaths among such

severely ill patients to Campylobacter rather than to the underlying

severe illness has the effect of blaming some AIDS-related deaths and

deaths from other severe illnesses on campylobacteriosis infections that

happen to be present but that played no role in causing death.  The

starting numbers are thus inflated by an unknown amount.
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2. Turning now to the specific numbers cited, the total estimated total

infections reported by Mead et al. were extrapolated from a source that

they cited as follows: “Passive surveillance estimate based on average

number of cases reported to CDC, 1992-1994 (CDC, unpub data).

Active surveillance estimate based on extrapolation of average 1996-

1997 FoodNet rate (24.1 cases per 100,000 population) to 1997 U.S.

population.”   Total infections were “assumed to be 38 times the number

of reported cases, based on studies of salmonellosis.” The rationale

offered was that:

“For Salmonella, a pathogen that typically causes nonbloody diarrhea, the

degree of underreporting has been estimated at ~38 fold (Voetsch, manuscript

in preparation). …Because similar information is not available for most other

pathogens, we used a factor of 38 for pathogens that cause primarily

nonbloody diarrhea (e.g., Salmonella, Campylobacter) and 20 for pathogens

that cause bloody diarrhea (e.g., E. coli O157:H7, Shigella). For pathogens

that typically cause severe illness (i.e., Clostridium botulinum, Listeria

monocytogenes), we arbitrarily used a far lower multiplier of 2, on the

assumption that most cases come to medical attention.”

Thus, while Barza and Travers’ claim that “There are 2,453,926 infections,

13,174 hospitalizations, and 124 deaths caused by C. jejuni each year in the

United States (Mead et al., 1999)” appears to provide useful data to policy

makers, tracing back the Mead et al., 1999 citation shows that these numbers

are only guesses (based largely on Voetsch’s inflation factor of 38 in an

unpublished, incomplete manuscript for Salmonella, applied to unpublished

data for Campylobacter from a decade earlier.)  When WHO (2003) and

subsequent authors then cited the Barza and Travers paper as a source of

“evidence” on quantitative health risks, the detail that the numbers originated

in unpublished guesswork was lost and the distinction between real (“hard”)

data and speculation started to become blurred.

3. Campylobacteriosis rates in the US have fallen since the unpublished

data relied on by Mead et al., 1999 were collected.  They may have been

closer to 13.4 per 100,000 in 2002 (CDC, 2003) than the 24.1 per

100,000 assumed by Mead et al., and hence by Barza and Travers.  This

suggests a need to update the starting estimate of “2,453,926 infections,

13,174 hospitalizations, and 124 deaths caused by C. jejuni each year in

the United States”, even if the use of “caused by C. jejuni” to mean

“with C. jejuni present” is not addressed.

4. Barza and Travers continued their calculation as follows: “Eighteen

percent of these, or 441,707 infections, are caused by strains resistant to

at least one antimicrobial agent.”  Again, “caused by” is used
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imprecisely here.  It implies that if a campylobacteriosis case includes

even one resistant strain for at least one antibiotic (as determined by an

in vitro test), then it can be considered to be “the cause” of the illness,

regardless of how many susceptible strains are present.

5. “Again assuming that rates of hospitalizations and death are similar for

infections with drug-resistant strains and with drug-susceptible strains,

then 2371 hospitalizations and 22 deaths result each year from infection

with Campylobacter strains resistant to at least one antimicrobial agent.”

This does not indicate that resistance has any bearing on clinical

outcomes, making attribution of outcomes to resistance questionable.

6. Perhaps the most important step in the Barza and Travers calculation

came next, as follows: “We will assume that the attributable fraction was

5% …If the attributable fraction is 5%, this translates to 22,085

infections, 119 hospitalizations, and 1 death in the United States each

year as a result of infection by quinolone-resistant C. jejuni” (emphasis

added).  The assumption made here that “the attributable fraction is 5%”

is just an assumption.  No empirical justification is offered for it.  It is

the modeler’s judgment, not an empirical finding.  Yet, the whole risk

assessment is contingent on this assumption – a fact recognized when

the assumption is introduced (as italicized above), but lost when the

conclusions are presented (and subsequently cited by WHO).  Had Barza

and Travers posited 0%, rather than 5%, as the attributable fraction, then

this “evidence” of human health harm, subsequently cited by WHO

(2003) in calling for reduced use of animal antibiotics, would disappear.

In other words, the crucial step in creating quantitative risk estimates in

this analysis is not data at all, but a decision by Barza and Travers to

assume an attributable fraction of 5%. This example illustrates how

personal subjective judgments can produce dramatic-looking numbers

that are then cited and used as if they were data, potentially misleading

risk managers. To avoid misleading decision-makers, it is essential to

label speculations as such and not to conflate them with data.

7. The attributable fraction that Barza and Travers refer to measures

association, not causation. Thus, use of the term “as a result of” in the

above quote (i.e., a causal interpretation) is not justified.  (As a

counterexample, if people who are at higher risk of campylobacteriosis

are also more likely to take antibiotics, then the attributable fraction of

campylobacteriosis cases associated with antibiotic use may be large

even if one does not cause the other.)  But Barza and Travers

misinterpret this attributable fraction as causal, stating that “The

attributable fraction reflects the proportion of all cases that would not

have occurred in the absence of recent or concurrent treatment with an

antimicrobial agent to which the bacterium was resistant.”  This
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preventable fraction is logically distinct from the attributable fraction;

in theory they may even have opposite signs.

8. Barza and Travers continue: “If 80% of C. jejuni infections arise from

food animals…then antimicrobial resistance in these animals contributes

to 17,668 infections and 95 hospitalizations per year.” The 80% number

can also be traced to guesswork documented in Mead et al., 1999. It

comes from a 1992 study indicating that “Although waterborne

outbreaks occur, foodborne transmission accounts for most of the

sporadic cases”.  “Most of” was subjectively quantified as “80%”.  But,

improved understanding of Campylobacter epidemiology since 1992

suggests that sporadic cases now have many sources, rather than one or a

few (especially chicken) that were thought in 1992 to be the dominant

contributors. For example, Sopwith et al. (2003) concluded that “sources

and vehicles of human Campylobacter infection are numerous and

interventions that target a single risk factor are unlikely to impact

significantly on the overall burden of disease.”  Moreover, Stern and

Robach (2003) found that Campylobacter loads in processed chicken

carcasses had declined by more than 90% since the mid nineties. Thus,

the use of 1992 data in Mead et al., 1999 is of doubtful relevance for

quantifying risks in 2002, the year of the Barza and Travers paper.  At a

minimum, the 80% number should be updated to reflect developments

since 1992.

This case study, reviewing the detailed derivation of numerical risk

estimates in Barza and Travers (2002) and subsequently cited by WHO

(2003), indicating that “Resistance to antimicrobial agents results annually in

an additional 17,668 C. jejuni infections, leading to 95 hospitalizations”

shows that these numbers are based on a subjective judgment to “assume that

the attributable fraction was 5%”, combined with a misinterpretation of

attributable fraction as preventable fraction, i.e., “the proportion of all cases

that would not have occurred in the absence of recent or concurrent treatment

with an antimicrobial agent to which the bacterium was resistant”.  What is

missing that is essential for sound quantitative risk assessment is empirical

evidence that, if antimicrobial resistance were not present, there would be a

change for the better in clinical outcomes.  (Barza and Travers appear to

assume that if resistance were eliminated, illnesses would be reduced by the

elimination of currently resistant cases.  But it is realistic to assume that

eliminating resistance would only replace resistant cases with susceptible

ones; thus, the human health effects of these additional susceptible cases

must still be considered.)  Moreover, the analysis does not quantify the

effects of recommended reductions in animal antibiotic use on the rates of

susceptible and resistant infections in the human population.
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It is impracticable for most consumers of risk assessment information –

including policy makers reading the WHO (2003) report and similar

documents – to carefully trace all of the references cited and to determine

where opinions and speculations (whether by opponents of animal antibiotic

use or other interest groups) have been substituted for data.  Moreover, even

fictitious risk numbers, once cited, tend to acquire a life of their own and to

be cited or referred to in further documents as “evidence” providing support

for policy positions (e.g., Angulo et al., 2004, Karp and Tollefson, 2004).

Therefore, it is incumbent upon responsible risk assessors to carefully

distinguish for their readers between facts and assumptions (or opinions,

speculations, envisioned possibilities, etc.) in presenting and summarizing

their results.  Sensitivity analyses, discussed in Chapter 5, can help to show

how sensitive risk assessment conclusions are to input assumptions, but it is

the responsibility of risk assessors to make clear where assumptions have

been used.  Otherwise, it is possible for national and international perceptions

and risk management policies to be shaped by the “data” and “evidence”

offered by stakeholders and cited by regulators without the involved policy

makers even realizing that key aspects of the “data” are simply made up.

8.  CONCLUSIONS

This chapter has suggested several do’s and don’ts for the conduct of

hazard identification – the first, and often the most important and most

difficult, step of the risk assessment process.  Hazard identification is crucial

because it deals directly with the key questions of whether a real threat to

human health from a given source exists and, if so, whether adverse effects

can be reduced by reducing or preventing exposures.  It is challenging

because it requires drawing (and validating) causal inferences from available

data.  Once hazard identification shows that a risk is real and preventable,

the rest of risk assessment can help to quantify the extent to which health

outcomes can be improved by reducing exposures.  But the bare hazard

identification knowledge that a threat exists and is preventable is often the

most powerful information that risk assessment provides to risk managers

and policy makers.

The “do’s” in the chapter largely focus on recommendations to use

appropriate current statistical methods and algorithms for causal analysis to

avoid common pitfalls and fallacies in causal reasoning and to help draw

sound, trustworthy conclusions about hazard identification.  The “don’ts”

focus largely on avoiding substituting intuition, speculation, and judgment

for rigorous causal analysis of data in arriving at hazard identification

conclusions.  An important theme is that it is not enough to identify an
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apparent non-random association and then use judgmental criteria to decide

whether it is likely to be causal.  Even though this approach is sometimes

explicitly advocated (e.g., Surgeon General, 2004), the available evidence is

that human judgment-based approaches often do not work well (since human

judgments about causation are notoriously fallible), while even simple

quantitative empirical methods often work better (e.g., Plous, 1993).  A

number of examples throughout the chapter have illustrated how these

general principles for hazard identification apply to microbial and

antimicrobial risk assessment.
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Exposure Assessment

1. INTRODUCTION TO RISK QUANTIFICATION

Hazard identification critically examines the empirical evidence for

whether changing acts really will cause the changes in health consequences

predicted by the risk model template in Figure 1 of Chapter 3.  Risk

quantification, discussed in this chapter and Chapter 5, provides additional

information needed for effective risk management by predicting by how

much different risk management interventions, acts, or decisions will change

probable health outcomes. With this information, a risk manager can begin

making trade-offs and optimizing among risk management alternatives.

Risk quantification consists of the three steps of exposure assessment,

dose-response modeling, and risk characterization (including uncertainty and

sensitivity analyses).  These are the main topics of this chapter and Chapter

5.  In addition, quantifying the threat of resistance to antibiotics requires

considering the dynamics of the system composed of animals (ill and well),

humans (ill and well), and bacteria (both resistant and susceptible) that flow

among animal and human hosts.   This chapter therefore further applies the

simple systems dynamics model of foodborne bacterial illnesses and

resistance introduced in Chapter 3 and places it within the framework of

more traditional microbial exposure assessment modeling, in which the

microbial load reaching consumers via food servings is expressed as a

product of factors that can be estimated from data.
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2.   INTRODUCTION TO EXPOSURE ASSESSMENT

Exposure assessment has been described as "the qualitative and/or

quantitative evaluation of the degree of intake likely to occur" (WHO/FAO,

http://www.who.int/foodsafety/micro/riskassessment/en/).  Although qualitative

risk assessment has the problems noted in Chapter 1, qualitative assessment

of exposures is often more useful and less problematic, as discussed at the

end of this chapter.  In the causal chain

act → ∆exposure → ∆illnesses ← covariates,

exposure assessment describes the “act → ∆exposure” link.  It estimates

population exposures to microbial loads for different risk management acts.

Individual exposures depend on the numbers of colony-forming units

(CFUs) of different bacteria (resistant and susceptible) ingested per unit time

via food, water, from contaminated hands, and via other pathways.  For

populations, exposure refers to the frequency distribution of individual

exposures (microbial loads) consumed per unit time.

2.1  Definition and Purposes of Exposure Assessment

The US FDA has defined exposure assessment as “A component of a

risk assessment that characterizes the source and magnitude of human

exposure to the pathogen”.  The magnitude of human exposure, also called

the dose, is defined as  “The amount or number of a pathogen that is ingested

or interacts with an organism (host)”.  For additional discussion, see:

http://www.foodsafety.gov/~dms/lmriskgl.html. These are roughly analogous to

concepts used in environmental risk assessment.  For example, US EPA

experts have stated that “Questions raised in the exposure analysis concern

the likely sources of the pollutant… its concentration at the source, its

pathways (air, water, food) from the source to target populations, and actual

levels impacting target organisms” (Patton, 1993).

Exposure assessment has the following goals:

• Identify exposed subpopulations at risk of infection and illness from

exposures to hazards

• Identify conditions leading to high-risk exposures

• Describe the extent of exposures (frequency and magnitude of individual

exposure in the population in relation to susceptibility and covariates)

• Predict how risk management decision options will affect exposures.

A successful exposure assessment therefore describes the frequency

distribution of microbial loads ingested by members of exposed populations
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and subpopulations.  It should show how these distributions change for

different risk management decisions.  The descriptions should contain

enough detail to discriminate among different microbial load distributions

that would cause significantly different health outcomes.  This information is

used, together with dose-response information, in risk characterization (see

Chapter 5.)

A useful surrogate for exposure in many cases is the number of

servings containing potentially infectious doses of the bacterium of concern

ingested per year (for population exposure) or per capita-year (for individual

exposure).  A “potentially infectious dose” is any dose large enough to infect

a susceptible consumer. It may be as small as one CFU, if that is biologically

realistic.  If reliable dose-response information shows that the risk of illness

below some number of ingested CFUs is negligible (or is small enough so

that it can be ignored without changing the expected number of illnesses per

year, within the limits of rounding error), then a “practical threshold” –

meaning one that leads to numerically accurate risk calculations – may be

used, even if, in principle, no true biological threshold exists.  The number of

servings per year ingested with microbial loads above the practical threshold

then defines total annual exposure.

Example:  Calculating Risk with Surrogate Exposure Variables

Setting:  Suppose that the frequency distribution of microbial loads of a pathogen

(e.g., Campylobacter or Salmonella) ingested in servings of a food commodity (e.g.,

chicken, eggs, or salads) is uncertain, but that available information constrains the

distribution as follows:

• In at least 95% of servings, the load is small enough to create a minimal illness

risk of not more than 1 x 10
-6

 (i.e., most servings are relatively low-risk)

• In at most 1% of servings, load is large enough to create an illness risk of 1% or

more (i.e., at most 1% of servings are relatively high-risk)

• For other servings, load is intermediate between the preceding two cases.

Problem Calculate a plausible upper bound on the risk (measured as expected

number of illnesses per serving) caused by this uncertain exposure profile.

Solution:  An upper bound on risk is obtained by making a worst-case bounding

assumption that all exposures that do not create “small” risks (less than 1 x 10
-6

)

create the maximum possible risk of 100% probability of illness.  Since at most 5%

(i.e., 1/20
th

) of servings fall in this category, the upper bound on risk is 1 expected

illness for every 20 servings.  This calculation illustrates the use of simple bounding

assumptions to obtain a conservative risk estimate for servings as a surrogate

exposure variable, even though actual microbial loads ingested remain unknown.
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3.  EXPOSURE ASSESSMENT METHODS:  SIMULATION

The approximate amount of food-borne bacteria ingested per day, per

serving, or per meal, and the approximate shape of the frequency distribution

of microbial loads ingested, relative to the dose-response relation (e.g., how

frequent are exposures that are likely to cause illness?) drives quantitative

risk.  This reflects the precept that, even for bacteria, “the dose makes the

poison”.  However, in practice, it is quite common for the microbial loads

received to be very uncertain, especially if they depend on unmeasured

and/or highly variable processes such as cooking of food, cross-

contamination of other foods in the kitchen, or transfer from contaminated

surfaces to skin to ingestion.  In such cases, the exposure assessment causal

diagram may look like this:

act → exposures → illnesses ← individual covariates

            ↓
measured exposure surrogates

Available data consist of surrogate measurements (e.g., microbial

concentrations in carcass rinses at retail, or on swabbed surfaces) rather than

direct measurements of ingested microbial loads

Exposure modeling for applied risk assessment with surrogate

exposure measurements consists of estimating how the underlying true

exposures will change if different risk management actions are taken, while

subsequent exposure-response modeling must focus on how health risks will

change when true exposures are changed by decisions.  True exposures then

play the role of latent variables in causal modeling, i.e., variables that affect

observed outcomes but that are not directly observed themselves.

Appropriate statistical techniques for causal diagrams with latent variables

(e.g., Shipley, 2000 for linear models; Pearl, 2002 and Hartemink et al.,

2001 for more general Bayesian Network models) can be applied to the

above diagram with surrogate measurements of exposure for data.  Software

such as WinBUGS helps to automate the required computations for

inference with missing data and unobserved or surrogate variables.

Statistical issues aside, exposure assessment uses predictive micro-

biology models to predict how microbial loads reaching consumers or other

exposed populations (e.g., patients) change if different risk management

decisions are made.  Such a model predicts how microbial loads change with

time due to cell divisions, survival and death as a function of conditions such

as temperature, moisture, growth medium (e.g., type of food in which the

bacteria are growing), and physical and chemical environment (e.g., pH) for

bacteria growing in processed or stored foods.
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Example:  Predictive Microbiology Data and Models

Table 1 shows the estimated decrease in microbial load of different strains of

Campylobacter for different storage temperatures and food substrates.  Similar

tables, as well as mathematical models and figures based on them, describe standard

bacterial growth curves under different conditions (such as pH, salinity, and ambient

temperature) for different foods and bacteria, as well kill curves (e.g., fraction of

bacteria killed vs. cooking times) for different cooking temperatures and conditions

(e.g., Haas et al., 1999; van Gerwen et al., 2000; Oscar, 2004).  From such data, one

can create statistical models of the probable number of bacteria on meat after

different initial contamination, storage, processing and cooking histories. Simulating

different histories then creates corresponding distributions of predicted resulting

exposures (i.e., microbial loads in ingested servings at the end of these processes.)

However, in reality, it is seldom practical to collect all the data needed to accurately

simulate the distribution of contamination, storage, and preparation histories, and

simpler approaches are used, as described next.

Table 1:  Effect of chilling and freezing on Campylobacter in meat products

Source:  Christensen et al. (2001), p. 11



136 Chapter 4

3.1  Practical Simulation-Based Exposure Modeling

Exposure models describe the transport, growth, and spread of

hazardous materials, such as concentrations of pathogenic bacteria on food

animal products, through different media and pathways (e.g., foods, drinking

water) leading from their source(s) to members of the exposed population. In

addition, exposure models may consider the distribution over time of human

populations among locations (e.g., restaurants and kitchens) and activities

(such as purchasing, handling, and preparing foods) that result in exposures.

Exposure assessment data and calculations can be organized and

presented using any of the following major exposure-modeling approaches.

1.  Product of factors approach.  The food production process is divided into

a sequence of points at which microbial loads can be measured or estimated,

such as: in chickens leaving the farm, chickens arriving at slaughter

following transportation, chicken carcasses exiting the slaughter plant,

chicken carcasses or servings at the point of retail, chicken carcasses or

servings entering the kitchen, and chicken servings at the point of ingestion.

Then, the increases or decreases in microbial loads between consecutive

points are modeled by multipliers that can be estimated either empirically

(from the ratios of the loads at each point compared to its predecessor) or by

a predictive microbiological model.  The product of these multipliers

predicts the microbial load at the last point (ingestion) from the microbial

load entering the first point.  Often, the multipliers are treated as random

variables (e.g., with approximately log-normal distributions), and the

fraction of microbial loads at ingestion that exceed a desired level (e.g., a

characteristic infectious dose level) can then be assessed using probability

theory or by Monte Carlo simulation using commercial risk analysis

software such as Analytica™, Crystal Ball™, or @RISK™ (Vose, 2000;

Clemen and Reilly, 2000).

Example: Product-of-Factors Approach for Campylobacter Exposures

Figure 1 shows model-based estimated change in the logarithm of the

numbers of Campylobacter cells per chicken carcass during processing of fresh air-

chilled carcasses, from both Campylobacter-positive and Campylobacter-negative

flocks. As noted by the authors: “The model indicated that the external

Campylobacter load per chicken increased during transport and evisceration, and

decreased at the other processing steps studied, with an overall reduction of the

mean load from farm to fork of about 4 to 5 logs [Figure 1]. The prevalence of

Campylobacter-contaminated chickens from positive flocks appears to drop from

100% of live birds to 20% of chicken meat servings… . For negative flocks,

prevalence increases during transport, defeathering and evisceration, indicating the
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effect of cross-contamination during processing. Prevalence later drops to a value of

about 3% of servings at the moment of consumption.”

Figure 1:  Estimated Log10 of Campylobacter Loads at Successive Stages

Negative flocks get contaminated during transport. Both the mean of the logs and

the log of the means are given. (The differences between these is as a result of the

skewness of the distribution of values and the fact that 'zero'- values cannot be

incorporated in calculations of the mean of logs (which is therefore only about the

positive carcasses)).  Source  FAO/WHO, 2002. ftp://ftp.fao.org/es/esn/food/cv_02e.pdf

2.  Process simulation modeling approaches (Haas et al., 1999, 225-248)

describe the flow of food animal carcasses, portions, and products through

various sub-processes, each characterized by an input-output relation.  These

component input-output relations may be described by simple empirical

regression models or by other statistical or simulation models.  Changes in

microbial loads from step to step of the process are tracked (e.g., via

discrete-event simulation, or by sampling from the probability distribution

for the multiplier by which loads are increased or decreased at each step.)

Available measurements and data may be used to fit simple probability

distributions and parametric models to describe the growth or attenuation of

transmitted microbial load at each stage.  Examples include Poisson or

negative binomial distributions of microbial loads (fit using most probable

number (MPN) data and maximum-likelihood statistical estimation

algorithms) and Gompertz growth curves for pathogen growth kinetics.  Data
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for growth rates of E. coli O157:H7, Listeria monocytogenes, Clostridium

botulinum, Staphylococcus aureus, and other common pathogens are found

in Haas et al. (1999, Chapter 6) and its references.  Consumption factors and

frequencies for water and foods (beef, fish, chickens, eggs, shellfish, etc.) are

available from the literature (ibid, p. 239, 241) and can be used to model the

frequency with which microbial loads on food portions are ingested.

Transfer rates of bacteria between skin and hands and from food to hands

have also been estimated for various bacteria; however such details are not

necessarily needed or useful if adequate data on earlier and later points in the

causal chain leading from animal loads to human illness are available.

3.  Farm-to-fork models are an important type of process simulation model.

Farm-to-fork models track the microbial load distributions on animal

carcasses, portions, and servings through successive stages of production,

processing, transport, slaughter storage, preparation, and consumption.

Monte Carlo simulations of the probabilistic input-output relations at each

stage are used to propagate microbial load frequency distributions

throughout the model.  A closely related methodology is dynamic flow tree

modeling for microbial risk assessment (Marks et al., 1998).  Dynamic flow

trees use Monte Carlo analysis to sum risks over many scenarios, weighted

by their respective expected frequencies or probabilities, but without

necessarily representing all the process steps in a farm-to-form model.

Example:  Farm to Fork Exposure Models for Pathogens in Chickens

Fully worked-out examples illustrating the farm-to-fork approach can be

found in the Campylobacter risk assessment of Christensen et al, 2001 and in a 2002

Salmonella risk assessment (starting at slaughter rather than at the farm) provided by

WHO/FAO (http://www.who.int/foodsafety/publications/micro/Salmonella/en/) The

latter summarized its exposure assessment sub-model as follows:

“The exposure assessment of Salmonella in broiler chickens mimics the

movement of Salmonella-contaminated chickens through the food chain,

commencing at the point of completion of the slaughter process. For each

iteration of the model, a chicken carcass was randomly allocated an infection

status and those carcasses identified as contaminated were randomly assigned a

number of Salmonella organisms. From this point until consumption, changes in

the size of the Salmonella population on each contaminated chicken were

modeled using equations for growth and death. The growth of Salmonella was

predicted using random inputs for storage time at retail stores, transport time,

storage time in homes, and the temperatures the carcass was exposed to during

each of these periods. Death of Salmonella during cooking was predicted using

random inputs describing the probability that a carcass was not adequately
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cooked, the proportion of Salmonella organisms attached to areas of the carcass

that were protected from heat, the temperature of exposure of protected bacteria,

and the time for which such exposure occurs. The number of Salmonella

consumed were then derived using a random input defining the weight of

chicken meat consumed, and the numbers of Salmonella cells in meat as defined

from the various growth and death processes. Finally, in the risk

characterization, the probability of illness was derived by combining the number

of organisms ingested (from the exposure assessment) with information on the

dose-response relationship (hazard characterization).”

In the Salmonella risk assessment, the results of Monte Carlo simulation

exposure modeling are presented as: (a) A prevalence of contaminated broilers at the

point of serving (estimated as 2%); and (b) The following conditional frequency

distribution for the dose (CFUs)-per-serving from contaminated broilers:

Source: http://www.who.int/foodsafety/publications/micro/Salmonella/en/

This frequency distribution, reproduced from the results section of the risk

assessment, shows how large an exposure a person is likely to receive from a

serving of contaminated, undercooked broiler chicken.  This distribution is the main

output of the exposure assessment and the main input to the dose-response model for

purposes of calculating the illness risk per serving.

Example:  Monte Carlo Simulation of Exposure Distributions

In practice, information on frequency distributions of microbial loads may

only be available from samples of retail products, rather than from servings at the

point of ingestion.  For example, Christensen et al. (2001) provide the following
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empirical frequency distribution for Campylobacter load concentrations (expressed

in CFUs per gram) in retail samples:

Source:  Christensen et al. (2001), p. 11

Starting with this retail load distribution, predictive microbiology models (combined

with input data on storage, preparation, and consumption behaviors, including the

frequency distribution of serving sizes, in grams) can be used to generate

corresponding predicted frequency distributions of microbial loads at ingestion.

Specifically, suppose that the frequency distribution of chicken serving sizes is as

shown in the figure below (from WHO/FAO, 2002, Figure 6.11, p. 186).

Source: http://www.who.int/foodsafety/publications/micro/Salmonella/en/

Then the frequency distribution for the number of CFUs ingested per serving can be

found from these inputs by Monte Carlo simulation.  This is done as follows:

1. Randomly sample a serving size (grams per serving), drawn from the serving

size distribution.
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2. Independently, randomly generate a serving contamination level (CFU per gram

at the point of ingestion), formed by randomly sampling a contamination

concentration from the contamination concentration distribution and then

multiplying it by an estimated load reduction factor for storage (e.g., chilling, as

in Table 1) and cooking, sampled from an empirical distribution of such factors

derived from predictive microbiology models or data.

3. Multiply the values of the serving size and the serving contamination level to

obtain a sample value for CFUs ingested per serving.

4. Iterate steps 1-3 to obtain a frequency distribution of CFUs ingested per serving.

This Monte Carlo simulation procedure for estimating the distribution of a product

from the empirical distributions of its components (or from their conditional

distributions, if the values of some affect the likely values of others) can be

implemented easily using commercial risk analysis tools (Vose, 2000).

3.2  Simulation Based on Conditioning, Not Imitation

A common source of confusion about quantitative exposure models

(and other components of quantitative risk assessment) is a misperception

that they require unrealistically detailed data to implement (e.g.,

Bartholomew et al., 2005).  This is not true if appropriate techniques of

uncertainty analysis are used to bridge data gaps in the modeling.  For

example, suppose that there are several consecutive stages in a food safety

process simulation exposure model, such as:

A ⇒ B ⇒ C ⇒ D

Here, the thick arrows represent input-output processes and A, B, C, D are

points where microbial loads might be measured – e.g., A = on animals

leaving the farm, B = on animals following transportation to the slaughter

facility, C = post-processing carcass, D = retail meat product.  If

measurements are unavailable for stage C, then the conditional probability

distribution of microbial loads at D can still be related to microbial loads at

A (thus leaving the chain unbroken by the missing data at C) via the

conditional probability formula:

Pr(load at D = d | load at A = a)

= Σb[Pr(load at D = d | load at B = b) × Pr(load at B = b | load at A = a)]

where Pr(load at D = d | load at B = b) =

Σc[Pr(load at D = d | load at C = c) × Pr(load at C = c | load at B = b)]
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In other words, it is possible to condition on what is observed while skipping

over (or “marginalizing out”, in statistical terminology) the unobserved

quantities by summing over all their possible values, weighted by their

conditional probabilities. This makes predictive modeling possible even

when only some of the information needed for a complete description of the

process being modeled is available (Richardson and Green, 1997).

This simple example illustrates an important point about the data

requirements for risk assessment modeling.  The basis for inferring exposure

distributions from available data is usually statistical, i.e., conditioning of

probability distributions for the output quantities of interest in a causal

model (the simulation model), on what is known and measured.  What is

measured may be very imperfect, such as rough exposure estimates or

surrogates (e.g., how many times per week individuals eat undercooked

servings of meat). Algorithms for performing conditional probability

calculations to infer the conditional probability distributions for quantities of

interest, conditioned on measured values, in specified causal graph models

are now well understood (e.g., Zhang, 1998) and are becoming more widely

available in commercial statistical software.  The usual basis for inference is

not exhaustive description and simulation of all relevant physical details of

the processes that lead to exposures, which could indeed impose unrealistic

data collection requirement in many cases.

Example: Mixture Distributions and Unknown Dose-Response Models

The two main components of a health risk assessment model are the exposure

model, which predicts the frequency distributions of exposure units ingested in the

population per unit time, for each of the different risk management decision options

being compared; and a dose-response model (or exposure-response model) that

predicts the expected number of illnesses per unit of exposure ingested (e.g., per

contaminated serving consumed, if illness probability is not sensitive to the amount

of contamination above some threshold; or per CFU consumed, if the dose-response

model is linear with no threshold.)  The dose-response function may depend on

many unknown or unobserved factors, such as the exposed individual’s immune

status and susceptibility to the particular bacterium of concern.  The mathematical

form of the dose-response relation may also be unknown.  Despite these unknowns,

risk may be decomposed conceptually as follows:

Pr(Illness | exposure = x) =

Σ
r
Pr(Illness | exposure = x & response type = r)*Pr(response type = r)

where “response type” is an unobserved variable summarizing all of the missing

information needed to predict the probability of illness from a known level of
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exposure.  (For example, if each individual has an unknown threshold number of

CFUs that must be ingested in one meal to cause illness, then r would be that

threshold number.  If there is a continuum of response “types”, the above sum is

replaced by an integral.)  An important development in mathematical statistics is the

recognition that the uncertain quantities Pr(response type = r) can be interpreted as

statistical coefficients to be estimated directly from data on the aggregate number of

responses observed in populations for different exposure conditions, while the

conditional response probabilities that are paired with these coefficients, Pr(illness |

exposure = x, type = r) can be estimated simultaneously from the same data

(provided that technical identifiability conditions are met.  These are automatically

satisfied by many large families of distributions.)  The required statistical

technology is that of finite mixture distribution models if the number of types is

finite; or continuous mixture models if types are continuous.  In the conceptual

model Pr(Illness | x) = Σ
r
Pr(Illness | x, r)*Pr(r), the coefficients Pr(r) are interpreted

as mixing coefficients. Pr(Illness | x, r) is the conditional response probability given

latent (unobserved) variable r. Well developed computational Bayesian algorithms

can be applied to estimate the number of components in the mixture (i.e., the

number of statistically significantly different “types”) and the corresponding

coefficients and conditional response probabilities (see e.g., Richardson and Green,

1997.)  Note that, in this construction, the definition of the exposure variable x can

be any measured quantity (e.g., CFUs in processed carcasses or in retail meats) that

can be paired with corresponding illness rates.  All unobserved details of subsequent

processing, handling, preparation, etc. are then absorbed into the latent “type”

variable, r.  Missing values and errors in measured values of x can also be handled

within the computational Bayesian framework (e.g., using the data augmentation

algorithm, Schafer, 1997) to allow the conditional distributions of outputs given

observed data to be quantified, even when other data are missing. There is thus great

flexibility within simulation approaches to use all available data (via conditioning),

but without requiring use of unavailable data.

Scientists and modelers not trained in risk assessment sometimes

mistakenly assume that physical-level simulation of hard-to-model and

unobserved processes such as cooking, cross-contamination, and microbial

growth and death curves under various conditions, are required to obtain

useful, valid models of exposure.  They therefore reject simulation-based

exposure modeling, feeling that its input requirements are unrealistic and/or

require making speculative assumptions about unmeasured processes.

Understanding that all that is necessary is to compose valid statistical

descriptive relations (i.e., conditional probability relations for measured

quantities), as in the above example, may help to alleviate these concerns.
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4.   ATTRIBUTION-BASED EXPOSURE MODELING

In contrast to the preceding approaches, retrospective attribution

models begin with empirical estimates of the number of cases per year of

adverse health outcomes caused by bacteria of concern.  They then use

genotyping, serotyping, resistance typing, food consumption rates, and other

data to estimate the fractions of these cases of adverse effects that could be

prevented by removing specific exposures and sources.  As explained in

Chapter 3, these preventable fractions should not be confused with the

population attributable fractions (PAFs) often calculated in epidemiology,

nor with the fractions of exposures that have their historical origins in

various sources.  For example, PAFs for multiple causes can sum to more

than 100%, since they only reflect association, not causation; but preventable

fractions cannot exceed 100% for any intervention.  As another example, it

is logically possible that use of a certain animal drug might have caused (or

helped to cause) a resistant strain of a bacterium to emerge, and yet

terminating the drug use now might not reduce the resistant strain if it

competes favorably with other strains even in the absence of continued

selection pressure.  In this case, the fraction of resistance caused by the

historical drug use (perhaps as high as 100%) would not help to predict the

fraction of resistance that would be prevented by discontinuing further drug

use.  It is the latter – the preventable fraction of future exposures to the

resistant strain – that is of greatest interest in deciding what to do now, and it

is this fraction that attribution-based approaches should seek to quantify.

In practice, precise quantification of preventable fractions from

existing data may be difficult or impossible, since the effects on illness rates

of counterfactual potential interventions may be unknown.  In this case, the

fraction of exposures that could come from a specific source (as estimated

by various typing procedures) may serve as a useful constraint on the

fraction of exposures that could be prevented by controlling that source.

Example:  Using Genetic Data to Attribute Campylobacteriosis Cases to

Chicken Consumption

Genetic typing data is sometimes used to help estimate the fraction of bacterial

illnesses that originate in different food sources.  For example, in estimating the

fraction of campylobacteriosis cases caused by chicken consumption, one might

consider the following data points:

• Nadeau et al. (2002) found that “approximately 20% of human Campylobacter

isolates were genetically related to genotypes found in poultry ”

• Hein et al. (2003) noted that “A small number of human isolates [11 out of 101]

shared PFGE/AFLP types with poultry isolates [sampled at slaughter in
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Austria], however, further studies should also focus on the identification of

other sources of C. jejuni infection in humans.”

• Moore et al. (2003) stated that “Human campylobacteriosis is currently the most

common cause of acute bacterial gastroenteritis on the island of Ireland…  It

was the aim of this study to examine the phenotypic and genotypic relatedness

of campylobacters isolated from chickens and humans locally. Sixty isolates

were subtyped using phenotyping techniques (biotyping, phage-typing), as well

as genotyping techniques (multilocus enzyme electrophoresis (MEE),

ribotyping) and the data compared. The frequency of shared phenotypes and

genotypes between poultry and humans varied depending on the typing

technique employed ranging from 98.2% of human isolates sharing a similar

resistotyping (MAST) disc type with poultry strains to 20% similarity with

MEE typing.”

Interpreting such genotype data in terms of sources of exposure is problematic.  For

example, not all genotypes shared between species necessarily result from one

eating the other.  (Thus, lambs and chickens, and also people and dogs, have

overlapping Campylobacter genotypes, but in each pair, neither eats the other.) 

Schouls et al. (2003) caution that “We conclude that typing of Campylobacter

strains is useful for identification of outbreaks but is probably not useful for source

tracing and global epidemiology because of carriage of strains of multiple types and

an extremely high diversity of strains in animals.”  However, the 20% number from

Nadeau et al. and Moore et al. might be viewed as a conservative estimate of the

fraction of human isolates that are likely to have come from eating chicken.  (An

unknown part of this 20% may be due to sources such as contaminated water that

are common to chickens, humans, dogs, lambs, and other species.)

Example:  Exposure and Hazard Information from Resistance Data

Problem:  Suppose that 80% of isolates of a particular bacterium, B, taken from

chickens are resistant to antibiotic A; while 10% of isolates from human patients

infected by bacterium B are resistant to antibiotic A.  How, if at all, do these

observations constrain the fraction of human patients infected by bacterium B that

might be caused by chicken?  Are they consistent with a belief that most human

cases of A-resistant B infections come from eating chicken?

Solution:  On the face of it, if it were true that “most” (e.g., 50% or more) of human

cases of A-resistant B infections came from eating chicken, then at least (50%

infections from chicken) × (80% A-resistance rate in chicken-borne B) = 40% of

human infections should be resistant.  Since only 10% actually are resistant, this is

evidence against the belief that most A-resistant cases of B come from eating

chickens (assuming that the 80% and 10% numbers are reliable.)  However, this
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reasoning makes an implicit additional hypothesis:  that all bacteria of type B can be

treated as if they were homogeneous or interchangeable with respect to causation of

human illnesses.  If this hypothesis is abandoned, then the stated facts pose no useful

constraints on the fraction of human cases of A-resistant B that come from chickens.

For example, suppose that there is a particularly virulent strain of bacterium B, call

it B*, that accounts for all cases of A-resistant B infections in humans, and that

comes only from chickens.  Then the belief that most A-resistant cases of B come

from eating chickens would be correct after all (all of them do!) and would be

entirely consistent with the data presented.  Thus, while typing information can

potentially inform hazard identification (could chicken be the main source of A-

resistant B infections in people?) and exposure assessment (no more than 12.5% of

human exposures can come from chickens if human isolates have a 10% resistance

rate and chickens have an 80% resistance rate, since 80% × 12.5% = 10%), such

arithmetical inferences require microbiological justification, such as knowledge that

all strains are approximately equally virulent or that resistance rates in isolates from

human patients accurately reflect resistance rates in the causes of infection and are

not caused by something else, such as taking antibiotics in conjunction with chicken

(perhaps in the form of chicken soup) in the early stages of illness.

Example:  Using Epidemiological Data to Attribute Campylobacteriosis

Cases to Chicken Consumption

Epidemiological data can complement genotyping data and other biological

typing data, such as serotypng, resistance typing, and phenotypic typing information,

in estimating the fraction of bacterial illness cases resulting from a specific source of

exposure.  Continuing the example of estimating the fraction of campylobacteriosis

cases caused by eating chicken:

• A prospective case-control study from Quebec (Michaud et al., 2001) identified

poultry as the “principal suspected source of infection” in about 10% of cases,

comparable to drinking tap water at home (9%).  However, not all cases had

identified probable sources causes in this study.

• Our analysis of data of Kapperud et al. (2003) from Norway suggests that a

fraction 7/211 = 3.3% of all cases might be due to eating undercooked poultry,

after adjusting for other variables by conditioning using classification tree

analysis.  (Eating undercooked poultry is associated with eating other

undercooked meats, so some of the excess risk associated with eating

undercooked poultry may be caused by other factors.)

• Using a logistic regression model, Friedman et al. (2004) estimated higher

population attributable fractions (PAF = 24%) for eating chicken prepared in

restaurants.  However, this model did not distinguish between association and

causation and no corrections for model uncertainty were reported, nor were

high-order interactions among variables included.  The following plot of some

of the data analyzed in that study shows the fraction of subjects who had eaten
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in a fast food restaurant 0, 1, 2, 3, 4, or 5 times in the past week who ended up

as cases (campylobacteriosis cases) rather than as controls.

Its U shape suggests that the relation between chicken consumption (meals per

week) and risk of campylobacteriosis is nonmonotonic, in contrast to the

logistic regression model’s assumption of monotonicity.  Thus, the validity of

the logistic regression model, and of PAF calculations based on it, is unknown.

If plausible estimates of the fraction of campylobacteriosis cases caused by eating

chicken fall roughly in the range from 3% to 24%, then a point estimate of about 9%

with an uncertainty factor of about 3 (i.e., from 0.03 to 0.027) may be realistic.

A quick sanity check that does not use statistical models is based on the

observation that Campylobacter levels in processed broiler carcasses fell by about

90% since the mid-nineties (Stern and Robach, 2003).  Assuming a proportional

reduction in human risk of chicken-borne campylobacteriosis, the true fraction of

campylobacteriosis cases caused by eating chicken could have fallen from a pre-

1995 value of at most 100% to a current value of at most 10%.  This is an admittedly

crude calculation, based on a single study, but it suggests that an estimate of 10% or

less of human campylobacteriosis cases currently caused by eating chicken may not

be unreasonable.  Table 2 list some other possible sources of campylobacteriosis, as

discussed further in the next example.

Example:  Biology and Epidemiology of Protective Exposures

If campylobacteriosis cases do not primarily some from eating chicken, as the

previous results and others (e.g., Michaud et al., 2004) suggest, then where do they
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Table 2:  Risk Factors and Sources Associated with Campylobacteriosis

Source/risk factor Study

Bird-pecked milk bottle

tops

Lighton et al., 1991.  Note: “Previously recognised associated

factors such as outdoor activities, pet ownership and

consumption of chicken showed no significant association.”

Children Skirrow, 1977.  “Spread of infection was observed within 12 out

of 29 households, and in these cases children were usually

implicated.”

Chicken Norkrans and Svedhem 1982; Rosenfield et al., 1985;Eberhart-

Phillips et al., 1999;  Studahl and Andersson, 2000; many others

in many countries. See also restaurant chicken.

Contact with dogs,

puppies with diarrhea

Skirrow, 1977; Blaser et al., 1980; Brieseman, 1990

Cow Stalder et al., 1983. Outbreak traced to cow. Finch and Blake,

1985.

Farm visit in previous 2

weeks

Gillespie et al., 2003

Food handler Olsen et al., 2000 (shedding, contaminated pineapple and gravy)

Food handling Brown et al., 1988 “A point-source outbreak or Campylobacter

infection affected 24 of 51 delegates attending a business lunch.

…Cross-contamination as a result of handling raw and cooked

food consecutively was a possible cause of the outbreak”

Foreign travel Rodrigues et al., 2001, many other studies in many countries

Hamburger (raw) Oosterom et al., 1980.  Probable cause of barrack outbreak

Milk (unpasteurized) Gillespie et al., 2003, Korlath et al., 1985; Finch and Blake,

1985; many other studies since early 80s

Organic meats at home in

winter

Gillespie et al., 2003

Pets with diarrhea Gillespie et al., 2003

Pork (undercooked) Kapperud et al., 2003 for Norway

Restaurant food,

commercial catering

establishments

Gillespie et al., 2003; Frost et al., 2002 for outbreaks in England

and Wales, 1995-9

Restaurant chicken Rodrigues et al., 2001; Eberhart-Phillips et al., 1999; many

others in multiple countries.

Salad Blaser et al., 1988

Salad bar/food

preparation and storage

in the facility kitchen

Kirk, 1997.  “In seven affected groups of people using the

facility, the attack rate ranged between 19% and 67%.”

Tuna salad at a summer

camp

Roels et al., 1998

Sex between men Gaudreau and Michaud, 2003 for resistant cluster in Montreal

Water from private water

supplies

Said et al., 2003 for outbreaks in England and Wales, 1970-2000;

Pebody et al., 1997 attribute 6 out of 21 outbreaks in England

and Wales from 1992-4 to private water supplies

Water (undisinfected) Kapperud et al., 2003.  “Drinking undisinfected water, reported

by 53% of cases, was a leading risk factor in this study. Drinking

water may constitute the common reservoir linking infection in

humans and animals, including poultry and wild birds.”

Cabbage stew with beef Steffen et al., 1986.  Outbreak in German school children
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come from?  Although the epidemiology of campylobacteriosis outbreaks is only

partly relevant for understanding the epidemiology of sporadic cases, it can help to

identify potential sources of exposure, especially because the origins and/or vehicles

by which pathogens are transmitted to outbreak victims are often traced with much

greater certainty than is possible for any individual case.

Table 2 lists some sources and risk factors for campylobacteriosis identified

in previous literature from several countries in studies of both outbreaks and

sporadic cases.  The sources may be roughly grouped as: restaurant-related

(including cafeterias, commercial catering and food establishments), farm and

animal related, foreign travel-related, water-related, and other.  Chicken at

restaurants is implicated as a source of sporadic cases (Rodrigues et al., 2001) as

well as of outbreaks, as is other restaurant food (Frost et al., 2002).  Chicken

prepared and eaten at home is not associated with any increased risk in several

studies (Lighton et al., 1991, Rodrigues et al., 2001), but is associated with a large

(e.g., 40%), statistically significant reduction in risk in several studies (e.g., data of

Friedman et al., 2000; Effler et al., 2001).  This contradicts the widespread and oft-

repeated misconception that “Most [Campylobacter] infections are acquired by the

consumption and handling of poultry” (Allos, 2001), or that “In industrialised

countries, most infections are acquired through the handling and consumption of

poultry meat.” (Butzler, 2004).  A possible explanation is that eating poultry and

other meats in some commercial food establishments with unhygienic kitchen

practices may increase risk of campylobacteriosis; while eating them at home can

build protective immunity and help to protect against campylobacteriosis.

The hypothesis that low (sub-infectious) levels of exposure to Campylobacter

in chicken builds immunity can potentially be supported or refuted by testing it for

other foods.  The importance of individual immunity in mediating susceptibility to

campylobacteriosis has previously been noted for outbreaks following consumption

of raw milk.  For example, in one study:

“22 (88%) of 25 students who consumed raw milk for the first time became

infected…. Among ten persons who chronically consumed raw milk, none was

ill, a striking difference from the 76% attack rate among the 25 acutely exposed

students. The quantity of raw milk consumed was directly related to the

occurrence and severity of illness. Acutely infected students showed significant

rises in C jejuni-specific immunoglobulins, whereas the low antibody levels

seen in unexposed persons did not rise. In contrast, acute-phase serum samples

from persons with chronic exposure to raw milk showed elevated antibody

levels to C jejuni. These findings indicate that chronic raw milk consumption is

associated with elevated levels of C jejuni-specific serum antibodies and with

immunity to symptomatic infection.” (Blaser et al., 1987; see also Walz, 2001.)



150 Chapter 4

Conversely, a compromised immune system is a significant risk factor for

campylobacteriosis:  “The average annual incidence of Campylobacter among AIDS

cases (519/100,000) exceeded the crude population rate by 39-fold and exceeded the

rate among males aged 15-55 years by 35-fold” (Sorvillo et al., 1991).

Demographic attributes significantly associated with increased risk of

campylobacteriosis include being male, being an infant or in one’s twenties, and

ethnicity (Campylobacter sentinel surveillance scheme collaborators, 2003).

In deciding what fraction of campylobacteriosis cases should be

attributed to any specific cause such as consumption of undercooked chicken

in restaurants, it is necessary to decide how to account for:  (a)  Protective

effects (e.g., of foods that build acquired immunity); and (b) Interactions

between host and exposure in determining risk.  For example, should the risk

of campylobacteriosis for AIDS patients who eat undercooked meat be

attributed entirely to the meat, or somewhat to the undercooking and/or to

compromised immunity?  Such policy decisions have seldom been addressed

explicitly in risk attribution discussions.

One approach to solving (or bypassing) these difficulties, taken in this

book, is to focus on the human health consequences caused by specific

interventions.  From this standpoint, the fraction of all campylobacteriosis

cases caused by eating chicken, for example, is of limited interest. What

matters for practical decision-making is the change in campylobacteriosis

rates and their health consequences (e.g., illness-days per year) that would

result if specific interventions (such as banning enrofloxacin) were made.

The fraction of cases per year that would be prevented by a specific

intervention can be estimated by predictive risk models (e.g., based on

simulation or systems dynamics models), without resolving all of the more

philosophical quandaries of attribution.  Hence, we focus on the question of

what fraction of annual cases could be prevented by specific interventions,

according to specified models of the causal relation (possibly U-shaped)

between exposure and risk, and do not address other questions about

attribution of risk.  (However, for an axiomatic framework for attribution of

risk in the presence of joint, interacting causes, based on the Shapley value

for cost allocation games, see Gefeller et al., 1998 and Cox, 2001, Chapter 4.

A key insight from this more formal approach is that the proportion of risk

that should be attributed to a source is often just the proportion of exposure

that comes from that source. This is true even when there are strong

nonlinearities in the dose-response function, e.g., a response threshold,

provided that exposures from different sources affect risk symmetrically.)
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Example:  Calculating a Preventable Fraction with a Protective Effect

Problem:  The risk of a person becoming ill from ingesting 10
x

 CFUs of a bacterium

B in a certain time interval (e.g., in one meal or within a certain number of hours or

days, depending on the biology of infection) is as follows:  r(x) = 0.1x for 1 ≤ x ≤ 4;

r(x) = 0.4 for x > 4; r(x) = 0.2 – 0.1x for 0 ≤ x ≤ 1.  Before a risk management

intervention is implemented, the amount of exposure received in each time interval

is uniformly distributed between 0 and 4:  x ∼ U[0, 4].   What fraction of illnesses

are prevented by an intervention that reduces all exposures by 50%?

Solution: In general, if the cumulative distribution function for exposure is

Pr(exposure ≤ x) = F(x) and the conditional probability of illness when exposure is x

is r(x), then the risk induced by exposure distribution F and dose-response function

r(x) is, in applied probability notation: risk = E
F
[r(x)] = ∫r(x)dF(x). In this example,

prior to the intervention, the expected number of illnesses per unit time is:

risk before intervention

= Pr(0 ≤ x ≤ 1) × E[r(x) | 0 ≤ x ≤ 1] + Pr(1 ≤ x ≤ 4) × E[r(x) | 1 ≤ x ≤ 4]

= 0.25 × 0.15 + 0.75 × 0.25 = 0.225.

Following the intervention, with all exposures reduced by half, the risk is:

risk after intervention

= Pr(0 ≤ x ≤ 0.5) × E[r(x) | 0 ≤ x ≤ 0.5] + Pr(0.5 ≤ x ≤ 1) × E[r(x) | 0.5 ≤ x ≤ 1]

+ Pr(1 ≤ x ≤ 2) × E[r(x) | 1 ≤ x ≤ 2]

= 0.25 × 0.175 + 0.25 × 0.125 + 0.5 × 0.15 = 0.15.

Thus, the preventable fraction for this intervention is [(0.225 – 0.15)/0.225] = 1/3.

That the preventable fraction is less than the fractional reduction in exposure

accomplished by the intervention (namely, 50%) is explained by the nonlinear (V-

shaped) dose-response function.

4.1  Attribution through Multiple Stages

Attribution of measured health outcomes to the exposure sources that

contribute to them may be repeated, driving the attribution back recursively

to successively earlier stages in the chain or network of bacterial sources that

ultimately lead up to the exposures that caused harm.  Such calculations

work backward from clinical outcomes to intermediate sources (e.g.,

community vs. nosocomially acquired sources), and then to their

predecessors (e.g., food or water consumption, contact with infected or

contaminated animals and humans, etc.), and so forth.  The process is

repeated, ultimately leading back to a fraction of microbial load (resistant,
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susceptible, or both) that is estimated to be due to a particular source of

interest, such as antibiotic-resistant bacteria in animals, selected by use of

antimicrobial agents on the farm.  At each stage, the fraction of load

contributed by each preceding source is estimated.  The fractions along the

path leading from adverse outcomes back to the ultimate source of interest,

such as antimicrobial use on the farm, are then multiplied and the results are

interpreted as estimates of the fraction of cases per year that could be

prevented by eliminating any of the steps along the path, including

antimicrobial use on the farm.

When multiple paths lead from hazards affected by a risk management

intervention (such as bacteria in food or animal antibiotic use on the farm) to

exposures that cause measured adverse health consequences (such as cases

of illnesses or resistance in human patients), then the contributions to human

health impacts from different paths are summed to obtain the total impact of

the intervention.  Thus, just as for simulation-based approaches that work

“forward” from sources to effects, attribution-based models that work

“backward” from effects to their causes may lead to the same type of

algebraic formula, expressing risk as a sum of products of factors.  However,

the logic of the approach is different.  By starting with cases, the attribution

approach estimates the fractions of exposures that actually result in (or at

least co-occur with) illnesses (i.e., cases) that come from different sources.

Example:  Two-Stage Preventable Exposure Fractions

Suppose that 10% of cases of bacterial illness B in humans are attributed to

chickens (meaning that removing chickens as a source would prevent 10% of cases)

and that 20% of bacteria B in chickens are attributed to contamination spread by

flies.  Then 10% × 20% = 2% of human cases would be attributed to contamination

spread to chickens by flies.  If flies also spread bacterium B from chickens to other

reservoirs and hosts (e.g., family pets), some of which then lead to illness cases in

humans, then a Leontief input-output matrix style of analysis can be used to define

the total fraction of human cases to attribute to each source, taking both direct and

indirect contributions along all paths into account.  This is illustrated in the next

example.

Example:  Matrix Calculation of Preventable Exposure Fractions

Setting:  Consider an ecosystem in which pathogenic bacteria move among three

compartments:  humans (H), water (W), and chickens (C).  The direct effects of the

different sources in contributing bacteria to each other are described by the

following system of equations:
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H = 0.5W + 0.1C + 0.4

W = 0.2H  + 0.2C + 0.6

C = 0.3W + 0.7

The coefficients (including the intercept) in each term sum to 1 and the initial values

of H, W, and C are normalized to 1 (i.e., each is at 100% of its baseline equilibrium

value).  The intended interpretation of these equilibrium equations is that 50% of

human exposure to the bacterium comes via water, 10% from chicken, and the

remaining 40% from outside the system.  Similarly, 20% of the bacteria in water

come from humans (e.g., via sewage), 20% from chickens, and 60% from outside

the system.  30% of the bacteria in chickens come from water and the rest from

outside the system.

Problem:  What fraction of human exposure to the bacteria would be prevented if a

new technique of animal husbandry eradicated the contribution from chicken?

Solution:  Setting C = 0 makes the third equation irrelevant and reduces the system

to the following:

H = 0.5W + 0.4

W = 0.2H  + 0.6

This is of the form x = Ax + b, with solution x = (I – A)
–1

b, where I is the 2 x 2

identity matrix, b = [0.4, 0.6]’ is the column vector of exogenous levels, and A is the

matrix of coefficients A = [0, 0.5 ; 0.2, 0] (using the MATLAB™ convention that

rows are separated by semicolons.)  The solution can be found by MATLAB™ by

entering the following model equations, which can be adapted to large models:

A = [0, 0.5 ; 0.2, 0];

I = [1, 0; 0, 1];

b = [0.4, 0.6]’;

x = (inv(I – A))*b

The result returned in this case is:  x = [0.7778, 0.7556]’, i.e., the new equilibrium

level of exposure in the human compartment is 0.7778 = 7/9.  Removing chicken as

a source prevents 22.22% = 2/9 of human exposures.

The technique illustrated in this example is appropriate for calculating

changes in equilibrium exposures in systems described by linear equations.  If the

removal or reduction of one source of bacteria leads to growth of another, however,

then simple linear analysis of equilibrium fractions no longer suffices, and predictive

modeling must be used to calculate changes in human exposures.
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In attribution exposure models, uncertainties about the attributable

fractions at different stages are commonly treated by using upper-bound

estimates.  If the product of the upper bound estimates is small, then the true

but unknown value of the product is also small, and this information may be

sufficient to support a decision that no intervention is required.  If the

product of the upper bound estimates is large enough so that this conclusion

cannot be justified, then the uncertainty analysis can be refined by estimating

probability distributions for the fractions at different stages and applying

basic Monte Carlo uncertainty analysis (see e.g., Vose, 2000) to obtain the

probability distribution for their product.

5. SYSTEMS DYNAMICS MODELS OF EXPOSURE

For antimicrobial risk assessments, including risk assessments of

animal antibiotic uses, the exposures of concern specifically include

exposures to antibiotic-resistant bacteria.  Exposure assessment requires

estimating the changes in human exposures to resistant and susceptible

bacteria that would be caused by alternative risk management interventions.

This section illustrates how such estimation can be accomplished, using the

model introduced in Chapter 3 for purposes of illustration.

5.1  Model Development and Simplifying Assumptions

The equations of the model are as follows:

IA = IA0 + A*(IA1 – IA0) (1)

dIH/dt = [a1 + b1(1 – IA) + c1IA](1 – IH) – r1IH (2)

dRA/dt = [a2 + b2A + d2IH](1 – RA) – r2RA   (3)

dRH/dt = [a3 + d3IH + fRA](1–RH) – r3RH  (4)

where IA = the ill animal fraction (e.g., the fraction of chicken servings from

airsacculitis- or necrotic enteritis-positive flocks), IH = ill human fraction

(e.g., the fraction of the population that has the bacterial illness of concern at

any time), RA = resistant fraction of bacteria from animals, and RH =

resistant fraction of bacteria from humans.  The controllable input is A, with

possible values of 1 if animal antibiotic use continues and A = 0 otherwise.

Equation (1) shows that the effect on animal health of a ban on animal

antibiotic use is a change in the prevalence of ill animals at slaughter from

IA1 to IA0 > IA1.

The coefficients in this model can be estimated from empirical

information.  To illustrate principles as clearly as possible with minimum

algebraic manipulation, we will focus on comparing the steady-state



Exposure Assessment 155

equilibrium exposure levels before and after an intervention replacing A = 1

(continued use) with A = 0 (discontinued use).  The following assumptions

are made for simplicity. (Subscripts of 1 and 0 denote the equilibrium values

of dynamic variables when A = 1 and when A = 0, respectively, i.e., with

and without continued animal antibiotic use.)

• The pre-intervention levels IA1, IH1, RA1, and RH1 are all known, e.g.,

from surveillance studies in animals and humans.

• IA1 = 0, or is close enough to zero to be negligible.  This is appropriate

for animal illnesses such as airsacculitis or necrotic enteritis that have

been effectively controlled.

• All animal resistance is caused by animal antibiotic use and would

eventually disappear if such use were discontinued (i.e., if A were set to

zero.  Thus, RA0 = 0.)  Mathematically, this implies that a2 = d2 = 0 in

equation (3).  This extreme assumption provides a bounding case that

can be relaxed in sensitivity analyses or in more detailed analyses.

• Similarly, all human antibiotic resistance originates in resistant bacteria

from food animals, so that if RA = 0, then eventually RH = 0.

With these assumptions, the model equations reduce to the following:

IA = (1 – A)*IA0, for A = 0 or 1. (1a)

dIH/dt = [a1 + b1*(1 – IA) + c1*IA]*(1 – IH) – r1IH (2a)

dRA/dt = b2*A*(1 – RA) – r2*RA   (3a)

dRH/dt = f*RA*(1–RH) – r3*RH  (4a)

In steady-state equilibrium, all time derivatives become zero and equation

(2) simplifies to: [a1 + b1(1 – IA) + c1IA](1 – IH) = r1IH.  Solving this for the

equilibrium value of IH0 yields:

   IH0 = [a1 + b1*(1 – IA0) + c1*IA0]/[ r1 + a1 + b1*(1 – IA0) + c1*IA0]

= 1/[1 + r1/(a1 + b1*(1 – IA0) + c1*IA0)] (2b)

Substituting IA1 = 0 into the equilibrium equation simplifies it to:

   IH1 = [(a1/b1) + 1]/[(a1/b1) + 1 + (r1/b1)] = 1/[1 + r1/(a1 + b1)] (2c).

Equations (3a) and (4a) are irrelevant for steady-state equilibrium analysis,

as we assume that RA1 and RH1 are known and that RA0 = RH0 = 0.
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5.2  Estimating Model Parameters from Data

To make predictions from a parametric model such as (2b), it is usual

to first estimate the model parameters from what is known and observed and

then to use them to predict model outputs for new inputs.  The model

parameters can be estimated from the following empirical inputs:

1. How many times more likely to cause illness is a serving from an ill

animal than a serving from a well animal?  This determines the ratio

c1/b1. Limited empirical data suggest that processed carcasses from

airsacculitis-positive chicken flocks may carry an average of about 10

times more Campylobacter than processed carcasses from airsacculitis-

negative flocks (due largely to higher processing error rates and fecal

contamination among underweight birds), although there is considerable

flock-to-flock heterogeneity (Russell, 2003).  If risk of illness is

proportional to microbial load on processed carcasses (presumably

attenuated for each serving by a product of random reduction factors for

subsequent handling, processing, storage, and preparation), then an

estimated value for the c1/b1 ratio of about c1/b1 = 10 might be plausible

as a base case, i.e., as a starting point for uncertainty and sensitivity

analyses.  (Non-proportional dose-response relations are considered in

Chapter 8 and its appendix on the log-exponential model.)

2. What proportion of human illnesses are caused by the food animal or

commodities of concern, as opposed to other sources (e.g., vegetables,

drinking water, pets, etc.?)  In general, this proportion determines the

ratio [b1(1 – IA) + c1IA]/[a1 + b1(1 – IA) + c1IA].  For IA1 = 0, however,

this ratio simplifies to:  b1/(a1 + b1).  Hence (on dividing numerator and

denominator by b1), this proportion determines the ratio a1/b1. For

example, if 10% of human campylobacteriosis illnesses are caused by

consumption of chicken in the base case, then b1/(a1 + b1) = 10% and so

b1 = 0.1 × (a1 + b1), 0.9b1 = 0.1a1, and a1/b1 = 9.  If instead 60% of

human campylobacteriosis illnesses are caused by consumption of

chicken (the base case assumed by FDA-CVM, 2001 was about 57%),

then b1/(a1 + b1) =  0.6, so b1 = 0.6 × (a1 + b1), 0.4b1 = 0.6a1, and a1/b1 =

0.67.  We will use both values, (a1/b1) = 9 and (a1/b1) = 0.67, in

subsequent calculations to illustrate the sensitivity of results to this ratio.

3. What is the mean duration of illness?  The reciprocal of this number

determines the recovery rate, r1.  For example, if the mean duration of

illness is about 6 days, then r1 = (1/6) per day = 5 per month.  If the

duration of illness is significantly different in some subpopulations, or

for resistant compared to susceptible illnesses, then the model could be

fit separately to each such subpopulation, but for purposes of illustration,
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a single recovery rate is assumed here, implying an exponentially

distributed random recovery time for individuals.

4. What is the initial endemic illness rate in humans prior to intervention?

For example, for campylobacteriosis, there are about (13.4E-5 reported

cases per capita-year) × (38 assumed cases per reported case, from Mead

et al., 1999) = 0.0051 cases per capita-year.  Assuming an average of 6

days per illness, each illness causes an average of (6/365) of a year to be

spent ill, giving an illness fraction (i.e., the probability that a randomly

selected member of the population on a randomly selected day is ill) of:

IH1 = (0.0051 cases per capita-year) × (6 days per illness/365 days per

year) = 8.4E-5, prior to any intervention.

5. If the animal antibiotic use is discontinued (A is set to zero), by how

much will the ill animal fraction increase?  This requires assessing how

effective the animal antibiotic is in reducing animal illnesses (or in

reducing the prevalence of underweight animals going to slaughter, if

that is the only effect of antibiotic use on animal health.  Recall that IA

describes the fraction of animals contributing to servings with

significantly increased microbial loads, whether the detailed cause is a

specific bacterial illness or simply being underweight and at increased

risk of processing errors and fecal contamination.)  The answer to this

question determines (IA0 – IA1) in general, and IA0 in the particular case

IA1 = 0.  For purposes of illustration, we will consider an increase in the

animal illness fraction from approximately 0% to approximately 1%.  In

reality, the endemic rates of animal illnesses such as necrotic enteritis or

airsacculitis increase by different amounts in different countries (see

e.g., VLA, 2004 for necrotic enteritis rates in the U.K. following a ban

on virginiamycin and other growth promoters).  It is therefore useful to

calculate the exposure consequences of a withdrawal on the basis of an

increase of only 1%, and then multiply the results by the estimated true

percentage increase in animal illnesses if A is set to 0.

These empirical inputs allow the parameters in equation (2) to be fully

specified.  When A = 1 (continued animal antibiotic use) and IA1 = 0,

equation (2) determines the equilibrium endemic value of IH1 via the

equation:  IH1/(1 – IH1) = (a1 + b1)/r1, which for a small IH1 (such as IH1 =

8.4E-5) gives answers that are numerically almost identical to IH1 = (a1 +

b1)/r1.  Substituting the estimates r1 = 5 per month and a1 = 9b1 from above

into this formula yields: IH1 = 10b1/5 = 2b1, or b1 = IH1/2 = 4.2E-5 per

month.  Then a1 = 9b1 = 9 × 4.2E-5 = 3.78E-4 and c1 = 10b1 = 10 × 4.2E-5 =

4.2E-4, using the preceding suggested base case estimates of these parameter

ratios.  So, the fully specified version of equation (2) using base case

parameter estimates (and a time scale measured in months) becomes:
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dIH/dt = b1[(a1/b1) + (1 – IA) + (c1/b1)IA](1 – IH) – r1IH

= (4.2E-5)*[9 + (1 – IA) + 10*IA]*(1 – IH) – 5*IH.

This is a linear ODE with constant coefficients.  It can readily be solved to

answer questions about how changing IA will affect IH.

If 60% (rather than 10%) of human illnesses stem from animal

bacteria, so that (a1/b1) = 0.67, then the equation IH1  ≈ (a1 + b1)/r1 implies

that 1.67b1 = r1*IH1, or b1 = [(r1*IH1)/1.67] = (5*8.4E-5)/1.67 = 2.515E-4.

The model parameter estimates are then:  [a1, b1, c1, r1] = [0.67 × 2.515E-4,

2.515E-4, 10 x 2.515E-4, 5] = [1.685E-4, 2.515E-4, 2.515E-3, 5].

5.3  Using the Model to Make Predictions

For comparing the pre-intervention and post-intervention equilibrium

values, equation (2b) can be used to quantify IH0, which is then compared to

the baseline value of IH1 = 8.4E-5.  If illnesses are proportional to the

exposures to the bacteria that cause them, then the fractional change in

illnesses, (IH0 – IH1)/IH1, will be the same as the fractional change in

exposures.  [If resistant and susceptible bacteria cause different durations of

illness, then separate values of r1, say r1s and r1r, could be assessed and

illnesses due to each type of bacterium could be tracked separately.  Here,

we continue to assume that susceptible and resistant strains have roughly the

same average recovery rate, as appears plausible for domestically acquired

campylobacteriosis cases and antibiotics such as macrolides and

fluoroquinolones (see e.g., Ang and Nacham, 2003).]

Example:  Calculating Exposure Consequences of a Ban

Problem:  In the preceding model, suppose that the animal antibiotic has been used

(A = 1) for long enough so that the system has reached steady-state equilibrium.  If

the animal antibiotic use is now discontinued (setting A = 0), what will be the

resulting relative change in the new equilibrium exposure and illness rates?  Answer

for 10% and for 60% of human illnesses IH caused by food animal bacteria.

Solution:   By hypothesis, changing A from 1 to 0 increases the ill animal fraction

from IA
1
 = 0 to IA

0
 =  0.01.  The new equilibrium IH

0
 is given by equation (2b):

   IH0 = [a1 + b1*(1 – IA0) + c1*IA0]/[ r1 + a1 + b1*(1 – IA0) + c1*IA0] (2b)

Substituting the rough estimates r1 = 5, b1 = 4.2E-5, a1 = 9*b1 and c1 = 10*b1

yields IH
0
  = 8.476E-5.  Entering the following lines in MATLAB™:
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r1 = 5; b1 = 4.2E-5; a1 = 9*b1; c1 = 10*b1; IA0 = 0.01; IH1 = 8.4E-5;

IH0 = [a1 + b1*(1 - IA0) + c1*IA0]/[ r1 + a1 + b1*(1 - IA0) + c1*IA0]

FractionalChange = (IH
0
 – IH

1
)/IH

1

returns the following results:

IH0 =  8.4749e-005 FractionalChange = 0.0089.

Thus, the human illness rate (and the corresponding exposures) are predicted to

increase by only 0.89% for a 1% increase in animal illness rates.

If the fraction of human bacterial illnesses from food animals is assumed to

be 60% rather than 10%, then the preceding calculations are revised as follows:

r1 = 5; b1 = 2.515E-4; a1 = 1.685E-4; c1 = 2.515E-3; IA0 = 0.01; IH1 = 8.4E-5;

IH0 = [a1 + b1*(1 - IA0) + c1*IA0]/[ r1 + a1 + b1*(1 - IA0) + c1*IA0]

FractionalChange = (IH
0
 – IH

1
)/IH

1

resulting in:

IH0 =  8.8519e-005 FractionalChange = 0.0538.

In this case, a 1% increase in the ill animal fraction induces a predicted increase of

about 5.38% in human illnesses and in the corresponding bacterial exposures that

cause them.  In this scenario, a 20% increase in the ill animal fraction (see VLA,

2004 for necrotic enteritis increase data) would more than double the baseline

human exposure levels and illness rates.

The systems dynamics approach illustrated in this section can be

extended to more complex causal models in which not all human resistant

isolates necessarily come from resistant bacteria in food animals and not all

resistant isolates in animals necessarily come from animal antibiotic use.

The basic steps of equation development, parameter estimation from data,

and model-based prediction remain the same, but additional empirical

questions must be answered to obtain needed inputs.  (For example:  How

quickly, e.g., with what half-life, will resistance to the antibiotic decrease in

animals if use is terminated?  The answer determines the value of r2.)

Systems dynamics models can also be used to calculate (or simulate)

time courses of dynamic variables following a change in controllable inputs.

For example, solving equation (2) numerically or symbolically shows how

quickly IH(t) increases following termination of animal drug use.  Solving

the system of equations (1)-(4) shows how each of its variables changes over
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time following the change in animal drug use.  However, for many risk

management policy analyses, comparison of the steady-state equilibria

before and after intervention provides the most essential information to

support decision-making.  Chapter 8 develops such comparisons further.

6. EXPOSURE ASSESSMENT METHODS TO AVOID

The following approaches to exposure assessment seek to simplify the

process of exposure assessment by ignoring microbial load information.  In

general, they give inaccurate results and should not be used.

6.1   Prevalence-Based Exposure Metrics

Models that only use dichotomous exposure summaries (e.g.,

“contaminated” vs. “not contaminated” for chicken carcasses or servings) do

not contain sufficient information to allow confident, accurate risk

predictions when risk depends on how much exposure occurs, and not simply

on whether it occurs.  (For example, multiplying all exposures by 1,000,000

might well increase risk, but it would not affect prevalence.) Such

summaries of exposure prevalence should not be used for risk assessment

unless quantitative information does not significantly affect risk.  However,

using prevalence together with a conditional probability distribution for

microbial load given that it is greater than zero is perfectly acceptable.  The

WHO/FAO 2002 risk assessment for Salmonella illustrates this approach in

detail (op cit, http://www.who.int/foodsafety/publications/micro/Salmonella/en/).

Technical Note:  Discretizing Continuous Exposures.  If a qualitative or categorical

summary of exposure is desired, then histogram-fitting methods are available that

lose less relevant information than prevalence measures and that can allow useful

predictions.  For example, classification tree algorithms (Zhang and Singer, 1999)

automatically bin more detailed exposure-response data into a few contiguous

aggregate exposure intervals (or combinations of intervals, if there are multiple

exposure factors) that predict similar response probability levels.

Example:  Prevalence Does Not Predict Risk

The WHO/FAO 2002 risk assessment for Salmonella reported that:

 “The effect was assessed of reducing the numbers of Salmonella on poultry

carcasses without changing the prevalence of contaminated carcasses.  The values

of the cumulative concentration distribution used in the baseline scenario were
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reduced by 50% (approximately 0.3 logCFU per carcass…). The model was run

using the reduced level of contamination while maintaining the prevalence at

20% and with no changes in any of the other parameters. Unlike a change in

prevalence, a change in concentration of the pathogen does not necessarily have a

linear relationship with the risk outcome. … The servings were estimated to be

contaminated and potentially undercooked approximately 2% of the time. That

statistic remains unchanged if the level of contamination is reduced. The expected

risk per serving, which incorporates the prevalence of contaminated servings and

the probability of undercooking, was estimated to be 1.13E-5 (1.13 illnesses per

100,000 servings) in the original case, and 4.28E-6 (4.28 per 1,000,000 servings)

in the situation when the level of contamination is reduced. The expected risk per

serving is therefore reduced by approximately 62%.”

Thus, in this example, a reduction in contamination that reduces risk by 62% has no

effect on prevalence of contamination, indicating that prevalence of contamination

alone does not determine risk.  This point is generally well recognized (see e.g.,

Ross and McMeekin, 2003; and Rosenquist et al., 2003 for a discussion of similar

points for campylobacteriosis), although some previous risk assessments (FDA-

CVM, 2001) mistakenly attempted to predict risk from prevalence without using the

essential information about the conditional distribution of microbial load.

6.2   Holistic Statistical Exposure Modeling

A common mistake is to create a regression model describing the

statistical relation between population responses and population exposures

(and perhaps other predictors) and then to treat the statistical relation as if it

described a causal relation that could be used to predict effects of changing

the exposure variable.  Such aggregate-level statistical modeling does not

account adequately for heterogeneity in individual exposure-response

relations or distinguish between statistical associations and causal relations

that hold at the individual level.  It can yield false conclusions about both

statistical associations and causal relations among variables (e.g., exposure

and response variables) for the individuals in the population.  The same

caveats hold for aggregate-level statistical models for the relations among

exposure variables.  For example, consider the following simple linear

regression model for estimating exposure levels in food servings (e.g., of

chicken) ingested in a population from measured levels of contamination in

animals leaving the farm:

exposure in ingested servings = k × (contamination in animals at farm).

The aggregate parameter k is interpreted as an overall average effective

transmission coefficient that tries to account implicitly for the unmodeled
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factors intervening between farm contamination and exposures.  Such a

statistical model has the following limitations that make it unsuitable for

causal modeling and health risk assessment (see e.g., Pearl, 2002):

(a) It fails to sum over multiple distinct paths and scenarios, which may be

represented by multiple distinct k values for different individuals.  The

average value of k can be literally meaningless, i.e., it need not give

useful information about causal impacts, or even about statistical

associations, that hold at the individual level.  In general, such “reduced-

form” models based on aggregate data may contain biases from omitted

variables that create statistical associations very different from causal

impacts, and possibly even of opposite sign (“Simpson’s paradox”, see

e.g., Fiedler et al., 2003).

(b) It does not necessarily show how a change in the right-side explanatory

variables (“contamination in animals at farm”, in this example) would

affect the left-side variable.  (Technically, only structural equations, not

reduced-form ones, model the causal relations among variables; see

Shipley, 2000, Pearl, 2002).

Example:  Structural vs. Reduced-Form Equations

To understand why reduced-form models such as simple linear regressions of

one aggregate variable against another are inappropriate for risk assessment,

consider the following simple example. Suppose that the correct structural equations

in a model are:

Exposure ingested = contamination at retail – contamination removed in kitchen (1)

contamination removed in kitchen = (1/3) × contamination at retail  (2).

Here, “contamination at retail” is the microbial load on a serving at retail and

“contamination removed in the kitchen” is the amount of microbial load that is

removed in the kitchen as the serving has been prepared.  For simplicity of

exposition only, microbial load is modeled here as conserved, i.e., what is ingested

is what was on the purchased meat (“contamination at retail”) minus what remains

in the kitchen (“contamination removed in kitchen”).  (In reality, cooking, cleaning,

bacterial growth and death, etc. would intervene and microbial load need not be

conserved.)  In a linear structural equation model such as this one, changes in the

variables on the right of each equation are interpreted as affecting the variable on the

left, with the coefficients of the right-hand side variables describing the change in

the left-hand side variable per unit change in each right-hand side variable (Pearl,

2002).  Equation (2) is mathematically (though not causally) equivalent to:
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contamination at retail = 3 × contamination removed in kitchen (2’).

(This equation does not have an intended causal interpretation because

contamination at retail causes contamination in the kitchen, not conversely.)

Substituting (2’) into (1) gives the reduced-form model

Exposure ingested = 2 × contamination removed in kitchen. (3).

This is a simple linear regression model of the form “Exposure = k × contamination”

with k = 2. It is valid for some kinds of statistical inference. For example, it

correctly predicts that establishments with twice as much contamination in the

kitchen will have twice as much exposure ingested under the current conditions

described by equations (1) and (2) (since both quantities are proportional to

contamination at retail, which may differ across locations.)  However, it cannot be

used to correctly predict the change in “Exposure ingested” from an intervention

that increases “contamination removed in kitchen” while holding fixed

“contamination at retail”, e.g., by more thorough cleaning or cooking of meat.  It is

thus useless (and, indeed, misleading) for predicting the causal impact of such a

change, which is what risk managers typically care about.  For, equation (1) shows

that this causal impact is negative, i.e., each unit increase in “contamination

removed in kitchen” decreases “Exposure ingested” by one unit, since microbial

load left in the kitchen is not on the final serving and hence is not part of the

ingested load.  But the reduced equation (3) indicates a positive statistical relation

between them.  Equation (1), rather than equation (3), is relevant for predicting

causal impacts of interventions.

7. VALIDATING AND REFINING EXPOSURE MODELS

Exposure assessment models should be validated by comparing their

predictions under different conditions to measured values of exposures

and/or their surrogates.  An exposure model can be used to predict microbial

loads (or related measured quantities, such as the concentration of CFUs in

rinse fluids) at various measurement points and under different conditions,

e.g., in different locations, for different seasons, storage and preparation

histories, and so forth.  Comparing the model-predicted values to measured

values using statistical goodness-of-fit tests and diagnostic plots shows

whether the observed values are statistically significantly different from the

predicted distributions of values.  Haas et al. (1999), Chapter 6 reviews

goodness-of-fit tests for parametric exposure models, (Chapter 7 also

discusses validation and uncertainty analysis of simulation models, although

with emphasis on dose-response rather than exposure models.)
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Example:  Validating Predictive Microbiology Exposure Models

The following abstract, from Coleman et al. (2003) describes and

illustrates efforts to validate (and subsequently improve) predictive models

of bacterial growth in food.

“A novel extension of traditional growth models for exposure assessment of

food-borne microbial pathogens was developed to address the complex

interactions of competing microbial populations in foods. Scenarios were

designed for baseline refrigeration and mild abuse of servings of chicken broiler

and ground beef. Our approach employed high-quality data for microbiology of

foods at production, refrigerated storage temperatures, and growth kinetics of

microbial populations in culture media. Simple parallel models were developed

for exponential growth of multiple pathogens and the abundant and ubiquitous

nonpathogenic indigenous microbiota. Monte Carlo simulations were run for

unconstrained growth and growth with the density-dependent constraint based

on the "Jameson effect," inhibition of pathogen growth when the indigenous

microbiota reached 10
9

 counts per serving. The modes for unconstrained growth

of the indigenous microbiota were 10
8

, 10
10

, and 10
11

 counts per serving for

chicken broilers, and 10
7

, 10
9

, and 10
11

 counts per serving for ground beef at

respective sites for backroom, meat case, and home refrigeration. Contamination

rates and likelihoods of reaching temperatures supporting growth of the

pathogens in the baseline refrigeration scenario were rare events. The

unconstrained exponential growth models appeared to overestimate L.

monocytogenes growth maxima for the baseline refrigeration scenario by 1500-

7233% (10
6

-10
7

counts/serving) when the inhibitory effects of the indigenous

microbiota are ignored. The extreme tails of the distributions for the constrained

models appeared to overestimate growth maxima 110% (10
4

-10
5

 counts/serving)

for Salmonella spp. and 108% (6 x 10
3

 counts/serving) for E. coli O157:H7

relative to the extremes of the unconstrained models. The approach of

incorporating parallel models for pathogens and the indigenous microbiota into

exposure assessment modeling motivates the design of validation studies to test

the modeling assumptions, consistent with the analytical-deliberative process of

risk analysis.” (Source:  Coleman et al., 2003)

This example points out both the importance of validating predictive exposure

models before using them, by comparing their predictions against observations over

a range of values;  and also the potential to use such validation studies to improve

predictive models by choosing more realistic assumptions when the validation

results indicate a significant gap between predicted and observed results.
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When predicted exposures do not adequately match validation data,

the exposure model should be corrected.  This can be done by refining the

model to include omitted variables; to more accurately model dependencies

among its inputs (Haas, 1999), e.g., by including inhibitory effects of the

indigenous microbiota on growth of L. monocytogenes in the above example;

and/or by using the differences between predicted and observed values to

select more appropriate mathematical model forms that can explain and

reduce these differences.  Advanced statistical methods may help to avoid

non-valid models and false predictions.  Examples include flexible non-

parametric data descriptions and predictions from multiple alternative

models that are consistent with available knowledge and data, weighted by

their probabilities. (See Cox 2001, Chapter 3 for a survey for risk analysts).

If model-predicted exposures do adequately match validation data

according to goodness-of-fit tests and model diagnostics (e.g., plots of

residuals), then the exposure model may be used to make predictions for risk

assessment within the validated range of conditions.  In this case, remaining

uncertainty in model parameters, inputs, and predictions should be expressed

through confidence intervals for single quantities (e.g., the mean exposure or

the upper 95% exposure limit in the population) and through joint

confidence regions for multiple quantities, such as the exposures received by

different subpopulations.  Haas et al. (1999) describe and illustrate statistical

methods for quantifying uncertainties in microbial risk assessments.

8. QUALITATIVE EXPOSURE ASSESSMENT

Although, as discussed in Chapter 1, qualitative methods of risk

assessment cannot necessarily be relied on to give correct or informative

results in general, qualitative exposure assessments can be valid and useful

under certain conditions.  Specifically, suppose that the dose-response

relation, representing the conditional probability of illness given exposure,

increases from near zero to near one over a relatively narrow range of

exposures – that is, a range of exposures that is narrow compared to the

width of the overall frequency distribution for exposures.  Then it is useful to

divide the exposure axis into three contiguous ranges, which can be called

“Low”, “Medium”, and “High”, where “Low” refers to the exposures that

give illness probabilities near zero,  “High” refers to the exposures that give

illness probabilities near 1, and “Medium” refers to exposures in between.

As long as the transition from “Low” to “High” exposures occurs over such

a narrow range that “Medium” exposures are unlikely and contribute little to

risk, it matters little exactly where the boundaries among the three intervals

are set.  Fuzzy terms such as “Low” and “High” (possibly excluding the
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“Medium” category altogether) for exposures then carry a useful natural

meaning with respect to the probability of illness, i.e., a “Low” exposure is

one that has little or negligible probability of causing illness, while a “High”

exposure is one that has a substantial probability of causing illness.

The exact location of the boundary between “Low” and “High” (if

only these two qualitative terms are used), or separating “Low”, “Medium”

and “High” (if all three are used), need not be specified precisely when risk

is insensitive to these details.  In this setting, quantitative risk is driven by

the frequency of “High” exposures.  In effect, the dose-response relation

endows qualitative exposure values with a natural interpretation such that

risk is proportional to “High” exposures. Indeed, Van Gerwen et al., (1998,

2000) have suggest using simple but useful “Attention Values”, such as

those in Table 3, to help to decide quickly whether specific exposure levels

to specific bacteria are likely to pose significant human health risks worthy

of closer study and more accurate quantitative modeling. These values might

be re-interpreted as rough estimates of the boundary between “Low” and

“High” exposures for the different bacteria.

Table 3.  Attention Values and Mortality Ratios for Several Bacteria

Source:  Adapted from a larger table by van Gerwen et al., 2000

In summary, rapid qualitative exposure assessments, focusing on how

frequently “High” exposures are likely to occur if different interventions are

made, can serve a useful screening purpose when there is enough knowledge

to separate “High” exposures (those that pose a significant increased risk of

illness) from “Low” ones, for the exposed populations, with little error.

Such qualitative exposure assessments also lead naturally to quantitative and

semi-quantitative refinements, as illustrated in the following example.
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Example:  Quick Qualitative Exposure and Risk Assessment

Problem:  Suppose that a ban on animal drug A will increase the frequency of

“High” exposures to strains of bacteria B in food servings by 5% over its pre-

intervention base level (i.e., new level = 1.05 × old level), while eliminating all A-

resistant bacteria B in food servings.  Susceptible cases of B infection take 6 days on

average to resolve themselves, while resistant cases take 8 days.  If, prior to the

intervention, 80% of human cases of B infection are susceptible to A (with 20%

being resistant), then what is the net impact of the intervention on days of illness?

Solution:  Prior to the intervention, the average duration of an illness caused by B is:

Pr(susceptible) × E(duration | susceptible) + Pr(resistant) × E(duration | resistant)

= 80% × 6 + 20% × 8 = 4.8 + 1.6 = 6.4 days.

 (E(duration | Y) denotes the conditional expected value of duration, given condition

Y.)  Following the intervention, the average duration of illness is 6 days, since

almost all cases are now susceptible.  The average frequency of illnesses due to

contaminated food servings is 1.05 times greater than before, but the illness-days per

illness has been reduced by (6/6.4) = 0.9375.  Therefore, the net change in illness-

days per year in the population is a reduction by a factor of (1.05) × (0.9375) =

0.9844.  That is, illness-days per year decrease by 1.56% of the base level.

This example illustrates that quick estimates of the net effects of interventions

can be developed by multiplying relevant factors, here defined using fuzzy but

useful terms such as “High” exposure. Defining, measuring, or modeling the

exposures more precisely would not necessarily improve the reliability, accuracy, or

ease of interpretation of the predicted changes in exposures and risks.  Therefore, the

rough analysis just presented may be the most appropriate level of exposure

assessment and risk assessment for these data (van Gerwen et al., 1998.)

9. SUMMARY AND CONCLUSIONS

Exposure assessment models predict how human exposures to bacteria

are changed by different risk management interventions.  Both susceptible

and resistant strains of bacteria are typically of interest for interventions that

affect animal antibiotic use.  Relatively well-developed techniques of

microbial risk assessment (Haas et al., 1999) can be applied to estimate the

exposures to different bacterial strains in different foods under current

conditions using epidemiological, microbiological (e.g., genotyping and

other typing) and process-specific data. “What-if” predictive modeling is

usually essential to predict the probable changes in human exposures that

would be caused by different proposed interventions.
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Three main types of predictive exposure models have been discussed.

Process simulation models (including product-of-factors and farm-to-fork

models) estimate the changes in microbial loads from point to point along a

process leading from original sources (e.g., farm animals) to exposed targets

(e.g., consumers or patients.) Attribution-based models begin with current

cases per year and estimate the fraction that could be prevented by

interventions that remove or block exposures from one or more sources.

Systems dynamics models describe the high-level dynamic flows of bacteria

between resistant and susceptible types in humans and animals under

selection pressures from antibiotic use; and of people and animals between

different health categories (e.g., ill and well, in the simplest cases.)  Of these

approaches, process simulation exposure models have been the best

developed and most widely used in microbial risk assessment. Detailed

illustrations for Campylobacter (Christensen et al., 2001; Rosenquist et al.,

2003) and Salmonella (WHO/FAO, 2002) and other pathogens are available

and have been used to illustrate several key ideas in this chapter.

However, despite considerable amounts of predictive microbiological

information and human behaviour (e.g., hand-washing, kitchen hygiene, and

cooking habit) data collected for such models, there are usually still

important data gaps for details that affect final exposures, such as storage,

preparation and cooking histories. This motivates development of alternative

approaches that do not require unavailable details to provide useful exposure

estimates. Aggregate statistical exposure models (e.g., a linear regression of

historical bacterial illness rates against contemporaneous contaminated

chicken carcasses produced) and statistical models that use prevalence of

contamination (e.g., on processed carcasses or at retail) as a surrogate for

exposure are methodologically flawed and should not be used for risk

assessment. The product-of-factors and attribution-based approaches in this

chapter attempt to replace the many low-level details of process simulation

models with a smaller number of empirically estimated parameters, such as

the ratios of microbial loads at successive measurement points in the

production chain and the preventable fractions of exposure coming from

different sources, respectively. Systems dynamics approaches may be

necessary to model the emergence of resistance and to predict the time

courses of increases or decreases in resistance among human and animal

bacteria caused by interventions.  However, as illustrated in this chapter,

systems dynamics models can potentially make use of a relatively small

number of high-level descriptive variables (e.g., ill animal, ill human,

resistant animal, and resistant human fractions) that can be estimated from

available data.  Chapters 6-8 illustrate these approaches in greater detail.



Chapter 5

Dose-Response Modeling and Risk Characterization

This chapter completes the description of risk quantification by

discussing dose-response modeling, health consequence modeling, and risk

characterization, including uncertainty, variability, and sensitivity analyses.

A principal goal is to show how to combine exposure information with dose-

response and health consequence information to predict the probable human

health consequences of exposure patterns created by different risk

management decisions.  Technical methods for displaying such risk

information – and uncertainty about it – to others are also discussed.  The

focus in this chapter is on technical characterization of risks and

uncertainties.  The broader challenges of effective risk communication to

different audiences and for different purposes, mentioned in Section 7 of

Chapter 2, are not addressed.

A key insight is that detailed quantitative exposure modeling and

dose-response modeling are not always necessary for microbial and

antimicrobial risk assessment.  It is often possible to replace both steps with

simple approximate regression-type (“structural equation”) models. These

describe the expected number of adverse consequences (e.g., illnesses,

illness-days, or QALYs lost) per year caused per serving ingested.  This is

the crucial information needed for risk characterization.  It is not always

possible (and may not be desirable) to create and validate separate exposure

assessments and dose-response models to estimate risks, if simpler methods

suffice to estimate risk-per-serving and how it changes for different risk

management interventions.
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1.   INTRODUCTION TO DOSE-RESPONSE MODELING

Dose-response models quantify the conditional probability of illness

caused by each level of exposure; thus, the term exposure-response model is

also appropriate. In experimental studies, such as feeding trials that

deliberately expose volunteers to known quantities of bacteria in selected

food vehicles, “dose” is usually defined as the number of colony-forming

units (CFUs) of bacteria ingested (or, more conveniently, as the common

logarithm of this number, since the range of administered doses typically

spans several orders of magnitude.).  “Response” refers to development of

illness caused by the ingested bacteria.

Naturally occurring exposures are often more complicated, perhaps

involving repeated exposures via multiple servings of one or more foods

over some time interval. Results from outbreak studies of naturally occurring

food poisoning outbreaks are usually summarized by attack rates (what

fraction of those exposed got sick?) and by an estimate of the order of

magnitude of the exposures received (CFUs ingested) during the outbreak.

Parametric statistical dose-response model curves can be fit to such data

using dose-response modeling software or general-purpose commercial

statistical analysis software, via maximum likelihood estimation (MLE) or

other algorithms (e.g.,  Haas et al., 1999; Cox 2001, Chapter 3).

Figure 1 shows an example of a dose-response model developed for

Listeria monocytogenes in ready-to-eat foods.  A specific parametric dose-

response model was assumed (the exponential model, discussed later) and fit

to epidemiological data for immunocompromised (“High risk”) and non-

immunocompromised (“Normal”) subpopulations.  The dark solid curve in

Figure 1 is the estimated dose-response model for the “Normal risk”

subpopulation.  The dashed line above and to the left of it is the dose-

response model for the “High risk” subpopulation.  The lighter gray curves

indicate estimated statistical confidence bands around these best-estimate

curves – an upper confidence band for each (corresponding to the upper end

of the 95% confidence interval estimated for the parameter of the

exponential dose-response model), and a lower 95% confidence band for the

right-most (Normal) dose-response model.

As in Figure 1, it is often necessary to fit separate dose-response

models to “normal” and “susceptible” subpopulations within the general

population to account for inter-individual variability in dose-response

relations.  While more than two gradations of susceptibility can potentially

be modeled using finite mixture distributions, distinguishing between only

two levels or response “types” in the population, i.e., susceptible and normal,

often suffices to explain most of the variability in the data.

Dose-response modeling may involve more than just quantifying the

probability of a dichotomous outcome such as “illness”.  If different degrees
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or severities of illness are possible, ranging from mild through severe to fatal

(Buzby et al., 1996), then a health consequence model describing the

conditional probabilities of different levels or severities of health outcomes,

given that illness occurs, is needed to augment the conditional probability of

illness as a function of exposure.  Section 3 of this chapter briefly discusses

health consequence modeling.  The appendix to Chapter 6 provides more

detailed calculations for a case study example. In general, risk

characterization requires describing the severities as well as the frequencies

of adverse health outcomes caused by exposures.

Figure 1:  Example Dose-Response Function for Listeria monoctogenes

log L. monocytogenes dose

Source:  FAO/WHO, 2001. http://www.who.int/foodsafety/publications/micro/en/may2001.pdf

Note on terminology:  “Hazard Characterization”.  In microbial risk assessment

(MRA), dose-response modeling is often referred to as “hazard characterization”.

We will use the terms dose-response modeling and exposure-response modeling, as

the term “hazard characterization” might better be applied to description and

characterization of microbial hazards.

1.1  Definitions and Purposes of Dose-Response Modeling

Following a U.S. National Academy of Sciences framework for risk

analysis (Jaykus, 1996), the U.S. FDA, CDC and USDA have described

dose-response assessment as “The determination of the relationship between

the magnitude of exposure and the magnitude and/or frequency of adverse

effects” (www.foodsafety.gov/~dms/lmriskgl.html). The Codex Alimentarius

Commission states that “For biological or physical agents, a dose-response

assessment should be performed if the data are obtainable.”
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Dose-response modeling describes the probabilistic causal relation

between exposures received and the frequency and severity of resulting

adverse health consequences, including illness-days and death.  For example,

it quantifies the “exposures → illnesses” link (by specifying the conditional

probabilities for illness given exposure) for each susceptibility type in the

following causal graph model:

act → exposures → illnesses →  consequences

↑
   susceptibility ← covariates

As explained in Chapter 4, surrogates for ingested doses can be used, such as

extent of contamination on meats at retail or at other points prior to the

ingested servings.  In this case, it is still possible to develop exposure-

response models for this link, with the interpretation that the “illnesses” node

describes the conditional probabilities of illnesses, given whatever has been

observed.  Bayesian network inference algorithms and techniques such as

marginalizing out unobserved quantities, as mentioned in Chapter 4, can be

used for this purpose.

It remains important to distinguish between changes in probabilities of

illness and adverse health consequence caused by changes in exposures, on

the one hand, and mere statistical associations between exposures and

probabilities of adverse health consequences, on the other.  Currently even

authoritative regulatory and advisory bodies experienced in microbial risk

assessment and/or antimicrobial risk assessment sometimes blur this crucial

distinction.

Example:  Association vs. Causation in Hazard Characterization

Current risk-related terminology and definitions are not always as clear and

useful as they should be.  For example, the Codex Alimentarius gives the following

definition of hazard characterization:  “The qualitative and/or quantitative evaluation

of the nature of the adverse health effects associated with the hazard. For the

purpose of Microbiological Risk Assessment the concerns relate to microorganisms

and/or their toxins….The purpose of this step is to provide a qualitative or

quantitative description of the severity and duration of adverse effects that may

result from the ingestion of a microorganism or its toxin in food. A dose-response

assessment should be performed if the data are obtainable.”

(www.foodriskclearinghouse.umd.edu/pversion/Codex_MRA.htm.) This description

conflates the two very different concepts of association and causation.  Evaluating

the nature of the adverse health effects associated with a hazard such as a foodborne
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bacterium is not the same as describing the adverse effects that may result from (i.e.,

be caused by) it.

As an example, infection with E. faecium bacteria can be associated with

severe consequences, including death, even if the E. faecium infection itself does not

cause these consequences.  The reason is that E. faecium does not normally infect

people with healthy immune systems.  Thus, susceptibility to E. faecium infection

may be a marker for a severe underlying health condition (compromised immune

system) that, in turn, contributes to and is associated with various adverse health

effects.  In causal graph terms, confounding by severe illness, as in the diagram:

E. faecium infection ← Compromised immune system → adverse consequences

should not be conflated with characterization of effects caused by infection,

diagrammed as the link E. faecium infection →  adverse consequences in a model

such as:

E. faecium infection → adverse consequences ← Compromised immune system.

In words, what we care about is the change in illness-days of different severities,

deaths, QALYs lost, etc. incurred per year (or per capita-year) in a population that

could be prevented by actions that reduce E. faecium exposures.  This is generally

not the same as (and will usually be smaller than) the adverse consequences that are

statistically associated with E. faecium infections, as the latter include the effects

due to confounding by compromised immune function.

A successful quantitative exposure-response model provides a

mathematical function relating exposure levels (and possibly other

covariates, such as membership in a susceptible subpopulation) to

probabilities or expected frequencies of adverse consequences in exposed

individuals.  Uncertainty bands (Section 5.1) show uncertainties about

consequence probabilities or rates at different exposure levels.

2.  MICROBIAL DOSE-RESPONSE MODELING

This section summarizes several approaches to quantitative dose-

response modeling suitable use with feeding trial and outbreak data.

2.1  Empirical Statistical Dose-Response Models

If experimental data are available, e.g., from feeding studies, then any

parametric statistical model that adequately describes the dose-response data



174 Chapter 5

over the range of observations may be used to summarize it.  The adequacy

of a model-based description of data can be assessed by standard regression

diagnostics (Haas et al., 1999).  Common parametric statistical risk models

include logit, probit, log-normal, log-logistic, log-probit, Gompertz, and

Weibull models.  Within each family, the parameters of the curves can be fit

to (i.e., estimated from) data via maximum-likelihood estimation (MLE) or

other statistical curve-fitting algorithms available in commercial statistical

and risk analysis software packages. (See WHO/FAO, 2003 and Cox, 2001,

Chapter 3 for statistical methods for risk assessors). Nonparametric

smoothing methods for fitting smooth curves to scatterplot data may also be

used. Approximate uncertainty bands for empirical curves can be obtained

by fitting curves within the selected parametric family to many different

randomly selected subsets of the data using bootstrap or other resampling

algorithms; see Haas et al., 1999 and WHO/FAO, 2003 for relevant

statistical methods of microbiological dose-response modeling.

However, in general, extrapolating empirical statistical models outside

the range of the experimental data, especially to low doses, is not justified.

Different parametric models fit to the same data can produce low-dose risk

extrapolations that differ by orders of magnitude.  For example, Holcomb et

al. (1999) reported that “The statistical models proposed in the literature and

chosen for comparison purposes were log-normal, log-logistic, exponential,

Beta-Poisson and Weibull-Gamma. These were fit to four data sets also

taken from published literature, Shigella flexneri, Shigella dysenteriae,

Campylobacter jejuni, and Salmonella typhosa, using the method of

maximum likelihood. … Within any given data set, the infectious dose

estimated to affect one percent of the population ranged from one order of

magnitude to as much as nine orders of magnitude, illustrating the

differences in extrapolation of the dose response models.” In light of such

findings, empirical curve-fitting is best viewed as an interpolation approach

for describing potentially large amounts of experimental data with a smaller

number of parameters.  Extrapolations outside the range of the data should

be avoided.

Example:  Dose-Response Extrapolations for V. parahaemolyticus 

Figure 2 illustrates three different parametric statistical dose-response curves,

fit by maximum likelihood estimation (MLE) to the same human feeding study data

(from three studies, named in the figure and cited in FDA-CFSA, 2001).  All three

models pass through the experimental data points quite closely, but they give very

different extrapolated predictions for risks at low doses. None of the three

satisfactorily describes empirical risks estimated from epidemiological data (ibid).
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Figure 2. MLE Beta-Poisson, Gompertz, and Probit Dose-Response Curves Fit to

Pooled Human Feeding Study Data for V. parahaemolyticus (Vp).

Source: US FDA-CFSA, 2001. http://www.cfsan.fda.gov/~dms/vprisk5.html

As noted by the authors, “Consideration of the predicted density of pathogenic V.

parahaemolyticus, the number of raw oyster servings for the Gulf Coast summer

harvest and the likely number of illnesses occurring (CDC personal

communication), strongly suggests that the predicted risks per serving based on

dose-response curves shown in [Figure 2] are not plausible. Consequently, direct

extrapolation of the dose-response under conditions of exposure in the feeding trials

is not supported by the epidemiological data.”  Their suggested explanations

illuminate the difference between purely statistical curve-fitting and modeling based

on relevant biological and medical knowledge:  “The human feeding trials were

conducted under conditions of concurrent antacid administration. For V. cholerae,

the ID
50

 [the dose at which 50% of subjects become infected] observed in feeding

trials is known to be substantially lower when V. cholerae is ingested with antacid

versus no antacid.  The same effect is likely to be the case with V. parahaemolyticus.

It is also possible that food matrix or immunological effects of preexposure to the

organism, including antibodies/vaccines, contribute to the apparent difference in

dose-response obtained under experimental versus natural conditions.”

This example illustrates the critical importance of validating dose-

response models (ideally, with data not used to develop them) before

applying them to draw inferences about health risks in the real world.

In principle, empirical multivariate dose-response functions can be

developed to predict illness risk as a function of not only dose variables
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(such as the amounts ingested on successive occasions and the time intervals

between them), but also of the age, sex, individual susceptibility and other

covariates of the exposed subjects. Such functions describe the conditional

probabilities of adverse effects (both frequency and severity) from exposures

in different subpopulations, defined by different combinations of covariate

values.  Multivariate dose-response models quantify the following sub-

diagram:

dose → illnesses ← covariates

where “covariates” may refer to a vector of individual-specific factors that

affect the relationship between dose variables and probability of illness.  At

present, univariate dose-response models are more commonly used in

microbial risk assessment and antimicrobial risk assessment.

Technical Note: Multivariate dose-response modeling:  To create a simple

multivariate dose-response model, decision tree algorithms can be used to

automatically bin more detailed dose-response data (giving the observed responses

for many individuals exposed to different combinations of dose variables and

perhaps other factors)  into a few aggregate dose intervals (or combinations of

intervals, if there are multiple risk factors in a multivariate dose-response model)

that predict similar response levels (Zhang and Singer, 1999.)  Such approximate

dose-response relations can then be smoothed in a number of ways to construct

simple, approximate smooth dose-response functions and confidence intervals

directly from the more detailed data (Chaudhuri et al., 1995, Loh, 2002).  These

techniques, while increasingly familiar and well-developed in biostatistics, are not

yet commonly used in antimicrobial risk assessment.

2.2  Biologically Motivated Statistical Dose-Response Models

The probability that enough ingested organisms survive to reach a site

where they initiate infection has been calculated in simplified

biomathematical models of the probabilistic survival and infection processes

(e.g., Teunis et al., 1999).  This approach leads to a catalog of parametric

dose-response models appropriate for different simplifying assumptions

about the disease process.  They include the exponential, one-hit, multi-hit,

Beta-Poisson, Weibull-Gamma, negative binomial, and threshold models, as

well as mixture distribution models for populations with heterogeneous

dose-response parameters.  These models can be fit to experimental data by

maximum-likelihood estimation (MLE) or other parametric statistical curve-

fitting algorithms (Haas et al., 1999).  Unlike purely empirical models, these

models provide a theoretical basis for extrapolating beyond the range of the
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data used to fit them, at least to the extent that their underlying assumptions

provide useful approximate descriptions of biological reality.

Example:  The Exponential (“One-Hit”) Dose-Response Model

If x colony-forming units (CFUs) of a pathogen are ingested and each

independently causes illness with probability p, then the probability that no illness

results is (1 – p)
x

, and hence the probability of illness is 1 – (1 – p)
x

.   For small p

and large x, this is closely approximated by the exponential formula:

Pr(illness | dose = x) = 1 – exp(-p*x). (Exponential Model)

This formula also holds if x is the mean of a Poisson-distributed random dose (Haas

et al., 1999).  Even for x = 100 and p = 0.001, the approximation is fairly good.  The

exact (binomial) probability of illness is 1 – (1 – p)
x

 = 0.09521, while the

exponential model approximation is 1 – exp(-p*x) = 0.09516.  For realistic sizes of x

(e.g., 10
10

) and p, the approximation is even more accurate.  The parameter p can be

estimated (e.g., by MLE or regression) from data on the proportions of people who

become sick at different dose levels.  Figure 1 illustrates exponential dose-response

curves fit to data on listeriosis rates in both normal and susceptible populations.  In

practice, there are important additional statistical considerations (e.g., fitting a dose-

response curve to data in which the doses are uncertain requires that a model be used

that allows for an uncertain x; while acknowledging that p may differ for different

people leads to a mixture model in which the distribution of p values in the

population must also be estimated.) However, the simple exponential model

provides a reference model and point of departure for more sophisticated models.

For some pathogens, including L. monocytogenes, the exponential model provides

useful fits to many data sets.

The Beta-Poisson Model

One of the most important and widely used parametric dose response

models in microbial risk assessment is the Beta-Poisson model.

Conceptually, this model treats the effective dose (e.g., the number of

infectious colony-forming units ingested among the random total number

ingested, which is assumed to be Poisson-distributed) as a random variable

with a binomial distribution.  The success probability, p, of this binomial

distribution is itself modelled as a Beta-distributed random variable.  The

probability of illness given measured exposure depends on the (random)

effective exposure. For further motivation and explanation of the Beta-

Poisson model, see Teunis et al., 1999 and Teunis and Havelaar, 2000.
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The exact Beta-Poisson model is commonly approximated by the

parametric formula:

Pr(illness | Dose) = 1 – [1 + (Dose/β)]
–α   

(Approximate Beta-Poisson Model)

The two parameters α and β, interpreted as shape (steepness) and location

parameters, respectively, can be estimated from data on the proportion of

subjects responding at different dose levels by an iterative MLE-type

algorithm (Haas et al. 1999).  Uncertainty bands for the fitted model can be

estimated by resampling methods, e.g., from the variation of best-fitting

curves across multiple randomly selected subsets of the data.

The middle dose-response curve in Figure 2 is a Beta-Poisson model,

shown as one of the three parametric models fit to the available feeding

study data.  That the Beta-Poisson model can be interpreted as a mixture

distribution model for random effective exposures makes it a natural model

for a wide variety of settings.

Technical Note:  Beta-Poisson Model. The probability of infection at a given dose

can be calculated analytically if the probability that each ingested CFU initiates an

infection has a beta-distribution, perhaps reflecting differences in virulence and/or

susceptibility across microorganisms and hosts, respectively.  (It is the Kummer

confluent hypergeometric function.)  The above approximate Beta-Poisson formula

is accurate for α much smaller than β and for β much larger than 1. However, the

statistical confidence bands (based on confidence intervals for the parameters  α and

β) in the approximate model can be quite inaccurate, creating an incentive to use the

exact model (Teunis and Havelaar, 2000).

Example:  Beta-Poisson Model for V. parahaemolyticus in Oysters

FDA-CFSA (2001) motivated the use of a Beta-Poisson dose-response

model in its risk assessment of V. parahaemolyticus in oysters as follows:

“It is likely that the density of pathogenic strains is spatially and temporally

clustered in the environment to some degree. The average number of isolates

that are pathogenic does not identify the extent of this clustering.   To account

for the probable spatial and temporal clustering of pathogenic strains relative to

total V. parahaemolyticus densities, we have assumed a beta-binomial

distribution for the number of pathogenic V. parahaemolyticus at the time of

harvest. Under a beta-binomial distribution the percentage of total V.

parahaemolyticus which are pathogenic varies from one sample of oysters (e.g.

12 oyster composite) to the next. Given the occurrence of outbreaks this appears

to be a reasonable assumption but cannot be validated directly since extensive
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quantitative surveys of pathogenic V. parahaemolyticus densities are not

available. Specifically, based on the number of total V. parahaemolyticus

(Vp
total

), within a given composite, the number of pathogenic (Vp
path

) present is

assumed to be distributed as a binomial random variable with Vp
total

 trials (size

parameter) and a probability of success (p) distributed as a beta random variable.

The distribution of the probability parameter p is called a mixing distribution

and the variation of this parameter across composites of oysters induces a

clustering of pathogenic strains relative to total V. parahaemolyticus.” (FDA-

CFSA, 2001, http://www.cfsan.fda.gov/~dms/vprisk5.html.)

Thus, the Beta-Poisson model is here motivated by clustering of pathogenic strains.

Example:  Uncertain Beta-Poisson Dose-Response Model for Salmonella

Figure 3 shows an estimated approximate Beta-Poisson dose-response model

and uncertainty bounds for Salmonella.  It was generated by treating observed data

from outbreaks (i.e., estimated attack rates and exposures) as sample realizations of

uncertain underlying outbreak processes. Multiple pseudo-data sets were constructed

by sampling from estimated uncertainty distributions for the underlying outbreak

data, and a Beta-Poisson dose-response model was fit to each.  Figure 3 shows the

range of resulting dose-response curves.  As described by the authors, the figure

“shows the comparison between the fitted curves and the expected value for the

observed data. The upper bound, lower bound, expected value, 97.5th percentile and

2.5
th

 percentile for the dose-response curves fitted to the 5000 data sets are also

shown. The fitted dose-response range captures the observed outbreak data quite

well, especially at the lower and mid-dose range. The greater range at the high doses

is due to the existence of several large-scale outbreaks at the lower- and mid-dose

levels through which the curves attempt to pass, while the two high-dose data points

are for relatively small-scale outbreaks that allow greater “elasticity” in the fit.”

(WHO/FAO, 2002)

In addition to uncertainties in input data, e.g., true exposures and

attack rates in outbreaks, values of parameters α and β may be different for

different strains of a bacterium. For Salmonella, the decision to pool data

across outbreaks was based on analysis of serovar-specific data suggesting

that dose-response relations for the different serovars were similar (ibid).
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Figure 3:  An Uncertain Beta-Poisson Dose-Response Curve and Outbreak

Data for Salmonella

Source:  WHO/FAO, 2002   

Figure 4:  Beta-Poisson Curves and Feeding Study Data for C. jejuni

Source: FAO/WHO, 2002.   ftp://ftp.fao.org/es/esn/food/campy.pdf

Example:  Beta-Poisson Model for Campylobacter

Figure 4 shows upper and lower 95% statistical confidence limits

(UCL and LCL, respectively) around the best-fitting exact Beta-Poisson

model for the probability of infection, based on pooled data from human

feeding experiments with two strains of Campylobacter jejuni (A3249 and
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81-176).  (The exponential limit, shown as a dashed curve in this figure, is

an upper bound on the dose-response relation, derived by assuming a one-hit

model with the probability of one cell initiating an infection of 1.)  For

Campylobacter, however, infection is not the same as illness, and the dose-

response relation for illness is not as clear as that for infection. FAO/WHO

(2002) described the issue and a proposed resolution for C. jejuni illness

dose-response modeling as follows.

“The probability of illness upon exposure to a dose of a pathogen is conditional

upon the probability of infection. Stated another way, in order for an individual

to become sick, the individual has to first become infected. The dose-response

relationships described so far have estimated the probability of infection upon

exposure to a dose. In order to estimate the probability of illness, the conditional

probability of illness following infection is required. The human feeding trial

data does not indicate a clear dose-response relationship for the conditional

probability of illness following infection.  For strain A3249, the data in the

human feeding trials actually shows a decreasing trend for the conditional

probability of illness with increasing dose. This observation has motivated some

researchers (Teunis et al., 1999) to postulate that perhaps upon exposure to a

larger dose of some pathogens, the elicited host defenses are stronger, therefore

reducing the probability of illness upon exposure to a very large dose compared

to a moderate dose. The other alternatives that exist for the relationship of the

conditional probability of illness following infection are that the probability

increases with increasing dose or the probability is independent of dose. …  In

the case of the feeding trial data for C. jejuni A3249 the probability of illness

decreases with increasing dose and as such a decreasing hazard function has

been estimated (Teunis et al.1999). However, when the data for both strains are

pooled the conditional probability of illness following infection does not exhibit

a dose relationship but rather is randomly distributed …It may be appropriate in

this case to use a dose independent ratio to estimate the conditional probability

of illness. The conditional probability can be estimated from the feeding trial

data. For A3249, out of 50 people that got infected at various doses, 11 got sick

(22%), while for 81-176, out of 39 people that got infected at different doses, 18

got sick (46%). Overall, pooling all the data, a total of 29 people got sick out of

89 individuals that were infected (33%).”

The feeding study on which the data and dose-response model in

Figure 4 are based has several limitations, including use of a milk vehicle

rather than meat products of concern (e.g., chicken servings), and use of

healthy young male volunteers rather than a more diverse and representative

population.   Section 2.4 discusses an epidemiological approach to

estimating Campylobacter risks based on outbreak data.
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2.3  Multi-Component Dose-Response Models

Dose-response relations can be decomposed into a sequence of

components, e.g., representing internal dose received from a given external

dose applied; probability of infection given internal dose; and probability of

illness given infection.  If these components can be estimated separately

from available data, then the results can be composed (e.g., via Monte Carlo

simulation of conditional distributions) to estimate the end-to-end exposure-

illness dose response function.  Separate estimation of components may help

extrapolate results across species, if similarities and differences in relevant

component processes are known.  In practice, however, this decomposition

strategy has usually been combined with simplifying assumptions about the

components, leading to the biologically motivated parametric dose-response

models (e.g., Beta-Poisson) already mentioned.

Use of a dose-response function estimated for one pathogen and host

species as a surrogate for the unknown dose-response function of another

pathogen and/or host species is not uncommon in past microbial risk

assessments. Mechanistic models of species responses (e.g., based on

differences in tissue pH and enzymology, retention times, volumes of food,

etc.) can perhaps improve such extrapolations. However, such extrapolations

across species are usually too uncertain to support confident risk assessment.

They are not addressed further here.

2.4  Epidemiological Exposure-Response Models

An alternative to experimental data from feeding trials or animal

studies is to look at the results of “natural experiments”, i.e., situations in

which multiple people have been exposed to high enough doses of a

pathogen in some food or drink to become ill.  For example, attack rates

observed in some past outbreaks of campylobacteriosis are as follows:

• 47% following a business lunch (Brown et al., 1988)

• 46.2% mean attack rate among 21 outbreaks of Campylobacter infection

in England and Wales reported from 1992 to 1994. (Pebody et al., 1997)

• 41% median attack rate among foodborne outbreaks of campylo-

bacteriosis with at least six ill persons reported to the Centers for

Disease Control and Prevention through the National Foodborne

Surveillance Program in 1980-1982. (Finch and Blake, 1985)

• 19% to 67% in seven sequential outbreaks associated with a salad bar at

one facility in Australia (Kirk et al., 1997)

• 18.3% for a water-associated outbreak in Spain (Godoy et al., 2002)
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For the United States, an attack rate of about R = 41% among people getting

very high doses (sufficient to cause an outbreak) may be a reasonable

median value for foodborne cases of campylobacteriosis (Finch and Blake,

1985).  How well this attack rate can be extrapolated to sporadic cases is

unknown, but a simple assumption would be that in foods, as opposed to

milk (used as a vehicle for administering C. jejuni  in the feeding experiment

in Figure 4), R = 0.41.   This outbreak-based estimate of R = 0.41 is higher

than the rate of 0.22 estimated for the A3249 strain from feeding study data

described above, but is consistent with the rate of 0.46 for the 81-176 strain

(FAO/WHO, 2002).  The discrepancy between feeding study results and

epidemiological data suggests that feeding study strains and subjects do not

necessarily represent the strains and populations involved in outbreaks.

Table 1 indicates the sizes of the adjustments that may be needed to

extrapolate risk rates from healthy study populations to less healthy ones.

Another potential source of exposure-response information is

epidemiological data on sporadic foodborne illnesses collected via case-

control studies, cross-sectional surveys, or prospective cohort studies

(relatively rare).  A key statistical challenge for such data is to estimate

exposures and conditional probabilities of adverse responses given

exposures.  Issues such as recall biases, omitted explanatory variables and

confounders, uncertain model forms, and so forth, listed in Table 2 of

Chapter 3, complicate valid statistical inference of dose-response functions

from epidemiological data.  However, advances in statistical methods, such

as mixture distribution modeling with an unknown number of mixture

components (Richardson and Green, 1997), increase the practicality of using

epidemiological data for exposure-response modeling.

2.5   Practical Dose Response Models:  Summary

Despite the range of theoretical approaches outlined above, in practice

biologically motivated parametric dose-response models are the most

common, and usually the best justified, models in widespread use.  They are

typically fit to data by a combination of MLE for point estimates and

computationally intensive resampling techniques (e.g., bootstrapping

algorithms) for confidence intervals and joint confidence regions for model

parameters (Haas et al., 1999, Chapter 7, c.f. p. 293).

Haas et al. (ibid, p. 98) state that “It has been possible to evaluate and

compile a comprehensive database on microbial dose-response models.”

Chapter 9 of this monograph provides a compendium of dose-response data

and dose-response curves, along with critical evaluations and results of

validation studies, for the following: Campylobacter jejuni (based on human

feeding study data), Cryptosporidium parvum, pathogenic E. coli, E. coli
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O157:H7 (using Shigella species as a surrogate), Giardia lamblia, non-

typhoid Salmonella (based on human feeding study data), Salmonella

typhosa, Shigella dystenteriae, S. flexneri, etc., Vibrio cholerae, Adenovirus

4, Coxsackie viruses, Echovirus 12, Hepatitis A virus, Poliovirus I (minor),

and rotavirus. Thus, for many food-borne and water-borne pathogens of

interest, dose-response models and assessments of fit are already available.

It may be necessary to modify model parameters estimated from a

limited subpopulation (e.g., healthy young male student volunteers) to

predict risks in other populations. A simple adjustment is to multiply the

model-predicted risks for the study population by relative susceptibility

factors for other populations.  Table 1 presents such factors for listeriosis in

various populations.  They were estimated from ratios of observed illness

rates in these populations. On the other hand, dose-response models for

several pathogens have been validated using outbreak data and other

epidemiological sources, and the best-fitting models (often, the Beta-Poisson

model) usually, but not always, fir available data quite well.  Table 2 gives

examples of pathogens for which exponential and/or Beta-Poisson dose-

response models have been published, along with estimates of model

parameters. (For the Exponential model, r is the probability that an ingested

bacterium survives and causes infection.  For the Beta-Poisson model, α and

β are the parameters of the Beta distribution.)

Table 1:  Relative Susceptibilities of Immunocompromised and Non-

immunocompromised Populations to Listeriosis

France Relative Susceptibility Factor

• Organ Transplant 2584

• AIDS 865

• Dialysis 476

• Cancer-Bladder 112

• Cancer-Gynaecological 66

• Elderly - over 65 years old 7.5

• Non-immunocompromised 1

United States

• Elderly - over 60 years old 1.6

• Perinatal 839

• Non-immunocompromised 1

Source:  http://www.who.int/foodsafety/publications/micro/en/may2001.pdf
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Table 2:  Dose-Response Parameters for Infection, and Mortality Ratios

Source:  Adapted and abbreviated from van Gerwen et al., 2000

2.6  Validating Dose-Response Models

Dose-response models can and should be validated empirically, e.g.,

by analyzing epidemiological data from outbreaks (Haas et al. 1999,

Chapters 7 and 9).  The validation step allows the predictive accuracy of the

models accuracy to be critically assessed.

One way to carry out dose-response model validation with outbreak

data is to use the dose-response model, together with the estimated attack

rates and durations of exposures and estimated quantities ingested, to predict

the most likely dosages in the contaminated media that caused the outbreak,

the most likely illness ratio during the outbreak, and levels of other observed

quantities.  The predicted levels can then be compared to actually measured

or observed values recorded during the investigation of the outbreak (ibid).

If the predicted levels do not match the empirically measured values (based

on statistical tests of significant differences), then the exposure-response

model should be corrected, e.g., by adding other relevant variables and/or by

using the differences between predicted and observed values to select more

appropriate mathematical model forms that reduce the differences.
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Example:  Best-Fitting Parametric Models May Not Fit Adequately

The following figure for Salmonella feeding trial data show that even the

best-fitting model in a certain class of parametric models (here, the approximate

Beta-Poisson dose-response family) may not adequately describe the observed data.

Figure 5:  The Beta-Poisson Model Under-Predicts Low-Dose Risks

Source:  WHO/FAO, 2002.  (Naïve BP = approximate Binomial Poisson)

The parametric family of models is then said to be misspecified for the data, i.e., it is

not appropriate for describing the empirical relation. In this example, the

approximate Beta-Poisson model family is inappropriate for the data because even

the best-fitting curve in the family dramatically under-predicts low-dose risks.

In a validated model, predicted values match validation data, as

indicated by goodness-of-fit tests and model diagnostics such as plots of

residuals.  In this case, the dose-response model may be used to make

predictions within the validated range of conditions.  Remaining uncertainty

in model parameters and predictions should be expressed through confidence

intervals or uncertainty bands for single quantities (e.g., the mean illness rate

in the population) and through joint confidence regions for multiple

correlated quantities, such as the risks experienced by members of different

subpopulations. Haas et al. (1999) provide details and examples.

Unvalidated models should not be used for risk assessment.
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2.7  Showing Uncertainty In Dose-Response Models

As illustrated in Figure 2 above and in Figures 3 and 4b of Chapter 2,

realistic uncertainties about dose-response functions can create extremely

wide ranges in predicted probabilities of illnesses for given doses.  If the

correct dose-response model is unknown and several models all provide

adequate fits to the available data, then multiple plausible models may be

used to carry out the rest of the assessment.  In this case, the analysis can be

organized and presented as a model uncertainty decision tree in which

different modeling choices correspond to different branches in the tree.  The

results of the risk analysis at the end of each branch are contingent on the

assumptions and modeling choices that lead to it.  Different branches may be

weighted by the relative strength of the evidence supporting them (Kang et

al., 2000).  Bayesian model averaging (BMA) provides a version of this

approach (Viallefont et al., 2001; Keiding and Budtz-Jorgensen, 2004).  The

decision tree approach can also be used to present and analyze uncertainties

due to choices of dose metrics, response definitions, and other modeling

decisions, as well as choices of particular dose-response models.

Within a parametric dose-response model family, uncertainties about

parameter values and model predictions can be quantified using statistical

confidence bands and/or resampling techniques that compare results based

on multiple subsets of the available data or based on multiple realizations of

simulated data, as in Figure 3 above.  Haas et al. (1999) and Cox (2001)

discuss statistical methods for dose-response modeling, including cross-

validation and bootstrap techniques for estimating the predictive power of a

model and joint confidence regions for its uncertain parameter values.

Uncertainty about illness probabilities caused by a given dose is often

dominated by uncertainty about the most appropriate dose-response model

(sometimes called structural uncertainty), and a decision tree presentation of

alternative modeling choices and the resulting predicted risks (or even a

simple plot of different plausible dose-response curves, as in Figure 2) can

express much of the relevant uncertainty with a minimal amount of statistical

sophistication.

Statistical note: Weighting uncertain models. Branches in a model uncertainty

decision tree can be weighted using formal statistical criteria for model selection

such as the AIC, BIC, Mallows’ criterion, cross-validation error, etc. (Cox, 2001).

These measures are now built into many statistical software packages. In current risk

analysis practice, subjectively judged weights of evidence are often used to combine

results across multiple branches of the decision tree (Sielken et al., 1995).
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3.  HEALTH CONSEQUENCE MODELING

In microbial risk assessment, the number of illness cases per year is

often an adequate end point for risk assessment, as reducing it will also

reduce all resulting adverse consequences such as illness-days and QALYs

lost.  But in antimicrobial risk assessment, including assessments of the

human health impacts of animal antibiotic uses, it is important to quantify

the incremental harm to patients caused by resistance to antibiotics.  This

corresponds to quantifying the following portion of Figure 1 in Chapter 3:

∆ illnesses →  ∆ consequences → ∆QALYs

↑
[behavior, susceptibility, treatment]

Here, “susceptibility” may be extended to include not only the susceptibility

of the exposed individual to infection, but also the susceptibility of the

infective bacteria to various treatments.  (This diagram assumes that the

consequences of illness are independent of the dose that caused it. If this is

not true, then an arrow can be added from exposure to consequences.) The

health consequences of an illness such as campylobacteriosis or

salmonellosis may depend on the patient’s behavior (e.g., care-seeking,

compliance with physician instructions), susceptibility (e.g., immuno-

compromised or not) and treatment (e.g., whether the physician prescribes an

effective therapy.)  Usually, these variables are marginalized out and only

the conditional probability distribution for consequences (e.g., illness-days

of different severities, early fatalities, or QALYs lost per illness) is

quantified.  Only if this distribution is significantly different for susceptible

and resistant illnesses does resistance per se affect human health risk.

For example, if a risk management intervention eliminates all

resistance to a certain antibiotic, A, in foodborne bacteria, but does not

change the number of illnesses per year (because the resistant bacteria are

replaced by susceptible ones) or their health consequences (e.g., because A

is not used to treat illnesses and resistance to A does not affect responses to

the antibiotics that are used), then the intervention will not cause any

reduction in human health risk: the flow of adverse health consequences per

unit time remains unchanged.  On the other hand, if resistant bacteria cause

an average of 2 excess illness-days per case compared to susceptible

bacteria, then eliminating resistance will reduce illness-days per unit time,

even if the number of illnesses per unit time remains fixed.  Thus, to

quantify the human health impacts of interventions that affect antibiotic use,

it is essential to compare the health effects of resistant and susceptible cases.
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Example:  Consequence Calculations for Illness-Days

Problem:  Suppose that 90% of illnesses caused by bacterium B are susceptible to

antibiotic A, while the remaining 10% are resistant.  The illness rate in a population

due to bacterium B is 1E-4 illnesses per capita-year, i.e., one expected illness per

10,000 person-years at risk.  The mean duration of illness is 6 days for susceptible

bacteria and 8 days for resistant bacteria.  The standard deviation of illness duration

is 10 days in either case.  How would the distribution of illness-days lost per year in

this population change if resistance were eliminated?

Solution:  The current expected number of illness-days per capita-year is:

Pr(illness occurs) × [E(duration | resistant) × Pr(resistant) + E(duration | susceptible)

×  Pr(susceptible)]  = (0.0001) × (8 × 0.1 + 6 × 0.9) = 6.2E-4 days per capita-year.

(The probability of two or more illnesses in one person-year is small enough to be

neglected.)  If resistance were eliminated, this number would be reduced to:

(0.0001) × (8 × 0 + 6 × 1) = 6.E-4 days per capita-year.  In the population as a

whole, summing over all individuals gives an approximate normal distribution for

the number of illness-days per year.  Its mean is: E(illnesses) × E(duration of an

illness) = N × 1E-4 × 6.2 days before intervention and N × 1E-4 × 6 days after,

where N = population size. Its variance is: E(illnesses) × Var(duration) +

Var(illnesses) × E
2

(duration) (Feller, 1968, p. 301) ≈ E(illnesses) × [Var(duration) +

E
2

(duration)] (since Var(illnesses) = Np(1 – p) ≈ Np = E(illnesses), where N =

population size and p = 1E-4 = illness probability).  Thus, Var(illness-days) = N ×
(1E-4) × 6.2 days × [100 + 38.44] = 0.0858 × N before intervention, and N × (1E-4)

× 6 × [100 + 36] = 0.0816 × N after intervention.  In summary, eliminating

resistance reduces population risk from being an approximately normal distribution

(if N is large) with mean 0.00062N and variance 0.0858N to a leftward-shifted,

slightly narrower normal distribution with mean 0.006N and variance 0.0816N,

where N is the population size.

As discussed in previous chapters, antimicrobial risk assessments that

only quantify the number of cases per year in which resistance occurs, or in

which it occurs and is attributed to an animal drug use and is treated with a

resisted human drug, omit essential information.  The key questions for risk

assessment are:  (a)  Do these cases lead to increased human health harm;

and (b) How would proposed interventions change the frequency (i.e.,

number of cases per year) and severity (e.g., illness-days or QALYs lost per

case) of harm done?  Question (a) should be addressed as part of hazard

identification (see Chapter 2).  It can be viewed as a screening question to

determine whether the more detailed assessment needed to answer question

(b) is likely to be worthwhile.
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Example:  Uncertain Human Health Hazards from Tylosin in Chickens

Macrolides such as tylosin are used in soluble and premix formulations in

chickens to prevent and control several bacterial diseases and to promote health and

growth.  Such uses can potentially affect human health by changing microbial loads

on chicken PRODUCTs and/or by selecting for macrolide-resistant pathogens and

commensals reaching people on food commodities.  Food-borne bacterial pathogens

that are of specific concern as potential hazards to human health are C. jejuni and C.

coli, both of which are found in live broilers (Wedderkopp et al., 2003), chicken

carcasses, and retail chicken products (Ge et al., 2003; Musgrove et al., 2003).

Diagnosed cases of severe campylobacteriosis in humans may be treated with

erythromycin or other macrolides.  Empiric treatment of diarrhea with macrolides

and fluoroquinolones is common, although these drugs do not necessarily have

clinical benefits for most campylobacteriosis cases.

Although macrolides are important antibiotics in human medicine, this is

relevant for risk assessment of tylosin use in chickens only to the extent that such

use reduces the effectiveness of macrolides in human medicine.  A human health

risk exists only if there is potential to cause harm to human health, and not simply as

a result of macrolides being important in human medicine.  A clinical perspective on

the treatment of C. jejuni infections is as follows:

“Most C.  jejuni infections are mild and self-limited; therefore, they do not

usually require antibiotic therapy. Correction of electrolyte abnormalities and

rehydration are usually sufficient. Treatment often is reserved for compromised

hosts or persons with fever, increasing bloody diarrhea, or symptoms that last

longer than 1 week.  C jejuni is usually sensitive to erythromycin, gentamicin,

tetracycline, ciprofloxacin, and clindamycin. Reports of erythromycin- and

ciprofloxacin-resistant strains are increasing. In adults, placebo-controlled studies

of erythromycin demonstrate no improvement in the clinical symptoms if given

late in the course of illness but have resulted in decreased fecal shedding. If an

appropriate antibiotic therapy was initiated within the first 4 days of illness, there

was a reduction in the excretion of the organism; however, results regarding the

resolution of symptoms were controversial. In contrast, early erythromycin

treatment for children with bloody diarrhea shortened both the duration of

diarrhea and excretion of microbes in the stool.  Recommended duration for

antibiotic treatment given for gastroenteritis is 5-7 days. Antimicrobial therapy for

all bacteremic and immunocompromised patients with C jejuni should be selected

based on a laboratory susceptibility test. Begin therapy with gentamicin,

imipenem, third-generation cephalosporins, or chloramphenicol until

susceptibility test results are available.”  (Ang and Nachman, 2003)

This perspective is consistent with clinical experience gathered over the past three

decades.  For example, for clinical effectiveness, despite some initial promising



Dose-Response Modeling and Risk Characterization 191

reports on the efficacy of erythromycin in shortening the duration of C. jejuni

campylobacteriosis (Nolan et al., 1983), others soon found that “Although

erythromycin significantly shortened the duration of C jejuni excretion, it appeared

to exert no effect on the clinical course of the illness” (Robins-Browne et al. (1983);

see also Anders et al., (1982)).  When investigators focused specifically on early

treatment, they still found that that “Erythromycin rapidly eliminated C. jejuni from

[human] stools…. Despite its bacteriologic effectiveness, erythromycin did not

reduce the duration or severity of diarrhea, abdominal pain, or other symptoms”

(Williams et al. 1989).  In summary, macrolides are recommended as drugs of first

choice for the small fraction of severe and high-risk campylobacteriosis cases for

which antibiotic treatment is most warranted (and for which resistance screening is

most likely).  They have unclear clinical benefits in most other (non-severe) cases,

and alternative treatment options are available for severe cases.  It is not clear

whether macrolide-resistant cases generally have worse clinical outcomes than

macrolide-susceptible ones.  (Some papers, such as Helms et al., 2005, suggest that

this may be the case, but without demonstrating whether resistance causes worse

outcomes or is merely statistically associated with it following an incomplete

statistical adjustment for comorbidity, e.g., in patients with other illnesses, such as

AIDS, who may be at risk for both increased likelihood of resistance and increased

likelihood of adverse health outcomes due to the other illnesses.)  If not, then

macrolide resistance per se would not present an incremental risk over and above

the risks from campylobacteriosis.  In such a situation, where hazard identification

does not indicate a clear human health risk from resistance, it is often easiest to

make progress by assuming that such a risk exists (e.g., that resistance creates an

average of at most 2 excess days per of illness per case) and then carrying out the

rest of the risk assessment, including human health consequence assessment,

contingent upon this assumption.  Chapters 6 and 8 illustrate this strategy in detail.

If hazard identification does identify some adverse consequences of

resistance, such as increased treatment failure rates or prolonged duration of

illness, then these consequences should be included in the risk assessment.

This can be done by quantifying the average severity (e.g., illness-days or

QALYs lost) for resistant and susceptible illnesses and estimating the change

in the number of each that will occur if different risk management

interventions are undertaken, as illustrated in the simple example calculation

at the beginning of this section. Calculations with realistic data are illustrated

in Chapters 6 and 8, using resistance to streptogramins as a case study.
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4. RISK CHARACTERIZATION

Risk characterization provides the ultimate output of a risk assessment.

It integrates hazard identification, exposure assessment, and dose-response

information to determine the probable frequency and severity of adverse

health effects in a population that are caused by exposure to a hazard.

Characterizing the risks for different risk management interventions helps

decision-makers choose among them.  To further support practical risk

management decision-making, risk characterization also includes

characterization of current uncertainty about risk.  This allows the value of

gathering additional information to be assessed as part of risk management

deliberation and decision-making, based on the potential value of such

information (VoI) in enabling risk managers to make choices that are more

likely to result in desired consequences (Yokota and Thompson, 2004).

4.1  Definition and Purposes of Risk Characterization

Different national and international bodies have attempted to describe

the integration step in risk characterization non-mathematically, with varying

degrees of success.  For example, a Joint WHO/FAO Expert Consultation

defined risk characterization as the "integration of hazard identification,

hazard characterization and exposure assessment into an estimation of the

adverse effects likely to occur in a given population, including attendant

uncertainties".  This give a useful impression of what is intended, but does

not specify how the estimation is to be performed or presented, or define

exactly what is meant by “adverse effects likely to occur in a population”.

(How likely, in how much of the population, over what time interval, under

what assumed conditions?)  The US FDA has used this definition in applied

work (http://www.foodsafety.gov/~dms/lmriskgl.html).

A more confusing exposition, developed as part of international

microbial risk assessment (MRA) efforts, is:

“Risk Characterization - The process of determining the qualitative and/or

quantitative estimation, including attendant uncertainties, of the probability of

occurrence and severity of known or potential adverse health effects in a given

population based on hazard identification, hazard characterization and exposure

assessment. … Risk Characterization represents the integration of the Hazard

Identification, Hazard Characterization, and Exposure Assessment determinations

previously described into qualitative or quantitative estimates of the likelihood

and severity of the adverse effects which could occur in a given population,

including a description of the uncertainties associated with these estimates.”

(Source: http://www.foodriskclearinghouse.umd.edu/pversion/Codex_MRA.htm)
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This does not specify what “The process of determining the qualitative

and/or quantitative estimation” should include.  (Would “I’ll bet the risk is

too high” or “I guess it’s probably ok” be acceptable examples of

“qualitative and/or quantitative estimation, including attendant

uncertainties”?  Why or why not?)  In short, such verbal definitions and

discussions do not make competely clear what is intended and acceptable for

risk characterization.   From this standpoint, more quantitative definitions

such as “The change in the expected number of illnesses per year in a

population that would be caused by implementing each risk management

intervention” may be easier to understand and implement.

In summary, risk characterization is intended to show the predicted

probable frequency and severity of adverse human health consequences (and

other adverse effects of concern) for different risk management decisions.  It

typically presents expected impacts and confidence intervals for the number

and severity of adverse outcomes per capita and per unit time.  (With

modern software, full conditional probability distributions can also be

calculated and displayed.)  Thus, risk characterization relates decisions to

their probable consequences in order to guide and inform improved risk-

management decision-making.

4.2  Desired Outputs of Risk Characterization

A well done risk characterization describes the microorganisms and/or

resistance determinants of concern; the adverse human health effects that

they cause (based on the hazard identification step); the frequency

distribution of exposures and resulting illnesses in the population, with

confidence limits, for different decisions; and expected values with

confidence limits (or entire conditional probability distribution) for the

frequency and severity of adverse effects for different risk management

decisions (Haas et al., 1999). Risk characterization outputs should include:

• Expected risk metrics (i.e., expected numbers of infections, illnesses of

specified severity levels, mortalities, treatment failures, etc.) per year

and per lifetime for a randomly selected member of the population;

• Confidence intervals around the expected risk;

• Expected risks and confidence intervals for members of identified

sensitive subpopulations and highly exposed subpopulations;

• Expected numbers and confidence intervals for total infections and

illnesses with different levels of severity, per year, per capita-year, and

per capita-lifetime in the total population and identified subpopulations.
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These individual risk and population risk metrics should be provided for

each risk management decision being considered.  The characterization

should include any adverse effects that an intervention might cause as well

as those that it might prevent, to provide decision-makers with a full

accounting of the total change in human health from each intervention.

Example:  Risk Characterization Outputs

Figure 6: Predicted Annual Mortality in the Elderly Subpopulation

Attributable to Deli Meats as a Function of Maximum Storage Time

Source: FAO/WHO, 2001, http://www.cfsan.fda.gov/~dms/lmr2-6.html

Figure 6 shows one of the outputs from a risk assessment of Listeria

monocytogenes (FAO/WHO, 2001).  The solid curve shows the median estimate of

the mortalities per year caused among the elderly subpopulation by L. moncytogenes

in deli meats, for different maximum allowed storage times.  The dotted curves

represent the 5
th

 and 95
th

 percentiles of the uncertainty distribution (as assessed by

Monte Carlo uncertainty analysis, discussed below.)   This display shows how

predicted risks in this subpopulation vary with the effects of different potential

interventions that would limit the maximum storage times allowed for deli meats.

Similar curves can be shown for the effects of such interventions for other foods or

groups of foods (e.g., dairy products, produce, sea food products, etc.) and for other

subpopulations and the U.S. population as a whole.
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4.3  Methods for Risk Characterization

Basic Formulas

Conceptually, risk characterization is a purely arithmetic process that

combines the results of exposure assessment and dose-response modeling to

predict the overall probability of illness.  For example, suppose that exposure

assessment gives the probability of ingesting x colony-forming units of a

pathogenic bacterium in a serving of a food commodity as some number,

p(x) = Pr(dose in a serving = x), while dose-response modeling gives the

conditional probability of illness from ingesting x CFUs as r(x) = Pr(illness |

dose = x). Then the overall probability of illness from a serving is:

Illness probability per serving = ΣxPr(x)*Pr(illness | x) = Σxp(x)r(x),

where the  sum is over all exposure levels.  [Thus, in the terminology of

Chapter 3, one “marginalizes out” exposure to get the unconditional

probability of illness from a serving.  This assumes that any longer-term

effects that affect illness probability given dose, such as acquired immunity

from frequent exposures to low levels of bacteria in this food product, are

already taken into account in definig r(x).]  If exposure is modeled as a

continuous variable, then the above sum is replaced by an integral:  illness

probability per serving = ∫xp(x)r(x)dx.  Thus, the core risk characterization

calculation literally “integrates” exposure assessment and dose-response

information.  If the number of servings per year at dose level x is denoted by

n(x) (= M*p(x), where M is the total number of servings per year) and the

average consequence severity (e.g., illness-days or QALYs lost) per illness is

c(x), then the population risk (i.e., expected number of illnesses per year and

adverse consequences per year from exposure) can be expressed as:

Expected illnesses per year in population = Σxr(x)n(x)

Expected adverse consequences per year in population = Σxr(x)n(x)c(x).

(For continuous x, the sums are replaced by integrals.)  Usually, c(x) is

treated as a constant independent of x, i.e., the consequences of an illness do

not depend on the dose that caused it, but this need not be assumed.

Example:  Risk Characterization Calculations

Setting:  Table 3, adapted from a risk assessment for Listeria monocytogenes (FAO /

WHO, 2001), shows the estimated number of servings per year of ready-to-eat foods
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carrying different levels of contamination (i.e., doses), as well as the estimated risk

(i.e., probability of illness) per serving for each dose level.

Table 3:  Baseline Number of Cases Predicted By a Dose-Response Model

Log of dose, x, at

ingestion (Log
10

CFUs per serving)

Average risk

per serving at

dose x = r(x)

Number of servings

per yr at dose x =

n(x)

Expected cases/yr. at

dose level x = n(x) ×

r(x)

-1.5 1.69E-13 5.93 E10  (92.5%) 0.01

-.5 2.00E-12 2.50 E9   (3.9%) 0.005

.5 1.64E-11 1.22 E9   (1.9%) 0.02

1.5 1.71E-10 5.84 E8  (0.9%) 0.1

2.5 1.80E-09 2.78 E8 0.5

3.5 1.82E-08 1.32 E8 2.4

4.5 1.85E-07 6.23 E7 11.5 (0.6%)

5.5 1.85E-06 2.94 E7 54.4 (2.86%)

6.5 1.85E-06 1.39 E7 25.7 (1.35%)

7 5.88E-05 3.88 E6 228 (12.0%)

7.5 5.92E-04 2.67 E6 (0.0052%) 1580 (83.0%)

Totals 6.41 E10 1902.7

Source:  Adapted from FAO/WHO, 2001.  (Total cases were shown in the original

as 2130, but is revised to 1902.7 here to be consistent with the other numbers.)

In this table, the column “Average risk per serving” at different dose levels

summarizes dose-response information.  For example, the estimated probability of

illness from a serving containing ten million (10
7

) CFUs of L. monocytogenes is

shown as 5.88E-05, based on the dose-response model (see Figure 1).  The column

“Number of servings per year at the specified dose” summarizes the results of the

exposure assessment.  (The percentages of total servings are shown for the largest

and smallest dose categories and several others; thus, 92.5% of servings are in the

lowest category, where the average dose is only 10
–1.5

  = 0.032 cells per serving.)

The final column gives the number of cases per year expected from servings at each

dose level (and selected percentages). For example, 83% of all cases per year are

estimated to come from the highest-dose servings, which account for only 0.0052%

of all servings. (This illustrates the importance of not using prevalence as an

exposure metric, mentioned in Chapter 4.  Eliminating only the most-contaminated

servings would prevent about 83% of all cases, while reducing the prevalence of

contaminated servings by less than 0.01%, a statistically undetectable change.)  The

total population risk for number of illnesses per year is found by summing the final

column (corresponding to the formula Σ
x
r(x)n(x)), giving 1902.7 expected illnesses

per year.
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Problem:  In Table 3, what would be the effect on population risk of an intervention

that reduces all doses by a factor of 10? (For simplicity, assume that the numbers in

Table 3 are correct, i.e., ignore model uncertainty for purposes of this example.)

Solution:  Table 3a summarizes the revised numbers.  (Rows not shown do not

contribute significantly to the total.)  The dose-response column r(x) is the same as

in Table 3.  The n(x) column is shifted up to reflect a 10-fold reduction in doses (i.e.,

microbial loads).  Expected cases per year falls from 1902.7 to 44.65, i.e., reducing

all microbial loads to 10% of their previous values reduces population risk to

(44/65/1902.7) = 2.35% of its previous level.  This reflects the disproportionate

importance of the highest dose levels.

Table 3a:  Baseline Number of Cases Predicted By a Dose-Response Model

Log of dose, x, r(x) n(x) Expected cases/yr.,

n(x) × r(x)

2.5 1.80E-09 1.32E8 0.24

3.5 1.82E-08 6.23E7 1.13

4.5 1.85E-07 2.94E7 5.44

5.5 1.85E-06 1.39E7 25.72

6 1.85E-06 3.88E6 7.18

6.5 1.85E-06 2.67E6 (0.0052%) 4.94

Totals 6.41E10 44.65

In addition to expected values, risk characterization can produce entire

probability distributions for outputs.  These may be stated as probability

distributions of the number of adverse human health consequences per year,

if interventions only affect the steady-state risk levels created by a process.

They may also show changes in consequences over time (e.g., to reflect

changes in food consumption or preparation habits or in prescription

practices and availability of new drugs), where applicable.  The case study in

Chapter 6 illustrates estimation of impacts over time.

In general, risk characterization may be viewed as calculating the

unconditional probability distributions of outputs such as illnesses, adverse

consequences (illness-days and early fatalities), and QALYs lost per year in

an influence diagram such as the following:

   act → exposure  →  illnesses  →    consequences →  QALYs

   ↑    ↑          ↑
           [behavior      susceptibility   treatment] = type of case

[This is essentially Figure 1 of Chapter 3.  The deltas indicating changes are

left out here to emphasize that we can directly compare the probability
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distributions for outcomes (e.g., QALYs lost per year) from each act in the

set of alternatives being considered (including the status quo), rather than

expressing them as changes relative to the status quo distribution of

outcomes. While these perspectives are mathematically equivalent,

expressing results as changes relative to the status quo may affect decision-

makers differently from expressing the same information as total

probabilities of outcomes (Plous, 1993).]

Given the results from:

(a) Exposure assessment (i.e., the conditional probability distribution of

exposures, for each act);

(b) Exposure-response or dose-response modeling (i.e., the conditional

probability of illness for each exposure pattern); and

(c) Consequence modeling (i.e.,  the conditional probability distribution of

adverse consequences given illness, if consequences are conditionally

independent of exposure given that illness occurs; and otherwise the

conditional probability distribution of adverse consequences given

illness and exposures)

the risk characterization step calculates, for each act being assessed, the

resulting probability distributions for adverse consequences.  As mentioned

in Chapter 3, the probability distribution for outputs such as QALYs lost per

year if a given act is chosen can be calculated by applying Monte Carlo

uncertainty analysis (Thompson et al., 1992) to the above influence diagram.

Monte Carlo Simulation-Based Risk Characterization

Monte Carlo-based risk analysis uses conditional probabilities to

combine dose-response information (which may depend on individual

covariates such as membership in susceptible subpopulations, as in Table 1)

with exposure information (which may also depend on individual covariates)

to estimate resulting risks in the population, and in subpopulations defined

by combinations of values for the covariates.  For example, the probability

distribution for the number of occurrences of a specific effect, y, in a

population over some period of time can be found as follows.

1. Create a random sample of simulated “individuals”.  If z denotes the

vector of individual attributes and covariates, such as age, ethnicity,

cooking habits, susceptibility class, etc., with joint probability density

Pr(z), then “individuals” in the simulation are represented by realizations

z(1), z(2), …, z(S) randomly sampled from Pr(z).  Here, z(j) denotes the

vector describing individual j, for j = 1, 2, …, S, where S is the size of

the simulated population.
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2. Assign exposure histories to individuals.  Let Pr(x | z(j), d) denote the

conditional probability of exposure x on day d, given individual

covariates z(j).  The probabilities of different exposure levels can be

conditioned on any available information about the individual, z(j), and

about day d, such as the season of the year.  The conditional probability

model Pr(x | z(j), d) is given by the output of the exposure modeling

step.  Let x(j, d) denote a randomly sampled realization drawn from the

distribution Pr(x | z(j), d).

3. Assign individual dose-response functions, r(x | z(j)) = probability of

effect y for an individual with description z(j) exposed to x.

4. Assign health outcomes to individuals and days.  This is done by

assigning an occurrence indicator value of 1 for outcome y in individual

j on day d with probability r(x(j, d) | z(j)), and assigning an occurrence

indicator value of 0 with probability 1 – r(x(j, d) | z(j)).

5. Sum the occurrence indicator values over all j and d (i.e., over all

person-days in the population) to obtain the total simulated number of

occurrences of y in the population over the time interval of interest.

6. Iterate steps 1-5 many times to simulate the frequency distribution for

the number of occurrences of y in the population over the time interval

of interest.

These steps provide a basic (not very efficient) simulation of the sum of

individual risks on different days, with uncertainties about individual

exposures x and descriptions z being marginalized out.  The efficiency of the

simulation can be greatly improved (e.g., by not returning all the way to step

1 on each iteration), but this simple scheme conveys the main ideas.

Repeated sampling of individuals (from the joint frequency

distribution of individual covariates) and of exposures and dose-response

relations given individual characteristics, allows all of the output risk

metrics, confidence intervals, and confidence regions to be automatically

calculated as accurately as desired.  In practice, commercial Monte Carlo

uncertainty analysis software products, such as Analytica™, @RISK™ or

Crystal Ball™ automatically perform the required simulations, collect the

results, and display the output risk metrics and uncertainty intervals, making

Monte-Carlo based risk assessment practical even for practitioners with little

understanding of underlying risk analysis principles (e.g., Vose, 2000).

These software tools incorporate more advanced simulation techniques (such

as antithetic variates for variance reduction, importance sampling, Latin

Hypercube sampling, etc.) that increase the efficiency of the simulation

process, greatly reducing the CPU-time needed to obtain accurate answers.

In special cases, risk characterization calculations can also be carried out

symbolically or analytically. However, the current state of practice generally
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relies on Monte Carlo uncertainty analysis to obtain fast, accurate numerical

answers.  Burmaster and Anderson (1994) provide guidance and principles

for using and documenting Monte Carlo uncertainty analysis in risk

characterization.

Example:  Listeria monocytogenes Risk Assessment Simulation Model

Table 4 summarizes the inputs and calculations performed in a Monte Carlo

simulation-based risk assessment of the public health risks from L. monocytogenes

(FDA-CFSAN, 2003) in twenty-three ready-to-eat foods in the United States.  The

risk assessment was used to characterize several risks, including the average risk-

per-serving of listeriosis for each type of food.  (Risks in elderly and compromised

subpopulations and changes in risks from interventions of different magnitudes are

also presented; see http://www.cfsan.fda.gov/~dms/lmr2-6.html.)

Although some of these steps (e.g., extrapolation from mouse dose-response data to

human dose-response via an adjustment based on CDC population-level data) are of

uncertain validity, as discussed in greater detail in the FDA-CFSAN report (see e.g.,

Appendix 11, http://www.cfsan.fda.gov/~dms/lmr2-toc.html), the steps in Table 4

indicate the range of inputs and conditional probability relations used in this Monte

Carlo-based microbial risk assessment.  Clearly, the approach requires a great deal

of information.  This motivates the search for simpler approaches that give equally

valid answers.

Until they are carefully validated, simulation models and their results

should be treated with healthy scepticism, especially if they make

counterintuitive predictions – potentially, the most valuable and informative

aspect of modeling when the results of the model are trustworthy.  Potential

weaknesses include:

• Model validity:  If the simulation model logic is incorrect, the model

may produce incorrect answers.  For example, a simulation model may

attribute large impacts to interventions that turn out to have small or no

impacts in reality if the model falsely assumes that most exposures come

from the sources identified in the model (e.g., consumption of food

animal products) but real exposures come from other, currently

unidentified sources (e.g., from flies and surface water.)

• Input uncertainties:  Is the assumed dose-response model realistic

enough to be useful?  Is the assumed fraction of cases attributed to

servings of the food commodity of concern approximately correct?  Such

input uncertainties are often hidden in the final output curves, which
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Table 4:  Steps in Simulation-Based Risk Assessment

 1. Distributions for contamination at retail for each food category.

 2. Distributions for the reference growth rate at 5°C for each food category.

 3. A distribution of home refrigerator temperatures in the United States, this distribution

was used for all food categories.

 4. Distributions for post-retail storage time for each food category.

 5. The growth model used for all food categories. The growth model was triggered only

for servings with one or more bacterium. This section calculated the exponential

growth rate for the refrigeration temperature and multiplied that by the storage time.

 6. The maximum concentration for each food category. Post growth L. monocytogenes

concentrations were truncated at this level. The maximum growth was temperature

dependent with more growth allowed at higher refrigeration temperatures.

 7. A model representing the effect of reheating frankfurters on L. monocytogenes

concentration, used for frankfurters only.

 8. Net contamination at time of consumption. Calculated with inputs from steps 1, 6, 7.

 9. Distributions of serving size for each food category.

 10. Distributions of dose at consumption for each food category. This is the final output of

the 2D simulation. After collapsing the variability dimension to half-log dose bins, the

output for each food category was conveyed to the 1D dose-response simulation for

each population group.

 11. A distribution for variability of L. monocytogenes strain virulence in mice, with the

implicit assumption that a similar range will be observed in humans.

 12. A distribution adjusting for variability in host susceptibility among humans, with three

(High, Medium, Low) separate adjustments applied to represent different possible

ranges. The adjustment increased the range of effective doses.

 13. The sum of strain variability (step 11) and host susceptibility distributions (step 12)

obtained by 2D Monte-Carlo, with 100,000 variability iterations and 300 uncertainty

iterations. The variability dimension was then collapsed to half log dose bins.

 14. Summation of the exposure assessment (step 10) and adjustment factor (step 13) for

each food category

 15. The annual number of meals consumed for each food category.

 16. Addition of the dose-response adjustment factor that is applied in order to make the

predictions consistent with CDC estimates of the annual death rate attributable to the

population group (i.e., the median value in step 22).

 17. An intermediate calculation of the number of annual servings falling in each dose bin

for each food category. This was obtained by multiplying the number of servings (step

15) by the fraction falling in each effective dose bin (step 14).

 18. Calculation of the death rate per serving for each dose bin (from step 14), using the

dose-response function derived from mouse data.

 19. An intermediate calculation of the number of annual deaths for each dose bin and food

category. This was obtained by multiplying the death rate per serving (step 18) by the

number of servings for the dose bin (step 17).

 20. Calculation of the death rate per serving for each food category by summing across

dose bins. This was obtained by summing the product of the death rate (step 18) and

serving fraction (step 14) across all bins.

 21. Calculation of the annual number of deaths for each food category by summing across

dose bins (step 19).

 22. Calculation of the total number of deaths by summing across food categories

Source: FDA-CFSAN, 2003.  http://vm.cfsan.fda.gov/~dms/lmr2-a3.html
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show conditional distributions of outputs for specific inputs and

assumptions.  Sensitivity analysis, discussed below, can help to demonstrate

and build confidence in the robustness of the main conclusions to some key

uncertainties (if the model logic is correct), such as details of the assumed

dose-response function.  But if these analyses demonstrate that conclusions

are sensitive to some uncertain inputs, then results must be regarded as

contingent on these inputs.

• Representing interventions:  Effects of risk management intervention

scenarios are often modeled as shifts in the probability distributions of

microbial loads at processing, with the extent of the shifts being

estimated from limited experimental trials.  Without implementing the

interventions at multiple plants and monitoring the results, there is no

assurance that the true effects are accurately modeled.

• Statistical modeling of parameter uncertainties:  Weibull, uniform,

binomial, triangular, normal, log-normal, and other simple parametric

uncertainty distributions for inputs predominate in most Monte Carlo

models.  They are usually selected because they are easy to fit to

available data.  Other distributions could be used instead.  Although the

choice of distributions to represent parameter uncertainties reflects

subjective judgment and is somewhat imprecise, the final conclusions

may not be very sensitive to these choices, provided that the selected

distributions are flexible enough to fit available data well.  For example,

provided that means and standard deviations are estimated

approximately correctly, the distribution of final microbial loads in many

models will be approximately log-normally distributed (Druzdzel, 1994),

regardless of the specific distributions used to model individual

parameter uncertainties.

• Complexity and verifiability of model results.  Simulation results based

on Monte Carlo analysis cannot easily be independently verified, except

by replicating the simulation.  By contrast, simple back-of-the-envelope

calculations are easier to check and make potential sources of

disagreement easier to isolate for discussion.  Such transparency may be

essential to build shared understanding and convincing conclusions.

A challenge for any complex model that produces unexpected results is how

to convince an open-minded sceptic that the results are correct.  Merely

exhibiting the assumptions and data for the model may not meet the needs of

someone whose prior knowledge and experience make it difficult to believe

the findings. We turn next to simpler quantitative risk assessment approaches

that sacrifice the flexibility of uncertainty and variability modeling possible

in simulation models in favor of increased transparency and clearer

derivation of key conclusions from data.
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4.4  Methods of Simplified Risk Characterization to Avoid

Rather than building up risk estimates from estimated dose-response

functions and frequency distributions of exposures, it has sometimes been

proposed that total risk in a population can be estimated from data and that

aggregate (population-level) regression models or equations can be used to

attribute shares of this total to particular sources.  Thus, for risks of resistant

cases of bacterial illness in humans, a simple statistical model such as:

Population Risk = Background + K*(Exposure from animal use)

could be fit to population-level data on the number of cases per year (i.e.,

“Population Risk”) and the estimated “Exposure from animal use”.  Changes

in “Exposure from animal use” would then be assumed to affect Population

Risk through the coefficient K.

In general, such regression-based, attribution-based approaches may

produce results that are causally meaningless (Freedman, 2004), as

regression models (and population attributable risk fractions) do not

necessarily correctly indicate the changes in effects (e.g., in Population Risk)

that would be caused by changes in exposures or other inputs.  (For example,

if men have more exposure than women and, independently of exposure,

also have higher risks of a bacterial illness, then the above model might give

a statistically significant positive value of K due to the statistical association

between risk and exposure, even if changing exposure would have no effect

on risk.) Therefore, these methods are not recommended. However,

structural equation modeling (SEM) and other techniques of  causal analysis

(Greenland and Brumback, 2002) can sometimes be used to develop

statistical regression equations with valid causal interpretations (“structural”

equations) and can produce suitable estimates of the structural (not reduced-

form) coefficients.  When a simple regression approach can be justified, it

can potentially save a great deal of effort

4.5  Rapid Risk Rating Technique (RRRT) Approach

Although population-level regression model are usually not

appropriate for risk assessment, they suggest a practical approach to

quantitative risk assessment that abandons attempts to assess exposures and

dose-response models separately and instead focuses on directly predicting

the risk-per-serving for food commodities under different risk management

interventions.  Conceptually, the following linear regression model:

Risk = Background risk + K*Exposure



204 Chapter 5

could provide an adequate basis for assessing the impact of exposure on risk

if there were a way to estimate K as a causal parameter (so that each unit

change in Exposure would cause a K-unit change in Risk) and if the relation

were truly linear, as in this model.  For example, if the Exposure variable

were known to cause a fraction F of annual illness cases, then one might

invert F = [(K × Exposure)/(Background + (K × Exposure)] to obtain K =

[F/(1 – F)] × (Background/Exposure).  While more is clearly needed, e.g., to

account for multiple sources of exposure and nonlinearities in the exposure-

response relation, this basic idea of estimating causal coefficients from

fractions of cases caused by specific sources appears worthwhile. To achieve

the benefits of such a simple approach, it can be developed as follows:

1. Define “Risk” for an individual as the expected number of illnesses per

capita-year from the hazard of interest (e.g., of campylobacteriosis cases

from chicken servings) for that individual.  Define the relevant

“Exposure” variables as the servings-per-year of various types (e.g.,

from fresh chicken, frozen chicken, etc.).

2. Allow for a background level of exposure that is not affected by the

interventions being evaluated.

3. Assume that a risk management intervention, such as a change in animal

drug use, can affect several components of total exposure (e.g., servings-

per-year of chicken from airsacculitis-positive flocks and servings-per-

year of chicken from airsacculitis-negative flocks).  Thus, total exposure

(e.g., measured in infective doses ingested per year) is decomposed as a

sum of exposures from particular sources that can be affected by risk

management interventions (e.g., resistant vs. susceptible bacteria in

servings from ill vs. well flocks.)

4. Estimate the expected change in risk from a specific intervention that

changes one or more of the exposure terms, as follows:

∆Risk = K1(∆exposure of type 1) + K2(∆exposure of type 2) + …

Here, (∆exposure of type j) denotes the change in exposure of type j

caused by an intervention.  This will usually be a change in the number

of servings of a given type ingested per year.  Similarly, Kj denotes the

average risk-per-serving for servings of type j (or, more generally, the

risk per unit of exposure of type j.  We will use servings as the most

important interpretation.)  The coefficient Kj is interpreted causally;

thus, it should include indirect effects from cross-contamination of other

foods due to servings of type j, but it should not reflect non-causal

associations between exposure to type j servings and resulting risk.  The

intended interpretation of Kj is that it reflects the average change in risk
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per unit change in exposure of type j. (For small changes in exposure, Kj

≈ ∂(Risk)/∂xj, where xj denotes the amount of exposure of type j.

However, practical applications often deal with large changes.  For

example, if banning an animal antibiotic were to remove all resistant

bacteria of a certain type in animal food products of type j, without

affecting any of the other exposure terms, then the relevant value of

Kj*Exposurej would be the entire reduction in risk that would occur

when Exposurej is set to zero.)  For linear models, traditional structural

equations modeling (SEM) (Greenland and Brumback, 2002) provides

an appropriate statistical approach for estimating the coefficients (and

the background term) from exposure-response data. In general, however,

nonlinearities must be expected.

5. To deal with the fact that many dose-response relations are not linear

(e.g., Figure 1), we interpret the linear coefficients Kj as giving bounds

on the true changes in risk caused by changes in the corresponding

exposures.  For example, if the true (but perhaps unknown) dose-

response relation is convex (upward-curving) over the exposure range of

interest, and if the current level of exposure of type j, denoted x j, causes

a risk of Rj that could be prevented by setting xj to zero while holding all

other exposures fixed, then estimating Kj as the slope of the line from (0,

0) to (xj, Rj), i.e., estimating it as Kj = Rj/xj, provides a plausible upper

bound on the reduction in risk that would be achieved by reducing

exposure of type j (by assuming that all of the current risk level caused

by xj would be removed).  But it provides a plausible lower bound on the

increase in risk that would be caused by an increase in xj.  To draw

confident conclusions comparing the changes in risk caused by different

interventions, we can exploit such bounds derived from the linear-model

approximation (i.e., Risk = Background + ∑jKjxj) to the true (perhaps

multivariate nonlinear) exposure-response relation.

6. As a starting point for estimating Kj, assume that Kj is proportional to

the fraction of total illness-causing exposures contributed by source j.

“Total illness-causing exposures” coincides with total exposure (CFUs

ingested per year) of the bacterium if the dose-response relation is linear

with no threshold.  It is the fraction of servings with loads above a

certain threshold if the dose-response function is threshold-like.  (The

background term, which can be denoted K0, corresponds to an “other”

category.)  Thus, the initial estimate of Kj becomes:

(total cases per year) × (fraction caused by exposures from all servings)

× (fraction of illness-causing exposures from servings of type j).
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For initial estimates, linear no-threshold dose-response and/or threshold-

type dose-response relations might be assumed, with different non-linear

dose-response relations being tried in sensitivity analyses to see how

robust the conclusions are to uncertainties in the dose-response relation.

7. If the coefficients are significantly different for different subpopulations

(e.g., with immunocompromised individuals having higher risks than

others as in Table 1), then the preceding steps can be applied to each

such subgroup separately (data permitting).  The total impact of an

intervention in the population is then found by summing the estimated

impacts for all subgroups.

When the required fractions can be estimated and convexity of the dose-

response relation can be assumed, the preceding framework is intended to

allow for rapid estimation of the direction and sizes (or bounds on sizes) of

changes in human health effects that are likely to be caused by interventions

that change exposures.  Because the assessment of Kj is based on the relative

contributions made by different exposure sources (e.g., serving “types” and

background) to total illness-causing exposures, the exposure modeling

methods discussed in Chapter 4 (e.g., simulation-based, attribution-based,

and systems dynamics-based) can be used in the assessment.

The sum-of-products modeling approach also has a systems dynamics

motivation. Suppose that human illness dynamics are described as:

dIH/dt = [b + KIAIA + KHA(1 – IA)](1 – IH) – rIH,

where IH denotes the “ill human” pool, i.e., the fraction of the population

that is ill at any moment; (1 – IH) is the susceptible human pool (not

currently ill), r is the recovery rate per ill person per unit time, b is a

background infection rate parameter, KIA and KHA are exposure-related

infection rate parameters (for servings from the ill animal and healthy animal

pools, respectively); and IA and 1 – IA denote the fractions of servings from

ill and healthy animals, respectively.  Then for rare illnesses (for which

IH/(1 – IH) ≈ IH), the steady-state endemic illness level in the human

population is proportional to b + KIAIA + KHAHA.  This provides further

motivation for studying the simple linear structural equation model:

Risk = background + KIA × (servings from ill animals) + KHA × (servings

from healthy animals).
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Example:  Estimating Risks Caused and Prevented by an Intervention

Setting:  To illustrate the RRRT approach, consider the following hypothetical

example.  Suppose that 57% of campylobacteriosis cases in the U.S. each year are

caused by eating Campylobacter-contaminated servings of chicken (FDA-CVM,

2001.  As discussed in Chapter 4, data such as Stern and Robach, 2003 suggest that

10% might be more realistic, but we will use 57% for purposes of illustration and

then examine the sensitivity of the conclusions to this number.) Suppose also that

1% of all campylobacteriosis cases are resistant to a certain human antibiotic, A,

(such as erythromycin, CDC, 2000), independent of the source of exposure (chicken

or other).  Assume that susceptible cases cause an average of 6 illness-days while

resistant ones cause an average of 8 illness-days.  The current microbial load

frequency distribution on chicken servings, relative to the dose-response relation, is

unknown, but, it is known that most chicken servings have either zero or very low

CFU counts, while a small fraction carry much higher loads that account for a

disproportionate (at least ten-fold) increase in risk.  (For example, the high-risk

servings might come from airsacculitis-positive or necrotic enteritis-positive flocks,

or from flocks with other bacterial illnesses or conditions that lead birds to fail to

reach the normal size and weight range; see e.g., Russell, 2003 and Dawe, 2004.)

Problem:  A proposed ban on selected current antibiotic uses in chickens would

increase the prevalence of chicken servings with relatively high microbial loads

from 0% before the ban to at least 1% after it, while reducing the prevalence of A-

resistant bacteria in chicken servings by an unknown amount.  Assess the probable

net human health impact of this intervention, expressed as a fractional change in the

illness-days per year from campylobacteriosis in the population.  How robust is the

conclusion to uncertainties?

Solution:  Prior to the intervention, each case causes an average of (0.01) × (8) +

(0.99) × (6) = 6.02 illness-days.  To obtain an estimated upper bound on the human

health benefits of the proposed ban, assume that it eliminates all A-resistant strains.

This reduces the average illness-days per case from 6.02 to 6.00.   To obtain a lower

bound on the incremental human health risks from the ban, assume that the dose-

response function is linear, as follows:

E(cases per year) = Background + K
1
(exposure from low-risk servings) +

K
2
(exposure from high-risk servings) = Background + K × [number of low-risk

servings + 10 × (number of high-risk servings)],

where K is the slope of the linear no-threshold dose-response function plotting

expected illnesses against CFUs ingested.  (This linear approximation will provide a

lower bound on the true but unknown incremental illnesses caused by increased
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exposure, if the true dose-response function is convex.)  Dividing through by the

baseline (pre-intervention) levels gives:

Relative number of cases = 0.43 + 0.57 × (relative exposure),

where the “Relative number of cases” is defined as 1 for the baseline and “relative

exposure” is also defined as 1 for the baseline.  (This simplification normalizes and

non-dimensionalizes the calculation, as is common practice in applied mathematical

modeling.)  Following the intervention, relative exposure increases from 1 to at least

(0.99) × (1) + (0.01) × (10) = 1.09, assuming that the average microbial load in

high-risk servings is at least ten times the average microbial load from other

servings.  Thus, the estimated lower bound on the relative number of cases per year

following the ban would be:

Relative number of cases = 0.43 + 0.57 × (1.09) = 1.0513,

corresponding to about a 5% increase in cases per year.  Combining this with a

6.00/6.02 = 0.9967 reduction factor in the average illness-days per case yields:

Relative number of illness-days following the ban = 1.0513 × 0.9967 = 1.048.

Thus, the bounding assumptions used here lead to the conclusion that the proposed

ban would increase the population risk (illness-days per year) by a factor of at least

1.048, corresponding to a 4.8% increase in campylobacteriosis illness-days per year

in this population.

If only 10%, rather than 57%, of cases are caused by consumption of chicken

servings, then the calculations are revised as follows:

Relative number of cases = 0.90 + 0.10 × (1.09) = 1.009

Relative number of illness-days following the ban = 1.009 × 0.9967 = 1.006.

Thus, the qualitative conclusion that the proposed ban would harm human health is

robust to this change in the assumed fraction of cases caused by chicken

consumption.  It is also robust to uncertainty about the true fraction of resistant cases

caused by antibiotic use in chicken (since we used an extreme bounding assumption

that the proposed ban would eliminate all resistance; hence, if the truth is less

extreme, it will only reinforce the conclusion.)  Similarly, it is insensitive to

uncertainties about the true shape of the dose-response function, provided that the

function is convex (upward-curved).  However, the finding of an increased risk is

sensitive to the problem assumption that the proposed ban will increase exposure to

high-risk servings by at least 1%.
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4.6  Validation of Risk Characterization Results

The predictive risk assessment models on which risk characterizations

are based should be validated before the risk characterizations are accepted

as useful for guiding risk management decisions.  The exposure assessment

and dose-response sub-models, as well as the full predictive risk assessment

model formed by composing them, may be validated by comparing their

predictions to observations in data sets not used in creating the models.

Validation data typically come from multiple distinct populations (e.g., in

different geographic sub-regions, seasons or years) or from multiple

individual exposure, covariate, and response histories when these data are

available (e.g., in case-control studies).  Model-predicted risks for each

subpopulation or individual are compared to observed illness rates to

determine whether the observed values could plausibly have been drawn

from the risk distributions predicted by the model.  Formal goodness-of-fit

tests and model diagnostics (Greenland, 1989) are used to compare observed

and predicted values.

Example:  Validation Testing of a Simple Risk Model

Suppose that the risk of campylobacteriosis from chicken were hypothesized

to be proportional to the quantity of contaminated chicken servings consumed, and

that this quantity, in turn, is hypothesized to be a constant fraction of total chicken

servings.  Then the resulting simple risk assessment model,

Risk = Background + K*(servings of chicken consumed), K > 0,

could be compared to real data (e.g., from the case-control studies of Effler et al.,

2001 or Friedman et al., 2004) to assess the validity of the testable prediction that

probability of being a case rather than a control increases with servings of chicken

consumed.  Perhaps surprisingly, such validation tests suggest that the preceding

simple model is not valid: instead, as discussed in Chapter 4, risk of

campylobacteriosis generally decreases significantly with quantity of chicken

consumed (Cox, 2002; see also Table 1 of Effler et al., 2001).  Thus, the above

simple conceptual model should be revised to focus on exposures that are positively

associated with campylobacteriosis risks (such as restaurant- and commercially-

prepared meats, including chicken in restaurants; or perhaps just those chicken

servings that have exceptionally high microbial loads, such as those from

airsacculitis-positive chicken flocks.)   The conceptual model in which all chicken

servings are positively associated with increased risk is refuted by several different

case-control data sets, and therefore should not be used for risk assessment.
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If the predicted risks do not match the validation data, then model

inputs, assumptions, and functions should be checked and revised.  Often,

results of model-checking and diagnostics (Greenland, 1989) can be used to

refine the initial model.  Differences between predicted and observed values

suggest changes in the model that will explain and reduce the differences.  If

a model uncertainty decision tree for uncertainties (Sielken et al., 1995) has

been used to organize and display modeling uncertainties, then the weights

of evidence for different branches may be updated to increase the relative

weights on branches (i.e., assumption sets) that yield predictions that are

most consistent with the validation data.

On the other hand, if the model-based predictions do adequately match

validation data, as indicated by goodness-of-fit tests and model diagnostics

(e.g., plots of residuals), then the underlying risk model may be used to make

predictions for risk assessment within the validated range of conditions.

Uncertainty and sensitivity analyses should then be used to show how robust

the scientific and policy-relevant conclusions of the model are to

uncertainties in assumptions (e.g., model structure) and input data.

5. UNCERTAINTY  AND SENSITIVITY ANALYSES

5.1   Uncertainty Analysis

Uncertainty analysis is used by risk assessors to characterize both

uncertainty and variability in risk estimates.  These are distinct concepts

(Hoffman and Hammonds, 1994).  Uncertainty about risk reflects the width

of the range of risk estimates that are considered plausible in light of

available data, and hence reflects the extent of ignorance about the correct

value.  For example, Bayesian posterior distributions, conditioned on

available data, for the parameters of (a) a frequency distribution, n(x) of

microbial loads, x, in servings of a food commodity; and (b) a parametric

dose-response model r(x), induce a corresponding posterior distribution for

expected Risk = Σxr(x)n(x). The width of the shortest interval of Risk values

that contains 95% of this posterior distribution then constitutes a 95%

Bayesian uncertainty interval for the true but unknown value of Σxr(x)n(x).

Uncertainty intervals, whether Bayesian, classical (e.g., confidence

intervals), or simulation-based (e.g., Monte-Carlo approximations of output

distributions based on input joint distributions and model assumptions) can

potentially be narrowed, at least in principle, by obtaining better information.

By contrast, variability in risk reflects true differences in individual

exposures or dose-response functions.  It refers to the width of the frequency

distribution of individual risks in a population.  Hence, it cannot be reduced
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or eliminated by collecting additional information, as better information will

only show more clearly the variability in individual risks within the

population.  For microbial risks, identifying the sizes and relative

susceptibilities (as in Table 1) of different subpopulations helps to

characterize variability.  If exposures also differ among subpopulations with

different susceptibilities, then these differences contribute to the final

frequency distribution of individual risks.

 Uncertainty about risk estimates is often described by upper and lower

95% statistical confidence limits, derived from corresponding 95%

confidence intervals or joint confidence regions for the underlying model

parameters and inputs (Haas et al., 1999).  For example consider the simple

linear structural equation risk model

Relative number of cases per year  = B + K × ( Relative exposure),

where the coefficients are normalized so that B + K = 1 (with B and K both

non-negative) and the variables are normalized so that initially Relative

number of cases per year = Relative exposure = 1.  If K has a 95% statistical

confidence interval ranging from 0.1 to 0.5, then the corresponding 95%

confidence interval for the relative number of cases per year following a

doubling of the initial exposure level would be:

 [0.9 + 0.1 ×  2, 0.5 + 0.5 × 2] = [1.1, 1.5].

If the relative exposure created by an intervention were also uncertain, then

the confidence interval for risk would reflect the joint confidence region for

K and relative exposure.

Uncertainty about risk can also be described by uncertainty intervals

around point estimates (or by uncertainty bands around entire curves, as in

Figure 3).  These are typically derived by fitting risk models to many

different randomly selected subsets of data or to many different Monte Carlo

simulation runs and then keeping the intervals (or bands) that contain 95% of

the resulting estimates.  The most detailed outputs of quantitative uncertainty

analyses are joint posterior probability distributions for model quantities and

predictions after conditioning on observed data (and on modeling

assumptions).  These can be displayed as joint confidence regions for model

parameters and/or predictions.

Important computational methods and algorithms for uncertainty

analysis include:

• Monte Carlo uncertainty analysis using commercial software products

such as Analytica™,  @RISK™, Crystal Ball™ (Vose, 2000).   (For

more on uncertainty and sensitivity analysis software, see the
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descriptions at product web sites.  Without endorsing particular

products, we note that  the following sites contain useful tutorial and

expository information:

www.palisade.com/html/risk/new_in_risk45.html

www.decisioneering.com/cb_features.html

www.merak.com/kr/files/316/DTreeAboutthisrelease.pdf.)

• Bayesian uncertainty analysis for estimation of joint confidence regions

for model parameters and predictions (e.g., using the free WINBUGS

software for Markov Chain Monte Carlo Bayesian inference with

missing data.)

• Bootstrapping and other resampling techniques for estimating joint

confidence regions for model parameters and predictions.

• Model cross-validation techniques for estimating the accuracy and

prediction error characteristics of model predictions from performance

on multiple subsets of data.

These methods are discussed in computational statistics texts and in risk

analysis texts such as Haas et al., 1999, Vose, 2000, and Cox, 2001.

Example:  Monte Carlo Uncertainty Analysis of a Product of Factors

To illustrate one of the key concepts of uncertainty analysis, Figure 7 displays

the uncertainty in a risk estimate calculated using the RRRT formula:

Risk = Exposure × Dose-Response × Consequence

where: Risk = expected number of excess illness-days per year, Exposure is

measured in potentially infectious meals ingested per year in a population, Dose-

Response = expected number of illnesses caused per potentially infectious meal

ingested, and Consequence is measured in illness-days caused per illness.

For purposes of illustration, the point estimates are taken to have median values of:

Exposure = 10, Dose-Response = 0.2, and Consequence = 6 days.  To express

uncertainty, Exposure is modeled as a log-normal distributions with a geometric

standard deviation of 1.4; Dose-Response is modeled as a Bernoulli random variable

having value of 1 with probability 0.2 (for “susceptible” members of the exposed

population) and a value of 0 otherwise (and hence a mean value of 0.2); and

Consequence is modeled as a normally-distributed random variable with mean of 6

days and standard deviation of 2 days.  The curve is a cumulative probability

distribution for Risk, given these uncertain estimates of Exposure, Dose-Response,

and Consequence. It was generated using the Analytica™ Monte Carlo uncertainty

analysis software (http://www.lumina.com/). Rai and Krewski, 1998, discuss other

methods of uncertainty and variability analysis for such multiplicative risk models.
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Figure 7:  Cumulative Probability Distribution for a Product of Factors

The increasing availability of high-quality commercial software tools

for uncertainty analysis of risk models has made it possible for risk analysts

to rely on these tools for sophisticated resampling, conditioning, and Monte

Carlo simulation algorithms and uncertainty analysis displays.  Thus,

without needing to know the details of the algorithms used to generate

uncertainty bands, distributions, and intervals, most risk assessment

practitioners can now easily create not only “1D” Monte Carlo uncertainty

analyses (which conflate uncertainty and variability analyses by sampling

individual attribute values and then simulating individual risks conditioned

on these values), but also “2D” or “second-order” Monte Carlo uncertainty

analyses.  These separate uncertainty analysis and variability analysis by

quantifying uncertainty bands and intervals for risk conditioned on

individual attributes, while separately quantifying the joint frequency

distributions of individual attributes… and uncertainty about this joint

frequency distribution, i.e., about variability.  Figure 2 of Chapter 2

illustrates a typical “1D” presentation of uncertainty about risk, in the form

of a simulation-based distribution for the number of illnesses per year

predicted by a risk model.  Figure 3 of Chapter 2 shows uncertainty about

risk conditioned on alternative modeling assumptions.  Table 4 of this

chapter indicates where 2D and 1D analyses were used in the Listeria risk

assessment.  For conceptual clarity in distinguishing between uncertainty

and variability, it is often useful to interpret a risk assessment as consisting

of separate component risk assessments (including uncertainty analyses) for

each of several distinct subpopulations, thus capturing the variability of risks

across homogeneous subsets of the heterogeneous population.   Total risk

can be viewed as the superposition of these component population risks.
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5.2  Sensitivity Analysis

Sensitivity analysis (Saltelli et al., 2004) identifies the inputs to a risk

assessment that most affect its outputs.  It also shows how sensitive the

outputs are to plausible variations in inputs, and how risk estimates (both

point estimates and uncertainty intervals) and recommended risk

management decisions change as the inputs are varied and as current

uncertainties are resolved in different ways.  Several types of diagrams have

been developed for these purposes, as illustrated in the examples in this

section.  Most commercial software tools that create Monte Carlo

uncertainty analyses for risk assessment also generate sensitivity analysis

displays.  For example, modern decision analysis software tools (Clemen,

2000) typically include sensitivity analysis diagrams and Value-of-

Information (VoI) analysis capabilities to show how and whether more

information is likely to change current decision recommendations.

Example:  Parameter Sensitivity Analysis Using Spider Diagrams

In the late 1990s, the US FDA’s Center for Veterinary Medicine hypothesized

that the risk of domestically-acquired fluoroquinolone-resistant campylobacteriosis

in the US population (not including cases linked to human use of fluoroquinolones)

increases in direct proportion to pounds per year of Campylobacter-contaminated

chicken consumed (FDA, 2001). Figure 8 is a spider diagram sensitivity analysis

plot from that analysis, showing how the proportionality constant, K
all

, varies with

different model input parameters.  (The horizontal axis shows deviations of

individual parameters around their baseline levels.  The vertical axis shows resulting

deviations of K
all

 around its baseline level. The vertical axis need not be labeled

because all values are expressed relative to the baseline value.)  The parameters of

the model included:

• Proportion of Campylobacter infections from chicken that are fluoroquinolone

resistant (prh);

• Probability a case of campylobacteriosis is attributable to chicken (pca);

• Probability that a stool will be requested and submitted from a patient with non-

bloody diarrhea (p
cn

); and

• Probability that the culture will confirm Campylobacter given it was tested (p+)

• Other parameters dealing with the probability of seeking medical treatment,

being prescribed a resisted antibiotic (a fluoroquinolone), etc.
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Figure 8:  A “Spider Diagram” Deterministic Sensitivity Analysis Plot

Source:  http://www.fda.gov/cvm/antimicrobial/RRAsec5.pdf

This plot was explained as follows (FDA, 2001):

“[The figure] illustrates the parameters that contribute the most to the ratio Kall. The

parameters pca and pcn produce the greatest vertical range and therefore are the most

influential input parameters. … The parameter pca is the only significant parameter

plotted that contributes to the uncertainty from modeling contamination of chicken

meat, i.e. all the other parameters correspond to determining the human health

impact which means that we have more uncertainty about the human health side

than the broiler side.” (http://www.fda.gov/cvm/antimicrobial/RRAsec5.pdf)

Figure 8 illustrates some of the strengths and limitations of sensitivity

analyses based on varying model input parameters and plotting how the output

changes.  It is useful in indicating the sensitivity of the hypothesized risk relation to

p
ca

, the judged “Probability a case of campylobacteriosis is attributable to chicken”.

However, the plot does not reveal sensitivities to model uncertainties and errors.

For example, if the fundamental hypothesis that “Risk = K
all

 × Exposure” is

incorrect (e.g., because low levels of exposure reduce risk while only very high
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levels increase it), then no sensitivity analysis of K
all

 will illuminate the errors to be

expected in predictions from the model.  (Such model specification errors and model

uncertainties can be addressed by other methods, such as nonparametric models,

model cross-validation error estimates, and Bayesian model averaging, surveyed in

Cox, 2001, Chapter 3). Similarly, sensitivity analyses do not necessarily reveal use

of erroneous models and formulae.  For example, suppose that the quantity

“Probability that a resistant case of campylobacteriosis is attributable to chicken”

was estimated as the product of “Probability a case of campylobacteriosis is

attributable to chicken” × “Probability that a case is resistant”.  This formula is

incorrect.  (For example, it implies that if all campylobacteriosis cases are caused by

chicken and 10% of them are resistant, then 100% = 100% × 10%.)  Yet, sensitivity

plots can be produced without noticing such formula errors. Thus, they may provide

an unwarranted sense that relevant uncertainties have been accounted for, while not

revealing mistakes in the underlying assumptions.  (This risk assessment was used

by FDA to recommend that fluoroquinolones be withdrawn from use in poultry in

the United States.  FDA considered its results convincing, in part because of the

elegant supporting sensitivity analyses, even though some critics noted that they

were based on erroneous formulas and therefore lacked validity.)

Example:  Relative Importance Plots

Figure 9 illustrates a “relative importance plot” from an FDA-CVM draft risk

assessment of the animal antibiotic virginiamycin (VM) (FDA-CVM, 2004).  VM

has been used to promote growth and control diseases in food animals (such as

necrotic enteritis in chickens), but it is also almost identical to the human antibiotic

Synercid™ (quinupristin-dalfopristin (“QD”), a combination streptogramin drug

sometimes used to treat vancomycin-resistant E. faecium bacteremias among

intensive care patients (see Chapters 6-8).

The FDA-CVM draft report explains the sensitivity analysis plot in Figure 9 as

follows:

“One of the benefits of the risk assessment process is that key data gaps are

usually identified suggesting areas of needed research and generating testable

hypotheses.  Toward this end, a simplified sensitivity analysis was performed…

using built-in features of Analytica® [the commercial risk analysis tool used to

perform the quantitative risk assessment]. A “variable importance” is the absolute

rank-order correlation between the sample of output values and the sample for

each uncertain input.  Importance analysis ‘is a robust measure of the uncertain

contribution because it is insensitive to extreme values and skewed distributions.
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Figure 9:  Relative Importance of Variables in Virginiamycin Risk Model

(Source:  http://www.fda.gov/cvm/antimicrobial/antimicrobial.html)

Unlike commonly used deterministic measures of sensitivity [such as those in

the preceding example for fluoroquinolones], it averages over the entire joint

probability distribution. Therefore, it works well even for models where the

sensitivity to one input depends strongly on the value of another.’ (Analytica®

documentation).”

Example:  A Tornado Diagram for Factors Affecting Risk Per Serving

Figure 10 shows a “tornado diagram” indicating the fractional change in

predicted risk-per-serving of the summer harvest of Louisiana Gulf Stream raw

oysters as each of several input factors, listed on the left side of the diagram, varies

over a range of plausible values.  When all input factors have the levels assumed in

the base case (i.e., if all of these point estimates are correct), then the model-

estimated risk also has its base case value, and so the fractional change from this

nominal value (indicated by the horizontal scale at the top of the diagram) is zero.  If

the “time unrefrigerated” increases to the largest plausible value considered (e.g., to

the highest value in a 95% confidence interval of uncertainty interval for this input

parameter), then the model-predicted risk would increase by almost 40%.

Conversely, increasing “length of refrigeration time” could reduce risk-per-serving

(relative to the base case) by more than 20%.  The other horizontal bars are

interpreted similarly.

While tornado diagrams are widely used in decision and risk analysis to give

an impression of the sensitivity of model outputs to model inputs (see e.g., Clemen

and Reilly, 2000), they have several limitations.  One is that, as in Figure 10, it is not
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Figure 10:  Tornado Diagram of Influential Parameters Affecting Predicted

log10 Risk of V. Parahaemolyticus Illness per Serving of Raw Oysters

Source:  FDA-CFSAN 2001 http://vm.cfsan.fda.gov/~dms/vprisk6.html

always clear upon inspection exactly what ranges were considered for each input.  In

addition, the diagrams vary one input at a time, and thus do not illuminate

sensitivities to interactions among inputs.  (Classification tree analysis of predicted

output values vs. combinations of input values provides one method for studying

sensitivities to such interactions.)  Also, the main drivers of uncertainty may not be

revealed in the diagram.  For example, as the discussion in FDA-CFSAN 2001

explains, the chief source of uncertainty in this example is uncertainty about the

correct dose-response function.  This is not revealed by the bars in Figure 10.  More

generally, sensitivity analyses usually do not address what has been termed

“modeler uncertainty”, meaning “difference in problem formulation, model

implementation, and parameter selection originating from subjective interpretation

of the problem at hand” (Linkov and Burmistrov, 2003).

On the other hand, tornado diagrams can be very helpful in informing risk

management decisions.  One use is to partition the horizontal bars of the diagram

into contiguous intervals, each a different color, indicating which risk management

alternative (e.g., to introduce a new animal antibiotic use vs. not; or to terminate an

existing use vs. allowing it to continue) is predicted to be “optimal” (e.g.,

maximizing expected utility, given the risks predicted by the risk assessment model)

as each input is varied.  This allows one to see at a glance by how much each input

would have to deviate from its assumed baseline level to change the recommended

decision.  For further development of the decision-analytic uses of sensitivity

analyses, see Clemen and Reilly, 2000.
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In summary, sensitivity analyses show how risk estimates, uncertainty

intervals, and recommended decisions vary as inputs are changed and as

uncertainties for inputs are resolved in different ways. Sensitivity analysis

should also show how model results and predictions change if different

plausible modeling assumptions are made.  It is important to include the

impacts of such variations, as well as of data uncertainties and parameter

estimates, in any complete risk assessment.  Technical methods for

displaying the results of sensitivity analyses (e.g., tornado diagrams, relative

importance plots, spider diagrams) have been developed in the decision and

risk analysis literatures and are appropriate to include in technical

discussions and presentations of risk analysis results.  These displays help

professional risk analysts and quantitatively oriented decision-makers to

understand and communicate which inputs to a risk model are most

uncertain and contribute most to uncertainties in the model’s predictions.

However, characterizing uncertainty about model assumptions (e.g.,

about the mathematical form of a model’s equations and which inputs affect

the model’s outputs and other variables) requires more powerful statistical

methods such as those mentioned above (Cox, 2001, Chapter 3.)

Meanwhile, if a model is assumed to describe the true causal relations among

its variables with useful accuracy, then relatively simple plots such as those

above suffice to identify the key drivers of uncertainties in its results.

Much more can be done with analytic methods of sensitivity analysis

for certain parametric families of models (Saltelli et al., 2004).  As a

mathematically trivial but practically important special case, if risk is

expressed as a product of factors, then over-estimating or under-estimating

any one factor creates a proportional over- or under-estimate of risk,

respectively, with the constant of proportionality being the product of the

remaining factors.  More generally, if the effect of exposure on risk can be

expressed as the difference of two products of powers of exposure variables,

as in S-system theory for biological systems theory, then mathematical

expressions and algorithms are available for analyzing the sensitivity of

system dynamic responses and steady-state equilibria to changes in inputs

(e.g., Cascante et al., 1989).

Given the increasing availability of high-quality uncertainty and

sensitivity analysis software, risk analyses should now be expected to

quantify and present all key sensitivities, show estimated variability of risk

metrics in the exposed population, and provide uncertainty analysis displays

for their major conclusions.  In particular, model uncertainties (e.g., about

the shape of the microbial load exposure distribution, the dose-response

relation, the selection and coding of variables in multivariate models, and the

effects on risk of individual covariates and their interactions) should be
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discussed and sensitivities to these aspects of modeling should be displayed.

For example, instead of selecting individual models and then reporting

parameter estimates and uncertainties assuming that the selected model is

correct, techniques such as Bayesian model averaging (BMA) can be used to

better characterize the plausible set of models and risk estimates that are

most consistent with the data (Viallefont et al., 2001).

6. DISCUSSION AND SUMMARY

This chapter has described dose-response modeling and risk

characterization for microbial and antimicrobial risk assessment.  The best

established approach to quantitative risk assessment, following the National

Academy of Sciences (NAS) framework (Jaykus, 1996), develops separate

estimates for n(x), the number of servings-per-year of the food commodity

ingested with dose x of a bacterial pathogen; and r(x), the conditional

probability of illness given ingestion of a serving with dose x. Exposure

assessment modeling (Chapter 4) provides the exposure frequency

distribution n(x) for different x (or for x values binned by order of

magnitude, as in Table 3.) Dose-response modeling provides the dose-

response model r(x) for each x.  Risk characterization combines these

components to estimate the frequency distribution of the number of illnesses

per year:  the mean risk = expected number of cases per year =  ∑all xn(x)r(x).

The actual number of cases per year is the sum over all x values of binomial

random variables with parameters n(x) and r(x), denoted Bin[n(x), r(x)].

That is, the random number of cases-per-year is:  ∑all xBin[n(x), r(x)], for any

homogeneous population having the same r(x) for all individuals.

Both the exposure frequency distribution n(x) and the dose-response

function r(x) may differ for different subpopulations, reflecting variability in

these two components and implying variability in the resulting risk estimated

from them.  If they are expressed as parametric functions [such as n(x) =

M*λe
-λx

, where M is the total number of servings and λ is a parameter to be

estimated; and r(x) is the Beta-Poisson dose-response model with parameters

α and β], then uncertainty about the parameter values induces uncertainty

about risk. Monte Carlo uncertainty analysis software is used to calculate

and display uncertainty and variability information; “second-order” Monte

Carlo uncertainty analysis also quantifies uncertainty about variability.  Risk

management interventions typically change the exposure frequency

distribution n(x), and hence change the probability distribution of risk.
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An alternative approach to risk assessment is to express risk as a sum

of products of factors:

Risk = Background + (K1 × Servings1) + … + (KS × ServingsS),

where S is the number of distinguished sources of exposures (here assumed

to be different types of servings of food commodities) potentially affected by

proposed risk management interventions.  In this model, Risk refers to the

expected number of cases per year.  Servingsj is the number of servings per

year of type j, such as servings of fresh chicken from airsacculitis-positive

vs. airsacculitis-negative flocks (or even just “high-risk” vs. “low-risk”

servings, if there is a bimodal distribution of risk-per-serving).  In this

framework, the linear equation is interpreted as an approximate structural

equation model (Greenland and Brumback, 2002).  It provides lower bounds

for the effects of increasing exposures of each type and upper-bound

estimates for the effects of eliminating them (since it implies that all of the

corresponding risk would disappear) whenever the true (but perhaps

unknown) dose-response function is convex.  Thus, if this simple linear

model predicts that an intervention that increases some exposures and

eliminates others has the net effect of increasing risk, then this conclusion

should only be strengthened by using a true nonlinear convex dose-response

function in place of the linear approximation.  For example, if a ban on a

current animal antibiotic would increase exposure to susceptible bacteria and

decrease exposure to resistant bacteria and if the linear model shows that

K1 × (increase in exposure to susceptible bacteria)  ≥  K2 × (current

exposure to resistant bacteria).

then using the true (but perhaps unknown) convex dose-response relation

should preserve the inequality:

Increase in Risk ≥ K1 × (increase in exposure to susceptible bacteria)

–  K2 × (current exposure to resistant bacteria).

We therefore refer to this linear modeling method as the bounding structural

equation model (BSEM) approach.

The coefficients Kj are intended to have direct causal interpretations as

the ratios of increases in Risk per unit increase in servings of each type.

Each coefficient thus combines exposure information (e.g., CFUs per

serving) and dose-response information (e.g., expected illnesses per CFU)

into a single quantity.  Because the coefficients are interpreted causally, they

cannot necessarily be estimated by regressing Risk against the numbers of
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servings of different types, since regression coefficients are generally not

causal (Freedman, 2004).  However, if Fj denotes the fraction of all illness-

causing exposures (CFUs) contributed by servings of type j (e.g., as

estimated from epidemiological data and/or genotyping, serotyping,

resistance typing, or other typing data), then inverting the identity

Fj = (Kj × Servingsj)/[Background + K1 × Servings1 + … + KS × ServingsS]

yields the following estimate for Kj:

Kj = (Fj × Risk0)/Servingsj0,

where Risk0 is the baseline risk level (number of cases per year) and

Servingsj0 is the baseline number of servings of type j.  Both of these

quantities can typically be estimated from available data, and sensitivity

analysis can then be used to study how the risk assessment conclusions

change as the input Fj is varied.  When the BSEM model holds and the

baseline risk Risk0, relative exposure fractions Fj, and changes in proportions

of servings of different types caused by proposed interventions can be

estimated, it provides a practical basis for rapid estimation of the probable

direction of the net change in human health impacts caused by the

interventions and for putting a  quantitative lower bound on the size of any

net increase in expected cases per year (or an upper bound on the size of  any

net decrease in expected cases per year.)

Uncertainty and sensitivity analyses indicate the potential for more

information to change conclusions about risks (including their uncertainties)

and comparisons of alternative risk management interventions.  Showing the

potential for change if more information is obtained can provide affected

stakeholders with an incentive to collect additional relevant information if

they wish to change current risk estimates and risk management decisions.

Both the traditional risk characterization approach that separately

estimates exposure and dose-response components and then integrates them

via Monte Carlo simulation (the Risk =  ∑all xBin[n(x), r(x)] approach) and

the Rapid Risk Rating Technique (RRRT) based on the bounding structural

equation model approach can be extended to describe time-varying risks as

exposure patterns shift in response to interventions or because of the systems

dynamics governing changes in ill animals or other drivers of exposure, as

discussed in Chapter 4.  Both types of models can be used to describe

illnesses from antibiotic-resistant as well as antibiotic-susceptible bacteria.

However, in our experience, the RRRT approach is often easier to apply

with available data for animal antibiotic risk assessments than the traditional

approach.  It also avoids model uncertainties about separate exposure
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distributions and dose-response functions, n(x) and r(x), that can make the

predictions from the traditional approach based on separate assessment of

these components uncertain and difficult to validate.

The following chapters further develop and apply the bounding

structural equation modeling approach and the Rapid Risk Rating Technique

(RRRT) based on it, emphasizing the practical estimation of the coefficients

from data, uncertainty analysis when systems dynamics are included, and

comparison of the probable net human health impacts of alternative risk

management decisions.



 

 

 

 

 



Chapter 6

Human Health Risks from Virginiamycin: A Case Study

1. INTRODUCTION

This chapter shows how to estimate a plausible upper bound on the

harm to human health that could be prevented by discontinuing a specific

current use of an animal antibiotic.  This may be interpreted as estimating an

upper bound on either the human health benefit (i.e., decreased human health

risk) from a ban on continued use; or on the preventable risk allowed if such

a ban is not implemented.

In terms of the simple conceptual risk model

Change in risk  = K1 × (change in exposure to susceptible bacteria)  +

  K2 × (change in exposure to resistant bacteria),

this chapter focuses entirely on the decrease in human health risks from

eliminating resistant bacteria, and hence on estimating the corresponding

causal parameter K2 and the exposure to resistant bacteria (and how it would

change if a ban were implemented.)  Chapter 8 continues the example by

considering effects on susceptible bacteria.

To illustrate practical aspects of the estimation and bounding

procedures with realistic data and despite realistic knowledge gaps, we take

as a case study the human health risks from use of a specific animal drug,

virginiamycin (VM).  VM is an animal drug of considerable practical

interest for which improved risk assessment techniques may be useful in

current policy-making decisions.  It was banned as a growth promoter in

Europe in the late 1990s on what were considered precautionary grounds,
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but other countries are still weighing whether the potential benefits of

continued use outweight the potential harm (e.g., FDA-CVM, 2004).

The calculations in this chapter illustrate the attribution-based and

product-of-factors approaches to estimating exposures discussed in Chapter

4 as alternatives to simulation-based approaches.  They are used to develop a

plausible upper-bound risk estimate for the human health impacts of VM use

in chickens and for the potential human health benefits of banning such use.

The practical goal is to estimate a plausible upper bound on the human

health risk posed by the use of VM in chickens, in both the United States and

in Australia.  In Australia, concern about the theoretical possibility of spread

of QD-resistance from VM-exposed chickens to humans has led to proposals

to reduce use of VM as a growth promoter, despite evidence that no such

cases have yet occurred.  In the United States, a much higher prevalence of

VREFs also suggests a need for caution.  The quantitative modeling and

analysis presented here is intended to provide the information needed to

bound potential risks and benefits from banning VM use in chickens; to

approximately quantify the maximum plausible size of the possible human

health risks involved; and thus to provide risk assessment and uncertainty

information that can help in formulating and choosing among alternative

strategies for risk management.

1.1  Background on QD, VRE, VREF, and VREF
A

E. faecium are commensal bacteria commonly found in the intestines

of humans and of food animals such as chickens, pigs, and cattle.  Although

they normally pose no health risks when competent immune systems protect

their hosts against infections by E. faecium and other intestinal bacterial, in

severely ill human patients with compromised immune systems, such as

leukemia, chemotherapy, transplant, and AIDS patients, these normally

harmless bacteria can become life-threatening opportunistic infections unless

they are controlled successfully with antibiotics.  Vancomycin is the

antibiotic most frequently prescribed to treat E. faecium infections, but may

be ineffective against E. faecium that express vancomycin resistance genes.

Other antibiotics such as linezolid, daptomycin (Sader et al., 2004), and the

streptogramin combination quinupristin-dalfopristin (QD), which are usually

highly effective against vancomycin-resistant E. faecium (VREF), may then

become important treatment options (Critchley et al., 2003).  Less effective

bacteriostatic agents (e.g., chloramphenicol) are also available, and new

antibiotics for treatment of vancomycin-resistant cases (e.g., oritavancin, a

glycopeptide, and tigilcycline) are in trial (Linden, 2002).

QD was approved for use in the United States in late 1999. A nearly

identical QD compound, virginiamycin (VM), has been used for decades as a

growth promoter and to prevent and control bacterial illnesses in farm
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animals in the United States and in other countries.  Poultry in the United

States and elsewhere frequently test positive for QD-resistant E. faecium

(e.g., Hershberger et al., 2005) raising the theoretical possibility that use of

VM in chickens may compromise QD effectiveness in treating human VREF

infections if such use promotes the spread of QD-resistant strains from

chickens to humans (FDA-CVM, 2004).  To date, this hypothesis has proved

difficult to test and the potential risk has been hard to quantify, in part

because of uncertainty about transfer of resistance genes from chickens to

humans in realistic settings. At present, such transfer is an unquantified

theoretical possibility – one that may appropriately raise concerns but that

provides no quantitative data to help define what would constitute prudent

risk management.  The high prevalence of QD-resistant E. faecium in

chickens and its low prevalence in humans suggests that transfer from

chickens to humans may currently have little or no detectable impact on

human health, but likely future impacts have remained uncertain (McDonald

et al., 2001).

A current clinical perspective on VREF infections and resistance is as

follows:

“In the United States and Europe, the VanA-resistance phenotype is reported as

the most common phenotype. VanA enterococcal isolates exhibit high-level

resistance to both vancomycin and teicoplanin, while VanB isolates have variable

resistance to vancomycin and remain susceptible to teicoplanin. …Enterococcal

infections often occur in debilitated patients and as part of polymicrobial

infections. …The streptogramin combination antibiotic, quinupristin/dalfopristin,

is available intravenously for the treatment of E faecium infections, but it is not

effective against E faecalis strains. Linezolid, an oxazolidinone antibiotic, is

available orally and intravenously, and it is used to treat infections caused by E

faecium and E faecalis strains. …Once VRE [vancomycin-resistant enterococci,

including E faecium and E faecalis strains] is identified in a medical facility, all

clinical enterococcal isolates should be tested for vancomycin resistance.”

(Donskey and Salata, 2003).

Thus, either QD (formulated as Synercid™ for human medicine) or

alternatives such as daptomycin or linezolid can be used to treat the vanA

VREF (abbreviated VREFA) infections of concern.

If VM used in chickens increases QD-resistant VREF contamination in

food products, thus increasing QD-resistant VREF infections in

immunocompromised ICU patients (perhaps following inadequate cooking

or handling of hospital food), then more of these patients might have to be

treated with alternatives to QD.  Since linezolid is usually less harsh and at

least as effective as QD, this is not necessarily undesirable.  However, for

patients who do not respond favorably to linezolid – approximately 7.4% of
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VRE patients in a study by Linden et al, 1997 – or to other treatment options

such as daptomycin, QD may become the treatment of last resort.  QD

resistance might then increase the probability of QD treatment failure.

Therefore, to the extent that QD use in chickens increases QD-resistant

VREF infections in ICU patients, it might also increase the number of cases

per year not treated effectively by any currently available antibiotics, leading

to excess mortalities or illness-days.

Quantitative risk assessment is needed to determine how large this

number of excess treatment failure cases per year is.  In the absence of such

quantitative risk assessments, opponents of animal antibiotic use in many

countries have urged that VM use in chickens (the food animal of main

concern) and other food animals be restricted or banned to protect against

the perceived but unquantified hypothesized risk to human health

(JETACAR, 1999; Wegener et al., 1999; APUA, 2002; WHO, 2003).  VM

has already been banned as a growth promoter in the European Union

2.   RISK ASSESSMENT DATA AND METHODS

To quantify the number of QD treatment failures that could be caused

by VM use (or prevented by a VM ban) in chickens over the next five years,

one may pursue either of two very different approaches.  As discussed in

Chapters 4 and 5, simulation-based strategies seek to track QD-resistant

VREF microbial loads from multiple sources, including chickens, through to

people and estimate the number of patients infected and treatment failures

that will occur with and without a ban.  This approach is consistent with

much current farm-to-fork process simulation modeling for microbial and

antimicrobial risk assessment.  However, it requires many data gaps to be

filled with more or less ad hoc assumptions, and hence cannot easily give a

reliable risk assessment for VM (FDA-CVM, 2004).  By contrast, an

attribution-based strategy starts with the number of QD-resistant VREF

cases that occur per year and seeks to quantify the maximum fraction of

these cases that could have been caused by VM use in chickens.  VREF

cases, trends, and genotypes in hospitals in multiple countries have been

closely studied and monitored, so this attribution-based approach can more

easily be constrained and guided by available data (ibid).

For purposes of conservative (i.e., upper-bound) risk assessment, a

potential VM-attributable treatment failure may be defined to occur

whenever a patient (1) has a VREF infection that (2) is resistant to QD and

(3) could have come from chicken (e.g., is of a type found in chicken); and

(4) the patient is prescribed QD (rather than alternative therapies), but (5)

QD therapy fails due to the QD-resistance of the strain (rather than other
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causes of failure).  The conjunction of these five conditions is necessary for

a treatment failure to have been caused by resistance due to use of VM in

chickens, even though it is not sufficient (e.g., the strain may be of non-

chicken origin).  At present, transfer of QD resistance from VM-treated

chickens to VREF-infected humans has not been established as a scientific

fact (FDA-CVM, 2004).  If it happens at all, it is a rare event (McDonald et

al., 2001). Accordingly, we adopt a contingent risk assessment approach

based on a pessimistic hypothesis:  we assume that transfer of resistance

does occur, and then, contingent on this hypothesis, quantify the plausible

maximum frequencies of resulting adverse health outcomes.  This is

accomplished by estimating the frequencies of simultaneous occurrence of

conditions (1)-(5) from available medical data and from recent studies of

genogroup frequencies among VREFs identified in animal sources and

hospital patients (Willems et al., 2000).

Table 1 illustrates the logic of this conjunction-of-conditions approach.

It summarizes the attribution-based, product-of-factors risk assessment

model for Australia and shows the mean values estimated for its parameters,

the formulas used to approximately quantify uncertainties, and key data

sources.  These elements are explained and discussed below.

Table 1:  Summary of Australia Model Parameter Values for  Attribution-

Based Risk Estimate

Parameter Mean Value Formula Main Sources

Total VRE cases/quarter in

Australian hospitals

4.0 Data-based

simulation

JETACAR,

1999; Turnridge

2001

Reduction fractions

1. VRE that are vanA E.

faecium (VREFs)

0.22 Beta(18, 65) Turnridge 2001

2. Proportion of VREFs that

are exogenous (i.e.,  not of

known nosocomial origin)

0.17 Uniform(.089, .25) Bischoff 1999;

Austen 1999;

Thal 1998

3. Proportion of exogenous vanA

VREF that come from chicken

 0 to 0.12 0 to Beta(11,78) Willems 2000

4. QD resistance proportion 0 to 0.009 Beta(1,109) Eliopoulos 1998

5. QD effectiveness attribution 0.71 N(0.705, 0.0362)

+ Beta(1,109)

Moellering 1999

Linden 2002   

Product of fixed reduction

factors:

0 to

0.000029

Product of above

Reductions with Time: ( t = quarters )

6. QD prescription rate Reduce 15%

semi-

annually

0.922
t

U.S. market data

(AMR, 2001)

7. Reduction in VM resistance in

chicken-borne VREFs after ban

Decreases to

.32 in 5 years

e
(-.0570 t)

DANMAP data

1997-2000
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The main idea is to start with all vancomycin-resistant enterococci

(VRE) cases per quarter and then to estimate the size of the subset that might

involve treatment failure due to VM use in chickens, based on the

conjunction of conditions 1-5 above.  As discussed next, these are cases of

QD-resistant vanA VREFs of a type (genogroup) that could have come from

chickens and that affect patients who would otherwise have responded

favorably to QD treatment.  The main work of the risk assessment then

consists of identifying data-based estimates of the factors in Table 1.  These

factors, their estimated values, and supporting data and modeling of

uncertainty and variability are discussed in the following sections.  Risk

estimates are then prepared by recognizing that the frequency of a

conjunction of causally related conditions can be expressed as a product of

their conditional frequencies (see the “Mean Value” column of Table 1 for

point estimates of these factors).  In terms of probabilities, without loss of

generality, Pr(all of conditions 1-5 hold) = Pr(condition 1 holds) ×

Pr(condition 2 | condition 1) × … × Pr(condition 5 | conditions 1-4).

2.1  Estimating Total Number of VREF Cases per Quarter

Estimating VREF Cases per Quarter in Australia

Figure 1 plots rates of vancomycin-resistant Enterococci (VRE) in

Australia from Q3 1994 (the first known case) to Q4 1999 (the interval for

which data were available), summed over all institutions, by quarter

(JETACAR 1999; Turnidge 2001).  Figure 2 shows numbers of cases by

quarter and institution.  Cases within institutions tend to cluster significantly

across adjacent quarters, i.e., cases in one quarter make cases in subsequent

quarters more likely, suggesting a contagion process (Cliff and Ord, 1981).

VRE has high nosocomial (in-hospital) spread potential and is tracked within

the United States as a nosocomial phenomenon (NNIS, 2001).  Although it is

plausible that VRE can spread between as well as within hospitals (Thal et.

al, 1998), a PCR analysis of 69 isolates occurring up to August of 1998

concluded that there was “no direct evidence of interhospital transfer of

strains” (Bell et al., 1998).  For modeling purposes, therefore, the dynamics

of contagion within institutions are here described by a mixture of Markov

processes, with correlations among hospitals not being modeled.

The heterogeneity of infection processes at different institutions in

Figure 2 can be represented by partitioning them into three clusters, as

follows: one for institutions that had no cases in consecutive quarters; a

second for all other institutions except “D”; and a third cluster consisting of

D alone, which has exceptionally high contagion.
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Figure 1:  History of VRE in Australia

Figure 2: Historical VRE by Institution

For each cluster, a Markov transition matrix for transitions between

Contaminated, and Not-Contaminated states, can be estimated from the

count data in Figure 2.  Table 2 summarizes the results.



232 Chapter 6

Table 2:  Estimated State Transition Matrices

Cluster 1 Not Contaminated Contaminated

Not Contaminated 0.95 0.045

Contaminated 1.00 0

Cluster 2 Not Contaminated Contaminated

Not Contaminated 0.91 0.09

Contaminated 0.50 0.50

Cluster 3 Not Contaminated Contaminated

Not Contaminated 0.67 0.33

Contaminated 0.25 0.75

Table 2 shows the maximum likelihood estimates (MLEs) for the

transition parameters, assuming that observations start at each institution in

the quarter in which its first case occurs.  (This is a conservative assumption,

since it ignores periods without cases and models occurrence rates based

only on the interval over which cases occurred.  The MLEs in this complete-

data case are just the empirical transition frequencies.)  All clusters are more

likely than not to remain in a Not Contaminated state once there.  A second

step determines the probable number of cases conditioned on there being at

least one, by sampling from the empirical probability density function (PDF)

for the number of cases per quarter in each cluster.  Table 3 summarizes

these distributions and Table 4 shows the implied long-run expected number

of cases per quarter, obtained by solving for the steady-state probability

vectors of each Markov process.

Table 3:  Contamination Level Probabilities

PDF for Number of Cases per Quarter if there is at least 1

Cluster 1 case 2 cases 3 cases 4 cases

Cluster 1 0.71 0 0.29 0

Cluster 2 0.72 0.28 0 0

Cluster 3 0.50 0.25 0.125 0.125

The distribution of the number of cases in each quarter in Australia

can now be estimated via Monte Carlo simulation of the Markov processes.

For each quarter, and for each institution, the current state (Contaminated or

Not Contaminated) determines the next-state probabilities based on the

cluster-specific state transition matrix (Table 2).  If the next state is

Contaminated, a second random draw determines the number of cases based

on the cluster-specific probability distributions in Table 3.
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Table 4:  Long-Run State Probabilities

Cluster State

1

Not Contaminated

2

Contaminated

Cluster 1 0.96 0.04

Cluster 2 0.85 0.15

Cluster 3 0.43 0.57

Estimating VREF Cases per Quarter in the United States

The rate of VRE infections in the USA in recent years can be

estimated from data provided by the CDC National Nosocomial Infections

Surveillance (NNIS) System.  Data for antimicrobial resistance is tracked by

the Intensive Care Antimicrobial Resistance Epidemiology (ICARE) project.

Data for 1998-2000 were collected from 47 participating hospitals, with a

total capacity of approximately 17,766 beds, chosen to approximate the

geographic and size makeup of all US hospitals (Lawton, et al, 2000).

Approximately 677 resistant cases occurred in 2000, out of 2575 isolates

tested (NNIS, 2001) from intensive care units.   In 2000, there were

approximately 983,628 hospital beds in the US (AHA, 2001).  A scale factor

of 983,628/17,766 (≈ 55.36) multiplied by the number of cases yields

approximate nationwide case-loads of 37,483 per year or 9,371 per quarter.

Uncertainty about the annual value can be approximated by a binomial

distribution with p = 677/2575 and n = 2575, or by a normal approximation

to the binomial with mean of np = 677 and standard deviation of

)1( pnp −  = 22.34.    Thus, treating the national scale factor as fixed, the

estimated quarterly VRE case-load is:  (983,628/17,766)/4 × N(677, 22.34) =

13.8 × N(677, 22.34) with a mean of 9370.65 cases per quarter.

2.2  Estimated Fraction of VRE Cases that are VREF
A

After estimating total VRE cases per unit time, the next step is to

estimate the fraction of these cases that might involve harm to human health

caused by QD treatment failures (or reduced QD treatment effectiveness) for

infections with QD-resistant bacteria.  For a case to fall in this subset, it must

be an E. faecium case (rather than E. faecalis, which is not treated with QD.)

It must also have high-level (specifically “vanA”) resistance to vancomycin,

since cases that are treated successfully with vancomycin are not candidates

for treatment with QD.  These conditions restrict the subset of cases of

interest to so-called VREFA infections, meaning vanA vancomycin-resistant
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E. faecium infections.  After estimating the fraction of all VRE cases that are

VREFA cases, we will consider how many of these cases might lead to harm

from QD resistance that could potentially be prevented by banning VM use.

Estimating the Australian VREFA Fraction of VRE by Upper Bounding

Figure 2 shows all cases of VRE, including both vanA and vanB

strains of both E. faecium and E. faecalis.  However, almost all vanB VREF

cases are susceptible to teicoplanin (Eliopoulos, 1998), so that these patients

are usually not prescribed QD (Murray, 2000).  Also, the JETACAR (1999)

report states that, “Apart from a single strain in Australia (Butt et al. 1997),

enterococci harboring the vanB gene have not been isolated from food or

animals.”  Moreover, QD is not active against Enterococcus faecalis

(manufacturer labelling, http://www.synercid.com).  Thus, out of all VRE

isolates, the ones that are of potential concern are the vanA VREF, i.e.,

VREFA cases.  The count of vanA VREF in relation to other types of VRE

was provided as 14/71 (0.20) in the JETACAR (1999) report and updated to

17/81 (0.21) in Turnidge (2001) with the addition of five more quarters of

data.  [Another study of isolates from seriously ill patients in acute care

hospitals in Australia found that, of those testing positive for VRE, 6% had

the vanA E. faecium strain (Padiglione, 2001).  These isolates were not all

from VRE infections, however, and could well have reflected transient

colonization.  Hence, to be conservative, i.e., resolving uncertainties in

favour of over-estimating risk, we will use the higher fraction, 17/81 = 21%.]

To approximate uncertainty regarding the true proportion, we assume

a Uniform[0, 1] (non-informative) distribution for the prior probability of a

VRE isolate being a vanA VREF.  This prior and binomial sampling imply a

Beta(s + 1, n – s + 1) posterior, where n is the number of observations (n =

81) and s is the number of positive observations (s=17).  The probability is

therefore estimated as having a Beta(18, 65) distribution, with a mean of

(s+1)/(n+2) = 18/83 ≈ 0.22.  Since this is smaller than the mean of the

Uniform[0, 1] prior (i.e., 0.22 < 0.5), the choice of a uniform prior is

conservative in that it tends to over-state the posterior mean.  Thus, our

rationale for choosing the uniform prior is not that it is strongly implied by

prior knowledge or data, but rather that it acts as a plausible “upper bound”

for realistic priors, i.e., it is more apt to over-state the risk from VM-related

resistance than to understate it.  (Of course, distributions can only be

partially ordered, e.g., by whether one cumulative distribution function lies

everywhere to the right of another.  So, by referring to the uniform prior as

an “upper bound”, we only mean that it will tend to produce posterior means

that lie above the true value of the uncertain fraction being estimated – here,

the fraction of VRE cases that are VREF
A.)  The purpose of biasing point
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estimates and uncertainty estimates upward, i.e., so that they will be more

likely to overestimate than to underestimate VM-related risk, is that we wish

the final estimate to be a plausible upper bound on the true risk from

continued VM use.  This will allow it to be compared later (in Chapter 8) to

a plausible lower bound estimate of the risk from discontinuing use.

Estimating the U.S. VREFA Fraction

According to Rice (2001), approximately 95% of VRE strains in the

US are E. faecium.  Clark et al. (1993) reported 82 E. faecium in 105 VRE

isolates (78.1%) from 31 hospitals in 14 states.  The State of New Jersey

operated a surveillance of VRE blood isolates from 88 hospitals from 1992

to 1998 (SNJ, 2000). During that time, 70.1% of 2339 VRE samples were

classified as E. faecium.  The annual values ranged from 59.5% to 77.5%,

without a clear trend up or down.

A study of 875 VREF samples was performed on human isolates from

hospitals across the United States in 1994-1996 (Eliopoulos et al., 1998).  A

subset of 352 of the total 875 isolates were identified as first isolates

submitted by patients.  73% of these samples were vanA and 27% were

vanB.  E. faecium isolates submitted to the CDC from 1988 to 1992 were

83% vanA (Clark et al., 1993).  In a 1992 survey of 97 US laboratories, 79%

of VREF isolates were vanA (Jones et al, 1995).

Using the high and low values reported for the proportion of VRE that

are E. faecium (VREF), and for the proportion of VREF that are vanA gives

a range of (0.595 × 0.73 = 0.43) to (0.95 × 0.83 = 0.79) for the proportion of

VRE that are vanA VREF.  Consistent with choosing estimates that are more

likely to over-estimate rather than under-estimate risk, we can use 0.79 as a

point estimate.  Alternatively, for Monte Carlo uncertainty modeling, we

could treat this proportion as a uniform random variable U(0.43, 0.79) with a

mean of 0.61.  This specific distribution could be challenged – after all, it is

plausible that further observations might uncover values outside this range –

but sensitivity analysis confirms that the final results and uncertainty

analysis are not very sensitive to the exact distribution chosen in this case, so

long as it contains most of the range of observed data.  (Indeed, the algebraic

form of the risk model is a product of the 8 factors in Table 1, suggesting an

asymptotic log-normal approximation to this product-of-factors.  The log-

normal distribution depends only on the geometric means and standard

deviations of the factors, making their precise distributions unimportant as

long as they are not too close to 0 or 1.  We can exploit this to choose

relatively simple models for parameter uncertainty, as shown in Table 1.)

Finally, rather than making up any probability distribution, we can simply

use sensitivity analysis to conclude that the empirical uncertainty range for
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the VREFA fraction based on the above studies – from 0.43 to 0.79 – lies

within a factor of 1.5 of 0.6 (i.e., (0.6/1.5) = 0.40  < 0.43  < 0.79 < 0.90 =

(0.6 × 1.5), and so using 0.6 as a point estimate is unlikely to induce more

than about a 1.5-fold error in the estimate.  Even a 10-fold error will not

change the main policy consequences of the analysis, as we shall see, so

modeling the uncertainty in this parameter in greater detail is not warranted.

2.3  Fraction of Exogenous (Non-Nosocomial) VREF Cases

Most VRE are contracted nosocomially, i.e., through spread within

hospitals, e.g., via unwashed hands or fomites on surfaces or medical

instruments.  Above, we estimated total VRE cases, independently of

whether they were contracted nosocomially or from an exogenous source

(e.g. chicken, pets, pork, etc.).  However, nosocomial transmission may be

viewed as being primarily a hospital-specific problem that could perhaps be

eliminated by rigorous control measures but that is unlikely to be detectably

affected by VM use on the farm.  (See e.g., Chritiansen et al., 2004 for

successful control of a VREFB outbreak, and Winston et al., 2002; but see

also Yeh et al., 2004 for the need to follow established guidelines to prevent

nosocomial spread of VRE.) Hence, we will focus on exogenous (non-

nosocomial) cases that are potentially attributable to exogenous sources such

as chicken consumption.  (However, if this restriction to cases not known to

be of nosocomial origin is not desired, then the fraction estimated in this

section can be replaced by 1.)

Bischoff et al. (1999) found that, of 347 VREF samples taken over a

5-year period at a single institution, only 31 (8.9%) were not likely to have

been contracted within the hospital.   Austin et al. (1999) developed a data-

driven simulation model of nosocomial transmission dynamics of VRE in a

large Chicago hospital and estimated that approximately 21% (1 out of 4.81)

of cases were not due to transmission from other patients at the hospital,

based on assumptions about the probabilities of transmission from HCW

(health care worker) to patients and vice versa, staff-patient contact rates

(patient contacts per unit time) and the average duration VRE remains

transmissible on the hands of HCWs (typically one hour) and from patients

(typically the duration of their stay in the ICU i.e., days).  They conclude

that, in the absence of stringent infection measures, 20 to 25% of cases are

exogenous.  A study by Thal et al. (1998) found 73 unique strains (via

PFGE) among 379 isolates from 31 facilities in Michigan obtained between

1991 and 1996.  In addition, the majority of isolates belonged to the same

PFGE strains.  They conclude that transmission within and between hospitals

is responsible for the majority of cases.  The results suggest that perhaps

73/379 or 19.3% of cases are exogenous.  Although it would be useful to
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have more data specifically for vanA VREF cases, we tentatively assume

that vanA VREF have at least as high a proportion of nosocomial

transmission as the other VRE and VREF in these studies, and then let

sensitivity analysis (in which the true but unknown proportion can  be as

small as zero) bound the impact of this assumption on the final risk estimate.

These data suggest a plausible range of 0.089 to 0.25 for the proportion

of exogenous cases.  We model this via a Uniform(0.089, 0.25) distribution,

with a mean of 0.170.  Again, the goal of the uniform distribution is only to

approximate the range of plausible values that are consistent with the data,

rather than to generate a detailed model of uncertainty.  The effect of this

factor is to reduce the number of cases that might be prevented by

terminating VM use by a factor of about 0.17 (with an uncertainty factor of

less than 2), assuming that hospitals with nosocomial transmission problems

will continue to have them whether or not VM is used on the farm.

Removing this assumption would therefore multiply the final risk results by

about a factor of 1/0.17 ≈ 6.

2.4  Fraction of VREF
A
 Cases Attributable to Chickens

There has been much uncertainty regarding animal sources of VREFs

and more recently, QD-resistant VREFs.  Willems et al (2000) used a

genetic typing method [amplified-fragment length polymorphism (AFLP)

analysis] to clarify potential VREFA sources by analyzing 255 VREF strains

isolated from hospitalized patients, non-hospitalized persons, and various

animal sources in nine different countries.  Four major AFLP genogroups

(groups A–D) of vanA VREFs were discriminated.  Of the hospitalized

patients, 4 had genogroup A strains, 10 had genogroup B strains, while the

remaining 73 had genogroup C strains.  Thirty out of thirty-one chickens

sampled had genogroup B strains as did 6 of 7 turkeys.  (One chicken had a

genogroup C strain and 1 turkey had a genogroup A strain.)  Group B strains

also comprised one or more isolates from other populations, including veal

calves and non-hospitalized patients.  Group C strains also comprised some

isolates from veal calves and all 5 isolates from cats and dogs.

While these data do not determine a precise proportion of VREFA

cases attributable to chicken, they suggest that an attribution of all 10 of the

genogroup B cases (out of 87 hospitalized patients) to chicken would be a

generous upper bound. Again applying a Bayesian approach with a

conservative non-informative (uniform) prior to quantify uncertainty

regarding the true proportion gives the probability of chicken attribution as a

Beta(11, 78) distribution, with a mean of (s+1)/(n+2) = 11/89 ≈ 0.12, based

on the conservative (i.e., risk-maximizing) assumption that all Group B
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strains found in human patients are due to transfer from chickens – an

admittedly extreme assumption.

If chickens seldom or never transmit resistant strains to humans,

however, then the proportion of QD-resistant VREF infections that is

attributable to chickens could be as low as zero. An article by Willems et al.

(2001) supports the notion that any role of food animals in VREF infections

in hospitalized patients is small.  120 epidemic and 45 non-epidemic strains

of VREF isolates were obtained from hospital patients in the Netherlands,

UK, US, and Australia, and 98 VREF isolates were obtained from Dutch

farm animals.  (Human strains were regarded as “epidemic” if they had been

isolated from the same hospital, if the patients had been in contact during the

outbreak period, and if the AFLP patterns showed greater than 90%

similarity.)  The AFLP analysis technique detected the variant esp virulence

gene in 115 of 120 epidemic isolates, but in none of the nonepidemic

isolates, and in none of the animal isolates.

In summary, genogroup data suggest that the fraction of human

VREFA infections that might be due to chickens ranges from zero (or close

enough to zero to be indistinguishable from it using health data) to 0.12 as a

perhaps extremely conservative plausible upper bound.  If it is zero, then no

human health risk from vanA VREFs (QD-resistant or not) is attributable to

use of VM in chickens.  To obtain a plausible conservative estimate of

human heath impacts, however, we will assume that all Group B strains

found in humans are attributable to chickens (possibly after transfer to other

foods or hosts through cross-contamination and secondary transmission,

respectively) i.e., we will use the Beta(11, 78) distribution, with a mean of

0.12, for purposes of contingent risk modeling.  All subsequent results are

contingent on the validity of this assumption.  In summary tables such as

Table 1, the contingent nature of the analysis is indicated by explicitly listing

0 as a possible value for the chicken-attributable risk parameter.

2.5  Fraction of VREF
A
 Cases with QD Resistance

QD Resistance Fraction Among VREFA Cases in Australia

The single best point estimate (Maximum Likelihood Estimate) of the

rate of resistance to QD in VREF patients in Australia is zero, as a study of

human subjects in Australia did not demonstrate any resistance to QD in

human E. faecium isolates, despite VM being used there for many years.

Specifically, a test in 1998 of 108 E. faecium isolates from Australian patient

samples found none that was QD resistant (Turnidge and Bell, 2002).

Notably, 28 of these samples were vancomycin resistant.  We can

incorporate this data via the conservative Bayesian approach described
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above.  The resistance probability has a Beta(1, 109) posterior distribution

with a mean of (s+1)/(n+2) = 1/110 ≈ 0.009.  Since the value of 0 is also

completely consistent with the data, it is explicitly listed in Table 1.

QD Resistance Fraction Among VREFA Cases in the United States

In the United States, VREFA incidence is relatively high and VM has

also been used extensively for decades.  In a study of 875 VREF samples

from hospitals across the United States (Eliopoulos et al., 1998), QD

inhibited 98.9% of first-isolate strains at ≤ 2µg/ml, implying a 1.1% rate of

intermediate or higher resistance (4 isolates).    Another study utilizing 201

VREF isolates from 56 United States and Canadian medical centers in 1998

found a QD resistance rate of 1% (2 isolates resistant – none intermediate)

(Jones et al., 1999).  Pooling the Eliopoulos and Jones data gives a total of 6

resistant isolates in 553 samples, yielding an estimated mean proportion of p

= 6/553 ≈ 0.011, with the usual binomial uncertainty distribution.

2.6  QD Effectiveness Fraction

Any quantification of the adverse effects of QD-resistant vanA VREF

must take into account that QD is not completely effective even when there

is no resistance.  For example, some patients cannot tolerate Synercid™, and

treatment failure may occur for non-resistance reasons.  In a recent study, the

clinical success rate in the bacteriologically evaluable subset of patients was

70.5% with a 95% confidence interval range of 63.4% to 77.7%,

corresponding to a standard deviation of 0.036 (Moellering et al., 1999;

Linden, 2002).  Resistance to QD on therapy was observed in 6/338 (1.8%)

of VREF strains. For Australia, an approximate normal probability

distribution for the clinical success rate can therefore be calculated as:

Success rate = 1 – failure rate = 1 – (1 – clinical success rate – QD resistance rate))

= 1 – (1 – N(0.705, 0.036) – Beta(1,109)) = N(0.705, 0.036) + Beta(1, 109)

where N(µ, σ) denotes the normal probability distribution with mean µ and

standard deviation σ.  The mean value of this expression is 0.714, close to

the empirical rate of 0.705.  One reason for non-success is development of

QD resistance during treatment (Moellering et al., 1999).

For the United States, the corresponding expression is N(0.705, 0.036)

+ Binomial(n = 553, p = 6/553) with a mean value of 0.716.  In summary,

for both Australia and the United States, a correction factor of about 0.7

accounts for the fraction of cases for which QD treatment would be expected

to succeed if QD resistance were not present.  In sensitivity analyses, this
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fraction can be increased up to 1 without greatly affecting the results.

2.7  Fraction of VREF
A
 Cases Prescribed QD Over Time

VREFA cases that are not prescribed QD are not candidates for QD

treatment failure due to VM-induced QD resistance.  This section therefore

estimates the fraction of cases that might receive QD prescriptions. This rate

has been falling as new drugs (especially, linezolid) become available, and is

likely to fall further in future.  To illustrate how multiple time periods and

forecasts of future changes can be incorporated into simple quantitative risk

assessment calculations, we will use the data available in the early 2000s to

forecast QD treatment rates over several quarters, and will use these time-

varying estimates in subsequent risk calculations.

QD treatment is expensive, not always effective, and may have serious

side effects necessitating cessation of treatment.  In clinical trials,

approximately 22% of subjects discontinued therapy due to adverse side

effects (per product labeling).  Possible alternatives for treating VREF

include doxycycline and/or chloramphenicol; combinations such as

teicoplanin plus gentamicin or streptomycin (Murray, 2000; Eliopoulos,

1998); linezolid (Zyvox), oritavancin, glycylcline, daptomycin, and

tigicycline (Linden, 2002), while other options are in the clinical trial stage.

Linezolid appears to be extremely promising and has already been approved

for use in the United States, Europe, Japan, and numerous other countries.

Table 1 assumes that QD will be replaced in Australia with linezolid

or other products.  In time period 0 (Q4 2001), all VRE patients are assumed

to be prescribed QD (another worst-case assumption).  The decline in

prescription rate is assumed to be 15% semi-annually, equivalent to 0.92 of

the value in the previous quarter.  This value is based on data from the

United States market, where linezolid was approved in April, 2000.  During

Jan to June 2001, Synercid® saw a 15% decline in use while Zyvox® saw a

48% increase in use (AMR, 2001).  The prescription rate can then be

expressed as:  0.922
t

 t = 1,2,3,….  In the US, use of Synercid has declined at

approximately 15% semi-annually since July 2000 (ibid), putting the US

about six quarters ahead of Australia on the decline curve.  Therefore the US

prescription rate is:  0.922
(t+6)

 t = 1,2,3,…. when t is measured in quarters.

2.8  Time-Varying QD Resistance Fraction

The potential human health benefit (i.e., risk reduction) from banning

continued use of VM in chickens arises because removing the selection

pressure from continued VM use reduces the prevalence of QD resistance

among VFEFA infections.  But these potential benefits would not occur
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immediately (and, as experience with avoparcin suggests, elimination of

resistance might not occur even within decades).

To estimate the timing of potential human health benefits of a ban on

VM, it may be assumed that reductions in the QD resistance rate in VREFA

in human patients are proportional to reductions in VM resistance rate in

food animals (in effect assuming that QD use in animals is entirely

responsible for QD-resistant VREFs in human patients.)   Table 5 shows the

post-ban decline in VM resistance in poultry in Denmark following the ban

of VM in 1998 (DANMAP, 1997 to 2000).

Table 5:  Virginiamycin Resistance in Poultry in Denmark

Year Resistance Fraction of 1997 Level

1997 66% 1

1998 60% 0.91

1999 39% 0.59

2000 34% 0.515

Thus after 3 years, the resistance rate is cut roughly in half.  Figure 3 fits a

negative exponential curve to these data.

Figure 3:  Virginiamycin Resistance in Danish Poultry – Actual and Fitted

Resistance percentage as a function of time (t in quarters) is described by:

Resistance(t) = e 
(4.3526 - .0570*t)

, so that the proportion of original QD resistance

at time t is:  e
(-.0570t)

t = 1, 2, ….
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2.9  Health Consequences of Treatment Failures

Adverse human health consequences of QD treatment failures may

include excess illness-days and mortalities.  Data are available from which to

estimate the quantitative mortality and morbidity impacts of QD treatment

failures.  For mortalities, a case control study by Linden et al. (1997) found

that 5/20 (25%) of cases given QD had VREF-associated mortality while

17/42 (40.5%) of controls receiving alternative treatment had VREF-

associated mortality.  This suggests a mortality rate attributable to not being

given QD (and hence for QD resistance) of 15.5%.  This is a conservative

(upwardly biased) estimate since alternative treatment options at the time of

the study did not include products available now, such as linezolid.  To help

obtain a plausible upper bound on risk, we assume that:

Excess mortalities = 0.155 × excess treatment failures

The corresponding expected loss of life-years can be estimated from the

average age and remaining life expectancy of VREF patients.  A study of

262 VREF patients in the US showed a mean age of 60 years (55% females

and 45% males) (Webb et al, 2001).  We assume that VREF patient

demographics in Australia are similar.  The current life expectancy at age 60,

based on insurance actuarial tables, is 79.47 for Australian males and 83.52

for Australian females (InfoChoice, 2002).  Therefore, the average life-years

lost per attributable mortality is:

0.55 × (83.52 - 60) + 0.45 × (79.47 - 60) = 21.7 years

The remaining life expectancy at age 60 is 19.6 for US males and 23.2 for

US females (NCHS, 2001).  Therefore, the average life-years lost per

attributable mortality may be estimated as:

0.55 × (23.2) + 0.45 × (19.6) = 21.6 years.

To be conservative, these calculations ignore the fact that patients who

receive QD treatment (e.g., leukemia or HIV patients) may have less-than-

average life expectancies.

Another possible adverse effect of QD treatment failure is prolonged

days of illness.  A study by Linden et al. (2002) showed a mean duration of

treatment for VREF patients treated with QD of 20 days with a range from 4

to 40 days.  In an earlier study by Moellering et al. (1999) the mean (± S.D.)

duration of treatment with QD was 14.5 ± 10.7 days (range: 1-108, n = 396).

The study by Webb et al. (2001) found the mean days of hospitalization for
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VREF patients was 48.8 days, while the mean days of hospitalization for

VSEF patients was only 34.2 days.  Since no analogous study for QDREF

versus QDSEF patients is available – perhaps because of the lack of

significant numbers of QDREF patients – we assume that additional days of

treatment attributable to QD resistance is the same as for vancomycin

resistance: 14.6 days.  These extra days of treatment can be converted to

equivalent Quality-Adjusted Life-Years (QALYs) lost if it is assumed that

each extra day of illness is as bad as losing a day of life. The average number

of QALY’s lost due to a QD resistance attributable treatment failure (without

a mortality) is then bounded by:  14.6/365 = 0.04 QALYs, as detailed in the

Appendix to this chapter.

2.10  Summary

Table 6 summarizes estimated values for all model parameters for both

the US and Australia.

Table 6:  Summary of Model Parameters for US and Australia

Quantity Formula (Australia; US) Mean for

Australia

Mean

for US

VRE cases/quarter Markov Simulation Model

13.84 x N(677, 22.34)

3.98 9370.65

Fixed Fractions

VREF
A
 fraction  Beta(18,65); Uniform(0.43,0.79) 0.22 0.61

Exogenous fraction Uniform(0.089, 0.25) 0.17 0.17

Chicken fraction Beta(11, 78) 0 to 0.12 0 to 0.12

QD resistance fraction Beta(1, 109); p = 6/553 0 to 0.009 0 to .011

QD effectiveness

attribution

N(0.705, 0.0362) + Beta(1,109);

N(0.705, 0.0362) + Bin(6/553)

0.714 0.716

Summary of fixed

reductions

Product of above fixed fractions 0.00003 0.0001

Dynamic Fractions ( t represents quarters )

QD prescription rate Decrease 15% semi-annually 0.922
t

; 0.922
(t+6)

VM resistance fraction

in chickens  after ban

Decreases to 0.32 after 5 years e
(-.0570 t)

e
(-.0570 t)

The factors in Table 6 are multiplied to estimate the number of VM-

attributable QD treatment failures (ATF) per quarter for two alternative

decision scenarios, “Ban VM” and “No-Ban VM”, in the US and Australia.

(Extensions to partial bans, e.g., bans on some uses but not others, are

straightforward if their impacts on the factors in Table 6 are estimated.  We
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focus on the case of a dichotomous ban for simplicity and to obtain an upper

bound for results of partial bans.)  In each country, the ATF is defined as the

number of QD treatment failures per quarter attributable to use of VM in

chickens.  It is estimated as follows.  First, baseline levels are estimated by

multiplying the factors in Table 6:

• ATFaus = VRE cases per quarter in Australia × Beta(18, 65) ×

Uniform(0.089, 0.25) × Beta(11, 78) × Beta(1, 109) × [N(0.705, 0.0362)

+ Beta(1, 109)].  Its initial mean value is: 0.000029 × E(VRE cases per

quarter in Australia) = 0.00012 cases per quarter.

• ATFusa = VRE cases per quarter in US × Uniform(0.43,.79) ×

Uniform(0.089, 0.25) × Beta(11, 78) × Binomial(553, 6/553) ×

[N(0.705, 0.036) + Binomial(553, 6/553)].  Its initial mean value is:

0.0001 x E(VRE cases per quarter in US) = 0.95 cases per quarter..

Next, the time-varying component of risk is estimated by multiplying the

baseline levels by factors that decline with time, as follows:

No Ban

• ATF(t) = ATF × (Proportion of patients at time t prescribed QD)

• ATFaus(t) = ATFaus × 0.922
t

• ATFusa(t) = ATFusa ×  0.922
(t+6)

.

Ban

• ATF(t) = ATF × (Proportion of patients at time t prescribed QD) ×

(Proportional reduction at time t in QD resistance due to VM ban)

• ATFaus(t) = ATFaus ×  0.922
t

  x e
(-.057 (t - T +1))

t = 1,2,…12

• ATFusa(t) =  ATFusa ×  0.922
(t+6) 

x e
(-.057(t - T +1)

where T is the quarter in which the ban takes place.

3.  RESULTS

3.1  Results for Australia

Figure 4 plots results for Q1 2002 to Q4 2006 (20 quarters) from 1,000

iterations of the model for Scenario 1 (No Ban), initialized with data

available as of the end of 2001.  (As discussed below, these impacts would

be reduced if the model were re-initialized with updated data starting in

2005, for example, since Synercid™ use has declined since 2001.  But a goal

of this case study is to illustrate how to use available, published data to

predict future health impacts; thus, the slightly dated numbers in Tables 1

and 6 will be used for purposes of illustration.) The projected 5-year
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cumulative treatment failures were 0.0011 cases, with an attributable

mortality of 1.74 x 10
-4

 cases, representing a total of 0.004 life-years lost.

Figure 4:  Cumulative Predicted Attributable Treatment Failures (Australia)

Table 7 shows results for three Banning scenarios:  Ban in Q1 2002,

Q1 2003, or Q1 2004; (i.e., at T = 1, 5, and 9).  The differences between

them stem from the fact that the later the ban, the more the switch away from

prescribing QD has already occurred.  The results in Table 7 imply that a ban

of VM in Q1 2002 would have been likely to have reduced attributable

treatment failures in Australia by at most 0.35 x 10
-3

 cases, mortality by

0.058 x 10
-3

 cases, and life-years lost by 1.3 x 10
-3

 over a 5-year period.

Sensitivity analyses reveal how these numbers change for variations in

attribution of QD-resistant VREFA to chicken versus other sources and in the

average QD prescription rate over the five year time horizon. Figure 5 shows

the results of varying the chicken attribution proportion between 0 and 0.124

(its highly conservative baseline value) and varying average QD prescription

rate between 0.1 and 1.0.  These sensitivity analyses show a maximum of

0.001 treatment failures averted by a ban on VM, implying that at most

0.000155 mortalities in Australia would be averted in the worst case where

all QD resistances in VREF is attributed to VM use on chickens, and all QD

resistant cases are treated only with QD.
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Figure 5:  Range of Predicted QD Treatment Failures Averted in Five Years

vs. Chicken Attribution Fraction and QD Prescription Rate, for Australia

Table 7:  Summary of Model-Predicted Results for Australia

5 Year Cumulative Values x 10
-3

Scenario Treatment Failures,

95% CI [ ]

Mortalities QALYs

1.  No Ban 1.1, [1.1, 1.1] 0.174 3.8

2.  Ban

2a.  Ban in Q1 2002 (T = 1) 0.749, [0.737, 0.761] 0.116 2.5

2b.  Ban in Q1 2003 (T = 5) 0.90  [0.89, 0.92] 0.140 3.1

2c.  Ban in Q1 2004 (T = 9) 1.0,  [1.0, 1.0] 0.156 3.4

3.2  Results for USA

Figure 6 plots results for Q1 2002 to Q4 2006 (20 quarters) from 1000

runs of the no-ban scenario for the United States.  The predicted five-year

cumulative treatment failure load is 5.54 cases, with an attributable mortality

of 0.86 cases, representing 18.8 life-years lost.
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Figure 6: Cumulative Predicted Attributable Treatment Failures (USA)

Table 8:  Summary of Model-Predicted Results for United States

5 Year Cumulative Values

Scenario Treatment Failures,

95% CI

Mortality Life-Years

1.  No Ban 5.54, [5.50, 5.58] 0.86 18.85

2.  Ban

 2a.  Ban in Q1 2002 (T = 1) 3.69, [3.66, 3.72] 0.57 12.56

 2b.  Ban in Q1 2003 (T = 5) 4.45, [4.41, 4.48] 0.69 15.14

 2c.  Ban in Q1 2004 (T = 9) 4.96, [4.92, 5.00] 0.77 16.88

Table 8 presents results for different ban scenarios, estimating what

the effects would have been of starting VM bans in Q1 2002, Q1 2003, or

Q1 2004.  A ban of VM in Q1 2002 would have been predicted to have

reduced attributable treatment failures by at most 1.85 cases, mortality by at

most 0.29 cases (i.e., from 0.86 to 0.57), and life-years lost by at most 6.3

over a five-year period for the entire US population. Varying the chicken

attribution proportion between 0 and 0.124 and varying average QD

prescription rate between 0.1 and 1.0, as was done in Figure 5 for Australia,

indicates a maximum of 8 treatment failures (or at most 1.24 mortalities) in

the USA would be averted in the worst case where all QD resistances in

VREF is attributed to VM use on chickens, and all QD resistant cases are

treated only with QD.
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4.  DISCUSSION OF RESULTS AND KEY DRIVERS

The case study in this chapter has shown that immediately banning

VM use in chickens would save less than one predicted statistical life over

the next 5 years in the United States, even if it is assumed that transmission

of QD-resistant E. faecium (or resistance determinants) from chicken to

humans occurs.  The effects in Australia would be far smaller, by a factor of

more than 1,000 (based largely on the differences in VRE case rates per

quarter and VREFA fractions in Table 6.)  If no such transfer occurs, then the

associated human health risk from continued use (or health benefit from a

ban) is zero.  In the results calculated in Section 3, a very conservative

estimate of 12.4% of cases is assumed to be attributable to QD-resistance

acquired from chickens, but this is probably unrealistically high.  Thus,

despite the scientific uncertainty about frequency of chicken-to-human

transfer of resistance, it is possible to develop useful bounds on the

approximate magnitude of the human health risk that might be posed by

continued use of VM in chickens.

The risk estimates are driven largely by genetic typing findings

showing that VREF-infected patients usually have VREF strains not found

in chickens (Willems et al., 2000 and 2001).  Such data tightly constrain the

plausible upper bound on human QD-resistance risks attributable to VM use

in chickens.  They make farm-to-fork modeling of microbial loads, which

could be difficult or impossible with current data, unnecessary.  Indeed, the

key drivers of the conclusions are sufficiently strong and simple so that the

Monte Carlo uncertainty analysis and sensitivity analyses presented above

are unnecessary for deriving and understanding the main results.  In this case

study, as indicated by the tight Monte Carlo uncertainty bounds around the

point estimates in Figures 4 and 6, the point estimates drive the main results.

The main drivers of the final risk estimates can be understood by

considering the product of the following point estimates for key factors in

the United States:

(9370.65 VRE cases/quarter) × (0.61 VREF
A fraction) × (0.17 exogenous

fraction) × (0.12 chicken fraction) × (0.011 QD resistance fraction) × (0.074

QD prescription rate = linezolid resistance rate).

(For simplicity, rather than using a time-varying QD prescription rate here,

we simply assume that, in future, linezolid will be the first choice for treating

VREFA cases and that  all cases of linezolid treatment failure will be treated

with QD.  Linden et al., 2002 give the linezolid failure fraction as 0.074, and

we use this as the eventual future QD prescription rate.  For this calculation,

we ignore possible future use of daptomycin or other alternatives to QD
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when linezolid treatment fails.)  The product of these factors is 9370.65 ×
0.61 × 0.17 × 0.12 × 0.011 × 0.07 = 0.09 cases per quarter, or 0.36 cases per

year of QD-resistant VREFA infections treated with QD.  Each such case

leads to an expected fraction of a QALY lost.  Even before quantifying the

clinical consequences of resistance, however, it is clear that the estimated

risk is limited by the relatively small fractions in this product.   Including

additional factors from Table 6, e.g., to reflect a gradual reduction in VM

resistance rather than instantaneous elimination, reduces this product a bit

further, but the main conclusion that the preventable human health harm is

relatively small (probably less than 1 case of VM-induced QD treatment

failure per year) can be understood on the basis of the preceding factors.

5.   SUMMARY AND CONCLUSIONS

The attribution-based, product-of-factors approach to quantitative risk

assessment illustrated in this chapter and summarized in Table 6 offers one

possible practical template for rapidly assessing a quantitative estimate of

the probable human health risk from continued use of animal antibiotics such

as virginiamycin (VM).  The key idea is to start with an estimate of the total

rate of cases in the exposed population (i.e., the number of all cases of

illness per unit time) and then to multiply it by a sequence of fractions to

obtain a plausible upper bound on the fraction of cases that could be

prevented by ceasing the animal antibiotic use. These fractions are estimated

from a combination of available data and simplifying assumptions (e.g., that

all VREFA infections having a genotype found in chickens are in fact caused

by VM use in chickens, perhaps via unknown or unspecified pathways and

causal mechanisms; or that withdrawing VM use would promptly eliminate

all such cases.)  These simplifications may result in an over-estimate of risk.

For example, it is consistent with present microbiological knowledge that

there might be no transfer of streptogramin resistance from chickens to

people, so that the true risk of VM-induced QD treatment failures in people

is zero.  However, for purposes of guiding decision-making in the presence

of important scientific uncertainties about whether a risk exists, it is

appropriate to first hypothesize that it does and then to estimate its potential

size, contingent on this explicitly stated hypothesis.

An advantage of arranging the calculations as a product of factors is

modularity:  each key factor can be identified, assessed, and debated

separately and the effect of removing it (which is the same as the effect of

dividing the entire product by that factor) can be determined immediately.

For example, in Table 6, anyone who disagrees with the inclusion of an

“exogenous fraction” factor of 0.17 for exogenous cases (i.e., those not
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known to be of nosocomial origin) can replace it with an alternative

estimate, or divide by 0.17 (i.e., replace 0.17 with 1) to remove its effects

from the calculation altogether.  This modularity allows attention and

expertise to be focused on each factor separately.  It immediately shows

which factors – namely, the relatively small ones – most affect the final

answer.  For factors of 0.5 or more, it is unlikely that further debate and

additional investigation of the exact values (or frequency distributions of

values) will greatly increase the final risk estimate (since the under-estimate

is at most a factor of 2 and what matters for risk assessment is usually only

the order of magnitude of the risk.)  Thus, the product framework also may

help to focus risk assessment deliberation and debate on those factors where

additional science and data can most affect the final risk estimate.

Chapter 8 will return to and expand upon the theme of modular,

template-driven health risk assessment based on products of factors, but will

add a crucial new component:  bounding the net human health impacts

(adverse health effects prevented minus adverse health effects caused) of

alternative risk management interventions.   In addition, we will consider

how to extend the template-based approach to quickly account for effects of

an intervention (such as ban of an existing animal antibiotic use or

introduction of a new one) on multiple pathogens in multiple food animals.

However, before further developing this product-of-factors approach, in

which each factor is estimated from available data and simplifying

assumptions, we will first examine in depth the extent to which current and

historical data can be relied on to estimate likely future health consequences

of interventions.  This requires uncertainty analysis of a predictive systems

dynamics model that considers the dynamics of resistance emergence under

selection pressures from both animal and human antibiotic use.
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Appendix:  Estimating Human Health Consequences of QD

Resistance

VM use in animals can adversely affect human health only if there is a

difference in the human health consequences of QD-resistant vs. QD-susceptible

strains of VanA VREF, perhaps due to differences in the medical treatment received.

This appendix estimates this difference.

Figure A1 illustrates possible health outcomes for QD-susceptible (SUS)

and QD-resistant (RES) vanA VREF cases, with their estimated probabilities.  Each

VanA VREF patient has an initial health state classified as either “severe illness”

(but susceptible to QD treatment) or as “QD treatment failure” (= not susceptible to

effective QD treatment).  Each has a final health outcome of either “Severe” illness

(but responded to QD treatment), QD “Treatment failure” (but no fatality), or

“Fatality”.  An initially severely ill vanA VREF-infected patient who does not

respond to QD enters the “Treatment Failure” state, from which progression to the

“Fatality” state may then occur.  Transition from Severe illness to the Treatment

Failure state can occur not only if the vanA VREF infection is QD-resistant, but also

for reasons such as a patient’s intolerance of QD.  (These latter could be classified as

“unable to treat with QD” rather than as “treatment failures”, but the distinction is

not needed for quantifying the increase in treatment failures due to resistance.)

Transitions to the “Fatality” category can occur from both the severe illness and

treatment failure initial categories, but the probability of fatality is higher for

treatment failures (0.525 vs. 0.37).

The transition probabilities from Severe Illness to Treatment Failure and from

both Severe Illness and Treatment Failure to Fatality are estimated as follows.

Lautenbach et. al. (1999) reported a 37% VRE-attributable mortality rate among

patients with enterococcal bacteremia, 28% of whom were resistant to vancomycin.

A case-control study by Edmond, et al. (1996) found a mortality rate of 37% (95%

CI = [0.1, 0.64]) for vancomycin-resistance among cases of enterococcal bacteremia,

gives an estimated value of:

Pr(fatality | severe illness and no QD resistance) = 0.37

Linden et al. (1997) found that 5/20 (25%) of cases given QD had VREF-associated

mortality while 17/42 (40.5%) controls receiving alternative treatment had VREF-

associated mortality.  These proportions are borderline statistically significantly

different (p = 0.067 in a two-sided test for difference of proportions, p = 0.034 for a

one-sided test). Their difference of 40.5 – 25 = 15.5% can be used as a plausible

conservative estimate of the increase in mortality probability attributable to not

being treated successfully with QD.  (If the true difference is zero, the total risk

associated with QD resistance would also be zero.)  The estimated fatality

probability among Treatment Failure patients is thus:
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Figure A1:  Outcome Probabilities for QD-Resistant (RES) and QD-

Susceptible (SUS) VREF Cases

RES

SUS

Treatment

Failure

Initial

Severe

Initial

Treatment

Failure

Fatality

Severe

1

0.286

0.714

.63

0.37

0.525

0.475

Pr(fatality | QD treatment failure) = 0.37 + 0.155 = 0.525

The probability of treatment failure is defined as 1 among QD-resistant cases:

Pr(QD treatment failure | QD resistance ) = 1

However, QD is often not completely effective, even in the absence of resistance.  In

a recent study, the clinical success rate in the bacteriologically evaluable subset of

patients was 70.5% with a 95% confidence interval range of 63.4% to 77.7%

(Moellering et al., 1999; Linden, 2002).  A fraction of the treatment failures (about

0.009, Cox and Popken, 2004) were due to resistance and must be subtracted out to

get the fraction of failures that are not due to QD- resistance:

Pr(QD treatment failure | QD-susceptible) = 1 - 0.705 - 0.009 = 0.2860

Multiplying (1 – 0.2860) = 0.714 by the 15.5% estimated increase in mortality rate

among cases not treated successfully with QD (for any reason) gives 0.11 as an

estimate of the increase in mortality rate due specifically to QD resistance-related

treatment failures (rather than other causes of treatment failure.)

The final outcome probabilities for QD-resistant and susceptible infections

are computed as follows:

• Pr(severe illness is the final outcome | QD-resistant) = 0 (see Figure A1).



Human Health Risks from Virginiamycin: A Case Study 253

• Pr(fatality | QD-resistant) = Pr(fatality | QD treatment failure) = 0.525

• Pr(treatment failure but no fatality | QD-resistant) = 1 – 0.525 = 0.475

• Pr(severe illness is the final outcome | QD-susceptible) = Pr(severe illness &

successful treatment & no fatality | susceptible) = 1*(1 – 0.286)*(1 –  0.37) = 0.45

• Pr(QD treatment failure but no fatality is final outcome | QD-susceptible)

= (0.286)*(1 – 0.525) = 0.286*0.475 = 0.136

• Pr(fatality is final outcome | QD-susceptible) = Pr(fatality | severe initial outcome)

* Pr(severe initial outcome | QD-susceptible) + Pr(fatality | treatment failure) *

Pr(treatment failure | QD-susceptible) =  0.37*(1 - 0.286) + 0.286* 0.525 = 0.4143  

o Pr(fatality | severe initial outcome & QD-susceptible) = 0.37

o Pr(severe initial outcome | QD-susceptible) = 1 – 0.286 = 0.714

o Pr(QD treatment failure | QD-susceptible) = 0.286

o Pr(fatality | QD treatment failure) = 0.525 (see Figure A1).

Severity of Consequences:  Estimating QALY Losses

VREF patients in a recent study (Webb et al. 2001) incurred an average of

14.6 additional days of hospitalization compared to VSEF patients (34.2 days vs.

48.8 days).   No analogous study for QDREF versus QDSEF patients is available,

perhaps because of the small numbers of QDREF patients.  We will assume that the

additional number of days of treatment attributable to QD resistance or treatment

failure is the same as the additional days attributable to vancomycin resistance, i.e.,

14.6 days.

Extra days of treatment and illness can be converted to lost quality-adjusted life-

years (QALYs).  The HUI3 multiattribute utility scale (Furlong et al, 2001) provides

values from  –1.371 to 1.00, with negative scores representing states considered to

be worse than death.  Other scoring systems provide values from 0.0 to 1.0.  HUI3

requires rating patients in 8 health attributes with scores ranging from 1 to 6 and

converting the results to a single value via Multi-Attribute Utility Theory (Cox,

2001).  For simplicity, we will use a conservative overall rating of 0.0 for VREF

patients with QD resistance during their treatment.  The average numbers of QALYs

lost per case are then as follows:

• Severe (susceptible): 48.8/365 = 0.1337

• Treatment Failure (susceptible or resistant): 63.4/365 = 0.1737

Thus, each treatment failure (e.g., due to QD-resistance) is expected to generate an

additional 0.04 QALYs lost per non-fatal treatment failure.  This is a conservative

estimate, as it assumes that no other effective therapies are applied following QD

failure.

The QALY’s lost per fatality are estimated by first comparing the average age

of a VREF patient to average life expectancy.  A study of 262 VREF patients in the
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US determined a mean age of 60 years, composed of 55% females and 45% males

(Webb et al. 2001).  The current life expectancy at age 60, based on insurance

actuarial tables, is 79.47 for males and 83.52 for females (InfoChoice, 2002. We do

not calculate separate values for the US and Australia for purposes of this rough

estimate.)  Therefore, the estimated average QALYs lost per attributable fatality is:

0.55*(83.52-60) + 0.45*(79.47-60) = 21.70 years.  This number is conservative

(risk-maximizing), in that it assumes that a seriously ill VREF patient would have

the same life expectancy and QALYs as a member of the general population if QD

therapy were effective.
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Dynamic Modeling and Uncertainty Analysis

1. INTRODUCTION

Recent qualitative analyses have warned of potential future human

health risks from emerging resistance to antibiotics in food-borne pathogens

due to use of similar antibiotics in both food animals and human medicine.

While historical data suggest that human health risks from some animal

antimicrobials, such as virginiamycin (VM), have remained low (McDonald

et al., 2001), there is widespread concern that “resistance epidemics” or

endemics could arise in future. Systems dynamics models of exposure and

risk, introduced in Chapters 4 and 5, can not only help to quantify the likely

transient responses of illness and resistance rates among human and animal

patients in the years immediately following a change in antibiotic use, but

can also inform decision-makers about the risks of longer-run emergence of

resistance and the effects of different antibiotic use patterns on hastening or

slowing it.

This chapter examines a recent deterministic systems dynamics model

of the emergence of resistance to antimicrobial drugs in human patients.  As

a case study, we continue the example of emergence of streptogramin

resistance in vancomycin-resistant E. faecium (VREF) in response to

continued use of VM in chickens. The original version of the model, taken

from the recent literature (Smith et al., 2002, 2003), provides deterministic

estimates of future human health risks from continued VM use.  This chapter

generalizes the approach by allowing for uncertainty in the model

parameters and applying a Bayesian framework to construct refined

parameter estimates that are consistent with historical data.  We also extend
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the deterministic mathematical model (Smith et al., 2002) to more accurately

represent the stochastic dynamics of resistance spread when resistance

prevalence is rare.  The resulting stochastic simulation model is applied to

data for the human streptogramin combination antibiotic quinupristin-

dalfopristin (QD) to obtain quantitative bounds on the future human health

risks to QD patients from continued use of VM in food animals.

Although this chapter is more specialized and technical than the rest,

the Bayesian approach to uncertainty analysis of dynamic models that it

illustrates may be useful in future as systems dynamics models become

increasingly used in microbial and antimicrobial risk assessments.

1.1  Motivation:  How Does History Constrain Future Risks?

A frequent conundrum in applied risk analysis is how to interpret

negative data.  How reassuring about the future is the non-occurrence of a

feared event to date, despite prolonged exposure to a hypothesized hazard?

For example, if a hazardous facility has not produced a catastrophic accident

after many years of operation, how strong is the evidence that the true risk

per facility-year is not very large?  If the last N items sampled from a

production process have zero defects, how much confidence should this give

that the true defect rate is not greater than some specified acceptable level?

Or, turning to the main topic of this chapter, if decades of use of an animal

antibiotic such as macrolides or VM have not yet led to significant human

resistance to similar human antibiotics, then how strongly (if at all) does this

justify an inference that large-scale human antibiotic resistance is unlikely to

emerge in future if current use continues?

Simple methods suffice to interpret negative data in simple situations.

For example, the “rule of three” specifies 3/N as an approximate non-

parametric upper 95% confidence limit for the true proportion of defects if 0

defects have been found among N randomly sampled items.  A tighter bound

sometimes results by applying Bayes’ Rule.  If s failures are observed out of

N cases examined, each with the same true but unknown probability of

failure, then the expected value of the true failure probability starting from a

flat (uniform) prior after conditioning on these data is the mean of a Beta

posterior distribution, given by (s + 1)/(N + 2), or by 1/(N + 2) if s = 0.   In

these cases, where the true risk remains constant over time, the estimated

risk after N observations of no defect is of order 1/N.  More generally, for

special families of systems, such as decreasing failure rate (DFR) reliability

systems or probabilistic mixtures of such systems, observed histories provide

useful upper bounds on potential future risks (Ross, 1996).

But no guarantees about future hazard rates can hold in the most

general case, when the underlying probability of failure may increase
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randomly over time.  As a counterexample, suppose that a system

deteriorates by making unobserved transitions through a sequence of states,

1 → 2 → 3 →… with the hazard rate for system failure from each state

being uncertain and greater than in previous states.  Then a long history of

no failures may simply indicate that the system is (probably) still in its early,

low-risk, states, with higher failure rates still likely to emerge at some

random time in the future when the system makes a transition to a more

hazardous state.  In this case, Bayesian inference may be used to update prior

probabilities for the current state of the system and hence for current and

future risks, to reflect the passage of time.  But bounds on future risks cannot

be derived from past data alone, since they depend on the hazard rates of as-

yet unobserved future states of the system.  Predicted risks are then sensitive

to modeling input assumptions about the values of future state-specific

hazard rates.

In many practical settings, however, the situation is less extreme.  The

future state of a dynamically evolving system may be uncertain because of

stochastic evolution and because of uncertainty about the true values of

transition parameters, but the possible states are known and at least some

transitions have been observed from which plausible bounds on the

transition rates can be estimated.    This chapter deals with such a situation

of current practical interest in which model parameters (e.g., the transition

rates among states) remain constant over time, but population risks may

evolve and randomly increase as members of the exposed human population

make stochastic transitions among different states, such as unexposed,

exposed-and-infected, infected-and-contagious, infected-and-hospitalized,

and recovered. Historical data from which to estimate state-specific

transition rates are available, but the question of what they imply for

potential future illness rates in the population remains to be answered.  This

question arises in the context of an important public health risk management

decision:  whether banning animal antimicrobial use (AAU) among food

animals on farms will significantly protect human health by decreasing the

rate at which resistance to analogous human antimicrobial drugs emerges in

patient populations.  We address the question of how to use past data to put

bounds on plausible future risks to human health from AAU in this context.

1.2  A Growing Concern:  Managing Potential Future Risks

Emergence of resistance to human antibiotics among food-borne

bacteria from food animals exposed to similar or identical drugs poses

human health risks that are currently highly uncertain. Yet, it is intuitively

plausible that resistance may increase stochastically over time, driven in part

by selection pressures from antimicrobial use on farms.  If food-borne

bacteria that contribute to human illnesses increase treatment failures when
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human patients are treated with antimicrobials similar to those used in

animals, or if animal antimicrobial use (AAU) selects for bacterial strains

that exhibit cross-resistance or co-resistance between animal and human

drugs, then AAU-induced selection pressures may result in increased

average illness-days per capita-year in the human population or in certain

subpopulations such as infants, the elderly, or patients with compromised

immune systems.  Quantifying the potential for increase in human health

risks caused by AAU requires modeling the stochastic dynamic relation

between AAU, selection pressure, and emergence of resistance in human

populations and among patients with food-borne bacterial illnesses.

Smith et al. (2002) propose one such model.  Their simple theoretical

mathematical analysis, reviewed below, implies that selection pressures from

combined AAU and medical antibiotic use (MAU) in people can speed

development of antibiotic resistance (AR) in human commensal bacteria.

Their modeling leads to the dramatic conclusion that:

 “Small increases in prevalence when AR is rare have dramatic effects, like

sparks that start forest fires.  … Our analysis suggests that AAU hastens the

appearance of AR in bacteria in humans.  Our model indicates that the greatest

impact occurs very early in the emergence of resistance, when AR bacteria are

rare, possibly below the detection limits of current surveillance methods. …

Regulating early AAU would likely extend the period that a drug can be used

effectively in humans”  (Smith et al., 2002).

This model provides both an explicit framework for understanding and

simulating potential human health risks from AAU and also a plausible

explanation for why data supporting the hypothesis that such risks might

exist might not be readily available:  because the increase in risk occurs

while AR bacteria are still too rare to be easily detected.

A subsequent paper (Smith et al., 2003) focused specifically on how

use of virginiamycin (VM) in animals and of the nearly identical

streptogramin combination quinupristin-dalfopristin (QD) in people might

increase human health risks.  QD was approved in 1999 to treat vancomycin-

resistant Enterococcus faecium (VREF) bacterial infections in human

patients.  As discussed in Chapter 6, such patients typically have severely

compromised immune systems that cannot defend successfully against

infection by the E. faecium commensal bacteria normally found in human

intestines.  Smith et al. concluded that:

 “Virginiamycin, another streptogramin, threatens the efficacy of QD in

medicine because streptogramin resistance in enterococci associated with food

animals may be transferred to E. faecium in hospitalized patients…. We
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conclude that the emergence of SREF [i.e., streptogramin-resistant VREF] is

likely to be the result of an interaction between QD use in medicine and the

long-term use of virginiamycin for animal growth promotion.  Virginiamycin

use has created a credible threat to the efficacy of QD by increasing the mobility

and frequency of high-level resistance genes.”

These model-based conclusions were promptly seized on by anti-

animal antibiotic activist groups to urge that “FDA has an obligation to

regulate virginiamycin because there's a reasonable expectation that its

continued use in animals will accelerate the evolution of Synercid-resistant

bacteria” (Keep Antibiotics Working, 2002).  They resonated with fears and

speculations about human health risks from AAU stoked in popular books

and some journal articles (APUA, 2002) through rhetoric such as: “But

given how easily enterococci appeared to pass resistance genes to one

another as a general matter and how easily VRE circulated in hospitals, how

long would it be before Synercid-resistant VRE was ubiquitous?  Before the

new miracle drug was dead?” (Shnayerson and Plotkin, 2002, p. 119).

 Smith et al.’s clear caveats that their conclusions follow from

unvalidated, possibly incorrect, modeling assumptions, were ignored in

headlines that reported only that “The use of antibiotics to promote growth

in farm animals hastens the end of their medical effectiveness”

(http://www.sciencenews.org/20020427/fob1ref.asp).

1.3  From Qualitative Hazard Identification to Quantitative

Risk Assessment

To inform rational risk management decision-making, it is useful to

extend the mathematical modeling work to quantify the magnitude of the

human health risks from AAU, using virginiamycin and Synercid™ (QD) as

a case study.  How large is the threat to QD efficacy for human patients and

by how much does use of VM in animals hasten the appearance of QD-

resistance in human E. faecium? What is the numerical answer to the above

rhetorical question “How long would it be before Synercid-resistant VRE

was ubiquitous?”   Answers to such quantitative questions are crucial for risk

managers.  They are addressed in the following sections by extending the

Smith et al. mathematical modeling framework to support discrete-event

simulation (DES) (rather than the continuous ordinary differential equation

(ODE) approximation of Smith et al.), to capture more accurately the

stochastic dynamics of AR spread when AR prevalence is rare.  We apply

the resulting stochastic simulation model to real data for VM and QD to

obtain quantitative bounds on the future human health risks to QD patients

from continued VM use in animals.
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2. DETERMINISTIC MODELING AND RESULTS

This section summarizes key aspects of the mathematical model of

Smith et al. (2002) and discusses its re-implementation as a discrete-event

stochastic simulation model.  The purpose is to understand and predict

effects of AAU use and other parameters on the timing and magnitude of

adverse human health effects, specifically, cases of Synercid™ treatment

failure or resistance.

2.1  VRE Colonization Dynamics Model

Figure 1 diagrams the major flows in the model, as individuals make

transitions among the four health states of “unexposed”, “exposed”,

“colonized” (with resistant bacteria), and “amplified”.  The “amplified” state

refers to a condition of being colonized and highly contagious.  The fractions

of the population in these four states are denoted by the following four

variables:

• W(t) = fraction of population unexposed at time t

• X(t) = fraction exposed at t

• Y(t) = fraction colonized at t

• Z(t) = fraction amplified at t

Prevalence at time t is defined, following Smith et al., as X(t) + Y(t) + Z(t).

A critical coefficient of secondary transmission, R
0
, gives the average

number of humans exposed by each exposed human when prevalence is

approximately zero.  R0 = 1 represents an epidemic threshold above which a

new resistant strain spreads and persists.

Transitions of individuals among the four compartments, W, X, Y, and

Z occur at average rates (per person-day) determined by the transition rate

parameters in Table 1.  The right-most column of Table 1 lists the values of

these parameters for VRE dynamics used by Smith et al. for purposes of

illustration.
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Figure 1:  Diagram of discrete-event simulation (DES) model

Table 1:  Input parameters for VRE dynamics model

Symbol Interpretation VRE value

λ rate of exposure per capita due to animal antibiotic use

(AAU rate)

0.001

µ background rate of exposure per capita due to sources

other than AAU

10
-6

α transient loss rate/day  = transition rate from exposed to

unexposed, per exposed person per day

0.1

θ colonization rate/day  = transition rate from exposed to

colonized, per exposed person per day

0.001

σ colonized loss rate/day = transition rate from colonized

to unexposed, per colonized person per day

0.003

γ amplified loss rate/day = transition rate from amplified

to unexposed, per amplified person per day

0.007

φ recolonization rate/day = transition rate from amplified

to colonized (per amplified person per day)

0.003

ρ prescription rate/day  (MAU rate) 0.003

η contact rate (colonized) /day 10
-5

β contact rate (amplified) / day 0.5

Source:  Smith et al., 2002
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Smith et al. approximate the stochastic transition system just described

via the following system of nonlinear deterministic ODEs and algebraic

equations for the mean values of its variables:

Summary of Deterministic Model Equations

dX(t)/dt = [µ + λ + η Y(t) + β Z(t)]W(t) – (θ + α + ρ)X(t) = rate of change in

exposed population fraction a time t

dY(t)/dt =  θX(t) + φ Z(t) - (ρ + σ)Y(t) = rate of change in colonized

population fraction

dZ(t)/dt =  ρ[X(t) + Y(t)] - (γ + φ)Z(t) = rate of change in amplified

population fraction

W(t) = 1 – [X(t) + Y(t) + Z(t)] = rate of change in unexposed population

fraction at time t

EY = (σ + ρ)( θ γ + θ φ + ρ φ) / (ρ + α + θ)( γσ + γρ + φσ)

EZ = ρ( γ + φ)( σ + ρ + θ) / (ρ + α + θ)( γ σ + γρ + φσ))

R0 = EYη /(ρ + σ) + EZβ /( γ + φ)

where EY and EZ are the expected number of times that a single exposed

individual is colonized or amplified, respectively.

The value for R
0
 determined by these equations and by the input parameters

in Table 1 is 1.98, implying that resistance will increase with certainty.

(Recall that R0 = 1 is the epidemic threshold for resistant strains in this

model.)  Even starting from a prevalence of 0, the input values in Table 1

result in an equilibrium population prevalence of approximately 50% after

about 5 years – a level about 50 times higher than the current resistance rate

(McDonald et al., 2001).  Thus, for the assumed input values in the right-

most column of Table 1, a high persistent (endemic) level of resistance is

predicted to emerge within just a few years, apparently justifying the worst

fears of those who urge the immediate ban of virginiamycin in order to keep

Synercid™ effective.
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Sensitivity Analysis Results for the Deterministic Model

The prediction of rapidly emerging human Synercid™-resistant

bacteria (SREFs) is very sensitive to the assumed input values in Table 1.

Barber et al. (2003) promptly noted that:

“There are generally no cited references or defenses for the values used in the

above model, and sensitivity analysis of these parameters reveals some

interesting findings…  The model is particularly sensitive to the parameters (α,

β, and γ).  Examining first the level of α, assume that instead of 0.1 per day of

transient loss, we use α = 0.38.  This would be equivalent to a little more than

one third of the exposed individuals simply passing the resistant bacteria

through their system.  With this level of α, equilibrium prevalence falls to about

0.01, compared to about 0.50, which is obtained using their stated assumptions

[in Table 1 above].  …Similarly, the assumed degree of exposure from amplified

individuals is quite high, with β = 0.5 per day.  A value of β = 0.1 per day drives

the equilibrium prevalence to less than 0.03. … A γ = 0.07 results in an

equilibrium prevalence less than 0.02.”  (Barber et al. 2003)

These deterministic sensitivity analyses of Barber et al. establish that

varying the input values assumed in Table 1 can significantly change the

predicted level of resistance in the human population.  But they do not

address the questions of which parameters must be modified (if any) to be

consistent with available data, nor of whether the values discussed by Barber

et al. are more likely to be correct than the ones in Table 1.  To address these

questions, it is useful to examine the consistency of different parameter

value combinations with available data using Bayesian uncertainty analysis.

As shown below, more realistic input values based on data for

streptogramin-resistant VREFs (SREFs) lead to substantial revision of some

parameter values, including for λ and also for the prescription rate, ρ (not

discussed by Barber et al.)   Re-estimating these parameters based on QD-

specific data leads to very different conclusions from those implied by the

parameter values in Table 1, as deterministic sensitivity analysis suggests

could happen.

3.  BAYESIAN MONTE CARLO (BMC) UNCERTAINTY

ANALYSIS

To obtain refined estimates of the parameters in Table 1, it is natural to

consider applying Bayesian inference to incorporate relevant historical

information on observed QD resistance rates.  To this end, at least some of
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the uncertainty about the parameters in Table 1 must first be described by

prior probability distributions that allow for the possibility that the estimated

values are not exactly correct.  Next, historical data on observed levels of

VM use and resistance in human populations are required.  Any realistic

model should be consistent with these data.  Finally, Monte Carlo simulation

with rejection of samples that are inconsistent with available data (i.e.,

samples that predict that very high resistance rates would almost certainly

already have emerged, in contradiction to historical experience to date) is

used to derive posterior distributions that are conditioned on (i.e., consistent

with) the observed data.  Bayesian Monte Carlo uncertainty analysis based

on rejection of sampled parameter value combinations that are inconsistent

with observed data, sometimes called Probabilistic Logic Sampling (PLS),

has been well-developed in the AI-and-Uncertainty and computational

statistics literatures (e.g., Henrion, 1988).  While more sophisticated

extensions such as adaptive importance sampling are now available to

reduce CPU time, the current application is simple enough so that PLS is

directly applicable.

To allow accurate quantification of the impact of continued VM use on

rare-event health outcomes, such as the frequency of small outbreaks of

SREFs in hospital wards, we also extend the model in Figure 1 to a

stochastic discrete-event simulation version by reinterpreting the

deterministic flow rate parameters as the intensities of stochastic transition

rates (Poisson intensities), with units of expected transitions per unit time

among compartments (disease states).  The PLS Bayesian Monte Carlo

uncertainty analysis applies equally well to either the deterministic or the

stochastic formulations, but the stochastic formulation gives information on

probability distributions and rare events as well as expected values of

compartment sizes over time.

3.1  Selecting Priors for Probabilistic Sensitivity Analysis

Selection of prior distributions can be contentious in applied Bayesian

risk assessment, with no truly satisfactory objective resolution. To avoid

pretending greater certainty than we have about what priors should be used,

we took the initial values in Table 1  as estimates of the prior means and

created distributions with fairly modest uncertainties around them.

Specifically, we chose log-normal distributions for the parameters λ, µ, θ, φ,

ρ η, with their small values and high uncertainties, and normal distributions

for the other four parameters in Table 1.  The estimated values in Table 1

were taken as prior means and were assumed to have a 95% probability of

lying within 1 log10 (for λ, µ, θ, φ, ρ η ) or within 50% (for the remaining

parameters) of their true values.  Then, we interpreted these priors not as best
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guesses at true values, as is often done, but rather as conservative (i.e.,

overly narrow) expressions of uncertainty about the estimated values in

Table 1. We concede (and even expect) that the true values of some

parameters could well be outside the plausible range of values specified by

our priors, but in this case, Bayesian inference should place the posterior

means for such parameters in the tails of their prior distributions, indicating

that perhaps a less conservative prior (i.e., one that allowed for a larger range

of plausible values) would have been justified and that, in any case, there is

reason to revisit the value assumed for that parameter in Table 1.  We thus

treat the Bayesian inference process as a form of probabilistic sensitivity

analysis in which available data are given the opportunity to pull posterior

values far from their prior means or to leave them relatively close (e.g.,

within a small number of standard deviations), depending on how well they

fit the data.  With this interpretation, the Bayesian analysis becomes a

diagnostic tool capable of showing whether available data require any large

adjustments to initial estimates of the model parameters.

3.2  Data on Historical QD Resistance Rates

VM has been heavily used in poultry in the US since 1975, while

QD has been in use in humans since 1999.  However, high QD resistance has

not yet been observed in the US population (McDonald et al., 2001).  For

example, prior to its approval for humans, a study of VREF samples on

human isolates from hospitals across the United States in 1994-1996

(Eliopoulos et al., 1998) indicated a 1.1% rate of intermediate or higher

resistance (4 isolates).  Another study utilizing 201 VREF isolates from 56

US and Canadian medical centers in 1998 found 2 that were QD resistant

(Jones, et al., 1999).    A study by Linden, et al. (1997) found 5 cases of

emerging (in vitro) QD resistance among 396 VREF patients given QD on

an emergency use basis.  McDonald et al., (2001), in a 1998-1999 study,

found that 3/334 E. faecium isolates were QD resistant.  From these studies,

a pooled estimate of preapproval QD resistance rate of approximately

14/1283 = 1.1% (range of 0.9% to 1.26%) is plausible.  (In general, pooling

data from diverse studies using different microbiological methods and

endpoints can raise difficulties of interpretation and requires caution, but in

the present case, the different numbers are close and are used only to suggest

a historical rate on the order of 0.9% to 1.26%.)  Therefore, any more recent

study finding QD resistant VRE at levels much higher than 1.26% would

lead one to suspect that QD resistance is becoming more prevalent.  For

analysis purposes, a detection threshold, d, representing the true prevalence

of QD resistance at which detection of significant increases from

preapproval rates is highly likely, can be used in sensitivity analyses.
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3.3  Bayesian Monte Carlo (BMC) Estimation of Posterior

Distributions

To obtain posterior distributions for the parameters, PLS Bayesian

Monte Carlo uncertainty analysis (Henrion, 1988) was applied to the

discrete-event stochastic simulation version of the model in Figure 1, i.e., the

simulation model was run many times with input values randomly sampled

from their estimated prior distributions and runs that were consistent with

observations (i.e., the observed low resistance rates) were kept.  Each run

(iteration) of the simulation begins in 1975, when VM was introduced in

poultry; continues through 1999, when human use of QD began; and ends at

year-end 2002 (usage dates from McDonald et al., 2001).  The human

prescription rate for QD (Synercid™) is set to zero until 1999, the year it

was approved for human use.  Each iteration of the simulation draws each

parameter from its respective prior distribution.  The simulation is then run

up to year-end 2002.  If the population prevalence of QD resistance at that

time is below the inconsistency-detection threshold d (i.e., the prevalence is

consistent with observations), then the parameter values from that iteration

are recorded.  Iterating many times generates a joint frequency distribution

of parameter value combinations that are consistent with the historical lack

of high QD resistance (using detection threshold d).  These values are used

to form posterior and predictive distributions for the parameters and for the

corresponding probability that the coefficient of secondary transmission

exceeds the epidemic threshold value, R0 > 1. [To speed calculations,

posterior distributions within simulation loops were estimated via Bayesian

conjugate analysis for normal distributions (Sebastiani, 2001).]

Stochastic Discrete-Event Simulation (DES) of Time-to-

Outbreak

The stochastic DES version of the model in Figure 1 can simulate the

probability distribution of the time until an “outbreak” (defined here as two

or more simultaneous cases of patients in the “amplified” state) of resistant

bacteria occurs.  Because of random transients, an outbreak can occasionally

occur even if R0 < 1.  Our DES model simulates a hospital intensive care unit

(ICU) as a fixed-size (e.g., 700-bed, following Smith et al., 2003) population

of patients makes transitions among the health states unexposed, exposed,

colonized, and amplified.  The simulation entities are individual patients.

Hospital/community exchange dynamics need not be explicitly modeled;

instead, for simplicity, unexposed patients who leave (i.e., return to the

community) are assumed to be replaced with new unexposed patients
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(assuming that the ICU remains full).   Amplified cases are assumed to occur

in the ICU.

In accord with the theory of Markov chains, the parameter estimates in

Table 1 are used to estimate the branching probabilities from each current

state to each potential next state in Figure 1:  they are just the ratios of the

next-state-specific transition rates to the total (sum over all potential next

states) transition rates from each state.  The random time spent in each state

with exposure is then given by an exponential distribution whose mean is the

reciprocal of the total departure rate from the state.  For the unexposed state,

the departure rate changes as a function of the number of patients in the

colonized and amplified states.  In this case, simulated patients are subjected

to an exposure potential each simulated day.  The exposure potential is the

sum of the exposure rates:  daily exposure rate = λ + µ+ ηY + βZ

Running many iterations of the simulation model determines the

probability of an outbreak occurring in any year and the probability

distribution for the time until an outbreak of streptogramin resistant E.

faecium (SREF) occurs.

4.  RESULTS OF UNCERTAIN DYNAMIC MODEL

4.1  Initial Bayesian Analysis and Estimation of Parameters

To compute initial posterior estimates of the parameters in Table 1

consistent with historical data, 10,000 simulation iterations were first run

using Smith’s example parameter values from Table 1 as the prior means

and using an assumed detection threshold of d = 1.5% to define potentially

significant elevations above the historical rate of 1.1%.  920 of these

simulations produced a prevalence lower than d = 0.015.  The corresponding

simulated parameter value combinations were used to form the posterior

distributions, as described above.  Table 2 shows the prior and posterior

means for the model input parameters based on these initial runs.

One feature of the initial runs was that the posterior mean for the

prescription rate, ρ, for QD to patients was significantly less than the prior

value estimated in Table 1  (0.0008 vs. 0.003).  The estimated rate of

exposure per capita due to animal antibiotic use (AAU rate), λ, is also 70%

lower than the prior mean assumed in Table 1. The colonization rate θ falls

by 30%, but the recolonization rate φ increases by 30% compared to their

values in Table 1.  These changes indicate that, when the parameter

estimates are treated as uncertain rather than as deterministic inputs,

Bayesian inference indicates that some of the prior estimates of their values

in Table 1 need to be revised to increase consistency with historical data.
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Table 2:  Prior and Posterior Means of Parameter Values

Parameter Smith

Prior

Posterior (conditioned on low

historical resistance rates)  (d = 1.5%)

λ 0.001 0.0003

µ 10
-6

1.033*10
-6

α 0.1 0.1099

θ 0.001 0.0007

σ 0.003 0.0031

γ 0.007 0.0073

φ 0.003 0.0039

ρ 0.003 0.0008

η 10
-5

1.057*10
-5

β 0.5 0.4664

4.2  Revised Prescription Rate for QD

The results in Table 2 suggest a need to re-examine the detailed

assumptions behind the value of ρ, the daily prescription rate, in Table 1.  It

is an estimate for vancomycin, which is far more frequently prescribed than

QD. To apply the model in Figure 1 to QD-resistant VREF, a lower value

appropriate for the daily prescription rate for QD must be used instead.  A

plausible correction, confirmed for consistency with the data by repeating

the above analysis, was made by assuming that the daily prescription rates of

the two drugs vancomycin and QD in the patient population are proportional

to their treatment days per person-year in the US.  While vancomycin use in

the US is estimated as approximately 0.04 treatment-days of therapy per

person-year (Pharmacia & Upjohn, 2000),  2001 sales information from

Aventis (distributor of Synercid™ at that time) equates to at most 96,667

treatment-days (assuming that retail prescription costs for Synercid

approximate $300/day (Aventis, 2002).  The US population in mid-2001 was

284,796,887, providing at most an average of 0.00034 Synercid™ treatment-

days of therapy per person-year.  The ratio of QD to vancomycin use is thus

estimated as approximately 0.00034/0.04 = 0.0085, which we round up to

0.01.  Thus, the estimated prior mean prescription rate of ρ = 0.003/day for

vancomycin in Table 1 is revised downward to ρ = 0.00003/day for QD.

The initial round of Bayesian estimates thus succeeded in identifying

that the value initially assumed for ρ needed to be reduced, although the final

revision was based on other available statistical data rather than on Bayesian

updating alone.  Subsequent rounds of estimation were performed starting

from the corrected value.
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4.3  Human Health Risks vs. Key Parameter Values

Table 3 shows results for the revised mean value of ρ = 0.00003 just

described, using a series of different values for the detection threshold, d.

Significant changes from prior to posterior values now occur only for the

exposure rate due to AAU, λ, which is reduced to less than half of its value

in Table 1.  Table 4 shows sensitivity analysis results for values of the

prescription rate, ρ, ranging from 3 × 10
-5

 (estimated Synercid™ use rate for

the United States in 2001) to 4 × 10
-3 

(slightly above the Smith et al.

parameter estimate for ρ in Table 1) for two values of λ, the transfer rate due

to animal antibiotic use: 0.001 (Smith et al. estimate) and 0.0005 (posterior

mean).

Table 3:  Posterior Values for Varying Prevalence

Parameter Prior d=1.5

(n = 4830)

d=2

(n = 5604)

d=2.5

(n = 6420)

λ 0.001 0.0004 0.0005 0.0005

µ 10
-6

0.0978 × 10
-6

0.994 × 10
-6

1.01 × 10
-6

α 0.1 0.1049 0.1037 0.1039

θ 0.001 0.0008 0.0008 0.0008

σ 0.003 0.003 0.003 0.003

γ 0.007 0.007 0.007 0.007

φ 0.003 0.003 0.003 0.003

ρ 3 × 10
-5

2.945 × 10
-5

2.944 × 10
-5

2.956 × 10
-5

η 10
-5

0.99 × 10
-5

0.994 × 10
-5

1.013 × 10
-5

β 0.5 0.4993 0.4980 0.5015

n = number of simulations out of 10,000 producing parameter values leading to a

prevalence less than d%.

Each value in Table 4 represents an average over 100 random

simulation runs, and thus the probabilities can be given binomial confidence

bands with parameters n = 100 and p = tabulated value. (Since all numbers

in Table 4 are based on simulation runs, confidence intervals can be made

arbitrarily small by increasing the sample size, i.e., the number of runs, but n

= 100 suffices to reveal the patterns in the simulation output, described

next.) A second set of experiments varied the population size, N, as shown.

The second line of Table 4 (in bold) corresponds to the input

parameter values of Smith et al. from Table 1 (except for the revised

prescription rate ρ, which is now based on QD data.) The bottom line (also

in bold) corresponds to the parameter values based on the data and analyses

described above. The most striking result from this Bayesian uncertainty

analysis is that the estimated (posterior mean) value of R
0
 falls from 1.98 to
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0.02. Using the QD-specific value of ρ reduces the probability of a rapid,

sustained increase in SREF among human patients, leading to a positive

sustained equilibrium endemic level, from essentially 1 to essentially zero.

It changes the model-predicted quantitative answer to Shnayerson and

Plotkins’ (2002) important rhetorical question, “How long would it be before

Synercid-resistant VRE was ubiquitous? Before the new miracle drug was

dead?” from “Less than 5 years” to “It will never happen”.

Table 4.  DES Model Results for SREFs

N λ ρ R
0

Pr(Outbreak

in < 8 years)

Mean out-

break size

Avg. SREF

cases per

patient-year

100 0.001 0.004 2.63 1 14.4 0.478

100 0.001 0.003 1.98 0.99 8.3 0.2416

100 0.001 0.002 1.34 0.96 3.4 0.0676

100 0.001 0.001 0.66 0.73 1.4 0.0094

100 0.001 0.0003 0.204 0.16 1.1 0.0018

100 0.001 0.0002 0.13 0.05 1.0 0.0011

100 0.001 0.0001 0.07 0 1 0.0006

100 0.001 0.00003 0.02 0 1 0.0001

100 0.0005 0.004 2.63 0.99 13.8 0.3819

100 0.0005 0.003 2.0 0.99 7.6 0.1795

100 0.0005 0.002 1.3 0.79 3.0 0.0373

100 0.0005 0.001 0.66 0.43 1.4 0.0052

100 0.0005 0.0003 0.20 0.06 1.1 0.0007

100 0.0005 0.0002 0.13 0.03 1.1 0.0005

100 0.0005 0.0001 0.07 0.01 1.1 0.0004

100 0.0005 0.00003 0.02 0 1 0.0001

1000 0.0005 0.00003 0.02 0.02 1.0 0.00008

700 0.0005 0.00003 0.02 0 1 0.00008

500 0.0005 0.00003 0.02 0 1 0.00009

250 0.0005 0.00003 0.02 0 1 0.00006

50 0.0005 0.00003 0.02 0 1 0.00013

25 0.0005 0.00003 0.02 0 1 0.00010

15 0.0005 0.00003 0.02 0 1 0.00009

Even if continued VM use does not cause a resistance endemic, it

might still increase the risk or frequency per year of resistance outbreaks in

intensive care units.  Defining an outbreak conservatively as more than one

amplified case in an ICU at the same time, the probability of outbreak can be

estimated for any set of input parameter values as the fraction of simulation

runs for those values that produce an outbreak (within the 8-year simulation
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time horizon).  For the estimated most plausible input parameter values

(bottom row of Table 4, ρ = 0.00003 and λ = 0.0005) the probability of an

outbreak is 0 (to 3 significant digits, based on simulation sample sizes)

except for N = 1000 beds.  [Arguably, for such a large N, two simultaneous

cases should not necessarily be considered an outbreak, as they are likely to

be unrelated.  The average ICU size in the US is N = 15 beds (Rapoport, et

al., 2003); N = 700 beds is assumed in the Smith et al. model.]   Figure 2

plots outbreak probability against log10(ρ).  It shows that increasing λ causes

the outbreak probability to rise later but more sharply.  Extensive simulation

shows that outbreak probability is negligible for ρ ≤ 10
-4

, which is roughly

1/30 the current vancomycin prescription rate and perhaps 3 times the 2001

prescription rate for Synercid in the US.

Figure 2:  Outbreak Probability as a Function of QD Prescription Rate

4.4  Estimated Individual and Population Risks

For individual risks, the average number of cases per patient-year in

the rightmost column of Table 4 reflects the annual rate at which an

individual patient in an ICU is expected to acquire a case of SREF,

computed as the ratio of the number of simulated patients entering the

amplified state during a simulation run to the number of simulated patient

years.   Interestingly, the ICU population size N had no significant effect on

cases per patient-year.  The average “incident size” in Table 4 is defined as

the time-averaged number of amplified cases in periods with more than zero
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amplified cases.  (Following Smith et al. (2002, 2003), we only consider

SREF infections in ICUs, since QD resistance is a risk only to patients

seriously ill with VREF, which occur almost exclusively in the ICU.)

Table 4 shows that the best estimate (bottom row) of the risk of a

SREF case per person-year spent in an ICU is about 0.0001, more than 2400

times smaller than the values estimated using the parameter estimates in line

2 (and Table 1).  The average stay in an ICU in the US is on the order of 10

days (AHA, 2003), so the individual risk of SREF per visit to the ICU is

approximately (10/365) × (0.0001) ≈ 3 × 10
-6

.

Quantitative mortality impacts of QD treatment failures can be

estimated from a case control study by Linden et al. (1997), discussed in the

Appendix to Chapter 6, which found that 5/20 (25%) of cases given QD had

VREF-associated mortality while 17/42 (40.5%) controls receiving

alternative treatment had VREF-associated mortality.  This suggests an

excess mortality rate attributable to not being given QD (and hence for QD

resistance) of 15.5% if availability of effective alternative therapies (such as

linezolid) is ignored. Multiplying 3 × 10
-6 

SREF treatment failures per

patient per ICU visit by 0.155 as a conservative estimate of the mortality rate

of Synercid-resistant VREF patients due to resistance, the individual

mortality risk from SREF per hospitalization for the most at-risk group (ICU

patients) is unlikely to exceed 4 x 10
-7

.

Converting SREF cases per ICU patient-year to cases per capita in the

population gives a view of approximate societal risks.  The average number

of beds in an ICU in the US is approximately 15 (Rapoport, et al., 2003).  In

2001 there were a total of 4,880 general hospitals in the US with 849,168

hospital beds (AHA, 2001).  If every hospital had an average ICU, a

reasonable upper bound on the number of ICU beds in the US would be 15 x

4880 = 73,200.  The average number of cases per patient-year for 15-patient

ICUs in Table 4  is 0.00009 (see Table 2).  Assuming conservatively that

ICU beds in the US are always full gives an estimated potential of at most

6.58 cases of SREF per year (95% CI = 0 – 10.98).  Multiplying by the

above mortality rate if 0.155 for SREF patients due to resistance yields a

plausible upper bound estimate of at most 6.58  x 0.155 = 1.02 annual

mortalities in the US due to Synercid™ resistance (95% CI = 0 – 1.70).

5.   DISCUSSION

This chapter has introduced a version of Bayesian Monte Carlo (BMC)

uncertainty analysis that emphasizes acknowledging enough uncertainty in

parameter values so that data can identify where initial estimates need to be

revised.  By avoiding a stronger commitment to the interpretation of prior
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distributions for the parameters, we allow a form of data-driven probabilistic

sensitivity analysis.  We have also shown that BMC can be applied to

resolve conflicting intuitions about whether a long history of no emergence

of resistance should be considered reassuring in a stochastic dynamic system

model of the random emergence of resistance due to selection pressures from

animal and human drug use, even though, for some combinations of values

of the uncertain input parameters, rapid emergence of resistance in the near

future is almost certain.  In this particular case, the answer turns out to be

that past history should be regarded as highly reassuring:  within the context

of the model, it implies that combinations of parameter values that will lead

to future emergence of resistance have essentially zero probability (i.e., they

are inconsistent with the data that higher levels of resistance have not

already emerged).  However, this conclusion is specific to the virginiamycin

example and data reviewed.  For other antibiotics and bacteria, an analogous

BMC analysis might lead to a different conclusion.  The possibility of long-

delayed emergence of high levels of resistance among patients cannot be

denied in general, but the BMC approach provides a constructive approach

for assessing or bounding its probability given historical data, despite the

complexity (and potentially increasing hazard rate for emergence) of the

discrete-event stochastic simulation model.

  In retrospect, the full power of the BMC approach is not needed to

establish the main practical conclusions from this study: that the prescription

rate for QD is much less than for vancomycin and that making this

adjustment reduces R0 well below 1 and reduces the risk of substantial future

increases in human resistance levels or resistance outbreaks if VM continues

to be used from near 1 to near 0.  Deterministic sensitivity analysis can make

the same points.  The major practical contribution of BMC was to

automatically highlight which specific quantities (in this case, just ρ and λ)

required revision to be consistent with historical data.  This has led to

different insights than the deterministic sensitivity analysis of Barber et al.

(2003).  Their analysis, unguided by BMC, focused on other parameters and

reached the qualitative conclusion that the equilibrium endemic prevalence

level predicted by the model might be much smaller than in the Smith et al.

analysis, e.g., a few percent instead of 50%.  By contrast, the additional

quantitative assessment made possible by the BMC approach showed that

the probability of a self-sustaining endemic of any positive size is

approximately zero.

Finally, the BMC analysis has highlighted the fact that the probability

of high levels of human resistance to Synercid™ (QD) emerging in future is

very sensitive to human use rates (i.e., the prescription rate ρ) and is

comparatively insensitive to plausible changes in exposures from animal

antibiotic use (λ) (see Figure 2).
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6. SUMMARY AND CONCLUSIONS

How reassuring is the past about the future? This chapter has applied

quantitative risk assessment methods to help find out, using human health

risks from VM and the nearly identical human antimicrobial quinupristin-

dalfopristin (QD) as a case study.  A dynamic simulation model was used to

predict risks of emerging resistance to human antimicrobials in human

populations from given input assumptions.  Bayesian Monte Carlo (BMC)

uncertainty analysis allowed past data to constrain and inform selection of

input parameter values and thus to predict possible future resistance patterns

that are consistent with historical data.  The results showed that health risks

from VM use in food animals are highly sensitive to the human prescription

rate of QD.  For realistic prescription rates, quantitative risks are less than 1

× 10
-6 

even for members of the most-threatened (ICU patient) population,

while societal risks are less than 1 excess statistical death per year for the

whole United States population.

Such quantitative estimates complement assessments that discuss the

possibility of future “resistance epidemics” (or endemics) without

quantifying their probabilities.  For example, Smith et al. (2003) warned that

“Virginiamycin, another streptogramin, threatens the efficacy of QD in medicine

because streptogramin resistance in enterococci associated with food animals

may be transferred to E. faecium in hospitalised patients. …To provide a sound

basis for policy, we have reviewed the epidemiology of E. faecium and strepto-

gramin resistance and present qualitative results from mathematical models.

These models are based on simple assumptions consistent with evidence, and

they establish reasonable expectations about the population-genetic and

population-dynamic processes underlying the emergence of streptogramin-

resistant E. faecium (SREF). Using the model, we have identified critical aspects

of SREF emergence. We conclude that the emergence of SREF is likely to be

the result of an interaction between QD use in medicine and the long-term use of

virginiamycin for animal growth promotion. Virginiamycin use has created a

credible threat to the efficacy of QD by increasing the mobility and frequency of

high-level resistance genes. The potential effects are greatest for intermediate

rates of human-to-human transmission (R
0
 approximately equal 1).”

This analysis and similar qualitative concerns have prompted many groups

to call for prompt regulation and bans of virginiamycin (as well as other

animal drugs) to protect the efficacy of QD in human medicine (APUA,

2002;  Keep Antibiotics Working, 2002).

The quantitative risk assessment presented here, using BMC

uncertainty analysis and revised parameter estimates consistent with
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available data specifically for virginiamycin and Synercid™, suggests a

different perspective.  The risks in question are expected to be less than 1

statistical death per year in the whole US population and not more than about

4 x 10
-7 

individual risk per ICU hospitalization even for the most at-risk

individuals (those in ICUs.)  For such small risks, it is unlikely that

“interaction between QD use in medicine and the long-term use of

virginiamycin for animal growth promotion” has any detectable effects on

human health.  More importantly, the emergence of higher levels of SREF in

the human population in the future due to continued use of virginiamycin in

animals and Synercid™ (QD) in people has been shown to have

approximately zero probability (according to the model with any of the

posterior parameter values in Table 3), and so the risk that continued use of

virginiamycin in animals will shorten the useful life of QD as a human drug

is also approximately zero in this model.  This BMC-derived information

complements the qualitative conclusions quoted above by showing that the

theoretical possibility that they refer to is very unlikely in light of historical

data, at least in the context of the Smith et al. model in Figure 1.  As Smith

et al. noted, the model has not been validated, and so conclusions based on it

may not be realistic.  However, the major new insight contributed by the

BMC analysis is that the model gives no reason to suspect that continued use

of QD poses a significant threat to human health.

Uncertainty and sensitivity analyses (see Tables 2-4 and Figure 2)

show that our findings are driven primarily by the use of a realistic value of

the prescription rate for QD.  Although the BMC uncertainty analysis

suggested other potential revisions in parameter values to reflect the

information that high rates of human resistance to QD have not yet emerged

(Tables 2-4), the small prescription rate of QD in the United States limits the

potential for emergence of resistance and for consequent harm to human

health.  This finding is robust to a wide range of uncertainties in the values

of other parameters.  The systems dynamics model in this chapter supports

the conclusion from Chapter 6, that potential human health risks from

continued use of virginiamycin appear to be relatively small.  The following

chapter turns to potential human health benefits from continued use.



 

 

 

 

 



Chapter 8

Potential Human Health Benefits of Animal Antibiotics

1.   INTRODUCTION

Risk management of food-animal antibiotics has reached a crucial

juncture for public health officials worldwide.  While withdrawals of animal

antibiotics previously used to control animal bacterial illnesses are being

encouraged in many countries, the human health impacts of such withdrawals

are only starting to be understood.  As discussed in Chapter 1, increases in

animal and human bacterial illness rates and antibiotic resistance levels in

humans in Europe despite bans on animal antibiotics there, coupled with

declining illness rates in the United States despite continued use of animal

antibiotics, suggest a need to carefully examine how strongly and in what

ways animal antibiotic uses affect human health.

This chapter continues the quantitative investigation of potential

human health impacts of animal antibiotic uses begun in Chapter 6.  It

extends the attribution-based, product-of-factors approach to help assess the

potential human health benefits, as well as the human health risks, of

continued use of animal antibiotics.  Virginiamycin (VM) is again used as the

main case study for developing and illustrating a practical analytic

framework for assessing the potential human health impacts – both good and

bad – of animal antibiotic use.  The framework is also applied, albeit more

briefly, to macrolides and fluoroquinolones, which have also been

recommended for withdrawal from use in food animals in several countries.

In contrast to the treatment in Chapter 6, this chapter assesses impacts of

interventions on total human illness rates – specifically including illnesses

caused by susceptible bacteria as well as those caused by resistant bacteria.
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A major conclusion is that, if banning or restricting use of common

animal antibiotics causes more pathogens to reach consumers, then the

resulting human health risks might well far exceed the potential human

health benefits due to decreased resistance.  While lack of hard data on how

withdrawing animal antibiotics affects average human illnesses per serving

of meat precludes a deterministic conclusion, the partial information

available now indicates that bans on animal antibiotics could cause thousands

of times more human illness-days per year than they would prevent.  This

conclusion, though tentative, is robust to several important scientific and

modeling uncertainties.

The validity of this conclusion depends on two main factors, both of

which are uncertain:  (1) The extent to which ceasing an animal antibiotic use

will increase microbial loads of pathogens in servings; and (2) The dose-

response relation between increased microbial loads in servings and resulting

increases in human illnesses.  Faced by these important uncertainties, we

apply the bounding structural equation modeling approach of Chapter 5 to

obtain rough bounds on the potential human health risks and benefits of

banning continued animal antibiotic use.  These bounds are developed

contingent on the simplifying assumption that human health risks are directly

proportional to average microbial loads ingested, and sensitivity analysis is

used to show how the results change for a non-linear dose-response model.

Because the potential risks of bans appear to be so much larger than the

potential benefits, there is a high value of information (VoI) from collecting

additional data before taking action.  Specifically, additional studies that

compare microbial loads in carcasses and/or servings from antibiotic-treated

and antibiotic-deprived animals (similar to the study of Russell, 2003 for

Campylobacter in processed chicken carcasses) would be most valuable in

providing the critical factual information needed to determine whether

animal antibiotic bans are more likely to help or to harm human health.

The following sections first develop and illustrate an attribution-based

Rapid Risk Rating Technique (RRRT) approach to human health impacts

assessment for virginiamycin, then apply it to quantify bounds on human

health risks and benefits for macrolides and fluoroquinolones.

1.1  A Risk Management Dilemma for Virginiamycin

Virginiamycin is one of several antibiotics (including avoparcin and

narasin) that are effective in controlling bacterial enteritis in food animals

and promoting uniformity in weight of animals at slaughter (e.g., George,

1982).  Veterinary and agricultural experience suggest that more uniform

weights and decreases in bacterial illnesses that cause under-weight chickens

at slaughter are associated with lower loads of microbial pathogens such as
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Campylobacter jejuni and Salmonella on processed carcasses (Dawe, 2004).

Thus, use of animal antibiotics for prophylaxis and growth promotion may

help to reduce C. jejuni and other pathogens (including Salmonella) in

processed retail meat.  If so, then withdrawing animal antibiotics might

increase rates of animal bacterial illness and human foodborne illnesses.

Empirically, key animal and human zoonotic bacterial illness rates and

antibiotic resistance levels in humans increased in Europe immediately

following bans of animal antibiotics (including VM) used as prophylactics

and growth promoters (see Chapter 1, Figure 1 and Eurosurveillance, 2002),

as well as during earlier periods of voluntary restrictions.  At the same time,

campylobacteriosis rates declined dramatically in the United States, which

continued to use animal antibiotics (CDC 2000, 2003; Stern and Robach,

2003).  Such data have led some to question long-standing science policy

assumptions and assertions that withdrawing animal antibiotics will promote

human health, or, conversely, that continued use of animal antibiotics

increases human antibiotic resistance or illness rates (e.g., Cromwell, 2002;

Casewell et al., 2003; Phillips et al., 2004).  Yet, many scientists involved in

making policy recommendations claim that animal antibiotic bans logically

should be, and in fact have been, successful, at least as measured by

reductions in resistance in food animals and in healthy humans (e.g.,

Wegener et al., 1999, 2003).  Even when withdrawing animal antibiotics has

been followed by deteriorations in human health and increases in antibiotic

resistance among human patients, it has also been followed by reductions in

resistance to antibiotics among harmless bacteria, and this has sometimes

been proposed as a measure of the success of the bans.  Also, it is not yet

clear why human illness and resistance rates have increased Europe. Changes

in chicken processing, preparation, and consumption patterns (e.g.,

substitution of fresh for frozen chicken or changes in imports) have been

conjectured as possible explanations, but no thorough quantitative analysis

has yet shown what role, if any, the animal antibiotic bans have played.

This mixed evidence to date creates a dilemma for public health

officials and regulators.  Which creates a larger net public health benefit:

withdrawing animal antibiotics to reduce selection pressure for resistance in

bacteria, or continuing their use to reduce the incidence of foodborne illness

and consequent need to treat some human patients with human antibiotics?

The answer is not intuitively obvious. Most previous risk assessments have

focused only on the risks from resistance without comparing them to the

benefits from prevention of illnesses caused by susceptible bacteria (e.g.,

FDA-CVM, 2001, 2004).  This chapter seeks to develop answers that are

clear, robust and credible enough to be useful to decision-makers while

taking realistic complexities and uncertainties into account.
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2. AN RRRT FRAMEWORK FOR ASSESSING IMPACTS

This section describes a Rapid Risk Rating Technique (RRRT) for

estimating quantitative impacts of animal antibiotic uses on annual rates of

adverse human health effects in a population exposed to bacteria via the food

chain and perhaps other paths.  These impacts are human health risks if they

increase the rates of adverse health effects and benefits if they reduce them.

Both are expressed in units of change in expected numbers of adverse

consequences of different severities per capita-year (for individual risks) or

per year (for population risks) caused by the risk management option(s)

being evaluated.  Severities of outcomes may be indicated by severity classes

(e.g., mild, moderate, severe, or fatal, as defined by Buzby, et al., 1996) or, if

desired, by quality-adjusted life-years (QALYs) if the required assumptions

are acceptable (Hazen, 2003).  As in Chapter 6, we will focus on risks from

highly (vanA) vancomycin-resistant E. faecium (VREFA) infections in ICU

patients as the population primarily affected by QD-resistant VREF

infections.  Health consequences considered include severe illness only,

severe illness with treatment failure but not mortality, and fatal cases of

VREFA.  (Patients without serious illnesses are not normally at risk of

VREFA infections.)  For fluoroquinolones, macrolides, and virginiamycin,

risks of campylobacteriosis in the general population will also be considered.

The basic logic of the RRRT approach for health risk and benefit

assessment is to compare the expected incremental numbers of adverse

human health consequences per year (a) caused by an animal antibiotic use

(due to increased selection of resistance determinants and/or resistant

bacteria); and (b) prevented by the animal antibiotic use (due to reductions in

animal illnesses and resulting reductions in microbial loads reaching

consumers via meat products).  Use of expected number of events per year to

quantify risk is justified for sporadic illnesses that occur independently or

with only weak statistical dependence in large populations under the

conditions of Poisson or compound Poisson approximations; see Chapter 2.

For commensals, the top-level RRRT formulas are as follows:

• RISK from continued animal drug use = (preventable resistant illness

cases caused per year) × (adverse clinical consequences, such as

incremental illness-days, per resistant case)

• BENEFIT from continued animal drug use = (prevented illness cases per

year) × (adverse clinical consequences avoided per case prevented)

• NET HEALTH IMPACT of continued animal drug use = BENEFIT –

RISK = human health harm prevented – preventable human health harm

caused by continued use.  (“Preventable” here means preventable by
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discontinuing the animal drug use.  Analogous definitions hold for risk,

benefit, and net health impact of introducing a new animal drug use.)

In these formulas, all quantities denote expected values.  The formulas for

human health RISK and BENEFIT each has the form: (expected cases) ×
(expected consequence per case). Justification for using these products of

expected values to obtain the expected total harm caused or prevented by

continued use, respectively, follows from general results for sums of random

numbers of random variables (representing a random number of illnesses,

each incurring a random number of quality-adjusted life-years (QALYs) lost,

illness-days incurred, etc.) (Feller, 1968).  Adverse clinical consequence

terms may be expressed as vectors of expected illness-days in each severity

class per illness case; expected number of fatalities per illness case, etc.; or,

for an aggregate summary, as average QALYs lost per illness case.

To estimate the RISK and BENEFIT formulas from data, each term is

decomposed into a product of more-easily calculated factors. Figure 1 shows

the structure of such a calculation for the quantity “preventable resistant

illness cases per year” appearing in the formula for RISK.

Figure 1: Calculation Logic for Preventable Resistant Illness Cases Per Year
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The value of each random variable, represented by an elliptical node in this

influence diagram, is calculated as the product of the values of the nodes that

point into it.  The product form entails no loss of generality, as any joint

probability density of values of variables, say, Pr(a, b, c, …, y, z), can be

factored as a product in the form:  Pr(a) × Pr(b | a) × Pr(c | a, b) ×… × Pr(z |

a, b, c,…y).  In particular, as noted in Chapter 6, a conjunction of conditions

(e.g., that an infection be VREFA, from chicken, QD-resistant, etc.) can be

expressed as such a product.  The sequence of inputs on the right side of

Figure 1 is such a chain of conditional relations, with each factor being

conditioned on all those that precede it.  (Of course, if some factors are

irrelevant, then they can be omitted from the conditioning.)  Values of the

input nodes (i.e., nodes having only outward-pointing arrows) are estimated

from available data, as detailed below.

As discussed in Chapter 5, uncertainties in the inputs can be

propagated through this diagram using Monte Carlo uncertainty analysis,

e.g., using the Analytica™ influence diagram software used to draw it

(http://www.lumina.com/).  A simpler approach is to use upper-bound

estimates for uncertain quantities.  The multiplicative architecture of the

model implies that evaluating any subset of the input nodes and multiplying

them by the first (VRE cases per year in the United States) will give an

upper-bound estimate of the final output quantity.  Multiplying by further

fractions between 0 and 1 can only reduce the estimate further.

The other terms required to calculate the BENEFIT and RISK formulas

can be expanded similarly into influence diagrams representing products of

factors that are ultimately estimated from data (or sums of such products.)

Table 1 in the next section summarizes the parameters and estimated values

used in calculating RISK.  Table 2 summarizes the parameters used in

calculating BENEFIT.  Briefly, if a ban causes an increase ∆F in the fraction

of chicken servings from “ill” or “high-risk” (e.g., necrotic-enteritis positive

(NE
+

)) flocks instead of healthy or low-risk (NE
–

) flocks, and if each such

serving creates an incremental probability (P
+

 – P
–

) of causing illness

(campylobacteriosis), with an average health impact per illness of Q illness-

days or QALYs, then the expected human health impact caused by

preventing the increase ∆F in animal illness prevalence is:

BENEFIT from continued use of a drug use that prevents ∆F incremental

fraction of high-risk servings = ∆F × (P
+

 – P
–

) × MNQ illness-days

where N = average chicken servings per capita-year and M = number of

people in the population.

To a public health risk manager, the main question of practical interest

is the sign of (BENEFIT – RISK), i.e., is the net human health impact from
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continued antibiotic use in animals positive or negative compared to the

results of a ban?  After addressing this question for the particular case of VM

use in chickens, the results will be used as a point of departure for

considering how other bacteria, food animals, pathways, and health effects

might change the answers.  This approach allows rapid consideration of

many other factors that may affect (BENEFIT – RISK) but without greatly

changing the key decision-relevant findings.

3.   DATA FOR RRRT RISK-BENEFIT CALCULATIONS

Table 1 summarizes the data sources and calculations of the RISK

component using the RRRT framework.  Chapter 6 discussed the derivations

of the first six parameter estimates in the “Values for USA” column in Table

1. Several conservative estimates (e.g., fractions set equal to 1, maximizing

estimated risk) are used where data are missing or inadequate.   The rationale

is that confidence in the conclusion that the sign of (BENEFIT – RISK) is

positive is strengthened if we deliberately bias the analysis against it by

choosing estimates of uncertain quantities that tend to over-estimate RISK

and underestimate BENEFIT.  If the result is still that BENEFIT > RISK, as

in the following analysis, then using more realistic (less biased) estimates of

the uncertain quantities when and if uncertainties are reduced will tend to

further strengthen this conclusion.

Table 2 summarizes the calculation of the human health BENEFIT

from continued VM use.  Key components of the calculation are as follows.

3.1  Calculation of ∆F

Several animal antibiotics, including macrolides and streptogramins

(VM), are effective against various bacterial illnesses in chickens, including

necrotic enteritis (NE) caused by Clostridium perfringens (George et al.,

1982; Brennan et al., 2001). Withdrawing these animal antibiotics

nationwide may therefore increase the fraction of servings from ill flocks and

birds, e.g., NE
+ 

flocks or flocks with other bacterial illnesses having similar

impacts on increasing pathogen loads on processed carcasses (e.g., Dawe,

2004).  ∆F denotes the size of this fractional change.  [By contrast, more

limited withdrawals, such as in only one or a few farms, can have little or no

effect on increasing disease rates (Engster, et al., 2002) if continued use

elsewhere holds infectious disease levels in check. Infectious disease

dynamics typically require a critical threshold, R0, of infected animals to be

passed before epidemics can spread widely.]
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Table 1:   Summary of Risk Assessment Calculations for VM
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To quantify ∆F, we note that NE rates in several countries increased

sharply, if transiently, following bans on VM, macrolides, and other animal

antibiotics used as prophylactics and growth promoters, before settling to

new levels with increased use of therapeutic drugs (e.g., Lovland and

Kaldhusdal, 2001; Madsen and Pederson, 2000; Veterinary Laboratories

Agency, 2004). For Denmark, Madsen and Pederson (2000) reported that:

“In 1998, necrotic enteritis was diagnosed in 25 out of 1,700 Danpo flocks as

compared to a few flocks annually before the discontinued use of antibiotic

growth promoters.”  Thus, the incidence of NE in Denmark may have

increased by about 23/1700 or 1.35 percentage points from 1997 to 1998.

However, macrolides (not used much in Denmark), avilamycin (AV) and

Zinc Bacitracin have similar effects to VM, and VM accounted for only 0.32

of these drugs by weight in 1996 (DANMAP, 1997).  If a kg of each product

is similarly effective in preventing NE, the increase in NE incidence

attributable to withdrawing VM would be about ∆F  = 0.32 × 1.35 = 0.43

percentage points.

Table 2:  Parameters  For RRRT Baseline Benefit Assessment For VM

Symbol Meaning Baseline value and source

∆F Fractional change in prevalence of

chicken servings from ill or high-risk

[e.g., NE-positive (NE
+

)] flocks if

current VM use ceases

0.5% = assumed baseline

P
–

Average probability of illness per serving

from animals without disease.  Includes

indirect effects of cross-contamination

of other foods.  This probability is an

average for the whole population;

individual risks may vary.

1.3E-5 = (total C. jejuni

illnesses per year) ×
(fraction caused by

chicken)/(total chicken

servings per year)

P
+

 – P
–

 =

(1 + R)*P
–

Excess probability of illness per

serving from NE+ flocks. (Includes

cross-contamination effects)

1.2E-4  (for linear no-

threshold dose-response

model, microbial load ratio

≈ 10, from Russell, 2003)

M Average number of servings of food

commodity ingested per capita-year

38 FDA-CVM, 2001, Cox

and Popken, 2002 for fresh

chicken

N Number of people in population 292E6 (U S Census)

Q    Average human health harm (e.g., days

of illness or QALYs lost) per case.

Interpreted as “severity” of a case.

6.13 days (Marano et al.,

2000); 0.0043 QALYs, ≥
8E-5 fatalities per case

(Buzby, et al., 1996)

Risk created

by ban

41,016 = (0.005*1.2E-4 * 38*292E6  *

6.13 excess illness-days) per year =

6691 additional cases*6.13 days/case.

[∆F(P
+

 – P
–

)]MNQ = 0.53

fatalities, 28 QALYs lost,

41,016 illness-days per year
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In the United States, where avilamycin is not used, the role of VM

would presumably be greater; we round it up to ∆F = 0.5%.  This is the

baseline value used in Table 2.  However, the true value of ∆F for the United

States is quite uncertain.  For example, in the United Kingdom., the NE
+

fraction of flocks increased from 0% before the ban to over 20% in the years

following it before finally being brought under control by other antibiotics

and countermeasures (Veterinary Laboratories Agency, 2004).  To account

for this uncertainty, we interpret the results in Table 2 as the human health

benefit created (i.e., human health harm prevented) per half-percentage point

of NE
+

 flocks (or similarly ill flocks) prevented.

The most general interpretation of ∆F is that it is the fractional change

in servings with exceptionally high microbial loads of pathogens such as

Salmonella, Campylobacter, and E. coli (i.e., “high risk” servings) caused by

a ban on current antibiotic use.  In reality, this fraction may change over time

in the several years following a ban.  Experience in Scandinavian countries

and elsewhere suggests that changes in practice and increased use of other

antibiotics (such as ionophores) can control necrotic enteritis in chickens,

perhaps after transient increases, even after a withdrawal of virginiamycin

and other antibiotics used as growth promoters.  How well these results

extend to other countries that have different climates and conditions and

higher rates of poultry diseases (NE or others, such as airsacculitis) remains

unknown.  Thus, it is useful to interpret ∆F as the fractional change in high-

risk servings, having elevated pathogen loads creating increased risk for

human illness, even though the details of the changes in microbial ecology

caused by a ban and, in turn, causing ∆F may differ among countries and

over time within a single country.

For concreteness, the following calculations focus specifically on

increased loads of Campylobacter in high-risk servings as compared to

regular servings.  However, similar logic applies to other pathogens as well,

as discussed briefly following the Campylobacter calculations.

3.2  Calculation of P
–

P
–

 denotes the average risk of a campylobacteriosis illness case per

chicken serving from a healthy (e.g., NE
–

) flock, including possible effects of

cross-contamination of other foods.  Since nearly all chicken-borne C. jejuni

cases currently come from healthy (NE
–

) flocks, P
– 

can be estimated as

follows:

P
– 

= (total chicken-caused cases)/(total servings) = [(13.4E-5 reported

campylobacteriosis cases per capita-year, from CDC 2003) × (38 assumed

cases per reported case, from Mead et al., 1999) × (292E6 people in US,

from US Census) × (10% estimated fraction of cases from chickens,
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discussed below)]/[(292E6 people in US) × (38.0 servings per capita-year of

“fresh” chicken, from Cox and Popken, 2002)] = 1.34E-5 expected

campylobacteriosis cases per serving.

Multiplying by the denominator, this corresponds to about (1.34E-05

cases/serving) × (38 servings per capita-year) × (292E6 people in the US) =

1.487E5 estimated chicken-borne cases per year.

The fraction of total cases caused by eating chicken was estimated as

about 57% (FDA-CVM 2001) based on pre-1985 data, but Campylobacter

counts on processed broiler carcasses have since been reduced by perhaps

90% or more (Stern and Robach, 2003). The true fraction of

campylobacteriosis cases caused by eating chicken may have fallen from a

pre-1995 value of at most 100% to a current value of at most 10%, assuming

a proportional reduction in human risk of chicken-borne campylobacteriosis.

The baseline calculations in Table 2 assume a value of 0.10. Section 4 of

Chapter 4 provides additional discussion of this value.  If a different value is

assumed, then the estimated value of P
–  

will change in proportion.

Calculating (P
+

 – P
–

): Excess Risk per Serving From Ill Chickens

Direct studies of the human health risks of consuming chicken servings

from NE
+

 flocks as compared to NE
–

 flocks are lacking for the United States,

where almost all flocks are currently NE
–

.  However, limited data on another

poultry disease, airsacculitis (AS), that may have somewhat similar effects

(Dawe, 2004; Lovland and Kaldhusdal, 2001) indicate that airsacculitis-

positive (AS
+

) flocks are associated with increased Campylobacter, E. coli,

and Salmonella on processed carcasses.  The increased pathogen loads are

caused primarily by greater variability in carcass sizes (see also Engster, et

al., 2002) and weakened digestive tracts leading to increased fecal

contamination and microbial loads on processed carcasses (Russell, 2003).

The mean log10 microbial load of Campylobacter colony-forming units

(CFUs) before the inside/outside bird wash step of chicken processing for

AS
–

 flocks was 1.09 while the mean for AS
+

 flocks was 2.09; thus, the

microbial load is about one log (10-fold) higher for the AS
+

 flocks, although

there is considerable flock-to-flock variability (with increases in only 3 of 5

replicates), so that arithmetic means do not fully represent the change in the

microbial load distribution.  If a linear no-threshold model is used (i.e., if

human campylobacteriosis risk is assumed to be proportional to CFUs per

processed carcass) and if the risk of chicken-borne campylobacteriosis is

about 10 times greater for carcasses from “high risk” birds compared to

regular ones (using the microbial load data of Russell, 2003 as a rough guide)

then (P
+

 – P
–

) = (10 × P
–

 – P
–

) = 9 × P
–

 = 9 × 1.34E-5 = 1.2E-4 is the excess
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individual risk of campylobacteriosis per serving from a high-risk (e.g., NE
+

or AS
+

) bird.

Sensitivity analyses using alternative dose-response models show that

the estimated excess risk per serving from “high-risk” (ill or underweight)

birds is sensitive to the use of potentially more realistic non-linear dose-

response relations.  For example, the FDA Center for Veterinary Medicine

suggested a log-exponential model to account for variability in chicken-borne

exposures to Campylobacter (FDA CVM, 2001).  As shown in the Appendix

to this chapter, using this exposure-response model produces a revised

estimate of:  (P
+

 – P
–

) = 138.3*P
– 

= 0.002, as compared to the above linear-

model estimate of 1.2E-4 = 0.00012. Thus, the lower bound on excess risk

per serving based on the linear no-threshold model under-estimates the true

excess risk per serving by a factor of 0.002/1.2E-4 = 16.7 if the log-

exponential model is correct.  Using the linear no-threshold model’s estimate

of 1.2E-4 is consistent with the strategy of choosing estimates that tend to

under-estimate the risks from a ban (or the benefits of continued use).

4. RESULTS FOR VIRGINIAMYCIN IMPACTS

Tables 1 and 2 are intended to provide reusable templates, populated

with plausible parameter values based on currently available data, for

estimating and comparing the values of the human health BENEFIT created

(i.e., lost QALYs prevented per year) and RISK caused (i.e., lost QALYS

caused per year) by continued use of VM in chicken flocks.  For a fractional

change ∆F = 0.5% of chicken flocks changing from being healthy (e.g., NE
–

)

to being ill (e.g., NE
+

) following a withdrawal of VM, the resulting

percentage increase in human campylobacteriosis risks from eating chicken

(assuming a directly proportional relation between microbial load of

Campylobacter at processing and risk of human campylobacteriosis illness)

is estimated to be: (99.5%) × 1 + (0.5%) × 10 = 104.5% (i.e., 99.5% of

chickens would be unaffected and 0.5% would be about 10 times riskier than

at present.)  This corresponds to an estimated 4.5% increase in chicken-borne

campylobacteriosis cases per 0.5% increase in flock illness rates if VM use is

withdrawn. (As indicated above, allowing for log-exponential interindividual

variability in infectious doses received from a given microbial load at

processing, e.g., due to differences in handling, cooking, and susceptibility,

would increase this estimate approximately 17-fold.) If the baseline risk is

1.487E6 estimated cases per year in the United States, with 0.10 being

caused by chicken-borne Campylobacter, as estimated above, then the

estimated increase in cases per year from withdrawal of VM would be:

(1.487E6) × (0.10) × (0.045) = 6691 additional campylobacteriosis cases per
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year.  Of these, only a fraction of about 0.006 are expected to be severe

(Buzby, et al., 1996), giving an estimate of about 6691 × 0.006 = 40 severe

campylobacteriosis illness per year.  Buzby et al. (Table 2, p. 4) also estimate

a fatality rate of at least 200 deaths per 2.5 million cases (and possibly 730

deaths per 2.5 million cases), giving an estimate of at least 6691 ×
(200/2.5E6) = 0.54 excess deaths.

The baseline calculations in Tables 1 and 2 indicate that withdrawing

VM from use in chickens in the United States would prevent not more than

0.65 QALYs lost per year (from less than 0.3 preventable resistance cases,

assuming that, in future, QD will still be prescribed in all cases of linezolid

failure.  This excess case rate corresponds to 0.03 excess fatalities and 3.5

excess illness-days per year).  It would be expected to cause over 40,000

excess illness days per year from campylobacteriosis (corresponding to about

6,691 excess cases of campylobacteriosis, 40 of them severe; 0.54 excess

deaths; and 28 QALYs lost to illness, based on 0.0043 QALYs per case

(Buzby, et al., 1996)) for each half-percent increase in NE-positive (or

similarly ill or underweight) chicken flocks.  Thus, the expected net human

health impact of withdrawing current QD use under these assumptions would

be negative: QALYs caused exceed QALYs prevented by over 40-fold, while

the fatality ratio is at least 0.54/0.03 = 18; and illness-days caused exceed

illness-days prevented by over 40,000/3.5 > 10,000-fold (Tables 1 and 2).

From this perspective, the current information and assumptions incorporated

into the calculations in Tables 1 and 2 would not justify banning VM use in

chickens, but rather suggest that continued use may protect human health.

5.  UNCERTAINTY AND SENSITIVITY ANALYSES

To reverse the conclusion that a VM withdrawal would create more

cases of campylobacteriosis per year (baseline estimate = 6691) than the

number of QD-resistant VREF cases it would prevent (baseline estimate =

0.27), one might seek to increase the estimated fractions in Table 1.  For

example, suppose that it were assumed that all VREFA infections in hospitals

come from VM use in chickens (rather than the baseline estimated fraction of

0.17 × 0.12 = 0.02 in Table 1, based on assumptions that nosocomial cases

would not be significantly affected by VM use in chickens and that only

human cases with genetic types found in chickens could have come from

eating chickens).  Then the estimate of preventable QD-resistant VREFA

cases would increase from its baseline value of 0.27 per year to a revised

value of 0.27/(0.17*0.12) = 13.2 cases per year.  If, in addition, linezolid and

other alternatives to Synercid™ were to be withdrawn from the market, or if

complete resistance to them emerged, then the cases per year could increase
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further, to (13.2)/(0.074) = 178.4.  Finally, if the fraction of chicken-derived

VREFA cases that have QD-resistance were also increased by an order of

magnitude, from 0.011 to 0.11, then the new estimated number of cases per

year, 1784, would be much closer to the estimated prevented

campylobacteriosis cases per year, 6691.  (Differences in QALYs per case

between these two illnesses reduce the differences in their public health

impacts, as quantified above; thus, the order-of-magnitude comparisons of

cases per year are only a rough guide.)

More generally, the calculations in Table 1 are organized as the

product of a base number (37,483 VRE cases per year) multiplied by several

fractions that are all between 0 and 1.  Increasing any of these fractions (or

any two of them, or even any three of them) to their logically maximum

possible values of 1 would not increase the baseline estimate of preventable

QD-resistant VREFA cases per year above the estimated preventable

campylobacteriosis cases per year, 6691.  Thus, despite the uncertainties in

the analysis, it appears that this major comparative conclusion is robust to

uncertainties or changes in any single assumption, or any small (< 4) set of

assumptions, in Table 1.

By contrast, in Table 2, it is only necessary to change ∆F to 0 or P
+

 –

P
–

 to 0 to reduce estimated benefits to 0.  We have attempted to choose

conservative values of these quantities: ∆F = 0.005 instead of several

percentage points; and P
+

/P
–

 = 10 instead of P
+

/P
–

 ≈ 140, as estimated for the

FDA, 2001 log-exponential model (see the Appendix, last line), as well as

assuming that only 0.10 of campylobacteriosis cases are caused by chicken,

instead of 0.57 as in FDA, 2001.  However, the true benefits could also be as

small as zero if (∆F) × (P
+

 – P
–

) = 0, depending on how animal illness rates

and microbial loads would change following a VM withdrawal.  If NE were

to increase sharply, as in Norway following the ban on QD and other growth

promoters, then predicted human health harm would increase proportionally

to ∆F and the benefits (avoided human health harm) estimated in Table 2 for

an assumed ∆F of 0.005 increase in NE
+

 flocks might be too small.  Thus, the

human health risk and benefits estimates in Tables 1 and 2 should be viewed

as conservative but uncertain estimates (intended to be probably too high for

risks and too low for benefits, to reduce a decision-relevant difference that is

already large) that may change as more scientific information about the

microbial load and human risk impacts of VM withdrawal become available.

While the baseline analysis strongly suggests that withdrawing VM is likely

to cause more human health harm than it prevents, uncertainty about the size

of the product (∆F) × (P
+

 – P
–

) precludes a deterministic conclusion.
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6.  EXTENSIONS TO CATTLE AND SWINE

To extend the risk assessment in Table 1 to include cattle and swine, it

is necessary to compare streptogramin resistance levels in VREF isolates

from cattle and pigs to those from chickens.  Jensen et al. (2002) reported a

ratio of streptogramin-resistance in isolates from pigs vs. broilers of

(0.51/0.67) and a ratio of streptogramin A resistance (which is necessary for

QD resistance) of (0.14/0.96). We estimate that the ratio of per-capita

consumptions of high-risk (e.g., ground) pork meat to high-risk (e.g., fresh)

chicken meat as not more than 0.25.  Willems et al (2000) found that only 4

of 87 (4.6%) hospitalized patients had VREFs from the same genogroup as

pig VREF isolates, compared to 12% for chicken VREF in Table 1. Thus,

even if all QD-resistant VanA VREF from pigs are attributed to VM use, the

total QD-resistant VanA VREF risk to humans from pigs might be only

about (0.51/0.67) × (0.14/0.96) × (0.25) × (4.6/12) ≈ 0.01 times as great as

from chicken (assuming comparable effects of processing and cooking).

Similarly, for cattle, Willems et al (2000) found that, among hospitalized

patients, most VREF (84%) belonged to a different genogroup from that in

most (70%) veal calf isolates.  Assuming that QD-resistant VREF are not

more prevalent in beef servings than in chicken or turkey servings (Wegener

et al., 1997; Hayes et al., 2003), data on consumption rates of undercooked

beef (MRC, 1995) suggest that the human health risk due to beef might be at

most about 3% of that from chicken.

In summary, including beef and pork is unlikely to increase estimated

human health risk of QD-resistant VanA VREF infections due to VM use in

food animals by more than about 4% compared to the risk estimated for

chicken alone.  In reality, the severely or critically ill patients at risk may be

relatively unlikely to be exposed to QD-resistant VREF in undercooked meat

from any of these sources.

7. COMPARISON TO RISKS IN AUSTRALIA

An advantage of the RRRT framework is that it can readily be applied

to estimate risks in one country by adjusting the parameter estimates for

another country.  To illustrate, the estimated parameter values in Table 1

would be adjusted as follows to estimate VM-associated risks in Australia:

• VREF cases per year ≈ 16 instead of (37483*0.78 ≈ 29000 in the US),

due in part to the smaller population size (data in Chapter 6).

• The fraction of VREF cases that are VanA is only about 0.22 in Australia

(Turnridge, 2001) rather than about 0.79 as in the US, shown in Table 1.
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• The observed fraction of QD-resistant cases among VREF cases in

humans in Australia is 0 (Turnidge and Bell, 2002), although isolates of

E. faecium from both pork and poultry in Australia have high levels of

streptogramin resistance – 81% in retail pig meat and 96.6% in chicken

carcasses.  Applying a conservative Bayesian approach with a uniform

prior (mean = 0.5) to the zero observed QD resistance rates for humans

yields a beta posterior distribution with a mean of approximately 0.009

(Chapter 6). [Average streptogramin resistance among food animal

sources (chicken, pork, and beef) weighted by consumption exceeds 0.5,

suggesting an average foodborne fraction of human VREF cases of less

than 0.009/0.5 < 0.02, as compared to 0.17 in Table 1.]

Holding the other estimated parameters in Table 1 constant, the first two of

these adjustments indicate that the current health risks from QD use in food

animals are only about (16/29000) × (0.22/0.79) = 1.5/10,000 as great as in

the US, and hence are vanishingly small – fewer than one excess case

expected per millennium.

8. RRRT FOR MACROLIDES AND ENROFLOXACIN

The modularity of the RRRT framework allows much of the work

required to estimate and document the factors used for one animal drug to be

re-used in assessing the human health impacts of other animal drugs.  To

illustrate this template-based approach to health impact assessment, this

section quickly estimates the human health impacts from continued use of

two important classes of antibiotics, macrolides and fluoroquinolones, in

chickens.  These applications complement the virginiamycin case study,

insofar as they address health risks from a foodborne pathogen

(Campylobacter) instead of a commensal (E. faecium); and because

fluoroquinolones are used in poultry only for therapeutic purposes, rather

than for disease prevention and growth promotion.

To quantify the human health impacts – both positive and negative – of

macrolide and fluoroquinolone antibiotic use in animals, we will estimate

and compare the following two quantities.

• Preventable RISK to human health from continued use of animal

antibiotic = expected additional illness-days caused per year by increased

antibiotic resistance in foodborne pathogens and preventable by ceasing

use = (expected preventable resistant cases caused per year) × (expected

incremental health consequences per case caused) = [p(1 – s)(P
–

)MN] ×
[f × r × (Qr – Qs)].  (The notation in this formula is explained below and

summarized in Table 3.)
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• BENEFIT (risk reduction) to human health from continued use =

expected illness-days prevented per year by reduced animal bacterial

diseases = (expected cases prevented per year) × (expected health

consequences per case) = [∆F(P
+

 – P
–

)] × MN × [Qr – s’(Qr – Qs)] where

s’ = [1 – (1 – p) × (1 – s)] = post-ban susceptible fraction.

Table 3 summarizes the interpretations and estimated values of the model

parameters in these formulas, and they are further discussed and explained

below.  The first five parameters are the same as in Table 2. An intervention

such as withdrawing an animal antibiotic is expected to protect human health

if and only if RISK > BENEFIT for continued use.

Table 3:  Parameters  For Human Health Impact Model

Variable Meaning Baseline Value/Source

∆F Fractional change in chicken servings from

ill or high-risk flocks if current use ceases

0.5% = assumed

baseline (Table 2)

P
–

Average probability of illness per serving

from animals without disease.  Includes

indirect effects of cross-contamination.

1.3E-5 (Table 2)

P
+

 – P
–

 =

(1 + R)P
–

Excess probability of illness per serving

from ill flocks. (Includes cross-contamination)

1.2E-4  (Table 2)

M Average number of servings of food

commodity ingested per capita-year

38 (Table 2)

N Number of people in population 292E6 (Table 2)

1 – s Fraction of the cases caused by bacteria in

animal meat that are resistant to human

antibiotic.  (s = current susceptible fraction)

Erythromycin: 0.01

Ciprofloxacin: 0.064

p Preventable resistance fraction  = fraction of

currently resistant illnesses caused by eating

the food commodity that a ban would

remove (i.e., make susceptible)

1 (upper bound)  0.3

may be more realistic

for enrofloxacin.

Q
s

Average human health harm (e.g., days of

illness or QALYs lost) per susceptible case.

Interpreted as “severity” of a case.

6 days (Marano et al.,

2000)

Q
r
 – Q

s
Average excess illness-days per resistant

case failing to respond normally to

antibiotic, for severely ill patients; or per

untreated case for non-patients

2 days (Estimated upper

bound for current clinical

practice Ang and Nacham,

2003; Marano et al. 2000)

K Q
r
/Q

s
 = ratio of average clinical severities

(e.g., illness-days) for resistant vs.

susceptible campylobacteriosis cases

1.002 base case

estimate; up to 2 in

sensitivity analyses

f Probability that resistant case fails to

respond normally to prescribed antibiotic

therapy, due to resistance

< 1 (Upper bound)

r Probability that a resistant case is assigned

resisted antibiotic

0.5
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The RISK and BENEFIT formulas have the following interpretations

for enrofloxacin, a fluoroquinolone currently used to treat fatal respiratory

illness (airsacculitis, AS) in chicken flocks.  (MN) = (average servings per

capita) × (number of people in US) is the number of chicken servings

ingested per year. (P
–

)MN is the expected number of resulting campylo-

bacteriosis illness cases per year under the status quo (no ban).  As in Table

2, P
–

 denotes the current average risk of illness per serving, i.e., the expected

number of illnesses caused per serving.  It is estimated from the formula:  P
–

= (total illnesses per year × fraction caused by eating chicken servings)/(total

number of servings).  Each illness currently has probability (1 – s) of being

resistant to the human antibiotic being considered (e.g., ciprofloxacin).

However, if the current animal antibiotic use were to cease, a fraction p of

these (1 – s)(P
–

)MN currently resistant chicken-caused illnesses, called the

preventable resistance fraction, would be eliminated – or, more accurately,

would be replaced with susceptible rather than resistant pathogens.  Thus, a

ban would prevent a total of [p(1 – s)(P
–

)MN] resistant illnesses per year.

This gives the first part of the preventable RISK formula.

For health consequences of a ban, suppose that a fraction f of resistant

cases experience reduced treatment effectiveness due to resistance if treated

with a resisted antibiotic.  Let r denote the probability of being treated with a

resisted antibiotic. Thus, r reflects screening and prescription practices, while

f reflects the risk that resistance creates clinical harm.  If the mean health

impact is (Qr – Qs) additional illness-days (or quality-adjusted life-years

(QALYs) lost, etc.) for each such case, then the average additional health

harm per case is f × r × (Qr – Qs).  Multiplying this average consequence-per-

case by the expected number of cases gives the complete formula for

estimating the human health risk preventable by a ban on the current animal

antibiotic use:  RISK = [p(1 – s)(P
–

)MN] × [f × r × (Qr – Qs)].

The formula for BENEFIT of continued use is interpreted as follows.

Suppose that a ban would cause an increase ∆F in the fraction of chicken

servings from ill (e.g., airsacculitis-positive, (AS
+

)) flocks instead of healthy

(e.g., airsacculitis-negative (AS
-

)) flocks, and that each such serving has an

incremental probability (P
+

 – P
–

) of causing illness.  Then the expected

change in number of illnesses per year will be [∆F(P
+

 – P
–

)]MN.  If a fraction

s’ = [1 – (1 – p) × (1 – s)] of these illnesses are susceptible after the ban has

taken effect [reflecting a pre-ban resistant fraction (1 – s) that is reduced by

the preventable fraction p when the effects of the ban are fully realized,

leaving (1 – p) × (1 – s) as the new post-ban resistant fraction and hence s’ =

1 – (1 – p) × (1 – s) as the new susceptible fraction], then the new average

health impact per illness will be [s’Qs + (1 – s’)Qr], which may be rearranged

as [Qr – s’(Qr – Qs)].  Thus, the expected human health impact caused by the
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fractional increase ∆F in animal illness prevalence if current animal

antibiotic use were to cease is:

BENEFIT = [∆F(P
+

 – P
–

)]MN × [Qr – s’(Qr – Qs)]

incremental illness-days per year.  This is the human health benefit (= human

health harm prevented) from continued use of the animal antibiotic (for

which ∆F = 0).  Introducing the relative risk ratio R = (P
+

/P
–

) for the ratio of

probability of illness per serving from ill (AS
+

) vs. healthy (AS
–

) flocks, this

formula can be written as:

BENEFIT = [∆F(R – 1)] × [(P
–

)MN)] × [Qr – s’(Qr – Qs)]

The ratio of additional illness-days (or other measures of adverse

outcomes) per year that would be caused by banning a current animal

antibiotic use to illness-days per year prevented by the ban is:

BENEFIT/RISK =

  [∆F(R – 1)] × [(P
–

)MN)] × [Qr – s’(Qr – Qs)]/[p(1 – s)(P
–

)MNfr(Qr – Qs)]

 = [∆F(R – 1)][Qr – s’(Qr – Qs)]/[p(1 – s)fr(Qr – Qs)].

If a ban would be completely successful in preventing resistance in animals

(i.e., the preventable resistance fraction is p = 1, which implies s’ = 1), then

this BENEFIT:RISK ratio for continued use simplifies to:

BENEFIT/RISK = [∆F(R – 1)]/[(1 – s)fr(K – 1)],

where K = (Qr /Qs) is the ratio of average harm per resistant illness case to

average harm per susceptible illness case. “Harm” may be measured in terms

of QALYs lost, or the BENEFIT:RISK ratio can be calculated separately for

each type of outcome, e.g., mild, moderate, severe, and fatal cases (Buzby et

al., 1996.)  A ban is health-protective if and only if the BENEFIT:RISK ratio

is less than 1.

Henceforth, we will conservatively assume that a ban on current

animal antibiotic uses would eliminate all resistance in the corresponding

food animal-borne resistant campylobacteriosis cases (i.e., p =1 and s’ = 1).

Thus, we will focus on quantifying the parameters in the following formulas:

BENEFIT = [∆F × (R – 1)] × [(P
–

) × M × N)] × Qs

RISK = (1 – s) × [f × r × (K – 1)] × [(P
–

) × M × N] × Qs

BENEFIT/RISK = [∆F × (R – 1)]/[(1 – s) × f × r × (K – 1)]
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Recall that P
–

 denotes the average risk of a campylobacteriosis illness

case per chicken serving from a healthy flock (including possible effects of

cross-contamination to other foods in the kitchen).  Since almost all chicken-

borne C. jejuni cases currently come from healthy (e.g., AS
–

) flocks, P
– 

can

be approximated by dividing the estimated total number of chicken-caused

campylobacteriosis cases per year by the total estimated number of chicken

servings ingested per year.  As discussed for Table 2, the result are:

P
– 

= (total chicken-caused cases)/(total servings) = (total cases × fraction

from chicken)/(MN) = (1.48E6 × 0.10)/(38 × 292000000) = 1.3E-5 average

campylobacteriosis cases caused per chicken serving from a healthy flock.

The corresponding estimate of current cases per year is:  (P
–

)MN = (1.48E6 ×
0.10) = 1.48E5.  These estimates are based on population averages, without

accounting for interindividual variability in numbers of meals eaten,

thoroughness of cooking, differences in immune status and vulnerability, etc.

Thus, they should only be used to estimate population risks rather than risks

to any specific individual.

As in Table 2, if a linear no-threshold dose-response model is used

(i.e., human campylobacteriosis risk is proportional to CFUs per processed

carcass) and if the average risk of campylobacteriosis is about R = 10 times

greater for servings from AS
+

 flocks compared to those from AS
–

  flocks

(Russell, 2003), then (P
+

 – P
–

) = (R – 1) × (P
–

) =  9P
–

 = 1.2E-4 is the excess

individual risk of campylobacteriosis per serving from an AS
+

 bird.  Fitting a

log-exponential model to the same data (see Appendix) leads to an estimated

R value close to R = 140 instead of R = 10. We use 10 as a conservative

baseline estimate, i.e., to reduce the estimated human health benefits of

continued animal drug use compared to the estimated benefits of a ban.

For airsacculitis (AS), historical treatment rates with enrofloxacin in

the US have been between 0% and 2%.  Table 3 assumes that if enrofloxacin

and/or macrolides were withdrawn, then AS, NE (Brennan et al., 2001), and

perhaps other illnesses that lead to similarly increased microbial loads in

processed carcasses (Dawe, 2004) would increase by half a percent, i.e., ∆F

= 0.005.  This is based on assuming that (a) No dramatic increase in flock

illness rates (as occurred for NE in Norway) would happen in the United

States; but (b)  The historical need to treat at least 1% of flocks would

continue; and (c)  About half of these flocks would be treated successfully by

alternatives to enrofloxacin, with the rest being ill at slaughter.  (In reality,

there may be no fully adequate substitute for enrofloxacin to treat

airsacculitis, but perhaps other preventive and therapeutic measures might be

developed.)  Because this estimate of ∆F is uncertain, the resulting benefits
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estimated using Table 3 are benefits per half-percent increase in ill flocks

following a ban.

The human health consequences of susceptible and resistant

campylobacteriosis illnesses are estimated as follows.  Although the fractions

of chicken-caused severe C. jejuni illnesses that are resistant to different

antibiotics have not been well studied in the United States, about 1% of all C.

jejuni illnesses were reported as being erythromycin-resistant in 2000, and

this number has been relatively stable or declining for years (CDC, 2000).

Thus, Table 3 assumes (1 – s) = 1% among C. jejuni for macrolides.  The

corresponding ciprofloxacin resistance fraction for domestically-acquired C.

jejuni cases estimated from CDC FoodNet Campylobacter Case Control

Study data is (1 – s) = 6.4%, (Cox, 2001, pp 110-111).  This fraction also

appears to be fairly stable over time.

A susceptible case of domestically-acquired chicken-borne

campylobacteriosis is assumed to have an average adverse health impact of

Q
s
 = 6 illness-days (Marano et al., 2000).  If resistant domestically-acquired

chicken-borne campylobacteriosis cases have the same average clinical

impacts as susceptible ones, then K = 1 and preventable RISK = 0.  This may

be the case for adults, as the difference in clinical outcomes between

susceptible and resistant domestically-acquired cases is not clear (Ang and

Nacham, 2003).  However, for purposes of analysis, the base case in Table 3

assumes that resistance leads to an average two-day delay in finding an

effective therapy among those cases of campylobacteriosis that are severe

enough to warrant antibiotic treatment – about 0.6% of all cases according to

Buzby et al. (1996) – and that are initially prescribed the resisted antibiotic.

Then K = (Qr/Qs) = (0.006 × 8 days + 0.994 × 6 days)/(6 days) = 1.002 in the

base case (increased to 2 in some of the sensitivity analyses in Table 4),

assuming that this delay is the only clinical adverse effect of resistance; that

resistance does not otherwise impair recovery (Piddock, 1999); that all

severe resistant cases are prescribed the resisted antibiotic, and that only

those patients with exceptionally severe cases (for which antibiotic treatment

might be indicated) are at risk of experiencing a delay in resolution of

symptoms from time lost in finding an effective treatment due to resistance.

Even for such patients, excess illness-days occur only of the resisted

antibiotic is initially prescribed and then proves ineffective.  [“Resistance” of

Campylobacter to fluoroquinolones refers to an in vitro test result that does

not necessarily imply clinical resistance (Piddock, 1999).]  The probability of

being prescribed the resisted antibiotic (e.g., ciprofloxacin for someone with

fluoroquinolone-resistant campylobacteriosis, or a macrolide for someone

with macrolide-resistant campylobacteriosis) is assumed to be at most r = 0.5

(FDA-CVM, 2001), especially if severe cases are screened for resistance

(Ang and Nacham, 2003).  The probability that prescription of a resisted
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antibiotic leads to compromised treatment or to a treatment failure, thus

requiring a switch to a different antibiotic, is uncertain. [One study suggests

1/39 as a possible value (Piddock, 1999)].  It is estimated conservatively in

Table 3 as f = 1.

Table 4 calculates the human health RISK and BENEFIT from

continued use of enrofloxacin and macrolides in chicken, measured in units

of expected illness-days per year caused and prevented, respectively, as well

as their RATIO.  In addition to the base case values (RATIO = 703 illness-

days prevented per illness-day caused for enrofloxacin and 4500 for

macrolides), the value of RATIO is calculated for different combinations of

the input parameter values, to illustrate the sensitivity of the BENEFIT:RISK

ratio to changes in the parameter values.

Table 4:  Human Health Impacts of Macrolides and Fluoroquinolones

Input and Meaning Base Case Sensitivity Analyses

[(P
–

)MN)]*Q
s
 = current

illness-days per year

from chicken

8.9E5 = 1.48E5 cases per

yr. × 6 days/case

∆F = fractional increase

in servings from ill

flocks if ban

0.005 0.1 0.1

R = Ratio of risk-per-

serving from ill vs. well

flocks

10 2 139 139

(1 – s) = Resistant

fraction if no ban

Macrolides: 0.01

Fluoroquinolones: 0.064

f × r = Adverse clinical

outcome probability for

resistant cases

0.5 (= prob. given

resisted antibiotic)

(0.5)×
(1/39)

(0.5)×
(1/39)

K = Consequence ratio

of illness-days for

resistant vs. susceptible

cases

1.002 1.3 2 2

Output

BENEFIT = Illness-

days per year prevented

by continued use

40050 = [∆F(R – 1)] ×
[(P

–

)MN)] *Q
s

RISK = Illness-days per

year caused by

continued use

57 for enrofloxacin,

9 for macrolides

= (1 – s) × [fr(K – 1)] ×
[(P

–

)MN] × Q
s

RATIO for enrofloxacin

= BENEFIT/RISK

703 for enrofloxacin 78 4.7 1.4 1.7E4 8.4E6

RATIO for macrolides 4500 for macrolides 500 30 9 1.1E5 5.4E7
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The main conclusion from the baseline calculations is that withdrawing

either antibiotic from use in chickens in the US is estimated to cause

significantly more illness-days (and more cases of each type of illness, both

resistant and susceptible) than it would prevent.  The sensitivity analysis

columns show how the results change as inputs are varied.  (Each column for

a sensitivity analysis shows the input values and resulting output values that

deviate from the baseline values.)  While the health BENEFIT:RISK ratio is

only 703 for enrofloxacin and 4500 for macrolides in the base case, which

made several conservative assumptions that tend to minimize it, it could be

as high as 7 orders of magnitude under pessimistic assumptions (right-most

column) in which a ban leads to a 10% increase in chicken flock illness rates;

the effects on human illness rates are described by a log-exponential model

instead of a linear no-threshold model; and resistance to the prescribed

antibiotic has little impact on clinical outcomes (with only 1/39 of patients

experiencing excess illness-days, Piddock, 1999.)

Analytic sensitivity analysis is facilitated by the product forms of the

RISK and BENEFIT formulas.  The fractional change in human health risks

caused by a ban is given by [∆F × (R – 1)], and hence will be zero if either

∆F or (R – 1) is zero.  As was also the case for virginiamycin, current

scientific knowledge does not preclude this possibility, i.e., a ban on

macrolides or enrofloxacin in the United States might conceivably turn out to

cause no additional animal illnesses and/or no increase in average human

illnesses per serving.  However, based on the range of values considered in

Table 4 and on the European experience and United States data motivating

the baseline values, it appears likely that such bans would do far more harm

than good to human health.  This possibility suggests a high value of

information (VoI) for studies directed at clarifying the magnitudes of ∆F and

(R – 1) prior to any decision to ban the antibiotics from use in animals.

9. DISCUSSION

9.1  Comparison to Other Risk Assessment Approaches

In contrast to farm-to-fork simulation models, the RRRT approach

illustrated in this chapter makes no attempt to identify explicitly all major

pathways or mechanisms leading from antibiotic use in food animals to

antibiotic resistance in human bacterial infections. Rather, it starts with an

observed data point (the number of cases per year in the human population)

and works backward to calculate an estimated upper bound on the fraction

that might be prevented by removing antibiotic uses in food animals.  Table 1

summarizes the fractions used in the calculations for VM.  Uncertainties
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about the correct values of these fractions (and about the causal pathways

and biological phenomena involved) were handled by an upper-bounding

approach and through sensitivity analyses. The extent of the biases

introduced by repeated use of conservative and/or incorrect assumptions for

parameter values in Table 1 is bounded by the fact that none of the fractions

can exceed 1.

Uncertainty about future values of the number of cases per year in the

human population was examined for VM in Chapter 7, using a population

dynamics model of the emergence of resistance that includes the possibilities

of colonization, secondary amplification, and person-to-person spread of

resistant E. faecium.  That analysis concluded that the endemic level of

resistance in the human population is extremely unlikely to increase as a

result of VM use (as the basic reproductive rate R0 of resistant VREF is much

smaller than 1.)  In addition, sensitivity analysis of Table 1 indicates that

even increasing the number of VREFA cases per year and/or the QD

resistance rate per case 10-fold would not reverse the main finding that the

expected human health benefits from continued VM use are much larger than

the expected human health risks.

9.2  Comparison of Model Predictions to Experience

Documented Danish experience following the withdrawal of growth

promoters provides an opportunity to compare model-predicted human health

impacts to observed data.  From 1997 to 1998 (when antimicrobial growth

promoters were banned) the number of cases of campylobacteriosis in

Denmark increased 26.5%, from 2666 to 3372, (Dansk, 1999), while poultry

production in Denmark increased by only about 7.4%.  The unaccounted-for

increase in cases from 1997 to 1998 [509 = (26.5% –7.4%) × 2666] is

roughly consistent with the previously estimated 1.35% increase in NE-

related contamination in Denmark (detailed under Calculation of ∆F above)

and baseline estimate of a 4.5% increase in human campylobacteriosis cases

per 0.5% increase in animal illness rates:  (0.045) × (1.35/0.5) × 2666 = 324.

In addition, Denmark determined the serotypes of Campylobacter infecting

humans, broilers, cattle, retail poultry, and healthy dogs (ibid). The

covariance of serotypes between humans and retail poultry increased from

1997 to 1998, consistent with the hypothesis that increases in Campylobacter

may have been due to increased contamination from chickens.  Finally, the

added cases occur in higher age groups, while the campylobacteriosis case

rate per 100,000 declined among infants less than 1 year old, consistent with

a food source not consumed by infants (e.g. fresh chicken) (Dansk, 1999).  In

summary, while these sources of evidence are only circumstantial and many

other possible historical influences may also have had important effects, the
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observed increases in campylobacteriosis illness rates in Denmark are of the

same order of magnitude (although somewhat larger than) the impacts

predicted by our baseline model.

9.3  Other Considerations and Extensions

In addition to direct effects on microbial loads and resistance fractions

of pathogens reaching consumers, a ban on animal antibiotics may have

important indirect effects that depend on how decision-makers (e.g., farmers

and physicians) adapt to the ban or that are transmitted via causal pathways

not addressed in the model.  Examples of such additional considerations,

with brief comments, are as follows.

•   Antibiotic substitutions and synergies.  After the ban on animal antibiotic

growth promoters and prophylactics in Europe, therapeutic use of other

animal antibiotics to treat animal diseases increased significantly

(Casewell et al., 2003).  Similarly, withdrawing virginiamycin use in the

United States might cause an increase in ill flocks that could be partly

offset by increasing veterinary prescriptions of macrolides and/or other

drugs. Similarly, withdrawing enrofloxacin might be compensated for by

increasing use of macrolides.  Withdrawing all of these antibiotics could

increase AS
+

 and NE
+

 flocks (∆F in the model) by  more than the sum of

the increases if each one alone were withdrawn, as compensation with

the others would then not be possible.

• Other animal bacterial diseases.  In addition to airsacculitis and necrotic

enteritis, failure to use animal antibiotics might increase the prevalence

of other animal illnesses with similar effects on microbial loads in

processed chickens (Dawe, 2004).  This would increase ∆F.

• Other foodborne human pathogens.  The preceding assessments have

focused on C. jejuni.  Although C. coli cases are only a small percentage

of total campylobacteriosis cases, they have much higher resistance rates,

e.g., 22.5% against erythromycin, compared to 0.5% for C. jejuni,

according to Fedorka-Cray et al, 2001.  If resistance rates in C. coli are

about 45 times as great as for C. jejuni and  C. coli constitute a few

percent of the total cases, then the human health benefits from

withdrawing macrolides could be about double those estimated in Table

4 for C. jejuni. Conversely, Russell (2003) reported significant increases

(although not on every replicate) of Salmonella and E. coli, as well as C.

jejuni, in processed carcasses from AS
+

 compared to AS
–

 flocks.

Considering other pathogens might significantly increase the estimated

human health benefits from continued use of animal antibiotics.

• Co-selection and commensals.  Macrolides used in chickens may co-

select E. faecium that are resistant to streptogramins, although the genes
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responsible for resistance to streptogramin A are rarely found in animal

isolates.  (Since glycopeptides and linezolid are not used in food animals

in the US, co-selection risks for these human-use antibiotics are

minimal.)

• Reduced need to treat human patients with antibiotics.  If a ban on VM

increases campylobacteriosis cases per year, some of these cases might

receive treatment with ciprofloxacin or macrolide antibiotics as empiric

treatments.  Preventing these cases would remove these human antibiotic

prescriptions, potentially reducing selection pressure for resistance in

human pathogens and commensals. According to Table 4, a ban or risk

management intervention restricting continued use of enrofloxacin could

increase total campylobacteriosis by thousands of cases per year.

Preventing these cases would remove these human antibiotic

prescriptions, potentially reducing selection pressure for resistance in

human bacterial pathogens and commensals.

• Changes in prescription practices.  As physicians and scientists become

more concerned about not prescribing antibiotics with doubtful clinical

benefits, more rapid diagnostic and resistance-screening tests will be

developed and routinely used (e.g., Endtz et al., 2000).  These can reduce

the prescription rate r for resisted antibiotics in our model, reducing the

potential benefits of a ban and increasing RATIO even further.

• Opportunistic infections and patient practices.  If people treated with

antibiotics for other (non-campylobacteriosis) reasons are thereby made

significantly more vulnerable to opportunistic infection by antibiotic-

resistant Campylobacter ingested in chicken or other foods, then the

benefits of a ban might be understated in Table 4.  Increasing care by

patients and at-risk individuals in food preparation, cooking, and

handling would tend to attenuate the benefit from this hypothesized

source.  Empirically, available data (e.g., the raw data of Friedman et al.,

2004) do not support the hypothesis that opportunistic resistant infections

from chicken-borne Campylobacter play a detectable role in human

health in the surveyed population.

• Emergence of resistance.  A common concern is that the resistance

fraction (1 – s) may increase over time unless animal antibiotic use is

curbed now (APUA, 2002).  However, the biomathematical modeling in

Chapter 7 suggests that, at least for antibiotics like VM and macrolides

that have been used for several decades in food animals without leading

to high levels of resistance in people, an outbreak of resistance in the

future caused by continued use is very unlikely.  Empirically, resistance

to macrolides and fluoroquinolones in domestically acquired cases in the

United States appears to be fairly stable over time at the levels (about 1%

and 6.4%, respectively) in Table 4.
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• Timing:  For simplicity, and to be conservative (i.e., minimizing the

BENEFIT:RISK ratio by maximizing the estimated risk of continued use

of the animal antibiotic) the timing of human health impacts of a ban has

so far been ignored: only the new levels that will eventually be reached

have been considered. European experience suggests that the

hypothesized health benefits to human patients from banning animal

antibiotics may take longer than 5 years to materialize (e.g., Heuer et al.,

2002; Borgen et al., 2000, Iversen et al., 2002), while adverse impacts on

increased animal pathogen loads (e.g., Madsen and Pederson, 2000) and

possibly on human health (Eurosurveillance, 2000) may be much more

immediate.  If so, then modeling the timing of impacts might further

increase the BENEFIT:RISK ratio of continued use of animal antibiotics.

Similarly, all of the analyses in Table 4 assume that a ban on animal

antibiotic use would be completely effective in eliminating resistance in

servings from food animals (i.e., p = 1).  In reality, experience in Europe,

as well as in Canada after reduced fluoroquinolone use (comparing

resistance data in Gaudreau and Gilbert 2003 vs. 1998), suggests that the

preventable resistance fraction may be much less than 1, tending to

increase the BENEFIT:RISK ratio for continued use.

In summary, while the analyses in Tables 1-4 have focused on QD-resistant

VanA VREF and on Campylobacter illnesses transmitted via chicken

servings, other important considerations and extensions to consider other

pathogens may tend to strengthen the conclusion that human health risks

from withdrawing or restricting animal antibiotics could significantly

outweigh potential human health benefits.

Such additional comparisons and information can be included in

expanded quantitative human health risk assessments.  However, doing so

may have limited value from a decision analysis point of view if the main

effect is to further strengthen the already strong conclusion from the analyses

in Tables 1-4. A key prescriptive principle of value-of-information (VoI)

analysis is not to pay for information that does not have the potential to

change risk management decision.  By contrast, better information on the

extent to which withdrawing animal antibiotics increases animal disease rates

and microbial loads in animal carcasses and resulting illness risks to

consumers (the size of (∆F) × (P
+

 – P
–

) in the model) could be very valuable

in reducing uncertainty about the baseline conclusion that continued animal

antibiotic use has human health benefits that are likely to be far larger than

its human health risks.
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10. SUMMARY AND CONCLUSIONS

This chapter has illustrated applications of the Rapid Risk Rating

Technique (RRRT) approach for estimating the human health impacts of

animal antibiotic uses.  The approach appears to be practical to implement

with available data for antibiotics and pathogens of practical interest.

Potential human health benefits from discontinuing animal antibiotic uses are

estimated by multiplying total clinical case rates by a sequence of fractions

estimated from data (or conservatively bounded, e.g., by setting highly

uncertain fractions equal to their maximum possible value of 1) to estimate

the number of potentially preventable cases and adverse consequences per

year.  Potential human health risks from discontinuing use are estimated by

multiplying the expected increase in food animal illness rates by the

estimated increase in human illnesses (and resulting adverse consequences)

per year per unit increase in animal illness rates.

This approach is designed for use in situations in which qualitative

considerations are insufficient to support clear, effective risk management

decision-making.  This may occur when the quantitative sizes of health risks

matter, or if qualitative assessment indicates that a proposed intervention

may cause both human health benefits and human health risks, and it is

important to determine which is likely to be larger.  The approach is also

appropriate for situations in which available data and resources are not

sufficient to build and validate a more detailed quantitative model, such as

the one in Chapter 7, or when rapid approximate risk assessment using the

RRRT formulas provides a sufficiently clear answer so that more expensive

and detailed quantitative estimates are unnecessary.  The risk and benefit

factors estimated in Tables 1-4, are intended to provide the least amount of

information that is both necessary and sufficient to estimate and compare

quantitative human health risks and benefits from alternative risk

management interventions.

In summary, the approach to human health impact assessment

developed and illustrated in this chapter is intended to deliver the major

benefits that qualitative risk assessment approaches have sought to provide,

outlined in Chapter 1 – such as practicality of input data requirements, clear

logic and calculations (using basic arithmetic operations to calculate human

health risks and benefits from parameters estimated from available data), and

easily interpretable outputs (does RISK exceed BENEFIT?) – while

preserving the advantages of soundness (assigning larger risk estimates to

larger risks) and ability to deal with uncertainties (through bounds and

intervals) made possible by quantitative assessment methods.  The approach

was illustrated using virginiamycin in chickens as a case study, with

fluoroquinolones and macrolides as additional examples.
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The baseline estimates suggest that the human health harm from

discontinuing use of these antibiotics in food animals may substantially

exceed the potential human health benefits.  Scientific uncertainties preclude

available data from proving with certainty which option (i.e., continuing or

discontinuing antibiotic use) will create fewer adverse human health impacts.

However, the baseline calculations and sensitivity analyses strongly suggest

that continued use of VM and other antibiotics would prevent at least

thousands of times more illness-days (as well as more fatalities and cases)

per year than it would cause.  Thus, any risk management policies that

advocate withdrawing these animal antibiotic uses for precautionary or other

motives must be based on principles, assumptions, or data very different

from those considered in this chapter.

The analyses undertaken in this chapter strongly suggest that the most

prudent present risk management policy for several classes of animal

antibiotics – including streptogramins, macrolides, fluoroquinolones, and

other antibiotics with similar effects in animal and human medicine – is to

continue to use them to help prevent animal and human illnesses, rather than

using them exclusively in treating human illnesses. To reverse this

conclusion and make a ban on animal antibiotics a rationally recommended

strategy, it would be necessary to show that animal antibiotic uses are much

less effective in preventing animal illnesses (or other “high risk” conditions)

than was assumed in Tables 1-4, or that servings from ill animals have much

less impact on human health than was estimated in those tables.

If the analysis presented here is indeed conservative, as intended, then

collecting additional data to reduce current scientific uncertainties will be

more likely to strengthen than to undermine or refute the conclusion that

using antibiotics to help prevent animal (and hence human) illnesses protects

human health much more effectively than reserving antibiotics for use in

treating human illnesses.  But this is only a best bet, given what is known

now.  The techniques illustrated in this chapter for practical quantitative risk

assessment and comparison of likely human health consequences of

alternative risk management interventions can be applied in future, as

additional scientific data are collected, to narrow present uncertainty bounds

and to reach more definitive conclusions that reflect growing understanding

of the causal links between animal and human health.
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APPENDIX:  THE LOG-EXPONENTIAL RISK MODEL

FDA’s Center for Veterinary Medicine (FDA-CVM, 2001,

www.fda.gov/cvm/antimicrobial/RRAIntro.pdf) suggested a log-exponential

model for risk assessment of Campylobacter.  In this model, the log of the

microbial load of Campylobacter reaching consumers via chicken servings

has an exponential distribution, placing greater probability densities on

smaller microbial loads.  Microbial loads at ingestion are assumed to be

proportional to (but smaller than) microbial loads on carcasses following

processing.  An uncertain reduction factor α expresses the proportionality

between CFU/ml measured in processing rinse fluids and CFU per chicken

serving ingested. These assumptions imply the mathematical model:

Pr(log ingested dose > x) = e
-αλx

, where 1/λ = mean number of log-CFU/ml of

chicken rinse fluid at post-processing (= ln(10
1.09

) = 2.51 based on data of

Russell, 2003, implying an estimated value for λ of: λ = 1/2.51 = 0.3984.)

Let MID denote the minimum infectious dose (possibly 1 CFU). Substituting

log(MID) for x then gives the following formula:

 Pr(ingested dose > MID) = Pr[log(ingested dose) > log(MID)] = e
-αλlog(MID)

.

 Independently, the probability of an infectious dose in a chicken serving

under current conditions (i.e., Pr(ingested dose > MID)) can also be

estimated from data, as follows:

• Main formula:  Pr(ingested dose in a chicken serving > MID) = (total

cases per year from chicken servings)/(total chicken servings per year *

fraction of infectious servings that cause illness)

• Total cases per year from chicken consumption ≈ 1.48E5 cases per year.

(This is (P
–

)MN in Table 2.)

• Total chicken servings per year = MN = (38 fresh chicken

servings/capita-year)*(292E6), based on the data in Table 2.

• Fraction of infectious servings that cause illnesses was estimated by

Rosenquist et al., 2003 as 0.22 (11/50) with a beta uncertainty

distribution.  WHO, 2002 states: “Overall, pooling all the data, a total of

29 people got sick out of 89 individuals that were infected (33%).”

Finch and Blake (1985) report a median attack rate of 0.41 in outbreaks

following high exposures in various food vehicles.  We will use 0.41 as it

is based on a mix of real populations, strains, and food vehicles.

Substituting the above values into the main formula gives:

Pr(ingested dose > MID | AS
–

) = (1.48E5 cases/year)/(38*292E6*0.41) =

3.23E-5.
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Equating this empirical estimate to the above model-based formula then

gives: Pr(ingested dose > MID | AS
–

) = e
-αλlog(MID)

 = 3.23E-5, which

rearranged, becomes: αλ*log(MID) = -ln(3.23E-5) = 10.34, or, on

substituting the estimate λ = 0.3984: α*log(MID) = 10.34/λ = 10.34/0.3984 =

25.954.

Now suppose that λ changes to reflect an average tenfold increase in

microbial load per processed carcass, from λ = 1/ln(10
1.09

) = 0.3984 for AS
–

flocks to λ
+

 =  1/ln(10
2.09

) = 0.2078 (based on the data of Russell, 2003).

Then risk per serving will become:

Pr(ingested dose > MID | AS+) = exp[-α*log(MID)*λ
+

]

= exp(-25.954*0.2078) = 0.0045.

The relative risk of human illness due to untreated airsacculitis in chickens is

therefore:

R = Pr(exposure > MID | AS
+

)/Pr(exposure > MID | AS
–

) = 0.0045/3.23E-5 =

139.3.

R does not depend on the assumed dose-response threshold MID (the

effective minimum infective dose, if any), due to a well-known property of

exponential distributions.  Thus, the increase in human health risk if a

fraction ∆F of currently AS
–

 flocks become AS
+

 is:

Risk from ∆F = ∆F*(R – 1) = 138.3*∆F.
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