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Preface

Statistics is rapidly changing. Pushed by data generated by new technologies,
statisticians are asked to create new models and methods for exploring variability
in mathematical settings that are often very far from the familiar Euclidean
environment. Functions, manifold data, images and shapes, network graphs and
trees are examples of object data that are becoming more and more common in
statistical applications but for which the established multivariate theory—frequentist
or Bayesian—shows its limitations and downfalls. Moreover the questions the
statistical analysis should answer are also new. Through the exploration of large
administrative databases, public health institutions seek real time epidemiological
information; by means of the analysis of the humongous data generated by social
networks, large companies expect to measure intangible quantities like their reputa-
tion or the sentiment of their stakeholders. In life science as well as in geophysics
statisticians are asked to integrate the information coming from the observation of
real data with the knowledge encapsulated in mathematical models often expressed
in terms of differential equations with difficult boundary conditions and constraints.
New methodological problems are posed which do not have a counterpart in
multivariate analysis, like decoupling phase and amplitude variability for the
analysis of functional data or developing viable models for statistical inference
based on manifold data. Last but not least the exploration of big data and the
need to effectively transfer the acquired knowledge to the larger public of decision
makers requires the statistician to design new graphical and visualization tools, freed
from the standard representations developed over the years for communications
in print. The papers of this volume have been selected among those presented at
the conference “S.Co.2013: Complex data modeling and computationally intensive
methods for estimation and prediction” held at the Politecnico di Milano, September
9-12, 2013. Over the years the S.Co. conference became a forum for the discussion
of new developments and applications of statistical methods and computational
techniques for complex and high dimensional data: that of 2013 is its eighth edition,
the first one being held in Venice in 1999.
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The book is addressed to statisticians working at the forefront of the statistical
analysis of complex and high dimensional data and offers a wide variety of statistical
models, computer intensive methods and applications: network inference from the
analysis of high dimensional data; new developments for bootstrapping complex
data; regression analysis for measuring the downsize reputational risk; statistical
methods for research on the human genome dynamics; inference in non-Euclidean
settings and for shape data; Bayesian methods for reliability and the analysis of
complex data; methodological issues in using administrative data for clinical and
epidemiological research; regression models with differential regularization; geo-
statistical methods for mobility analysis through mobile phone data exploration.

Most notably we included in the book a paper coauthored by Ph.D. students and
post-docs at the laboratory for Modeling and Scientific Computing (MOX) of the
Department of Mathematics at the Politecnico di Milano who were the driving force
of the Barcamp event Technology foresight and statistics for the future in honour of
the 150th anniversary of the Politecnico di Milano and which followed the official
S.Co.2013 conference. The Barcamp was the final event closing a competition
challenging young EU statisticians to envision statistical models and methods that
will have an impact on the development of technology in the next 25 years, before
the 175th anniversary of Politecnico di Milano. Through new means like drama
playing, videos, interactive games and discussions which challenged the traditional
experience of a scientific meeting, the barcampers explored the future of big data
analysis, computational statistics and data visualization.

Milano, Italy Anna Maria Paganoni
Milano, Italy Piercesare Secchi
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Inferring Networks from High-Dimensional
Data with Mixed Variables

Antonino Abbruzzo and Angelo M. Mineo

1 Introduction

Graphical models are useful to infer conditional independence relationships
between random variables. The conditional independence relationships can be
visualized as a network with a graph. Graphs are objects with two components:
nodes and links. Nodes are in one-to-one correspondence with random variables
and links represent relations between genes. If a link between two genes is absent
this means that these two genes are conditional independent given the rest. Pairwise,
local and global Markovian properties are the connections between graph theory
and statistical modeling [1-3].

Applications of graphical models include among others the study of gene
regulatory networks where expression levels of large number of genes are collected,
simultaneously [4]. A microarray is a collection of microscopic DNA spots attached
to a solid surface. Understanding how genes work together as a network could
(1) hold the potential for new treatments and preventive measures in disease, (2) add
a new level of complexity to scientists’ knowledge of how DNA works to integrate
and regulate cell functionality. Many of the works on trying of inferring gene
regulatory networks have focus on penalized Gaussian graphical models. The idea
is to penalize the maximum likelihood function, for example with the £;-norm, to
produce sparse solutions. The main assumption of these models is that the networks
are sparse, which means many of the variables are conditionally independent from
the others. In this setting, Meinshausen and Biihlmann [5] proposed to select edges
for each node in the graph by regressing the variable on all the other variables using
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2 A. Abbruzzo and A.M. Mineo

£, penalized regression. Penalized maximum likelihood approaches using the £,
penalty have been considered in [6, 7] where different algorithms for estimating
sparse networks have been proposed. The most known algorithm to estimate
sparse graphs is probably the graphical lasso (glasso) proposed by Friedman et al.
[8]. These models cannot deal with high-dimensional data with mixed variables.
However, the need of statistical tools to analyze and extract information from such
data has become crucial. For example, the most recent task in DREAMS challenge
[9] is related to predict the response of Rheumatoid Arthritis patients to anti-TNF
therapy based on genetics and clinical data.

In their seminal paper Lauritzen and Wermuth [10] introduced the problem
of dealing with mixed variables. Recently, Hoff [11] proposed a semiparametric
Bayesian copula graphical model to deal with mixed data (binary, ordinal and
continuous). The semiparametric Bayesian copula graphical model uses the assump-
tion of Gaussianity on the multivariate latent variables which are in one-to-one
correspondance with the observed variables. Conditional dependence, regression
coefficients and credible intervals can be obtained from the analysis. Moreover,
copula Gaussian graphical models allow to impute missing data. However, the
Bayesian copula approach is infeasible for higher-dimensional problems due to its
computational complexity and problem of convergence to the proposal distribution.

In this paper, we present two classes of graphical models, namely strongly
decomposable graphical models [12] and regression-type graphical models [13],
which are classes of models that can be used for analyzing high-dimensional data
with mixed variables. Assuming that the conditional distribution of a variable A
given the rest depends on any realization of the remaining variables only through
the conditional mean function, the regression models are useful to find the matrix
weights which can be further employed to recover the network. The aim here are
(1) to give some insight on the use of decomposable models for recovering graph
structure; (2) to connect this model with the use of regression-type graphical lasso;
(3) to provide a simulation study to compare graphical lasso, which is a penalized
approach, to strongly decomposable graphical models.

The rest of this paper is organized as follows. In Sect. 2, we briefly recall the
methodologies used to infer decomposable graphical models and regression-type
graphs for mixed data. In Sect. 3 we show a simulation study in which we compare
several type of graphs. In Sect. 4, we show an application of the methodology to a
real dataset which contains mixed variables that are the expression level of genes
collected in a microarray experiment and some clinical information of the patients.

2 Methodology

A graphis a couple G = (V, E) where V is a finite set of nodesand £ C V x V
is a subset of ordered couples of V. Nodes are in one-to-one correspondence with
random variables. Links represent interactions between the nodes. In this paper,
we are interested in links which represent conditional independence between two
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random variables given the rest. Suppose we have d discrete and g continuous nodes
and write the sets of nodes as A and I', where V' = {A U I'}. Let the corresponding
random variables be (X, Y), where X = (Xi,...,Xg)and Y = (¥1,...,Y,), and
a typical observation be (x,y). Here, x is a d-tuple containing the values of the
discrete variables, and y is a real vector of length g. We will denote with P(z) a
joint probability distribution for the random variables (X, Y).

2.1 Decomposable Graphical Models for High-Dimensional
Data

Finding a conditional independence graph from data is a task that requires the
approximation of the joint probability distribution P(z). A product approximation
of P(z) is defined to be a product of several of its component distributions of lower
order. We consider the class of second-order distribution approximation, i.e.:

p
Pu(@) =[] PGi.zja) 0<j@)<p

i=1

where (ji, ..., jp) is an unknown permutation of integers (1,2, ..., p), where p =
d+gq.

For discrete random variables, Chow and Liu [14] proved that the problem of
finding the goodness of approximation between P(x) and P,(x) considering the
minimization of the closeness measure

P(x)
Py(x)’

I(P.P,) =) _ P(x)log

where )" P(x) is the sum over all levels of the discrete variables, is equivalent to
maximizing the total branch weight Z" I(x;,x;¢)), where

i=1
P(xi, Xj(,')) )

1
P(xi) P(xja)) W

I(xi.xj0) = Y P(xisxj(i))IOg(

XisX (i)

Calculating the total branch weight for each of the p”~2 trees would be compu-
tationally too expensive even for moderate p. Fortunately, several algorithms can be
used to solve the problem of finding dependence tree of maximum weight, such as
Kruskal’s algorithm, Dijkstra’s algorithm, Prim’s algorithm. These algorithms start
from a square weighted matrix p by p, where a weight for a couple of variables
(Xi, X ;) is given by the mutual information /(x;, x ;). So, the problem is reduced to
calculating p(p — 1)/2 weights. Consider, now a real application where probability
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distributions are not given explicitly. Let x',x?,...,x" be N independent samples

of a finite discrete variable x. Then, the mutual information can be estimated as
follows:

S J)
[(xi.x;) = wa(z /)1ogf()f( 5
u(@) Jv(j
where fuij) = %, and n,,(i, j) is the number of samples such that their

ith and jth components assume the values of u and v, respectively. It can be shown
that with this estimator we also maximize the likelihood for a dependence tree.

This procedure can be extended to data with both discrete and continuous
random variables [12]. The distributional assumption is that random variables Z
are conditionally Gaussian distributed, i.e. the distribution of Y given X = x is
multivariate normal N(u;, 2;) so that both the conditional mean and covariance
may depend on i. We refer to the homogenous or heterogenous case if X does
or does not depend on i, respectively. More details on this conditional Gaussian
distribution can be found in [10]. To apply the Kruskal’s algorithm, in the mixed
case, we need to find an estimator of the mutual information /(x,, y,) between each
couple of variables. For a couple of variables (X, Y,) we can write the sample cell
counts, means, and variances as {n;, y, sl.(v) Yi=1,.|x,|- An estimator of the mutual
information, in the homogenous case, is

Fe v = S0 (1)),

where sy = Zk l(y(k) —3,)%/N and s = Z‘)ﬁ‘ln si/N. There are k., , =
| X, — 1 degree of freedom. In the heterogeneous case, an estimator of the mutual
information is

N N 1
I (xu. yv) = —-log(s0) — 5 > nilog(s)

with ky, ,, = 2(|X.,| — 1) degrees of freedom.

Note that the algorithm will always stop when it has added the maximum number
of edges, i.e. p — 1 for an undirected tree. Edwards et al. [12] suggested to use either
TA1C = [ (x;, xj) = 2ky, x; Or IBIC = [ (x;, x;j) —log(n)ky, «; , where ky, ., are the
degrees of freedom, to avoid inclusion of links not supported by the data.

The class of tree graphical models can be too restrictive for real data problem.
However, we can start from the best spanning tree and determine the best strongly
decomposable graphical model. A strongly decomposable graphical model is a
graphical model whose graph neither contains cycles of length more than three nor
forbidden path. A path exists between nodes A and B if one can reach 4 from B in
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a finite number of steps. A forbidden path is a path between two not adjacent discrete
nodes which passes through continuous nodes. The distributional assumption is that
the random variables are conditional Gaussian distributed. This procedure would be
NP-hard without the following result.

If My C M, are decomposable models differing by one edge e = (v;, v;) only,
then e is contained in one clique C of M| only, and the likelihood ratio test for M,
versus M, can be performed as a test of v; L v;|C\y, ,,}- These computations only
involve the variables in C. It follows that for likelihood-based scores such as AIC
or BIC, score differences can be calculated locally which is far more efficient then
fitting both M, and M. This leads to considerable efficiency gains.

To summarize, strongly decomposable model is an important class of model
that can be used to analyze mixed data. This class restricts the class of possible
interaction models which would be to huge to be explored. Moreover, we have
the important results that for strongly decomposable graphical models closed-form
estimator exists.

2.2 Regression-Type Graphical Models

Recently, Edwards et al. [13] proposed to estimate stable graphical models with
random forest in combination with stability selection using regression models. Their
main idea is motivated by the following theorem.

Assume that, for all j = 1,..., p the conditional distribution of Z; given
{Zn;h # j} is depending on any realization {z;;h # j} only through the
conditional mean function:

wjQznih # j}) = E[Zjlzn:h # j].
Assume the conditional mean exists, then
Z; LZi{Znh # j,i}
if and only if

wilznsh # j}) = mjQznsh # j,i})

does not depend on z; for all {z;;h # j}.

Suppose the network is composed by variables some of which are predictors and
some of which are response variables. We use this theorem to determine the weight
importance of each predictor on the response variable. To establish the importance
of each predictor regression coefficients need to be comparable, i.e. standardized
regression coefficients need to be used. These coefficients can also be interpreted as
elasticity, i.e. how much we can change the regressor, by attempting to exogenously
change one of the predictor.
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2.3 Simple Example

In this section, we show a simple example on simulated mixed data. The aim is to
recover the graph in Fig. 1 with a decomposable graphical model and to evaluate
the relative importance of each predictor to the regressors with regression-type
graphical models. In particular, in Fig. 1 we represents five variables with some
of them that are regressor variables. These variables are those one having at least an
incoming link. Table 1 shows distributions, models and conditional means of each
variable. Regression coefficients are given in Table 2.

To generate N = 100 independent samples with structure given in Fig. 1 and
conditional mean and distribution given in Table 1, we consider the following
procedure:

* generate Y5 from a normal with mean zero and variance one. Then, calculate 4
and 3 and generate Y4 and Y3;
» calculate u, and generate Y,. Then, calculate ; and generate Yi;

« repeat the process 100 times.

@\
-
b

Fig. 1 Directed graph

Table 1 Model assumption

- Distribution | Model Conditional mean
for random variables - 3 z
represented in the DAG in Gaussian Yi~N(uom=1) i = Z/'=1 Biyi
Fig. 1 Gaussian | Y, ~ N(u2,02=1) | pup, = Z§=1 Bj2y;

eXP(Zizl Bj3yj)
14exp(X5 -1 B)37))

exp(X)— Bjay;)
1+exp(X5 = Bjay;)
Gaussian | Ys ~ N(us,02=1) | us =0

Binomial Y; ~ Binom(1,73) |73 =
Binomial Y, ~ Binom(1,74) |74 =
There are three continuous Gaussian random variables and two

binomial random variables. Regression coefficients are given
in Table 2
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Table 2 Regression

: Bl 2 3 4 5
coefficients
10 0 0 0 0
210.01(0 0 0 0
310310450 0 0
410 0 098 |0 0
510 0 0.690.72 |0
Table 3 Graph edge V; | V; | AIC-ranking | SC
ordering and standardized
regression coefficients 1 |3 |5 [19236 031
2 |4 |5 |148.53 0.24
3 13 |4 14453 1.17
4 12 |3 58.82 0.16
5 |1 |3 34.34 0.18
6 |2 |5 33.52 0.06
7 (2 |4 30.07 0.086
8 |1 |2 15.68 0.094
9 |1 |5 5.55 0.015
10(1 |4 | —1.60 0.07
Fig. 2 Recovered graph Y5

\/
AN

Table 3 shows the relative importance according to AIC ranking (AIC-ranking
column) and the score calculated according to standard regression coefficients (SC
column). There are ten possible links for an undirected graphical model. According
to AIC ranking, the first link to be drawn in the tree is the link between variables
Y3 and Ys. The selected strongly decomposable graphical model is shown in Fig. 2.
It seems that ranking the links according to regression coefficients can give a more
information on the relative importance of each link. In fact, from column SC in
Table 3 we can see that regression-type graphical model would order the coefficients
almost in the same order as the original coefficients.

Y2
Y1
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3 Simulation Study

We perform a simulation study to compare the performance of graphical lasso to
decomposable graphical models, in terms of recovering of the graph. The support
recovery of the graph is evaluated by the following scores:

TP TP

PPR = —, Sensitivity = ———,
TP + FP TP + FN
and

_ (TP X TN) — (FN x FP)
~ /(TP < TN)(FN x FP)

MCC

where TP are the true positive, FP are the false positive, TN are the true negative
and FN are the false negative. The larger the score value, the better the classification
performance.

The “best” graph structures are estimated in terms of AIC (minForest-aic) and
BIC (minForest-bic) for the decomposable graphical models. Whereas, for the
graphical lasso we select the graph according to stability selection procedure [15].

We consider five models as follows:

* Model 1. A banded graph with bandwidth equal to 1;

* Model 2. A cluster graph where the number of cluster is about p/20 if p > 40
and 2 if p < 40. For cluster graph, the value 3/d is the probability that a pair of
nodes has an edge in each cluster;

* Model 3. An hub graph where the number of hubs is about p/20 if p > 40 and
2if p < 40;

* Model 4. A random graph where the probability that an edge is present between
two nodes is 3/ p;

* Model 5. A scale-free graph where an edge is present with probability 0.9.

We use the function huge . generator of the R package huge to generate these
graphical structures [16]. We keep the structure of the graph fixed and simulate
n = 100 independence samples from a multivariate distribution with © = 0 and
Y = K~! where zero elements in K are absent links. For each model, we generate
a sample of size n = 100 from a multivariate normal distribution We consider
different values of p = (10,30, 50, 100, 150) and 100 replicates. We report the
results for the support recovery of the precision matrix together with an example of
the graph structures of each of the five models in Appendix.

The main conclusion which can be drawn from the results reported in the tables
is that the strongly decomposable graphical model show, generally, comparable or
better performance both in lower and high-dimensional case. We would expect
minForest-bic have better results than minForest-aic but this doesn’t appear in
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our simulation study. The glasso-stars performs worse than minForest-aic and
minForest-bic for banded graphs and hub graphs. This could be due to the particular
structure of the graph and it should not be linked with the selection method. In other
words, it seems to be a limitation of the glasso.

4 Analysis of Breast Cancer Data

In this section we analyze a breast cancer dataset. The data come from a study
performed on 62 biopsies of breast cancer patients over 59 genes. These genes
were identified using comparative genomic hybridization. Continuous measures
of expression levels of those 59 genes were collected. In order to link gene
amplification/deletion information to the aggressiveness of the tumors in this
experiment, clinical information is available about each patient: age at diagnosis
(AGE), follow-up time (Surv.Time), whether or not the patient died of breast cancer
(C.Death), the grade of the tumor (C.Grade), the size of the tumor (Size.Lesion),
and the Nottingham Prognostic Index (NPI). C.Death is a dichotomous variable,
C.Grade is ordinal with three categories and NPI is a continuous index used to
determine prognosis following surgery for breast cancer. NPI values are calculated
using three pathological criteria: the size of the lesion; the number of involved lymph
nodes; and the grade of the tumor. The complete dataset results in 62 units and 65
variables.

Our aim is to find a network which may underline some important relationships
between the 65 variables. These variables comprise both gene expression levels
and clinical variables. We use the package gRapHD [17] to analyse the breast
cancer data. Firstly, the forest that minimizes the BIC is found by applying the
function minForest. This result in a quite simple graph with at last 64 links. A
more complex model can be found by applying the function stepw. This function
performs a forward search strategy through strongly decomposable models starting
from a given decomposable graphical model. At each step, the edge giving the
greatest reduction in BIC is added. The process ends when no further improvement
is possible.

Figure 3 shows the graph for the homogeneous strongly decomposable graphical
model applied to the breast cancer data with starting point a minimum BIC forest
with a link between C.Grade and C.Death. Black nodes indicate discrete variables
while grey nodes represent continuous variables. The graph in Fig. 3 indicates
that Gene 4 is the connection between Surv.Time, C.Death, C.Grade, NPI and
Size.Lesion and the gene expression levels. Gene 4 separates two blocks of genes
the one represented in the top part of Fig. 3 and the one represented in the bottom
part of the same figure. The other most connected genes are Gene 12 and Gene 49
with 8 and 9 nodes, respectively. C.grade and Size.Lesion are linked to NPI as we
expected and there is a short path between NPI and Survival time.
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Gene 13 Gene 28

Gene 19 \ /

\ Gene 44 ET0

Genet7 ~ Geneb \

Gene 10
W Gene 8
Gene 20 / Gene 14__ — Gene

Gene 11

Gene 36
\ __Gene3 ene Gene 52
T Gene 24 /s \ / Gene 27 /
Z Gene 9
\ / ~
Gene 12 AGE
Gene 38——=Gene 49.____
Gene 29 Gene 23
\ y Gene 5
Gene 26 Gene 3
NPI \
TSielesion
Gene 4
ene Gene 2
Gene 21
Gene 51 —
\ Gene 7 Gene 18
Gene 41 Gene 39— Gene 37 /
\ / \ Gene 42 Gene 43
Gene40  Gene 32 \ / /
Gene 54
>\ ono 1 Gene 46
ene
§ Gene 31— —
Gene 25— — 3 Gene 48

Gene 35— N —_—
Gene 22 =————— Gene 50

A Y AN

Gene 16 Gene 34
Gene 57 Gene 47

~
/ Gene 55

Gene 58

Gene 33

Gene 59

Gene 56

Fig. 3 Graph obtained by applying the homogeneous strongly decomposable graphical model to
breast cancer data with starting point a minimum BIC forest with a link between C.Grade and
C.Death. Black dot nodes indicate discrete variables while circle grey nodes represent continuous
variables

5 Discussion

In this paper, we have explored a class of graphical models, the strongly decompos-
able graphical models, which can be used to infer networks for high-dimensional
mixed data. Results from the simulation study shows comparable or better per-
formance in terms of graphs recovering with respect to graphical lasso. There are
some limitations. The first one is due to the assumption of decomposable models,
namely neither cycle of length more than 3 nor forbidden path can be estimated.
The second one is due to the distributional assumption. In fact, the conditional
Gaussian distribution cannot take into account dependence of a continuous variable
to a discrete one. So, careful attention should be paid during the analysis of real
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data. In the real data analysis, in which mixed data are present, we have shown
that a relation between gene expression levels and clinical conditions of the patients
seems to be present. We have not dealt with parameter estimation which is indeed
another challenge task for high-dimensional data. To conclude, the main advantages
of using strongly decomposable graphical models we have illustrated in this paper
are: (1) their feasibility for high-dimensional setting; (2) the facility to communicate
the results by showing the graph; (3) the possibility to catch patters in terms
of clustering, hubs, important variables from the conditional independent graph.
Moreover, regression-type graphical models can give some insight on the ordering
of importance for some of the regressors.

Appendix

See Fig. 4, Tables4, 5, 6,7, and 8

Fig. 4 Model structures from
which we generate data.
These graphs are described as
models in this section and are
named banded graph, cluster
hub, random and scale free.
All the graphs are sparse




12 A. Abbruzzo and A.M. Mineo

Table 4 Model 1—banded

glasso-stars | minForest-aic | minForest-bic
graph

p PPV
10 |88.88(23.81) |98.38 (4.14) |96.18 (5.77)
30 |67.55(5.31) |96.72(3.27) |94.06 (4.35)
50 |56.04(3.86) |95.69 (2.71) |93.16 (3.47)
100 [40.99 (1.92) |94.23(1.92) |91.35(2.52)
150 |32.23(1.25) |93.42(1.86) |90.53 (2.22)
Sensitivity
10 | 60.56 (35.57) |98.67 (3.63) |99.00 (3.20)
30 99.31(1.70) |97.03 (3.02) |97.24 (2.90)
50 199.49 (1.10) |95.84 (2.61) |96.00 (2.44)
100 |99.55(0.62) |94.40 (1.86) |94.63 (1.79)
150 |99.56 (0.50) |93.57 (1.84) |93.83 (1.70)
MCC
10 | 66.87 (27.41) |98.14 (4.77) |96.91 (5.02)
30 |80.38(3.63) |96.65(3.32) |95.30(3.58)
50 |73.38(2.84) |95.58 (2.76) |94.33 (2.86)
100 |62.91 (1.55) |94.20(1.92) |92.82(2.05)
150 |55.82(1.12) |93.41(1.87) |92.06 (1.88)

Table 5 Model 2—cluster glasso-stars | minForest-aic | minForest-bic

p PPV
10 90.50(29.04) | 90.98 (3.64) | 96.73 (4.57)
30 | 7429 (5.11) 79.99 (5.98) |77.77 (5.64)
50 |67.43(3.68) |82.37(4.26) |78.55(4.47)
100 |52.52(2.20) |73.99(3.94) |71.14(3.73)
150 |43.84 (1.51) |74.20(2.89) |71.60 (2.95)
Sensitivity
10 |10.75(6.90) | 56.25 (12.48) |93.00 (12.23)
30 |36.73(5.72) |27.24(2.35) [32.92(3.72)
50 |54.39(4.02) |31.27(1.73) |35.45(2.52)
100 |50.04 (2.31) |25.57(1.38) |28.85(1.63)
150 |52.63(1.98) |26.56(1.12) |29.36 (1.40)
MCC
10 |23.11(10.26) |57.90 (11.32) |91.23 (12.05)
30 |44.68 (4.55) |40.46(4.19) |43.78 (4.53)
50 |56.35(3.13) | 47.71(2.86) |49.41 (3.00)
100 | 48.30(1.96) |41.71 (2.41) |43.35(2.28)
150 |45.79 (1.48) |43.25(1.83) |44.61(1.89)
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Table 6 Model 3—hub

Table 7 Model
4—random[spaced
parenth - dt]

10
30
50
100
150

10
30
50
100
150

10
30
50
100
150

10
30
50
100
150

10
30
50
100
150

10
30
50
100
150

glasso-stars
PPV

89.54 (16.62)
65.20 (6.42)
51.22 (3.92)
35.98 (2.18)
28.38 (1.29)
Sensitivity
74.12 (31.99)
90.50 (6.28)
91.00 (4.51)
92.56 (3.20)
92.75 (2.53)
MCC

75.89 (22.22)
74.85 (5.05)
66.66 (3.56)
56.53 (1.97)
50.36 (1.56)

glasso-stars
PPV

92.40 (22.25)
68.28 (5.92)
62.82 (3.90)
48.74 (2.66)
36.80 (1.71)
Sensitivity
21.19 (10.09)
83.94 (5.82)
80.86 (4.76)
73.56 (3.68)
65.00 (3.17)
MCC

35.57 (11.24)
73.40 (4.74)
69.43 (3.73)
58.25 (2.71)
47.43 (2.09)

minForest-aic

88.14 (3.84)
84.73 (5.74)
79.59 (4.61)
75.73 (4.36)
73.95 (3.42)

98.88 (3.60)
88.57 (5.81)
83.64 (4.90)
79.60 (4.70)
78.09 (3.65)

91.84 (4.31)
85.68 (6.13)
80.84 (4.92)
77.19 (4.61)
75.67 (3.57)

minForest-aic

95.61 (7.02)
7775 (5.37)
81.79 (4.41)
74.87 (3.84)
62.68 (3.80)

54.25 (4.34)
69.09 (5.26)
61.88 (3.31)
46.54 (2.33)
38.41 (2.32)

63.06 (7.41)
71.24 (5.64)
69.78 (4.00)
58.00 (3.06)
48.21 (3.02)

13

minForest-bic

89.08 (8.42)
75.94 (6.05)
71.52 (4.78)
66.75 (3.56)
65.48 (2.87)

99.25 (2.98)
90.61 (5.46)
85.77 (4.78)
82.34 (4.61)
80.29 (3.90)

92.53 (6.18)
81.63 (5.46)
77.36 (4.55)
73.57 (3.88)
72.11 (3.20)

minForest-bic

90.15 (8.96)
79.31 (6.02)
79.96 (5.06)
71.91 (4.05)
60.62 (3.82)

57.31 (5.69)
72.00 (6.35)
62.88 (3.41)
47.39 (2.44)
39.19 (2.28)

61.32 (6.98)
73.61 (5.74)
69.48 (4.16)
57.29 (3.11)
47.84 (2.98)
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Table 8 Model 5—scale free

A. Abbruzzo and A.M. Mineo

glasso-stars | minForest-aic | minForest-bic
p PPV
10 9246 (23.94) |95.51(6.41) |88.63(9.22)
30 |68.44(7.04) |72.87 (8.67) |62.23(6.45)
50 |48.81(4.95) |54.98(7.87) |47.40 (4.47)
100 |27.23 (2.55) |33.57(5.44) |30.78 (3.49)
150 |17.75(1.78) |23.86 (4.06) |22.97 (3.12)

Sensitivity
10 |41.00 (24.96) |95.89 (6.25) | 96.56 (5.63)
30 |68.93(9.54) |73.97(8.84) |76.83(9.18)
50 |61.47(7.60) |55.67(8.14) |58.88 (8.98)
100 |51.39(6.03) |33.93(5.65) |37.40(6.51)
150 |45.70(5.99) |24.06 (4.11) |27.48 (5.00)

MCC
10 | 55.44 (22.77) |94.61 (7.79) |90.39 (8.27)
30 |66.28 (7.36) | 71.50(9.36) |66.65 (7.61)
50 |52.59(5.66) |53.45(8.33) |50.59 (6.40)
100 |35.67(3.78) |32.39(5.65) |32.43(4.83)
150 |26.98 (3.24) |22.93 (4.14) |24.01 (4.00)
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Rounding Non-integer Weights in Bootstrapping
Non-iid Samples: Actual Problem
or Harmless Practice?

Federico Andreis and Fulvia Mecatti

1 Introduction and Motivation

Bootstrap method is a popular tool for numerically estimating estimators accuracy,
constructing confidence intervals and determining p-values. In order to provide
reliable results, feasible adaptations of the basic bootstrap algorithm are required
to account for the non-iid nature of the sample data when they are collected
from finite populations by means of without-replacement complex sample designs.
Recent literature suggests the use of a weighting system in the resampling and/or
the estimation procedure [1, 3, 12]. Weights can be familiar sample weights such
as the inverse of unit inclusion probabilities as well as Hajek type or depending
on particular probability distribution, normally defined as ratios. Integer weights
would guarantee analytical properties of both the bootstrap procedure and of the
final bootstrap estimates (see Sect. 2 for details). However, this is seldom the case in
the applications. As a consequence integer-valued weights are an ideal conceptual
situation rarely, if not never, occurring in practice. Two suggestions recur in the
literature to deal with non-integer weights: (1) randomization and (2) systematical
rounding. Randomization would require a further step added on top of the boostrap
algorithm, thus affecting its computational efficiency. This step can be avoided by
rounding non-integer weights to the nearest integer, according to some systematical
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18 F. Andreis and F. Mecatti

rule [2, 6]. Both solutions affect the Bootstrap process as well as the final boostrap
estimates to an unknown extent; moreover, they violate basic Bootstrap principles
such as the mimicking principle and the plug-in approach as it will be explained in
Sect. 2 (see also [9] for an extended discussion of Bootstrap principles).

In this work we concentrate on rounding for dealing with non-integer weights
as the computationally preferable option, our main aim being to produce empirical
evidence of the extent of its effects. As a first investigation of the magnitude of the
rounding effect on the Bootstrap process, we have focused on the estimation of the
variance of the Horvitz-Thompson (HT) estimator for the mean of a study variable
through an extended simulation exercise.

In Sect. 2 we describe the Bootstrap algorithm we have focused on, applying to
samples from a finite population under a general without replacement design, and
discuss the two most used rounding methods suggested in the literature in order to
obtain an integer weights system. In Sect. 3 we outline the design of the simulation
study, with a detailed description of the computational and numerical expedients
implemented in order to simulate comparable scenarios. Particular attention has
been given to the construction of ideal, though scarcely realistic, integer weights
scenarios to be used as a benchmark for comparison with more realistic non-integer
weights scenario where some sort of rounding would be unavoidable. Results from
the simulation study are presented in Sect. 4 and discussed in Sect. 5. Section
“Conclusions” concludes the work with some final remarks.

2 Bootstrapping from Non-iid Sample Data

We focus on samples of fixed size n selected without replacement from a finite
population U = {l,...,k,..., N} under a general random design where each
population unit is assigned a specific probability m; to be included in the sample.
We adopt the popular approach based on weighting each sampled unit by the inverse
of its own inclusion probability 7, !"in order to produce an empirical population
U* where to perform resampling [10]. The pseudo-population U*, usually named
the Bootstrap population [4,5, 8], is intended to mimick the parent population U
according to fundamental Bootstrap principles such as the mimicking and the plug-
in [9]. According to the same principles, the resampling plan should mimick the
original sampling design. As a consequence, the creation of U™, the resampling and
the final estimates produced by the Bootstrap process depend on the weights 7, !
whether integer or to be rounded.

2.1 Bootstrap Algorithm

Let s denotes the original sample, fixed at its observed values. In the following,
the popular star-notation * will be used to denote Bootstrap objects and quantities.
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A non-iid Bootstrap algorithm, according to the Bootstrap population approach and
basic mimicking principle, is composed by the following four steps:

1. Bootstrap Population step: construct U* by replicating (a chosen number) dj
times each sampled unit k € s;

2. Resampling step: select a Bootstrap sample s* from U * under a resampling plan
mimicking the original design and with the same size n* = n;

3. Replication step: on the Bootstrap sample s*, compute a replicate of the original
estimate computed on the original sample s, i.e. if # = #(s) is the study estimate,
thus t* = 7(s*) defines its Bootstrap replication;

4. Bootstrap Distribution step: iterate steps 2. and 3. a number B of times, chosen
sufficiently large, resulting in the Bootstrap distribution 1", ..., %, ... 1.

Owing to the mimicking principle, the Bootstrap distribution is assumed as a
Monte Carlo simulation of the original estimator distribution, to be used for variance
estimation and for producing p-values and confidence intervals.

Still according to the mimicking principle, a natural choice at step 1. for the
frequency dj of each sampled unit k € s in U*, is dx = ;' [10], although
such a choice is unlikely to produce integers number, as discussed in the following
subsection.

The actual construction of the set U™* at step 1. can be avoided, with significant
computational advantages, by generating n values from a suitable probability
distribution [3]. This method is based on the proven equivalence between the above
bootstrapping scheme and weighting the units k € s by B random draws from
a suitable probability function depending on the original sampling plan to be
mimicked by the Bootstrap process [12]. We then exploit this technique for our
simulative exercise.

2.2 Rounding Problem

As pointed out above, the weights dj are usually not integer: for this to happen, in
fact, rx € QT shoud hold Vk € 5. As a consequence, in most practical cases, some
device to recover integer weights dy substituting dy = 7, ! needs to be adopted
in order to actually implement the Bootstrap algorithm previously outlined. Notice
that this would be needed as well for implementing any of the non-iid bootstrap
algorithms based on a weighting system such as the ones cited in the Introduction.
The main methodologies suggested in the literature are based either on randomiza-
tion or systematic rounding. The first option might compromise the computational
efficiency of the entire process since it requires a further randomization step on top
of the Bootstrap algorithm to perform »n random trials in order to select a working
Bootstrap population in a class of possible 2" candidates [2]. In this paper two
popular devices to obtain integer weights have been considered:

1. by means of nearest integer rule [2,6];
2. by means of a Binomial distribution [5, 10].
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The first approach is a systematic rule, whereas the second is a randomization
procedure (thus, computationally more demanding).

Nearest integer rounding (1) is the simplest of the two methods: the weights
are rounded according to the rule dy = |dx + 0.5], where | | denotes the floor
function, i.e. |[a] = max{b € N : b < a}; this method is computationally efficient
since it does not require any additional randomization step on top of the Bootstrap
algorithm.

Rounding by means of a Binomial distribution (2) requires to obtain a realisation
of a Bernoulli random variable for each k € s and to adjust the weights according
to the rule

J = L dk | with probability 1 — (dy — |dk])
“T1lde] +1  with probability dy — |dg].

The special case of a symmetric Binomial distribution has also been considered,
where each probability is kept constant and equal to 0.5. This approach (that can
be traced back to the first proposal by Chao and Lo [5]) seemed to be the most
natural (and simple) when applying a randomization procedure, and for this reason
we have included it in our simulation. However, this special case will not be further
discussed and no specific results regarding it will be shown in Sect. 4, for, besides
its simplicity, no particularly interesting conclusions could be derived from it.

2.3 Sampling Schemes

Two largely applied selection schemes have been considered, both with fixed size
and without replacement (see for instance [1] for details):

1. Simple Random Sampling (SRS) with constant inclusion probability 7y = n/N
for every population unitk = 1,..., N;

2. Conditional Poisson Sampling (CPS), also known as Maximum Entropy, with
unequal inclusion probability (exactly) proportional to a positive auxiliary
variable x assumed totally known, i.e. 7wy = nx;/X where X = ZLI X 1S the
population auxiliary total. In a typical practical example the auxiliary variable
x represents a measure of size of population units so that this kind of sampling
is usually referred to as (inclusion) probability-proportional-to-size (7w PS). It is
well known that 7PS designs might be significantly more efficient than equal
probability sampling as the relation between the study and the auxiliary variables
approaches proportionality. CPS is an easy to implement, sequential method for
selecting wPS samples of fixed size.

Notice that, for the case of SRS, rounding affects but a single value, i.e. N/n
which is the same for all units~ in U, and a unique control total, the Bootstrap
population size N* = >, . di, generally different from the actual population
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size N for non integer dy = N/n. In the case of CPS the effect might be more
severe, since the need for rounding may occur for multiple values, namely from 1
to n Bootstrap weights di. Moreover, in this case rounding would affect two control
totals, both the Bootstrap population size N * and the total of the auxiliary variable
X* which can severely depart from the corresponding actual population counts N
and X, thus compromising the aim for U* of mimicking U.

In order to build toy examples in both cases, numerical methods have been
developed to find suitable sets of inclusion probabilities leading to integer weights,
to be used as ideal situations in which the rounding problem (detailed in Sect. 2.2)
does not arise. These toy examples will constitute the benchmark cases in the
simulation study, for comparisons with the realistic practical cases of rounded
weights. The methods we developed to produce them are outlined in Sect. 3.2.

3 Simulation Design

Desirable estimators’ properties conceptually granted by the Bootstrap procedure
are influenced by the rounding method employed to obtain integer weights. In order
to evaluate the extent to which Bootstrap-based inference is affected and how, an
extended simulation exercise is set up: a population variable y is generated from a
Gamma distribution, allowing to investigate various scenarios, in which the level
of variability of y (as measured by its coefficient of variation cv,) varies and
different departures from the ideal situation of integer weights (where no rounding
is needed) are considered. These departures are induced by increasingly stronger
perturbations on the population set of inclusion probabilities 7. This would result
in a negligible alteration of the population size in the SRS or in an additive noise
randomly distributed over the set {7,k = 1,..., N) in the CPS.

As a first, simple attempt at investigating the impact of each of the two rounding
methods presented in Sect. 2.2, we focus on the Horvitz-Thompson estimator for
the mean of y, denoted ygr. A set of Monte Carlo indicators is provided for each
simulated scenario with the purpose of investigating the rounding problem under
the following respects:

1. the mimicking principle: by evaluating distances between the nominal and the
post-rounding characteristics of the Bootstrap algorithm, particularly on known
population totals and size as compared to Bootstrap populations counts;

2. basic Bootstrap algorithm properties: particularly the Bootstrap unbiasedness [2]
as measured by Monte Carlo expectation over yyr estimates computed on both
the original sample and the collection of Bootstrap samples;

3. inferential properties of the final Bootstrap estimates for the variance of the HT
estimator, such as biasedness and stability as measured by Monte Carlo relative
bias (RB) and relative root mean square error (RRMSE).
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The following Monte Carlo measures, pertaining to each of the previous four points,
are computed:

1. population totals percentage relative bias (RB)

%RBy = wloo 0
%RBy = ELEZEN=X 1

2. Bootstrap unbiasedness
BIASpoor := E[E*(Vpr) — Vurl; (2)

3. percentage relative bias and root mean squared error (RRMSE) of the final
variance Bootstrap estimate

. EV*Gip)=VGur)l
%RBy = LG Tl 1o

%RRMSEy = \/ E{[V*(;V;Z;;TT(;HT)]Z} 100

3

where N* = Y, ., di. X* = Y1, di x; and the expected values E are taken over
the simulation runs, while E* over the Bootstrap replications; V(yyr) denotes the
estimator variance (as to be estimated via Bootstrap).

All the computations are carried out in R 3.0.2 [11]; the packages sampling
and BiasedUrn [7] are respectively employed to select unequal-probability samples
and to generate values from a non-standard distribution involved in the CPS case,
the Fisher’s Noncentral Multi-hypergeometric distribution (FNMHyg). Indeed, as
shown in Ranalli and Mecatti [12], resampling from a CPS design is equivalent to
resampling directly from the sample s by weighting each observation by random
variates from a FNMHyg distribution (with proper choices of the parameters), thus
avoiding the actual construction of the Bootstrap population U*, which yields a
sensitive computational benefit.

3.1 Simulated Scenarios

In order to simulate an assorted range of realistic cases, an asymmetric, positive
study variable y, following a Gamma distribution with shape parameter @ > 0 and
scale parameter 6 > 0 is chosen as population variable. It follows that E(y) = a0,
Var(y) = a6? and cvy = «/W/a@ = 1/4/a. The mean of y, as the population
parameter to be estimated, is set to a constant value across all scenarios, specifically,
E(y) = 10, the population size is N = 600 and the total X of the auxiliary variable
is set equal to 1,000.
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Fig. 1 Gamma densities
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Figure 1 depicts the Gamma densities with fixed mean E(y) = 10, resulting at
the different cv, levels in Table 1, used in the simulation.

For both SRS and CPS, each scenario is characterized by the three simulation
parameters:

1. sample size (n);

2. population variability (cv, );

3. level of departure from the ideal integer-weights case, as simulated by the
suitable toy example

as summarized in Table 1.

In order to investigate point 1, two sample sizes have been chosen, resulting in
sampling fractions of exactly 5 % and 2.5 % for CPS and approximately so for SRS,
where they are kept within a tight range, specifically 5 + 0.2 % and 2.5 £ 0.1 %.
Notice that larger sample sizes were not included due to computational limitations
of the packages employed to implement the Bootstrap procedure. Specifically, the
BiasedUrn package imposes a working maximum of n = 32 in order to retain both
a good level of accuracy in random variates generation and an acceptable execution
time. Notice that the core routines for generating from the FNMHyg distribution are
written in C and appear to be reliable, so this seems not be a language-dependent
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issue, rather more general, due to the computational burden of dealing with such a
complex distribution. Possible workarounds, to overcome the n = 32 limitation, are
currently under consideration.

Regarding point 2, suitable values of the parameters of the Gamma distribution
are selected so to obtain a range of cv, leading from low to high population
variability, in order to investigate the performance of the bootstrapping procedure
under different variability situations. This is accomplished by setting a = cv;z, 0 =
vy E(y).

Finally, for what concerns point 3, departures from the ideal integer-weights
case are obtained inducing an increasing level of perturbation on the inclusion
probabilities 7x, k € U. For SRS, this is achieved by means of small systematic
modifications to the population size N, leading to the slight departure from
the stated sample fractions described above, together with suitable element-wise
deletions from U in order to retain the chosen population mean and (relative)
variability dictated by each scenario. The aim of this perturbation is to force
the constant inclusion probabilities to have inverses (the di) with decimal places
either below (0.33), above (0.67) or exactly equal to 0.5, so to provide different
situations where the two rounding methods might, at least theoretically, perform
differently. A total of six modifications to N (three upwards and three downwards)
are considered to this end for each sample size: {£5, £8, £10} when n = 15, and
{£10, £15, £20} when n = 30.

For what concerns CPS, an additive random noise on an increasing fraction of
the mys is introduced. This procedure can be summarized as follows:

1. set the fraction p of inclusion probabilities to be perturbated (in this simulation
study, p € {25 %, 50 %, 75 %, 100 %});

2. randomly extract a fraction p of the population units;

3. perturbate the extracted units’ inclusion probabilities by adding to half of them
(randomly chosen) a fixed term § while subtracting it from the remaining half.
We choose § so to ensure that the new (perturbated) inclusion probabilities 7y
lie in (0, 1); moreover, adding and subtracting the same quantity grants that

dokev Tk =N =D pey Tk

In this way we obtain a new set of population inclusion probabilities that leads to
non-integer weights and differs from the ideal integer-weights case in a way that
can be measured by means of any distance (e.g., the Euclidean distance) calculated
between the vector of the original 7x and the vector of the perturbated 7y ; any
such distance will be increasing in p. The population values {x;,k = 1,..., N} of
the auxiliary variable are then re-computed on the basis of the perturbed inclusion
probabilities 7y in order to retain the population total X .

This simulation settings yield a total of 48 scenarios for SRS and 32 for
CPS, intended to explore the effect of rounding practice by varying sample size,
population variability and extent of rounding; 45,000 simulation runs for each
scenario, with each bootstrapping step being replicated B = 2,500 times have
been performed. The Monte Carlo error on the mean and variance of ygr, are kept,
respectively, under 0.5 % and 3.0 %, as measured against the known true values.
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3.2 Toy Examples Probabilities

In order to construct the ideal situation of integer-weights for both simulated
sampling designs SRS and CPS, we need to obtain suitable inclusion probabilities,
given the sample size n and the population size N, that is, we are looking for some
probabilities g; such that qk_1 € NT,Vk and Z]]Ll qr = n. We describe two
possible solutions that are suitable to our purpose.

I g =q,Vk
This assumption allows to immediately obtain the inclusion probabilities for
the SRS toy example, upon setting 7y = ¢ = 4 and under the constraint that N
modn = 0.
IT g € {q1, ¢}, i.e., two distinct values are allowed
S gk = i+ X g = Nigi + Nago.
Setting this quantity equal to 7 and requiring that N1+ N, = N and g; IN; €
NT,i = 1,2, we obtain the following system:

n
N.

{Nl(h + N2>
N+ N,

To find gy, g2, N1, N, that respect the aforementioned constraints is a problem
that does not admit an analytical solution: numerical methods are therefore
required. One might decide, given N and n, to solve the system for N; and N>,

Nl — Ngr—n
q2—41

{N — "—quil
2 9241

and then check, by brute force, which pairs of values among a (finite) set of
proposals {%, %, ey ﬁ} € Q™ constitute a suitable choice for {¢, ¢»}, i.e. yield
integer N, N, (for simplicity, we willingly choose not to let any of the k units
have inclusion probability equal to 1). This method can yield multiple acceptable
pairs to be used to build a toy example for CPS; more than one pair can be
employed, collectively, in order to obtain a scenario with more than two distinct
inclusion probabilities. In fact, we employ this procedure to obtain four different
pairs, which we use in the simulation scenarios for CPS, leading to a total of
eight distinct inclusion probabilities that satisfy the requirement of having integer

inverses and lead to the desired sample size n.

Table 2 summarizes the values of N; and m;, obtained with the method described
above, that have been used in the simulation study when n = 30 (for the case
n = 15, the same probabilities, divided by two, have been employed). Clearly, for
SRS we have i = 1, i.e. all the inclusion probabilities are equal, while for CPS we
selected, as already said, eight distinct values, thus we havei = 1,...,8.
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Table 2 Inclusion SRS | CPS
probabilities for the toy N 1600 |75
examples !

{1/11.1/12.1/14.,1/15,
m |1/20 1/30.1/35.1/60,1/110}

n=15
n=30

cv=15 ! : cv=3.0

Fig. 2 How to read the tables of simulation results

4 Empirical Results

This section contains the results of the simulation study with respect to the Monte
Carlo quantities of interest defined in Sect. 3. The results are presented separately
for SRS (Tables 3 and 4 in Sect. 4.1) and CPS (Tables 5 and 6 in Sect. 4.2). Within
each case two tables are provided, that collect the outcomes for systematic (Tables 3
and 5) and randomization-based rounding methods (Tables 4 and 6), as presented
in Sect. 2.2. The tables are structured to contain results from all the scenarios as
follows: each main quarter collects the results for a different level of population
variability, while each cell contains two rows, one for each considered sample size,
as shown in Fig. 2.

Each row header labels the specific quantity reported, while each column header
indicates the level of departure from the reference situation, i.e. the toy examples
with integer weights, as described in Sect. 3.1.

4.1 Equal-Probability Sampling (SRS)

Tables 3 and 4 contain the results of the simulation study for, respectively,
systematic rounding and randomization-based (binomial) rounding under the SRS
design. The column headers report the decimal places of the weights dj in the
integer case (0.00) and for three out of the six perturbations we have considered
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Table 3 SRS—systematic rounding

dy — Ldi]
%RBy

BIAS poor
%RBy
%RRMSE
%RB N
BIAS oot
%RBy

J%RRMSEYy

0.00

—6.83
—2.95
273.72
137.68

0.33
—0.83
—1.64
—0.08
<0.01
—8.36
—3.53

55.61
27.80
—0.83
—1.64
—0.08
<0.01
—8.20
—3.06

271.64
138.04

0.50
1.15
—2.44
0.11
<0.01
—4.48
—3.19
57.35
28.05
1.15
—2.44
0.11
<0.01
—3.72
—3.15
281.85
138.46

0.67
0.82
1.61
0.08

<0.01
—4.72
—2.74
57.15
28.35
0.82
1.61
0.08
<0.01
—5.02
—3.14
279.99
138.40

Table 4 SRS—randomization-based rounding

dy — Ldi]
9%RB y

BIAS oot
9%RBy
%RRMSEy
%RBy
BIAS poor
%RBy

%RRMSEy

0.00

0.33
<0.01
<0.01
<0.01
<0.01
—6.72
—3.09

56.29
27.96
<0.01
<0.01
<0.01
<0.01
—6.62
—2.79

275.99
138.72

0.50
<0.01
<0.01
<0.01
<0.01
—6.56
—2.64

56.69
28.29
<0.01
<0.01
<0.01
<0.01
—5.89
—2.85
276.03
139.39

0.67
<0.01
<0.01
<0.01
<0.01
—6.20
—2.46

56.58

28.49
<0.01
<0.01
<0.01
<0.01
—6.64
—3.01

275.77
139.14

—6.87
—3.35
1,104.56
554.33

—6.87
—3.35
1,104.56
554.33

0.33
—0.83
—1.64
—0.08
<0.01
—8.48
—3.35
128.63
65.60
—0.83
—1.64
—0.09
<0.01
—7.5
—3.16
1,093.16
561.11

0.33
<0.01
<0.01
<0.01
<0.01
—6.85
—3.04
130.45
66.06
<0.01
<0.01
<0.01
0.01
—5.84
—2.95
1,113.50
564.03

0.50
1.15
—2.44
0.11
<0.01
—4.46
—3.32
134.36
65.77
1.15
—2.44
0.12
<0.01
—3.42
—2.90
1,134.93
560.21

0.50
<0.01
<0.01
<0.01
<0.01
—6.57
—3.03
132.10
66.08
<0.01
<0.01
<0.01
<0.01
—5.54
—2.60
1,112.43
564.03

27

0.67
0.82
1.61
0.08
<0.01
—4.74
—3.09
133.52
66.50
0.82
1.61
0.08
<0.01
—4.36
—2.51
1,132.11
559.98

0.67
<0.01
<0.01
0.01
<0.01
—6.22
—2.95
131.92
66.79
<0.01
<0.01
<0.01
<0.01
—5.94
—2.51
1,114.28
561.24

(0.33, 0.50, 0.67), as described in Sect. 3.1; specifically, we show only the upward
deviations from N = 600, since no difference in absolute value has been observed
with respect to the quantities of interest when considering the downward ones.
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Table 5 CPS-systematic rounding
perturbation | 25 % 50 % 75 % 100% | 25% 50 % 75 % 100 %

%RBy 0.01 0.40 |—0.46 0.36 0.09 0.11 0.44 0.42
—0.13 |—030 |—036 |—0.26 0.04 [—0.10 0.08 |—0.04

%RBy 0.16 0.36 0.60 0.58 0.17 0.36 0.46 0.65
—0.08 |—0.12 |—0.18 [—032 [—007 [—0.11 [—0.13 |—0.17

BIASbo0r 0.12 0.07 0.06 0.10 0.10 0.14 0.08 0.08
0.16 0.18 0.19 0.21 0.22 0.19 0.25 0.19

%RBy 1.15 1.21 1.22 1.30 111 1.35 1.26 1.32
1.57 1.83 1.96 1.84 1.18 1.68 1.90 1.85

%RRMSEy 1.23 1.34 1.39 1.58 1.53 2.28 1.94 2.27
1.87 2.66 3.04 2.88 1.58 2.98 3.67 3.59

%RBy 023 |—0.02 0.31 0.35 0.27 0.06 0.38 0.53
—0.14 005 |—029 |[—o0.11 |—0.11 |—014 |—024 [—0.23

%RBy 0.14 0.36 0.49 0.71 0.19 0.29 0.41 0.65
—0.03 |—020 |—0.17 |—030 |—003 |[—020 [—021 |—0.19

BIAS poor 0.15 0.18 0.13 0.24 0.23 0.12 0.13 0.18
0.16 0.05 0.12 0.30 032 |<0.01 0.37 0.24

%RBy 1.17 1.33 1.22 1.08 1.38 1.58 1.47 1.44
1.58 1.92 1.94 1.65 1.86 2.16 1.65 1.77

%RRMSEy 2.29 3.02 2.28 2.04 3.73 7.92 5.48 4.69

3.24 6.08 4.99 3.45 7.37 13.93 5.38 6.45

4.2 Unequal-Probability Sampling (CPS)

Tables 5 and 6 contain the results of the simulation study for, respectively,
systematic rounding and randomization-based (binomial) rounding under the CPS
design. The column headers report the extent of the perturbation induced on the
inclusion probabilities, from 25 % to 100 %, as described in Sect. 3.1. Both Tables 5
and 6 do not report results concerning the benchmark case of all integer weights, i.e.,
dp = dy = 7 ', Vk € s, which are in fact redundant since (1) the bootstrapping
algorithm outlined in Sect. 2.1 grants that X* = X holds when the weights dj
are integers, hence always yielding %RBy = 0, as expected; and (2) the quantities
%RBy and BIASy,, [defined, respectively, in Egs. (1) and (2)] resulted negligible
under every scenario. Moreover, unlike for Tables 3 and 4 in the previous subsection,
in both Tables 5 and 6 the results concerning relative bias (%RBy ) and relative root
mean square error (%RRMSEYy ) of the final Bootstrap estimate of V(ygr), are now
expressed as ratios between the perturbated scenario and the reference case, showing
in this way the relative trend of the rounding effects as the departure from the ideal
integer-case increases.
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Table 6 CPS—randomization-based rounding

perturbation 25 % 50 % 75 % 100 % 25 % 50 % 75 % 100 %

%RBy —0.05 0.15 |024 |0.15 0.09 |—0.18 [043 |[0.15
0.28 054 091 120 0.67 033 [1.00 |[133
%RBy 0.07 |—0.03 [023 |03 0.16 |—0.07 |041 027
0.52 .07 |[161 |18 0.78 047 [1.14 |18
BIASbo0r 0.12 0.09 [007 |0.10 0.12 0.13 009 0.10
0.15 0.18 |0.15 |o0.14 0.22 021 [023 0.5
%RBy 1.15 120 122 130 111 135 |126 131
1.58 1.84 197 |185 1.18 1.68 [1.90 [1.85
%RRMSEy 1.23 133 138 |1.58 1.53 228 |1.94 |227
1.88 267 [3.05 290 1.58 298 3.67 | 3.60
%RBy —0.02 |—0.16 |0.12 |0.02 029 |—006 |018 023
0.22 0.84 |036 151 —0.07 071 [128 |1.06
%RBy —0.2 011 |022 o2l 0.19 013 |012 024
0.51 0.96 |07 1.96 —0.02 061 [127 |1.63
BIAS poor 0.16 0.19 |o016 026 0.19 010 |012 o021
0.16 0.02 |008 030 031 [—003 [040 026
%RBy 1.17 133 122 |1.08 1.38 158 |147 144
1.58 193 [1.95 |1.65 1.87 216 |1.64 |1.77
%RRMSEy 2.29 3.02 [227 204 3.73 7.92 [548 |4.69
3.24 6.08 [501 [345 738 | 1393 [536 644

5 Discussion

In what follows, we discuss the most interesting conclusions that could be derived
from the simulation study described in Sect. 3, whose results were presented in
Tables 3, 4, 5, and 6. Once again, we separate the two sampling designs with
equal and unequal inclusion probabilities (respectively, SRS and CPS, defined in
Sect. 2.3), in order to better highlight the most significant differences we found in
their respect regarding the Monte Carlo quantities defined in Egs. (1)-(3).

SRS—Tables 3 and 4

b %RBN

— integer-weights case: as expected, no bias was detected on the estimation of
N by N*;

— systematic rounding: (small) bias was found, that worsen proportionally with
sample size. This makes sense due to the nature of the sampling design, since
it shows that more observations lead to a propagation of error on the estimation
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of N by N*, irrespective of population variability (all inclusion probabilities
are equal). The worst bias has been observed with decimal places 0.50 (which
constitutes, in this case, the maximum extent of rounding);
randomization-based rounding: the bias on estimation of N by N* was
found to be negligible, irrespective of population variability, sample size
and extent of rounding. Randomization seems, then, to grant an unbiased
estimation of the population size N. This effect might be, however, expected
to increase with higher sample sizes.

° BIASboor

integer-weights case: as expected according to theory, Bootstrap unbiased-
ness is granted;

systematic rounding: negligible bias was found, that reduces even more
with sample size. Bootstrap unbiasedness seems to be attained, regardless of
population variability and extent of rounding;

randomization-based rounding: randomization helps attaining Bootstrap
unbiasedness even faster than systematic rounding. BIAS,,, appears to be
negligible irrespective of sample size, population variability and extent of
rounding; such results is in line with the theory (see, e.g., [5]).

° %RBV

integer-weights case: a moderate level of relative bias of the Bootstrap
variance estimator is present, regardless of population variability; this bias
has been observed to be always negative, i.e. leading to an under-estimation
of the quantity of interest. It would appear, however, that some improvement
is observed proportionally to sample size;

systematic rounding: we observe an overall moderate %RBy that improves
when sample size increases, regardless of population variability and extent of
rounding, aligning with the results of the reference case;
randomization-based rounding: the results are in line with those obtained
in the systematic rounding case.

* %RRMSEy

integer-weights case: %RRMSEy strongly increases, as might be expected,
with population variability, and decreases proportionally with sample size;
systematic rounding: the results are comparable to those obtained in the
reference case;

randomization-based rounding: the results are comparable to those obtained
in the reference case.

Overall, there seems to be no relevant effect of rounding when dealing with

SRS,

neither with respect to rounding method (systematic vs randomization) nor

to the extent of rounding itself (dx — |di]| assigned to 0.33,0.50 or 0.67). The
only significant difference seems to concern the mimicking of population size N by
N*, for which the systematic approach yields a small bias; this, however, does not
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seem to affect the other quantities relevant to rounding. Systematic rounding would
therefore seem to constitute the preferable option, due to the observed equivalence
with the randomization-based approach in terms of simulation results, and being
computationally less demanding.

In conclusion, the simulation study shows a negligible rounding effect for SRS,
where a single weight dy = 7 ! = N/n and a single population count N =
> res di are concerned.

CPS—Tables 5 and 6

° %RBN

— systematic rounding: an overall negligible bias in estimating N by N*
was found, irrespective of population variability, sample size and extent of
perturbation. The worsening effect for increasing sample size observed in SRS
does not appear here, maybe due to the random nature of the perturbation,
possibly compensating for a systematic propagation effect induced by the
rounding;

— randomization-based rounding: bias, if overall negligible, seems to exhibit
some sort of dependence on sample size (analogous to the one observed with
SRS) and extent of perturbation; it appears that the higher the amount of
rounding needed, the higher the bias in estimation of N becomes (still, always
under a maximum in absolute value of 1.51 %).

b %RBX

— systematic rounding: we observe an overall negligible bias, irrespective of
population variability, sample size and extent of perturbation. There seems,
however, to be some sort of improvement proportional to sample size on the
estimation of the population total X by X*;

— randomization-based rounding: we find overall small bias, irrespective of
population variability. Larger sample sizes tend to yield greater bias, which
might be due to some rounding error propagation effect. Moreover, it would
appear that bias in estimation of X is proportionally related to extent of
rounding, meaning that it appears to lead to worse departures from the
reference situation of integer-weights (to a maximum percentage relative bias
of about 2 %).

* BIAShoor

— systematic rounding: the bias shows to be negligible under all scenarios,
irrespective of population variability and extent of rounding. It does seem,
however, to grow with sample size when variability is low (cv, € {0.5,1.0});

— randomization-based rounding: the randomization procedure leads to con-
clusions analogous to those for the systematic rounding: we observe overall
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negligible bias regardless of population variability and extent of rounding. It
seems, again, to be growing with sample size when variability is low.

° %RBV

— Asobservedin the SRS case, %RBy grows steadily with population variability
and has negative sign, indicating a persistent under-estimation of the true
variance of ygr;

— systematic rounding: the ratio of %RBy for systematic rounding over %RBy
for the reference situation is consistently higher than one, suggesting a
significant increase in relative bias of variance estimation when rounding is
needed: the effect is particularly evident with respect to the larger sample size
considered (n = 30), where all the ratios are higher, leading to double bias
in one scenario. Figure 3 visually depicts this behaviour: on the x-axes we
represent the extent of perturbation (and, thus, of the needed rounding), while
on the y-axes %RBJ"" | %RB*" " is reported;

— randomization-based rounding: with respect to %RBy, randomization per-
forms almost identically as compared to the systematic rounding under every

cv=0.5 : - cv=1.0

- - n=t15
— 0=30

0% 25% 50% 75% 100%o 0% 25% 50% 75% 100%
S -
T T T T 1 T T T T 1

0
o

cv=1.5 2’ — ov=3.0

Fig. 3 Systematic rounding vs no rounding %RBy ratios—perturbation level on the x-axes
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cv=0.5

— =30

0% 25% 50% 75% ’IOO%O |
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50%

75% 100%

<

cv=3.0

Fig. 4 Systematic rounding vs no rounding %RRMSE ratios—perturbation level on the x-axes

scenario. Notice that this is in agreement with other simulation studies
[2, 6] thus confirming that randomization can be avoided in favour of a

computationally more efficient systematic rounding.

* %RRMSEy

— Again, as observed in the SRS case, %RRMSE) grows steadily with popula-
tion variability, indicating, as might be expected, increasing instability of the
Bootstrap variance estimate as the population variability increases;

— systematic rounding: the effect of systematic rounding becomes particularly
evident here, and increases substantially with sample size and population
variability. %9RRMSEy reaches values as high as 14 times higher when
rounding has to be applied, even in presence of a moderate (50 %) departure
from the reference case when n = 30 and cv, = 3.0. There appears not to be
a general recognizabile pattern related to the extent of perturbation, seemingly
indicating an overall severe rounding effect. Figure 4 depicts this behaviour:
on the x-axes we represent the extent of perturbation, while on the y-axes we
report the value of the ratio %RRMSE}" """ %RRMSE;ef erence,
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— randomization-based rounding: with respect to %RRMSEy, as was the case
for %RBy, randomization performs almost identically as compared to the
systematic rounding under every scenario.

Overall, we observe a significantly different scenery as compared to the previous
SRS equal-probability case. Although slight and negligible with respect to the
Bootstrap algorithm characteristics, i.e. the ability of matching population totals
and first-moment, the rounding effect is remarkable on the inferential properties
of the final Bootstrap estimate. Specifically, %RBy and %RRMSEy reveal both
rounding approaches (systematic and randomization) to have a severe impact that
critically inflates bias and instability of the Bootstrap variance estimation. As a
consequence, empirical evidence clearly indicates the practice of rounding under
unequal-probability CPS as critically affecting the Bootstrap process. A reason for
this, conflicting with the equal-probability SRS case, is the fact that when unequal
inclusion probabilities are involved, the rounding affects a larger set of crucial
Bootstrap quantities, namely 1 to n weights dy = 'k € s and two population
counts, the size N* and the auxiliary total X *.

Conclusions

In this paper we have investigated the effect of the popular practice of
rounding non-integer weights as it is usually the case in bootstrapping
complex samples from finite populations. In particular, we have focused on
analyzing its impact on the properties of non-iid Bootstrap methodology for
estimating the variance of the Horvitz-Thompson estimator for the mean.
An extended simulation study, aimed at providing evidence under various
experimental conditions, has been set up. Numerical devices, specifically
developed to obtain benchmark scenarios to which compare the results of
rounding have been described.

The simulation results clearly indicate that using rounding (both
randomization-based and systematic) in bootstrapping samples under a SRS-
equal probabilities design might be considered a harmless practice, at least
when considering a simple linear estimator such as yg7. Indeed, no significant
effects have been detected with respect to violations of the mimicking
principle, to basic Bootstrap algorithm properties nor to inferential properties
of the final Bootstrap estimates.

Vice versa, under the more complex CPS-varying probabilities design,
some relevant issues arise. While basic properties of the Bootstrap algorithm
result only marginally affected, a severe effect was detected for what concerns
the properties of the Bootstrap estimates for the variance of ygy finally
provided by the algorithm. Particularly, the relative bias in matching the
population totals N and X by, respectively, N* and X*, seems to be
acceptable and Bootstrap unbiasedness appears as satisfied. On the other hand,

(continued)
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relative bias and relative root mean square error for the variance estimate,
regardless of the employed rounding method, clearly show to suffer an
overall significant increase (meaning greater instability) as compared to the
benchmark ideal integer-weights scenarios. This leads to the conclusion that,
even in the presence of a simple estimator such as ygr, rounding induces
an actual problem in bootstrapping non-iid samples when the inclusion
probabilities are not all equal.

This suggests more research on the topic. In particular we deem worth of
attention: (1) the investigation of the rounding effect when dealing with more
complex estimators such as semi-linear or non-linear; (2) further investigation
of the rounding effect also contemplating Bootstrap confidence intervals;
and (3) the developing of alternative bootstrapping algorithms possibly not
requiring integer weights as an alternative to existing methods based on
rounding on a routine basis as discussed in this paper. This could be prompted
by the innovative framework proposed in Ranalli and Mecatti [12].
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Measuring Downsize Reputational Risk
in the Oil & Gas Industry

Marika Arena, Giovanni Azzone, Antonio Conte, Piercesare Secchi,
and Simone Vantini

1 Introduction

The issue of reputational risk has always attracted much attention from academics
and practitioners, since reputation is generally considered a critical asset for a
company [, 2]. It influences the behavior of the company’s stakeholders from
different points of view. A “favorable” reputation draws attention of qualified staff,
helps the company to retain customers, contributes to legitimate its operations with
public authorities and policy makers and stimulates the shareholders to invest in a
company [3]. Any damage to corporate reputation, on the other hand, could have
severe consequences, such as loss of current or future customers, loss of employees
or managers within the organization, reduction in current or future business partners
and increase in financial funding cost [4].

From this perspective, reputation has to be adequately managed as other com-
pany’s assets, which leads to the need of dealing with the problem of reputational
risk [5-7]. Not by chance, in recent years, the issue of the reputational risk
management moved high on top managers’ agenda and a survey done by Economist
Intelligence Unit with 269 senior executives shows that it is considered one of the
most significant threat to business success [36].
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Generally speaking, reputation can be conceived as the system of stakeholders’
perceptions and expectations towards the corporation [8], and reputational risk can
be defined as the risk of having this system of perceptions/expectations altered
or damaged. From this perspective, the ability of a company of handling a crisis
depends not only on the quality and timeliness of its decision making, but also on
how its actions are perceived by its stakeholders [9, 10].

However, perceptions and expectations are hardly measurable, leading to the
need of defining an ad hoc approach to measure reputational risk. Only few studies
have addressed this specific problem and they can be distinguished into two main
streams: qualitative and quantitative studies. Qualitative studies mainly focus on
the identification of the core components of the reputation (i.e. reputational drivers)
and try and associate performance indicators to each of them in order to identify
and monitor potential risks. For instance, the Reputation Quotient model created
by Fombrun et al. [11] defines six dimensions and 20 characteristics to measure
reputational risk. Similarly, Rayner [8] identifies seven reputational drivers and 27
indicators that can somehow support the evaluation of each driver and its exposure
to uncertainty. Quantitative studies, on the other hand, generally relies on the event
study methodology and examine share market reaction to specific types of risk. Most
of this research focuses on financial sector organizations, where quantitative models
are commonly used for examining potential losses associated to operational risk.

In this paper, we follow the second stream of works and we aim to propose
a quantitative approach to measure reputational risk, relying on the event study
methodology. Compared to prior research, we do not limit the analysis to big
losses/catastrophic risk, but we aim to explore events that have a limited impact from
an operational perspective (e.g. protest) but could have a considerable reputational
effect. From this point of view, we do not focus on a specific risk category, but we
take into consideration more generally different type of events that can potentially
affect the system of perceptions and expectations of the system of stakeholders. In
details, we propose a new model that aim to overcome the limitations of previous
approaches by providing for each event a confidence interval for the estimated
downsize impact and taking into account both the presence of price sensitive events
and the share volatility. Empirical data used to test the model are derived from
a leading multinational company, that competes in the Oil & Gas industry and is
listed on NY Stock Exchange. This industry has been chosen because it is subject
to growing pressures from the public opinion and media for its potential impact
on the environment and the society, and the Deepwater Horizon explosion in 2010
rose even more attention on it. Hence, these companies are under scrutiny and
reputational risk is an hot topic for them. In addition, the analysed company has
been selected because of the possibility for the researchers to access the company’s
informants to ensure data triangulation (e.g. verify the database of events, access
to the list of price sensitive events, verify the operational impacts associated to
identified events).

The remaining of the paper is articulated as follows. Section 2 provides a
review of prior works dealing with the issue of reputational risk, analyzing different
approaches followed. Section 3 presents the data sets and introduces the event study
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methodology. Section 4 presents the results of data analysis; and finally we draw
some conclusions in “Conclusion” section.

2 Literature Review

Prior literature on quantitative assessment of reputational risk is limited, since this
is a still young field of research, in particular if compared to different types of risk
(e.g. credit and market risks). As mentioned above, prior papers on this issue tend
to focus on specific industry sectors and specific types of risk (see Table 1 for a
summary of the main contributions in the field).

A few works dealing with the quantitative assessment of reputational risk are
settled in the financial sector (banks and insurance companies) and examine repu-
tational impacts associated to operational losses [4,7,12—17]. The Basel framework
defines operational losses as the “loss resulting from inadequate or failed internal

Table 1 Prior research on quantitative assessment of reputational risk

Authors Industry Type of events considered
Strachan et al. [22] Non financial Illegal allegations

Davidson and Worrell [23] Non financial Illegal allegations

Skantz et al. [24] Non financial Illegal allegations

Karpoff and Lott [25] Non financial Corporate frauds

Hamilton [30] Non financial Environmental news

Long and Rao [26] Non financial Illegal allegations

Lanoie and Laplante [32] Non financial Environmental news
Reichert et al. [27] Non financial Illegal allegations

Konar and Cohen [31] Non financial Environmental news
Palmrose et al. [28] Non financial Restatement announcements
Perry and De Fountnouvelle [4] Financial Operational losses
Cummins et al. [12] Financial Operational losses

Karpoff et al. [33] Non financial Environmental violations
Murphy et al. [29] Non financial Corporate misconduct
Cannas et al. [20] Financial Operational losses related to frauds
Carretta et al. [10] Both Corporate governance news
Gillet et al. [13] Financial Operational losses
Ruspantini and Sordi [21] Financial Operational losses related to frauds
Plunus et al. [19] Financial Operational losses

Soana [7] Financial Operational losses

Sturm [14] Financial Operational losses

Biell and Muller [15] Financial Operational losses
Fiordelisi et al. [16] Financial Operational losses

Fiordelisi et al. [17] Financial Operational losses



40 M. Arena et al.

processes, people and systems or from external events”; this definition includes
legal risk, but explicitly excludes strategic risk and reputational risk [18]. Hence,
reputational risk can be measured by comparing the amount of the market value
loss with the amount of the operational loss; when the market loss exceeds the
operational loss, there is a reputational damage and this difference quantifies
reputational risk. To this scope, the operational loss should be known and, for this
motivation, most of these studies take into account operational losses that are quite
large, for instance greater than 10 million euros [12, 13], in order to improve the
quality of data (since larger losses are supposed to be carefully recorded). There
are also few papers addressing both big (higher than 10 USD millions) and small
operational losses, still setting a minimum threshold of 1 million USD [16,17].

In the same stream of research, but doing a step further, a few authors have gone
beyond the measurement of reputational risk, assessing also the role of various
determinants of reputational damage exploring issues such as the bank riskiness,
profitability, level of intangible assets, firm capitalization, firm size, the entity of the
operational losses and the business units that suffered from the operational losses
[13,16,17]. These authors provide evidence that reputational damage increases in
association to some company’s characteristics (e.g. firm’s profitability and size)
and decreases in association to other company’s characteristics (e.g. level of capital
invested and intangible assets) [16, 17].

A second stream of references, again focused on the financial sector, comprises
a few works that introduce some modifications in the approach used to quantify
reputational risk. In this stream of research, Plunus et al. [19] examine the bond
market reaction to operational losses, considering debt market more suitable than
share market to isolate the reputational damage. According to the authors, debt con-
tracts should be less sensitive to pure operational effects, compared to shareholders
equity, hence allowing to consider return effects as purely reputational. Cannas et al.
[20] examine share market reactions to the announcement of operational losses that
involve an internal fraud and provide an estimation of a reputational value at risk
in order to quantify the economic capital needed to hedge associated reputational
effects. Finally, Ruspantini and Sordi [21] evaluate the reputational risk impact
arising from the customers’ negative reaction to 20 internal fraud cases occurred in
some UniCredit Group retail branches. The reputational risk impact (to be expressed
in terms of business capability) is evaluated in terms of strength and length of the
customers’ reaction to the event: the assets under custody and management have
been chosen to describe them.

A third stream of research investigates the issue of reputational risk in non
financial companies. Compared to the contributions discussed above, these papers
generally focus on specific types of risk.

A first rich group of contributions includes works that analyse the stock market
reaction to illegal allegations. Some of these works date back to the 1980s and the
1990s [22-27]; whilst other are more recent [28,29] confirming the long-lasting
attention of researchers to this specific type of risk. For instance, Karpoff and Lott
[25] study the evidence of the reputational losses when the firms have criminal fraud
charges and demonstrate that the corporate fraud announcements, which can be
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actual or alleged, lead to a loss in firm’s common share market value. Similarly,
Murphy et al. [29] examine the impact of allegations of corporate misconduct
on firms’ profitability and market share volatility. The authors report significant
declines in profitability and increased share return volatility in association to
allegations of misconduct and the changes are found to be consistently greater for
related-party offenses (e.g. those that damage clients). Palmrose et al. [28] examine
the association between share price reactions to restatement announcements (where
companies correct inaccurate, incomplete or misleading disclosures) and restate-
ment characteristics and they find that frauds and restatement attributed to auditors
are associated with more negative returns.

Focusing on a different type of events, Carretta et al. [10] analyse the impact of
corporate governance press news on stock market returns before and after the news
publication. Based on the analysis of the Italian market, the authors highlight how
investors are influenced by rumors about corporate governance news and, before the
news publication, they are only able to assess the type of corporate governance event
that underlie the news; after the news publication, investors’ behavior is influenced
by the content and tone of the news, and no more by type of corporate governance
event.

Finally, there is a limited number of papers that analyze the reaction of share
market to environmental news. These studies show that firms suffer from a decline in
market values following the announcement of adverse environmental news [30-32].
Doing a step further, Karpoff et al. [33] investigate the sizes of the fines, damage
awards, remediation costs, and market value losses imposed on companies that
violate environmental regulations and show that firms that violate environmental
laws suffer significant losses.

Table 1 provides a picture of the state of the art literature in connection to
quantitative evaluation of reputational risk, highlighting the industry where the study
is carried out and the type of events considered.

3 Data Collection and Event Study Methodology

This section describes the data sets used in this research, the variables selection and
the statistical model developed.

3.1 Data Collection

The empirical analysis is based on two data sets: (1) the “potentially reputational”
events, and (2) the price sensitive events, both covering a timeframe of 10 years,
between January, 1st 2003 and June, 30 2013.
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Table 2 List of keywords Dimension Keyword

Environmental | Oil spill, spill
Gas leak
Blow out, explosion, fire

Social Accident, fatality, injury
Protest, complaint

Economic Bribery, corruption, scandal
Sabotage, bunkering, vandalism
Business interruption
Project cancellation, plant closure

The first data set comprises 67 “potentially reputational” events, that were
identified by means of Lexis Nexis, through a keywords search on the All English
news database (Table 2).

Keywords were chosen based on the analysis of internal and external documen-
tation concerning the case company and a set of interviews performed with 12 key
informants from the following areas: Health, Safety, and the Environment; Envi-
ronmental Management; Continuous Improvement; Quality management; Interna-
tional negotiations; Stakeholders management; Operations; Planning and Control;
Reserves and portfolio optimization. The documental analysis and the interviews
allowed to achieve a better understanding of potential sources of reputational risk in
the specific context, and selecting proper keywords.

The above keywords were used to retrieve the news referring to potentially
reputational events. More specifically, we searched for events related to the above
categories, specifically referred to the case company, and with an operational impact
relatively limited (i.e. not exceeding 1 million euros).

The search results were ordered by relevance, and they were cross-checked
based on the article’s title and summary, for eliminating the events not related with
the analyzed company or with a potential reputational event. The event date was
recorded as the first time when the news about an event appeared on the press, and
all the news related to the same event where grouped together. Then, descriptive
information were used to categorize the events based on the following dimensions:

* Event category, that defines the type of event according to the following classifi-
cation: oil spill, gas leak, blow out, flaring, sabotage, fire, accident, plant closure,
business interruption, project cancellation, business misconduct, complain and
protests;

» Injury/fatality, that specifies whether the event involves an injury or a fatality;

* Pollution, that specifies whether the event involves environmental pollution;

* Geographical area, that refer to countries and continents, where the event took
place.

Finally, the data set was validated by the company’s informants, in order to
double check that the identified events were all related to the organization and their
impact in terms of operational costs was not significant (i.e. not exceeding 1 million
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euros), the latter condition meaning that a reduction of the market share value could
be almost entirely attributed to reputational dynamics.

Compared to prior research, the process of construction of the first data set is
more articulated due to the choice of not focusing on a specific type of risk or
big operational losses, where ad hoc databases are already available (e.g. OpVar
database, OpVantage First for the financial sector).

The second data set comprises the price sensitive events, that consists in a list of
investor communications, mainly related to the company’s financial performance,
potentially affecting the market share value (e.g. publication of financial reports,
dividends distribution, communications related to relevant business choices). This
data set is a public archive, that was provided by the company itself.

3.2 Event Study Methodology

This section presents the approach adopted to analyze the share market reaction to
each one of the 67 events previously identified. Our approach relies on the concept
of abnormal return and the basic idea of our approach is to look—in proximity of
each event—at the percentage variation of the share market value from the dynamics
it would have had in the days after the event if the event had not happened.

To measure the variation imputable to the event is of primary importance to
capture in a suitable neighborhood of the event the dependence between the share
value and both the market and the reference sector. Indeed, by exploiting this
dependence it is possible to decouple that part of variation imputable to the market
and/or sector from the variation directly imputable to the company performance.
This latter variation is indeed the relevant one from a reputational perspective being
the one possibly affected by the reputational event.

The most common approach presented in the literature to estimate the abnormal
return of a given event (e.g., [4]) is to fit a linear model relying on the data referring
to the 7 days before the event and then look at the prediction residuals the t, days
after the event. More in detail, the daily log-return of the share value log S,/S;_ is
used as the response variable, one or more proxies of the reference market are used
as regressors, and finally the amplitudes 7, and 7, of the fitting and of the prediction
windows, respectively, are kept fixed across the events. The logarithmic abnormal
return is finally computed as the sum of the residuals of the fitted model over the
prediction window after the event. This approach has been used for instance in the
literature to estimate the impacts of financial frauds on the market value of a bank.

Compared to prior literature, we introduced two main modifications. First, in
order to take into account the industry specificities of an oil company, we moved
from a univariate regression model to a bivariate one by introducing a proxy of
the Oil & Gas industry. In detail, we directly model—as the response variable of
the linear model—the company share value S; at NYSE at day ¢ and not the daily
log-return of the share value log S,/S;—); and the Dow Jones index DJ, at day (a
proxy of the market) and the oil price per barrel OIL, at NYSE at day ¢ (a proxy
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of the Oil & Gas industry) as regressors of the linear model. Alternative choices
for both the response variable (e.g., the daily log-return of the share value) and the
regressors (e.g., the average value of the share market values of the eight major
companies operating in the Oil & Gas sector and indexed at the NYSE) have been
tested. All candidates models have been compared in terms of residual diagnostic,
model fitting, and significance and collinearity of regressors, ending up with the
model detailed above.

Second, we explicitly took into consideration the existence of other price
sensitive events, that consists in those events that are known anyhow to possibly
affect the share dynamics. These events are characterized by: a magnitude of
their respective impacts comparable with the magnitude of the potential impacts
of the reputational events under study; and by being at least as frequent as the
reputational events themselves. Hence, during the estimation of the abnormal return
of a reputational event their presence cannot be ignored. Neglecting them might
strongly bias the estimation of the impact due to the reputational event. This is
for instance particularly evident when a positive price sensitive event (e.g., release
of a positive semester report) occurs in close proximity of a negative reputational
event (e.g., a fatality). Indeed in this case we would have an underestimate of the
impact of the reputational event or even observe an unrealistic positive abnormal
return due to the event. To overcome this issue we moved from a fixed window
perspective to an adaptive window one. In details for the each event we identify:
the starting point of the left window with the date of the last (either reputational
or price sensitive) event occurred before the reputational event currently under
investigation; and the ending point of the right window with the date of the first
(either reputational or price sensitive) event occurred after the reputational event
under investigation. This adaptive approach leads to window sizes 7| and 7, that
will become specific of the reputational event under study. The counterpart of
having reduced the possible bias—having neither the left fitting window nor the
right prediction window affected by confounding events—is that the impact of each
reputational event will be estimated with a different accuracy: high accuracy for
“lucky” reputational events far from its closest price sensitive or reputational event;
and low accuracy for “unlucky” reputational events which are very close to its
closest price sensitive or reputational event.

This latter fact leads to a third major change with respect to the approach
presented in the literature. The idea proposed in the literature of computing the
abnormal return from the predictive residuals after the event date just allows a
point estimate of it without any insight on the reliability of the estimates. We thus
propose a new model able to provide an interval estimate of the impact. In detail,
we overcome the concept of a left fitting window for fitting the model and right
prediction window for computing the disagreement with respect to the fitted model,
and move towards the definition of a unique model defined before and after the event
including in its definition a possible discontinuity in correspondence of the event
date. This has been done by introducing among the regressors a dummy variable
distinguishing between the days before the event (i.e., dummy set to zero on those
days) and after the event (i.e., dummy set to one on those latter days). Our final
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proposal for modeling the share market value of the Oil & Gas company in a window
of the ith reputational event is thus:

S = B + Bloss L = 13(0) + By DJi + By, OIL, + &4,

with t € {tprevious Events -+ - » INext Event — 1}, 1; the date of the i-th reputational event,
and:

* S, the share value at NYSE at day ¢ (i.e., the response variable acting as proxy of
the economic value of the company);

* DJ, the value of the Dow Jones Index at day  (i.e., the regressor acting as proxy
of the market);

* OIL, the price of oil per barrel at NYSE at day ¢ (i.e., the regressor acting as
proxy of the Oil & Gas sector);

* 14 > 43(¢) the dummy variable modeling a jump at day #; (the date of the i-th
reputational event). This quantity is set to zero for ¢ < #; and to one for > ¢;;

* Finally, g is the zero-mean error term.

The regression coefficients i, ; and ,BiOIL describe the influence of market and
sector, respectively, on the dynamics of the share market value in proximity of the
event date. The coefficient % is associated instead to a possible jump in the model
at day #; and it can be thus interpreted as the expected absolute loss imputable to the
ith reputational event.

The coefficient can be estimated by fitting the model to the data of the i-th

—

window through ordinary least square. Thus, the coefficient A}, = will be our point
estimate of the absolute impact. Indeed we have that:

—
IBszS = Sl‘ino event — Stievent

is the expected difference between the share market value at day ¢; if the event had
or had not happened. These two quantities are immediately computable by plug in
of the value of the Dow Jones Index and of the price of oil per barrel at day #; in the
estimated model and by switching off and on the dummy variable respectively.

In detail, to make the 67 impacts comparable across time and describable in terms
of abnormal return we focus on relative impacts. Our estimate of the abnormal return
will be indeed the relative loss:

—_—

St,-m) event — St,-event
—_—

S tevent

that is the ratio between the estimated absolute loss S@n, — @;m and the
expected share market value S,;,;m at day ¢ if the event had not happened.
Note that the estimated relative loss is a rational function of the OLS estimates
of the coefficient parameters. This allows also to build approximated confidence
intervals whose amplitude will depend on both the amplitude window (i.e., isolated
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reputational events will be typically associated to smaller confidence intervals while
reputational events surrounded by other events will be typically associated to larger
confidence intervals) and on the local volatility of the share value (i.e., reputational
events occurring in periods of large volatility will be typically associated to larger
confidence intervals while reputational events occurring in periods of reduced
volatility will be typically associated to larger confidence intervals). In detail, the
confidence intervals for the 67 relative losses will computed relying on a second
order Taylor expansion and the Chebychev inequality.

As an illustrative example, in Fig. 1 we report a visual representation of the
estimated model for a particular event (i.e., July 18, 2008, business interruption
in Nigeria). The axes X, Y, and Z refer to the Dow Jones Index, to the price of oil
per barrel, and to the company share market value, respectively. The blue plane
represents the share dynamics estimated before the event and the red plane the
share dynamics after the event. Black points represent the daily values of the triplets
(DJ; ,OIL,, S, ). The ones projected on the blue plane are the ones associated to the
days before the events while ones projected on the red plane the ones associated to
the days after the events. Finally the vertical displacement between the two planes
correspond to the estimated absolute loss.

4 Results

In Fig. 2 we report along time the estimated impacts of the 67 reputational events
identified for the Oil & Gas company under investigation with their corresponding
confidence intervals. Focusing on events having significant impact at 10 % level,
we find a strong excess of negative events (30 %) with respect to an ideal scenario
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Fig. 2 Confidence intervals along time of the estimated impacts of the 67 reputational events
identified. Vertical dashed lines are drawn in correspondence of price sensitive events

in which reputational events have no negative impact on share market value. On
the contrary, we do not find any significant excess on the number of significantly
positive event (9 %) which is indeed in line with the expected value we would have
observed an a scenario in which reputational events have no positive impact on share
market value. This prominence of significantly negative impacts over the positive
ones is an evidence of the existence of a downsize effects of reputational events
(at least for some of them). This evidence leads to a future area of investigation
in whose focus will be the identification of both those types of events which the
company is reputationally exposed and those type which do not significantly impact
the company share market value.

The dashed vertical lines reported in Fig. 2 have been drawn in correspondence
of events which were price sensitive for the company. It is clear from the picture
that while the temporal frequency of the price sensitive events has remained
unchanged along time, on the contrary the frequency of reputational events has
grown significantly in the last years. This could be related to the increasing
sensitivity of traditional and new information and communication media to the
economic, social, and environmental performance of companies operating in the
Oil & Gas industry. This trend points out the fact that that nowadays the presence
of neighboring price sensitive and reputational events cannot be neglected in the
estimation of the impact of an event. As a comparison, in Fig. 3 we compare the
estimated impacts of the 67 reputational events taking into account (bottom panel)
or not taking into account (top panel) the price sensitive or reputational events
occurring in proximity of the reputational event under investigation. In details, in
the bottom panel, the 67 impacts as estimated by the model we propose based on
adaptive windows, and in top panel in the 67 impacts we would have obtained if
we had kept the window fixed as proposed in the literature (i.e., a windows [—30;
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Fig. 3 Estimated impacts of the 67 reputational events taking into account (bottom panels) or not
taking into account (fop panel) the price sensitive or reputational events occurring in proximity of
the reputational event under investigation

+15] around the event date). The 37th and the 38th events (i.e., an oil spill in
Nigeria on October 4, 2012 and a business misconduct in Nigeria on October 12,
2011, respectively) come out as paradigmatic, dramatically pointing out the effect
of neglecting neighboring events. Indeed, when the neighboring events are not taken
into account, the two events are wrongly identified as events providing an important
upside of the company.

It is worth noticing that this process mostly rely on data publicly available. This
makes the approach possibly fruitful in the direction of a strategic comparison with
direct competitors, possibly able to unveil areas of reputational exposure common
to the Oil & Gas industry or very peculiar of the company itself.
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Conclusions

So far, in the literature, the issue of reputational risk has been explored
only partially, with a prevalence of qualitative studies, whilst quantitative
approaches have been used mainly in connection to specific types of repu-
tational risks and/or in a specific industry sectors (e.g. frauds and financial
service companies).

Though this balance can be easily explained considering the intangible
nature of reputation, that deals with stakeholders’ perceptions and expecta-
tions, the possibility of applying quantitative approaches to reputational risks
appears to be particularly interesting in the light of the close relationship
between corporate reputation and a company’s performance in financial
markets.

Moving from these considerations, this paper aimed to present a new
model developed to quantitatively measure reputational risk, using an event
study methodology. The proposed model is specifically aimed to evaluate
different types of reputational risks (related to the environmental, social
and economic sphere), where the operational cost associated to the event is
relatively limited. This choice is new compared to prior research, that instead
focused on specific types of risks—e.g. violation of environmental regulation,
frauds ...—associated to events with a significant operational impact (i.e. big
operational losses). The rationale at the basis of this choice grounds on the
growing sensitivity of a broader range of stakeholders, including the public
opinion, towards corporate behavior, whereby even events that do not imply
significant operational cost can actually harm the corporate reputation since
they indicate the failure of a company to address its stakeholders’ expectations
[34, 35].

From a modeling perspective the major innovations introduced by this
work are the introduction of adaptive windows (based on the neighboring
price sensitive or reputational events) and the direct modeling of the possible
impacts of reputational events (based on the share dynamics both before and
after the event under study). Compared to the previous literature, these two
innovations jointly allow to obtained confidence intervals for the estimated
impacts based on both the local volatility of the share and the distance of
the event to the two closest neighboring events, giving a clear insight on the
reliability of the corresponding estimates.

Finally, we discuss possible paths for future research. This paper focused
on the identification of the events that determine a reaction in the share
market, refining the methodology for the estimation of the loss. Stemming
from this result, a first possible development consists in the exploration of
the probability of occurrence of different events, allowing to achieve a better
understanding of prospective dynamics associated to reputational risk. This is

(continued)
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particularly interesting in the view of a predictive use of the model although
the low number of reputational events (i.e., 67) poses some limits to the use
of our results for the estimation of the impact of future reputational events.

Second, future studies could analyze the determinants at the basis of
the observed impacts, for instance exploring if different risk categories
(environmental, social and economic risk) or location of the event may
determine a different reaction of the share market. In this same stream, the
interaction of different determinants could be studied—e.g. considering if a
certain risk category in a specific location is more or less dangerous from a
reputational point of view compared to other possible combinations. From a
managerial perspective this analysis could be particularly interesting, because
it could offer managers and decision-makers within the organization a tool to
decide where to concentrate preventive actions and control options.

Finally, from an empirical perspective, the comparison of different compa-
nies competing in the same industry could be particularly relevant. In this
way, in fact, it would be possible to understand how different systems of
stakeholders influence different organizations and impact on their financial
performances.
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1 Introduction and Motivations

In the last two decades a drastic renewal has occurred in Statistics and in all the fields
that involve Statistics. New requirements have arisen from new kinds of data, while
technology has increased the ability of exploration and computation using massive
amounts of information. As a result, more and more disciplines have started making
an intensive use of statistical methods, driving the development of novel tools and
providing new questions to be answered in a wide range of new application settings.
In general, the production and the communication of results have changed in an
extremely rapid way.

The aim of this paper is to introduce the BarCamp as an innovative way of
producing and communicating statistical knowledge. For this purpose, we propose
an algorithm to organize a scientific BarCamp and we describe it in detail in Sect. 2.
In Sect. 3 we describe the BarCamp held at Politecnico di Milano and we discuss
the vision of Statistics for the next 25 years emerged during the event. Finally, some
conclusive observations are drawn in the section “Conclusions”.
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2 The Method: BarCamp as a New Way of Making
and Sharing Science

BarCamp is quite a new type of event for the scientific and technological com-
munity, organized for the first time in the US a decade ago. In particular, the first
BarCamp took place in Palo Alto, California, on August 19-21, 2005. No official
definition of BarCamp is available, though the most common way to describe it
is “user-generated unconference”. User-generated means that, although a generic
organization is set and a theme is chosen before the event starts, users decide
the main problems to be discussed, according to their interests and knowledge.
Unconference means that a BarCamp is not structured as a typical conference
with speaker names and talk session topics established in advance. In a BarCamp
everyone can be a speaker rising a subject, commenting on a topic previously
discussed or even just asking a question. Therefore, the themes faced in a BarCamp
can be several and various, although they usually concern technology and the Web.
BarCamps are mainly organized online and, despite their youth, they are very
popular also outside the US. Indeed, according to the official BarCamp wiki [4],
in 2013 six BarCamp were held in Africa, 15 in Asia and 15 in Europe.

When the main topic of a BarCamp concerns a popular subject, it is surely simple
to stimulate a debate. However, the organization of a BarCamp on a more technical
argument could be interesting, too. In Statistics, for example, sharing knowledge
and ideas is very convenient in facing the new challenges provided by technological
advances. We thus propose an algorithm to organize a BarCamp on a scientific topic.
This algorithm has to be intended as a proposal based on our direct experience in
the organization of the BarCamp held in Milan [3].

First of all, the organizers decide the main theme of the event. It should not be too
restrictive and specific but it should identify a scientific area, possibly original and
rapidly expanding. At the same time a competition (say ¢p) is launched: candidates
are invited to describe the specific topic they wish to cover and, above all, the way
to present it to the audience in order to stimulate a debate among the participants of
the BarCamp. Then the organizers establish n» winners, say wy, ..., w,, and single
out p topics to be assigned to fi,...,7, round tables. For each table f;, suitable
material upon which to enhance the open discussion is prepared and possibly shared
in advance. If p is large enough, the BarCamp may last k days dj, ..., di. Finally,
a logistics set .7, satisfying all the setting properties that characterize a BarCamp,
is arranged. For example, the area where the BarCamp takes place is opportunely
organized, and a website offering place to preliminary discussions is created. Since
a BarCamp is not a conventional conference, an open space with an informal
setting is preferable. Moreover, specific corners with one or more computers where
participants can browse the internet may help to create an informal environment.
Music, leisure and social activities are planned, too. The detailed algorithm we
propose for the organization of a successful BarCamp is described in Table 1.

Once the event is ended it is very important to gather the most interesting ideas
emerged during discussions. For example, a short video about the BarCamp could
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Table 1 The algorithm we propose for the organization of a scientific BarCamp, based on our
experience with the BarCamp held in Milan

The BarCamp Algorithm

Initialization.

Launch a competition c.
Create a captivating logo.
Arrange a web site and a social network page.

Step 1.
Establish the winners wy, ..., w, of competition c.
Establish the p topics to be debated in ¢4, . . ., 1, tables and assign a color to each topic.

Characterize the logistics set .£.

Step 2.
for(day d; = dj, ..., di){

if(d; == d,){Organize an initial activity to allow participants to know each other.}
Organize a session where / < n winners present their ideas and stimulate a discussion
among the participants.

Organize p; parallel sessions (with p=2f= 1 pi)- In each session, the topics of the
round tables #;41, ..., t;+p, are deepened (h = le;lo p; and py = 0). Participants
are encouraged to bring some presentations, photos or videos they prepared.

Collect ideas emerged during discussions and associate to each contribution the color
of the corresponding topics.

Organize some leisure and social activities (e.g, sport, a concert etc. . .).}

be produced and we recommend to share online all the material collected during the
event. A website, possibly with a forum, may represent the most appropriate and
interactive way to reach this goal.

3 Case Study: BarCamp-Technology Foresight and Statistics
for the Future

In this section we present a 1D (one day) implementation of the algorithm described
in Table 1. The real case of interest is the BarCamp held in Milan, in honor of the
150th anniversary of Politecnico di Milano [3]. Figure 1 shows the logo created
for the event. The BarCamp was an event related to S.Co. 2013 [26] conference
on “Complex Data Modeling and Computationally Intensive Statistical Methods
for Estimation and Prediction”. This BarCamp aimed at discussing the vision of
Statistics for the next 25 years and was entitled “Technology Foresight and Statistics
for the Future”.
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SCo

barcomp

Fig. 1 The logo of the BarCamp held in honor of 150 years of Politecnico di Milano

We set the BarCamp in an open space, (i.e., the Agora of Politecnico di Milano),
on the compact one-day time interval (k = 1) of September 12, 2013. The detailed
structure of the day is reported in Appendix.

During the months preceding the event, a competition ¢y was launched in order to
challenge young (less than 33 years old) statisticians to envision statistical models
and methods that will have an impact on the development of technology in the next
25 years (before the 175th anniversary of Politecnico di Milano). Competitors were
asked to submit an essay describing their vision of Statistics for technology of the
future, together with a description of the way chosen to present their ideas, in case
of winning the contest. We did not restrict either the area or the way participants
could present their work, in order to stimulate new approaches to the study and the
communication of statistical knowledge and results. We selected n = 4 proposals,
that are listed below in alphabetical order:

e w;  “Statistics: Pushing or Pulled by Technology?”—Antonio Canale, Univer-
sita di Torino, Italia;

e w, “Statistics and new Technologies: Challenges and new Opportunities”—
Davide Pigoli, University of Warwick, United Kingdom;

e w3 “LEMMA”—Ivan Vujacic, University of Groningen, Netherlands; Antonino
Abbruzzo, Universita di Palermo, Italia; Javier Gonzaléz, University of
Groningen, Netherlands; Giulia Marcon, Universita L.Bocconi, Milano, Italia;

e wy “Statistics: an Important Player in the Big Data Age”—Diwei Zhou,
University of Brighton, United Kingdom.

The authors of these contributions were invited to participate to the S.Co. 2013
conference. They received travel support, conference registration and lodging. The
winners of the competition led the main streams of the BarCamp, by sharing their
ideas and stimulating new perspectives on Statistics and technology.
Simultaneously with the choice of winners, we created a Facebook page to ease
the diffusion of the initiative and to share and collect ideas. Discussions on this
page highlighted a variety of topics to be treated during the BarCamp. According to
the themes emerged as most interesting from the social media and to the winners’
proposals, we defined p = 3 main topics and we associated a color to each one:
Big Data (Green), Computational Statistics (Orange) and Visualizing Data (Blue).
Three round tables, #1, t,, 3 were set up on these main topics. Table #; focused on Big
Data and the new technologies characterizing the fields of application of Statistics.
Table #, was about statistical computing techniques, which are relevant to a proper
handling of complex data. Finally, table #3 concentrated on the visualization tools
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that are fundamental to an appropriate preliminary investigation of complex data
and effective communication results.

The logistics set £ was characterized in order to support the BarCamp spirit. At
the very beginning of the day a leisure activity was organized to let participants
know each other. Then, a huge panel containing the three keywords Big Data,
Computational Statistics and Visualizing Data was placed in the center of the
open space. During the day, this conceptual map was enriched with all the words,
concepts, ideas and suggestions arisen from discussions, colored according to
the topic they were related to. The evolution of the discussion along the day
was recorded taking one photo per minute of the map. A poster session for the
participants contributions was planned, too. Finally, the event day was enriched with
music and refreshments for lunch and dinner, sport activities and a final concert in
the evening.

On September 12, early in the morning, the event started with registrations and
the mixing game as opening activity. It consisted of a game where participants
were invited to perform 3-min-long interviews to ten attendees about their scientific
activity. In doing so, they assigned each speaker an index of similarity for possible
future interactions and/or collaborations.

The winners w4, w3 gave their contributions in the morning, while w,, w
presented their ideas in the afternoon. All the contributes focused on the role
of Statistics at the present time. The core idea was that new data and modern
technologies are themselves vehicles of new modeling challenges. In such a
setting, the statistician must evolve and acquire new skills, such as computational
ones, or problem-specific background (it is the case especially in applications to
medicine, biology and industry). Even though all the winners touched common
topics in their discussions, they focused on different points using their own style.
For example, Diwei Zhou proposed a very interactive debate dividing people
into groups and proposing a sequence of 5-min brainstorming within groups on
specific questions, to be further compared and discussed between groups. Questions
focused on the main features and challenges of Big Data and on the key role
of Statistics in this new era of science. On the other hand, the “Lemma team”
composed and played a drama about different aspects of the statistical approach
to data analysis. Among these we cite: multidisciplinarity, diffusion of the statistical
culture, computational issues, interaction with other disciplines, communication of
results and the importance of theoretical knowledge (especially when dealing with a
huge amount of not structured data). Finally, both Antonio Canale and Davide Pigoli
chose an interactive presentation to discuss the differences between Statistics and
computer science. Moreover, the issues related to the dissemination and teaching of
Statistics arose. Furthermore, all the winners dealt with the ways Statistics could act
as a leading discipline, not only as the servant of all sciences. They also mentioned
the influence of technology (in terms of computing capability) in pushing statistical
development, finally underlining the ethical issues to be faced in statistical studies
and communication.
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3.1 ty: Big Data and Technology

Table #; focused on the issues arising from managing, mining and analyzing new
types of data that are commonly called Big Data. One of the most stimulating
challenges Statistics will face in the next 25 years is represented by the improvement
of the current techniques, that need to be modified and adapted to Big Data.
Although the term Big Data seems to refer only to the size of the information
collected, this expression has a wider meaning and it is especially related to the
complexity of the data.

The 3 Vs The features characterizing Big Data are nowadays recognized to be
Volume, Variety and Velocity.

* Volume indicates all the issues related to the techniques used to handle a great
quantity of data. In fact, first problems with Big Data arise at the moment of
collecting information. New tools are needed to store and mine a huge and still
increasing amount of data, which nowadays is easily available thanks to new
technologies. Moreover, Statistics needs new theoretical methods to improve the
inferential analysis in problems concerning a big number of variables;

» Variety points out the motley nature of Big Data. Statistics has the important task
of developing new theoretical tools for modeling data characterized by different
input sources and various information content. This is highly challenging since
most of the current statistical techniques can be applied only to specific and not
composite data;

» Velocity indicates the high frequency of data collection and updating in a unit
of time. New technologies are nowadays able to get a continuous data stream
that requires real time analysis. All the issues related to this aspect concern data
storage, data analysis and the need to provide results in the shortest possible time.

There is another important feature related to Big Data called Viability. When a
big amount of data is collected it is necessary to filter through this information,
by selecting the factors that are most likely to provide evidence for prediction and
discrimination. This pre-processing phase is a crucial point to enable the statistical
analysis of Big Data.

Big Data. Is it Worth? The discussion of table #; mainly involved the strategies
that should be adopted to develop and potentiate the analysis of Big Data—in
particular management and mining. A great importance was given to the pre-
processing phase, that assumes an extremely relevant role when data are big and
complex. Many contributions and comments warned that a huge amount of data does
not always correspond to a huge amount of information concerning the problem
under study [6]. They highlighted how data are not always really informative,
in particular when the underlying planning is not well realized. This problem is
considerable especially when computational cost to collect and manage data is
high, but the inferential tools to extract valid information from them are very poor.
The growth in computational power has to be supported and, at the same time,
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has to fulfill the inferential and descriptive requirements imposed by the new data.
Statistics is going to face this trade-off in the future. Its central role in the scientific
method is strictly connected to the extent to which it will be able to identify the right
cut-off point in such a trade-off, as emphasized by the winner w4, Diwei Zhou.

Big Data in Social Networks, Medicine and Industry The discussants brought
some examples of Big Data in social life behaviors and healthcare. They also treated
applications arisen from recent technologies employed in the industrial context.

The main example coming from the social media framework was Facebook. With
more than 950 million users who spend on average 6.5 h a month on the platform,
Facebook has at its disposal an incredibly huge amount of data (see, for instance,
[10]). This data potentially include a great quantity of useful information for the
company. To extract this knowledge, the analyst must be able to deal with Big Data.
The discussion moved over the technology adopted to manage this massive quantity
of data. In particular, Facebook uses a software platform called Hadoop to process
and analyze the data streaming through the web. In addition, Facebook developed
two new software platforms, Corona and Prisma, to improve Hadoop scalability and
increase usable memory (see [11, 12]).

The main examples in clinical context involved genomics and the integration
of different health databanks (see e.g. [2, 17]). Even if these two examples are
both characterized by high dimensionality, they show different features. Genomic
data are frequently homogeneous and their high dimensionality results in a number
of variables much higher than the number of available observations. In health
databanks, a great heterogeneity is added to the huge amount of records, images,
texts and information measured on the statistical units (usually, the patients) over
time. The multidisciplinarity, essential when dealing with data in clinical context,
generates the necessity of a new professional figure, namely the Data Scientist [18].
Indeed, Data Scientist is not just a mathematician, but also a computer scientist with
expertise in a specific field of knowledge or application [13].

The last example discussed involved an industrial application. A participant
presentation focused on the various problems in the development of a statistical
process monitoring tool for manufacturing processes [15]. In that example, the test
case of machine health monitoring in waterjet cutting was discussed to highlight
current methodologies and open issues.

3.2 t,: Computational Statistics

Table #, on Computational Statistics focused the discussion on all the challenges
brought to light by computing in statistical modeling. Specifically, the main topics
discussed during the round table are programming, parallel computing, data storage
and data assimilation/integration. All these subjects were born only few decades
ago and they rapidly grew up in the present Big Data era, stimulated by new
technologies. They share multidisciplinarity as a common feature.
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Multidisciplinarity is the fundamental ingredient in all the main themes in
Computational Statistics. It is indeed necessary to mix expertise from different
fields, such as informatics and numerical analysis but also biology and bioinfor-
matics, to upgrade state-of-the-art techniques. A deep knowledge of informatics
and numerical analysis helps statisticians in improving the statistical methodology
both from a theoretical and a computational point of view. Moreover, when the
multidisciplinarity is produced by the nature of the analyzed data, it is essential
for statisticians to develop the skill of interacting with experts from different fields,
using a common language to collect and share information.

The main examples of multidisciplinary fields, introduced by the winner w;
(the Lemma Team) and discussed during the round table can be grouped in
programming, scientific computing and biomedicine and genomics.

Programming The discussion focused on how Statistics has been influenced in the
last years by the increase of computational capacity, as pointed out by the winner wy,
Antonio Canale: nowadays statisticians are dealing with huge amount of complex
data, so efficient programming languages and algorithms are necessary. Interpreted
languages (such as R) are going to be replaced by or integrated with compiled ones,
such as C, C++ or Java, (see e.g. [7]) and computations can be performed in parallel
on huge clusters (see e.g. [25]). During the discussion the need of developing strong
computer science skills was pointed out. Specifically it would be necessary to teach
advanced computational courses in mathematical and statistical undergraduate and
graduate programs, and to stimulate more interactions between computer scientists
and the statistical community.

Scientific Computing Together with programming, a good knowledge of scientific
computing and numerical analysis is very useful for the analysis of complex and
high dimensional data. Numerical analysis methods can be used indeed to speed
up computations, efficiently solve a linear system, accurately discretize curves or
surfaces and integrate quantities of interest. Statisticians can exploit numerical
analysis techniques for the analysis of images or for speed up MCMC computation.
Moreover in the last years new branches of numerical analysis, devoted to inverse
problems, parameter estimation and uncertainty quantification, have emerged. The
interaction between this new community and the statistical one will provide
stimulating problems to be addressed and new efficient tools to solve them.

Biomedicine and Genomics Biomedical disciplines mix together different scien-
tific approaches and integrate methods from medicine and biology with strategies
that are typical of mathematics and computer science. Traditional medical models
are gradually giving way to personalized medicine. This change creates new
challenges that need different expertise to be faced. Next Generation Sequencing
(NGS) techniques have revolutionized the genomic field, enabling scientists to
directly study genetic and epigenetic processes. Statisticians should develop new
methods or adapt existing ones to pre-process and analyze these new types of
NGS data, by collaborating closely with bioinformaticians and biologists, with
the purpose to unveil the complexity of the genome (see e.g. [9]). Moreover,
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genomic and epigenomic knowledge must be combined within each other as well
as integrated with clinical information, by using efficient models and statistical
techniques.

Many researchers with different backgrounds and interests contributed with their
ideas to the discussion. All of them agreed to conclude that a deep knowledge and
an intense use of computational tools in Statistics will provide big improvements in
forefront statistical research fields.

3.3 t3: Visualizing Data

Table t; focused on open problems related to Data Visualization and, generally,
to statistical communication. As highlighted by the winner w,, Davide Pigoli,
graphical communication has become a key aspect in the statistical research process.
Thanks to the advances in technology, a huge quantity of data is now available to
a wide public. As a consequence, the development of communication tools able to
transfer the statistical knowledge, concerning data or results, to a public (composed
by statisticians or uninitiated people) is an extremely important theme to be faced by
the statistical community. A key aspect of this topic is the graphical communication.
This stands at the frontier of two disciplines, Statistics and Information Visualization
(InfoVis) [14]. The latter is the set of disciplines whose aim is to study the interactive
visual representation of abstract data in order to strengthen human cognition. In the
Big Data era, it is important to bear in mind that “information is not knowledge”
(Einstein): great effort must be put in extracting and transmitting the statistical
information hidden below the data. Therefore, statistical communication needs
specific and effective graphical tools able to precisely convey complex messages.

Motivated by several examples, the discussion mainly developed around three
key aspects: curse of dimensionality, dynamic graphics and subjectivity and inter-
pretation.

Curse of Dimensionality Recent advances in technology provided scientists with
increasingly complex data, for instance high-dimensional and functional data. A
relatively large part of the literature had already been devoted to address several
challenging problems arisen in dealing with these types of data, such as the problem
of inference (see, e.g., [24, 27] and references therein). Nevertheless, still little
attention had been paid to the problem of properly visualizing complex data through
effective graphs.

Figure 2 shows an example of functional data visualization discussed during the
round table. Each panel shows a different representation of box-office revenues in
a year. The data refer to Italian revenues in 2012 [23], the right panel to USA
revenues in 2008 [8]. The purpose of such charts is to show when the movies
came out, how much they earned, and how long they lasted in cinemas. The curves
representation shown in the top left panel is the most common way to visualize
functional data in the statistical literature. The steamgraph (bottom left panel) is
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Box Office 2012 - Functional Data
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Fig. 2 Three different representations of box-office data. Plot of the curves (fop left); steamgraph
(bottom left); circular steamgraph (right)

instead commonly employed in the InfoVis approach. The latter presents a better
visual impact, which however could prevent from the correct comparison among the
represented quantities, which is immediate with curve representation. Nonetheless,
the simplicity of the curves representation is likely to have a lower chance to be
noticed and remembered [16]. Indeed, embellished charts are perceived as more
attractive, more enjoyable and easier to remember [5]. They draw audience attention
to the issue, by stimulating their curiosity. However, an excessive beautification
can lead to bias: the chart presented in the right panel of Fig. 2 is an example of
the extreme distortion that can be produced by further embellishing a steamgraph.
The circularity, added to provide a natural representation of the year and to further
increase the chart visual impact, leads to a hardly readable result: movies on the
edge looks thinner, and such an artifact makes hard to evaluate and compare the
actual revenues.

In this context, the classical paradigm “simple is better”, along with the data-ink
ratio rule [28], appears to be replaced by the claim “sufficient is better”, which advo-
cates for a fair balance between simplicity and visual impact. However, distortion is
key to understand the problem of curse of dimensionality in graphical communica-
tion. The statement “Do not disturb my circles”, attributed to Archimedes, expresses
the discussion stream: the representation of high-dimensional object in 2D implies
a bias that a single viewpoint cannot avoid. Therefore, to create new methods able
to effectively represent complex data, the actors of the visualization play, among
others statisticians and InfoVis people, should not be in contrast. The best results in
visual communication will be instead reached through a marriage between Statistics
and info graphics. None of the players strictly needs the other, but they are likely to
play better together.

Dynamical Graphics Dynamic and interactive graphics constitute powerful tools
to overcome the curse of dimensionality when representing complex and high
dimensional data. In fact, dynamics allows to explore dimensions via time-varying
frames, while interactive graphical tools allow the users to choose their own
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viewpoint and to explore hidden relationships. In the Big Data era one can readily
find instances of intrinsically dynamic data, such as real-time data, social network
activities data, space-time data or georeferenced functional data [21, 22]. In this
context, dynamic and interactive graphics can be the key to produce knowledge
from data, through an active participation of the user to the cognitive process. New
graphical standard should be established to ease this process, together with new
softwares to enhance graphical production and dissemination.

A remarkable attempt of real-space graphical communication “Immaterials:
Light painting WiFi” was made by Timo Arnall, Jgrn Knutsen and Einar Sneve
Martinussen at the Oslo School of Architecture and Design [1,20]. They represented
the strength of the WiFi signal in the open spaces surrounding the University
of Oslo. Data were displayed precisely in their 3D space locations. This project,
making the invisible visible, opens new perspectives for the representation of other
kind of real-space real-time data, as pollution or radiation data [1].

The need of representing data and knowledge in new ways induces the develop-
ment of new ways of communicating statistical analysis and results, in addition
to printed journals. Electronic journals together with electronic supplements of
printed articles are moving onward and upward, while classical publications are
becoming too restrictive for presenting statistical analysis and results. In this sense,
video-articles and e-articles, which are commonly employed as means of InfoVis
communication (e.g., [19]), are likely to be the future of statistical communication.

Subjectivity and Interpretation Discussants finally underlined that the statistical
community needs to master the psychology of visualization. This is one of the keys
to face the ethical issues mentioned by the winner w, Davide Pigoli as “visualization
risk”. Indeed, embellishments, dynamic plot and visual effects, if misused, may be
as impressive as misleading.

Objective rules of an ideal visual display, together with new standards, should be
established to prevent ethical issues related to the subjectivity of communication.
Ethic, interpretation and misleading charts were the keywords of the last part of the
discussion, stimulated by the two examples reported in Fig. 3, which are inspired by

a 2012 Presidential run b If Bush Tax Cuts Expire: If Bush Tax Cuts Expire:
Top candidates Top Tax Rate Top Tax Rate
20% 42 100
Candidate 1
40 39% 80
60 |
38 N
60% 40 - 35.0% 39%
Candidate 2 36 —
35.0% 20
34 0
63% NOW  JAN.1,2013 NOW  JAN.1,2013

Candidate 3

Fig. 3 Examples of misleading charts. (a) wrong pie chart (the sum of the percentages is not 100);
(b) bar-plot giving a misleading message, due to the scale on the y axis (lefr) and correct version
of the same bar-plot (right)



64 L. Azzimonti et al.

two real graphical communications. While in the first case (top panel), the graphic
is completely wrong, but it does not provide a misleading message, in the second
case (bottom panel) the y axis setting is responsible for a wrong perceived message.
Looking at the barplot on the left, the y axis showing only values between 34 %
and 42 % makes the tax rate seem to have an extremely sharp increase. The correct
barplot on the right clearly shows that this rise is not so remarkable. The marriage
between Statistics and info graphics proposed before would help to avoid such
errors, providing a more clear and reliable graphical communication.

Conclusions

In this paper we described the BarCamp as an innovative way of creating and
sharing statistical knowledge. We described the experiment held at Politecnico
di Milano, as a solution to discuss the vision of Statistics for the next 25 years.

The main outcome produced by the BarCamp was the creation of a network
among participants (especially among young statisticians attenders), to share
materials and ideas, and to discuss research topics and related issues. The
algorithm of a successful BarCamp proposed in Sect. 2 could become a new
paradigm, characterized by vitality, velocity and multidisciplinarity, to create
and communicate statistical thinking.

The BarCamp was a great opportunity both for the organizers and the
participants to experience new ways of producing and communicating Statis-
tics, by having a confrontation with other statisticians. For this reason, we
stimulated discussions even after the end of the event. We received several
feedbacks that underlined both the successful and the not fully satisfying
aspects of our BarCamp. Participants enjoyed the main topics of discussions.
Moreover, the informal setting positively influenced the engagement of all
attendees. Participants were also positively impressed by the active discus-
sions emerged in the round tables, as well as by the topics solicited by the
winners of the competition. They highlighted the importance of writing and
sharing the discussions results and they also gave some suggestions for a more
effective communication of results.

In conclusion, the BarCamp was a really interesting experience, both for
organizers and attenders. All the details (shared material, scientific contents,
photos and videos) of the BarCamp held at Politecnico di Milano can be found
on the website http://www1.mate.polimi.it/barcamp2013/ [3].
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Appendix: The structure of the BarCamp Held at Politecnico
di Milano

streams = list("Visualizing Data", "Technology for the

future and Big Data", "Computational Statistics");
// Take part to the facebook discussions and add new streams!!!
sport = list ("Football", "Volleyball");

switch (time) {

case [9.30 - 10:30]: activity= "Opening and Registration";
case [10.30 - 11.00]: activity= "Welcome activities";
case [11.00 - 13.00]: activity= "Camp";

// the winners of the BarCamp competition lead the discussion
// Vujacic I. and Zhou D.

case [13.00 - 15.00]: activity= "Lunch and Posters";

case [15.00 - 17.30]: activity= "Streams";
print (streams) ;

// the winners of the BarCamp competition lead the discussion
// Canale A. and Pigoli D.

case [17.30]: activity= "Closing";
// the BarCamp goes on with free discussion, sports and leisure
case [17.30 - 20.00]: activity= "Sport/leisure activities";
print (sport) ;

case [19.30 - 21.00]: activity= "Dinner";
case [20.30 - 23.00]: activity= "Concert";

> print (streams) ;

> [1] "Visualizing Data"
//Do designers do it better?

> [2] "Technology for the future and big data"

//Remote Sensing

//Statistical Process Control

//How big data are improving and transforming healthcare
//Big data analysis in genomics

> [4] "Computational Statistics"

//Challenges of computing in statistical modeling
//Parallel computing

//Numerical issues

/ /MCMC
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>
>
>
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rint (sport) ;
1] "Football"
2

P
[
[2] "Volleyball™"
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Using Statistics to Shed Light on the Dynamics
of the Human Genome: A Review

Francesca Chiaromonte and Kateryna D. Makova

1 Introduction

In this article we give an overview of some recent human genomics studies
conducted by an interdisciplinary group of computational biologists, experimental
biochemists and statisticians at The Pennsylvania State University. We showcase
them as instances of statistics’ critical role for producing scientific insight in
contemporary genomics research.

The studies under consideration investigate various aspects and facets of the
dynamics of the human genome. Several processes of mutagenesis contribute to
changing the nuclear DNA. Some among them are both relatively simple in terms
of their nature and localization, and relatively abundant. One example is nucleotide
substitutions, where one nucleotide (A, C, G or T) is replaced by another. Another
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example is insertions and deletions of short sequences (e.g., sequences comprising
30 or fewer nucleotides). Yet another instance of simple and frequent change is
represented by repeat number alterations at microsatellite loci. A microsatellite
comprises repetitions of a short motif; say, the di-nucleotide AT repeated five times
to form ATATATATAT. The number of motif repetitions can increase or decrease
very easily through a sort of replication hick-up called DNA strand slippage. More
complex types of change that affect broader regions of the DNA include large
insertions and deletions (e.g. insertions of interspersed transposable elements of
varying sizes); gene duplication, loss and copy number variation; rearrangements
of entire portions of the genome, etc.

As reference genomes for an increasing number of species, and then individual
genomes for an increasing number of humans, became available over the last 10—
15 years, the work by our group and others has produced mounting evidence
that mutagenic processes don’t act uniformly across the nuclear DNA and interact
with one another (e.g. Chiaromonte et al. 2001; Hardison et al. 2003; Yang et al.
2004; [1]; see also Hodgkinson et al. 2012 for a review). The questions we
attempted to answer concern how the action of single mutagenic processes, as well
as their concerted action, unfold along the genome and are affected by the local
“landscape”.

With the term landscape we refer to a variety of composition, location and
biochemical features of the nuclear DNA. They range from something as simple
as GC content (the prevalence of G and C over A and T nucleotides), to distance to
telomeres (repetitive sequences located at the tips of chromosomes) or centromeres
(the constricted regions of chromosomes where spindle fibers attach during cell
division), to measures of the propensity to recombine in the male and female
germlines or to be transcribed to produce RNA and thus proteins, to signatures of the
so-called chromatin environment, etc. In the studies reviewed here, abundances of
certain families of interspersed transposable elements—which proxy transposition
activity—are considered as part of the genomic landscape for simpler mutagenic
processes such as nucleotide substitutions or small insertions and deletions. In other
studies by our group though they are considered as the signatures of another type
of process changing the DNA (see above) and themselves investigated in relation to
the genomic landscape [2].

Questions about mutagenic processes and their genomic landscape are important
because of the light they shed onto core mechanisms and trends in the evolu-
tion of genomes, but also because of their biomedical implications. Nucleotide
substitutions, small insertions and deletions, as well as repeat number changes at
microsatellite loci, have all been known to cause a large number of human genetic
diseases.
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2 The Data

Since we are interested in the processes that change DNA and in their landscape
correlates, the first step in creating our data is to identify a subset of the human
genome where these processes can be observed minimizing the effects of selection;
that is, a subgenome comprising, to the best of our knowledge, only neutral DNA.
One way to achieve this is to focus on so-called ancestral repeats. These are
particular sequences that inserted in the genome of our ancestors long ago and
can still be traced scattered across the human genome and the genomes of other
species sharing those ancestors. Even though some of these sequences acquired
a function over time, most of them never did—so by and large change unfolds
in them without positive or negative consequences for adaptation. An alternative
and complementary way to identify a neutral subgenome is to remove from the
human genome all sequences that are currently annotated as having a known or
putative function (e.g., sequences coding for proteins within genes and sequences
that, proximal or distal to genes, participate in regulating their transcription levels)
as well as all sequences classified as repetitive—including the ancestral repeats
considered above. In our studies we often refer to the resulting subgenomes as
AR (for Ancestral Repeats) and NCNR or NFNR (for Non-Coding Non-Repetitive,
or Non-Functional Non-Repetitive). These “models” of neutral behavior are by no
means universally accepted, but have been used repeatedly and with success over
the years.

The next step is to consider genomic alignments restricted to a neutral
subgenome. Comparing aligned genomes is what allows us to locate change events
such as nucleotide substitutions, small insertions and deletions, and repeat number
changes at microsatellites. Notably, the genomes comprised in the alignments
determine the evolutionary radius at which an analysis is performed. In our studies
we focus mostly on alignments of the reference human genome with the references
genomes of other primates (e.g., chimpanzee, orangutan, rhesus macaque) and on
alignments of multiple human genomes.

Once events due to various mutagenic processes are recorded within a neutral
subgenome, one can proceed to compute their rates. This requires defining intervals
along the human genome to perform the calculation. One approach, albeit certainly
not the only one, is to create a partition of the human genome in non-overlapping
windows of a given size—most but not all of the studies reviewed in this article
utilize such a partition. Considering events that fall in the neutral portions of each
such window, one can then employ appropriate models to produce rate estimates
(e.g., the models proposed by [3] or [4] for substitutions; the equation proposed by
[5] for mutability in microsatellite repeat numbers). In the same windows, we also
retrieve or derive our genomic landscape features from publicly available data (e.g.,
genome annotations, large consortia studies, published information from different
types of high-throughput experiments). Notably, the window size determines the
scale at which the analysis is performed.
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The scale determined by the choice of window size and the evolutionary
radius determined by the choice of aligned genomes, are critical parameters.
Characteristics and interdependencies of mutagenic processes, as well as their
associations with the genomic landscape, may change with these parameters.
There are good practical reasons to focus on some ranges of scales and radii; for
instance, very small windows may bring to the fore patterns that are “averaged
out” at larger scales, but will decrease the accuracy of rate estimation and force
us to eliminate from the analysis landscape variables generated by low resolution
experimental techniques. Similarly, some patterns may concern only the most
recent segments of our evolutionary history, but a very small evolutionary radius
will complicate the identification of certain events for technical reasons (e.g.,
substitution rates estimated from human-chimpanzee alignments are more affected
by ancient polymorphisms than those estimated from human-macaque alignments
[6]). Within viable ranges though, repeating analyses at varying parameter values
can produce important insights, separating recurrent patterns from patterns that are
specific to some genomic scales and evolutionary radii.

It is important to stress that acquiring and processing alignments and data from
large public repositories to produce usable mutation rates and landscape features is
in itself a delicate and complicated task; a lot of time and effort is spent to generate
quality data even before any statistical analysis begins.

3 One Mutation Rate at a Time: Regression Analyses

Several of the studies we conducted over the years investigated the dependence of
individual mutagenic processes on genomic landscape features. These analyses were
performed utilizing the traditional regression toolkit. Statistical units are windows,
on each of which we consider values for a mutation rate (the response) and multiple
genomic features (the candidate predictors). Using windows with sizes ranging from
0.1 to 10 Mb (megabases) we have tens of thousands to a few hundred windows
available to investigate a candidate predictor pool of ~10 to over 50 features—
depending on the study. We are therefore not faced with a so-called large-p-small-n
setting. However, window size does create a trade off between autocorrelation and
over-fitting. Windows of smaller size are abundant, but behave less like independent
statistical units and may have less accurate mutation rate estimates (see above).
In contrast, windows of larger size are too few to reliably parse the effects of
dozens of predictors and may average out some critical signals, but do not show
autocorrelations and have more accurate mutation rate estimates. We often struck a
balance using a 1 Mb scale for our main analysis (see also [7]) but reporting also
secondary analyses at varying window sizes and discussing robust vs. scale-specific
outcomes.

While traditional regression tools can be applied straightforwardly, the analysis
pipeline must be rigorous and combine them systematically and wisely because
the data are complex. We usually start with several filtering, preprocessing and
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transformation steps to deal with anomalous loci, regularize response and predictor
distributions, and reduce the candidate predictors at the outset if warranted. Next,
we employ rigorous variable selection and model building procedures combining
best-subset type algorithms with multiple testing adjustments and variance inflation
factors screens to account for sizeable interdependencies in the predictor pool.
We also use multiple diagnostics tools throughout the model building iterations—
including residual-based model and autocorrelation diagnostics, and case diagnos-
tics for outliers and influence. To weigh the role of each individual predictor retained
in the final models we often use the Relative Contribution to Variance Explained
(RCVE), a coefficient similar to the partial RZ.

Our results indicate that features of the genomic landscape explain a substantial
share of the local variability in mutation rates; ~30 % for insertions and deletions, as
high as ~50 % for nucleotide substitutions and ~80 % for nucleotide substitutions
at particular sites called CpG sites [8, 9].

Some landscape features are very powerful predictors for insertions, deletions
and nucleotide substitutions—suggesting mutational contexts and biochemical
mechanism shared by multiple mutagenic processes. Among them GC content,
which appears to have a bi-phasic effect on mutation rates, and distance from
telomeres, with rates increasing non-linearly near telomeres (the final regression
models contain significant quadratic terms; see for instance Fig. 1 adapted from
[9]). Other strong shared predictors are positioning on the X chromosome, which
decreases rates likely due to decreased replication errors (X undergoes fewer
replications because it is present in only one copy in the male germline), and

Substitution Rate
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Fig. 1 Scatter plots of human-macaque substitution rates against human GC content (left) and
distance to telomeres (right). The rates are computed in 1 Mb windows using the AR neutral
subgenome. Lowess smoothers superimposed to the plots reveal curvature—consistent with
significant quadratic terms in our regression models. Adapted from [9]
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recombination in the male germline, which appears to have more direct and sizeable
mutagenic effects than recombination in the female germline.

Interestingly though, the landscape correlates of different mutagenic processes
also show notable differences—suggesting differences in the underlying mecha-
nisms. For instance, even though insertions and deletions are often lumped together
as “indels” in genomic studies, female recombination seems to play a role in
increasing rates for insertions but not deletions, and in terms of transpositional
context abundance of SINEs (Short INterspersed Elements) appears to increase
insertion rates and decrease deletion rates, while abundance of LINEs (Long
INterspersed Elements) appears to only increase deletions rates [8]. Another
interesting finding was that propensity of a stretch of nuclear DNA towards
nucleotide substitutions is at least partially conserved during evolution; substitution
rates computed at orthologous regions from mouse-rat and dog-cow alignments are
significant predictors of those computed from primate alignments. We also found
that the bi-phasic relationship between substitution rates and GC content could be
explained by different mutational patterns of CpG and non-CpG sites [9].

We also used regression analysis to investigate the determinants of mutability
of microsatellite repeats, obtaining models that explain in excess of 90% of
its variability [10]. However, the main drivers in such models are not genomic
landscape features but intrinsic features of the microsatellite loci, such as the motif
being repeated, its size and the number of repetitions (mutability in repeat number
increases with the repeat number itself with a very distinct and informative pattern;
see also below). Some landscape features though do appear to affect changes
in microsatellite repeat numbers. For instance, microsatellites are most mutable
on the Y chromosome and least mutable on the X chromosome. Microsatellite
mutability is also increased by co-location with Alu repetitive elements (a particular
subclass of SINEs). Recombination rates appear to gain a significant positive effect
on microsatellite mutability as one reduces the window size—suggesting that the
genomic landscape may in fact play a substantial role, but at scales smaller than
those observed for other mutagenic processes. This remains an open question, as
smaller scales could not be investigated with the data resolution currently available
to us [10].

The pattern that links a microsatellite’s propensity to add/remove repetitions of
its motif to the number of repetitions itself has received much attention over the
years. In fact, a long-lasting controversy concerns the existence of a threshold; short
tandem repeats are hypothesized to undergo a transition when they reach a critical
number of repetitions and “become” hyper-mutable microsatellites.

We explored this hypothesis with further in silico analyses using human polymor-
phism (as opposed to primate mutations) and with specialized in vitro experimental
assays conducted by our collaborators in the Eckert group at The Pennsylvania
State University Medical campus in Hershey [11]; (Ananda et al. 2013). For the
in silico analyses here we did not utilize a system of non-overlapping windows;
running a number of scripts and algorithms on reference and re-sequenced human
genomes, we identified repetitive sequences, binned them based on their “typical”
repeat number and computed the polymorphism incidence for each bin. We did this
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also separating the sequences by motif size (mono-, di-, tri-, and tetra-nucleotide),
and within motif sizes by the motif itself (e.g., an A mono-nucleotide, an AC
di-nucleotide, etc.)—which allowed us to investigate the relationship between
polymorphism incidence and repeat number taking into account the other intrinsic
features.

In [11], where the re-sequencing data concerned 48 individuals and 10 specific
genomic regions (from the HapMap-ENCODE resequencing and genotyping project
[12] [13]), we found very strong evidence for a threshold. In [14], where the re-
sequencing data concerned the whole genomes of 179 individuals from the 1000
Genomes Pilot 1 Project [15], we found that tandem repeats and microsatellites (i.e.
repetitive sequences before and after the repeat number threshold) differ not only
in their absolute polymorphism levels but also in the way these depend on repeat
number. More specifically, we fitted segmented regression models on the logarithm
of polymorphism incidences using the iterative algorithm in [16] as implemented in
[17]. We observed that before the threshold these are very low and show a steep
exponential growth, while after the threshold they are much higher but show a
slower exponential growth (significant change in slope according to Davies test;
see Fig. 2 adapted from [14]).

The thresholds we were able to infer from these biphasic regimes are 9, 5, 4
and 4 repeats, respectively, for mono-, di-, tri-, and tetra-nucleotide microsatellites.
The inference for mono-nucleotide microsatellites had weaker statistical evidence
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than those for microsatellites with larger motif sizes—Ilikely because current re-
sequencing data do not allow us to produce reliable polymorphism measures for
sequences comprising more than ten repetitions.

We conclude this section with a recent regression study [18] that utilizes again
a large number of genomic features as predictors. This time though the responses
are not mutation rates derived from primate comparisons or human re-sequencing
information. We considered so-called common fragile sites—unstable regions of
the DNA that are prone to gaps and breaks during replication and often host viral
integrations and chromosomal rearrangements in cancer. A class of these sites can
be induced through a special cellular treatment and were located genome-wide with
an experimental assay, along with a measurement of fragility for each such site
(breakage frequency) [19].

Among the sites identified in [19], we focused on a subset of 73 that are best
characterized experimentally (see also Lukusa and Fryns 2008) and reside on
autosomes (the non-sex chromosomes). The resolution of the assay employed in
the genome-wide screen is fairly low and these sites, which are broadly distributed
and cover approximately 15% of the autosomal genome, vary from less than 1 to
~25 Mb in length. We formed a control set of non-fragile sites (124 regions covering
~35 % of the autosomal genome and varying in length from ~1.5 to 33 Mb), and for
each of the fragile and non-fragile sites computed an array of 54 genomic landscape
features.

Because of very strong interdependencies among some of the landscape features,
we used hierarchical clustering based on Spearman’s correlation to identify tight
groups of predictors and select one (biologically meaningful) “representative” for
each such group. After this preliminary variable selection, which allowed us to
focus on 19 predictors, we used logistic regression on fragile and non-fragile
sites, and standard regression on fragile sites alone, to investigate factors affecting,
respectively, location and degree of fragility. The regression analysis pipeline was
similar to the one described above (further variable selection and model building
with best-subset type algorithms, multiple testing adjustments and variance inflation
factors screens; iterative use of several diagnostics tools; quantification of the
contribution of each individual predictor retained in the final models)—with the
needed shifts from variance to deviance calculations for logistic regression runs.

We found that features of the genomic landscape are excellent predictors of both
the location of fragile sites and their breakage frequency, allowing us to shed some
light on the molecular mechanisms shaping DNA instability. The deviance explained
when contrasting fragile and non-fragile sites with logistic regression is ~77%,
and the share of variability in breakage frequency at fragile sites explained with
standard regression is in excess of 43%. Fragile sites reside predominantly in so-
called G-negative chromosomal bands, which reflect chromatin structure and base
composition patterns, and away from centromeres. They also appear to abound in
Alu elements and to have high DNA flexibility. The breakage frequency of fragile
sites, too, increases in G-negative chromosomal band and away from centromeres;
these significant predictors are shared by the final logistic and standard regression
models. Moreover, breakage frequency appears to increase when fragile sites
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co-locate with evolutionarily conserved chromosomal breakpoints and decrease
when fragile sites co-locate with CpG islands (these are regulatory regions with
a distinctly high density of CG dinucleotides).

4 A Multivariate View: Principal Components
and Canonical Correlations

After having analyzed nucleotide substitution, small insertion, small deletion, and
microsatellite mutability rates individually as a function of genomic landscape
features through regressions, we shifted to a multivariate perspective [1]. We went
back to a partition of the human genome in non-overlapping windows, considering
for each mutation rate estimates (based on primate comparisons) along with 15
genomic features. On these data, we used Principal Components (PC) to charac-
terize the co-variation structure of mutation rates, and Canonical Correlations (CC)
to characterize the multivariate associations between rates and genomic features. We
implemented linear and non-linear versions of both analyses, employing Gaussian
kernels for the latter. These analyses offered yet richer insights on the intricate web
of interdependencies connecting different aspects of mutagenesis and the genomic
landscape in which it unfolds.

One of our most robust findings, which we were able to replicate for different
choices of evolutionary radius, genomic scale and neutral subgenome, is that
nucleotide substitutions, small insertions and small deletions have a strong and
positive linear covariation—their rates have similar standardized loading on the
first linear PC. In contrast, microsatellite mutability varies orthogonally loading
exclusively or almost exclusively on the second linear PC (see Fig. 3 adapted from
[1]). For rates computed from human-orangutan comparisons in 1-Mb windows and
using the AR subgenome, the first PC explained ~54% and the second ~25% of the
overall data variability.

The first three linear CC pairs, which carry significant correlations (~0.73,
~0.53 and ~0.33, respectively), nuance the associations of co-varying substitution,
insertion and deletion rates with combinations of genomic features. For instance,
the first pair indicates that all three rates are elevated by high content of GC, SINE
elements and protein-coding sequences. The second pair indicates that, orthogo-
nally, substitutions may be elevated by high male recombination and proximity to
telomeres. The third pair indicates that, orthogonally to the first two signals, deletion
rates may be elevated by low content of GC, SINE elements and protein-coding
sequences (a scenario opposite to that of the first pair) in combination with low
female recombination, etc.

Notably, and in agreement with the regression analysis summarized above, at
smaller genomic scales we found some evidence of association between microsatel-
lite mutability and the other mutation rates, as well as the genomic landscape.
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Fig. 3 Biplots of the first two linear PC components for human-orangutan mutation rates
computed in 1 Mb windows using the AR (left) and the NFNR (right) neutral subgenome.
The vectors labeled INS, DEL, SUB, and MS depict loadings for insertion, deletion, nucleotide
substitution and mononucleotide microsatellite mutability rates, respectively. Adapted from [1]

Also the non-linear analyses offered interesting insights. Perhaps the most rele-
vant, at least for the summary provided here, concerns localization. To understand
what kernel PC could add in terms of interpretation, since this analysis does not
produce loadings, we regressed the scores associated with its leading component
on the scores from the first two linear PCs. This regression had a high R? (about
75%). However, when we looked at the genomic positions of the windows carrying
the largest residuals, we found that loci where the non-linear leading signal is
poorly recapitulated by linear ones correspond to extremely high mutation rates
concentrated near the telomeres of autosomes, and extremely low mutation rates
concentrated on chromosome X.

Linear and non-linear PC and CC analyses do not explicitly utilize the fact that
our statistical units (the windows) are contiguously positioned along chromosomes.
This evidence of a “geographical” characterization, which was also reminiscent
of some landscape effects glanced through our previous regression analyses,
naturally led us toward methodology capable of directly capturing and exploiting
1-dimensional spatial patterns in mutation rates.

5 The Geography of Genome Dynamics: Hidden Markov
Models

Given the evidence that geography may be critical to genome dynamics, our the next
step was to represent the observed variation and covariation in mutation rates as
generated by “hidden” underlying mutational states that alternate along the genome



Using Statistics to Shed Light on the Dynamics of the Human Genome: A Review 79

[20]. We performed some preliminary filtering and transformation steps, aimed at
eliminating windows with scarce alignments or unreliable rate values (due to paucity
of neutral subgenome within them) and at regularizing the marginal distributions
of the rates. After these, we fitted Multivariate Gaussian Hidden Markov Models
(HMMs) to our vector of four mutation rates (nucleotide substitutions, small
insertions, small deletions and microsatellite repeat number changes) measured in
non-overlapping windows along the genome.

HMMs have a long tradition in genomics and bioinformatics, where they have
been used in algorithms to find and predict genes, and more recently to produce
segmentations of the genome based on so-called epigenomic signatures (see for
instance [21-23]). In full generality, an HMM is a tool for modeling an ordered
sequence of observable measurements produced by an underlying process that
alternates among unobservable (“hidden”) states with a Markovian path dependence
(if its order is 1, the state in each position depends only on the immediately
preceding one). Based on the observable measurements one (1) infers model
parameters (i.e. prior and transition probabilities for the hidden states, and state
specific distributional parameters for the measurements) using an Expectation—
Maximization type algorithm such as Baum—Welch; and (2) reconstructs the most
likely sequence of hidden states using an algorithm such as Viterbi (see [24,25]).

The main differences between our application and prior applications of HMMs
to genomic data are the simultaneous use of multiple continuous variables (the four
rates) and the scale—ours is much larger than those previously used (individual
bases or small intervals up to 100 bp). Notably, in addition to being the appropriate
one to investigate some types of change according to past literature, and the viable
one to compute some of the variables of interest, our much larger scale gave us
the advantage of nimble computations (when using 1 Mb we had to handle only
2,500-2,700 windows) and excellent interpretability. We were indeed able to paint
a broad-brush, meaningful picture of the geography of genome dynamics.

The Bayesian Information Criterion suggested the existence of six hidden
mutational states underlying our observed sequence of 4-dimensional rate vectors.
Moreover, six states were indeed sufficient to capture signals noted in our previous
studies concerning microsatellite mutability and chromosome X, and using more
states did not produce solutions with richer biological interpretations.

The six states are beautifully characterized in terms of rates profiles. They
resonate with our findings in [1] and allow us to further nuance mutational patterns.
We have an autosomal cold state for insertions, deletions, and substitutions (Cold
auto in the following) that contrasts a hot state for all three processes (Hot). In
addition we have a very cold state that covers only and almost all of chromosome
X (Cold X), and two warm states where only insertions (Ins warm) or deletions
and substitutions (Del/sub warm) appear enhanced. Finally, we have a state where
microsatellite mutability—and no other process—is very active (Microsat).

Interestingly, about 15% of the genome is hot (in Hot or Microsat). About 45% is
warm (in Ins warm or Del/sub warm), and about 40% is cold (in Cold auto or Cold
X). Also interestingly, the contiguous segments of hot states tend to be short (median
length 1-3 windows), those of warm states of medium length (median length 5-6
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windows), and those of cold states even longer (median length 9 on autosomes;
chromosome X is an almost entirely uninterrupted very cold segment). In other
words, in terms of the underlying Markovian structure, “transitioning out” appears
to be easier the hotter the state.

Concerning location, the short segments of Hor and the medium length segments
of Del/sub warm tend to co-locate near the telomeres of autosomes. However, there
are exceptions this trend. Interestingly, these exceptions can be traced back to what
is known of the evolutionary history of human chromosomes; we found instances
of hot segments near current centromeres that were near telomeres in ancestral
genomes. Even though they “moved”, these segments appear to still retain the
mutational behavior typical of their previous environs. The medium length segments
of Ins warm co-occur with Hot and Del/sub warm near the telomeres, but can also
extend inward towards the center of chromosomes. The long segments of Cold auto
tend to be removed from the telomeres, almost suggesting that a certain distance
from the ends may be necessary for the DNA to “cool off” (=60 Mb on most
autosomes; the short arms of many smaller ones, e.g. chromosomes 16, 17, 18, and
21, are almost entirely composed of hot or warm states). Cold X covers exclusively
chromosome X. Finally, the enhanced microsatellite mutability state Microsat
manifests itself in very short segments (mostly individual windows) interspersed
across the genome, consistent with our previous observation that genomic landscape
has little effect on microsatellite mutability at large scales (see Fig. 4 from [20]).

As in our previous studies, we also considered a long list of genomic landscape
features to investigate their relationships with our mutational states. For each feature
and each state we computed sign and significance of the association—the latter
through a parametric null bootstrap in which we simulated a large number of
genome “tilings” using the Multivariate Gaussian HMM parameter estimates, but
unrelated to the actual rates on which the fit was performed.

We comment here on a few of the many possible interpretations afforded by
this exercise. Contrasting the genomic landscape of the hot and cold autosomal
states, the concauses of enhanced mutability in the GC-rich Hot appear to comprise
enhanced male recombination (as associated with biased gene conversion or for
its own mutagenic effects), aberrant repair near telomeres, the open chromatin
architecture of these regions (which may make them more susceptible to change),
and, given their high levels of transcription activity, transcription-mediated errors.
Conversely, Cold auto inhabits GC-poor, low recombination inner regions of
autosomes, with compact chromatin and lower transcription levels. Interestingly, the
genomic landscape of Microsat, except for a few mild associations, appears by and
large non-descript relative to genome baselines. This finding, too, is consistent with
the notion that intrinsic microsatellite features (repeat number, motif size and motif
composition) affect the mutability of these loci more than the genomic landscape—
at least when observed at large scales.

In addition to genomic landscape features, we investigated the associations
between our mutational states and some important functional annotations of the
genome (also here, significance was assessed using a parametric null bootstrap). For
instance, we considered annotated genes as well as regulatory elements annotations



Using Statistics to Shed Light on the Dynamics of the Human Genome: A Review 81

250 =
L
il
=N g
i B = @ Hot
B 5 = Del/sub—warm
- B Ins—warm
5 2001 § I ¥ = & Cold auto
g . Z - ®m ColdX
c 475 i - Qo @ Microsat
< 175 ¥ " = ™ Centromere
2 = ' I 5 2 No data
g 150 I I » ! =
g 1801 .
2 . & L
1254 w8 AR
Q [ s 1 .
£ 1 . 100 ' a
g 100 i i 1 ! I i . I
T _ - 1 . I
RS HH L | HT
8 "R B ® l ' - -
& 5488 R g8 B 4 =
"= - - 5 = l |
s B R 1 E R H
25 3I = !lli_-|'_ EEiE
s 2 | :
1THI HINHLE ||l|
i 3B - @ g
0 il
I ) ) 1 ) 1 I I ] I L) ) I ) I ] ) I ] I ] ] 1
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Human chromosomes

Fig. 4 Genomic locations of segments belonging to six mutational states obtained fitting Multi-
variate Gaussian HMMs on human-orangutan mutation rates computed in 1 Mb windows using the
AR neutral subgenome. Bars represent human chromosomes, reported in scale and with positions
indicated on the vertical axis (gray regions correspond to windows excluded from the analysis due
to assembly gaps or data pre-processing filters; see [20] and its supplemental information for more
details). Adapted from [20]

generated by the ENCODE project [23] (e.g. predicted binding locations for
transcription factors, promoters in the transcription start sites of genes, enhancers).
Among other things, we found that genes and functional elements governing the
regulation of gene expression are enriched in Hot. This is a somewhat counterin-
tuitive but very intriguing result; likely due to their open chromatin architecture,
these regions host at the same time much of the function and much of the mutagenic
action in the genome.

The geographical characterization of genome dynamics we obtained in this
study is fairly robust to genomic scale (i.e. the choice of window size) as well as
evolutionary radius. In particular, we could retrace its general outline repeating the
analysis on rates computed within humans through data from the 1000 Genomes
Project [15]. In addition to providing insights on the mechanisms of mutagenesis,
our segmentations could have important practical applications. For instance, they
could be used to benchmark signals in algorithms that predict the location of
functional elements in the genome. These algorithms often assess whether a
sequence has changed less or more than one might expect, and thus infer that it
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may be under constraint (i.e. under negative selection) or usefully “accelerated” (i.e.
under positive selection) because it has a function in the genome. In this approach,
an expected baseline for change can be constructed taking into consideration the
mutational state in which the sequence resides. This would allow one to create a
local background that leverages information on multiple and interconnected types
of change—and thus to improve algorithms performance by reducing both false
negative and false positive rates.

A similar reasoning applies to algorithms that screen genomes for disease-
related variants; when differences are detected between the genomic sequences of
individuals affected by a disease and those of control individuals, knowing in what
mutational state the differences occur can help evaluating the likelihood that they
may indeed be relevant for the disease. Our segmentations, which have been made
publicly available through the UCSC Genome Browser and the Galaxy Portal at
Penn State, could therefore aid attempts to meaningfully mine biomedical data.

In this respect, of particular interest may be applications to cancer genomics. Our
segmentations are based on neutral mutation rates measured at various genomic
scales and evolutionary radii in the germline. They can certainly be informative
when screening germline mutations that may predispose individuals towards one
or more types of cancers. However, whether or how they may assist in the
characterization of mutations and broader chromosomal changes that occur at the
somatic level during oncogenesis, is a complex question that we have not yet
fully explored at this point in time. Some studies support a positive relationship
between the propensity of certain regions of the nuclear DNA to mutate in the
germline, and their propensity to mutate somatically in cancer (e.g., [26]). However,
and intriguingly, other lines of evidence point towards a negative relationship.
For instance, while our study depicts a very “cold” chromosome X in terms of
germline mutations, [27] found evidence of enhanced somatic mutations on this
sex chromosome in cancer. Importantly, depressed germline mutation rates may to
a large extent be due to reduced replication errors, since chromosome X spends less
time than autosomes in the male germline (see [8,20,28] for more details).

Conclusions

The human genomics studies reviewed in this article demonstrate how
established statistical techniques—ranging from regression, to multivariate
analysis, to the modeling of latent structure—intelligently combined and
rigorously applied to large and complex data sets generated by a variety
of high-throughput experimental techniques, can help us address important
scientific questions. They also demonstrate the power of, and need for,
interdisciplinary collaborations to advance contemporary genome sciences.
Importantly, these collaborations also serve as the breeding ground for novel
developments in statistical methodology.

(continued)
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One instance among many is the development of methodology for under-
sampled data. In [18] we could utilize 73 fragile sites and a control group
of 124 non-fragile sites—the sample sizes were therefore relatively small
compared to the number of genomic features involved in the regressions; even
after pre-selecting ~20 predictors, we operated with 10 or less “observations”
per feature under analysis. In other studies conducted by our group (e.g.,
[29]) the problem was even more marked, with the number of available
observations smaller than the number of features of interest. For some types
of genomic data, e.g. those generated by genome-wide transcription profiling
technologies such as microarrays or RNA-seq, the difference between number
of available observations and number of features can be of several orders
of magnitude (tens or at most hundreds of individual samples vs. tens of
thousands of transcripts).

We have been directly involved in the development of sufficient dimension
reduction methodology applicable to under-sampled settings [30], as well as
in the development of an “all-purpose” bootstrap-like approach that permits
to artificially augment data with minimal distortions prior to the application
of any statistical technique [31].
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Information Theory and Bayesian Reliability
Analysis: Recent Advances

Nader Ebrahimi, Ehsan S. Soofi, and Refik Soyer

1 Introduction and Overview

As noted by Ebrahimi et al. [14] in a recent review, information theory provides
measures for handling diverse problems in modelling and data analysis in a unified
manner. Information theory statistics have been considered in reliability modelling
and life data analysis; see [11, 12] for a review of such work. Information theory-
based work in reliability can be grouped into three main areas as suggested in
[12]. These include development of information functions for reliability analysis,
information theory-based diagnostics and hypothesis tests for model building and
measures that quantify the amount of information for prediction.

Since the seminal work of Lindley [20], information theory has played an
important role in Bayesian statistics. The mutual information which is also known
as Lindley’s measure has been used by Bernardo [6] as the expected utility for
the decision problem of reporting a probability distribution. It also has provided
the foundation for the reference priors of Bernardo [7]. Other uses of Lindley’s
information have been in design problems; see for example [2] for a comprehensive
review. An information processing rule has been defined in [31] using information
measures and the Bayes rule has been shown as the optimal solution.
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As noted by Ebrahimi and Soofi [12] an area of Bayesian reliability analysis
where information theory has been often used is the optimal design of life tests;
see [9] and the references therein. Bayesian nonparametric entropy estimation and
Bayesian estimation of information indices for lifetime modelling by Mazzuchi et al.
[13,21] have been another area of focus of information theoretic work.

In this paper we consider some recent advances in use of information theory
in Bayesian reliability analysis. We present a range of information functions for
reliability analysis, present their properties and discuss their use in addressing
different issues in reliability. Our discussion focuses on use of Bayesian information
measures in failure data analysis, prediction, assessment of reliability importance
and optimal design of life tests. Below we present some preliminaries associated
with Bayesian reliability analysis and introduce notation. Section 2 presents infor-
mation measures such as mutual information that are used in reliability analysis
and their properties. Parameter and predictive information concepts are considered
and their properties are discussed in Sect. 3 with implications on Bayesian designs.
Section 4 considers informativeness of observed failures and survivals from life
tests and presents some new results for comparison. The notion of information
importance is presented in Sect.5 as an alternative measure of reliability impor-
tance of components of a system. Concluding remarks are given in the section
“Conclusions”.

1.1 Preliminaries

Reliability analysis deals with quantification of uncertainty about certain event(s)
and making decisions. Typical issues of interest include: (i) if a component (or a
system) performs its mission; (ii) if time to failure of a component (or a system)
exceeds a specified (mission) time, and (iii) if mean time to failure exceeds a
specified time. For example, if ¥ denotes lifetime of a component (or a system)
then the event of interest is ¥ > y where y is the specified mission time. The
quantity

P(Y > y|0) = Prob{Y > y|0} (1)

as a function of y is known as the reliability function, where 8 is a parameter which
can be a scalar or a vector. If f(y|0) denotes the density function of the failure
model for Y, then we can write the reliability function as

P(Y > y|0) = / F(x]0)d. @)
Yy

Decision problems that involve reliability assessment include design of life
tests, system design via reliability optimization, and developing optimal mainte-
nance strategies. In Bayesian reliability analysis, uncertainty about 6 is described
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probabilistically via the prior distribution f(#). Prior to observing any data
uncertainty statements about a future lifetime Y, is made using the prior predictive
distribution

FOw) = / F(10)£(6)d. 3)

Given n observations, y = (¥1, 2, -+ , ¥») from f(y|6), posterior inference for
0 is obtained via the posterior distribution

J(@ly) < f(6) f(y10). 4)

The posterior predictive distribution for the future lifetime Y, is given by

Fnwly) = /f(yu|9)f(6’ly}d9- )

2 Information Functions for Reliability Analysis

Let Q be an unknown quantity of interest which can be a scalar or a vector. Q may
be a parameter @ such as failure rate or may represent a future outcome Y,, such as
component lifetime or Q = (0, Y,). We denote the distribution of Q by F and its
probability mass or density function by f.

The unpredictability of O depends solely on the concentration of its distribution
measured by an uncertainty function % (f). As pointed out by Ebrahimi et al.
[14], two desirable properties of the uncertainty function are: (i) % () is concave.
() Z(f) < % (f*), where f* is the pdf of the uniform distribution (the least
concentrated model). An uncertainty function with these properties is Shannon
entropy

H(Q) = H(f) = - / £(q)log £(q)da. ©)

The uncertainty about Q is measured by H(Q) and I(Q) = —H(Q) is information
about Q; see [20].
Information provided by the datay about Q is measured by the entropy difference

AH(y: Q) = H(Q) — H(Qly). (M

where H(Q|y) is obtained using the posterior distribution f(¢|y). In (7) AH(y; Q)
is referred to as observed sample information about Q and can be positive or
negative.
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The information discrepancy between f(g|y) and f(g) can also be measured by
the Kullback-Leibler (KL) divergence

Sfqly)
f(q@)

where the equality holds if and only if f(qly) = f(g) almost everywhere. The
information discrepancy is a relative entropy which only detects changes between
the prior and the posterior, without indicating which of the two distributions is more
informative. It is invariant under all one-to-one transformations of Q.

Expected sample information measures are obtained by viewing the information
measures as functions of data y and averaging them with respect to the distribution
of y. Conditional entropy of Q giveny is defined as

K[f(@qly) : f(@)] = /f(qu) log dg >0, (8

A (Qly) = Ey{H(Qly)}Z/H(Qly)f(y)dy- ©)

The conditional information is then defined as .Z(Qly) = —7(Ql|y). It follows
from the above that the expected sample information is given by

Ey[AH(y: Q)] = H(Q) — 2 (Qly) = 0. (10)

which is always nonnegative.
The expected entropy difference and expected KL divergence provide the same
measure, known as the mutual information

M(y; Q) = E[{AH(y; Q)} = Ey{K[f(qly) : f(9)]}. (an

Another representation of the mutual information, M (y; Q), is given by

M(y; Q) = H(Q) = 2(Qly) = K[f(q.y) : f(@) f()]. (12)

These representations are in terms of the expected uncertainty reduction, and imply
that the mutual information is symmetric in Q and y. We note the following
properties of mutual information:

1. M(y; Q) > 0, where the equality holds if an only if Q and y are independent;
2. we can write M(y; Q) as

M(y; Q) = H(Q) + H(y) — H(Q.y):

3. the conditional mutual information is defined by .Z (y; Q|S)=E;[M(y; Q|s)] >
0, where the equality holds if an only if Q and y are conditionally independent;
4. M(y; Q) is invariant under one-to-one transformations of Q andy.
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For O = O, the expected sample information about the parameter, M (y; ®)
is known as Lindley’s measure; [20]. It is also referred to as the parameter
information. Lindley’s measure has been widely used in Bayesian optimal design. It
was first considered by Stone [28] in the context of normal linear models. El-Sayyed
[18] used Lindley’s measure for information loss due to censoring in the exponential
model and Polson [26] considered it in design of accelerated life tests.

3 Parameter and Predictive Information and Bayesian
Designs

The predictive version of Lindley’s measure is referred to as predictive information.
For Q = 7Y,, the expected information M(y;Y,) is referred to as the predictive
information; see for example, San Martini and Spezzaferri [27] and Amaral and
Dunsmore [5]. Verdinelli et al. [29] proposed predictive information for optimal
design of accelerated life tests with lognormal lifetimes.

Verdinelli [29] considered a linear combination of the parameter and predictive
information as design criteria

UY;0,Y,)) =wM(Y;:0) +wyM(Y;Y,), (13)

where wy > 0, k = 1,2 reflect the relative importance of the parameter and
prediction. As noted by Ebrahimi et al. [15], since ® and Y, are not independent
quantities, M(Y; ®) and M(Y;Y,) are not separable. The weights in the above do
not take into account the dependence between the prediction and the parameter.

Taking the dependence between the parameter and prediction into account
requires the joint information. Following [15], if we let 0 = (©,Y,) then the
observed and expected information measures are given by AHJ[y;(©,Y,)] and
M[Y; (0, Y,)]. The joint information measures enable us to explore the relationship
between M(Y; ®) and M(Y;Y,) as given by the following result.

Theorem 1 Let Yy,Y,--- have distributions fy,9, i = 1,2,--- which, given 0,
are conditionally independent, then

1. AH(y;®) = AH[y; (6, Y))];
2. M(Y:0) = M[Y;(0,Y,)];
3. M(Y;Y,) < M(Y;0).

Proof of the theorem is given in [15]. From Part (1) of the Theorem, we note
that information provided by the (observed) sample about the parameter is the
same as joint information about the parameter and prediction. Part (2) of the the-
orem provides a broader interpretation of Lindley’s information, namely expected
information provided by the data about the parameter and for the prediction. The
inequality in (3) is the Bayesian version of the information processing inequality of
information theory. As suggested by Ebrahimi et al. [15], it may be referred to as the
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Bayesian data processing inequality mapping the information flow Y — ©® — 7Y,,.
We note that parts (2) and (3) of Theorem 1 are due to the decomposition:

MIY:(0.Y))] = M(Y:0) + #(Y:Y,|0) = M(Y;Y,) + .Z(Y:0|Y,). (14)

An immediate implication of Theorem 1 is that the design maximizing M (Y; ®)
also maximizes sample information about the parameter and prediction jointly.
However, such optimal design may not be optimal according to M(Y;Y,). Simi-
larly, the optimal design maximizing M(Y;Y,) may not be optimal according to
M(Y; ®).

When Y;, i = 1,2,--- are not conditionally independent given 6, the informa-
tion decomposition is given by

MIY;(0,Y,)] = M(Y;0) +.#(Y;Y,|®) > M(Y,;0) 15)

where .# (Y; Y, |6) > 0 is the measure of conditional dependence which reduces to
0 in the conditional independent case. For the conditionally dependent case we have

M(Y:Y,) S M(Y;0) < #(Y;0|Y,) > #(Y;Y,|0). (16)

We note that under strong conditional dependence the predictive information
M (Y:;Y,) can dominate M (Y; ®), the parameter information.

4 Failures Versus Survivals

In a probe of the common belief that observing failures in life testing is always more
informative than survivals, Abel and Singpurwalla [1] posed the following question:

During the conduct of the test, what would you rather observe, a failure or a survival?
The answer to the question has practical implications. For example, if a failure is
preferred for inference, then one may wait until a failure occurs or perhaps even
induce a failure through an accelerated environment. Abel and Singpurwalla showed

that the answer to the question depends on the inferential objective of the life test.
The authors considered an observation y = y, from the exponential model,

f(16) = 6™

and assumed a gamma prior for 8 with parameters & and 8. They used Shannon
entropy for measuring observed information utility

H(O|yo) = —Eojy[log f(0]y0)].
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As the posterior distribution of & is gamma with (o 4+ 1) and (8 + yo) for the case
of a failure at yo and with & and (B + yo) for the case of a survival at y, they were
able to compare the gamma entropies.

The entropy of a gamma distribution with parameters @ and b is given by

Hg(a) — log(D),
where
Hg(a) = logl'(a) — (a — DY(a) +a.

Since the scale parameter is the same, the comparison of the failure and the survival
implies that

Hg(x + 1) > Hg (). amn

Thus, for the failure rate ® survival gives more information than failure.

However, if the objective is to make inference about the mean © = 1/6, then
the failure provides more information than the survival. Having the gamma prior on
® implies an inverse gamma prior 1/® and it can be shown that in this case the
comparison gives

Hig(a + 1) < Hig(). (18)

It is important to note that the entropy is not invariant under transformations of &
or the data. Thus, the comparison of information about a parameter depends on the
parameterization of the lifetime model.

As pointed out by Ebrahimi et al. [16], findings by Abel and Singpurwalla raise
some questions:

* Is the exponential case a counter example due to the memoriless property ?

* Can the result be generalized to other life models?

*  What could possibly explain the preference for failures?

* What would you rather observe, a failure or a survival, for prediction of the
lifetime of an untested item?

In order to address the above questions [16] considered a more general setup
where D, = (y1,+--,ys) and Dy = (y1,-**, Yk, Ygp1»* - » Y, ) denote the data
provided by the failure and survival scenarios with y;’s and y;*’s representing failure
and survival times, respectively. The setup implies that the sufficient statistic for
parameter © is the same for both scenarios, that is, ,,(y) = #(y). The corresponding
likelihood functions for & are given by

n k n
L(Du|0) <[] £Gi10).  2De10) < [T fi10) T SO716).

i=1 i=1 i=k+1

where S(y|0) = P(Y > y|0) is the survival function.



94 N. Ebrahimi et al.

As before, we let Q denote the unknown quantity of interest such as a parameter
®, a function of the parameter such as 1/, or the lifetime of an untested item Y,
with a distribution f(-). Using the Abel and Singpurwalla set up, the sample D, is
said to be more informative than Dy about Q whenever

H(Q|Dy) < H(Q|Dy). 19)

The comparison is well-defined for improper priors for ® as long as f(g|D,) and
f(q|Dy) are proper. With proper prior, the above is equivalent to the observed
information criteria

AH(Dy; Q) = H(Q) — H(Q|Dyn) > H(Q) — H(Q|Dr) = AH(Dy; Q). (20)
Ebrahimi et al. [16] considered the class of models with survival function
S(yl6) = P(Y > y|6) = ™70, @

where Y = ¢(X), S(x|#) = e, and ¢ is an increasing function such that
¢(0) = 0and ¢(c0) = oo. Since the survival function of X is exponential, the
class of models is referred to as the time-transformed exponential (TTE) models
and 0 is referred to as the proportional hazard parameter; see [3]. Examples of
lifetime models in the TTE family are given in Table 1. The sufficient statistics for
the proportional hazard parameter under the two scenarios are the same

W =M =1 = ¢ ).
i=1

Using the conjugate gamma prior for ® with parameters o and f, denoted as
G(a, B), the posterior distributions based on samples from models in the TTE family
under both scenarios are gamma

f(61Ds) = G(a +ny. B +1y).ny = k.n.

Table 1 Examples of time TTE model o(x)
transformed exponential -
- Exponential X
family
Weibull xl/b

Linear failure rate %(aQ + bx)1/2

X

Pareto Type 1 ae
Pareto Type 11 e* —1

Pareto Type IV (ex — e
Extreme value log(1 + x)
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For the TTE family models, by the observed information criteria, we have:

1. for ®
Hg(a +n) > Hg(o + k),

that is, survival is more informative than failure about the proportional hazard
parameter ©;
2. for1/©

H]G(Ol + n) < H]G(Ol + k),

that is, failure is more informative than survival about the inverse parameter.

As noted by Abel and Singpurwalla [1], “The aim of life testing is to better
predict the life lengths of untested items.” In view of this, Ebrahimi et al. [16]
investigated if the failure is more informative than the survival to predict future life
lengths in the exponential model. Using the gamma prior G (¢, ) in the exponential
model the predictive distributions of Y, will be Pareto. Thus, the posterior predictive
entropies are given by

H(lenmln) = HP(a +nS) +10g(ﬁ + tn)s avﬂ Z 07 ng = ksnv

where
1
Hp(a) = — —loga + 1.
o
Since Hp is decreasingly ordered by «, we have

Hp(a+n) < Hp(a + k), k<n. (22)

In other words, for the exponential model, failure is more informative than survival
about prediction of Y,,. Using the conjugate gamma prior for ®, the result holds for
most members of the TTE family for fixed values of other parameters a and b.

As shown by Ebrahimi et al. [16], a more general result can be obtained in
comparing informativeness of failures and survivals about prediction by ordering
entropies of predictive distributions. The important quantity for the stochastic
ordering of the predictive distributions is

n

A0) = ] 1710 (23)

i=k+1

where A(y|0) is the hazard (failure) rate function of Y. The following result
provides a comparison of the entropies of predictive distributions.
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Theorem 2 Given the definition of A(®) in (23)

1. if the predictive density function f(y,|D,) is decreasing (increasing), then D,
is more (less) informative than D) about the prediction of Y,, if and only if

COV[S(1]©). A(O)[Di] < 0.

2. if 8 orders the survival function S(y|0), then COV [S(y,|®), A(®)|D] < 0.

The terms S(y,|®) and A(®) are functions of @ and their covariance is obtained
under the posterior distribution f(6|Dy).

It is important to note that the Theorem 2 enables us to compare the entropies
of predictive distributions for many lifetime models without a need to specify any
prior distribution. The result is applicable to many of the TTE models. Also, all
decreasing failure rate (DFR) distributions have decreasing density functions and
mixtures of DFR distributions are also DFR. Thus, if the model f(y|60) is DFR,
then the predictive density is also DFR, and the decreasing condition in the result
is satisfied. For example, the result holds for DFR models such as Pareto Type I,
Pareto Type II, and Half-logistic, Weibull with b < 1, gamma with ¢ < 1, and
generalized-gamma with ab < 1, but it is not limited to the DFR models. It also
applies to the IFR models: linear failure rate, extreme value, and models with non-
monotone failure rates such as Half-Cauchy. Table 2 gives some examples where
6 orders the survival function. When the conditions of the Theorem 2 do not hold,
one can do the comparison directly by computing entropy of prediction under both
scenarios.

Table 2 Examples where survival (S) or failure (F) is more informative for prediction

Model (more informative) Density and support
Half-normal (F) fyl6) = ,ﬁe_%-"z, y>0
bi4
2 v\
Half-cauchy (F) fOlo) = = (1 + ,y>0
70 02
Half-logistic (F) Foley = —0<” 0
) ywol)=———=.y=
(1+ e=)?
a
Gamma (a < 1) (F) fOla,0) = 4 yale=0r )y >0
I'(a)
Generalized gamma (ab < 1) (F) F(la.b,0) = bo* yab—le—eyb y>0
,0, '@ Y=
Generalized Pareto (a > 0,,0 # 1) fy\ /o y=0,0<0
<1(EO>1() f(y|9)=a(1—7) ) 0<y=<al/b,
0>0
Power (9 < 1,F) (8 > 1, S) fO1e) =6y"" 0<y<1

Beta (0 < 1,8) (0 > 1, F) f010) =6(1— )T 0<y<l
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Ebrahimi et al. [16] considered expected sample information as an alternative
criterion to the observed information for a plausible explanation for the perception
that failures are more informative. The expected information was measured by the
conditional entropy S (Q|D;) given by

H(QIDy) = Ex{H(Q| D)} = [ H(QID) fe@dy, k=01 .n, (24)

where Ej; denotes averaging with respect to f(y). Using the conditional entropy
criteria and the conjugate gamma prior for ®, the authors showed that for all
members of the TTE family, failure is more informative than survival about
prediction of a new lifetime Y),, the proportional hazard parameter ®, and its inverse
1/©. Furthermore, they showed that unlike the observed information measured by
—H(®|Dy), the expected information measured by —5#(®|Dy) is increasing in
the number of failures k.

This result may be interpreted as, on average, observing a failure is more
informative than observing a survival. As noted by Kruskal [19], thinking in terms
of averages is a tradition in statistics, and this provides a plausible explanation for
the perception that failures are more informative.

5 Reliability Importance of System Components

Birnbaum [8] defined reliability importance of a component i for coherent sys-
tems as

B AF (1)
1P (1) = T (25)

where F(t) is the system reliability and F;(¢) is the component i’s reliability at
time 7. Barlow and Proschan [4] introduced another measure of relative reliability
importance as the conditional probability that the system’s failure is caused by
component i ’s failure. It can be shown that

I15(t) = /O ” 12(t) dF;(t) dt (26)

where F;(t) is the distribution function for lifetime of component i and
> IiBP (t) = 1. Alternative measures of reliability importance were proposed
by Natvig [23, 24], and Armstrong [2]. More recent results are given in [25]. All
these measures are in terms of contribution of a component to the reliability of the
system.

Ebrahimi et al. [17] noted that reliability importance can be interpreted in
terms of how knowledge of status of a component changes our knowledge of
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the system. In other words, their interpretation is in terms of which component’s
status knowledge matters most in reducing our uncertainty about systems’ status.
The authors suggested an alternative notion of component importance in terms of
information measures.

Consider a system that consists of n components Cy,---, C, that collectively
determine a random variable of interest Q for the system. Let Q; be the corre-
sponding random variable associated with C;,i = 1,---,n. More formally, let

0; = 0i(C),Q = (0, Q) and define the system structure function as

0 =¢(Q).¢: 0" — . (27)

We note that Q; can be the indicator variable of the state (failure/survival) or the
life length of a component and Q is the respective random variable for the system.
The information notion of importance maps the expected utility of the component
variable Q; for prediction of the system variable Q in terms of the dependence
implied by the joint distribution F(q, ¢;). More specifically, it is defined as follows.

Definition 1 The importance of component C; is defined by the expected informa-
tion utility of C; for the system measured by the mutual information M(Q; Q;),
provided that F(q,q;) < Fy(q)F;(¢g;). Component C; is more important than the
component C; for the system if and only if M(Q; Q;) > M(Q; Q;).

Under the information notion of importance component C; is more important
than the component C; for the system if and only if

M(Q: Qi) = M(Q:Q)) = J(0]0) = 7(0]Q)). (28)

where Z(Q|0;) = —27(Q|0Q;) is the conditional information.

LetT},---, T, denote independent random variables representing the life lengths
of components Cy, -+ ,C, and T denote the life length of the system. The survival
of system is defined as the survival up to a mission time . We define the binary
variables for the states of the component and system as

0:(C)=Xi(x) =10), if T} >7 (T: <7)
and

0 =X1)=¢X1(0)..... X, (1)) = 10), if T>7 (T <),

where ¢ : {0, 1}" — {0, 1}.

The marginal distributions of X;(7) and the conditional distribution of X(7)
given X;(r) = x; are Bernoulli with parameters p; = p;(r) = F;(r) and
Dxlxi = Pxx (1) = P(X(r) = x|X;(r) = x;) fori = 1,...n, respectively.
For each mission time 7, we obtain the conditional information Z[(X (7)|X; (7)] as

JIX@IXi (D] = pi(OI[(X(D)|Xi (1) = 1]+ (1 = pi @) [(X(@)]X; (1) = 0].
(29)
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Note that this measure ranks the importance of components for a fixed mission
time 7.

The following result by Ebrahimi et al. provides an ordering of the components
for three types of systems at a fixed time pointz = t.

Theorem 3 Consider a system with n independent components such that
PXi(tx)=1)=pi,i=1,.,n

1. if the system is series, then the component C; is more important than the

component C;, for p; < p;, i,j =1,---,n;
2. if the system is parallel, then the component C; is more important than the
component C;, for p; > p;, i,j =1,---,n;

3. for the k-out-of n system, the component C; is more important than the

1
component C;, if p; < p;, i,j =1,--- ,nand P {S(i)(X(r)) zk} > X i =

1,---,n, where
S(,‘)(V):ka, '/%:{ls"'si_lsi—i_l?'”?n}
keAN;
for avectorv = (vi,--+,vy).

The information measure (28) orders the components in the same way as
the reliability importance index of Birnbaum [8]. The information analog of
Barlow and Proschan’s [4] measure of component’s importance is the expected

mutual information E; [M (X (v), X; (r))] where the expected value is with respect
to the distribution of 7;. Thus, we can order the components by evaluating

E: [ﬂ(X(r)lX,- (r))].
st
As shown in [17], stochastic ordering of life times of the components 77 <

st
... < T, is sufficient for Theorem 3 to hold. The next example illustrates the
implementation of the Theorem.

5.1 Example

Consider a system of two components with independent lifetimes.

1. Bernoulli Distributions. We can obtain the conditional information measures for
the series and parallel systems as

S (XOIXi(@)=pi@1(X;(0) and 7 (X@IXi(©)=(1=pi (@)X, (D),

respectively. Thus, C; is more (less) important for a series system than for a
parallel system whenever t > (<) median lifetime;
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2. Proportional Hazard Distributions. Suppose that the components’ lifetimes,
T;,i = 1,2, have proportional hazard (PH) distributions

Fi(r) = [Fo(0)]", © >0, 6, > 0.

For 6; > 6,, we have T} % T,. Thus for any mission time 7, pi(7) < pa(7)
and by Theorem 3 C, is more (less) important than C, for the series (parallel)
system;

3. TTE Family of Distributions. Suppose that the components’ lifetimes 7;,7 =
1,2, having TTE family of distributions as defined in Sect. 4. Note that the TTE

model is a PH model and therefore we can conclude that for 6, > 6,, T} :<t T>.
Thus, for any mission time 7, pi(t) < p2(t) and C; is more (less) important
than C, for the series (parallel) system.

The information based analog of Barlow-Proschan importance index can also be
computed for TTE models. It can be shown that E; [f (X 0| X; (t))] for the series

and parallel systems are functions of 6 = #, decreasing (increasing) for 6 < (>)1.

The notion of information importancej is also applicable to component and
system lifetimes as continuous random variables. As shown in [17], it is possible
to develop results for convolutions and order statistics. For convolutions, results in
entropy ordering can be used to obtain component importance ordering. Considering
parallel and series systems with continuous lifetimes, the system lifetime being
order statistics leads to singular distributions, where the mutual information is not
well-defined. In order to alleviate this problem, a modification of the information
importance index was used by the authors.

Ebrahimi et al. [17] also considered an entropy-based importance measure using
the Maximal Data Information Prior (MDIP) criterion proposed by Zellner [30]. The
MDIP criterion which was originally proposed for developing priors for Bayesian
inference, provides the same importance ordering of the components as the mutual
information.

Conclusions
Information measures play an important role in Bayesian reliability analysis.
In this paper our focus was on Bayesian information measures in failure data
analysis, prediction, assessment of reliability importance and optimal design
of life tests. Other uses of these measures include failure model selection
[21, 22], characterization of univariate and multivariate failure models and
characterization of dependence for system reliability [13].

Computation of information functions can be quite challenging in many
applications but decomposition type results given in [13] can be helpful

(continued)
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for certain problems. Parametric and nonparametric Bayesian estimation
of information functions and related indices (see [10]) are required for
multivariate life models. Recent advances in Bayesian computing, especially,
those in efficient Markov chain Monte Carlo methods can be exploited in
many cases.
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(Semi-)Intrinsic Statistical Analysis
on Non-Euclidean Spaces

Stephan F. Huckemann

1 Introduction

Often, problems concerning dynamics in biology, due to natural constraining
conditions, equivalence relations and/or identifications, lead to data of statistical
interest which come to lie on spaces with no Euclidean structure. For such data
[38] coined the term object data. Frequently, the underlying spaces can be equipped
with structures of non-flat Riemannian manifolds or with structures of stratified
spaces made up from manifolds of varying dimensions. Exemplary in this paper
we consider dynamics caused by growth, by simple rotational deformations and
by human gait motion. In order to describe such dynamics, suitable descriptors are
introduced which themselves live in stratified spaces.

In general, (semi-)intrinsic statistical analysis considers data on a topological
space Q, links these data via a linking distance to Fréchet p-means in another
space P that admits a manifold stratification and conducts statistical analysis on
P. This analysis is semi-intrinsic if for the final statistical analysis, e.g. for reasons
of modeling and computational simplicity, extrinsic methods rather than intrinsic
ones are used. This approach which has been briefly described in [26] is introduced
in detail in Sect. 2. In Sect. 3, inference on geodesic PCs is exemplary studied in case
where a /n-Gaussian central limit theorem is assumed valid. Section 4 describes
some curious phenomena when this is not valid. We start now with four motivational
examples that will be taken up along the development of the methodology.
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Example 1 As a first example we consider the problem of studying the growth of
Canadian black poplar leaves conducted in a joint research with the Department
of Oecological Informatics, Biometry and Forest Growth at the University of
Gottingen. Over several growing periods, leaf contours have been non-destructively
digitized. The task is to describe growth and discriminate growth among leaves of
the same tree of identical clones and over different genetic expressions.

For this scenario it turns out that geodesics in underlying shape spaces qualify
well as such descriptors, cf. [24]. Two such shape spaces come to mind. If only
specific landmarks are taken into account, Kendall’s planar shape spaces based
on landmarks (cf. [31]) seem canonical. In a separate effort, from these the entire
contour could be reconstructed (cf. [19]). Alternatively one can consider the shape of
the entire contour. Then modeling in the shape spaces of closed 2D contours based
on angular direction by Zahn and Roskies [47] seems appropriate. These two spaces
are Riemannian manifolds in a canonical way, cf. [34]. In particular Kendall’s shape
space of planar landmarks are the well known complex projective spaces. If we
were to analyze Kendall shapes based on 3D landmarks or closed contours without
a specified point (the stalk entry to the leaf is such a specified point) the underlying
shape space would cease to be Riemannian manifolds while the former would still
be a stratified space (cf. [22,27,33]).

Example 2 As a second example in a joint research with the Departments of
Computer Science and Statistics at the Universities of North Carolina and Pittsburgh
we consider the problem of estimating deformations of internal organs which is
crucial for instance in radiation oncology, where one challenge consists in relocating
an internal organ at therapy time while this organ has been carefully investigated
at planning time. Frequently, this relocation involves not only the estimation of
Euclidean motions but also the estimation of deformations, e.g. a cancerous prostate
might be bent around a filled bladder.

For this task as an underlying model, skeletal representations (cf. [7,43]) seem
very appropriate. In 2D the intuition goes as to mark the medial skeleton by the
loci where an inward “grassfire” originating on the contour eventually dies out.
Equivalently, the medial skeleton is characterized as the set of points that are along
with a ball fully contained in the object, where the ball is centered at such a point
and touches the boundary at least at two points. The vectors from the balls’ centers
to the touching points are called spokes. In this vein, statistics of sufficiently well
behaved 3D objects translates into statistics of 2D medial sheets along with their
spokes. “Well behaved” in this context means that there may be only very mild
boundary perturbations, since every protruding boundary kink results in a medial
branch ending there. Thus two versions of the same object under small noise may
have medial sheets with drastically different topological branching structures.

In order to treat realistically occurring boundary noise, Pizer et al. [42] have
introduced skeletal representations (s-reps) with skeletal sheets as “medial as
possible” while ideally granting a common branching topology over an entire
sample of interest (for the mathematical challenges involved, cf. [10, 11]).
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The fundamental deformations due to rotations, bendings and twistings cause
the spokes directions to move on specific concentric small circles with a common
axis for every fundamental rotational deformation. Thus the spaces of concentric
small circles on the two-sphere qualify as descriptors of fundamental rotational
deformations.

Example 3 The study of the third example originated from the AOOD Workshop
2010/11 at the Statistical and Applied Mathematical Sciences Institute (SAMSI) in
North Carolina, cf. [44]. In their seminal paper [15] introduced phylogenetic trees to
assess genetic mutation distances. From the mutations of a specific gene over a fixed
set of different species, an optimal descendant tree is estimated which takes the role
of a descriptor. Usually, different genes over the same set of species give different
trees. Measuring tree distances by comparing interior edge lengths (corresponding
to mutation distance) over equivalence classes of trees leads to a metric space which
can be given the structure of a stratified space with flat manifold strata (orthants
of varying dimensions) such that the entire space carries non-positive curvature, cf.
[6]. Similar models are appropriate to model biological tree-like structures such as
the artery tree of the brain (cf. [2,44]) or of the respiratory tract (cf. [14]).

Example 4 In a joint research with the School of Rehabilitation Science and the
Department of Kinesiology at McMaster University biomechanical human gait is
analyzed statistically. In particular, the relative rotation of the lower leg (tibia) with
respect to the thigh (femur) during a volunteer’s gait is estimated by a standard
protocol [12] which uses the spatial paths of markers placed on various locations
of the upper and lower leg by a specialist, cf. [8]. For every gait cycle the non-
Euclidean data object of interest is thus a (quasi-closed) curve in the space of
three-dimensional rotations. Instead of entire curves as descriptors, one may use
configurations of specific locations of critical events on the curve modulo initial
rotations, as the latter convey effects of varying marker placement. Following the
standard protocol, the rotations are parametrized by three Euler angles, where the
first and dominant angle measures flexion/extension about a medial-lateral axis
attached to the thigh. In order to obtain a landmark descriptor one may consider
the following four critical gait events which are defined as pseudo-landmarks
determined by the first angle. Locally extremal flexion/extension angles occur while
the foot is on the ground (stance) at heel contact and mid stance as well as at
maximal bend while the foot is in the air (swing); when the foot leaves the ground
at toe off the angular velocity is maximal, cf. [45].

2 (Semi)-Intrinsic Statistical Analysis

2.1 The Setup

We begin with two topological spaces:

Q is the data space and P is the descriptor space.
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Further, we assume that data and descriptors are linked via a continuous function
p:0x P —[0,00)

called a linking function which takes the role of a distance between a datum and a
descriptor. Finally, we assume that there is a continuous mappingd : P x P —
[0, 00) vanishing on the diagonal {(p, p) : p € P}.

Random variables on Q and P are mappings from an abstract probability space
(2, A, P) that are measurable w.r.t. the corresponding Borel g-algebras.

Definition 2.1 We call such a tuple (p, d) a uniform link if for every p € P and
€ > O thereisaé = §(e, p) > 0 such that

lo(x, p') — p(x, p)| < eforallx € Q,p’ € P withd(p, p') <§.

Moreover, it is a coercive link if for every py € P

(i) forevery C > 0 and sequence p, € P with d(py, p,) — oo there is a sequence
M, — oo with p(x, p,) > M, for all x € Q with p(x, pg) < C, and

(ii) if d(p*, p,) — oo for some other sequence p, € M and p* € M then
d(po. p,) — oo.

2.2 Fréchet p-Means

Definition 2.2 For random elements X, X, X,, ... on Q define the set of popula-
tion Fréchet p-means of X on P by

E®)/(X) = argminE(p(X, p1)?) .
HEP
For w € Q2 denote by

E'P(w) = argmin Z p(Xj (@), u)z

HEP j=1

the set of sample Fréchet p-means on P.

Note that without further conditions, E”) = @ is possible. In most applications,
in particular in those considered here, p and P are sufficiently well behaved so that
existence of mean sets is not an issue.

By continuity of p, the mean sets are closed random sets. For our purpose here,
we rely on the definition of random closed sets as introduced and studied by Choquet
[9], Kendall [29] and Matheron [39]. For an overview over the well developed
asymptotic theory of closed random sets in Banach spaces cf. [40]. As it seems,



(Semi-)Intrinsic Statistical Analysis on Non-Euclidean Spaces 107

a more general asymptotic theory for random closed sets in non-linear spaces as are
of concern here, has received less attention in literature.

Fréchet p-means in case of a metric p = d on P = Q have been first introduced
by Fréchet [16] and generalized to quasimetrics p = d by Ziezold [48]. A quasi-
metric is a continuous and symmetric mapping Q x @ — [0, 00) vanishing on
the diagonal that satisfies the triangle inequality. In case of P = Q and p = d
satisfying the triangle inequality, it is a uniform coercive link. More generally if P
and Q are compact then (p, d) is a uniform coercive link.

2.3 Examples of Fréchet p-Means

Intrinsic Means If O = P is a manifold or a stratified space and p a geodesic
distance, Fréchet p-means are usually called intrinsic means. On Riemannian
manifolds they have been first studied by Kobayashi and Nomizu [35] as centers
of gravity.

Extrinsic and Residual Means If P = (Q is embedded in a Euclidean space
R? with Euclidean norm || - || and p(x,y) = [|x — y|| = d(x,y) (x,y € Q)
being the extrinsic metric (also called chordal distance), the corresponding Fréchet
p-means are called extrinsic means. They have been introduced for manifolds as
mean locations by Hendriks and Landsman [18]. If additionally ® : R? — Q
is the orthogonal projection (which is locally well defined around Q wherever Q
is locally Euclidean), then the Fréchet p-means with respect to the residual link
p(x,y) = |do(y — x)|| = d(x,y) (x,y € Q) are called residual means. On
spheres, residual means have been introduced by Jupp [28]. There, the residual link
is globally well defined and in fact a metric.

Ziezold and Procrustean Means Suppose now that M is a Riemannian manifold
embedded in a Euclidean space R” with Euclidean norm || - || on which a discrete
or a Lie group G acts from the left via

M — M, x5 gxforallg € G, (1)
giving rise to the quotient
Q:=M/G={[x]:xeM}, [x]={gx:g€G}, xeM 2)
such that the action is isometric with respect to the extrinsic distance, i.e.
lgx—gyll =llx—yll VgeGandx,yeM.
Then we have the following two linking functions p = d on P = Q:

pz([x], [y]) = infgec [lgx — ¥, the Ziezold link
pp([x].[y]) := infg peg |[d gx(hy — gx)||,  the Procrustean link
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giving rise to Ziezold means and Procrustean means. The quotient Q is often
called a shape space. Note that the Ziezold link is a quasimetric, hence it is a
uniform coercive link. The first type of mean has been introduced by Ziezold [49]
for Kendall’s shape spaces. Although also designed to tackle Kendall shapes, the
notion of the full Procrustes mean by Gower [17] seems to have preceded these. On
Kendall’s shapes spaces the Ziezold link and the Procrustean link are metrics.

Kendall’s Shape Spaces In view of Example 1, consider configurations of k € N
landmarksinam € N dimensional space represented by m xk matrices (cf. [30,31]).
The shape of a landmark configuration is its equivalence class under common
translation, scaling and rotation of all columns (these are the landmarks) of the
matrix. Usually one normalizes for scaling and translation (e.g. via Helmertizing,
cf. [13]) to obtain a matrix x € M where M is the unit sphere embedded in the
Euclidean space M(m,k — 1) of m x (k — 1) matrices on which G = SO(m)
acts by matrix multiplication from the left giving rise to Kendall’s shape space
E’fn := M/ G. For a short derivation cf. [23].

Geodesic Principal Components On a metric space (Q, t) a rectifiable curve y :
I — Q,1 CR,iscalled a geodesic if

(i) forallfy € I therearet <ty < s, p = y(t) and ¢ = y(s) such that

inf E t(y(tj—1). y(t;)) = 1(p.q);
ne€eN
[=ty<...<t,=s

J=1

(i) y cannot be extended beyond / such that it satisfies (i).

Denote by P the space of point sets of geodesics on Q. If P can be given a
topological structure such that

prQxP—[0.00. (q.7)r plg.y) = infr(p.y(0))

is a linking function, the corresponding Fréchet p-means are called first geodesic
principal components (1stGPCs). If there is a concept of orthogonality of geodesics,
higher order principal components can be defined as in [27].

Concentric Small Circles For spoke data z = (z1,...,z%) € (S as in
Example 2, here S? := {x € R? : ||x|| = 1} is the two-sphere and k € N, consider
the space P of k concentric small circles with the straightforward quotient topology
induced by the Ziezold distance inherited from the extrinsic distance on S2 x [0, 7]
as follows. Let

8(c,r):={ze€ (SHF i {e,zj) =7, ) = 1,....k}

forc € S?andr = (ry,....rx) € [O,Jr]k,
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[6(c,r)] :={8(c,r),6(—c,m —r)}
where m —r ;== (w —r,...,m —ry) and
P = {[8(c.r)]:ceS%rel0,n]}.

Here, (-, -) denotes the usual Euclidean inner product. A linking function is given by
the geodesic distance

k

,o(z, [6(c, r)]) = Z (arccos((c,zj)) - rj)z.

J=1

Manifold Configurations Above, spoke data are given by configurations on
manifolds. If the coordinate system is rotated, say, spoke configurations are rotated
alike. More generally, consider the case where the underlying space is a manifold
M on which a Lie group G acts via (1). In analogy to (2), with

M* = g=(1.....qx) :q; eM,j=1,... .k}, |[q]:=1{gq:g € G},

the space of k-landmark configurations on M and orbits of this action, respectively,
this gives rise to the shape space

M*/G :={[q] : g € M*\ N°}.

Here, N° C M* denotes a singularity set that may have to be removed in order to
obtain a topological Hausdorff space in a suitable topology of the quotient. In case
of Kendall’s shape spaces, a minimal singularity set is the set of all configurations
with all landmarks coinciding, where, however, the topology of the quotient is not
the canonical quotient topology, cf. [23,33].

In view of gait analysis in Example 4 consider the special case where M = G =
SO(3). Then, the quotient topology may be used with void singularity set N = ¢
giving a shape space with a Bookstein type structure

G"/G = G*!
g1, g] < (g7'82. .. 87" 81)
Given a distance § on G (e.g. the intrinsic distance due to a left-invariantly extended
inner product of the tangent space T,G at the identity element e € G or the extrinsic

distance due to an embedding of G in a suitable Euclidean space), as a link for G¥~!
one may use the canonical product distance on G*~!

p((gls---sgk—l)s(giv"'vgllc—l)) =

k—1
> 8(g).8))7-
j=1
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2.4 Asymptotics of Fréchet p-Means

Definition 2.3 Let E ,Sp ) () (w € Q) be arandom closed set and E(” a determinis-
tic closed set in P. Then,

(ZC) E,(,p ) (w) is a strongly consistent estimator of E® in the sense of Ziezold if
a.s. forow € Q

o oo
N U E @) c EP,

n=1k=n

(BPC) E"(w) is a strongly consistent estimator of E® in the sense of
Bhattacharya-Patrangenaru if E® # @ and if for every € > 0 and a.s. for
w €  there is a number n = n(e, w) > 0 such that

o
U E,i”)(w) ci{peP:dEP, p)<e}.
k=n

In linear spaces, usually convergence w.r.t. the Hausdorff distance is considered,
cf. [40]. If curvature is involved, however, there may be convergence in the above
sense but no longer convergence w.r.t. Hausdorff distance. For example, recall the
uniform distribution on a sphere, the set of its intrinsic Fréchet means being that
entire sphere. Every sample mean, however, is atomic with probability one (for the
detailed construction cf. [4, Remark2.6.]).

Ziezold [48] introduced (ZC) and proved it for quasi-metrical means on separable
(i.e. containing a dense countable subset) spaces. Bhattacharya and Patrangenaru [4]
introduced (BPC) and proved it for metrical means on spaces that enjoy the stronger
d-Heine—Borel property, i.e. that every d-bounded (A is d-bounded if there is a
point p € A such that d(p, p,) is bounded for every sequence p, € A) closed set is
compact. Both properties, have been called ‘strong consistency’ by their respective
authors. We have the following generalization, cf. [24, Theorems A.3 and A.4].

Theorem 2.4 Suppose that the data space Q is separable, p is a uniform link and
that E(p(X, p)z) < oo for all p € P. Then property (ZC) holds for the set of
Fréchet p-means on P.

If additionally E?) # @, P enjoys the d-Heine-Borel property and (p, d) is also
a coercive link then property (PBC) holds for the set of Fréchet p-means on P.

In order to formulate a Gaussian central limit theorem, we require additional
properties.

Assumption 2.5 The population Fréchet-p mean is unique up to a discrete group
action, i.e. there are a discrete group H acting on P and ju € P such that {hu : h €
H} = E® and there is an open neighborhood U of ju in P that is a D-dimensional
twice differentiable manifold, D € N.
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Definition 2.6 Under Assumption 2.5 we say that a P-valued estimator i, (w) of ©
satisfies a Gaussian /n-Central-Limit-Theorem (CLT), if in any local chart (¢, U)
near it = ¢~'(0) there is a random Gaussian D x D matrix G4 with zero mean and
semi-definite covariance matrix X4 such that

V(o () — () — Gy
in distribution as n — oo.

In consequence of the “§-method”, for any other chart (¢’, U) near u = ¢'~1(0)
we have simply

Sp = J(@ 0p T NTe (@ 07

where J(-)¢ denotes the Jacobi-matrix of first derivatives at the origin. In fact, the
argument for a central limit theorem rests on the “§-method” from M -estimation
technology, cf. [46]. To this end we require additional smoothness assumptions.

Assumption 2.7 Under Assumption 2.5 assume further for every local chart (¢, U)
near p = ¢~ (0) that

the mapping x — p(X, o~ (x))? is a.s. twice differentiable in U 3)
and that

E(grad,p(X, ju)?)  exists,
Cov(grad,p(X, ;t)?)  exists,
E(Hess,p(X,v)?)  exists for v near i, is continuous atv = i
and of full rank there,

“)

where grad,p(q, v)* and Hess,p(q,v)? denote the gradient and the Hessian of the
above mapping.

Obviously the validity of (4) is independent of the particular chart chosen. The
following Theorem is a straightforward consequence of [23, Theorem 6]. It is a
generalization of [5] who provided a proof for the case of P = Q a manifold and
p either the intrinsic or extrinsic (arising from an embedding) distance. Also in case
of P = Q amanifold and p the intrinsic distance, Kendall and Le [32] have derived
intrigued versions for independent but non-identically distributed samples.

Theorem 2.8 Under Assumptions 2.5 and 2.7 suppose that E,(,p) is a strongly
consistent estimator in the sense of Bhattacharya—Patrangenaru of a Fréchet
population p-mean set E® = {hy : h € H}, u € P, unique up to a discrete
group action H. Then for every measurable choice i, (w) € EP there is a random
sequence h,(w) € H such that h,(w)u,(w) satisfies a Gaussian /n-CLT. In a
suitable chart (¢, U) the corresponding matrix from Definition 2.6 is given by

Xy = AyCov(grad,p(X, ,LL)Z)A(;l where Ay = E(Hess>p(X, w)?).
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Remark 2.9 The condition that Ay be of full rank is not at all trivial. A consequence
of Ay failing to to so is discussed in Sect. 4. Also in Sect.4 we see that (3) from
Assumption 2.7 is not necessary for the validity of the Gaussian /n-CLT.

2.5 The Two-Sample Test

Two-sample tests for metrical means on shape spaces and on manifolds have been
around for a while, e.g [13,37,41]. In the following we extend these to our context
of Fréchet p-means.

Suppose that Yi,..., Y, iid Yand Zy,...,Z, iid Z are independent samples
on Q with unique Fréchet p-means puy and pz, respectively, on Q (m,n > 0)
and suppose X and Y are a.s. contained in U C (@, a twice differentiable
Riemannian manifold with geodesic distance d. Under the null hypothesis we
assume uy = pz = pm € U.For p € U let (¢,,U) denote a chart with
¢,(p) = 0. Moreover assume that p is uniform coercive and that Assumption 2.7
holds for a random variable X with P¥ = M and that there is a constant
C > Osuchthat [|[¢,(X) — @ (X)), ¢, (Y) — @ (Y)| < Cd(p, ) a.s. for p near
. Then the classical Hotelling T2 statistic T2(n, m) of ORI 0 £ FUSURN N 0 £
and ¢y, ., (Z1). ..., Pu, 1, (Zy) is well defined for n + m sufficiently large where
Un+m denotes a measurable selection of a pooled Fréchet p-sample mean (e.g.
[1, Chapter 5]). In consequence of Theorem 2.8 we have the following, cf. [25,
Theorem 10].

Theorem 2.9 (Two-Sample Test) Under the above hypotheses for n,m — oo,
T?(n,m) is asymptotically Hotelling T*-distributed if either n/m — 1 or if

Cov(@u(X)) = Cov(¢u(Y)).

3 Application: Semi-Intrinsic Inference on the Mean
Geodesic of Kendall Shapes

The space of geodesics I'(X) of Kendall’s shape space ZX of m-dimensional
configurations with k landmarks (m < k) can be given the following structure of a
double quotient yielding a stratified space (cf. [27, Theorem 5.3])

Lk = 0\ (m, k —1)/50(m).

Here, the two dimensional orthogonal group O(2) acts from the right and the m-
dimensional special orthogonal group SO(m) act from the left on the following
submanifold of an orthogonal Stiefel manifold

O (m,k—1) = {(x,v) e M(m,k —1)*:

(x,v) =0, (x,x) =1=(vv), xv] =vxT}
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where (x,y) = trace(xy”) denotes the Euclidean inner product. The canonical
embedding O (m,k — 1) in R"%*=D x Rm(*=1 with the extrinsic metric leads to
a Ziezold link pz on F(an) X F(Ef;). We have the following extension of [24,
Theorem 3.1].

To this end recall that on a Riemannian manifold the cut locus C(p) of p
comprises all points ¢ such that the extension of a length minimizing geodesic
joining p with ¢ is no longer minimizing beyond q. If ¢ € C(p) or p € C(q)
then p and g are cut points. E.g. on a sphere, antipodals are cut points.

Theorem 3.1 The following hold

(i) the Ziezold link pz is a metric on T (X£);

(ii) there is an open and dense set U C T(XK) that carries the structure of a
Riemannian manifold such that ,0% is twice differentiable on U x U except at
cut points;

(iii) U = F(Zé) can be chosen in (ii) in case of m = 2.

In case of m = 2 the Ziezold metric can be computed explicitly. An example
using the two sample test for inference on the mean geodesic of leaf growth as in
Example 1 of the Introduction can be found in [24].

4 Sticky and Smeary Limit Theorems

We conclude by surveying some peculiarities that come along with the non-
Euclidean nature of sample spaces.

On the Circle Recall that the condition that A5 = E(Hessap(X, w)?) be of full
rank is among the Assumptions 2.7 ensuring a Gaussian /n-CLT in Theorem 2.8.
For the intrinsic metric on the circle it turns out that this condition is necessary.
Another condition was local twice differentiability a.s. of x — p? (X ,¢_1(x)).
For the intrinsic metric this condition is violated whenever X has a non-vanishing
density near the cut locus of an intrinsic mean. On the circle it turns out that this
condition is not necessary, cf. Theorem 4.2 below.

Let S! be the unit circle which we represent by [, ) with the endpoints
identified. p(x,y) = min{|x — y|,27 — |[x — y|}, x,¥ € [—=m, ) denotes the
intrinsic distance. The following three theorems are taken from [20]. The assertion
of the first is actually a special case of a deeper result due to [36], that on any
complete connected Riemann manifold, the cut locus of an intrinsic mean cannot
carry mass at all, if the cut locus can be reached from the intrinsic mean by at least
two different minimal geodesics.

Theorem 4.1 Let X be a random variable on the circle S' with intrinsic mean
n = 0. Then

P{X =—-n}=0,

i.e. there can be no point mass antipodal to an intrinsic mean.
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If X restricted to some neighborhood of —m features a continuous density f,
then

f(—ﬂ)S%.

Moreover, i = 0 is contained in a whole continuum of intrinsic means if there is
— 1 _
€ > Osuchthat f(x —m) = 5- = f(r —x) forall0 < x <e.

Theorem 4.2 Let X be a random variable on the circle S' with unique intrinsic

mean y = 0 featuring a continuous density f near —m. Assume that E(X?) = o2

where X is viewed as taking values in [—m, ) and that |, is an intrinsic sample
1

mean. If f(—m) < 5 then

(1 —27tf(—7t))

If f(—n) = % suppose that there are § > 0 and k € N such that f is k — 1
times continuously differentiable in (—m,8 — ) and (r — 8, ) with fU)(n—) =
fYU=m+) = 0forall 1 < j < k, and that there are k-th order continuous
directional derivatives with 0 # f®©(r—) = (=1)F f O (=7 +) < co. Then

2 2
Vi sign(ua) a4 5 47 (0, CLEFD_)
(27 f ® (—7+))

Theorem 4.3 Consider the distribution of X, decomposed into the part A which
is absolutely continuous w.r.t. Lebesgue measure, with density f, and the part 1
singular to Lebesgue measure. Let S, ..., Sk be maximal arcs distinct up to their
endpoints on which f < %, assume that their interiors int S; are all disjoint from
suppn (j = 1,...,k)and that {x € S' : f(x) = %} is a Lebesgue null-set. Then
X has at most k intrinsic means and every int§; contains at most one candidate.

Definition 4.4 We say that the limiting distribution of fi, is k-th order smeary if

1 A
n2&F0 [,

has a non-trivial limiting distribution.

In the first case of Theorem 4.2, [i,, is O-th order smeary as is always the case for
means on Euclidean spaces. In the second case it is k-th order smeary. Below is an
example of a circular von-Mises mixture that is 2nd order smeary.
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Example 4.5 For a random variable X on S! following a bimodal von Mises
mixture density

1 K COS X —TCOSX :
f(x) = m(ae +be )Wlth
I(a, b, K, ‘L') = (a el cosx + be—rcosx)dx

-

and suitable a, b, k, 7 > 0 such that there is a major mode at 0 of height f(0) >
(27)~! and minor mode at —m of height f(—m) = (27)~", we have that X features
a unique intrinsic mean at 0 (due to Theorem 4.3) which is approached by sample
means (4, with a rate of

9 [T x2f(x)d
n'/®u, — Y in distribution, with Y ~ A" [0, = Jon XS ) dx
72 (ake™ — breT)?

(here k = 2 in Theorem 4.2), much slower than /i because %E(Hesszp(X ,0)2) =
1 -2xf(—m) =0.

The Open Book is a model space for the space of phylogenetic trees as introduced
by Billera et al. [6], cf. Example 3. More precisely, near a co-dimension-1
singularity the tree space is locally an open book. The d-dimensional open book
is defined as

k
Q=SulJH}
j=1
with the spine § = R?~! = Q% and k € N leaves Hj+ =R x(0,00), (j =1,

....k)d € Nand k > 2. The topological identification is given by S ~ R~! x {0}
is detailed in [21]. For j = 1,..., k introduce the folding maps

(x.1) ifx € Hff

. d
Fi:Q0—=R (x,t) —~ § (r.—1) else

and folded moments

m;j =/ zdPFioX (7).
R4

Theorem 4.6 ([21]) There is an index jo € {1,...,k} such that m; < 0O for all
jo # J € {l,...,k}. Moreover, sample and population means are unique. If they
are denoted by [i, and p, respectively, with Y, = /n(Fj,(ft,) — Fj,(1)), one of
the following is true
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(i) mjy, >0 & € H;g and the limiting distribution of Y, is a Gaussian on
RI=1 x (0, 00);
(ii)) mj, = 0 < the limiting distribution of Y, is supported on RI1 % [0, 00)
assuming R4~ x {0} with positive probability;
(iii) mj, < 0 % the limiting distribution for Y, is a Gaussian on RI=1 % {0}.

Definition 4.7 We say that the Fréchet p-mean of a random variable X on Q sticks
to a subset Py C P if for all compactly supported random variables ¥ on Q
independent of X, there is Cy > 0

) . PY + eP”
EY(Z)YN Py # @ forall e < Cy and random variables Z ~ T on Q,
€

In case (iii) above in Theorem 4.6, p sticks to the spine S. In particular, for
suitable random N € N we have a.s. that ji, € S foralln > N.

More intrigued non-Gaussian limit theorems can be found in [3] which covers
T4, the space of trees with four leaves. The general picture is still open.

5 Outlook

In this article we have introduced and illustrated for some examples the concept
of (semi)-intrinsic statistical analysis on stratified spaces. Although the approach is
clear in its outline, many essential details still present challenging research topics,
among others, conditions for uniqueness of Fréchet p-means, which are only fully
resolved for the circle. Moreover, we have touched on the effect of degeneracy of
E(Hess;p(X, 1)?) which may lead to arbitrary slow convergence rates of sample
Fréchet p-means. Again, to date the precise picture is only known on circles.

In addition to stickiness phenomena, ongoing research on the kale, the cone K :=
[0,00) x (R/aZ) of angle @ > 27, another model space for phylogenetic trees,
suggests that the failure of a.s. twice differentiability of x — p? (X , ¢_1(x)) (cf.
Assumption 2.7) may destroy Gaussianity, also in the non-sticky case.

The following picture materializes: While rates may be lower on positive
curvature spaces due to mass near cut loci of means, rates may be considerably
higher on non-positive curvature spaces with non-continuous drops in curvature.

To date, these non-Euclidean effects have only been studied on a few spaces such
as the circle, the open book and T4. Obviously this is still considerably far from
descriptor spaces of interest such as spaces of geodesics or of concentric circles as
in the second example of the introduction. The general theory is open.
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An Investigation of Projective Shape Space

John T. Kent

1 Introduction

Consider a configuration Xo(k x m) of k points or landmarks in m-dimensional
space. By identifying configurations which are related to one another by a certain
group action, we obtain the concept of a “shape” as an equivalence class of
configurations. The collection of equivalence classes forms a “shape space”. Here
are several important examples.

1. Similarity shape space. The similarity shape of Xy can be described as the
equivalence class of configurations

[Xolss = {BXoR + 1xy" : B >0, R € SO(m), y € R™},

under similarity transformations; B is a scaling parameter, R represents an m X m
rotation matrix, and y represents a translation parameter. See, e.g., [2];

2. Reflection similarity shape space. As above, but now suppose R is an orthogonal
matrix (so reflections are allowed). The reflection similarity shape of X, can be
described as the equivalence class of configurations

[Xo]rss = {BXoR + 1xyT : >0, Re O(m), y € R™}

(e.g. [3D)s

J.T. Kent (P<))
Department of Statistics, University of Leeds, Leeds LS2 9JT, UK
e-mail: j.t.kent@leeds.ac.uk

© Springer International Publishing Switzerland 2015 119
A .M. Paganoni, P. Secchi (eds.), Advances in Complex Data Modeling

and Computational Methods in Statistics, Contributions to Statistics,

DOI 10.1007/978-3-319-11149-0_8


mailto:j.t.kent@leeds.ac.uk

120 J.T. Kent

3. Affine shape space. Replacing SR by a general nonsingular matrix yields an
affine shape as the equivalence class of configurations

[Xolas = {XoA + 1;¥T : A(m x m) nonsingular, y € R™};

4. Projective shape space. Let P.(k,m) denote the projective shape space of k
landmarks in m dimensions. To describe this space, it is helpful to switch to
homogeneous coordinates. Introduce an augmented matrix

X =[Xo 1],

where 1; is a k-vector of ones. Then X is a k x p matrix, where throughout the
paper we set p = m + 1. If X is written in terms of its rows as

then from the point of view of homogeneous coordinates each row x/ of X
is well-defined only up to a scalar multiple. Then the projective shape of X is
defined as the equivalence class of matrices (in homogeneous coordinates)

[X]ps = {DXB” : D(k x k) diagonal nonsingular, B(p x p) nonsingular}.

Projective geometry is important in computer vision for identifying features in
images which are invariant under the choice of camera view ([4, 6]). The matrix
B holds information about the location of the focal point of the camera and its
orientation. The matrix D is present because in a camera image of a point, it is
not possible to determine how far away that point is in the real world.

Of course, as the group of transformations get larger, the number of distinct
equivalence classes gets smaller. Unfortunately, working with equivalence classes
is rather awkward from statistical point of view. Therefore various superimposition
methods have been developed to facilitate quantitative comparisons between shapes.
The most successful class of superimposition methods goes under the name of
Procrustes analysis.

2 Review of Procrustes Methods

Consider a transformation group ¢, with elements denoted by g, acting on
configurations X, by taking X, to g(Xo). Suppose that ¢ can be split into a product
of three subgroups, ¥, %, in such a way that each g € ¢ can be decomposed
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(in at least one way) as g(Xo) = g3(g2(g1(Xo))). In any particular application, one
or more of the subgroups might be trivial. Write g = (g1, g2, £3) to represent this
decomposition. Then, as discussed in [8], the Procrustes approach to shape analysis
involves several steps.

1. Standardization. Remove the transformation parameters in ¢, by standardization.
For example, if ¢, denotes the location-scale group, so g;(Xo) = BXo + 1xy”
for some B > 0 and y € R™, it is common to choose X, from the equivalence
class so that it is centered and scaled,

Xy =0, (X! Xo) = 1; (1)

2. Embedding. Embed the standardized shape into some Euclidean space in such a
way as to remove the parameters in %. That is, consider a mapping ¢ (Xy) =
T, say, where ¢ has the property that ¢(Xo) = ¢(g2(Xo)) for all g, and all
standardized configurations X;

3. Optimization. Define a (partial) Procrustes distance between the shapes of the
configurations X él) and X, éz) by minimizing the Euclidean distance between the
embedded objects T = ¢(X.") and T@ = ¢(g3(X\”)) over the remaining
transformation parameters in 4,

dpp(T), T®) = min (T 7@ (10 7). 2

4. Metric comparisons. The Procrustes distance (2) can be used directly to compare
different shapes. Alternatively, as a slight variant, its infinitesimal version can
be used to define a Riemannian metric on shape space and Riemannian distance
can be used. In particular, each of the shape spaces under consideration can be
viewed as a Riemannian manifold, other than perhaps at some singular points.

For this construction to be useful, two properties must be checked:

o Symmetry: dg,(TV, T@) = d3,(T®, TW);
e Identifiability: dZ,(T"W, T®) > 0 for distinct shapes; that is, dpp is a distance
and not just a semi-distance.

Here are details for the three shape spaces described above.

For similarity shape, the standardization step involves centering (XOT 1 = 0,)
and scaling (tr(X] Xo) = 1) as in (1). The embedding step is trivial, ¢(Xo) =
Xo. Only the rotation parameter remains at the optimization stage. For the special
case k = 3, m = 2, it is well-known that the resulting shape space (shapes of
triangles) can be identified with the usual sphere of radius 1/2 in R®. A variant
of partial Procrustes distance, known as full Procrustes distance, corresponds to
chordal distance on the sphere, and Riemannian distance corresponds to great circle
distance. For the purposes of this paper, these are called “Level 1” metrics.

For reflection similarity shape, there are two possible Procrustes approaches. In
the first, essentially the same steps as in the previous paragraph can be applied,
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with g3 now denoting an orthogonal transformation (including reflection as well
as rotation) and again leading to a Level 1 metric. However, as an alternative
approach, it is more elegant at the embedding step to set T = ¢(Xo) = XoX{I
in terms of a configuration X, standardized as in (1), so that 7 is a k x k
positive semi-definite symmetric matrix from which X, can be recovered up to an
orthogonal transformation on the right. Hence the optimization step is not needed
here. Euclidean distance between the embedded configurations will be called a
“Level 2” metric in this paper and has been studied by Dryden et al. [3]. The Level
1 and Level 2 metrics are different from one another, even infinitesimally, especially
when X is singular or nearly singular.

For affine shape, the standardization step involves centering (X! 1, = 0,,) and
orthonormalization (X! Xo = I,,), e.g. by Gram-Schmidt. The simplest embedding
is given by T = Xo X/, which again removes the orthogonal transformations, so
that no transformation parameters remain at the optimization step. Affine shape
space can be identified with the Grassmann manifold of m-dimensional subspaces
of R¥=1 (k — 1 rather than k to allow for the centering). Euclidean distance between
the embedded configurations will be called “Grassmann Euclidean” distance and is
another example of a Level 2 metric.

Affine shape space is already very familiar to statisticians from multiple linear
regression analysis, where X, taken to be centered for simplicity, plus a column of
ones represents the design matrix. If y is a centered k-vector of responses, then the
ordinary least squares fit of y on X, is given by § = Xo(X! Xo)™' X[, which is
unchanged if X is replaces by XA for any nonsingular p x p matrix A. Note that
X and XA have the same column space, so that y depends only on the span of the
columns of Xy, not on the individual columns themselves.

For projective shape, the standardization is more delicate. As shown in [8], it
is possible to find a diagonal matrix D and a nonsingular matrix B such that after
standardization the rows of the augmented configuration X = [xy, ..., xk]T are unit
vectors (xiT x; = 1) and the columns are orthonormal up to a scale factor (X T =
(k/p)1,). This standardization is known as “Tyler standardization” after [11, 12].
After this standardization, X is unique up to multiplication on the left by a diagonal
matrix of plus and minus ones, and on the right by an orthogonal matrix. A nice way
to remove these remaining indeterminacies at the embedding stage is to define k x k
matrices M and N with entries

my = |x]x;|, ny=lx)= mlzl 3)
Then there are two versions of Procrustes distance between the projective shapes:
the Euclidean distance between the M matrices (a Level 2 metric), or between the
N matrices (a Level 4 metric), respectively. At least for m = 1, thatis, p = 2, it
can be shown that these constructions are identifiable.

One way to think about Tyler standardization for general k and m is in terms of a
camera image of a scene of k points in m dimensions affinely situated in an “ambient
space” R?, p = m + 1. Tyler standardization is equivalent to using a camera with
spherical film (rather than the more conventional flat film) and choosing the focal
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point chosen so that the moment of inertia of the film image is proportional to the
identity matrix /.

It is worth commenting on the naming conventions for the different levels of
metric. A Level 1 metric involves direct comparisons between standardized config-
urations (after optimizing over the remaining transformation parameters). A Level
2 metric involves comparisons between second order moments of a standardized
configuration, such as Xo X/, (after optimizing over any remaining transformation
parameters). Finally the Level 4 metric involves fourth order moments of the orig-
inal configurations (with no remaining transformation parameters in our projective
shape example in m = 1 dimension). There is no Level 3 metric in this naming
system.

3 Singularities

Here is a brief summary of the singularities that arise in the different shape
spaces. Here X denotes a standardized (i.e. centered and scaled) configuration,
and X denotes a Tyler standardized augmented configuration. The nature of any
singularities depends on the particular shape space and on the metric used.

1. Similarity shape space, partial or full Procrustes distance. When m = 1,2,
k > 3, there are no singularities. All that is required is that X, be at least a rank
1 matrix. In particular, if m = 2 there is no singularity when X, has rank r = 1.
Indeed for m = 2, similarity shape space is homogeneous in the language of
differential geometry, meaning that every point in shape space looks like every
other point.

However, singularities do arise in similarity shape space in dimensions m > 3
at configurations X, of rank r < m — 2. The simplest example is given by a
set of collinear points in R3; the singularity arises because the configuration is
unchanged under a rotation in R? that leaves the axis of the line fixed. The high
curvature near such points in shape space has been studied in [7];

2. Reflection similarity shape space, Level 2 metric. This space has more singu-
larities. For all dimensions m > 2, there is a singularity whenever X, has rank
r < m. So a set of collinear points in the plane is viewed as singular under the
Level 2 metric for reflection similarity shape space, but not under the Level 1
metric for similarity shape space;

3. Affine shape space, Grassmann Euclidean metric. Here by definition the stan-
dardized configurations X are assumed to have rank m. There are no singulari-
ties;

4. Projective shape space, Level 1, 2 and 4 metrics. Here the situation is more
complicated. It is easiest to study for m = 1, where the Level 1, 2 and 4 metrics
all have singularities at the same points in shape space [8].
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4 Projective Shape Space P.7 (4, 1)

Projective shape spaces are considerably more complicated than similarity or affine
shape spaces. In this section we summarize some of the challenges which appear
even in the simplest case P.¥ (4, 1) of k = 4 collinear points in m = 1 dimension.
Let the positions of the landmarks be given by 4 numbers, u;, j = 1,...,4. Then
the projective shape can be described in terms of a single number known as the cross
ratio, one version of which is defined by

_ (ur — u2)(u3 — ug)
(ur — uz)(uz — us)’

Each value of t represents a different projective shape as t ranges through the
extended real line (with the limits oo identified with one another).

In [8], it is emphasized that the cross ratio representation of projective shape
is not suitable for metric comparisons. Instead various Procrustes distances are
considered. Here is a sketch of the main results.

The M and N versions of Procrustes distance in (3) give rise to two simple
geometric representations of P.%(4,1). Under the M representation, P.7(4,1)
becomes a spherical equilateral triangle, most easily visualized as two great circle
arcs along lines of longitude from the north pole to the equator separated by 90°,
together with an arc along the equator connecting them. Each edge of this spherical
triangle is an arc of length 90°.

For the N representation, P.¥ (4, 1) becomes a planar equilateral triangle, with
each edge of length 1, say. A plot is given by the outline of the central triangle given
in Fig. 4. One edge, AB, say, corresponds to the interval t € [0, 1]. The next edge,
BC, corresponds to the interval T € [1, 0o], or equivalently, (t — 1)/7) € [0, 1]. The
final edge, CA, corresponds to the interval T € [—o0, 0], or equivalently, 1/(1—1) €
[0, 1]. The relevance of these nonlinear mappings of t can be explained in terms of
the effect on t of various permutations of the labels of the landmarks.

However, the neatness of these geometrical representations hides some of the
more subtle aspects of projective shape:

1. visualizing when different configurations have the same projective shape is
intuitively difficult. Figure 1 illustrates several configurations for which the outer
landmarks u; and u4 are held fixed, but the inner two landmarks vary in such a
way that the cross ratio remains fixed at ¢ = 0.3. The human eye is not very
good at recognizing that these configurations have the same cross ratio. (On the
other hand the human eye is excellent at deducing depth information from stereo
images!);

2. Tyler standardization provides a mathematically elegant way to standardize a
configuration. However, in real world applications a film image of an underlying
configuration will be observed subject to errors (either in the location of the
landmarks in the ambient space R? or in the location of the landmarks on the film
image). Unfortunately the way these errors influence the distribution of projective
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Fig. 1 Various © © o o
configurations of four 1 2 3 4
collinear points with the same
Cross ratio
O O O O
1 2 3 4
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shape depends on the “pose” of the original configuration in the ambient space
in a considerably more complicated manner than is the case for similarity and
affine shapes. A partial analysis is given in [8];

3. the singularities in projective shape space are well-defined mathematically, but
are somewhat unexpected intuitively. In the current setting, k = 4, m = 1, they
correspond to either a single pair coincidence (e.g. u; = uy < uz < ug) or
a double pair coincidence (e.g. u; = uy < u3 = ug). On the other hand, the
singular points do not look very special when looked at in terms of the cross
ratio;

4. the implications on statistical understanding of different metrics, e.g. those based
on either Level 2 or Level 4 Procrustes analysis, is still not entirely clear;

5. a related issue is the difficulty in constructing useful and tractable models on
projective shape space. The next sections give some initial suggestions.

5 Uniform Distributions on P.¥(4,1)

In this section we explore possible uniform distributions on P.#(4,1). In terms of
the planar triangle representation, there are at least three general approaches. For
each approach the density is the same on each side of the triangle and is symmetric
about the midpoint of each side. Hence we limit attention to one side, parameterized
by 0 < 7 < 1. The form of the three densities is given as follows.

1. (Independent sampling) Take four independent points from a specified distri-
bution on the line and compute the resulting distribution of the cross ratio.
The distribution under normality was worked out by Maybank [9, 10] and the
distribution under uniformity was worked out by [1]. The latter distribution is
more tractable to write down here and can be expressed as

Sma(®) = fo(®) + fol—7), O<T<1,
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where

fo(@) ={(x + Dlogz +2(1 = 1)}/ (x = 1)’;

2. (Level 2 metric) Consider a uniform distribution on the spherical triangle
representation of P.#(4,1). Thus on each edge, the angle § € (0,7/2) is
uniformly distributed. After changing the variable from § to ¢ = sin®§ on the
edge for 0 < 7 < 1, the density becomes

fia(t) = 1/{xnvr—12), 0<t<I1;

3. (Level 4 metric) Consider a uniform distribution on the planar triangle represen-
tation of P.¥ (4, 1), so

fL4(‘L'):1, O<t<l.

In each case the density has been scaled to integrate to 1 over the interval 0 < t <
1 and should be divided by 3 and repeated on the other two edges of the triangle to
give the corresponding density over all of P.¥(4, 1). A plot of these three densities
on the t scale is given in Fig. 2. Note that fj,q and fi, are difficult to tell apart and
have poles at the endpoints 7 = 0, 1. In contrast fi 4 is flat.

It is also of interest to plot these densities on the § scale, where we rewrite each
density as a function of § and introduce the Jacobian factor dz/d§ = 2sin§ cosd =
sin 26 for the change of variables. The resulting densities are in Fig. 3. Now all three
densities are quite distinct. Both fi,q and fi4 vanish at the endpoints, though fi4

Fig. 2 Densities for three
possible “uniform”
distributions in T coordinates,
plotted for 0 < 7 < I: o —
independence model (solid),

density
2
|

level 2 uniform (dashed) and 0.0 02 0.4 0.6 0.8 1.0
level 4 uniform (dotted) tau

© _|

)

2

Fig. 3 Densities for three g < _|
possible “uniform” T o
distributions in § coordinates, ]
plotted for 0 < 6 < 7/2: g— : I : :

independence model (solid),
level 2 uniform (dashed) and 0.0 0.5 1.0 1.5
level 4 uniform (dotted) delta
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converges to 0 more quickly. In the middle of the interval fi,q is bimodal whereas
fL4 is unimodal. In contrast fi, is flat throughout.

6 Constructing Distributions on P.¥ (4, 1) About
a Preferred Shape

Both the spherical and planar representations of P.#(4, 1) are topological circles.
Thus one modelling strategy is to ignore the corners and treat them as actual circles.
Then fit a standard circular model such as a von Mises distribution, which can allows
concentration about any specified projective shape. This strategy was explored by
Goodall and Mardia [5].

However, in this paper we look at a different strategy, which is valid for any
compact manifold which can be embedded in a Euclidean space. Namely, we
construct an exponential family based on first, and possibly second, moments in
the Euclidean coordinates. This strategy has been very common and successful in
directional data analysis, yielding the Fisher and Bingham distributions and various
generalizations.

For the spherical triangle representation of P.”(4,1), the simplest strategy
is to condition the linear-exponential function exp(a,w; + axwy + azws) to lie
on the spherical triangle, where wj, w,, ws are the Euclidean coordinates and
ai, as,as are parameters. The resulting distribution will be truncated von Mises
on each arc. However, since the cumulative distribution function of the von Mises
distribution is a bit awkward to work with, we will not consider this density further
here.

For the planar triangle representation of P.#(4, 1), the same strategy of using
just first order Euclidean terms in the exponent of the density does not work very
well. The resulting densities are not very flexible because the mode of the density
must lie either at a vertex or uniformly along an edge.

Hence we consider an exponential family in the plane based on linear and
quadratic terms in the Euclidean coordinates. The simplest version of this strategy
is to condition an isotropic bivariate normal distribution to lie on the planar triangle.
This distribution is explored in the next section.

7 Conditioned Normal Distribution for the Planar
Representation of P.(4,1)

In this section we look at a bivariate normal distribution N»(u, o21), conditioned to
lie on the planar equilateral triangle representation of projective shape space.
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Fig. 4 The outline of the
heavy central triangle is a
- . 1 3
Level 4 representation of
projective shape space for 2
four collinear points. The
labels 1-22 demarcate 22 4 5 6 7
possible regions for the mean o
parameter p in the
conditioned isotropic 10 12
bivariate normal distribution 8 9 1 13 14
A B
17
15 16 18 19
21
20 22

An explicit coordinate representation of this equilateral triangle is given by the
choice of vertices

V4= —

_
|

— S

W

i}

ol

N — W

=5[]

so that the edges have length 1, edge AB is horizontal, and the center of the triangle
is at the origin.

In order to study the shape of the bivariate normal distribution conditioned to
lie on this triangle, it is helpful to divide the parameter space for i € R? into 22
regions, as shown in Fig. 4. The shape space P. (4, 1) is denoted by the central
triangle with thick edges and vertices marked A,B,C. At each vertex, two lines have
been plotted, orthogonal to each of the two edges at the vertex. These lines, plus the
original triangle partition R? into 22 regions, as marked.

The behavior of the density on a particular edge, e.g. AB, depends on whether p
lies inside or outside the corresponding parallel lines perpendicular to that edge. If
lies inside the parallel lines, then the quadratic form has a minimum, and hence the
density has a local maximum, on the edge. If u lies outside the parallel lines, then
the quadratic form is monotone increasing (and the density is monotone decreasing)
along the edge from the nearer parallel line to the further parallel line.

It is convenient to classify the behavior of the conditioned normal density into
five types:

Type I.  The density is unimodal with the mode within one edge (regions 4,7,21).
Type II. The density is unimodal with the mode at a vertex (regions 1,3,8,14,
20,22).
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Type III.  The density is bimodal with the modes within two edges (regions 5,6,9,
13,16,18).

Type IV.  The density is bimodal with the modes at one vertex and within the
opposite edge (regions 2,15,19).

Type V. The density is trimodal with a mode within each edge (regions 10,11,
12,17).

Figure 5 gives plots of each of these different types of density, with p taking the
values —2v4, —2v4—4vp,v4+.2(vg —vc), —2v4 —2vp, 0, respectively. Note that
Types I and II are likely to be the most relevant in practice.

a Type | density b Type Il density
< | ! : © ] : A
o H o 7|

2 A : 2 7

2o E 2 o]

S ° | : 3 ©] . . .
o _A : A o] : \
S 11 Ei; T ('l-; - S A ?’ T q" T lI\

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
edge length edge length

(v Type lll density d Type IV density
< ] : - -
o ! —

z : 23

(] i (2] —

g S : g |

oS | : T o ' : :
o A ' A o |A ; 2 \
S T 1 Ei; T CI> - S T BI T CF T /|\

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
edge length edge length
e Type V density
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I I I I I I I
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edge length

density
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Fig. 5 Plots of the conditioned normal density for the planar triangle representation of P.¥(4, 1)
along the edges AB, BC, CA. Parts (a)—(e) illustrate densities of Types I-V, respectively
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This section has focused on the case of an isotropic covariance matrix ¥ =
0?1 for the underlying bivariate normal distribution. It is interesting to consider
what happens if X' is unrestricted. In this case it is possible to divide the parameter
space for p into different regions similarly to Fig. 4, except the thin lines are now
orthogonal to the edges of the triangle in the X~ metric rather than the Euclidean
metric. Provided the level of anisotropy is not too severe, there is still a split into 22
regions. However, if the level of anisotropy is extreme, the thin lines will cross over
the edges of the triangle and the partition into regions will be more complicated.

8 Discussion

The Procrustes approach to projective shape offers an elegant mathematical frame-
work to study projective shape. However, the construction of useful densities in
this setting is considerably more complicated than in the more traditional setting of
similarity shape analysis. In particular, there are at least three plausible candidates
for the label of “uniform” distribution on P.(4, 1) and a variety of approaches to
construct more concentrated distributions. More work is needed to fully appreciate
the implications of this framework for computer vision and statistical inference.

Acknowledgements This work benefited from a visit to the Statistical and Applied Mathematics
Sciences Institute (SAMSI), North Carolina and a workshop at the Mathematical Biosciences
Institute (MBI), Ohio, especially through helpful discussions with Ian Dryden, Thomas Hotz,
Huiling Le, Stephan Huckemann, Kanti Mardia, Ezra Miller, and Vic Patrangenaru.

References

1. Astrém, K., Morin, L.: Random cross ratios. In: Borgefors, G. (ed.) Proceedings of the 9th
Scandinavian Conference on Image Analysis, pp. 1053-1061. Swedish Society for Automated
Image Analysis, Goteborg (1995)

2. Dryden, L.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998)

3. Dryden, L.L., Kume, A., Le, H., Wood, A.T.A.: A multi-dimensional scaling approach to shape
analysis. Biometrika 95, 779-798 (2008)

4. Faugeras, O., Luong, Q.-T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)

5. Goodall, C.R., Mardia, K.V.: Projective shape analysis. J. Comput. Graph. Stat. 8, 143-168
(1999)

6. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge
University Press, Cambridge (2000)

7. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: geodesic principal component
analysis for Riemannian manifolds modulo isometric Lie group actions (with discussion). Stat.
Sinica 20, 1-100 (2010)

8. Kent, J.T., Mardia, K.V.: A geometric approach to projective shape and the cross ratio.
Biometrika 99, 833-849 (2012)

9. Maybank, S.J.: Classification based on the cross ratio. In: Mundy, J.L. Zisserman, A., Forsyth,
D. (eds.) Applications of Invariance in Computer Vision. Lecture Notes in Computer Science,
vol. 825, pp. 453—472. Springer, Berlin (1994)



Projective Shape Space 131

10. Maybank, S.J.: Probabilistic analysis of the application of the cross ratio to model based vision.
Int. J. Comput. Vis. 16, 5-33 (1995)

11. Tyler, D.E.: A distribution-free M -estimator of multivariate scatter. Ann. Stat. 15, 234-251
(1987)

12. Tyler, D.E.: Statistical analysis for the angular central Gaussian distribution on the sphere.
Biometrika 74, 579-589 (1987)



Treelet Decomposition of Mobile Phone Data
for Deriving City Usage and Mobility Pattern
in the Milan Urban Region

Fabio Manfredini, Paola Pucci, Piercesare Secchi, Paolo Tagliolato,
Simone Vantini, and Valeria Vitelli

1 Introduction

Interpretative tools for the identification of mobility practices in the contemporary
cities are needed, not only for some known limitations of traditional data sources,
but also because new forms of mobility are emerging, describing new city dynamics
and time-variations in the use of urban spaces by temporary populations [3, 5, 15].
These practices challenge the analytical tools and the conventional data sources
used for urban and mobility investigations (i.e. surveys, census), unable to describe
adequately the space-time variability in the use of the city as well as the combined
movements of people, objects and information in their complex relational dynamics
[12,15].

The operative challenges opened up by the new forms of mobility emerging in
the contemporary city are measured in terms of their capacity to integrate different
approaches. One approach employs the aggregate method (Origin/Destination
flows) to study mobility as geographic displacement, recognizing a proportional
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relationship between the utility and the cost/time of movement. Another approach
explains mobility as a spatialized form of social interaction and considers mobility
as a social capital and the territory as a space of social interactions facilitated by
mobility. If both approaches are relevant to describe different patterns of mobility
in their social and spatial differentiation, it becomes important to accompany the
traditional quantitative approaches referred to a geographic displacement that tends
to focus on movement in space and time, in an aggregate way and for limited time
periods, with data sources able to describe fine grain over-time variation in urban
movements.

In this perspective, an interesting contribution may be provided by mobile phone
network data as a potential tool for the real-time monitoring of urban dynamics and
mobile practices, as tested in several experimental studies [1,4, 8]. The application
researches focused on two different products. Some studies deal with aspects of
representation of the data, emphasizing the aspects most directly evocative, to
highlight how these data may represent the “Mobile landscapes” [8]. Other studies
focus on data-mining analysis to building methods for managing large amounts
of data, and on the construction of instruments capable of deriving summary
information and relevant data on cell-phone [1]. As opposed to the more traditional
methods of urban surveys, the use of aggregated and anonymous mobile phone
network data has shown promise for large-scale surveys with notably smaller efforts
and costs [9].

If we consider the observed and aggregated telephone traffic as the result of
individual behaviors and habits, we can treat mobile phone data as a useful source
on the real use of the cities, capturing for example traces of temporary populations,
which are difficult to intercept by traditional data sources, but which, at the same
time, increasingly affect urban practices both quantitatively and qualitatively. An
increasing number of studies concerns the exploitation of mobile phone data
in urban analysis and planning[2]. In particular an interesting issue regards the
classification of urban spaces according to their users’ practices and behaviors
[9, 13]. In [14] the authors outline the fact that city areas are generally not
characterized by just one specific use, and for this reason they introduce the use of
fuzzy c-means, a fuzzy unsupervised clustering technique for land use classification,
which returns for each area a certain grade of membership to each class. In the same
paper fuzziness is then abandoned to favor the identification of areas with a clearly
defined use. We want to drive the reader’s intuition on the interesting point that
different “basic” profiles of city usages can concur in the same place and that the
overall observed usage of a certain place is the superimposition of layers of these
basic profiles.

According to this synthetic framework on the challenges that mobility practices
pose to traditional sources and approaches, in this article we experiment a novel geo-
statistical unsupervised learning technique finalized to identify useful information
on hidden patterns of mobile phone use regarding different usages of the city in
time and in space which are related to individual mobility, outlining the potential
of this technology in the urban planning community. The analysis return new maps
of the region, each describing the intensity of one of the identified mobility pattern
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on the territory. In detail, the territorial distribution of the intensity of these patterns
allows us to reconstruct the density of use of urban spaces in different temporal, and
territorial scales as a precondition:

* to identify temporary populations and different forms of mobility that structure
the relationships in the contemporary city;

* to propose diversified management policies and mobility services that city users
require, increasing the efficiency of the supply of public services.

2 Data

For the present research we had the opportunity to use the same data that feeds
the CityLive platform developed by Telecom Italia for the real time evaluation of
urban dynamics based on the anonymous monitoring of mobile phone networks.
Telephone traffic is anonymously recorded by each cell of the network as the average
number of concurrent contacts in a time unit. Telecom Italia elaborate then these
measurements obtaining their distribution by means of weighted interpolations,
throughout a tessellation of the territory in squared areas (pixels).

In the Telecom Italia database, the metropolitan area of Milan is divided into a
uniform grid (lattice) Sy of 97 x 109 pixels. For each pixel, Telecom Italia made
available the average number of mobile phones simultaneously using the network
for calling, for every 15-min time interval along a period of 14 days. This quantity
is called Erlang and, to a first approximation, can be considered proportional to
the number of active people in that pixel at that time interval, hence providing
information about people density and mobility. Technically the Erlang Ey; relevant
to the pixel x € Sy and to the jth quarter of an hour is computed as:

1
0
Eyj = E2q=1|Tqu , (1)

where quj indicates the time interval (or union of intervals) in which the gth mobile
phone is using the network for calling within pixel x and during the j th quarter of an
hour. | quj | indicates the length of quj expressed in minutes. The number of potential
phones using the network is indicated with Q. Even though the phone company uses
Eq. (1) to compute Ey;, the meaning of this quantity is better understood from its

equivalent representation:

1 [

Ey; = Ny(t)dt, 2)

15 Jisi—1

where N(¢) indicates the number of mobile phones using the network within the
pixel x at time f. Equation (2) shows that Ey; is the temporal mean over the jth
quarter of an hour of the number of mobile phones using the network within pixel x.
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The Erlang data we deal with are recorded, with missing values, from March 18,
2009, 00:15 a.m., till March 31, 2009, 23:45 p.m., providing p = 1, 308 records per
pixel. The lattice of pixels Sy covers an area of 757 km? included between latitudes
45.37 and 45.57 and longitude 9.05 and 9.35 which corresponds to the Milan core
city and to the first ring of municipalities surrounding Milan, located along the ring
road. It is divided in N = 97 x 109 = 10, 573 approximately rectangular pixels.
On the whole, 13, 829, 484 records are available. To have a first idea of these data,
in the top panel of Fig. 1 the aggregated Erlang, i.e. the sum of the Erlang measures
for each pixel in the investigated area, ¢, Ex;, is represented as a function of the
corresponding quarter of an hour j = 1,..., p. Some peculiar features are already
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Fig. 1 Erlang data: (fop) the aggregated Erlang of the investigated area as a function of time;
(middle) a random selection of ten Erlang data, drawn at random among the sites of the lattice, as a
function of time; the solid vertical lines are drawn at midnight of each day, and the dotted vertical
lines at midday. The first day is Wednesday March 18, 2009. (Botfom) average power spectrum;
Dotted vertical lines are drawn for multiples of 7
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noticeable, such as the day/night effect and working/weekend day effect. The aim
of the analysis is indeed to identify these global features together with those that are
more local, both in terms of time and space.

3 Methodology

3.1 Data Preprocessing: Fourier Expansion

In each pixel, we may consider the process of the Erlang measures over time, which
can be thought as a continuous process in time describing the average number of
mobile phones using the network in that site (see Eq. 2). An example of the observed
Erlang profiles along time is shown in Fig. 1 (middle): ten sites have been randomly
selected in the lattice, and the Erlang measures recorded in each selected site have
been plotted as a function of time. It is clear from the picture that, beside macro
periodic behaviors due to week and daily-seasonality in the average use of mobile
phone, Erlang data present strongly localized features.

Indeed, in each site of the lattice we observe a discrete version of the Erlang
continuous process, recorded every quarter of an hour: due to discontinuities in
information provided by the network antennas, the Erlang measure is missing
at some time intervals, and hence the time grid of the Erlang measurements is
non-uniform. We thus need to choose a proper basis expansion to reconstruct the
functional form of the time-varying Erlang data on a common grid of time values.

To this purpose, we perform a pixel-wise smoothing of the Erlang data via a
Fourier basis expansion of period one-week. The idea is to estimate each Erlang
profile as a function in time obtained as a weighted sum of sinusoids of increasing
frequency. Formally, the reconstructed Erlang profile relative to the pixel x € Sy
is a function Ex(t) = % + Zle [a,’; cos(hwt) + b} sin(ha)t)], where t € [0; T,
o =2n/T and T = 60-24-7is the period expressed in minutes with the coefficients
¢y, ay, and b estimated through ordinary least squares.

In Fig. 1 (bottom) the average power spectrum of the Telecom Italia database is
reported. This plot shows, for each frequency, the relevant average contribution of
the corresponding sinusoid to the Erlang profiles observed within the investigated
area. From a graphical inspection of the plot, it is clear that the frequencies
significantly contributing to the Erlang time variation are the smaller ones (all less
than 7), capturing the difference among days or blocks of days (e.g., the working and
weekend days variation), and the frequencies multiple of 7, capturing the recurring
daily dynamics. Note that if only the frequencies multiple of 7 were present, the
Erlang profiles would be daily-periodic. For an extensive description of smoothing
procedures for functional data we refer to [7].
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3.2 Dimensional Reduction: Treelet Decomposition

After data preprocessing, we now aim at the identification of a set of “reference
signals” able to synthetically describe the different temporal patterns of utilization
of the mobile phone network across the region; and of a set of “influence maps”
pointing out site-by-site the contribution of each reference signal to the site Erlang
profile.

Coherently, in this work, we assume that a limited number of time-varying basis
functions, common to the entire area under investigation, are sufficient to describe
pixel-by-pixel all the corresponding Erlang profiles. Indeed we will interpret the
basis functions as describing the Erlang profile associated to a specific temporal
dynamic related to a human activity. More formally, we assume the following model
for the generation of Erlang data

K
Ex(t) =Y dwcti(t) + &x(0), 3)

k=1
where {y(¢),..., ¥k (¢)} is the set of time-varying basis functions and
dxi1, - . . , dxk describe their contribution to the Erlang profile relative to the pixel x.

The quantity €x(¢) represents an error term describing unstructured variability of
the Erlang data.

In the statistical literature, the process leading to the identification of the finite
dimensional basis {1 (), ..., ¥k(¢)} and of the coefficients dy, . .., dxx is known
as dimensionality reduction. A very common procedure for dimension reduction is
Principal Component Analysis [7]. In this work we use a method known as treelet
analysis introduced in [6].

Treelets (i.e., the estimates of the basis functions ¥ (¢), ..., ¥k (¢)) have been
originally proposed as a surrogate of wavelets for dealing with unordered variables.
Nevertheless, we found them to be an effective dimension reduction technique for
Erlang profiles and, more generally, for data with peculiar functional features, like
spikes, periodicity, outliers.

Similarly to wavelets, the treelet decomposition has the property of following
a hierarchical structure interpretable in a multiscale framework. Differently from
wavelets, treelets are data-driven. More specifically, the treelet analysis generates a
sparse multiscale orthonormal set on functions iteratively detected through nested
pairwise Principal Component Analysis. See [6] for further details.

Once the treelets ¥ (¢), ..., ¥k(¢) have been identified, for each pixel x € Sy
their respective contributions dyj, . .., dxk to the Erlang profile E4(¢) are obtained
by orthogonal projection.
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3.3 Spatial Smoothing: Bagging Voronoi Tessellations

The contribution dy, of the rth treelet v, (¢) to the local Erlang profile Ex(¢) is
expected to vary smoothly in space because of the spatial dependence between
Erlang profiles recorded in close sites which is induced by the arbitrary segmen-
tation of the area and by the mobility of phone users. Thus an improved estimate of
dy, for pixel x can be obtained by borrowing information from neighboring pixels.
In an urban setting, the identification of an optimal neighborhood system is not a
trivial issue because of the unisotropic and dishomogeneous nature of the urban
matrix. Indeed, detecting close sites is more an aim of the analysis than a starting
point.

For this reason we decided to exploit spatial dependence in a fully non parametric
setting using a Bagging strategy based on Voronoi tessellations proposedin [11]. We
refer to this paper for a deeper understanding of the rationale behind the Bagging
Voronoi Tessellation strategy, which is however easily described:

(i) we build a neighborhood system by randomly generating a Voronoi tessellation
covering the entire area under study;

(if) for each neighborhood (i.e. for each element of the tessellation) we exploit
spatial dependence by computing the median of the values dy, relative to the
pixels x within the neighborhood. We attribute the value of that median to each
pixel x within the neighborhood;

(iii) we then repeat steps (i) and (ii) B times (known as bootstrap replicates).

At the end of the B bootstrap iterations, to each pixel x corresponds a sample of B
medians; this sample is summarized by its median dAx, which provides an improved
estimate of dy,, taking into account spatial dependence. By plotting, for each pixel
in the lattice Sy, the value cfx, we obtain a smooth surface describing the variation
in space of the contribution of the treelet ¥, () to the local Erlang profiles and
thus identifying regions within the urban matrix that are similar with respect to the
human activity characterized by the treelet v, (¢).
On the whole, the entire methodology allows us to identify:

* a reference basis {Y;(¢),...,¥x(¢)}, i.e the set of basis functions describing
the specific effects on the Erlang data of some human activities recorded in the
area. In the top panels of Figs. 2, 3,4, 5, 6 and 7 a selection of the most easily
interpretable treelets is reported;

* a set of maps, i.e. the set of spatially-varying functions {a?l x),..., CiK x)})
showing pixel-by-pixel the contribution of each treelet to the local Erlang profile.
In the top panels of Figs. 2, 3, 4, 5, 6 and 7 the maps corresponding to the treelets
illustrated on top are reported.

From a computational point of view, this procedure is of course more time
consuming than a simple treelet analysis since it further requires: the generation
of B random Voronoi maps; the computation of the local medians for each element
of each Voronoi map and for each treelet; and then the computation of the bootstrap
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Fig. 2 Treelet 1—The “average use” treelet map. The treelet contains different temporal patterns
of mobile phone activity (i.e. daily, working day versus week end) that fit with actual city usage

medians of the local medians for each site and for each treelet. Despite of these, if
the procedure is suitably implemented, the increment in the computational time can
be dramatically reduced. Indeed, the generation of the random Voronoi maps can
be performed off-line since it only requires to know the location of sites and not
the actual data; the computation of the local medians can be fully parallelized over
maps, elements, and treelets; and finally the computation of the bootstrap medians
can be fully parallelized over sites and treelets.

4 Case Study: Experimenting Milan Mobility Patterns

4.1 Case Study: Milan

In our work, urban planning expert knowledge showed the potential of this method-
ology. We discuss in the present paragraph the specific case of the Milan urban
region. We analyzed and mapped “hidden mobile phone use patterns” derived from
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Fig. 3 Treelet 2—Nightly activity. Hot spots highlight the presence of night work: organization
of International Fair at the Rho-Fiera exhibition site (North-West); delivering and distributing
products in the Fruit and Vegetable Wholesale market (second circular ring of the city—South
East); scarce nightly activity inside the city centre

the treelets analysis in order to verify the potential of this method for explaining
spatial urban usage and mobility patterns.

Milan is an urban region which goes far beyond its administrative boundaries.
The core city and the whole urban area have been affected in the last 20 years by
relevant changes in their spatial structures and have generated new relationships
between centre and suburbs. Daily mobility patterns are now even more complex
than in the past when a hierarchical structures of cities was present and the physical
relationship between jobs and homes was the main reason of mobility. Now the
commuter flows describe only a minor part of the overall urban movements (about
the 29 %, excluding returning home). Daily mobility is generated by many other
reasons which are becoming increasingly relevant. These non-systematic flows are
related to individual habits and are the effects of diversified and complex uses of
the Milan urban region. For the intrinsic characteristics of this kind of mobility,
it is difficult to measure its dimension and its intensity, in space and in time
and systematic studies or sources which provide this information in Italy do not
exist. Within the Milan urban region services and activities are distributed in a
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Fig. 4 Treelet 33—Concentration of activities during the evenings of working days and during
daytime (from 8 a.m. until 8 p.m.) of the week end: residential districts of the Milan urban region

wide territory and there is a plurality of places with specific meanings for mobile
populations. At the moment, the urban region of Milan is a densely populated,
integrated area where 4,000,000 inhabitants live, where there are 370,000 firms,
covered by huge flows of people moving daily in this wide area. Mapping overall
mobility in space and in time therefore requires new data sources, able to adequately
describe mobility patterns.

4.2 Testing the Treelets

Among the dozens of treelets produced applying the methodology explained
in the previous section, we selected some results as significant for explaining
specific mobility and city usages patterns and tested their significance and their
interpretation from an urban analysis and planning perspective at the Milan scale.

On each image we added infrastructures (railways and main roads), main
shopping centres, railway stations, localization of the city airport and of the fair
trade centre in order to facilitate the interpretation of the map.



Treelet Decomposition of Mobile Phone Data in the Milan Urban Region 143

Erlang
-04 -02 00 02 04 06

-0.6
L

0 2000 6000 8000 10000

Legend
Highways

Main roads
Railways
Railway stations
o

Airports
Fairs
-

Main shopping centres
L]

Fig. 5 Treelet 78—Density of activity during Saturday evening (8 p.m.-midnight). Saturday night
population: leisure and hospitals

000 8000 10000 o 2000 4000 6000 8000 10000
tmin) t(min)

I B —— I e
Fig. 6 Treelet 82 (left) and 83 (right)—Mobility practices. Weekdays commuting flows at the
Milan urban region scale: morning rush hours (left) vs to evening rush hours (right)
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Fig. 7 Treelet 93—Mobility practices. Saturday (10 a.m.—8 p.m.), shopping and leisure activity

The “average use” treelet map (Fig. 2) highlights some urban districts char-
acterized by specific telephonic patterns that are compatible with the real urban
structure of the region. The treelet contains different temporal patterns of mobile
phone activity (i.e. daily, working day versus week end) that fit with actual city
usage. In particular we can observe the highest values in the Milan city centre and
in others neighbourhoods where there is a strong attraction of urban populations
during working day and, with minor intensity, during week end.

In other suburban districts, the intensity is lower, due to the presence of a less
relevant mobile phone activity. In general we can conclude that the emerging spatial
patterns represent well the highly populated areas versus the poorly populated areas.
The mobile phone activity and the urbanized area produce in fact a similar image of
the region.

The proposed methodology shows its advantages when we try to face with other,
less evident spatial patterns which are difficult to intercept through traditional data
sources.

Figure 3 (Treelet 2) is about the density of mobile phone activity late at night
(in particular from midnight until 8 a.m.). We can observe here some interesting
hot spots where the values are very high. For example, the exhibition district in the
Northern Western side of the map. In the considered period an important Fair was
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held and the peak fits well with the nightly activities necessary for the mounting
and the organization of the site. Another point of interest is the Fruit and Vegetable
Wholesale market in the South Eastern part of the region where consistent night
work happens for delivering and distributing products that come from whole Italy
and abroad. The city centre is characterized by a relative low value, according to the
absence of relevant nightly activity inside it.

Figure 4 (Treelet 33) puts in evidence some locations with high concentration of
mobile phone activity during the evening of the working days and during daytime
(from 8 am until 8§ pm) of the week end. It shows a significant correspondence
with main residential districts of the Milan urban region. It highlights a relevant
concentration of homes along the second circular ring of the city, where the
density of resident population reaches the highest value of Milan, but also in some
municipalities with a residential profile and social housing in the south, south-west
and in the north of the metropolitan area (Corsico, Rozzano, Sesto S.G). The Milan
city centre appears as a void and this is consistent with the changes that occurred
in the last decades, namely a gradual replacement of the residents with activities
mainly related to the service and the commercial sectors.

Figure 5 (Treelet 78) shows places with high density of activity during Saturday
evening, from 8 p.m. until midnight. Focusing on the core city area, we notice
several interesting patterns: a high activity in some places where there are many
pubs and restaurants near the Milan Central Station, in the Navigli District, in the
Isola Quarter and in other ambits characterized by the presence of leisure spaces
(Filaforum Assago in the south of Milan) but also of activities in a continuous cycle
as the hospitals. This treelet has proven to be effective in describing the temporal
profile of the city lived by night populations during Saturday.

Figure 6 (Treelet 82 and Treelet 83) concerns more directly the representation of
specific mobility patterns evident at the Milan urban region scale during working
days, i.e. commuting flows. In fact, the Treelet 82 map is about the concentration
of mobile phone activity during the morning rush hours and the Treelet 83 regards
the activity during the evening rush hours. The emerging spatial patterns are quite
different and show several interesting mobility practices within and outside the
city. In fact, during the morning, we observe a concentration of traffic along the
main roads, in proximity of relevant high roads junctions and in the surrounding
areas. We can put this trend in relation with the daily commuting flows of people
moving from homes, located in a wide area around Milan to job places. From an
urban analysis point of view, it can be seen as a representation of the overall traffic
generated mainly by cars, from 8 a.m. to 10 a.m. from Monday to Friday. Treelet 83
measures the mobile phone activity during the evening rush hours, which are longer
than the morning ones, since they last more than 4 h, from 4 p.m. to 8 p.m. In this
case, the hot spots are mainly located within the road ring. The map well represents
the complex mobility pattern related to the exit from workplaces, when, before
going home, chains of daily shifts take place, linked to a number of social practices
(shopping, going to the gym, go get a family member or friend). The chain of daily
moves becomes more articulated, and the daily rush hours are dilated. As it emerges
from traditional sources [10]: the individual daily displacements in the Province of
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Milan are 2,55 moves/person, with an average of two moves in sequence. The spatial
pattern puts in evidence a relative low intensity in the city centre and an increasing
density of activity in proximity of the main shopping centres, commercial streets
(Vigevanese), and radial connections moving outward.

Figure 7 (Treelet 93) highlights another relevant mobility pattern, which is
difficult to intercept through database traditionally used in urban studies: the
shopping activity and in general the leisure activity. The map represents the density
of mobile phone use during Saturday, from 10a.m. to 8 p.m. Shopping and leisure
are two of the main reasons of mobility in contemporary cities: they belong to
the category of non systematic mobility, and they significantly contribute to the
even more complex mobility patterns that can be observed in the Milan urban
region due to the distribution of commercial centres, commercial streets and, in
general, of activities (museums, touristic sites, cinemas, just to cite some) inside
and outside the city. These places attract, especially in certain days of the week, a
huge amount of population coming from a vast territory that goes far beyond the
administrative boundaries of the city. The map is the result of this spatial pattern
and shows an important concentration of mobile phone traffic in the city centre and
in other several places outside the city (most of them corresponding to the presence
of commercial centres). The mainly residential areas, recognized in the previous
Fig. 6, are consequently characterized by the lowest value.

5 Future Works

The research allowed us to test the potential of the treelet decomposition analysis
in explaining relevant urban usage and mobility patterns at the Milan urban scale.
We plan to improve the integration of traditional database (i.e. land cover maps,
distribution of activities, infrastructures and transport junctions) with mobile phone
data pattern in order to reach a less descriptive and a more synthetic classification
of the urban space according to its temporal and spatial usages, that could be useful
for understanding the dynamic of temporary populations and of mobility patterns
and for promoting more specific urban policies. This task may be possible from the
recognition of mobile populations which are given the opportunity to choose among
alternative forms of available mobility which can offer the greatest flexibility, range
of connections, reversibility and the best means of accessing the various resources
and destinations possible, but also which offer more oriented services.
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Methodological Issues in the Use
of Administrative Databases to Study Heart
Failure

Cristina Mazzali, Mauro Maistriello, Francesca Ieva, and Pietro Barbieri

1 Introduction

The use of administrative data for clinical and epidemiological research is well-
established; advantages in their use and criticisms are also well discussed (see,
among others, [5,7] and [8] and references therein). Among advantages we could
remember large sample size, represented population, which may vary between
different healthcare systems, absence of additional costs for gathering data, long
observation periods, and sometimes possibility of linking different databases’
information on the patient [11]. However, these databases were originally designed
for administrative aims rather than for clinical research, therefore some drawbacks
exist. Quality of collected data is better when it has financial or administrative
implications, sometimes unique patient identification improves over years, some
comorbidities are poorly recorded and their possible presence on admission is often
unclear. At last misclassification of outcome or exposure is also possible.
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Moreover, statistical analysis of administrative data has particular characteristics;
for example, it is important to distinguish between statistical significance, easily
achieved, and clinical significance especially in model selection [17]. Dealing with
administrative data instead of usual observational studied, a sort of change of
perspective occurs. Actually, data are already available, while patients of interest are
to be found. In order to avoid patient misclassification, or incorrect interpretation
and use of clinical information, a preliminary work on data and on study design
is needed. Several competences should be involved in an interdisciplinary team:
clinicians, statisticians, experts of coding classification systems, experts of the
databases used in the study, etc.

As afirst step, data should be checked for accuracy, internal and external validity.
Quality control allows to define reliable variables for the analysis, and also valid
records. For example, cases missing patient identification may be excluded from the
analysis because the linkage with vital statistics is not possible. Another important
question concerns the choice of extraction criteria to select patients of interest. When
dealing with hospital discharge records, selection is often made searching specific
codes in diagnosis positions. For the most relevant diseases there are reviews of
studies evaluating sensibility, positive predictive values and specificity of different
selection criteria. These reviews could be useful in the choice of the best criteria for
the purposes of the study.

Several choices are to be made before statistical analysis is performed; these
choices could be source of misclassification and biases. It is important that the
researchers using administrative databases make every decision explicit and clearly
declared in the final report or article to let the reader know their possible effects.

The project “Utilization of Regional Health Service databases for evaluating
epidemiology, short- and medium-term outcome, and process indexes in patients
hospitalized for heart failure” is funded by Ministero della Salute and is developed
in Lombardia region (Italy). The purpose of the project is to study epidemiology,
outcome and process of care of patients hospitalized for heart failure in Lombardia
region on the basis of administrative data. At first, patients will be selected
from the database of hospital discharge abstracts to study epidemiology of heart
failure and its outcomes; subsequently, databases of outpatient care and drugs
prescriptions will be the sources of information to study the process of care.
The main aim of this article is to describe the necessary steps to make project
data suitable for epidemiological and statistical analysis. We are also going to
discuss methodological issues concerning data quality analysis, selection criteria,
comorbidities detection and definition of observation units.

2 Dataset Description

The first goal of our work was the identification of patients hospitalized for heart
failure among residents in Lombardia, which is an administrative region in the
northern part of Italy. In order to do this, we required the regional database of
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hospital discharge abstracts. In fact, to obtain reimbursement from National Health
Service, almost all Italian hospitals, both private and public, are bounded to submit
discharge summaries. Regional administrative databases of hospital discharges
are characterized by universality, i.e. all the resident population is involved, and
completeness, i.e., all the hospitalizations are reported.

We considered discharges from 2000 to 2012 of residents in Lombardia region.
We also obtained hospitalizations of residents which occurred from 2000 to 2011
in Italian regions other than Lombardia. In particular, we considered discharges
in Major Diagnostic Category MDC 01, 04,05 and 11 from acute care facilities
and rehabilitation services. Discharge abstract data contain information on sex, age
and residence of patients. Among information of medical interest there are: date
of admission and date of discharge, admission ward and internal transfers to other
ward of the same hospital, principal diagnosis, up to five secondary diagnoses, up
to six procedures. Diagnoses and procedures are reported using ICD-9-CM codes.
Finally, source of admission and discharge status are available; the last one is used
to identify in-hospital deaths.

A unique personal identifier, although encrypted, was supplied. It was used to
detect subsequent admissions for the same patient. Possible date of death for each
patient was linked from death registry by the institution that hosts the databases.
Thanks to these data, it was possible to evaluate survival time for each patient. If a
patient moved to another Italian region during the period between 2000 and 2012,
the date of move was also provided.

3 Data Quality Control

Data collected with administrative purposes are usually evaluated for quality by the
source agencies; however, their quality is not always suitable for research use. We
performed an evaluation of data quality which was oriented to the use of data for
the project aims. According to the framework proposed by the Manitoba Centre for
Health Policy [10] we checked data for accuracy, internal and external validity.

Controls of accuracy included evaluation of variables completeness and correct-
ness. We checked all the variables involved in the analysis for missing values, and
for invalid values or out of range data.

Among the internal validity controls, we compared values of different variables
in order to evaluate the coherence of information they provided; for example, date of
death had to be less or equal to date of discharge. We also considered stability across
time of a few number of variables, such as distribution of MDCs and discharge
status. Thanks to this control, we found that, among patient hospitalized in other
Italian regions, abnormal values in mortality rates were due to a change in coding
discharge status occurred in this period. Imputation of values for incorrect data
was bounded to few cases; for example, the use of different coding sets for the
same variable through years was verified and corrected. Reliability of variables was
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assessed, and sometimes they were excluded from further analyses. For example,
date of internal transfers were excluded for lack of internal validity.

Close attention was paid to the analysis of missing data in patient’s identifier, and
to the characteristics of discharges in which it was missing.

4 Methodological Issues

4.1 Bibliographic Research

Administrative health care databases are a rich source of clinical and administrative
information on broad populations and an increasingly volume of studies has been
published using this source of data. A useful classification of the wide-ranging
administrative database applications into a meaningful typology has been done by
Schoenman et al. [15]. They identified eight type of applications:

* public safety and injury surveillance and prevention;

* public health, disease surveillance and disease registries;

* public health planning and community assessments;

* public reporting for informed purchasing and comparative reports;
* quality assessment and performance improvement;

» health services and health policy research applications;

* private sector and commercial applications;

* informing policy deliberations and legislation.

According to this report, there are various advantages on using administrative
databases as a source: they are relatively inexpensive to obtain when compared to
the cost of similar data collected through surveys or medical record abstraction;
they are more reliable than other sources of data, such as patient self-reporting or
physician reporting of specific conditions for disease surveillance; they are usually
available for multiple years and they typically cover entire populations.

Researchers working with administrative databases should also be mindful
of inherent limitations such as: lack of detailed clinical information, test
results, functional status, severity of illness and behavioral risk factors. To
conduct our study, using PubMed, we searched MEDLINE for articles published
in the last 10 years combining text words and MeSH term in a quick
search strategy: (administrative datax[All Fields] OR claims
datax [All Fields]) AND Heart Failure [Mesh]. Subsequently, we
refined our strategy taking advice from a recent project supported by the U.S.
Food and Drug Administration (FDA). The FDA Mini-Sentinel initiative reviewed
the literature to find validated methods for identifying health outcomes using
administrative and claims data. A detailed review on congestive heart failure has
been prepared by Saczynski et al. [13].
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The specific search strategy for the HF review can be found in the full
report available at http://www.mini-sentinel.org/workproducts/HealthOutcomes/
MSHOICHFReport.pdf We identified additional studies from bibliographies of
relevant articles and we also searched for reports in the web sites of major research
institutions worldwide such as the Centers for Medicare & Medicaid Services
(CMS) and the Agency for Healthcare Research and Quality (AHRQ).

4.2 Selection Criteria

The choice of criteria to select patient affected by a specific disease is one of the
most relevant issues when dealing with administrative data. In order to avoid biases
in patients selection, it is important to note that sensibility and specificity of codes
may vary for different diseases and actually affect the possibility to study a disease
using administrative data. Which codes are to be addressed to identify patients of
interest should be decided involving several competences, such as clinicians or
coding experts. Clinicians have the knowledge of the diseases and how they are
treated; coding experts have a detailed knowledge of coding system and of coding
habits, they are also aware of regional laws that could affect coding. Moreover, when
dealing with data from several hospitals and years, the knowledge of variations over
time in coding practice is also important.

Several studies (see [9, 13, 16] and [18], among others) address the issue of
the best algorithms to identify hospitalizations for heart failure based on discharge
abstracts. According to Saczynski et al. [13], in order to yield cases of heart failure,
the use of codes 428.x, leads to high specificity and positive predictive value (PPV)
but may have a low sensitivity. Some authors (for example, see [6]) look for the
presence of other codes besides 428.x, resulting in lower specificity and PPVs but
with an increase of sensibility values.

The Agency for Healthcare Research and Quality developed a set of Inpatient
Quality Indicators that give an insight of quality of care using hospital administrative
data. Mortality for heart failure is one of the indicators of mortality for conditions
developed within the Inpatient Quality Indicators set. Discharges of patients affected
by heart failure are identified searching for a list of ICD-9-CM codes (see Table 1)
in principal diagnosis.

The Hierarchical Condition Categories by Centers for Medicare & Medicaid
Services (CMS-HCC) is a risk adjustment model used to adjust capitation payments
in agreement with health condition of patients. To construct the CMS-HCC the
ICD-9-CM codes are classified into 805 groups of diagnostic codes, named DGXs.
Subsequently, DGXs are aggregated into 189 Condition Categories (CC), which
describe broader sets of diseases related both clinically and with respect to cost.
Hierarchies are imposed among related CCs to create HCC. Thanks to hierarchy, a
person with related conditions is coded for only the most severe one. Hierarchical
Condition Category 80 (CMS-HCC version 12) is related to congestive heart failure
and is defined by the codes reported in Table 1.
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Table 1 Sets of ICD-9-CM codes used for the selection of patients with heart failure in AHRQ
quality indicator and in CMS-HCC model

HCC AHRQ
398.91 RHEUMATIC HEART FAILURE X
402.01 Mal hyperthrt dis w hf X X
402.11 Benign hypht dis w hf X X
402.91 Hypht dis NOS w ht fail X X
404.01 Mal hypht/kd I-IV w hf X X
404.03 MAL HYP HRT/REN W CHF&RF X
404.11 Ben hypht/kd I-IV w hf X X
404.13 BEN HYP HRT/REN W CHF&RF X
404.91 Hypht/kd NOS I-IV w hf X X
404.93 HYP HT/REN NOS W CHF&RF X
415.0 Acute corpulmonale X
416.0 Primpulmhypertension X
416.1 Kyphoscolioticheartdis X
416.8 Chrpulmon heart dis NEC X
416.9 Chrpulmon heart dis NOS X
417.0 Arteriovenfistupulves X
417.1 Pulmonarteryaneurysm X
417.8 Pulmoncirculatdis NEC X
417.9 Pulmoncirculatdis NOS X
425.0 Endomyocardialfibrosis X
425.1 Hypertrobstrcardiomyop X
425.2 Obscafriccardiomyopath X
4253 Endocardfibroelastosis X
425.4 Primcardiomyopathy NEC X
425.5 Alcoholiccardiomyopathy X
425.7 Metaboliccardiomyopathy X
425.8 Cardiomyopath in othdis X
425.9 Second cardiomyopath NOS X
428.0 CHF NOS X X
428.1 Left heartfailure X X
428.20 Systolichrtfailure NOS X X
428.21 Acsystolichrtfailure X X
428.22 Chrsystolichrtfailure X X
428.23 Ac on chrsysthrt fail X X
428.30 Diastolchrtfailure NOS X X
428.31 Acdiastolichrtfailure X X
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Table 1 (continued)

428.32 Chrdiastolichrtfail X X
428.33 Ac on chrdiasthrt fail X X
428.40 Syst/diasthrt fail NOS X X
428.41 Ac syst/diastolhrt fail X X
428.42 Chrsyst/diastlhrt fail X X
428.43 Ac/chrsyst/diahrt fail X X
428.9 Heartfailure NOS X X
429.0 Myocarditis NOS X

429.1 Myocardialdegeneration X

Symbol “X” means that the code is used in the definition of the CMS-HCC model or AHRQ quality
indicator

The two sets of codes by AHRQ and CMS-HCC partially overlap; common
codes, i.e., 402.xx, 404.x1, and 428.xx, identify paradigmatic cases of heart
failure. AHRQ codes, not included in CMS-HCC set, were 398.91 (Rheumatic heart
failure - congestive) and 404.x3 (Hypertensive heart and chronic kidney disease
with heart failure and chronic kidney disease stage V or end stage renal disease).
Codes 415.x, 416.x, 417.x, 425.x, and 429.x where included in CMS-HCC set but
not in AHRQ one; they are used in coding: acute pulmonary heart disease, chronic
pulmonary heart disease, Other diseases of pulmonary circulation, Cardiomyopathy,
myocarditis (unspecified) and myocardial degeneration.

In the first step of data extraction the whole set of diagnostic codes was used
in order not to miss any case of heart failure in the subsequent analysis. In the
second step incidence and prevalence estimates were calculated on the whole set of
heart failure patients population and in some subsets based on specific subgroups of
codes; etiology was defined extracting information by secondary diagnoses and/or
previous admissions. Selected codes were searched in each diagnosis position, that
is the principal one and up to five secondary diagnoses.

4.3 Definition of the Observation Unit

The regional discharge database contains all hospitalizations occurred in Lombardia
region or occurred to residents outside this region. Therefore, when a patient is
transferred from a hospital to another, or is discharged by a hospital and admitted in
another one, two discharge summaries are recorded in the regional database.

In order to correctly count heart failure events and appropriately estimate time
elapsed between two heart failure events, we needed to identify hospitalizations
occurred to a given patient for the same medical event. In absence of general
clinical criteria that could be applied to discharge summaries, we decided, at least,
on considering two subsequent hospitalizations of the same patient as a single event.
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By subsequent hospitalizations we meant that the latter began the same day or the
day after the former ended.

As a first step, we organized all the hospitalizations into groups of events, and
then we considered those events with at least one hospitalization selected for heart
failure. Hereafter, we call these cases heart failure events.

4.4 Comorbidity Detection

Indices of patient’s comorbidities are needed for risk prediction and risk adjustment
modelling. Several measures had been proposed in literature [14]. The best known
are Charlson comorbidity index [1] and Elixhauser comorbidity measure [3].

Charlson index was developed for predicting 1 year mortality in elder patients
admitted in acute care, and is based on clinical data. However, translations using
ICD codes had been proposed by different authors (see [2] and [12], among others).
On the other hand, Elixhauser comorbidity classification system has better predic-
tive performance for length or stay, hospital charges and in-hospital mortality. In
[4] a comorbidity score predicting mortality in elder patients which was developed
combining conditions included in Romano—Charlson and Elixhauser comorbidities
measures is proposed. According to the authors, this score performs better than its
component scores in predicting short- and long-term mortality. We decided to adopt
the combined score for risk prediction and comorbidity adjustment of statistical
models.

In [14] the authors state that another factor that affects the predicting capability
of comorbidity measures is the, so called, “look-back period”, i.e., the period before
hospitalization in which comorbidities could be searched. According to the authors,
an adequate look-back period for improving prediction of mortality should be of 1
year, while a longer period would be better for readmission. In order to study time
between subsequent events and its association with patient’s worsening condition,
the whole burden of comorbidities was calculated extracting information by all the
previous available admissions.

S Application of the Methodological Issues

The total number of discharges in MDC 01,04, 05 and 11 from 2000 to 2012
occurred in Lombardia region or in other regions but related to patients resident
in Lombardia was 6,636,611.

Out of 6,636,611 hospital discharges, in 889,060 (13.40 %) patient ID was
missing. Among these, 579,423 (65.17 %) were related to patients not resident in
Lombardia. The overall number of discharges related to non-resident patients was
643,932 (9.70 %). Excluding data with missing patient ID and data related to non-
resident patients, the total number of discharges decreased to 5,683,042 (85.63 %
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Table 2 Hospital discharge abstracts selected with AHRQ and CMS-HCC codes

Code set and position Frequency Percent
HCC80 N AHRQ - principal diagnosis 318,373 42.86
HCC80 N AHRQ - secondary diagnoses 213,321 28.72
HCC80 (not AHRQ)- secondary diagnoses 768,08 10.34
HCC80 N AHRQ - principal diagnosis AND HCC80 (not 58,426 7.87
AHRQ) - secondary diagnoses

HCC80 (not AHRQ) - principal diagnosis 37,725 5.08
HCC80 N AHRQ - principal AND secondary diagnoses 23,338 3.14
HCC80 (not AHRQ) - principal diagnosis AND HCC80 11,455 1.54
N AHRQ - secondary diagnoses

Other 3,319 0.45
Total 742,765 100.00

Table 3 Number of events
per patient

Number of events

per patient Freq Yo Cumulative %
1 229,341 61.69 | 61.69
2 71,011 19.10 | 80.79
3 31,071 8.36 | 89.15
4 15,801 425 | 93.40
5 8,836 2.38 | 95.78
6 5,437 1.46 | 97.24
7 3,246 0.87 | 98.11
8 2,202 0.59 | 98.70
9 1,444 0.39 | 99.09
10 960 0.26 | 99.35
11+ 2,417 0.65 |100.00

of 6,636,611). Discharges with an ICD-9-CM code from AHRQ or CMS-HCC sets
in any diagnosis position were 742,765. As shown in Table 2, more than 71 % of
discharges were selected by codes common to AHRQ and CMS-HCC which were
found in principal diagnosis (42.86 %) or in secondary diagnosis (28.72 %). About
15 % of discharges were selected as heart failure cases on the basis of a CMS-
HCC code, not present in AHRQ set, in principal diagnosis (5.08 %) or secondary
diagnoses (10.34 %).

Excluding records with missing personal identifier, the total number of hospital
discharge records was grouped in 5,255,479 events. Events with at least one
hospitalization for heart failure, i.e. heart failure events, occurred to residents
were 701,701, concerning 371,766 patients. About 88.4 % of the events was made
by a single hospitalization, and about 99 % of the events was composed by 3
or less events. The distribution of the number of events per patient is shown in
Table 3; about 62 % of patients underwent a single event in the observation period;
approximately 27 % of patients underwent 2 or 3 events.
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Fig. 1 Percentages of presence of selected comorbidities in patients’ events over years

In Fig. 1 the distribution over years of selected comorbidities is showed. These
comorbidities are commonly associated with heart failure and aged patients. The
frequency of comorbidities is expected to be quite constant over time; an apparent
increase may be due to the effect of the so-called “look-back period”. Tumour and
pulmonary comorbidities seem to reach their plateau within the first three or 4
years; while renal comorbidities and diabetes are increasing over a longer period
and become quite constant in the last 4 or 5 years.

Conclusions

Dealing with administrative databases implies a strong interdisciplinary work.
Shared decisions and definition of a common methodology are key points
of this work. In our project, thanks to the process of quality control, the
choice of selection criteria and observation units, and the method selected
for comorbidity detection, administrative data were made suitable for clinical
and epidemiological research. Every choice was discussed within the work
groups, and is made clear for readers.

We choose broad selection criteria in order to gather information on a large
number of patients affected by heart failure. However, the epidemiological
and clinical analyses will be better conducted on subgroups of patients with
possible different outcomes. At first, these subgroups of patients can be
defined on the basis of sets of ICD codes; for example codes in the AHRQ
set only, or in the CMS-HCC set only, or in the intersection of the two
sets. Subsequently, more refined subgroups can be defined using etiological
criteria on the basis of ICD codes. Further analysis and discussion within

(continued)
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the group will be useful to determine the best possible look-back period for
comorbidities detection, in order to make it more homogeneous for all the
patients regardless when their incident event occurred.

At last, a separate analysis will be necessary for cases excluded from the
study due to missing patient identification code. In particular, it’s important
to know their demographic characteristics, e.g. their sex, age or nationality,
and their outcomes. Thanks to this work, we are confident that discharge
admission abstracts of the entire regional population over a period of 13 years
were made suitable for clinical research, through a shared and clearly declared
process.

Acknowledgements This work was developed within the “Utilization of regional health service
databases for evaluating epidemiology, short- and medium-term outcome, and process indexes in
patients hospitalized for heart failure” project founded by Ministero della Salute and supervised by
Dott. M. Frigerio

References

10.

11.

. Charlson, M.E., Pompei, P., Ales, K.L., et al.. A new method of classifying prognostic

comorbidity in longitudinal studies: development and validation. J. Chronic. Dis. 40, 373-383
(1987)

. Deyo, R.A., Cherkin, D.C., Ciol, M.A.: Adapting a clinical comorbidity index for use with

ICD-9-CM administrative databases. J. Clin. Epidemiol. 45, 613-619 (1992)

. Elixhauser, A., Steiner, C., Harris, D.R., et al.: Comorbidity measures for use with administra-

tive data. Med. Care. 36, 8—12 (1998)

. Gagne, J.J., Glynn, R.J., Avorn, J., Levin, R., et al.: A combined comorbidity score predicted

mortality in elderly patients better than existing scores. J. Clin. Epidemiol. 64, 749-759 (2011)

. Gavrielov-Yusim, N., Friger, M.: Use of administrative medical databases in population-based

research. J. Epidemiol. Community Health 68(3), 283-287 (2014)

. Goff, D.C., Pandey, D.K., Chan, F.A., et al.: Congestive heart failure in the United States. Is

there more than meets the I(CD codes)? The corpus christi heart project. Arch. Intern. Med.
160, 197-202 (2000)

. Grimes, D.A.: Epidemiologic research using administrative databases—garbage in, garbage

out. Obstet. Gynecol. 116 (5), 1018-1019 (2010)

. Hoover, K.W., Tao, G., Kent, C.K., Aral, S.O.: Epidemiologic research using administrative

databases: garbage in, garbage out. Letter to the editor. Obstet. Gynecol. 117(3), 729-730
(2011)

. Lee, D.S., Donovan, L., Austin, P.C., et al.: Comparison of coding of heart failure and

comorbidities in administrative and clinical data for use in outcomes research. Med. Care 43,
182-188 (2005)

Manitoba Centre for Health policy: “MCHP Data Quality Framework”, internal document
version—July 2013. http://umanitoba.ca/faculties/medicine/units/communityhealthsciences/
departmentalunits/mchp/protocol/media/DataQualityFramework.pdf (2013). Accessed 11 Dec
2013

Nguyen. L.L., Barshes N.R.: Analysis of large databases in vascular surgery. J. Vasc. Surg.
52(3), 768-774 (2010)


http://umanitoba.ca/faculties/medicine/units/community health sciences/departmental units/mchp/protocol/media/Data Quality Framework.pdf
http://umanitoba.ca/faculties/medicine/units/community health sciences/departmental units/mchp/protocol/media/Data Quality Framework.pdf

160 C. Mazzali et al.

12. Romano, P.S., Roos, L.L., Jollis, J.G.: Adapting a clinical comorbidityindex for use with ICD-
9-CM administrative data: differing perspectives. J. Clin. Epidemiol. 46, 1075-1079 (1993)

13. Saczynski, J.S., Andrade, S.E., Harrold, L.R., et al.: A systematic review of validated methods
for identifying heart failure using administrative data. Pharmacoepidemiol. Drug. Saf. 21(S1),
129-140 (2012)

14. Sharabiani, M.T.A., Aylin, P, Bottle, A.: Systematic review of comorbidity indices for
administrative data. Med. Care 50, 1109-1118 (2012)

15. Schoenman, J.A., Sutton, J.P,, Kintala, S., Love, D., Maw, R.: The Value of Hospital Discharge
Databases. Agency for Healthcare Research and Quality, Rockville (2005)

16. Schultz, S.E., Rothwell, D.M., Chen, Z., et al.: Identifying cases of congestive heart failure
from administrative data: a validation study using primary care patient records. Chronic Dis.
Inj. Can. 33(3), 160-166

17. Van Walraven, C., Austin, P.: Administrative database research has unique characteristics that
can risk biased results. J. Clin. Epidemiol. 65, 126-131 (2012)

18. Zarrinkoub, R., Wettermark, B., Wandell, P., et al.: The epidemiology of heart failure, based
on data for 2.1 million inhabitants in Sweden. Eur. J. Heart Fail. 15, 995-1002 (2013)



Bayesian Inference for Randomized
Experiments with Noncompliance
and Nonignorable Missing Data

Andrea Mercatanti

1 Introduction

The theoretical model of a randomized experiment with noncompliance is widely
adopted in biomedical and social sciences for inferring causal effects. The original
application stems from experimental settings, where the treatment received by
an individual (or a generic statistical unit) sometimes differs from the treatment
randomly assigned to him by the experimenter. The concept was later generalized to
observational settings where the treatment is not randomized. The nonrandom nature
of the treatment usually implies different distributions of the potential outcomes'
between treatment groups, a situation known as self-selection, which makes the
direct comparison of the outcome distributions between treatment groups a biased
estimate for the treatment effect. In the presence of self-selection, one approach to
obtain unbiased estimates for causal effects is to find a variable that can be viewed as
a nonmanipulated, natural or quasi random assignment to the treatment to which the
units not necessarily comply, and then to apply inferential methods for randomized
experiment with noncompliance. In the following discussions, we use the familiar
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nomenclature of noncompliance irrespective of the experimental or observational
nature of the study.

Missing data is a common problem in both experimental and observational
settings. For example, Jo [8] considered a randomized experiment aimed to evaluate
the effect of a U.S. public school intervention program in reducing early behavioral
problems among school children. Apart from the random assignment to the
intervention condition, each variable has missing for some of the sampled units,
and the analysis there was conducted after listwise discarding of the units with
missingness. Alternatively, when the model of an experiment with noncompliance is
adopted in nonexperimental studies, information is generally collected from surveys
where missing data due to item nonresponses to questionnaires is an even more
diffuse problem. One type of information that has traditionally been difficult to
obtain in survey is income data; for example: the Current Population Surveys, that
includes approximately 50,000 U.S. households monthly, suffers from 20 to 25 % of
nonresponse rate on many income items. Other type of information with high rate
on nonresponse are those related to stigmatized activies like drinking behavior or
use of drug [10]. More generally, nonresponses are common in surveys whenever
the population consists of units such as individual people, households or businesses.

In general, standard methods for complete data cannot be immediately used to
analyze the dataset with missing data. Moreover, possible biases can arise because
the respondents are often systematically different from the nonrespondents, and
these biases are difficult to eliminate since the reasons for nonresponse are usually
not known. The existing literature on missing data in randomized experiment with
noncompliance has mainly focused on the scenarios with missingness only in the
outcome. However, missing data in the treatment, and/or in the assignment to treat-
ment are common in practice, where usual ignorability conditions for the missing
data mechanism are considered too restrictive. The paper proposes a range of models
under weaker nonignorable conditions for missing data. Section 2 presents the basic
setup. Section 3 proposes identified models for three special cases: missingness in
each of the three basic variables with and without a binary pretreatment variable
separately, plus missingness in the outcome and in the treatment received without
pretreatment variables. Section 4 develops a Bayesian approach for inference, and
the methods are illustrated by a simulated comparative analysis in Sect.5. Section
“Conclusions” concludes.

2 Basic Setup

Adopting the standard notation in the literature, let Z be the assignment to a
binary treatment, D be the treatment received, and Y be the binary outcome.
The population can be classified into four sub-groups, compliance types, based
on their potential treatment status to both levels of assignment, denoted by U =
(D(0), D(1)). Units for which Z = 1 implies D = 1 and Z = 0 implies D = 0
(compliers, U = c) are induced to take the treatment by the assignment. Units for
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which Z = 1 implies D = 0 and Z = 0 implies D = 0 are called never-takers,
U = n because they never take the treatment, while units for which Z = 1 implies
D = 1and Z = 0 implies D = 1 are called always-takers, U = a because they
always take the treatment. Finally the units for which Z = 1 implies D = 0 and
Z = 0 implies D = 1 do exactly the opposite of the assignment and are called
defiers (U = d).

We maintain hereafter the standard assumptions to identify causal effects in
randomized experiments with noncompliance [7].

A.1 Stable unit treatment value assumption (SUTVA). There are no different
versions of any single treatment arm and no interference between units;

A.2 Randomization of treatment assignment. P(Z|Y(0),Y (1), D(0), D(1)) =
P(Z);

A.3 Monotonicity. D;(1) > D;(0) for all i, ruling out the group of defiers;

A4 Exclusion restriction (ER). Y;(1) = Y;(0) for all noncompliers, implying
that the assignment to treatment has no direct effect on the outcome for
noncompliers.

When there is no missing, two models P(Y, D, Z) and P (Y, U, Z) are sufficient
to describe the data.> To account for nonresponses we need to introduce the
additional model for the missing data generation usually called missing data
mechanism. Let R = (R,, Ry, R;) be the three-dimensional vector of missing
data indicators, where R, is the missing data indicator forv = y, d, z: R, = 1 ifv
is observed, 0 otherwise; and Z*, D*, and Y * be the observable quantities defined
asZ*=Zif R, =1,Z* = xif R, = 0, and analogously for D* and Y *. Also let
X be the set (Y, D, Z), X,ps the observed part of X (namely the elements of X for
which the missing data indicators result to be equal to one), and X,,;;; the unobserved
part of X (the elements of X for which the missing data indicators result to be equal
to zero); and P(R|X) be the missing data mechanism, that is the probabilities to
observe the quantities (Y, D, Z).

The practice to apply models for complete data after listwise deletion of
units with missingness is justified only under the Missing Completely at Random
(MCAR) assumption for the missing data mechanism, P(R|X) = P(R), that is
the probability of missingness is the same for each unit. A weaker assumption is
Missing at Random (MAR), P(R|X) = P(R|X,ps), that is, the probabilities of
missingness depends only on the observed part of X. In these cases the missing data
mechanism is said to be ignorable after conditioning on the observable quantities, or

>The domain of the distribution P(Y,U, Z) is only partially observed, even in case of no
missingness, because the compliance status U is defined on counterfactual quantities that cannot
be simultaneously observed for the same unit. Only under suitable conditions, like the exclusion
restriction, U can be observed for a subset of the population.
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more simply ignorable. The paper will focus on identification and estimation issues
for some special cases under nonignorable missing data mechanism, namely when:

P(R[X) # P(R[Xops) # P(R[Xpis) # P(R).

3 Identification

Under assumptions A.1-A.4 and maintaining the parameter space for (Y, U, Z)
separated from that of the missing data mechanism, the model for the observable
data (R, Y*, D*, Z*) can be written as:

PR, Y* D* Z%)
> PR.Y. D, Z)-I[P(Y. D, Z|Y*, D* Z*) > 0]

Y.D.Z
=Y PR Y.U Zimw 0 ) I[PY.U Z|Y* D* Z*) > 0]
Y, U, Z
= > PR|Y.U. Z:a)- P(Y.U. Z: 7. @. 0) -
Y, U, Z
I[P(Y, U, Z|Y*, D*, Z*) > 0]. (1)

The specification for the missing data mechanism as a function of (¥, U, Z)
allows a direct quantification of the relationships between the probability of
nonresponse and the compliance status. Moreover, it allows to relate the models
hereafter proposed to others models that recently have appeared in the literature,
such as those by Frangakis and Rubin [2], Mealli et al. [9], Chen et al. [1], Imai [6].
At the same time the interpretation of the missing data mechanism as a function of
the treatment is not excluded because the latter is a function of both the compliance
status and the assignment to treatment.

Dealing with a set of binary variables allows to relate the parameter identification
for (1) to the analysis of the contingency table for the observable data (Y *, D*, Z*),
like proposed by Small and Cheng [12] for the special case of nonresponses only
in the outcome. The identification rule to apply is the general one for contingency
tables that prescribed to set the number of parameters for regular models at most
equal to the number of the entries of the contingency table minus one. Model
regularity implies that the probability of each entry has to be defined as a sequence
of conditional probabilities; this condition is satisfied by all of the models proposed
hereafter.

Three cases will be examinated in the following: missingness in all of the three
variables, Y, D, and Z, without and with a binary pretreatment variable separately,
plus missingness in ¥ and D without pretreatment variables.
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Table 1 Contingency table for missingness in Y, D and Z

D*, z*

1,0 0,1 1,1 0,0 1, * 0, * *, 1 *,0 *, %
Y* =
Y* =
Y* =

|
* | =

3.1 Missingnessin Y, D, and Z Without Pretreatment
Variables

When the possibility of nonresponses exists for each of the three binary variables,
Y, D, and Z, then the contingency table for the observables Y *, D*, and Z*, will
show 3 x 9 = 27 cells in total, Table 1, and consequently at most 27 — 1 = 26
parameters will be allowed for model (1).

The specification for P(Y, U, Z; n, @, @) can be formalized following [7] as:

PY,U Z; m,w,0)
— NZ (1 _ n,)l—Z w({(U=a) a)y{(U=n)(1 —w, — a)n)I(U:C)

XQQY I(U=a) (1 _ ea)(l—Y)I(U=a) 93’ I(U=n) (1 _ en)(l—Y)I(U=n)

XQCYI I(U=c)Z (1— 901)(1—Y)I(U=C)Z 9621(U=c)(1—2)(1 _ 960)(1—Y)I(U=c)(1—Z)‘
(2

Model (2), shows 7 parameters so that at most 26 — 7 = 19 are allowed for the
missing data mechanism P(R|Y, U, Z;a) whose domain is composed by the 8
possible combinations (Ry, Rp, Rz) : {(1,1,1), (1,1,0),...}. Any attempt to
comply with the limit of 19 parameters via a multinomial logit model for the 8
categories of the missing data mechanism leads to very few parameters for each
logit equation and consequently to unplausible models. To reduce the number of
categories for P(R|Y, U, Z; ), we introduce the restriction, whose plausibility
in real applications should be evaluated on a case-by-case basis, that the three
marginal missing data mechanisms P(R,|Y, U, Z),v = Y, D, Z, are mutually
independent:

PR|Y, U, Z) = P(Ry|Y. U, Z)- P(Rp|Y. U, Z) - P(Rz| Y, U. Z).

The restriction allows to specify only three independent logit models
P(R,|Y, U, Z),v =Y, D, Z. The following model specification for the missing
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data mechanism P(R|Y, U, Z; ) implies identifiability of (R, Y*, D*, Z*) in
that it complies with the restriction on the maximum number of parameters:

logit[P(R, = 1|Y, U, Z)] = apy + 001, I(U = a)
a2, (U =n)+a3,I(U =a, Z=1)
+an I(U=n,Z=1)4uas51(U=c, Z=1),
3)

forv= D, Z, and

logit{ P(Ry = 1] Y. U, Z)] = ooy + o1y ¥ + oy I(U = a) + arsy I(U = n)
4oy IU=a,Z=1)+asy I(U =n,7Z =1).
“

Models (3) and (4) reflect nonignorable conditions for the missing data mechanism
because the probability of missingness for v is affected by the value of v itself.
In comparison to the model proposed by Frangakis and Rubin [2], Model (3) is
based on weaker conditions because no kind of response exclusion restrictions® is
imposed. Model (4) is based on weaker conditions than other proposals recently
appeared in the literature for dealing with missingness only on the outcome.
Compared to [2] and [9], model (4) does not imposes ignorability of ¥ conditionally
on the compliance status, at the same time the response exclusion restriction is
introduced only for one compliance status* (for the compliers group in the particular
specification (4), even if the restriction can be analogously imposed only for one
of the other two compliance statuses). Compared to Imai [6], model (4) is based
on weaker conditions because the way that treatment affects missingness depends
on the assignment to treatment. Analogously, given that the dependency between
missingness and the assignment to treatment depends on the treatment received,
Model (4) is weaker than the model proposed by Small and Cheng [12].

Specifications (3) and (4) do not allow interactions between the outcome and the
compliance status. However, the interactions can be introduced if imposing response
exclusion restrictions for all the compliance statuses:

10g1t[P(RY = llY, U, Z)] =oaoy + a1y Y + ooy I(U :a)+0l3y I(U :n)
oy Y- I(U =a)+asy Y - I(U = n).

3Response exclusion restriction for a certain compliance status [2] imposes that missingness does
not depend on the assignment to treatment conditionally for that compliance status.

“Frangakis and Rubin [2] and Mealli et al. [9] impose the response exclusion restriction for two
compliance statuses.
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3.2 Missingnessin Y, D, and Z with a Binary Pretreatment
Variable

In the previous Subsection, the double need to comply with the maximum number
of parameters to ensure model (1) is identifiable and, at the same time, to avoid the
proposal of unplausible models directed us to restrict the three marginal missing
data mechanisms P(R,|Y, U, Z),v =Y, D, Z, to be mutually independent. The
restriction can be relaxed by introducing a binary and always-observed pretreatment
variable X. This implies a larger contingency table for the observables and a large
numbers of parameters allowed for model (1) to be identified. The contingency table
for the observable data (not shown here) has 3 rows and 18 columns that permit at
most (3 x 18) — 1 = 53 parameters for (R, Y*, D*, Z*, X).

Following [1] we assume that X does not enter in the missing data mechanism
sothat: P(R, Y*, D*, Z*, X) = PRR|Y, U, Z)- P(Y,U, Z, X), where

PY,U Z, X; m,0,0)

_z =7z I(X=l,a) I(X=0,a) I(X=1,n) I(X=0,n)
=7 (1_”) Wig Woq @y Wy,

I(X=1,¢) (1—

= Y I(X=1,a) nY I(X=0,
x! _ wlc)I(X 0.¢) o; ( a) o) ( a)

Wig — Wog — Win — Won

— = — = YI(X=1,n) oY I(X=0,n
X(l 91 )(1 Y)I(X=1,a) (1 0 )(1 Y)I1(X=0,a) eln ( .n) 0 ., ( )

— e — = YIX—I.'Z YIX—O.'Z
X(l eln)(l Y)I(X=1,n) (1 2] n)(l Y )I(X=0,n) 9161( .C) 0 cl( ,¢)

— =l,c - =0,c Y I(X=1, 1-Z
X(l 9101)(1 Y)I(X=1,c)Z (1 9 cl)(l Y)I(X=0,c)Z 910 ( o) ( )

xegcé(x=0’c)(l_2)(l — Bp0) 1T IX=LO=2) (1 _ g A=V I(X=0.0)(1=2)

Given the larger number of free parameters, the missing data mechanism can be
now modeled as a multinomial logit for the 8 combinations R = (Ry, Rp, Rz) :
{(1,1,1), (1,1,0),...}. Taking into account that 14 parameters are involved in
specification (2) of P(Y, U, Z, X), the following two plausible multinomial models
for P(R|Y, U, Z) can be delineated.

The first one complies with the natural choice for a nonignorable missing data
mechanism, that is the simple dependency of P(R|Y, U, Z) on the values of the
variables subjected to missingness, Y, D, Z. The proposed linear specification for
the logit of P(R| Y, U, Z) is:

logit[P(Ry, Rp, Rz)]

= 0oR,R,R. T+ R RR. Y + C2r Rr. [(U =0, Z =0)
+asr,ry R I(U =n, Z = 1)+ aup,ryr. [I(U =a, Z =1)
HIU =¢, Z = 1.
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To note that the treatment D indirectly enters into logit[P(Ry, Rp, Rz)] by the
compliance status that is a function of the couple of potential quantities D(Z = 7).
The logit can be coherently rewritten as:

logit[P(Ry, Rp. Rz)] = aor,r,r. + 1R, Ryr. Y + Car,ryr, I(D =1, Z =0)
+azg,ror. (D =0,Z =1)
+asr,ryr, I(D =1, Z =1).

The second specification imposes response exclusion restrictions for two com-
pliance statuses; for example, response exclusion restriction for noncompliers:

logit[P(Ry, Rp, Rz)] = cor, ryr, + 1R, RyR, Y + C2r Ryr. (U = a)
+osr, Ry, I(U = n) + aur gy (U = ¢, Z =1).

Each of the two proposed specifications imposes 7 x 5 = 35 parameters for the
missing data mechanism.

3.3 Missingness in Y and D Without Pretreatment Variables

In economic and social sciences the model of a randomized experiment with
noncompliance is often used in observational studies, where most common choices
for the natural assignment to treatment Z are registry information (such as date
of birth, location, etc.), usually unaffected by the problem of nonresponses. A
plausible assumption is that there is no missingness in the treatment assignment:
P(R, = 1) = 1. Table 2 shows the contingency table for the observable data that
now allows (3 x 6) — 1 = 17 free parameters for (R, Y*, D*, Z*, X).

The model for P(Y, U, Z) remains as specified in (2), while an identified missing
data mechanism can be specified by a multinomial logit model where each logit
depends on the values of the two variables subjected to missingness ¥ and D:

logit[P(Ry, Rp)] = cor,r,
+a1Rde Y +a2Rde [I(U = a) —+ I(U =, 7 = 1)]

Table 2 Contingency table D* 7
for missingness in ¥ and D -

without pretreatment 1,0 |01 |11 ]0,0 [*,1 |*0

variables Yy*=1
Y*=0
Y* =%
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Again, the treatment indirectly enters into logit[P(R| Y, U, Z)] by the compli-
ance status so that the logits can be rewritten as:

logit[P(Ry, Rp)] = aor,r, + @1r, R, Y + 2R, R, D-

4 Bayesian Inference

There is mainly a pragmatic justification in adopting a Bayesian instead of a
maximum likelihood approach as frequently done in order to exploit the mixture
structure of the likelihood. In principle, a ML estimation via the EM algorithm
could be attractive also in case of nonignorable condition for the missing data
mechanism because if ¥, U and Z were known for all units, P(Y, U, Z) would
not involve mixture components. However, and contrary to the cases of ignorable
missing data mechanisms, the augmented log-likelihood function would not be
linear in the missing information. Consequently the EM algorithm could not work
by simply filling-in missing data and then updating the parameter estimates, so
that the expected augmented log-likelihood function should be computed at each
iteration of the algorithm. Then, it is computationally more convenient to conduct
Bayesian inference.

Because of the mixture structure of the observed likelihood, the posterior
distributions can be sensitive to the choice of the prior distributions. As shown
by Hirano et al. [4] in a similar context, standard diffuse improper prior can lead
to improper posteriors. We adopt here proper prior distributions that correspond
to add a number of observations to the likelihood. Under nonignorable conditions
for the missing data mechanism we add 48 observations to the likelihood: one for
each of the 48 combinations of the variables (Z, U, Y, Ry, Rp). For example: for
(Z =1,U =n,Y =0,Ry = 1,Rp = 1) the following term is added to the
likelihood:

7w -wy, - (1—6,)-exp(aor) - (1 4+ exp(aor) + exp(aorg) + exp(aom))_l.

The same arguments applies to the priors for the analysis under MAR and MCAR
leading to 12 and 30 added observations to the likelihood respectively.

For what concern the choice of the algorithm on which to base the MCMC
analysis, the Gibbs is not particularly attractive given there are no conjugate
forms for the prior distribution and no standard forms for the conditional posterior
distributions under nonignorable missing data. Consequently we base the analysis
on the Metropolis-Hastings algorithm: a general term for a family of Markov Chain
method useful for drawing samples from posterior distributions. It is an adaptation
of a random walk that uses an acceptance/rejection rule to converge to the specified
posterior.
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5 Simulation

We now present a comparison of results obtained by different models applied to an
artificial sample from a hypothetical population affected by nonignorable missing
data in the binary outcome and in the binary treatment received. The simulation
analysis shows the biases we incurred when simpler but wrong models such as those
based on ignorable conditions for the missing data mechanism, MAR, or on listwise
deletion of units with missing data, MCAR, are applied.

Table 3 reports the parameter values for the proposed hypothetical population.
Table 4 reports the marginal and conditional probabilities of missingness implied
by hypothetical missing data mechanism. This is clearly nonignorable because the
probabilities of missingness for Y and D depend on their values.

A sample of size 5,000, was drawn from the hypothetical population, and four
Markov Chains each of 200,000 iterations were run. The starting values were drawn
from an overdisperded normal distribution, while the parameters were updated in
batch with an Acceptance Rate of ~ 20 %. The convergence, for each parameter,
was assessed by the potential scale reduction indicator, R= VW + (B/n)/W <
1.1 [3]. Finally, the posterior inferences were from the second half of the simulated
sequences of parameters.

Table 5 reports the posterior means and standard deviations for a subset of
the parameter vector. Of particular concern is the bias arising from the inference
under the usual MAR and MCAR models. In particular the compliers average
causal effect, (.1 — o, that is the main quantity under study in the context of a
randomized experiment with noncompliance, results clearly biased alongside the
two compliance-status probabilities w, and @, under MAR and MCAR models.

Table 3 Hypothetical 7= P(Z=1) 0.50 | o —2
population: parameters values w0, = P(U = a) 030 oy | 2
w, = P(U =n) 045 oz | 0.5
l—w,—w, =PU =c) [025 |apgp | 0.5
Ha 0.90 |aqy0 1.5
I 0.20 | 210 1.5
el 0.70 | apor |—2
Meo 0.40 o101 1.5
Hel — Heo 0.30 Joor | 2
Table 4 Hypoth.etical P(Ry = 0) 0.2544
population: marginal and P(Rp = 0) 02292

conditional probabilities of

missingness P(Rp =0|D =0) |0.3429

P(Rp=0|D =1) 00755
P(Ry =0|Y =0) |0.3646
P(Ry =0|Y =1) |0.1431
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Table 5 Posterior means and standard deviations for some parameters from the application of the
correct model alongside those calculated under the MAR and MCAR assumptions

Real value Nonignorable MAR MCAR
b4 0.50 0.506 (0.007) 0.506 (0.020) 0.521 (0.009)
oy 0.30 0.328 (0.015) 0.379 (0.025) 0.369 (0.012)
Wy 0.45 0.435 (0.017) 0.387 (0.032) 0.396 (0.012)
w, 0.25 0.237 (0.014) 0.232 (0.038) 0.234 (0.016)
el = Heo 0.30 0.287 (0.071) 0.239 (0.075) 0.225 (0.063)

Table 6 Conditional probabilities of the missing data indicators: real values alongside the
posterior means and standard deviations from the application of the correct model

Real value Posterior value
P(Ry=1,Rd=1Y =1,D=1) 0.823 0.794 (0.028)
P(Ry=1,Rd=1|Y =1,D =0) 0.739 0.706 (0.069)
P(Ry=1,Rdi=1Y =0,D=1) 0.769 0.730 (0.057)
P(Ry=1,Rd=1|Y =0,D =0) 0.565 0.588 (0.044)
P(Ry=1,Rd=0Y =1,D=1) 0.041 0.047 (0.009)
P(Ry=1,Rd=0|Y =1,D =0) 0.100 0.077 (0.019)
P(Ry=1,Rd=0|Y =0,D=1) 0.023 0.033 (0.013)
P(Ry=1,Rd =0]Y =0,D =0) 0.046 0.052 (0.006)
P(Ry=0,Rd=1Y =1,D=1) 0.111 0.095 (0.012)
P(Ry=0,Rd=1|Y =1,D =0) 0.061 0.044 (0.017)
P(Ry=0,Rd=1|Y =0,D =1) 0.104 0.130 (0.046)
P(Ry=0,Rd =1|Y =0,D =0) 0.046 0.056 (0.010)

Table 6 shows close to unbiased posterior means with low values of the standard
deviations for the missing data mechanism evaluated under the correct model.

Conclusions

One major problem in dealing with nonignorable missing data in randomized
experiments with noncompliance is parameter identifiability. Based on the
analysis of contingency tables, this article investigates the identification issue
in the models for studies with nonignorable missing data in the response,
as well as in the assignment to treatment and/or in the treatment received.
Our simulation results suggest that the causal estimates were sensitive to the
assumption of the missing data mechanism, which merits special attention
in practice. The identification conditions considered here can be extended to
incorporate continuous outcomes. Moreover, within the Bayesian approach
proposed here, one can further conduct sensitivity analysis regarding possible
deviations from the identifiability conditions and varying proportions of
missing data.
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Approximate Bayesian Quantile Regression
for Panel Data

Antonio Pulcini and Brunero Liseo

1 Introduction

Quantile Regression (QR hereafter) and the use of panel—or longitudinal—data are
two popular extension of the standard linear regression model and they represent
two very active fields of research, both in statistical and econometric literature.

In particular, QR is a very useful tool when the response variable is known to
have a non Gaussian distribution and/or we are particularly interested on the way
in which the explanatory variables are associated with the occurrence of extreme
values in the response variable.

On the other hand, the use of panel data, and the consequent adoption of
mixed models, is nowadays current practice, due to the frequent availability of data
observed on the same units in several different occasions. In a panel data set up,
the main goal is to identify the factors that contribute to explain changes in the
response variable over time. In general these factors express their influence not
only in terms of location (i.e. mean or median) of the response; more generally
their influence can modify the entire distribution and this can happen both at a
fixed observation time and dynamically as well. As stressed in [13], covariates
may influence the conditional distribution of the response variable in many ways:
expanding its dispersion, stretching one tail of the distribution and/or compressing
the other tail, and so on. In these situation the standard linear mixed-effect regression
model might be inadequate and a QR approach may be more helpful.
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The combined use of quantile regression methods and longitudinal data is not yet
very popular, notwithstanding the excellent work of Koenker [12] and Geraci and
Bottai [6], which consider the problem from a classical perspective. In particular
Koenker [12] shows how to estimate quantile functions in a mixed model with fixed
effects using the penalized interpretation of the classical random-effects estimator.
Geraci and Bottai [6] have proposed a method to provide an estimator of the
conditional quantile functions with quantile-dependent individual effects.

Bayesian analysis of quantile regression models have been mainly considered
in the parametric settings [22]: in fact it is well known that a quantile estimation
problem can be rephrased in terms of a statistical model based on the Asymmetric
Laplace distribution (ALD, hereafter), and standard MCMC algorithms can be
easily implemented.

However, in the recent years, some Bayesian semi and nonparametric approaches
to quantile estimation have been proposed. Good references in this context are [8,9,
15].

In this paper we propose a novel approximate Bayesian approach for making
inference in quantile regression models in the presence of repeated observations
on the same units. The method is approximated since it does not use a “true”
likelihood function. In fact we will consider the so-called substitution likelihood,
a concept introduced by Jeffreys [11] and more recently analysed by Lavine [17].
The substitution likelihood is a sort of multinomial likelihood function which is
able to estimate the quantiles of the unknown cdf F which truly generated the data,
without making any distributional assumption on the variable of interest. Dunson
and Taylor [4] have already considered a Bayesian use of the substitution likelihood
in a linear model with cross-sectional data.

The paper is organized as follows: in Sect.2, we briefly recall the standard
quantile regression methods. In Sect.3, we illustrate the concept of substitution
likelihood in detail. In Sect.4 we describe our novel method and prove the main
theorem. Section 5 is devoted to numerical simulation and comparisons with
existing methods.

2 Quantile Regression

In this section we briefly review the standard literature in QR, based on the notion
of the asymmetric absolute loss function and on the ALD, with particular emphasis
on the panel data setting.

2.1 Standard Model and Methods

Suppose data (y;, x; ),i = 1,...,n, are available, where the y;’s are independent
and continuous random variables distributed according to a cumulative distribution
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function (cdf) Fy, and the x’s are K-dimensional vectors of covariates. The linear
conditional t-th quantile function is defined as

Flelx) = 0, (tlx) =xi(x)  i=1....n

where 0 < 7 < 1 is a fixed probability and B € RX is a (possibly) -dependent
vector of unknown parameters, which will represent our main object of interest.
Without any distributional assumption on Fy, B € R¥ can be estimated through the
following minimization problem:

n
min V,(8) = min (v — X B), 1
i Vo ) = min ) pe( —xi) O

where p, (-) is the asymmetric absolute loss function
p(v) =v(r—-I(v <0), vekR

and /(-) is the usual set indicator function. The above minimization problem is the
“natural” quantile regression counterpart of the standard OLS [13]. The role which
is played by the Gaussian distribution in standard linear regression model is now
taken by the ALD, which represents a distributional bridge between the previous
minimization problem and maximum likelihood theory for quantile regression
problems. The ALD [14, 22] is a skewed distribution with three parameters: a
skewness parameter 0 < 7 < 1, a scale parameter 0 > 0 and a location parameter
€ R. A random variable ¥ € R, is distributed according to an ALD with
parameters ., o and t, if its density is given by:

Foln o0 =D eplp (221

Yu et al. [23] gave properties and generalizations of this distribution. Note that, for
any fixed value of the parameters Fy(u) = t. Then, setting u; = x}f, and if
we assume to observe Y1, ..., Y, independently from an ALD(u;, 7, o) density, the
corresponding likelihood function is

L(B.o:(y).7) 0" exp{—Zpr (=) @

(o2

i=1

By taking o as a nuisance parameter, the maximization of the likelihood in (2) with
respect to B is equivalent to the minimization of the function V,(8) in (1). This
explains why the ALD distribution is often used in the QR estimation instead of
the asymmetric absolute loss function, in order to apply likelihood and Bayesian
approaches for point estimation and hypotheses testing [14, 16,22].
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The above description is suitable for the estimation of a single quantile. In real
applications, researchers are often interested to the simultaneous estimation of a
set of quantiles. This case brings the additional difficulty that some monotonicity
constraints should be considered since different quantile function (of the covariates)
cannot cross.

2.2 QR for Panel Data

Suppose we have panel data in the form (x/,, y;;), fori = 1,...,nandt =1,...,T,

where x/, are K-dimensional vectors of predictors of a design matrix X; and y; is
the 7-th measurement of a continuous response variable on the i-th statistical unit.
The linear conditional r-th quantile function is defined as

0y, (t|x,, o) = X, (7)) + i=1,....n t=1,...,T

where «; represents the individual random effect, i = 1, ..., n. In order to estimate
the parameters 8 and «;’s, two main approaches are described in [6, 12]. In the
former, the Author, avoiding any distributional assumption for the shape for the
response variable, and adopting the asymmetric absolute loss function as in (1),
proposed a penalized approach, based on an L; penalty term, to simultaneously
estimate m different quantiles.

m n T n
min} > D wipy i = X,B(m) = o) +4 ) leil. 3)

I=1i=11r=1 i=1

In the above formula, each single weight @; controls the influence of the 7;-th
quantile in the estimation of the individual effect «;, while A may be considered
as a penalization parameter. This approach shares some similarities with a LASSO
procedure [21] on the random coefficients. This procedure have same potential
drawbacks: the parameter A must be arbitrarily set and this choice could play a
role in the estimation of the 8(7;)’s. Also, the individual effects are not related to
the 1;’s; last, but not least, as it is usual in mixed models, the number of parameters
increases with the sample size.

To circumvent these drawbacks [6] based their model on the ALD loss and
they assume that the individual effects are independent and identically distributed
random variables with a distribution which possibly depends on the quantiles 7’s;
they also propose a Monte Carlo EM algorithm to estimate the parameters. In detail,
Geraci and Bottai [6] proposed the following model:

Oy, lo; (T|Xp i) = X, B(7) + o i=1,....n t=1,...,T 4)
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with

ind

Yi 2 ALDKX, B(0) 4. 0.7) Vit and o X fo(le(r)) i=1,....n.

The main concern with this model is related to the multiple quantile issue. When
inference is needed for more than one quantile, the model needs to be separately
calibrated for each corresponding 7. This approach need not automatically satisfy
the non-crossing condition among the quantile curves. As a possible way to
circumvent the above mentioned problems, in this paper we propose a Bayesian
approach based on the idea of Substitution Likelihood [11, 17]. In particular we
generalize the approach illustrated in [4], in the case of cross-sectional data. This
approach naturally allows one to simultaneously estimate m different regression
quantiles without assuming any parametric distributional form for the Y |x/,, ;. Our
aim is to propose a simple and easy-to-use nonparametric method for estimating
the regression quantile curves for panel data, when the distribution of the outcome
variable cannot be safely assumed to be Asymmetric Laplace.

3 An Approximate Likelihood for Quantiles

In many empirical application, the distribution of the outcome variable is clearly non
normal and standard regression methods might be unreliable. On the other hand, the
use of asymmetric Laplace densities for quantile regression can only be justified in
terms of computational convenience—unless one agrees to assume—incidentally—
a specific form of the loss function. Under these conditions, Bayesian inference
is non trivial and this general problem has motivated a vast literature in Bayesian
nonparametric methods. For an excellent review on this approach see [10] and, for
recent, specific applications in quantile regression see [15,20].

Although Bayesian nonparametric methods may be useful in this context,
their implementation is often quite difficult, due to computational complexity. An
alternative and feasible solution is represented by the use of a simple and natural
approximation of the likelihood function, which can then be complemented by some
prior information into a standard Bayesian framework.

Suppose that inference concerns @, a vector of some fixed quantiles of the true
distribution F', and some prior knowledge is available only for those quantiles: Jef-
freys [11] and later Lavine [17] have proposed the use of the so called “substitution
likelihood”, which we will describe in the next section. This idea has been then
implemented in a quantile regression for cross-sectional data framework by Dunson
and Taylor [4]. Similar, although different, approaches are based on the Bayesian
version of the Empirical Likelihood [18] and on the Generalized Moment Method
in [2].
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3.1 The Substitution Likelihood

Suppose yi, ..., ¥, is a random sample from un unknown distribution Fy. Assume
that some prior information is available only for 8 = (6(ty),...,6(zx))’, a vector
of quantiles of Fy, corresponding to a known vector T = (t1,..., ;)" such that

0=1 <71 <...<71Ty < Tyt1 = L. When inference concerns @, one can replace
the true likelihood function, based on Fy(-), with a multinomial approximation,
namely the “substitution likelihood” s(0;y), defined as

m+1

) — n Z1(0)
509= (20, 20 ) 147 ©

=1

with 6, = 0(¢y) forl = 1,...,m, 8y = —o0, and 0,,4+1 = +00. In (5), Z;(0) =
> Lg_,.67(»i) is the number of observations falling in the interval (6,1, ;] and
Aty =1 —1-y,forl = 1,...,m+ 1. In words, s(#;y) is a multinomial model
which represents, conditionally on 6, a discrete version of the true model.

Here we briefly recall, following [4, 17], the main properties and characteristics
of s(0;y):

1. the Substitution Likelihood is asymptotically conservative at the true F. This
means that, for large samples, s(@;y) has less discriminating power than the
“true” likelihood [17];

2. the Substitution Likelihood surface looks like a step function with data-
dependent jumps and takes its maximum value within a region containing the
empirical estimates of the quantiles;

3. the pseudo-posterior density (8 ]y) o s(6;y)7(0) is improper when the usual
noninformative prior for location parameter is used, namely 7w () o 1(pco),
® ={0:0, <...< 0y} This is due to the fact that, beyond the most extreme
quantiles, the substitution likelihood s(8;y) does not vanish to 0.

The last remark suggests that the loss of information resulting from the use of a
sort of non parametric likelihood, must be paid in terms of partial elicitation and a
proper prior density must be adopted for 6. The simplest solution to this problem,
when genuine prior information is lacking, is based on a truncation of the parameter
space. This can be done if a lower limit ¢;, can be assumed for the lowest quantile
01 and an upper limit ¢y can be assumed for the largest quantile 6,,, with ¢, < ¢y .
In this case the prior can be set as:

7(0) < 1(6 € O)1(6; > 1)1 (O < cv). (6)

The use of the prior (6) is reasonable when prior information is available, at least,
for ¢; and cy. Alternatively, one can follow the approach described in [4] and use
the following prior:

m(0) o< 1(0 € ©)g(6:.6n) (M
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with

2(01,0,) = {e_¢L(CL_91)}1(01<CL) {e—¢u(91—c‘u)}l(9‘>c’” {e_V(Gm_Gl_d)}1(9'"_91>d)'
(®)

In the above expression d is a known fixed constant which represents our prior
beliefs about the range (6;; 6,,); in addition, ¢, ¢y and v represent positive rate
parameters that measure—respectively—how much 6; can be far from c¢; and
cy, and how much the difference 6,, — 6; can be far from d. The above prior,
conditionally on 6; and 8,,, is uniform for the rest of the components of 6, while it
is exponentially decreasing for 6, outside the interval [cy,, cy] and if 6,, — 6; > d.

Prior assumptions on the extreme quantiles are of course crucial in the use of the
substitution likelihood, since the posterior tail behaviour will be completely driven
by the prior tails. However, this should not be seen as a drawback: substitution
likelihood explicitly states that information for extreme quantiles cannot be easily
obtained from the data, unless strong prior assumptions, either in the prior or in the
model, are accepted.

4 Substitution Likelihood for Quantile Regression with Panel
Data

Dunson and Taylor [4] have proposed the use of the substitutional likelihood for
quantile regression in the presence of cross sectional data. Here we extend their
approach to the case of panel data, where individual random effects need to be
introduced.

Before dealing with the panel data setting, we briefly recall the cross sectional
quantile regression model: let #; the vector of the conditional quantiles for the i-th
individual, corresponding to the probabilities T = (9, 71,..., Ty) With 0 = 75 <
71 < ... < Ty < Ty41 = 1, For each individual we assume to observe covariates
X; = (xi1,...,xig) € Z . The quantile regression model is defined as:

0y, (n1lx}) 0; (1) B(t1) B’
: =0, = : = : xi=| ! |x%=3Bx; (9

Qyi (Tm|X;) 0; (Tm) IB(Tm)/ ﬂ:n
where B = (B,,...,8,,) is am x K matrix of unknown regression coefficients;
each row of ®B provides the regression coefficients for the corresponding conditional

quantile. It is apparent that the conditional quantiles should satisfy the so-called no
crossing condition, that is, in order to produce proper quantiles, it must be true that

Bixi<...<Bxi<..<B.x; Viel,... m. (10)
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However, it is not sufficient that the above inequality is satisfied for all observed
covariates pattern: in principle, it must be satisfied for all x € 2. Dunson and
Taylor [4] provides the sufficient conditions in order to guarantee (10). Let 2" =
21 x 25, where 27 = {(x1,...,xk,) 1 X, € {ar,ar, +1,....0:},r =1,..., Ky}
is a discrete space, and .25 is a compact convex subset of RX2, where K|+ K, = K.
Then

Theorem 1 Let & = 2| x 25, where 21 = {(x1,...,xk,) : x» € {a,,a, +
1,....b Y}, Vr, is a discrete space and %, is a compact convex subset of RX2, with
Ki + K, = K. Let {a,Xy1,...,X1.k,—1} be a linearly independent set of vectors
in Zy witha = (ay,...,ax,), and {Xa 1, ..., X k,+1} is a set of extreme points of
f%-z. Set X| = [ills R ,)’21,1(1_1]/, X, = [)’22’1, C ,)‘22’]{24_]]/

F— |: X, 0(1<1—1)sz}
=1, - .
a’' ® Ik, +1x1 X,

and T =[y,.....yx] = X9 If
y,€0 for j=1,..K
then this implies that
0 =Bxe0O

forallx e Z.

The above theorem gives an indirect way of constructing priors on the beta
coefficients which automatically satisfies restriction (10).

We now describe in detail how to extend the use of the substitution likelihood
to the case of quantile regression with panel data. The main change is that in this

new framework, the individual random effects, say o;’s i = 1,...n, should be
introduced in such a way that the restriction (10) continues to be valid.
Suppose one observes data (X;r, vi),i = 1,...,nandt = 1,...,T. Here the

vi’s are independent scalar observations from a continuous random variable Y
whose shape is unknown and x/, are K-dimensional row-vectors of predictors. We
define the following linear mixed quantile function for the response y; at a given
probability level t [6],

O yile: (T|Xits i) = g, (1) = Xgrﬂ(‘[) + o

where 0 < t < 1, and o; represents the individual effect. Furthermore, we will
assume that

1. conditionally on o;, y;’s are independent random variable with unspecified
distribution fyo,,i =1,...1;
2. a;’s are i.i.d. from a specified density f;
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3. prior beliefs (in the form of bounds and/or distributional information) on the
quantiles of the response variable are available for some specific points of
predictor’s space, i.e. for some x € 2.

Given the vector of probabilities:
T=(11,-..,Tm)
we define the following conditional m-quantiles regression model:

Bitle (T1) B

0o, = = Do X ot = BXy +
i
eitloc,- (tm) ﬂm

where B is a (m x K) matrix of unknown regression coefficients and ¢,, is a m-vector
of 1’s. The associated substitution likelihood is then:

m+1
nT Zl(gB‘“)
Blar, ..., d,y) = 4
S(Bla....0.Y) (zl(osa)---ZmH(%l«))E !

with
n T
Zi(Bo) =3 Y Vg it pimero) ) L =T m 1
i=1 =1
As a boundary condition we set with Box;; + o = —o0, B, | Xi + & = +00,
and At = (71,72 — 71,..., 1 — 7). The subscript “|e” reflects the previous first

assumption that, conditionally on the individuals effects, the response variables are
i.i.d. observations from an unknown distribution. Also, it is worth to keep in mind
that when dealing with quantile regression, one is bound to include the intercept
parameter, because otherwise the model would suggest that any quantiles must be
zero at the origin, which is quite unreasonable for most of the empirical studies.
Henceforth, we will then assume thatx;, =1, i =1,...,n.

We now discuss prior specification for the parameters ‘B and «;’s. The quantile
interpretation of our @y, ’s and the no crossing condition require then that each
single 0, belongs to the restricted space @ = {0 : 6; < ... < O,}.

This restriction automatically implies that:

ﬂ/lxit+0éi<...<ﬂ;Xi,«+O{,'<...<ﬂ:nXit+Oéi Vi,t (11)

forallx € 2.

Conditionally on the «;’s—and assuming that remain constant for all 7;’s, we can
use again Theorem 1 adapted to a panel data settings. Let 2~ = 2| x %5, where
2 = {(x1,....xq)  xr € {ar,a, +1,...,b.}, r = 1,...q1} is a discrete
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space and Z; is a compact convex subset of R%2, with g; + g» = K. In the light
of Theorem 1, if we choose a set {a,X1,...,X1 4,1}, Witha = (ay,... ,aql)’, of
linearly independent vectors in £, and another set {Xs1,...,X24,+1} of extreme
points of .23, we can define a prior distribution on the set

FZD’I?"'?YK]/::%%/

where
%o [ / X 0<q1;1>xqz]
a1+ Xo
and, in turn,
Xi =K. Kig—1ls Xo=[Ro1.... . Kog41]
are such that the rows y ;€ ® for j = 1,..., K. This prior will induce a prior on

0, = Bx + o € O for all possible x € 2. Then the problem of selecting a prior
on B essentially becomes a problem of choosing a suitable matrix X; this in turn
implies the choice of a prior distribution on the coordinates of vectors y’j of I'. The
matrix I" plays a crucial role for several reasons:

1. it defines linear constraints on the element of the matrix B

Vi
r=|: |=X% st y,€0,j=1,...K;

2. it defines the conditional—on i—quantiles.

Yir - Yim
r=|: - : |=3%

L VKL -« VKm

— X O(qul)qu:|
_a/ ® 1(6]2+1)><1 X5

Bi(z) ... Bi(tm)

Br(t1) ... Bk (tm)

In other words, y ; = (y,1, .. ., V) represents the quantile vector of the response
variable Y at specific values of the covariates space 2, which are given by the
rows X; = (X;1,...,Xx) of 2.

From the above discussion, it is apparent that the matrix X should be chosen, in
such a way that its rows define points of the covariate space for which prior beliefs,
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intrinsic bounds or any other prior informations, on the corresponding quantiles of
Y are available. In regression models, when choosing the matrix i, one should take
the value of X1; not equal to zero, in order to avoid the collapse of all quantile curves
at zero. In summary, prior elicitation should be considered for the parameter matrix
I' and the random effects o;’s, i = 1,...,n. According to (7), we will adopt a
uniform prior for each row of the I" matrix, except for the penalizing factor on the
tails of the lower and upper quantile, that is

7Y, Y2s -5 ¥k) = w(yDr(valy)) - (vklyi - VE=1)s (12)

where, foreach j =1,...,K,

7(yilyt,....vk—1) = 1(y; € O)g(Vj1. Vim).

as in (7).

No particular problems arise in the choice of the prior distribution for the «;’s.
One should only notice that, since the model already contains an intercept, they
should have a prior mean equal to zero In the following, we shall assume that the «;’s
are conditionally on an hyper-parameter o, independent and identically normally
distributed, that is

o;|o? S N(@©,0%), i=1,...,n.

In this set-up o represents a measure of dispersion of the random effects.

4.1 Posterior Computation

Posterior inference with the substitution likelihood must be based on the pseudo-
posterior

7(B,02,ay,....a,|y) < s(Blay, ..., y)7(B)r(c?) 1_[ (ele?).  (13)

i=1

The non conjugate form of (13) prevents one from using both closed form calcula-
tions and Markov Chain Monte Carlo methods based on the direct sampling from the
full conditional distributions as, for example, the Gibbs sampling algorithm. Also,
the simple off-the-shelf- Metropolis algorithm is very difficult to tune up, given the
potentially large number of parameters involved in the model. More precisely, our
model contains m x K + 1 parameters, corresponding to the elements of the matrix
5 and to the hyperparameter o. Our simulation experience with the simple Normal
Symmetric Random Walk Metropolis (N-SRWM), were discouraging, since it was
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quite difficult to be close to the optimal acceptance rate of about 30 % for all the
parameters [19].

To circumvent this drawback we have implemented an Adaptive Markov Chain
Monte Carlo (AMCMC). AMCMC algorithm are special MCMC methods which
allows to get the required acceptance probability without specifying—a priori—the
variance of the proposal density. The idea is that the proposal distribution evolves at
each iteration via a self-learning structure. In particular, we have implemented the
Algorithm 4 in [1].

Another issue in our MCMC algorithm was the fact that, by directly proposing
values in the ‘B space, there is no guarantee that the proposed value will satisfy the
linear constraints established by the matrix I".

We have not found yet a satisfactory and feasible solution to this problem and
we are currently working in this direction; in this paper we have adopted the simple
strategy of rejecting the proposed values of §’s which did not satisfy the linear
constraints [5].

We now describe in detail the proposed AMCMC algorithm, a sort of adaptive
N-SRWM within Gibbs on f,, &; and o. In the algorithm A" represents the tuning
parameter of the proposal at time /.

1: At time 0, choose an internal point to start from.

2: At time # + 1, sample a candidate for (¢y,...,®,) using a Gaussian
proposal with zero mean and fixed standard deviation.

3: At time & + 1, draw a value for o form its full conditional distribution,
which is an Inverse Gamma with shape @ +7/2 and scale b+ Y (a?)" D

4: Attime h + 1, sample a candidate for the /-th row of B*,/ = 1,...,m—
from the proposal density:

Bi ~ Nx(B"A" =My,

5: Calculate I'* = XB* . If yj ¢ O, for some j, then reject the candidate

and return to step 2. Otherwise set ﬂfh‘H) = B with probability

h+1 h+1
s(BFIB_. "V oYy (B))
? h h+1 h+1 h ’
s8B!V e ()

h h+1 .
p(B", ") = min {1

h+1 h h h+1
or "V = g} 8.

, with probability 1 — p(8

(continued)
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6: Update the variance of the proposal density N (f Eh), )L;h) ZJZ(h)) through the
following relations

log(A\"*") = log(A{") + 8@V [pB", B V) — 5]

——(h+1) —(h) h+1 ——(h)
B =B sty _ g™y

h+1 h h+1 —(h)
2[( ) — El( ) + 8(h+1)[(ﬂ§ ) _ ﬂl

h+1) =) h
)BT =B = 2]
where p* is the target acceptance probability and § is O(1/ k).
7: Repeat steps 2—4 forl = 1,...,m.

5 Simulation Study

A simulation study has been conducted to evaluate the performance of the proposed
method under different scenarios. For the quartiles T = (0.25,0.5,0.75), we have
considered a sample size n = 100 and 7" = 5 replications for each subject. Data
have been generated using the location-shift model

yie = 100x, 4, + 10x24 — 100x34 + o; + 65 i =1,...,100 1=1,....5

with x;; = 1, x; = ¢ and x3; randomly generated from a U(0, 1) distribution.

e . , iid
Random effects were generated from a standard normal distribution, i.e. ¢;’s =
N(0, 1). Finally the error terms ¢;’s have been independently generated from a y3

distribution re-centred at zero,

iid o

Eir ~ X3 — 3.
In our simulation we have set K = 3,m = 3,7 = 5and n = 100. We have
then defined prior distributions on each row of~ I', setting ¢, = (cp,,...,CLy) and
cy = (cy,, - .., cyg) to the true values, while X has been set to be equal to
150
X=1]110
111

The first row of X has been chosen in order to obtain the maximum distance in 2.
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Table 1 Posterior estimates of the parameters: mean and 95 % HPD (highest posterior density
credibility intervals)

Mean 95 % HPD True value
B1(0.25) 99.46 [97.91, 101.36] 98.21
B,2(0.25) 9.76 [9.33,10.09] 10
B3(0.25) —100.89 [—102.55,—99.46] —100
B81(0.50) 100.5 [97.92,103.03] 99.37
B,(0.50) 9.83 [9.18,10.50] 10
B3(0.50) —100.59 [—103, 42, —98.04] —100
B1(0.75) 101.53 [99.19, 103.82] 101.11
B2(0.75) 9.96 [9.47,10.49] 10
B5(0.75) —100.06 [—102.06, —97.92] —100
o? 0.61 [0.12,1.41] 1

Then, following (12), our final prior was:

7Y, 72, 73) =7(Y3ly v )T (@aly)7(yy)
ai|02 i«iadN(O,(fz), i=1,...,n

0% ~Inverse Gamma(2, 1)

where the density of an Inverse Gamma(y, p) evaluated at x is proportional to
x~ W+ exp (—p/x), and

n(y;) < 1(y; € ©)g(yj1, ¥m)

with ¢; = 6, ¢y = 100. The parameters v and d appearing in (8) have been set
equal to 4 and cy — ¢, respectively.

Chains of 200,000 iterations have been run with p* = 0.3, To reduce the
autocorrelation effect, chains have been thinned by taking one draw every 40.
Convergence for all parameters has been checked via the [7] diagnostic tools.
Results are displayed in Table 1, and Figs. 1, 2, and 3. All parameters are accurately
estimated and the MCMC chains have quickly reached convergence.

The results of simulations are encouraging, although some sort of bias is still
present in the estimation of the regression coefficients. This is likely due to the
presence of autocorrelation in the chains, and we are currently work on a more
efficient version of the algorithm based on a Sequential Monte Carlo strategy [3].
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Fig. 1 Traceplots of the B(t)’s parameters in the MCMC run. Row i refers to the i-th f
coefficient, i = 1,2, 3. Column j refers to the j-th quartile. Red lines represent the true values of
the parameters
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Fig. 2 Posterior densities of the 8(7)’s parameters. Row i refers to the i-th B coefficient, i
1,2, 3. Column j refers to the j-th quartile. Red lines represent the true values of the parameters.
Green lines represent the 95 % HPD intervals
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Fig. 3 Posterior histogram
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Estimating Surfaces and Spatial Fields
via Regression Models with Differential
Regularization

Laura M. Sangalli

1 Introduction

This work briefly reviews progress to date on spatial regression with differential
regularization. These are penalized regression models for the accurate estimation of
surfaces and spatial fields, that have regularizing terms involving partial differential
operators. Partial Differential Equations (PDEs) are commonly used to describe
complex phenomena behavior in many fields of engineering and sciences, including
Biosciences, Geosciences and Physical sciences. Here they are used to model the
shape of the surface and the spatial variation of the problem under study.

In the simpler context of curve estimation and univariate smoothing problems,
the idea of regularization with ordinary differential operators has already proved to
be very effective and it is in general playing a central role in the functional data
analysis literature. See, e.g., [23]. In the more complex case of surface estimation
and spatial smoothing, a few methods have been introduced that use roughness
penalties involving simple partial differential operators. A classical example is
given by thin-plate-splines, while more recent proposals are offered for instance by
Ramsay [22], Wood et al. [27], and Guillas and Lai [15]; see also the applications
in [1, 11, 19]. Finally, although in a different framework, the use of simple forms of
(stochastic) PDEs is also at the core of the Bayesian spatial models introduced by
Lindgren et al. [18] and more generally of the larger literature on Bayesian inverse
problems [25] and data assimilation in inverse problems [9].

Regression models with partial differential regularizations [3,4, 8, 12,24] merge
advanced statistical methodology with numerical analysis techniques. Thanks to
the interactions of these two areas, the proposed class of models have important
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advantages with respect to classical techniques used in spatial data analysis. Spatial
regression with differential regularization is able to efficiently deal with data
distributed over irregularly shaped domains with complicated geometries [24].
Moreover, it can comply with specific conditions at the boundaries of the problem
domain [3, 24], which is fundamental in many applications to obtain meaningful
estimates. The proposed models can also deal with data scattered over general
bidimensional Riemannian manifold domains [8, 12]. Moreover, spatial regression
with differential regularization has the capacity to incorporate problem-specific
prior information about the spatial structure of the phenomenon under study [2—
4], formalized in terms of a governing PDE. This also allows for a very flexible
modeling of space variation, that accounts naturally for anisotropy and non-
stationarity. Space-varying covariate information is included in the models via a
semiparametric framework. The estimators have a penalized regression form, they
are linear in the observed data values, and have good inferential properties. The
use of advanced numerical analysis techniques, and specifically of finite elements,
makes the models computationally very efficient. The method is implemented in
both R [21] and Matlab.

This work gives a unified summary review of [3,4, 8, 12, 24] and is organized
as follows. Section 2 introduces the model in the simplest setting, characterizes the
estimation problem (Sect. 2.2), illustrates how to compute the estimators using finite
elements (Sect.2.3) and reports some distributional properties of the estimators
(Sect.2.4). Section 3 shows how to include in the model prior information about
the space variation of the phenomenon under study. Section 4 reviews the works
on spatial regression over manifolds. The method is illustrated in various applied
contexts in Sects.2—4, including demographic data and medical imaging data.
Finally, Sect. 5 outlines current research directions.

2 Regression Models with Partial Differential Regularization

Let{p; = (pi1, pi2);i = 1...,n} beasetofn points in a bounded domain 2 C R?
with boundary 32 € C2. Let z; be the value of a real-valued variable observed at
location p;, and let w; = (w;y,... ,wiq)’ be a g-vector of covariates associated to
observation z; at p;.

Consider the semi-parametric generalized additive model

G=wB+ fe) e i=l...n (1)

where €;, 1 = 1,...,n, are residuals or errors distributed independently of each
other, with zero mean and variance o2. Vector B € R? contains regression
coefficients and the function f : £2 — R captures the spatial structure of the
phenomenon.

In [24], generalizing the bivariate smoothing method introduced by [22], we
porpose to estimate the vector of regression coefficients B and the surface or spatial
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field f by minimizing the penalized sum-of-square-error functional

n

LB )= (—wB— f(0)) + A /Q (Af(p)’dp 2

i=1

where A is a positive smoothing parameter. Here Af denotes the Laplacian of
the function f. To define this partial differential operator let us consider a generic
surface f = f(p) defined on £2. Denote the gradient of f by

Vi) = (i(p), i(p))
ap1 op»

where ! is the transpose operator. Moreover, given a vector field f = ( fip), /> (p))t
on §2, where f; and f, are two surfaces on 2, define the divergence of the vector
field as

d d
divi(p) := a—ﬁ(p) + %(p).

Then, the Laplacian of the surface f is defined as

2 2

AfB) = vV fB) = S5 0) + 5 ).
D1 8])2
The Laplacian A f provides a simple measure of the local curvature of the surface f
defined on a planar domain §2, and is invariant with respect to rigid transformations
(rotations, translations and reflections) of the spatial coordinates of the domain. The
use of the Laplace operator in the roughness penalty in (2) therefore ensures that the
concept of smoothness does not depend on the orientation of the coordinate system.
This roughness penalty can be seen as a generalization of the penalty considered
for one-dimensional smoothing splines, normally consisting in the L?-norm of the
second order derivative of the curve to be estimated. Likewise for one-dimensional
splines, the higher the smoothing parameter A, the more we are controlling the
roughness of the field f, the smaller the smoothing parameter, the more we are
allowing for local curvature of f.

The proposed model is able to efficiently handle data distributed over domains
£2 having shapes with complicated geometries. This constitutes an important
advantage with respect to classical methods for surface estimation, especially in all
the applicative contexts where the shape of the problem domain is important for the
behavior of the phenomenon under study. Classical methods for surface estimation,
such as tensor product of unidimensional splines, thin-plate splines, bidimensional
kernel smoothing, bidimensional wavelet-based smoothing and kriging, are in fact
naturally defined on tensorized domains and cannot efficiently deal with more
complex domains. Moreover, the method proposed can also comply with general
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conditions at the boundary 952 of the domain [3, 24], which in many applied
problems is a crucial feature to obtain meaningful estimates. These boundary
conditions, homogeneous or not, may involve the evaluation of the function and/or
its normal derivative at the boundary, allowing for different behaviors of the surface
at the boundary of the domain of interest.

As will be summarized in Sect. 3, instead of the Laplacian and other simple
partial differential operators, the roughness penalty may also involve more complex
partial differential operators. This model extension, developed in [2—4], is particu-
larly interesting whenever prior knowledge is available on the phenomenon under
study, coming for instance from the Physics, Chemistry, Biology or Mechanics of
the problem at hand, that can be formalized in terms of a partial differential equation
modeling the phenomenon under study. Moreover, it allows for a very flexible
modeling of the space variation.

Another important result is that the models can be extended to handle data
distributed over general bidimensional Riemannian manifold domains. In such a
case the differential operator considered in the roughness penalty is computed
over the manifold domain. This generalization, developed in [8, 12], is reviewed
in Sect. 4.

2.1 Modeling Data Distributed over Irregular Domains
and Complying with General Conditions at the Domain
Boundaries

To illustrate the issue of spatial smoothing over irregularly shaped domains and with
boundary conditions, consider the problem of estimating population density over the
Island of Montréal (QC, Canada), starting from census data (1996 Canadian census).
Figure 1 displays census tract locations over the Island of Montréal; population
density and other census information are available at each census tract, together
with a binary covariate indicating whether a tract is predominantly residential or
industrial/commercial. The figure highlights two parts of the island without data: the
airport and rail yards in the south and an industrial park with an oil refinery tank farm
in the north-east; these two areas are not part of the domain of interest when studying
population density, since people cannot live there. Notice that census quantities can
vary sharply across these uninhabited parts of the city; for instance, in the south of
the industrial park there is a densely populated area with medium-low income, but
north-east and west of it are wealthy neighborhoods, with low population density
to the north-east, and high population density to the west. Hence, whilst it seems
reasonable to assume that population density and other census quantities feature a
smooth spatial variation over the inhabited parts of the island, there is no reason
to assume smooth spatial variation across uninhabited areas. The figure also shows
the island coasts as boundaries of the domain of interest, as it does not make sense
to smooth population density into the rivers. Those parts of the boundary that are
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Fig. 1 Island of Montréal
census data. Dots indicates
the centroids of census
enumeration areas, for which
population density and other
census information are
available. The two parts of
the island where there are no
data, encircled by yellow
lines, are areas where people
cannot live (the airport and
rail yards in the south and an
industrial park with an oil
refinery tank farm in the
north-east). The island
boundary is also outlined in
yellow and red, with red
sections indicating the harbor
and two public parks.
Adapted from [24]

highlighted in red correspond respectively to the harbor, in the east shore, and to
two public parks, in the south-west and north-west shore; no people live by the river
banks in these boundary intervals. We thus want to study population density, taking
into account covariate information, being careful not to artificially link data across
areas where people cannot live, and also efficiently including prior information con-
cerning those stretches of coast where the population density should drop to zero.

2.2 Characterization of the Estimators

Denote by W the n x ¢ matrix whose ith row is given by wi, the vector of ¢
covariates associated with observation z; at p;, and assume that W has full rank.
Let P be the matrix that projects orthogonally on the subspace of R” generated by
the columns of W, ie., P := W(W'W)™'W! andlet Q = I — P, where I is
the identity matrix. Furthermore, set z := (zi,...,z,)" and, for a given function
f on £2 denote by f, the vector of evaluations of f at the n data locations, i.e.,
£, = (f(P1)..... f(pn))".

Let H™(£2) be the Hilbert space of all functions which belong to L?(£2) along
with all their distributional derivatives up to the order m. The penalized sum-
of-square-error functional (2) is well defined for 8 € RY and f € H?*(R).
Furthermore, imposing appropriate boundary conditions on f ensures that the
estimation problem has a unique solution. Three classic boundary conditions are
Dirichlet, Neumann and Robin conditions. The Dirichlet condition controls the
value of f at the boundary, i.e., f|;o = yp, the Neumann condition controls
instead the flow across the boundary, concerning the value of the normal derivative
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of f at the boundary, i.e., 9, f |30 = yw~, where v is the outward unit normal
vector to 452, while the Robin condition involves linear combinations of the above
conditions, i.e., (8.,f —l—o:f)|aQ = yg. The functions yp, yy and yr have to
satisfy some regularity conditions in order to obtain a well defined functional
J(f); when these functions coincide with null functions, the condition is said
homogeneous. Moreover, it is possible to impose different boundary conditions on
different portions of the boundary, forming a partition of 952, as will be illustrated
for instance in the application to Montréal census data. For simplicity of exposition,
in the following we consider homogeneous Neumann (or homogeneous Dirichlet)
boundary conditions, and V(£2) will denote the subspace of H?(£2) characterized
by the chosen boundary conditions. The interested reader is referred to [3,4,24] for
the case of general boundary conditions.
The following Proposition characterizes the estimators (see [24]).

Proposition 1 There exists a unique pair of estimators (}9 € R, f € V(82)) which
minimize (1). Moreover,

« B=WW) "W (z—f,);

A

e [ satisfies
h of, H/ (AR)(Af) =, 0z 3)
2

for every h € V(82).

Problem (3) is an infinite dimensional problem and cannot be solved analytically.
We thus solve the problem numerically, reducing it to a finite dimensional one.
Since (3) is a fourth order problem, a convenient way to tackle it is to first rewrite
it as a coupled system of second order problems, by introducing an auxiliary
variable. The latter problem is hence reformulated in order to involve only first order
derivatives, i.e., in a suitable H ! (£2) subspace. This weak or variational formulation
can be obtained by integrating the differential equations against a test function
and integrating by parts the second order terms. This problem reformulation is
particularly well suited to be solved numerically, as H ! spaces can be approximated
by convenient finite dimensional spaces, and specifically by standard finite element
spaces. Finite element analysis has been mainly developed and used in engineering
applications, to solve partial differential equations; see, e.g., [20]. In the finite
element space, solving the estimation problem reduces to solving a linear system.
Next section describes the finite element spaces we shall be using.

2.3 Finite Element Solution to the Estimation Problem

To construct a finite element space, we start by partitioning the domain £2 of interest
into small subdomains. Convenient domain partitions are given for instance by
triangular meshes; Fig. 3, left panel, shows for example a triangulation of the domain
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of interest for the Island of Montréal data. In particular, we consider a regular
triangulation 7 of £2, where adjacent triangles share either a vertex or a complete
edge. Domain £2 is hence approximated by domain 2 & consisting of the union of
all triangles, so that the boundary 952 of §2 is approximated by a polygon (or more
polygons, in the case for instance of domains with interior holes). It is assumed,
therefore, that the number and density of triangles in .77, with the associated finite
element basis, are sufficient to adequately describe the data. The triangulation points
in .7 may or may not coincide with the data locations p;. In any case, for the infer-
ential properties of the estimators, it is convenient to consider triangulations that are
finer where there are more data points, and coarser where there are fewer data points.

Starting from the triangulation .7, we can introduce a locally supported basis
that spans the space of continuous surfaces on §2 7, coinciding with polynomials of
a given order over each triangle of 7. The resulting finite element space, denoted
by H % (£2), provides an approximation of the infinite dimensional space H'(£2).
Linear finite elements are for instance obtained considering a basis system where
each basis function v, is associated with a triangle vertex &§;, j = 1,..., N, in
the triangulation .7. This basis function ¥; is a piecewise linear polynomial which
takes the value one at the vertex £; and the value zero on all the other vertices of
the mesh, i.e., ¥; (§) = &, where §; denotes the Kronecker delta symbol. Figure 2
shows an example of such linear finite element basis function on a planar mesh,
highlighting the locally supported nature of the basis.

Now, let ¥ = (Y¥1,...,¥n)" be the column vector collecting the N basis
functions associated with the N vertices £;, j = 1,..., N. Then, each function
h in the finite element space H ; can be represented as an expansion in terms of the
basis function v, ..., ¥ y. In particular,

N
h() =Y hEDY;() =h'¥() 0))

Jj=1

Fig. 2 Example of a linear finite element basis on a planar triangulation
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where

h = (h().... . h(EN)) ®)

is the column vector of the evaluations of / at the N mesh nodes. Each function
heH {17 is thus uniquely identified by its evaluations h on the mesh nodes.
Let ¥ be the n x N matrix of the evaluations of the N basis at the n data locations

Pis -, Pn»
v'(p1)
V= :
v (pn)

and consider the N x N matrices
Ry := vy R, ::/ Vy'Vy.
Lo L

Corollary 1 shows that, once recast in the finite element space, solving the
estimation problem reduces to solving a linear system.

Corollary 1 There exists a unique pair of estimators (ﬁ eRl, feH } (£2)) which
solve the discrete counterpart of the estimation problem. Moreover,

« B=WwW)yWiz-1t,);
. f = ft‘lﬁy with fsal‘lsﬁ/li’lg

[—lI/’Qlll AR1:| |:f:| _ I:—lI/’Qz} ©)
ARl ARO g B 0 '

Solving the linear system (6) is fast. In fact, although the system is typically
large, being of order 2N, it is highly sparse because the matrices Ry and R; are
highly sparse, since the cross-products of nodal basis functions and of their partial
derivatives are mostly zero. As an example, for the Island of Montréal census data,

we used 626 nodes and only about 1 % of the entries of Ry and 0.2 % of the entries
of R; were non-zero.

2.4 Properties of the Estimators

Corollary 1 highlights that the estimators B and f are linear in the observed data
values z. Moreover f has a penalized regression form, being identified by the vector

f= W QW+ ARR'R) W 0z
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where the positive definite matrix R; R 'R, represents the discretization of the
penalty term in (2). Notice that, thanks to the variational formulation of the
estimation problem, this penalization matrix only involves the computation of first
order derivatives.

Denote by S the n x n matrix

Sy =W QW+ AR R;'R)'WQ.
Using this notation,

fn = SfZ
B=WW)'"Wi{l-Slz.

Some distributional properties of the estimators are straightforward to derive and
classic inferential tools can be obtained. Recalling that E[z] = WB + f, and
Var(z) = o? I, and exploiting the properties of the matrices involved (e.g., Q is
symmetric and idempotent, Q W = O,x,, Q WW'W)~! = (W'W)"'W!' Q =
O, xn), with a few simplifications we obtain the means and variances of the
estimators f, and ﬁ:

Ef,] = S/, ©)
Var(f',,) = o2 Sy S}v (8)

and
E[B] = B+ W'W)'W'(I - Sy)f, 9)

Var(B) = o> (W'W) ™' + (W' W)~ W {S, SH W W W)™ (10)

Denote now by S the smoothing matrix § := P + Q S and consider the vector Z
of fitted values at the n data locations

i:W[i+f'n=Sz.

The fitted values Z are thus obtained from observations z via application of the linear
operator S, independent of z. A commonly used measure of the equivalent degrees
of freedom for linear estimators is given by the trace of the smoothing matrix; see,
e.g., [6], who first introduced this notion. The equivalent degrees of freedom of the
estimator Z are thus given by

tr(S) =q +tr(Sy),

and coincide with the sum of the g degrees of freedom of the parametric part of the
model (g being the number of covariates considered) and of the (S ;) equivalent
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degrees of freedom of the non-parametric part of the model. We can now estimate
2
o° by

Az_; _At _ 5
& _n—tr(S)(z z) (z—1).

This estimate, together with expressions (10) and (8), may be used to obtain
approximate confidence intervals for B and approximate confidence bands for
f. Furthermore, the value of the smoothing parameter A may be selected by
Generalized-Cross-Validation, see, e.g., [23] and references therein:

GOV = — L (@—3) (e—3).

n(l - tr(S)/n)

Finally, the value predicted for a new observation, at point p,+; and with covariates
Wy +1, i given by

Zng1 = W2+1B + fPut) = W£,+1B + 9 (Pat),

whose mean and variance can be obtained from expressions above; correspondingly,
approximate prediction intervals may be also derived.

The expressions (7) and (9) highlight that the estimators are biased. In particular,
there are two sources of bias in the proposed model. The first source is the
discretization and it is common to any model employing a basis expansion. This
source of bias disappears as the number n of observations increases (in the sense of
infill asymptotic) if meanwhile the mesh is correspondingly refined. The second
source is the penalty term, and this is typical of regression models involving a
roughness penalty: unless the true function f is such that it annihilates the penalty
term, this term will of course induce a bias in the estimate. As shown in [3], this
source of bias disappears as n increases, if the smoothing parameter A decreases
with n. This appears to be a natural request since having more observations
decreases the need to impose a regularization. In all the simulations we carried out,
the bias always appeared negligible.

2.5 Applied Illustrative Problem: Island of Montréal Census
Data

Figure 3, left panel, displays a triangulation of the domain of interest for Montréal
census data application. We shall estimate population density, measured as 1,000
inhabitants per km?, using as covariate the binary variable that indicates whether
a tract is predominantly residential (1) or commercial/industrial (0). We use here
mixed boundary conditions: homogeneous Dirichlet along the stretches of coast
corresponding to the harbor and the public parks, implying that the estimate of
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Fig. 3 Left: constrained Delaunay triangulation of the Island of Montréal. Right: estimate of
spatial structure for population density over the Island of Montréal. Adapted from [24]

population density should drop to zero along these stretches, and homogeneous
Neumann along the remaining shores, meaning there is no immigration-emigration
across shores. Figure 3, right panel, shows the estimated spatial structure of
population density. The estimate complies with the specified boundary conditions
and does not artificially link data points on either side of the uninhabited parts;
see for instance the densely populated areas just in the south and in the west of
the industrial park, with respect to the low population density neighborhood north-
east of it. The B coefficient that corresponds to the binary covariate is estimated
to be 1,300; this means that census tracts that are predominantly residential are in
average expected to have 1,300 more inhabitants per km?, with respect to those
predominantly commercial; the approximate 95 % confidence interval is given by
[0.755;1.845].

3 Incorporating Prior Knowledge About the Phenomenon
Under Study

In this section we briefly summarize the generalization of the models developed in
[2-4]. Suppose that prior knowledge is available on the phenomenon under study,
that can be formalized through a partial differential equation Lf = u modeling the
phenomenon (where u € L?(£2) is some forcing term). Partial differential models
are indeed commonly used to describe complex phenomena behaviors in many
fields of engineering and sciences. The prior knowledge, formalized in the PDE,
is thus incorporated into the statistical model, looking for estimates of § and f that
minimize the functional

n

DB ) =3 =B~ f@)) + 4 [ (LF@) -u)dp D)

i=1 2
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with respect to f € V. The penalized error functional hence trades off a data
fitting criterion, the sum-of-square-error, and a model fitting criterion that penalizes
departures from a PDE problem-specific description of the phenomenon. The
proposed method can be seen as a regularized least square analogous to the Bayesian
inverse problems presented, e.g., in [25]. In particular, the least square term in
J(f) corresponds to a log-likelihood for Gaussian errors, while the regularizing
term effectively translates the prior knowledge on the surface. With respect to
[25], besides the different model framework and estimation approaches, we also
deal with a larger class of operators, including also non-stationary (i.e., spatially
inhomogeneous) and anisotropic diffusion, transport and reaction coefficients. This
also allows for a very flexible modeling of space variation, that accounts naturally
for anisotropy and non-stationarity (space inhomogeneity).

In particular, in [3, 4] we consider phenomena that are well described in terms
of linear second order elliptic operators L and forcing term u € L?(£2) that can be
either the null function u = 0, homogeneous case, or u # 0, non-homogeneous
case. The operator L is a general differential operator that can, for instance, include
second, first and zero order differential operators. Consider a symmetric and positive
definite matrix K = {K,-j} e R¥2 named diffusion tensor, a vector b = {b j} S
R2, named transport vector, and a positive scalar ¢ € R*, named reaction term.
Then, the operator can include: second order differential operators as the divergence
of the gradient, i.e.,

3 0 0 0 a a
div(KV f) = (K11 / +Kp— / ) +— (K21 / + Kn— / )
ap1 ap1 ap2 ap2 ap1 ap2

first order differential operators as the gradient, i.e.,

b-Vbeli-i-bzaf
ap opy

and also zero order operators, i.e., ¢f. The general form that we consider is
Lf = —div(KVf)+b-Vf +¢f. (12)

Moreover, the parameters of the differential operator L can be space-varying on
2;ie., K = K(py, p2), b = b(pi1, p2) and ¢ = c¢(p1, p2). The three terms that
compose the general second order operator (12) induce an anisotropic and non-
stationary smoothing, providing different regularizing effects. The diffusion term
—div(KV f) induces anisotropic and non-stationary smoothing in all directions; the
transport term b - V f* induces a non-stationary smoothing only in the direction
specified by the transport vector b. Finally, the reaction term cf has instead a
non-stationary shrinkage effect, since penalization of the L? norm of f induces
a shrinkage of the surface to zero. Setting K = I, b = 0, ¢ = 0 and « equal to the
null function we obtain the special case described in Sect. 2, where the penalization
of the Laplacian A f induces an isotropic and stationary smoothing.
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In [2—4] the estimation problem is shown to be well defined. Its discretization
with the finite element space follows the same lines described in Sect. 2.3, with the
important difference that the matrix R; is now defined as

R = /9 (VY'KVYy + Vy'by + cyy').

This change is due to the different penalty in (11) with respect to (2). The matrix
R, is in fact used in the discretization of the penalty term. In the case where the
considered forcing term u € L?(£2) is not homogeneous (u # 0), the vector 0 in the
right hand side of (6) is replaced by the discretization u = (u(&y),...,u(éy))" of
the forcing term. Moreover, when the forcing term is homogeneous the estimator
properties are as in Sect.2.4; otherwise, additional terms need instead to be
considered, but the estimators remain linear in the observed data values, and their
properties follows along the lines described in Sect. 2.4.

In [3] we study in detail the numerical convergence properties of the Finite
Element approximation to the estimation problem. In addition, the case of areal
data is considered in [3,4].

3.1 Applied Illustrative Problem: Blood-Flow Velocity Field
Estimation

The motivating applied problem driving the generalization to more complex penalty
terms concerns the estimation of the blood-flow velocity field on a cross-section
of the common carotid artery, using data provided by echo-color doppler acquisi-
tions. This applied problem arises within the research project MAthematichs for
CARotid ENdarterectomy @MOX (MACAREN@MOX), which aims at studying
atherosclerosis pathogenesis. Carotid Echo-Color Doppler (ECD) is a medical
imaging procedure that uses reflected ultrasound waves to create images of an
artery and to measure the velocity of blood cells in some locations within the artery.
Specifically, the ECD data measure the velocity of blood within beams located on
the considered artery cross-section; see Fig. 4, top left panel. For this study, during
the ECD scan, 7 beams are considered, located in the cross-shaped pattern shown in
Fig. 4, bottom left panel.

In this applied problem we have prior knowledge on the phenomenon under study
that could be exploited to derive accurate physiological estimates. There is in fact
a vast literature devoted to the study of fluid dynamics and hemodynamics; see for
example [13] and references therein. This prior information concerns both the shape
of the field, which can be conveniently described via a linear second order elliptic
PDE, and the conditions at the boundary of the problem domain, i.e., specifically, at
the wall of the carotid cross-section. The proposed method efficiently uses the prior
information on the phenomenon under study and gives a realistic and physiological
estimate of the blood flow velocity field, which is not affected by the pattern of
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RCCA-21

Fig. 4 Top left: ECD image corresponding to the central point of the carotid section located 2 cm
before the carotid bifurcation. Bottom left: MRI reconstruction of the cross-section of the carotid
artery located 2 cm before the bifurcation; cross-shaped pattern of observations with each beam
colored according to the mean blood-velocity measured in the beam at systolic peak time. Bottom
right: estimate of the blood-flow velocity field in the carotid section. Adapted from [4]

the observations; see Fig. 4, bottom right panel. Moreover the estimates accurately
highlight important features of the blood flow, such as eccentricity, asymmetry and
reversion of the fluxes, that are of interest to physicians, in order to understand how
the local hemodynamics influences atherosclerosis pathogenesis. See [4].

4 Modeling Data over Manifold Domains

In [12], the models are extended to non-planar domains. Few methods are available
in literature to deal with data on non-planar domains (see, e.g., [5, 7, 14, 1618,
26]); to the best of our knowledge, none of these methods is currently devised to
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handle the data structures we are considering, with variables of interest together with
space-varying covariates, both distributed over general bi-dimensional Riemannian
manifolds.

Consider n fixed data locations {x; = (xy;,X2;,x3;) : i = 1,...,n} lying on
a general bi-dimensional Riemannian manifold I", and let the variable of interest
z; and covariates w; be observed at location x;, fori = 1,...,n. Likewise in (1),

assume the model
Zi:w;ﬂ—i—f(xi)—‘r—Gi, i=1,...,n (13)

where the spatial field f is now defined on the manifold I, f : I’ — R. In analogy
to (2), the vector of regression coefficients § and the surface or spatial field f are
estimated by minimizing the penalized sum-of-square-error functional

n

JraB. /)= (s —wB— f(x)) + 4 /F Arf@)Y dx (14

i=1

where A f denotes the Laplace-Beltrami operator, a generalization of the standard
Laplacian to functions f = f(xi, X2, x3), defined on a non-planar domain I,
with (x1, x3, x3) € I'. The definition of the Laplace-Beltrami operator requires the
computation of the gradient operator V and of the divergence operator div, over
the non planar domain; see, e.g., [10]. The Laplace-Beltrami operator of f is then
defined as

Ar f(x) = divp Vr f(x).

Similar to the standard Laplacian, the Laplace-Beltrami operator provides a simple
measure of the local curvature of the function f, as defined on the curved domain
I'. Likewise to the standard Laplacian, the Laplace-Beltrami is invariant with
respect to rigid transformations (rotations, translations and reflections) of the spatial
coordinates of the non-planar domain. Hence, the employment of the Laplace-
Beltrami operator as a roughness penalty ensures that the concept of smoothness
does not depend on the orientation of the coordinate system or on the orientation of
the domain I itself.

In [12] the estimation problem (14) is recast over a planar domain, via a
conformal reparametrization of the non-planar domain I". The reparametrization
is obtained by a continuously differentiable map

X:2—->1T
(15)
P = (p1, p2) = x = (x1, X2, X3)

where §2 is an open, convex and bounded set in R? and the boundary of 2, denoted
452, is piecewise C*°. The map X essentially provides a change of variable between
the planar coordinates p = (1, p») and the non-planar coordinates x = (x, X2, X3),
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and is unique up to dilations, rotations and translations. Consider the first order
partial derivatives of X with respect to the planar coordinates p; and p», am X (p)
and 3]))(2 (p), that are column vectors in R?. We denote by (-, ) the Euclidean scalar

product of two vectors and by || - || the corresponding norm. Consider the (space-
dependent) metric tensor

, }|3X(p>||2 (X (p), X (p)>)
G(p) := VX(p)VX(p) = & P o :
() := VXY VX(P) (< L) 2 )2 ()

Let # (p) := +/det(G(p)), and define the matrix K(p) = # (p) G~'(p), where
G~ !(p) denotes the inverse of G(p). Then for foX € €?(£2), the Laplace-Beltrami

operator be re-expressed in terms of the planar coordinates p as

Arf(x) = div(K(p)V /(X (p))) (16)

W()

where div and V denote the standard divergence and gradient operators over planar
domains, defined in Sect. 2. Thus, by considering the map X and the corresponding
planar parametrization (16) for the Laplace-Beltrami operator, after setting u; =
X~(x;), we can reformulate the estimation problem (14) over the manifold I" as
an equivalent problem over the planar domain §2 as follows: find 8 and the function
f o X, defined on §2, that minimizes

n

Jaa(foX) = (z—wB— f(X®))

i=l1
1 2
A / e )(dw(K(p)Vf(X(p)))) a7

As previously remarked, the map X and its corresponding planar domain 2
are unique only up to dilations, rotations and translations. However, the terms
K(u) and # (u), that account for the change of variable from the original non-
planar coordinates to the planar ones, adjust for each considered map X and for
the corresponding planar domain §2. Consequently this leads to different planar
parameterizations of the function f as well as of the estimation problem (17), all
equivalent to problem (14) on the original manifold I".

The conformal reparametrization is computed resorting to non-planar finite
elements. These are defined likewise planar finite elements, but over non-planar
meshes. See [12] for details. The discretization of the conformal map via non-
planar finite elements provides a planar mesh for the corresponding planar domain
£2, and the discretization of the terms % and K in (17). These terms, together
with the planar mesh, are then used for the solution of the equivalent estimation
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problem (17) over the planar domain. The discretization of problem (17) with planar
finite elements follows the same lines described in Sect.2.3, with the important
difference that the matrices Ry and R; are now defined as

Ro:= | w@wy) R, ::/Q Vy'KVy.

Rg

This change is due to the different penalty in (17) with respect to (2), with the terms
# (p) and K(p) accounting for the change of variable from the original non-planar
coordinates to the planar ones. The estimator properties are as in Sect. 2.4.

4.1 Applied Illustrative Problems: Modeling Hemodynamical
Stresses on Cerebral Arteries and Studying Cortical
Surface Data

The extension to manifold domains has fascinating fields of applications. In [12] the
models are applied to the study of hemodynamical forces exerted by blood flow on
the wall of cerebral arteries affected by aneurysms; see Fig. 5. These data come from
three-dimensional angiographies and computational fluid dynamics simulations,
and belong to the AneuRisk project, a scientific endeavor that aimed at investigating
the role of vessel morphology, blood fluid dynamics and biomechanical properties of
the vascular wall, on the pathogenesis of cerebral aneurysms; see http://mox.polimi.
it/it/progetti/aneurisk/. In [8] we discuss instead an application in the neurosciences
by analyzing cerebral cortex thickness data; see Fig. 6.

Fig. 5 Left: estimate of shear stress (modulus of shear stress at systolic peak) exerted by blood
flow on the wall of an internal carotid artery affected by an aneurysm. Right: triangular mesh
reconstruction of the wall of the internal carotid artery in left panel. Adapted from [12]
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Fig. 6 Left: estimate of cortical thickness. Right: triangular mesh reconstruction of cortical surface

5 Discussion

We are currently extending this approach in various directions. One important
generalization concerns for instance the modeling of space-time data, both over
planar and over non-planar domains, which is of interest in several applications,
including those briefly mentioned in Sects.2.1, 3.1 and 4.1. Moreover, via a
generalized linear framework, we are extending the models in order to handle
outcomes having general distributions within the exponential family, including
binomial, Poisson and gamma outcomes, further broadening the applicability of the
proposed models. Combining all these features may in fact create a class of models
that aims at handling data structures for which no statistical modeling currently
exists.
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