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Abstract

Postponement is a supply chain strategy that enables a supply chain to achieve both
low cost and fast response by combining some common processes and delaying
other product differentiation processes such as packaging and labeling. The point
that separates the differentiation processes from the common processes is known
as the point of product differentiation. Recent research studies have identified four
common postponement strategies, namely pull, logistics, form and price postpone-
ments. They aim at balancing the costs and benefits of mass production and cus-
tomization. In this book, four types of model are presented to evaluate the impacts
of pull and form postponement strategies under various supply chain structures.

First, we develop two EOQ-based models to examine the impact of pull post-
ponement. Then we develop some EPQ-based models to examine the impact of
postponement. The third type of model is a stochastic model of a single end-product
supply chain that consists of a supplier, a manufacturer and a number of customers.
In the last type of model, we aim at conducting a simulation experiment of a two-
end-product supply chain, for which customer demands are discrete and indepen-
dent. Besides mathematical models, two case studies from industry are presented to
support our theoretical results.

Keywords Supply chain management, Postponement strategy
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Preface

Postponement strategy is one of the major supply chain management (SCM) prac-
tices that has a discernible impact on firms’ competitive advantage and organiza-
tional performance. Postponement is a mass customization strategy that captures
the advantages of both mass production and mass customization. Recent research
studies have identified four common postponement strategies, namely pull, logistics,
form and price postponement. The former three postponement strategies are linked
to production and manufacturing, while the last one is a pure pricing strategy. They
aim at balancing the costs and benefits of mass production and mass customization.
Practical examples of postponement can be found in the high-tech industry, food
industry and other industries that require high differentiation.

However, empirical studies have found that postponement may not be an evident
SCM practice compared to the other practices. In addition, postponement has both
positive and negative impacts on a supply chain. The advantages include following
the JIT principles, reducing end-product inventory, making forecasting easier and
pooling risk. The high cost of designing and manufacturing generic components is
the main drawback of postponement. Thus, the evaluation of postponement strategy
is an important research issue and there have been many qualitative and quantitative
models for analyzing postponement under different scenarios.

The core of this book is to analyze how the pull postponement strategy and the
form postponement strategy can be leveraged to yield substantial benefits to adopt-
ing firms in different competitive environments. This book is made up of seven
chapters, the contents of which are outlined in the following.

In Chapter 1 we review the status of development of postponement. We begin
with presenting a framework to link postponement with product variety, mass cus-
tomization and quality. We then identify four types of postponement, followed by
providing a review of the cost models for analyzing various postponement strategies.
Finally, we present review of the literature pertinent to our model development.

In Chapter 2 we develop an EOQ-based model to examine the cost impact of the
pull postponement strategy adopted by a supply chain that orders and keeps n end-
products. We formulate a total average cost function for ordering and keeping the n
end-products in a supply chain, in which their demands are known and deterministic.
Using standard optimization techniques, we show that postponed customization of
end-products will result in a lower total average cost and a lower EOQ. Furthermore,
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viii Preface

we develop an EOQ-based model with perishable items to evaluate the impact of
item deterioration rate on inventory replenishment policies. Our theoretical analysis
and computational results show that a postponement strategy for perishable items
can yield a lower total average cost under certain circumstances.

In Chapter 3 we develop two EPQ-based models with and without stockout to
examine the impact of postponement. We formulate the total average cost functions
of the two scenarios for producing and keeping n end-products in a supply chain,
in which their demands are known and deterministic. Using standard optimization
techniques, we show that postponed customization of end-products results in a lower
total average cost in certain circumstances. We also find that two key factors that
influence postponement decisions are variance of the machine utilization rates and
variance of the backorder costs.

In Chapter 4 we study the cost impact of the pull postponement strategy by
comparing the total average cost function with the optimal or an approximately
optimal total average cost of an (r, q) policy. This is a stochastic model of a single
end-product supply chain that consists of a supplier, a manufacturer and a number
of customers. We develop two distinct models to represent the inventory system of
the manufacturer. We employ Markov chain analysis to determine the exact average
inventory level and the exact average accumulated backorder per period at the steady
state so that the total average cost can be evaluated analytically. Also, we design an
algorithm to find a near optimal total average cost per period. Our results show that
the postponement system is more cost effective when the lead-time is zero, while
the (r, q) inventory system is more effective when the lead-time is greater than zero.

In Chapter 5 we conduct simulation experiments of a two-end-product sup-
ply chain, for which customer demands are discrete and independent. Customer
demands follow a uniform, Poisson or normal distribution. Two simulation models,
namely one is a postponement system while the other is a non-postponement system,
are designed for comparing their performance and total cost after t periods. Given
a set of (r, q) policies and a demand distribution, the postponement system outper-
forms the non-postponement system in terms of average order frequency, average
on-hand inventory, average backorder and average fill-rate. Thus, this system pro-
vides some cost benefits when the net postponement cost is low.

In Chapter 6 we report on two case studies of applying postponement strategy
in industry. The first case is a study of a Hong Kong based toaster manufacturing
company, which has successfully implemented postponement strategy. We present
a summary of how postponement strategy was implemented in its supply chain and
elaborate on all the benefits arising from the implementation of postponement. We
also discuss the implications of postponement for its supply chain. In the second
case study we present an empirical analysis of the application of postponement
strategy in Taiwanese information technology (IT) firms. We present the findings
and discuss their managerial and practical implications.

In Chapter 7 we conclude the book and suggest some worthy topics for future
research.

This book is intended for researchers in supply chain management interested in
conducting in-depth studies on postponement strategy. The book is also intended
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for business practitioners seeking to understand the nature and law governing the
working of postponement strategy and looking for guidance and decision sup-
port for the implementation of postponement strategy. Therefore, the book can be
useful not only for researchers but also for practitioners and graduate students in
operations management, management science, industrial engineering, and business
administration.

We would like to thank many friends and colleagues for their help and sup-
port rendered to us in preparing this monograph. First, we thank Prof. Fangruo
Chen of Columbia University, Prof. Xiuli Chao of the University of Michigan,
Prof. Jeannette Song of Duke University, Prof. Gang Yu of the University of Texas
at Austin, Prof. Hanqin Zhang, Prof. Ke Liu and Dr Jingan Li of the Academy of
Mathematics and Systems Science of the Chinese Academy of Sciences for their
helpful discussions, suggestions and valuable comments on our research in this
area. We also thank many scholars who have made important contributions in this
promising area, including Prof. Remko van Hoek of the Cranfield School of Man-
agement, Prof. Christopher S. Tang of the University of California at Los Angeles,
Prof. Hau L. Lee of Stanford University, Prof. Jyh-Shen Chiou of National Chengchi
University, Prof. Lei-Yu Wu of Van Nung Institute of Technology, and Prof. Jason
C. Hsu of the University of California at Los Angeles, whose original research has
inspired us to join this exciting field of research. Finally, we would like to thank
the National Natural Science Foundation of China, the Research Grants Council
of Hong Kong, the Chinese Universities Scientific Fund, the Natural Science Fund
for Young Scholars of Beijing University of Chemical Technology, the Hong Kong
Polytechnic University, the Academy of Mathematics and Systems Science of the
Chinese Academy of Sciences, and Beijing University of Chemical Technology for
their financial support to our research.

Hong Kong, China T.C. Edwin Cheng
Beijing, China Jian Li
Hong Kong, China C.L. Johnny Wan
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Chapter 1
Introduction

Postponement has been discussed by numerous scholars and researchers from dif-
ferent perspectives since 1950s when Alderson [3] observed that products tend to
differentiate when they near the time of purchase in order to reduce marketing costs.
He named this concept the principle of postponement. Postponement, also known as
late customization or delayed product differentiation, refers to delaying some prod-
uct differentiation processes in a supply chain as late as possible until the supply
chain is cost effective (Garg and Lee [43]). It gives rise to economies of scale and
scope through product and process standardization and customization, respectively.
The goal of postponement is to supply desirable products to customers at a relatively
low cost and in a responsive way (Feitzinger and Lee [41]). Li et al. [73] selected
postponement as one of five major SCM practices that have discernible impact on
competitive advantage and organizational performance. In fact, postponement is an
element of mass customization that is applied to cope with product variety in order
to enhance customer quality. A comprehensive literature review of how service qual-
ity is improved by an adoption of postponement to deal with a wide product range
is presented in this chapter.

This chapter is organized as follows. In Section 1.1 the relationships between
product variety, mass customization and postponement are discussed. In Section 1.2
four types of postponement are addressed. The advantages and disadvantages of
postponement strategies and the prerequisites for postponement strategy develop-
ment are also discussed. In Section 1.3 a review of the cost models for analyz-
ing various postponement strategies is provided. A literature review for our model
development is presented in Section 1.4. In Section 1.5 we conclude the chapter.

1.1 From Product Variety to Postponement

1.1.1 Product Variety

MacDuffie et al. [75] defined product variety as the breath and depth of product
lines. Strategically, broadening product variety gives a company a distinctive com-
petitive advantage in quickly responding to ever-changing market environments and
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2 1 Introduction

customer tastes. Product proliferation can lead to greater flexibility, larger market
shares, deeper market penetration, higher customer satisfaction and loyalty. How-
ever, it increases the number of set-up and inventory level, and demands more tech-
nical services, material handling, supervision, co-ordination and support in produc-
tion (Yeh and Chu [128]). Since expanding product variety increases both values
and costs, only value-added variety should be offered.

Product variety falls into two dimensions: perceived variety and actual variety.
Customer value is only enhanced by an increase in perceived variety, regardless
of the extent of actual variety offered (Porter [94] and Kahn [60]). Adding actual
variety (but not perceived variety) not only increases customer confusion but also
raises costs. Stalk [109] identified two forms of costs: those responding to volume or
scale, and those driven by variety. The former reduces when volume increases, while
the latter increases when manufacturing becomes complex as variety increases.

Since handling product variety is a complicated process, Ulrich et al. [115] iden-
tified 12 supply chain decision areas and classified them into strategic level and
tactical level for coping with product variety. Strategic decisions include: (1) dimen-
sions of variety offered, (2) distribution channel, (3) degree of vertical integration,
(4) process technology, (5) position of decoupling point, and (6) product architec-
ture. Tactical decisions cover: (1) number and combination of product attributes,
(2) extent of parts sharing, (3) lot size policy, (4) inventory management policy,
(5) production scheduling, and (6) promotion plans. Besides, information about
product lines, customer behavior and tastes, market segmentation, suppliers, techno-
logical innovation, and strengths and weaknesses of competitors is vital for product
variety strategy planning (Porter [94]).

1.1.2 Mass Customization

As mentioned above, an effective product variety strategy calls for the provision of
highly perceived variety of products and services to individual customers. From a
supply chain management’s point of view, it aims at supplying customized products
and services to each customer in a responsive and cost effective way. It is important
to note that customization is a time consuming and costly strategy due to disec-
onomies of scale and scope. The associated costs include the logistics of manag-
ing variety, material handling, quality, production capacity and inventory (Martin
et al. [76]). Mass customization (Feitzinger and Lee [41]) or customized standard-
ization (Lampel and Mintzberg [63]), are aimed at balancing both standardization
and customization in order to achieve both quick response and low cost. It is a
guiding strategy for those multinational companies that manufacture global products
with customization for local markets.

Lee [65], Feitzinger and Lee [41], and Yeh and Chu [128] mentioned three
prerequisites for mass customization. The first is modular design of production
processes. Processes can be moved, assembled and re-arranged to support various
products manufacturing easily and at low costs. Moreover, modular design allows
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concurrent production, isolates potential problems within module, and most impor-
tantly, enables postponement. One of these process-re-engineering techniques is
operations reversal (Lee and Tang [70]). It is an approach in which the sequence of
two consecutive processes in a supply chain is reversed to reduce demand variability.
The second requirement is products and parts standardization. Homogenous prod-
ucts are produced and they are capable of supporting multiple product functions and
features with slight re-configurations. It reduces costs in part number administration,
leads to inventory reduction and facilitates supplier management (Lee [64]). The
last building block is a flexible supply chain, which involves the coordination and
negotiation of marketing, R&D, manufacturing, distribution, finance and retailing,
to support both generic and customized products responsively (Lee [64]).

1.1.3 Postponement Strategy

Garg and Lee [43] suggested applying a postponement strategy to deal with product
variety. The concept was first discussed by Alderson [3]. In his principle of post-
ponement, he argued that products differentiation in the point of purchase could
reduce various marketing costs. In this regard, he suggested all changes in form and
identity be delayed to the latest possible point in time and location. Christopher [29]
referred to postponement as a vital element in an agile strategy, which adopts both
a flexible manufacturing system (FMS) and standardization of products to achieve
organization flexibility.

1.2 Classification of Postponement

Postponement, also known as late customization or delayed product differentiation,
refers to delaying some product differentiation processes in a supply chain as late
as possible until the supply chain is cost effective (Garg and Lee [43]). It implies
economies of scope and scale can be achieved by product and process standard-
ization. Economies of scale are made possible through standardization of compo-
nents and processes to support a large variety of products. Economies of scope are
achieved by producing various products at the same time (Pine [93]).

Under a postponement strategy, products from a product family share common
parts and processes until their point of product differentiation. After the point of
product differentiation, a “fan-out” occurs, as end products require different com-
ponents and processes (Garg and Lee [43]). This strategy benefits from the “risk-
pooling” effect, which suggests demand variability is reduced by considering aggre-
gate demand instead of individual demand in a product category (Federgruen and
Zipkin [40], Simchi-Levi et al. [105]). The major reason is that one extremely high
demand may be offset by another extremely low demand after aggregation. Lower
demand variability implies fewer safety stocks, lower inventory levels and more
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accurate resources planning. Apart from reducing demand variability, postponement
is also used to tackle process and supply uncertainties.

There are four forms of postponement strategies, namely pull postponement,
logistics postponement, form postponement (Lee [65]) and price postponement (van
Mieghem and Dada [124]). The former three strategies are also referred to as pro-
duction postponement (van Mieghem and Dada [124]).

1.2.1 Pull Postponement

Companies usually employ forecasting techniques to estimate customer demand.
Products are produced in advance of customer orders, where production is planned
to achieve optimal capacity and efficiency. Such a production strategy is called a
make-to-stock (demand-push) strategy. One advantage of this strategy is that it has
immediate stock availability (Schroeder [101], Browne et al. [19] and Arnold [5])
to respond to customer orders quickly. However, unavoidable overstock or stock
outs occur due to demand forecast variations. The variation is amplified from
downstream to upstream in a supply chain due to information distortion. This phe-
nomenon is described as the “bullwhip effect” (Lee et al. [68]). Stock outs lead to
losing customers while overstocked items become obsolescence at the end of the
product life cycle. The costs associated with overstock and stock outs can be huge.
In order to cope with these unwanted variations, a make-to-order (demand-pull)
strategy is advocated.

In contrast to a make-to-stock strategy, a make-to-order strategy pulls production
once a customer order is received. It can entirely eliminate unwanted inventory as
production quantity is set after demand uncertainty is resolved (van Mieghem and
Dada [124]). However, long order lead-time and wide production fluctuations are
two major drawbacks of this strategy.

In practice, most companies operate between these two extremes in order to
balance production capacity and demand (De Hann et al. [35]). A customer order
decoupling point (Hoekstra and Romme [55], Browne et al. [19]) or a push-pull
boundary (Brown et al. [17]), which indicates the extent of which a customer order
penetrates into the goods flow, separates forecast-driven activities upstream from
demand-driven activities downstream in a supply chain system (van Donk [117], van
Hoek [118]). If a system cannot be decoupled, it should be operated only in either
a fully forecast-driven or fully demand-driven mode (Hoekstra and Romme [55]).
The concept of a customer order decoupling point was proposed by Bucklin [21] in
1965. Bucklin developed a postponement-speculation approach such that inventory
is only built at each process in a distribution channel whenever the costs are less
than the savings among channel members.

Pull postponement, also known as process postponement (Brown et al. [17]),
refers to moving the decoupling point earlier in the supply chain such that fewer
steps will be performed under forecast results (Lee [65]). There are two decou-
pling points: one for the physical supply chain and the other for the virtual supply
chain (Christopher [29]). The virtual supply chain refers to the information-sharing
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network among supply chain partners. In pull postponement, customer demand is
the key information for determining the push–pull boundary of a physical supply
chain. In fact, it is an information strategy (Lee [65]).

For instance, assume there are four processes in a supply chain where process 4
receives customer order (see Fig. 1.1). If process 2 and process 3 update the cus-
tomer order information simultaneously, the decoupling point for the virtual supply
chain is in process 2. However, the pull postponement strategy can be carried out
in either process 2, process 3 or process 4 but not in process 1 because it cannot
receive customer order information for pull production. Process 1 can employ a
push system only. In theory, the best pull postponement is implemented in process 2
as it is the earliest process that can be operated once an order is received. However, if
the process lead-time for process 2 through process 4, L, is longer than the customer
expected waiting time W, the decoupling point should be moved downstream to
process 3 or 4. Otherwise, customers need to wait extra time for the product or they
take their businesses to other suppliers.

Fig. 1.1 A four-step supply chain process

1.2.1.1 Customer Order Decoupling Point and Point of Product
Differentiation

Recall that a postponement strategy aims at moving the point of product differen-
tiation as late as possible until it is cost effective. On the other hand, the purpose
of a pull postponement strategy is to move the decoupling point earlier to minimize
forecasting error. Thus, they seem to be unrelated and contradicting concepts. How-
ever, they are in fact related and vital for a postponement strategy to be carried out
successfully. There is little literature discussing their relationships.

Rethink the four-process supply chain again in Fig. 1.1. This time the supply
chain is analyzed from the product, instead of the process, perspective. Assume
that there are two products, A and B, whose distinctive features are added after the
completion of process 2. The revised diagram is shown in Fig. 1.2.

Assume further that information is shared and updated throughout the supply
chain. If the decoupling point D lies in process 1, the customer waiting time would
be L1. It is a pure make-to-order system. In practice, production volume fluctu-
ates widely due to demand variability and all orders are backlogged. In order to
smooth the production schedule and make the system more responsive, D is moved
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Fig. 1.2 A revised four-step supply chain process

to process 2 such that process 1 is make-to-stock. The customer waiting time is
L2 < L1. Since inventory has been built up after process 1, there is little intention to
stop passing process 2 in a series supply chain system until customer orders are
resolved. In this sense, D will be further passed to process 3 and the customer
waiting time is shortened to L3. If D is further moved to process 4, demand vari-
ability increases as products start to differentiate after process 3. There are risks
of overstock and stock outs of products A and B if D is set after the point of dif-
ferentiation K. As a consequence, D should be set before K in order to implement
postponement. D is determined by customer expected waiting time and availability
of demand information in the system, while K is determined by operational factors
such as manufacturability, product characteristics, costs and so on.

1.2.1.2 Applications of Pull Postponement

National Bicycle differentiates themselves from other traditional bicycle manufac-
turers by adopting a different decoupling point. They move the decoupling point
from final assembly to frame welding such that they could offer more than 11 mil-
lion options to customers quickly (Lee [65]). Xilinx employs a pull postponement
strategy in semiconductor manufacturing (Brown et al. [17]). Dies are transformed
to specialized integrated circuits (ICs) once customer orders are received. Xilinx
management needs to monitor 100 types of work-in-process (WIP) inventory of
dies, instead of 10,000 finished products. Corporate inventory drops by 23% after
implementation for 1 year (Brown et al. [17]). Besides, Wings & Legs, a large
poultry processor in the Netherlands, delays their packaging and labeling processes
as their key clients demand tailor-made packages and labels for Wings & Legs’
chicken legs (van Dijk et al. [116]). Benetton, an apparel manufacturer, postpones
its color dyeing process until orders are received (Lee and Tang [70]). They all enjoy
substantial savings through inventory reduction.

1.2.2 Logistics Postponement

Logistics postponement involves the re-designing of some of the processes in the
supply chain so that some customization can be performed downstream closer to
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customers (Lee [65]). Bowersox and Closs [14] defined logistics postponement as
an emerging strategy of form, time and place postponement. Similar to pull post-
ponement, their meanings of form and time postponements refer to delaying some
customization activities until customer orders are received. Place postponement
refers to the positioning of inventories upstream or downstream. In general, logistics
postponement is an extension of pull postponement.

Logistics postponement considers whether pull postponement can be imple-
mented more effectively and efficiently by relocating some demand-pull processes
closer to customer levels (Lee et al. [67] and Lee [65]). It is associated with the con-
cepts of design for localization or design for customization, which takes operational
and logistics services into account in the design process so as to serve different
market segments (Lee et al. [67]). Packaging postponement and labeling postpone-
ment (Twede et al. [114]) or branding postponement (Ackerman [2]) can be subsets
of logistics postponement when the packaging, labeling or branding processes are
moved closer to customers.

1.2.2.1 Applications of Logistics Postponement

Hewlett-Packard produces generic printers at its factory and distributes them to local
distribution centers, where power plugs with appropriate voltage and user manuals
in the right language are packed. Since generic printers are lighter, more units could
be shipped. Distribution cost is cut by half, and million dollars have been saved,
although manufacturing costs are slightly higher due to the use of standardized
components to support mass customization (Lee [65], Lee et al. [67], Feitzinger
and Lee [41]).

WN, a European wine producer, demonstrates another real-life example of logis-
tics postponement application. WN produces base wine in central bodega and defers
bottling, packaging and labeling activities at the local level (van Hoek [118]).
Ackerman [2] quotes a similar strategy adopted by Coca-Cola, in which concen-
trated syrup is shipped to retailers where it is mixed with carbonated water to form
Coca-Cola in retailers’ soda fountains.

Twede et al. [114] presented a logistics postponement application at Swedish
furniture retailer IKEA. All products in IKEA retail stores are kept in semi-finished
forms (flat packs) and are assembled by customers or deliverymen after home deliv-
ery. In this way, truckload capacities can be utilized and configurations can be easily
made at customer locations. Kellogg Company, the world’s leading cereal food pro-
ducer, ships its products in bulk to local co-packers, where some constituents are
added and packed (Brown et al. [18]).

1.2.3 Form Postponement

Form postponement, also called product postponement (Brown et al. [17]), opts for
a fundamental change of the product structure by using standardized components
and processes to achieve high customization (Lee [65] and Brown et al. [17]).
Bowersox and Closs [14] introduced form postponement as a postponement of the
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final manufacturing or processing activities. Their concept is akin to Lee’s [65] def-
inition of pull postponement. In order not to mix up the two concepts, the version of
Lee [65] and Brown et al. [17] is adopted. In fact, form postponement is an enabling
strategy to supplement pull postponement (Lee [65]).

1.2.3.1 Applications of Form Postponement

Brown et al. [17] applied form postponement in a semiconductor company
(Xilinx), where it re-designs the IC so that it could be re-configured by software
easily and quickly for customized features and functions. It is particularly useful in
programmable devices because a nearly infinite number of products can be produced
by using program configuration.

1.2.4 Price Postponement

Van Mieghem and Dada [124] defined price postponement from economic and mar-
keting perspectives. They described price postponement as a strategy aimed at defer-
ring the pricing decision until customer demand is known. Selling price is negotiated
with customers after they place their orders. Based on their findings, one advan-
tage of the price postponement strategy is that it makes investment and production
decisions insensitive to demand uncertainty, since profit margin can be covered by
setting various selling prices after demand is known. Another advantage is its ease
of implementation. Unlike the above three postponement that require re-engineering
techniques such as operations reversal and standardization of product and process,
price postponement is a managerial decision that is determined by marketers.

1.2.4.1 Applications of Price Postponement

Bank of China (BOC) Hong Kong applied a price postponement strategy for its
initial public offering in Hong Kong in July 2002. In the face of high demand uncer-
tainty, BOC set an offering price range, between HK$6.93 and HK$9.5 per share, for
investors to subscribe to its shares that were worth HK$6.93 per share (South China
Morning Post, 23 July 2002 [108]). Since the public offering was over-subscribed
by 26 times, BOC finally allotted at least 500 shares to each investor at a price of
HK$8.5 (South China Morning Post, 22 July 2002 [107]).

1.2.5 Implications

Practically, postponement strategies can be combined, integrated or partly applied
to a supply chain in order to achieve different objectives. Recall the model shown
in Fig. 1.2, if the aggregate demand of products A and B is known and standardized
components are ready in process 2 (point of differentiation) for customization in
process 3 and process 4, both form postponement and pull postponement strategies
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are applied. Furthermore, if process 3 and process 4 are performed locally for prod-
ucts A and B, instead of in central production facilities, logistics postponement is
adopted. In selling, if product prices are set after customer orders are received for
product A and product B respectively, a price postponement is employed. This exam-
ple is flexible to be applied in all supply chain systems.

Not all products can be made shortly after customer demands are known. If they
are not available within a promising time, customers may turn down the business.
Therefore, there is a need to keep some inventory for these products, while a make-
to-order approach is used to those products that can be produced within customer
expected waiting time. This mixed strategy is referred to as a partial postpone-
ment strategy or a hybrid postponement strategy (Brown et al. [17], Graman and
Magazine [50]), in which the lead-times after the point of differentiation and cus-
tomer expected waiting time are key determinants. Xilinx keeps both semi-finished
dies and finished IC inventory in dealing with long back-end lead-time of some
products (Brown et al. [17]).

1.2.6 Advantages and Disadvantages of Postponement

1.2.6.1 Advantages of Postponement

To some extent, the philosophy of postponement follows the JIT principle, as both
emphasize to have the right product in the right place at the right time (Cheng and
Podolsky [27], and Heskett [52]). In fact, postponement offers substantial advan-
tages for a supply chain to improve in terms of time, quality and cost. Graman
and Magazine’s study [50] found that although postponement results a reduction in
inventory in terms of quantity, the service level is unchanged. In general, less inven-
tory held makes inventory management easier and more responsive. On the other
hand, perceived product quality is enhanced by small design changes (Lee [64]).
Besides, standardized components can reduce the risk of obsolescence since con-
figurations become easier in the form of WIP inventories, instead of end products
(Brown et al. [17]).

Postponement makes forecasting easier at a generic level than at the level of fin-
ished forms because demand variability is reduced by aggregation (Christopher [29],
and Ernst and Kamrad [38]). It is particularly obvious under a multi-echelon supply
chain system in which the demand of the current stage is equal to the demands
of the previous stages. Moreover, it supports various production alternatives such
as engineering to order, purchasing to order, make to order, manufacture/assemble
to order, packaging and labeling to order, shipment to order and adjust to order
by shifting the customer order decoupling point (van Hoek [118], Olhager [89], and
Hoekstra and Romme [54]). Its modularity characteristic not only reduces the cost of
assembly (Chiou et al. [28]) but also enables outsource capability and speeds up new
product development (Brown et al. [17], and Ernst and Kamrad [38]). The higher
degree of modularity, the more outsourcing opportunities a company can pursue.
Thus, fixed investment can be reduced drastically. In particular, logistics postpone-
ment can initiate the use of third party logistics (3PL) to handle local value-added
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activities and product delivery (van Hoek [120]). Successful outsourcing examples
are Dell Computer, Nike, Reebok and General Motors (Tully [113]).

1.2.6.2 Disadvantages of Postponement

Notwithstanding postponement brings significant benefits to a supply chain, the cost
of re-engineering and developing the supply chain cannot be neglected. Since a
postponement strategy aims at delaying customized activities as late as possible
until customer orders are received, more work-in-process inventories need to be
built up before the point of differentiation (Brown et al. [17]). To a certain extent,
standardized components increase variable costs because they need to support vari-
ous product features (Lee [65], Ma et al. [74]). Power plugs, for example, should be
re-designed so that a switch is added in order to support different voltage supplies in
different countries. The modification makes variable costs higher. However, variable
costs can be reduced by shifting the assemble processes to local facilities so that
there is always one suitable type of power plug available for the product. In this
scenario, other factors such as transportation cost, setup cost, training cost and local
material cost should be weighted against variable cost savings.

Moreover, there is always a trade-off between mass production and customiza-
tion in carrying out postponement as the former gains economies of scale while the
later gains higher customer values. Economies of scale are lost after the point of
differentiation due to customization (Zinn and Bowersox [130]). This effect is more
pronounced in logistics postponement since customized processes are performed
separately in local facilities with different product lines. To a large extent, it is
associated with a high risk of creating quality problems as production is moved
from central facilities to local facilities or even at the retailer level (Ackerman [2]).

1.2.7 Prerequisites for Postponement Strategy Development

Postponement is not a panacea for all industries, as it may not be possible or eco-
nomical for companies to re-design common processes and components such that
specific end products are produced from a group of generic products. Recall that
Lee [65], Feitzinger and Lee [41], and Yeh and Chu [128] mentioned there are
three building blocks for carrying out mass customization. Lee [65] described four
postponement enablers, namely modularity, design for postponement, supply chain
collaboration and associated costs. Besides, there are additional prerequisites that
are conducive to postponement strategy development. All prerequisites are summa-
rized below:

(i) Mass customization principles should be embedded throughout the supply
chain system such that the three building blocks are present to support and
facilitate postponement implementation.

(ii) Products can be categorized into various product families such that each prod-
uct family shares common characteristics in terms of product design, standard-
ized parts, common production processes and the same production location.
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In other words, a point of product differentiation can be defined. Bills of mate-
rials (BOM) help one to look for opportunities to group common parts at a
lower level of the product structure so that products in the same product family
share more common production processes (Kennedy et al. [62]).

(iii) Operations should be closely linked with product and process design (Ma
et al. [74]). That is, the philosophy of design for flexible manufacturing is
essential for effective postponement strategy development. The concept of
postponement should be embedded in the design process such that not only
cost, quality, flexibility and serviceability but also distribution, service, mainte-
nance, marketing, manufacturing capabilities, inventory management and sup-
plier management are considered (Barkan [11] and Calvin and Miller [23]).

(iv) Postponement is particularly powerful if the supply chain network operates
on a global scale in which the positioning of inventory, production mode and
structure, and distribution facilities become critical success factors for both
cost reductions and customer value creation. Global efficiency can be achieved
through mass production while local responsiveness can be enhanced by cus-
tomization (van Hoek et al. [123]).

(v) Lead-times after the point of postponement should be justified with respect to
customer expected waiting time for the product to avoid backorders and lost
sales (Lee [64]). Under certain circumstances, partial postponement may be
used to reduce lead-times.

(vi) Information technology and greater supplier involvement are vital factors to
streamline the supply chain process (Brown et al. [17]).

1.3 Cost Models for Analyzing Postponement Strategies

In general, models for analyzing postponement strategies can be classified into
four types. They are deterministic models, stochastic models, heuristic models and
descriptive models based on case studies (Beamon [12]).

1.3.1 Stochastic Models

We define a stochastic model as an inventory model where demand in any period
is random (Hillier and Lieberman [53]). Lee and Tang [69] formulated a total rel-
evant cost model to analyze the effectiveness of a designed strategy to be applied
in a N-stage manufacturing system that produces two products, whose demands
follow normal distribution. The first k operations are common for the two products.
Their cost model consists of four cost factors, including total average investment
cost, total processing cost, total WIP inventory cost and total buffer inventory cost.
As an extension, Garg and Tang [44] considered a production system that has two
product differentiation points. Their cost model showed that these two points also
yield a lower inventory saving. Other cost models for analyzing the point of product
differentiation can be found in Garg and Lee [43] and Lee [64].
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Ernst and Kamrad [38] developed a total cost model to analyze four supply chain
structures, namely rigid, modularized, postponed and flexible, of an ice-cream sup-
ply chain that serves two different markets. Demand of a particular flavour follows a
probability density function, and the total cost under evaluation includes fixed cost,
variable cost, holding cost and backorder cost. Surprisingly, they concluded that
postponement is the worst choice among four. However, this conclusion is drawn
directly from numerical analysis of an ice-cream supply chain. A more generalized
model should be developed in order to provide a more concrete and reliable frame-
work for evaluating supply chain effectiveness under various scenarios.

Aviv and Federgruen [6] modeled a two-phase production system in which com-
mon products are produced in the first phase and product differentiation is delayed
to the second phase. Their objective is to minimize an expected long-run average
discounted cost of j products, each of them follows multivariate distribution with
arbitrary correlations. First, they found a lower-bound of the average cost for a
single-stage single-product production. Then they extended it to a two-stage post-
ponement system with a heuristic strategy. A numerical analysis and a study of
Hewlett-Packard case are provided. They found that postponement results in sub-
stantial savings when coping with a large degree of product variety, and less corre-
lated or high seasonality product demands.

Ma et al. [74] analyzed component commonality and postponement in a multi-
stage multi-product assembly system. A set of common base-stock levels at all
stocking points is found to minimize the total expected inventory cost. In their
model, both lead-time and service level are considered. They showed that those
processes with long procurement lead-times are rearranged after the point of prod-
uct differentiation so as to meet the service level . Also, component commonality is
more preferred to be implemented in earlier stages. In fact, the relationships between
part commonality and aggregate safety stock are discussed by Collier [32], McClain
et al. [78] and Baker et al. [9]. They all supported the view that less aggregate safety
stock is needed for maintaining a constant service level .

1.3.2 Heuristic Models

Heuristic models are models that employ rule of thumb to approach the best solution
(Ballou [10]). Brown et al. [18] presented an application of an enterprise resources
planning (ERP) system in Kellogg Company. The system is called Kellogg Planning
System (KPS). It is a rule-based heuristic program, which helps Kellogg Company
to control its operations, production, inventory and distribution for breakfast cereal
and other food products. The objective function is to minimize production costs,
packing costs, inventory costs, shipping costs and penalty costs for overstocks and
under stocks. Corry and Kozan [33] developed a push/pull hybrid production system
(HIHPS) of a foundry from which a single assembly stage is demand-pulled. Sim-
ulated annealing algorithm is applied to determine the optimal buffer reorder point
and replenishment level of the components that can minimize a total cost function.
Another HIHPS system can be found in Cochran and Kim [31]. Graman and
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Magazine [50] studied a manufacturing system that keeps both WIP and finished
goods of a group of products so as to fulfill a given service level . They used a
Monte Carlo integration method to determine the stock levels of both inventories.
Besides those dynamic systems, Zinn [129] used a percent saving ratio to evaluate
the safety stock savings resulted from postponement. He showed that a large product
line yields a high safety stock saving when the demand and standard deviation of
demand for each product are independent and approximately equal respectively.
A simulation study by Johnson and Anderson also revealed that postponement
improves fill rate and service level when demand for each product is at the same
level [59].

1.3.3 Descriptive Models

Bucklin [21] proposed a postponement-speculation model to test six hypotheses that
associated delivery time, product type, product cost and demand variability with
the choice of postponement. He claimed that the point of postponement-speculation
appears in a distribution channel whenever there are systemwide net savings resulted
from postponement. It is one of the earliest research studies on postponement.

Van Hoek [118] made use of a case study approach to compare two logistics
postponement strategies implemented in European wine producer WN in terms of
transport cost, production cost, material cost, inventory holding cost and bottling
cost. The first alternative is to delay final distribution to customer and the second
one is to defer the bottling, packaging and labeling activities to the local level. He
found that there are cost savings in transportation and inventory holding for both
postponement alternatives. In addition, he pointed out that product characteristics,
such as product value, volume and weight, affect the choice of postponement. In
other papers [120, 121], he studied the role of third party logistics providers (3PL)
in carrying out parts of the postponed supply chain activities. He anticipated that
3PL would play a crucial role in those postponed activities that in turn accelerate
the adoption of postponement.

Zinn and Bowersox [130] conducted a discriminant analysis to explore fac-
tors affecting the choice of five postponement strategies, namely labeling, pack-
aging, assembly, manufacturing and time postponements. They found that cost
saving, product value and demand uncertainty are key drivers of postponement.
Chiou et al. [28] employed factor analysis and path analysis to explore factors
affecting postponement and the causal relationships between demand characteristics
and postponement among Taiwanese IT firms.1 They found that modular product
design, component cost and product life cycle induce different choices of post-
ponement. Also, Huang and Lo [56] described a postponed PC supply chain in
Taiwan that sourced components globally and assembled locally. Jahre [57] applied
postponement in a household waste collection process, which provides insights
into postponement being applied in the context of reverse logistics to deal with

1 The case study is presented in Chapter 6.
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environmental issues. In his model, the waste-sorting process (separation of tin cans,
plastic bottles and paper for recycling) can be either at the consumer level or delayed
until the waste reaches the collection center.

1.3.4 Performance Measures

In summary, a set of performance measures need to be adopted to evaluate any
analytical model formulated to study a particular postponement strategy. Basically,
performance measures can be grouped into three categories, namely qualitative,
quantitative and time measurements (Beamon [12]).

• Qualitative factors

– Service level (Ma et al. [74], Graman and Magazine [50]), product quality
(Martin et al. [76]) and information and material flow integration (Martin
et al. [76] and Nicoll [85])

• Quantitative factors

– Cost minimization

Fixed costs, variable costs, inventory costs, distribution costs, per-unit penalty
for stock out and overstock (Bucklin [21], Ma et al. [74], Aviv and
Federgruen [6], Ernst and Kamrad [38], Lee and Tang [69])

– Value maximization

Sales, profits (Beamon [12])

• Time

– Fill rate (Graman and Magazine [50]), order and production lead-time (Ma
et al. [74]) and customer order response time (Lee [64])

1.4 A Literature Review for Model Development

To the best of our knowledge, there is only a small number of postponement mod-
els that are based on deterministic demand. Recent deterministic models include,
among others, those by Wan [125], and Li et al. [71, 72]. There are new research
opportunities in studying postponement by deterministic models such as economic
order quantity (EOQ) and economic production quantity (EPQ) models. Both mod-
els can be used to derive a total cost function for analyzing postponement. They
can help to analyze whether or not combining certain supply chain processes can
reduce the total cost. One of the potential savings is from joint ordering [119] or
joint production of a group of products whose demands are deterministic. EOQ
and EPQ models, which relate to joint ordering and joint production, are reviewed
and they provide many useful ideas and insights for our model development in the
sequel.
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1.4.1 EOQ and EPQ Models

The EOQ model is used to answer two questions: when and how many to order
(Zipkin [131] and Hadley and Whitin [51]). Silver [104] developed a simple cycle
policy based on the EOQ model to decide when to jointly replenish N groups of
products, in which one group is replenished every T years while the other N − 1
groups is reordered every knT years, where kn is the number of integer multiples of T
for the replenishment of item n. The idea originated from Shu [103] and Nocturne’s
revised version of Shu’s optimal ordering frequency (Nocturne [86]). Their models
only considered two groups of products. In addition to dealing with the issue of
when to order, equal attention should be paid to the other issue: how many to order?
An integrated EOQ model was presented by Cheng [26], and Chen and Min [25].
They considered profit maximization when multi-products are ordered jointly, sub-
ject to storage space and inventory investment constraints. They employed the
Karush-Kuhn-Tucker (KKT) conditions to solve the problem. They assumed that
there are no backorders.

On the other hand, there are numerous articles addressing multi-product pro-
duction with EPQ. However, none of them focuses on comparing the total average
cost between a postponement system and a non-postponement system. EPQ mod-
els for multi-products can be classified into two types: single machine and multi-
machines. The single machine EPQ model follows a rotation cycle policy, by which
end-products are produced in sequence in each production cycle [83]. Eilon [37]
classified the production of several products by a single machine, in which product
demand is known and only one product is produced at a time, as a multi-product
batch scheduling problem. Instead of grouping the production, he split the batch
into subbatches and compared the total cost per day. Goyal [46] studied a similar
problem. He used a search procedure to determine the EPQs of two items. The clas-
sical problem is found in Tersine [112] and Nahmias [83]. Recall the logic behind a
postponement strategy is to group certain processes together so as to lower the total
cost. It is more appropriate to consider grouping the production of end-products
instead of splitting their production across a production cycle.

Apart from the single machine scheduling problem, the multi-machine multi-
item EPQ models fall into the other end of the spectrum. In dealing with this kind of
problem, it is not uncommon to group a large number of end-products into different
product families based on processing similarities and economic considerations so
that each product family shares a single lot size [22]. It can greatly reduce manufac-
turing complexity. Byrne [22], and O’Grady and Byrne [87, 88] employed a simula-
tion approach to find good production lot sizes for a number of product families that
share common machines in order to minimize a total cost function. In their model,
each product family is assumed to have a single lot size. A more dynamic model
was presented by Bertrand [13]. He developed a total cost model for a production
system that produces multi-items in multi-work centers. His model is based on batch
size optimization and queuing theory and it accounts for both finished goods and
WIP inventories. Good solutions are found by using the Newton-Raphson method.
Besides, Goyal et al. [49] presented a realistic problem in determining the EPQ at
each production stage for multiple items across a multi-stage production system.
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However, due to problem complexity, their model can only be solved by a heuristic
approach that yields sub-optimal solutions.

1.4.2 Lot Size-Reorder Point Model

An (r, q) inventory policy, also known as a lot size-reorder point model
(Nahmias [83], and Hadley and Whitin [51]), attempts to optimize a total cost
function by continuously reviewing the inventory level in order to fulfill stochastic
demands. In this system, r and q are independent decision variables. The operation
of an (r, q) inventory policy is that: when the inventory position drops to a reorder
point r, an order of fixed quantity q is placed (Federgruen and Zheng [39]). Nah-
mias [83] constructed an expected average annual cost function that includes fixed
setup cost, inventory holding cost and shortage cost. His cost function used esti-
mated average inventory as he found that the true average inventory is complicated
to derive. He assumed demand is normally distributed and an iterative procedure
is employed to solve for optimal values of r and q, starting with q = EOQ. It is
similar to the model developed by Hadley and Whitin [51]. Moreover, Hadley and
Whitin [51] developed an exact cost function for solving a case in which demand
follows a Poisson distribution, lead-time is constant and all unfilled demands are
backordered. A searching method is required for solving their model. Generally
speaking, there is no ‘reliable and straightforward method’ for solving an optimal
(r, q) policy in a perfect manner (Browne and Zipkin [20]). As a result, several algo-
rithms are developed. Federgruen and Zheng [39] developed an algorithm for solv-
ing a model similar to that of Hadley and Whitin’s [51]. Matheus and Gelders [77]
considered an (r, q) inventory system that supports a number of customers whose
demand pattern is compound Poisson. By varying the reorder point while keeping
a constant order quantity, they could use the model to cope with different desired
service levels. Moinzadeh and Nahmias [81] employed two (r, q) policies to handle
a single product, from which one ordering strategy is for emergency purpose. On the
other hand, Moinzadeh and Lee [80] considered a two shipments policy in which an
order q is partially shipped in two different time units. Again, they used EOQ as
a lower bound of the order quantity and they formulated a searching algorithm for
the reorder point r, given the value q. They considered both Poisson and normal
demands. For more dynamic systems, Badinelli [8], Axsäter [7] and Ng et al. [84]
proposed some (r, q) policies that could be applied to an inventory system with more
than one levels or facilities. Axsäter’s model [7] assumed that the inventory positions
at all retailers are uniformly distributed, while Ng et al.’s model [84] assumed that
they followed a Poisson distribution.

1.4.3 Markov Chain

Browne and Zipkin [20] developed an (r, q) policy in which the demand is a time-
homogeneous Markov process. They designed an algorithm to evaluate the policy.
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In their model, they assumed the inventory position is uniformly distributed in the
interval (r, r + q). Parlar and Perry’s Markovian model is used to tackle supply
uncertainty [92]. They checked the availability of the supply before placing an order
of quantity q when inventory level drops to a reorder point r. If there is enough stock
from the supplier, replenishment is made in zero lead-time. This state is called an
“ON” state. If the stock is not available, then the order will arrive after T periods.
It is called an “OFF” state. They tried to find an optimal (r, q, T) policy for min-
imizing a long-run average cost function based on the renewal reward theorem.
Melchiors [79] applied Markov chain in comparing two can-order policies sug-
gested by two other authors. He considered twelve products whose demands are
Poisson and used simulation in comparison. Despite of coping with inventory man-
agement problems, Markov chain analysis is widely used in modelling machine
breakdowns (Abboud [1]), soil conditions testing (Taha [111]), accounts receivable
system (Render et al. [98]) and so on.

1.5 Concluding Remarks

Undoubtedly, manufacturing global products with customization for local markets
plays an important role in striving for a distinctive competitive advantage for players
in a global supply chain. Postponement enables companies to achieve higher manu-
facturing flexibility and product quality at lower costs. Pull postponement makes use
of customer demand information to determine the push–pull boundary in a supply
chain that allows common processes to be completed before those that differentiate
product characteristics. Logistics postponement aims at deciding whether pull post-
ponement should be carried out at local facilities instead of in the central production
line. Form postponement is an enabling strategy for pull postponement as it opts
for the use of standardized components and processes to achieve customization.
Price postponement is an economic strategy that resorts to postponing the setting
of product price. Practically, they can be combined and applied simultaneously to
achieve optimization in a supply chain.

As mentioned, postponement is not a panacea to all situations. Examples cited in
this chapter are on a situational basis. As a matter of fact, more generalized models
and frameworks need to be developed. They can offer better insights and support-
ive evidence for postponement implementation in different areas. In this book, four
types of model are presented to evaluate the impacts of pull and form postponement
strategies under various supply chain structures. First, we develop two EOQ-based
models to examine the impact of pull postponement in Chapter 2. Then we develop
some EPQ-based models to examine the impact of postponement in Chapter 3. In
Chapter 4 we propose a stochastic model of a single end-product supply chain that
consists of a supplier, a manufacturer and a number of customers. In Chapter 5 we
aim at conducting a simulation experiment of a two-end-product supply chain, for
which customer demands are discrete and independent. Besides mathematical mod-
els, two case studies from industry are presented to support our theoretical results in
Chapter 6. In Chapter 7 we conclude the book and suggest some worthy topics for
future research.



Chapter 2
Analysis of Pull Postponement by EOQ-based
Models

A number of quantitative models for analyzing postponement based upon cost and
time evaluation have been discussed in the literature. Most of them assumed that the
product demand is uncertain. However, if the demand is deterministic, e.g., because
there is a long-term supply contract between the manufacturer and the retailers, the
benefits due to economies of scope and risk pooling do not exit. Thus, evaluation
of postponement structures under scenarios with deterministic demand is also an
important issue.

It is natural that the economic order quantity (EOQ) model can be used to derive
a total cost function for analyzing postponement. In this chapter we develop an
EOQ-based model to examine the cost impact of the pull postponement strategy
adopted by a supply chain that orders and keeps n end-products. We formulate a
total average cost function for ordering and keeping the n end-products in a supply
chain, in which their demands are known and deterministic. Using standard opti-
mization techniques, we show that postponed customization of end-products will
result in a lower total average cost and a lower EOQ. Furthermore, we develop an
EOQ-based model with perishable items to evaluate the impact of item deterioration
rate on inventory replenishment policies. Our theoretical analysis and computational
results show that a postponement strategy for perishable items can yield a lower total
average cost under certain circumstances.

This chapter is organized as follows. In Section 2.1 postponement strategy for
ordinary (imperishable) items are discussed. In Section 2.2 postponement strategy
for perishable items are addressed. We conclude the chapter in Section 2.3.

2.1 Postponement Strategy for Ordinary (Imperishable) Items

2.1.1 Proposed Model and Assumptions

In order to examine the effects of pull postponement on the total average cost and
EOQ, we formulate two models to describe a supply chain.1 It is assumed that the

1 The following discussion in this section is largely based on the ideas and results presented in
Wan [125].

T.C.E. Cheng et al., Postponement Strategies in Supply Chain Management,
International Series in Operations Research & Management Science 143,
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chain supplies n ordinary (imperishable) end-products that are manufactured from
the same type of raw material, say, plastics. The end-products belong to the same
product category, but they have slight differences, say, color or size. In the first
model, their ordering decisions are independent of one another, so there are n EOQ
decisions. We called it an independent system. A schematic diagram is shown in
Fig. 2.1.

Fig. 2.1 A schematic diagram of the independent system

However, if customization can be postponed after ordering, then the ordering
decisions can be combined so that a single EOQ decision is made. This is considered
in the second model, which can be viewed as a special case of pull postponement
strategy enabled by form postponement. In this model, the point of product differen-
tiation is in the ordering process. A schematic diagram of this postponement system
is shown in Fig. 2.2.

Our objective is to apply the EOQ model to investigate whether the combined
system is more cost-effective than the independent system by comparing their total
average cost functions and EOQs. In addition, we consider two cases of backorder-
ing cost. In the first case, we assume the planned backorder cost is the same for all
end-products. In the second case, we assume different backorder costs for different
end-products so as to generalize our model. In sum, we wish to test the following
four hypotheses in this section.

H1: Postponement leads to a lower total average cost for a supply chain with n
end-products in which there are planned backorders, where the backorder costs
are identical for all end-products.

H2: Postponement leads to a lower economic order quantity (EOQ) for a supply
chain with n end-products in which there are planned backorders, where the
backorder costs are identical for all end-products.
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Fig. 2.2 A schematic diagram of the postponement system

H3: Postponement leads to a lower total average cost for a supply chain with n
end-products in which there are planned backorders, where the backorder costs
are not the same.

H4: Postponement leads to a lower economic order quantity (EOQ) for a supply
chain with n end-products in which there are planned backorders, where the
backorder costs are not the same.

We adopt Zipkin’s EOQ model and his notation throughout this chapter (Zipkin
[131]). Definitions of the notation and the general assumptions of this chapter are
presented below.

2.1.1.1 Notation

• i = end-product (i = 1, 2, · · · , n),
• λi = demand rate for end-product i, λi > 0,
• c = common variable cost, c > 0,
• k = common fixed ordering cost, k > 0,
• h = common unit holding cost per unit time, h > 0,
• bi = unit backorder cost for end-product i, bi > 0,
• ri = reorder point for end-product i, ri ≥ 0,
• qi = order quantity for end-product i, qi > 0,
• q∗

i = economic order quantity (EOQ) for end-product i, q∗
i > 0,

• Di = demand during lead-time for end-product i, Di > 0,
• Li = total cycle time for end-product i, Li > 0,
• L′

i = backorder lead-time for end-product i, L′
i ≥ 0,

• vi = ri − Di, planned backorder quantity for end-product i, vi ≤ 0,
• C(qi) = total average cost for ordering and keeping end-product i with reorder

quantity qi, C(qi) > 0,
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• C(q∗
i ) = total average cost for ordering and keeping end-product i with EOQ q∗

i ,
C(q∗

i ) > 0,
• TC = total average cost for ordering and keeping end-product 1 to end-product n

with order quantities q1, q2, · · · , qn, TC > 0,
• TC∗ = total average cost for ordering and keeping end-product 1 to end-product

n with EOQs q∗
1, q∗

2, · · · , q∗
n, TC∗ > 0,

• TCP = total average cost per unit time for ordering and keeping end-products
1, 2, · · · , n in a postponement system,

• TCP∗ = the optimal total average cost per unit time for ordering and keeping
end-products 1, 2, · · · , n in a postponement system.

2.1.1.2 General Assumptions

(i) The number of end-products is n ≥ 2.
(ii) Orders arrive without delay.

(iii) Each order quantity (qi) is of the same size for end-product i.
(iv) All end-products are produced from the same type of raw material.
(v) The common variable cost (c), fixed ordering cost (k) and holding cost (h) for

all end-products are the same.
(vi) The lead-time and the cost for the customization process is negligible.

2.1.2 Case 1: Same Backorder Cost

By the well-known EOQ formula, we obtain the total average cost for ordering and
keeping end-product i as follows [131].

C(vi, qi) = cλi + kλi

qi
+ h(qi + vi)2

2qi
+ bv2

i

2qi
. (2.1.1)

The first two terms are the variable and fixed components of the average ordering
cost. The third term is the average inventory holding cost and the last term is the
average backorder cost, where vi( ≤ 0) is the planned backorder quantity for end-
product i.

If all end-products are ordered independently (i.e., without postponement), the
total average cost for ordering and keeping these n end-products is

TC =
n∑

i=1

C(vi, qi)

= c
n∑

i=1

λi + k
n∑

i=1

λi

qi
+ h

2

n∑

i=1

(qi + vi)2

qi
+ b

2

n∑

i=1

v2
i

qi
. (2.1.2)

A graphical explanation is illustrated in Fig. 2.3.



2.1 Postponement Strategy for Ordinary (Imperishable) Items 23
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Fig. 2.3 Demand over lead-time in a cycle for end-product i without postponement

Minimizing TC in (2.1.2), we obtain the EOQ and optimal backorder quantity
for end-product i, respectively, as follows [131].

q∗
i =

√
2kλi

h

√
1

ω
, (2.1.3)

and

v∗
i = −(1 − ω)q∗

i , (2.1.4)

where ω = b
b+h .

The optimal total average cost is given by

TC∗ =
n∑

i=1

C(v∗
i , q∗

i )

= c
n∑

i=1

λi +
n∑

i=1

√
2khωλi. (2.1.5)

However, if ordered jointly in quantity (q1 + q2 + · · · + qn) in a postponement
system (i.e., postponing the customization process), then the total average cost for
ordering and keeping these n end-products becomes

TCP = C(v1 + v2 + · · · + vn, q1 + q2 + · · · + qn)

= c
n∑

i=1

λi + k

[∑n
i=1 λi∑n
i=1 qi

]
+ h

2

[
[
∑n

i=1 (qi + vi)]2
∑n

i=1 qi

]
+ b

2

[
(
∑n

i=1 vi)2
∑n

i=1 qi

]
.

(2.1.6)

A graphical explanation is illustrated in Fig. 2.4.
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Fig. 2.4 Demand over lead-time in a cycle for joint ordering n end-products with the same back-
order cost

Thus, the difference in the total average cost of the postponement system and
independent systems is Z, given by (2.1.6)−(2.1.2), as follows.

Z = k

[∑n
i=1 λi∑n
i=1 qi

−
n∑

i=1

λi

qi

]
+ h

2

[
[
∑n

i=1 (qi + vi)]2
∑n

i=1 qi
−

n∑

i=1

(qi + vi)2

qi

]

+b

2

[
(
∑n

i=1 vi)2
∑n

i=1 qi
−

n∑

i=1

v2
i

qi

]
.

The first and the second terms represent, respectively, the differences in the aver-
age ordering cost and average inventory holding cost, while the last term is the
difference in the average backorder cost between the two systems. We will show
that Z < 0 so as to prove that postponement will be a better strategy to adopt.

We let the first term be Z1, i.e.,

Z1 = k

[∑n
i=1 λi∑n
i=1 qi

−
n∑

i=1

λi

qi

]

= k

[
λ1

(
1∑n

i=1 qi
− 1

q1

)
+ λ2

(
1∑n

i=1 qi
− 1

q2

)
+ · · · + λn

(
1∑n

i=1 qi
− 1

qn

)]

< 0 (i ≥ 2, k > 0, q1, q2, · · · , qn > 0 and λ1, λ2, · · · , λn > 0).

Let the second term be Z2, i.e.,

Z2 = h

2

[
[
∑n

i=1 (qi + vi)]2
∑n

i=1 qi
−

n∑

i=1

(qi + vi)2

qi

]
.

Further, let ai = qi+vi√
qi

, bi = √
qi. By the Cauchy-Schwarz inequality,



2.1 Postponement Strategy for Ordinary (Imperishable) Items 25

(
n∑

i=1

aibi

)2

≤
(

n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)

[
n∑

i=1

(qi + vi)

]2

≤
[

n∑

i=1

(qi + vi)2

qi

](
n∑

i=1

qi

)

[
∑n

i=1 (qi + vi)]2
∑n

i=1 qi
≤

n∑

i=1

(qi + vi)2

qi
.

Since h > 0, Z2 ≤ 0.
Let the last term be Z3, i.e.,

Z3 = b

2

[
(
∑n

i=1 vi)2
∑n

i=1 qi
−

n∑

i=1

v2
i

qi

]
.

Further, let ai = vi√
qi

, bi = √
qi. By the Cauchy-Schwarz inequality,

(
n∑

i=1

aibi

)2

≤
(

n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)

(
n∑

i=1

vi

)2

≤
(

n∑

i=1

v2
i

qi

)(
n∑

i=1

qi

)

(
∑n

i=1 vi)2
∑n

i=1 qi
≤

n∑

i=1

v2
i

qi
.

Since b > 0, Z3 ≤ 0. Hence, Z < 0. It follows that the pull postponement strategy
will result in a lower total average cost. Furthermore, by letting Q = ∑n

i=1 qi and
substituting it into (2.1.3), we obtain the optimal order quantity for TCP of (2.1.6)
as

Q∗ =
√

2k
∑n

i=1 λi

h

√
1

ω
. (2.1.7)

In other words,

[(q1 + q2 + · · · + qn)∗]2 = 2k
∑n

i=1 λi

hω

= 2kλ1

hω
+ 2kλ2

hω
+ · · · + 2kλn

hω

= (q∗
1)2 + (q∗

2)2 + · · · + (q∗
n)2

< (q∗
1 + q∗

2 + · · · + q∗
n)2.
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It is interesting to note that the relationship of the economic order quantity
between a postponement system and a non-postponement system follows the
Pythagoras’ Theorem. Further, by letting V = ∑n

i=1 vi and substituting it into
(2.1.4), V∗ = −(1 − ω)Q∗. By substituting V∗ and Q∗ (from (2.1.7)) into (2.1.6),
the optimal total average cost is

TCP∗ = C(V∗, Q∗)

= c
n∑

i=1

λi +
√√√√2khω

n∑

i=1

λi. (2.1.8)

The difference in the optimal total average cost between the postponement
system and the independent system, given by (2.1.8)−(2.1.5), is as follows

Z∗ = C(V∗, Q∗) −
n∑

i=1

C(v∗
i , q∗

i )

=
√√√√2khω

n∑

i=1

λi −
n∑

i=1

√
2khωλi.

Since
∑n

i=1 λi − (
∑n

i=1
√

λi)2 ≤ 0, we have
√∑n

i=1 λi − ∑n
i=1

√
λi ≤ 0 and

Z∗ ≤ 0. It implies that the total average cost can be further lowered by using
a smaller EOQ for the same set of variables. So, the hypotheses H1 and H2 are
supported.

2.1.3 Case 2: Different Backorder Costs

By the EOQ formula, we obtain the total average cost for ordering and keeping
end-product i as follows [131].

C(vi, qi) = cλi + kλi

qi
+ h(qi + vi)2

2qi
+ biv2

i

2qi
. (2.1.9)

The EOQ, optimal backorder quantity and optimal total average cost for ordering
and keeping end-product i are respectively [131]

q∗
i =

√
2kλi

h

√
1

ωi
,

v∗
i = −(1 − ωi)q

∗
i ,
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and

C(v∗
i , q∗

i ) = cλi +√
2khλiωi,

where ωi = bi
bi+h .

If all ordering decisions are considered independently (i.e., without postpone-
ment), the total average cost is

TC =
n∑

i=1

C(vi, qi)

= c
n∑

i=1

λi + k

(
n∑

i=1

λi

qi

)
+ h

2

[
n∑

i=1

(qi + vi)2

qi

]
+

n∑

i=1

biv2
i

2qi
. (2.1.10)

Minimizing TC in (2.1.10), we obtain the optimal total average cost as follows.

TC∗ =
n∑

i=1

C(v∗
i , q∗

i )

= c
n∑

i=1

λi +
n∑

i=1

√
2khλiωi. (2.1.11)

The total average cost for ordering and keeping these n end-products with post-
ponement is

TCP = C(v1 + v2 + · · · + vn, q1 + q2 + · · · + qn)

= c
n∑

i=1

λi + k

(∑n
i=1 λi∑n
i=1 qi

)
+ h

2

[
[
∑n

i=1 (qi + vi)]2
∑n

i=1 qi

]
+

n∑

i=1

biB̄i,

(2.1.12)

where B̄i is the average backorder quantity for end-product i (see Fig. 2.5 for
graphical explanation).

Since

biB̄i = bi

⎛

⎜⎝
−1

2
viL′

L

⎞

⎟⎠

=
bivi

2
(

∑n
i=1 vi∑n
i=1 λi

)

(

∑n
i=1 qi∑n
i=1 λi

)
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Fig. 2.5 Demand over lead-time in a cycle for joint ordering n end-products with different back-
order costs

= bivi(
∑n

i=1 vi)

2
∑n

i=1 qi
,

we have,

n∑

i=1

biB̄i =
n∑

i=1

bivi(
∑n

i=1 vi)

2
∑n

i=1 qi

= (
∑n

i=1 bivi)(
∑n

i=1 vi)

2
∑n

i=1 qi
.

Therefore, (2.1.12) can be expressed as

TCP = c
n∑

i=1

λi + k

(∑n
i=1 λi∑n
i=1 qi

)
+ h

2

[
[
∑n

i=1 (qi + vi)]2
∑n

i=1 qi

]

+1

2

[
(
∑n

i=1 bivi)(
∑n

i=1 vi)∑n
i=1 qi

]
. (2.1.13)

If b1 = b2 = · · · = bn = b, then (2.1.13) reduces to (2.1.6).
The difference in the total average cost between the two systems is Z, given by

(2.1.13)−(2.1.10), as follows.

Z = k

(∑n
i=1 λi∑n
i=1 qi

−
n∑

i=1

λi

qi

)
+ h

2

[
[
∑n

i=1 (qi + vi)]2
∑n

i=1 qi
−

n∑

i=1

(qi + vi)2

qi

]
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+ 1

2

[
(
∑n

i=1 bivi)(
∑n

i=1 vi)∑n
i=1 qi

−
n∑

i=1

biv2
i

qi

]
. (2.1.14)

The first two terms are Z1 and Z2 in Case 1, respectively, which have been shown
to be less than or equal to zero. We let the last term, which represents the difference
in the average backorder cost between the two systems, be Z4. By numerical trials,
Z4 can be positive or negative. For example, if i = 2, b1 = 10, b2 = 5, v1 =
−5, v2 = −6, q1 = 12, q2 = 10, then Z4 = −0.583 < 0. If i = 2, b1 = 1, b2 =
5, v1 = −5, v2 = −6, q1 = 12, q2 = 10, then Z4 = 0.208 > 0. In other words,
postponement will result in a lower total average cost only if Z = Z1 +Z2 +Z4 < 0,
and vice versa. It implies that the pull postponement strategy is advantageous when
(i) the backorder costs are identical for all end-products (Case 1), (ii) there is a
saving in the average backorder cost, Z4 ≤ 0, or (iii) the average ordering and
inventory holding cost saving is greater than the average backorder cost, i.e., Z1 +
Z2 < −Z4. Provided that postponement does not lead to a lower total average cost,
we wish to compare their optimal total average costs. Assuming that q1, q2, · · · , qn

and v1, v2, · · · , vn are given, we can re-write (2.1.13) as

TCP = cλ + kλ

Q
+ h(Q + V)2

2Q

+V[(b1 − bn)v1 + (b2 − bn)v2 + · · · + (bn−1 − bn)vn−1 + bnV]

2Q
,

where

(i) λ = ∑n
i=1 λi,

(ii) Q = ∑n
i=1 qn,

(iii) V = ∑n
i=1 vn,

(iv) vn is re-written as V − vn−1 − · · · − v1.

Without loss of generality, we can assume that b1 ≥ b2 ≥ · · · ≥ bn, so that
b1 − bn ≥ 0, b2 − bn ≥ 0, · · · , bn−1 − bn ≥ 0. Therefore, (b1 − bn)v1V ≥ 0, (b2 −
bn)v2V ≥ 0, · · · , (bn−1 − bn)vn−1V ≥ 0. Thus, for any given Q and V , we can take
v1 = v2 = · · · = vn−1 = 0 (i.e., V = vn) to obtain a minimum total average cost
TCP. The total average cost equation is revised as

TCP = cλ + kλ

Q
+ h(Q + vn)2

2Q
+ bnv2

n

2Q
. (2.1.15)

By setting ∂TCP
∂vn

= 0 and ∂TCP
∂Q = 0, we can find the optimal v∗

n and Q∗ that
minimize TCP. The optimal solution is summarized below.
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Q∗ =
√

2kλ

h

√
bn + h

bn

=
√

2kλ

h

√
1

ωn
,

v∗
n = −

√
2khλ

bn(bn + h)
,

and

TCP∗ = cλ + √
2khλ

√
bn

bn + h

= cλ +√
2khλωn. (2.1.16)

The difference between the optimal total average cost for the postponement sys-
tem and that for the independent system is given by (2.1.16)−(2.1.11), i.e.,

Z∗ = C[(v1 + v2 + · · · + vn)∗, (q1 + q2 + · · · + qn)∗] −
n∑

i=1

C(v∗
i , q∗

i )

= √
2khλωn −

n∑

i=1

√
2khλiωi.

Letting A = √
λωn and B = ∑n

i=1
√

λiωi, we see that

A2 − B2 = (λ1 + λ2 + · · · + λn)ωn − (λ1ω1 + λ2ω2 + · · · + λnωn)

= λ1(ωn − ω1) + λ2(ωn − ω2) + · · · + λn−1(ωn − ωn−1)

≤ 0 (ω1 ≥ ω2 ≥ · · · ≥ ωn).

Since A2 − B2 ≤ 0, we have A − B ≤ 0 and Z∗ ≤ 0. The result indicates that the
postponement system has a lower optimal average total cost. So, the hypotheses H3
and H4 are supported.

2.1.4 A Numerical Example

We give a numerical example to illustrate how postponement can yield savings in the
total average cost in practice. In this example, we assume there are 5 end-products
and the values of their various parameters are shown in the Table 2.1.
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Table 2.1 Parameters of 5 end-products

i λi qi c h k bi vi

1 200 180 2 3 5 10 –5
2 80 100 2 3 5 8 –25
3 150 120 2 3 5 7 –30
4 100 70 2 3 5 6 –20
5 60 60 2 3 5 5 –10

From (2.1.10), the total average cost without postponement is equal to

TC = 2(200 + 80 + 150 + 100 + 60) + 5

(
200

180
+ 80

100
+ 150

120
+ 100

70
+ 60

60

)

+ 3

2

(
1752

180
+ 752

100
+ 902

120
+ 502

70
+ 502

60

)

+
[

(10)( − 5)2

2(180)
+ (8)( − 25)2

2(100)
+ (7)( − 30)2

2(120)
+ (6)( − 20)2

2(70)
+ (5)( − 10)2

2(60)

]

= $1838.11.

From (2.1.13), the total average cost with postponement is equal to

TCP = 2(200 + 80 + 150 + 100 + 60) + 5

(
200 + 80 + 150 + 100 + 60

180 + 100 + 120 + 70 + 60

)

+ 3

2

[
(175 + 75 + 90 + 50 + 50)2

180 + 100 + 120 + 70 + 60

]

+ ( − 90)[10( − 5) + 8( − 25) + 7( − 30) + 6( − 20) + 5( − 10)]

2(180 + 100 + 120 + 70 + 60)
= $1786.98.

Thus, cost saving = 1838.11−1789.98
1838.11 = 2.78%.

Applying the EOQ derived in the previous section, from (2.1.11), the optimal
total average cost without postponement is equal to

TC∗ = 2(200 + 80 + 150 + 100 + 60) +
√

6000

(
10

10 + 3

)
+
√

2400

(
8

8 + 3

)

+
√

4500

(
7

7 + 3

)
+
√

3000

(
6

6 + 3

)
+
√

1800

(
5

5 + 3

)

= $1424.10.
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From (2.1.16), the optimal total average cost with postponement is equal to

TCP∗ = 2(200 + 80 + 150 + 100 + 60) +
√

30(200 + 80 + 150 + 100 + 60)

(
5

5 + 3

)

= $1285.18.

Thus, cost saving = 1424.10−1285.18
1424.1 = 9.76%.

2.2 Postponement Strategy for Perishable Items

The above models assumed that the inventoried items can be stored indefinitely
to meet future demands.2 However, certain types of products either deteriorate or
become obsolete in the course of time. Perishable products are commonly found in
commerce and industry, for example, fruits, fresh fish, perfumes, alcohol, gasoline,
photographic films, etc. For these kinds of products, traditional inventory models are
no longer applicable. An early study of perishable inventory systems was carried out
by Whitin [126]. Since then, considerable effort has been expended on this line of
research. Comprehensive surveys of related research can be found in Nahmias [82],
Raafat [97], and Goyal and Giri [47], where relevant literature published before the
1980s, in the 1980s, and in the 1990s was reviewed, respectively. Recent studies
before 2004 can be found in Song et al. [106].

There are many articles addressing perishable products with EOQ-based mod-
els. The analysis of perishable inventory problems began with Ghare and Schrader
[45]. They developed a simple EOQ model to deal with products that experience
exponential decay. Then there were many following studies that extended the basic
model. For example, Covert and Phlilp [34] extended the model to consider item
deterioration that follows the Weibull distribution. Other authors such as Tadika-
malla [110], Shah [102], and Raafat [95, 96] discussed EOQ models under more
general conditions.

One of the focuses of the research on perishable products is interaction and coor-
dination in supply chains (Song et al. [106]). For example, Goyal and Gunasekaran
[48] developed an integrated production- inventory-marketing model for deter-
mining the economic production quantity and economic order quantity for raw
materials in a multi-stage production system. Yan and Cheng [127] studied a
production-inventory model for perishable products, where they assumed that the
production, demand and deterioration rate are all time-dependent. They gave the
conditions for a feasible point to be optimal. Arcelus et al. [4] modeled a profit-
maximizing retail promotion strategy for a retailer confronted with a vendor’s
trade promotion offer of credit and/or pricediscount on the purchase of regular or

2 The following discussion in this section is largely based on the ideas and results presented in Li
et al. [71].
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perishable products. Kanchanasuntorn and Techanitisawad [61] investigated the
effect of product deterioration and retailers’ stockout policies on system total cost,
net profit, service level, and average inventory level in a two-echelon inventory-
distribution system, and developed an approximate inventory model to evaluate
system performance. There are many papers addressing the interaction and coor-
dination between inventory and marketing, financing, distribution, and production.

Motivated by the above observations, we will use the EOQ-based model with
perishable items to analyze postponement in this section. The objective of this sec-
tion is to investigate whether or not the postponement system can outperform the
independent system with perishable items. We formulate two models to describe
the supply chain, and give an algorithm to derive the optimal ordering strategies.
We also investigate the effect of product deterioration on the total cost of the retailer
and on inventory replenishment policies. Some numerical examples are provided
to illustrate the theoretical results. We show that postponement strategy can give
a lower total average cost under certain circumstances with perishable items. The
results presented in this section provide insights for managers that guide them to
find a proper tradeoff between postponement and non-postponement.

2.2.1 Notation and Assumptions

Consider a supply chain with n perishable products. These products are manufac-
tured from the same type of raw materials and the end products only have slight
differences. We assume that all the products and the raw materials decay at the
same constant rate over time. The demand rates of the end-products are indepen-
dent and constant. The unsatisfied demands (due to shortage) are completely back-
logged. In an independent system, the end-products are ordered independently with
different schedules so there are n EOQ decisions. However, if the customization
process can be delayed after ordering, then the ordering decisions can be com-
bined so that a single EOQ decision is made. This practice can be viewed as a
form postponement strategy. Our objective is to apply the EOQ model with per-
ishable products to examine the effects of form postponement on the total average
cost.

2.2.1.1 Notation

• θ = deterioration rate of end-products and raw materials, θ ≥ 0,
• Ti = total cycle time for end-product i, Ti > 0,
• ti = the time up to which the inventory of end-product i is positive in a cycle,
• C (Ti, ti) = total average cost per unit time for ordering and keeping end-product i,
• TC = total average cost per unit time for ordering and keeping end-products

1, 2, · · · , n in an independent system,
• TC∗ = the optimal total average cost per unit time for ordering and keeping end-

products 1, 2, · · · , n in an independent system,
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• TCP = total average cost per unit time for ordering and keeping end-products
1, 2, · · · , n in a postponement system,

• TCP∗ = the optimal total average cost per unit time for ordering and keeping
end-products 1, 2, · · · , n in a postponement system.

2.2.1.2 Assumptions

1. The replenishment rate is infinite and the lead time is zero.
2. The end-product demand rates λi are constant and deterministic.
3. All the end-products are produced from the same type of raw materials and the

factor of the raw material to end-product is 1:1.
4. Shortages are allowed and completely backlogged.
5. An extra customization process cost per end-product p is incurred if the cus-

tomization process is delayed. The lead-time for customization is negligible.
6. The distribution of deterioration time of the items follows the exponential distri-

bution with parameter θ , i.e., a constant rate of deterioration.
7. Deterioration of the materials and end-products is considered only after they

have been received into inventory and there is no replacement of deteriorated
inventory.

2.2.2 Model Formulation

Based on the above assumptions, the inventory level of an end-product at time t,
I(t), is governed by the following differential equation.

dI(t)

dt
=
{

−θ I(t) − λ, 0 ≤ t ≤ t0,

−λ, t0 ≤ t ≤ T .
(2.2.17)

with the boundary condition I(t0) = 0, where t0 is the time up to which the inventory
level is positive in a cycle. The solution of (2.2.17) is

I(t) =
{

λ[eθ (t0−t) − 1]/θ , 0 ≤ t ≤ t0,

−λ(t − t0), t0 ≤ t ≤ T .
(2.2.18)

I(t) follows the pattern depicted in Fig. 2.6.
Based on (2.2.18), we obtain the total average cost per unit time for ordering and

keeping end-product as follows.

C(t0, T| θ ) = k

T
+ cλ + λ(cθ + h)(eθ t0 − θ t0 − 1)

Tθ2
+ λb(T − t0)2

2T
. (2.2.19)
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Fig. 2.6 Graphical representation of inventory level

The necessary conditions for the minimum value of C(t0, T| θ ) are

∂C(t0, T| θ )

∂t0
= λ(cθ + h)(eθ t0 − 1)

Tθ
+ λb

( t0
T

− 1
)

= 0, (2.2.20)

∂C(t0, T| θ )

∂T
= − k

T2
− λ(cθ + h)(eθ t0 − θ t0 − 1)

T2θ2
+ λb

2

(
1 − t20

T2

)
= 0 (2.2.21)

After rearranging the terms in (2.2.20) and (2.2.21), we get

− k

λ(cθ + h)
− (eθ t0 − θ t0 − 1)

θ2
+ (cθ + h)(eθ t0 − 1)2

2bθ2
+ t0(eθ t0 − 1)

θ
= 0, (2.2.22)

T − t0 − (cθ + h)(eθ t0 − 1)

bθ
= 0. (2.2.23)

Lemma 2.2.1 If cθ +h > 0, then the point (t∗0 > 0, T∗ > 0) that solves (2.2.22) and
(2.2.23) simultaneously exists and is unique. The point (t∗0 > 0, T∗ > 0) is also the
unique global optimum for the problem min{C(t0, T|θ ):0 < t0 < T < ∞}.
Proof Our lemma is a special case of Propositions 2 and 3 of Dye and Ouyang
[36]. �

Thus t∗0 can be uniquely determined as a function of θ , say t∗0 = t(θ ), and T∗
can be uniquely determined as a function of θ , say T∗ = T(θ ). This also implies
that C(t∗0, T∗| θ ) can be unique determined as a function of θ , say C(t∗0, T∗| θ ) =
C(t(θ ), T(θ )| θ ).

Theorem 2.2.2 C̃(θ )
def= C(t(θ ), T(θ )| θ ) = min0<t0<T<∞ C(t0, T| θ ) is an increas-

ing and continuous function of θ in [0, +∞), and lim
θ→0

C̃(θ )=cλ +
√

2kλhb
b+h .
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Proof Recalling that the power series for ex is
∑∞

n=0
(θ t)n

n! , we have

C(t0, T| θ ) = k

T
+ cλ + λ(cθ + h)(

∑∞
n=0

(θ t0)n

n! − θ t0 − 1)

Tθ2
+ λb(T − t0)2

2T

= k

T
+ cλ + t20λ(cθ + h)(

∑∞
n=2

(θ t0)n−2

n! )

T
+ λb(T − t0)2

2T
. (2.2.24)

For θ ≥ 0, it is obvious that C(t0, T| θ ) is an increasing function of θ for each
fixed value of t0 > 0 and T > 0. If θ1 < θ2, we have

C̃(θ2) = C(t(θ2), T(θ2)| θ2)

> C(t(θ2), T(θ2)| θ1)

≥ C(t(θ1), T(θ1)| θ1)

= C̃(θ1).

Thus, C̃(θ ) is an increasing function of θ in [0, +∞).

f1(t0, T , θ )
def= − k

λ(cθ + h)
− (eθ t0 − θ t0 − 1)

θ2
+ (cθ + h)(eθ t0 − 1)2

2bθ2

+ t0(eθ t0 − 1)

θ
,

f2(t0, T , θ )
def= T − t0 − (cθ + h)(eθ t0 − 1)

bθ
.

For θ > − h
c , we have

∂f1
∂t0

= λ(cθ + h)(eθ t0 − 1)eθ t0

bθ
+ λt0eθ t0 ,

∂f1
∂T

= 0,

∂f2
∂t0

= −1 − (cθ + h)eθ t0

b
,

∂f2
∂T

= 1.

from where we deduce that

∣∣∣∣∣∣∣

∂f1
∂t0

∂f1
∂T

∂f2
∂t0

∂f2
∂T

∣∣∣∣∣∣∣
= ∂f1

∂t0
= λ(cθ + h)(eθ t0 − 1)eθ t0

bθ
+ λt0eθ t0 > 0.

From the implicit function theorem, we know that t(θ ) and T(θ ) are continuous func-
tions of θ in [0, +∞), respectively. Moreover, C(t0, T|θ ) is a continuously differen-
tiable real function for 0 < t0 < T , and θ > − h

c . Thus, C̃(θ ) is also a continuous
function of θ in [0, +∞).
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Because C̃(θ ) is continuous in [0, +∞), we have

lim
θ→0

C̃(θ ) = C̃(0)

= min
0<t0<T<∞

{
k

T
+ cλ + λht20

2T
+ λb(T − t0)2

2T

}

= cλ +
√

2kλhb

b + h
.

�

Theorem 2.2.3 t(θ ) is a decreasing function of θ in [0, +∞), and t(θ ) ≤
√

2kb
λh(b+h) .

Proof t(θ ) is the unique solution of Eq. (2.2.20). After rearranging the terms in
(2.2.20), we get

k

λ(cθ + h)
= − (eθ t0 − θ t0 − 1)

θ2
+ t0(eθ t0 − 1)

θ
+ (cθ + h)(eθ t0 − 1)2

2bθ2
,

= t20

+∞∑

i=1

(
1

i! − 1

(i + 1)!
)

(θ t0)i−1 + (cθ + h)(eθ t0 − 1)2

2bθ2
. (2.2.25)

The left-hand side of (2.2.25) is a decreasing function of θ and the right side
of (2.2.25) is an increasing function of θ for each fixed value of t0 > 0. When
θ increases, t(θ ) has to decrease in order to satisfy equation (2.2.25). So t(θ ) is a

decreasing function of θ in [0, +∞) and t(θ ) ≤ t(0) =
√

2kb
λh(b+h) . �

Because t∗0 and T∗ cannot be determined in a closed form from (2.2.22) and
(2.2.23), we have to determine them numerically using the following algorithm.

Algorithm 2.2.4 Step 1: Obtain the value of t∗0 by solving the nonlinear Eq. (2.2.22)
with the help of some mathematical software such as MatLab or Mathematica.

Step 2: Compute T∗ by using (2.2.23).

Step 3: The corresponding optimal cost per unit time C(t∗0, T∗| θ ) can be obtained
by (2.2.19).

Remark 2.2.5 If θ

√
2kb

λh(b+h) is small enough, we can give an approximate optimal

solution of (2.2.19). We can approximate eθ t0 by the first three terms in its power

series. Then, we have C(t0, T|θ ) ≈ k
T + cλ + λ(cθ+h)(

∑2
n=0

(θ t)n

n! −θ t0−1)
Tθ2 + λb(T−t0)2

2T =
k
T + cλ + t20λ(cθ+h)

2T + λb(T−t0)2

2T . This is the classic EOQ model. By the EOQ for-

mula, we can obtain the approximate optimal cost is cλ +
√

2kλ(h+cθ )b
b+h+cθ . From the
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approximate optimal cost, we can find that deterioration effectively adds an addi-
tional component to the holding cost, from h to h + cθ .

2.2.3 The Postponement and Independent Systems

Now we discuss the postponement system and the independent system. In the inde-
pendent system all the end-products are ordered independently (i.e., without post-
ponement). The total average cost for ordering and keeping the n end-products is

TC(θ ) =
n∑

i=1

C(ti, Ti|θ )

=
n∑

i=1

{
k

Ti
+ cλi + λi(cθ + h)(eθ ti − θ ti − 1)

Tiθ2
+ λib(Ti − ti)2

2Ti

}
. (2.2.26)

In the postponement system, all the raw materials are ordered (i.e., postponing
the customization process) and the demand rate is λ̂ = λ1 +λ2 +· · ·+λn. The total
average cost for ordering and keeping the n end-products is given by (excluding the
customization cost)

TCP(t̂, T̂|θ ) = k

T̂
+ cλ̂ + λ̂(cθ + h)(eθ t̂ − θ t̂ − 1)

T̂θ2
+ λ̂b(T̂ − t̂)2

2T̂
. (2.2.27)

The difference in the optimal total average cost per unit time of the two systems
is defined as Z∗ = TCP∗(θ ) − TC∗(θ ).

Theorem 2.2.6 There exists a θ̄ > 0 such that for any 0 ≤ θ ≤ θ̄ , TC∗(θ ) >

TCP∗(θ ), i.e., the postponement system can give a lower total average cost than the
independent system.

Proof Because C̃(θ ) is continuous on [0, +∞), and

lim
θ→0

TCP∗(θ ) = TCP∗(0)

= cλ̂ +
√

2khλ̂b

b + h
(2.2.28)

lim
θ→0

TC∗(θ ) = TC∗(0)

= cλ̂ +
n∑

i=1

√
2khλib

b + h
(2.2.29)
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In Section 2.1 we have proved that (2.2.28) − (2.2.29) < 0. So there exists a
θ̄ > 0 such that for any 0 ≤ θ ≤ θ̄ , TC∗(θ ) > TCP∗(θ ).

Remark 2.2.7 If θ is small, we can obtain an approximate optimal cost as cλ +√
2kλ(h+cθ )b

b+h+cθ . Then Z∗ ≈
(√∑n

i=1 λi −∑n
i=1

√
λi

)√
2k(h+cθ )b
b+h+cθ . From this equation,

we see that the postponement system can outperform the independent system, and
the absolute value of Z∗ becomes larger when θ becomes larger.

2.2.4 Numerical Examples

We give some numerical examples to illustrate how the deterioration rate impacts
on the optimal total average cost and postponement. To illustrate the results, we
consider the example in Padmanabhan and Vrat [90].

Example 2.2.8 In order to study how various deterioration rates affect the optimal
cost of the EOQ model, deterioration sensitivity analysis is performed. The value
of the deterioration rate is changed=(0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.30, 0.40,
0.50, 0.60). The demand rate is λ = 600, the common variable ordering cost c is 5,
the common fixed ordering cost k is 250, the common unit holding cost h per unit
time is 1.75, and the unit backorder cost b is 3 ( all in appropriate units).

Applying the solution procedure in Section 2.2.2, we derive the results shown in
Table 2.2 and Fig. 2.7, from which the following observations can be made.

1. c̃(θ ) is an increasing, continuous and concave function of θ in [0, +∞).
2. t(θ ) is a decreasing function of θ in [0, +∞).
3. θ t∗ is less sensitive to θ . The reason is that t(θ ) is a decreasing function of θ .

Table 2.2 The impact of deterioration rate on inventory replenishment policies

θ 0 0.02 0.04 0.06 0.08 0.10 0.20 0.30 0.40 0.5 0.6

t∗ 0.548 0.526 0.505 0.486 0.468 0.4527 0.385 0.336 0.299 0.269 0.244
θ t∗ 0 0.011 0.020 0.029 0.037 0.045 0.077 0.1008 0.119 0.134 0.147
C̃(θ ) 3576 3587 3597 3606 3615 3625 3661 3690 3713 3733 3750

Example 2.2.9 In order to study how various deterioration rates affect the difference
of the postponement system and the independent system, we assume that there are
eleven end-products. For the eleven products, we assume that λ1 = 550, λ2 = 560,
λ3 = 570, λ4 = 580, λ5 = 590, λ6 = 600, λ7 = 610, λ8 = 620, λ9 = 630,
λ10 = 640, λ11 = 650. The related other data are the same as the data of Exam-
ple 2.2.8. Applying the solution procedure in Section 2.2.2, we obtain the results
of the sensitivity analysis with these parameters, which are shown in Table 2.3 and
Fig. 2.8, from which the following observations can be made.

1. The postponement system yields savings in the total average cost.
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Fig. 2.7 The impact of deterioration rate on cost

Table 2.3 The impact of deterioration rate on the difference in cost

θ 0 0.02 0.04 0.06 0.08 0.10 0.20 0.30 0.40 0.5 0.6

z∗ –4422 –4506 –4585 –4659 –4730 –4796 –5083 –5309 –5493 –5646 –5775∣∣∣ z∗
TC∗

∣∣∣ 0.112 0.114 0.116 0.118 0.119 0.120 0.126 0.131 0.135 0.138 0.140

2. The absolute value of Z∗ becomes larger when the deterioration rate becomes
larger.

3. The absolute value of Z∗
TC∗ becomes larger when the deterioration rate becomes

larger.
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Fig. 2.8 The impact of deterioration rate on the difference in cost between the two systems
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2.3 Concluding Remarks

This chapter seeks to evaluate the potential benefits of using pull postponement in
ordering based on the EOQ model. The EOQ model is chosen for modelling not
only because it is a foundation in inventory management, but also it is suitable for
identifying the cost savings in an easy way. For imperishable products, the benefits
are reductions in both total average cost and economic order quantity. There are
savings even when there are planned backorders with different backorder costs. For
perishable products with a constant deterioration rate θ , it has been shown that the
postponement strategy outperforms the independent strategy when θ is small. Our
numerical experiments show that the difference of the two strategy will become
larger when θ becomes larger.

However, our model limits the use of the pull postponement strategy in ordering.
We assume that the cost of customization is negligible and the ordering cost is fixed,
regardless of order quantity. Our findings are still valid if the customization cost is
less than the savings. Moreover, there are extra savings from a lower fixed ordering
cost due to economies of scale and scope in joint ordering [131]. In addition, we
assume that the deterioration rate of the raw materials is the same as that of the
end-products. But the raw materials, such as IC, chips, are easy to transfer to other
chassis by design change, the deterioration rate of the raw materials is often smaller
than that of the end-products. So the postponement can yield more savings in the
total average cost in practice.

Besides, the pull postponement strategy can be applied in a more generic sup-
ply chain, which consists of ordering, production, distribution, and so on. As an
extension, the economic production quantity (EPQ) model can be used to demon-
strate how a postponement strategy can be implemented when part of the production
processes is standardized and common for a product category, while the remaining
part is distinct for customization. Logistics postponement can then be considered
to examine if localizing some customization processes can further reduce the total
average cost and inventory level. Another research direction is to use stochastic
models instead of deterministic models such as the EOQ and EPQ models since
stochastic models are more flexible in dealing with realistic problems. An EPQ
model is presented in Chapter 3, while two analyses, which are based on stochastic
models, are discussed in Chapters 4 and 5.



Chapter 3
Analysis of Postponement Strategy
by EPQ-based Models

In this chapter we develop EPQ-based models with and without stockout to examine
the impact of postponement. We formulate the total average cost functions of the two
scenarios for producing and keeping n end-products in a supply chain, in which their
demands are known and deterministic. Using standard optimization techniques, we
show that postponed customization of end-products results in a lower total average
cost in certain circumstances. We also find that two key factors that influence post-
ponement decisions are variance of the machine utilization rates and variance of the
backorder costs.

This chapter is organized as follows. In Section 3.1 postponement strategy by
an EPQ-based model without stockout are discussed. In Section 3.2 postponement
strategy by an EPQ-based model with planned backorders are addressed. We con-
clude the chapter in Section 3.3.

3.1 Analysis of Postponement Strategy by an EPQ-based Model
Without Stockout

3.1.1 Proposed Model and Assumptions

The major interest of this section are the effects of pull postponement on improving
the total average cost per unit time and EPQ when stockouts are forbidden.1 We
develop a mathematical model to describe a supply chain with n end-products.
The supply chain composes of a group of suppliers, a manufacturer and a group
of customers. It is assumed that raw materials are shipped from the suppliers to the
manufacturer to produce different kinds of end-products in-house. The end-products
can be classified into different product categories. Our focus is on one of the product
categories, in which there are n end-products for different customers from differ-
ent market segments. The end-products only have slight differences, e.g., notebook
computers bundled with different CPUs, RAMs or peripheral devices. From a man-

1 The following discussion in this section is largely based on the ideas and results presented in
Wan [125].

T.C.E. Cheng et al., Postponement Strategies in Supply Chain Management,
International Series in Operations Research & Management Science 143,
DOI 10.1007/978-1-4419-5837-2_3, C© Springer Science+Business Media, LLC 2010
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ufacturing perspective, if they are produced independently with different production
schedules, then there are n EPQ decisions. A schematic diagram of the independent
system is shown in Fig. 3.1.

Fig. 3.1 A schematic diagram of the independent system

However, if the assembly process of CPUs, RAMs or peripheral devices can be
delayed, then the core modules can be produced in aggregate such that there is
only one EPQ decision. In other words, there is a point of product differentiation
in the production stage. After the point of product differentiation, the assembly
process can be carried out when orders are received. This practice can be viewed
as a postponement strategy (see Huang and Lo [56] for an example of the Taiwan
PC industry). A schematic diagram of the postponement system is shown in Fig. 3.2.

Our objective is to apply the EPQ model to examine whether this strategy is
more cost-effective than the original one by comparing their total average cost per

Fig. 3.2 A schematic diagram of the postponement system
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unit time functions and EPQs. Our cost function consists of fixed production cost,
variable production cost and inventory holding cost. Two cases are presented. In
the first case, we assume customer demands are met continuously by the current
production batch, while in the second case, we assume customer demands are only
met after production is complete. Each of the two mathematical models begins with
considering two end-products, and will be generalized to consider n end-products in
later sections. In sum, we wish to investigate the following eight hypotheses in this
section (Table 3.1).

Table 3.1 A summary of the eight hypotheses without stockout

No. of machines(Measure) Economic Production Quantity Optimal total average cost

2(a) H1 H2
2(b) H3 H4
n(a) H5 H6
n(b) H7 H8

(a) Demands are met instantly by the current production batch
(b) Demands are met after production is complete

H1: Postponement leads to a lower EPQ for a supply chain with 2 end-products, in
which customer demands are met instantly by the current production batch.

H2: Postponement leads to a lower optimal total average cost per unit time for
a supply chain with 2 end-products, in which customer demands are met
instantly by the current production batch.

H3: Postponement leads to a lower EPQ for a supply chain with 2 end-products, in
which customer demands are met after production is complete.

H4: Postponement leads to a lower optimal total average cost per unit time for a
supply chain with 2 end-products, in which customer demands are met after
production is complete.

H5: Postponement leads to a lower EPQ for a supply chain with n end-products, in
which customer demands are met instantly by the current production batch.

H6: Postponement leads to a lower optimal total average cost per unit time for
a supply chain with n end-products, in which customer demands are met
instantly by the current production batch.

H7: Postponement leads to a lower EPQ for a supply chain with n end-products, in
which customer demands are met after production is complete.

H8: Postponement leads to a lower optimal total average cost per unit time for a
supply chain with n end-products, in which customer demands are met after
production is complete.

We adopt Zipkin’s EPQ model and his notation throughout this chapter
(Zipkin [131]). Definitions of the notation and the general assumptions are presented
below.

3.1.1.1 Notation

• i=end-product (i = 1, 2, · · · , n),
• λi=demand rate for end-product i, λi > 0,
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• μi = production rate for end-product i, μi > 0,
• c = common variable production cost, c > 0,
• k = common fixed set-up cost, k > 0,
• h = common unit holding cost per unit time, h > 0,
• p = extra unit customization cost per unit time, p ≥ 0,
• ri = reorder point for end-product i, ri ≥ 0,
• qi = production quantity for end-product i, qi > 0,
• q∗

i = economic production quantity (EPQ) for end-product i, q∗
i > 0,

• C(qi) = total average cost per unit time for producing and keeping end-product i
with production quantity qi, C(qi) > 0,

• C(q∗
i ) = total average cost per unit time for producing and keeping end-product i

with EPQ q∗
i , C(q∗

i ) > 0,
• TC = total average cost per unit time for producing and keeping end-products

1, · · · , n with production quantities q1, q2, · · · , qn, respectively, TC > 0,
• TC∗ = total average cost per unit time for producing and keeping end-products

1, · · · , n with EPQ q∗
1, q∗

2, · · · , q∗
n, respectively, TC∗ > 0.

• IP = inventory position over time.

3.1.1.2 General Assumptions

(i) A cycle means the time between the production of two consecutive batches.
It consists of two parts: active time and idle time (Zipkin [131]). When pro-
duction starts, inventory accumulates until it is enough for the cycle. Then,
production stops. Inventory starts to decline and finally drops to zero. Another
cycle begins when inventory reaches zero.

(ii) Customer demand rate (λi) is constant and deterministic for end-product i.
(iii) Each production quantity (qi) is of the same size for end-product i.
(iv) Inventory holding cost for raw material and work-in-process inventory is

ignored (Zipkin [131]).
(v) Common variable production cost (c), fixed set-up cost (k), end-product hold-

ing cost (h) are the same for all end-products.
(vi) Extra customization process cost per end-product (p) is incurred if the cus-

tomization process is delayed.

In Sections 3.1.2 and 3.1.3, the eight hypotheses are examined and discussed in
detail.

3.1.2 2 Machines for 2 End-Products

In this section, we study whether or not a postponement system is better than a
non-postponement system in terms of EPQ and optimal total average cost per unit
time when there are 2 machines for 2 distinct end-products. Apart from the general
assumptions presented in the above section, two further assumptions are adopted as
follows.
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Further Assumptions

(i) End-products 1 and 2 are produced separately by two machines.
(ii) For each end-product, the production rate is larger than the demand rate. That

is, μ1 > λ1 and μ2 > λ2.

3.1.2.1 Demands Are Met Continuously

We first assume that the customer demands are met continuously by the current
production batch. For example, if the customers are downstream stations of the
manufacturer in a production line of a factory, the customer demands may be met
continuously. Alternatively, if the product transportation time from the manufac-
turer to the customers is short and the transportation frequency is high, we can also
assume that the demands are met continuously.

We first consider the case of independent processes, i.e., one machine for one
end-product. By the well-known EPQ formula, we obtain the total average cost per
unit time for producing and keeping end-product i as follows [131].

C(qi) = cλi + kλi

qi
+ h

2

(
1 − λi

μi

)
qi, i = 1, 2. (3.1.1)

The first two terms are the fixed (independent of production quantity) and vari-
able (dependent of production quantity) components of the production cost per unit
time, while the last term is the average inventory holding cost per unit time for
end-product i. A graph of the inventory position over time is illustrated in Fig. 3.3.

If the production of end-products 1 and 2 is operated by two machines, in which
the end-product characteristics are fully built, then the total average cost per unit
time for producing and keeping the two end-products is:

Q

L0

μ1

μ2

−λ1 λ1

λ2
λ2−

Fig. 3.3 IP for end-product 1 and 2 in the independent system when the demand is met
continuously
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TC = C(q1) + C(q2)

= c(λ1 + λ2) + k

(
λ1

q1
+ λ2

q2

)
+ h

2

[(
1 − λ1

μ1

)
q1 +

(
1 − λ2

μ2

)
q2

]
.

(3.1.2)

Minimizing TC in (3.1.2), we obtain the EPQ for end-product 1, the EPQ for
end-product 2 and the optimal total average cost per unit time, respectively, as fol-
lows [131].

q∗
1 =

√√√√√
2kλ1

h

(
1 − λ1

μ1

) ,

q∗
2 =

√√√√√
2kλ2

h

(
1 − λ2

μ2

) ,

and

TC∗ = C(q∗
1) + C(q∗

2)

= c(λ1 + λ2) +
√

2khλ1

(
1 − λ1

μ1

)
+
√

2khλ2

(
1 − λ2

μ2

)
. (3.1.3)

Now consider the situation where the core productions of the two end-products
are combined, but slight customization is carried out later. We regard this strategy as
a postponement strategy. One practical example is notebook computer production,
in which common modules (without CPUs) are produced and CPUs are installed at
the time when customer orders are received. In our model, we assume the combined
core production is completed by a single machine whose production rate is μ1 +
μ2, the variable production cost is c and the fixed set-up cost is k. Let the extra
customization cost per end-product per unit time be p. The total average cost per
unit time for producing (excluding the customization process) and keeping the two
end-products becomes

TC = C(q1 + q2)

= c(λ1 + λ2) + k

(
λ1 + λ2

q1 + q2

)
+ h

2

(
1 − λ1 + λ2

μ1 + μ2

)
(q1 + q2). (3.1.4)

A graphical illustration is given in Fig. 3.4.
Minimizing TC in (3.1.4), we obtain the EPQ and the optimal total average cost

per unit time, respectively, as follows
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Q

L0

μ1+μ2−λ1−λ2

λ1+λ2

Fig. 3.4 IP for end-product 1 and 2 in the postponement system when the demand is met
continuously

(q1 + q2)∗ =
√√√√√

2k(λ1 + λ2)

h

(
1 − λ1 + λ2

μ1 + μ2

) ,

and

TC∗ = C[(q1 + q2)∗]

= c(λ1 + λ2) +
√

2kh(λ1 + λ2)

(
1 − λ1 + λ2

μ1 + μ2

)
. (3.1.5)

Analysis of EPQs for the Two Systems

We let

G = (λ1 + λ2)

1 − λ1 + λ2

μ1 + μ2

= (λ1 + λ2)(μ1 + μ2)

(μ1 − λ1) + (μ2 − λ2)
.

Further, we let

xi = λi

μi − λi
(for i = 1, 2).

So

λi = μixi

1 + xi
(for i = 1, 2).
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Substituting λi = μixi

1 + xi
into G, we have

G =

(
μ1x1

1 + x1
+ μ2x2

1 + x2

)
(μ1 + μ2)

μ1 − μ1x1

1 + x1
+ μ2 − μ2x2

1 + x2

= μ1x1 + μ2x2 − μ1μ2(x2 − x1)2

μ1(1 + x2) + μ2(1 + x1)

≤ μ1x1 + μ2x2

= λ1μ1

μ1 − λ1
+ λ2μ2

μ2 − λ2

= λ1

1 − λ1

μ1

+ λ2

1 − λ2

μ2

.

It is easy to obtain

√√√√√
(λ1 + λ2)

1 − λ1 + λ2

μ1 + μ2

≤
√√√√√

λ1

1 − λ1

μ1

+
√√√√√

λ2

1 − λ2

μ2

⇒
√√√√√

2k(λ1 + λ2)

h

(
1 − λ1 + λ2

μ1 + μ2

) ≤
√√√√√

2kλ1

h

(
1 − λ1

μ1

) +
√√√√√

2kλ2

h

(
1 − λ2

μ2

)

⇒ (q1 + q2)∗ ≤ q∗
1 + q∗

2.

This result indicates that the EPQ of the postponement system is lower than the
EPQ of the independent system. Thus, H1 is supported.

Analysis of TC∗s for the Two Systems

The difference in the optimal total average cost per unit time of the two systems is
defined as Z∗, given by (3.1.5)−(3.1.3), as follows.

Z∗ =
√

2kh(λ1 + λ2)

(
1 − λ1 + λ2

μ1 + μ2

)
−
√

2khλ1

(
1 − λ1

μ1

)
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−
√

2khλ2

(
1 − λ2

μ2

)

=
2kh

[
(λ1 + λ2)

(
1 − λ1 + λ2

μ1 + μ2

)
− λ1

(
1 − λ1

μ1

)
− λ2

(
1 − λ2

μ2

)]

A

−
4kh

√

λ1λ2

(
1 − λ1

μ1

)(
1 − λ2

μ2

)

A

=
2kh

[
(λ1μ2 − λ2μ1)2

μ1μ2(μ1 + μ2)
− 2

√

λ1λ2

(
1 − λ1

μ1

)(
1 − λ2

μ2

)]

A
,

where A =
√

2kh(λ1 + λ2)

(
1 − λ1 + λ2

μ1 + μ2

)
+
√

2khλ1

(
1 − λ1

μ1

)
+
√

2khλ2

(
1 − λ2

μ2

)
.

It should be noted that Z∗ can be positive, zero or negative depending on the
values of k, h, λ1, λ2, μ1 and μ2. For example, consider the following two instances,
(k, h, λ1, λ2, μ1, μ2)j, j=1,2, of Z∗: (1, 2, 100, 150, 200, 250)1 and (1, 2, 100, 150,
1,000, 160)2. The first instance leads to a negative Z∗, while the second instance
yields a positive Z∗. It shows that the optimal total average cost per unit time of the
postponement system may not outperform the optimal total average cost per unit
time of the independent system. One observation is that when their utilization rates

are close, that is,
λ1

μ1
≈ λ2

μ2
, then Z∗ is negative. The major reason for a positive

Z∗ is that the postponement system overproduces the end-product that has a lower
demand rate. Thus, H2 is not supported.

3.1.2.2 Demands Are Met After Production Is Complete

Now we assume that the product demands are met only after a whole production
batch is finished. This scenario is more appropriate for describing the inventory
level of the end-products that need to be moved to another warehouse in batches or
to be further processed in batches, or for which instant consumption is not possible
(Zipkin [131]).

This time production starts when the inventory level drops to
λq

μ
. In other words,

there is some overlapping between cycles. Production stops when the inventory level
reaches q. The demand during production is being fulfilled by the inventory of the
previous batch (Zipkin [131]). A graphical illustration is given in Fig. 3.5. It is
different from the previous model described in Section 3.1.2 because the average
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Q

L0

q1

λ1q1
μ1

μ1

μ2

λ1

λ2

Fig. 3.5 IP for end-product 1 and 2 in the independent system when the demand is met after
production is finished

inventory is higher as no demand is fulfilled by the current production batch. In

general, this model operates like a model whose safety stock is
λq

μ
.

By revising the EPQ formula, we obtain a new total average cost per unit time
for producing and keeping end-product i as follows [131].

C(qi) = cλi + kλi

qi
+ h

2

(
1 + λi

μi

)
qi, i = 1, 2. (3.1.6)

Again, if two machines are used for producing end-products 1 and 2 separately,
then the total average cost per unit time for producing and keeping these two end-
products is:

TC = C(q1) + C(q2)

= c(λ1 + λ2) + k

(
λ1

q1
+ λ2

q2

)

+h

2

[(
1 + λ1

μ1

)
q1 +

(
1 + λ2

μ2

)
q2

]
. (3.1.7)

Minimizing TC in (3.1.7), we obtain the EPQ for end-product 1, the EPQ for
end-product 2 and the optimal total average cost per unit time, respectively, as fol-
lows [131].

q∗
1 =

√√√√√
2kλ1

h

(
1 + λ1

μ1

) ,
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q∗
2 =

√√√√√
2kλ2

h

(
1 + λ2

μ2

) ,

and

TC∗ = C(q∗
1) + C(q∗

2)

= c(λ1 + λ2) +
√

2khλ1

(
1 + λ1

μ1

)

+
√

2khλ2

(
1 + λ2

μ2

)
. (3.1.8)

Again, if one machine is used to produce the two end-products in aggregate with
production rate μ1 + μ2, the total average cost per unit time equals

TC = C(q1 + q2)

= c(λ1 + λ2) + k

(
λ1 + λ2

q1 + q2

)

+h

2

(
1 + λ1 + λ2

μ1 + μ2

)
(q1 + q2). (3.1.9)

A graphical illustration is given in Fig. 3.6.
Minimizing TC in (3.1.9), we obtain the EPQ and the optimal total average cost

per unit time, respectively, as follows.

Q

L0

μ1 + μ2
λ1 + λ2

Fig. 3.6 IP for end-product 1 and 2 in the postponement system when the demand is met after
production is finished



54 3 Analysis of Postponement Strategy by EPQ-based Models

(q1 + q2)∗ =
√√√√√

2k(λ1 + λ2)

h

(
1 + λ1 + λ2

μ1 + μ2

) ,

and

TC∗ = c(λ1 + λ2) +
√

2kh(λ1 + λ2)

(
1 + λ1 + λ2

μ1 + μ2

)
. (3.1.10)

Analysis of EPQs for the Two Systems

We let

H = (q1 + q2)∗ − q∗
1 − q∗

2

=
√√√√√

2k(λ1 + λ2)

h

(
1 + λ1 + λ2

μ1 + μ2

) −
√√√√√

2kλ1

h

(
1 + λ1

μ1

) −
√√√√√

2kλ2

h

(
1 + λ2

μ2

)

=

λ1 + λ2

h(1 + λ1 + λ2

μ1 + μ2
)

− 2kλ1

h

(
1 + λ1

μ1

) − 2kλ2

h

(
1 + λ2

μ2

) − 4k

h

√√√√√
λ1λ2(

1 + λ1

μ1

)(
1 + λ2

μ2

)

B
,

where B =
√√√√√

2k(λ1 + λ2)

h

(
1 + λ1 + λ2

μ1 + μ2

) +
√√√√√

2kλ1

h

(
1 + λ1

μ1

) +
√√√√√

2kλ2

h

(
1 + λ2

μ2

) .

Further, we let

yi = λi

μi + λi
(for i = 1, 2),

and

λi = μixi

1 − xi
(for i = 1, 2).

Substituting the above equations into H, we obtain

H = 2k

h

⎡

⎢⎢⎢⎣

μ1μ2(y1 + y2)2

μ1(1 − y2) + μ2(1 − y1)
− 2

√
μ1μ2y1y2

B

⎤

⎥⎥⎥⎦ .

By numerical trials, it is shown that H can be positive, zero or negative. For
example, if k = 1, h = 2, λ1 = 1, λ2 = 100, μ1 = 150, μ2 = 120, then H > 0.
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On the other hand, if k = 1, h = 2, λ1 = 50, λ2 = 100, μ1 = 150, μ2 = 120, then
H < 0. This result indicates that the EPQ for the postponement system is not lower

than the independent system, especially when the utilization rate
λi

μi
is very small

for one of the production systems. For instance, if
μ1

λ1
→ ∞, then y1 → 0. Thus,

H → 2k

h

⎡

⎢⎢⎢⎣

μ1μ2y2
2

μ1(1 − y2) + μ2

B

⎤

⎥⎥⎥⎦ > 0. Based on our findings, H3 is not supported.

Analysis of TC∗s for the Two Systems

The difference in the optimal total average cost per unit time of the two systems,
given by (3.1.10)−(3.1.8), is as follows.

Z∗ =
√

2kh(λ1 + λ2)

(
1 + λ1 + λ2

μ1 + μ2

)
−
√

2khλ1

(
1 + λ1

μ1

)

−
√

2khλ2

(
1 + λ2

μ2

)

=
2kh

[
(λ1 + λ2)

(
1 + λ1 + λ2

μ1 + μ2

)
− λ1

(
1 + λ1

μ1

)
− λ2

(
1 + λ2

μ2

)]

C

−
4kh

√

λ1λ2

(
1 + λ1

μ1

)(
1 + λ2

μ2

)

C

= −

⎡

⎢⎢⎢⎢⎢⎣

2kh

[
(λ1μ2 − λ2μ1)2

μ1μ2(μ1 + μ2)
+ 2

√

λ1λ2

(
1 + λ1

μ1

)(
1 + λ2

μ2

)]

C

⎤

⎥⎥⎥⎥⎥⎦

< 0 (h, k, μ1, μ2, λ1, λ2 > 0),

where C =
√

2kh(λ1 + λ2)

(
1 + λ1 + λ2

μ1 + μ2

)
+
√

2khλ1

(
1 + λ1

μ1

)
+
√

2khλ2

(
1 + λ2

μ2

)
.

The result shows that the optimal total average cost per unit time for postpone-
ment is lower. Thus, H4 is supported.
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3.1.3 n Machines for n End-Products

This section extends our mathematical model to the production of n end-products.
Further assumptions are presented below.

Further Assumptions

(i) End-products are produced separately by n machines.
(ii) For all end-products, the production rate is larger than the demand rate. That is,

μi > λi for all i.

3.1.3.1 Demands Are Met Continuously

For the independent system, we derive the total average cost per unit time for pro-
ducing and keeping n end-products by summing (3.1.1) over all i, i = 1, 2, · · · , n.

TC =
n∑

i=1

C(qi) = c
n∑

i=1

λi + k
n∑

i=1

λi

qi
+ h

2

[
n∑

i=1

(
1 − λi

μi

)
qi

]

= c
n∑

i=1

λi + k
n∑

i=1

λi

qi
+ h

2

(
n∑

i=1

qi −
n∑

i=1

λiqi

μi

)
, (3.1.11)

where i = 1, 2, · · · , n.
Minimizing TC in (3.1.11), we obtain the EPQs for the n end-products and the

optimal total average cost per unit time, respectively, as follows.

q∗
i =

√√√√√
2kλi

h

(
1 − λi

μi

) ,

and

TC∗ =
n∑

i=1

C(q∗
i )

= c
n∑

i=1

λi +
n∑

i=1

√

2khλi

(
1 − λi

μi

)
. (3.1.12)

For the postponement system, if the aggregate production rate is
∑n

i=1 μi, then
the total average cost per unit time is equal to

TC = C

(
n∑

i=1

qi

)
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= c
n∑

i=1

λi + k

(∑n
i=1 λi∑n
i=1 qi

)
+ h

2

(
1 −

∑n
i=1 λi∑n
i=1 μi

)( n∑

i=1

qi

)

= c
n∑

i=1

λi + k

(∑n
i=1 λi∑n
i=1 qi

)

+h

2

(
n∑

i=1

qi −
∑n

i=1 λi
∑n

i=1 qi∑n
i=1 μi

)
. (3.1.13)

Minimizing TC in (3.1.13), we obtain the EPQ and the optimal total average cost
per unit time, respectively, as follows.

(
n∑

i=1

qi

)∗
=
√√√√√

2k
∑n

i=1 λi

h

(
1 −

∑n
i=1 λi∑n
i=1 μi

) ,

and

TC∗ = C

[(
n∑

i=1

qi

)∗]

= c
n∑

i=1

λi +
√√√√2kh

(
n∑

i=1

λi

)(
1 −

∑n
i=1 λi∑n
i=1 μi

)
. (3.1.14)

Analysis of EPQs for the Two Systems

In this section, we wish to compare if (q1+q2+· · ·+qn)∗ ≤ q∗
1 + q∗

2 + · · · + q∗
n still

holds true, provided that i = 2 is true (proved in Section 3.1.2.1). By mathematical

induction, we assume

√√√√√
2k
∑n

i=1 λi

h

(
1 −

∑n
i=1 λi∑n
i=1 μi

) ≤ ∑n
i=1

√√√√√
2kλi

h

(
1 − λi

μi

) is true. Then,

√
2k
∑n

i=1 λi
∑n

i=1 μi

h
∑n

i=1 (μi − λi)
≤

n∑

i=1

√
2kλiμi

h(μi − λi)
.
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Thus, √
2k(

∑n
i=1 λi + λn+1)(

∑n
i=1 μi + μn+1)

h[
∑n

i=1 (μi − λi) + (μn+1 − λn+1)]

≤
√

2k
∑n

i=1 λi
∑n

i=1 μi

h
∑n

i=1 (μi − λi)
+
√

2kλn+1μn+1

h(μn+1 − λn+1)

≤
n∑

i=1

√
2kλiμi

h(μi − λi)
+
√

2kλn+1μn+1

h(μn+1 − λn+1)

=
n+1∑

i=1

√√√√√
2kλi

h

(
1 − λi

μi

) .

By mathematical induction, the inequality holds for all integers i ≥ 1. The result
proves that the postponement system leads to a lower EPQ. Thus, H5 is supported.
In the next section, we compare the optimal total average cost per unit time of the
two systems.

Analysis of TC∗s for the Two Systems

The difference in the optimal total average cost per unit time of the two systems,
given by (3.1.14)−(3.1.12), is equal to

Z∗ =
√√√√2kh

n∑

i=1

λi

(
1 −

∑n
i=1 λi∑n
i=1 μi

)
−

n∑

i=1

√

2khλi

(
1 − λi

μi

)

=
2kh[

∑n
i=1

λ2
i

μi
− (

∑n
i=1 λi)2

∑n
i=1 μi

]

√
2kh

(∑n
i=1 λi

) (
1 −

∑n
i=1 λi∑n
i=1 μi

)
+∑n

i=1

√

2khλi

(
1 − λi

μi

)

+
−4kh

√
∑n

j=1
∑n−1

i=1,i�=j λjλi

(
1 − λj

μj

)(
1 − λi

μi

)

√
2kh

(∑n
i=1 λi

) (
1 −

∑n
i=1 λi∑n
i=1 μi

)
+∑n

i=1

√

2khλi

(
1 − λi

μi

) .
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We let the first term be Z∗
1 and the second term be Z∗

2 . Also, we let ai = λi√
μi

,

bi = √
μi. By the Cauchy-Schwarz inequality, for the two sets of real numbers

a1, a2, · · · , an and b1, b2, · · · , bn,

(
n∑

i=1

aibi

)2

≤
(

n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)

(
n∑

i=1

λi

)2

≤
(

n∑

i=1

λ2
i

μi

)(
n∑

i=1

μi

)

(∑n
i=1 λi

)2
∑n

i=1 μi
≤

n∑

i=1

λ2
i

μi
.

Therefore, Z∗
1 ≥ 0 and Z∗

2 < 0. Z∗ can be positive, zero or negative, given
that k, h > 0. It implies that the optimal total average cost per unit time for the
postponement system does not give a lower optimal total average cost per unit time.
This conclusion is consistent with the proof in Section 3.1.2.1 when i = 2. Hence,
H6 is not supported.

3.1.3.2 Demands Are Met After Production Is Complete

For the independent system, we derive the total average cost per unit time for pro-
ducing and keeping n end-products by summing (3.1.6) over all i, i = 1, 2, · · · , n.

TC =
n∑

i=1

C(qi)

= c
n∑

i=1

λi + k
n∑

i=1

λi

qi
+ h

2

[
n∑

i=1

(
1 + λi

μi

)
qi

]
, (3.1.15)

where n = 1, 2, · · · , n.
Minimizing TC in (3.1.15), we obtain the EPQs for the n end-products and the

optimal total average cost per unit time, respectively, as follows.

q∗
i =

√√√√√
2kλi

h

(
1 + λi

μi

) ,
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and

TC∗ =
n∑

i=1

C(q∗
i )

= c
n∑

i=1

λi +
n∑

i=1

√

2khλi

(
1 + λi

μi

)
. (3.1.16)

If postponement system is implemented so that the aggregate production rate is∑n
i=1 μi, then the total average cost per unit time becomes

TC = C

(
n∑

i=1

qi

)

= c
n∑

i=1

λi + k

(∑n
i=1 λi∑n
i=1 qi

)
+ h

2

(
1 +

∑n
i=1 λi∑n
i=1 μi

)( n∑

i=1

qi

)

= c
n∑

i=1

λi + k

(∑n
i=1 λi∑n
i=1 qi

)

+h

2

(
n∑

i=1

qi +
∑n

i=1 λi
∑n

i=1 qi∑n
i=1 μi

)
. (3.1.17)

Minimizing TC in (3.1.17), we get the EPQ and the optimal total average cost
per unit time, respectively, as follows.

(
n∑

i=1

qi

)∗
=
√√√√√

2k
∑n

i=1 λi

h

(
1 +

∑n
i=1 λi∑n
i=1 μi

) ,

and

TC∗ = c
n∑

i=1

λi +
√√√√2kh

(
n∑

i=1

λi

)(
1 +

∑n
i=1 λi∑n
i=1 μi

)
. (3.1.18)

Analysis of EPQs for the Two Systems

In this section, we wish to compare if (q1 +q2 +· · ·+qn)∗ ≤ q∗
1 + q∗

2 + · · · + q∗
n. In

Section 3.1.2.2, we showed that it is not true for n = 2. This time, if n = 5, k=1,h =
2, λ1 = λ2 = λ3 = λ4 = λ5 = 1, μ1 = μ2 = μ3 = μ4 = μ5 = 100, then
(q1 + q2 + · · · + qn)∗ < q∗

1 + q∗
2 + · · · + q∗

n. On the other hand, if n = 5, k=1,h =
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2, λ1 = 999, λ2 = λ3 = λ4 = λ5 = 1, μ1 = 1, 000, μ2 = μ3 = μ4 = μ5 = 100,
then (q1 + q2 + · · · + qn)∗ > q∗

1 + q∗
2 + · · · + q∗

n. This result proves that the post-
ponement system does not result in a lower EPQ. Therefore, H7 is not supported. In
the next section, we compare the optimal total average cost per unit time of the two
systems.

Analysis of TC∗s for the Two Systems

The difference in the optimal total average cost per unit time of the two systems,
given by (3.1.18)−(3.1.16), is

Z∗ =
√√√√2kh

n∑

i=1

λi

(
1 +

∑n
i=1 λi∑n
i=1 μi

)
−

n∑

i=1

√

2khλi

(
1 + λi

μi

)
.

It has been proved that Z∗ < 0 for i = 2 in Section 3.1.2.2. We wish to prove if
Z∗ < 0 for all integers i > 2 by mathematical induction. First we assume Z∗ < 0
for i = n. That is,

√√√√2kh

(
n∑

i=1

λi

)(
1 +

∑n
i=1 λi∑n
i=1 μi

)
<

n∑

i=1

√

2khλi

(
1 + λi

μi

)
.

Then,

√√√√2kh

(
n∑

i=1

λi + λn+1

)(
1 +

∑n
i=1 λi + λn+1∑n
i=1 μi + μn+1

)

<

√√√√2kh

(
n∑

i=1

λi

)(
1 +

∑n
i=1 λi∑n
i=1 μi

)
+
√

2khλn+1

(
1 + λn+1

μn+1

)

<

n∑

i=1

√

2khλi

(
1 + λi

μi

)
+
√

2khλn+1

(
1 + λn+1

μn+1

)

=
n+1∑

i=1

√

2khλi

(
1 + λi

μi

)
.

By mathematical induction, Z∗ < 0 for all integers i ≥ 1. It implies postpone-
ment system results in a lower optimal total average cost per unit time. Hence, H8
is supported.
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Analysis of the Extra Customization Cost p
In this section, we consider the extra customization cost for implementing a post-
ponement strategy. Recall that in Sections 3.1.2 and 3.1.3, we assumed that a cus-
tomization process is required for a postponement strategy to differentiate the end-
products when customer demands are known. The customization process incurs an
extra cost for the production of each end-product. The average customization cost
is (
∑n

i=1 λi)p, which is independent of qi, for i = 1, 2, · · · , n. The difference in the
optimal total average cost per unit time of the two systems, in which the customiza-
tion process is included, is Z∗ + (

∑n
i=1 λi)p. Postponement is more cost-effective

if Z∗ + (
∑n

i=1 λi)p < 0, i.e., (
∑n

i=1 λi)p < −Z∗. It is not possible for the case
when demands are met instantly by the current production batch (Sections 3.1.2.1
and 3.1.3.1) because Z∗ > 0. Therefore, it is certainly not worth implementing the
postponement strategy. In the case when demands are met after production is com-
plete (Sections 3.1.2.2 and 3.1.3.2), we can determine whether or not postponement
strategy should be adopted by checking if this inequality Z∗ + (

∑n
i=1 λi)p < 0

holds.

3.2 Analysis of Postponement Strategy by an EPQ-based Model
with Planned Backorders2

In the above section, we assumed that there is no stockout. However, stockout plays
an important role both in theoretical analysis and actual practice. Consider the same
EPQ system, but relax the requirement that all demands be met from stock on hand.
We further assume that all demands are ultimately filled, though perhaps after a
delay. That is, demands not filled immediately are backordered. It is natural to con-
sider EPQ-based models with backorders to analyze postponement. There are some
papers addressing the EPQ model with planned backorders when the end-product
demand is met continuously by the current production batch [24, 99]. In these stud-
ies, the EPQ and the optimal total average cost per unit time for producing and
keeping one endproduct were given.

Motivated by the above observations, we develop the EPQ model with backorders
when the demand is met after production is finished in this section. We give the cost
function and the optimal strategy of an EPQ-based model with planned backorders
when the demand is met after production is finished. We derive the optimal total
average costs per unit time of a postponement system and a non-postponement sys-
tem under four different circumstances, respectively. By comparing the optimal total
average costs of the two systems, we evaluate the impact of postponement on the
manufacturer. Our results show that the postponement strategy can yield a lower
total average cost under certain circumstances. We also find that the key factors in

2 The following discussion in this section is largely based on the ideas and results presented in
Li et al. [72].
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postponement decisions are the variance of the machine utilization rates and the
variance of the backorder costs.

3.2.1 Proposed Model and Assumptions

Consider a supply chain with a manufacturer and n customers. The manufacturer
produces n different products in response to the demands of the n customers. These
products are manufactured from the same type of raw material and the end products
have only slight differences. These products are independent without any supply-
demand links between them. The customers’ demand rates and the manufacturer’s
production rates are deterministic and constant. The manufacturer can produce the
n products independently on n machines under different production schedules such
that there are n EPQ decisions. It is viewed as a non-postponement system. However,
if the customization process can be delayed, the manufacturer can first produce a
generic product. Then the production of the generic product can be carried out under
the same production schedule such that there is only one EPQ decision. It is viewed
as a form postponement system. Our objective is to apply the EPQ-based model
with backorders to examine whether postponement outperforms non-postponement.
There are two scenarios to describe the model. In the first scenario, we assume that
the end-product demands are met continuously by the current production batch. In
the second scenario, we assume that the end-product demands are only met after
production is finished. In addition, we consider two cases of backorder costs. In the
general case, we assume different backorder costs for different end-products. In the
special case, we assume the backorder costs are the same for all the end-products. In
sum, there are four cases to be discussed, and we wish to investigate the following
four hypotheses in this section (Table 3.2).

Table 3.2 A summary of the four hypotheses with stockout

No. of machines(Measure) Different backorder cost Same backorder cost

n(a) H9 H10
n(b) H11 H12

(a) Demands are met instantly by the current production batch
(b) Demands are met after production is complete

H9: Postponement leads to a lower optimal total average cost per unit time for
the manufacturer when the demands are met continuously and the planned
backorder costs are not all equal.

H10: Postponement leads to a lower optimal total average cost per unit time for
the manufacturer when the demands are met continuously and the planned
backorder costs are the same for all the end-products.

H11: Postponement leads to a lower optimal total average cost per unit time for the
manufacturer when the demands are met after production is finished and the
planned backorder costs are not all equal.
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H12: Postponement leads to a lower optimal total average cost per unit time for the
manufacturer when the demands are met after production is finished and the
planned backorder costs are the same for all the end-products.

Definitions of the notation of this section are introduced below.

• bi = unit backorder cost per unit time for end-product i, bi ≥ 0,
• vi = planned backorder quantity for end-product i, vi ≤ 0,
• Li = total cycle time for end-product i, Li > 0,
• L′

i = backorder lead-time for end-product i, L′
i > 0,

• C (qi, vi) = total average cost per unit time for producing and keeping end-product
i with production quantity qi and planned backorder quantity vi, C (qi, vi) > 0,

• C
(
q∗

i , v∗
i

)
= the optimal total average cost per unit time for producing and keeping

end-product i,
• TCP = total average cost per unit time for producing and keeping end-products

1, 2, · · · , n in the postponement system with production quantity q1+q2+· · ·+qn,
TCP > 0,

• TCP∗ = the optimal total average cost per unit time for producing and keeping
end-products 1, 2, · · · , n in the postponement system.

In addition, the following assumptions are made:

(i) A production cycle means the time between the production of two consecu-
tive batches. The end-product demand rate λi and the production rate μi are
deterministic and constant. To avoid unrealistic and trivial cases, we assume
μi > λi, i = 1, 2, · · · , n. When production starts, inventory accumulates until it
is enough for the cycle. Then, production stops and inventory starts to decline.
When inventory drops below zero, the product is backordered (Figs. 3.7, 3.8,
3.9 and 3.10).

(ii) Demands not filled immediately are backordered and all the demands are ulti-
mately filled. The manufacturer always uses any inventory on hand to fill the
demands. Backorders accumulate only when the manufacturer runs out of stock
entirely, which means that all the products will be backordered synchronously
in the postponement system (Figs. 3.7, 3.8, 3.9 and 3.10).

(iii) The inventory holding cost for raw materials is ignored. In the non-postponement
system, we only consider the holding cost for the end-products. In the post-
ponement system, we only consider the holding cost for the generic products.
Because the generic product and all the end-products have only slight differ-
ences, we assume that the holding cost for the generic product and all the
end-products are the same.

(iv) The manufacturer incurs a common setup cost for setting up a production run
and an item-specific setup cost for each product. Because all the end-products
have only slight differences, the item-specific setup cost is usually much less
than the common setup cost, we can assume that all the item-specific setup
costs are the same. For simplicity of analysis, we further assume that all the
item-specific setup cost are zero and the fixed setup cost is the only common
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setup cost. The manufacturer incurs common fixed setup cost, k, in each pro-
duction cycle when production starts in the postponement system or in the
non-postponement system.

(v) Because all the end-products have only slight differences, we assume that c
and p are the same for all the end-products, respectively. Moreover, an extra
customization process cost is incurred only if the customization process is
delayed. In practice, the time for customization is very short. For example,
an apparel manufacturer can postpone its color dyeing process at the very end
of the production. The dyeing process can be finished quickly after the orders
are received. So the lead-time of customization can be assumed to be negligible
for simplicity of analysis.

In the following section, we discuss the four hypotheses in detail by examin-
ing whether or not the postponement system is more cost-effective than the non-
postponement system.

3.2.2 Demands Are Met Continuously

3.2.2.1 Different Backorder Costs

First, we consider the general case in which the backorder costs are not all equal. A
graph of the inventory position of end-product i over time in the non-postponement
system is illustrated in Fig. 3.7. The horizontal axis t denotes time. The vertical axis
IP denotes the inventory position of end-product i over time. Each cycle consists of
an active period when production occurs and an idle period following production.
In the active period, inventory increases with a slope of μi − λi. In the idle period,
inventory decreases with a slope of −λi. When production starts, the manufacturer
incurs a fixed setup cost. When the inventory position is positive, there is inventory
on hand and the manufacturer incurs holding cost. When the inventory is negative,
the product is backordered and the manufacturer incurs backorder cost. The produc-
tion quantity qi and the planned backorder quantity vi for end-product i in each cycle
are our decision variables, which also determine the production cycle time Li and
the backorder lead-time L′

i. The objective of the EPQ model is to find the optimal
qi and vi to minimize the average cost per unit time for producing and keeping
end-product i.

The total average cost per unit time for producing and keeping end-product i is
as follows

C (qi, vi) = cλi + kλi

qi
+ h (ρiqi + vi)

2

2ρiqi
+ biv2

i

2ρiqi
, (3.2.19)

where ρi = 1 − λi

μi
.
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λi μi λi
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Fig. 3.7 IP for product i in the non-postponement system when the demand is met continuously

The first two terms are the variable production cost and the fixed production cost
per unit time, the third term is the average inventory holding cost per unit time for
end product i, while the last term is the average backorder quantity for end-product i.

Minimizing Eq. (3.7), we obtain the EPQ and optimal backorder quantity for
end-product i, respectively, as follows (Cardenas-Barron, [24], Ronald et al. [99])

q∗
i =

√
2kλi

hρi

√
bi + h

bi
,

v∗
i = −

√
2kρiλih

bi (bi + h)
.

The optimal average cost per unit time for producing and keeping end-product i is

C
(
q∗

i , v∗
i

) = cλi +
√

2khλibiρi

bi + h
. (3.2.20)

In the non-postponement system, the production of the end-products is processed
independently by n different machines with production rate μi, on which the end-
products are customized. The optimal total average cost for producing and keeping
the n end-products is the sum of all the costs of products i and is given by

TC∗ =
n∑

i=1

C
(
v∗

i , q∗
i

)

= c
n∑

i=1

λi +
n∑

i=1

√
2khλibiρi

bi + h
. (3.2.21)

In the postponement system, the customization process is delayed. According
to assumptions, the production of the generic product can be viewed as being pro-
cessed by a single machine whose production rate is μ = μ1 + μ2 + · · · + μn.
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Fig. 3.8 IP for n products in the postponement system when the demand is met continuously

The unit variable production cost is c, the fixed setup cost is k, the unit holding
cost per unit time is h, and the extra unit customization cost is p. A graph of the
inventory position of the generic product over time in the postponement system is
illustrated in Fig. 3.8. In this figure the thick lines denote the inventory position
of the total generic product and the thin lines denote the inventory position of the
generic product used to produce product i. According to assumptions, the production
cycle of the total generic product and that of the generic product used to produce
product i are the same and so is the backorder lead-time. There is only one EPQ
problem in this system. The decision variables are the production quantity Q and
the planned backorder quantity V of the generic product in one production cycle,
which also determine the cycle time L and the backorder lead-time L′. The objective
of the EPQ model is to find the optimal Q∗ and V∗ to minimize the total average
cost per unit time in the postponement system. For simplicity, we do not consider
the extra unit customization cost p, which will be discussed later.

Because we always use any inventory on hand to fill demands and because back-
orders accumulate only when we run out of stock entirely, the backorder lead-time
for end-product i is the same (L′

1 = L′
2 = · · · = L′

n = L′) and the core production
rate for product i becomes μ′

i. From Fig. 3.8, we can observe that they yield to the
following equations:

μ = μ1 + μ2 + · · · + μn = μ′
1 + μ′

2 + · · · + μ′
n,

L′ = −V

λ
+ −V

μ − λ
= −V

λρ
,

L′ = L′
i = −vi

λi
+ −vi

μ′
i − λi

= −vi

λiρ
′
i
,

where ρ′
i = 1 − λi

μ′
i
.

Since

V = v1 + v2 + · · · + vn,
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we have

L′λρ = −V

= −v1 − v2 − · · · − vn

= L′λ1ρ
′
1 + L′λ2ρ

′
2 + · · · + L′λnρ

′
n,

λρ = λ1ρ
′
1 + λ2ρ

′
2 + · · · + λnρ

′
n,

λ2

μ
=

n∑

i=1

λ2
i

μ′
i
.

We let ai = λi√
μ′

i

, bi = √
μ′

i. By the Cauchy-Schwarz inequality

(
n∑

i=1

aibi

)2

≤
(

n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
,

we have

(
n∑

i=1

λi

)2

≤
(

n∑

i=1

λ2
i

μ′
i

)(
n∑

i=1

μ′
i

)
;

therefore,

n∑

i=1

λ2
i

μ′
i
− λ2

μ
≥ 0

and

n∑

i=1

λ2
i

μ′
i
− λ2

μ
= 0 ⇐⇒ λ1

μ′
1

= λ2

μ′
2

= · · · λn

μ′
n

.

So we have

ρ = ρ′
1 = ρ′

2 = · · · = ρ′
n.

Thus, in the postponement system the total average cost per unit time for produc-
ing (excluding the customization process) and keeping the n end-products becomes

TCP = cλ + kλ

Q
+ h (ρQ + V)2

2ρQ
+

n∑

i=1

bi

(−viL′

2L

)
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= cλ + kλ

Q
+ h (ρQ + V)2

2ρQ
+

n∑

i=1

biL′λiρ
′
iL

′

2
Q

λ

= cλ + kλ

Q
+ h (ρQ + V)2

2ρQ
+

n∑

i=1

biλiρ
′
i

(
L′ρλ

)2

2ρλρQ

= cλ + kλ

Q
+ h (ρQ + V)2

2ρQ
+
(

n∑

i=1

biλi

λ

)
V2

2ρQ

= cλ + kλ

Q
+ h (ρQ + V)2

2ρQ
+ B̂V2

2ρQ
(3.2.22)

= C (Q, V) ,

where B̂ = ∑n
i=1

biλi

λ
.

Minimizing Eq. (3.2.22), we obtain the EPQ and optimal backorder quantity
respectively, as follows.

Q∗ =
√

2kλ

hρ

√
B̂ + h

B̂
,

V∗ = −
√√√√

2kρλh

B̂
(

B̂ + h
) ,

and

TCP∗ = C
(
Q∗, V∗) = cλ +

√
2khλB̂ρ

B̂ + h
. (3.2.23)

The difference in the optimal total average cost per unit time of the two systems
is defined as Z∗, given by (3.2.23) − (3.2.21), as follows:

Z∗ = TCP∗ − TP∗

=
√

2khλB̂ρ

B̂ + h
−

n∑

i=1

√
2khλibiρi

bi + h
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=
2kh

[
∑n

i=1 λi

(
ρB̂

B̂ + h
− ρibi

bi + h

)
− 2

∑n−1
i=1

∑n
j=i+1

√
λiλjbibjρiρj

(bi + h)
(
bj + h

)
]

√
2khλB̂ρ

B̂ + h
+∑n

i=1

√
2khλibiρi

bi + h

.

(3.2.24)

It should be noted that the term
∑n

i=1 λi

(
ρB̂

B̂ + h
− ρibi

bi + h

)
and Z∗ can be pos-

itive. For example, when i = 2, h = 2, k = 50, c = 20, b1 = 50, λ1 = 990, μ1 =
1,000, b2 = 500, λ2 = 1, μ2 = 1,000, then Z∗ = 206.5 > 0,

Z∗

TC∗ = 1.03% > 0.

Therefore, Z∗ can be positive, zero or negative (Table 3.3). It implies that the post-
ponement system does not always give a lower optimal total average cost per unit
time. Thus, H9 is not supported.

3.2.2.2 Same Backorder Cost

Now we consider a special case in which the backorder cost bi is the same for all
the end-products. Letting b1 = b2 = · · · = bn = b in formula (3.2.21), (3.2.23) and
(3.2.24), we obtain the following results.

The optimal total average cost for producing and keeping the n end-products in
the non-postponement system is given by

TC∗ =
n∑

i=1

C
(
v∗

i , q∗
i

)

= c
n∑

i=1

λi +
n∑

i=1

√
2khλibρi

b + h
. (3.2.25)

The optimal total average cost per unit time in the postponement system is as
follows:

TCP∗ = C
(
Q∗, V∗)

= cλ +
√

2khbλρ

b + h
. (3.2.26)

The difference in the optimal total average cost per unit time of the two systems
is defined as Z∗, given by (3.2.26) − (3.2.25), as follows:

Z∗ = cλ +
√

2khbλρ

b + h
− c

n∑

i=1

λi −
n∑

i=1

√
2khλibρi

b + h
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=

√
2khb

b + h

(
∑n

i=1
λ2

i

μi
− λ2

μ
− 2

∑n−1
i=1

∑n
j=i+1

√
λiλjρiρj

)

√
ρλ +∑n

i=1
√

ρiλi
. (3.2.27)

By the Cauchy-Schwarz inequality, we have

n∑

i=1

λ2
i

μi
− λ2

μ
≥ 0

and

n∑

i=1

λ2
i

μi
− λ2

μ
= 0 ⇐⇒ λ1

μ1
= λ2

μ2
= · · · λn

μn
.

Z∗ can be positive. For example, when i = 2, h = 2, k = 50, c = 20, b =
100, λ1 = 50, μ1 = 1,000, λ2 = 950, μ2 = 1,000, Z∗ = 120.1 > 0,

Z∗

TC∗ = 0.59%.

Thus, Z∗ can be positive, zero or negative (Table 3.4). H10 is not supported.
In the first scenario, H9 and H10 are not supported. The postponement system

does not always give a lower optimal total average cost per unit time when customer
demands are continuously met by the current production batch. But we can observe

that if b1 = b2 = · · · = bn = b and
λ1

μ1
= λ2

μ2
= · · · = λn

μn
, then Z∗ < 0. It implies

that the variance in backorder costs b1, b2, · · · , bn and the variance in machine uti-

lization rates
λ1

μ1
,
λ2

μ2
, · · · ,

λn

μn
are key factors in a postponement decision. When

there are a large number of end-products, we can group them into different product
families based on machine utilization rates and backorder costs. Those products
whose machine utilization rates and backorder costs are equal or close can share a
single lot size and gain a lower total average cost.

3.2.3 Demands Are Met After Production Is Complete

3.2.3.1 Different Backorder Costs

First, we consider the general case in which the backorder costs are not all equal.
A graph of the inventory position of end-product i over time in the non-postponement
system is illustrated in Fig. 3.9. In one production cycle, there are two lines. One
increases with a slope of μi, which denotes the inventory position over time when
product i is being produced. The other line decreases with a slope of λi, which
denotes the inventory position over time when product i is being consumed. The
production quantity qi and the planned backorder quantity vi for end-product i in
each cycle are our decision variables, which also determine the production cycle
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Fig. 3.9 IP for product i in the non-postponement system when the demand is met after production
is finished

time Li and the backorder lead-time L′
i. The objective is to find the optimal q∗

i and v∗
i

to minimize the average cost per unit time for producing and keeping end-product i.
The total average cost per unit time for producing and keeping end-product i is

as follows

C (qi, vi) = cλi + kλi

qi
+ h

2

(
qiλi

μi
+ (qi + vi)

2

qi

)
+ biv2

i

2qi
.

The cost C (qi, vi) is a function of two variables. C (qi, vi) is continuously dif-
ferentiable and strictly convex on its domain. To minimize this cost, we equate its
partial derivatives to zero. We obtain the EPQ and the optimal backorder quantity,
respectively, as follows.

q∗
i =

√√√√√
2kλi

h

(
bi

bi + h
+ λi

μi

)

v∗
i = − bi

bi + h
q∗

i .

The optimal total average cost per unit time for producing and keeping n end-
products in the non-postponement system is given by

TC∗ =
n∑

i=1

C
(
q∗

i , v∗
i

)

= c
n∑

i=1

λi +
n∑

i=1

√

2khλi

(
bi

bi + h
+ λi

μi

)
. (3.2.28)

Similarly, in the postponement system we assume that the core production is
carried out by a single machine whose production rate is μ = μ1 + μ2 + · · · + μn,
the variable production cost is c, the fixed setup cost is k, the unit holding cost per
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unit time is h, and the extra unit customization cost is p. A graph of the inventory
position of the generic product over time in the postponement system is illustrated
in Fig. 3.10. The production quantity Q and the planned backorder quantity V for
generic product in each cycle are our decision variables, which also determine the
production cycle time L and the backorder lead-time L′. The objective is to find the
optimal Q∗ and V∗.

L

L

Q

0

λ

λi

μ

t

V

vi

Fig. 3.10 IP for n products in the postponement system when the demand is met after production
is finished

From Fig. 3.10, we can observe that

L = Q

λ
= qi

λi
,

L′ = −V

λ
,

L′
i = − vi

λi
,

L′ = L′
1 = L′

2 = · · · = L′
n.

Thus, the total average cost for producing and keeping these n end-products in
the postponement system is

TCP = cλ + kλ

Q
+ h

2

(
Qλ

μ
+ (Q + V)2

Q

)
+

n∑

i=1

bi

(−viL′

2L

)

= cλ + kλ

Q
+ h

2

(
Qλ

μ
+ (Q + V)2

Q

)
+

n∑

i=1

bi

(−L′λiv

2Q

)

= cλ + kλ

Q
+ h

2

(
Qλ

μ
+ (Q + V)2

Q

)
+

n∑

i=1

biλiV2

2λQ
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= cλ + kλ

Q
+ h

2

(
Qλ

μ
+ (Q + V)2

Q

)
+ B̂V2

2Q
(3.2.29)

= C (Q, V),

where B̂ = ∑n
i=1

biλi

λ
.

Minimizing (3.2.29), we obtain the EPQ and the optimal total average cost per
unit, respectively, as follows.

Q∗ =
√√√√√√

2kλ

h

(
B̂

B̂ + h
+ λ

μ

) ,

V∗ = − B̂

B̂ + h
Q∗,

and

TCP∗ = C
(
Q∗, V∗)

= cλ +
√√√√2khλ

(
B̂

B̂ + h
+ λ

μ

)
. (3.2.30)

The difference in the optimal total average cost per unit time of the two systems
is defined as Z∗, given by (3.2.30) − (3.2.28), as follows

Z∗ = TCP∗ − TC∗

=
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)]
. (3.2.31)
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where D =
√√√√2khλ

(
B̂

B̂ + h
+ λ

μ

)
+

n∑
i=1

√

2khλi

(
bi

bi + h
+ λi

μi

)
.

The term
∑n

i=1

λih
(

B̂ − bi

)

(
B̂ + h

)
(bi + h)

can be positive, zero or negative. For exam-

ple, when i = 2, h = 1, k = 1, c = 2, b1 = 1, λ1 = 1,000, μ1 = 1,200, b2 =
1,000, λ2 = 10, μ2 = 12, Z∗ = 1.7496 > 0,

Z∗

TC∗ = 0.0084% > 0. Thus, Z∗ can be

positive, zero or negative (Table 3.5). H11 is not supported.

3.2.3.2 Same Backorder Cost

If b1 = b2 = · · · = bn = b, according to Eq. (3.2.31), the difference in the optimal
total average cost per unit time of the two systems is given by

Z∗ = TCP∗ − TC (3.2.32)

=−
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) < 0.

We have shown that the postponement system always gives a lower optimal total
average cost per unit time than the non-postponement system. Thus, H12 is sup-
ported.

In the second scenario H11 is not supported, but H12 is supported. It implies
that the variance in backorder costs b1, b2, · · · , bn is a key factor in a postponement
decision. When there are a large number of end-products, we can group them into
different product families based on backorder costs. Those products whose backo-
rder costs are equal or close can share a single lot size and gain a lower total average
cost.

Now we consider the extra customization cost in the second scenario. It is obvi-
ous that the average customization cost per unit time is

(∑n
i=1 λi

)
p. The difference

in the optimal total average cost per unit time of the two systems is Z∗+(∑n
i=1 λi

)
p.

Postponement is more cost-effective if Z∗ + (∑n
i=1 λi

)
p < 0.

3.2.3.3 Numerical Examples

We give numerical examples to illustrate how postponement and the key factors
impact on the optimal total average cost of the two scenarios we have presented
in this section. We assume that the manufacturer produces five end-products. They
can be produced in non-postponement system or in postponement system. The dif-
ference in the optimal total average cost per unit time between the two systems
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is denoted as Z∗. Z∗ < 0 means that the postponement system outperforms the
non-postponement system. Z∗/TC∗ denotes the relative difference between the two
systems. For the five products, the unit common variable production cost c is 20, the
common fixed setup cost k is 50, and the common unit holding cost h per unit time
is 2 (all in appropriate units).

For the first scenario in which the demands are met continuously, we first assume
that λ1 = λ2 = λ3 = λ4 = λ5 = λ0 = 250, μ1 = μ2 = μ3 = μ4 = μ5 = μ0 =
500 and that bi is variable. The values of their various parameters and the results are
shown in Table 3.3, from which the following observations can be made:

Table 3.3 Impact of backorder costs when the demands are met continuously

c k h λ0 μ0 b1 b2 b3 b4 b5 Z∗ Z∗

TC∗ (%)

1 20 50 2 250 500 100 100 100 100 100 –432.7 –1.68
2 20 50 2 250 500 80 90 100 110 120 –421.5 –1.68
3 20 50 2 250 500 60 80 100 120 140 –432.0 –1.68
4 20 50 2 250 500 40 70 100 130 160 –430.7 –1.67
5 20 50 2 250 500 20 60 100 140 180 –427.0 –1.66

• The postponement system yields savings in the total average cost.

• The absolute value of Z∗ and
Z∗

TC∗ becomes smaller when the variance of the

backorder costs becomes larger. This means that the smaller the variance of the
backorder costs, the more cost-effective the postponement system is when the
demands are met continuously.

For the first scenario, we then assume that b1 = b2 = b3 = b4 = b5 = b = 100,
μ1 = μ2 = μ3 = μ4 = μ5 = μ0 = 500 and that λi is variable. The values of their
various parameters and the results are shown in Table 3.4, from which the following
observations can be made:

• The postponement system yields savings in the total average cost.

• The absolute value of Z∗ and
Z∗

TC∗ becomes smaller when the variance in the

machine utilization rate becomes larger. This means that the smaller the variance
of the machine utilization rates, the more cost-effective the postponement system
is when the demands are met continuously.

For the second scenario in which the demands are met after the production is
finished, we first assume that λ1 = λ2 = λ3 = λ4 = λ5 = λ0 = 250, μ1 =
μ2 = μ3 = μ4 = μ5 = μ0 = 500 and that bi is variable. The values of their
various parameters and the results are shown in Table 3.5, from which the following
observations can be made:

• The postponement system yields savings in the total average cost.

• The absolute value of Z∗ and
Z∗

TC∗ becomes smaller when the variance in the

backorder costs becomes larger. This means that the smaller the variance of the
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Table 3.4 Impact of machine utilization rates when demands are met continuously

c k h b λ1 λ2 λ3 λ4 λ5 μ0 Z∗ Z∗

TC∗ (%)

1 20 50 2 100 250 250 250 250 250 500 –432.7 –1.68
2 20 50 2 100 190 220 250 280 310 500 –421.3 –1.63
3 20 50 2 100 130 190 250 310 370 500 –385.1 –1.50
4 20 50 2 100 70 160 250 340 430 500 –315.9 –1.23
5 20 50 2 100 10 130 250 370 490 500 –168.8 –0.66

Table 3.5 Impact of backorder costs when the demands are met after production is finished

c k h λ0 μ0 b1 b2 b3 b4 b5 Z∗ Z∗

TC∗ (%)

1 20 50 2 250 500 100 100 100 100 100 –752.0 –2.85
2 20 50 2 250 500 80 90 100 110 120 –751.7 –2.85
3 20 50 2 250 500 60 80 100 120 140 –751.1 –2.85
4 20 50 2 250 500 40 70 100 130 160 –749.7 –2.84
5 20 50 2 250 500 20 60 100 140 180 –745.4 –2.83

backorder costs, the more cost-effective the postponement system is when the
demands are met after production is finished.

For the second scenario, we then assume that b1 = b2 = b3 = b4 = b5 = b =
100, μ1 = μ2 = μ3 = μ4 = μ5 = μ0 = 500, and that λi is variable. The values
of their various parameters and the results are shown in Table 3.6, from which the
following observations can be made:

• The postponement system yields savings in the total average cost.

• The absolute value of Z∗ and
Z∗

TC∗ becomes smaller when the variance in the

machine utilization rate becomes larger.

Table 3.6 Impact of machine utilization rates when the demands are met after production is
finished

c k h b λ1 λ2 λ3 λ4 λ5 μ0 Z∗ Z∗

TC∗ (%)

1 20 50 2 100 250 250 250 250 250 500 –752.0 –2.85
2 20 50 2 100 190 220 250 280 310 500 –749.8 –2.84
3 20 50 2 100 130 190 250 310 370 500 –742.5 –2.82
4 20 50 2 100 70 160 250 340 430 500 –726.8 –2.76
5 20 50 2 100 10 130 250 370 490 500 –683.1 –2.60

From the the numerical examples in this section (Tables 3.3, 3.4, 3.5 and 3.6)
and the numerical examples in Sections 3.2.2 and 3.2.3, we can derive the following
results.

1. Under some circumstances, the postponement system yields savings in the total
average cost. But when the variance of the backorder costs is very large, or the
variance of the machine utilization rates is very large in the case that the demands
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Table 3.7 A summary of the findings of the eight hypotheses without stockout

No. of machines
(Measure)

Economic
Production Quantity

Optimal total
average cost

2(a) H1 is supported H2 is not supported
2(b) H3 is not supported H4 is supported
n(a) H5 is supported H5 is not supported
n(b) H7 is not supported H8 is supported

(a) Demands are met instantly by the current production batch
(b) Demands are met after production is complete

are met continuously, it is possible that the postponement system does not out-
perform the non-postponement system. So the manufacturer must be careful to
find a proper trade-off between postponement and non-postponement in such
cases.

2. The smaller the variance of the backorder costs and the variance of the machine
utilization rates, the more cost-effective the postponement system is in the two
scenarios.

3. The cost saving in the second scenario is more than that in the first scenario. This
means that it is more appropriate to apply postponement when the demands are
met after production is finished.

3.3 Concluding Remarks

This chapter examined the impact of postponement based on some EPQ-based
models without and with stockout. We formulated the total average cost functions
of the two scenarios in a supply chain, in which their demands are known and
deterministic.

For the first scenario in which there is no stockout, we examined the impacts
of postponement on EPQ and the optimal total average cost per unit time for a
supply chain that offers n end-products with slight customization. We analyzed eight
hypotheses in this section and a summary table is shown below (Table 3.7).

Our findings reveal that postponement results in lower EPQ when demands are
met instantly by the current production batch. However, saving in the optimal total
average cost per unit time is not guaranteed when demands are met instantly by
the current production batch. On the other hand, postponement does not give a
lower EPQ but a lower optimal total average cost per unit time when demands
are met after production is complete. Generally speaking, the postponement sys-
tem may outperform the independent system as the aggregate production rate
(μ1 + μ2 in Section 3.1.2 or

∑n
i=1 μi in Section 3.1.3) is only one of the feasible

choices for the postponement system. It does not always lead to an optimal solution
for all μi. We use these two production rates because they are more equitable for
comparison purposes. If we let the aggregate production rate be another decision
variable, we can always find a lower average inventory holding cost per unit time
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for a postponement system so that saving from the optimal total average cost per
unit time is enough to cover the extra customization cost.

For the second scenario in which there is backorder, four hypotheses were con-
sidered. In the first and the second hypotheses the demands are met instantly by the
current production batch. In the third and the fourth hypotheses the demands are
met after production is completed. We analyzed the four hypotheses in this section
and a summary table is shown below (Table 3.8).

Table 3.8 A summary of the findings of the four hypotheses with stockout

No. of machines(Measure) Different backorder cost Same backorder cost

n(a) H9 is not supported H10 is not supported
n(b) H11 is not supported H12 is supported

(a) Demands are met instantly by the current production batch
(b) Demands are met after production is complete

The postponement system may not always outperform the non-postponement
system. H9 and H10 were not supported. But when all the backorder costs are equal
and all the machine utilization rates are equal, the postponement system can out-
perform the non-postponement system. The key factors in a postponement decision
are the variance in backorder costs and the variance in machine utilization rates.
H11 was not supported but H12 was supported. The key factors in a postponement
decision are the variance in backorder costs. If the backorder costs are equal, the
postponement system can outperform the non-postponement system. Our analysis
and numerical example imply that the end-products can be classified into different
product families based on machine utilization rates and backorder costs. The pro-
duction of those products whose machine utilization rates and backorder costs are
equal or close can be handled by postponement and a lower total average cost can
be gained.

In general, this chapter has demonstrated how postponement can achieve a lower
cost in a supply chain. Although a number of simplifying assumptions are made
in our model, our analysis should still be valid for more general systems. One
research direction is to include the customization cost in the comparison so that the
cost difference between a postponement system and a non-postponement system is
more evident. An analysis that includes a customization cost will be discussed in
Chapter 5.



Chapter 4
Evaluation of a Postponement System
with an (r, q) Policy

In this chapter we study the cost impact of the pull postponement strategy by com-
paring the total average cost function with the optimal or an approximately optimal
total average cost of an (r, q) policy. This is a stochastic model of a single end-
product supply chain that consists of a supplier, a manufacturer and a number of
customers. We develop two distinct models to represent the inventory system of
the manufacturer. We employ Markov chain analysis to determine the exact average
inventory level and the exact average accumulated backorder per period at the steady
state so that the total average cost can be evaluated analytically. Also, we design an
algorithm to find a near optimal total average cost per period. Our results show that
the postponement system is more cost effective when the lead-time is zero, while
the (r, q) inventory system is more effective when the lead-time is greater than zero.

This chapter is organized as follows. The proposed models of the postponement
system and the non-postponement system are described in Sections 4.1 and 4.2.
Then the algorithm for finding a near optimal total average cost of an (r, q) policy
is discussed in Section 4.3. In Section 4.4, the total average cost for the postpone-
ment system is derived. In Sections 4.5 and 4.6, comparison results are generated by
both optimization and simulation techniques. Some concluding remarks are given
in Section 4.7.1

4.1 The Proposed Models and Assumptions

In this section, an (r, q) inventory policy is formulated to compare the cost difference
between a postponement system and a non-postponement system, in which they
supply a common end-product. We develop a supply chain model which involves a
supplier, a manufacturer and a group of customers. We assume the model is discrete
in time period. As the manufacturer, we treat a postponement system as a zero stock
policy or the so-called make-to-order system. It has been argued whether or not a
zero stock policy of a single product is a postponement system, as there is no point

1 The following discussion in this chapter is largely based on the ideas and results presented in
Wan [125].

T.C.E. Cheng et al., Postponement Strategies in Supply Chain Management,
International Series in Operations Research & Management Science 143,
DOI 10.1007/978-1-4419-5837-2_4, C© Springer Science+Business Media, LLC 2010

81



82 4 Evaluation of a Postponement System with an (r, q) Policy

of product differentiation. However, it is justified to refer it to as a postponement
system because the system can be divided into both forecast driven and demand
driven processes, though the demand driven process is only for producing a single
product. Therefore, it is more appropriate to consider this system as a special case
of postponement application. In this system, when demand from customer at period
t, D(t), arrives, we order D(t) from the supplier at time t. Customer will receive
the order at period t + L, where L is the order lead-time. A schematic diagram is
shown in Fig. 4.1. On the other hand, in a non-postponement system, we keep a
base stock inventory as r. When demand at period t, D(t), arrives, we check the
inventory level IL(t − 1) (IL(t − 1) is also the beginning inventory level at period t).
Note that IL(t) = IL(t − 1) + A(t) − D(t). If IL(t) ≥ 0, then D(t) is fulfilled at
period t; otherwise B(t) = −IL(t) is backordered. A schematic diagram is shown in
Fig. 4.2.

Supplier Manufacturer Customer

A(t) = D(t − L)

O(t) = D(t)

S(t) = D(t − L)

D(t)

IL(t) = IL(t − 1) + A(t) − D(t)

Fig. 4.1 A schematic diagram of the postponement system

Supplier Manufacturer Customer

A(t)

O(t)

S(t)

D(t)

IL(t) = IL(t − 1) + A(t) − D(t)

Fig. 4.2 A schematic diagram of the non-postponement system

Definitions of the notation of this chapter are introduced below.

• k = Fixed order cost, k > 0;
• c = Variable cost per unit, c > 0;
• h = Inventory holding cost per unit per period, h > 0;
• b = Backorder cost per unit per period, b > 0;
• r = Reorder point, r ≥ 0;
• q = Order quantity;
• I(t) = On-hand inventory at the end of period t, I(t) ≥ 0;
• B(t) = Accumulated backorder at the end of period t, B(t) ≥ 0;
• O(t) = Order quantity placed at the end of period t, O(t) ≥ 0;
• A(t) = Order arrived in the beginning of period t, A(t) ≥ 0;
• IL(t) = Inventory level at the end of period t, IL(t) = I(t) − B(t);
• IP(t) = Inventory position at the end of period t before placing order, IP(t) =

I(t) − B(t)+outstanding orders at period t;
• S(t) = Order shipped out at the end of period t, S(t) ≥ 0;
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• D(t) = Demand in the beginning of period t, D(t) ≥ 0;
• L = Order lead-time for the end-product, L ≥ 0;
• I = Average inventory per period, I ≥ 0;
• B = Average backorder per period, B ≥ 0;
• OF = Average order frequency per period, OF ≥ 0;
• D = Average demand per period, D ≥ 0;
• C(r, q) = Total average cost per period when r and q are given,C(r, q) > 0;
• C(r∗, q∗) = Optimal total average cost per period when optimal r∗ and q∗ are

given, C(r∗, q∗) > 0;
• R = Range of inventory level IL(t), R ≥ 0;
• N = Total number of states in a Markov chain, N ≥ 0;
• Sτ = State of a Markov chain, S = 1, 2, · · · , N, τ = 0, 1, · · · , L − 1;
• τ = An indicator to record the number of periods for next order arrival. The

number of periods remain for next order arrival is L−τ , where τ = 0, 1, · · · , L−
1.

• π = Row vector of the steady state probabilities πi, i = 1, 2, · · · , N;
• pij = Transition probability that a system is in state j from state i after 1 period,

i, j ∈ N;
• P = Transition matrix of a Markov chain;
• Pr{.} = Probability of an event.

The assumptions of this model are presented below.

(i) There is only one end-product supplied.
(ii) Order lead-time L is constant.

(iii) The supplier has unlimited capacity.
(iv) Order A(t) arrives in the beginning of period t with no delay, A(0) = 0.
(v) Customer demand at period t, D(t), is not known until the beginning of period

t, D(0) = 0.
(vi) Customer demand at period t, D(t), is handled in the beginning of period t.

(vii) Backorders are fulfilled immediately when there is enough inventory at the
beginning of period t.

4.2 System Dynamics for a Non-postponement System

We employ an (r, q) policy to manage the inventory. We update the inventory level
by the following system dynamics.

IL(t) = IL(t − 1) + A(t) − D(t), t = 1, 2, · · · (4.2.1)

B(t) = − min{IL(t), 0}, t = 0, 1, · · · (4.2.2)

I(t) = max{IL(t), 0}, t = 0, 1, · · · (4.2.3)

IP(t) = IL(t) +
t−1∑

i=t+1−L

O(i), t = 0, 1, · · ·



84 4 Evaluation of a Postponement System with an (r, q) Policy

and

O(i) = 0 for all i < 0. (4.2.4)

If lead-time L = 0, then the inventory is replenished immediately by a quantity
q whenever IP(t) ≤ r. That is, IL(t) = IL(t − 1) + q − D(t) if IP(t) ≤ r. Otherwise,
IL(t) = IL(t − 1) − D(t). For L ≥ 1, The reorder decision O(t) = A(t + L) = q is
made when IP(t) ≤ r. Otherwise, O(t) = A(t + L) = 0.

Our objective is to find an optimal (r∗, q∗) policy that will result in an optimal
total average cost per period C(r∗, q∗). Then we compare it with the total average
cost per period of the postponement system.

The objective function for the non-postponement system is as follows.

min C(r, q) = kOF + cD + hI + bB,

where

(i) OF is the average order frequency,
(ii) D is the average demand,

(iii) I is the average on-hand inventory,
(iv) B is the average backorder per period.

Assume that customer demand at period t follows a uniform distribution U(0, a),
where a is the maximum value of a demand per period. It implies that Pr{D(t) =
i} = 1

a+1 for i = 0, 1, · · · , a. Pr{D(t) = i} is independent of period t. The average

demand D is a
2 and the average order frequency OF is D

q = a
2q .

IL(t), by definition, depends on IL(t −1), order arrival A(t) and customer demand
D(t). If the order arrival A(t) is known, then IL(t) is not affected by the inventory
level before period t − 1. It satisfies the Markovian property that the conditional
probability of any future event is dependent on present events A(t) and D(t) and
independent of all past events. That is, Pr{IL(t) = j|IL(t − 1) = i} = Pr{IL(t) =
j|IL(0) = i0, IL(1) = i1, · · · , IL(t − 1) = it−1} (Hillier and Lieberman [53]). Thus,
we can develop a Markov chain to determine the steady state probability distribution
of IL(t) so that the average inventory I and average backorder B can be evaluated for
further cost analysis and comparison.

4.3 The Algorithm for Finding a Near Optimal Total Average
Cost of an (r, q) Policy

4.3.1 The Markov Chain Development

In this section, we refer the inventory level to as a Markov process, in which each
possible value is defined as a state Sτ and the change in one period is called a
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transition. Pr{IL(t) = j|IL(t − 1) = i} is the transition probability. As suggested by
Render et al. [98], there are four further assumptions for Markov chain development.
With another two assumptions tailored for this model, the six assumptions are stated
as follows.

(i) The number of states N is finite and constant for each transition.
(ii) All possible states are included in the Markov chain. It is also known as col-

lectively exhaustive.
(iii) The system can be in only one of the states. It follows the mutually exclusive

property.
(iv) All transition probabilities in the transition matrix P = (pij) are unchanged in

each transition.
(v) We restrict that there is no more than one single order outstanding during the

order lead-time L (Hadley and Whitin [51]). The reorder decision is simply to
place an order q, when IL(t) ≤ r and there is no order outstanding. It makes
the Markov process less complicated.

(vi) It is assumed that the order quantity is sufficient to cover the demands during
lead-time so that customers do not have to wait for more than L periods for
having the end-products. That is, a ≤ q for L = 0 and La ≤ q for L ≥ 1.

Variables that move the system from a present state to the next state are order
arrival and demand. Without an order arrival, i.e., A(t) = 0, the next state will be
one of the possible states that corresponds to the range IL(t − 1) and IL(t − 1) − a,
giving that IL(t − 1) − a ≤ IL(t) ≤ IL(t − 1). The transition probability is 1

a+1 for
all possible states and 0, otherwise. The system becomes more complicated if order
arrival is taken into account. The order decision depends on the reorder point r, the
order quantity q and the lead-time L. It is important to note that IL(t) ≤ r + q as no
multiple orders are allowed in the system. However, the lowest point that IL(t) can
reach is dependent on lead-time L and a. In turn, the lowest point also determines
the total number of possible states N of the Markov chain. In what follows, we wish
to find the total number of possible states N required for describing the inventory
level IL(t) in which r, q, a and L are decision variables.

4.3.1.1 The Total Number of Possible States N

States mean all possible outcomes of a Markov chain (Feller [42]). It is noted that
some of the states are dependent of lead-time L while some are not. To see this
point, let a Markov chain be in state S at period t, where state S corresponds to
IL(t) = S. If S ≤ r, that means state S can either move to one of the next states
S, S−1, · · · , S−a with corresponding IL(t+1) = S, S−1, · · · , S−a, provided that
an order will not arrive in the next period; or move to one of the next states S+q, S+
q−1, · · · , S +q−a with corresponding IL(t +1) = S +q, S +q−1, · · · , S +q−a,
provided that an order will arrive in the next period. However, if S > r, then state
S is independent of L. Therefore, only for those states S ≤ r, we have to record the
number of periods remain for the next order arrival as it affects the choice of next
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state. We use IL(t) = Sτ to define IL(t) = S and there are L − τ periods remain for
next order arrival. For instance, k0 means IL(t) = k and the next order will arrive L
periods later, while k2 means IL(t) = k and the next order will arrive L − 2 periods
later. One important point to note is that N is increased by lead-time L.

It is worthy to see how τ affects the number of states required N by listing all
possible outcomes of the Markov chain for a given set of r, q, a and L (L > 0) as
follows.

When there is no outstanding order, the possible states are:
r + q, r + q − 1, r + q − 2, · · · , r + 1.
When τ = 0, the possible states (S0) are: r, r − 1, r − 2, · · · , r − a + 1.
When τ = 1, (S1): r, r − 1, r − 2, · · · , r − a + 1, r − a, r − a − 1, · · · , r − 2a + 1.
When τ = 2, (S2): r, r − 1, r − 2, · · · , r − a + 1, r − a, r − a − 1, · · · ,
r − 2a + 1, r − 2a, r − 2a − 1, · · · , r − 3a + 1.
. . .

When τ = L − 1, (SL−1):
r, r − 1, r − 2, · · · , r − a + 1, r − a, r − a − 1, · · · , r − 2a + 1, r − 2a, r − 2a −
1, · · · , r − 3a + 1, · · · , r − (L − 1)a, r − (L − 1)a − 1, · · · , r − La + 1.

Table 4.1 Number of states required

τ Number of states required

No outstanding order q
0 a
1 2a
2 3a
· · · · · ·
L − 1 La

Table 4.1 summarizes our findings. According to the table, the total number of
states required is equal to

N = q + L(L + 1)a

2
. (4.3.5)

It implies that we need to develop an N × N transition matrix P to account for all
transition probabilities of the inventory level.

Although the current numbering system is highly sophisticated and it involves
negative numbers, it is an essential process for us to understand all elements and
states that constitute the transition matrix P. After completing this process, it is
more convenient to convert them into numerical order for further calculations and
analyses. However, a table should be kept for cross-referencing purposes.

In the following, we give two examples to demonstrate how our system works.
In the first one, we assume the lead-time is zero while the lead-time is non-zero in
the second example.
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Example 4.3.1 If q = 3, a = 1, r = 0 and L = 0, then N = 3 according to (4.3.5).
Since L = 0, we omit the subscript τ . The required states are explained as follows.

State 1: If IL(t) is in State 1 (IL(t) = 3), then it can either keep in State 1
(IL(t + 1) = 3) or move to State 2 (IL(t + 1) = 2) in the next period with
p11 = p12 = 1

2 and p13 = 0.
State 2: If IL(t) is in State 2 (IL(t) = 2), then it can either keep in State 2

(IL(t + 1) = 2) or move to State 3 (IL(t + 1) = 1) in the next period with
p22 = p23 = 1

2 and p21 = 0.
State 3: If IL(t) is in State 3 (IL(t) = 1), then it can either keep in State 3

(IL(t + 1) = 1) or move to State 1 (IL(t + 1) = 3) in the next period with
p33 = p31 = 1

2 and p32 = 0. It can move to State 1 (IL(t + 1) = 3) because
inventory is replenished simultaneously when demand is 1 in State 3. When
it is in State 1, then the process repeats so that there is no other possible
states missing.

The transition matrix P is

P =
⎡

⎣
p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤

⎦

=
⎡

⎣
0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

⎤

⎦ .

Example 4.3.2 If q = 3, a = 1, r = 0 and L = 2, then N = 6. States are explained
as follows.

State 1: If IL(t) is in State 1 (IL(t) = 3), then it can either keep in State 1
(IL(t + 1) = 3) or move to State 2 (IL(t + 1) = 2) in the next period with
p11 = p12 = 1

2 and p13 = p14 = p15 = p16 = 0.
State 2: If IL(t) is in State 2 (IL(t) = 2), then it can either keep in State 2

(IL(t + 1) = 2) or move to State 3 (IL(t + 1) = 1) in the next period with
p22 = p23 = 1

2 and p21 = p24 = p25 = p26 = 0.
State 3: If IL(t) is in State 3 (IL(t) = 1), then it can either keep in State 3

(IL(t + 1) = 1) or move to State 4 (IL(t + 1) = 00) in the next period with
p33 = p34 = 1

2 and p31 = p32 = p35 = p36 = 0. A subscript is used as
a counter to indicate the number of periods from an order placement when
there is no inventory in the system. If the subscript is equal to 0, it means
the order is just placed. If the subscript is equal to 1, it means the order is
placed 1 period before.

State 4: If IL(t) is in State 4 (IL(t) = 00), then it can either move to State 5
(IL(t + 1) = 01) or State 6 (IL(t + 1) = −11) in the next period with
p45 = p46 = 1

2 and p41 = p42 = p43 = p44 = 0.
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State 5: If IL(t) is in State 5 (IL(t) = 01), then it can either move to State 1 if demand
is 0, or State 2 if demand is 1 in the next period with p51 = p52 = 1

2 and
p53 = p54 = p55 = p56 = 0.

State 6: If IL(t) is in State 6 (IL(t) = −11), then it can either move to State 2 if
demand is 0, or State 3 if demand is 1 in the next period with p62 = p63 = 1

2
and p61 = p64 = p65 = p66 = 0. This is the last state to consider as the
system starts to repeat.

The transition matrix P is

P =

⎡

⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 p14 p15 p16
p21 p22 p23 p24 p25 p26
p31 p32 p33 p34 p35 p36
p41 p42 p43 p44 p45 p46
p51 p52 p53 p54 p55 p56
p61 p62 p63 p64 p65 p66

⎤

⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0 0 0 0
0 0.5 0.5 0 0 0
0 0 0.5 0.5 0 0
0 0 0 0 0.5 0.5

0.5 0.5 0 0 0 0
0 0.5 0.5 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

It is interesting to note that the transition matrix (P) is independent of the reorder
point r. In fact, only the corresponding inventory levels depend on r. To see this
point, we can revisit Example 4.3.2 for a general r. The six states are presented
below.

State 1: If IL(t) is in State 1 (IL(t) = r + 3), then it can either keep in State 1
(IL(t) = r + 3) or move to State 2 (IL(t) = r + 2) in the next period with
p11 = p12 = 1

2 and p13 = p14 = p15 = p16 = 0.
State 2: If IL(t) is in State 2 (IL(t) = r + 2), then it can either keep in State 2

(IL(t) = r + 2) or move to State 3 (IL(t) = r + 1) in the next period with
p22 = p23 = 1

2 and p21 = p24 = p25 = p26 = 0.
State 3: If IL(t) is in State 3 (IL(t) = r + 1), then it can either keep in State 3

(IL(t) = r + 1) or move to State 4 (IL(t) = r0) in the next period with
p33 = p34 = 1

2 and p31 = p32 = p35 = p36 = 0.
State 4: If IL(t) is in State 4 (IL(t) = r0), then it can either move to State 5

(IL(t) = r1) or State 6 (IL(t) = (r − 1)1) in the next period with
p45 = p46 = 1

2 and p41 = p42 = p43 = p44 = 0.
State 5: If IL(t) is in State 5 (IL(t) = r1), then it can either move to State 1 if demand

is 0, or State 2 if demand is 1 in the next period with p51 = p52 = 1
2 and

p53 = p54 = p55 = p56 = 0.
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State 6: If IL(t) is in State 6 (IL(t) = (r − 1)1), then it can either move to State 2 if
demand is 0, or State 3 if demand is 1 in the next period with p62 = p63 = 1

2
and p61 = p64 = p65 = p66 = 0. This is the last state to consider as the
system starts to repeat.

It is obvious that the transition matrix P is as the same as that in the second
example but the transition probabilities refer to a different inventory levels. We have
the following theorem.

Theorem 4.3.3 The transition matrix (P) and its number of states N are independent
of the reorder point r.

4.3.1.2 The Steady State Probabilities when L = 0

Let P(t) be the transition matrix that passes through t transitions. In what follows, we
wish to show that the transition matrix P(t) reaches a steady state. Recall that there
are totally four variables in describing the inventory system, namely r, q, a and L.
However, r has been shown to be arbitrary in calculating N in Section 5.3.2. Without
loss of generality, we can let r = 0 in the following analysis. In view of the fact that
the system becomes more complex when L > 0, first we assume L = 0 so that
N = q by (4.3.5) and P is an q × q transition matrix.

A Markov chain has a limit, limt→∞ P(t), and this limit is independent of the ini-
tial state if and only if it is an irreducible ergodic Markov chain (Feller [42]). Jenson
and Bard [58], and Hillier and Lieberman [53] classified an irreducible chain as a
chain that there is only one class that all states in the chain communicate. Specifi-
cally, any two states communicate if they are accessible from each other (Jenson and
Bard [58]). An ergodic Markov chain is defined as a finite-state Markov chain that
consists of recurrent states only and they are aperiodic (Hillier and Lieberman [53]).
If all states can communicate with one another, then it is possible that a state can
be revisited again after finite transitions. They are referred to as recurrent states.
These states are aperiodic if they can return to themselves after a random number of
transitions greater than 1 (Jenson and Bard [58]).

In our system, the inventory level moves from r + q to any state in the Markov
chain until an order arrives. Upon replenishment, there is a chance that the inventory
level is back to r + q from any state and starts to move to other states. Ross [100]
stated that if a state is recurrent and it communicates with another state, say state
j, then state j is also recurrent. r + q is one recurrent state. It supports our view
that the chain is irreducible and recurrent. Moreover, since the demand is stochastic
(uniformly distributed), so is the inventory level. Therefore, the problem can be
viewed as an irreducible ergodic Markov chain process so that a limit limt→∞ P(t)

exists. According to Jensen and Bard [58], P satisfies the following two conditions.

π (P − I) = 0, (4.3.6)
q∑

i=1

πi = 1, (4.3.7)
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where π is the vector of the steady state probabilities and I is the q × q identity
matrix.

Example 4.3.4 If a = 3, q = 5 and π = [π1 π2 π3 π4 π5], then π (P − I) = 0 can
be written as

[π1 π2 π3 π4 π5]

⎡

⎢⎢⎢⎢⎣

−0.75 0.25 0.25 0.25 0
0 −0.75 0.25 0.25 0.25
0.25 0 −0.75 0.25 0.25
0.25 0.25 0 −0.75 0.25
0.25 0.25 0.25 0 −0.75

⎤

⎥⎥⎥⎥⎦
= 0,

[π1 π2 π3 π4 π5]

⎡

⎢⎢⎢⎢⎣

−3 1 1 1 0
0 −3 1 1 1
1 0 −3 1 1
1 1 0 −3 1
1 1 1 0 −3

⎤

⎥⎥⎥⎥⎦
= 0.

Also, it can be expressed as five linear equations as follows.

−3π1 + π5 + π4 + π3 = 0,

−3π2 + π1 + π5 + π4 = 0,

−3π3 + π2 + π1 + π5 = 0,

−3π4 + π3 + π2 + π1 = 0,

−3π5 + π4 + π3 + π2 = 0.

The 6th equation is
∑5

i=1 πi = 1. There are totally six equations and five
unknowns. By eliminating one equation from the first five equations and by Gaus-
sian Elimination, the solution is π1 = π2 = π3 = π4 = π5 = 1

5 . In general, the two
conditions can be expressed as

− aπj +
a∑

i=1

(πj−i|j>i, πj−i+q|j≤i) = 0, (4.3.8)

q∑

i=1

πi = 1, for j = 1, 2, · · · , q. (4.3.9)

From (4.3.8), aπj = ∑a
i=1 (πj−i|j>i, πj−i+q|j≤i). There are a terms in both sides.

Let πj = 1
q for all j = 1, 2, · · · , q. It satisfies both Equations (4.3.8) and (4.3.9).

This solution is necessarily unique [58, 42] and independent of a because no matter
how many choices a present state can move to the next state, the probability that the
present state is one of the q states is equal, provided that replenishment lead-time L is
0. In fact, this Markov chain is also known as a doubly stochastic matrix as the sum
of any row and sum of any column is equal to 1. One property of a doubly stochastic
matrix is that its steady state probability for any πj is equal to the reciprocal of the



4.3 The Algorithm for Finding a Near Optimal Total Average Cost of an (r, q) Policy 91

number of states, 1
N (Feller [42]). It supports our finding: for L = 0, the steady state

probability for any πj = 1
q , which is independent of a.

In fact, this result can be examined numerically. Recall from our example when
a = 3 and q = 5. The initial transition matrix P(0) is expressed below.

P(0) =

⎡

⎢⎢⎢⎢⎣

0.25 0.25 0.25 0.25 0
0 0.25 0.25 0.25 0.25

0.25 0 0.25 0.25 0.25
0.25 0.25 0 0.25 0.25
0.25 0.25 0.25 0 0.25

⎤

⎥⎥⎥⎥⎦

= 0.25

⎡

⎢⎢⎢⎢⎣

1 1 1 1 0
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

⎤

⎥⎥⎥⎥⎦
.

P(2) = 0.253

⎡

⎢⎢⎢⎢⎣

13 13 12 13 13
13 13 13 12 13
13 13 13 13 12
12 13 13 13 13
13 12 13 13 13

⎤

⎥⎥⎥⎥⎦
.

P(20) = 0.2

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥⎥⎥⎥⎦
.

Define p(t)
ij = P(t). As t → ∞, p(t)

ij = 0.2 for all i and j. It implies the Markov
chain is stabilized. When the system is in steady state, regardless of the initial state,
the probability that the system is in one of the possible states is 1

q . It is equivalent to
our previous conclusion. We have the following theorem (Feller [42]).

Theorem 4.3.5 For L = 0, the steady state probability for any πj = 1
q , j =

1, 2, · · · , q.

4.3.1.3 The Steady State Probabilities when L ≥ 1

The core of this section is to analyze if the system reaches a steady state. That is,
π (P − I) = 0. In other words, it is to prove that 1 is an eigenvalue of P.

Definition 4.3.6 A nonnegative matrix is stochastic if all its row sums or column
sums are equal to 1 (Bronson[16]).

Proposition 4.3.7 A stochastic n × n matrix A has an eigenvalue equal to 1.
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Proof Without loss of generality, we let the sum of any row of A be 1. Then the
sum of any row of (A − I) is zero. Further, we let a set of column vectors, denoted
as A1, A2, · · · , An, to represent the corresponding columns of A-I. A1 + A2 +· · ·+
An = 0. It means that they are linearly dependent. So det(A-I)=0. It proves that A
has an eigenvalue equal to 1.

Since P is a stochastic square matrix, it has an eigenvalue equal to 1. It implies
πP = π and thus π (P − I) = 0, for some non-zero row vectors π . We can take a
π �= 0 such that the two conditions (Equations (4.3.6) and (4.3.7)) from Jensen and
Bard [58] are still applicable in the case when L > 0 after normalization. That is,

π (P − I) = 0, (4.3.10)
N∑

i=1

πi = 1, (4.3.11)

where I is the N × N identity matrix.

In order to combine these two conditions, we introduce an (N+1)×N augmented
matrix, P’, whose elements are presented below [58].

P’ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 p12 p13 p14 · · · p1N

1 p22 − 1 p23 p24 · · · p2N

1 p32 p33 − 1 p34 · · · p3N

1 p42 p43 p44 − 1 · · · p4N

· · · · · · · · · · · · · · ·
1 pN2 pN3 pN4 · · · pNN − 1
1 0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The advantage of using P’ is that (4.3.10) and (4.3.11) can be solved directly
by performing Gaussian Elimination (column operations). We begin our analysis by
letting L = 1 and a = 1. Again, r = 0 without any loss of generality. By assumption,
q ≥ 1. Let q = 5, a 7×6 matrix P’, is expressed below.

P’ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5 0 0 0 0
1 −0.5 0.5 0 0 0
1 0 −0.5 0.5 0 0
1 0 0 −0.5 0.5 0
1 0 0 0 −0.5 0.5
1 0.5 0 0 0 −1
1 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After performing the Gaussian Elimination,
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P’ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 2 0 0 0 0
1 1 3 0 0 0
1 1 1 4 0 0
1 1 1 1 5 0
1 0 0 0 0 10
1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The solution is π1 = 1
10 , π2 = 2

10 , π3 = 2
10 , π4 = 2

10 , π5 = 2
10 , π6 = 1

10 . This
means Pr{IL(∞) = 5} = Pr{IL(∞) = 0} = 1

10 , Pr{IL(∞) = 4} = Pr{IL(∞) =
3} = Pr{IL(∞) = 2} = Pr{IL(∞) = 1} = 2

10 when the system is in steady state.
When q = 6, P’ becomes

P’ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
1 2 0 0 0 0 0
1 1 3 0 0 0 0
1 1 1 4 0 0 0
1 1 1 1 5 0 0
1 1 1 1 1 6 0
1 0 0 0 0 0 12
1 1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The solution is π1 = π7 = 1
12 , π2 = π3 = π4 = π5 = π6 = 2

12 . This means
Pr{IL(∞) = 6} = Pr{IL(∞) = 0} = 1

12 , Pr{IL(∞) = 5} = Pr{IL(∞) = 4} =
Pr{IL(∞) = 3} = Pr{IL(∞) = 2} = Pr{IL(∞) = 1} = 2

12 when the system is in
steady state.

In general, it is easy to see that

P’ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5 0 0 0 · · · 0 0
1 −0.5 0.5 0 0 · · · 0 0
1 0 −0.5 0.5 0 · · · 0 0
1 0 0 −0.5 0.5 · · · 0 0
1 0 0 0 −0.5 · · · 0 0
1 0 0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
1 0 0 0 0 · · · −0.5 0.5
1 0.5 0 0 0 · · · 0 −1
1 0 0 0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

︸ ︷︷ ︸
q+1 columns

Inductively, using Gaussian Elimination (column operations), we obtain
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P’ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · · 0 0
1 2 0 0 0 · · · 0 0
1 1 3 0 0 · · · 0 0
1 1 1 4 0 · · · 0 0
1 1 1 1 5 · · · 0 0
1 1 1 1 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
1 1 1 1 1 · · · q 0
1 0 0 0 0 · · · 0 2q
1 1 1 1 1 · · · 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By using backward substitution, the solution is π1 = πq+1 = 1
2q , πi = 1

q for

i = 2, 3, · · · , q. This means Pr{IL(∞) = q} = Pr{IL(∞) = 0} = 1
2q and

Pr{IL(∞) = i} = 1
q for i = 1, 2, 3, · · · , q − 1 when the system is in steady state.

However, starting from L = 1 and a = 2, there is no such pattern for analysis.
Therefore, linear equations are developed and solved directly. In fact, we gener-
ated another eleven data sets and solve them in order to find a general pattern of
the steady state probabilities. Interestingly, there are some general patterns found
and they are useful for expanding our model in a more generic form. Two tables
are presented below. The first one (Table 4.2) is a summary table of the required
states N and their corresponding inventory levels of the 13 data sets. The second
one (Table 4.3) is a summary table of the probabilities of the thirteen data sets.

Table 4.2 The 13 data sets and their required states

Set 1 2 3 4 5 6 7 8 9 10 11 12 13

L 1 1 1 1 1 2 2 2 2 2 3 3 3
a 1 1 2 2 3 1 1 2 2 3 1 1 2
q 5 6 5 6 6 5 6 6 10 10 6 7 7
π1 5 6 5 6 6 5 6 6 10 10 6 7 7
π2 4 5 4 5 5 4 5 5 9 9 5 6 6
π3 3 4 3 4 4 3 4 4 8 8 4 5 5
π4 2 3 2 3 3 2 3 3 7 7 3 4 4
π5 1 2 1 2 2 1 2 2 6 6 2 3 3
π6 0 1 0 1 1 00 1 1 5 5 1 2 2
π7 – 0 –1 0 0 01 00 00 4 4 00 1 1
π8 – – – –1 –1 –11 01 01 3 3 01 00 00
π9 – – – – –2 – –11 –10 2 2 02 01 01
π10 – – – – – – – –11 1 1 –11 02 02
π11 – – – – – – – –21 00 00 –12 –11 –10
π12 – – – – – – – –31 01 01 –22 –12 –11
π13 – – – – – – – – –10 –10 – –22 –12
π14 – – – – – – – – –11 –11 – – –21
π15 – – – – – – – – –21 –20 – – –22
π16 – – – – – – – – –31 –21 – – –31
π17 – – – – – – – – – –31 – – –32
π18 – – – – – – – – – –41 – – –42
π19 – – – – – – – – – –51 – – –52
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Table 4.3 The probability distributions (in terms of N) of the 13 data sets

Set 1 2 3 4 5 6 7 8 9 10 11 12 13

L 1 1 1 1 1 2 2 2 2 2 3 3 3

a 1 1 2 2 3 1 1 2 2 3 1 1 2

q 5 6 5 6 6 5 6 6 10 10 6 7 7

π1
1

10
1

12
1

15
1

18
1

24
1

20
1

24
1

54
1

90
1

160
1

48
1

56
1

189

π2
2

10
2

12
2

15
2

18
2

24
3

20
3

24
3

54
3

90
3

160
4

48
4

56
4

189

π3
2

10
2

12
3

15
3

18
3

24
4

20
4

24
6

54
6

90
6

160
7

48
7

56
10

189

π4
2

10
2

12
3

15
3

18
4

24
4

20
4

24
8

54
8

90
10

160
8

48
8

56
17

189

π5
2

10
2

12
3

15
3

18
4

24
4

20
4

24
9

54
9

90
13

160
8

48
8

56
23

189

π6
1

10
2

12
2

15
3

18
4

24
2

20
4

24
9

54
9

90
15

160
8

48
8

56
26

189

π7 – 1
12

1
15

2
18

3
24

1
20

2
24

6
54

9
90

16
160

4
48

8
56

27
189

π8 – – – 1
18

2
24

1
20

1
24

2
54

9
90

16
160

2
48

4
56

18
189

π9 – – – – 1
24 – 1

24
3

54
9

90
16

160
1

48
2

56
6

189

π10 – – – – – – – 3
54

9
90

16
160

2
48

1
56

2
189

π11 – – – – – – – 3
54

6
90

12
160

2
48

2
56

9
189

π12 – – – – – – – 1
54

2
90

3
160

1
48

2
56

9
189

π13 – – – – – – – – 3
90

8
160 – 1

56
5

189

π14 – – – – – – – – 3
90

5
160 – – 9

189

π15 – – – – – – – – 3
90

4
160 – – 8

189

π16 – – – – – – – – 1
90

6
160 – – 3

189

π17 – – – – – – – – – 6
160 – – 7

189

π18 – – – – – – – – – 3
160 – – 4

189

π19 – – – – – – – – – 1
160 – – 1

189

Recall the number of states N is larger than or equal to the range of inventory
level R, where R = q + La. If Table 4.3 is presented in terms of R instead of N, then
the probability distribution becomes symmetric. A revised table is shown below
(Table 4.4).

Based on Table 4.4, several important observations are obtained. We could not
prove them, but it is interesting to state them as conjectures for future research.

(i) In general, the probability distribution graph is trapezium-like with lower base
R and upper base (q − La). It is symmetric (see Fig. 4.3 for details).

(ii) The total area of the trapezium is equal to 1. Area of A=Area of C= La
2q and

Area of B= q−La
q .

(iii) La = 0 only if L = 0. In this case, Area of A=Area of C=0. The probability dis-
tribution becomes a horizontal line whose height is equal to 1

q . It is consistent



96 4 Evaluation of a Postponement System with an (r, q) Policy

Table 4.4 The probability distributions (in terms of R) of the 13 data sets

Set 1 2 3 4 5 6 7 8 9 10 11 12 13

L 1 1 1 1 1 2 2 2 2 2 3 3 3

a 1 1 2 2 3 1 1 2 2 3 1 1 2

q 5 6 5 6 6 5 6 6 10 10 6 7 7

Pr{IL(∞) = q} 1
10

1
12

1
15

1
18

1
24

1
20

1
24

1
54

1
90

1
160

1
48

1
56

1
189

Pr{IL(∞) = q − 1} 2
10

2
12

2
15

2
18

2
24

3
20

3
24

3
54

3
90

3
160

4
48

4
56

4
189

Pr{IL(∞) = q − 2} 2
10

2
12

3
15

3
18

3
24

4
20

4
24

6
54

6
90

6
160

7
48

7
56

10
189

Pr{IL(∞) = q − 3} 2
10

2
12

3
15

3
18

4
24

4
20

4
24

8
54

8
90

10
160

8
48

8
56

17
189

Pr{IL(∞) = q − 4} 2
10

2
12

3
15

3
18

4
24

4
20

4
24

9
54

9
90

13
160

8
48

8
56

23
189

Pr{IL(∞) = q − 5} 1
10

2
12

2
15

3
18

4
24

3
20

4
24

9
54

9
90

15
160

8
48

8
56

26
189

Pr{IL(∞) = q − 6} – 1
12

1
15

2
18

3
24

1
20

3
24

8
54

9
90

16
160

7
48

8
56

27
189

Pr{IL(∞) = q − 7} – – – 1
18

2
24 – 1

24
6

54
9
90

16
160

4
48

7
56

26
189

Pr{IL(∞) = q − 8} – – – – 1
24 – – 3

54
9
90

16
160

1
48

4
56

23
189

Pr{IL(∞) = q − 9} – – – – – – – 1
54

9
90

16
160 – 1

56
17

189

Pr{IL(∞) = q − 10} – – – – – – – – 8
90

15
160 – – 10

189

Pr{IL(∞) = q − 11} – – – – – – – – 6
90

13
160 – – 4

189

Pr{IL(∞) = q − 12} – – – – – – – – 3
90

10
160 – – 1

189

Pr{IL(∞) = q − 13} – – – – – – – – 1
90

6
160 – – –

Pr{IL(∞) = q − 14} – – – – – – – – – 3
160 – – –

Pr{IL(∞) = q − 15} – – – – – – – – – 1
160 – – –

with our previous findings. On the other hand, if La = q, then Area of B=0 and
the probability distribution graph is triangular in shape.

(iv) When q >> La, then both Area of A and Area of C tend to zero and the
probability distribution becomes a horizontal line again whose height is equal
to 1

q . This finding is identical to the case when La = 0.

CA B

q −La + 1
La Laq − La

q−La

2

Fig. 4.3 A plot of probability distribution diagram
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Although the shape of the probability distribution is estimated, it is more valuable
if the steady state probability for any IL(∞) is derived exactly. A 2-step algorithm
is introduced for this purpose. However, it is only a conjecture and only valid for
L=0,1 and 2, and all a, q and r. The algorithm is fully explained in the following.

The Two-step Algorithm (Conjecture)

Step 1: Calculate q(a + 1)L. It is the denominator of the steady state probabilities
for L=0,1 and 2.

Step 2: Derive the probability distribution.
If L = 0, then the probability distribution Pr{IL(∞) = i} is 1

q for
i = r + q, r + q − 1, · · · , r + 1 (Theorem 4.3.5).

If L = 1, then the probability distribution Pr{IL(∞) = i} is
1

q(a + 1)
,

2

q(a + 1)
,

3

q(a + 1)
, · · · ,

a

q(a + 1)︸ ︷︷ ︸
first a terms

,

for i = r + q, r + q − 1, · · · , r + q − a + 1,

a + 1

q(a + 1)
,

a + 1

q(a + 1)
, · · · ,

a + 1

q(a + 1)︸ ︷︷ ︸
next q − a terms

,

for i = r + q − a, r + q − a − 1, · · · , r + 1,

a

q(a + 1)
,

a − 1

q(a + 1)
, · · · ,

1

q(a + 1)︸ ︷︷ ︸
last a terms

, for i = r, r − 1, · · · , r − a + 1.

There are R = q + a terms in total.
If L = 2, then the probability distribution Pr{IL(∞) = i} is

1

q(a + 1)2
,

1 + 2

q(a + 1)2
,

1 + 2 + 3

q(a + 1)2
, · · · ,

1 + 2 + · · · + a

q(a + 1)2
︸ ︷︷ ︸

first a terms

,

for i = r + q, r + q − 1, · · · , r + q − a + 1,

(a + 1)2 − (1 + 2 + · · · + a)

q(a + 1)2
, · · · ,

(a + 1)2 − 1

q(a + 1)2
︸ ︷︷ ︸

next a terms

,

for i = r + q − a, r + q − a − 1, · · · , r + q − 2a + 1,

(a + 1)2

q(a + 1)2
,

(a + 1)2

q(a + 1)2
, · · · ,

(a + 1)2

q(a + 1)2
︸ ︷︷ ︸

next q − 2a terms

,

for i = r + q − 2a, r + q − 2a − 1, · · · , r + 1,
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(a + 1)2 − 1

q(a + 1)2
,

(a + 1)2 − (1 + 2)

q(a + 1)2
, · · · ,

(a + 1)2 − (1 + 2 + · · · + a)

q(a + 1)2
︸ ︷︷ ︸

next a terms

,

for i = r, r − 1, · · · , r − a + 1,

1 + 2 + · · · + a

q(a + 1)2
,

1 + 2 + · · · + (a − 1)

q(a + 1)2
, · · · ,

1

q(a + 1)2
︸ ︷︷ ︸

last a terms

,

for i = r, r − 1, · · · , r − 2a + 1.

There are R = q + 2a terms in total.

4.3.1.4 A Numerical Example

In this section, an example is used to demonstrate how the algorithm works to com-
pute the probability distribution of each possible IL(∞) value. The accuracy of the
algorithm is tested by solving the required linear equations. In this example, we let
L = 2, r = 0, a = 2 and q = 10 so that N = 16 and R = 14. The required states are

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 00, 01, −10, −11, −21, −31).

The possible inventory levels are

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, −1, −2, −3).

According to the algorithm,

Step 1: The denominator is q(a + 1)L = (10)(2 + 1)2 = 90.
Step 2: The probability distribution solution is listed as follows.

The first 2 terms,
Pr{IL(∞) = 10} = 1

90 and Pr{IL(∞) = 9} = 1+2
90 = 3

90 .

The next 2 terms,
Pr{IL(∞) = 8} = 9−(1+2)

90 = 6
90 and Pr{IL(∞) = 7} = 9−1

90 = 8
90 .

The next 6 terms,
Pr{IL(∞) = 6} = Pr{IL(∞) = 5} = Pr{IL(∞) = 4} = Pr{IL(∞) = 3} =
Pr{IL(∞) = 2} = Pr{IL(∞) = 1} = 9

90 .

The next 2 terms,
Pr{IL(∞) = 0} = 9−1

90 = 8
90 and Pr{IL(∞) = −1} = 9−(1+2)

90 = 6
90 .

The last 2 terms,
Pr{IL(∞) = −2} = 1+2

90 = 3
90 and Pr{IL(∞) = −3} = 1

90 .
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Besides, the probability distribution can be solved by performing column opera-
tion of the following 17 × 16 matrix, denoted as P’.

P′ =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
3

1
3 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −2
3

1
3

1
3 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −2
3

1
3

1
3 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −2
3

1
3

1
3 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −2
3

1
3

1
3 0 0 0 0 0 0 0 0 0

1 0 0 0 0 −2
3

1
3

1
3 0 0 0 0 0 0 0 0

1 0 0 0 0 0 −2
3

1
3

1
3 0 0 0 0 0 0 0

1 0 0 0 0 0 0 −2
3

1
3

1
3 0 0 0 0 0 0

1 0 0 0 0 0 0 0 −2
3

1
3

1
3 0 0 0 0 0

1 0 0 0 0 0 0 0 0 −2
3

1
3 0 1

3 0 0 0
1 0 0 0 0 0 0 0 0 0 −1 1

3 0 1
3

1
3 0

1 1
3

1
3 0 0 0 0 0 0 0 0 −1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 −1 1
3

1
3

1
3

1 1
3

1
3

1
3 0 0 0 0 0 0 0 0 0 −1 0 0

1 0 1
3

1
3

1
3 0 0 0 0 0 0 0 0 0 −1 0

1 0 0 1
3

1
3

1
3 0 0 0 0 0 0 0 0 0 −1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The probability of each state is summarized as follows.

N 10 9 8 7 6 5 4 3 2 1

Probability 1
90

3
90

6
90

8
90

9
90

9
90

9
90

9
90

9
90

9
90

N 00 01 −10 −11 −21 −31

Probability 6
90

2
90

3
90

3
90

3
90

1
90

By summing those states that are dependent of lead-time, say, Pr{IL(∞) = 0} =
Pr{IL(∞) = 00} + Pr{IL(∞) = 01} = 8

90 . It can be verified easily that the solution
is identical to our previous conjecture.

4.3.2 The Algorithm for Finding a Near Optimal Total
Average Cost

4.3.2.1 Pros and Cons of Using the Algorithm

In practice, a supply chain manager always performs various what-if analysis in
order to plan for the future, such as inventory. Our proposed algorithm aims at
helping managers to control their inventory levels with different (r, q) policies when
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facing different customer demands and order lead-times. Our algorithm is easy to
use and it greatly reduces the complexity in solving a large number of linear equa-
tions, as N is compounded by L and a. For instance, if L = 2 and a = 10, then q
should be at least 20 in accordance with the constraint La ≤ q. The minimum N will
be 50. It implies that there are 50 unknowns in total. It requires a significant amount
of computation time to solve them. With our algorithm, the whole probability distri-
bution is computed in only two steps. Besides, there is no need to develop a matrix
before we can get the whole probability distribution for the required inventory level.

The major drawback of the algorithm is its accuracy because it is based on our
findings rather than a mathematical proof. For validation, the algorithm should be
tested for a larger number of samples so that it can support a wider range of L, a, r
and q in high confidence. Another limitation is that it has an initial constraint La ≤ q
for using the algorithm and the algorithm can be used only for integer inputs.

4.3.2.2 The Algorithm for Optimization of the Cost Function

The proposed algorithm is a useful tool for us to find the average backorder and
average inventory for further analysis based on cost. Recall our objective function
for the non-postponement system is C(r, q) = kOF + cD + hI + bB. When L = 0,
the four variables, OF, D, I and B at steady state, can be expressed in terms of a, r
and q as follows.

OF = a

2q
.

D = a

2
.

I =
r+q∑

i=0

iPr{IL(∞) = i}

=
r+q∑

i=r+1

iPr{IL(∞) = i}

= 1

q

q∑

i=1

(r + i)

= r + 1 + q

2
.

B = 0.

C(r, q) = ka

2q
+ ca

2
+ h

(
r + 1 + q

2

)
.

By differentiating C(r, q) with respect to q and r,

∂C(r, q)

∂r
= h > 0.
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∂C(r, q)

∂q
= − ka

2q2
+ h

2
.

Since ∂C(r,q)
∂r is always positive, r∗ = 0. We have the following theorem.

Theorem 4.3.8 When L = 0, the optimal reorder point r∗ is zero for all a and q.

Further, we let ∂C(r,q)
∂q = 0,

q∗ =
√

ka

h

=
√

2kD

h
.

The optimal order quantity is equivalent to the well-known EOQ. Thus, the min-
imum average cost is

C(r∗, q∗) = √
hka + 1

2
(ca + h). (4.3.12)

For L ≥ 1, the four variables, OF, D, I and B, are expressed in terms of a, r and
q as follows.

OF = a

2q
.

D = a

2
.

I =
r+q∑

i=0

iPr{IL(∞) = i}.

B =
0∑

i=r−La+1

−iPr{IL(∞) = i}.

As stated before, the probability distribution of IL(∞) is changing with different
combinations of r, q and a, it is not easy to derive the minimum C(r∗, q∗) directly.
Therefore an iterative procedure is proposed for any given set of a and L. The heuris-
tic is explained below.

A Heuristic for Searching for C(r∗, q∗)
Start the computation of q

(i) Set r = 0 and q = La.
(ii) Generate the probability distribution.

(iii) Calculate C(0, q).
(iv) If C(0, q − 1) ≥ C(0, q) and C(0, q + 1) ≥ C(0, q), then q = q∗. Stop and goto

the computation of r.
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(v) q = q + 1. Goto (ii).

Start the computation of r

(i) Set r = 1.
(ii) Calculate C(r, q∗).

(iii) If C(r − 1, q∗) ≥ C(r, q∗) and C(r + 1, q∗) ≥ C(r, q∗), then r = r∗ and Stop.
Otherwise r = r + 1 and Goto (ii).

The iterative procedure starts with r = 0 because r does not affect the values of
the probability distribution. If we increase r, the whole distribution will be shifted
to the right and it implies that there are more safety stocks. When r is increased to
a value larger than La − 1, unnecessary safety stocks are stacked. Thus, the upper
bound of r is La − 1. On the other hand, if we keep increasing the value of q,
again unwanted stocks are created. Therefore, there should be an optimal (r∗, q∗)
that can result in a low average cost. However, our algorithm does not guarantee the
solution is the global optimal. This is consistent with the finding from Browne and
Zipkin [20] that there is no perfect method for solving an optimal (r, q) policy. In
fact, it is not uncommon to search for an appropriate reorder point based on a fixed
order quantity (see Matheus and Gelders [77], and Ng et al. [84]). The next section
will present a numerical example for this algorithm.

4.3.2.3 A Numerical Example

In this example, we assume the four cost parameters are k = 10, h = 1, b = 5 and
c = 3. Further we let L = 1 and a = 10 so that the initial q is 10. With initial
r = 0 (the upper bound of r is 9), the iterative procedure for the searching of r∗, q∗
and C(r∗, q∗) is shown in Table 4.5. When r is restricted to zero, C decreases as q
increases until q = 17. Then we fix q = 17 and relax r. When r = 2 and q = 17, a
near optimal C is reached. That is, C(2, 17) = 26.64. The policy is: if the inventory
level drops to 2, then place an order of quantity equal to 17. Twelve iterations are
required to reach the desired solution.

4.4 System Dynamics for a Postponement System

As recalled, we treat a postponement system as a zero stock policy or a so-called
make-to-order system. From the manufacturer’s point of view, when demand from
customer at period t, D(t), arrives, we order D(t) from the supplier at time t. The
customer will receive the order at period t + L, where L is the order lead-time. The
system dynamics for the postponement system are as follows.

IL(t) = A(t) − D(t) − B(t − 1). (4.4.13)

B(t) = −IL(t). (4.4.14)
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Table 4.5 Iterative procedure for L = 1, a = 10

Iteration k h b c L a r q OF D I B C

1 10 1 5 3 1 10 0 10 0.5 5 2 1.5 29.5
2 10 1 5 3 1 10 0 11 0.4545 5 2.364 1.364 28.73
3 10 1 5 3 1 10 0 12 0.4167 5 2.75 1.25 28.17
4 10 1 5 3 1 10 0 13 0.3846 5 3.154 1.154 27.77
5 10 1 5 3 1 10 0 14 0.3571 5 3.571 1.071 27.50
6 10 1 5 3 1 10 0 15 0.3333 5 4 1 27.33
7 10 1 5 3 1 10 0 16 0.3125 5 4.438 0.9375 27.25
8 10 1 5 3 1 10 0 17∗ 0.2941 5 4.882 0.8824 27.24
9 10 1 5 3 1 10 0 18 0.2778 5 5.333 0.8333 27.28
10 10 1 5 3 1 10 1 17 0.2941 5 5.642 0.6417 26.79
11 10 1 5 3 1 10 2∗∗ 17 0.2941 5 6.449 0.4492 26.64∗∗∗
12 10 1 5 3 1 10 3 17 0.2941 5 7.299 0.2995 26.74

Note: ∗, ∗∗, and ∗∗∗ are the optimal q, r, and total cost, respectively.

I(t) = 0. (4.4.15)

The reorder decision O(t) = A(t + L) = D(t) is made when D(t) > 0. Otherwise,
O(t) = A(t + L) = 0.

The cost function for the postponement system is

C = kOF + cD + hI + bB. (4.4.16)

Since the system is a make-to-order system, there is no on-hand inventory and
all orders are backlogged. I = 0 and B = LD because there are L orders outstanding
on average. The average order frequency OF is a

a+1 while the average demand D is
a
2 . Substitute them into (4.4.16),

C = ka

a + 1
+ (c + Lb)a

2
. (4.4.17)

It is interesting to evaluate whether or not this postponement (make-to-order)
system outperforms the non-postponement (r, q) system based on average cost. For
L = 0, it can be analyzed by subtracting equation (4.4.17) from (4.3.12) directly. In
fact, we compare the optimal (r∗, q∗) system with the postponement system. How-
ever, there is no exact equation for computing an optimal C(r∗, q∗) when L ≥ 1.
We employ our heuristic and simulation to show the difference between the two
systems. They will be fully discussed in the sequel.

4.5 Average Cost Comparison of the Two Systems When L = 0

In this section, we let the difference between (4.4.17) and (4.3.12) be Z. Z is
expressed as follows.



104 4 Evaluation of a Postponement System with an (r, q) Policy

Z = √
hka + 1

2
(ca + h) − ka

a + 1
− ca

2
,

= √
hka + h

2
− ka

a + 1
.

The result indicates that the postponement system results in a lower total average
cost in a wide variety of cases except when the fixed ordering cost k is relatively
larger than the inventory holding cost h and the maximum demand per period a.

4.6 Average Cost Comparison of the Two Systems When L ≥ 1

The simulation was run with the following truncated parameters.

L : 1, 2

a : 3 (low demand variability), 10 (high demand variability)

k : 0.1 (low fixed ordering cost), 15 (high fixed ordering cost)

c : 3 (low variable cost), 15 (high variable cost)

h : 1

b : 0.1 (low backorder cost), 15 (high backorder cost)

The values of k, h and b are based on a ratio analysis in which h is the base value.
In our analysis, there were totally 32 cases. In each case, a near optimal C(r∗, q∗)
was found by employing our heuristic. Then this near optimal average cost was
used to compare with the average cost of a postponement system. The percentage
difference is computed by the following equation.

C − C(r∗, q∗)

C(r∗, q∗)
× 100%, (4.6.18)

where

(i) C is obtained from (4.4.17), and
(ii) (4.6.18) is negative when the postponement system results in lower average cost

and vice versa.

The results of the 32 cases are summarized in Table 4.6.

4.6.1 An Overview of the Simulation Results

Based on the above results, only eight cases reported a lower total average cost
when the postponement system is adopted. In other words, the system only had a
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Table 4.6 A summary of the simulation results

Case L a k h b c r∗ q∗ C(r∗, q∗) C (%)

1 1 3 0.1 1 0.1 3 0 3 5.417 4.725 −12.8
2 1 3 0.1 1 0.1 15 0 3 23.42 22.73 −3.0
3 1 3 0.1 1 15 3 1 6 8.19 27.08 230.5
4 1 3 0.1 1 15 15 1 6 26.19 45.08 72.1
5 1 3 15 1 0.1 3 0 7 10.37 15.90 53.3
6 1 3 15 1 0.1 15 0 7 28.37 33.90 19.5
7 1 3 15 1 15 3 1 9 11.94 38.25 220.2
8 1 3 15 1 15 15 1 9 29.94 56.25 87.8
9 1 10 0.1 1 0.1 3 0 10 17.20 15.59 −9.4
10 1 10 0.1 1 0.1 15 0 10 77.20 75.59 −2.1
11 1 10 0.1 1 15 3 4 22 27.84 90.09 223.6
12 1 10 0.1 1 15 15 4 22 87.84 150.1 70.9
13 1 10 15 1 0.1 3 0 14 24.04 29.14 21.2
14 1 10 15 1 0.1 15 0 14 84.04 89.14 6.1
15 1 10 15 1 15 3 4 25 32.04 103.6 223.5
16 1 10 15 1 15 15 4 25 92.04 163.6 77.8
17 2 3 0.1 1 0.1 3 0 6 5.804 4.875 −16.0
18 2 3 0.1 1 0.1 15 0 6 23.80 22.88 −3.9
19 2 3 0.1 1 15 3 2 12 11.26 49.58 340.2
20 2 3 0.1 1 15 15 2 12 29.26 67.58 130.9
21 2 3 15 1 0.1 3 0 7 9.382 16.05 71.1
22 2 3 15 1 0.1 15 0 7 27.38 34.05 24.4
23 2 3 15 1 15 3 2 13 13.39 60.75 353.9
24 2 3 15 1 15 15 2 13 31.39 78.75 150.9
25 2 10 0.1 1 0.1 3 0 20 18.55 16.09 −13.3
26 2 10 0.1 1 0.1 15 0 20 78.55 76.09 −3.1
27 2 10 0.1 1 15 3 10 36 36.01 165.1 358.4
28 2 10 0.1 1 15 15 7 42 97.58 225.1 130.7
29 2 10 15 1 0.1 3 0 20 22.28 29.64 33.0
30 2 10 15 1 0.1 15 0 20 82.28 89.64 8.9
31 2 10 15 1 15 3 8 44 40.21 178.6 344.2
32 2 10 15 1 15 15 8 44 100.2 238.6 138.1

0.25 probability to outperform the non-postponement system. The maximum sav-
ing was 16% (case 17), while the minimum saving was only 2.1% (case 10). The
saving is relatively smaller than those cases when a non-postponement system is
preferred. These eight cases have two characteristics in common: low fixed ordering
cost and backorder cost. Particularly, by comparing case 1 with case 17, it was found
that when lead-time increases, the total cost saving also increases, given that other
parameters remain unchanged. Another finding was that when demand variability
(measured by a) becomes larger, the saving yielded becomes smaller. It was sup-
ported by comparing case 1 with case 9, case 2 with case 10, case 17 with case 25,
and case 18 with case 26. In sum, a postponement system performs better when fixed
ordering cost k, variable cost c and backorder cost b are small, demand variability a
is low and lead-time is long.

Among those 24 cases that showed the non-postponement system is preferred,
eight of them led to an absolute cost advantage as the percentage difference was
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at least 220%. They were case 3, case 7, case 11, case 15, case 19, case 23, case
27 and case 31. In fact, they share two characteristics in common: low variable
cost and high backorder cost. The maximum saving was 358.4% when adopting a
non-postponement system. It is a solid evidence to support that this system yields
more total average cost savings in a wide variety of cases (75% in our study). A
brief investigation of all possible impacts of the parameters on the average cost of
both postponement system and non-postponement system are explained in detail in
the next section.

4.6.2 Impacts of Parameters on Average Cost

4.6.2.1 Impacts of Lead-time L

In the non-postponement system, longer lead-time induces the system to order more
at one time and to maintain a higher safety stock level. It implies higher r and
q values, and a higher inventory holding cost. Also, a longer lead-time means a
higher backorder risk because it creates more uncertainties to future demand and
supply. Therefore, the average backorder cost increases so does the total average
cost. On the other hand, the average backorder cost for the postponement system is
proportional to L. As both system costs depend on L, it is worth evaluating when
a postponement system outweighs a non-postponement system. In Section 6, it has
been proved that it is more advantageous to adopt a postponement system when
L = 0, except k is large. When L ≥ 1, a postponement system is still preferred
when k and b are small (0.1 in our study).

4.6.2.2 Impacts of Demand Variability a

Demand variability is measured by the maximum demand per period a as the
demand distribution is uniformly distributed. As stated before, a postponement sys-
tem performs better when coping with high demand variability, given k and b is
small.

4.6.2.3 Impacts of Inventory Holding Cost h

Remember h is the base value for calculating appropriate k and b based on different
ratios. Its relative impacts are explained in terms of k and b. For example, h = 1 is
relatively high if k = 0.1 and relatively low if k = 15.

4.6.2.4 Impacts of Fixed Ordering Cost k

It is the most significant factor for addressing the advantage of a non-postponement
system. Among the sixteen cases when the fixed ordering cost was high (k = 15),
there was no case reported that the postponement system is more cost effective. It
is identical to our findings when L = 0 in Section 6 that when k is large, it is more
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cost effective to adopt a non-postponement system. The major reason is that when
k is large, there is a higher incentive to order more at one time in order to avoid
such high cost. However, there is no way for a postponement system to adjust the
ordering pattern since it orders every period.

4.6.2.5 Impacts of Backorder Cost b

According to our findings, the postponement system is highly sensitive to the back-
order cost because all orders received are fully backlogged. In contrast, only a pro-
portion of customer orders is backlogged in the non-postponement system. In facing
high backorder cost, the non-postponement system is more cost effective.

4.6.2.6 Impacts of Variable Cost c

c is a special parameter for analyzing the cost impact. When c increases, while
other parameters remain unchanged, both C(r∗, q∗) and C increase significantly. In
case the postponement system results in a lower average cost, the percentage in
saving decreases as c increases. On the other hand, if a non-postponement system
results in a lower average cost, the percentage saved decreases as c increases. In
fact, this point can be explained by revisiting equation (4.6.18). Since cD is identical
for both C(r∗, q∗) and C, it is cancelled out in the nominator but it remains in the
denominator. Therefore, it leads to a lower percentage no matter it is positive or
negative. But it does not change the sign.

Based on our analysis, a postponement system outperforms a non-postponement
system when L = 0 and k is relatively smaller than a and h, or both k and b are
relatively smaller than a and h when L ≥ 1. Otherwise, a non-postponement system
should be adopted. In sum, this comparison can be viewed as a trade-off between h
against b and k.

4.7 Concluding Remarks

The objective of this chapter is to evaluate a postponement system based on a total
average cost function. To achieve it, an optimal total average cost (when L = 0) or
a near optimal total average cost (when L ≥ 1) of a lot size-reorder point system
was computed and was used for comparison basis. In both systems, it was assumed
that customer demand is uniformly distributed and discrete in time, and order lead-
time is constant. Optimization technique was employed when lead-time is zero and
simulation technique was used when lead-time is non-zero. Our results indicate that
the non-postponement system is more cost effective in a wide variety of cases in
dealing with a single end-product under stochastic demand.

There are some limitations in this chapter. The first one is the assumption that
there is no more than one outstanding order for the non-postponement system. It
may not be valid in practice. Besides, we simplify the postponement system to
a pure make-to-order system of a single end-product so that there is no point of
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product differentiation. It limits the capability of a postponement system to deal
with product variety. To be more equitable, a multi-product model is developed
in the next chapter so that there is a point of product differentiation in a supply
chain. Also we attempt to evaluate the postponement system with other demand
distributions such as Poisson or normal so that more evidence can be collected to
maintain a high completeness of this study.

Moreover, our proposed heuristic for finding an optimal total average cost does
not guarantee the global optimal solution can be found. Its speed is relatively slow
as the lead-time is long and the demand variability is high. In our simulation, the
maximum iterations required were 35 (case 32). It is anticipated that more computa-
tion time is needed when lead-time and demand variability increase. An alternative
strategy is to start at finding a good r∗ with a fixed q. Then fix r∗ and relax q for
approaching a near optimal solution. It is possible because we found that r converges
more rigorously. Besides, the algorithm for computing the probability distribution
is not yet confirmed to be applicable when lead-time is more than two periods. One
future research direction is to generalize this algorithm to be used when lead-time
is more than two periods.



Chapter 5
Simulation of a Two-End-Product Postponement
System

In the last chapter, we have shown that the cost benefits of a postponement system
are limited when it is implemented to a single end-product supply chain system
whose customer demands are discrete and uniformly distributed. To a great extent,
a lot size-reorder point system outperforms a postponement system when it is oper-
ated in its optimal or near optimal total average cost at steady state based on our
results. However, it is argued that a postponement system may outperform a lot size-
reorder point system if the supply chain system offers more than one end-product.
This view is coherent with our findings in Chapters 2 and 3. Besides, the analysis
would be more valuable if both Poisson and normal distributions are considered. In
fact, it is more equitable to compare the two systems by an experimental approach
instead of their long-run steady states because the steady state may be reached only
after infinite periods or a very long time. In order to maintain completeness of our
study, a more dynamic system is developed by simulation technique in this chapter.

In this chapter we conduct simulation experiments of a two-end-product sup-
ply chain, for which customer demands are discrete and independent. Customer
demands follow a uniform, Poisson or normal distribution. Two simulation models,
namely one is a postponement system while the other is a non-postponement system,
are designed for comparing their performance and total cost after t periods. Given
a set of (r, q) policies and a demand distribution, the postponement system outper-
forms the non-postponement system in terms of average order frequency, average
on-hand inventory, average backorder and average fill-rate. Thus, this system pro-
vides some cost benefits when the net postponement cost is low.

This chapter is organized as follows. The proposed models and assumptions are
presented in Section 5.1. Details of the simulation run are discussed in Section 5.2.
In Section 5.3 and 5.4, simulation results for both performance indicators and total
average costs are analyzed. Some concluding remarks are given in Section 5.5.1

1 The following discussion in this chapter is largely based on the ideas and results presented in Wan
[125].

T.C.E. Cheng et al., Postponement Strategies in Supply Chain Management,
International Series in Operations Research & Management Science 143,
DOI 10.1007/978-1-4419-5837-2_5, C© Springer Science+Business Media, LLC 2010
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5.1 Proposed Model and Assumptions

There are three parties, namely a supplier, a manufacturer and a group of customers
in our supply chain. We assume the model is discrete in time. This time the man-
ufacturer offers two end-products to customers. The end-products are similar but
their demands are independent of each other. Like our study in the previous chapter,
the manufacturer is facing two options in offering the end-products: to use a lot
size-reorder point system and to use a zero stock system. For simplicity, we denote
the first one as a non-postponement system and the latter one is referred to as a
postponement system. In the non-postponement system, the manufacturer orders the
two end-products separately from the supplier by sending two independent orders.
These ordering decisions are controlled by the specified reorder point and order
quantity of each end-product (Fig. 5.1). On the other hand, the manufacturer can
order the work-in-process inventory (WIP) and transform them into finished goods
when demands are known in the beginning of each period. The customization pro-
cess is assumed to be simple and quick so that the end-products can be shipped out
in the same period. The ordering decision of the WIP is also controlled by its reorder
point and order quantity (Fig. 5.2). Since there is no stock of end-products, we call
this system the postponement system and the customization process is the product
differentiation point.

Fig. 5.1 Process flow of the non-postponement system

Fig. 5.2 Process flow of the postponement system
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5.1.1 Notation

• i = end-product (i = 1, 2), and WIP (i = 3);
• t = Number of periods, t > 0;
• k = Fixed order cost, k > 0;
• c = Variable cost per unit, c > 0;
• h = Inventory holding cost per unit per period, h > 0;
• b = Backorder cost per unit per period, b > 0;
• α = Net postponement cost per unit per period;
• ri = Reorder point for i, ri ≥ 0;
• qi = Order quantity for i, qi ≥ 0;
• Ii(t) = On-hand inventory for i at the end of period t, I(t)i ≥ 0;
• Bi(t) = Accumulated backorder for i at the end of period t, B(t)i ≥ 0;
• Oi(t) = Order quantity placed for i at the end of period t, O(t)i ≥ 0;
• Ai(t) = Order arrived for i in the beginning of period t, A(t)i ≥ 0;
• ILi(t) = Inventory level for i at the end of period t, ILi(t) = Ii(t) − Bi(t);
• IPi(t) = Inventory position for i at the end of period t before placing order,

IPi(t) = Ii(t) − Bi(t) + outstanding orders at time t;
• Si(t) = Order shipped out for i at the end of period t, S(t)i ≥ 0;
• Di(t) = Demand for i in the beginning of period t, D(t)i ≥ 0;
• L = Order lead-time for the end-product, L ≥ 0;
• Ii = Average inventory for i per period, Ii ≥ 0;
• Bi = Average backorder for i per period, Bi ≥ 0;
• OFi = Average order frequency for i per period, OFi ≥ 0;
• Di = Average demand for i per period, Di ≥ 0;

• Fi = Average fill rate for i per period, Fi = Di−Bi
Di

× 100%;
• C(r, q) = Total average cost per period when q and r are given,C(r, q) > 0.

5.1.2 Model Assumptions

(i) Order lead-time L is constant for i.
(ii) For simplicity, one unit of WIP is used to make one unit of end-product 1 or

end-product 2.
(iii) The fixed order cost, variable cost and backorder cost are identical for end-

product 1 and end-product 2.
(iv) The inventory holding cost is identical for end-product 1, end-product 2 and

WIP.
(v) The supplier has unlimited capacity.

(vi) Order Ai(t) arrives in the beginning of period t with no delay, Ai(0) = 0.
(vii) Customer demand for end-product i, (i = 1, 2) at period t, Di(t), is not known

until the beginning of period t, D(0)i = 0.
(viii) Customer demand for end-product i, (i = 1, 2) at period t, Di(t), is handled

in the beginning of period t.
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(ix) Backorders are fulfilled immediately when there is enough inventory in the
beginning of period t.

We recall that one advantage of a postponement system is that it can reduce
demand variability by the risk-pooling effect (Zinn [129]). It can enjoy bulk pur-
chase advantage and a lower inventory holding cost as the WIPs are less bulky and
easier to handle. However, the cost associated with the customization process cannot
be ignored (Lee and Billington [66]). In view of this fact, a simulation study is
employed to analyze whether or not the postponement is more effective in terms of
some performance indicators and a total average cost function. In this chapter, the
five statements below are examined.

Statement 1: Postponement results in a lower average order frequency OF.
Statement 2: Postponement results in a lower average inventory I.
Statement 3: Postponement results in a lower average backorder B.
Statement 4: Postponement results in a better average fill rate F.
Statement 5: Postponement results in a lower total average cost C(r, q) for some

cost parameters.

The total average cost per period for the non-postponement system is

C(r1, q1) + C(r2, q2) = k(OF1 + OF2) + c(D1 + D2)

+h(I1 + I2) + b(B1 + B2). (5.1.1)

The total average cost per period for the postponement system is

C(r3, q3) = kOF3 + (c + α)D3 + hI3 + bB3, (5.1.2)

where α is the net postponement cost per unit per period.

5.2 Methodology

5.2.1 System Dynamics

The system dynamics for end-product 1, end-product 2 and WIP, numbered as 3,
are identical to those expressed in Section 4.2. To recap, they are stated as follows.

ILi(t) = ILi(t − 1) + Ai(t) − Di(t), t = 1, 2, . . . (5.2.3)

Bi(t) = − min {ILi(t), 0}, t = 0, 1, . . . (5.2.4)

Ii(t) = max {ILi(t), 0}, t = 0, 1, . . . (5.2.5)
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IPi(t) = ILi(t) +
t−1∑

j=t+1−L

Oi(j), t = 0, 1, . . . (5.2.6)

and

Oi(j) = 0 for all j < 0, (5.2.7)

The reorder decision,

Oi(t) = Ai(t + L) =
{

qi, if IPi(t) ≤ ri

0, otherwise.

for i = 1, 2, 3.
Two flow charts that help to explain the flow of the non-postponement system and

the postponement system are illustrated in Figs. 5.3 and 5.4, respectively. Note that
for the non-postponement system, there should be two independent system flows,
each of which is shown as Fig. 5.3, for end-product 1 and end-product 2, while
there is only one for the postponement system (Fig. 5.4).

Fig. 5.3 Flow chart for the non-postponement system
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Fig. 5.4 Flow chart for the postponement system

5.2.2 The Simulation Model

Two simulation programs, one developed for modelling a postponement system and
the other used for evaluating a non-postponement system, were developed based
on the above system dynamics and assumptions. The purpose of the simulation
programs is to collect the performance indicators, namely average order frequency,
average on-hand inventory, average backorder and average fill rate, from each sys-
tem after a sizable computational run (100+t periods in our study), where t =1,000.
The first 100 periods were system warm-up periods and they were not recorded for
analysis. It could avoid the initial instability of the program. We define a simulation
run as an event when the two programs are run.

5.2.3 Customer Demand Distribution

For each simulation run, four sets of customer demands were generated randomly
from the Excel random number generator based on a specified distribution and its
parameters such as mean and standard deviation. In our study, customer demands
followed a uniform distribution, a Poisson distribution, or a normal distribution in
each simulation run. The four sets of customer demands covered both high and low
demand variabilities, in terms of demand range, for end-product 1 and end-product
2 respectively. We let Li and Hi, respectively, to represent a low demand range and a
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high demand range. The combinations of customer demands were (L1, L2), (H1, H2),
(H1, L2) and (L1, H2). The aim of this arrangement is to compare if demand pat-
tern affects the performance indicators under the same distribution. Moreover, the
simulation programs were run with different order lead-times L so as to evaluate
how stable our findings were when L is prolonged. Values of L under study were
L = 1, 2, 3, 5, 10 and 20 periods.

5.2.4 Order Quantity and Reorder Point

In order to conduct a fair comparison, the same order quantity and reorder point
were used for both simulation programs. However, the choice for each simulation
run was arbitrary as we did not attempt to study the optimal total average cost.
Instead, we wished to generalize our findings. For each combination, we used an
(r1, q1) policy and an (r2, q2) policy, respectively, for end-product 1 and 2 when
they were ordered separately. On the other hand, we used an (r1 + r2, q1 + q2)
policy for the postponement system. Further we assumed that the order quan-
tity and reorder point were proportional to L so as to maintain a high fill rate.
The (r, q) policy employed under different demand distributions is summarized
in Table 5.1.

5.2.5 Summary of Parameters

The values of the cost parameters, number of periods and order lead-times for our
simulation study are listed below.

h: 10 (base value)
k: 5 (low fixed order cost), 10 (moderate fixed order cost), 20 (high fixed order cost)
b: 5 (low variable cost), 10 (moderate variable cost), 20 (high variable cost)
c: 10
α: 0, 0.5, 1
L: 1, 2, 3, 5, 10, 20
t: 1000

According to our finding in Chapter 5, c does not affect the results of our anal-
ysis so that it was assumed to be a constant. Like what we have done in the last
chapter, we used h as our base value in this simulation. For each demand distri-
bution (uniform, Poisson or normal), there were 2 (simulation programs)×27 (cost
combinations)×4 (demand combinations)×6 (order lead-times)=1,296 sets of data.

5.2.6 Initial Conditions

For simplicity, we assume Di(0) = Oi(0) = Ai(0) = Bi(0) = Si(0) = 0 for i =
1, 2, 3. Ii(0) = ILi(0) = IPi(0) = 50 if the demand range for end-product i is low,
i = 1, 2, or Ii(0) = ILi(0) = IPi(0) = 500 if the demand range for end-product i
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is high, i = 1, 2. Thus, I3(0) = IL3(0) = IP3(0)=100, 550 or 1,000 based upon
different demand combinations.

5.3 Simulation Results for Non-cost Parameters

5.3.1 Uniform Distribution

Four sets of customer demands, namely L1, H1, L2, H2, were generated based on the
parameters in Table 5.2. Further, the lot size-reorder points for the non-postponement
system and the postponement system are summarized in Table 5.3. The simulation
results are shown in Tables A.1 and A.2 in Appendix A.

Table 5.2 Customer demand
sets (Uniform Distribution)

Data set Distribution

L1 D1:U(0, 10)
H1 D1:U(0, 100)
L2 D2:U(0, 10)
H2 D2:U(0, 100)

Table 5.3 Lot size-reorder points (r, q) for the non-postponement system and the postponement
system (Uniform distribution)

Combination End-product 1 End-product 2 WIP

L1, L2 (5L, 10L) (5L, 10L) (10L, 20L)
H1, H2 (50L, 100L) (50L, 100L) (100L, 200L)
L1, H2 (5L, 10L) (50L, 100L) (55L, 110L)
H1, L2 (50L, 100L) (5L, 10L) (55L, 110L)

According to Tables A.1 and A.2, it was found that the results are insensitive to
order lead-time L in general. Based on these two tables, it is clear that the saving
from the average order frequency is 50%. Thus, Statement 1 is supported. However,
this is the maximum saving as we treated those situations when end-product 1 and
end-product 2 are ordered in the same period as two independent orders. In fact, they
belong to one order, especially when there is only one supplier such as our supply
chain.

With reference to Fig. A.1 (Appendix A), it reveals that 75% of the cases sup-
ported that there is improvement on average inventory by adopting a postponement
system. Among the four demand combinations, the saving in inventory is the most
significant when both demand ranges for D1 and D2 are low and the order lead-time
L is shorter (this saving is 9.1% smaller than that of the non-postponement system).
Thus, Statement 2 is supported.

Besides, the saving in average backorder is satisfactory (Table A.2 in Appendix A).
Only one exceptional case reported that the postponement system results a higher
average backorder. It is relatively better when both demand ranges for D1 and D2 are
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low or high. The minimum improvement reached 40% in these two data sets, while
the maximum saving was only 26.7% in the other two data sets. Hence, Statement 3
is supported.

Since there were improvements in average inventory and average backorder, the
average fill rate was found to be improved in twenty-three cases with one excep-
tional case (Fig. A.3 in Appendix A). Thus, Statement 4 is supported. The most
significant improvement was revealed from the data sets (L1, L2) and (H1, H2). Gen-
erally speaking, the postponement system results in a more outstanding performance
than the non-postponement system, especially when demand ranges for D1 and D2
are both low or high.

5.3.2 Poisson Distribution

Four sets of customer demands, namely L1, H1, L2, H2, were generated based on the
parameters in Table 5.4. Further, the lot size-reorder points for the non-postponement
system and the postponement system are summarized in Table 5.5. The simulation
results are shown in Tables B.1 and B.2 in Appendix B.

Table 5.4 Customer demand
sets (Poisson Distribution)

Data set Distribution

L1 D1:P(10, 1)
H1 D1:P(100, 1)
L2 D2:P(10, 1)
H2 D2:P(100, 1)

Table 5.5 Lot size-reorder points (r, q) for the non-postponement system and the postponement
system (Poisson distribution)

Combination End-product 1 End-product 2 WIP

L1, L2 (10L, 20L) (10L, 20L) (20L, 40L)
H1, H2 (100L, 200L) (100L, 200L) (200L, 400L)
L1, H2 (10L, 20L) (100L, 200L) (110L, 220L)
H1, L2 (100L, 200L) (10L, 20L) (110L, 220L)

Unlike the findings reported in Section 5.3.1, this time the performance indicators
are dependent of the lead-time L. Again, it is obvious that Statement 1 is supported
as the average order frequency has dropped by about 50% by adopting the postpone-
ment system (Tables B.1 and B.2). Based on Fig. B.1 in Appendix B, the saving in
the average inventory is generally satisfactory, except for the data set (L1, H2) for
which only 33% of this statement is true. As the saving depends on the lead-time
L, it is higher when L is small, while it becomes insignificant when L ≥ 10. In
general, there were 79% of cases that reported that the postponement system results
in a lower average inventory. Thus, Statement 2 is supported.
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The difference in the average backorder between the two systems depends more
on lead-time than on demand range (Fig. B.2 in Appendix B). But there is no trend
as L is prolonged. It is noted that the average backorder of the non-postponement
system is roughly equal to that of the postponement system when L = 5 for all
data sets. One possible reason is that the lot size-reorder point policy for the non-
postponement system provides a good fit for all data sets when L = 5. However,
twenty-one cases supported the result that the postponement system leads to a lower
average backorder. Thus, Statement 3 is supported.

The most remarkable average fill rate improvement takes place when both λ1
and λ2 are low (Fig. B.3 in Appendix B). For the other three data sets, only slight
improvements are revealed. In general, Statement 4 is supported.

5.3.3 Normal Distribution I

Four sets of customer demands, namely L1, H1, L2, H2, were generated based on the
parameters in Table 5.6. Since the normal distribution includes negative values, we
simply treat them as zero during the random number generation process. The lot
size-reorder points for the non-postponement system and the postponement system
are summarized in Table 5.7. The simulation results are shown in Tables C.1 and
C.2 in Appendix C.

Table 5.6 Customer demand
sets (Normal Distribution I)

Data Set Distribution

L1 D1:N(10, 5)
H1 D1:N(100, 50)
L2 D2:N(10, 5)
H2 D2:N(100, 50)

Table 5.7 Lot size-reorder points (r, q) for the non-postponement system and the postponement
system (Normal Distribution I)

Combination End-product 1 End-product 2 WIP

L1, L2 (10L, 20L) (10L, 20L) (20L, 40L)
H1, H2 (100L, 200L) (100L, 200L) (200L, 400L)
L1, H2 (10L, 20L) (100L, 200L) (110L, 220L)
H1, L2 (100L, 200L) (10L, 20L) (110L, 220L)

Based on the simulation results (Tables C.1 and C.2), it is clear that Statement 1
is supported as the average order frequency decreases by 50% on average. However,
the difference in the average inventory between the non-postponement system and
the postponement system is affected by both lead-time L and mean demands μ1 and
μ2. (Fig. C.1 in Appendix C). When L ≥ 10, the difference is close to zero, while
when lead-time is short, say L = 1, the postponement system yields a lower average



120 5 Simulation of a Two-End-Product Postponement System

inventory. The postponement system results in a lower inventory when both μ1 and
μ2 are low (μ1 = μ2 = 10 in our study). In contrast, high μ1 and μ2 give the worst
performance among the four data sets, in which only two cases reported savings.
Generally speaking, 67% of the cases supported that the postponement system yields
a lower average inventory. Thus, Statement 2 is supported.

The overall results support that the postponement system associated with a lower
average backorder as there was only one exceptional case (Fig. C.2 in Appendix C).
Hence, Statement 3 is supported. Among the four data sets, the postponement sys-
tem outweighs the non-postponement in coping with the average backorder espe-
cially when both μ1 and μ2 are equal. That is, μ1 = μ2 = 10 or μ1 = μ2 = 100 in
our study.

Although postponement is not excellent in maintaining a lower average inven-
tory, the average fill rate is remarkably better than the non-postponement system
(Fig. C.3 in Appendix C). Again, there was only one exceptional case to disagree
with this finding. Thus, Statement 4 is supported. The improvement increases as
lead-time L increases, particularly when both μ1 and μ2 are equal. In sum, the post-
ponement system is highly preferable when L is long and mean customer demands
μ1 and μ2 are similar.

5.3.4 Normal Distribution II

In describing a normal distribution, customer demand variability can also be explained
by its standard deviation instead of its mean, as standard deviation measures the
absolute variability of customer demands (Simchi-Levi et al. [105]). In our case,
customer demands for the two end-products can fluctuate highly even though they
have the same mean. Therefore, our attention is paid to evaluate whether or not a dif-
ferent conclusion is made when they have smaller standard deviations. In what fol-
lows, σ1 = σ2 = 2 when μ1 = μ2 = 10, and σ1 = σ2 = 20 when μ1 = μ2 = 100.
Four customer sets are presented in Table 5.8. For simplicity, the lot size-reorder
points for the non-postponement system and the postponement system are identical
to those used in Section 5.3.3 (see Table 5.7).

Table 5.8 Customer demand
sets (Normal Distribution II)

Data Set Distribution

L1 D1:N(10, 2)
H1 D1:N(100, 20)
L2 D2:N(10, 2)
H2 D2:N(100, 20)

The simulation results are shown in Tables D.1 and D.2 in Appendix D. Accord-
ing to these two tables, it is revealed that the average order frequency has dropped
by about 50% for all sets of simulation results. The saving was roughly equal
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to that reported in Section 5.3.3. Thus, Statement 1 is supported. However, there
were nearly half of the cases found to support that the non-postponement is more
cost effective, especially when the two customer demand sets have different means
(Fig. D.1 in Appendix D). The total number of cases that reported a saving dropped
from 67 to 58% when the standard deviation became smaller. It gives an impression
that there was no significant difference in choosing a postponement system to obtain
a reduction in average inventory, although Statement 2 is supported.

The improvement in the average backorder was still satisfactory when the stan-
dard deviations of customer demands became smaller. With reference to Fig. D.2
in Appendix D, it is shown that there were only three exceptional cases disagreed
with the fact that the postponement system led to a reduction in average backorder.
More specifically, the postponement has an absolute advantage to outperform the
non-postponement system when customer demands for both end-products 1 and 2
are equal. That is, μ1 = μ2. Hence, Statement 3 is supported. It is consistent with
our finding in Section 5.3.3, in which standard deviations of customer demands are
higher.

Again, there were only three cases that departed from the observation that the
postponement system results in better average fill rates (Fig. D.3 in Appendix D).
In other words, the overall system performance has been improved, especially when
both customer demands are equal. Thus, Statement 4 is supported. Although the four
statements are supported, the postponement system yields more savings when the
standard deviations of the two demands are relatively larger (see Section 5.3.3).

Based on our findings, the postponement system is preferred when the end-
products have similar demand patterns and larger standard deviations, though it
generally results in a better performance when customer demands follow a uniform,
Poisson or normal distribution.

5.4 Simulation Results for Cost Parameters

It is found that the total average cost for the postponement system and the non-
postponement is insensitive to average backorder and average order frequency as
they are too small in comparison with the average demand and average inventory,
given that the maximum b and k are only twice of the values of c and h. Although
there are remarkable savings from average backorder and average order frequency
according to our previous findings, their associated cost savings may not be suffi-
cient to cover the net postponement cost per unit α. Thus, an analysis based on total
average cost is meaningful on this ground.

We compare the two system costs by a cost difference percentage as follows.

C = (5.1.2) − (5.1.1)

(5.1.1)
× 100%.

If C < 0, then it implies that the postponement system results in a lower total
average cost per period, and vice versa. Since there are 648 data sets for each
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distribution, an average C is presented for each demand combination [(L1, L2),
(H1, H2), (H1, L2), (L1, H2)], lead-time (L = 1, 2, 3, 5, 10, 20) and α (α = 0, 0.5, 1).
A summary of the simulation results are shown in Table E.1 in Appendix E.

It is interesting to note that when α=0, there were about 77% of our data reports
a cost saving with the postponement system, regardless of the demand distribu-
tion. However, when α = 1, the percentage of the data reports having a cost
saving is below 21%. In other words, α is very sensitive to the total average
costs of the two system. When α=0.5, the number of cases that reported a sav-
ing dropped below 50%. The worst case is when customer demands have smaller
standard deviations (see Normal Distribution II from Table E.1 in Appendix E).
There were only three cases that agreed with the fact that the postponement sys-
tem results in a lower total average cost. Furthermore, it dropped to one case when
α=1. Among the four distributions, it is found that the postponement system per-
forms better under uniform distribution and Poisson distribution. If the data from
the Normal Distribution II is discarded, the postponement system is preferred if
the mean customer demands for end-products 1 and 2 are equal and relatively low
(L1, L2) when α=0.5. Otherwise, the non-postponement system should be adopted.
For those customer demands that follow a Poisson distribution, or a normal dis-
tribution with larger standard deviations, this conclusion is still applied for longer
lead-time (say 5 or 10 periods in our study). Whereas it is only true for those uni-
form customer demands with shorter lead-time (say 1,2 or 3 periods). In general,
one reason that limits the cost saving from the postponement system when lead-
time is long is that the system does not account for demand variability between the
two end-products. In fact, the demands of the two end-products may be dependent
because they are similar from customers’ point of view. Therefore, they may have
negative covariance such that the demand standard deviation for the postponement
system is smaller. Thus, it might result a lower C(r3, q3), given the mean cus-
tomer demand for the postponement system is unchanged. When α=1, there is no
strong reason to opt for the postponement system in all distributions according to
our findings. Thus, Statement 5 is supported only when α=0, or α=0.5, the mean
customer demands for end-products 1 and 2 are similar and low, and lead-time is
short.

It is argued that α is greater than zero in a strong sense. In fact, the net post-
ponement cost can be minimized in three ways. The first one is from joint ordering.
Recall that the average order frequency drops by 50% for all demand distributions.
It implies we order more at each time period. It raises the bargaining power to ask
for a discounted k due to bulk purchase. Besides, since WIP is less bulky than the
end-products, more number of WIP can be shipped and thus, a lower k is obtained.
Another cost improvement strategy is the variable cost. In general, the variable cost
is lower if WIP is ordered instead of end-products. Moreover, the WIP is easier to
manage and forecast so that all h, q and r can be improved. These savings can be
used to balance the extra customization process cost so that the net postponement
cost is low or even negative. It makes our simulation study more applicable in han-
dling real life scenarios.
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5.5 Concluding Remarks

In this chapter, the relative effectiveness between a postponement system and a
non-postponement system was studied. We assumed two end-products are offered
in a supply chain. Customer demands are discrete in time period and they fol-
low a uniform distribution, a Poisson distribution or a normal distribution. In the
non-postponement system, end-products are ordered separately from a single sup-
plier, while in the postponement system, WIPs are ordered from the supplier and
are transformed into end-products when demands are known. Order decisions in
both systems follow some lot size-reorder point policies. Two simulation programs
were modelled to collect the key performance indicators, including average order
frequency, average inventory, average backorder and average fill rate, of the two
systems. Also, a cost analysis was conducted by putting the values of these indica-
tors and their cost parameters into two total average cost functions. By comparing
the performance indicators and the difference in total average cost between the
two systems, it was shown that the postponement system is more effective when
the customer demands have similar demand patterns (independent of the choice of
demand distribution), larger standard deviations (for normal distribution) and the
net postponement cost is relatively low (maximum 5% of the variable cost in our
study). However, there are limitations for this study. The first one is the generation
of data sets. For each distribution, only four sets of customer demands were drawn.
In fact, a larger sample size can reduce bias and make the analysis more general.
It is preferred in future research studies. Another limitation is that this study only
considered the supply of two end-products. The simulation model can be extended
to support up to n end-products so that the extent to which n affects the choice of
the postponement system can be fully evaluated.



Chapter 6
Application of Postponement: Examples
from Industry

In this chapter we report on two case studies of applying postponement strategy
in industry. The first case is a study of a Hong Kong based toaster manufacturing
company, which has successfully implemented postponement strategy. We present
a summary of how postponement strategy was implemented in its supply chain and
elaborate on all the benefits arising from the implementation of postponement. We
also discuss the implications of postponement for its supply chain. In the second
case an empirical analysis by Chiou et al. [28] is introduced. They empirically
examine the application of postponement strategy in Taiwanese information tech-
nology (IT) firms. First, the four types of form postponements are examined. Sec-
ond, the factors affecting the adoption of different form postponement strategies are
explored. The managerial and practical implications are also discussed.

This chapter is organized as follows. In Section 6.1 a case study form Hong Kong
are discussed. In Section 6.2 the case of Taiwan’s information technology industry
is addressed. Some concluding remarks are given in Section 6.3.

6.1 A Case Study from Hong Kong

A survey was conducted by interviewing the managing director of an electric toaster
manufacturer whose headquarters is based in Hong Kong.1 All the production pro-
cesses of the manufacturer are located in Guangdong province, China. The company
was chosen because it has implemented postponement strategies for more than ten
years. It provides some useful insights into the implementation of postponement
strategies in a real-life situation. Moreover, both advantages and disadvantages of
the strategy can be evaluated in comparison with our theoretical findings.

1 The following discussion in this Section is largely based on the ideas and results presented in
Wan [125].

T.C.E. Cheng et al., Postponement Strategies in Supply Chain Management,
International Series in Operations Research & Management Science 143,
DOI 10.1007/978-1-4419-5837-2_6, C© Springer Science+Business Media, LLC 2010

125



126 6 Application of Postponement

6.1.1 An Overview of the Company

The manufacturer produces more than 120 different models of toasters for 11 key
customers (in terms of brands) from the US, Europe, Japan and China. It has more
than 1,500 employees, who can produce 12,000 units per day. The company oper-
ates in a batch production mode. The number of toasters required per order ranges
from 1,000 to 3,000 units and the customer is expected to wait between 2 and 4
weeks for the delivery of products. It is noted that the manufacturing capacity is
sufficient to handle 12 orders at the same time. If there is enough capacity to handle
an order, the average order lead-time is 9 days when work-in-process inventory
(WIP) is available. Otherwise, it takes 15 days on average to complete the order.
The order is fulfilled when it is delivered to a predetermined dock in Guangdong.
The breakdowns of the lead-time is shown in Table 6.1.

Table 6.1 Lead-time breakdowns for toaster offering

Process Average lead-time required (days)

From raw material to WIP 6
From WIP to finished products (assembly) 1
Gift box ordering (after order receipt) 7
Packing and pre-shipment inspection 1
Ship to dock 1
Order lead-time (no WIP) 6 + 7 + 1 + 1 = 15
Order lead-time (WIP available) 7 + 1 + 1 = 9

Table 6.1 reveals that the company should keep more WIP so that the lead-time
can be 6 days shorter. It is one of the reasons to motivate the company to implement
the postponement strategy. Besides, customer demand fluctuates highly because
orders are generated from different companies, which sell their products to differ-
ent markets. In addition, customers always demand highly customized products so
there are few repeat orders. This demand pattern makes both the make-to-stock and
make-to-order operational modes impossible to smooth the production. It drives the
company to consider adopting a postponement strategy, in which some operations
are run in a make-to-stock mode, while others are operated in a make-to-order mode.
The postponement strategy implementation is presented in the next section.

6.1.2 Implementation of Postponement

Before adopting a postponement strategy, the company employed a pure make-
to-order mode to fulfill customer orders. In short, it transformed raw material to
finished goods only after customer order was received. It resulted in a highly unpre-
dictable production schedule.

The company implemented two postponement strategies, namely a form post-
ponement strategy and a pull postponement strategy, to improve the production
schedule. The company carried out a form postponement by part standardization.
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Parts, such as heaters, power cords and modules, are make-to-stock based on
demand forecast and all related information is provided to customers during the
product design process. It not only reduces the production time but also maintains a
high degree of product variety. When actual orders are received, these standardized
parts, together with other customized parts such as gift boxes and outer shells, are
transformed to finished goods in a timely way. It helps the company to become more
responsive in fulfilling customers’ requirements at a lower cost by this seamless
process. A detailed process flow chart of the postponement system is illustrated in
Fig. 6.1.

Fig. 6.1 A process flow chart of the toaster company

6.1.3 Benefits of Using Postponement

The benefits experienced by the toaster company after 10 years of implementation
of postponement are summarized as follows.

(i) Lead time has reduced from 15 to 9 days.
(ii) Cost of raw material has decreased by 5% due to bulk purchase.

(iii) Although the reduction in raw materials inventory is only 10% (see Table 6.2),
the number of items handled has dropped by 33% because the majority
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of them have been transformed to WIP (common module). It enables the
company to respond to different customer demands quickly with a lower raw
materials inventory.

(iv) Set-up time has dropped by 15% because the manufacturing of WIP is a
make-to-stock process based on demand forecast. In fact, the WIP is suitable
for producing nearly all kinds of toasters. It helps to smooth the process and
reduce the set-up time.

(v) Overall machine utilization is over 85%.
(vi) Order fulfillment is near 100%.

(vii) Make-to-stock in upstream production smoothes the whole supply chain pro-
cess in facing high demand fluctuations. Since all make-to-stock production
is based upon demand forecast, the company can have a better manpower
schedule to handle demand fluctuations.

(viii) A lower cost has been achieved in expanding the product range because only
those customization processes and parts are reconfigured.

(ix) It has become easier to maintain a low WIP inventory level by fine-tuning the
forecast system and manpower.

(x) Since the average order lead-time has been reduced to 8 days, customers can
place their orders more frequently. From the manufacturer’s point of view,
although the order quantity is lower, the demand fluctuation is lower as well.
It implies that production is more stable. From the customers’ point of view,
they are more satisfied because this manufacturer can adjust their orders in
a timely and responsive manner instead of having a large batch of unwanted
products.

Table 6.2 Change in inventory before and after postponement implementation

Inventory Before postponement (%) After postponement (%) Change (%)

Raw material 80 70 −10
WIP 10 15 5
Finished goods 10 15 5
Total 100 100 0

6.1.4 Implications

Although postponement has helped the company to achieve a low inventory level
and a low cost, it is not a perfect strategy to solve all supply chain problems. Cur-
rently the toaster company still faces the following three problems.

(i) Recall from Table 6.1 that the gift box ordering process requires 7 days as it is a
make-to-order process. Attention should be paid to this process for the further
reduction of lead-time.
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(ii) Customer orders are discontinuous and so demand fluctuations are still high.
In fact, the production quantity of an order is equal to several months’ sales for
many key customers.

(iii) Logistics postponement is not economical in this study because the production
cost in China is about the cheapest in the world. The cost saving in shipping
a smaller cubic volume and weight cannot offset the extra production cost for
shifting the packaging process to local distribution centers in the US or Europe.

6.2 The Case of Taiwanese Information Technology Industry2

In this section, we introduce the case study of Taiwanese information technology
(IT) firms. The IT firm was selected because IT products are characterized by high
product values, short product life cycles, and high demands for customization. Tai-
wan was selected because it is one of the largest producers of IT products and is
the largest original equipment manufacturing (OEM) partner for US and Japan.
Furthermore, Taiwanese firms have taken up the responsibility of providing global
logistics.

6.2.1 The Hypothesis

The goal of this case study is multi-fold. First, the four types of form postponements
proposed by Zinn and Bowersox [130] are empirically examined. Second, the fac-
tors affecting the adoption of different form postponement strategies are explored.

6.2.1.1 Four Types of Form Postponement Strategies

Zinn and Bowersox [130] first classified form postponement strategies into four
types: labeling, packaging, assembly, and manufacturing. The validity of the classi-
fication is assessed. Then the strength of the relationships among the four postpone-
ment strategies is examined in the following hypothesis.

Hla: If a firm adopts a packaging postponement strategy, it is more likely to adopt
a labeling postponement strategy as well.

Hlbl: If a firm adopts an assembly postponement strategy, it is more likely to adopt
a packaging postponement strategy as well.

Hlb2: If a firm adopts an assembly postponement strategy, it is more likely to adopt
a labeling postponement strategy as well.

Hlcl: If a firm adopts a manufacturing postponement strategy, it is more likely to
adopt an assembly postponement strategy as well.

2 The following discussion in this section is an excerpt from Chiou et al. [28].
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Hlc2: If a firm adopts a manufacturing postponement strategy, it is more likely to
adopt a packaging postponement strategy as well.

Hlc3: If a firm adopts a manufacturing postponement strategy, it is more likely to
adopt a labeling postponement strategy as well.

6.2.1.2 Factors Affect Postponement Strategy

Based on the interviews with industry professionals and evidences from past studies
(Bowersox and Morash [15], Closs et al. [30], Feitzinger and Lee [41], Pagh and
Cooper [91], van Hoek et al. [122]), four major product/demand characteristics are
identified as candidate drivers of form postponement strategies. These drivers are
demand for customization, modularity in construction, product value, and product
life cycle. The characteristics are examined with the following hypothesis.

H2a: Firms whose products are characterized by strong customer demand for cus-
tomization are more likely to use modular product designs.

H2b: Firms whose products are more modular in design are more likely to practice
assembly postponement.

H2c: Firms whose products are characterized by higher consumer demand for cus-
tomization are more likely to practice assembly postponement.

H3a: Firms whose products’ key components are more expensive to carry are more
likely to practice labeling postponement.

H3b: Firms whose products’ key components are more expensive to carry are more
likely to practice packaging postponement.

H3c: Firms whose products’ key components are more expensive to carry are more
likely to practice assembly postponement

H3d: Firms whose products’ key components are more expensive to carry are more
likely to practice manufacturing postponement.

H4: Firms whose products are characterized by a shorter product life cycle are
more likely to practice manufacturing postponement.

6.2.2 Methodology

Confirmatory factor analysis (CFA) is used to validate the dimensionality of form
postponement strategies, while path analysis is used to examine the relationships
between product/demand characteristics and the adoption of postponement strate-
gies.

Six hundred Taiwanese IT firms were selected as targets for this study. Survey
questions were designed to identify the characteristics and the type of form post-
ponements associated with the firms’ primary products. Of the 600 questionnaires
distributed, 102 were completed and returned (17%). Sample statistics are presented
in Table 6.3.
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Table 6.3 The background statistics of the sample

Demographic statistics average sales 87.5 million USD (2.1–61,000)a

Average of sales growth 40.1% (2–400%)
Average No. of employees 736 (3–20,000)
Average percentage of export sales 47% (8–100%)
Average of foreign production over total production 32.5% (5–100%)
Average No. of overseas warehouses 1.58(1–10)
aNumbers in parentheses indicate range of response.
Source: Chiou et al. [28]

6.2.3 Results

First, it is concluded that form postponement is better modeled as four distinct con-
structs: labeling, packaging, assembly, and manufacturing postponements.

Afterwards, it is concluded that hypotheses Hla, Hlbl, Hlb2, and Hlcl are accepted
while Hlc2 and Hlc3 are not. The rejection of Hlc2 and Hlc3 indicates that the
average Taiwanese IT firm practicing manufacturing postponement, is not more or
less likely to also practice labeling or packaging postponement.

Finally, it is concluded that hypotheses H2a, H2b, H2c and H3a are supported
at the 95% significance level while H3b and H4 are accepted at 90% significance;
H3c and H3d are not accepted. The acceptance of hypotheses H2a and H2b indi-
cates that customization is likely to induce modular product designs and modular
product designs are likely to induce assembly postponement. Hypothesis H2c is
accepted indicating that customization is also likely to induce assembly postpone-
ment directly. Hypothesis H3a and H3b are accepted while H3c and H3d are not
accepted indicating that products with high component costs appear to benefit from
labeling and/or packaging postponement strategy but not from manufacturing post-
ponement or assembly postponement. Hypothesis H4 is accepted indicating that
product life cycle has a significantly positive effect on manufacturing postponement
implementation.

6.2.4 Implications

This study provides evidence that form postponement strategies are practiced widely
by Taiwan IT firms and the four types of form postponements as proposed by Zinn
and Bowersox fit the postponement strategies practiced by Taiwan’s IT firms.

In addition, these results indicate that the experience in implementing one post-
ponement strategy may have lowered the cost of implementing another postpone-
ment strategy. The experience should provide better forecasts of the benefits and
costs of implementing postponement strategies, thus lowering the risk of imple-
mentation.

Furthermore, the results confirm the suspicion that there is a natural causal rela-
tionship between postponement strategies. Products characterized by high customer
demand for customization appear to benefit from assembly postponement as well
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as implementing more modular designs. Products, which are modular in design,
appear to benefit from assembly postponement as well. Also products with expen-
sive key components appear to benefit from labeling and packaging postponement,
but not necessarily assembly and manufacturing postponement. Finally, products
which have short product life cycles, appear to benefit from manufacturing post-
ponement.

6.3 Concluding Remarks

In this chapter we report on two case studies of applying postponement strategy
in industry. The first case is a study of a Hong Kong based toaster manufacturing
company, which has successfully implemented postponement strategy. We present
a summary of how postponement strategy was implemented in its supply chain and
elaborate on all the benefits arising from the implementation of postponement. We
also discuss the implications of postponement for its supply chain. In the second
case study we introduce an empirical analysis of the application of postponement
strategy in Taiwanese information technology (IT) firms. This study provides evi-
dence that form postponement strategies are practiced widely by IT firms in Taiwan.
In addition, four major product/demand characteristics are identified as candidate
drivers of form postponement strategies.

From the two case studies, the following conclusions can be obtained.

• Postponement strategies are practiced widely by some firms with certain charac-
teristics.

• Although postponement can help a company to achieve a low inventory level and
a low cost under certain circumstances, it is not a perfect strategy to solve all
supply chain problems.



Chapter 7
Conclusions, Implications and Future Research
Directions

7.1 Conclusions

The objective of this book was to address the benefits of adopting a pull postpone-
ment strategy, which is enabled with a form postponement strategy, in a supply chain
from a manufacturer’s point of view. In order to provide some general insights that
can be applied to a wide spectrum of scenarios, we developed four postponement
models based on different customer demand distributions, inventory policies and
supply chain compositions. In each model, a total average cost function and some
performance indicators were defined and they were used to compare with those of
a non-postponement model. Our research showed that the postponement strategy is
more beneficial when dealing with more than one end-product. A summary of our
findings are presented as follows.

There are new research opportunities in studying postponement by deterministic
models such as EOQ and EPQ. Also, there is little research that studies postpone-
ment when customer demands follow a uniform distribution. Our book fills these
two gaps.

The first postponement model is EOQ-based. The model aims at evaluating
whether or not ordering n imperishable end-products jointly results in a lower EOQ
and a lower total average cost. By optimization, our results showed that postpone-
ment yields a lower EOQ and a lower total average cost, provided that the end-
products have same backorder costs, different backorder costs or a combination
of both. Furthermore, we develop an EOQ-based model with perishable items to
evaluate the impact of item deterioration rate on inventory replenishment policies.
Our theoretical analysis and computational results show that for perishable products
with a constant deterioration rate, a postponement strategy can yield a lower total
average cost when the constant deterioration rate is small (Chapter 2).

Afterwards, we develop two EPQ-based models with and without stockout to
examine the impact of postponement. We separate a supply chain into two processes.
The first process is the production of a generic product that is the core module of
n end-products, while the second process is to customize the generic products to
different end-products. We formulate the total average cost functions of the two
scenarios for producing and keeping n end-products in a supply chain, in which
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their demands are known and deterministic. Our findings indicated that: (1) in the
scenario without stockout, postponement results in a lower total average cost when
customer demands of the n end-products are fulfilled after production is complete;
(2) in the scenario with planned backorder, postponement leads to a lower optimal
total average cost when the demand is met after production is complete and the
planned backorder costs are the same for all the end-products (Chapter 3).

The third model is similar to the first model we have described. This time a lot
size-reorder point (r, q) policy replaces the EOQ ordering decision because cus-
tomer demands are stochastic (uniformly distributed). Also, there is only one end-
product in the supply chain. The purpose of this study was to analyze whether or not
postponement is still more cost effective in stochastic environment. By optimization,
we showed that postponement is more cost effective when the order lead-time is zero
and the fixed ordering cost is relatively low. When order lead-time is greater than
zero, postponement loses its cost advantage in a wide variety of cases by simulation
technique (Chapter 4).

The last model attempts to confirm our findings from the third model by expand-
ing it to offer two end-products. We considered a number of general situations
instead of optimums and a net postponement cost was added so as to generalizing
our view. The simulation results showed that postponement generally yields a lower
total average cost under different customer demand distributions such as uniform,
Poisson and normal, provided that customer demands have similar patterns and the
net postponement cost is low (Chapter 5). Table 7.1 summarizes our findings in this
book.

Our analysis would be more complete by giving two real life examples to high-
light the benefits of postponement in practice. By interviewing a Hong Kong manu-
facturer, it was found that postponement offers substantial cost savings through lead-
time and inventory reductions. By surveying the Taiwanese information technology
firms, the relationships between product/demand characteristics and the adoption of
postponement strategies are examined. It was found that postponement strategies
are practiced widely by IT firms in Taiwan. The conclusions obtained from the two
case studies support our theoretical results (Chapter 6).

7.2 Implications and Further Research Directions

As mentioned, there are totally four postponement strategies, namely pull, logis-
tics, form and price postponement, according to recent research studies. However,
our book only focuses on pull and form postponement models. In fact, our models
can be extended to examine the benefits of adopting a logistics postponement. One
way is to build some distribution centers near the point of purchase so that the cus-
tomization process can be handled there. It involves adding other cost parameters
such as distribution cost, fixed cost, variable cost and inventory holding cost of the
distribution centers to our total average cost functions. It may provide some saving
opportunities because generic products are less bulky to ship (see Lee et al. [67],
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Ackerman [2] and Twede et al. [114]). The saving can be used to offset the extra
spending on standardization and customization in the system-wide cost function of
a supply chain.

Besides, the impacts on a price postponement can be evaluated by maximizing
a profit function instead of minimizing a total average cost because it involves a
pricing strategy that is dependent of customer demand. Of course, an ideal strategy
is to formulate a system-wide profit function that involves all relevant costs incurred
from adopting different combinations and levels of postponement in multiple points
of product differentiations (Garg and Tang [44] studied two differentiation points).

Our total average cost functions consist of fixed ordering/production cost, vari-
able cost, inventory holding cost and backorder cost. Perhaps more costs are relevant
if the system becomes globalized. One of these costs is the custom and duty costs
(Lee and Billington [66]). They are associated with the charges for moving parts and
end-products across different national boundaries. In fact, the calculation of these
custom and duty costs is rather complicated as they involve profound knowledge
of international trading laws and trading policies. From a global supply chain per-
spective, custom and duty costs must be taken into account whenever a logistics
postponement decision is made, although most models have neglected these costs.

Apart from considering purely on costs and benefits, further analysis based on
quality issues is required, especially when some processes are shifted to distribution
centers or third parties.

Finally, the book addressed the impact of adopting a pull postponement strategy
on a manufacturer in a supply chain. One potential future research direction is to
study the impact of postponement on the entire supply chain with deterministic
customer demands.



Appendix A
Simulation Results (Uniform Distribution)

Table A.1 Simulation results 1 (Uniform Distribution)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

L = 1
L1 4.961 5.847 0.149 0.497 97.00
L2 4.969 5.624 0.168 0.497 96.62
H1 49.769 52.06 2.43 0.497 95.12
H2 50.395 51.595 1.893 0.504 96.24
LL (without postponement) 9.93 11.471 0.317 0.994 96.81
LL (with postponement) 9.93 10.428 0.184 0.496 98.15
Change (%) 0.00 9.09 41.96 60.10 1.34
HH (without postponement) 100.164 103.655 4.323 1.001 95.68
HH (with postponement) 100.164 102.271 2.139 0.501 97.86
Change (%) 0.00 –1.34 –50.52 –49.95 2.18
HL (without postponement) 54.738 57.684 2.598 0.994 95.25
HL (with postponement) 54.738 56.57 1.904 0.497 96.52
Change (%) 0.00 –1.93 –26.71 –50.00 1.27
LH (without postponement) 55.356 57.442 2.042 1.001 96.31
LH (with postponement) 55.356 57.328 1.728 0.503 96.88
Change (%) 0.00 –0.20 –15.38 –49.75 0.57

L = 2
L1 4.961 10.869 0.141 0.248 97.16
L2 4.969 11.041 0.185 0.249 96.28
H1 49.769 102.364 2.034 0.249 95.91
H2 50.395 101.454 2.052 0.252 95.93
LL (without postponement) 9.93 21.91 0.326 0.497 96.72
LL (with postponement) 9.93 21.219 0.175 0.248 98.24
Change (%) 0.00 –3.15 –46.32 –50.10 1.52
HH (without postponement) 100.164 203.818 4.086 0.501 95.92
HH (with postponement) 100.164 203.352 1.82 0.25 98.18
Change (%) 0.00 –0.23 –55.46 –50.10 2.26
HL (without postponement) 54.738 113.405 2.219 0.498 95.95
HL (with postponement) 54.738 112.035 1.929 0.249 96.48
Change (%) 0.00 –1.21 –13.07 –50.00 0.53
LH (without postponement) 55.356 112.323 2.193 0.5 96.04
LH (with postponement) 55.356 111.867 2.257 0.252 95.92
Change (%) 0.00 –0.41 2.92 –49.60 –0.12

L = 3
L1 4.961 15.691 0.203 0.166 95.91
L2 4.969 15.76 0.154 0.166 96.90
H1 49.769 152.396 1.666 0.166 96.65
H2 50.395 150.142 2.44 0.168 95.16
LL (without postponement) 9.93 31.451 0.357 0.332 96.40
LL (with postponement) 9.93 30.344 0.18 0.165 98.19
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138 A Simulation Results (Uniform Distribution)

Table A.1 (continued)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

Change (%) 0.00 –3.52 –49.58 –50.30 1.78
HH (without postponement) 100.164 302.538 4.106 0.334 95.90
HH (with postponement) 100.164 297.774 2.042 0.167 97.96
Change (%) 0.00 –1.57 –50.27 –50.00 2.06
HL (without postponement) 54.738 168.156 1.82 0.332 96.68
HL (with postponement) 54.738 169.162 1.416 0.166 97.41
Change (%) 0.00 0.60 –22.20 –50.00 0.74
LH (without postponement) 55.356 165.833 2.643 0.334 95.23
LH (with postponement) 55.356 165.404 2.334 0.168 95.78
Change (%) 0.00 –0.26 –11.69 –49.70 0.56

Table A.2 Simulation results 2 (Uniform Distribution)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

L = 5
L1 4.961 25.688 0.21 0.099 95.77
L2 4.969 25.534 0.198 0.1 96.02
H1 49.769 250.314 2.184 0.099 95.61
H2 50.395 256.118 2.116 0.101 95.80
LL (without postponement) 9.93 51.222 0.408 0.199 95.89
LL (with postponement) 9.93 51.447 0.183 0.099 98.16
Change (%) 0.00 0.44 –55.15 –50.25 2.27
HH (without postponement) 100.164 506.432 4.3 0.2 95.71
HH (with postponement) 100.164 507.507 2.375 0.1 97.63
Change (%) 0.00 0.21 –44.77 –50.00 1.92
HL (without postponement) 54.738 275.848 2.382 0.199 95.65
HL (with postponement) 54.738 277.061 1.845 0.099 96.63
Change (%) 0.00 0.44 –22.54 –50.25 0.98
LH (without postponement) 55.356 281.806 2.326 0.2 95.80
LH (with postponement) 55.356 276.117 1.837 0.101 96.68
Change (%) 0.00 –2.02 –21.02 –49.50 0.88

L = 10
L1 4.961 51.444 0.116 0.05 97.66
L2 4.969 50.847 0.211 0.049 95.75
H1 49.769 508.342 1.212 0.05 97.56
H2 50.395 491.972 2.97 0.05 94.11
LL (without postponement) 9.93 102.291 0.327 0.099 96.71
LL (with postponement) 9.93 102.126 0.162 0.049 98.37
Change (%) 0.00 –0.16 –50.46 –50.51 1.66
HH (without postponement) 100.164 1, 000.314 4.182 0.1 95.82
HH (with postponement) 100.164 995.633 2.501 0.05 97.50
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Table A.2 (continued)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

Change (%) 0.00 –0.47 –40.20 –50.00 1.68
HL (without postponement) 54.738 559.189 1.423 0.099 97.40
HL (with postponement) 54.738 556.338 1.172 0.05 97.86
Change (%) 0.00 –0.51 –17.64 –49.49 0.46
LH (without postponement) 55.356 543.416 3.086 0.1 94.43
LH (with postponement) 55.356 546.036 2.806 0.05 94.93
Change (%) 0.00 0.48 –9.07 –50.00 0.51

L = 20
L1 4.961 101.082 0.054 0.025 98.91
L2 4.969 101.194 0.258 0.025 94.81
H1 49.769 1, 001.791 1.661 0.025 96.66
H2 50.395 1, 013.586 2.584 0.025 94.87
LL (without postponement) 9.93 202.276 0.312 0.05 96.86
LL (with postponement) 9.93 201.732 0.168 0.025 98.31
Change (%) 0.00 –0.27 –46.15 –50.00 1.45
HH (without postponement) 100.164 2, 015.377 4.245 0.05 95.76
HH (with postponement) 100.164 2, 027.159 2.027 0.025 97.98
Change (%) 0.00 0.58 –52.25 –50.00 2.21
HL (without postponement) 54.738 1, 102.985 1.919 0.05 96.49
HL (with postponement) 54.738 1, 083.868 1.802 0.025 96.71
Change (%) 0.00 –1.73 –6.10 –50.00 0.21
LH (without postponement) 55.356 1, 114.668 2.638 0.05 95.23
LH (with postponement) 55.356 1, 111.164 2.534 0.025 95.42
Change (%) 0.00 –0.31 –3.94 –50.00 0.19

Fig. A.1 Difference in average inventory (Uniform Distribution)
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Fig. A.2 Difference in average backorder (Uniform Distribution)

Fig. A.3 Improvement in average fill rate (Uniform Distribution)



Appendix B
Simulation Results (Poisson Distribution)

Table B.1 Simulation results 1 (Poisson Distribution)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

L = 1
L1 9.954 10.777 0.094 0.498 99.06
L2 10.01 10.692 0.142 0.5 98.58
H1 100.305 104.872 0.122 0.502 99.88
H2 100.522 97.846 0.159 0.502 99.84
LL (non-postponement) 19.964 21.469 0.236 0.998 98.82
LL (postponement) 19.964 20.711 0.098 0.499 99.51
Change (%) 0.00 –3.53 –58.47 –50.00 0.69
HH (non-postponement) 200.827 202.718 0.281 1.004 99.86
HH (postponement) 200.827 196.006 0.169 0.503 99.92
Change (%) 0.00 –3.31 –39.86 –49.90 0.06
HL (non-postponement) 110.315 115.564 0.264 1.002 99.76
HL (postponement) 110.315 108.985 0.125 0.502 99.89
Change (%) 0.00 –5.69 –52.65 –49.90 0.13
LH (non-postponement) 110.476 108.623 0.253 1 99.77
LH (postponement) 110.476 109.978 0.148 0.502 99.87
Change (%) 0.00 1.25 –41.50 –49.80 0.10

L = 2
L1 9.954 20.974 0.091 0.248 99.09
L2 10.01 20.804 0.114 0.251 98.86
H1 100.305 204.688 0.138 0.25 99.86
H2 100.522 197.417 0.13 0.251 99.87
LL (non-postponement) 19.964 41.778 0.205 0.499 98.97
LL (postponement) 19.964 40.558 0.105 0.249 99.47
Change (%) 0.00 –2.92 –48.78 –50.10 0.50
HH (non-postponement) 200.827 402.105 0.268 0.501 99.87
HH (postponement) 200.827 397.608 0.171 0.251 99.91
Change (%) 0.00 –1.12 –36.19 –49.90 0.05
HL (non-postponement) 110.315 225.492 0.252 0.501 99.77
HL (postponement) 110.315 217.462 0.142 0.25 99.87
Change (%) 0.00 –3.56 –43.65 –50.10 0.10
LH (non-postponement) 110.476 218.391 0.221 0.499 99.80
LH (postponement) 110.476 221.485 0.115 0.251 99.90
Change (%) 0.00 1.42 –47.96 –49.70 0.10

L = 3
L1 9.954 31.032 0.129 0.166 98.70
L2 10.01 30.993 0.123 0.167 98.77
H1 100.305 304.466 0.116 0.167 99.88
H2 100.522 297.068 0.181 0.167 99.82
LL (non-postponement) 19.964 62.025 0.252 0.333 98.74

141
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Table B.1 (continued)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

LL (postponement) 19.964 60.905 0.092 0.166 99.54
Change (%) 0.00 –1.81 –63.49 –50.15 0.80
HH (non-postponement) 200.827 601.534 0.297 0.334 99.85
HH (postponement) 200.827 595.96 0.123 0.167 99.94
Change (%) 0.00 –0.93 –58.59 –50.00 0.09
HL (non-postponement) 110.315 335.459 0.239 0.334 99.78
HL (postponement) 110.315 327.695 0.155 0.167 99.86
Change (%) 0.00 –2.31 –35.15 –50.00 0.08
LH (non-postponement) 110.476 328.1 0.31 0.333 99.72
LH (postponement) 110.476 330.643 0.153 0.167 99.86
Change (%) 0.00 0.78 –50.65 –49.85 0.14

Table B.2 Simulation results 2 (Poisson Distribution)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

L = 5
L1 9.954 51.773 0.07 0.1 99.30
L2 10.01 51.199 0.069 0.1 99.31
H1 100.305 504.216 0.066 0.101 99.93
H2 100.522 497.047 0.16 0.1 99.84
LL (non-postponement) 19.964 102.972 0.139 0.2 99.30
LL (postponment) 19.964 100.461 0.128 0.1 99.36
Change (%) 0.00 –2.44 –7.91 –50.00 0.06
HH (non-postponement) 200.827 1, 001.263 0.226 0.201 99.89
HH (postponement) 200.827 987.317 0.28 0.101 99.86
Change (%) 0.00 –1.39 23.89 –49.75 –0.03
HL (non-postponement) 110.315 555.415 0.135 0.201 99.88
HL (postponement) 110.315 551.419 0.139 0.101 99.87
Change (%) 0.00 –0.72 2.96 –49.75 0.00
LH (non-postponement) 110.476 548.82 0.23 0.2 99.79
LH (postponement) 110.476 546.298 0.208 0.1 99.81
Change (%) 0.00 –0.46 –9.57 –50.00 0.02

L = 10
L1 9.954 101.312 0.109 0.05 98.90
L2 10.01 99.877 0.147 0.05 98.53
H1 100.305 1, 000.279 0.129 0.05 99.87
H2 100.522 983.228 0.341 0.05 99.66
LL (non-postponement) 19.964 201.189 0.256 0.1 98.72
LL (postponment) 19.964 199.152 0.219 0.05 98.90
Change (%) 0.00 –1.01 –14.45 –50.00 0.19
HH (non-postponement) 200.827 1, 983.507 0.47 0.1 99.77
HH (postponement) 200.827 1, 983.327 0.29 0.05 99.86
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Table B.2 (continued)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

Change (%) 0.00 –0.01 –38.30 –50.00 0.09
HL (non-postponement) 110.315 1, 100.156 0.276 0.1 99.75
HL (postponement) 110.315 1, 097.006 0.126 0.05 99.89
Change (%) 0.00 –0.29 –54.35 –50.00 0.14
LH (non-postponement) 110.476 1, 084.54 0.45 0.1 99.59
LH (postponement) 110.476 1, 094.102 0.212 0.05 99.81
Change (%) 0.00 0.88 –52.89 –50.00 0.22

L = 20
L1 9.954 200.371 0.168 0.024 98.31
L2 10.01 200.48 0.15 0.025 98.50
H1 100.305 1, 996.4 0.25 0.025 99.75
H2 100.522 2, 003.006 0.119 0.026 99.88
LL (non-postponement) 19.964 400.851 0.318 0.049 98.41
LL (postponment) 19.964 402.227 0.094 0.025 99.53
Change (%) 0.00 0.34 –70.44 –48.98 1.12
HH (non-postponement) 200.827 3, 999.406 0.369 0.051 99.82
HH (postponement) 200.827 3, 947.468 0.431 0.025 99.79
Change (%) 0.00 –1.30 16.80 –50.98 –0.03
HL (non-postponement) 110.315 2, 196.88 0.4 0.05 99.64
HL (postponement) 110.315 2, 183.976 0.296 0.025 99.73
Change (%) 0.00 –0.59 –26.00 –50.00 0.09
LH (non-postponement) 110.476 2, 203.377 0.287 0.05 99.74
LH (postponement) 110.476 2, 193.983 0.093 0.026 99.92
Change (%) 0.00 –0.43 –67.60 –48.00 0.18
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Fig. B.1 Difference in average inventory (Poisson Distribution)
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Fig. B.2 Difference in average backorder (Poisson Distribution)
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Fig. B.3 Improvement in average fill rate (Poisson Distribution)



Appendix C
Simulation Results (Normal Distribution I)

Table C.1 Simulation results 1 (Normal Distribution I)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

L = 1
L1 10.033 10.663 0.303 0.501 96.98
L2 9.981 10.878 0.269 0.499 97.30
H1 100.045 103.47 3.488 0.501 96.51
H2 101.25 100.865 3.504 0.506 96.54
LL (non-postponement) 20.014 21.541 0.572 1 97.14
LL (postponement) 20.014 20.646 0.297 0.501 98.52
Change (%) 0.00 –4.15 –48.08 –49.90 1.37
HH (non-postponement) 201.295 204.335 6.992 1.007 96.53
HH (postponement) 201.295 206.539 3.196 0.503 98.41
Change (%) 0.00 1.08 –54.29 –50.05 1.89
HL (non-postponement) 110.026 114.348 3.757 1 96.59
HL (postponement) 110.026 113.906 2.655 0.5 97.59
Change (%) 0.00 –0.39 –29.33 –50.00 1.00
LH (non-postponement) 111.283 111.528 3.807 1.007 96.58
LH (postponement) 111.283 108.775 2.974 0.505 97.33
Change (%) 0.00 –2.47 –21.88 –49.85 0.75

L = 2
L1 10.033 20.485 0.265 0.251 97.36
L2 9.981 20.891 0.322 0.249 96.77
H1 100.045 205.071 2.689 0.25 97.31
H2 101.25 199.159 2.598 0.253 97.43
LL (non-postponement) 20.014 41.376 0.587 0.5 97.07
LL (postponement) 20.014 40.673 0.244 0.25 98.78
Change (%) 0.00 –1.70 –58.43 –50.00 1.71
HH (non-postponement) 201.295 404.23 5.287 0.503 97.37
HH (postponement) 201.295 402.628 2.885 0.252 98.57
Change (%) 0.00 –0.40 –45.43 –49.90 1.19
HL (non-postponement) 110.026 225.962 3.011 0.499 97.26
HL (postponement) 110.026 222.161 2.45 0.25 97.77
Change (%) 0.00 –1.68 –18.63 –49.90 0.51
LH (non-postponement) 111.283 219.644 2.863 0.504 97.43
LH (postponement) 111.283 223.103 4.002 0.253 96.40
Change (%) 0.00 1.57 39.78 –49.80 –1.02

L = 3
L1 10.033 30.239 0.339 0.167 96.62
L2 9.981 30.682 0.353 0.166 96.46
H1 100.045 295.628 3.846 0.167 96.16
H2 101.25 298.052 3.091 0.169 96.95
LL (non-postponement) 20.014 60.921 0.692 0.333 96.54
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Table C.1 (continued)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

LL (postponement) 20.014 60.988 0.279 0.167 98.61
Change (%) 0.00 0.11 –59.68 –49.85 2.06
HH (non-postponement) 201.295 593.68 6.937 0.336 96.55
HH (postponement) 201.295 595.024 4.081 0.168 97.97
Change (%) 0.00 0.23 –41.17 –50.00 1.42
HL (non-postponement) 110.026 326.31 4.199 0.333 96.18
HL (postponement) 110.026 336.909 2.798 0.166 97.46
Change (%) 0.00 3.25 –33.37 –50.15 1.27
LH (non-postponement) 111.283 328.291 3.43 0.336 96.92
LH (postponement) 111.283 324.889 3.268 0.168 97.06
Change (%) 0.00 –1.04 –4.72 –50.00 0.15

Table C.2 Simulation results 2 (Normal Distribution I)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

L = 5
L1 10.033 50.894 0.394 0.1 96.07
L2 9.981 51.644 0.295 0.099 97.04
H1 100.045 505.674 3.092 0.1 96.91
H2 101.25 503.021 3.46 0.101 96.58
LL (non-postponement) 20.014 102.538 0.689 0.199 96.56
LL (postponement) 20.014 101.29 0.341 0.1 98.30
Change (%) 0.00 –1.22 –50.51 –49.75 1.74
HH (non-postponement) 201.295 1, 008.695 6.552 0.201 96.75
HH (postponement) 201.295 1, 010.098 3.955 0.1 98.04
Change (%) 0.00 0.14 –39.64 –50.25 1.29
HL (non-postponement) 110.026 557.318 3.387 0.199 96.92
HL (postponement) 110.026 549.165 2.534 0.1 97.70
Change (%) 0.00 –1.46 –25.18 –49.75 0.78
LH (non-postponement) 111.283 553.915 3.854 0.201 96.54
LH (postponement) 111.283 553.194 2.333 0.101 97.90
Change (%) 0.00 –0.13 –39.47 –49.75 1.37

L = 10
L1 10.033 101.547 0.247 0.05 97.54
L2 9.981 100.852 0.403 0.05 95.96
H1 100.045 1, 009.158 3.576 0.05 96.43
H2 101.25 996.001 5.44 0.051 94.63
LL (non-postponement) 20.014 202.399 0.65 0.1 96.75
LL (postponement) 20.014 200.651 0.302 0.05 98.49
Change (%) 0.00 –0.86 –53.54 –50.00 1.74
HH (non-postponement) 201.295 2, 005.159 9.016 0.101 95.52
HH (postponement) 201.295 1, 989.497 3.354 0.051 98.33
Change (%) 0.00 –0.78 –62.80 –49.50 2.81
HL (non-postponement) 110.026 1110.01 3.979 0.1 96.38
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Table C.2 (continued)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

HL (postponement) 110.026 1, 108.647 3.216 0.05 97.08
Change (%) 0.00 –0.12 –19.18 –50.00 0.69
LH (non-postponement) 111.283 1, 097.548 5.687 0.101 94.89
LH (postponement) 111.283 1, 096.416 4.355 0.051 96.09
Change (%) 0.00 –0.10 –23.42 –49.50 1.20

L = 20
L1 10.033 199.512 0.212 0.025 97.89
L2 9.981 195.954 0.505 0.025 94.94
H1 100.045 1, 988.154 2.572 0.025 97.43
H2 101.25 1, 979.427 6.866 0.025 93.22
LL (non-postponement) 20.014 395.466 0.717 0.05 96.42
LL (postponement) 20.014 397.468 0.319 0.025 98.41
Change (%) 0.00 0.51 –55.51 –50.00 1.99
HH (non-postponement) 201.295 3, 967.581 9.438 0.05 95.31
HH (postponement) 201.295 3, 997.116 2.973 0.025 98.52
Change (%) 0.00 0.74 –68.50 –50.00 3.21
HL (non-postponement) 110.026 2, 184.108 3.077 0.05 97.20
HL (postponement) 110.026 2, 181.633 2.602 0.025 97.64
Change (%) 0.00 –0.11 –15.44 –50.00 0.43
LH (non-postponement) 111.283 2, 178.939 7.078 0.05 93.64
LH (postponement) 111.283 2, 198.638 4.377 0.025 96.07
Change (%) 0.00 0.90 –38.16 –50.00 2.43

Fig. C.1 Difference in average inventory (Normal Distribution I)



150 C Simulation Results (Normal Distribution I)

Fig. C.2 Difference in average backorder (Normal Distribution I)

Fig. C.3 Improvement in average fill rate (Normal Distribution I)



Appendix D
Simulation Results (Normal Distribution II)

Table D.1 Simulation results 1 (Normal Distribution II)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

L = 1
L1 10.041 10.481 0.027 0.502 99.73
L2 9.979 10.571 0.013 0.499 99.87
H1 99.435 101.695 0.57 0.497 99.43
H2 100.134 101.964 0.445 0.501 99.56
LL (non-postponement) 20.02 21.052 0.04 1.001 99.80
LL (postponement) 20.02 20.607 0.035 0.501 99.83
Change (%) 0.00 –2.11 –12.50 –49.95 0.02
HH (non-postponement) 199.569 203.659 1.015 0.998 99.49
HH (postponement) 199.569 202.283 0.439 0.499 99.78
Change (%) 0.00 –0.68 –56.75 –50.00 0.29
HL (non-postponement) 109.414 112.266 0.583 0.996 99.47
HL (postponement) 109.414 112.655 0.392 0.497 99.64
Change (%) 0.00 0.35 –32.76 –50.10 0.17
LH (non-postponement) 110.175 112.445 0.472 1.003 99.57
LH (postponement) 110.175 113.113 0.44 0.501 99.60
Change (%) 0.00 0.59 –6.78 –50.05 0.03

L = 2
L1 10.041 20.392 0.018 0.251 99.82
L2 9.979 20.395 0.037 0.249 99.63
H1 99.435 203.56 0.435 0.248 99.56
H2 100.134 199.819 0.7 0.251 99.30
LL (non-postponement) 20.02 40.787 0.055 0.5 99.73
LL (postponement) 20.02 40.44 0.028 0.25 99.86
Change (%) 0.00 –0.85 –49.09 –50.00 0.13
HH (non-postponement) 199.569 403.379 1.135 0.499 99.43
HH (postponement) 199.569 402.705 0.461 0.25 99.77
Change (%) 0.00 –0.17 –59.38 –49.90 0.34
HL (non-postponement) 109.414 223.955 0.472 0.497 99.57
HL (postponement) 109.414 220.392 0.549 0.248 99.50
Change (%) 0.00 –1.59 16.31 –50.10 –0.07
LH (non-postponement) 110.175 220.211 0.718 0.502 99.35
LH (postponement) 110.175 218.602 0.549 0.251 99.50
Change (%) 0.00 –0.73 –23.54 –50.00 0.15

L = 3
L1 10.041 30.529 0.035 0.167 99.65
L2 9.979 30.857 0.019 0.167 99.81
H1 99.435 306.63 0.305 0.166 99.69
H2 100.134 299.315 0.596 0.167 99.40
LL (non-postponement) 20.02 61.386 0.054 0.334 99.73
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Table D.1 (continued)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

LL (postponement) 20.02 60.889 0.037 0.167 99.82
Change (%) 0.00 –0.81 –31.48 –50.00 0.08
HH (non-postponement) 199.569 605.945 0.901 0.333 99.55
HH (postponement) 199.569 603.071 0.427 0.166 99.79
Change (%) 0.00 –0.47 –52.61 –50.15 0.24
HL (non-postponement) 109.414 337.487 0.324 0.333 99.70
HL (postponement) 109.414 336.636 0.193 0.166 99.82
Change (%) 0.00 –0.25 –40.43 –50.15 0.12
LH (non-postponement) 110.175 329.844 0.631 0.334 99.43
LH (postponement) 110.175 332.321 0.528 0.167 99.52
Change (%) 0.00 0.75 –16.32 –50.00 0.09

Table D.2 Simulation results 2 (Normal Distribution II)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

L = 5
L1 10.041 50.03 0.056 0.1 99.44
L2 9.979 50.925 0.027 0.1 99.73
H1 99.435 503.589 0.664 0.099 99.33
H2 100.134 503.154 0.435 0.1 99.57
LL (non-postponement) 20.02 100.955 0.083 0.2 99.59
LL (postponement) 20.02 101.198 0.026 0.101 99.87
Change (%) 0.00 0.24 –68.67 –49.50 0.28
HH (non-postponement) 199.569 1006.743 1.099 0.199 99.45
HH (postponement) 199.569 1007.193 0.549 0.099 99.72
Change (%) 0.00 0.04 –50.05 –50.25 0.28
HL (non-postponement) 109.414 554.514 0.691 0.199 99.37
HL (postponement) 109.414 551.08 0.357 0.099 99.67
Change (%) 0.00 –0.62 –48.34 –50.25 0.31
LH (non-postponement) 110.175 553.184 0.491 0.2 99.55
LH (postponement) 110.175 552.369 0.576 0.1 99.48
Change (%) 0.00 –0.15 17.31 –50.00 –0.08

L = 10
L1 10.041 100.403 0.029 0.05 99.71
L2 9.979 100.82 0.022 0.049 99.78
H1 99.435 1, 014.223 0.298 0.049 99.70
H2 100.134 993.792 1.073 0.05 98.93
LL (non-postponement) 20.02 201.223 0.051 0.099 99.75
LL (postponement) 20.02 200.991 0.019 0.05 99.91
Change (%) 0.00 –0.12 –62.75 –49.49 0.16
HH (non-postponement) 199.569 2, 008.015 1.371 0.099 99.31
HH (postponement) 199.569 2, 024.898 0.254 0.05 99.87
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Table D.2 (continued)

Data
Average
demand

Average
inventory

Average
backorder

Average
order
frequency

Average
fill rate
(%)

Change (%) 0.00 0.84 –81.47 –49.49 0.56
HL (non-postponement) 109.414 1, 115.043 0.32 0.098 99.71
HL (postponement) 109.414 1, 103.296 0.373 0.049 99.66
Change (%) 0.00 –1.05 16.56 –50.00 –0.05
LH (non-postponement) 110.175 1, 094.195 1.102 0.1 99.00
LH (postponement) 110.175 1, 096.984 0.691 0.05 99.37
Change (%) 0.00 0.25 –37.30 –50.00 0.37

L = 20
L1 10.041 199.633 0.059 0.026 99.41
L2 9.979 200.243 0.045 0.025 99.55
H1 99.435 2010.22 0.295 0.025 99.70
H2 100.134 1, 991.487 0.768 0.025 99.23
LL (non-postponement) 20.02 399.876 0.104 0.051 99.48
LL (postponement) 20.02 398.22 0.048 0.025 99.76
Change (%) 0.00 –0.41 –53.85 –50.98 0.28
HH (non-postponement) 199.569 4, 001.707 1.063 0.05 99.47
HH (postponement) 199.569 4, 012.991 0.347 0.025 99.83
Change (%) 0.00 0.28 –67.36 –50.00 0.36
HL (non-postponement) 109.414 2, 210.463 0.34 0.05 99.69
HL (postponement) 109.414 2, 220.788 0.265 0.025 99.76
Change (%) 0.00 0.47 –22.06 –50.00 0.07
LH (non-postponement) 110.175 2, 191.12 0.827 0.051 99.25
LH (postponement) 110.175 2, 192.591 0.698 0.025 99.37
Change (%) 0.00 0.07 –15.60 –50.98 0.12

Fig. D.1 Difference in average inventory (Normal Distribution II)
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Fig. D.2 Difference in average backorder (Normal Distribution II)

Fig. D.3 Improvement in average fill rate (Normal Distribution II)
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Simulation Results for Cost Analysis
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