
Lecture Notes in Computer Science 2712
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Anne James Brian Lings
Muhammad Younas (Eds.)

New Horizons in
Information Management

20th British National Conference on Databases, BNCOD 20
Coventry, UK, July 15-17, 2003
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Anne James
Muhammad Younas
Coventry University, School of Mathematical and Information Sciences
Priory Street, Coventry CV1 5FB, UK
E-mail: {A.James,M.Younas}@coventry.ac.uk

Brian Lings
University of Exeter, Department of Computer Science
Prince of Wales Road, Exeter EX4 4PT, UK
E-mail: B.J.Lings@exeter.ac.uk

Cataloging-in-Publication Data applied for

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;

detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): H.2-4

ISSN 0302-9743
ISBN 3-540-40536-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin GmbH
Printed on acid-free paper SPIN: 10928776 06/3142 5 4 3 2 1 0

Preface

The British National Conference on Databases (BNCOD) was established in 1980 as
a forum for research into the theory and practice of databases. The 20th in the series
(BNCOD 20) was held at Coventry University in July 2003. This volume contains the
BNCOD 20 proceedings. It was a delight to welcome researchers from all over the
world to BNCOD 20. A strong response to our call for research papers together with
the thoughtful work of the programme committee led to an excellent technical
programme covering many fascinating challenges facing the database world today.

The theme of BNCOD 20 was “New Horizons in Information Management”.
Over the last decades database technology has become embedded in most of the
information systems we use in commerce and industry and has been proven to be an
essential tool in information management. Advances in database technology have
enabled new methods of working with information. Similarly, new requirements of
information systems have led to extensions of database technology. Novel application
areas demand further development and integration of database theory within emerging
fields. BNCOD 20 called for papers on new directions in information management
and how database techniques are being adapted to support these. The global
technological infrastructure is considered to be particularly pertinent. Thus areas such
as the Semantic Web, the Hidden Web, information systems integration, information
retrieval, co-operative working and Web-based agents, as they relate to databases,
were of considerable interest.
 BNCOD 20 had great pleasure in receiving two eminent invited speakers: Prof.
Malcolm Atkinson from the Universities of Glasgow and Edinburgh, Scotland, UK
and Director of the National e-Science Centre, Scotland, UK and Prof. Hector Garcia-
Molina from Stanford University, USA. Both considered the challenges and
opportunities afforded by the new technological environment.

Malcolm Atkinson has a long track record of contributions to research in large
and long-lived systems. He is currently working on GridNet, a project to establish a
UK Network of Excellence in Grid Computing and e-Science. He is also working on
the auto-optimization of highly scalable index frameworks for large collections of
reference data and developing techniques and software to support management and
monitoring of user actions in distributed systems. In this invited presentation Malcolm
explores the Grid and e-Science. He raises the question of how DBMS will fit into the
“global computing machine” and considers the extent to which current database
solutions fit the new Grid operation model.

Hector Garcia-Molina is the Leonard Bosack and Sandra Lerner Professor in the
Departments of Computer Science and Electrical Engineering at Stanford University,
Stanford, USA. He is the current chairman of the Computer Science Department and
was the recipient of the 1999 ACM SIGMOD Innovations Award. His research
interests include distributed computing systems, digital libraries and database
systems. Hector is currently involved in developing improved methods for searching
the Web and also techniques for managing peer-to-peer networks. In his presentation
he addressed the area of Web crawling. Web crawlers can consume significant
resources. Hector discusses how efficient crawlers can be built and how the Hidden
Web can be accessed.

VI Preface

The refereed papers are presented in five sessions. The first refereed paper
session is on XML and Semistructured Data and contains two full and two short
papers. The first paper by Vincent et al. defines multivalued dependencies in XML
(XMVDs). It shows that, for a very general class of mappings from relations to XML,
a relation satisfies an MVD if and only if the corresponding XML document satisfies
the corresponding XMVD. Thus they consider their definition of XMVD in XML
documents to be a natural extension of the definition of MVD in relations. Moon et al.
investigate the problem of processing an XML path expression using an XML cache
maintained as materialized views. They propose algorithms to rewrite the given XML
path expression using its relevant materialized view, and also provide implementation
details of their approach. The paper by Pandrangi et al. describes WebVigil, a system
for detecting changes in Web pages based on user profiles. Although this approach is
discussed in the context of HTML and XML it can be generalized to other
technologies. The session ends with two short papers, which are related to ontologies.
The first paper by Bi et al. describes a query paradigm based on ontologies, aggregate
table-driven querying, and expansion of QBE. The authors claim two novel features:
visually specifying aggregate table queries and table layout in a single process and
providing users with an ontology guide in composing complex analysis tasks as
queries. The final short paper by Volz considers the requirements for a new level of
data independence for ontology-based applications. For example, customization for
other agents may be required. It proposes a solution based on the idea of integrative
external ontologies.

The second refereed paper session is on Performance in Searching and Mining
and contains three full and one short paper. The first paper by Garcia-Arellano et al.
evaluates the relative performance of the IQ-tree and the A-tree in similarity search in
high-dimensional data spaces. They introduce the Clustered IQ-tree, which is an
indexing strategy that combines the best features of the IQ tree and the A-tree leading
to a seemingly better and more stable performance over different types of data set.
The paper by Mishra et al. concentrates on the K-way join approach, a technique for
mining data irrespective of stored format. The authors look at various optimization
methods for the K-way join and evaluate them. This work aims at feeding the results
into an optimizer for data mining. The paper by Yiannis et al. explores the effects of
compression on the cost of external sorting. Whilst compression can often be useful,
on-the-fly compression can be slow and some compression techniques do not allow
random access to individual records. Yiannis et al. look at these issues for various
techniques and develop improved solutions. They show that incorporation of
compression can significantly accelerate query processing. The final paper of the
session is a short paper by Srikumar et al. In the paper the authors present
MaxDomino, an algorithm for mining maximal frequent sets using the novel concept
of the dominancy factor of a transaction.

Transformation, integration and extension were the topics of the third refereed
paper session. This session contained three full and two short papers. Engstrom et al.
consider maintenance policies for externally materialized multi-source views. They
consider various methods and show that in all situations it is more efficient to use
auxiliary views than policies which require consistency-preserving algorithms. Tong
considers transformation optimization techniques within the automed database
integration system. A new representation of schema transformations is presented.

Preface VII

These are claimed to facilitate the verification of well-formedness and the
optimization of the transformation sequences. The paper by Scallehn et al. raises the
issue of dealing with discrepancies in data integration. The authors present similarity-
based variants of grouping and join operations as a solution to this problem of
attributes that are similar but not equal. The first of the two short papers in this
session is by Green et al. They describe ProSQL, a prototyping tool to support the
development of extensions to SQL. The system was developed by building a wrapper
around an existing DBMS and providing a collection of interfaces through which a
designer can define extensions to the basic relational database. The final short paper
by Al-Mourad et al. addresses the problem of integrating object-oriented schemas
with multiple behaviour requirements. The Multiple Views supporting the Multiple
Behaviours System (MVMBS) is described.

The fourth refereed paper session was on events and transactions and included
two full and two short papers. Hinze tackles the problem of rapid notification of
composite events. Currently the detection of composite events requires a second
filtering step after the identification of the primitive components. Hinze proposes a
single-step method for the filtering of composite events, and presents results which
show improvement in performance for event filtering. Ray investigates an interesting
issue of multi-level secure (MLS) active database systems by defining MLS rules and
assigning them security levels. Ray also determines the impact of MLS rules on the
execution models of existing active database systems. The short paper by Howard et
al. describes a Compliant Systems Architecture (CSA) and shows how it can deliver
flexibility within a two-phase commit protocol of distributed transactions. CSA aims
at providing strict separation of policy and mechanism. Lim et al. present a new
concurrent Blink-tree algorithm that provides a concurrent tree restructuring
mechanism for handling underflow nodes as well as overflow nodes.

Two short papers are delivered in the final refereed paper session, which is on
Personalisation and the Web. Dempster et al. discuss a framework for personalisation
and an initial prototype toolkit. Cooper et al. propose an approach to information
extraction from e-mail text, which involves creating sentence structures from
metadata, pattern-matching, and generating update statements.

Once again BNCOD yielded an excellent range of papers. This was through the
industry and interest of our international research community and this is much
appreciated. The pivotal role of databases in information systems continues to
interest, challenge and provide opportunities for the development of new and
improved systems.

VIII Preface

Acknowledgements

We would like to thank the programme committee for their excellent work in
reviewing and providing comments on the many papers submitted to the conference.
Once again their dedication and commitment helped to produce another inspiring and
technical programme of the high standard expected of the BNCOD series. Thanks go
also to Alex Gray for inviting us to organize BNCOD20 and for providing useful
advice and enthusiasm throughout. Thanks also to Mary Garvey and Mike Jackson for
help with the organization and sharing of ideas. The administrative support of Serena
Morgan and Rachel Carter was most appreciated and likewise the help provided at the
conference by Yih-Ling Hedley, Rahat Iqbal and Mofed Salem.

April 2003 Anne James, Brian Lings, Muhammad Younas

Conference Committees

Programme Committee

Brian Lings (Chair) University of Exeter
David Bell University of Ulster
Peter Buneman University of Edinburgh
Barry Eaglestone University of Sheffield
Suzanne Embury University of Manchester
Alex Gray University of Wales, Cardiff
Peter Gray University of Aberdeen
Mike Jackson University of Wolverhampton
Anne James Coventry University
Keith Jeffery CLRC Rutherford Appleton
Jessie Kennedy Napier University
Nigel Martin Birkbeck College, University of London
Peter McBrien Imperial College, University of London
Ken Moody University of Cambridge
Werner Nutt, Heriot-Watt University
Norman Paton University of Manchester
Alexandra Poulovassilis Birkbeck College, University of London
Brian Read London Metropolitan University
Howard Williams Heriot-Watt University
Muhammad Younas Coventry University

Organizing Committee

Anne James (Chair) Coventry University
Mary Garvey University of Wolverhampton
Alex Gray University of Wales, Cardiff
Mike Jackson (Prizes Chair) University of Wolverhampton
Muhammad Younas Coventry University

Steering Committee

Alex Gray (Chair) University of Wales, Cardiff
Carole Goble University of Manchester
Barry Eaglestone University of Sheffield
Keith Jeffery CLRC Rutherford Appleton
Roger Johnson Birkbeck College, University of London
Brian Lings University of Exeter

Table of Contents

Invited Papers

Databases and the Grid: Who Challenges Whom? . 1
Malcolm P. Atkinson (UK)

Challenges in Crawling the Web . 3
Hector Garcia-Molina (USA)

XML and Semi-structured Data

Multivalued Dependencies in XML . 4
Millist W. Vincent, Jixue Liu (Australia)

Processing XML Path Expressions Using XML Materialised
Views . 19

ChanHo Moon, SooHee Kim, Hyunchul Kang (Korea)

WebVigiL: User Profile-Based Change Detection for HTML/XML
Documents . 38

N. Pandrangi, J. Jacob, A. Sanka, S. Chakravarthy (USA)

Aggregate Table-Driven Querying via Navigation Ontologies in
Distributed Statistical Databases . 58

Yaxin Bi, David Bell, Joanne Lamb (UK)

External Ontologies in the Semantic Web . 67
Raphael Volz (Germany)

Performance in Searching and Mining

Quantization Techniques for Similarity Search in High-Dimensional
Data Spaces . 75

Christian Garcia-Arellano, Ken Sevcik (Canada)

Performance Evaluation and Analysis of K-Way Join Variants for
Association Rule Mining . 95

P. Mishra, S. Chakravarthy (USA)

External Sorting with On-the-Fly Compression . 115
John Yiannis, Justin Zobel (Australia)

MaxDomino: Efficiently Mining Maximal Sets . 131
Krishnamoorthy Srikumar, Bharat Bhasker, Satish K. Tripathi
(India)

XII Table of Contents

Transformation, Integration, and Extension

Evaluating Maintenance Policies for Externally Materialised
Multi-source Views . 140

Henrik Engström, Brian Lings (Sweden and UK)

Database Schema Transformation Optimisation Techniques for the
AutoMed System . 157

Nerissa Tong (UK)

Using Similarity-Based Operations for Resolving Data-Level Conflicts . . . 172
Eike Schallehn, Kai-Uwe Sattler (Germany)

ProSQL: A Prototyping Tool for SQL Temporal Language Extensions . . . 190
James Green, Roger Johnson (UK)

MVMBS: A Multiple Views Supporting Multiple Behaviours System for
Interoperable Object-Oriented Database Systems . 198

M.B. Al-Mourad, W.A. Gray, N.J. Fiddian (UK)

Events and Transactions

Efficient Filtering of Composite Events . 207
Annika Hinze (Germany)

Multilevel Secure Rules and Its Impact on the Design of Active
Database Systems . 226

Indrakshi Ray (USA)

Using the Compliant Systems Architecture to Deliver Flexible
Policies within Two-Phase Commit . 245

Diana Howard, Henry Detmold, Katrina Falkner, David Munro
(Australia)

A Concurrent Blink-Tree Algorithm Using a Cooperative
Locking Protocol . 253

Sung-Chae Lim, Joonseon Ahn, Myoung Ho Kim (Korea)

Personalisation and the Web

Tools for Personalised Presentation of Information . 261
Euan Dempster, Daniel Pacey, M. Howard Williams, Alison Cawsey,
David Marwick, Lachlan MacKinnon (UK)

Extracting Database Information from E-mail Messages 271
Richard Cooper, Sajjad Ali (UK)

Author Index . 281

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 1–2, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Databases and the Grid: Who Challenges Whom?

Extended Abstract

Malcolm P. Atkinson

National e-Science Centre, 15 South College Street
Edinburgh, EH8 9AA, UK
mpa@dcs.gla.ac.uk

Abstract. An overview of e-Science and its data requirements exposes a
number of challenges and opportunities. The Grid is an attempt to build a
virtual abstract operating system, over an arbitrarily large globally distributed
collection of heterogeneous resources. The Grid models of authentification,
authorisation and accounting, aspire to delivering a single sign-on mechanism
for access to this global computer. These models also support dynamic sharing
and virtual organisations. The emerging model of composition is based on web
services.

Has the database research community done this already? Does the DBMS
we have today already fit as components in this ’global’ machine? Those DBMS
contain many of the resources scientists use, and the scientists want more of
them, with even more data. There are more research questions than answers so
far, and this talk will seek to engage the Database community in addressing
them.

Digital data are now fundamental to all branches of science and engineering;
they play a major role in medical research and diagnosis, and underpin business
and governmental decision processes. Increasingly these data are organised as
shared and structured collections, which are held in databases, in structured
documents and in structured assemblies of binary files. The advent of
ubiquitous Internet computing and the scale of modern challenges, such as
deciphering the function of all the genes in a large number of species, from
bacteria to crops, farm animals and humans, has led to widespread collaboration
in the creation, curation, publication, management and exploitation of these
structured collections. Although individual collections are typically specialized
to hold data of interest to particular communities, substantial advances can be
achieved by combining information from multiple data resources. For example,
astronomers are building virtual observatories, where data collected at different
frequencies, X-ray, radio, optical, infrared, etc., and at different times, can be
conveniently combined to discover new properties of the universe. Similarly,
functional genomics requires comparison between species, integration with
protein biochemistry and crystallography databases, laboratory phenotypical
data and population studies. Almost every application involves the execution of
computational models or computationally demanding analyses using data from
diverse sources.

These diverse structured collections are geographically distributed, hosted
on a variety of platforms and administered independently according to differing
policies. As they increase in scale and number it becomes impractical to
arrange their integration by taking local copies or by constructing ad hoc

2 M.P. Atkinson

integration schemes. The Grid provides a platform that potentially enables a
systematic approach to this integration. It can support authentication and
authorisation, resource discovery, data transmission, process creation and
scheduling, and dynamic binding across heterogeneous platforms. These
facilities could form a consistent foundation for systematic data access and
integration that would be a significant advance over current practice, where
each environmental requirement of an integration scheme has to be handled
separately on each platform.

The Grid’s designers and implementers need to consider data access and
integration as a primary application target for two reasons. Firstly, a great
many of the applications of the Grid include a significant data access and
integration requirement. Virtually every scientific, engineering, medical and
decision-support application depends on accessing distributed heterogeneous
collections of structured data. Secondly, the Grid itself uses many structured
data collections for its own operation and administration. As Grid technology
becomes more sophisticated and autonomic, the number, volume and diversity
of these collections will increase. It is therefore imperative that Grid designers
and developers support and use systematic data access and integration methods.

Challenges in Crawling the Web

Hector Garcia-Molina

Computer Science Department, Stanford University

Abstract. The World Wide Web, or simply the Web, is rapidly be-
coming the world’s collective information store, containing everything
from news, to entertainment, to personal communications, to product
descriptions. This world information store is distributed across millions
of computers, but it is often important to gather significant parts of it
at a single site. One reason is to build content indices, such as Google.
Another reason is to mine the cached Web, looking for trends or data
correlations. A third reason for gathering a Web copy is to create a his-
torical record for Web sites that are ephemeral or changing.
The system that explores the Web and makes copies of discovered pages
is called a crawler. Crawlers consume significant network and computing
resources, both at the visited web servers and at the site(s) collecting the
pages, and thus it is critical to make them efficient and well behaved.
Furthermore, often pages of interest are in the so-called “hidden-web,”
reachable only via query interfaces. In this talk I will discuss how to
build an effective crawler, addressing questions such as:

– How can a crawler gather “important” pages only?
– How can a crawler efficiently maintain its collection “fresh”?
– How can a crawler be parallelized?
– How can we access pages from the hidden web?

This is joint work with Junghoo Cho, Taher H. Haveliwala, Wang Lam,
Andreas Paepcke, and Sriram Raghavan. Additional information and
papers related to this talk can be found at
http://www-diglib.stanford.edu/˜testbed/doc2/WebBase/
(or by searching for “Stanford WebBase” at Google).

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, p. 3, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Multivalued Dependencies in XML

Millist W. Vincent and Jixue Liu

School of Computer and Information Science
University of South Australia

{millist.vincent, jixue.liu }@unisa.edu.au

Abstract. Functional dependencies (FDs) and multivalued dependen-
cies (MVDs) play a fundamental role in relational databases where they
provide semantics for the data and at the same time are the foundation
for database design. Since XML documents are closely coupled with re-
lational databases in that XML documents are typically exported and
imported from relational databases, the study of FDs and MVDs in XML
is of fundamental significance in XML research. In this paper we inves-
tigate the issue of defining multivalued dependencies in XML, a topic
which to the best of our knowledge has not been previously investigated.
We define multivalued dependencies in XML (XMVDs) and justify our
definition by proving that, for a very general class of mappings from
relations to XML, a relation satisfies an MVD if and only if the corre-
sponding XML document satisfies the corresponding XMVD. Thus our
definition of a XMVD in a XML document is a natural extension of the
definition of a MVD in relations.

1 Introduction

XML has recently emerged as a standard for data representation and interchange
on the Internet [18,1]. While providing syntactic flexibility, XML provides little
semantic content and as a result several papers have addressed the topic of how
to improve the semantic expressiveness of XML. Among the most important of
these approaches has been that of defining integrity constraints in XML [5]. Sev-
eral different classes of integrity constraints for XML have been defined including
key constraints [5,6], path constraints [8], and inclusion constraints [9] and prop-
erties such as axiomatization and satisfiability have been investigated for these
constraints. However, one topic that has been identified as an open problem in
XML research [18] and which has been little investigated is how to extended
the traditional integrity constraints in relational databases, namely functional
dependencies (FDs) and multivalued dependencies (MVDs), to XML and then
how to develop a normalisation theory for XML. This problem is not of just the-
oretical interest. The theory of normalisation forms the cornerstone of practical
relational database design and the development of a similar theory for XML will
similarly lay the foundation for understanding how to design XML documents.
In addition, the study of FDs and MVDs in XML is important because of the
close connection between XML and relational databases. With current technol-
ogy, the source of XML data is typically a relational database [1] and relational

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 4–18, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Multivalued Dependencies in XML 5

databases are also normally used to store XML data [12]. Hence, given that FDs
and MVDs are the most important constraints in relational databases, the study
of these constraints in XML assumes heightened importance over other types of
constraints which are unique to XML [7]. The only papers that have specifically
addressed the problem of FDs in XML are the recent papers [2,15,16]. Before
presenting the contributions of [2,15,16], we briefly outline the approaches to
defining FD satisfaction in incomplete relational databases.

There are two approaches, the first called the weak satisfaction approach and
the other called the strong satisfaction approach [3]. In the weak satisfaction
approach, a relation is defined to weakly satisfy a FD if there exists at least
one completion of the relation, obtained by replacing all occurrences of nulls by
data values, which satisfies the FD. A relation is said to strongly satisfy a FD
if every completion of the relation satisfies the FD. Both approaches have their
advantages and disadvantages (a more complete discussion of this issue can be
found in [15]). The weak satisfaction approach has the advantage of allowing a
high degree of uncertainty to be represented in a database but at the expense
of making maintenance of integrity constraints much more difficult. In contrast,
the strong satisfaction approach restricts the amount of uncertainty that can be
represented in a database but makes the maintenance of integrity constraints
much easier. However, as argued in [11], both approaches have their place in
real world applications and should be viewed as complementary rather than
competing approaches. Also, it is possible to combine the two approaches by
having some FDs in a relation strongly satisfied and others weakly satisfied [10].

The contribution of [2] was, for the first time, to define FDs in XML (what we
call XFDs) and then to define a normal form for a XML document based on the
definition of a XFD. However, there are some difficulties with the definition of a
XFD given in [2]. The most fundamental problem is that although it is explicitly
recognised in the definitions that XML documents have missing information, the
definitions in [2], while having some elements of the weak instance approach, are
not a strict extension of this approach since there are XFDs that are violated
according to the definition in [2] yet there are completions of the tree that satisfy
the XFDs (see [15] for an example). As a result of this it is not clear that there
is any correspondence between FDs in relations and XFDs in XML documents.

In [15,16] a different and more straightforward approach was taken to defining
XFDs which overcomes the difficulties just discussed with the approach adopted
in [2]. The definition in [15,16] is based on extending the strong satisfaction
approach to XML. The definition of a XFD given in [15] was justified formally
by two main results. The first result showed that for a very general class of
mappings from an incomplete relation into a XML document, a relation strongly
satisfies a unary FD (only one attribute on the l.h.s. of the FD) if and only if the
corresponding XML document strongly satisfies the corresponding XFD. The
second result showed that a XML document strongly satisfies a XFD if and only
if every completion of the XML document also satisfies the XFD. The other
contributions in [15] were firstly to define a set of axioms for reasoning about
the implication of XFDs and show that the axioms are sound for arbitrary XFDs.

6 M.W. Vincent and J. Liu

The final contribution was to define a normal form, based on a modification of
the one proposed in [2], and prove that it is a necessary and sufficient condition
for the elimination of redundancy in a XML document.

In this paper we extend the work in [15] and investigate the issue of multi-
valued dependencies in XML, a topic which to the best of our knowledge has not
been investigated previously. We firstly give a definition of MVDs in XML (what
we call XMVDs) using an extension of the approach used in [15]. We then for-
mally justify the definition by proving that, for a very general class of mappings
from relations to XML, a relation satisfies a MVD if and only if the correspond-
ing XML document satisfies the corresponding XMVD. Thus our definition of a
XMVD in a XML document is a natural extension of the definition of a MVD
in relations. Finally, we note that in contrast to [15], in the present paper we
assume that XML documents do not have missing information and leave the
problem of how to extend the approach to the case of missing information for
future research.

The rest of this paper is organised as follows. Section 2 contains some pre-
liminary definitions. In Section 3 we present the definition of a XMVD. Section
4 contains the main result of the paper on the correspondence between MVDs
in relations and XMVDs in XML documents. Finally, Section 5 contains some
concluding comments.

2 Preliminary Definitions

In this section we present some preliminary definitions that we need before defin-
ing XFDs. We model an XML document as a tree as follows.

Definition 1. Assume a countably infinite set E of element labels (tags), a
countable infinite set A of attribute names and a symbol S indicating text. An
XML tree is defined to be T = (V, lab, ele, att, val, vr) where V is a finite set of
nodes in T ; lab is a function from V to E ∪A ∪ {S}; ele is a partial function
from V to a sequence of V nodes such that for any v ∈ V , if ele(v) is defined
then lab(v) ∈ E; att is a partial function from V × A to V such that for any
v ∈ V and l ∈ A, if att(v, l) = v1 then lab(v) ∈ E and lab(v1) = l; val is a
function such that for any node in v ∈ V, val(v) = v if lab(v) ∈ E and val(v) is
a string if either lab(v) = S or lab(v) ∈ A; vr is a distinguished node in V called
the root of T and we define lab(vr) = root. Since node identifiers are unique, a
consequence of the definition of val is that if v1 ∈ E and v2 ∈ E and v1 �= v2
then val(v1) �= val(v2). We also extend the definition of val to sets of nodes and
if V1 ⊆ V , then val(V1) is the set defined by val(V1) = {val(v)|v ∈ V1}.

For any v ∈ V , if ele(v) is defined then the nodes in ele(v) are called subele-
ments of v. For any l ∈ A, if att(v, l) = v1 then v1 is called an attribute of v.
Note that an XML tree T must be a tree. Since T is a tree the set of ancestors of
a node v, is denoted by Ancestor(v). The children of a node v are also defined
as in Definition 1 and we denote the parent of a node v by Parent(v).

Multivalued Dependencies in XML 7

We note that our definition of val differs slightly from that in [6] since we have
extended the definition of the val function so that it is also defined on element
nodes. The reason for this is that we want to include in our definition paths
that do not end at leaf nodes, and when we do this we want to compare element
nodes by node identity, i.e. node equality, but when we compare attribute or
text nodes we want to compare them by their contents, i.e. value equality. This
point will become clearer in the examples and definitions that follow.

We now give some preliminary definitions related to paths.

Definition 2. A path is an expression of the form l1. · · · .ln, n ≥ 1, where
li ∈ E∪A∪ {S} for all i, 1 ≤ i ≤ n and l1 = root. If p is the path l1. · · · .ln then
Last(p) = ln.

For instance, if E = {root, Division, Employee} and A = {D#, Emp#}
then root, root.Division, root.Division.D#,

root.Division.Employee.Emp#.S are all paths.

Definition 3. Let p denote the path l1. · · · .ln. The function Parnt(p) is the path
l1. · · · .ln−1. Let p denote the path l1. · · · .ln and let q denote the path q1. · · · .qm.
The path p is said to be a prefix of the path q, denoted by p ⊆ q, if n ≤ m and
l1 = q1, . . . , ln = qn. Two paths p and q are equal, denoted by p = q, if p is a
prefix of q and q is a prefix of p. The path p is said to be a strict prefix of q,
denoted by p ⊂ q, if p is a prefix of q and p �= q. We also define the intersection
of two paths p1 and p2, denoted but p1 ∩ p2, to be the maximal common prefix of
both paths. It is clear that the intersection of two paths is also a path.

For example, if E = {root, Division, Employee} and A = {D#, Emp#}
then root.Division is a strict prefix of root.Division.Employee and
root.Division.D# ∩ root.Division.Employee.Emp#.S = root.Division.

Definition 4. A path instance in an XML tree T is a sequence v̄1. · · · .v̄n such
that v̄1 = vr and for all v̄i, 1 < i ≤ n,vi ∈ V and v̄i is a child of v̄i−1. A
path instance v̄1. · · · .v̄n is said to be defined over the path l1. · · · .ln if for all
v̄i, 1 ≤ i ≤ n, lab(v̄i) = li. Two path instances v̄1. · · · .v̄n and v̄′1. · · · .v̄′n are said
to be distinct if vi �= v′i for some i, 1 ≤ i ≤ n. The path instance v̄1. · · · .v̄n is
said to be a prefix of v̄′1. · · · .v̄′m if n ≤ m and v̄i = v̄′i for all i, 1 ≤ i ≤ n. The
path instance v̄1. · · · .v̄n is said to be a strict prefix of v̄′1. · · · .v̄′m if n < m and
v̄i = v̄′i for all i, 1 ≤ i ≤ n. The set of path instances over a path p in a tree T
is denoted by Paths(p)

For example, in Figure 1, vr.v1.v3 is a path instance defined over the path
root.Dept.Section and vr.v1.v3 is a strict prefix of vr.v1.v3.v4

We now assume the existence of a set of legal paths P for an XML application.
Essentially, P defines the semantics of an XML application in the same way
that a set of relational schema define the semantics of a relational application.
P may be derived from the DTD, if one exists, or P be derived from some other
source which understands the semantics of the application if no DTD exists. The
advantage of assuming the existence of a set of paths, rather than a DTD, is that

8 M.W. Vincent and J. Liu

it allows for a greater degree of generality since having an XML tree conforming
to a set of paths is much less restrictive than having it conform to a DTD. Firstly
we place the following restriction on the set of paths.

Definition 5. A set P of paths is consistent if for any path p ∈ P , if p1 ⊂ p
then p1 ∈ P .

This is natural restriction on the set of paths and any set of paths that is
generated from a DTD will be consistent.

We now define the notion of an XML tree conforming to a set of paths P .

Definition 6. Let P be a consistent set of paths and let T be an XML tree.
Then T is said to conform to P if every path instance in T is a path instance
over some path in P .

The next issue that arises in developing the machinery to define XFDs is the
issue is that of missing information. This is addressed in [15] but in this we take
the simplifying assumption that there is no missing information in XML trees.
More formally, we have the following definition.

E rootvr

E Deptv1

A Empv4 A Empv5 A Projectv6

E Deptv2

“e1” “e2” “j1”

E Sectionv3 E Sectionv7

A Empv8 v9

“e3”

A Project

“j2”

v10

Fig. 1. A complete XML tree.

Definition 7. Let P be a consistent set of paths, let T be an XML that conforms
to P . Then T is defined to be complete if whenever there exist paths p1 and p2
in P such that p1 ⊂ p2 and there exists a path instance v̄1. · · · .v̄n defined over
p1, in T , then there exists a path instance v̄′1. · · · .v̄′m defined over p2 in T such
that v̄1. · · · .v̄n is a prefix of the instance v̄′1. · · · .v̄′m.

For example, if we take P to be {root, root.Dept, root.Dept.Section,
root.Dept.Section.Emp, root.Dept.Section.Project} then the tree in Fig-
ure 1 conforms to P and is complete.

The next function returns all the final nodes of the path instances of a path
p in T .

Definition 8. Let P be a consistent set of paths, let T be an XML tree that
conforms to P . The function N(p), where p ∈ P , is the set of nodes defined by
N(p) = {v̄|v̄1. · · · .v̄n ∈ Paths(p) ∧ v̄ = v̄n}.

Multivalued Dependencies in XML 9

For example, in Figure 1, N(root.Dept) = {v1, v2}.
We now need to define a function that returns a node and its ancestors.

Definition 9. Let P be a consistent set of paths, let T be an XML tree that
conforms to P . The function AAncestor(v), where v ∈ V ∪ N, is the set of
nodes in T defined by AAncestor(v) = v ∪Ancestor(v).

For example in Figure 1, AAncestor(v3) = {vr, v1, v3}. The next function re-
turns all nodes that are the final nodes of path instances of p and are descendants
of v.

Definition 10. Let P be a consistent set of paths, let T be an XML tree that
conforms to P . The function Nodes(v, p), where v ∈ V ∪N and p ∈ P , is the
set of nodes in T defined by Nodes(v, p) = {x|x ∈ N(p) ∧ v ∈ AAncestor(x)}

For example, in Figure 1 , Nodes(v1, root.Dept.Section.Emp) = {v4, v5}.
We also define a partial ordering on the set of nodes as follows.

Definition 11. The partial ordering > on the set of nodes V in an XML tree
T is defined by v1 > v2 iff v2 ∈ Ancestor(v1).

3 XMVDs in XML

Before presenting the main definition of the paper, we present an example to illus-
trate the thinking behind the definition. Consider the relation shown in Figure 2.
It satisfies the MVD Course→→ Teacher|Text. The XML tree shown in Figure
3 is then a XML representation of the data in Figure 2. The tree has the follow-
ing property. There exists two path instances of root.Id.Id.Id.Text, namely
vr.v13.v17.v21.v9 and vr.v16.v20.v24.v12 such that val(v9) �= val(v12). Also, these
two paths have the property that for the closest Teacher node to v9, namely
v5, and the closest Teacher node to v12, namely v8, then val(v5) �= val(v8) and
for the closest Course node to both v9 and v5, namely v1, and for the closest
Course node to both v12 and v8, namely v4, we have that val(v1) = val(v4). Then
the existence of the two path instances vr.v13.v17.v21.v9 and vr.v16.v20.v24.v12
with these properties and the fact that Course →→ Teacher|Text is satis-
fied in the relation in Figure 2 implies that there exists two path instances of
root.Id.Id.Id.Text, namely vr.v15.v19.v23.v11 and vr.v14.v18.v22.v10, with the
following properties. val(v11) = val(v9) and for the closest Teacher node to v11,
v7, val(v7) = val(v8) and for the closest Course node to v11 and v7, namely v3,
val(v3) = val(v1). Also, val(v10) = val(v12) and the closest Teacher node to
v10, v6, val(v6) = val(v5) and for the closest Course node to v10 and v6, namely
v2, val(v2) = val(v4). This type of constraint is a XMVD. We note however that
there are many other ways that the relation in Figure 2 could be represented in
a XML tree. For instance we could also represent the relation by Figure 4 and
this XML tree also satisfies the XMVD. In comparing the two representations,
it is clear that the representation in Figure 4 is a more compact representation
than that in Figure 3. This issue is investigated in more detail in [17] where it

10 M.W. Vincent and J. Liu

Course Teacher Text
Algorithms Fred Text A
Algorithms Mary Text B
Algorithms Fred Text B
Algorithms Mary Text A

Fig. 2. A flat relation satisfying a MVD.

E rootvr

E Idv13 E Idv14 E Idv15 E Idv16

A Coursev1

E Idv17

A Coursev2 A Coursev3
A Coursev4

E Idv18 E Idv19 E Idv20

A Teacherv5 A Teacherv6 A Teacherv7 A Teacherv8

E Idv21 E Idv22
E Idv23 E Idv24

A Textv9 A Textv10 A Textv11 A Textv12

“Algorithms” “Algorithms” “Algorithms” “Algorithms”

“Fred” “Fred” “Mary” “Mary”

“Text A” “Text B” “Text A” “Text B”

Fig. 3. A XML tree

is shown that the XML tree in Figure 3 is not normalised whereas the one in
Figure 4 is normalised.

This leads us to the main definition of our paper. In this paper we consider
the simplest case where there are only single paths on the l.h.s. and r.h.s. of the
XMVD and all paths end in an attribute or text node.

Definition 12. Let P be a consistent set of paths and let T be a XML tree that
conforms to P and is complete. A XMVD is a statement of the form p→→ q|r
where p, q and r are paths in P . T satisfies p →→ q|r if whenever there exists
two distinct paths path instances v̄1. · · · .v̄n and w̄1. · · · .w̄n in Paths(q) such that:

(i) val(v̄n) �= val(w̄n);
(ii) there exists two nodes z1, z2, where z1 ∈ Nodes(x11 , r) and z2 ∈

Nodes(y11 , r) such that val(z1) �= val(z2);
(iii) there exists two nodes z3 and z4, where z3 ∈ Nodes(x111

, p) and z4 ∈
Nodes(y111

, p), such that val(z3) = val(z4);
then:

Multivalued Dependencies in XML 11

E rootvr

E

E E E

E E E

“Algorithms”

E Teacher Teacher Text Text

“Fred” “Mary” “Text A” “Text B”

Course

Id

Id Idv1 v2 v3

v4
v5 v6 v7

v8

Fig. 4. A XML tree

(a) there exists a path v̄′1. · · · .v̄′n in Paths(q) such that val(v̄′n) = val(v̄n)
and there exists a node z′1 in Nodes(x′11

, r) such that val(z′1) = val(z2) and
there exists a node z′3 in Nodes(x′111

, p) such that val(z′3) = val(z3);
(b) there exists a path w̄′1. · · · .w̄′n in Paths(q) such that val(w̄′n) = val(w̄n)

and there exists a node z′2 in Nodes(x′11
, r) such that val(z′2) = val(z1) and there

exists a node z′4 in Nodes(x′111
, pl) such that val(z′4) = val(z4);

where x11 = {v|v ∈ {v̄1, · · · , v̄n} ∧ v ∈ N(r ∩ q)} and y11 = {v|v ∈
{w̄1, · · · , v̄n} ∧ v ∈ N(r ∩ q)} and x111

= {v|v ∈ {v̄1, · · · , v̄n} ∧ v ∈ N(p ∩ r ∩ q)}
and y111

= {v|v ∈ {w̄1, · · · , w̄n} ∧ v ∈ N(p ∩ r ∩ q)}
x′11

= {v|v ∈ {v̄′1, · · · , v̄′n}∧v ∈ N(r∩q)} and y′11
= {v|v ∈ {w̄′1, · · · , v̄′n}∧v ∈

N(r ∩ q)} and x′111
= {v|v ∈ {v̄′1, · · · , v̄′n} ∧ v ∈ N(p ∩ r ∩ q)} and y′111

= {v|v ∈
{w̄′1, · · · , w̄′n} ∧ v ∈ N(p ∩ r ∩ q)} .

We note that since the path r∩q is a prefix of q, there exists only one node in
v̄1. · · · .v̄n that is also in N(r∩q) and so x1 is always defined and is a single node.
Similarly for y1, x111

, y111
, x′11

, y′11
, x′111

, y′111
. We now illustrate the definition by

some examples.

Example 1. Consider the XML tree shown in Figure 4 and the XMVD
root.Id.Course →→ root.Id.Id.Teacher|root.Id.Id.Text. Let

v̄1. · · · .v̄n be the path instance vr.v8.v2.v4 and let w̄1. · · · .w̄n be the path
instance vr.v8.v2.v5. Both path instances are in Paths(root.Id.Id.Teacher)
and val(v4) �= val(v5). Moreover, x11 = v8, y11 = v8, x111

= v8 and y111
= v8.

So if we let z1 = v6 and z2 = v7 then z1 ∈ Nodes(x11 , root.Id.Id.Text) and
z2 ∈ Nodes(y11 , root.Id.Id.Text). Also if we let z3 = v8 and z4 = v8 then

z3 ∈ Nodes(x111
, root.Id.Course) and z4 ∈ Nodes(y111

, root.Id.Course)
then val(z3) = val(z4). Hence conditions (i), (ii) and (iii) of the definition of
a XMVD are satisfied.

If we let v̄′i1 . · · · .v̄′in be the path vr.v8.v2.v4 we firstly have that val(v̄′in) =
val(v̄in) as required. Also, since the path instances are the same we have that
x11 = x′11

and x111
= x′111

. So if we let z′1 = v7 then

12 M.W. Vincent and J. Liu

z′1 ∈ Nodes(x′11
, root.Id.Id.Text) and val(z′1) = val(z2) and if we let z′3 =

v8 then
z′3 ∈ Nodes(x′11l

, root.Id.Course) and val(z′3) = val(z3). So part (a) of
the definition of an XMVD is satisfied. Next if we let w̄′i1 . · · · .w̄′in be the path
vr.v8.v2.v5 then we firstly have that val(w̄′in) = val(w̄in) since the paths are the
same . Also, since the paths are the same we have that y11 = y′11

and y111
= y′111

.
So if we let z′2 = v6 then z′2 ∈ Nodes(y′11

, root.Id.Id.Text) and val(z′2) =
val(z1) and if we let z′4 = v8 then z′4 ∈ Nodes(x′11l

, root.Id.Course) and
val(z′4) = val(z4). Hence part (b) on the definition of a XMVD is satisfied and
so T satisfies root.Id.Course →→ root.Id.Id.Teacher|root.Id.Id.Text.

As explained earlier, the tree in Figure 4 also satisfies
root.Id.Course →→ root.Id.Id.Teacher|root.Id.Id.Text.

Example 2. Consider the XML tree shown in Figure 5 and the XMVD
root.Project.P#→→ Root.Project.Person.Name|root.Project.Part.Pid.
For the path instances vr.v1.v5.v13 and vr.v2.v8.v16 in

Paths(Root.Project.Person.Name) we have that val(v13) �= val(v16).
Moreover, x11 = v1, y11 = v2, x111

= v1 and y111
= v1. So if we let z1 = v17 and

z2 = v18 then
z1 ∈ Nodes(x11 , root.Project.Part.Pid) and
z2 ∈ Nodes(y11 , root.Project.Part.Pid). Also if we let z3 = v4 and z4 = v7

then z3 ∈ Nodes(x111
, root.Project.P#) and

z4 ∈ Nodes(y111
, root.Project.P#) and val(z3) = val(z4). Hence condi-

tions (i), (ii) and (iii) of the definition of a XMVD are satisfied. However, for
the only other path in

Paths(Root.Project.Person.Name), namely vr.v3.v11.v19 we have that
x′11

= v3 and so Nodes(x′11
, root.Project.part.Pid) = v21 and since

val(v21) �= val(z2) and so it does not satisfy condition (a) and thus
root.Project.P# →→ Root.Project.Person.Name|root.Project.part.Pid
is violated in T .

Consider then the XMVD XMVD root.Project.Person.Name

→→ Root.Project.Person.Skill |root.Project.P# in the same XML
tree. For the path instances vr.v1.v5.v14 and vr.v3.v11.v20 in

Paths(Root.Project.Person.Skill) we have that val(v14) �= val(v20).
Moreover, x11 = v1, y11 = v3, x111

= v13 and y111
= v19. So if we let

z1 = v4 and z2 = v10 then z1 ∈ Nodes(x11 , root.Project.P#) and z2 ∈
Nodes(y11 , root.Project.P#). Also if we let z3 = v13 and z4 = v19 then
z3 ∈ Nodes(x111

, root.Project.Person.Name) and
z4 ∈ Nodes(y111

, root.Project.Person.Name) and val(z3) = val(z4).
Hence the conditions of (i), (ii) and (iii) of the definition of a XMVD
are satisfied. However there does not exist another path instance in
Paths(Root.Project.Person.Skill) such that val of the last node in the path
is equal to val of node v14 and so part (a) of the definition of a XMVD is violated.

Multivalued Dependencies in XML 13

E rootvr

E Projectv1 E Projectv2 E Projectv3

A P#v4

E Personv5

E Partv6 A P#v7 E Partv9 A P#v10 E Partv12

E Personv8 E Personv11

A Namev13 A Skillv14 A Namev16 A Skillv17 A Namev19 A Skillv20

A Pidv21

“p1” “p1” “p2”

“n1” “s1”

“pt1”

E Pidv17 A Pidv18

“n2” “s2”

“pt2”

“n1” “s3”

“pt3”

Fig. 5. A XML tree

4 XMVDs in XML and MVDs in Relations

In this section we provide a formal justification for the definition of a XMVD
given in the previous section. We prove that for a very general class of mappings
of a relation into a XML document, a relation satisfies a MVD if and only if
the XML document also satisfies the equivalent XMVD. As our technique for
mapping relations to XML trees is done via nested relations, we firstly present
the definitions for nested relations adapted from the definitions given in [14].

Definition 13. Let U be a fixed countable set of atomic attribute names. As-
sociated with each attribute name A ∈ U is a countably infinite set of values
denoted by DOM(A) and the set DOM is defined by DOM = ∪DOM(Ai) for
all Ai ∈ U . We assume that DOM(Ai)∩DOM(Aj) = φ if i �= j. A scheme tree
is a tree containing at least one node and whose nodes are labelled with nonempty
sets of attributes that form a partition of a finite subset of U . If n denotes a node
in a scheme tree S then:

- ATT (n) is the set of attributes associated with n;
- A(n) is the union of ATT (n1) for all n1 ∈ Ancestor(n).

Figure 6 illustrates an example scheme tree defined over the set of attributes
{Name, Sid, Major, Class, Exam, Project}.
Definition 14. A nested relation scheme (NRS) for a scheme tree S, denoted
by N(S), is the set defined recursively by:

(i) If S consists of a single node n then N(S) = ATT (n);
(ii) If A = ATT (ROOT (S)) and S1, · · · , Sk, k ≥ 1, are the principal subtrees

of S then N(S) = A ∪ {N(S1)} · · · {N(Sk)}.

14 M.W. Vincent and J. Liu

Name Sid

 Major Class

 Exam Project

Fig. 6. A scheme tree

For example, for the scheme tree S shown in Figure 6, N(S) =
{Name, Sid, {Major},
{Class, {Exam}, {Project}}}. We now recursively define the domain of a

scheme tree S, denoted by DOM(N(S)).

Definition 15. (i) If S consists of a single node n with ATT (n) = {A1, · · · , An}
then DOM(N(S)) = DOM(A1)× · · · ×DOM(An);

(ii) If A = ATT (ROOT (S)) and S1, · · · , Sk are the principal subtrees of S,
then DOM(N(S) = DOM(A) × P (DOM(N(S1))) × · · · × P (DOM(N(Sk)))
where P (Y) denotes the set of all nonempty, finite subsets of a set Y .

The set of atomic attributes in N(S), denoted by Z(N(S)), is defined by
Z(N(S)) = N(S) ∩ U . The set of higher order attributes in N(S), denoted
by H(N(S)), is defined by H(N(S)) = N(S) − Z(N(S)). For instance, for
the example shown in Figure 6, Z(N(S)) = {Name, Sid} and H(N(S)) =
{{Major}, {Class, {Exam}, {Project}}}.

Finally we define a nested relation over a nested relation scheme N(S), de-
noted by r∗(N(S)), or often simply by r∗ when N(S) is understood, to be a
finite nonempty set of elements from DOM(N(S)). If t is a tuple in r∗ and Y is
a nonempty subset of N(S), then t[Y] denotes the restriction of t to Y and the
restriction of r∗ to Y is then the nested relation defined by r∗[Y] = {t[Y]|t ∈ r}.
An example of a nested relation over the scheme tree of Figure 6 is shown in
Figure 7.

A tuple t1 is said to be a subtuple of a tuple t in r∗ if there exists Y ∈ H(N(S))
such that t1 ∈ t[Y] or there exists a tuple t2, defined over some NRS N1, such
that t2 is a subtuple of t and there exists Y1 ∈ H(N1) such that t1 ∈ t2[Y1]. For
example in the relation shown in Figure 7 the tuples

< CS100, {mid-year, final}, {Project A, Project B, Project C} >
and < Project A > are both subtuples of

< Anna, Sid1, {Maths, Computing}, {CS100, {mid-year, final},
{Project A, Project B,Project C}} >.
We now introduce the nest and unnest operators for nested relations as de-

fined in [13].

Multivalued Dependencies in XML 15

Name Sid {Major} {Class {Exam} {Project}}
Anna Sid1 Maths CS100 Mid-year Project A

Computing Final Project B
Project C

Bill Sid2 Physics P100 Final Prac 1
Prac 2

Chemistry CH200 Test A Experiment 1
Test B Experiment 2 1

Fig. 7. A nested relation.

Definition 16. Let Y be a nonempty proper subset of N(S). Then the operation
of nesting a relation r∗ on Y , denoted by νY (r∗), is defined to be a nested relation
over the scheme (N(S)− Y) ∪ {Y } and a tuple t ∈ νY (r∗) iff:

(i) there exists t1 ∈ r∗ such that t[N(S)− Y] = t1[N(S)− Y] and
(ii) t[{Y }] = {t2[Y]|t2 ∈ r∗ and t2[N(S)− Y] = t[N(S)− Y]}.

Definition 17. Let r∗(N(S)) be a relation and {Y } an element of H(N(S)).
Then the unnesting of r∗ on {Y }, denoted by µ{Y }(r∗), is a relation over the
nested scheme (N(S)−{Y })∪Y and a tuple t ∈ µ{Y }(r∗) iff there exists t1 ∈ r∗
such that t1[N(S)− {Y }] = t[N(S)− {Y }] and t[Y] ∈ t1[{Y }].

More generally, one can define the total unnest of a nested relation r∗, denoted
by µ∗(r∗), as the flat relation defined as follows.

Definition 18. (i) if r∗ is a flat relation then µ∗(r∗) = r∗;
(ii) otherwise µ∗(r∗) = µ∗((µ{Y }(r∗))) where {Y } is a higher order attribute

in the NRS for r∗.

It can be shown [13] that the order of unnesting is immaterial and so µ∗(r)
is uniquely defined. Also, we need the following result from [13]. Let us denote
the NRS of nested relation r∗ by N(r∗).

Lemma 1. For any nested relation r∗ and any Y ⊆ N(r∗), µ{Y }(νY (r∗)) = r∗.

We note the well known result [13] that the converse of the above lemma
does not hold, i.e. there are nested relations such that νY (µ{Y }(r∗)) �= r∗.

4.1 Mapping from Relations to XML

The translation of a relation into a XML tree consists of two phases. In the first
we map the relation to a nested relation whose nesting structure is arbitrary and
then we map the nested relation to a XML tree.

In the first step we let the nested relation r∗ be defined by ri =
νYi−1(ri−1), r0 = r, r∗ = rn, 1 ≤ i ≤ n where r represents the initial (flat)
relation and r∗ represents the final nested relation. The Yi are allowed to be

16 M.W. Vincent and J. Liu

arbitrary apart from the obvious restriction that Yi is an element of the NRS for
ri.

In the second step of the mapping procedure we take the nested relation and
convert it to a XML tree as follows. We start with an initially empty tree. For
each tuple t in r∗ we first create an element node of type Id and then for each
A ∈ Z(N(r∗)) we insert a single attribute node with a value t[A]. We then repeat
recursively the procedure for each subtuple of t. We now illustrate these steps
by an example.

Example 3. Consider the flat relation shown in Figure 8.

Name Sid Major Class Exam Project
Anna Sid1 Maths CS100 Mid-year Project A
Anna Sid1 Maths CS100 Mid-year Project B
Anna Sid1 Maths CS100 Final Project A
Anna Sid1 Maths CS100 Final Project B
Anna Sid1 Physics CS100 Mid-year Project A
Anna Sid1 Physics CS100 Mid-year Project B
Anna Sid1 Physics CS100 Final Project A
Anna Sid1 Physics CS100 Final Project B
Bill Sid2 Chemistry CH200 Test A Prac 1
Bill Sid2 Chemistry CH200 Test B Prac 1
Bill Sid2 Chemistry CH200 Test A Prac 2
Bill Sid2 Chemistry CH200 Test B Prac 2

Fig. 8. A flat relation.

If we then transform the relation r in Figure 8 by the sequence of nestings
r1 = νPROJECT (r), r2 = νEXAM (r1), r3 = νCLASS,{EXAM},{PROJECT}(r2),
r∗ = νMAJOR(r3) then the relation r∗ is shown in Figure 9. We then transform
the nested relation in Figure 9 to the XML tree shown in Figure 10.

Name Sid {Major} {Class {Exam} {Project}}
Anna Sid1 Maths CS100 Mid-year Project A

Physics Final Project B
Bill Sid2 Chemistry CH200 Test A Prac 1

Test B Prac 2

Fig. 9. A nested relation derived from a flat relation.

This now leads to the main result of this section which establishes the corre-
spondence between satisfaction of MVDs in relations and satisfaction of XMVDs
in XML. We denote by Tr∗ the XML tree derived from r∗.

Multivalued Dependencies in XML 17

E E

A A E E A E

A E E

A A A

A E

A A A

E

E root

Id

Name Sid Id Id
“Anna” “Id1”

Major

“Maths”

Exam
“mid-year”

Exam

“final”

Id Id

Project

“Project A”

Id

Sid

“Id2”
IdId

EMajor

“Chemistry”

IdA Class

“CS100

A Class

“CH200”

Exam

“Teat A”

Project Projec

“Prac 1” “Prac 2”

Id

A Name
“Bill”

A Major

“Physics”

A Project
A Exam

“Teat B”

Fig. 10. A XML tree derived from a nested relation.

Theorem 1. Let r be a flat relation and let A → B|C be a MVD defined over
r. Then Tr∗ satisfies pA → qB |rC , where pA denotes the path in Tr∗ to reach A
and qB denotes the path to reach B and rC denotes the path to reach C, iff r
satisfies A→ B|C.

5 Conclusions

In this paper we have extended the work in [15] and investigated the issue of
multivalued dependencies in XML, a topic which to the best of our knowledge
has not been investigated previously. Multivalued dependencies (MVDs) play a
fundamental role in relational databases where they provide semantics for the
data and at the same time are the foundation for database design. Since XML
documents are closely coupled with relational databases in that XML documents
are typically exported and imported from relational databases, the study of
MVDs in XML is of fundamental significance in XML research. We firstly gave
a definition of MVDs in XML (what we call XMVDs) using an extension of
the approach used in [15]. We then formally justified the definition by proving
that, for a very general class of mappings from relations to XML, a relation
satisfies a MVD if and only if the corresponding XML document satisfies the
corresponding XMVD. Thus our definition of a XMVD in a XML document is
a natural extension of the definition of a MVD in relations.

There are several other topics related to the one addressed in this paper
that we intend to pursue in the future. The first is the relationship between
XMVDs and normalisation. Some important first steps have already been made
in [17] where a 4NF for XML documents is defined and shown to be a necessary
and sufficient condition for the elimination of redundancy. However algorithms
and techniques for converting unnormalised documents to normalised were not
covered in [17] and this topic warrants further investigation. Also, in [15], an
axiom system was provided for XFDs. Similarly, an axiom system needs to be

18 M.W. Vincent and J. Liu

developed for XMVDs. Thirdly, we have assumed in this paper that XML doc-
uments do not contain missing information and so our definitions and results
need to be extended to the more typical case where XML documents contain
missing information. Finally, it is expected that XMVDs and XFDs interact in
the same fashion that FDs and MVDs interact [4] and so this topic warrants
further investigation.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan Kauffman,
2000.

2. M. Arenas and L. Libkin. A normal form for xml documents. In Proc. ACM PODS
Conference, pages 85–96, 2002.

3. P. Atzeni and V. DeAntonellis. Foundations of databases. Benjamin Cummings,
1993.

4. C. Beeri, R. Fagin, and J.H. Howard. A complete exiomatization for functional
and multivalued dependencies. In ACM SIGMOD Conference, pages 47–61, 1977.

5. P. Buneman, S. Davidson, W. Fan, and C. Hara. Reasoning about keys for xml.
In International Workshop on Database Programming Languages, 2001.

6. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for xml. Computer
Networks, 39(5):473–487, 2002.

7. P. Buneman, W. Fan, J. Simeon, and S. Weinstein. Constraints for semistructured
data and xml. ACM SIGMOD Record, 30(1):45–47, 2001.

8. P. Buneman, W. Fan, and S. Weinstein. Path constraints on structured and
semistructured data. In Proc. ACM PODS Conference, pages 129–138, 1998.

9. W. Fan and J. Simeon. Integrity constraints for xml. In Proc. ACM PODS Con-
ference, pages 23–34, 2000.

10. M. Levene and G. Loizu. Axiomatization of functional dependencies in incomplete
relations. Theoretical Computer Science, 206:283–300, 1998.

11. M. Levene and G. Loizu. A guided tour of relational databases and beyond.
Springer, 1999.

12. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton:. Relational databases for querying xml documents: Limitations and
opportunities. In VLDB Conference, pages 302–314, 1999.

13. S.J. Thomas and P.C. Fischer. Nested relational structures. In P. Kanellakis,
editor, The theory of databases, pages 269 –307. JAI Press, 1986.

14. M. W. Vincent and M. Levene. Restructuring partitioned normal relations without
information loss. SIAM Journal on Computing, 39(5):1550–1567, 2000.

15. M.W. Vincent and J. Liu. Strong functional dependencies and a redundancy free
normal form for xml. Submitted for publication, 2002.

16. M.W. Vincent and J. Liu. Functional dependencies for xml. In Fifth Asian Pacific
Web Conference, 2003.

17. M.W. Vincent and J. Liu. Multivalued dependencies and a 4nf for xml. In 15th
CAISE Conference, 2003.

18. J. Widom. Data management for xml - research directions. IEEE data Engineering
Bulletin, 22(3):44–52, 1999.

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 19–37, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Processing XML Path Expressions Using XML
Materialised Views*

ChanHo Moon, SooHee Kim**, and Hyunchul Kang

Dept. of Computer Science and Engineering, Chung-Ang University,
Seoul, 156-756, Korea

{moonch,shkim}@dblab.cse.cau.ac.kr, hckang@cau.ac.kr

Abstract. Recently, semantic caching for the database-backed web applications
has received much attention. The results of frequent queries could be cached for
repeated reuse or for efficient processing of the relevant queries. Since the
emergence of XML as a standard for data exchange on the web, today’s web ap-
plications are to retrieve information from the remote XML sources across the
network, and thus, it is desirable to maintain the XML query results in the cache
for the web applications. In this paper, we investigate the problem of processing
an XML path expression, which is one of the core features of XML query lan-
guages, using the XML cache maintained as materialised views. Algorithms to
rewrite the given XML path expression using its relevant materialised view are
proposed. Also provided are the implementation details of how an XML path
expression is processed with its relevant XML materialised view when a rela-
tional DBMS is employed for storing XML base documents as well as their
materialised views. The preliminary experimental results show that our scheme
is feasible and promising.

Keywords: XML, path expression, query rewriting, materialised view, semantic
caching, database-backed web application

1 Introduction

Caching of frequently queried portion of databases lends itself to efficient query proc-
essing in the database-backed web applications [19][22][23]. With proper manage-
ment of the cache such as cache replacement and cache refresh against the updates to
the underlying data, for the repeated queries, their results would be directly available
from the cache, and for the relevant queries, they could be rewritten against the cached
results. As such, the workload on the database system, which might be the perform
ance bottleneck, could be alleviated, and the communication overhead across the net-
work, which might be sometimes huge, could be reduced.

* This work was supported by the Strategic Research Program of Information and Telecommu-

nication Research Institute, Chung-Ang University in 2003.
** Current address: CDMA Handsets Lab, S/W Development Dept., LG Electronics Inc., Seoul,

153-023, Korea

20 C. Moon, S. Kim, and H. Kang

Fig. 1 shows the popular 3-tier architecture for the database-backed web applica-
tions. The web server sends the queries embedded in the web pages to the data server
usually by way of the middleware layer, the application server. It is often the applica-
tion server where the cache is maintained and subsequent query processing with it is
handled.

Since XML is the de facto standard for data ex-
change on the web, efficient XML query process-
ing that capitalizes on XML cache is desirable for
the XML database-backed web applications, and
recently the problem has started to receive atten-
tion [16][8][9][24]. In this paper, we investigate
the problem of processing XML path expressions
using XML cache. The path expression is one of
the core features of XML query languages like
XQuery [4], XPath [3], XQL [27], and so on. As

for XML caching, we consider semantic caching which is view-based query caching
[10][28] whereby the result of an XML path expression against the base XML docu-
ments in the underlying XML data source is cached and maintained as a materialised
view.

In order to capitalize on the materialised views in processing XML queries in path
expression, given a query, it should be possible to compute the whole or part of its
result from the relevant materialised view, and to rewrite the original path expression
against the base XML documents into the one against the materialised view.

The containment relationships between the query result and the relevant material-
ised view are classified into five types as shown in Fig. 2 [20]. Fig. 2(a) shows the
case where the materialised view and the query result are in complete match. Fig. 2(b)
and (c) show the cases where the materialised view contains the query result, and vice
versa, respectively. Fig. 2(d) shows the case where the materialised view and the
query result only partially match. Finally, Fig. 2(e) shows the case where there is no
match between the two.

(e) No match(d) Partial match
(b) View containing

query result
(c) Query result

containing view
(a) Complete

match

Materialised ViewQuery Result

Fig. 2. Relationship between Materialised View and Query Result

As such, there could be three types of XML query processing with the materialised
views as shown in Fig. 3. The first type called MV (Materialised View Only) could be
employed for the cases of Fig. 2(a) and (b) if query rewriting is possible. The second
type called BD+MV (Both Base Documents and Materialised View) could be em-
ployed for the cases of Fig. 2(c) and (d). Here, the query rewriting is more compli-
cated than that of MV. The original query is decomposed into two subqueries, one
against the materialised view and the other against the base documents. The third type

W eb
Server

A pplica tion
Server

D ata
Server

cach e

D B

Fig. 1. 3-tier Architecture for Data-
base-backed Web Applications

Processing XML Path Expressions Using XML Materialised Views 21

called BD (Base Documents Only) is left for the cases of Fig. 2(e) or for the cases
where query rewriting is impossible.

In this paper, we propose two algorithms required for rewriting an XML path ex-
pression with an XML materialised view. The first one determines the type of query
processing given two XML path expressions q and v where q is against the base XML
documents and v is the one that has defined the XML materialised view out of them.
The second one rewrites q into q′ (for MV) or q into q′ and q″ (for BD+MV) where q′
is against the materialised view whereas q″ is against the base documents.

We also provide the implementation details of how an XML path expression is
processed with its relevant XML materialised view when a relational DBMS is em-
ployed for storing base XML documents as well as their materialised views. Since the
relational DBMSs are in dominantly wide use, storing and querying XML documents
with them is of pragmatic importance and is attracting much attention
[31][11][13][14][29]. The results of preliminary performance experiments are also
reported.

The rest of this paper is organized as follows. Section 2 surveys the related work.
Section 3 deals with problem of rewriting XML path expressions with the XML mate-
rialised views. Section 4 presents the implementation issues and the preliminary ex-
perimental results on performance. Finally, Section 5 gives some concluding remarks.

2 Related Work

Query rewriting with views or with the materialised views has received much attention
in the context of the relational database [21] and also of the semistructured data model
[25][6][12]. However, only recently the problem has started to be addressed with the
XML query languages [16][8][9][24].

In [16], a system for semantic caching of XML databases for a subset of XQuery,
called XCacher, is presented. The XQuery query dealt with consists of an extract
(FOR-WHERE clauses) and a construct part (RETURN clause), and the extract part is
cached by XCacher. The cache is organized using a modification of the incomplete
tree [2]. XCacher is located at the application server. It intercepts the XML query that

(a) MV

Base DocumentBase Document

MaterialisedMaterialised
ViewView

Query qq

qq′

Query rewriting Target documents
after query rewriting

Target documents
before query rewriting

(b) BD+MV

Base DocumentBase Document

MaterialisedMaterialised
ViewView

Query qq

qq′
qq″

Base DocumentBase Document

MaterialisedMaterialised
ViewView

Query qq

(c) BD

Fig. 3. Types of XML Query Processing Using Materialised Views

22 C. Moon, S. Kim, and H. Kang

is sent from the web server to the XML data server, rewrites it into the refinement
query against the cache and the remainder queries against the XML database, and
merges the partial results of the rewritten queries.

In [8][9], the query containment mapping and rewriting algorithms for a subset of
XQuery are proposed. Implementation of a semantic XML caching system called
ACE-XQ is described, which performs query containment mapping and rewriting
using the pattern variables in the two XQuery queries, one in the query and the other
in the view.

In [24], a formal model of cache answerability for XPath queries is presented.
Three types of query rewriting, equivalent, weak equivalent, and partial equivalent,
are defined. The presented model is a formal one. Thus, for it to be implemented some
functionality such as the storage and retrieval mechanism for XML data, the sequen-
tial evaluation of XPath subqueries, and the storage structure of cache contents needs
to be specifically provided.

For query processing with materialised views to be possible, consistency mainte-
nance of the materialised views needs to be efficiently supported. Usually it is desir-
able to incrementally refresh them by reflecting only the relevant updates done to their
underlying data. This problem has also received much attention in the context of the
relational database [15] and also of the semistructured data model [1][32][30]. The
same problem with XML data has been recently investigated [26][7][17][18].

In [26][7], incremental refresh of the materialised views over the XML data is in-
vestigated. The XML sources are stored in the binary form of persistent DOMs, and
the views are defined in a subset of XQL. The updates considered are the inser-
tion/deletion of a segment of an XML tree and modification on the value of a leaf
node of the XML tree. An auxiliary information structure called the aggregate path
index(APIX) which holds the collection of qualified data objects with respect to the
query pattern [7] is used to check the update’s relevance to the view. The APIX is
generated when the view is initially computed and maintained against the subsequent
updates on the XML sources.

In [17], deferred incremental refresh of XML materialised views is investigated. A
model of the XML materialised view derived from a collection of XML documents
conforming to some schema is presented, and the problem is dealt with for the case
where XML documents as well as their materialised views are stored in the object-
relational DBMS and the update log is employed for deferred refresh of the views.
In [18], the XML view index(XVI), which contains the identifiers of the view’s un-
derlying XML elements as well as the information on the view out of its definition in
XQuery expression, is investigated. Since XVI stores just the identifiers of the XML
elements not the elements themselves, when the view is to be retrieved, its XVI should
be materialised against its underlying XML documents. The algorithms to efficiently
materialise an XVI and to incrementally maintain its consistency given a update to the
underlying XML documents are proposed.

Processing XML Path Expressions Using XML Materialised Views 23

3 Rewriting XML Path Expressions

In this section, we propose two algorithms required for rewriting an XML query in
path expression to capitalize on the materialised view relevant to the query.

3.1 Examples

Before describing our algorithms, let us consider some of the cases where query re-
writing with the materialised view is possible and the ones where it is not. Fig. 4
shows a DTD and its XML document instance for the running example of the paper. It
is on the bookstore which sells books and magazines. Some path expressions in the
following examples are without filter operators whereby predicate conditions are
given whereas some are with them and may be tricky (refer to Fig. 5).

<!ELEMENT bookstore (book*, magazine*)>

<!ELEMENT book (title, author*, price)>
<!ELEMENT author (first-name, last-name, award)>
<!ELEMENT first-name (#PCDATA)>
<!ELEMENT last-name (#PCDATA)>
<!ELEMENT award (#PCDATA)>

<!ELEMENT magazine (title, price, subscription)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT subscription (per)>
<!ELEMENT per (#PCDATA)>

<bookstore>
<book>

<title>Seven</title>
<author>

<first-name>Joe</first-name>
<last-name>Bob</last-name>
<award>Review</award>

</author>
<price>12</price>

</book>

<magazine>
<title>Tracking Trenton</title>
<price>2.50</price>
<subscription>

<per>year</per>
</subscription>

</magazine>
…….

</bookstore>

(a) DTD (b) XML Document Instance

Fig. 4. DTD and XML Document Instance

Example 3.1
Suppose there exists a materialised view defined as bookstore/magazine which stores a
set of subtrees (of the base XML documents) each of which is rooted at the magazine
element, and an XML query bookstore/magazine/subscription which is to retrieve a set
of subtrees each of which is rooted at the subscription element, is given. Then, the
query result could be retrieved from the materialised view since the query is to re-
trieve the subtrees of the materialised view. �

Example 3.2
Suppose there exists a materialised view defined as bookstore/book/author and an
XML query bookstore/book is given. Then, the query result could be obtained by
merging the entire materialised view and the elements retrieved from the base docu-
ments. To be exact, the query result is a set of subtrees each of which is rooted at the
book element with three subelements: title, author, and price in that order. Title and

24 C. Moon, S. Kim, and H. Kang

price are leaf elements, whereas author forms a subtree that constitutes the material-
ised view. �

Fig. 5. Examples of Relationship between Materialised View and Query Result

Processing XML Path Expressions Using XML Materialised Views 25

Example 3.3
The above two examples have shown the XML queries and views without filter op-
erators.
Suppose there exists a materialised view defined as bookstore/book[author/first-
name= “Jane”] and an XML query bookstore/book/author[first-name=“Joe”] is
given. The tree structure of the materialised view subsumes that of the query result,
i.e., the subtree rooted at the book element contains the subtree rooted at the author
element. However, the two path expressions designate different author subtrees. As
such, the materialised view is of no use for the query at hand unless Joe is a co-author
of the book authored by Jane. �

Example 3.4
Suppose there exists a materialised view defined as bookstore/book[author/first-
name=“Jane”] and an XML query bookstore/book/author[first-name=“Jane” AND
last-name=“Poster”] is given. Since the tree structure of the materialised view sub-
sumes that of the query result and the condition with the query is more restrictive than
that of the materialised view, the query result could be obtained from the materialised
view. �

Example 3.5
Now let us consider the case where the view is defined without filter operators
whereas the query is with them.
Suppose there exists a materialised view defined as bookstore/book/author and an
XML query bookstore/book/author[first-name=“Joe”] is given. For the same reason
as in Example 3.4, the query result could be obtained from the view. �

We note that one of the representative cases where query rewriting with the materi-
alised view is simple and effective is when the materialised view and the query result
have the same path, and the condition in the filter operator with the query is more
restrictive than that of the view (which may not be given, i.e., vacuous TRUE as in
Example 3.5). However, in such a case and even in the case where the materialised
view is containing the query result completely, query rewriting may be impossible.
The next example shows the case.

Example 3.6
Suppose there exists a materialised view defined as bookstore/book/author and an
XML query bookstore/book[title=“Seven”]/author is given. Although the materialised
view does contain the query result, the query result cannot be retrieved from the mate-
rialised view because the materialised view does not store the title element on which
the query’s condition is specified. �

3.2 Model of XML View

We consider the XML query in path expression against a collection of XML docu-
ments that conform to some DTD, rather than against a single XML document. The
result of a path expression against a single XML document is a subtree rooted at the

26 C. Moon, S. Kim, and H. Kang

last element in the path excluding the filter operator. We call that element as the target
element of the query. For example, for path expression bookstore/book[author/first-
name=“Jane”], the target element is book.

An XML view is a forest of subtrees each of which is rooted at the target element
of the view’s path expression. In this paper, an XML view defined by a path expres-
sion is modelled as an XML document. To form a single document with all the sub-
trees retrieved from all the source documents, a root element named mv, which stands
for materialised view, is used [17].

3.3 Determining Query Processing Type

From the examples in Section 3.1, we note that to see whether or not the existing ma-
terialised view can be capitalized on in processing a given query, both the paths and
conditions of the view and of the query need to be compared with each other.

Suppose that query q and materialised view v are given. Let q.path and v.path de-
note the target element path of q and v, respectively, which is the path expression in q
and v, respectively excluding the conditions on the target element or on its subele-
ments, if any. For example, Table 1 shows q.path’s and v.path’s of q’s and v’s in Ex-
ample 3.1 through Example 3.6.

Table 1. Examples of Target Element Path

bookstore/book/authorbookstore/book/authorbookstore/book
[title="Seven"]/author

bookstore/book
[title="Seven"]/author

bookstore/book/authorbookstore/book/authorbookstore/book/authorbookstore/book/author
[first-name="Joe"]

bookstore/bookBookstore/book
[author/first-name="Jane"]

bookstore/book/authorbookstore/book/author[first-name="Jane"
AND last-name="Poster"]

bookstore/bookbookstore/book
[author/first-name="Jane"]

bookstore/book/
author

bookstore/book/
author[first-name="Joe"]

bookstore/book/authorbookstore/book/authorbookstore/bookbookstore/book

bookstore/magazinebookstore/magazinebookstore/magazine/
subscription

bookstore/magazine/
subscription

v.pathvq.pathq

In some cases, the type of processing q with v could be determined just by com-
paring q.path with v.path. Given two target element path P1 and P2 of XML document
D, let us define operator <p between the two as follows: P1 <p P2 iff P1 ≠ P2 and P1 is a
prefix of P2. That is, P1 <p P2 when P2 designates a proper subtree of the subtree desig-
nated by P1 with respect to D. For example, in Example 3.3, q.path = book-
store/book/author and v.path = bookstore/book, and as such, v.path <p q.path. What
this means is that q could be entirely processed with v (i.e., MV type) since q is to
retrieve a proper subtree of v’s materialisation and both q and v do not include any
condition.

In Example 3.2, on the other hand, q.path <p v.path because q.path = book-
store/book and v.path = bookstore/book/author. Since both q and v do not include any

Processing XML Path Expressions Using XML Materialised Views 27

condition, in this case, q could be only partially answered with v. The complete an-
swer should be obtained by accessing the base documents as well (i.e., BD+MV type).

When there are some conditions specified on the target element or on its subele-
ments in q and/or v, not just the target element paths of q and v but their conditions
also need to be compared in determining the type of processing q with v. Let us as-
sume that these conditions are specified in conjunctive normal form p1 AND … AND
pn in a filter operator, where pi is a predicate condition on an element (i = 1, …, n). Let
q.con and v.con denote the target element condition of q and v, respectively, which is
formulated as a set of predicates {P1, …, Pn} where Pi is obtained from pi as follows:
For the element involved in the condition pi, Pi is the full path to that element within
the XML document (i = 1, …, n). For example, in Example 3.4, the condition in q and
v is [first-name=“Jane” AND last-name=“Poster”] and [author/first-name=“Jane”],
respectively. Therefore, q.con = {bookstore/book/author/first-name=“Jane”, book-
store/book/author/last-name=“Poster”} and v.con = {bookstore/book/author/first-
name=“Jane”}. If q or v does not include any filter operator, q.con or v.con is an
empty set. Table 2 shows q.con’s and v.con’s of q’s and v’s in Example 3.1 through
Example 3.6.

Since q.con and v.con are sets, one may be a subset of the other. If v.con ⊂ q.con, it
means that q has more restrictive condition than v in retrieving XML documents and
that q could be processed with v as long as v.path = q.path or v.path <p q.path.

In all, Table 3 summarizes how the type of query processing with a materialised
view is determined in terms of the target element paths and conditions. The BD+MV
types are further categorized into BD+MV1, BD+MV2, and BD+MV3 because their
query rewritings are different.

 Table 3. Determining Type of XML Query Processing with Materialised View

BDBDBDBDotherwise

BDBDBD+MV3BD+MV2v.con ⊃ q.con

BDBD+MV1MVMVv.con ⊂ q.con

BDBD+MV1MVMVv.con = q.con

Conditions

Given

BDBD+MV1MVMV-
Conditions
Not Given

Otherwiseq.path <p v.pathv.path <p q.pathv.path = q.pathCondition Path

Table 2. Examples of Target Element Condition

{ }bookstore/book/author{ }bookstore/book
[title=“Seven"]/author

{ }bookstore/book/author{bookstore/book/author/
first-name="Joe“}

bookstore/book/author
[first-name="Joe"]

{bookstore/book/author
/first-name="Jane“}

bookstore/book[author/
first-name="Jane"]

{bookstore/book/author/
first-name="Jane",
bookstore/book/author/
last-name="Poster" }

bookstore/book/author
[first-name="Jane" AND
last-name ="Poster"]

{bookstore/book/author/
first-name="Jane“}

bookstore/book[author/
first-name="Jane"]

{bookstore/book/author/
first-name="Joe“}

bookstore/book/author
[first-name="Joe"]

{ }bookstore/book/author{ }bookstore/book

{ }bookstore/magazine{ }bookstore/magazine/subscription

v.convq.conq

28 C. Moon, S. Kim, and H. Kang

Fig. 6 is the algorithmic description
of Table 3 in a C-like pseudo code
(algorithm Check_Containment). Given
query q and materialised view v both in
XML path expression, Check_Con-
tainment identifies the applicable type
of query processing, returning one of
five values: MV, BD+MV1, BD+MV2,
and BD+MV3, and BD.1

3.4 Rewriting of Path Expression

From the examples in Section 3.1, we note that to see whether or not the existing ma-
terialised view can be capitalized on in processing a given query, both the paths and
conditions of the view and of the query need to be compared with each other. Fig. 7
shows the C-like pseudo code of the algorithm Rewrite_Path for rewriting an XML
query in path expression with its relevant materialised view. Given query q, material-
ised view v, and q’s processing type using v which was determined by algorithm
Check_Containment, Rewrite_Path rewrites q into q′ and q″ which are against v and
against the base documents, respectively. For BD+MV, there are three different pat-
terns of rewriting. For BD, query rewriting is vacuously done. For MV, q″ is set to
NULL, whereas for BD, q′ is set to NULL and q is copied to q″.

Rewriting of a path expression is done with manipulating the substrings of the path
expressions in q and v. To describe Rewrite_Path, we need to define some further nota-
tions.

Given path expression p, let p.elem denote the target element of p, and let p.len
denote the length of p, which is defined to be the number of elements from the first
element up to the target element along p. When p = bookstore/book[title=“Seven”]
/author[first-name=“Joe”], for example, p.elem = author and p.len = 3.

Given path expression p and integer i, let d_path(p,i) denote the descendent path of
p which is defined to be the suffix of p starting from the character after the i-th ele-
ment of p and also after its filter operator as well, if any. When p = book-
store/book[title=“Seven”]/author[first-name=“Joe”], for example, d_path(p,2) =
/author[first-name=“Joe”], and d_path(p,3) = NULL.
Another notation we need to pay attention to is the backslash(\) used to generate q″ in
the case of BD+MV1. In XML path expressions, the slash(/) is used as the path op-
erator, denoting parent-child relationship among elements. We introduce the ex clud-
ing operator, and use the backslash(\) to denote it. What it does is to specify the su-
belement of the target element not to be retrieved. For example, path expres-

1 Given a query, algorithm Check_Containment is supposed to be repeatedly called for each

view available in the cache. The process of determining the type of query processing is sub-
sumed by that of selecting the materialised view to be capitalized on (see the implementation
issue described in Section 4.2).

Check_Containment(q, v)
{ /* q : XML path expression

v : definition of XML materialised view in path expression
*/

if ((v.path = q.path OR v.path <p q.path) AND v.con ⊆ q.con) return(MV);
if (q.path <p v.path AND v.con ⊆ q.con) return(BD+MV1);
if (q.path = v.path AND q.con ⊂ v.con) return(BD+MV2);
if (v.path <p q.path AND q.con ⊂ v.con) return(BD+MV3);
return(BD);
}

Fig. 6. Algorithm for Checking Containment
Relationship between Query and View

Processing XML Path Expressions Using XML Materialised Views 29

Table 4. Notations

concatenation of string x and y x + y

returns “NOT(con)”not(con)

if con = { }, returns NULL

if con = {P}, returns “P”

if con = {P1, …, Pn}, returns “P1 AND … AND Pn”

and(con)

if con = NULL, returns NULL

otherwise, returns “[con]”
filter(con)

descriptionnotation

sionbookstore/book\author is to retrieve the book element with all its subelements
except author.

For path expression p, what
function refine_path(p) does is to
trim the redundant prefixes off the
full path expressions in the filter
operators of p. For example,
/author[bookstore/
book/author/first-name = “Joe”] is
refined to /author[first-name =
“Joe”]. (This is necessary because
the path expressions in the filter
operators were transformed into their full path version when q.con and v.con are ob-
tained.) It also replaces any occurrence of the backslash immediately followed by a
slash (i.e., ‘\’‘/’) in p with a backslash. (Such a sequence can occur because the de-
scendent path obtained with path decomposition may start with a slash.)

Finally, other notations for
character string manipulation,
+, and(), not(), filter(), are
given in Table 4.

3.5 Examples of Query
Rewriting

As we explained in Section 3.1,
Example 3.1, Example 3.4, and
Example 3.5 are all the cases
where MV type query rewriting
is possible. For each of these
three examples, Table 5 shows
the values of various notations
used in Rewrite_Path en route
to obtaining the rewritten path
expression (refined q′). We can
confirm that in all three exam-
ples, query rewriting done by
Rewrite_Path is correct.

As for BD+MV type query
rewriting, Table 6 shows five
different examples, one for
each case of BD+MV types in
Table 3, and their correspond-

Rewrite_Path(v, q, type, q′, q″)
{
/* v : definition of XML materialised view in path expression

q : XML path expression
q′ : XML path expression against v
q″ : XML path expression against the base XML documents
type : type of processing q with v determined by algorithm

Check_Containment
*/

switch(type) {
case MV :

q′ = “mv/”+v.elem+d_path(q, v.len).path+filter(and(q.con – v.con));
q″ := NULL;
break;

case BD+MV1 :
q′ := “mv/” + v.elem + filter(and(q.con – v.con));
q″ := q + “\” + d_path(v, q.len).path + filter(and(q.con));
break;

case BD+MV2 :
q′ := “mv/” + v.elem
q″ := q.path + filter(and(q.con ∪ { not(and(v.con – q.con)) }));
break;

case BD+MV3 :
q′ := “mv/” + v.elem + d_path(q, v.len).path + filter(and(q.con));
q″ := v.path + filter(not(and(v.con))) + d_path(q, v.len);
break;

case BD :
q′ := NULL;
q″ := q;
break;

} /* end of switch */

q′ := refine_path(q′);
q″ := refine_path(q″);
}

Fig. 7. Algorithm for Rewriting XML Path Expression
Using XML Materialised View

30 C. Moon, S. Kim, and H. Kang

ing rewritten q′s and q″s generated by Rewrite_Path. We can confirm that in all five
examples, query rewriting done by Rewrite_Path is correct.2

4 Implementation

We have developed a prototype XML storage system that supports the materialised
views on top of an object-relational DBMS [17]. It was implemented in Java with
Oracle 8i, and runs on Windows 2000 Server. It is now being extended to incorporate
our proposal described in the previous section so that it may process XML path ex-
pressions with the materialised views defined also in path expression. In this section,
we present the implementation details and some preliminary performance results.

Table 5. Examples of XML Query Rewriting: MV

2 Note that the books can be co-authored in our example DTD. As such, the filter operators on

the author element after the excluding operator are explicitly required though they might look
redundant.

Processing XML Path Expressions Using XML Materialised Views 31

4.1 Table Schema

There are five categories of tables. They are for storing DTD information, view defi-
nitions, base documents, the information for deferred incremental view refresh, and
materialised views. The tables in the first two categories are duplicated both at the
XML source site and at the cache site. The ones in the next two categories are stored
at the source site whereas the ones in the last category are stored at the cache site.

As for storing the base documents, among others, there are two tables used: Ele-
ment_Info table and Element_Content table.3 The former stores the information on
each element which is mapped to a tuple, and includes DTDid, Did, Eid, Ename,
Epath, and ParentEid columns. Did and DTDid store the identifier of the base XML
document and its DTD, respectively. The indices on DTDid are provided for selective
access only to those documents conforming to a given DTD. Eid and Ename store the
identifier and name of the element, respectively. Eid is not just the unique identifier of
the element but carries information on the order of the elements in a document. When
an XML document is decomposed into elements to be stored in the above two tables,
Eid values are assigned in a monotonically increasing way from the root element to its
subelements in the DFS(Depth First Search) order. This order information is very
useful in XML tagging (see Section 4.4). Epath stores the path from the root of the
document to that element. For the author element, for example, Epath = book-
store/book/author. ParentEid stores the parent-child relationship among the elements.

Element_Content table stores the parsed character data of the leaf elements, and in-
cludes DTDid, Did, Eid, Epath, and Content columns. Since our XML view is mod-
elled as an XML document (see Section 3.2), the schema of the tables for the materi-
alised views (i.e., View_Element_Info and View_Element_Content tables) are the same
as their base document counterparts except that they have the view identifier column
(i.e., Vid) and some information on element mapping between the base documents and
the view, which is used in the process of incremental view refresh [17]. The indices on
Vid are provided for selective access only to those tuples for a given view.

4.2 View Selection and Query Rewriting

When an XML query in path expression is received, first its corresponding DTD in-
formation is retrieved from the DTD information table. Then, all the tuples storing the
information on the views defined with respect to the same DTD are retrieved from the
view definition table. For each of those views, its definition in path expression and the
query’s path expression are given to algorithm Check_Containment which examines
the containment relationship between the two and determines the query processing
type as one of MV, BD+MV1, BD+MV2, and BD+MV3, and BD.

If more than one view can be used for query rewriting, the view which allows MV
type processing with the closest containment is selected. If none makes MV type proc-

3 In our previous implementation [17], the edge-inlining approach described in [13] was

adopted for table schema design. Now, we are employing the edge-separate table approach
[13].

32 C. Moon, S. Kim, and H. Kang

Table 6. Examples of XML Query Rewriting: BD+MV

essing possible, the one for BD+MV type processing with the closest containment is
selected. Once the processing type and the view to be capitalized on are determined,
the original query is rewritten into subqueries which are also in path expression.

4.3 XML Path Expression to SQL Mapping

For MV, the rewritten subquery in XML path expression is mapped into SQL expres-
sions against the materialised view tables whereas for BD+MV, the two subqueries are
mapped to SQL, one against the materialised view tables and the other against the
base document tables. In this XML-to-SQL mapping, DTD information is consulted to
generate the list of elements to be included in the query result. While this is done, the
information for XML tagging [14][29] is also produced.

Suppose that we are given an XML path expression, a/b/c, against a materialised
view whose Vid = v and that element c has elements d and e as its subelements,
which are leaf elements. Then, the SQL statement generated for it against
View_Element_Info table is:

SELECT Did, Eid, Ename, Epath, ParentEid
FROM View_Element_Info
WHERE Vid = v AND

((Ename = ’c’ AND Epath = ’a/b/c’) OR
(Ename = ’d’ AND Epath = ’a/b/c/d’) OR
(Ename = ’e’ AND Epath = ’a/b/c/e’))

ORDER BY Did Eid

Processing XML Path Expressions Using XML Materialised Views 33

The order by clause is necessary for efficient XML tagging to be performed next
with the produced tuple stream (see Section 4.4). The SQL statement against
View_Element_Content table for leaf elements is similarly generated.

Meanwhile, for the path expression with a filter operator, say, a/b/c[d=‘x’], against
the base documents whose DTDid = n, the SQL statement generated against Ele-
ment_Info table is:

Suppose that element c can occur more than once as subelements of b in a docu-
ment. Then, there can be the case that some of them is with d = ‘x’ and some with d ≠
‘x’. The above SQL statement does not exclude the latter c subtrees. As such, the
original tuple stream produced undergoes further screening. It is conducted on a
document basis as the original stream is produced.
For the excluding operator (e.g., a/b\c) we introduced for BD+MV type processing,
the WHERE clause needs some adjustment. For element c, for example, that belongs
to the subtree to be excluded, the predicate condition (Ename = 'c' AND Epath =
'a/b/c') is omitted.

4.4 XML Tagging

As the tuple streams are produced, they are fed into the tagging process which gener-
ates the final query result that consists of the retrieved XML subtrees. For MV or BD
type processing, there are two tuple streams produced, one from the element informa-
tion table and the other from the element content table. Due to the order by clause in
the SQL statements generated (i.e., ORDER BY Did Eid), the tuples in these tuple
streams are produced as sorted on the document identifier and on the element identi-
fier within a document, which is the DFS order as explained in Section 4.1. This or-
dering makes it possible for each subtree of the query result out of a document to be
generated in a pipelined way as the two tuple streams are produced. As such, with the
tagging information generated when the DTD information is analyzed for the query,
the pair of tuple streams can be straightforwardly transformed into XML.

For BD+MV type processing, on the other hand, there are four tuple streams in-
volved. They are merged into two streams before starting to be fed into the tagging
process. The original two out of the element information tables for the base documents
and for the materialised views, and also the two out of the content tables are merged
into one, respectively. Since each of the original tuple streams is produced as sorted on

SELECT *
FROM Element_Info
WHERE DTDid = n AND

((Ename = ’c’ AND Epath = ’a/b/c’) OR
(Ename = ’d’ AND Epath = ’a/b/c/d’) OR
(Ename = ’e’ AND Epath = ’a/b/c/e’))

AND Did IN (SELECT Did
 FROM Element_Content
 WHERE DTDid = n

AND Epath = ’a/b/c/d/#PCDATA’
AND Content = ’x’)

ORDER BY Did Eid

34 C. Moon, S. Kim, and H. Kang

the document identifier and on the element identifier within a document, their merge
which maintains the same sort order is simple. In all, the entire process is performed in
a pipelined way. As the four tuple streams involved are produced, they are fed into the
merge process whose output streams are then fed into the tagging process.

The XML tagging for BD+MV type processing is always performed at the XML
cache site. As such, the tuple streams out of the XML source site are sent to the cache
site as they are produced. For BD type processing, however, it depends on whether or
not the tuple streams produced are to be cached (i.e., stored in the corresponding mate-
rialised view tables at the cache site). If not to be cached, XML tagging takes places at
the source site and the query result in XML is sent.

4.5 Preliminary Performance Evaluation

In this section, we report some preliminary performance experimental results. Two
types of base XML documents were used in the experiments. One is the extended
version of the bookstore documents used for the running example of the paper which
is of small size consisting of about 25 elements per document on the average. The
other is the plays of Shakespeare [5] whose average number of elements per document
is about 8,500.

Since our system has not yet been
ported to the web environment and is
running in a centralized environment
only, the performance of the MV
type processing to that of the BD
type processing where the communi-
cation cost is ignored were com-
pared. The experiments were con-
ducted on a Pentium III (550MHz
Dual) PC with 1024 MB main mem-
ory running Windows 2000 Server.
Fig. 8 and Fig. 9 compare the query
processing times by these two meth-
ods as the number of base document
(D) increases.

In Fig. 8, which is out of the ex-
periments against the bookstore
documents, query q was book-
store/book/author/first-name, and
for MV, there were two materialised
views available. One is v1 defined
by bookstore/book/author, and the
other is v2 defined by book-

store/book/author/first-name. The times it took to process q with v1 and with v2 were
both measured. Since v2 is the smaller view containing the result of q (in fact, q and
v2 are in exact match), processing q with it took the least time (curve MV-II). Proc-

"Bookstore" XML Documents

0

2000

4000

6000

8000

10000

12000

14000

16000

1000 5000 10000 20000
The Number of Base Documents

Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e(

m
s)

BD

MV-I

MV-II

Fig. 8. Time for Processing XML Path Expressions
Using Materialised Views

"Play" XML Documents

0

10000

20000

30000

40000

50000

60000

50 100 200

The Number of Base Documents

Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e(

m
s)

BD

MV

Fig. 9. Time for Processing XML Path Expressions
Using Materialised Views

Processing XML Path Expressions Using XML Materialised Views 35

essing q with v1 (curve MV-I) took a little longer. The performance improvement by
MV over BD is significant even when the cost for transmitting the retrieved XML
result to the query site in the web environment is not counted for BD. The times it
took for BD without communication are 2.31, 3.42, 3.47, and 3.48 times as long as
those for MV capitalizing on v2 when D = 1000, 5000, 10000, and 20000, respec-
tively. In Fig. 9, which is out of the experiments against the large play documents, the
ratios increased to 7.82, 7.77, and 7.18 when D = 50, 100, and 200, respectively.

5 Concluding Remarks

In this paper, processing the XML query in path expression with the XML material-
ised view defined also in path expression was investigated. Such a technique can be
employed for efficient support of XML database-backed web applications.

Given two XML path expressions, one for the query and the other for the material-
ised view maintained as a result of semantic caching of XML source, we proposed
algorithms Check_Containment and Rewrite_Path that checks the containment rela-
tionship between the query result and the materialised view, and performs the appro-
priate query rewriting using the materialised view, respectively. In doing so, we also
introduced the excluding operator for XML path expression.

Our proposal is now being implemented with the prototype XML storage system
that supports XML view materialisation previously developed by us in Java with Ora-
cle 8i on Windows 2000 Server [17]. A relational DBMS is employed as the XML
storage because of its pragmatic importance. We thus described some details of the
implementation issues such as table schema, view selection and query rewriting, XML
path expression to SQL mapping, and XML tagging. Some preliminary experimental
results on performance were also presented, showing that our scheme is feasible and
promising.

The path expression is one of the core features of XML query languages, and em-
ploying a relational DBMS as the XML store is regarded as a very practical approach.
As further research, we plan to consider several different table schemas like those
examined in [31][29][14] and also their variations for storing not just the base XML
documents but their materialised views defined in path expressions, and compare them
in terms of the performance tradeoffs in processing XML path expressions using the
XML materialised views in the web application context.

References

1. S. Abiteboul et al., “Incremental Maintenance for Materialized Views over Semistructured
Data,” Proc. Int'l Conf. on VLDB, 1998, pp. 38–49.

2. S. Abiteboul et al., “Representing and Querying XML with Incomplete Information,” Proc.
Int’l Symp. on PODS, 2001.

3. A. Berglund et al., “XML Path Language (XPath) 2.0,” http://www.w3.org/TR/xpath20/,
Nov. 2002.

36 C. Moon, S. Kim, and H. Kang

4. S. Boag et al., “XQuery 1.0: An XML Query Language,” http://www.w3.org/TR/xquery/,
2002.

5. J. Bosak, “The Plays of Shakespeare,” http://www.ibiblio.org/bosak/, 1999.
6. D. Calvanese et al., “Answering Regular Path Queries Using Views,” Proc. Int'l Conf. on

Data Eng., pp. 389–398, 2000.
7. L. Chen and E. Rundensteiner, "Aggregate Path Index for Incremental Web View Mainte-

nance," Proc. 2nd Int’l Workshop on Advanced Issues of E-Commerce and Web-based In-
formation Systems, 2000.

8. L. Chen and E. Rundensteiner, "ACE-XQ: A CachE-aware XQuery Answering System,"
Proc. Workshop on the Web and Databases, 2002.

9. L. Chen et al., "XCache – A Semantic Caching System for XML Queries," Proc. ACM
SIGMOD Int'l Conf. on Management of Data, 2002.

10. S. Dar et al., “Semantic Data Caching and Replacement,” Proc. Int'l Conf. on VLDB, 1996,
pp. 330–341.

11. A. Deutsch et al., “Storing Semistructured Data with STORED,” Proc. ACM SIGMOD
Int'l Conf. on Management of Data, 1999, pp. 431–442

12. D. Florescu et al., “Query Containment for Conjunctive Queries with Regular Expres-
sions,” Proc. Int'l Symp. on PODS, 1998, pp. 139–148.

13. D. Florescu and D. Kossmann, “Storing and Querying XML Data Using an RDBMS,”
IEEE Data Eng. Bulletin, Vol. 22, No. 3, Sep. 1999, pp. 27–34.

14. D. Florescu and D. Kossmann, “A Performance Evaluation of Alternative Mapping
Schemes for Storing XML Data in a Relational Database,” Tech. Rep., INRIA, France,
1999.

15. A. Gupta and I. Mumick, “Materialized Views: Techniques, Implementations, and Appli-
cations,” 1999, MIT Press.

16. V. Hristidis and M. Petropoulos, "Semantic Caching of XML Databases," Proc. Workshop
on the Web and Databases, 2002.

17. H. Kang et al., “Deferred Incremental Refresh of XML Materialized Views: Algorithms
and Performance Evaluation,” Proc. the 14-th Australasian Database Conf., Feb. 2003, pp.
217–226.

18. Y. Kim, C. Moon, and H. Kang, “XML View Indexing: Issues and Solutions,” Proc. Int’l
Conf. on Information and Knowledge Engineering, Jun. 2002, pp. 327–333.

19. A. Labrinidis and N. Roussopoulos, “Web View Materialization,” Proc. ACM SIGMOD
Int'l Conf. on Management of Data, 2000, pp. 367–378.

20. D. Lee and W. Chu, “A Semantic Caching Scheme for Wrappers in Web Databases,” Tech.
Rep. TR-990004, UCLA, Feb. 1999.

21. A. Levy et al., “Answering Queries Using Views,” Proc. of ACM Int’l Symp. on PODS,
1995.

22. Q. Luo and J. Naughton, “Form-Based Proxy Caching for Database-Backed Web Sites,”
VLDB J. 2001, pp. 191–200.

23. Q. Luo et al., “Active Query Caching for Database Web Servers,” Proc. WebDB, 2000, pp.
29–34.

24. P. Marron and G. Lausen, “Efficient Cache Answerability for XPath Queries,” Proc. the
2nd Int'l Workshop on Data Integration over the Web, 2002, pp. 35–45.

25. Y. Papakonstantinou and V. Vassalos, “Query Rewriting for Semistructured Data,”
SIGMOD Proc. Int'l Conf. on Management of Data, pp. 455–466, 1999.

26. L. Quan et al., "Argos: Efficient Refresh in an XQL-Based Web Caching System," Proc.
Workshop on the Web and Databases, 2000, pp. 23–28.

Processing XML Path Expressions Using XML Materialised Views 37

27. J. Robie et al., “XML Query Language (XQL),”
http://www.w3.org/TandS/QL/ QL98/pp/xql.html, 1998.

28. N. Roussopoulos and H. Kang, “Principles and Techniques in the Design of ADMS±,”
IEEE Computer, Vol. 19, No. 12, Dec. 1986, pp. 19–25.

29. J. Shanmugasundaram et al., “Relational Databases for Querying XML Documents: Limi-
tations and Opportunities,” Proc. Int'l Conf. on VLDB, 1999, pp. 302–314.

30. D. Suciu, “Query Decomposition and View Maintenance for Query Languages for Un-
structured Data,” Proc. Int'l Conf. on VLDB, 1996, pp. 227–238.

31. F. Tian et al., “The Design and Performance Evaluation of Alternative XML Storage
Strategies,” ACM SIGMOD Record, Vol. 31, No. 1, Mar. 2002, pp. 5–10.

32. Y. Zhuge and H. Garcia-Molina, “Graph Structured Views and Their Incremental Mainte-
nance,” Proc. Int'l Conf. on Data Engineering, 1998, pp. 116–125.

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 38–57, 2003.
© Springer-Verlag Berlin Heidelberg 2003

WebVigiL: User Profile-Based Change Detection for
HTML/XML Documents

1

N. Pandrangi, J. Jacob, A. Sanka, and S. Chakravarthy

Information Technology Laboratory and
Computer Science and Engineering Department

The University of Texas at Arlington, Arlington, TX 76019
{pandrang,jacob,asanka,sharma}@cse.uta.edu

Abstract. With the exponential increase of information on the web, the empha-
sis has shifted from mere viewing of information to efficient retrieval and noti-
fication of selective information. Currently, users have to poll the pages manu-
ally to check for changes of interest, resulting in waste of resources and associ-
ated high cost. Hence, an efficient and effective change detection and notifica-
tion mechanism is needed. WebVigiL, a general-purpose, active capability-
based information monitoring and notification system, handles specification,
management, and propagation of customized changes as requested by a user.
The emphasis of change detection in WebVigiL is to detect customized changes
on the document, based on user intent. In this paper, we propose two different
algorithms to handle change detection to contents of semi-structured and un-
structured documents. Though the approach taken is general, we will explain the
change detection in the context of HTML (unstructured) and XML (semi-
structured) documents. We also provide a simple change presentation scheme to
display the changes computed. We highlight the change detection in the context
of WebVigiL and briefly describe the rest of the system.

1 Introduction

The Internet is evolving as a repository of information, and the user’s interest has
expanded from querying information to monitoring evolution of the pages. The em-
phasis is on selective change detection, as the users are typically not interested in
changes to the entire page but to a particular portion or section. The need to monitor
changes to documents of interest is not only true for the Internet but also for other
large heterogeneous repositories. Different users may be interested in knowing
changes to specific web pages (or even combinations there-of), and want to know
when those changes take place. Some examples are: students want to know when the

1 This work was supported, in part, by the Office of Naval Research & the SPAWAR System

Center–San Diego & by the Rome Laboratory grant F30602-01-2-05430, and by NSF grants
IIS-0123730 and ITR 0121297.

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 39

web contents of the courses (they have registered for) change; users may want to know
when news items are posted in a specific context (appearance of key words, phrases
etc.) they are interested in. In general, the ability to specify changes to arbitrary docu-
ments and get notified according to user-preferred ways in a timely manner will be
useful for reducing/avoiding the wasteful navigation of web and its associated cost in
this information age.

Fig. 1. WebVigiL Architecture, with the emphasis given to the modules presented in this paper

WebVigiL [1-3] provides a powerful way to disseminate information efficiently with-
out sending unnecessary or irrelevant information. The emphasis in WebVigiL is to
detect changes and notify the users based on user defined profiles. The change detec-
tion approach taken by WebVigiL is general but will be explained in this paper in
context of the Hyper Text Markup Language (HTML) and eXtensible Markup Lan-
guage (XML), which constitute a major portion of the web documents on the Internet.
Fig. 1 shows the overall system architecture of WebVigiL. User-defined sentinels
(profiles indicating the user intent on which pages to monitor, how to monitor, what
changes to compute, and how to present and notify) are verified both syntactically and
semantically prior to persisting their details in the knowledge base. Once a sentinel is
validated, the change detector module generates the ECA rules for the run time man-
agement of that sentinel. The fetch module fetches pages for all active (or enabled)
sentinels, forwards them to the version management module for adding them to the
page repository and notifies the change detection module. The change detection mod-
ule detects the changes according to the specification and notifies the presentation
module. WebVigiL allows the user to specify the type of change of interest. Based on
these documents, either the HTML or the XML change detection mechanism is called.
The changes are detected and stored in the change repository. The presentation module

40 N. Pandrangi et al.

takes these changes and presents it in a user-friendly manner. The main contributions
of the paper are: a) CH-Diff, a change generating mechanism for detecting customized
changes to HTML documents and b) CX-Diff, an approach for detecting customized
changes to ordered labeled XML documents. The remainder of the paper is organized
as follows. Section 2 discusses various tools developed for detecting changes to
HTML and XML pages. Section 3 gives the problem overview. Sections 4 and 5 dis-
cuss, respectively, the algorithms proposed for change detection to HTML and XML
documents. Section 6 discusses the various presentation modules and Section 7 pro-
vides current status and conclusions.

2 Related Work

Many research groups have been working on detecting changes to various types of
documents. WordPerfect has a “mark changes” facility that can detect changes based
on how documents are compared (on either a word, phrase, sentence, or paragraph
basis). Most previous work in change detection has dealt only with flat-files [4] and in
[5, 6] authors, detect changes between strings using the longest common subsequence
[7] algorithm and considers insertion and deletion operations. AIDE [8] uses
HTMLdiff to graphically present differences using heuristics to determine additions
and deletions between versions of a page. A weighted LCS algorithm [7] is used by
HTMLdiff to determine changes. WebBeholder [9] aims at tracking and viewing
changes on web using a service provider agent and a number of mobile agents repre-
senting users. The service provider agent is responsible for retrieving and comparing
HTML documents. A Difference Engine is used to compare and summarize change
information. The authors present an algorithm called Longest Common Tag Sequence
(LOGTAGS) for finding the right places for context comparison within a pair of
HTML documents. In situations where the user is interested in change to a particular
phrase, above-mentioned approaches will end up computing change to the whole page,
resulting in excessive computational overhead. Considerable work [10, 11] has been
done investigating methods and techniques for detecting duplicated portions of code or
portions of similar code in procedural software systems. In [12], the authors suggest
websites to be good candidates for clone proliferation, and propose an approach for
clone analysis for websites based on Levenstein distance [13]. This method is com-
putationally expensive as Levenstein distance involves evaluation of all possible
alignments between strings before an optimal alignment is determined.
Many algorithms have been proposed for tree-tree comparison taking some tree fea-
tures into consideration [14-16]. Chawathe et. al. [16] proposed an algorithm for hier-
archical structured data wherein a minimum cost edit script is generated which trans-
forms tree T1 to T2. The matching nodes are detected by satisfying a pre-defined
function equal(x,y) where xÎ T1 and yÎ T2 and the longest common subsequence
(LCS) method is used to reduce the number of moves for aligning the nodes. This
algorithm works for semi-structured documents such as latex. But the assumptions do
not hold good for XML documents as they contain duplicate nodes and subtrees. X-
diff [17] detects changes on parsed unordered labeled tree of XML. X-diff finds the

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 41

equivalent second level subtrees and compares the nodes using the structural informa-
tion denoted as signature In order to detect move operations i.e. if a node is moved
from position i in old tree to position j in the new tree, an unordered tree cannot be
considered. In [18], the authors formulated a change detection algorithm called diff to
detect changes between two given ordered XML trees T1 and T2. XMLTreeDiff [19],
a tool developed by IBM, is a set of JavaBeans and does ordered tree to tree compari-
son to detect changes between XML documents. WebCiao [20] a website visualization
and tracking system focuses on the structural changes on a HTML page i.e. change in
the links of a given page. Most of the given algorithms do not support customized
changes to the nodes (i.e. change to part of a node or spanning multiple nodes) and
hence these algorithms cannot be mapped directly to satisfy the monitoring require-
ments of WebVigiL.

3 Problem Overview

The World Wide Web (the Web) has become a universal repository of information and
continues to grow at an astounding pace. Hyper Text Markup Language (HTML) has
been used as a universal format for publishing documents on the web since 1990. In
1998, the W3C approved eXtensible Markup Language (XML), which combined the
power of SGML with the simplicity of HTML, was introduced. Over the coming years
XML is likely to replace HTML as the standard web publishing language but until
then both will coexist. In this section, we will highlight the differences between semi-
structured (XML) and unstructured (HTML) documents. We will also introduce the
problems associated with detecting changes using examples, and then present the need
to have different change detection approaches for each type of document.

3.1 What Is a Change

It is useful to be able to know of changes to a document of interest on the web. Com-
binations of changes detected in content (data/text) and structure can flag a change to
the page. We flag a change to a page only when a change in the content is detected
ignoring the structural changes. From a user point of view, structural changes to a
page do not seem to be important. Further more, we assume the structure of the page
to be relatively stable. A web page can be viewed as a set of markup tags and data. In
an XML page, combination of the content and the tags define the nature of the content
whereas in HTML they define the presentation aspects of the content. Hence, as the
format and representation of both HTML and XML differ, separate approaches need
to be adopted for change detection for these documents. The change detection tools for
HTML pages discussed in the previous section take into account the tags of the page
along with the content for detecting change, resulting in consumption of significant
computational and memory resources. Unlike HTML, tags in XML pages define the
content of a page. Hence the structural information of the tags can be exploited to
detect changes to the content.

42 N. Pandrangi et al.

3.2 Importance of User Intent

The web user’s interest has extended from mere viewing of information to monitoring
evolution of selective information on the pages. Hence, the change detection tool
should be capable of detecting preferred change, such as the appearance/disappearance
of keywords, update to a phrase, etc. Consider the scenario: A student wants to moni-
tor the college schedule of classes for a particular course name (keyword). In such
cases, detecting changes to the complete page results in excessive computation and
dissemination of irrelevant information. Hence, there is a need to support detecting
changes based on user’s intent.

Fig. 2. XML Document Fig. 3. Ordered Labeled XML tree

3.3 XML Problem Overview

As shown in Fig. 2, an XML document contains user-defined tags, denoted as ele-
ments. Each element consists of attributes and text nodes. As XML was defined for
semi-structured documents containing ordered elements [21, 22], such documents can
be mapped into an ordered labeled tree. The ordered tree for the XML document in
Fig. 2 is shown in Fig. 3. Change detection for semi-structured, ordered XML trees is
complex because of the following issues:

1. XML contains duplicate nodes. By duplicate nodes, we mean similar leaf nodes
containing the same context. As shown in Fig. 3, the node ‘J K Rowling’ appears
twice in the tree for the same context i.e. ‘Books-Section-Book-Author’. Duplicate
sub trees defined for the same context are also possible in XML. Order becomes
very critical for such duplicate nodes as a node n, existing at position pi in the old
tree should be compared to the node existing in the equivalent ith position in the
new tree with respect to their siblings.

2. Two XML documents may contain the same content having the same structure but
the nodes may be realigned in different subtrees or with respect to the siblings. For

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 43

example, for a tree T1 rooted at R with children pi to pm, a node along with its
structural information can be moved from j where i £ j £ m in T1 to position k in T2
where j ����������	
�����������������	���
�������������������	��������	������
developed should be capable of detecting such move operations.

3. WebVigiL supports customized change detection to the contents, such as phrase
and keyword change. Keywords and phrases can be part of the node or can span
multiple nodes. Hence the algorithm should be capable of extracting the required
content of interest and detect changes.

The change detection tools discussed earlier for XML documents do not handle cus-
tomized changes. The proposed algorithms for HTML are for unordered trees. Hence,
an algorithm is proposed, taking into consideration an ordered, labeled XML tree and
the position of occurrence of the node with respect to its sibling.

4 HTML Change Detection

In this section we formally define change in a page, different types of changes identi-
fied and approaches for detecting these changes. In the later part of the section, we
will present a generalized approach termed CH-Diff for detecting customized changes
to HTML documents.

Fig. 4. Types of changes supported

4.1 Changes of Interest in a Page

A HTML document can be viewed as a document containing raw text along with
formatting and presentation markups and certain content-defining markups. As ex-
plained in the earlier section, by a change we mean change to the raw text but not to
the structure of the page. In addition to detecting changes to the data between the
markups, we also detect changes to certain content-defining markups, such as () and (A href =”.” >). We view a page as a sequence of words and certain
content-defining markups while ignoring other markups (presentation markups). Users
may be interested in appearance or disappearance of certain words or a section of

44 N. Pandrangi et al.

contiguous words or links/images in the page. Thus the contents of a page can be clas-
sified, based on the user intent, into keywords, phrases, all-words, links and images.
1. Keywords: A set of unique words from the page, with no upper bound on the num-

ber of words.
2. Phrase: Contiguous words from the page, with no upper bound on the number of

words.
3. All-Words: All the words in the page constitute this set; which also encompasses all

keywords and phrases.
4. Links: A set of hypertext references extracted from the hypertext tag ().
5. Images: A set of image references extracted from the image source tag (IMG

src=”.”>).
Since the words in phrase and keywords are a subset of the all words, we filter out the
page into all-words and content-based (links, images) sets. We treat the context and
content-tag sequence separately while keeping the processing order in the right se-
quence. A simple HTML parser [23] is used to parse the page and for filtering the
page accordingly. Fig. 4 shows the classification of the contents of a page based on
user intent.

Fig. 5. Classification of contents of a page

A user may wish to track changes at the page level or at an object level. From the user
point of view, by an object level change we mean change to the object of interest to
the user, such as change to a particular phrase or keyword. Hence if t is the object of
interest, then set T is defined as a set of all objects of type t extracted from the page. A
page level change is any change to the page (i.e. words, links or images). For detecting
changes to phrases and keywords we need to extract them from the all-words set.
Object identification and extraction techniques are discussed in the following section.
At the object level
 a change is categorized as an appearance or disappearance of an object from the page.
A move of an object in the page is taken as a sequence of disappearance and appear-
ance. In the rest of the paper, we refer to disappearance and appearance as delete and
insert respectively. In section 4.3 we will discuss more about each change type (insert/
delete/update) for the objects in a page and approaches taken for the detection of
change. In general, the change detection and change presentation is achieved through
three phases namely, 1) Object identification and extraction 2) Change detection 3)
Change presentation.

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 45

4.2 Object Identification and Extraction

Identification and extraction of objects (links, images and keywords) from a page is
straightforward whereas the task for extracting objects of type “phrase” is compli-
cated. Consider the scenario where the phrase has been partially modified; in such a
case a direct string matching will fail to locate the phrase. In order to extract the modi-
fied phrase we need additional information like the location of the phrase in the previ-
ous version. To address this problem we assign a signature to each occurrence of the
phrase. The words before and after the phrase constitute the signature of the phrase. In
the current prototype, we assume that the selected words surrounding the object are
relatively stable. Currently, ten words (or less) before and after the phrase constitute
its signature. WebCQ [24] also uses the concept of a bounding box to tackle this
problem. Issues like the dynamic configuration of signature length based on the nature
of the page (static/dynamic), change to signature in combination with change to phrase
are being investigated.

4.3 Detecting Changes to Objects

As discussed in section 4.1 the changes of interest are links, images, keywords, phrase,
all words and anychange. Fig. 5 shows when a change is flagged for each of the sup-
ported change types. By anychange we mean change to “all-words” in the page and/or
changes to links/images. For detecting changes to “all-words” we could use LCS. The
existing tools use LCS (with several speed optimizations) to compare HTML pages at
page level. But for scenarios where the user is only interested in a change to a par-
ticular object in a page, using LCS approach will be computationally expensive. Let t
be the object type, which is of interest in a page, S(A) be the set of objects of type t
extracted from version Vi and S(B) be the set of objects extracted from version Vi+1.
Here S(A) – S(B) gives the objects that are absent in S(B) indicating deletion of those
objects between versions Vi and Vi+1. Similarly S(B) – S(A) gives the new objects
that have been inserted or added into version Vi+1. We will improve upon this idea by
introducing the concept of window-based change detection.

4.3.1 CH-Diff: A Customized Change Detection Algorithm for HTML

We define a set s{(o1,c1),(o2,c2),(o3,c3),…,(on,cn)} where o1,o2,o3.. on are objects
of type t with c1,c2,..cn being the corresponding number of occurrences (> 0) of each
object in a version Vi. For detecting changes to objects of type t in version Vi, we
need to compare the set obtained from Vi, with the old set obtained from version Vi-1.
Increase or decrease in the number of instances of an object, is taken as an insert or
delete. As the name of the approach indicates we form a window of objects which are
ordered based on their hash codes. In java 1.3, for every string object a hash code [25]
is generated (since every object is of type string in our case we use this hash code).
The hash code of the first and last object in the re-ordered old set defines the bounds
of the window.

46 N. Pandrangi et al.

1. Phase-I: Every object in new set with a hash code greater than the upper bound or
lower than the lowerbound is flagged as an insert. Objects that have their hash code
within [lowerbound, upperbound] are searched for occurrence in the objects defin-
ing this range (in re-ordered old set). If found, the occurrence count is compared
and accordingly an insert or delete is flagged. If not found then the object in the
new set is flagged as insert.

2. Phase-II: All objects in re-ordered old set that have not participated in the previous
phase are flagged as deletes.

Since the objects are extracted from the page and change is deduced from the occur-
rence count, knowing exactly which instance of this object changed in the page re-
quires additional computation. We do the additional computation based on the user
preferences at the presentation phase. The signature of each instance of the keywords
is used to detect the exact instance that was deleted. For phrases, in addition to insert
and delete, an update to a phrase is also detected. Here, for phrases, the objects in the
extracted set denote the signature of each instance (occurrence) of the phrase. The
process involved in change detection of a phrase is as follows: Initially during the
object extraction phase, Knuth-Morris-Pratt (KMP) string-matching algorithm is used
for matching of the phrase with the words extracted from the page (words object). For
every hit, the corresponding signature (bounding box) is extracted. Thus the set of
objects extracted from the new and old version of a page for phrase detection is the
signature of each instance of the phrase in the corresponding version. The window-
based approach results in indicating inserts and deletes to the objects considered. De-
lete to the object here has two possibilities: either the phrase was completely deleted
from the new version or the phrase is partially updated but is not caught by KMP.
Here we use a heuristic approach for determining an update to a phrase. The object
that was flagged as deleted in the old set (i.e., signature of that instance of a phrase) is
used against the new page to get the words wrapped by this signature. LCS is now run
on the words thus extracted and the phrase, and if the length of the resulting longest
common subsequence is greater than a given percentage (the percentage can be ad-
justed on the fly based on past history) of the length of the phrase we take it as an
update else a delete is flagged.
Consider the example where a user is interested in monitoring changes to objects {a,
b, c, d, e} and let the set of these objects extracted from an old and a new version of a
page be {(d,2),(b,2),(c,2)} and {(a,1), (c,2),(b,2),(e,1)} respectively. By analyzing
these sets it is obvious that objects “a” and “e” have been inserted in the page and both
the instances of object “d” are deleted from the old page. Fig. 6 shows the phases of
the change detection algorithm along with the changes detected at each pass. The
change computed is used in change presentation phase for presenting the changes. In
section 6 we will discuss about presentation schemes and point out the type of scheme
taken for each change type. In the following section we will present approaches for
detecting customized changes for XML pages where the approach taken is different
from HTML pages as explained in the problem overview.

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 47

Fig. 6. Operations in Phase I and II

Fig. 7. Change Operations on trees T1 and T2

5 Change Detection for XML

An XML document consists of nodes that represent elements, text, attributes etc. and
can be represented as an ordered labeled tree. The structural information, such as the
element and sibling information can be utilized efficiently to detect changes in XML.
The structural information denoted as path or signature is defined as:
Signature: The ancestral path of a leaf node from the parent to the root, denoted by
path(x) for node x. For attributes, the label of the attribute also becomes a part of the
signature. In Fig. 3, the path for the node “Harry Potter and the Chamber of Secrets” is
Books-Section-Book-Name.
CX-Diff detects customized changes on XML documents like keywords and phrases
(defined in section 4.1). These changes are word-based changes on the content of the
page. In an XML tree, the leaf nodes represent the content. Hence changes to the leaf
nodes are of interest. The structure is only taken into consideration for efficient change

48 N. Pandrangi et al.

detection to the content. Keyword can be part of the leaf node or be the node itself.
For example, in Fig. 3, keyword ‘Harry’ is part of the entire node ‘Harry Potter and
the Chamber of Secrets’. Similarly for a phrase change, the given phrase could be part
of the node, the node itself or can span more than one node. Detecting changes to
contents constituting part of the node or spanning several nodes complicates the ex-
traction of the content and change detection. For XML, the attributes of an element are
considered unordered [22]. But as the changes are detected considering the content to
be ordered, the attributes are assumed to be ordered for the proposed change detection
algorithm. Attributes defining ID and IDREFS are also considered as simple ordered
attributes. In addition, we only consider well-formed XML documents and don’t proc-
ess DTD, CData, Entity and Processing Instructions nodes. The changes are detected
by identifying the change operations, which transform a tree T1 to tree T2.

5.1 Change Operation

Given two ordered XML trees T1 and T2, consider the change operations from the set
E = {insert, delete, move} which when applied to T1 transforms it into a new tree T2.
To detect the change operations, the structure is also taken into consideration. The
content of a leaf node is defined as its value and is denoted as v(x) where x is a leaf
node. The operations can be defined as follows:
1. Insert: Insertion of a new leaf node at the ith position is denoted by insert (v(x),i). If

n1…nm are the leaf nodes in T1 and for 1< k< m, if n1….nk-1,x,nk….nm are the
leaf nodes in T2, then the node x is considered inserted. As structure defines the
context for the content in XML, a node of the same value but different signature is
considered inserted. Insert of a keyword is defined as the appearance of a keyword
k in the ith leaf node x of the tree T1, denoted by insert_keyword (k,x,i) where the
keyword can be part of the leaf node x or the node itself. Insert of a phrase is de-
fined as appearance of a complete phrase at position i in the tree T1, denoted by
(p,i).

2. Delete: The deletion of an old leaf node at the ith position is denoted by de-
lete(v(x),i). A leaf node x having the value v(x) is deleted from the ith position in
tree T1 rooted at root R. Given two ordered XML trees T1 and T2, T1 will be same
as T2 except that it will not contain x. Delete of a keyword is defined as the disap-
pearance of the keyword k in the ith leaf node x of the tree T1, denoted by de-
lete_keyword (k,x,i). Delete of a phrase is defined as disappearance of a phrase p
at ith position in the tree T1, denoted by (p,i).

3. Move: For the tree T1 , containing leaf nodes from n1 to nm, a leaf node x con-
taining signature s is shifted from position j in T1 to position k in the new tree T2
where 1<=j<=m and j �� �� ����� �����	�� �
� ���� ���������� �
��� ��� ��
��� ��
move(x,j,k) where x is the leaf node moved from position j to position k. Move is
only applicable to a complete node. Keyword and phrase changes are changes de-
tected to part of the node or on the contents of more than one node. Hence, move is
not applicable to keyword and phrase change but only for any change on the leaf
nodes.

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 49

As shown in Fig. 7, leaf nodes having value ‘D’ and ‘G’ are deleted in tree T1 in posi-
tion 2 and 3 respectively and leaf node with value ‘F’ is inserted in tree T2. Leaf
node ‘C’ is moved from position 4 in Tree T1 to position 5 in T2.

5.2 CX-Diff: Customized Change Detection for Ordered Documents

For customized change detection based on user intent, extraction of the objects of
interest like keywords and phrases is necessary to detect changes to a page. Signature
is computed for each extracted leaf node. To detect change operations between given
trees T1 and T2, the unique inserts/deletes are filtered and matching nodes and signa-
tures are extracted. The common order subsequence is detected on the extracted
matching nodes to detect move and insert/deletes to duplicate nodes. The algorithm
consists of following steps: i) object extraction and signature computation, ii) filtering
of unique inserts/deletes and iii) finding the common order subsequence between the
leaf nodes of the given trees. For reducing the computational time for detecting
changes, an optimization is also proposed.

5.2.1 Object Extraction and Signature Computation
Based on the user intent, the object of interest needs to be extracted from the contents
of the XML document and the structural information derived by computing the signa-
ture. To access the content and extract the structure of the XML document, it is first
transformed into a Document Object Model (DOM) [26]. The Xerces-J 1.4.4 java
parser [27] for XML is used for this purpose. The tree is traversed top down and the
leaf node consisting of text and attribute nodes are extracted. The signature of each
node is also computed from the extracted element information.
1. For keyword extraction, if v(x) is the value(content) of leaf node x, the value is

divided into its respective words w1 to wn where n is the number of words in v. A
string compare is carried for each word w and the given keyword k. If a word wi
equal to the keyword k is found, the order of occurrence of the keyword in the
node, value of the leaf node v(x) and its signature is extracted.

2. For phrase extraction, value of all the leaf nodes are divided into words and ex-
tracted in the order of occurrence. The Knuth-Morris-Pratt (KMP) string-matching
algorithm is run against the sequence of words and all exact matches to the given
phrase are extracted along with its associated signature. If a phrase is part of a node
or spans more than one node, the part of the node (s) containing the phrase is ex-
tracted and inserted as a separate phrase node in its correct order of occurrence and
the tree is realigned.

For the given tree T1 and T2 in Fig. 7, the tree is traversed and the leaf nodes and their
associated signatures are extracted and added to the T1set and T2set respectively as
shown in Fig. 8.

5.2.2 Filtering Unique Inserts/Deletes
In a given tree T, a node x containing value v(x) can be distinct or can have multiple
occurrences. Insertion/Deletion of distinct nodes can result in unique insert/delete

50 N. Pandrangi et al.

unless they are moved, and can be detected on an unordered tree. Similarly, leaf nodes
containing non-matching signature can also be considered as unique inserts/deletes as
the signature define the context. To reduce the computation cost of finding the com-
mon order subsequence between two ordered trees, by considering all the leaf nodes,
the unique inserts/deletes are filtered out and matching nodes extracted by the defined
functions totalMatch and signatureMatch. The functions are defined as:
Total Match: For each extracted node, the function totalMatch(old_tree, new_tree)
extracts the set of best matches denoted as M such that for the given trees T1 and T2
and leaf node x in T1 and leaf node y in T2, (x, y) Î M if v(x) =v(y) and path(x) =
path(y).

The value v of the node along with the signature is mapped to the java-generated hash
code [25]. The nodes with the associated signature are sorted on the hash code. Every
element in T2Set with a hash code greater than the upper bound or lower than the
lowerbound of T1Set is flagged as an ‘insert’. Elements that have their hash code
within [lowerbound, upperbound] are searched for occurrence for similar elements in
the T1Set. If not found, these elements are flagged as ‘insert’. Similarly, the nodes
with their associated signatures not matched in T1Set are flagged as ‘delete’. For
phrase change, the associated phrase for each node is also marked as ‘insert/delete’.

Signature Match: All the matching signatures in the old and new tree, containing
non-matching leaf nodes are included in the set M. For leaf node x in tree T1 and y in
tree T2, if path (x) = path (y) and v(x) ���������������������������������������	������
the match set M.

For keyword change detection, the instances of keyword may not have changed in a
leaf node though the value of the node may have changed. The algorithm should cap-
ture such instances of keywords, which have not changed. In addition, as XML is
well-defined document, it can be assumed that the structure is generally stable. Hence,
many times, though the contents change, the structure remains the same and this in-
formation can be included for optimal detection of common order subsequence be-
tween two trees. The non-matching nodes of Total Match are given to the function
signatureMatch, to extract common signatures. For keyword change, the associated
keywords are also extracted. The distinct leaf node having value ‘G’ in Tree T1 and
node having value ‘F’ in Tree T2 in Fig. 7 are detected as deleted and inserted after
computation of the function totalMatch as shown in Fig. 8. Though value of leaf nodes
‘G’ in T1and ‘F’ in T2 do not match but path(G)=path(F). Hence, for efficient com-
putation of common order subsequence, the common signature information is ex-
tracted by the function signatureMatch and included as elements in the matchedT1set
and matchedT2set. As shown in Fig. 8, at the end of phase I, all unique inserts i.e. ‘F’
and unique deletes i.e. ‘G’ are detected and common structural information of such
unique inserts/deletes are extracted. For keywords and phrase change, if all the ex-
tracted keywords and phrases result in unique insert/delete, then the computation can
be considered complete at this stage.

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 51

5.2.3 Finding the Common Order Subsequence
For change detection to multiple occurrences of a node with common signatures and
for moved nodes, it is necessary to consider an ordered tree. Due to realignment of the
node and inserts and deletes, the order of occurrence needs to be considered with re-
spect to the sibling. Hence, the common order subsequence is computed by running
the Longest Common Subsequence (LCS) algorithm [7] between the matched nodes of
both the trees. All the matched nodes are aligned in the order of occurrence. For key-
word change, the extracted keywords, which are part of the leaf node, are also aligned
with its matching parent leaf node and signature. It is observed that though the content
may change the keyword in the content may not change. To avoid missing detection of
such keywords, if the signature of the extracted keyword matches and extracted by the
function signatureMatch, the associated keyword is also aligned for LCS. As ex-
plained in section 5.2.1, the phrase is inserted as a text node and hence is treated as a
complete leaf node. For detecting LCS, each node is mapped into its equivalent hash
code and the nodes resulting in the common order subsequence are extracted. The
nodes, which do not constitute the common order subsequence between the given two
trees, are differentiated as inserts, deletes or moves. At the end of this phase, all the
moved nodes and the duplicate inserts/deletes will be detected. For example, in Fig. 3,
if ”J.K Rowling” at 3rd position is deleted, the delete will be detected for correct
position. Similarly, at the end of the LCS computation on the matched nodes in Fig. 8,
the deletion of the node ‘D’ at position 2 in T1 as well as the move of node ‘C’ from
position 4 in T1 to position 5 in T2 can be detected. Hence, this algorithm detects
effectively customized changes like keywords, phrases etc based on user intent. In
addition, changes to duplicate leaf nodes containing common structural information
and moves are accurately detected.

Fig. 8. Phases of CX-Diff algorithm

5.2.4 Optimization
To improve the time taken by the above algorithm, an additional phase of eliminating
common second level subtree is introduced. Subtrees are computed at the second

52 N. Pandrangi et al.

level as the second level defines the main context of the contents in the document. For
given trees T1 and T2, the second level element node is denoted as l(s) where l is the
label of node s. if l(s1) is the second level node of T1 and its equivalent node in T2 is
l(s2), the subtrees of T1 and T2 are considered matched if l(s1) = l(s2) and all the leaf
nodes along with the signature in T1 is equal to the leaf nodes and their associated
signature in T2 in the same order of occurrence. All the nodes of the matched subtrees
are removed from the matched set M. Hence, the size of M for LCS is reduced and the
cost of computation is improved. But accurate results cannot be achieved if the sibling
information is lost. Hence this optimization trades computation time to accuracy. Our
experience has indicated that doing LCS at the 2nd level does not affect the accuracy
of change detection except in very rare cases. Furthermore, WebVigiL allows the user
to decide whether accuracy of change detection or time is important. Based on the user
policy, the decision to utilize the optimization technique is made.

6 Change Presentation

Change presentation is the last phase of web monitoring where the detected changes,
as outlined in the previous sections, are presented to the user. For meaningful inter-
pretation of the presented changes, we have investigated three ways to present it to the
user:
1. Only Change Approach: Showing only the changes and omitting the common

objects of the two pages is advantageous for pages of large size but will make in-
terpretation intricate. This approach can be meaningful for hand-held devises to
conserve the amount of data transmitted over a limited bandwidth.

2. Single Frame Approach: Produce a single document by merging the two docu-
ments summarizing all inserted, deleted and common objects. The advantage lies in
displaying the common objects just once, but with the draw back of possibly
changing the page structure.

3. Dual Frame Approach: Showing both the documents side-by-side in different
frames and highlighting the changes between the documents has the advantage of
uncomplicated interpretation of the changes presented. When the number of
changes to be presented is large, this approach may make it difficult to interpret the
changes. This can be remedied by presenting parts of the pages at a time to limit the
number of changes displayed in each installment.

In WebVigiL we intend to use all of the three presentation schemes summarized above
in a selected combination depending upon the type of change type being presented.
For example we plan on testing the Dual Frame Approach for presenting changes to
phrases and keywords. For displaying changes to image we plan on using the Single
Frame approach (showing both the old and new image). Finally for the change type
any-change, based on the number of changes detected we use a heuristic cost model
for choosing the presentation mechanism between the Dual Frame Approach, Only
Change and single Frame Approach for displaying changes. An example of
WebVigiL’s Dual Frame output is shown in Fig. 9 for the given keywords {CSE2315,

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 53

CSE2320, ALGOR&DATASTRUC, CSE3310}. Markups are used to highlight de-
leted and inserted objects. Deleted text is displayed in “struck-
out” font using <STRIKE> which, as experimentally determined in [8], is rarely
used in HTML and XML documents. And for displaying inserted text, we are cur-
rently using colors and <I> to highlight. Modified “content-defining” markups are
highlighted as, change to the URL or IMG (image) in the anchor is highlighted using
an arrow which points to the text between <A>. in case of a URL and points to
the image, in case of change in the source for the image. These techniques have been
implemented for HTML documents. We are currently investigating, mapping of the
above approaches to change presentation to XML pages.

Fig. 9. A dual-frame presentation scheme for presenting changes to keywords.

54 N. Pandrangi et al.

7 Conclusion

WebVigiL is a change monitoring system for the web that supports specification,
management of Sentinels and provides presentation of detected changes in multiple
ways (batch, interactive, for multiple devices). The first prototype has been completed
and includes the following features: web-based sentinel specification [1], ECA rule
based fetch that includes learning [3] to reduces the number of times a page is fetched,
population of the knowledge base, detection of changes to HTML and XML pages as
discussed in this paper. A simple presentation module for the schemes briefly outlined
in this paper has been implemented.
Currently, the individual modules are being integrated to instrument the first version
of a complete WebVigiL system. The first release of WebVigiL with the above fea-
tures is expected to be ready by March. The performance evaluation of change detec-
tion algorithms and their comparison with other approaches are currently underway.

References

[1] Chakravarthy, S., et al. WebVigiL: An approach to Just-In-Time Information Propagation
In Large Network-Centric Environments. in Second International Workshop on Web Dy-
namics. 2002. Hawaii.

[2] Jacob, J., et al., WebVigiL: An approach to Just-In-Time Information Propagation In
Large Network-Centric Environments(to be published), in Web Dynamics Book. 2003,
Springer-Verlag.

[3] Chakravarthy, S., et al., WebVigiL: Architecture and Functionality of a Web Monitoring
System (submitted). http://itlab.uta.edu/sharma/Projects/WebVigil/files/WVFetch.pdf.

[4] J.W.Hunt and M.D.Mcllroy, An algorithm for efficient file comparison. 1975, Bell Labo-
ratories: Murray Hill, N.J.

[5] E.Myers, An O(ND) difference algorithm and its variations. Algorithmica, 1986. 1: p.
251–266.

[6] S.Wu, U.Manber, and E.Myers, An O(NP) sequence comparision algorithm. Information
Processing Letters, 1990. 35: p. 317–323.

[7] Hirschberg, D., Algorithms for the longest common subsequence problem. Journal of the
ACM, 1977: p. 664–675.

[8] Douglis, F., et al., The AT&T Internet Difference Engine: Tracking and Viewing
Changes on the Web, in World Wide Web. 1998, Baltzer Science Publishers. p. 27–44.

[9] Saeyor, S. and M. Ishizuka. WebBeholder: A Revolution in Tracking and Viewing
Changes on The Web by Agent Community. in WebNet98. 1998.

[10] Baker, S.B. A theory of parametrized pattern matching:algorithms and applications. in
Proceedings of the 25th Annual ACM Symposium on Theory of Computing. 1993.

[11] Balazinska, M., et al. Advanced clone-analysis to support object-oriented system refac-
toring. in Seventh Working Conference on Reverse Engineering. 2000.

[12] Lucca, G.D., et al. Clone Analysis in the Web Era: an Approach to Identify Cloned Web
Pages. in Seventh IEEE Workshop on Empirical Studies of Software Maintenance. 2001.
Florence, Italy.

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 55

[13] Ulam, S.M. Some Combinatorial Problems Studied Experimentally on Computing Ma-
chines. in Zaremba S.K., Applications of Number Theory to Numerical Analysis. 1972:
Academic Press.

[14] K.Zhang and D.Shasha, Simple Fast Algorithms for the Editing Distance between Trees
and Related Problems. SIAM Journal of Computing, 1989. 18(6): p. 1245–1262.

[15] K.Zhang, R.Statman, and D.Shasha, On the Editing Distance between Unordered Labeled
Trees. Information Processing Letters, 1992. 42: p. 133–139.

[16] S.Chawathe, et al. Change detection in hierarchically structured information. in Proceed-
ings of the ACM SIGMOD International Conference on Management of Data. 1996.
Montréal, Québec.

[17] Y.Wang, D.DeWitt, and J.Cai, X-Diff: An Effective Change Detection Algorithm for
XML Documents. 2001, Technical Report, University of Wisconsin.

[18] G.Cobena, S.Abiteboul, and A.Marian, Detecting Changes in XML Documents. Data
Engineering, 2002.

[19] F.P.Curbera and D.A.Epstein, Fast Difference and Update of XML Documents.
XTech'99, 1999.

[20] Chen, Y.-F. and E. Koutsofios. WebCiao: A Website Visualization and Tracking System.
in WebNet97. 1997.

[21] Extensible Markup Language(XML)., World Wide Web Consor
tium,http://www.w3.org/XML/.

[22] S.Abiteboul, P.Buneman, and D.Suciu, Data on the Web: From Relations to Semistruc-
tured Data and XML. 1999: Morgan Kaufmann.

[23] HTML-Parser, http://www.quiotix.com/downloads/html-parser/.
[24] Liu, L., C. Pu, and W. Tang. WebCQ: Detecting and Delivering Information Changes on

the Web. in Proceedings of International Conference on Information and Knowledge
Management (CIKM). 2000. Washington D.C: ACM Press.

[25] Java1.3, http://java.sun.com/j2se/1.3/docs/api/.
[26] Document Object Model(DOM)., http://www.w3.org/DOM/.
[27] Xerces-J, http://xml.apache.org/xerces2-j/index.html.

56 N. Pandrangi et al.

8 Appendix

Fig. 10. Outline of the CH-Diff Algorithm for Phrase Change Detection.

WebVigiL: User Profile-Based Change Detection for HTML/XML Documents 57

Fig. 11. Outline of the CX-Diff Algorithm for Keyword Change Detection.

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 58–66, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Aggregate Table-Driven Querying via Navigation
Ontologies in Distributed Statistical Databases

Yaxin Bi1, David Bell1, and Joanne Lamb2

1School of Computer Science, The Queen’s University of Belfast, Belfast BT7 1NN, UK
{y.bi, da.bell}@qub.ac.uk

2CES, University of Edinburgh, Holyrood Road, Edinburgh, EH8 8AQ, UK
j.m.lamb@ed.ac.uk

Abstract. In this paper we describe a query paradigm based on ontologies,
aggregate table-driven querying and expansion of QBE. It has two novel
features: visually specifying aggregate table queries and table layout in a single
process, and providing users with an ontology guide in composing complex
analysis tasks as queries. We present the role of the fundamental concept of
ontology in the context of the content representation of distributed databases
with large numbers of multi-valued attributes, and in query formulation and
processing. The methods and techniques developed for representing and
manipulating ontologies for query formulation and processing make extensive
use of XML and DOM. The core functionalities of content representation, query
formulation without prior knowledge about databases, statistical summary and
result presentation are integrated into a front-end client within the underpinning
MVC architecture, which has been implemented in Java and JAXP.

1 Introduction

Our focus in the present study is on relational databases with large numbers of multi-
valued attributes which have been common for several years in a variety of
applications – especially for those including statistical databases and scientific
databases – and often they are distributed on the Internet. The tasks of content
representation, statistical summary and result presentation (publishing) place
significant demands on front-end interfaces and integrated access to these databases.
The large number of multi-valued attributes means that their meaningful
representation is essential for understanding the content of databases and for query
formulation. Furthermore, because of the requirements of statistical analysis and the
need to publish results in various tabular forms, it must be possible for users to bring
both query composition and table layout definition together in a single process of
query formulation. Novel query paradigms and data integration mechanisms are thus
needed.

Our intention here is to address query paradigms and data integration in the context
of a particular application – that of official statistics. The work described includes
three major aspects. The first is the support of statistical summary queries in terms of
macro (aggregate or summary) data table queries for distributed statistical databases
with large number of multi-valued attributes. The second is the enhancement of
database content representation by means of domain ontologies. The third aspect is a

Aggregate Table-Driven Querying via Navigation Ontologies 59

knowledge-based query paradigm, which integrates ontologies, macro table-driven
querying and expansion of Query By Example (QBE) [1], allowing users to visually
specify macro table queries and table layout in a single process, and providing users
with an ontology guide in composing complex analysis tasks as queries.

Much of the work presented here has been implemented in the European fifth
framework MISSION project (Multi-Agent Integration of Shared Statistical
Information Over the [inter]Net). MISSION grew out of ADDSIA [2], [3] and early
research project MIMAD [4]. The MISSION system is built on a three-tier
architecture composed of the client, library and dataserver. The client is a presentation
layer – a front-end interface, which is developed using the advanced technologies of
MVC (Model-View-Controller) paradigm [5] and DOM (Document Object Model).
The library is a mediation layer holding the ontology repository and it acts as a
workspace for software agents. It plays a mediation role between the client and the
dataserver, that is, by using agents to receive queries from the client, decompose the
queries, send the queries to the dataservers and get the query results back to the client.
The dataserver is the local site which holds the physical data storage and management
tools for data registering and data access.

In this paper, we present concepts, methods, and techniques developed for the
system client and data integration in the MISSION system. These concepts and
methods have been employed in the system client and the library in order to
implement the fundamental functionality of browsing, query construction, and
publishing.

2 Motivation

Relational schemas developed for conventional database systems may not suit the
representation of the content of very high dimensional data well. In particular, they
are inadequate when raw (micro) data is of value – encoding form with spreadsheet
formats, which are accompanied with a considerable amount of metadata for
interpretation. In a broad sense, schemas are developed for modelling structured data
– they have less ability to define the meaning of attributes used in a given domain.

Query interfaces built on schemas may not contain any information about the
application domain and how it operates, and in the limited space of a user interface,
there is little chance of the characteristics of the entities being explicitly given. As a
result, instead of giving users information about the content of data sources, these
interfaces require users to fill out lengthy forms to express their information needs. A
common assumption for such interfaces is that users are aware of a system
implementation model, for example, a relational schema, in terms of structures and
data values [6].

Strong interest in enhancing the content representation and presentation of
distributed databases to facilitate statistical analysis and query composition emerges
in the HCI, database, and knowledge management research communities. Research in
these areas has been documented in a number of publications [6], [7], [8]. In [4], the
MIMAD (Micro-Macro Data) model was developed. It provides a means of
aggregating high dimensional micro data to macro data for statistical summary, as
illustrated in Table 1 (a). This work was extended in ADDSIA to take account of
domain knowledge – metadata – in order to achieve interoperation and integration

60 Y. Bi, D. Bell, and J. Lamb

between diverse data sources [2], [3]. In MISSION, these ideas are further developed.
We make use of domain onologies built up from metadata to represent the content of
distributed databases and incorporate them into macro table query formulation and
processing.

The concept of “ontology” is well-known in knowledge engineering and has been
applied to data integration [8]. Basically, in this case, the ontology is used to define
the meanings of terms used in data sources, and to ensure the consistent use of
terminology in order to cope with semantic heterogeneity reflected in the integration
of heterogeneous data sources. It can be argued that the ontology is also a good means
of representing the content of data sources, because the ontology hierarchy can
correspond to the relational schemas and the meanings of terms defined in the
ontology can be used to represent and interpret attributes, as we will see in the
following sections.

Table 1. An example of macro object (a: left, b: right)

Gender Employment Income_SUM
Male Full-time (F) 2,122,000
Male Part-time (P) 1,422,000

Female Full-time 1,922,000
Female Part-time 1,122,000

Gender

Male Female

F 2,122,000 1,922,000Employment

P 1,422,000 1,122,000

To achieve the best performance in the exploitation of the ontology for query
formulation and processing, by expanding on QBE we develop a simple yet powerful
query paradigm. It displays meaningful attributes along with ontologies and provides
visual selection among them, and it allows users to specify complicated information
needs visually in the form of macro object tables, as shown in Table 3 (b). Our
approach is based on the conceptual hierarchy of attributes and relationships, which
serves a wide range of user expertise and working styles. We adapt implicit Boolean
connectives within such a hierarchy based on two operations: aggregation and
generalization.

3 Data Model for Ontologies

An ontology is defined as a shared formal conceptualization of a particular domain
[9], which can be used to specify what concepts represent and how they are related. In
practice, an ontology can be regarded as a controlled vocabulary providing a concrete
specification of term names and term meanings. An ontology can be represented in
various ways, such as description logic, Datalog, and frames. To address issues in the
context of content representation of databases, query formulation and processing, we
employ XML to represent ontologies, which is an effective approach for the hierarchy
generation of the ontologies on the fly, required by the system client.

In the MISSION project, we have developed a DTD for representing domain
ontologies. It is a further development of our previous work [2]. The DTD offers a
uniform framework for representing concepts over heterogeneous distributed
databases. Fig. 1 illustrates a fragment of the DTD definition.

Aggregate Table-Driven Querying via Navigation Ontologies 61

In this definition, the FRAME is the root element, and there are four high level
elements under it, i.e. TITLE, SUBJECT, DESCRIPTION, and ONTOLOGY. The
first three of these represent the conceptual frame, indicating application domains to
which ontologies are related. The last element, ONTOLOGY, is broken down into
smaller elements: DESCRIPTION, CLASSIFICATION, and VARIABLE, to cover
essential information required in the system. In particular, the element VARIABLE is
used to define the meanings of concepts which are associated with the attributes
within data sets, and constraints indicating the properties of the concepts. The
hierarchy reflected in the elements is an important structure because it depicts the
explicit hierarchical relationship between the elements.

<!ELEMENT FRAME (TITLE?, SUBJECT, DESCRIPTION?,
ONTOLOGY+)>
<!ELEMENT ONTOLOGY (DESCRIPTION, CLASSIFICATION,

VARIABLE+)>
<!ELEMENT VARIABLE (SET+)>
…

Fig. 1. A fragment of the DTD definition for modeling the ontologies (‘+’: one or more
elements, ‘?’: optional)

Note that, although the depth of the hierarchy embedded in the DTD is at only 4
levels, i.e. FRAME � ONTOLOGY � VARIABLE � SET, this is sufficient to
represent the ontologies in our case.

Fig. 2 gives a fragment of the ontology of “Catewe” (Comparative Analysis of
Transitions from Education to Work in Europe) encoded in XML. In order to access
and manipulate ontology information in the system client, we make extensive use of
the DOM model, which is increasingly becoming popular for accessing and
manipulating XML documents.

<FRAME name = “Catewe”>
 <TITLE name = “A Comparative Analysis of Transitions from Education to Work in
Europe”/>
 <SUBJECT name = “Education”/>
 <ONTOLOGY name = “Catewe”>
 <VARIABLE name = "Country" mnemonic="Land" vartype = "geographical">
 <SET value="Scotland"/>
 …
 </VARIABLE>
 …
 </ONTOLOGY>
</FRAME>

Fig. 2. A fragment of XML data

62 Y. Bi, D. Bell, and J. Lamb

4 Modelling Client Functions

The MISSION client is an MVC application [5]. Fig. 3 presents a high-level block
diagram of the client in terms of the MVC architecture. The client consists of three
basic components which correspond to the functions of browsing, query construction,
and publishing. These accommodate the functionality for the browsing, query
construction, and publication of large volumes of statistical information required in
the applications of the MISSION system. Each component is modelled to three
distinct forms of functionality called model, view and controller, which inherit from
the common MVC class and incorporate customizations for individual tasks. For
example, the browsing component is broken down into three subcomponents:
BrowserView, BrowserModel, and BrowserController. This architecture effectively
takes advantage of the MVC design paradigm, ensuring the explicit isolation of the
various functions, abstract representation for each function, and interactions of
functions with one another.

TransformView

TransformController

TableView

TableController

BrowserView

BrowserController

Ontology in Library

BrowserModel

QueryView

QueryController

TransformModel TableModel

MatchAgent in Library

QueryModel

Fig. 3. The MVC and tier partitioning of the MISSION client

5 Visual Query Formulation

In this section, we investigate how concept ontologies are involved in query
formulation and processing. Before looking at the process with respect to visual
specification of queries, we begin with a brief description of macro table objects.

5.1 Macro Table Object and Table-Driven Queries

A macro object is defined as follows [4]:

MacroObject: {C1, C2, …, Cn; N1, N2, …, Nm}, count, sum, sum-of-squares

This representation abstractly defines macro table objects, where C1 to Cn are
categorical attributes, N1 to Nm are numeric attributes, and count, sum, sum-of-squares

Aggregate Table-Driven Querying via Navigation Ontologies 63

are common primitive operations to be performed on the numeric attributes. In
addition, the operations of max and min might also be included if applications demand
these. In this expression, if the numeric attribute is empty, the count as a default
operation which will be then applied to categorical attributes.

For queries which produce macro objects as illustrated in Table 1 (a), we need a
mechanism to formulate queries in a tabular QBE style. A query table here is defined
as an instance of a QueryView class that is managed by the Query Constructor
component. A complete table configuration consists of three separate expressions in
terms of horizontal header, vertical stub and data cells. The first two of the
expressions define the configuration of the x and y axes of the table, partitioning the
table into rows and columns. The third expression defines the data cells that hold
aggregated values, corresponding to the Cartesian product of the value sets of
categorical attributes. The table configuration provides the layout definition, and
implicitly restricts attributes to be placed in either the header or stub only. For
example, in formulating the macro object query (see Table 1(a)), the attribute Gender
is placed on the header and Employment is put on the stub, and the cells hold
aggregated values produced using the sum operation, as illustrated in Table 1 (b).

5.2 The Client Interface

Fig. 4 presents a screenshot of the user interface, including the three constituents:
browsing, query constructor and publishing functions. Notice that the publishing
function is implicitly specified with the configuration of the query table. These
constituents are clearly important for supporting the broader user activities in flexible
ways. As seen from the screenshot, the two functions of browsing and query
construction are displayed on two parallel sub-windows. Users can interleave the
functions through their views and track their progress. On the top of the query
constructor, there exist two combo-boxes, one is to store numerical attributes (users
can choose from them to compose queries), and the other presents a choice from the
aggregation functions count, sum, sum-of-squares, which will be integrated into
macro table queries.

The browsing component is the starting point for system access. It provides users
with interactive and incremental functions, allowing users to discover a domain of
interest and to interrogate the ontologies to find the fundamental concepts in which
they are interested. This function offers a very important means for novices to learn
about the data sources through the frames and ontologies. It fulfils the significant
demand for the support in the formulation of valid queries without pre-knowledge
about the databases. For example, the user can first find the frames that are available
in the connected library. Generally knowledge of each frame can be gained through
the descriptive information: title, subject and description as described in Fig 2. Once
the frame has been chosen, the user can go straight to the concepts held in the
ontologies to select the concepts in which he/she is interested. This process does not
require the user to have pre-knowledge about the data sources – it can be learned
during the browsing session.

The BrowserView presents ontologies as trees. The user can choose one of the
ontology trees. For example, the user can choose the local ontologies of Catewe
Scotland or the master ontology of Catewe as shown in Fig. 4. The ontology tree is

64 Y. Bi, D. Bell, and J. Lamb

Fig. 4. A screenshot of the system client

composed of the nodes that are iteratively constructed with the ontology objects, but
only the properties of the names and set values are visible. The remaining details
within the objects are less useful for the user in understanding the content of
databases, and so they only are used in the query process. On the other hand, the view
can be switched from one to another, individual nodes and group nodes can be
zoomed in to and out from independently without restrictions, according to users’
preferences. This makes it possible to allow users to access multiple ontologies of
data sources with the same style and avoid the screen being crowded by too many
objects. This significantly enhances content representation for distributed data
sources.

The idea of the macro table-driven query is to bring query composition and table
layout definition together in a single process of query formulation. Defining a layout
and style on the one hand and a query on the other hand are usually seen as two
different tasks which should be done in two different ways. However, the two tasks
are indeed related. It is difficult to define a layout without also defining the related
queries. In the system client, the query construction component expands the QBE
style as a way of query formulation, and incorporates the layout definition into the
query formulation process, which acts as the client publishing function. The operator
selection on the top field, such as count, determines which type of aggregation will be
performed for the formulated query, and the configuration of the concepts placed on
the QueryView implicitly determines the layout definition of query results. So, query
formulation and layout definition are integrated in a single process.

5.3 An Example

Given an information need is to count “different types of school by gender within the
countries of Scotland and Ireland”, the user begins with the client interface as shown

Ontology tree

Query constructor

Browser

Numeric attributes Aggregations

Header

Stub

Data cells

Aggregate Table-Driven Querying via Navigation Ontologies 65

in Fig. 4. He/she first opens the Browser to connect to a library and obtain a list of
ontologies such as Catewe, Catewe Scotland, etc. which are stored in the combo-box
on the BrowserView. For the above request, the user chooses the master ontology of
Catewe. Then, as illustrated in Fig. 4, he/she starts to navigate the ontology
information to locate the three concepts “country, type of school and gender”,
respectively. Once these concepts are obtained, the user starts to drag an individual
node of Scotland and Ireland from the ontology tree and drop them on the
Geographical Filed, to drag gender and drop it on the header and place type of school
on the stub, and then select the count operator. When complete, the query can be sent
for execution. Simultaneously the visual expression formulated in the query
constructor is internally converted into the expression of the table query language.

Looking at the query expression in Fig. 5, this expression explicitly demonstrates
how the concepts drawn from the ontology hierarchy are incorporated into query
formulation. For example, the concept of Gender, its type, its alias of Sex and a set of
values have been included in the expression. Internally the query expression is passed
as an object to a host library for query processing. More details for this can be found
in [10].

<TQUERY>
<COMPUTE operand="table"/>
<WITH operand="generalization">
 <VARIABLE name="Type of school" mnemonic="SCHTYPE"

vartype="geographical">
 <VARIABLE name="Gender" mnemonic="Sex" vartype="categorical">
 <SET label="male" value=""/>
 …
<BROKENDOWNBY operand="aggregation">
 <VARIABLE name="Gender"/>
 <VARIABLE name="Type of school"/>
 …

Fig. 5. The internal expression of the query corresponding to Fig. 4

6 Conclusion

This paper describes major concepts, methods and techniques developed for the
system client and data integration in the MISSION project. We describe the use of the
fundamental concept of ontology in the content representation of distributed
databases, query formulation and processing, and underpinning methods and
techniques for the macro objects, and the underlying client architecture of MVC.
Although these have been developed specifically for statistical databases in the
MISSION project, they can be readily tailored to general applications.

From the technology point of view we seek to use a novel query paradigm to
reduce the burden on novices in understanding contents of databases and identifying
pertinent attributes. We also present a user-friendly graphical interface to facilitate
query formulation by the expansion of QBE style querying and table definition in a
single process. For more advanced users, this front-end interface offers a powerful
means of composing complex queries and publishing their analysis results, thereby
supporting decision making and sharing expertise.

66 Y. Bi, D. Bell, and J. Lamb

In the current state of the project, an ontology is automatically generated when a
dataset and associated metadata are registered to the system. An exception in the
frame description which data providers have to type in. With respect to ontology
construction, there are three major classes in the metadata – identical, overlapping,
and exclusive. The current approaches to coping with these issues are a) if two
datasets have identical metadata, then the datasets will share the same ontology, b) if
two datasets have different metadata, each dataset will have an individual ontology,
and c) if two datasets have metadata with some overlap, then a master ontology has to
be created using the two sets of metadata. The last approach involves complicated
processing, but the possibility of handling such cases do exist. Some solutions have
been proposed, in particular, the idea of mapping the local ontologies to a reference
ontology which will be imported from public classification repositories. These
solutions will be discussed in the other paper in future.

Acknowledgement. The work is partially supported by the MISSION project (IST
1999-10655) and partially supported by the ICONS project (IST-2001-32429). These
are funded by the European Framework V. The authors would like to acknowledge
the contributions made by the MISSION client development team.

References

1. Zloof, M.: Query by Example. AFIPS, 44, (1975).
2. Bi, Y., Murtagh, F. and McClean, S.I.: Metadata and XML for Organising and Accessing

Multiple Statistical Data Sources, Proceedings of ASC International Conference,
Edinburgh, (1999) 393–404.

3. Scotney, B.W., McClean, S.I., Rodgers, M. C.: Optimal and Efficient Integration of
Heterogeneous Summary Tables in a Distributed Database. The Journal of Data and
Knowledge Engineering, Vol. 29. (1999) 337–350.

4. Sadreddini, M. N. Bell, D. A. and McClean, S. I.: A Model for Integration of Raw Data
and Aggregate Views in Heterogeneous Statistical databases. Database Technology, Vol. 4
(2), (1992) 115–127.

5. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994).

6. Tanin, E., Plaisant, C., Shneiderman, B.: Broadening Access to Large Online Databases by
Generalizing Query Previews, Proceedings of the Symposium on New Paradigms in
Information Visualization and Manipulation, (2000) 80–85.

7. Levy, A. Y., Rajaraman, A., Ordille, J. J.: Querying Heterogeneous Information Sources
Using Source Descriptions. Proceedings of the 22nd VLDB Conference, Bombay, India.
(1996).

8. Wache, H. V ogele, T. Visser, U. Stuckenschmidt, H. Schuster, G. Neumann, H., H ubner,
S.: Ontology-based integration of information – a survey of existing approaches. In
Stuckenschmidt, H. (ed.): IJCAI-01 Workshop: Ontologies and Information Sharing,
(2001) 108–117.

9. Gruber,T.: A translation Approach to Portable Ontology Specifications. Knowledge
Acquisition. Vol. 5(2), (1993)199–220.

10. McClean, S., Páircéir, R., Scotney, B., Greer, K.: A Negotiation Agent for Distributed
Heterogeneous Statistical Databases in SSDBM (2002) 207–217.

External Ontologies in the Semantic Web

Raphael Volz

Institute AIFB, University of Karlsruhe (TH), D-76128 Karlsruhe, Germany
volz@aifb.uni-karlsruhe.de

Abstract. The Semantic Web aims at easy integration and usage of content by
building on a semi-structured data model where data semantics are explicitly
specified through ontologies. The use of ontologies in real-world applications
such as community portals has shown that a new level of data independence is
required for ontology-based applications for example to allow the customization
of information towards the needs of other agents. This requires control over the
republishing of data and requires transformation of data across source databases.
We address this issue and introduce external ontologies which are constituted of
source data from several databases and views spanning across databases.

1 Introduction

The vision of the Semantic Web [2] incorporates distributed content that is machine
understandable by relying on an explicit conceptual level. It builds on RDF [5], which
is a semi-structured data model that allows the definition of directed labelled graphs.
The required conceptual level is not given by a fixed schema, but rather by an ontology
that specifies the formal semantics of content.

The use of ontologies in real-world applications such as community portals has
shown that they can enhance interoperability between heterogeneous information re-
sources and systems on a semantic level. However, what has also become clear is that
ontologies and thereby ontology-based applications themselves suffer from heterogene-
ity.

To overcome this problem [11] propose a view language for RDFS-based light-
weight web ontologies which allows easy selection, customization and integration of
Semantic Web content. We extend this work by so-called external ontologies which
group views and base entities into new data sets. External ontologies allow to customize
and integrate distributed source databases towards application demands or other user
communities.

One concrete application of external ontologies may be ontology mapping where
data must be translated between different ontologies. Hence, the mechanisms described
here may be used in the implementation of a mapping language such as proposed in [6].

The paper is structured as follows. Section 2 briefly recapitulates the fundamental
technologies involved in our approach: RDFS as the target data model and an associated
query language (RQL). Section 3 briefly sketches the view language based for RDFS
introduced in [11]. Section 4 introduces the notion of external ontologies. Section 5
discusses implementation issues before we conclude in section 6.

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 67−74, 2003.
 Springer-Verlag Berlin Heidelberg 2003

2 Fundamentals

RDF - A Semi-structured Data Model
The underlying data model of the Semantic Web is a semi-structured data model called
Resource Description Framework (RDF) [5]. Data is organized around sets of state-
ments or triples, which relate resources. Resources are identified via globally unique
URIs. A set of statements constitutes a partially labelled directed pseudograph1 and is
commonly called an RDF model.

x:Raphaelx:Rudi

x:Daniel

Volz@aifb.uni-karlsruhe.de

dahi@aifb.uni-karlsruhe.de

Studer@fzi.de

x:advises

x:email
x:email

x:email

x:supervises

x:email
Raphael

Volz

x:name

x:firstn

x:lastn

x:AIFB

Studer@aifb.uni-karlsruhe.de

x:works

x:directs

x:works

Fig. 1. A simple, exemplary RDF model

RDFS – Light-Weight Ontologies
Ontologies are usually constructed from classes and properties. Both are embedded in
a class and a property inheritance hierarchy. One proposed standard for the Semantic
Web is RDF Schema (RDFS)[4].

RDFS incorporates an unique notion of object orientation, which has to be con-
sidered in the design of both query and view languages. For example, subsumption
hierarchies exist on both properties and classes and are partial orders (cf. Figure 2).
RDFS permits both multiple inheritance and multiple instantiation.

Attributes and associations are not defined with the class specification itself. Instead,
such class properties are defined as first-class primitives, so-called properties, which
exist on their own. Thereby classes do not specify types. The definition of a property
may include the specification of (multiple) domains and ranges.

RQL - A Query Language
Our approach is based on a version of RQL [1] which is augmented with view primi-
tives. RQL is currently the only RDF query language that takes the semantics of RDFS
ontologies into account. The need to be aware of these semantics is the main reason
why query languages operating on the syntactic XML-serialization (e.g. XQuery [3])
are not suitable for our goal, however the notion of external ontologies presented later
is not limited to a particular query language.

RQL is a typed language following a functional approach (in style of OQL) and aims
at querying RDF at the semantic level. It’s basic building blocks are generalized path
expressions which offer navigation in a (single) RDF model. For example the following
query would return the collection of all pairs of nodes which are related via the property
email: SELECT X,Y FROM {X}x:email{Y}

1 We can speak of pseudographs since multiple edges between (possibly identical) nodes are
allowed.

68 R. Volz

Instantiation

Subclass-of

x:Employee

x:PhD-Student

x:email

x:supervises

x:advises

x:Employee x:Employee

rdf:Literal

x:Student

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

rdfs:range

x:responsible_for

rdfs:subPropertyOf

rdfs:subPropertyOf

x:worksx:Employee x:Organization

rdfs:domain rdfs:range

x:directs x:Organization

rdfs:range

Fig. 2. Class and property hierarchies in RDFS

RQL interprets the superimposed semantic descriptions offered by an ontologies.
For example, inheritance is considered when accessing class extents. Path expressions
can be concatenated by a ”.”, which is just a syntactic shortcut for an implicit join
condition: SELECT Y FROM Student{X}.x:advises{Y}

This query returns the identifiers of all students that are advised by other students.
Since the class PhD-Student is a subclass of Student the above query would return
”x:Daniel” for the RDF model depicted in Figure 1.

Furthermore, RQL supports set operators, such as union, intersection and difference.
Boolean operations like =, <, > can be used for selection in where-clauses.

3 View Language
[11] introduces a view language that follows the RDF(S) model and offers constructs
for creating class and property views. Users are not able to make a distinction between
views and base data and are able to state other queries or views on top of them. This
mandates that the structure of views corresponds to the structure of base data. Hence,
the view language allows both the definition of class views and property views.

Class Views
Class views can only be based on unary RQL queries. The result of the query constitutes
the extension of the view. For example, Figure 3 defines the class view ”StudentAssis-
tant”, which consists of PhD-Students that are employed and advise students.

Property Views
Similarly property views are based on binary RQL queries. For example, in Figure 3
also a property view that relates all PhD-Students with the email addresses of advised
students is defined. View definitions may comprise assignment of super classes and
properties. In case of property views the declaration may include the definition of (pos-
sibly multiple) domain and range constraints.

Semantic Characterization
The latter information is essential in RDFS. Unlike database schemas an RDFS on-
tology additionally gives a semantic characterization of data by means of class and
property taxonomies. Therefore semantics of views have to be specified as well. The

69External Ontologies in the Semantic Web

Class view Property view
CREATE CLASS VIEW x:StudentAssistant CREATE PROPERTY VIEW x:mailsOfAdvised

SUBCLASSOF x:Employee SET DOMAIN x:PhD-Student
SUBCLASSOF x:PhD-Student SET RANGE rdf:Literal

USE SUBPROPERTYOF x:email
(SELECT X FROM x:Employee{X}) USE

INTERSECT SELECT DOMAIN, RANGE
(SELECT X FROM x:PhD-Student{X}, FROM x:PhD-Student{DOMAIN}.
{Y} x:advises {Z} WHERE X = Y) x:advises{Y}. x:email{RANGE}

Fig. 3. Class and Property views

laborious manual classification is avoided in [11] by introducing convenience syntaxes
for important types of queries. The system then classifies views defined via such syn-
taxes into the semantically appropriate location.

4 External Ontologies

Motivation
Many typical Semantic Web applications such as community portals are characterized
by the fact that they rely on more than one information source and collect information
from many distributed sources in the web. Distributed information can be aggregated
and combined easily due to the characteristics of the RDF model. The integrated infor-
mation can be understood if all information providers have used the same ontology to
mark up their data. Hence, information that is not presented according to the ontology
of the consumer cannot be understood. This mandates a means to transform data such
as provided by database views.

Accordingly, views should not only be applied on one data source only, but on the
integrated data of several data sources instead. This requires the ability to integrate
information from several sources. A set of view definitions can then transform data
outside of a particular data source.

The aggregated and transformed data is often intended to be republished as a new
information artefact. Therefore it is necessary to exert control over which elements
should be republished. This requires the adaption of the ontology. For example, the
ontology should only talk about the aspects of the data that are visible, e.g. for security
reasons.

Primitives
Figure 4 depicts the features offered by external ontologies. First, users can import
classes and properties from multiple RDF databases and other external ontologies.

Second, users may state new views on top of the integrated data sources. View
queries have access to all data not only the imported classes and properties. This allows
to transform data without making the (raw) data itself visible to users.

One the one hand, this provides external schemata in the sense of the ANSI SPARC
three-level architecture for databases, where applications or users can access a database

70 R. Volz

RDF Store

Class views

Property views

Classes

Properties Mediator

Imported Classes

...

External ontology

RDF Store 1

Client

Imported Properties

Class views

Property views

RDF Store 2 RDF Store 3 Ext. Ontology

DATABASE DATABASEDATABASE DATABASE

Fig. 4. Classical and external ontologies approach

through a specified subschema, e.g. to issue queries. On the other hand, this differs
from the ANSI SPARC approach since external ontologies are hosted and specified
completely outside of the data sources.

Example
The following example provides an external ontology that captures an administration
perspective for a scientific department. This includes all information about people who
actually receive payments. The view x:WorkingStudents captures that students might
be employed by a faculty other than the one they are enrolled in. The latter information
would not be possible within an isolated faculty database.

CREATE EXTERNAL ONTOLOGY x:HumanResources
DATABASE x:Faculty_1
DATABASE x:Faculty_2
IMPORT CLASS x:Scientist
IMPORT PROPERTY x:email
IMPORT PROPERTY x:supervises

CREATE CLASS VIEW x:WorkingStudents
ON x:Student INTERSECT x:Employee

Data Input
External ontologies constitute virtual data sources that depend on other data sources.
Such data sources may either be RDF databases (or external ontologies) within the same
RDF DBMS or be located somewhere on the web outside the database. In the latter
case we assume that the data is copied from their original source into a new auxiliary
database. The DBMS may employ a dedicated component that (re)visits the url and
updates the cached data source if updates occur (in style of [9]). The ”DATABASE“
statement from the above example may be augmented with update intervals for external
data sources.

The IMPORT statement guarantees that only the mentioned extends are visible to
clients. Users can restrict the IMPORT to a particular data source (via FROM) and may
also import all resources whose URI matches a given regular expression.

71External Ontologies in the Semantic Web

1 2

3

Fig. 5. Steps in the computation of the class hierarchy.

5 Implementation

5.1 Query Answering

Remote data sources are cached into an auxiliary database. This avoids network latency
and increases the robustness of the system. Additionally, we are now able to process all
queries towards the external ontology in an uniform manner. Queries are processed in
three steps. First, the query graph is decomposed into appropriate sub-queries. In the
second step sub-queries are matched with individual source data catalogues and passed
to those sources which are able to handle the query, viz. queries for data residing in
the source. Eventually partial results are gathered and composed to form the integrated
answer.

The decomposition phase cuts the query graph into two parts. First, selections are
pushed down as far as possible. Leaf nodes and selections acting on single leaf-nodes
are passed to each source where appropriate2. Hence, an appropriate selection query
is answered by each source individually. Answers of multiple sources are then merged
(union) in memory and the upper levels of the query graph are processed in memory.
Further optimizations of this strategy are taken in the implementation, but are beyond
the scope of this paper. Queries underlying views are processed in a similar manner.
The system detects, if a leaf node matches a view and computes the view on demand.
Control on the visibility of classes and properties from the sources stated via imports
are enforced at query processing time and implemented by (transitively) deleting all
nodes that are not explicitly declared to be visible.

5.2 Materialization

Requests for serializing the external ontology to a RDF file lead to a materializiation of
all views and export of all imported classes and properties. The inheritance hierarchies
of the external ontology have to be adopted to those classes and properties and views

2 if the property or class uri that constitutes the leaf appears in the source class/property cata-
logue

72 R. Volz

Algorithm 1 Computation of the class hierarchy
Require: IC set of imported classes, CV set of class views, S set of RDF sources

subclassof = {}
for all s ∈ S do

subclassof = subclassof ∪ s.subclassof

end for
for all v ∈ CV do

subclassof = subclassof ∪ v.subclassof

end for
subclassof = subclassof∗

newsubclassof = {}
for all c1 ∈ (IC ∪ CV) do

for all c2 ∈ (IC ∪ CV) do
if (c1, c2) ∈ subclassof then

newsubclassof = newsubclassof ∪ (c1, c2)
end if

end for
end for

Ensure: new class hierarchy (newsubclassof)

that are visible to the users. This is done by Algorithm 1 for the class hierarchy3. Fol-
lowing Figure 5, all inheritance information and is gathered from all sources and and
augmented with the information about the classification of views in the first step. Then,
the full transitive closure of this merged inheritance hierarchy is computed. In the final,
third step only those links that connect visible nodes remain. The property hierarchy
is computed in a similar fashion. Furthermore, the domain and range constraints for
properties must be adopted to the visible classes, cf. [10] for the proposed solution.

6 Discussion

We have presented an extension of a view mechanism that picks up the unique situ-
ation of data in the Semantic Web. From our perspective, external ontologies are an
important step in putting the idea of the Semantic Web into practice. Based on our own
experiences with building Semantic Web based community portals [7] and ontology
mapping frameworks [6] we devise that external ontologies will be a crucial corner-
stone to achieve many different, exciting objectives.

If the vocabulary of another ontology is used, external ontologies allow to inte-
grate otherwise disparate ontologies both by data transformation through views and by
semantic integration through establishing integrated subsumption hierarchies between
the classes and properties of both vocabularies leading to a proper articulation of both
ontologies [8].

3 This algorithm is simplified, since the implementation can avoid unnecessary computation of
the transitive close and has only to consider all upwards links from visible nodes, hence the
algorithm can bring visible nodes into a topological order and do an incremental computation
instead of the presented algorithm)

73External Ontologies in the Semantic Web

We are currently investigating how updates can be consistently integrated. Addi-
tionally the materialization of views is of great importance in Web scenarios, we are
therefore also investigating how such materialized views can be incrementally main-
tained in presence of updates. We also plan to adapt the implicit classification approach
to allow full description-logic style subsumption which might have benefits for using
views in query rewriting.

Acknowledgements. This work was done while staying at the University of Manchester
and is funded by the EU in the WonderWeb project (IST-2001-33052) and a scholarship
from the German Academic Exchange Programme (DAAD).

References

1. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, K. Tolle, Bernd Amann,
Irini Fundulaki, Michel Scholl, and Anne-Marie Vercoustre. Managing RDF metadata for
community webs. In (WCM’00), Salt Lake City, Utah, pages 140–151, October 2000.

2. Tim Berners-Lee. XML 2000 - Semantic Web Talk. Internet:
http://www.w3.org/2000/Talks/1206-xml2k-tbö/slide10-0.html, december 2000.

3. S. Boag, D. Chamberlin, and al. XQuery 1.0: An XML Query Language. Technical report,
W3C, April 2002.

4. Dan Brickley and R. V. Guha. Resource description framework (RDF) schema specification
1.0. Internet: http://www.w3.org/TR/2000/CR-rdf-schema-20000372/, 2000.

5. O. Lassila and R. Swick. Resource description framework (RDF) model and syntax specifi-
cation. Internet: http://www.w3.org/TR/REC-rdf-syntax/, 1999.

6. Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. MAFRA - a mapping
framework for distributed ontologies. In Proc. of EKAW02, Siguenza, Spain, October 2002.

7. Alexander Maedche, Steffen Staab, Rudi Studer, York Sure, and Raphael Volz. Seal tying up
information integration and web site management by ontologies. In IEEE Data Engineering
Bulletin, volume 25, March 2002.

8. Prasenjit Mitra, Gio Wiederhold, and Martin L. Kersten. A graph-oriented model for artic-
ulation of ontology interdependencies. In Proc. of Extending Database Technology (EDBT)
2000, pages 86–100, 2000.

9. B. Nguyen, S. Abiteboul, G. Cobena, and A. Marian. Monitoring xml data on the web. In
SIGMOD, 2001.

10. Daniel Oberle and Raphael Volz. Implementation of a view mechanism for ontology-
based metadata. Technical report, University of Karlsruhe (TH), 2002. http://www.aifb.uni-
karlsruhe.de/WBS/dob/pubs/KAON-Views.pdf.

11. Raphael Volz, Daniel Oberle, and Rudi Studer. Views for light-weight web ontologies. In
ACM Symposium on Applied Computing (SAC), Orlando, Florida, pages 1168–1173, March
2003.

74 R. Volz

Quantization Techniques for Similarity Search in

High-Dimensional Data Spaces

Christian Garcia-Arellano12 and Ken Sevcik1

1 Department of Computer Science, University of Toronto, Canada
cgarciaa,kcs@cs.utoronto.ca

2 IBM Toronto Lab, Toronto, Canada, cmgarcia@ca.ibm.com

Abstract. In the recent years, several techniques have been developed
for eÆcient similarity search in high-dimensional data spaces. Some of
the techniques, based on the idea of vector approximation via quantiza-
tion, have been shown to be the most eÿective. The VA-þle was the þrst
technique to use vector approximation. The IQ-tree and the A-tree are
subsequent techniques that impose a directory structure over the quan-
tized VA-þle representation. The performance gains of the IQ-tree result
mainly from an optimized I/O strategy permitted by the directory struc-
ture. Those of the A-tree result mainly from exploiting the clustering of
the data itself. In our work, þrst we evaluate the relative performance
of these two enhanced approaches over high-dimensional data sets with
diÿerent clustering characteristics. Second, we present the Clustered IQ-
Tree, which is an indexing strategy that combines the best features of
the IQ-tree and the A-tree, leading to better query performance than
the former and more stable performance than the latter across diÿerent
types of data sets.

1 Introduction

In this paper, we investigate the problem of eÆcient similarity search. Similarity
search is distinguished from other database access problems in three ways: (i)
each record in the data set is a vector of D elements (called a feature vector),
where D is the dimensionality of the data set, (ii) the diÿerence between feature
vector pairs is expressed in terms of a distance measure, and (iii) queries focus
on similarity of feature vectors rather than exact or partial matches.

The simplest kind of similarity query of this type is a range query, which
returns all vectors in the data set for which the distance to a speciþed query
vector is less than or equal to a given threshold. However, the cardinality of
the set of vectors returned by a range query is diÆcult to estimate in advance,
which is a disadvantage in some situations. Another type of query, the K-nearest
neighbor query (Knn), overcomes this problem in that, by deþnition, the answer
set contains the K closest vectors, ordered by their distance from the query
vector.

When the vectors have high-dimensionality (i.e., a large number of elements),
several studies [20, 3] have shown that a simple sequential scan outperforms tra-
ditional indexing methods for multi-dimensional databases (e.g. the R-tree and

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 75−94, 2003.
 Springer-Verlag Berlin Heidelberg 2003

its derivatives). New techniques, developed speciÿcally for similarity search in
high-dimensional data spaces, have been designed to overcome these diÆculties.
In particular, we focus on those techniques that use vector approximations, i.e.,
quantized versions of the vectors, as the key to improving query performance.

The VA-ÿle was the ÿrst method that used vector approximations to improve
the performance of nearest neighbor queries for high-dimensional data [20]. The
IQ-tree [2] and the A-tree [18] were developed subsequently, each with the goal
of improving query performance relative to the VA-ÿle. We compare the perfor-
mance of these similarity search techniques under a variety of scenarios. In our
study, we have used both real and synthetic data sets with dimensionalities as
high as 139, and searched for various numbers of neighbors, using both Euclidean
and maximum distance metrics.

Finally, we have developed the CIQ-tree, a variation of the IQ-tree, which
uses a spatial clustering algorithm to cluster the vectors on disk. The CIQ-tree
integrates the best features of the IQ-tree and the A-tree, and obtains better
query performance than the former and more stable performance than the latter
across diþerent types of data sets.

1.1 Problem Statement

The feature vectors of a data set consist of D numeric elements, and thus corre-
spond to points in a D-dimensional space. We call D the dimensionality of the
data set. Because both integers and real numbers are commonly represented in
32 bits in most computer architectures, we assume that each element is a 32-bit
number, so that each feature vector requires 32D bits to represent.

The similarity search problem we address is deÿned as follows: In a data
set consisting of N feature vectors of D elements, given a query vector and an
integer K, return the K feature vectors from the data set that are closest to the
query vector, while keeping the average query execution time as low as possible.
We assume that D is relatively large, that K is much smaller than N , and that
N is suÆciently large that the vectors and auxiliary information must reside on
disk rather than in main memory.

For most of the experiments reported in this paper, we use the Euclidean
distance measure to quantify the (dis-)similarity between two vectors:

distance(ÿ!vx;ÿ!vy) =

vuut DX
i=1

(ÿ!vxi ÿÿ!vyi)
2
:

We focus on dimensionalities of twenty or greater (D >= 20), with real and
synthetic data sets of dimensionalities up to about 140.

The query execution times are composed of three components: i) CPU time;
ii) disk positioning time (seek and rotation); and iii) page transfer time. The
speciÿc activities that contribute to each of these components diþer from one
technique to another.

Two of the similarity search implementations with which we experiment (IQ-
tree and A-tree) use simulated rather than actual I/O operations. To achieve a
fair comparison over all approaches, we measure the CPU time (c) directly, and

76 C. Garcia-Arellano and K. Sevcik

count the number of disk head positionings (p), and page transfers (t). The
average query execution time is then calculated as:

R = c+ p ÿ Tp + t ÿ Tt :

where Tp and Tt are the average positioning time and the average page trans-
fer time as measured on a chosen disk drive.

The extended version of this paper [15] explores some variations of the prob-
lem involving (1) use of a maximum (L1 norm) rather than a Euclidean (L2

norm) distance measure, (2) partial overlap of I/O operations with CPU pro-
cessing, and (3) use of main memory to cache index structure pages.

We assume the data sets to be static (i.e., insertions or deletions are not
allowed). Thus, any cost of pre-processing the data set before it is subjected to
queries is amortized over all subsequent queries. (Some of the approaches we
compare can also handle dynamic data sets by eÆcient support of insertion and
deletion operations.)

1.2 Plan and Contributions

Our goals in this paper are:

{ to review three approaches to supporting K-nearest neighbor similarity
queries based on quantized vector approximations (Section 2);

{ to perform a detailed performance comparison of these three approaches on
some real data sets with dimensionalities higher than have been previously
investigated (Section 3);

{ to propose a new approach, called the CIQ-tree, which is derived from the
IQ-tree (Section 4);

{ to compare the performance of the CIQ-tree to that of the other approaches
based on both real and synthetic data sets (Section 5).

In Section 6, we present our conclusions.

2 Related Work

Previous work related to our study comes from the areas of indexing, cluster-
ing, and quantized vector approximations. Each of these areas is treated in a
subsection below.

2.1 Indexing Techniques

The problem of querying a database containing multi-dimensional vectors has
been studied extensively. A comprehensive survey of multi-dimensional data in-
dexing structures is provided by Gaede and G�unter. It includes descriptions of
many structures for eÆciently indexing data sets with low dimensionality (i.e.,
2 to 3 dimensions) [13]. A survey by B�ohm, Berchtold and Keim [7] describes
recent approaches to dealing with higher dimensionalities.

77Quantization Techniques for Similarity Search

2.2 Clustering

The use of clustering algorithms for similarity search has been proposed recently
by several authors. Chakrabarti and Mehrotra present a clustering technique
that, assuming the existence of subsets of data that are locally correlated, tries
to ÿnd these subsets [8]. The technique is called Local Dimensionality Reduction
(LDR) because the dimensionality reduction is applied independently to each
of the detected clusters. Chakrabarti and Mehrotra also propose a two-level
indexing structure on the clusters that can be used for similarity search. Barbarþa
and Chen also propose a clustering algorithm, called Fractal Clustering (FC),
that strives to minimize the fractal dimensionality of each of the independent
clusters [1]. Also, in the context of similarity search, the k-Means algorithm was
applied previously by Ferhatosmanoglu, Tuncel, Agrawal, and El Abbadi [11].
They use the resulting clustering of the vectors to answer approximate nearest
neighbor queries.

2.3 Quantization Techniques

Recently, several approaches to searching in vector spaces have been developed
around the concept of a quantized representation of the vectors. A vector of
D 32-bit elements is quantized by the independent compression of each vector
component into b bits (b < 32). The quantization of a vector component is ob-
tained by partitioning the dimension range into 2b non-overlapping subranges,
and assigning a diýerent code of length b bits to each subrange. The quantized
version of a vector, also called a vector approximation (VA), is the concatenation
of the b-bit quantized values for each vector component. The quantized version
of a vector determines a set of D orthogonal subranges, which together specify
a small D-dimensional hyper-rectangular cell in which the actual vector is en-
closed. In general, the value of b may diýer from one component of a vector to
another, but, for our purposes, we assume that a single value of b is used for
all the vector elements. Our experiments have shown that this simple approach
yields the best results [14].

VA-ÿle. Weber, Schek and Blott were the ÿrst to propose the use of vector
approximations in the context of similarity search. They employed this idea in
the Vector Approximation File (VA-ÿle) [20]. This method does not partition and
cluster the vectors of a data set as traditional indexing techniques do. Instead,
it quantizes each dimension, generates a vector approximation for each vector
in the data set, and stores these VAs in the VA-ÿle, following the same order as
the vector ÿle, as is indicated in Figure 1(a). For each VA page containing VAs,
there are multiple vector pages in the next level containing the corresponding
vectors. (In the ÿgure, each group of vector pages is represented as a unit by a
circle.)

Given a query vector, the search in this data structure is performed in two
phases. In the ÿrst phase, the VA-ÿle is scanned, and, for each VA, the mini-

mum distance and the maximum distance from the query vector to any point in
the hyper-rectangular cell corresponding to the VA are computed, creating two
priority lists using these distances. In the second phase, the VAs are examined

78 C. Garcia-Arellano and K. Sevcik

VA
Pages

Vector
Pages

VA
Pages

Vector
Pages

Directory
Pages

Leaf
Nodes

Vector
Pages

Internal
Nodes

a) Vector Approximation File b) Independent Quantization Tree c) Approximation Tree

Fig. 1. Data Structures

in the order indicated by the minimum distance priority list, and the actual cor-
responding vectors are accessed. A third priority list is generated containing the
K-nearest neighbor vectors themselves, ordered by increasing distance from the
query point. The minimum distance list is processed until the minimum distance
from the query vector to the next VA in the list is greater than the distance from
the query point to the Kth nearest vector found already.

IQ-tree. Berchtold, B�ohm, Jagadish, Kriegel and Sander also used the idea
of vector quantization, and proposed the Independent Quantization Tree (IQ-
tree), a multilevel indexing structure specially designed to perform fast nearest
neighbor searches over high-dimensional data sets [2]. The IQ-tree is derived
from the X-tree [4], and uses the partitioning strategy proposed with the X-tree
bulk-loading algorithm. The structure has three levels: Directory Pages, Vector
Approximation Pages and Vector Pages. As indicated in Figure 1(b), for each
entry of the directory, there is a page containing VAs in the second level, and
multiple pages containing vectors in the third level (represented all together by a
circle). The number of vector pages associated with a directory entry is variable,
and depends on the capacity of the associated VA page. The capacity of a VA
page is the number of VAs that ÿt in a disk page, which depends on the number
of bits per dimension used for the quantization of the vectors. Each directory
entry contains the coordinates of the minimum bounding rectangle that encloses
all the vectors corresponding to that entry. The VAs contained in a page of
the second level are computed with respect to the MBR of the corresponding
directory entry, and each page can use a diþerent number of bits per dimension
for the approximations.

The IQ-tree uses a recursive binary partitioning of the data space, choosing
at each step to split the dimension of the MBR that has the maximum extension.
The split point is chosen to cause an equal number of vectors to be in each of
the two resulting nodes. This partitioning process is repeated until the number
of vectors in each node ÿts within the capacity of the VA page. In the simplest
version, a single number speciÿes the number of bits per dimension, which deter-
mines the capacity of all the vector approximation pages. Due to the recursive
binary partitioning, the number of bits per dimension must be a power of 2 in
the range [1,32].

Berchtold et al. also propose an auto-tuning algorithm based on the cost
model published by B�ohm [6] that can be used for data sets with self-similar or
fractal structure. The auto-tuning algorithm determines the optimal capacity of

79Quantization Techniques for Similarity Search

each VA page, i.e., it determines the number of bits per dimension that leads
to the lowest total I/O time. For our experimental evaluation, we will use the
same number of bits for compressing each page, since the performance of the
auto-tuned version depends on the fractal dimension parameter, the calculation
of which is not reliable for high-dimensional data sets [14].

For the IQ-tree, Berchtold et al. also presented a nearest neighbor search
algorithm that uses a smart page access strategy based on an I/O optimization
developed by Seeger, Larson and McFayden [19]. Given a list of pages to be read,
the strategy involves (i) ordering the list of pages by their position in the ÿle,
and then (ii) performing a single read request for any contiguous (or even nearly
contiguous) sequence of pages in the list. This optimization reduces the number
of (expensive) positionings at the cost of a few extra (cheap) page transfers.

In the IQ-tree context, it is not known initially exactly which pages hold
the K nearest neighbors, but Berchtold et al. propose a probabilistic model for
estimating the probability that each page will eventually have to be read in order
to satisfy the query. The model speciÿes the set of pages that should be read in
order to minimize the expected overall I/O cost. This strategy, called sequential

scan optimization (SSO), was implemented to read the VA pages of the IQ-tree
to support 1st-nearest neighbor queries [2]. The implementation was generalized
to support K-nearest neighbor queries in our work [14]. In our study, we found
that the use of the SSO is a critical factor in the good performance of the IQ-tree.

A-tree. Sakurai, Yoshikawa, Uemura and Kojima also make use of the idea
of quantization in proposing the Approximation Tree (A-tree) [18]. The A-tree
structure and construction algorithm are derived primarily from the SR-tree [16].
The A-tree design introduces the concept of virtual bounding rectangle (VBR),
which is a compressed approximation using only a few bits per dimension of a
minimum bounding rectangle (MBR). In a more general form of quantization,
VBRs approximate MBRs in a manner analogous to how VAs approximate vec-
tors. That is, the VBR deÿnes a hyper-rectangle guaranteed to fully enclose the
corresponding MBR. The use of VBRs, which are smaller than MBRs, increases
the fanout of the nodes, which in turn reduces the height of the index tree and
speeds up the search.

As indicated in Figure 1(c), an A-tree is a hierarchical index, with three levels:
Internal Nodes, Leaf Nodes, and Vector Pages. Each of these levels has its own
type of node. Internal nodes and leaf nodes together form a hierarchical index.
Vector nodes each contain a cluster of neighboring vectors. Both internal and
leaf nodes contain a header and multiple entries. The headers include an MBR
that encloses all the vectors of the subtree rooted at the node. The entries of an
internal node each contain a VBR that bounds the MBR of the corresponding
child node. The entries of a leaf node are VAs of the vectors in the associated
vector pages. Each node entry includes the centroid of the vectors within the
associated MBR. The centroid is used only by the insertion algorithm and not
by the search algorithm.

80 C. Garcia-Arellano and K. Sevcik

As this data structure can be created incrementally (i.e., is dynamic), the
partitioning strategy is closely related to the insertion algorithm, which is based
on that of the SR-tree [16].

The same sequential scan optimization developed for the IQ-tree could be
applied in reading the leaf nodes of the A-tree. This would require an extension
of the data structure similar in spirit to the prefetching strategy proposed by
Chen, Gibbons, Mowry and Valentin for range queries over B+-trees [9]. In our
study, we found that a critical factor in the performance of the A-tree is the
extent to which its index nodes correspond to tight clusters of vectors.

2.4 Clustering and Vector Quantization

More recently, and concurrent to our work, Li, Chang, Garcia-Molina, and
Wiederhold developed CLINDEX, an index structure for approximate similarity
search that uses both a clustering technique and vector quantization [17]. The
data structure is similar to the IQ-tree (and also to our CIQ-tree), because it
also has three levels: vector approximations, directory and data points. However,
the query algorithm processes these levels in a diÿerent order: it þrst scans the
vector approximation level, then scans the directory, and þnally it accesses the
data pages. This technique has not been included in our experimental study
because it was developed to only handle approximate nearest neighbor queries.

3 Comparison of Three Techniques

Previously, the performance of the IQ-tree was compared to that of the VA-þle,
the X-tree and sequential scan for dimensionalities from 4 to 16 [2], and the
performance of the A-tree was compared to that of the VA-þle and the SR-tree
[18] for dimensionalities up to 64. To our knowledge, the experimental study
reported in this section is the þrst one to compare all three of VA-þle, IQ-tree,
and A-tree on a variety of types of data sets. The range of dimensionalities we
address is 50 to 140.

3.1 Data Sets

For our experiments, we start with the vectors of the data set stored in a binary
þle, where each vector element is stored as a 32-bit number. Only the VA-þle uses
this initial vector þle without modiþcation. The A-tree and the IQ-tree modify
the order of the vectors in the vector þle, each using their own space partitioning
strategy for page clustering. Query vectors for the experiments were selected
by choosing 100 vectors at random from each data set. Thus, the distribution
of query vectors reýects the distribution of the entire data set. These vectors
selected to be query vectors were then removed from the data set. The average
query execution times that we present are the averageKnn query times over the
100 selected query vectors.

We used three real data sets with dimensionalities ranging from 54 to 139.
In the COREL64 data set, each vector describes the color histogram of an im-
age, computed using the Hue, Saturation, and Value (HSV) color system. In the

81Quantization Techniques for Similarity Search

Table 1. Characteristics of the Real Data Sets

Name Size (N) Dim (D) Source

FOREST54 500,000 54 UCI3

COREL64 68,040 64 US Forest Serv.4

CENSUS139 20,000 139 DELVE5

FOREST54 data set, each vector describes the forest cover type of a 30 meter
by 30 meter cell of forest land. The dimensions represent wilderness and soil
types present in the area as 10 real values and 44 binary values. Finally, the
vectors of the CENSUS139 data set each represent a region of the U.S.A., and
contain dimensions like state and area code, total number of persons and fam-
ilies, percentage of males and females, percentage living inside urbanized area,
rural area, etc. The sizes, dimensionalities and sources of the three data sets are
summarized in Table 1.

In each data set, we performed a standardization and normalization process
as a preprocessing step [14] causing each vector component to be a 32 bit binary
fraction in the range [0; 1). In data sets, it is frequently the case that features
are encoded in such a way that just a few attributes have a dominant eÿect in
determining K nearest neighbor groups. One goal of our adjustments of the data
values was to allow each dimension to have comparable inþuence. This allowed
our experiments to address the full dimensionalities of the chosen data sets,
rather than artiýcially lower dimensionalities caused by the (often arbitrarily)
selected ranges for feature values.

The distribution of pairwise distances between vectors is a useful charac-
terization of a data set in the context of similarity search. Figure 2 shows the
distributions of pairwise distances for the three real data sets. We have adjusted
the distances by dividing by the length of the longest diagonal in the data space
(
p
D) to present comparable values. These distributions were computed using

randomly selected samples of 10,000 records of each data set (i.e., 108 pairwise
distances). Observe that the distributions of distances of the COREL64 and
FOREST54 data sets are more concentrated than is the one of CENSUS139. In

3 http://kdd.ics.uci.edu/databases/
4 http://nationalatlas.gov/fortypem.html
5 http://www.cs.toronto.edu/ÿdelve/data/census-house

0

2

4

6

8

10

12

14

16

0.00 0.10 0.20 0.30

COREL64

FOREST54

CENSUS139

Adjusted Euclidean Distance

%
of

P
ai

rs

Fig. 2. Real Data Sets; Distrib. of Pairwise Distances

82 C. Garcia-Arellano and K. Sevcik

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0 5 10 15 20

CENSUS139

COREL64

FOREST54

0.0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8
0.9

1.0

0 5 10 15 20

CENSUS

COREL
FOREST

K Nearest Neighbors K Nearest Neighbors

a) Complete data set b) Reduced data set - D=54, V=20,000

A
dj

us
te

d
E

uc
lid

ea
n

di
st

an
ce

E
uc

lid
ea

n
di

st
an

ce

Fig. 3. Real Data Sets; Average Knn Distance

the case of FOREST54, we can distinguish the local neighborhood of a vector
(indicated by the initial bulge between 0.02 and 0.04).

To investigate the local neighborhood of a vector further, we have measured
the average distances from each vector to its 20 nearest neighbors using the
complete data sets. Figure 3(a) shows the adjusted (divided by

p
D) distances

for the real data sets. The average distances to the K nearest neighbors are
smaller in the case of FOREST54 for all K from 1 to 20. Relating this fact to
the curves of Figure 2, we see that, even though at a local level the distances
in FOREST54 are smaller than in the case of COREL64, at a global level, the
majority of the vectors in FOREST54 are more distant from a vector than in
COREL64.

To obtain more comparable data sets, we have generated reduced versions of
each real data set with the same dimensionality (D = 54) and the same number
of vectors (N = 20; 000). The dimensions and vectors retained in these reduced
data sets were randomly selected. Using the reduced data sets, the selectivity
of a Knn query is the same in all three cases (e.g., the selectivity of a 20-
nearest neighbor query is 0.001% of the reduced data set). Here the distances
are comparable without adjustment since the dimensionality of each reduced
data set is the same. Figure 3(b) shows the average distances to each of the K
nearest neighbors in the reduced data sets. As with the full data sets, at a local
level (K < 8), the nearest neighbors are closer in the reduced FOREST54 than
in COREL64, and more distant at a global level (K > 8).

From this evidence, we conclude that the FOREST54 data set is highly clus-
tered, formed by a large number of very tight clusters. COREL64 is less clustered,
and the CENSUS139 data set has a distribution that is closer to uniform.

3.2 Environment

For our experiments, we used our own VA-ÿle code [14], the IQ-tree code de-
veloped by Berchtold et al., and the A-tree code developed by Sakurai et al.
Both the IQ-tree and the A-tree were generalized to perform K-nearest neigh-
bor search for arbitrary values of K, and to allow the choice of either Euclidean
or maximum distance.

83Quantization Techniques for Similarity Search

a) FOREST54 b) COREL64

0

1000

2000

3000

4000

5000

6000

VA -f i l e

8bi t s

I Q-t r ee

8bi ts

A -t r ee

6bi ts

SeqScan

c) CENSUS139

0
200
400

600
800

1000
1200

1400
1600
1800
2000

VA -f i l e

8bi ts

IQ- t r ee

4bi t s

A-t r ee

4bi ts

SeqScan

T
im

e
(m

s.
)

0
100
200
300

400
500
600

700
800
900

1000

VA -f i l e

8bi t s

I Q-t r ee

8bi ts

A -t r ee

6bi ts

SeqScan

CPU I/O Positioning I/O Transfer

Fig. 4. Query Components; K = 10

Our experiments were performed on a Dell Optiplex 200 with a 933-Mhz
Pentium III processor, 256 MB of main memory and a 10GB Maxtor 5T010H1
hard disk. The workstation runs Linux.

For all the query performance results, the I/O time is computed by counting
the number of random positionings and pages read, and using the reference values
of 5.5 ms per page for positioning time and 30 MB/s for transfer rate (0.13 ms
per 4KB page), obtained experimentally based on our Maxtor 5T010H1 disk.
These reference values give a ratio of approximately 40:1 between positioning
time and transfer time for one 4KB page. (This motivates the use of the SSO to
avoid positionings where possible.)

The CPU time was measured using standard system calls to determine the
user time consumed in the execution of a portion of the code. In most experi-
ments, we assume that initially the index structure and the vector ÿle are com-
pletely in secondary storage, and read operations must be performed for any
portion that is used for answering the query. In all cases, if a page is used more
than once in the same query, only one read is counted, assuming that the page
remains in main memory for subsequent operations.

In the extended version of the paper [15], we present the performance results
under the assumption that the reused components of the data structure are
stored in main memory from the start of the experiment.

3.3 Evaluation Results

For each of the data structures and data sets, we performed experiments with
K = 10 to determine the best conÿguration of number of bits per dimension to
use. For the VA-File and the IQ-tree the page size is 4KB, and for the A-tree it
is 8KB. These values were chosen because they led to the best performance of
the respective techniques.

Figure 4 shows the components of the average query time on each data set
for each of the techniques, including sequential scan. In the case of FOREST54
(Figure 4(a)), the A-tree shows outstanding query performance, followed by the
IQ-tree and by the VA-ÿle. The A-tree performs well due to the combination of
a highly-clustered data set with the centroid-based partitioning strategy, which
generates a good disk clustering of the vectors. Also, the tight clusters separated

84 C. Garcia-Arellano and K. Sevcik

0

100

200

300

400

500

600

FOREST COREL CENSUS

IQ-t ree

Sequential Scan
VA-file

A-tree

T
im

e
(m

s.
)

Fig. 5. Real Data Sets (Reduced) with K=10; D=54; N=20,000

by areas of low vector density fully exploit the hierarchical structure. The average
execution time of sequential scan is larger due to the large number of vectors in
this data set (580,000).

For the COREL64 data set (Figure 4(b)), the VA-ÿle yields the best query
performance. The CPU component for the IQ-tree is quite large, and approaches
the average query time of the VA-ÿle. The A-tree does poorly due to the large
number of random reads required, mostly at the leaf level of the data structure.
Of the total number of random reads performed, more than 80% are performed at
the leaf level, and the remaining 20% correspond to random accesses to internal
nodes and vector pages, in almost equal proportion. The clusters in the case of
COREL64 are much larger than in the case of FOREST54, which means that
more vectors have to be examined to determine which are the closest. Thus,
the hierarchical structure of the A-tree is not exploited, and the sequential scan
optimization of the IQ-tree proves its usefulness.

For the CENSUS139 data set (Figure 4(c)), due to the smaller number of
vectors, only the VA-ÿle shows an improvement over the sequential scan, and the
A-tree and IQ-tree both do much worse due to the very low degree of clustering
of this data set. For the IQ-tree, its CPU time alone is greater than the average
total execution time for sequential scan.

In Figure 5, we show the query performance results using the reduced versions
of the real data sets. The relative behavior of the techniques using the reduced
data sets is consistent with that obtained with the complete data sets. This
means that there is an intrinsic characteristic in each of them that depends
neither on the number of vectors nor on the dimensionality. We believe that this
characteristic is the degree of clustering of the data set, which is high in the case
of FOREST54, and low in the case of CENSUS139. Sequential scan remains very
competitive because the reduced data sets contain only 20,000 records each.

4 Clustered IQ-Tree

We propose a new indexing strategy, the Clustered IQ-Tree or CIQ-tree, which
is derived primarily from the IQ-tree. The CIQ-tree achieves good vector clus-
tering (which was critical in the A-tree) while employing the sequential scan
optimization (which was critical in the IQ-tree). We chose to do this by adding

85Quantization Techniques for Similarity Search

a centroid-based partitioning step to the IQ-tree approach, although an alterna-
tive would have been to add the sequential scan optimization to the reading of
leaf nodes in the A-tree.

We characterize the precision (or quality) of a VA by the inverse of the volume
of hyper-rectangle it deÿnes. The A-tree, due to its centroid-based partitioning
strategy and multiple index tree levels, generates page regions with small volume.
This leads in turn to high precision VAs. However, in cases where the data set
does not contain tight clusters, the A-tree requires a large number of random
reads to access the node pages on disk. Although the precision of the VAs for the
IQ-tree is lower than that of the A-tree, due to the sequential scan optimization,
the IQ-tree performs better than the A-tree when the data structures reside on
disk.

4.1 Data Space Partitioning

The CIQ-tree partitioning strategy uses a variant of the k-Means spatial clus-
tering algorithm [12] to cluster the vectors and obtain VAs with comparable
precision to those obtained with the A-tree. Because we wish to place each clus-
ter of VAs on a disk page, we require that clusters be of a bounded maximum
size. We adapt the k-Means algorithm to enforce this constraint.

For example, consider the 64-dimensional COREL64 data set and assume
a page size of 4KB. The exact 32D-bit representation of a vector occupies 256
bytes, which permits a maximum of 16 vectors per 4KB disk page. If the number
of vectors in a cluster is between 1 and 16, the vectors will be stored in a VA
page using the full 32-bit representation. If we reduce the number of bits per
dimension to 16, we double the number of VAs that can ÿt on a disk page to as
many as 32, etc.

4.2 Clustering by a Modiÿed k-Means Algorithm

For clustering, we use a modiÿcation of the k-Means clustering algorithm [12].
The modiÿcation makes it possible to assure that cluster sizes will be constrained
by upper and lower bounds, so that they map eÆciently to disk pages. Pseudo-
code of the algorithm is given in Figure 6. The inputs to the algorithm are (i)
the set of vectors V = fÿ!v1; : : : ;ÿ!vNg, (ii) the initial proposed value, kinit, for the
number of clusters, (iii) sizemin and sizemax, the upper and lower bounds on
the sizes of clusters, and (iv) ÿmin, the minimum improvement in each iteration
to justify additional iterations. The outputs are (i) the ÿnal number of clusters,
k, (ii) the list of k centroids, þ = (!1; :::; !k), and (iii) the sets of vectors,
S = fS1; :::; Skg, assigned to each of the k clusters.

We deÿne the functions closest(ÿ!vi) and disorder(þ;S) for use in the algo-
rithm:

closest(ÿ!vi) = f cluster Cj j distance(!j ;ÿ!vi) = min
1ÿhÿk

distance(!h;ÿ!vi) g:

disorder(þ;S) =

kX

j=1

X

ÿ!vi2Sj

distance(!j ;ÿ!vi):

86 C. Garcia-Arellano and K. Sevcik

kMeans Restricted Size Clustering

Inputs: V , kinit, sizemin, sizemax, ÿmin

Outputs: k, S, þ
1. Setting k = kinit, create set S = fSjg with k empty sets of vectors, Sj ,

one for each cluster, Cj

2. For each cluster, Cj , select randomly from V a vector ÿ!vi as the centroid, !j , of Cj

Loop
3. For each vector ÿ!vi 2 V , add it to cluster closest(ÿ!vi)
4. For each cluster Cj , recompute !j as the centroid of the vectors in Sj
5. For each cluster with size less than sizemin,remove the cluster and re-assign

each orphan vector ÿ!vi to set closest(ÿ!vi), and decrement k
6. For each cluster with size greater than sizemax, split the cluster using

recursive binary partitioning, and increase k accordingly
7. Again, for each cluster Cj , recompute !j as the centroid of the vectors in Sj
8. Compute the disorder of the clustering, disorder(k; S; þ)
9. Exit loop if the disorder has not decreased by at least ÿmin from the

previous iteration
10. Re-initialize each cluster Cj , by setting Sj = ;

End Loop

Fig. 6. k-Means Clustering with Restricted Cluster Size

The algorithm works as follows. A collection S of k (initially, kinit) sets of
vectors, are initialized empty (step 1), and the initial center of each cluster is
(uniform) randomly selected from the set of vectors V (step 2). Within the main
loop (step 3), each vector of the data set is assigned to the cluster having the
center to which the vector is closest. After this assignment, the center of each
cluster is re-computed to be the centroid of the vectors assigned to the cluster
(step 4).

Next (step 5), all clusters of size less than sizemin are removed, and k is
adjusted downward accordingly. Each vector orphaned by the removal of the
cluster to which it had been assigned is re-assigned to the remaining cluster
having the center to which the vector is closest. Then (step 6), each cluster with
size greater than sizemax is split in two (recursively, if necessary) to make the
size of each cluster no more than sizemax, and the value of k is adjusted upward
accordingly. The split algorithm splits the dimension for which the vectors in the
cluster have the highest variance at a value such that the sum of the variances
in the attribute in the two resulting clusters is minimized. (This split policy is
similar to the one used in the A-tree for handling node overÿow.) Then (step 7),
the center of each cluster is recomputed.

At the end of the main loop, the measure of clustering quality (disorder)
is calculated (step 8), and (step 9) if the improvement in the quality measure
value from the previous iteration is not signiþcant (i.e., is less than ÿmin), then
the algorithm terminates; otherwise (step 10), remove all vector assignments to
clusters and return to the top of the loop with the current set of centroids. The
fact that the quality measure value is monotonically non-increasing from one
iteration to the next guarantees termination of the algorithm for any positive

87Quantization Techniques for Similarity Search

0

100

200

300

400

500

2 to 16 4 to 8 4 bits 8 bits

CPU

Direc tory Transfer

VA Pages Transfer

VA Pages Posit ioning

Vector Pages Posit.

Vector Pages Transfer
T

im
e

(m
s.

)

Fig. 7. CIQ-tree; Cluster Compression Sizes; K = 10; COREL64

value of ÿmin. Empirically, we observed that the algorithm typically converged
in ÿve to ten iterations.

We present four diþerent experiments with the COREL64 and FOREST54 data
sets, varying the compression range allowed. In our experiments, we consider
cases where the number of bits per dimension (i) is anywhere from 2 to 16, (ii) is
either 4 or 8, (iii) is ÿxed at 4, and (iv) is ÿxed at 8 for all clusters of VAs. Having
chosen the permitted range of number of bits per dimension, the parameters
sizemin and sizemax can be set to constrain cluster sizes accordingly. Table 2
shows the conÿgurations that result from applying the clustering algorithm to
the COREL64 data set. Each row of the table shows the number of clusters
(and also VA pages) with each compression ratio. For example, if we set the
minimum cluster size to 17 (requiring 16 bits per dimension) and the maximum
cluster size to 256 (using 2 bits per dimension), then the resulting tree contains
200 VA pages with 4 bits, 964 with 8 bits and 301 with 16 bits.

Figure 7 shows the query performance results for the COREL64 data set for
K = 10. The best performance is obtained with 4 bits for each dimension. Among
these cases, the positioning time for the vector approximation pages is the query
component that varies most signiÿcantly for the diþerent compression ranges.
(Note that the transfer time for the vector pages is too small to be visible in the
ÿgure.) For FOREST54, on the other hand, the transfer time of the directory
is the most signiÿcant query component, and its variation is what makes the
diþerence in performance between the diþerent compression ranges.

Figures 8(a) and 8(b) show the average total query execution times for
COREL64 and FOREST54 varying the value of K from 1 to 20. As observed for
COREL64 with K = 10, compression to 4 bits is best for both data sets for any
value of K.

Table 2. Number of clusters with each number of bits per dim. for COREL64

Compression Range sizemin sizemax 2 bits 4 bits 8 bits 16 bits

2 to 16 bits 17 256 0 200 964 301

4 to 8 bits 33 128 { 625 242 {

4 bits 65 128 { 739 { {

8 bits 33 64 { { 1454 {

88 C. Garcia-Arellano and K. Sevcik

4.3 CIQ-Tree Performance

0

100

200

300

400

500

K=1 K=2 K=5 K=10 K=20

8 bit s

2 to 16

4 to 8

4 bit s

T
im

e
(m

s.
)

0

100

200

300

400

500

600

K=1 K=2 K=5 K=10 K=20

2 t o16

4 t o8

4bit s

8bit s

T
im

e
(m

s.
)

a) COREL64 b) FOREST54

Fig. 8. CIQ-tree; Varying Compression Range and K

0

500

1000
1500

2000

2500

3000

3500
4000

4500

5000

K=1 K=2 K=5 K=10 K=20

Seq.Scan

VA- f ile

IQ-t ree

CIQ-t ree

A-t ree

T
im

e
(m

s.
)

T
im

e
(m

s.
)

0

100

200

300

400

500

600

700
800

900

1000

K=1 K=2 K=5 K=10 K=20
a) COREL64 b) FOREST54

Fig. 9. Knn Queries

5 Comparison of CIQ-Tree with the Other Techniques

5.1 Experiments Based on Real Data Sets

In this section, we compare the query performance of the CIQ-tree with that
of the alternative quantization techniques. For each technique, on each data
set, we have used the number of bits per dimension that gives the best query
performance, and these are shown in Table 3.

Varying the Number of Neighbors. Figure 9(a) shows the average query
execution times for the COREL64 data set for diÿerent values of K. The CIQ-
tree performs better than the IQ-tree for all tested values of K and better than
the alternative techniques for values of K below 20.

For values of K above 20, the VA-þle is the best alternative to obtain better
performance than the sequential scan. This is due to the fact that, as K grows,
the expected distances to the Kth nearest neighbor and the 2Kth becomes very
small [5], so that no local clustering strategy can be successful.

In the case of the FOREST54 data set (Figure 9(b)), the CIQ-tree gives
a lower average query time than the IQ-tree. Figure 10 compares the query
time components for the CIQ-tree and the A-tree with K = 10. The CIQ-tree
CPU time component is larger than that of the A-tree due to the CPU time

Table 3. Number of Bits Per Dim. that Gives the Best Query Perf. for Each Index

VA-ÿle IQ-tree A-tree CIQ-tree

COREL64 8 8 6 4

FOREST54 8 8 6 4

89Quantization Techniques for Similarity Search

0

50

100

150

200

250

CIQ-t ree A-tree

I/O Transfer

I/O Positioning

CPU
T

im
e

(m
s.

)

Fig. 10. Query Time Components; FOREST54; K = 10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100000 200000 300000 400000 500000 600000

Seq. Sc an

VA-file

IQ-t ree

CIQ-t ree

A-tree

T
im

e
(m

s.
)

Number of Vectors

Fig. 11. Varying the data set size; FOREST54; K = 10

required for the sequential scan optimization. The advantage is that the CIQ-

tree requires fewer random positionings. However, the CIQ-tree takes more time

in the transfer of the directory pages, which is the major diÿerence in the query

performance. Due to the many tight clusters in FOREST54, the A-tree makes

full use of the node hierarchy, gaining an advantage over the CIQ-tree, which

requires a full scan of the directory.

In the case of CENSUS139, the data set with the smallest degree of clustering,

the CIQ-tree shows little improvement over the IQ-tree and the A-tree, and the

VA-þle still achieves the best performance on this data set.

Data Set Size. Figure 11 shows the average query times of the diÿerent tech-

niques for subsets of diÿerent sizes of the FOREST54 data set with K = 10.

The query performance of the CIQ-tree is very close to that of the A-tree, and

the performance improvement relative to the IQ-tree increases for larger data

set sizes.

5.2 Experiments Based on Synthetic Data Sets

We have also generated synthetic clustered data sets to allow more ýexibility

in our evaluation. We have performed three sets of experiments with synthetic

data sets to show the behavior of the alternative quantization techniques under

diÿerent scenarios. In each case, the dimensionality of the synthetic data set is

50, and the size of the data set is 50,000 vectors.

Synthetic Data Set Generation.The centers of the clusters in each synthetic

data set were generated following a uniform distribution in a C-dimensional

90 C. Garcia-Arellano and K. Sevcik

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

C=20

C=1

C=3

C=5

C=10

%
of

C
lu

st
er

s

Euclidean Distance

Fig. 12. Synthetic Data Sets - Distrib. of Inter-Cluster Distances

space, and they were embedded into a D-dimensional space (for D > C) using a
random orthonormal rotation matrix generated using the Gram-Schmidt method
in MATLAB. We refer to dimensionality C as the intrinsic dimensionality of the
centers, and to dimensionality D as the embedding dimensionality. The vectors
of each cluster were generated uniformly within a sphere around the cluster
center in the D-dimensional space based on the parameters m, M , ÿr, and
þr. The number of vectors in each cluster was generated following a uniform
distribution between minimum and maximum values (U(m;M)). The radii of
the spheres were generated following a Gaussian distribution with speciÿed mean
and standard deviation (G(ÿr ; þr)). The vectors of each cluster were generated
uniformly within the sphere of the chosen radius using the method of the Normal
deviation.

Varying the Global Clustering Structur .e.. In this experiment we vary the
global structure of the clustering, maintaining a constant local density within
the clusters. The intrinsic dimensionality of the centers, C, ranged from 1 to
20. The cluster size distribution was U(100; 200), and the cluster sphere radius
distribution was G(0:3; 0:1). Figure 12 shows the distribution of distances be-
tween the centers of the clusters for various values of C. Note that, with larger
intrinsic dimensionality of the clusters, the distances between pairs of centers
are less variable, and also the clusters are more disperse in the space.

The query performance results for this set of data sets are shown in Figure
13(a). As we can see, the more dispersed the clusters are in the space, the better
the performance of the A-tree. This is because the combination of a hierarchical
structure with the centroid-based partitioning is more useful in the cases where
there are clusters with high density surrounded by areas with low density. At
the other extreme, when the cluster centers were generated in a 1-dimensional
space (C = 1) and embedded into a 50-dimensional space, the IQ-tree shows a
signiÿcant advantage over the A-tree, due to the recursive binary partitioning
of the data space. The CIQ-tree achieves better query performance than any
alternative technique for all values of C. This is possible because the CIQ-tree
combines the best features of the A-tree and the IQ-tree.

Varying the Local Density of the Clusters.The second group of synthetic
data sets was generated varying the local density of the clusters. In this case, we
used the cluster sphere radii distributions G(0:05; 0:01), G(0:2; 0:05), G(0:3; 0:1)

91Quantization Techniques for Similarity Search

0

100

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5

Mean Cluster Radius

0

100

200

300

400

500

600

700

800

0 5 10 15 20

0

100

200

300

400

500

600

700

800

0 200 400 600 800

VA-file

Sequent ial Scan

IQ-t ree

A-t ree

CIQ-t ree

Cluster Centers Intrinsic Dimensionality

T
im

e
(m

s.
)

Mean Cluster Size

a) Varying the Cluster Centers Intrinsic Dimensionallity b) Varying the Cluster Sphere Radii Distrib; C=10

c) Varying the Cluster Sizes Distribution; C=3

T
im

e
(m

s.
)

T
im

e
(m

s.
)

Fig. 13. Synthetic data sets; K = 10; D = 50

andG(0:5; 0:1). The intrinsic dimensionality of the distribution of the cluster cen-
ters was C = 10 in all cases, and the distribution of cluster sizes was U(100; 200).

Figure 13(b) shows the average query time as a function of the mean of the
Gaussian distribution of the cluster sphere radii. For a ÿxed global sparseness
of the clusters, the tighter the clusters are, the better the query performance of
the A-tree is. Also, the lower the local density of the clusters, the closer the data
set is to a uniformly distributed data set, and the better the performance of the
VA-ÿle. The CIQ-tree query performance is not too sensitive to the local density
of the clusters, resulting in more stable results than those of the alternative
techniques. Overall, the CIQ-tree yields the best performance, although the A-
tree is somewhat better when the clusters are very tight.

Varying the Number of Vectors per Cluster. The last group of synthetic
data sets was generated varying the distribution of cluster sizes. Since the total
number of vectors in each data set is ÿxed (at 50,000), the number of clusters in
the data set is approximately N divided by the mean cluster size, (m +M)=2.
We generated four data sets, with cluster sizes distributions U(5; 20), U(25; 50),
U(100; 200) and U(500; 1000). The intrinsic dimensionality of the distribution
of cluster centers was C = 3 in all cases, and the distribution of cluster sphere
radii was G(0:3; 0:1).

Figure 13(c) shows that the CIQ-tree obtains the best average query perfor-
mance in all cases. The performance of the VA-ÿle degrades rapidly as the mean
cluster size increases (leading to greater local density of the clusters).

92 C. Garcia-Arellano and K. Sevcik

6 Conclusions

Several techniques for similarity search have been developed using the idea of
vector approximation through quantization. The ÿrst contribution of our work
is the comparative evaluation of the performance of these techniques using both
real and synthetic data sets with various degrees of clustering. We considered
dimensionalities from 50 to 140, whereas previous studies of these methods have
addressed dimensionalities only as high as 64. We have seen that, for data sets
with a high degree of clustering, the hierarchical structure of the A-tree leads
to the best performance results. But the performance of this technique degrades
rapidly for data sets that are not highly clustered, due to the large number of
random positionings required to read the nodes of the tree. At the other extreme,
when the data sets have a more uniform distribution, we have seen that the VA-
ÿle is the best alternative.

The second contribution of our work is the introduction of the CIQ-tree, a
variation of the IQ-tree. We have shown that it performs better than the IQ-
tree in all the cases examined. The centroid-based partitioning strategy, adopted
from the A-tree, generates a better page clustering of the vectors, which leads
to better vector approximation precision and also to better query performance.
Relative to the A-tree, the performance of the CIQ-tree was shown to be more
consistently good over data sets with diþerent degrees of clustering. For a data
set that is known to be highly clustered, the A-tree will probably lead to the best
performance. However, the CIQ-tree performs consistently well over a wide range
of degrees of clustering, and is the best alternative for data sets with an interme-
diate degree of clustering (such as COREL64). For this consistent performance,
we believe that the CIQ-tree is the best alternative overall in situations where
the main limitation noted in Section 1.1, lack of support for eÆcient insertions
and deletions, is not an issue.

There are several possible directions for future work. First, to complement our
modiÿcation of the IQ-tree to obtain the CIQ-tree, we could instead modify the
A-tree implementation to incorporate the sequential scan optimization (SSO)
from the IQ-tree, and assess the performance of this approach relative to the
CIQ-tree. Second, the same set of quantization techniques could be compared
with respect to performance for range queries or constrained nearest neighbor

queries [10], instead of on Knn queries. Third, the quantization-based methods
we have addressed in this paper could be evaluated relative to clustering-based
methods (such as LDR [8] and fractal clustering [1]).

As was argued by Weber et al. [20], for any indexing technique, there is a
dimensionality suÆciently large that the VA-ÿle will perform better. However,
through the development of improved indexing techniques like the CIQ-tree, it
is possible to push that dimensionality threshold to higher levels.

References

1. D. Barbara and P. Chen. Using the fractal dimension to cluster data sets. In Proc.

of the 6th KDDM, pages 260{264, 2000.

93Quantization Techniques for Similarity Search

2. S. Berchtold, C. B�ohm, H. V. Jagadish, H.-P. Kriegel, and J. Sander. Independent
quantization: An index compression technique for high-dimensional data spaces.
In Proc. of the 16th ICDE, pages 577{588, 2000.

3. S. Berchtold, C. B�ohm, and H.-P. Kriegel. The pyramid-technique: towards break-
ing the curse of dimensionality. In Proc. of ACM SIGMOD Int. Conf., pages
142{153, 1998.

4. S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree: An index structure for
high-dimensional data. In Proc. of the 22nd VLDB, pages 28{39, 1996.

5. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is "nearest neigh-
bor" meaningful? In In Proc. of the 7th ICDT, pages 217{235, 1999.

6. C. B�ohm. A cost model for query processing in high-dimensional data spaces.
ACM Transactions on Database Systems, 25:129{178, 2000.

7. C. B�ohm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comp.

Surveys, 33(3):322{373, 2001.
8. K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach

to indexing high dimensional spaces. In The VLDB Journal, pages 89{100, 2000.
9. S. Chen, P. Gibbons, T. Mowry, and G. Valentin. Fractal prefetching b+-trees:

Optimizing both cache and disk performance. Proc. of ACM SIGMOD Int. Conf.,
pages 157{168, 2002.

10. H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. E. Abbadi. Constrained nearest
neighbor queries. In In Proc. of the 7th Int. Symp. on Spatial and Temporal
Databases SSTD, pages 257{278, 2001.

11. H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E. Abbadi. Approximate
nearest neighbor searching in multimedia databases. In Proc. of the 17th ICDE,
pages 503{511, 2001.

12. E. Forgy. Cluster analysis for multivariate data: EÆciency vs. interpretability of
classiÿcations. Biometrics, 21, 1965.

13. V. Gaede and O. G�unther. Multidimensional access methods. ACM Comp. Surveys,
30(2):170{231, 1998.

14. C. Garcia-Arellano. Quantization techniques for similarity search in high-
dimensional data spaces, 2002. Master's Thesis. Computer Science Deptartment,
University of Toronto, Canada.

15. C. Garcia-Arellano and K. Sevcik. Quantization techniques for similarity search
in high-dimensional data spaces, 2003. Technical Report CSRG-471. Computer
Science Deptartment, University of Toronto, Canada.

16. N. Katayama and S. Satoh. The SR-tree: an index structure for high-dimensional
nearest neighbor queries. In Proc. of ACM SIGMOD Int. Conf., pages 369{380,
1997.

17. C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold. Clustering for approximate
similarity search in high-dimensional spaces. IEEE Trans. on Knowledge and Data

Engineering, 14(4):792{808, 2002.
18. Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree: An index

structure for high-dimensional spaces using relative approximation. In Proc. of the

26th VLDB, pages 516{526, 2000.
19. B. Seeger, P. A. Larson, and R. McFayden. Reading a set of disk pages. In Proc.

of the 19th VLDB, pages 592{603, 1998.
20. R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces. In Proc. of the

24th VLDB, pages 194{205, 24{27 1998.

94 C. Garcia-Arellano and K. Sevcik

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 95–114, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Performance Evaluation and Analysis of K-Way Join
Variants for Association Rule Mining1

P. Mishra and S. Chakravarthy

Information and Technology Laboratory and
The University of Texas at Arlington, Arlington, TX 76019

{pmishra,sharma}@cse.uta.edu

Abstract. Data mining aims at discovering important and previously unknown
patterns from the dataset in the underlying database. Database mining performs
mining directly on data stored in (relational) database management systems
(RDBMSs). The type of underlying database can vary and should not be a
constraint on the mining process. Irrespective of the database in which data is
stored, we should be able to mine the data. Several SQL92 approaches (such as
K-way join, Query/Subquery, and Two-group by) have been studied in the
literature.
In this paper, we focus on the K-way join approach. We study several additional
optimizations for the K-way join approach and evaluate them using DB2 and
Oracle RDBMSs. We evaluate the approaches analytically and compare their
performance on large data sets. Finally, we summarize the results and indicate
the conditions for which the individual optimizations are useful. The larger goal
of this work is to feed these results into a layered optimizer that chooses
specific strategies based on the input dataset characteristics.

1 Introduction

The rapid improvement in the storage technology with steep drop in the storage cost
and increase in the computing power has made it feasible for organizations to store
huge amounts of data and process it. To compete effectively in today’s market,
decision makers need to identify and utilize the information hidden in the collected
data and take advantage of the high return opportunities in a timely fashion. Data
Mining is the process of inferring knowledge from such data repositories, and
database mining incorporates the ability to directly access data stored in a database.

Association rule mining is a process of identifying the co-occurrences of one or
more items that satisfy user-defined frequency (specified as support and confidence).
These models are often referred to as Market Basket analysis when they are applied to
retail industries to study the buying patterns of their customers. Here an attempt is
made to identify whether a costumer buys item “B” also, whenever he/she buys item
“A”. If so, then how many customers buy item “B” along with item “A” is of interest.
This is stated as an association rule of the form A ⇒ B. Where A is called the

1 This work was supported, in part, by the Office of Naval Research, the SPAWAR System

Center-San Diego & by the Rome Laboratory grant F30602-02-2-0134, and by NSF grants
IIS-0097517 and ITR -0121297.

96 P. Mishra and S. Chakravarthy

antecedent of the rule and B the consequence. In a more generalized form of the rule,
antecedent and consequence can have more than one item (are sets).

The work on association rule mining started with the development of the AIS
algorithm [1] and then some of its modifications as discussed in [2]. Since then, there
have been continuous attempts in improving the performance of these algorithms. The
partition algorithm [3] improves the overall performance by reducing the number of
passes needed over the complete database to two. The turbo-charging algorithm [4]
incorporates the concept of data compression to boost the performance of the mining
algorithm. [5] builds a special tree structure in main memory to avoid multiple passes
over database. However, most of these algorithms are applicable to data present in flat
files. The basic characteristics of these algorithms are that they are main memory
algorithms, where the data is either read directly from the flat files or is first extracted
from the DBMS and then processed in the main memory. These algorithms
implement their own buffer management strategies. The performance of these
algorithms is due to their capability of building specialized data-structures, which is
more suited to the specific algorithm. There have been very few attempts until now to
build database based mining models. Here we assume that the data is already present
in the form of tables in the underlying DBMS and we use the SQL capabilities
provided by the RDBMS to churn it and to produce so far unseen and interesting
rules. SETM [6], showed how the data stored in RDBMS can be mined using SQL
and the corresponding performance gain achieved by optimizing these queries.

Recent research in the field of database-based mining has been in integrating the
mining functions with the database. Various extensions to the SQL have been
proposed. These proposals are to load the SQL with certain mining operators. The
Data Mining Query Language DMQL [7] proposed a collection of such operators for
classification rules, characteristics rule, association rules, discriminant rules, etc. [8]
proposed the MineRule operator for generating general/clustered/ordered association
rules. [9] presents a methodology for tightly-coupled integration of data mining
applications with a relational database system. In [10] the authors have tried to
highlight the implications of various architectural alternatives for coupling data
mining with relational database systems. They have also compared the performance
of the SQL-92 based architecture with SQL-OR based architecture and when mining
is done outside the database address space.

Some of the research has focused on the development of SQL-based formulations
for association rule mining. Most of these algorithms use the a priori algorithm
directly or indirectly with some modifications to it. [10] and [11] deal with the SQL
implementation of the apriori algorithm and have compared some of the optimizations
to the basic k-way join algorithm for association rule mining but the relative
performances and all possible combinations for optimizations were not explored. In
this paper, we will analyze the characteristics of these optimizations in detail both
analytically and experimentally. We conclude why certain optimizations are always
useful and why some perceived optimizations do not seem to work as intended.

There are many commercial mining tools available today in the market, viz., the
IBM’s Intelligent Miner, DBMiner, etc., which use the capabilities provided by the
underlying database management system for mining. Though these mining tools are
quite efficient, they are developed for a particular RDBMS. Hence, they cannot be
used if the relevant database is not used. To overcome this limitation, our approach

Performance Evaluation and Analysis of K-Way Join Variants 97

uses a database independent architecture introduced in [12]. To make the
implementation operating system independent, we have used java and along with it,
we use JDBC API’s to make our implementation independent of the underlying
database. For the purpose of our evaluation, we have run the experiments on both
Oracle 8i and IBM DB2/UDB 6.1.

1.1 Focus of This Paper

With more and more use of RDBMS to store and manipulate data, mining directly on
RDBMSs gives us the advantage of using the fruits of decades of research done in this
field. As the main memory always imposes a limitation on the size of data that can be
processed, using RDBMSs provides us the benefits of using a sophisticated buffer
management systems implemented in them. Building mining algorithms to work on
RDBMSs directly also gives us the advantage of mining over very large datasets as
RDBMSs have been built to manage such large volumes of data. File based mining
algorithms or those that work on data outside the database, generally have an upper
limit to the number of transaction that can be mined. For example, the DBMiner has
an upper limit of 64K on the number of unique transactions that it can process for
mining. With the user having a choice of RDBMS to use for his application, the
mining algorithms should be developed using such accepted standards so that the
underlying system is not a limitation and should be portable on other RDBMSs.
Keeping this in mind, our focus in this paper is on the use of SQL-92 features for
association rule mining over RDBMSs.

The goal of this paper is to study all aspects of the basic k-way join approach for
association rule mining and then explore additional performance optimizations to the
k-way join. The other goal of our work is to be able to use the results obtained from
mining various relations to make the mining optimizer mining-aware. Most of the
relational query optimizers were not designed to optimize queries that are typically
used in mining. Furthermore, current optimizers cannot be given any external input in
guiding them towards generating a specific query plan. Hence, the results collected
from the performance evaluations of these algorithms are critical for developing a
knowledge base that can be used for selecting appropriate approaches as well as
optimizations with in a given approach. Due to lack of availability of real datasets, we
use synthetic datasets (generated by the program developed at IBM Almaden) for
performance evaluation. Nevertheless, the results are useful in understanding the
approaches and can certainly be converted into meta-data for use by mining
application.

The rest of the paper is organized as follows. Section 2 introduces the association
rules and the apriori algorithm. Section 3 covers in detail the k-way join method for
support counting and its basic optimizations along with their performance analysis.
Section 4 considers the combinations of the optimizations discussed in section 3 and
reports some of the results due to space limitations. The details can be found in [13]
available on the web. In section 5 we have compiled the summary of results obtained
from mining various datasets. We conclude and present the future work in section 6.

98 P. Mishra and S. Chakravarthy

2 Association Rules

The problem of association rule mining was formally defined in [2]. In short, it can
be stated as: Let I be the collection of all the items and D be the set of transactions.
Let T be a single transaction involving some of the items from the set I. The
association rule is of the form A ⇒ B (where A and B are sets). If the support of
itemset AB is 30%, it means “30% of all the transactions contain both the itemsets –
itemset A and itemset B”. And if the confidence of the rule A ⇒ B is 70%, it means
“70% of all the transactions that contain itemset A also contains itemset B”. In this
section, we discuss SQL92 formulation for the generic apriori algorithm that serves as
the basis for our analysis. An association rule mining problem is broken down into
two sub-problems: 1) select all the item combinations (itemsets) whose support is
greater than the user specified minimum support. Such itemsets are called the frequent
itemsets and 2) use the identified frequent itemsets to generate all rules that satisfy
user specified confidence.

2.1 Apriori Algorithm

The apriori algorithm is based on the above-mentioned two steps: generate frequent
itemsets and generate corresponding rules. Frequent itemsets of length k are generated
in two steps. In the first step all the possible combinations of items, called the
candidate itemsets (Ck) are generated. In the second step, support of each candidate
itemset is counted and all those candidate itemsets, which have support values greater
than the user specified minimum support value, form the set of frequent itemsets (Fk).
The algorithm is depicted below.

F1 = {frequent itemsets of length 1}
for (k = 2; Fk-1 ≠ 0; k++) do

Ck = generate(Fk-1)
for all transactions t ∈ D do

Ct = subset(Ck, t)
for all candidates, c ∈ Ct do

c.count++
end for

end for
Fk = { c ∈ Ck | c.count ≥ minsup}

end for
Answer = ∪k{Fk}

The generate function uses frequent itemsets of length k-1 to generate candidate
itemsets of length k, while the subset function, produces only that subset of candidate
itemsets from Ck which can be generated from the items bought in any transaction t.

Performance Evaluation and Analysis of K-Way Join Variants 99

2.2 Candidate Generation

In the kth pass, the set of candidate itemsets Ck is generated from the frequent itemset
Fk-1 as shown below. Fk-1 is generated in the (k-1) th pass. Relations Ck and Fk have
following attributes (item1, item2,…, itemk)

Insert into Ck
Select I1.item1, … ,I1.itemk-1, I2.itemk-1
From Fk-1 I1, Fk-1 I2
Where I1.item1 = I2.item1 and

:
I1.item k-2 = I2.itemk-2 and
I1.item k-1 < I2.itemk-1

The number of candidate itemsets generated by the above step can be reduced by
deleting all itemsets c ∈ Ck, where some subset of c of length k-1 is not in Fk-1. This
has been introduced in [2].

2.3 Support Counting

This is an important and most time-consuming part of the mining process. This step is
needed to identify those candidate itemsets that are frequent.. The basic approach for
support counting is that in any pass k, k copies of the input table are joined with the
candidate itemsets Ck followed by a group by on the itemsets. The k copies of the
input table are needed to compare the k items in the candidate itemset Ck with one
item from each of the k-copies of the input table. The group by clause on the k items
is done to identify all itemsets whose count is ≥ support value, as frequent itemsets.
These frequent itemsets are then used in the rule generation phase. The tree diagram
for support counting using k-way join approach is shown below [10], [11], [12].

3 Analysis of Basic K-Way Join Method and Its Optimizations

In this section we analyze the k-way join approach more closely. This section, also
discusses a number of basic optimization and their combinations. The purpose of
these optimizations and their analysis (along with performance evaluation) is to
understand the impact of various optimizations on datasets having different
characteristics (size, average transaction length, support, confidence, number of
passes needed etc.) and to obtain heuristics that relate various optimization techniques
and their effect on the characteristics of the input dataset. Though, not all
optimizations always produce better timings, our belief is that the study of these
optimizations can give us a better insight in formulating the metadata that can be used
for making a mining-aware mining optimizer. We will here present the performance
evaluation and the results obtained when datasets with different characteristics were
mined using them.

100 P. Mishra and S. Chakravarthy

Fig. 1. Support counting by K-way join approach

3.1 Methodology for Experimental Evaluation

The results shown here are on datasets generated synthetically using the IBM’s data-
generator. The nomenclature of these datasets is of the form TxxIyyDzzzK. Where xx
denotes the average number of items present per transaction. yy denotes the average
support of each item in the dataset and zzzK denotes the total number of transactions
in K (1000’s). The experiments have been performed on Oracle 8i (installed on a
Solaris machine with 384MB of RAM) and IBM DB2/UDB (over Windows NT with
256MB of RAM). Each experiment has been performed 4 times. The values from the
first results are ignored so as to avoid the effect of the previous experiments and other
database setups. The average of the next 3 results is taken and used for analysis. This
is done so as to avoid any false reporting of time due to system overload or any other
factors. For most of the experiments, we have found that the percentage difference of
each run with respect to the average is less than one percent. Before feeding the input
to the mining algorithm, if it is not in the (tid, item) format, it is converted to that
format (by using the algorithm and the approach presented in [12]). On completion of
the mining, the results are remapped to their original values. Since the time taken for
mapping, rule generation and re-mapping the results to their original descriptions is
not very significant, they are not reported.

For the purpose of reporting the experimental results in this paper, for most of the
optimizations we have shown the results only for three datasets – T5I2D500K,
T5I2D1000K and T10I4D100K. Wherever there is a marked difference between the
results for Oracle and IBM DB2/UDB they are also shown; otherwise the result from
anyone of the RDBMSs have been included.

Performance Evaluation and Analysis of K-Way Join Variants 101

3.2 Cost Analysis of the Basic K-Way Join (Kwj) Approach

Fig. 2 compares the time required for mining the relation T5I2D1000K on DB2, with
break-up for each pass for support values of 0.20%, 0.15% and 0.10%, while Fig. 3
shows the same on Oracle. (On DB2, for support value of 0.10%, the experiment
didn’t complete even after running it for over 9 hrs). The analysis for time required
for each pass shows that, of all the passes, second pass is most time consuming. This
is true as in second pass nC2 (all combinations of two elements from frequent 1-
itemsets) candidate itemsets are generated, where n is the cardinality of frequent-1
itemset.

Fig. 2. K-way Join on T5I2D1000K (DB2)

Fig. 4 shows the time required for mining relation T10I4D100K for different
support values on Oracle and Table 1 shows the number of candidate itemsets
generated in respective passes, when different tables were mined with different
support values. The analysis of the theses figures shows that for mining configuration,
where the length of the largest frequent itemsets is small, the time required for support
counting at higher passes is not very significant. This is because there is a great
reduction in the size of the candidate itemset (Ck). However, for relations with long
frequent itemsets, even though the cardinality of the Ck decreases with the increase in
the number of passes, even then joining k-copies of input table for support counting at
higher passes is quite significant.
 In Kwj, for support counting of any pass k, the input table is joined k-times. Hence
an obvious way to optimize this would be by reducing the cardinality of the input
table. Section 3.3 discusses about this in more detail. Once again, if we analyze the
first and the second pass, frequent itemsets of length 1 (F1) are generated in pass 1. F1

is then used to generate C2, which is followed by support counting of C2. An efficient
way to get around with this time consuming process would be generating the frequent
itemsets of length 2 (F2) directly, by joining the input table with itself with the group-
by on the items of the input table that have the same tid. This way Pass 1 can be

102 P. Mishra and S. Chakravarthy

Fig. 3. K-way Join on T5I2D1000K (Oracle)

Fig. 4. K-Way Join on T10I4D100K (Oracle)

skipped all together (as there are no rules on F1) and also there is no need for
candidate generation for pass 2 as F2 is generated directly by the above step. Section
3.4 discusses this second pass optimization in more detail.

Performance Evaluation and Analysis of K-Way Join Variants 103

Table 1. Number of Candidate Itemsets in different passes

C2 C3 C4 C5 C6 C7 C8 C9

T5I2D500K.
Support =
0.10%

30772
0

126 7 0 -- -- -- --

T5I2D1000K.
Support =
0.10%

30929
1

127 61 0 -- -- -- --

T10I4D100K.
Support =
0.75%

12470 65 3 0 -- -- -- --

T10I4D100K.
Support =
0.33%

21615
3

245
3

905 354 109 20 2 0

Let us compare the SQL tree for support counting (Fig. 1. Support counting by
K-way join approach) for two successive passes, say pass 4 and pass 5. In the 4th pass
C4 is joined with 4 copies of input table, to identify all frequent itemsets of length 4.
In the 5th pass, again input table is joined 4 times for determining the frequent
itemsets of length 4 and then the support of 1-extensions of these frequent items,
present as the fifth item in C5, are counted by joining one more copy of the input table
with C5. Thus if all the frequent itemsets contained in any transaction is saved at the
end of the pass 4, they can be used for support counting in pass 5, as frequent itemsets
of length 5 are 1-extensions of these frequent itemsets of length 4. Section 3.5
discusses about this optimization and its effects.

3.3 Pruning the Input Table (Pi)

Smaller the size of the input table, the faster should be the join computation.
Eliminating the records of those single itemsets from the input table, whose support is
lower than the user specified minimum value, can reduce the size of the input table.
Instead of deleting these tuples, a new relation, say, pruned input (Tf) is created to
contain the tuples (transactions) of only frequent itemsets of length 1. This is done by
generating F1, as before. Then F1 is joined with T on the “item” column, and tuples of
only those items whose support ≥ user defined support value are inserted in Tf. The
SQL for creating the pruned input table is given below:

Insert into Tf select t.tid, t.item
From T t, F1 f
Where t.item = f.item

104 P. Mishra and S. Chakravarthy

Thus the overall cost of this optimization includes the cost of producing the pruned
input table Tf + cost of support counting in every pass. The difference between basic
Kwj and Pi is that, in Pi, an additional cost for materializing the pruned input table is
involved. And then this pruned input table is used instead of the original input table in
the joins for the support counting of every pass. The pruning of non-frequent 1-
itemset is more effective with higher support values or for relations with a very large
number of distinct items, which results in pruning out a large number of non-frequent
1-itemsets. Fig.5 shows the reduction in size of input table T5I2D1000K for different
support values.

Fig. 5. Reduction in Table size due to Pruning

The reduction in the size of the input table is very marked for higher support values.
But, pruning might not always end up in giving better performance. Fig.6 compares
the total cost of mining the relation T5I2D1000K on oracle, using the pruned input
(time for pruning also considered and is shown as “Ohead” in the figure) with the
basic Kwj approach, for different support values. For higher support values, (3.0%,
2.0% and 1.0%), the total time taken is less when pruned input was used, but the
reverse is true for lower support values. This is because for low support values, the
reduction in the size of the input table is almost negligible; hence use of pruned input
hardly has any effect on the running time of any pass, rather, there is an additional
cost involved in generation of the pruned input. Because of this overhead, the overall
time of using pruned input comes out more than the basic Kwj.

Performance Evaluation and Analysis of K-Way Join Variants 105

Fig. 6. K-way join and Pruned Input

3.4 Second Pass Optimization (Spo)

As indicated earlier and is apparent as well from the figures shown above that of all
the passes, second pass is the most time consuming. In most of the cases, because of
the immense size of C2, the cost of support counting for C2 is very high. In addition,
for candidate sets of length 2, as all the subsets of length 1 are known to be frequent,
there is no gain from pruning during the candidate generation. The process of
generating F1 then C2 followed by its support counting phase can be replaced by
directly generating F2 by joining two copies of the input table. The SQL for this is as
follows:

Insert into F2 select t1.item, t2.item, count(*)
From T t1, T t2
Where t1.tid = t2.tid and t1.item < t2.item
Group by t1.item, t2.item.
Having count(*) > support

Fig. 7 compares the over all time required for mining table T5I2D500K using Kwj
and Spo. For table T5I2D500K, the overall time required for mining is reduced by 3
to 4 times with this optimization alone.

106 P. Mishra and S. Chakravarthy

Fig. 7. K-way join and Second Pass Optimization

Fig. 8. Ck and Fk for Kwj and Spo

Fig. 8 compares the time taken for the candidate generation phase (Ck) and
support counting phase (Fk) in each pass for the Kwj and the Spo. The values in Pass-
2 of this figure show that the improvement in performance for Spo is due to savings
on the join cost at two stages – during generation of C2 and during generation of F2.
The saving in the former case is due to totally bypassing the generation of candidate
itemsets C2. For the latter case, in Spo, input table (T) is directly joined with itself,
instead of joining three tables – C2 and 2 copies of input table (as is done in second
pass of Kwj), which results in decrease in the computation time for F2.

Performance Evaluation and Analysis of K-Way Join Variants 107

3.5 Reuse of Item Combinations (Ric)

This optimization aims to reduce the cost of support counting by avoiding the join of
k copies of input table with Ck. This is done by materializing the frequent itemsets
obtained from a particular transaction in pass k-1 (Fk-1), and using it for support
counting in the kth pass. This saves from redoing the same series of joins that were
done in the previous pass, which proves to be very effective for cases where the
length of the frequent itemset is large by avoiding large number of joins. So in kth pass
for support counting, a relation Combk, having the following attributes: tid, item1,
item2, …, itemk, is created. The tuples in Combk is the result of the join between
Combk-1, T and Ck to select all those transactions in T which contains 1-extensions to
the frequent itemsets of length k-1 (Fk-1). Then Fk is generated from Combk by
grouping on k items (item1, item2, …, itemk) and filtering those that don’t satisfy the
minimum support criteria. Due to space constraints the SQL formulation is not given
here. Please refer to [13] for details.

The analysis of this optimization shows that instead of joining the input table k
times, in any pass k, only 3 relations – Ck, T, and Combk-1 are joined. However, the
downside of this approach is that, Combk-1 has to be materialized so that it can be
used in the next pass.

Fig. 9 compares the total time taken to mine table T10I4D100K using Kwj and
Ric for different support values on Oracle. Fig. 10 shows the same for DB2. For
higher support values, the experiments run for less number of passes and hence the
cost of support counting using the Kwj, does better than when Combk is materialized
for using it in the next pass. But for low support values, at higher passes, the cost of
joining input table k-times with Ck turns out to be more costly than materializing
Combk-1 and using it for support counting. In Fig. 10. , for support value of 0.75%,
Kwj didn’t complete (even after running for 9 hrs.), while the reuse of item
combinations did. In Kwj, for support counting of the 3rd pass, 4 relations are joined -
3 copies of the input table and C3, while in Ric just 3 relations are joined - Comb2, T
and C2 to get Comb3 and then group by on Comb3 is done for F3. As the size of these
tables is huge and also there are more number of joins, the experiments (on DB2) in
the former case, didn’t complete.

4 Combinations of Basic Optimizations

Sections 3.3, 3.4 and 3.5 discussed, respectively, the use of pruned input, optimization
of the second pass and reusing the item combinations generated in the previous pass.
In this section we will discuss the optimization obtained by combining these
optimizations.

108 P. Mishra and S. Chakravarthy

Fig. 9. Reuse of Item Combination (Oracle)

Fig. 10. Reuse of Item Combination (DB2)

4.1 Second Pass Optimization on Pruned Input (SpoPi)

As the Spo does results in some performance gain under all situations, but the same is
not true with Pi, hence the overall performance obtained from this combination is
limited by the overhead of pruning. For low support values, the overhead of building

Performance Evaluation and Analysis of K-Way Join Variants 109

pruned input outweighs any performance gained due to optimization of the second
pass. Hence at a low support value, SpoPi does better than when only pruned input is
used, but its performance is worse than when only Spo is used. In all the experiments
performed, the performance of this combination has not been very impressive, hence
the details of this combination are not reported here, they can be seen in [13].

4.2 Reuse of Item Combinations on Pruned Input (RicPi)

This optimization is similar to the one discussed in the section 3.5, except that instead
of using the input table as it is, non-frequent itemsets of length-1 are pruned out and
then this pruned input table is used in all passes for joining with Combk-1 to produce
Combk. The analysis of this combination also shows that almost nowhere it produced
the added performance of both - (1) reusing the frequent itemsets generated in the
previous pass and (2) use of pruned input for support counting. The overall
performance for this combination is dominated either by the cost of building the
pruned input at low support values or by the cost of materializing the Comb2 (for
using it in the next pass for support count) at high support values. This seems to be
quite logical because, as seen earlier the effect of pruning dominates only for high
support values and reuse of item combinations is effective for cases where the
maximum length of the frequent itemset is large. But since for large support values,
the maximum length of the frequent itemset is quite small, we never obtain the
benefits of materializing the transactions with frequent itemsets of the previous pass.
Similarly for low support values, where there is hardly any effect of pruning on the
input table size, the overhead of pruning eclipses any time saved by reusing the item
combinations. As the results of this combination too are not very impressive, we don’t
report them here. They can be found in [13].

4.3 Reuse of Item Combinations and Spo (RicSpo)

This section describes the effect of combining Spo with the optimization where
frequent itemsets generated in the previous pass are materialized and used for support
counting. As described in section 3.4 for Spo, first pass and candidate generation in
second pass is skipped. Since in Spo, C2 is not generated hence in RicSpo, instead of
generating Comb2, input table is joined thrice with C3 to produce Comb3 directly (C3

is produced in the same way as is done in the Spo). And then for subsequent passes,
the query is similar to one discussed in section 3.5. The SQL for generating Comb3

directly is shown below:

Insert into Comb3 select t1.tid, t1.item, t2.item, t3.item
From T t1, T t2, T t3, C3
Where t1.item = C3.item1 and

t2.item = C3.item2 and
t3.item = C3.item3 and
t1.tid = t2.tid and

t2.tid = t3.tid

110 P. Mishra and S. Chakravarthy

Fig. 11. Ric and Spo (Oracle)

Fig. 11 compares second pass optimization and reuse of frequent itemsets of the
previous pass with their combination for table T5I2D1000K on Oracle. Fig.12 shows
the same on DB2. As seen from these figures, in reuse of item combination, second
pass takes most of the time. This is to materialize Comb2, which is very expensive
(Table 2 shows the number of tuples in Combk for any pass-k for different support
values).

Fig. 12. Ric and Spo (DB2)

Hence the combined optimization does better than just the reuse of item combination
as it skips the generation of C2 and Comb2. Thus for most of the experiments, this
combination of optimization has resulted as one of the best optimization.

Performance Evaluation and Analysis of K-Way Join Variants 111

Table 2. Number of records in Combk (in 1000’s)

Number of tuples in 1000’s
Table Characteristics

Comb2 Comb3 Comb4

T5I2D1000K. Support = 0.20% 13267 0 0
T5I2D1000K. Support = 0.15% 13756 22 0
T5I2D1000K. Support = 0.10% 14165 111 6

4.4 Reuse of Item Combinations on Pruned Input with Spo (All)

This is the last optimization, which is basically the combination of all the three
individual optimizations discussed in sections 3.3, 3.4 and 3.5. The SQL for this plan
is similar to the one discussed in section 4.3, except that instead of using the input
table as such, we first prune out all the non-frequent itemsets and then in place of
input table use this pruned table for support counting. As seen above, optimizing the
second pass does save some time in almost all cases and also the combination of
second pass optimization with reuse of item combination has shown to be one of the
most effective combination of optimizations, but at the same time use of pruned input
with reuse of item combination has never given added performance. Out of the two
sets of extreme sub-combinations - (1) reuse of item combination with pruned input
and (2) reuse of item combination with second pass optimization, for lower support
values, this combination of all individual optimizations is dominated by the former
sub-combination, which eclipses any performance gained by the second sub-
combination. Hence for most of the experiments, this combination, of all the
optimizations has shown better performance than others, but worse than just the
RicSpo. The details of this combination can be seen in [13].

5 Summary of Experimental Results

We have compiled the results obtained from mining different relations into a tabular
form. This can also be made available to the mining optimizer that can use these
values as a cue for choosing a particular optimization for mining a given input
relation. Here it is assumed that we can easily figure out the characteristics of the
input table.

Table 3 and Table 4 below, summarizes the ranking of various optimizations
based on their performance and also the trend seen in the performance of these
optimizations in mining three relations (T5I2D1000K, T5I2D500K and T10I4D100K)
with different support values on Oracle and IBM DB2/UDB respectively.

112 P. Mishra and S. Chakravarthy

Table 3. Trends in Oracle

For each of these relations, and for different support values, the summary table
contains 3 columns. The first two columns specify the two best optimizations and the
last column lists the worst optimization for that relation. The format is same for both
– Oracle and IBM DB2/UDB. For the purpose of understanding how the meta-data
might look, in Table 5 below, we provide a summary of results obtained from mining
various other tables on both IBM DB2/UDB and Oracle. Because of the space
constraint, their details are skipped. The focus of this summary table is to aid the
optimizer in picking up the proper optimization based on a couple of easily
determinable constraints. These constraints are: RDBMS to use (if there is a choice),
the cardinality of the input table and if there is enough additional space to materialize
the intermediate results.

Table 4. Trends in IBM DB2/UDB

RDBMS: DB2
Table Name Ranking Supp = 0.20% Supp = 0.15% Supp = 0.10%

First RICSPO SPO RICSPO
Second SPO RICSPO ALL

T5I2D1000K

Last RICPI ����� �����
First SPO SPO SPO
Second RICSPO RICSPO RICSPO

T5I2D500K

Last ����� ����� �����
Ranking Supp = 2.00% Supp = 1.00% Supp = 0.75%
First SPO RICSPO RICSPO
Second RICSPO ALL ALL

T10I4D100K

Last ��� ��� ���

RDBMS: ORACLE
Table Name Ranking Support

0.20% 0.15% 0.10%
First RICSPO RICSPO ���
Second ALL ALL RICSPO

T5I2D1000K

Last RICPI RICPI RICPI
First RICSPO RICSPO SPO
Second SPO SPO RICSPO

T5I2D500K

Last RICPI RICPI RICPI
2.00% 1.00% 0.75% 0.33%

First ALL RICSPO RICSPO ���

Second �� ALL ALL SPO
T10I4D100K

Last ��� RICPI RICPI RICSPO

Performance Evaluation and Analysis of K-Way Join Variants 113

Table 5. Meta-data Table

DB2 OracleTable Size
T5I2Dzzz

K
Extra Space No Extra

Space
Extra Space No Extra

Space

Support
Value

10K RicSpo Spo RicSpo Spo S = 0.20%
RicSpo Spo RicSpo Spo S = 0.15%
RicSpo Spo Spo Spo S = 0.10%

50K RicSpo Spo RicSpo Spo S = 0.20%
Spo Spo RicSpo Spo S = 0.15%
Spo Spo Spo Spo S = 0.10%

100K RicSpo Spo RicSpo Spo S = 0.20%
Spo Spo RicSpo Spo S = 0.15%
Spo Spo Spo Spo S = 0.10%

500K Spo Spo RicSpo Spo S = 0.20%
Spo Spo RicSpo Spo S = 0.15%
Spo Spo Spo Spo S = 0.10%

1000K RicSpo Spo RicSpo Spo S = 0.20%
Spo Spo RicSpo Spo S = 0.15%
Spo Spo Kwj Kwj S = 0.10%

6 Conclusions and Future Work

In this paper, we have explored the various optimizations and their combinations for
the SQL–92 implementation of the basic K-way join (Kwj) for support counting
phase of the association rule mining. We have experimentally compared these
optimizations in an attempt to provide better insight to the effect of these
optimizations on the total mining time for relations with varying characteristics and
changing support values. Although combination of individual optimizations makes
sense intuitively, our analysis and performance evaluation clearly indicates that it is
not a given. Also, depending upon the storage available different choices of
optimization may have to be used by the mining optimizer.

From most of these experimental results it seems that the best optimization is the
reuse of item combinations or reuse of item combinations combined with second pass
optimization when we have enough space for materializing the intermediate relations
(Combk). But when additional space is an issue, then second pass optimization comes
out as the best approach. On the other hand for low support values, use of pruned
input along with reuse of item combinations was found to be the worst combination
for most of the input tables.

The work presented here tries to build this metadata by considering the different
optimizations to the basic k-way join approach to association rule mining. A natural
extension to this work would be trying to mix these optimizations at different passes.
The other possibility would be to use the SQL-OR features provided by these
commercial RDBMS’s and develop association rule mining algorithms to use them
efficiently. We can then try evaluating these mixed approaches and the SQL-OR

114 P. Mishra and S. Chakravarthy

based optimizations with the current SQL92 based implementations and if they are
comparable, we can include them in the meta-data.

References

1. Agrawal, R., T. Imielinski, and A. Swami. Mining Association Rules between sets of items
in large databases. in ACM SIGMOD 1993.

2. Agrawal, R. and R. Srikant. Fast Algorithms for mining association rules. in 20th Int’l
Conference on Very Large Databases (VLDB). 1994.

3. Savasere, A., E. Omiecinsky, and S. Navathe. An efficient algorithm for mining
association rules in large databases. in 21st Int’l Cong. on Very Large Databases (VLDB).
1995. Zürich, Switzerland.

4. Shenoy, P., et al. Turbo-charging Vertical Mining of Large Databases. in ACM SIGMOD
Int'l Conference on Management of Data. 2000. Dallas.

5. Han, J., J. Pei, and Y. Yin. Mining Frequent Patterns wihtout Candidate Generation. in
ACM SIGMOD 2000. Dallas.

6. Houtsma, M. and A. Swami. Set-Oriented Mining for Association Rules in Relational
Databases. in 11th ICDE, 1995.

7. Han, J., et al. DMQL: A data mining query language for relational database. in ACM
SIGMOD workshop on research issues on data mining and knowledge discovery. 1996.
Montreal.

8. Meo, R., G. Psaila, and S. Ceri. A New SQL-like Operator for Mining Association Rules.
in Pro. of the 22nd VLDB Conference. 1996 India.

9. Agrawal, R. and K. Shim, Developing tightly-coupled Data Mining Applications on a
Relational Database System. 1995, IBM Almaden Research Center: San Jose, California.

10. Sarawagi, S., S. Thomas, and R. Agrawal. Integrating Association Rule Mining with
Rekational Database System: Alternatives and Implications. in ACM SIGMOD 1998.
Seattle, Washington.

11. Thomas, S., Architectures and optimizations for integrating Data Mining algorithms with
Database Systems, in CSE. 1998, University of Florida.

12. Dudgikar, M., A Layered Optimizer or Mining Association Rules over RDBMS, in CSE
Department. 2000, University of Florida: Gainesville.

13. Mishra, P. Evaluation of K-way Join and its variants for Association Rule Mining. MS
Thesis 2002, Information and Technology Lab and CSE Department at UT Arlington, TX.

External Sorting with On-the-Fly Compression

John Yiannis and Justin Zobel

School of Computer Science and Information Technology
RMIT University, Melbourne, Australia, 3000

{jyiannis,jz}@cs.rmit.edu.au

Abstract. Evaluating a query can involve manipulation of large vol-
umes of temporary data. When the volume of data becomes too great,
activities such as joins and sorting must use disk, and cost minimisation
involves complex trade-offs. In this paper, we explore the effect of com-
pression on the cost of external sorting. Reduction in the volume of data
potentially allows costs to be reduced – through reductions in disk traffic
and numbers of temporary files – but on-the-fly compression can be slow
and many compression methods do not allow random access to individual
records. We investigate a range of compression techniques for this prob-
lem, and develop successful methods based on common letter sequences.
Our experiments show that, for a given memory limit, the overheads of
compression outweigh the benefits for smaller data volumes, but for large
files compression can yield substantial gains, of one-third of costs in the
best case tested. Even when the data is stored uncompressed, our results
show that incorporation of compression can significantly accelerate query
processing.

1 Introduction

Relational database systems, and more recent developments such as document
management systems and object-oriented database systems, are used to manage
the data held by virtually every organisation. Typical relational database systems
contain vast quantities of data, and each table in a database may be queried
by thousands of users simultaneously. However, the increasing capacity of disks
means that more data can be stored, escalating query evaluation costs. With the
amount of data being so large, each stage of the entire storage hierarchy of disk,
controller caches, main-memory, and processor caches becomes a bottleneck.
Processors are not keeping pace with growth in data volumes [1], particularly
for tasks such as joins and sorts where the costs are superlinear in the volume
of data to be processed.

In this paper we focus on reducing the costs of external sorting through
making better use of the storage hierarchy. A current problem is that tens to
hundreds of processor cycles are required for a memory access, and tens of mil-
lions for a disk access, a trend that is continuing: processor speeds are increasing
at a much faster rate than that of memory and disk technology [2]. Thus, during
an external sort, total processing time is only a tiny fraction of elapsed time.

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 115–130, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

116 J. Yiannis and J. Zobel

Most of the time is spent writing temporary files containing sorted runs to disk,
then reading and merging the runs to produce the final sort; each run is the re-
sult of sorting one buffer of data. This imbalance, where disk activity dominates,
can be partly redressed through use of compression.

For external sorting, it should in principle be possible to use spare cycles
to compress the data on the fly, thus reducing the number of runs. However, a
compression technique for this application must meet strong constraints. First,
in contrast to adaptive compression techniques, which treat the data as a con-
tinuous stream and change the codes as the data is processed, it must allow the
records to be accessed individually and reordered. Second, in contrast to stan-
dard semi-static techniques, the data cannot be fully pre-inspected to determine
a model. Third, the coding and decoding stages must be of similar speed to the
transfer rate for uncompressed data. Last, the compression model must be small,
so that it does not consume too much of the buffer space needed for sorting. No
standard technique meets these constraints.

We propose that compression proceed by allowing pre-inspection of the first
buffer-load of data, and building a model based on this data alone. This partial
(and probably non-optimal) model can then be used to guide compression and
decompression of each subsequent run. In this framework we test several com-
pression techniques: canonical Huffman coding and two new methods that we
have developed, both of which are based on identifying the commonest letter
sequences and representing them in computationally efficient bytewise codes.
Our experiments show that these methods reduce sorting costs for large files.
Data compression is therefore an effective means of increasing bandwidth – not
by increasing physical transfer rates, but by increasing the information density
of transferred data – and can relieve the I/O bottlenecks found in many high
performance database management systems [3].

Previous research [4,5,6,7,8,9] has shown the benefits of decompressing data
on the fly where the data is stored compressed. However, it was found [9] that
compression on the fly had significantly higher processor costs, indicating that
compression is only beneficial to read-only queries. Our results show, in con-
trast to previous work, that compression is useful even when the data is stored
uncompressed.

2 Compression in Retrieval Systems

The value of compression in communications is well-known: it reduces the cost of
transmitting a stream of data through limited-bandwidth channels. Much of the
research into compression has focused on this environment, in which the order of
the data does not change and pre-inspection of the data is not necessarily avail-
able, leading to the development of high-performance adaptive techniques. Com-
pression depends on the presence of a model that describes the data and guides
the coding process. A model is in principle a set of symbols and probabilities;
in adaptive compression, the model is changed with each symbol encountered.

External Sorting with On-the-Fly Compression 117

Compression is achieved by using short codes for highly probable symbols, and
longer codes for rarer symbols.

Adaptive techniques are largely inapplicable to the database environment,
in which the stored data is typically a bag of independent records that can be
retrieved or manipulated in any order. In such applications, the only option is
to use semi-static compression, in which the model is fixed after some training
on the data to be compressed, so that the code allocated to a symbol does not
change during the compression process. (Adaptation can be used while a record
is being compressed [10], but at the start of the next record it is necessary to
revert to the original model.) Further difficulties are that the data changes as
records are added, modified, or deleted; that the volume of memory available
to store a compression model is very much smaller than the volume of data to
be compressed, a situation that is likely to lead to poor compression; that the
presence of a compression model reduces the buffer space available to evaluate
the query; and that coding and decoding must have low processor overhead so
as not to eliminate the benefits of reduced data transfer times.

The best-known semi-static compression technique is zero-order frequency
modeling coupled with canonical Huffman coding, in which the frequency of each
symbol (which might be a byte, Unicode character, character-pair, English word,
and so on) is counted, then a Huffman code is allocated based on the frequency.
In canonical Huffman coding, the tree is not stored and decompression is much
faster than traditional implementations [11,12].

Semi-static compression has been successfully integrated into text informa-
tion retrieval systems, resulting in savings in both space requirements and query
evaluation costs [12,13,14,15,16]. The compression techniques used are relatively
simple – Huffman coding for text, and integer coding techniques [15] for indexes
– but the savings are dramatic. Index compression in particular is widely used
in commercial systems, from search engines such as Google to content managers
such as TeraText. Moreover, integer coding is extremely fast. We have shown [14]
that even the cost of transferring data from main-memory to the on-processor
cache can be reduced through appropriate use of compression based on elemen-
tary byte-wise codes.

However, compression has not traditionally been used in commercial database
systems [4,7], and has been undervalued in query processing research [3]. Earlier
papers investigated the benefits of compression in database query evaluation
theoretically [6,7,8], and only in the last few years have researchers reported
compression being incorporated into database systems [4,5,9].

Most of the research in this area has focused on reducing storage and query
processing costs when data is held compressed. Graefe et al. [6] recommend com-
pressing attributes individually, employing the same compression scheme for all
attributes of a domain. Ng et al. [7] describe a page-level compression scheme
based on a lossless vector quantisation technique. However, this scheme is only
applicable to discrete finite domains where the attribute values are known in ad-
vance. Ray et al. [8] compared several coding techniques (Huffman, arithmetic,
LZW, and run-length) at varying granularity (file, page, record, and attribute).

118 J. Yiannis and J. Zobel

They confirm the intuition that attribute-level compression gives poorer com-
pression, but allows random access.

Goldstein et al. [5] described a page-level compression algorithm that allows
decompression at the field level. However, like the scheme described by Ng et
al. [7], this technique is only useful for records with low cardinality fields. West-
mann et al. [9] used compression at the attribute level. For numeric fields they
used null suppression and encoding of the resulting length of the compressed
integer [17]. For strings they used a simple variant of dictionary-based com-
pression. This is particularly effective if a field can only take a limited number
of values. For example, a field that can only take the values “male” and “fe-
male” could be represented by a single bit which could then be used to look up
the decompressed value of the field in the dictionary. They saw a reduction in
query times for read-only queries, but significant performance penalties for in-
sert and modify operations. Chen et al. [4] used the same scheme as Westmann
et al. for numerical attributes, and developed a new hierarchical semi-static
dictionary-based encoding scheme for strings. They also developed a number of
compression-aware query optimization algorithms. Their results for read-only
queries showed a substantial improvement in query performance over existing
techniques. A consensus from this work is that, for efficient query processing,
the compression granularity should be small, allowing random access to the re-
quired data and thereby minimising unnecessary decompression of data; and the
compression scheme should be lightweight, that is, have low processor costs, so
as not to eliminate the benefits of reduced data transfer times

When examining the benefits of compression, Westmann et al. [9] saw that
compression of a tuple had significantly higher processor costs than decompres-
sion, and so did not believe that compression could improve the performance of
online transaction processing (OLTP) applications. All the other papers presup-
posed a compressed database, so the only compression-related cost involved in
query resolution was the decompression of data.

For query processing, compression has value in addition to improved I/O
performance, because decompression can often be delayed until a relatively small
data set is determined. Exact-match comparisons can be on compressed data.
During sorting, the number of records in memory and thus per run is larger,
leading to fewer runs and possibly fewer merge levels [3].

3 External Sorting

External sorting is used when the data does not fit into available memory. It is
of general value for sorting large files, but is of particular value in the context
of databases, where a machine may be shared amongst a large number of users
and queries, and per-query buffer space is limited. External sorting has two
phases [18,19], as below. The process assumes that a fixed-size buffer is available,
which is used for sorting in the first phase and for merging in the second. The
process is illustrated in Figure 1, and is described in detail by Knuth [20].

External Sorting with On-the-Fly Compression 119

Phase 1: Process buffer-sized amounts of data in turn. The following is repeated
as many times as necessary:

1. Fill the buffer with records from the relation to be sorted.
2. Sort the records in memory.
3. Write records in sorted order into new blocks, forming one sorted run.

Phase 2: Merge all the sorted runs into a single sorted list, repeating until all
runs have been processed:

1. Divide input buffer space amongst the runs, giving per-run buffers, and
fill these with blocks from runs.

2. Using a heap, find the smallest key among the first remaining record in
each buffer, then move the corresponding record to the first available
position of the output buffer.

3. If the output buffer is full, write it to disk and empty the output buffer.
4. If the input buffer from which the smallest key was just taken is now

exhausted, fill the input buffer from the same run. If no blocks remain
in the run, then leave the buffer empty and do not consider keys from
that run in any further sorting

Disk Disk

Main Memory Buffers

OutputInput Sort

(a) Generate sorted runs, write them to disk.

Disk

Main Memory Buffers

Disk

Input

Output
Sort

(b) Merge sorted runs

Fig. 1. A simple external sort, with sorted blocks of records written to intermediate
runs that are then merged to give the final result.

120 J. Yiannis and J. Zobel

There are many variants on these algorithms. One is that, with a large num-
ber of runs, there can be housekeeping problems for the operating system, and
the per-run buffers may become too small. A solution is then to merge the runs
hierarchically, which however incurs significant penalties in data transfer, and
should be avoided if at all possible. The Unix command-line sort utility takes
this approach. (We do not test hierarchical merging in our experiments.) An-
other variant is that, if the merged results are to be written to disk, they can
be written in-place; in the context of database query processing, however, it is
often the case that the results are immediately used and discarded.

4 External Sorting with Compression

By incorporating compression into the sort algorithm, we aim to reduce the time
taken to sort due to better use of memory, reduced transfer costs, and generation
of fewer runs. The two key questions to answer when integrating compression
into external sorting are, first, at what stage should the data be compressed,
and, second, what compression technique to use.

Considering the first of the key questions, compression could be used simply
to speed memory-to-disk transfers, by compressing runs after they have been
sorted and decompressing them as they are retrieved. This approach has the ad-
vantage that high-performance adaptive compression techniques could be used,
but also has disadvantages. In particular, it does not allow reduction in the num-
ber of runs generated, and at merge time a separate compression model must be
used for each run.

The alternative is to compress the data as it is loaded into the buffer, prior to
sorting. This allows better use to be made of the buffer; reduces the number of
runs; and, since semi-static compression must be used, the same model applies
to all runs. However, the compression is unlikely to be as effective. Nonetheless,
given the cost of adaptive compression and the advantages of reducing the num-
ber of runs – such as increasing the buffer space available per run and reducing
disk thrashing – it is this alternative that we have explored in our experiments.

In this approach, external sorting with compression proceeds as follows. Re-
ferring to Figure 2, assume that we have an input buffer of size A and an output
buffer of size B, and that compression model size is M .

Phase 1: Build the compression model.
The arrangement of buffers in shown in Figure 2(a). The input buffer has
capacity A−M for records.
1. Fill input buffer with records.
2. Build a model based on the symbol frequencies in these records.

Phase 2A: Generate the first compressed run.
1. Sort the keys of the records in the input buffer.
2. In sorted order, compress the records then write them to disk as a sorted

run.

External Sorting with On-the-Fly Compression 121

Sort

Build model

Disk Disk

Main Memory Buffers

Input OutputCompress

(a) Generation of first compressed run.

Disk Disk

Main Memory Buffers

Input Compress OutputSortSort

(b) Generation of subsequent compressed runs.

Disk

Input

Output

Disk

DecompressSort

Main Memory Buffers

(c) Merge of compressed runs.

Fig. 2. External sorting with compression. The first stage is using the initial data to
determine a model. Then runs are generated and merged as before, but compression is
used to increase the number of records per run.

Phase 2B: Generate the remaining compressed runs.
The arrangement of buffers is shown in Figure 2(b); note that the data
can no longer be read directly into a buffer for sorting, as it must first be
compressed. The input and output buffers are of size B/2 each, and the sort
buffer is of size A−M .
Repeat the following until all data has been processed:
1. Fill the input buffer with data.

122 J. Yiannis and J. Zobel

2. Compress each record in the input buffer, then write it to the sort buffer.
Continue until the sort buffer is full, reloading the input buffer as nec-
essary.

3. Sort the records in the sort buffer.
4. In sorted order, write the compressed records to disk, forming one run.

Phase 3: Merge all the runs into a single sorted list.
The arrangement of buffers in shown in Figure 2(c). The input buffer is of
size A−M , the output buffer is of size B. Note that the model required for
decoding may be smaller than that required for encoding.
1. Divide the input buffer space amongst the runs and fill with data from

the compressed runs.
2. Find the smallest key among the first remaining record in each buffer,

and move the corresponding record to the first available position of the
output block and decompress.

3. If the output buffer is full, write it to disk and reinitialise.
4. If the input buffer from which the smallest key was taken is exhausted,

read from the same run and fill the same input buffer. If no blocks remain
in the run, then leave the buffer empty and do not consider keys from
that run in any further sorting.

In this algorithm, the sort key must be left uncompressed, and to simplify
data management each compressed record should be prefixed with a bytelength.
In comparing sorting techniques, each should use the same fixed amount of buffer
space. If compression is not used, all the buffer space is available for sorting. For
the compression-based sort algorithms, the buffer space available for sorting will
be reduced by the memory required by the compression model.

5 Compression Techniques for External Sorting

The second key question of this research program is choice of compression tech-
nique. As outlined earlier, “off the shelf” compression systems (with one ex-
ception, XRAY, discussed below) do not satisfy the specific constraints of this
application.

Several observations can be made. We need to investigate semi-static coding
techniques that can be used in conjunction with a model based on inspection of
only part of the data; if some symbol does not occur in this part of the data,
it is nonetheless necessary that it have a code. Bitwise or bytewise codes are
much faster than arithmetic coding [12], which is too slow for this application.
Bytewise codes are much faster than bitwise codes [14], but may lead to poor
compression efficiency. Both coding and decoding must be highly efficient: for
example, given a symbol it is necessary to find its code extremely fast. Zero-order
models are an obvious choice, because higher-order models lead to high symbol
probabilities – and thus poor compression efficiency – with bitwise or bytewise
codes (for a given model size). And model size must be kept small.

External Sorting with On-the-Fly Compression 123

In view of these observations, Huffman coding is one choice of coding tech-
nique, based on a model built on symbol frequencies observed in the first buffer-
load of data. Bytewise codes are another option. These are discussed below.
Another choice would be to use XRAY [21], in which an initial block of data
is used to train up a model. Each symbol, including all unique characters, is
then allocated a bitwise code. XRAY provides high compression efficiency and
fast decompression; in both respects it is superior to gzip on text data, for ex-
ample, even though the whole file is compressed with regard to one model. (In
gzip, a new model is built for each successive block of data. Compression effi-
ciency depends on block size, which is around 100 Kb in standard configurations;
with small blocks no size reduction is achieved.) However, the training process
is much too slow. Development of new XRAY-based compression techniques for
this application is a topic for further research.

Likely buffer sizes are a crucial factor in design of algorithms for this ap-
plication. We have assumed that tens of megabytes are a reasonable minimum
volume for sorting of data of up to gigabytes; in our experiments we report on
performance with 18.5 Mb and 37 Mb buffers. In this context, model sizes need
to be restricted to at most a couple of megabytes.

Huffman Coding of Bigrams

In compression, it is necessary to choose a definition of symbol. Using individual
characters as symbols gives poor compression; using all trigrams (sequences of
three distinct characters) consumes too much buffer space. Using variable-length
symbols requires an XRAY-like training process. We therefore chose to use bi-
grams, or all character pairs, as our symbols, giving an alphabet size of 216. The
amount of memory required for the model is approximately 800 Kb (528 Kb for
the decode part and 264 Kb for the additional encode part).

Huffman coding yields an optimal bitwise code for such a model. Standard
implementations of Huffman coding are slow; we used canonical Huffman coding,
with the implementation of Moffat and Turpin [22].

Bytewise Bigram Coding

Bitwise Huffman codes provide a reasonable approximation to symbol probabili-
ties; a symbol with a 5-bit code, for example, has a probability of approximately
1 in 32. Bytewise codes can be emitted and decoded much more rapidly, but do
not approximate the probabilities as closely, and thus have poorer compression
efficiency. However, their speed makes them an attractive option.

One possibility is to use radix-256 Huffman coding. However, given that
the model is based on partial information, it is attractive to use simple, fast
approximations to this approach – in particular, the bytewise codes that we have
found to be highly efficient in other work [14]. In these codes, a non-negative
integer is represented by a series of bytes. One flag bit in each byte is reserved
for indicating whether the byte is final or has a successor; the remaining bits are

124 J. Yiannis and J. Zobel

used for the integer. Thus the values 0 to 27 − 1 can be represented in a single
byte, 27 to 214 − 1 in two bytes, and so on.

Using these bytewise codes, the calculation of codes for bigrams can be dis-
pensed with. The bigrams are simply sorted from most to least frequent and
held in an array, and each bigrams’s array index is its code. The first 27 or 128
most frequent bigrams are encoded in one byte, the next 214 are be encoded in
two bytes, and so on.

This scheme is simple and fast, but does have the disadvantage that compres-
sion can no more than halve the data size, regardless of the bigram probabilities,
whereas Huffman coding could in principle provide reduction by around a factor
of 16 (ignoring the uncompressed sort key and record length). The model sizes
are identical to those for Huffman coding of bigrams above.

Bytewise Common-Quadgram Coding

To achieve better compression than is available with bigrams, we need to include
more information in each symbol. Longer character sequences can yield better
compression, but models based on complete sets of trigrams and quadgrams are
too large. Another approach is to model common grams and use individual char-
acters to represent other letter sequences. In a 32-bit architecture, it is efficient
to process 4-byte sequences, and thus we explored a compression regime based
on quadgrams and individual characters.

Because buffer space is limited, we cannot examine all quad-grams and choose
only the commonest. As a heuristic, our alphabet is the first L quadgrams ob-
served, together with all possible 256 single characters. We use a hash table
with a fast hash function [23] to accumulate and count the first L overlapping
quadgrams, and simultaneously count all character frequencies. The symbols –
quadgrams and characters together – are then sorted by decreasing frequency,
and indexed by bytewise codes as for bytewise bigram coding. This scheme is not
perfect; for example, “ther” and “here” may both be common, but they often
overlap, and if one is coded the other isn’t. Determining an ideal set of quad-
grams is almost certainly NP-hard. However, the frequencies are in any case
only an approximation, as only part of the data has been inspected. Also, in
the presence of overlap, choosing which quadgram to code (rather than greedily
coding the leftmost) can improve compression, but is slower. We use the simple
greedy approach.

We varied L for the two buffer sizes tested, using L = 216 for the 18.5 Mb
buffer and L = 217 for the 37 Mb buffer. The amount of memory required for
the model is approximately 1.8 Mb (528 Kb for the decode part and 1.3 Mb
for the encode part) or 3.0 Mb (528 Kb for the decode part and 2.5 Mb for the
encode part). As for bigram coding, the commonest 27 symbols are represented
in a single byte.

Coding then proceeds as follows. If the current four characters from the in-
put form a valid quadgram, its code is emitted, and the next four characters
are fetched. Otherwise, the code for the first character is emitted, and the next

External Sorting with On-the-Fly Compression 125

character is fetched. Decoding proceeds by replacing successive codes by the cor-
responding symbols, which can be characters or quadgrams. We observed in our
experiments that about two-thirds of the output codes represented quadgrams.

6 Results

To test the effect of compression on external sorting, we implemented a fast
external sorting routine, and added as options the three compression schemes
described above. Runs were sorted with the best implementation of sorting we
able to locate; as part of a separate project we are investigating high-performance
sorting algorithms [24,25].

We are confident that the implementation is of high quality. For example, on
the same data and with similar parameters, the Unix sort utility takes almost
twice as long (or four times as long to sort on strings, for experiments not
reported here). Two buffer sizes were used. The larger was 37 Mb, chosen as
36 Mb for data plus 1 Mb for housekeeping; the smaller was half that, 18.5 Mb.
These choices were arbitrary.

For data, we required a large number of records representing a realistic task.
We used a log derived from a web cache, in which each line includes information
such as file size, time and date, and HTML page request. Data volumes tested
ranged from 100 Mb to 10 Gb of distinct records. The task was to sort these on
one of the numerical fields.

All experiments were carried out on an Intel 1 GHz Pentium III with 512 Mb
of memory running the Linux operating system. Other processes and disk activity
were minimised during experiments, that is, the machine was under light load.

Tables 1 and 2 show the effect that incorporating compression into external
sorting has on elapsed time and temporary disk requirements. The “build model”
time is the time to determine the model. The “generate runs” time is the time
to read in the data and write out all the runs. The “merge runs” time is the time
to read in and merge the runs and write out the result. The total sort times are
illustrated in Figure 3, including additional data points.

These results show that, as the volume of data being sorted grows – or as
the amount of buffer space available decreases – compression becomes increas-
ingly effective in reducing the overall sort time. The gains are due to reduced
disk transfer, disk activity, and merging costs, which can clearly outweigh the
increased processor cost incurred by compression and decompression of the data.
In the best case observed, with an 18.5 Mb buffer on 10 Gb of data, total time
is reduced by a third. The computationally more expensive methods, such as
Huffman coding and common-quadgram coding, are slow for the smaller data
sets, where the disk and merging costs are a relatively small component of the
total. (For a given buffer size, the cost of building each run is more or less fixed,
and thus run construction cost is linear in data size; merge costs are superlin-
ear in data size, as there is a logK search cost amongst K runs for each record
merged. Use of hierarchical merge and other similar strategies does not affect the
asymptotic complexity of the merge phase.) However, because Huffman coding

126 J. Yiannis and J. Zobel

Table 1. Results for sorting with 18.5 Mb of buffer space, using no compression and
using three alternative compression techniques. Results shown include time to sort and
temporary space required.

No compression Huffman Bigram Quadgram
Build model (sec) — 0.34 0.26 2.84
Generate runs (sec) 10.62 14.37 11.29 15.69
Merge runs (sec) 12.85 19.31 14.99 13.27
Total time to sort (sec) 23.47 34.02 26.54 31.80
Comparative (%) 100.0 145.0 113.1 135.5
Number of runs 6 5 5 5
Size of runs (Gb) 0.101 0.066 0.078 0.057
Comparative (%) 100.0 64.6 76.5 56.5

(a) Results for sorting 100 Mb of data with 18.5 Mb of buffer space

No compression Huffman Bigram Quadgram
Build model (sec) — 0.33 0.26 2.84
Generate runs (sec) 109.23 134.49 115.68 146.83
Merge runs (sec) 176.24 197.58 161.82 142.09
Total time to sort (sec) 285.47 332.41 277.76 291.76
Comparative (%) 100.0 116.4 97.3 102.2
Number of runs 56 39 46 36
Size of runs (Gb) 0.976 0.641 0.757 0.561
Comparative (%) 100.0 65.7 77.6 57.5

(b) Results for sorting 1 Gb of data with 18.5 Mb of buffer space

No compression Huffman Bigram Quadgram
Build model (sec) — 0.34 0.26 2.83
Generate runs (sec) 1305.25 1562.52 1262.95 1699.38
Merge runs (sec) 6140.86 4736.35 4769.87 3237.10
Total time to sort (sec) 7446.11 6299.21 6033.08 4939.32
Comparative (%) 100.0 84.6 81.0 66.3
Number of runs 568 394 462 372
Size of runs (Gb) 9.921 6.584 7.742 5.848
Comparative (%) 100.0 66.4 78.0 58.9

(c) Results for sorting 10 Gb of data with 18.5 Mb of buffer space

and common-quadgram coding achieve greater compression than does bigram
coding, the sort times decrease faster as database size grows. This is most no-
ticeable in the upper graph in Figure 3, which shows that, for smaller volumes of
data, compression and decompression speed is the dominating factor; and that
at larger volumes, the amount of compression achieved becomes the dominating
factor in determining the sort time.

Despite the greater compression achieved by Huffman coding in comparison
to bigram coding, the latter is always faster. This confirms that bytewise codes
are much more efficient, with the loss of compression efficiency more than com-

External Sorting with On-the-Fly Compression 127

Table 2. Results for sorting with 37 Mb of buffer space, using no compression and
using three alternative compression techniques. Results shown include time to sort and
temporary space required.

No compression Huffman Bigram Quadgram
Build model (sec) — 0.66 0.51 6.02
Generate runs (sec) 8.39 13.41 12.17 15.13
Merge runs (sec) 12.79 19.37 15.09 13.20
Total time to sort (sec) 21.18 33.44 27.77 34.36
Comparative (%) 100 157.9 131.1 162.2
Number of runs 3 3 3 3
Size of runs (Gb) 0.101 0.0652 0.0773 0.0561
Comparative (%) 100 64.3 76.3 55.3

(a) Results for sorting 100 Mb of data with 37 Mb of buffer space

No compression Huffman Bigram Quadgram
Build model (sec) — 0.66 0.52 5.99
Generate runs (sec) 108.67 146.36 126.43 143.71
Merge runs (sec) 168.81 213.62 177.93 155.36
Total time to sort (sec) 277.49 360.65 304.88 305.06
Comparative (%) 100 130.0 109.9 110.0
Number of runs 28 19 23 18
Size of runs (Gb) 0.976 0.640 0.752 0.552
Comparative (%) 100 65.5 77.0 56.6

(b) Results for sorting 1 Gb of data with 37 Mb of buffer space

No compression Huffman Bigram Quadgram
Build model (sec) — 0.66 0.51 5.98
Generate runs (sec) 1291.94 1675.52 1395.19 1593.98
Merge runs (sec) 2852.07 2442.40 2245.25 1796.71
Total time to sort (sec) 4144.02 4118.58 3640.95 3396.66
Comparative (%) 100 99.4 87.9 82.0
Number of runs 287 193 226 181
Size of runs (Gb) 9.918 6.569 7.694 5.751
Comparative (%) 100 66.2 77.6 58.0

(c) Results for sorting 10 Gb of data with 37 Mb of buffer space

pensated for by the gain in processing speed. The common-quadgram method
had both better compression efficiency and high processing efficiency, and thus
was for large files superior to the other methods.

The tables also include the size of the resulting runs, giving an indication
of the amount of compression achieved. Because we are making a number of
compromises (compression and decompression must be fast, and the model must
not consume too much memory), only modest compression was achieved. Also,
as discussed earlier the key is not compressed, and there is the extra overhead
of storing the number of bytes encoded in the record, as this value is needed

128 J. Yiannis and J. Zobel

0 2 4 6 8 10

database size (GB)

60

80

100

120

140

160

so
rt

 ti
m

e
(%

 o
f n

o
co

m
pr

es
si

on
)

No compression
Huffman
Bigram
Quadgram

(a) Smaller buffer

0 2 4 6 8 10

database size (GB)

60

80

100

120

140

160

so
rt

 ti
m

e
(%

 o
f n

o
co

m
pr

es
si

on
)

No compression
Huffman
Bigram
Quadgram

(b) Larger buffer

Fig. 3. Sort times as a percentage of the time to sort without compression. (a): with
18.5 Mb of buffer space. (b): with 37 Mb of buffer space.

by the decoder. The model is only built from symbols encountered in the first
buffer, not the entire database, so the model may not be optimal. However it
is worth noting that when compressing 10 Gb of data, comparing the values in
Tables 1(c) and 2(c), using 36 Mb to build the model instead of 18 Mb only
resulted in an extra 1 to 2 percent decrease in size.

Even though the degree of compression is relatively small, from Table 2(c)
for bigram coding, we can see that a 22.4% saving in space due to the use
of compression has resulted in a 12.1% saving in time. From Table 1(c) for
bigram coding, a 22.0% saving in space has resulted in a 19.0% saving in time.
For common-quadgram coding, a 41.1% reduction in the size of the runs has

External Sorting with On-the-Fly Compression 129

resulted in a 33.7% reduction in the sort time. It seems clear that more effective
compression should lead to further reduction in costs in both space and time.

7 Conclusions

We have developed new compression methods that accelerate external sorting
for large data files. The methods are simple; the most successful is based on
the expedient of identifying common quadgrams and replacing characters and
quadgrams by bytewise codes. The gain is greatest when memory is limited,
showing that the reduction in merging costs is a key reason that time is saved.
Even though the compression gains were only moderate, significant reductions
in costs were achieved.

For the largest file considered, most of the savings in data volume translate
directly to savings in sorting time. This strongly suggests that more effective
compression techniques will yield faster sorting, so long as the other constraints
– semi-static coding, rapid modelling, compression, and decompression, and low
memory use – continue to be met. It is also likely that similar techniques could
accelerate other database processing tasks, in particular large joins. That is, our
results indicate that compression of this kind could be used to reduce costs for
a range of applications involving manipulation of large volumes of data.

Acknowledgements. This research was supported by the Australian Research
Council.

References

1. Zobel, J., Williams, H.E., Kimberley, S.: Trends in retrieval system performance.
In Edwards, J., ed.: Proceedings of the Australasian Computer Science Conference,
Canberra, Australia (2000) 241–248

2. Boncz, P.A., Manegold, S., Kersten, M.L.: Database architecture optimized for the
new bottleneck: Memory access. In: The VLDB Journal. (1999) 54–65

3. Graefe, G.: Query evaluation techniques for large databases. ACM Computing
Surveys 25 (1993) 152–153

4. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database sys-
tems. In: Proceedings of ACM SIGMOD international conference on Management
of Data, Santa Barbara, California, USA (2001) 271–282

5. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes.
In: Proceedings of the Fourteenth International Conference on Data Engineering,
Orlando, Florida, USA, IEEE Computer Society (1998) 370–379

6. Graefe, G., Shapiro, L.: Data compression and database performance. In
ACM/IEEE-CS Symposium On Applied Computing (1991) 22–27

7. Ng, W.K., Ravishankar, C.V.: Relational database compression using augmented
vector quantization. In: Proceedings of the Eleventh International Conference on
Data Engineering, Taipei, Taiwan, IEEE Computer Society (1995) 540–549

8. Ray, G., Harista, J.R., Seshadri, S.: Database compression: A performance en-
hancement tool. In: Proceedings of the 7th International Conference on Manage-
ment of Data (COMAD), Pune, India (1995)

130 J. Yiannis and J. Zobel

9. Westman, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and
performance of compressed databases. ACM SIGMOD Record 29 (2000)

10. Moffat, A., Zobel, J., Sharman, N.: Text compression for dynamic document
databases. IEEE Transactions on Knowledge and Data Engineering 9 (1997) 302–
313

11. Larmore, L.L., Hirschberg, D.S.: A fast algorithm for optimal length-limited Huff-
man codes. Journal of the ACM 37 (1990) 464–473

12. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and In-
dexing Documents and Images. Second edn. Morgan Kaufmann, San Francisco,
California (1999)

13. Bell, T.C., Moffat, A., Nevill-Manning, C.G., Witten, I.H., Zobel., J.: Data com-
pression in full-text retrieval systems. Journal of the American Society for Infor-
mation Science 44 (1993) 508–531

14. Scholer, F., Williams, H.E., Yiannis, J., Zobel, J.: Compression of inverted indexes
for fast query evaluation. In: Proceedings of the 25th annual international ACM
SIGIR conference on research and development in information retrieval. (2002)
222–229

15. Williams, H.E., Zobel, J.: Compressing integers for fast file access. Computer
Journal 42 (1999) 193–201

16. Zobel, J., Moffat, A.: Adding compression to a full-text retrieval system. Software
Practice and Experience 25 (1995) 891–903

17. Roth, M., Horn, S.V.: Database compression. ACM SIGMOD Record 22 (1993)
31–39

18. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems Implementation.
First edn. Prentice Hall (2000)

19. Ramakrishnan, R., Gehrke, J.: Database Management Systems. Second edn.
McGraw-Hill (2000)

20. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing, Second Edition. Addison-Wesley, Massachusetts (1973)

21. Cannane, A., Williams, H.: A general-purpose compression scheme for large col-
lections. ACM Transactions on Information Systems 20 (2002) 329–355

22. Moffat, A., Turpin, A.: Compression and Coding Algorithms. First edn. Kluwer
(2002)

23. Ramakrishna, M.V., Zobel, J.: Performance in practice of string hashing functions.
In: Proceedings of the Databases Systems for Advanced Applications Symposium,
Melbourne, Australia (1997) 215–223

24. Sinha, R., Zobel, J.: Efficient trie-based sorting of large sets of strings. In Oud-
shoorn, M., ed.: Proceedings of the Australasian Computer Science Conference,
Adelaide, Australia (2003) 11–18

25. Sinha, R., Zobel, J.: Cache-conscious sorting of large sets of strings with dynamic
tries. In Ladner, R., ed.: Proceedings of the ALENEX Workshop on Algorithm
Engineering and Experiments, Baltimore, Maryland (2003)

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 131–139, 2003.
© Springer-Verlag Berlin Heidelberg 2003

MaxDomino: Efficiently Mining Maximal Sets

Krishnamoorthy Srikumar, Bharat Bhasker, and Satish K. Tripathi

Indian Institute of Management, Lucknow. INDIA.
Phone: 091-0522-361 889 to 091-0522-361 897

Fax: 091-0522-361 843
{srikumar, bhasker}@iiml.ac.in, tripathi@cs.umd.edu

Abstract. We present MaxDomino, an algorithm for mining maximal frequent
sets using a novel concept of dominancy factor of a transaction. We also pro-
pose a hashing scheme to collapse the database to a form that contains only
unique transactions. Unlike traditional bottom up approach with look-aheads,
MaxDomino employs a top down strategy with selective bottom up search for
mining maximal sets. Using the connect dataset [Benchmark dataset created by
University California, Irvine], our experimental results reveal that MaxDomino
outperforms GenMax at higher support levels. Furthermore, our scalability tests
show that MaxDomino yields an order of magnitude improvement in speed over
GenMax. MaxDomino is especially efficient when the maximal frequent sets
are longer.

1 Introduction

Frequent set mining is a fundamental and essential operation in the process of discov-
ering the association rules. The concept of association rule mining introduced by [1]
mines the frequent sets based on the Apriori principle. As Apriori based algorithms
employ a pure bottom-up, breadth first search, mining a frequent set of length m re-
quire mining all its 2m – 2 subsets, which would be computationally expensive if m is
very large (> 30). Hence, there has been recent interest in mining maximal frequent
sets. Maximal frequent sets are frequent sets whose supersets are infrequent and all its
subsets are frequent. Thus, they can be used for generating all possible association
rules.

Recent approaches to maximal frequent set mining include, GenMax [5], Depth-
Project [3] and MAFIA [4]. GenMax uses vertical data representation and tidset based
intersections for mining the maximal frequent sets. DepthProject employs a transac-
tion projection mechanism for counting the support of itemsets. Mafia uses parent
equivalence and superset pruning (PEP, FHUT and HUTMFI) strategies to remove
non-maximal sets.

Our primary motivation in this paper is to demonstrate that it is possible to mine
quickly the entire set of maximal frequent sets quickly by employing a top-down
strategy with selective bottom-up search in dense domains. Our algorithm employs a

132 K. Srikumar, B. Bhasker, and S.K. Tripathi

novel concept of dominancy factor and is especially efficient when the maximal sets
are longer.

The organization of the rest of paper is as follows: In the next section we intro-
duce the notations, model and pruning properties used in MaxDomino. Section 3
gives the implementation aspects of MaxDomino in various phases. In Section 4, we
present our experimental results. Finally, in section 5, we conclude with a discussion
of future work.

2 The Model and Notations

The mining algorithm introduced in this paper presumes a data set consisting of trans-
actions that contain multiple items in each transaction. A set of items present in a
transaction is referred to as an itemset. We assume that the items in the transaction are
ordered sequence of numbers as per IBM artificial data set generator format [2].

Let Ι = {i1, i2, ….im} be a set of distinct items. A set X ⊆ Ι is called an itemset. An
itemset X with k items is succinctly referred as k-itemset.

A transaction, Ti = {x� | � = 1, 2…Ni; x� ∈ Ι}, where Ni is the number of items in
transaction Ti. A transaction Ti is said to support an itemset X ⊆ Ι iff X ⊆ Ti. The sup-
port of an itemset X, denoted by Sup (X), is the number of transactions in the dataset
that supports X. The user defined minimum support is denoted as minsupport. An
itemset X ∈ ℑ (Frequent itemsets) iff Sup (X) ≥ minsupport.

We define, the dominancy factor of a transaction Ti, denoted by DFi, as the sum of
supports of individual items that appear in the transaction. For Ti = {x�| � = 1, 2….Ni;
x�∈Ι}, DFi = ∑�=1

Ni Sup (x�), ∀x� ∈Ti. Similarly, the dominancy factor of an itemset Xk,
denoted as DF (Xk), is the sum of supports of each item belonging to itemset Xk. For
Xk = {xm| m = 1, 2….k ; xm∈Ι}, DF (Xk) = ∑m=1

k Sup (xm), ∀xm ∈ Xk.
The algorithm proposed in this work utilizes the dominancy factor for pruning the

search space. Thus, during the preparatory phase we sort the entire dataset based on
descending order of DF as shown in Table 1.

In a dataset sorted based on descending order of DF, for an itemset X to be pres-
ent in a transaction Ti it should satisfy the property DF (X) ≤ DFi. So, as we are
walking down the transactions, we can determine a point beyond which a subset, X,
would not exist. For example in Table 1, for the itemset X = (1,3,5,2) the dominancy
factor, DF (1,3,5,2) computes to the value of 19. Hence, we need to traverse the trans-
action list up to the point at which the dominancy factor of transactions is at least
equal to that of itemset X. In this case, we need to scan till T4 only as DF4 = 19. So,
we define the point (transaction id) beyond which a subset X of size k would not exist
as the Maximum Depth of Traversal (MDTk). The point beyond which any itemset of
size k will not exist is defined as MaxMDTk. In Table 1, MaxMDT5 = 1; MaxMDT4 =
4; and MaxMDT3 = 6.

In the initial phase of the algorithm the original dataset is transformed and pre-
pared for the mining algorithm. The preprocessed dataset used by the algorithm con-
sists of transactions sorted on descending order of the dominancy factor. Furthermore,
the items within a transaction are sorted based on ascending order of its support. In
other words, the dataset or transaction list, D, is an ordered set of quadruplet Q,

MaxDomino: Efficiently Mining Maximal Sets 133

D = {<Qi> | DFi ≥ DFi+1}
 where <Qi> = {(Ti, Ni, DFi, Supi) | i = 1, 2,….L;

 Ti is the ith transaction containing itemset x
�
;

Ni is the number of items in Ti;
DFi = ∑�=1

Ni Sup (x�); Supi = Sup (Ti);
} Where L is the total number of transactions in the dataset.

Table 1. Transactions sorted based on Dominancy Factor

TID Itemsets Dominancy Factor
T1 1 3 4 5 2 23 (4+4+4+5+6)
T2 1 4 5 2 19 (4+4+5+6)
T3 1 4 5 2 19 (4+4+5+6)
T4 1 3 5 2 19 (4+4+5+6)
T5 3 5 2 15 (4+5+6)
T6 3 4 2 14 (4+4+6)
Note: Sup (1) = 4; Sup (2) = 6; Sup (3) = 4; Sup (4) = 4; Sup (5) = 5

We define hash value for a transaction Ti as, Hvali = ∑�=1

Ni log (x�

th prime number).
We know that the product of prime numbers is unique and log

(m*n)=log(m)+log(n). Hence, it can be easily verified that two transactions will have
the same hash value if and only if all the items in both the transactions are identical.
The hash values are used for collapsing the duplicate transactions in the dataset.

The preprocessed dataset with the sorted transaction list has several properties that
can be used for pruning the search space. These properties are described in the lem-
mas that follow:

Lemma 1. A candidate k-itemset, Xk ⊄ Ti ∀Ti > MDTk. In other words, a candidate
subset Xk is definitely not a subset of Transaction Ti beyond the Maximum Depth of
Traversal, MDTk of the candidate subset, Xk.

Proof. As the transactions in the dataset, D are sorted based on descending order of
DFi, we can identify a transaction point at which DFi < DF (Xk). Further, the
dominancy factor is just the sum of supports of individual items in a transaction list
(DFi). So, for an itemset to be present in a transaction, its dominancy factor should be
more than the sum of supports of the subset to be evaluated DF (Xk).

In the process of mining, MaxDomino generates a hash table, denoted as HTk, for
all k-itemsets. We define a hash table, HT for all itemsets of size k as, HTk = {(Xk,
Supk) | Xk = {x� | � = 1, 2…k ; x� ∈ Ι}; Supk = Sup (Xk)}. Detailed explanations for
hash table (HT) construction is deferred till Section 3.2.

Corollary of Lemma 1. For all subsets Xk ∈ HTk, ∃ MaxMDTk =Max (MDTk) | Xk ⊄
Ti ∀Ti > MaxMDTk.

134 K. Srikumar, B. Bhasker, and S.K. Tripathi

Proof. The proof of this corollary is obvious, as each and every k-itemset, Xk has
MDTk, the maximum depth of traversal for any itemset belonging to hash table will be
decided by the maximum values of MDTk. Hence, any k-itemset Xk ∈ HTk cannot
exist beyond MaxMDTk.

Lemma 2. For an itemset Xk to be frequent, the upper bound of the support should be
at least equal to the user defined minimum support, minsupport. That is, if Xk ∈ ℑ,
then minsupport ≤ Upper Bound (Xk), otherwise Xk ∉ℑ.

Proof. The duplicate transactions are combined together in the preprocessing stage
and the support (supi) is incremented for the ith transaction appropriately. Thus, the
support upper bound on support can be computed as Upper Bound (Xk) = ∑m=fk

MDTk

(Supm). As each and every itemset in a transaction is distinct, any itemset can occur at-
most as many times as the support of a particular transaction. Further, we have
established in lemma 1 that any itemset Xk cannot exist beyond its MDTk. So, once we
know MDTk and the itemset’s first occurrence in transaction list D, we can ascertain
the maximum support by summing up the support of all transactions between these
two points. It assumes that the itemset is supported by every transaction between these
two points and thus can be upper bound of the support. This property is used to prune
infrequent itemsets even before adding the itemset to hash table.

Corollary of Lemma 2. If a k-itemset with smallest dominancy factor doesn’t satisfy
upper bound property, no other k-itemset can.

Proof. As the transactions in D are sorted based on descending order of dominancy
factor, the smaller the dominancy factor of the itemset, Xk, the larger its MDTk. So, if
a k-itemset with smallest dominancy factor doesn’t satisfy Lemma 2, no other k-
itemset can. Hence the corollary follows. We use this corollary effectively in earlier
passes of the algorithm to come down many levels even without accessing the dataset.

A maximal tree, that stores all the maximal itemsets, is defined as,
MT = {X | X ∈ ℑ and (X ∪ {x�}) ∉ ℑ ; � ≥ 1;}

In addition to the support upper bound property, MaxDomino also uses Apriori
[1] and Reverse Apriori (all subsets of a frequent set are frequent) properties for
pruning the search space.

3 Implementation of MaxDomino

In this section, we describe the implementation details of MaxDomino in various
phases.

3.1 Transaction List Generation

During this phase, the algorithm scans the dataset and computes the support for all 1-
itemsets. The infrequent 1-itemsets are removed from further evaluation (Apriori
principle). In the second scan of the dataset, as we walk down the transaction we

MMaxDomino: MaxDomino: Efficiently Mining Maximal Sets 135

compute the dominancy factor and hash value for all frequent 1-itemsets. Before, we
add a transaction to the Transaction List D, we check for uniqueness of transactions
using hash values. If unique hash values already exist we increment the support of
corresponding transaction. Otherwise, we sort the items in the transaction in ascend
ing order of its 1-item support and add it as a new transaction in D. At the end of the
pass, the transaction list is sorted on the descending order of dominancy factor. A
sample transaction list, D is given in Table 2 (taking minsupport=2).

In order to reduce the complexity of logarithmic computations for hash values, we
store a large set of logarithm of prime numbers in a file and read only as many as re-
quired for a particular dataset. Further, to avoid the complexity of floating point com-
parisons for large set of transactions, we hashed each transaction by a multi-hashing
scheme: first_item → sum_of_all_items → hash value.

Table 2. Transaction List D

TID Ti (x�) Ni DFi Supi

T1 2 0 4 3 4 12 1
T2 0 4 3 3 10 1
T3 1 4 3 3 9 1
T4 0 3 2 7 1
T5 1 2 2 4 1

Note: Sup (0) = 3; Sup (1) = 2;Sup (2) = 2;Sup (3) = 4;Sup (4) = 3

After the transaction list, D is generated; we make a pass over D to compute sup-
ports for all 2-itemsets.

3.2 Hash Table Construction, Support Counting, and Itemset Pruning

As our algorithm follows a top down approach, we start with generating all itemsets
of size, k equal to the maximum length of transaction in dataset, Maxlen. However,
we maintain a list of frequent 1-itemsets in ascending order as well as dominancy
factor of transactions in descending order in an array and apply corollary of Lemma 2
repeatedly to come down many levels even without accessing the dataset.

Top-down Phase. As soon as we generate a k-itemset, after checking for frequency
of all its 2-itemsets, we apply the support upper bound property to check whether the
subset could be infrequent. If the generated itemset is infrequent, it is pruned.
Otherwise, we add the itemset generated to a hash table HT.

In the constructed hash table, we store the hash value of itemsets rather than the
itemset itself. Here again, we use a multi-hashing scheme similar to the one described
in section 3.1 to reduce the complexity of floating point comparisons. The support
values are incremented against corresponding hash entries if the same itemset occurs
again as we walk down the transaction list.

136 K. Srikumar, B. Bhasker, and S.K. Tripathi

Selective Bottom-up Phase. As we scan the first transaction, we take the first k-items
in it and store the support value of kth item as bup_sup. From these k-items, we
generate all itemsets of size b (initially b=3). We put all the b-itemsets generated into
a hash tree which is constructed similar to the one proposed in [1].

We repeat the Top-down phase and Selective Bottom-up phase for each transac-
tion till MaxMDTk and MaxMDTb respectively, as no k-itemset would exist beyond
MaxMDTk and no b-itemset would exist beyond MaxMDTb (refer Lemma 2). As soon
as a k-itemset is found frequent in the top-down phase, it is written to the maximal
tree. While inserting a maximal frequent set into the tree, the items are recursively
placed in the form of itemset tree to speed-up maximality checking.

For the selective bottom-up phase, from the 2nd transaction till MaxMDTb we take
all items in a transaction whose supports are less than or equal to bup_sup and gener-
ate all itemsets of size b. This is done to ensure that no b-itemset gets missed out for
support counting. We add all the b-itemsets into the hash tree. At the end of the pass,
the leaf nodes of hash tree will have the support information for b-itemsets. This in-
formation is used in subsequent passes by the top-down phase for pruning infrequent
(k-1)-itemsets (Apriori principle).

All of the above procedures are repeated by decrementing k by 1 till 2 and
incrementing b by 1 till b ≤ k. The pseudo-code for MaxDomino is given in Figure 1.

4 Experimental Results

All our experiments were performed on a 450MHz Pentium-III PC with 64MB of
memory, running RedHat Linux 7.2. For performance comparisons, we used the
original source codes for GenMax [5] provided to us by their authors. A detailed
comparison of MaxDomino with GenMax (tidset based intersections) was conducted
on connect dataset. The timings reported in this paper include all pre-processing costs
(such as time for horizontal-to-vertical conversion in GenMax and transaction col-
lapsing in MaxDomino) and doesn’t include the output time for displaying maximal
frequent sets for both GenMax and MaxDomino.

Figure 2 shows the performance comparison of MaxDomino against GenMax on
connect dataset. It is clearly evident from Figure 2 that MaxDomino outperforms
GenMax at very high supports (above 87%). We have also carried out scalability ex-
periments by multiplying connect dataset by 3times (named as 3connect) and 5times
(named as 5connect). The graphs in Figure 2, clearly reveals that MaxDomino shows
order of magnitude improvements over GenMax on 3connect and 5connect datasets.
As the search strategy employed by MaxDomino is primarily top-down, the algorithm
would perform poorly if the maximal frequent sets lie far below maxlen. In many of
the benchmark real world datasets such as chess, connect, pumsb, we find even the
longest maximal patterns are lying far below maxlen,(atleast 45 to 50 percent below
maxlen) and the number of infrequent nodes along the path are very large. So, the real
application domain of MaxDomino is on those datasets for which the maximal sets
are much closer to maxlen and the numbers of infrequent itemsets along the path are
smaller. However, MaxDomino can be utilized effectively for mining at very high
supports as shown in this paper for connect dataset. In addition, MaxDomino can also

MaxDomino: Efficiently Mining Maximal Sets 137

be used efficiently for finding the longest maximal patterns (say, LM patterns) alone
very quickly. Table 3 shows the results for MaxDomino on connect dataset in mining
LM patterns at different support levels.

MaxDomino (Data-set DB):
 1. ℑ1 = {Frequent 1-itemsets}
 2. For each Ti ∈ DB do begin
 3. DFi = ∑

�=1

Ni Sup (x
�
);

 4. Hvali = ∑
�=1

Ni log (x
�

th prime number);
5. Scan D and check for unique Hvali, if exist increment its support,

Otherwise, sort items in ascending order of support and add Ti to D
 6. End
 7. Sort list D in descending order of DF and write D to a NewDB;
 8. Scan NewDB and compute ℑ2 supports (frequent 2-item supports)
 9. MT={};
 10. Initialize k to Maxlen (for top-down phase) and b to 3 (selective bottom-up phase)
 11. For k = Maxlen to 2 do begin
12. Check whether all k-itemsets could be infrequent, if so decrement k
 and continue //refer corollary of lemma 2

 13. HT= {};
 14. for each Ti ∈ NewDB do begin
15. if (Ti ≤ MaxMDTk) do //Top-down phase
16. Generate k-itemsets, check for support upper bound, maximality &

 infrequency of subsets and add to HTk (Infrequency of subsets checked
 with ℑ2 supports as well as information gathered in bottom-up phase)

17. If the support of k-itemset just added to HTk crosses minsupport
requirement add the k-itemset to MT

18. endif
19. if (Ti ≤ MaxMDTb and b ≤ k) do begin //Selective Bottom-up phase
20. if (the transaction read is equal to first one i.e. T1) do
21. Set bottom-up support threshold (bup_sup) as the

 support of kth item in the first transaction
22. endif
23. for all sets of items in Ti whose supports are less than or equal bup_sup

 generate all possible b-itemsets and add it to hash tree
 24. endif
25. End
26. decrement k by 1 and increment b by 1

 27. End
 28. Return Output

Fig. 1. Pseudo-code for MaxDomino

138 K. Srikumar, B. Bhasker, and S.K. Tripathi

Fig. 2. Performance Comparison of MaxDomino Vs GenMax

Table 3. Mining Longest Maximal (LM) Patterns Using MaxDomino

Minimum Sup-
port (%)

Maxlen LM Pattern
Size

No. of Maximal
sets

Time (sec)

0.95 17 9 1 0.78
0.92 19 11 1 0.83
0.90 21 12 1 0.90
0.87 24 13 4 1.41
0.85 25 13 55 2.25
0.82 26 14 59 3.63
0.80 28 15 24 4.11

5 Summary and Future Research Directions

In this paper, we presented and evaluated MaxDomino for mining maximal frequent
sets using a novel concept of dominancy factor. We have demonstrated that MaxDo-
mino yields better performance compared to GenMax, a state-of-the-art maximal set
mining algorithm, at higher support levels. Furthermore, the utility of MaxDomino for
mining Longest Maximal (LM) patterns is also evaluated.

MaxDomino: Efficiently Mining Maximal Sets 139

As we noticed that our algorithm performs better at higher support levels com-
pared to GenMax, we are planning to integrate the concepts of GenMax and MaxDo-
mino in future and study the performance improvements.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in
large databases. In proceedings of ACM SIGMOD Conference on Management of Data.
(1993) 207-216. Washigton D.C.

2. Agrawal R. et al: The Quest Data Mining System, Technical report, IBM Almaden Research
Center. (1996b) Retrieved October 10, 2002 from http://www.almaden.ibm.com/cs/quest/.

3. Agrawal, R., Aggarwal C., Prasad VVV.: Depth first generation of Long patterns. 7th Inter-
national conference on Knowledge discovery and Data mining (2000)

4. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: A Maximal Frequent Itemset Algorithm for
Transactional Databases. In Intl. Conf. On Data Engineering (2001)

5. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. RPI Technical Report. 01-1.
(2001)

Evaluating Maintenance Policies for Externally
Materialised Multi-source Views

Henrik Engström1 and Brian Lings2

1 Department of Computer Science, University of Skövde, Sweden
henrik@ida.his.se

2 Department of Computer Science, University of Exeter, UK
B.J.Lings@exeter.ac.uk

Abstract. In many applications data from distributed, autonomous,
and heterogeneous sources need to be imported and materialised in a
(client) system external to those sources. As changes are committed in
the sources, the externally materialised view must be updated to reflect
those changes. A maintenance policy determines when and how to con-
duct updates. As sources may not be cooperating maintenance of exter-
nally materialised views is different from traditional view maintenance.
Previous studies on maintenance of externally materialised views have
been heavily focused on algorithms that ensure view consistency. There
are, however, other aspects of maintenance that, when considered, can
affect choice of consistency algorithm. If, for example, auxiliary views are
maintained in the view client it is possible to ensure strong consistency
without complex algorithms.
In our previous work we have studied how to select a maintenance policy
for a single source view. In this paper we extend the work to evaluating
maintenance policies for externally materialised views based on several
sources. We explore views that are defined as the join of two independent
sources, identifying the solution space in terms of possible policies, their
implications for consistency and their required source capabilities. We
use a testbed system to evaluate policy performance. The work confirms
that the earlier results on single source maintenance extend to the multi-
source situation. In addition we show that the consistency preserving
algorithms suggested in the literature are not always required. Actually,
in all situations explored it has proved more efficient to use auxiliary
views than policies which requires consistency preserving algorithms.

1 Introduction

Maintenance of materialised views is an area which has received substantial in-
terest from the research community [5,16,15,14,22,17,20,1,4]. The original usage
of views is as a mechanism in centralised and distributed database systems to in-
crease data independence and query performance. A view is defined as a named
query [20] over source data. A view can be referenced in user queries in the
same way as the source data. If a view is materialised, the result of the defining
query is physically stored. In such cases the view has to be maintained to reflect

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 140–156, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Evaluating Maintenance Policies 141

changes to the base data. There have been several studies on how to incremen-
tally maintain views expressed using various data models and query languages
[15,1,3].

An externally materialised view is different from traditional materialised
views in that it is defined over autonomous and heterogeneous sources. Au-
tonomy implies that sources may not be changed to participate in maintenance
and may not be aware of the views defined over its data. Heterogeneity implies
that sources may have a varying degree of support to participate in maintenance
and that no common data model may be assumed. A common form of externally
materialised views are those that constitute the contents in a data warehouse.
For all such externally materialised views, it may not be possible to utilise all
proposed view mechanisms as the underlying systems may not support them. It
can, for example, be impossible to provide global transactions to ensure complete
consistency between sources and views. This “inconsistency problem” has been
studied extensively in the last 8 years [28,29,2,26,23]. This is, however, not the
only issue that has to be considered when a maintenance policy is selected. We
have shown in previous work that, for views based on a single source, the selec-
tion of a maintenance policy for externally materialised views depends on both
quality of service requirements and the capabilities of underlying sources. When
the view definition involves more than one source the maintenance of the view
becomes more complex as it requires the synchronisation of several independent
processes.

In this paper we analyse maintenance of a view expressed as the join of two
sources. We present a set of possible policy combinations, consider implications
for consistency preservation and analyse which source capabilities may affect
their operation. We then evaluate the performance of these policies in TMID,
a testbed for maintenance of externally materialised views. The results support
the view that several multi-source policies are useful in that they can give opti-
mal performance under certain conditions. In most situations it is advantageous
to use incremental techniques and to keep auxiliary views. For this type of pol-
icy it is not necessary to use any of the many proposed consistency preserving
algorithms - strong consistency can still be guaranteed.

2 Background

The concept of externally materialised views was first defined by Staudt and
Jarke [22]. This work focuses on techniques for extending a data source to sup-
port the maintenance of external views stored in autonomous, heterogeneous
clients. These views are based on data from a single source. In this paper we
consider the reverse problem: how to devise a maintenance policy in a client for
an externally materialised view that combines data from several autonomous,
heterogeneous sources. We do not expect these sources to support any particu-
lar view maintenance mechanism and it may not be possible to change them to
do so. Our problem is to maintain a view which is based on several data sources
outside the control of the view client. This is a typical situation for Internet

142 H. Engström and B. Lings

data sources. A client can request data from multiple Internet sources but these
do not normally support view maintenance and cannot be extended to do so.
It may be possible to wrap a source to provide some additional capabilities but
this will have implications for performance [10].

In the data warehouse area there have been several studies on how to incre-
mentally maintain views when they are based on multiple independent sources.
Issues related to view consistency have been studied thoroughly by Zhuge [27],
who defines four levels of consistency. Strong and complete consistency have re-
ceived most attention. Complete consistency requires all state changes of sources
to be visible in the warehouse. Strong consistency requires that consecutive view
states are based on valid consecutive source states. Many algorithms have been
proposed [28,29,2,25,26,23] that will ensure that a view is consistent with sources
when join queries are sent to the sources. All this work assumes that the client is
not maintaining sufficient auxiliary information to avoid sending join queries to
sources. This implies that whenever changes are propagated from one source, the
client has to send queries to the other sources to find matching objects. Another
way to ensure consistency is addressed by Gupta et al. [13] who define the con-
cept of self-maintainable views. By making an external view self-maintainable,
inconsistency cannot arise and the load on the source systems may be reduced.
Quass et al. [19] extend on this, suggesting algorithms for generating auxiliary
views that make warehouse views self-maintainable.

This paper addresses the evaluation of maintenance policies. For centralised
database environments it has been shown that the choice of policy is a complex
trade-off affected by update and query patterns [16], quality of service require-
ments [21], and query complexity [4], and that there is a need to support multiple
maintenance policies [6].

In our previous work we have studied the selection of maintenance policies
in a data warehouse environment. We have established the framework for sin-
gle source policy selection [8] and formulated the dependencies between policies,
evaluation criteria, and source capabilities using a cost-based approach [11]. The
analytical results have been validated empirically using a testbed system [10].
These results show that policy selection is highly dependant on quality of ser-
vice requirements and system characteristics. An important quality of service
evaluation criterion is the maximal view staleness that can be guaranteed. For
a view with guaranteed maximum staleness Z, the result of any query over the
view, returned at time t, will reflect all source changes prior to t− Z.

We have shown that although wrapping is a viable technique to extend the
interface to a source, it has implications for performance (both quality of service
and system overhead) and hence to policy choice. This means that it is important
to consider source capabilities explicitly in policy selection. All these results
apply to a single source external view. In this paper we extend the work to
views based on multiple sources, and present performance evaluations in which
a large number of join view maintenance policies have been compared.

Note that in this work we are considering externally materialised views. A
view may also be virtual, in which case queries over the view are shipped to the

Evaluating Maintenance Policies 143

underlying sources. Hybrid approaches are also possible, where some views are
virtual and some are materialised. The latter is addressed by Hull and Zhou [17,
18] who study the trade-off between virtual and materialised views in a loosely
coupled database system. Whilst relevant to this paper, our study differs mainly
in that we do not make assumptions about sources providing any change detec-
tion capabilities.

3 Maintaining a Join View

In this paper we consider the maintenance of a view defined as a join of two data
sources. We use the term supporting view to refer to the selected and projected
part from each source used in the join. In other words, we adopt the standard
optimisation that select-project should be pushed through a join. A supporting
view is hence single source. We assume that each source provides a single set
of objects which means all objects in a supporting view have a (value based)
identifier. We do not consider the special case where a single source provides
several supporting views.

As we are operating in a heterogeneous environment we adopt a generalised
join definition. A join view contains a subset of the Cartesian product of two
supporting views, where elements in the view are concatenations of parts of ob-
jects, one object from each supporting view. A join-predicate p(x,y) determines
the relevant subset. This predicate is an arbitrary function which takes an ob-
ject from each supporting view and returns true if the two objects should be
combined and included in the join, false otherwise.

The possible maintenance policies for a join view are not well understood.
As mentioned above, there has been much work on algorithms to preserve con-
sistency. However, the relationship between supporting view policies and join
policy is not considered. In this section we suggest a set of maintenance poli-
cies. We then analyse the level of consistency these policies may provide and the
source capabilities that may be required or useful.

3.1 Alternatives for Join View Maintenance Policies

For a single source view we consider six different policies [11]. These are con-
structed by combining two different strategies (incremental and recompute) with
three different timings (immediate, periodic and on-demand). This gives rise to
six policies: Immediate Incremental (II), Immediate Recompute (IR), Periodic
Incremental (PI), Periodic Recompute (PR), On-demand Incremental (OI), On-
demand Recompute (OR). Although more single source policies are possible,
these represents the most commonly mentioned alternatives in the literature.
For a join view each supporting view can, in principle, be maintained with any
of these policies. In addition, the joining of the two supporting views can be
done with the same set of policies, in principle independent of the choice of the
supporting view policies. We will refer to this as the integrator policy (as it is
assumed the join will be performed in an integrator component in the client). In

144 H. Engström and B. Lings

addition to this, the supporting views can be materialised in the client or can
be treated as virtual views. We will refer to a materialised supporting view as
an auxiliary view.

When combined, the set of join policy combinations becomes: 6 · 6 · 6 · 2 ·
2 = 864 (left supporting view policy, right supporting view policy, integrator
policy, left auxiliary view, right auxiliary view). Some of these combinations are
not meaningful1 but still the set of possible policies is large. In this paper we
will study all principle types of policies: incremental and recompute for both
supporting views and integrator views; all possible combinations of integrator
and supporting view timings; policies with and without auxiliary views.

We will use the following naming conventions for join policies:

<Integrator policy>-<aux/noAux>-<left supporting view policy>-<right supporting view policy>

For example, IR-aux-II -PI denotes a policy which immediately recomputes
the join view when changes are reported for the supporting views, and uses
auxiliary views. For both supporting views incremental maintenance is used; the
left sends changes immediately when the source reports them, while the right
sends changes periodically.

3.2 Consistency Implications

An important quality of service characteristic for a view based on several au-
tonomous sources is how consistent it is with its sources. In practice all pre-
vious research has addressed only strong and complete consistency. We claim
that strong consistency is far more likely to be required in a heterogenous en-
vironment with autonomous sources. Complete consistency requires all sources
to either actively notify that changes have occurred, or record all changes that
are committed. A source that propagates only net changes (e.g. a tuple which
is inserted and then immediately deleted corresponds to no change) will not
be sufficient to ensure complete consistency. Only specialised applications are
likely to require that all state changes of all sources should be reflected. Inter-
estingly, Zhuge et al., who propose the consistency classification, state that [28,
p.5] completeness “is too strong a requirement and unnecessary in most practical
warehousing scenarios”. For this reason, we have focused on strong consistency
in our work.

When auxiliary views are used for a binary join, it is relatively easy to ensure
strong consistency (that consecutive view states are based on valid consecutive
source states). The state of each auxiliary view will always reflect a valid state
of the source, and state changes will reflect the evolution of the source. As
both maintenance of auxiliary views and joining are done in the integrator, it is

1 For example, it is not possible to have an on-demand supporting view policy com-
bined with a immediate integrator policy. The integrator will await changes from
the wrapper which in turn is awaiting requests from the integrator. This means the
view will never be maintained.

Evaluating Maintenance Policies 145

easy to ensure that updates of auxiliary views are not done concurrently with
maintenance of the join view.

When auxiliary views are not maintained in the integrator, and the view is
recomputed, strong consistency can be guaranteed. This is because each delivered
supporting view will reflect states from each source. Moreover, when the view is
recomputed, the supporting views will always reflect the same or a later state.
When there are no auxiliary views, and the integrator policy is incremental,
consistency cannot be guaranteed unless maintenance algorithms are modified
appropriately (see for example [29]). We do not consider such algorithms in this
paper.

3.3 Source Capabilities

Maintenance policy performance for externally materialised views depends on
the capabilities provided by sources. Maintenance of auxiliary views is similar
to maintenance of a single source view. This means that the same dependency
on capabilities applies. We have shown that the most important capabilities in
such cases are whether the source can actively notify changes and whether it can
deliver the delta changes. We define a source as change active (CHAC) if it can
actively notify to an external client that changes have been committed, and as
delta aware (DAW) if it can deliver delta changes on request. Note that for a join
view the sources can have different degrees of support which, for example, may
mean that one source is DAW (which makes incremental maintenance preferable)
and the other can be non-DAW (which may imply that recomputed policies are
better). A goal with this paper is to analyse how to determine a join view
maintenance policy and whether the results for a single source view may be
useful for determining a supporting view policy.

For some join view policies additional interaction with sources is required. If
an incremental join policy is used and no auxiliary views are maintained, changes
from one source have to be joined with the other source. We will classify a source
as semi-join aware (SAW) if, for a join with predicate p, and for any object O, it
can return objects that match with O under predicate p. A relational database
is trivially SAW for equi-joins (these join queries will be selections using the
join attribute as condition). For other types of joins, e.g. matching using regular
expressions, a relational database may not be SAW, which implies that the whole
supporting view may have to be retrieved and matched against the other objects.

4 TMID – A Testbed for Maintenance of Integrated Data

In this section, we present a Testbed for Maintenance of Integrated Data (TMID),
an implementation of view maintenance using sources such as a relational
database and an XML web server. It enables measurement of policy perfor-
mance, both in terms of quality of service and system overhead. This makes
it possible to empirically compare the performance of any of the join policies

146 H. Engström and B. Lings

discussed in the previous section. The system is publicly available2, and can be
downloaded and used for multi-source view maintenance.

The architecture of TMID corresponds to the one shown in Figure 1. Wrap-
pers, integrators and other components can be located on any machine on the
network. XML is used as the common data model used by the integrator. This
means that data from various sources can be wrapped and sent to the client in
XML format. The main components, from a maintenance perspective, are wrap-
pers and the integrator. The wrappers can be tailored to handle different data
sources.

��� �������	
 ��������

���������	
�� ��
��

�
�����

������

�������	�

���������	
��

������
����������

���

���������

����

�������

Fig. 1. The components of the TMID architecture, and an example of a possible con-
figuration

Currently, a data source can be an InterBase database or an XML web server.
Wrappers are responsible for providing the relevant data to the integrator ac-
cording to the supporting view policies. The integrator is the most complex
component, in that it is responsible for synchronizing wrapper activity, and
computing and maintaining the join view. Currently, it is possible to use either
hash-based or nested loop join in the integrator.

Although the system can be used for distributed data maintenance, the main
purpose of TMID is for measuring performance. Experiments can be defined and
executed, and performance can be measured and recorded. For this purpose, each
data source will be updated by an updater component, and a querier will query
the view. By specifying a number of policies and source characteristics to be
varied, the system can be configured to automatically execute experiments and
log results.

Any combination of integrator and wrapper policies can be used for experi-
ments. This includes incremental or recomputed join, with periodic, immediate
or on-demand timing and the possibility of using auxiliary views in the inte-
grator. If auxiliary views are not maintained in the integrator, the incremental
join algorithm will send join queries to the wrappers, which will either forward
them to the source (if it is SAW) or retrieve the supporting view and perform
the join. No consistency preserving algorithms have been implemented when
auxiliary views are used which means the cost of such policies will currently be
underestimated when strong consistency is required.

2 at http://www.his.se/ida/∼henrik/research/

Evaluating Maintenance Policies 147

5 Evaluating Maintenance Policies

The large number of possible join view policies and source configurations makes
it difficult to evaluate and understand the trade-offs in policy selection. In this
section we present the result of a performance evaluation where the staleness (Z),
response time (RT) and system overhead3 (SO) for a large number of policies
have been measured under different system configurations. The experiments were
designed to answer the following questions:

– Are all combinations of policy timings meaningful? Are there types of policies
which give inferior performance irrespective of configuration?

– How is the choice between incremental and recomputed policies affected by
join processing? Are high cost joins different from low cost joins?

– When is it beneficial to keep auxiliary views? How is this affected by the
presence of SAW capability?

The same set of experiments has been conducted in two different system
and data source configurations. The first configuration consists of three Sun
Solaris machines with one relational database and one XML source. The second
configuration consists of three Linux machines with two XML sources. In both
configurations a 10Mbit hub is used to connect the machines. The relational
data source consist of 10000 tuples each of size 1K. The XML sources contain
3000 XML objects of size 5K. Each experiment included 50 queries (which took
approximately 25 minutes) and the same experiment was repeated three times
with the median value being used. Unless explicitly stated, the join is performed
using a hash-based algorithm and the result is for the Linux configuration 4.

5.1 Analysing Policy Timings

It is possible to use most combinations of timings in the integrator. To analyse
the impact of supporting view and integrator timings we systematically selected
84 different policies representing all possible combinations of integrator and sup-
porting view timings with both recomputed and incremental strategies (including
those which have incremental maintenance of supporting views and recomputed
join). The set of policies includes those that use auxiliary views and those that
do not. The policies have been used in a number of source configurations where
source capabilities have been varied. For each such configuration the costs of all
policies have been compared under different evaluation criteria.

The result of one comparison of all policies is shown in an Appendix. It is
clear from such a comparison that the different policies exhibit great variation
in cost. When the combined cost is considered (all), the worst policy has a cost
42 times higher than the best policy.
3 including the total delay caused by maintenance activity in both wrappers and in-

tegrator.
4 All observations presented in this paper have been made in both system configura-

tions.

148 H. Engström and B. Lings

To summarise these comparisons, Table 1 shows the lowest cost policies for
different combination of DAW capability in the two sources. The comparison
has been performed with four different evaluation criteria: system overhead, sys-
tem overhead combined with staleness, system overhead combined with response
time, and system overhead combined with staleness and response time.

Table 1. The lowest cost policies for different criteria and source capabilities

Sources SO SO+Z SO+RT All
Both sources
DAW

PI -aux-II -II OI -aux-II -II PI -aux-II -II II -aux-II -II

One source
DAW

PR-aux-PI -PR OR-aux-II -OR PR-aux-PI -PR II -aux-II -II

No source
DAW

PR-aux-PR-OR OR-aux-IR-IR PR-aux-PR-OR OR-aux-OR-OR

First of all, we note that all three timings, and both recomputed and in-
cremental polices are used. There is great variation in integrator policy and
supporting view policies. Periodic policies are common when staleness is not
included in the criteria. When staleness is considered, immediate policies domi-
nate. It should be noted that immediate supporting view policies requires sources
to actively notify the client that changes have been committed (i.e. the source
has to be CHAC). As few existing sources provide CHAC, this requirement lim-
its the chance to use such policies. In such cases on-demand supporting view
policies seem to be the best alternative.

It is notable that all policies use auxiliary views. The cost of maintaining
these views is included in all cases, but not the additional storage space.

All of the above observations give indications concerning the types of policy
that may be useful. By looking at the highest cost policies it may be possible to
identify some policy types which are less useful. Table 2 shows the highest cost
policies for the same scenarios as Table 1.

Table 2. The highest cost policies for different criteria and source capabilities

Sources SO SO+Z SO+RT All
Both sources
DAW

PR-noAux-OR-OR PR-aux-PI -PR OR-noAux-OR-OR PR-aux-PI -PR

One source
DAW

PR-aux-OR-OR PR-aux-PR-PR OR-aux-OR-OR PR-aux-PR-PR

No source
DAW

PI -noAux-OI -OI PR-aux-PI -PR OI -noAux-OI -OI PR-aux-PI -PR

We note that the worst policies use incremental supporting view policies
when the sources are not DAW and recompute when they are DAW. When

Evaluating Maintenance Policies 149

staleness is included in the criteria, it is not beneficial to have periodic policies
both in the integrator and for supporting views. An explanation of this is that
periodic supporting view policy is asynchronous with source changes and will
add a staleness penalty - of a full period in the worst case. A periodic integrator
policy is asynchronous with the supporting view policies and will, in addition,
add a full period to staleness. This illustrates that it is important to make
wrapper activity (which is responsible for supporting view policies) consistent
with integrator activity. If a source is not CHAC, it may be possible to emulate an
immediate policy by periodic polling. If the integrator in turn maintains the view
periodically this may give inferior performance. As an example, the maintenance
solution described in [24] suggests that changes should be eagerly propagated
to the integrator to be available when maintenance is initiated (periodically).
The rationale for this is to reduce maintenance delay, but unless the sources
are CHAC this will lead to unnecessarily high data staleness. Moreover, system
overhead is still not reduced compared with, for example, a periodic integrator
policy combined with on-demand supporting view policies.

The comparisons above have been based on the total join view cost. These are
derived by combining the costs of maintaining supporting views and maintaining
the join view. Join view staleness is computed from: the time a result is returned,
the source states used in the result, and the state changes in the sources. The
worst case staleness of the two sources is used. The experimental log presents
the individual cost for wrappers, integrator, and worst case staleness for the two
sources. Table 3 shows an example for the policy II -aux-II -II when the DAW
capability of the sources is varied.

Table 3. The cost components for a join policy when DAW is varied

XML
source
DAW

Rel.
source
DAW

XML
SO

Rel.
SO

Integr.
SO

Total
SO

XML Z Rel. Z Total Z

Yes Yes 0.3 1.5 0.2 1.9 0.1 0.9 0.9
Yes No 0.3 13.1 0.2 13.6 0 13.4 13.4
No Yes 5.8 1.5 0.2 7.5 5.4 0.7 5.4
No No 7.3 14.6 0.2 21.9 9.7 13.9 13.9

These experiments were conducted in the Solaris environment, where the two
sources were very different. What is important is that the cost for a supporting
view is relatively unaffected5 by the properties of the other source. This means
that the supporting view analysis can be considered in isolation to some extent
and that our previous work on policy selection can be applied. We have actu-
ally run experiments for single source view with the same characteristics as the

5 Only when both sources are non-DAW can we note a slight increase in the system
overhead. As both wrappers are located in the integrator environment in this con-
figuration, a possible explanation is that this effect is caused by network congestion.

150 H. Engström and B. Lings

supporting views. The results showed that the cost for these single source views
actually corresponded with the components shown in Table 3. It is interesting
to note that the staleness value for a join view is determined by the worst case
staleness for the supporting views. This implies that the supporting view policies
cannot be chosen in isolation. If, for example, a periodic policy is used in one
wrapper (for example due to missing CHAC capability) this will give a relatively
high staleness, and it may be pointless to use immediate propagation of changes
from the other source.

To conclude, it is apparent that all policy timings are useful for join view
policies. The requirement on quality of service and the characteristics of sources
may vary, which implies that many different policies may be optimal. The timing
for wrapper and integrator cannot be selected independently as some combina-
tions may give sub-optimal performance with respect to view staleness. This is
the case, for example, when one wrapper is propagating changes that are not
needed immediately by the integrator. Support is needed for selecting an appro-
priate policy, and the results presented indicate that our previous work on single
source views can be used to analyse supporting view costs.

5.2 Analysing the Choice between Incremental and Recompute

For a single source view, we have shown [10] that the choice between incremental
and recompute may depend on the presence of DAW capability in the source.
The comparison presented in the previous section shows that both recomputed
and incremental policies can give the lowest cost for a join view as well. In
some situations the lowest cost policy uses incremental supporting view poli-
cies for auxiliary views and recomputes the join. This makes the selection even
more complex. Note that in the comparison above the join is computed using
an efficient hash-based algorithm. If the join predicate involves more complex
operations (such as data transformation and cleaning) then a nested loop join
may be the only alternative. We conducted a set of experiments to analyse the
choice between incremental and recompute.

Table 4 shows the system overhead for an incremental and a recomputed
policy for combinations of join techniques and DAW capability in sources.

Table 4. The system cost (s.) for a recomputed and an incremental policy for different
DAW capability and join technique scenarios

Join Technique Source DAW PI-aux-OI-OI PR-aux-OR-OR
Hash Both DAW 0.9 3.6
Hash One DAW 1.8 3.6
Hash No DAW 4.2 4.1
Nested loop Both DAW 1.5 7.1
Nested loop One DAW 2.5 7.1
Nested loop No DAW 4.2 7.1

Evaluating Maintenance Policies 151

For these two policies it is clear that the incremental policy is superior for
all situations except when the joining is hash-based and no source is DAW. In
such a case the cost of the recomputed policy is comparable to the incremental
policy. On inspection, the detailed logs from the experiments revealed that the
integrator cost (i.e. to recompute the nested loop, once the auxiliary view has
been updated) was approximately 3 seconds. This compares with 0.1 seconds for
hash-based recompute. The implication is that when join processing is expensive
then incremental policies are generally to be preferred, irrespective of DAW
capability. When joining is low cost, on the other hand, it may be beneficial to
recompute a join using auxiliary views and use a supporting view policy that
matches the DAW capability of each source.

5.3 Analysing Auxiliary Views

We saw in Table 1 that all low cost policies used auxiliary views. Considering
the amount of work that has been invested in devising algorithms to ensure
consistency when auxiliary views are not used, it is interesting to analyse how
policy cost depends on auxiliary views and SAW capability. Table 5 shows the
cost of two immediate incremental policies with and without auxiliary views
when the SAW and DAW capabilities are varied. Joining is hash-based in both
situations.

Table 5. The system cost (s.) for incremental policies with and without auxiliary views
for different DAW and SAW capability scenarios

Source DAW Source SAW II-aux-II-II II-noAux-II-II
Both DAW Both SAW 0.5 1.3
Both DAW One SAW 0.6 6.9
Both DAW No SAW 0.5 13.1
No DAW Both SAW 15.0 17.0
No DAW One SAW 15.0 23.0
No DAW No SAW 15.2 29.1

Using auxiliary views gives better performance irrespective of the DAW and
SAW capabilities of the sources. We have not implemented any algorithms to
ensure consistency when no auxiliary views are used. If strong consistency is
required these algorithms will further increase the cost of II -noAux-II -II . In
other words, using auxiliary views will always give a lower cost and often offer
a better quality of service in terms of consistency.

Another observation is that the absence of SAW makes the policy not using
auxiliary views significantly more expensive than the other policy. It may even
be better to use a recomputed policy in such cases. The cost of IR-aux-IR-IR
for the same situation is 15.0 (irrespective of DAW and SAW).

To conclude, if storage overhead in the client is not critical we claim that
policies keeping auxiliary views are always to be preferred. This implies that the

152 H. Engström and B. Lings

algorithms suggested for ensuring strong consistency will not be needed. These
algorithms are designed for views not using auxiliary views

6 Conclusions

In this paper we have presented a performance evaluation of maintenance policies
for an externally materialised multi-source view. The choice of policy is affected
by many factors such as the set of possible policies, the evaluation criteria used,
and the capabilities provided by sources. We have shown that there are a large
number of possible policy combinations for a binary join view. Each source can
use a separate policy to propagate the required fraction (supporting view), and
the joining can be done with various policies. It is also possible to store the
supporting views in the integrator (we refer to these as auxiliary views) to avoid
sending join queries to sources. If auxiliary views are not used for incremental
policies then the degree of support to handle join queries impacts on policy
performance.

We have analysed the performance of 84 policies and found that many of
these gave optimal performance under certain conditions. The capability of each
source will affect the performance of each supporting view. This implies that
it is not possible to handle sources collectively. In some situations it is, for
example, advantageous to use incremental maintenance for one supporting view
and recompute for the other. At the same time it is important to coordinate
supporting view policies with integrator policies. The view staleness is most
complex as the join view will have its staleness determined by the worst case
staleness of the supporting views. A naive maintenance solution where wrappers
monitor sources by periodic polling, and the integrator performs the joining
periodically, will be the worst possible policy with respect to staleness. From the
presented experiments it is possible to make some general observations. First
of all, recomputed policies are less useful than incremental policies. If the join
processing is costly (e.g. nested loop) or if the sources provides deltas it is always
better to maintain the view incrementally. Secondly, auxiliary views are always
to prefer unless storage limitations makes them impossible to use.

Most work on externally materialised views has been conducted in a data
warehouse context. It should be noted that this is not the only application area.
In today’s Internet-based environments information is commonly retrieved from
autonomous sources. The data may be stored in clients to increase availability
and query performance. One such example involves biological data, which is pro-
duced and published by various universities, labs and organisations and is used
by numerous clients. If data from several sources needs to be combined this may
require complex and expensive computations. This is, for example, the case when
protein sequences from one source are classified using regular expressions from
another source[7]. Our work shows that even if the data is updated infrequently,
and the data sources provide no change detection capabilities, incremental meth-
ods are to be preferred.

There are many aspects that remain to be studied with respect to exter-
nally materialised views. We have concentrated on join views in this work. It

Evaluating Maintenance Policies 153

remains to explore how other operations affect the results presented. This in-
cludes set operations (union, difference, division) and aggregates. Another issue
is how operations over more than two sources should be handled, for example,
n-ary joins. The experiments presented have been conducted in an isolated en-
vironment with synthetically generated data. It would be valuable to analyse a
real data integration scenario under realistic network conditions. Furthermore
it should be relatively straightforward to extend our testbed to handle dynamic
changing of policies. This would enable adaptive policy selection in which actual
performance statistics are used in policy selection.

In ongoing work we have extended our single source framework for policy
selection to handle join view policies [9]. The single source cost model has been
useful for modelling supporting view policies which means only the join cost
has been added. Based on extensive analysis and the performance evaluation
presented in this paper, we have proposed a set of heuristics [12] and shown that
these give good selections.

Finally, it is interesting to note that the majority of research effort on ex-
ternal view maintenance has been concentrated on producing algorithms for the
consistent maintenance of views when no auxiliary information is maintained. In
the evaluation presented in this paper it is clear that such policies will perform
less well than those using auxiliary views, irrespective of the support provided
by sources. Although work on consistent view maintenance may be theoretically
challenging, it is our belief that it is not the most critical problem for the research
community to address with respect to externally materialised view maintenance.

References

1. S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J.L. Wiener, Incremental main-
tenance for materialized views over semistructured data, VLDB’98, Proceedings of
24rd International Conference on Very Large Data Bases, August 24–27, 1998,
New York City, New York, USA (A. Gupta, O. Shmueli, and J. Widom, eds.),
1998, pp. 38–49.

2. D. Agrawal, A. El Abbadi, A.K. Singh, and T. Yurek, Efficient view maintenance at
data warehouses, SIGMOD 1997, Proceedings ACM SIGMOD International Con-
ference on Management of Data, May 13–15, 1997, Tucson, Arizona, USA (J. Peck-
ham, ed.), 1997, pp. 417–427.

3. M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton, Incremental main-
tenance of materialized OQL views, Proceedings of the third ACM international
workshop on Data warehousing and OLAP, Washington, USA, 2000, pp. 41–48.

4. M. Akhtar Ali, Norman W. Paton, and Alvaro A. A. Fernandes, An experimen-
tal performance evaluation of incremental materialized view maintenance in object
databases, Data Warehousing and Knowledge Discovery, Third International Con-
ference, DaWaK 2001, Munich, Germany, September 5–7, 2001, Proceedings, 2001,
pp. 240–253.

5. J.A. Blakeley, P-Å. Larson, and F.W. Tompa, Efficiently updating materialized
views, Proceedings of the 1986 ACM SIGMOD International Conference on Man-
agement of Data, Washington, D.C., May 28–30, 1986 (C. Zaniolo, ed.), 1986,
pp. 61–71.

154 H. Engström and B. Lings

6. L.S. Colby, A. Kawaguchi, D.F. Lieuwen, I.S. Mumick, and K.A. Ross, Supporting
multiple view maintenance policies, SIGMOD 1997, Proceedings ACM SIGMOD
International Conference on Management of Data, May 13–15, 1997, Tucson, Ari-
zona, USA (J. Peckham, ed.), 1997, pp. 405–416.

7. H. Engström and K. Asthorsson, A data warehouse approach to maintenance of
integrated biological data, Workshop on BioInformatics held in conjunction with the
19th International Conference on Data Engineering (ICDE’03) Bangalore, India,
March 4, 2003, On-line proceedings, 14p., 2003.

8. H. Engström, S. Chakravarthy, and B. Lings, A user-centric view of data warehouse
maintenance issues, Advances in Databases, 17th British National Conferenc on
Databases, BNCOD 17, Exeter, UK, July 3–5, 2000, Proceedings (B. Lings and
K.G. Jeffery, eds.), Lecture Notes in Computer Science, vol. 1832, Springer, 2000,
pp. 68–80.

9. , Data integration in heterogeneous environments: Multi-source policies, cost
model, and implementation, Tech. report, University of Skövde, Sweden, 2002.

10. , Implementation and comparative evaluation of maintenance policies in a
data warehouse environment, Advances in Databases, 19th British National Con-
ference on Databases, BNCOD 19, Sheffield, UK, July 17–19, 2002, Proceedings
(B. Eaglestone, S. North, and A. Poulovassilis, eds.), Lecture Notes in Computer
Science, vol. 2405, Springer, 2002, pp. 90–102.

11. , A systematic approach to selecting maintenance policies in a data ware-
house environment, Advances in Database Technology - EDBT 2002, 8th Inter-
national Conference on Extending Database Technology, Prague, Czech Repub-
lic, March 25–27, Proceedings (C.S. Jensen, K.G. Jeffery, J. Pokorný, S. Saltenis,
E. Bertino, K. Böhm, and M. Jarke, eds.), Lecture Notes in Computer Science,
vol. 2287, Springer, 2002, pp. 317–335.

12. , A heuristic for refresh policy selection in heterogeneous environments, 19th
International Conference on Data Engineering, Bangalore, India, March 5–8, 2003,
Proceedings, 2003, pp. 674–676.

13. A. Gupta, H. V. Jagadish, and I. S. Mumick, Data integration using self-
maintainable views, Advances in Database Technology - EDBT’96, 5th Interna-
tional Conference on Extending Database Technology, Avignon, France, March
25–29, 1996, Proceedings, 1996, pp. 140–144.

14. A. Gupta and I. S. Mumick, Maintenance of materialized views: Problems, tech-
niques, and applications, IEEE Data Engineering Bulletin 18 (1995), no. 2, 3–18.

15. A. Gupta, I.S. Mumick, and V. S. Subrahmanian, Maintaining views incrementally,
Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data, Washington, D.C., May 26–28, 1993 (P. Buneman and S. Jajodia, eds.),
1993, pp. 157–166.

16. E.N. Hanson, A performance analysis of view materialization strategies, Proceed-
ings of the Association for Computing Machinery Special Interest Group on Man-
agement of Data 1987 Annual Conference, San Francisco, California, May 27–29,
1987 (U. Dayal and I.L. Traiger, eds.), 1987, pp. 440–453.

17. R. Hull and G. Zhou, A framework for supporting data integration using the mate-
rialized and virtual approaches, Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data, Montreal, Quebec, Canada, June 4–6,
1996 (H.V. Jagadish and I.S. Mumick, eds.), 1996, pp. 481–492.

18. , Towards the study of performance trade-offs between materialized and vir-
tual integrated views, Proceedings of the Workshop on Materialized Views: Tech-
niques and Applications (VIEWS’96), Montreal, Canada, 1996, pp. 91–102.

Evaluating Maintenance Policies 155

19. D. Quass, A. Gupta, I.S. Mumick, and J. Widom, Making views self-maintainable
for data warehousing, Proceedings of the Fourth International Conference on Par-
allel and Distributed Information Systems, December 18–20, 1996, Miami Beach,
Florida, USA, 1996, pp. 158–169.

20. N. Roussopoulos, Materialized views and data warehouses, SIGMOD Record 27
(1998), no. 1, 21–26.

21. J. Srivastava and D. Rotem, Analytical modeling of materialized view maintenance,
Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, March 21–23, 1988, Austin, Texas, 1988, pp. 126–
134.

22. M. Staudt and M. Jarke, Incremental maintenance of externally materialized views,
VLDB’96, Proceedings of 22th International Conference on Very Large Data Bases,
September 3–6, 1996, Mumbai (Bombay), India (T.M. Vijayaraman, A.P. Buch-
mann, C. Mohan, and N.L. Sarda, eds.), 1996, pp. 75–86.

23. A.S. Varde and E.A. Rundensteiner, MEDWRAP: Consistent view maintenance
over distributed multi-relation sources, Database and Expert Systems Applications,
13th International Conference, DEXA 2002, Aix-en-Provence, France, September
2–6, 2002, Proceedings (A. Hameurlain, R. Cicchetti, and R. Traunmüller, eds.),
2002.

24. A. Vavouras, S. Gatziu, and K. R. Dittrich, The SIRIUS approach for refresh-
ing data warehouses incrementally, Datenbanksysteme in Büro, Technik und Wis-
senschaft (BTW), GI-Fachtagung, Freiburg, 1.–3. März 1999, Proceedings (Alejan-
dro P. Buchmann, ed.), Informatik Aktuell, 1999, pp. 80–96.

25. H. Wang, M.E. Orlowska, and W. Liang, Efficient refreshment of materialized
views with multiple sources, Proceedings of the 1999 ACM CIKM International
Conference on Information and Knowledge Management, Kansas City, Missouri,
USA, November 2–6, 1999, 1999, pp. 375–382.

26. X. Zhang, L. Ding, and E.A. Rundensteiner, PVM: Parallel view maintenance
under concurrent data updates of distributed sources, Data Warehousing and
Knowledge Discovery, Third International Conference, DaWaK 2001, Munich, Ger-
many, September 5–7, 2001, Proceedings (Y. Kambayashi, W. Winiwarter, and
M. Arikawa, eds.), 2001.

27. Y. Zhuge, Incremental maintenance of consistent data warehouses, Ph.D. thesis,
Stanford University, USA, 1999.

28. Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom, View maintenance in a
warehousing environment, Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, California, May 22-25, 1995 (M.J.
Carey and D.A. Schneider, eds.), 1995, pp. 316–327.

29. Y. Zhuge, H. Garcia-Molina, and J.L. Wiener, The Strobe algorithms for multi-
source warehouse consistency, Proceedings of the Fourth International Conference
on Parallel and Distributed Information Systems, December 18-20, 1996, Miami
Beach, Florida, USA, 1996, pp. 146–157.

A Appendix
This appendix contains a sample of the results of the TMID experiments. For
full details the reader is referred to [9]. Table 6 shows the result of an experiment
where all join policies were used for the same configuration (Solaris environment
where both sources are DAW). The policies are arranged according to their total
cost (All). For each policy the SO, SO+Z, and SO+RT cost is also shown.

156 H. Engström and B. Lings

Table 6. The comparison of all policies in a Solaris environment where both sources
are DAW

Policy SO SO+
Z

SO+
RT

All Policy SO SO+
Z

SO+
RT

All

OI -aux-OI -OI 0.9 1.1 1.6 1.7 IR-aux-IR-PI 6.5 34.3 6.5 34.3
OR-aux-OI -OI 1.0 1.5 1.7 2.2 PI -aux-PI -PI 0.8 35.8 0.9 35.9
OR-aux-II -OI 1.1 1.6 1.7 2.3 PR-aux-IR-OI 6.0 37.5 6.0 37.6
II -aux-II -II 1.9 2.7 1.9 2.8 PI -aux-PI -OI 0.9 37.6 0.9 37.6
OI -aux-II -II 1.8 2.7 2.0 2.8 OR-aux-PR-OI 6.2 37.3 6.9 38.0
OI -aux-OI -II 1.9 2.7 2.3 3.1 PI -aux-II -PI 0.9 38.1 0.9 38.2
IR-aux-II -II 2.2 3.1 2.2 3.1 IR-aux-PI -PR 11.4 38.9 11.5 39.0
OR-aux-II -II 1.9 3.0 2.2 3.3 OR-aux-PI -PR 11.0 38.8 11.3 39.1
II -noAux-II -II 5.9 6.7 5.9 6.8 OI -noAux-PI -PI 4.9 35.4 8.7 39.2
OR-aux-IR-OI 6.0 11.2 6.7 11.9 PR-aux-II -PI 0.9 39.4 0.9 39.4
OI -noAux-II -II 5.9 11.4 9.8 15.3 OI -noAux-OI -PI 4.8 35.8 8.5 39.6
OI -noAux-OI -II 5.9 11.5 9.9 15.5 OR-aux-IR-OR 18.3 30.6 28.3 40.7
OI -noAux-OI -OI 5.8 11.7 10.8 16.7 OI -noAux-PI -II 5.9 37.4 9.8 41.2
OR-aux-II -IR 11.8 21.7 12.1 22.0 PR-aux-II -OR 11.0 44.3 11.1 44.4
PI -aux-II -II 1.8 22.1 1.9 22.2 OR-aux-II -PR 11.0 44.6 11.3 44.9
OI -aux-OI -PI 0.9 22.3 1.3 22.7 PI -noAux-PI -OI 5.8 45.3 5.8 45.4
OI -aux-II -PI 0.9 23.3 1.1 23.5 PR-aux-OI -OR 11.0 46.1 11.0 46.2
IR-aux-II -IR 12.4 24.3 12.4 24.3 OR-noAux-OR-OR 22.8 35.1 34.1 46.4
PR-aux-II -II 1.9 25.9 2.0 26.0 OR-aux-PI -OR 11.1 36.9 20.7 46.5
IR-aux-II -PI 1.4 26.0 1.4 26.1 PR-aux-IR-IR 18.4 47.2 18.4 47.2
PR-aux-II -OI 1.0 26.3 1.0 26.3 IR-aux-PR-PR 17.3 47.6 17.3 47.7
II -aux-PI -PI 1.0 26.5 1.1 26.6 IR-aux-II -PR 11.3 47.6 11.4 47.7
PI -aux-II -OI 0.9 27.2 0.9 27.2 PI -noAux-PI -II 5.7 47.8 5.7 47.8
II -aux-II -PI 1.0 27.7 1.0 27.7 OR-aux-OR-OR 23.2 36.9 34.6 48.4
PI -aux-OI -OI 0.9 27.7 1.0 27.8 PR-aux-PR-OI 6.2 49.1 6.2 49.1
OR-aux-II -PI 1.0 27.7 1.3 28.0 IR-aux-IR-PR 19.1 49.7 19.2 49.7
OI -aux-PI -PI 0.9 28.0 1.1 28.1 PR-aux-II -IR 11.8 50.8 11.9 50.9
OR-aux-PI -OI 1.0 27.6 1.7 28.3 PR-aux-PI -OR 11.3 50.9 11.3 51.0
PR-aux-PI -OI 1.0 28.5 1.0 28.5 PI -noAux-PI -PI 5.0 51.4 5.0 51.4
PR-aux-OI -OI 1.0 28.6 1.0 28.7 OR-aux-PR-PR 21.5 51.5 21.9 51.9
IR-aux-PI -PI 1.4 29.0 1.4 29.1 OR-aux-IR-PR 18.2 51.8 18.5 52.2
OR-aux-PI -PI 1.0 29.6 1.2 29.9 PR-aux-II -PR 11.2 52.2 11.2 52.3
OR-aux-IR-IR 18.4 30.0 18.7 30.4 PR-aux-IR-OR 18.7 55.9 18.8 56.0
IR-aux-IR-IR 19.1 30.9 19.2 30.9 PR-aux-PI -PI 0.9 56.0 1.0 56.1
II -noAux-II -PI 5.0 31.2 5.0 31.3 PR-aux-IR-PI 6.1 56.2 6.1 56.3
OR-aux-II -OR 11.1 21.7 20.7 31.3 PR-noAux-OR-OR 22.7 58.7 22.8 58.7
OR-aux-OI -OR 11.0 21.9 20.5 31.5 PR-aux-PI -PR 10.9 59.1 11.0 59.2
PI -noAux-OI -OI 5.8 31.6 5.9 31.6 PR-aux-PR-OR 16.6 60.1 16.7 60.2
OR-aux-IR-PI 6.0 31.4 6.3 31.7 OR-aux-PR-OR 18.3 51.5 28.4 61.6
II -noAux-PI -PI 5.1 32.3 5.1 32.3 PR-aux-OR-OR 23.1 61.7 23.2 61.8
PI -noAux-OI -II 5.9 32.8 5.9 32.8 PR-aux-PR-PR 21.6 66.0 21.7 66.0
PI -noAux-II -II 6.1 33.2 6.1 33.3 PR-aux-IR-PR 18.1 72.1 18.2 72.1

Database Schema Transformation Optimisation
Techniques for the AutoMed System

Nerissa Tong

Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2BZ, United Kingdom

nnyt98@doc.ic.ac.uk

Abstract. AutoMed is a database integration system that is designed
to support the integration of schemas expressed in a variety of high-level
conceptual modelling languages. It is based on the idea of expressing
transformations of schemas as a sequence of primitive transformation
steps, each of which is a bi-directional mapping between schemas. To be-
come an efficient schema integration system in practice, where the num-
ber and size of schemas involved in the integration may be very large,
the amount of time spent on the evaluation of transformations must be
reduced to a minimal level. It is also important that the integrity of a
set of transformations is maintained during the process of transforma-
tion optimisation. This paper discusses a new representation of schema
transformations which facilitates the verification of the well-formedness
of transformation sequences, and the optimisation of transformation se-
quences.

1 Introduction

A major task in database integration is the generation of a global schema from
a collection of local source schemas of existing databases. There are three main
approaches to database integration, namely global as view (GAV), local as view
(LAV), and both as view (BAV) [12].

In GAV, the constructs in the global schema are defined as views over source
local schemas. The popularity of this approach, which is adopted by a number
of database integration systems such as TSIMMIS [6], InterViso [15], and Gar-
lic [14], can be attributed to its simplicity of implementation. Source schemas are
integrated by a set of view definitions which contain predefined query plans that
describe the location and retrieval method of the required data. Query planning
is made simple and efficient in this approach, however it suffers from one major
drawback – when new schemas are added to the system or existing schemas are
modified, all corresponding query templates will have to be rewritten.

In LAV, local schema constructs in data sources are defined as views over the
global schema. Some systems adopting the LAV approach include Infomaster [5],
Information Manifold [8], and Agora [9]. Query plans are computed at the time
queries are submitted to the system. This approach offers greater flexibility over
the GAV approach in changes in the number or contents of local schemas because

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 157–171, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

158 N. Tong

in LAV, the changes can be handled without affecting existing view definitions.
The drawbacks of the LAV approach are that, (1) query processing is much more
complex than in GAV, and (2) if the contents of the global schema changes,
modification is then required for all the views that contain in their definition the
changed global schema constructs.

In BAV, bi-directional mappings between schemas are used for transforming
schemas and thus it supports evolution of both global and local schemas [11]. It
is also possible to automatically derive GAV and LAV views from BAV views.
Section 2 discusses the AutoMed [13] framework which adopts the BAV ap-
proach. More detailed discussion on the conversion of GAV and LAV into BAV
views and vice versa can be found in [12]. The flexibility of the BAV approach
allows transformations to be manipulated for optimisation purposes. Section 3
describes new techniques we have developed for the optimisation of transforma-
tion sequences. Section 4 concludes the paper with some remarks on the possible
extension in the applicability of our optimisation techniques.

2 The AutoMed Framework

The AutoMed framework supports the integration of schemas that are expressed
in different data modelling languages. The use of a high-level data model as the
Common Data Model (CDM) in the global schema makes it very complicated to
map constructs of local schemas, which possibly use different data models, with
one another. This is because, typically, high-level models provide a richer set of
modelling constructs, and hence a concept may be represented in a number of
ways. To avoid this complication, the AutoMed framework uses the Hypergraph
Data Model (HDM) [13], a low-level hypergraph-based data model, as the CDM.

The constructs contained in the HDM are Node, Edge, and Constraint. An
HDM schema S is then a triple containing a set of Nodes, a set of Edges, and
a set of Constraints — S = 〈Nodes, Edges, Constraints〉. Nodes and Edges
have a scheme and Constraints are boolean-valued queries over S. The scheme
of a node is 〈〈N〉〉, where N is the name of the node. The scheme of an edge
is 〈〈E,N1, . . . , Nn〉〉, where E is the name of the edge and N1, . . . , Nn are the
nodes connected by E.1 A set of mappings between higher-level model constructs
and HDM constructs is defined. A set of primitive transformations has been de-
fined to transform HDM models. The operators of these transformations include
add, delete and rename for semantically equivalent schemas, extend and contract
for semantically overlapping (non-equivalent) schemas, and id for use only in
the implementation of the AutoMed system.2 By using the mappings between
constructs of different models, schemas and transformations can be translated
1 It is optional to give an edge a name: where an edge is not given a name, its scheme

will be 〈〈 , N1, . . . , Nn〉〉.
2 The id transformations are special transformations that are used only in the imple-

mentation of the AutoMed system. They are used for mapping Java object references
that point to two semantically equivalent constructs. More details on id transforma-
tions can be found in [3].

Database Schema Transformation Optimisation Techniques 159

from one modelling language to another. Table 1 shows some of the primitive
transformations available for transforming ER models and their corresponding
transformations expressed in the HDM.

Table 1. Example primitive transformations

ER transformations HDM transformations
addEnt(〈〈N〉〉,q) addNode(〈〈N〉〉,q)
addAtt(〈〈N,A〉〉,q) addNode(〈〈N : A〉〉, {Y | 〈X,Y 〉 ∈ q}),

addEdge(〈〈 , N,N : A〉〉,q)
addRel(〈〈R,N1, . . . , Nn〉〉,q) addEdge(〈〈R,N1, . . . , Nn〉〉,q)
addGen(〈〈G,N,N1, . . . , Nn〉〉) addCons(N1 ⊆ N), . . . , addCons(Nn ⊆ N)

In AutoMed [1] two schemas S1 and S2 are transformed into each other by
incrementally applying to them a set of primitive transformations. This set of
transformations forms the pathway between S1 and S2. A distinguishing feature
of the AutoMed approach is that transformations are automatically reversible,
i.e., transformations are bi-directional, thus pathways are also bi-directional.
This is achieved by embedding in each transformation the extent of the con-
struct created or removed by the transformation. The extent is expressed as a
query q, as shown in Table 1, which defines how the data associated with the
new/removed construct can be derived from other existing constructs in the
original schema. Note that some transformations do not contain q. This means
that the new/removed construct cannot be derived from existing constructs in
the original schema. The reader is referred to [10] for a more detailed discussion
on the AutoMed transformations and its current state of implementation [3,2].
Table 2 shows some example ER transformations t and their reversed form t. The
reversibility of transformations enables automatic translation of queries posed
on any schema into appropriate queries on a particular target schema, as long
as there exists a pathway between the schemas.

Table 2. Reversibility of ER transformations

t : Sx → Sy t : Sy → Sx
addEnt(〈〈N〉〉,q) deleteEnt(〈〈N〉〉,q)
addAtt(〈〈N,A〉〉,q) deleteAtt(〈〈N,A〉〉,q)
deleteEnt(〈〈N〉〉,q) addEnt(〈〈N〉〉,q)
deleteAtt(〈〈N,A〉〉,q) addAtt(〈〈N,A〉〉,q)

To illustrate how schemas are transformed, Figure 1 shows three source ER
schemas S1, S2 and S3, and their global schema Sg. In the figure, rectangular
boxes, circles, diamonds and hexagons respectively denote entities, attributes,
relationships and generalisation hierarchies; key attributes are underlined and
nullable attributes are suffixed by #.

160 N. Tong

Fig. 1. Example ER schemas

The pathway from S1 to Sg, denoted TPS1→Sg , is shown below.3 The last
value in the scheme of attributes is one of key, null and notnull, which respectively
represents primary key, nullable and non-nullable attributes.

3 Note that for transformation t3, because an ER generalization is translated down
into a constraint in the HDM, and constraints do not have an extent, so a query
is not required for the addGen transformation. More details can be found in [10,
pg. 104].

Database Schema Transformation Optimisation Techniques 161

TPS1→Sg :
t1 addEnt(〈〈male〉〉, {X | 〈X,′m′〉 ∈ 〈〈person,sex,notnull〉〉})
t2 addEnt(〈〈female〉〉, {X | 〈X,′ f′〉 ∈ 〈〈person,sex,notnull〉〉})
t3 addGen(〈〈sex,person,male,female〉〉)
t4 deleteAtt(〈〈person,sex,notnull〉〉,

{X,Y | X ∈ 〈〈male〉〉 ∧ Y =′ m′ ∨ X ∈ 〈〈female〉〉 ∧ Y =′ f′})
t5 extendAtt(〈〈dept,site,null〉〉)
Reversing each of the transformations and their order in TPS1→Sg gives us

the pathway from Sg back to S1.
TPSg→S1 :

t5 contractAtt(〈〈dept,site,null〉〉)
t4 addAtt(〈〈person,sex,notnull〉〉,

{X,Y | X ∈ 〈〈male〉〉 ∧ Y =′ m′ ∨ X ∈ 〈〈female〉〉 ∧ Y =′ f′})
t3 deleteGen(〈〈sex,person,male,female〉〉)
t2 deleteEnt(〈〈female〉〉, {X | 〈X,′ f′〉 ∈ 〈〈person,sex,notnull〉〉})
t1 deleteEnt(〈〈male〉〉, {X | 〈X,′m′〉 ∈ 〈〈person,sex,notnull〉〉})
Pathways TPS2→Sg and TPS3→Sg are shown below. Their reverse, i.e.,

TPSg→S2 and TPSg→S3 are derived in a similar fashion as for TPS1→Sg .
TPS2→Sg :

t6 addEnt(〈〈dept〉〉, {X | 〈 ,X〉 ∈ 〈〈person,dname,notnull〉〉})
t7 addAtt(〈〈dept,dname,key〉〉, {X,X | 〈 ,X〉 ∈ 〈〈person,dname,notnull〉〉})
t8 extendAtt(〈〈dept,site,null〉〉)
t9 addRel(〈〈worksin,person,dept,1:1,1:N〉〉, {X,Y | 〈X,Y〉 ∈ 〈〈person,dname,notnull〉〉}
t10 deleteAtt(〈〈person,dname,notnull〉〉,

{X,Y | 〈 ,X,Y〉 ∈ 〈〈worksin,person,dept,1:1,1:N〉〉}
TPSg→S2 :

t10 addAtt(〈〈person,dname,notnull〉〉,
{X,Y | 〈 ,X,Y〉 ∈ 〈〈worksin,person,dept,1:1,1:N〉〉}

t9 deleteRel(〈〈worksin,person,dept,1:1,1:N〉〉,
{X,Y | 〈X,Y〉 ∈ 〈〈person,dname,notnull〉〉}

t8 contractAtt(〈〈dept,site,null〉〉)
t7 deleteAtt(〈〈dept,dname,key〉〉, {X,X | 〈 ,X〉 ∈ 〈〈person,dname,notnull〉〉})
t6 deleteEnt(〈〈dept〉〉, {X | 〈 ,X〉 ∈ 〈〈person,dname,notnull〉〉})

TPS3→Sg :
t11 renameEnt(〈〈employee〉〉, 〈〈person〉〉)
t12 renameAtt(〈〈dept,location,null〉〉, 〈〈dept,site,null〉〉)
t13 addEnt(〈〈male〉〉, {X | 〈X,′m′〉 ∈ 〈〈person,sex,notnull〉〉})
t14 addEnt(〈〈female〉〉, {X | 〈X,′ f′〉 ∈ 〈〈person,sex,notnull〉〉})
t15 addGen(〈〈sex,person,male,female〉〉)
t16 deleteAtt(〈〈person,sex,notnull〉〉,

{X,Y | X ∈ 〈〈male〉〉 ∧ Y =′ m′ ∨ X ∈ 〈〈female〉〉 ∧ Y =′ f′})
TPSg→S3 :

t16 addAtt(〈〈person,sex,notnull〉〉,
{X,Y | X ∈ 〈〈male〉〉 ∧ Y =′ m′ ∨ X ∈ 〈〈female〉〉 ∧ Y =′ f′})

t15 deleteGen(〈〈sex,person,male,female〉〉)
t14 deleteEnt(〈〈female〉〉, {X | 〈X,′ f′〉 ∈ 〈〈person,sex,notnull〉〉})
t13 deleteEnt(〈〈male〉〉, {X | 〈X,′m′〉 ∈ 〈〈person,sex,notnull〉〉})
t12 renameAtt(〈〈dept,site,null〉〉, 〈〈dept,location,null〉〉)
t11 renameEnt(〈〈person〉〉, 〈〈employee〉〉)

162 N. Tong

3 Optimising Transformation Pathways

The transformations in Section 2 are specific to the ER model. In this section,
the focus is on the general operation types of transformations. For example,
an add transformation in this section refers to all the add-type transformations
including addEnt, addRel, etc., for the ER model, addNode and addEdge, etc., for
the HDM, and all other addX for other data models, where X is a construct of
a particular data model.

A pathway may contain redundancy as the number and size of schemas grow
in a network of schemas interconnected by pathways. The aim of developing
transformation optimisation techniques [11] is to detect such redundancy, and
rebuild the pathway with the redundant transformations removed, so as to make
the evaluation of transformations, and hence the materialization of intentional
schemas, more efficient.

We have developed a formal representation of transformation called the
Transformation Manipulation Language (TML) that can be used for detecting
any redundancy in pathways, as well as validating their well-formedness.

3.1 Semantics of Transformations and a Transformation
Manipulation Language

The TML is designed to represent transformations in a form suitable for the
analysis of the schema constructs that are created, deleted or are required to be
present or absent for the transformation to be correct. In the definitions that
follow, we require a function sc which, given a query or a schema construct,
determines all the schema constructs that must exist for the query or schema
construct to be valid.

The function sc(P), where P is a schema construct, is a recursive function
that returns the union of P itself, plus sc(p1) ∪ sc(p2) ∪ . . . ∪ sc(pn), where pi
are the constructs in the scheme of P .

sc(〈〈p, p1, p2, . . . , pn〉〉) = 〈〈p, p1, p2, . . . , pn〉〉 ∪ sc(p1) ∪ sc(p2) ∪ . . . ∪ sc(pn)

For example, sc(〈〈w,p,d〉〉) = {〈〈w,p,d〉〉, 〈〈p〉〉, 〈〈d〉〉}. Table 3 shows the properties
of the sc(P) function.

Table 3. Properties of the sc(P) function

sc(Pi ∪ . . . ∪ Pj) = sc(Pi) ∪ . . . ∪ sc(Pj)
sc(∅) = ∅

The TML notation formalises a transformation ti transforming a schema Si
to a schema Si+1 as having four conditions a+

i , b−i , c+i and d−i :

Database Schema Transformation Optimisation Techniques 163

– The positive precondition a+
i is the set of constructs that ti implies must be

present in Si. It comprises those constructs that are present in the query of
the transformation (given by sc(q)) together with any constructs implied as
being present by the construct c:
ti ∈ {add(c, q), extend(c, q)} → a+

i = (sc(c)− c) ∪ sc(q)
ti ∈ {delete(c, q), contract(c, q), rename(c, c′), id(c, c′)} → a+

i = sc(c) ∪ sc(q)
– The negative precondition b−i is the set of constructs that ti implies must

not be present in Si. It comprises those constructs which the transformation
will add to the schema, and thus must not already be present:
ti ∈ {add(c, q), extend(c, q), rename(c′, c), id(c′, c)} → b−i = c
ti ∈ {delete(c, q), contract(c, q)} → b−i = ∅

– The positive postcondition c+i is the set of constructs that ti implies must
be present in Si+1, and is derived in the same way as a+

i (i.e. the positive
precondition of ti):
ti ∈ {add(c, q), extend(c, q), rename(c′, c), id(c′, c)} → c+i = sc(c) ∪ sc(q)
ti ∈ {delete(c, q), contract(c, q)} → c+i = (sc(c)− c) ∪ sc(q)

– The negative postcondition d−i is the set of constructs that ti implies must
not be present in Si+1, and is derived in the same way as b−i :
ti ∈ {delete(c, q), contract(c, q), rename(c, c′), id(c, c′)} → d−i = c,
ti ∈ {add(c, q), extend(c, q)} → d−i = ∅
Example 1 shows the add and extend transformations and their corresponding

TML representation. To save space, the constructs in Figure 1 are abbreviated
as shown in Table 4.

Example 1.
TML(t7) = t7 : [〈〈d〉〉〈〈p〉〉〈〈p,dn〉〉+, 〈〈d,dn〉〉−, 〈〈d〉〉〈〈p〉〉〈〈p,dn〉〉〈〈d,dn〉〉+, ∅]
TML(t5) = t5 : [〈〈d〉〉+, 〈〈d,s〉〉−, 〈〈d〉〉〈〈d,s〉〉+, ∅]

Table 4. Abbreviations used for the scheme of constructs in examples

Abbreviation Scheme Abbreviation Scheme
〈〈p〉〉 〈〈person〉〉 〈〈w,p,d〉〉 〈〈worksin,person,dept,1:1,1:N〉〉
〈〈p,dn〉〉 〈〈person,dname,notnull〉〉 〈〈s,p,m,f〉〉 〈〈sex,person,male,female〉〉
〈〈p,s〉〉 〈〈person,sex,notnull〉〉 〈〈d〉〉 〈〈dept〉〉
〈〈m〉〉 〈〈male〉〉 〈〈d,dn〉〉 〈〈dept,dname,key〉〉
〈〈f〉〉 〈〈female〉〉 〈〈d,s〉〉 〈〈dept,site,null〉〉
〈〈e〉〉 〈〈employee〉〉 〈〈d,l〉〉 〈〈dept,location,null〉〉

Example 2 shows the delete and contract transformations and their corre-
sponding TML representation and Example 3 shows the rename transformation
and its corresponding TML representation.

Example 2.
TML(t6) = t6 : [〈〈d〉〉〈〈p〉〉〈〈p,dn〉〉+, ∅, 〈〈p〉〉〈〈p,dn〉〉+, 〈〈d〉〉−]
TML(t5) = t5 : [〈〈d〉〉〈〈d,s〉〉+, ∅, 〈〈d〉〉+, 〈〈d,s〉〉−]

164 N. Tong

Example 3.
TML(t11) = t11 : [〈〈e〉〉+, 〈〈p〉〉−, 〈〈p〉〉+, 〈〈e〉〉−]

3.2 Properties of the TML

There are three types of transformations, namely insertion-only, removal-only
and insertion-removal transformations. add and extend are insertion-only trans-
formations as they insert a single construct into a schema. The delete and con-
tract transformations are removal-only as they remove a single construct from a
schema. rename and id are insertion-removal transformations where they insert
a construct into a schema and at the same time remove another construct from
that schema. In the TML, a transformation ti can be deduced as an insertion-
only transformation if d−i = ∅ because insertion-only transformations do not
require in their postconditions the absence of any constructs. Similarly, ti is a
removal-only transformation if b−i = ∅ because removal-only transformations do
not require in their preconditions the absence of any constructs. An insertion-
removal transformation will have the property (b−i �= ∅ ∧ d−i �= ∅). The construct
inserted by a transformation ti can be found in b−i and the construct removed
by ti can be found in d−i .

3.3 Rules for Optimisation

We can verify whether or not a pathway is well-formed by expressing the trans-
formation steps in the TML. Provided that the pathway is well-formed, we can
determine when the order of two transformations can be rearranged, when they
can be simplified, and when they are redundant and hence can be removed from
the pathway. In this section, TP refers to the pathway containing transforma-
tions tm to tn, denoted TPm,n, as shown below.

TPm,n = [tm : [a+
m, b

−
m, c

+
m, d

−
m], tm+1 : [a+

m+1, b
−
m+1, c

+
m+1, d

−
m+1], . . .,

tn : [a+
n , b
−
n , c

+
n , d

−
n]]

The set of rules discussed include the well-formedness rules (for verifying
whether or not TP is well-formed), the reordering rules (for checking whether
or not two transformations can be reordered), and the optimisation rules (for
detecting redundant and partially redundant transformations). A TP must be
verified as well-formed before any optimisation rules can be applied and its well-
formedness is maintained after the application of any optimisation rules.

Well-Formed Transformation Pathways. A pathway TP from schema Sm
to Sn is said to be well-formed if for each transformation ti : Si → Si+1 within
it:

– The only difference between the schema constructs in Si+1 and Si is those
constructs specifically changed by transformation ti, implying that Si+1 =
(Si ∪ c+i)− d−i and Si = (Si+1 ∪ a+

i)− b−i
– The constructs required by ti are in the schemas, implying that a+

i ⊆ Si,
b−i ∩ Si = ∅, c+i ⊆ Si+1 and d−i ∩ Si+1 = ∅

Database Schema Transformation Optimisation Techniques 165

The rule for verifying the well-formedness of a pathway, wf , which captures
the definition discussed above, is given below. The first wf rule applies recur-
sively to each transformation in the pathway. When there is no more transforma-
tion, the second wf rule is used to verify that applying all the transformations
in the pathway to Sm results in a schema that is equal to Sn, both in terms
of the content of the schema constructs in each schema and the extent of the
schemas. Note that the wf rule may be used in two different ways. Firstly, given
a schema Sm representing a data source and a pathway TP , we can derive the
structure and the extent of the resultant schema Sn. Secondly, if both Sm and Sn
are existing schemas representing two data sources, the wf rule may be used to
verify that TP contains the transformations that correctly transforms Sm into
Sn.

wf(Sm, Sn, [tm, tm+1, . . . , tn−1])← a+
m ⊆ Sm ∧ b−m ∩ Sm = ∅ ∧
wf((Sm ∪ c+m)− d−m, Sn, [tm+1, . . . , tn−1])

wf(Sm, Sn, [])← Sm = Sn ∧Ext(Sm) = Ext(Sn)

Reordering Transformations. Because the rules for detecting redundant and
partially redundant transformations only apply to adjacent transformations, the
order of transformations in a pathway may need to be altered during the detec-
tion of any possible redundancy, so that a transformation may be moved and
paired up with any other transformations in the pathway. Moving a transforma-
tion ti to pair up with tj in TP involves recursively reordering ti with the next
transformation in TP until the target index is reached. For example, moving ti
in TP so that it precedes tj involves reordering ti with ti+1, if successful, then
ti with ti+2, etc., until the new index of ti in TP is one less than the index of tj .

To rearrange the order of two adjacent transformations ti and ti+1 in a well-
formed TP = [tm, . . . , ti, ti+1, . . . , tn], we must first ensure that (i) ti+1 does not
contain in its preconditions a constraint that is satisfied by the postconditions
of ti. That is, if ti+1 requires construct P to exist, i.e., P ∈ a+

i+1, then P must
not have been inserted by ti, i.e., P /∈ b−i . If ti+1 requires construct P not
to exist, i.e., P ∈ b−i+1, then P must not have been removed by ti, i.e., P /∈
d−i . Assuming the reordering has taken place, TP would now look like TP ′ =
[tm, . . . , ti−1, ti+1, ti, ti+2, . . . , tn]. For TP ′ to be well-formed, the conditions that
(ii) the postconditions of ti+1 do not conflict with the preconditions of ti must
hold. That is, if P ∈ c+i+1, then P /∈ b−i must hold, and if P ∈ d−i+1, it must be
true that P /∈ a+

i . Also, (iii) the postconditions of ti−1 must not conflict with
the preconditions of ti+1, which is now positioned next to ti−1. Similarly, (iv)
the postconditions of ti must not conflict with the preconditions of ti+2. All the
reordering rules are listed below, in the order they were described.

(i)
b−i ∩ a+

i+1 = ∅
d−i ∩ b−i+1 = ∅ (iii)

c+i−1 ∩ b−i+1 = ∅
d−i−1 ∩ a+

i+1 = ∅ } if i > m

(ii)
c+i+1 ∩ b−i = ∅
d−i+1 ∩ a+

i = ∅ (iv)
c+i ∩ b−i+2 = ∅
d−i ∩ a+

i+2 = ∅ } if i < n− 1

166 N. Tong

Example 4. Determining whether or not the order of transformations t8
and t9 in TPS2→Sg can be swapped:

TML(t8,t9) = t8 : [〈〈d〉〉+, 〈〈d,s〉〉−, 〈〈d〉〉〈〈d,s〉〉+, ∅],
t9 : [〈〈p〉〉〈〈d〉〉〈〈p,dn〉〉+, 〈〈w,p,d〉〉−, 〈〈p〉〉〈〈d〉〉〈〈p,dn〉〉〈〈w,p,d〉〉+, ∅]

Because all the rules for order rearrangement evaluate to ∅, we can conclude
that the order of t8 and t9 can be reversed without affecting the overall result of
all the transformations in the pathway. The reader is referred to [16] for details
of the evaluation of these rules.

Detecting Redundant Transformations. Two transformations ti and ti+1,
that are adjacent to each other in a well-formed TP , are redundant if ti is the
reverse of ti+1, i.e., ti = ti+1 and vice versa, and the constructs being transformed
by ti and ti+1 have the same extent. In this case, the state of the resultant schema
after applying all the transformations in TP is the same whether or not both
ti and ti+1 are applied. In the TML terms, two transformations ti and ti+1 are
redundant if the following holds:

(a+
i = c+i+1) ∧ (b−i = d−i+1) ∧ (c+i = a+

i+1) ∧ (d−i = b−i+1) ∧
Ext(c+i ⊕ a+

i) = Ext(c+i+1 ⊕ a+
i+1)

where (x⊕y) = (x−y)∪(y−x), which serves to determine all the constructs added
or deleted by the pair of transformations. This rule qualifies two transformations
as redundant if they add/extend and then delete/contract (in either order) the
same construct, providing their associated queries result in the same extent. In
fact, the check on the extent is unnecessary if the transformations are a pair of
add/delete in either order because add and delete imply the insertion and removal
of all the data instances associated with the construct of the transformation.
As for cases where an extend or contract is one of the transformations in the
pair, a check on the extent of the construct must be carried out to ensure the
transformations are indeed dealing with the same construct.

Example 5. Determining whether or not t2 and t14 are redundant (assuming
verification has already been done that t2 and t14 can be reordered so that they
are adjacent to each other):

TML(t2,t14) = t2 : [〈〈p〉〉〈〈p,s〉〉+, 〈〈f〉〉−, 〈〈p〉〉〈〈p,s〉〉〈〈f〉〉+, ∅],
t14 : [〈〈f〉〉〈〈p〉〉〈〈p,s〉〉+, ∅, 〈〈p〉〉〈〈p,s〉〉+, 〈〈f〉〉−]

Because all the conditions for redundant transformations are satisfied, we
can conclude that t2 and t14 are redundant.

Detecting Partially Redundant Transformations. Two adjacent transfor-
mations, ti and ti+1, are partially redundant if they satisfy the condition that (i)
either the positive precondition of ti is the same as the positive postcondition of
ti+1, or the negative precondition of ti is the same as the negative postcondition
of ti+1. If either of these conditions is met, it is obvious that there is a certain

Database Schema Transformation Optimisation Techniques 167

level of overlap or redundancy in the effects of ti and ti+1. Partially redundant
transformations must also satisfy the condition that (ii) what ti removes is
not what ti+1 requires to be absent in its preconditions. This is because the
construct c inserted by ti+1 may not have the same semantics as the construct
c removed by ti, therefore, we cannot treat them as the same construct. On the
other hand, if ti inserts a construct c which is required to be present in the
positive precondition of ti+1, because of the adjacency of ti and ti+1, c refers to
the same construct and hence the operation on c in ti+1 may be simplified with
that in ti. However, if ti+1 is a remove-only type transformation and removes c,
we cannot optimise ti and ti+1 because they are not redundant transformations
(refuted by rule (i)). Thus, (iii) partially redundant transformations are also
required not to be a pair of insert-only transformation followed by a remove-only
transformation. These three rules for partially redundant transformations are
shown below.

(i) a+
i = c+i+1 ⊕ b−i = d−i+1, where ⊕ is the exclusive-or operator

(ii) d−i ∩ b−i+1 = ∅
(iii) ¬(d−i = ∅ ∧ b−i+1 = ∅)

The simplified transformation of two partially redundant transformations ti
and ti+1 can be derived by evaluating the transformation that represents the
combined effect of ti and ti+1. Example 6 shows the optimisation of a pair of
partially redundant transformations t5 and t12.

Example 6. Optimising partially redundant transformations t5 and t12 (as-
suming verification has already been done that t5 and t12 can be reordered so
that they are adjacent to each other):

TML(t5,t12) = t5 : [〈〈d〉〉+, 〈〈d,s〉〉−, 〈〈d〉〉〈〈d,s〉〉+, ∅],
t12 : [〈〈d〉〉〈〈d,s〉〉+, 〈〈d,l〉〉−, 〈〈d〉〉〈〈d,l〉〉+, 〈〈d,s〉〉−]

t5 and t12 can be optimised because they satisfy the three rules for par-
tially redundant transformations. Evaluating the effects of t5 and t12 results
in tsim : [〈〈d〉〉+, 〈〈d,l〉〉−, 〈〈d〉〉〈〈d,l〉〉+, ∅], which represents the primitive transfor-
mation extendAtt(〈〈d,l〉〉). The reader is referred to [16] for full details of the
evaluation.

Table 5 shows all possible transformation pairs, tx followed by ty, that can
be optimised using the techniques discussed in this section. By replacing add
with extend and delete with contract, this table also applies to the extend and
contract transformations.

Representing Composite Transformations. The results shown in Table 5
are derived by examining the effect of a transformation pair. The effect of a
transformation is the construct added/deleted by the transformation. The effect
of a composite transformation consisting of two transformations can be found
by evaluating the aggregate insertion, aggregate removal, net insertion, and net

168 N. Tong

Table 5. Summary of optimisable transformations

removal of the pair of transformations. The aggregate insertion made by trans-
formations tm, tn is the union of all the constructs inserted by tm, tn, i.e., b−m∪b−n .
The aggregate removal made by transformations tm, tn is the union of all the
constructs removed by tm, tn, i.e., d−m ∪ d−n . The net insertion made by tm, tn is
their aggregate insertion minus their aggregate removal, and their net removal
is their aggregate removal minus their aggregate insertion.

The resulting simplified transformation tsim which shows the net effect of
tm, tn will have as its positive precondition what tm, tn require to be present
before any transformation is executed. However, some positive preconditions of
tm may be removed by tn, therefore, their existence and the existence of the
constructs they imply (given by sc(aggregate removal)) is not required by tsim.
However, the constructs in the net removal of tm, tn must be present before tsim
can be applied. Also, constructs whose existence is implied by the constructs
belonging to the net insertion set must also be present in the positive precondi-
tion of tsim. Since what is contained in b−i is the construct to be inserted by ti,
tsim will have as its negative precondition the net insertion of tm, tn. After the
execution of tsim, what remains present in the resulting schema would be all the
constructs that exist before tsim is applied, plus the net insertion of tm, tn, minus
the net removal of tm, tn. Finally, the negative postcondition of tsim will contain
the net removal of tm, tn. The evaluation of tsim is summarized in Table 6.

Table 6. Representing composite transformation tsim

Aggregate insertion of tm, tn b−m ∪ b−n
Aggregate removal of tm, tn d−m ∪ d−n
Net insertion of tm, tn aggregate insertion - aggregate removal

Net removal of tm, tn aggregate removal - aggregate insertion

a+
sim = (a+

m ∪ a+
n)− sc(aggregate removal)

Simplified transformation tsim ∪ sc(net removal)

representing the composite ∪ (sc(net insertion)−net insertion)

transformgtion tm, tn b−sim = net insertion

c+sim = a+
sim∪ net insertion − net removal

d−sim = net removal

Database Schema Transformation Optimisation Techniques 169

3.4 An Optimisation Example

This section shows how optimisation techniques discussed in this paper can be
applied to cut down on the number of transformations in a pathway. Example 7
illustrates the optimisation of TPS1→S3 .

Example 7. Optimising TPS1→S3 :
TPS1→S3 :

t1 addEnt(〈〈m〉〉, {X | 〈X,′m′〉 ∈ 〈〈p,s〉〉})
t2 addEnt(〈〈f〉〉, {X | 〈X,′ f′〉 ∈ 〈〈p,s〉〉})
t3 addGen(〈〈s,p,m,f〉〉)
t4 deleteAtt(〈〈p,s〉〉, {X,Y | X ∈ 〈〈m〉〉 ∧ Y =′ m′ ∨ X ∈ 〈〈f〉〉 ∧ Y =′ f′})
t5 extendAtt(〈〈d,s〉〉)
t16 addAtt(〈〈p,s〉〉, {X,Y | X ∈ 〈〈m〉〉 ∧ Y =′ m′ ∨ X ∈ 〈〈f〉〉 ∧ Y =′ f′})
t15 deleteGen(〈〈s,p,m,f〉〉)
t14 deleteEnt(〈〈f〉〉, {X | 〈X,′ f′〉 ∈ 〈〈p,s〉〉})
t13 deleteEnt(〈〈m〉〉, {X | 〈X,′m′〉 ∈ 〈〈p,s〉〉})
t12 renameAtt(〈〈d,s〉〉, 〈〈d,l〉〉)
t11 renameEnt(〈〈p〉〉, 〈〈e〉〉)

The above pathway is formed by joining TPS1→Sg and TPSg→S3 . First t4
and t5 are reordered. Since t4 and t16 are redundant, they are removed from the
pathway. We apply the same optimisation to transformation pairs t3 and t15, t2
and t14, and t1 and t13. By now, the number of transformations in the pathway
has dramatically decreased as shown in TP ′S1→S3

in Table 7. We further optimise
t5 and t12 to form t17 as extendAtt(〈〈dept,location,null〉〉) as shown in Example 6.
The final optimised pathway TP ′′S1→S3

is shown in Table 7.

Table 7. Optimising TPS1→Sg

4 Conclusion

We have discussed in this paper the AutoMed integration system which adopts
the BAV approach and techniques for optimising transformations in this sys-
tem. We have looked at how transformations can be expressed in the TML, and
shown how TML rules can be applied for pathway optimisation. A transforma-
tion pathway optimisation tool using the TML has been implemented in the
AutoMed project. This tool, which is currently fully functional, is being opti-
mised for more speedy performance. An evaluation of performance gain by using
the TML techniques is also scheduled to be carried out.

170 N. Tong

The use of the TML can also be extended to automatically detect any possible
needs for repairing the global schema [11] in the face of evolving source schemas.
An initial idea of how this could be achieved is to periodically scan all the
pathways connected to the global schema. If a removal of a particular construct
is found in each and every of the pathways, which means this construct has now
become obsolete, then this construct should be removed from the global schema
to give a more updated reflection of the changes in its connected sources. The
techniques on using the TML to resolve some of the issues raised by schema
evolution will be investigated in the near future.

While the study of using techniques on database schema optimisation as a
way to increase the efficiency in schema integration and query processing re-
ceives considerable attention [7,18], the study of optimisation focused solely on
transformations is a rather new topic. It is our intention to develop the TML
as a general transformation manipulation language that can be used by other
schema transformation formalisms. Generally speaking, the TML is applicable
with other schema transformation languages, so long as these languages clearly
indicate the pre- and postconditions of the transformations and the associations
between new and existing constructs. The possibility of using the TML with
other transformation languages described in [4,7,17] will be investigated.

References

1. The AutoMed Project.
http://www.doc.ic.ac.uk/automed.

2. M. Boyd, P.J. McBrien, and N. Tong. The automed schema integration repository.
Proceedings of BNCOD02, 2405:42–45, 2002.

3. M. Boyd and N. Tong. The automed repositories and api. Technical report, Dept.
of Computing, Imperial College, 2001.

4. Susan B. Davidson and Anthony Kosky. WOL: A language for database transfor-
mations and constraints. In ICDE, pages 55–65, 1997.

5. Oliver M. Duschka and Michael R. Genesereth. Infomaster – An Information
Integration Tool. In Proceedings of the International Workshop on Intelligent In-
formation Integration, Freiburg, Germany, September 1997.

6. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ull-
man, V. Vassalos, and J.Widom. The TSIMMIS approach to mediation: Data
models and languages. Journal on Intelligent Information Systems, 8(2):117–132,
1997.

7. T.A. Halpin and H.A. Proper. Database schema transformation and optimization.
In Proceedings of OOER’95, volume 1021 of LNCS, pages 191–203, 1995.

8. Thomas Kirk, Alon Y. Levy, Y. Sagiv, and Divesh Srivastava. The Information
Manifold. AAAI Spring Symp. on Information Gathering, 1995.

9. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML queries on hetero-
geneous data sources. In Proc. of VLDB2001, pages 241–250, 2001.

10. P.J. McBrien and A. Poulovassilis. Automatic migration and wrapping of database
applications — a schema transformation approach. In Proceedings of ER99, volume
1728 of LNCS, pages 96–113. Springer-Verlag, 1999.

Database Schema Transformation Optimisation Techniques 171

11. P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database
architectures, a schema transformation approach. In Proc. of CAiSE2002, volume
2348 of LNCS, pages 484–499. Springer-Verlag, 2002.

12. P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema trans-
formation rules. In Proceedings of ICDE03. IEEE, 2003.

13. A. Poulovassilis and P.J. McBrien. A general formal framework for schema trans-
formation. Data and Knowledge Engineering, 28(1):47–71, 1998.

14. M.T. Roth and P. Schwarz. Don’t scrap it, wrap it! A wrapper architecture for
data sources. In Proceedings of the 23rd VLDB Conference, pages 266–275, Athens,
Greece, 1997.

15. M. Templeton, H.Henley, E.Maros, and D.J. Van Buer. InterViso: Dealing with
the complexity of federated database access. The VLDB Journal, 4(2):287–317,
April 1995.

16. N. Tong. Database schema transformation optimisation techniques for the automed
system. Technical report, AutoMed Project, http://www.doc.ic.ac.uk/automed/,
2002.

17. Markus Tresch and Marc H. Scholl. Schema transformation processors for federated
objectbases. In C. Moon Song and Hideto Ikeda, editors, 3rd Int. Symposium on
Database Systems for Advanced Applications, Daejon, Korea, 1993. World Scientific
Press, Singapore.

18. Patrick van Bommel. Experiences with EDO: An evolutionary database optimizer.
Data Knowledge Engineering, 13(3):243–263, 1994.

Using Similarity-Based Operations for Resolving
Data-Level Conflicts

Eike Schallehn and Kai-Uwe Sattler

Department of Computer Science, University of Magdeburg,
P.O. Box 4120, D-39106 Magdeburg, Germanyÿ
eike|kus þ @iti.cs.uni-magdeburg.de

Abstract. Dealing with discrepancies in data is still a big challenge in data in-
tegration systems. The problem occurs both during eliminating duplicates from
semantic overlapping sources as well as during combining complementary data
from different sources. Though using SQL operations like grouping and join
seems to be a viable way, they fail if the attribute values of the potential du-
plicates or related tuples are not equal but only similar by certain criteria. As
a solution to this problem, we present in this paper similarity-based variants of
grouping and join operators. The extended grouping operator produces groups
of similar tuples, the extended join combines tuples satisfying a given similarity
condition. We describe the semantics of these operators, discuss efficient imple-
mentations for the edit distance similarity and present evaluation results. Finally,
we give examples how the operators can be used in given application scenarios.

1 Introduction

In the past few years, there has been a great amount of work on data integration. This
includes the integration of information from diverse sources in the Internet, the inte-
gration of enterprise data in support of decision-making using data warehouses, and
preparing data from various sources for data mining. Some of the major problems in
this context – besides overcoming structural conflicts – are related to overcoming con-
flicts and inconsistencies on the data level. This includes the elimination of duplicate
data objects caused by semantic overlapping of some sources, as well as establishing a
relationship between complementary data from these sources. The implementation of
associated operations has a significant difference to usual data management operations:
only in some rare cases can we rely on equality of attributes. Instead we have to deal
with discrepancies in data objects representing the same or related real-world objects
which may exist due to input errors or simply due to the autonomy of the sources.
Furthermore, the amount of data to be processed in integration scenarios can be equal
to, or even greater than that from a single source, so, efficiency of the implementation
becomes a critical issue.

Duplicate elimination is a sub-task of data cleaning that comprises further tasks for
improving data quality like transformation, outlier detection etc. Assuming SQL-based
integration systems, the natural choice for duplicate elimination is the group by op-
erator using the key attributes of the tuples in combination with aggregate functions
for reconciling divergent non-key attribute values. However, this approach is limited to

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 172−189, 2003.
 Springer-Verlag Berlin Heidelberg 2003

equality of the key attributes – if no unique key exists or the keys contain differences,
tuples representing the same real-world object will be assigned to different groups and
cannot be identified as equivalent tuples. The same is true for linking complementary
data, which in a SQL system would be done based on equality by the join operator.

In this paper we address these problems and present similarity-based operators for
joining and grouping based on previous work. We extend our earlier work by giving
clear semantics of the operators, describing the implementation and evaluating op-
timization techniques. Both operators are based on extended concepts for similarity-
based predicates. Major concerns are the new requirements resulting from the charac-
teristics of similarity relationships, most of all atransitivity, and support for the efficient
processing of similarity predicates.

The operators have not necessarily to be provided as a language extension, though
we did this in our own query engine and use this syntax for illustration purposes. Instead
it also can be implemented by utilizing extension mechanisms which are offered by
today’s DBMS. The implementation and the evaluation results described in this paper
are based on table functions available in Oracle8i.

The remainder of this paper is organized as follows. After a discussion of related
work in Section 2, we describe the characteristics and requirements of similarity pred-
icates useful in data integration in Section 3. The proposed similarity operators are
defined with respect to their semantics in Section 4. In Section 5 we describe strategies
for an efficient implementation of these operators focusing on edit distances similarity
measures. Results of our evaluation are given in Section 6. Finally, in Section 7 we
present several aspects of the application of the similarity operations. Section 8 con-
cludes the paper and points out ongoing work.

2 Related Work

The concepts described in this paper are intended to be used in data integration and
cleaning scenarios. Related topics are from this field and similarity-based data opera-
tions, as well as from the field of analytical data processing.

Closely related to similarity-based operations is the integration of probabilistic con-
cepts in data management. In [3] Dey et. al. propose an extended relational model and
algebra supporting probabilistic aspects. Fuhr describes a probabilistic Datalog in [6].
Especially, for data integration issues and the aforementioned problems probabilistic
approaches were verified and yielded useful results, as described by Tseng et. al. in
[22]. The WHIRL system and language described in [2] by Cohen is based on Fuhr’s
work and uses text-based similarity and logic-based data access as known from Datalog
to integrate data from heterogeneous sources. Cohen describes an efficient algorithm to
compute the top scoring matches of a ranked result set. The implementation of the sim-
ilarity predicate uses inverted indexes common in the field of information retrieval. A
general framework for similarity joins for predicates on data types that can be mapped
to multi-dimensional spaces is presented by Shim et. al. in [21]. The approach is based
on an extended version of the kdB tree.

While efficient implementations of similarity predicates can be provided based on
established index structures described above, most of the real-life applications consid-

173Using Similarity-Based Operations for Resolving Data-Level Conflicts

ered in this paper require predicates for string attributes. Though there is a number of
similarity measures for strings, namely the edit distance and it’s derivatives, for which
a good overview is given by Navarro in [18], the efficient implementation for large data
sets is a current research topic. In [9] Gravano et. al. present an approach for similarity-
based joins on string attributes using an efficient pre-selection of q-grams for optimiza-
tion. In short, the approach is based on down-sizing the data sets on which a similarity
predicate is evaluated by first doing an equality-based join on substrings of fixed length
q. Though our approach is not limited to string based predicates, we implemented an
edit distance string similarity predicate using a trie as an index structure based on results
by Shang and Merret described in [20] for evaluation purposes.

A major focus of our work is the problem of duplicate detection. This problem was
discussed extensively in various research areas like database and information system
integration [25, 14], data cleaning [1, 7], information dissemination [24], and others.
Early approaches were merely based on the equality of attribute values or derived val-
ues. Newer research results deal with advanced requirements of real-life systems, where
identification very often is only possible based on similarity. Those approaches include
special algorithms [16, 11], the application of methods known from the area of data
mining and even machine learning [13].

An overview of problems related to entity identification is given in [12]. In [14] Lim
et. al. describe an equality based approach, include an overview of other approaches and
list requirements for the entity identification process. Monge and Elkan describe an ef-
ficient algorithm that identifies similar tuples based on a distance measure and builds
transitive clusters in [17]. In [7] Galhardas et. al. propose a framework for data cleaning
as a SQL extension and macro-operators to support among other data cleaning issues
duplicate elimination by similarity-based clustering. The similarity relationship is ex-
pressed by language constructs, and furthermore, clustering strategies to deal with tran-
sitivity conflicts are proposed. Luján-Mora and Palomar propose a centroid method for
clustering in [15]. Furthermore, they describe common discrepancies in string represen-
tations and derive a useful set of pre-processing steps and extended distance measures
combining edit distance on a token-level and similarity of token sets. In [11] Hernández
et. al. propose the sliding window approach for similarity-based duplicate identification
where a neighborhood conserving key can be derived and describe efficient implemen-
tations.

The importance of extended concepts for grouping and aggregation in information
integration is emphasized by Hellerstein et. al. in [10]. In particular, user-defined aggre-
gation (UDA) were proposed in SQL3 and are now supported by several commercial
database systems, e.g. Oracle, IBM DB2, Informix. In [23] the SQL-AG system for
specifying UDA is presented, that translates to C code. A more recent version of this
approach called AXL is described in [23] and its usage in data mining is discussed.

3 Similarity Measures

Similarity based operators like the similarity join and the similarity-based grouping dis-
cussed here are based on similarity measures for attribute values and their logical com-
bination. Other operators requiring concepts of similarity include for instance nearest

174 E. Schallehn and K.-U. Sattler

neighbour queries and attribute similarity selections. These concepts currently find their
way into commercial data management solutions, or are the topic of ongoing research.
This section discusses useful similarity measures, their characteristics and requirements
for common applications.

3.1 Basic Similarity Predicates

We use the following basic terms of similarity measures: let x and y be objects in a
given universe of discourse U , a similarity measure is a function sim ÿ x þ y ý ü û 0 þ 1 ú .
Alternatively a distance measure d ÿ x þ y ý ü IR can be used. The latter can be transformed
to a similarity measure, for instance using the simple transformation sim ÿ x þ y ý ù 1 ø
d ÷ x ö y õ
max , where max is the maximum difference between objects in U , if applicable. This

transformation implies a normalization, though other normalizations of distances within
a given range are conceivable. A binary similarity predicate SIM ÿ x þ y ý ô U 2, meaning ”y
is similar to x”, can for instance be derived from a similarity or distance measure using
thresholds t ó û 0 þ 1 ú or k ó IR like SIM ÿ x þ y ý ò sim ÿ x þ y ý ñ t or SIM ÿ x þ y ý ò d ÿ x þ y ý ð k.
SIM is in most cases considered as a reflexive, symmetric and atransitive relation.

While a number of approaches to describe similarity stemming from areas like in-
formation retrieval, multimedia data management or case-based reasoning exist, one
of the major problems of expressing similarity within sets of structured data is, that
the concept of similarity is in most cases highly dependent on the given application
domain. Therefore, we describe basic similarity measures for common data types and
ways of using these as primitives for combination to derive measures suitable for real
life applications.

A widely used measure is the distance d of data points x þ y in a metric space S,
for instance the Euclidean Distance in an n-dimensional space. In a metric space the
distance function fulfills the following conditions:

ï
x þ y ó S d ÿ x þ y ý ù 0 ò x ù y (1)

ï
x þ y ó S d ÿ x þ y ý ù d ÿ y þ x ý (2)

ï
x þ y þ z ó S d ÿ x þ y ý ð d ÿ x þ z ý î d ÿ z þ y ý (3)

Especially the symmetry and the triangular inequality of such a distance measure given
in (2) and (3) provide the fundament for efficient applications, e.g. in information re-
trieval and data mining. To use such measures, the data objects to be compared solely
consist of coordinates in a metric space, or otherwise have to be transformed to repre-
sent points in this space, e.g. extracting feature vectors from multimedia data or deriving
term-based vector representations of textual data. Supported by multi-dimensional in-
dexing, predicates on these distance measures can be used efficiently, though efficiency
is limited by the number of dimensions.

Another well-studied distance measure is the Levenshtein or edit distance
edist ÿ p þ w ý on string representations. Certain costs are assigned to operations like in-
sertion, deletion or substitution of characters to transform an original pattern string p to
a comparison string w, and the minimal distance is computed. For instance, assuming
constant costs of 1 for the three mentioned basic operations, the edit distance of ”edna”

175Using Similarity-Based Operations for Resolving Data-Level Conflicts

and ”eden” is 2, because the smallest sets of applicable operations are ÿ substitute(#3,
”e”), substitute(#4,”n”) þ and ÿ insert(#3,”e”), delete(#5) þ both having two operations.
Common derivates also allow a transposition operation or apply heuristic-based costs
for the operations, e.g. substituting or deleting vowels is usually less expensive than op-
erations on consonants. This distance measure fulfills the three conditions given above
for distances in metric space, this way granting efficient implementations. Though the
edit distance is a powerful measure to detect inconsistencies in data, for instance for
applications in the field of data integration and data cleaning, it is not widely used in
current data management solutions. In Sections 5 and 6 we present an efficient im-
plementation of a similarity predicate based on edit distance used with index-based
optimization through tries as proposed in [20]. Other distance measures for strings in-
clude the Hamming distance, allowing only substitutions, the episode distance, allow-
ing only insertions, and the longest common subsequence distance allowing insertions
and deletions. A good overview of approximate string matching is given in [18]. Sim-
ilar concepts of edit distances exist for other types of data representations, e.g. special
sequences like genome data, spatio-temporal data, trees and graphs in general.

Textual and numerical data, the latter including the special case of 1-dimensional
data and the difference as a distance measure plus widely used index structures like
B-trees, is covered by the approaches introduced so far. A similarity measure for cate-
gorical data can be defined, if the categories can be mapped to a simple partial order,
a metric space as described above, or a graph representing categories and their rela-
tionships. Distance measures for nodes in graphs are not discussed here, but it is worth
mentioning that for graphs, as well as for sets, meaningful distance measures can be
defined, that do not fulfill the criteria of symmetry and the triangular inequality.

3.2 Complex and Application-Specific Similarity

So far we have discussed similarity measures applicable to atomic or homogeneously
structured data types independently of a special application scenario. In real-life scenar-
ios the expression of similarity has to deal with additional aspects to improve efficiency
and the results of similarity based operations.
Complex similarity conditions: Similarity-based operators have to process tuples or
more complex objects. The description of similarity between two of those objects may
consist of a combination of more than one similarity predicate for an attribute and
may use different similarity measures on them, e.g., for information on paintings in
a database we can use the edit distance on artist names and the distance of vector rep-
resentations for descriptions of the pictures contents.
Application-specific similarity measures: The semantics of values to be compared in
given applications is known, which allows the usage of more precise similarity mea-
sures based on domain knowledge. Though we could use the edit distance to compare
names of persons, we achieve better results if the similarity measure would consider
that ”Andy Warhol”, ”A. Warhol” and ”Warhol, Andy” most likely refer to the same
person.

By using similarity predicates as described above we can simply build complex simi-
larity conditions by applying the logical operators ý , ü and û . As an alternative, a fuzzy
logic can be applied to similarity measures directly, as proposed for instance in [2]. To

176 E. Schallehn and K.-U. Sattler

reach the level of expressiveness we gain by specifying thresholds as part of every sim-
ilarity predicate in the former approach, the concept of weighting the desired impact
of every similarity measure would have to be added to the latter. An efficient evalua-
tion of a complex similarity condition consisting of similarity predicates is described in
Section 5.

Application-specific similarity measures and predicates can be defined in terms of
user-defined functions as supported in most database systems. As an example consider
a function distName ÿ x þ y ý that takes into account the various conventions for writing
names as described above. The algorithm can remove special characters, tokenize the
string, find first letter matches and finally apply edist ÿ token1 þ token2 ý on candidate to-
kens, that possibly represent the last name, to take care of typos or inconsistent spelling
of names.

Efficiency, one of the major problems of user-defined similarity, is discussed more
detailed in Section 5. The general strategy would be to conjunctively combine the user-
defined similarity predicates with index-supported equality or similarity predicates for
pre-selection purposes. Asymmetric similarity measures are not considered here, so
symmetry remains a requirement that has to be granted by the user-defined measure.

Existing operations in the relational algebra base largely on equivalence relations
established through the equality of attribute values. To integrate with these concepts
an equivalence relation can be derived from an atransitive similarity predicate SIM.
Because establishing this equivalence relation is not our major focus here, throughout
this paper we use the simple strategy of constructing an equivalence relation SIMEQ

by building the transitive closure SIMEQ : ü SIM ÿ , i.e. a partition of the universe of
discourse U is a maximal set of objects that are similar either directly or indirectly. Es-
pecially related to entity identification, centroid or density-based clustering techniques
proved to be useful strategies for dealing with atransitivity and provide a high level of
accuracy, as for instance described in [15] and [17].

4 Semantics of the Similarity Operators

In this section we describe the semantics of our similarity-based operators as extensions
of the standard relational algebra. We assume the following basic notations: let R be a
relation with the schema S ü ÿ A1 þ þ þ þ þ Am þ , tR û R is a tuple from the relation R and
tR ÿ Ai ý denotes the value of attribute Ai of the tuple tR.

The core concept for similarity-based operations is a similarity condition. It ex-
presses whether two tuples are similar in terms of their attribute values. Because we
define our operators as an extension of the standard relational algebra, we do not deal
with probabilities in conditions – by using a similarity threshold we can always rely
on boolean values for such conditions. Hence, a similarity condition ý sim cond ü is a
conjunction of predicates:

ý sim cond ü ü
mû

i ú 1

ý sim pred ü ÿ Ai ý

177Using Similarity-Based Operations for Resolving Data-Level Conflicts

where ÿ sim pred þ denotes an atomic predicate which could be either eq or a “simi-
larity predicate” like with an associated threshold or any other similarity predicate as
discussed in Section 3.

Similarity join. Based on the similarity condition introduced above the semantics of the
similarity join between two relations R1 and R2 can be described in a straightforward
way. For a given similarity condition ÿ sim cond þ we denote the set of all attributes
referenced in this expression as

ÿ
S ÿ ÿ Ai

þ
Ai is referenced in ÿ sim cond þ þ

and Si as the set of all attributes from relation Ri. Then, it holds

R1 ý ü sim cond û R2 ÿ ÿ t
þ ú

t1 þ R1 : t1 ý S1 ü
ÿ
S û ÿ t ý S1 ü

ÿ
S û ýú

t2 þ R2 : t1 ý S2 ü
ÿ
S û ÿ t ý S2 ü

ÿ
S û ý

ÿ sim cond þ ý t1 ú t2 û ÿ true þ

This simply means, a pair of tuples from the relations R1 and R2 appears in the result of
the join operation if the similarity condition is fulfilled for these two tuples.

Similarity grouping. For defining the semantics of the grouping operator we rely on the
algebra operator for standard grouping as presented in database textbooks [5]:

ÿ grouping attrs þ
F ù ÿ aggr func list þ ø ý R û

Here ÿ grouping attrs þ is a list of attributes used for grouping relation R,
ÿ aggr func list þ denotes a list of aggregate functions (e.g., count, avg, min, max etc.)
conveyed by an attribute of relation R. For simplification, we assume that the name of
an aggregated column is derived by concatenating the attribute name and the name of
the function. An aggregate function f is a function returning a value v þ Dom for a
multi-set of values v1 ú ý ý ý vm þ Dom:

f ý ÿ
þ
v1 ú ý ý ý ú vm

þ
þ û ÿ v

where Dom denotes an arbitrary domain of either numeric or alphanumeric values and
the brackets ÿ

þ
ý ý ý

þ
þ are used for multi-sets. We extend this equality-based grouping op-

erator F with regard to the grouping criteria by allowing an similarity condition and
call this new operator Γ:

ÿ sim cond þ
Γ ù ÿ aggr func list þ ø ý R û

This operator again has a list of aggregate functions ÿ aggr func list þ with the same
meaning as above. However, the grouping criteria ÿ sim cond þ is now a similarity
conjunction as introduced above. The result of Γ is a relation R ù where the schema
consists of all the attributes referenced in ÿ sim cond þ accompanied with eq and the
attributes named after the aggregates as described above. The relation R ù is obtained by
the concatenation of the two operators γ and ψ which reflect the two steps of grouping

178 E. Schallehn and K.-U. Sattler

and aggregation. The first operator γ ÿ sim cond þ ÿ R þ ý G produces a set of groups G ý
ÿ G1 ü ÿ ÿ ÿ ü Gm þ from an input relation R. Each group is a non-empty set of tuples with
the same schema as R. Furthermore, all tuples tG

i of a group G are transitively similar
to each other regarding the similarity condition þ sim cond ý :

û
G ú G :

û
tG
i ü tG

j ú G : tG
j ú tsim ÿ sim cond þ ÿ tG

i þ

where tsim ÿ sim cond þ ÿ t þ denotes the set of all tuples which are in the transitive closure
of the tuple t with regard to sim cond:

tsim ÿ sim cond þ ÿ t þ ý ÿ t ý ü
sim cond ÿ t ü t ý þ ý true ýû

t ý ý ú tsim ÿ sim cond þ ÿ t þ : sim cond ÿ t ý ü t ý ý þ ý true þ

and no tuple is similar to any other tuple of other groups

û
Gi ü G j ú G ü i ÿý j :

û
tGi
k ú Gi ÿ

û
t
G j
l ú G j :

sim cond ÿ tGi
k ü tG j

l þ ý true

The second operator ψA1 ù þ þ þ ù Al ù ÿ aggr func list þ ÿ G þ ý R ý reconciles (i.e., merges) the tuples
from each group and produces exactly one tuple for each group of G according to the
given aggregate functions. Thus, it holds

û
G ú G with G ý ÿ tG

1 ü ÿ ÿ ÿ ü tG
n þ there is one and

only one tuple tR ý ú R ý with

û
i ý 1 ÿ ÿ ÿ l : tR ý ÿ Ai þ ý tG

1 ÿ Ai þ ý tG
2 ÿ Ai þ ý ü ü ü ý tG

n ÿ Ai þ

where A1 ü ÿ ÿ ÿ ü Al are attributes referred by the eq predicates of the approximation con-
dition, (i.e., for these attributes all tuples have the same value) and

û
j ý l ø 1 ÿ ÿ ÿ m ÷ l : tR ý ÿ A j þ ý f j û l ÿ ÿ

ü
tG
1 ÿ A j þ ü ÿ ÿ ÿ ü tG

n ÿ A j þ
ü

þ þ

where f1 ü ÿ ÿ ÿ ü fm are aggregate functions from þ aggr func list ý . Based on these two
operators we can finally define the Γ operator for similarity-based grouping as follows:

þ sim cond ý
Γ ö þ aggr func list ý õ ÿ R þ ý ψA1 ù þ þ þ ù Al ù ÿ aggr func list þ ÿ γ ÿ sim cond þ ÿ R þ þ

where A1 ü ÿ ÿ ÿ ü Al are again attributes referenced by the eq predicates in þ sim cond ý .

5 Implementation and Optimization

In this section we outline our implementation of the similarity-based operators intro-
duced in the previous sections. For an efficient realization dedicated plan operators are
required, which implement the semantics described above. That means for instance for
the similarity join, even if one formulates a query as follows

select *
from r1, r2
where edist(r1.title, r2.title) < 2

179Using Similarity-Based Operations for Resolving Data-Level Conflicts

the similarity join implementation exploiting special index support has to be chosen
by the query optimizer instead of computing the Cartesian product followed by a selec-
tion. In case of the similarity grouping a simple user-defined function is not sufficient
as grouping function, because during similarity grouping the group membership is not
determined by one or more of the tuple values but depends on already created groups.
In addition, processing a tuple can be conveyed by merging existing groups.

Thus, we describe in the following the implementation of these two plan operators
SIMJOIN and SIMGROUPING and assume, that the query optimizer is able to recognize
the necessity of applying these operators during generating the query plan. This could
be supported by appropriate query language extensions, e.g. for the similarity join like

select *
from r1 similarity join r2

on edist(r1.title, r2.title) threshold 0.9

where threshold specifies the maximum allowed value for the normalized edit distance.
For the similarity grouping this could be formulated as follows:

select *
from r1
group by similarity on edist(title) threshold 0.9

Currently, for our implementation we focus on edit distances as the primary similarity
measure. For this purpose, we have adopted the approach proposed in [20] of using
a trie in combination with a dynamic programming algorithm for computing the edit
distance. The main idea is to traverse the trie containing the string values of all already
processed tuples in depth-first order, trying to find a match with the search pattern, i.e.,
the attribute value of the currently processed tuple. Due to the usage of the edit distance,
we must not stop the traversal directly after a found mismatch. Instead an edit operation
(insert, remove or replace a character) is applied and the search is continued. Only after
exceeding the given threshold, we can stop the traversal and go back to the next subtrie.
Hence, the threshold is used for cutting off sub-tries containing strings not similar to the
pattern. In addition, the effort for computing the dynamic programming tables required
for determining the edit distance can be reduced, because all strings in one subtree
share a common prefix and therefore the same edit distance. We omit further details
of this algorithm and refer instead to the original work. In our implementation of the
previously introduced operators tries are created on the fly for each grouping attribute
or join predicate which appears together with an edit distance predicate.

5.1 Similarity Join

The implementation of a similarity join outlined in this section is quite straightfor-
ward, only differing in their usage of similarity predicates as join conditions. Like for
conventional join operators index support for predicates can be exploited to improve
performance by reducing the number of pairwise comparisons. However, the different
predicates of a similarity expression require different kinds of index structures:

180 E. Schallehn and K.-U. Sattler

Algorithm 1: Processing a tuple from join relation R1 during similarity join

Globals
Conjunctive join condition c ÿ p1

þ ý ý ý þ
pn

Set of indexes Ipi ü 1 û i û n on join relation R2
for index supported predicates

Mapping table tid tid for matching tuples

Procedure processTuple(Tuple t)
begin

for all index supported equality predicates pi

set of tuples scon j : ÿ indexScan ú Ipi ü t ú Api ù ù
end for
for all index supported similarity predicates pi

scon j : ÿ scon j ø indexScan ú Ipi ü t ú Api ù ü kpi ù
end for
for all tuples tl ÷ scon j

boolean similar : ÿ true
for all non-index supported predicates pi

similar : ÿ similar
þ

evaluate ú pi ü kpi ü t ú Api ù ü tl ú Api ù ù
if not similar break

end for
if similar insert (t,tl) in tid tid

end for
end

– For equality predicates eq ÿ Ai þ common index structures like hash tables or B-trees
can be utilized.

– Numeric approximation predicates like diff k ÿ Ai þ can be easily supported by storing
the minimum and maximum value of the attribute for each group.

– For string similarity based on edit distances edist ÿ Ai þ tries are a viable index struc-
ture, as previously introduced.

– For the other similarity predicates discussed in Section 3 index support is given, for
instance through multi-dimensional indexes like R-trees and its derivates on data
mapped to a metric space.

Given such index structures a join algorithm can be implemented taking care of the
various kinds of indexes. In Algorithm 1 a binary join for two relations R1 and R2 is
shown, assuming that indexes for relation R2 either exist or were built on the fly in
a previous processing step. The result of this algorithm is a table of matching tuples
for usage described later on. Alternatively, result tuples can be produced for pipelined
query processing directly at this point. The notations Ipi and kpi refer to the index on
predicate pi and the specified threshold, respectively. Api refers to the involved attribute.

181Using Similarity-Based Operations for Resolving Data-Level Conflicts

As a side note, more complex similarity conditions could easily be supported by
adding disjunctions. The similarity condition c can be transformed to disjunctive normal
form. For all conjunctions of c ÿ ÿ m

i ÿ 1 con ji the scon ji are computed and the set of
relevant groups would be sdis j ÿ þ m

i ÿ 1 scon ji .

5.2 Similarity-Based Grouping

Like the join operator, the similarity-based grouping operator is based on the efficient
evaluation of similarity predicates, but in addition has to deal with problems arising
from the atransitivity of similarity relations. The goal of a grouping operator is to assign
every tuple to a group. A naive implementation of the similarity-based operator would
work as follows:

1. Iterate over the input set and process each tuple by evaluating the similarity con-
dition with all previously processed tuples. Because these tuples were already as-
signed to groups, the result of this step is a set of groups.

2. If the result set is empty, a new group is created, otherwise the conflict is resolved
by merging the groups according to the transitive closure strategy.

Other grouping strategies, like for instance density-based clustering, may in contrast
require more rigid similarity relations between tuples in a group. In case of any conflict
with a found group or between more than one found groups, existing groups would be
split and maybe not considered during further processing. This behavior can be utilized
to provide pipelined processing of the operator.

Obviously, the previously described naive implementation would lead to O þ n2 ý time
complexity for an input set of size n. Similar to processing a similarity join we assume
that there are index-supported predicates for equality and similarity, and in addition,
predicates like user-defined similarity predicates, that can not be supported by indexes.
An according Algorithm was implemented and is described in detail in [19].

5.3 Implementation Using Oracle8i

Implementing the described similarity operators in a SQL DBMS as native plan opera-
tors supporting the typical iterator interface [8] requires significant modifications to the
database engine and therefore access to the source code. So, in order to add these op-
erators to a commercial system the available programming interfaces and extensibility
mechanisms should be used instead. Most modern DBMS support so-called table func-
tions which can return tables of tuples, in some systems also in a pipelined fashion. In
this way, our operators can be implemented as table functions consuming the tuples of
a query, performing the appropriate similarity operation and returning the result table.
For example, a table function sim join implementing Algorithm 1 and expecting two
cursor parameters for the input relations and the similarity join condition could be used
as follows:

select *
from table (sim join (cursor(select * from data1),

cursor(select * from data2),
’edist (data1.title, data2.title) < 2’))

182 E. Schallehn and K.-U. Sattler

However, a problem of using table functions for implementing query operators are the
strong typing restrictions: for the table functions a return type has always to be specified
that prevents to use the same function for different input relations.

As one possible solution we have implemented table functions using and return-
ing structures containing generic tuple identifiers (e.g., Oracle’s rowid). So, the SIM-
GROUPING function produces a tuple of tuple identifier / group identifier pairs, where
the group identifier is an artificial identifier generated by the operator. Based on this,
the result type gid tid table of the table function is defined as follows:

create type gid_tid_t as object gid int, tid int);
create type gid_tid_table is table of gid_tid_t;

Using a grouping function sim grouping a query can be written as the following
query:

select ...
from table(sim_grouping (

cursor (select rowid, * from raw_data),
’edist(title) < 2’))) as gt,

raw_data
where raw_data.tid = gt.tid
group by gt.gid

This approach allows to implement the function in a generic way, i.e., without any
assumption on the input relation. In order to apply aggregation or reconciliation to the
actual attribute values of the tuples, they are retrieved using a join with the original
relation, whereas the grouping is performed based on the artificial group identifiers
produced by the grouping operator.

In the same way, the SIMJOIN operator was implemented as a table functions re-
turning pairs of tuple identifiers that fulfill the similarity condition and are used to join
with the original data.

6 Evaluation

The similarity-based grouping and join operators described in Section 4 were imple-
mented as part of our own query engine and, alternatively, using the extensibility in-
terfaces of the commercial database management system Oracle as outlined in Section
5. For evaluation purposes the latter implementation was used. The test environment
was a PC system with a Pentium III (500 MHz) CPU running Linux and Oracle 8i.
The extended operators and predicates were implemented using C++. All test results
refer to our implementation of the string similarity predicate based on the edit distance
and supported by a trie index. A non-index implementation of the predicate is provided
for comparison. Indexes are currently created on the fly and maintained in main mem-
ory only during operator processing time, which appears to be a reasonable approach
considering the targeted data integration scenarios. The related performance impact is
discussed below.

183Using Similarity-Based Operations for Resolving Data-Level Conflicts

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1000 2000 3000 4000 5000 6000

P
ro

ce
ss

in
g

tim
e

Number of original tuples

Threshold k=1
Threshold k=0 (exact match)

Fig. 1. Grouping with threshold k ÿ 0 and k ÿ 1

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000

P
ro

ce
ss

in
g

tim
e

Number of original tuples

Threshold k=1
Threshold k=2
Threshold k=3

Pairwise comparison

Fig. 2. Grouping with varying thresholds k ÿ 1

For the grouping operator test runs separate data sets containing random strings
were created according to the grade of similarity to be detected, i.e. for one original tu-
ple between 0 and 3 copies were created that fulfilled the similarity condition of the test
query. The test query consisted of an edit distance predicate on only one tuple. Using
the edit distance with all operations having a fixed cost of 1 and a edit distance thresh-
old k on an attribute, each duplicate tuple had between 0 and k deletions, insertions or
transpositions. As the number of copies and the numbers of applied operations on the
string attributes were equally distributed, for n original tuples the total size of the data
set to be processed was approximately 3 þ n with an average distance of k

2 among the
tuples to be detected as similar.

Grouping based on an exact matching (k ÿ 0) has the expected complexity of O þ n ý ,
which results from the necessary iteration over the input set and the trie lookup in each
step, which for an exact match requires average word-length comparisons, i.e. can be
considered O þ 1 ý . This conforms to equality based grouping with hash table support.
For a growing threshold the number of comparisons, i.e. the number of trie nodes to
be visited, grows. This effect can be seen in Figure 1, where the complexity for k ÿ 1
appears to be somewhat worse than linear, but still reasonably efficient.

Actually, the complexity grows quickly for greater thresholds, as larger regions of
the trie have to be covered. The dynamic programming approach of the similarity search
ensures that even for the worst case each node is visited only once, which results in
equal complexity as pairwise similarity comparison, not considering the cost for index
maintenance etc. The currently used main memory implementation of the trie causes
a constant overhead per insertion. Hence, the O þ n2 ý represents the upper bound of the
complexity for a rising threshold k, just like O þ n ý is the lower bound. For growing
thresholds the curve moves between these extremes with growing curvature. This is a
very basic observation that applies to similarity based operations like similarity-based
joins and selections as well, the latter providing the reason for these considerations
having a complexity between O þ 1 ý and O þ n ý . The corresponding test results are shown
in Figure 2.

The previous test results were presented merely to make a general statement about
the efficiency of the similarity-based grouping operator. An interesting question in real

184 E. Schallehn and K.-U. Sattler

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ro

ce
ss

in
g

tim
e

Number of overall tuples

No duplicates
2% duplicates

10% duplicates
20% duplicates

Fig. 3. Grouping with varying percentage of
duplicates in the test data sets

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000

P
ro

ce
ss

in
g

tim
e

Sum of input relation sizes

Threshold k=4
Threshold k=3
Threshold k=2
Threshold k=1

Fig. 4. Results for varying thresholds k ÿ 1 for
a similarity join

life scenarios would be, how the operator performs on varying ratios of duplicates in
the tested data set. In Figure 3 the dependency between the percentage of duplicates and
the required processing time is given for the threshold k ÿ 2. While the relative time
complexity remains, the absolute processing time decreases for higher percentages of
detectable duplicates. Obviously, and just as expected, using a similarity measure is
more efficient, if there actually is similarity to detect. Otherwise, searching the trie
along diverging paths represents an overhead that will not yield any results.

We received similar results for the described implementation of a similarity join.
The test scenario consisted of two relations R1 and R2, with a random number of linked
tuples, i.e. for each tuple in R1 there were between 0 and 3 linked records in R2 and
the join attribute values were within a maximum edit distance. The results are shown
in Figure 4. As the implementation of the join operation is similar to the grouping
operation the complexity is between O þ n ý and O þ n2 ý depending on the edit distance
threshold.

7 Applications

As described before, the problem of duplicate elimination in databases or during inte-
gration of various sources can be solved by applying the similarity-based grouping op-
erations. Using an appropriate similarity predicate (see below for a discussion) potential
redundant objects can be identified. However, applying a suitable similarity predicate
is only the first step towards “clean” data: From each group of tuples a representative
object has to be chosen. This merging or reconciliation step is usually performed in
SQL using aggregate functions. But, in the simplest case of the builtin aggregates one
is able only to compute minimum, maximum, average etc. from numeric values. As
an enhancement modern DBMS provide support for user-defined aggregation functions
(UDA) which allow to implement application-specific reconciliation functions. How-
ever, these UDAs are still too restricted for reconciliation because they support only
one column as parameter. Here, the problem is to choose or compute a merged value
from a set of possible discrepant values without looking at any other columns. We can

185Using Similarity-Based Operations for Resolving Data-Level Conflicts

mitigate this problem by allowing more than one parameter or by passing a structured
value as parameter to the function.

In particular for reconciliation purposes we have defined a set of such enhanced
aggregate functions including the following:

– pick where eq (v, col) returns the value of column col of the first tuple,
where the value of v is true, i.e., ÿÿ 0. In case of a group consisting of only one
tuple, the value of this tuple is returned independently of the value of v .

– pick where min (v, col) returns the value of column col of the tuple,
where v is minimal for the entire relation or group, respectively.

– pick where max (v, col) returns the value of column col of the tuple,
where v is maximal.

– to array (col) produces an array containing all values from column col.

With the help of these functions several reconciliation policies can easily be imple-
mented, one of them illustrated in the following example. We assume that the final
value for column col of each group has to be taken from the tuple containing the most
current date, which is represented as column m date:

select max(m_date), pick_where_max(m_date, col), ...
from data
group by ...

Another application-specific question is, how to specify the similarity predicate,
consisting of the similarity or distance measure itself and the threshold. If the chosen
threshold has such a major impact on the efficiency of similarity-based operations, as
described in Section 6, the question is how to specify a threshold to meet requirements
regarding efficiency and accuracy. Actually, this adds complexity to the well studied
problem of over- and under-identification, i.e. falsely qualified duplicates. Information
about the distance or similarity distribution can be used for deciding about a meaningful
threshold, as well as for refining user-defined similarity predicates. Distance distribu-
tions usually conform to some natural distribution, according to the specific application,
data types and semantics. Inconsistencies, such as duplicates, cause anomalies in the
distribution, e.g. local minima or points of extreme curvature.

Figure 5(a) shows a result for a sample consisting of approximately 1.600 titles
starting with an ”E” from integrated sources of data on cultural assets. Nevertheless,
drawing the conclusion of setting the edit distance threshold to receive a useful similar-
ity predicate would lead to a great number of falsely identified tuples. For short titles
there would be too many matches, and longer titles often do not match this way, because
the length increases the number of typos etc.

Better results can be achieved by applying a relative edit distance rdist þ x ý y ü ÿ 1 û
edist ú x ù y ø

max ú x þ length ù y þ length ø as a similarity measure as introduced in section 3. The algorithm
introduced in section 5 can easily be adjusted to this relative distance. Figure 5(b) shows
the distribution of relative edit distances in the previously mentioned example relation.
Using the first global minimum around 0 ÿ 8 as a threshold, and analyzing matches in this
area shows that it provides a good ratio of very few over- and under-identified tuples.
A successive adjustment of similarity predicates using information from analytical data
processing is also of interest for the creation of user-defined similarity predicates.

186 E. Schallehn and K.-U. Sattler

10

100

1000

10000

100000

0 2 4 6 8 10 12 14

F
re

qu
en

cy
 (

lo
ga

rit
hm

ic
)

Edit distance

(a) Absolute edit distance distribution

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy
 (

lo
ga

rit
hm

ic
)

Relative Edit distance

(b) Relative edit distance distribution

Fig. 5. Edit distance distributions in an integrated and sampled data set

8 Conclusions

In this paper we presented database operators for finding related data and identifying
duplicates based on user-specific similarity criteria. The main application area of our
work is the integration of heterogeneous data where the likelihood of occurrence of data
objects representing related or the same real-world objects though containing discrepant
values is rather high. Intended as an extended grouping operation and by combining it
with aggregation functions for merging/reconciling groups of conflicting values our
grouping operator fits well into the relational algebra framework and the SQL query
processing model. In a similar way, an extended join operator takes similarity predicates
used for both operators into consideration. These operators can be utilized in ad-hoc
queries as part of more complex data integration and cleaning tasks.

Furthermore, we have shown that efficient implementations have to deal with spe-
cific index support depending on the applied similarity measure. For one of the most
useful measures for string similarity (particularly for shorter strings) we have presented
a trie-based implementation. The evaluation results illustrate the benefit of this approach
even for relatively large datasets. Though we focused in this paper primarily on the edit
distance measure, the algorithm for similarity grouping is able to exploit any kind of
index support.

A still open issue is the question how to find and specify appropriate similarity
criteria. In certain cases, basic similarity measures like the edit distance are probably
not sufficient. As described in Section 3, application-specific similarity measures im-
plementing domain heuristics (e.g. permutation of first name and last name) based on
basic edit distances is often a viable approach. However, choosing the right thresholds
and combinations of predicates during the design phase of an integrated system often
requires several trial-and-error cycles. This process can be supported by analytical pro-
cessing steps as shown in Section 7 and the corresponding tools. Such tools should
allow an interactive investigation of analytical results as well corresponding samples
from the data level, and are part of our information fusion workbench [4]. Providing
the similarity-based operators as query primitives instead of dedicated application tools
simplifies this and opens the opportunity for optimization.

187Using Similarity-Based Operations for Resolving Data-Level Conflicts

References

1. D. Calvanese, G. de Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A principled approach
to data integration and reconciliation in data warehousing. In Proceedings of the Interna-
tional Workshop on Design and Management of Data Warehouses (DMDW’99), Heidelberg,
Germany, 1999.

2. W. Cohen. Integration of heterogeneous databases without common domains using queries
based on textual similarity. In L. M. Haas and A. Tiwary, editors, SIGMOD 1998, Pro-
ceedings ACM SIGMOD International Conference on Management of Data, June 2-4, 1998,
Seattle, Washington, USA, pages 201–212. ACM Press, 1998.

3. D. Dey and S. Sarkar. A probabilistic relational model and algebra. ACM Transactions on
Database Systems, 21(3):339–369, September 1996.

4. Oliver Dunemann, Ingolf Geist, Roland Jesse, Kai-Uwe Sattler, and Andreas Stephanik. A
Database-Supported Workbench for Information Fusion: InFuse. In Christian S. Jensen,
Keith G. Jeffery, Jaroslav Pokorný, Simonas Saltenis, Elisa Bertino, Klemens Böhm, and
Matthias Jarke, editors, Advances in Database Technology - EDBT 2002, 8th International
Conference on Extending Database Technology, Prague, Czech Republic, March 25-27, Pro-
ceedings, volume 2287 of Lecture Notes in Computer Science, pages 756 – 758. Springer,
2002.

5. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Benjamin/Cummings,
Redwood City, CA, 2 edition, 1994.

6. N. Fuhr. Probabilistic datalog – A logic for powerful retrieval methods. In Proceedings of
the Eighteenth Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Retrieval Logic, pages 282–290, 1995.

7. H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: an extensible data cleaning
tool. In Weidong Chen, Jeffery Naughton, and Philip A. Bernstein, editors, Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas,
volume 29(2), pages 590–590, 2000.

8. G. Graefe. Query Evaluation Techniques For Large Databases. ACM Computing Surveys,
25(2):73–170, 1993.

9. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivas-
tava. Approximate string joins in a database (almost) for free. In Proceedings of the 27th
International Conference on Very Large Data Bases(VLDB ’01), pages 491–500, Orlando,
September 2001. Morgan Kaufmann.

10. J. M. Hellerstein, M. Stonebraker, and R. Caccia. Independent, Open Enterprise Data Inte-
gration. IEEE Data Engineering Bulletin, 22(1):43–49, 1999.

11. M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In
Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data, pages 127–138, San Jose, Califor-
nia, 22–25 May 1995.

12. W. Kent. The breakdown of the information model in multi-database systems. SIGMOD
Record, 20(4):10–15, December 1991.

13. Wen-Syan Li. Knowledge gathering and matching in heterogeneous databases. In AAAI
Spring Symposium on Information Gathering, 1995.

14. E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity identification in database in-
tegration. In International Conference on Data Engineering, pages 294–301, Los Alamitos,
Ca., USA, April 1993. IEEE Computer Society Press.

15. Sergio Luján-Mora and Manuel Palomar. Reducing Inconsistency in Integrating Data from
Different Sources. In M. Adiba, C. Collet, and B.P. Desai, editors, Proc. of Int. Database
Engineering and Applications Symposium (IDEAS 2001), pages 219–228, Grenoble, France,
2001. IEEE Computer Society.

188 E. Schallehn and K.-U. Sattler

16. A. E. Monge and C. P. Elkan. The field matching problem: Algorithms and applications. In
Evangelos Simoudis, Jia Wei Han, and Usama Fayyad, editors, Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96), page 267.
AAAI Press, 1996.

17. A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Proceedings of the Workshop on Research
Issues on Data Mining and Knowledge Discovery (DMKD’97), 1997.

18. Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing Surveys,
33(1):31–88, 2001.

19. E. Schallehn, K. Sattler, and G. Saake. Extensible grouping and aggregation for data rec-
onciliation. In Proc. 4th Int. Workshop on Engineering Federated Information Systems,
EFIS’01, Berlin, Germany, 2001.

20. H. Shang and T. H. Merrett. Tries for approximate string matching. IEEE Transactions on
Knowledge and Data Engineering, 8(4):540–547, 1996.

21. K. Shim, R. Srikant, and R. Agrawal. High-dimensional similarity joins. In Proceedings of
the 13th International Conference on Data Engineering (ICDE’97), pages 301–313, Wash-
ington - Brussels - Tokyo, April 1997. IEEE.

22. F. Tseng, A. Chen, and W. Yang. A probabilistic approach to query processing in hetero-
geneous database systems. In Proceedings of the 2nd International Workshop on Research
Issues on Data Engineering: Transaction and Query Processing, pages 176–183, 1992.

23. H. Wang and C. Zaniolo. Using sql to build new aggregates and extenders for object- re-
lational systems. In A. El Abbadi, M.L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, editors, Proc. of 26th Int. Conf. on Very Large Data Bases
(VLDB’00), Cairo, Egypt, pages 166–175. Morgan Kaufmann, 2000.

24. T. W. Yan and H. Garcia-Molina. Duplicate removal in information dissemination. In Pro-
ceedings of the 21st International Conference on Very Large Data Bases (VLDB ’95), pages
66–77, San Francisco, Ca., USA, September 1995. Morgan Kaufmann Publishers, Inc.

25. G. Zhou, R. Hull, R. King, and J. Franchitti. Using object matching and materialization to
integrate heterogeneous databases. In Proc. of 3rd Intl. Conf. on Cooperative Information
Systems (CoopIS-95), Vienna, Austria, 1995.

189Using Similarity-Based Operations for Resolving Data-Level Conflicts

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 190–197, 2003.
© Springer-Verlag Berlin Heidelberg 2003

ProSQL: A Prototyping Tool for SQL Temporal
Language Extensions

James Green and Roger Johnson

School of Computer Science, Birkbeck, University of London,
Malet Street, London WC1E 7HX, UK.

JamesGreen@liberata.com , r.johnson@dcs.bbk.ac.uk

Abstract. This paper describes ProSQL, a novel prototyping tool to support the
development of extensions to SQL. ProSQL provides a simple way to prototype
the features of a proposed extension and thus provide a proof of concept.
Further, it provides proposers and reviewers of extensions with a clearer view
of their positive and negative features. The approach adopted has been to build
a wrapper around an existing database management system, in this case
Microsoft Access, and to provide a collection of interfaces with which a
designer can define extensions to the basic relational database.

1 Introduction

This paper describes ProSQL, a novel prototyping tool to support the development of
extensions to SQL. The work has been carried out in the context of temporal
extensions to SQL but the authors believe that the approach adopted can be readily
applied to a wide range of other potential extensions to SQL.

Many temporal extensions to SQL have been proposed although few have been
implemented. In studying temporal extensions it became clear to the authors of this
paper that claims were being made about their ease of use and productivity which had
often not been substantiated by controlled experiments.

The approach adopted has been to build a wrapper around an existing database
management system, in this case Microsoft Access, and to provide a collection of
interfaces with which a designer can define extensions to the basic relational database.
The facilities include new data types, new comparison operators as well as temporal
features. The authors recognize that there are limitations to the range of language
extensions that can be implemented in this way. However, their experience suggests
that the range is sufficiently large to make this approach useful for language
developers and HCI researchers.

2 Motivation

The starting point for this research was the authors’ previous work in extending SQL
to handle spatio-temporal data by means of intervals. Assumptions have been made in

ProSQL: A Prototyping Tool for SQL Temporal Language Extensions 191

the literature about the ease of use of temporal extensions [16]. Conceptual models
have been presented which are claimed to be more intuitive to the user [17, 5].

The authors of this paper have a long term concern with assessing the usability of
SQL extensions. Though a formal definition of usability does not exist there is a
general agreement on its constituent parts [20]. These are best described as efficiency,
effectiveness and satisfaction. Efficiency can be determined by speed of learning and
accuracy; effectiveness by memorability and rate of errors whereas satisfaction is a
subjective measure.

Designers of temporal extensions have only built implementations that support
their own extension and have used them primarily to demonstrate feasibility [14] and
to evaluate their extension in isolation [5]. In addition, gaining access to many of
these extensions by independent researchers is not possible and, as the interfaces
inevitably differ anyway, comparative analysis of extensions using their own
implementation is not possible as the difference in the interface would invalidate the
result [2,21].

This has provided the motivation for developing ProSQL, a prototyping tool for
SQL extensions that can support a basic simulation of a range of different SQL
extensions. The application allows the user to define extensions and their associated
operations thus providing a tool that can be used in usability tests and other
experiments at an early stage in the design without incurring the time penalties and
associated development costs of a full implementation. It also eliminates the problems
associated with different interface behaviour and shows that a basic simulation of a
range of SQL extensions can be achieved relatively easily.

3 Previous Work

So far as the authors are aware Pro SQL is the first attempt to build a prototyping tool
to support the development of extensions to SQL in this way. ProSQL offers a simple
standard interface to a range of potential SQL extensions which support comparative
studies between competing alternatives.

Since the implementation of a common interface for the languages being compared
is beyond the scope of most usability researchers, the great majority of experiments
have used paper and pen tests. These have been shown to be effective [10,11, 19].
However, Yen and Scammel found the use of an interface could yield different results
to pen and paper although their experiment compared a text based language, SQL,
with a graphical one, QBE [21].

Tests using query language interfaces have also been used in previous experiments
[21, 3]. Prototype applications have been used in usability tests of database query
languages [6]. However, these experiments were undertaken when the languages were
already commercially available and, therefore, too late to influence SQL design
materially.

The purpose of most SQL extension implementations appears limited to
demonstrating feasibility. While they allow users to experience the language no
reports of systematic testing appear in the literature.

192 J. Green and R. Johnson

4 Application

The definition of an SQL extension involves a sequence of relatively straightforward
steps. First the extension has to be named. Once this is done the new data types, a test
database, predicates and their mappings to the underlying SQL are defined followed
by the specification of an extension’s functions and mapping them to those built in to
the underlying database. (If a required base function does not exist it has to be
programmed before it can be mapped to an extension’s function.). At any stage in the
extensions definition the researcher can define and populate databases and use them
to test their extension definition.

MS Access
Enviroment

Results

DDL
Type &

DB Defns

DML
OPS &

Functions

DDL
GUI

DML
GUI

Test
Databases

DDL
Changes

Queries

Fig. 1. ProSQL Architecture

The prototyping tool has been developed using an approach similar to that of other
implementations of query language extensions using a two tiered system. In this
approach, the base layer is a conventional RDBMS [18, 15]. The actual RDBMS used
by ProSQL is Microsoft ACCESS. The benefit of using this is that it is cheap, widely
used and does not need any specialist DBA skills to maintain it. The emphasis is on
the production of a tool that can be easily installed and used without requiring
additional specialist knowledge to maintain it or extra software to use it. This
approach suffers from some of the problems described in [15] as the simulation of an
extension using a wrapper has a detrimental affect on performance.

The outer layer is a wrapper that forms the interface with the user and maps the
extension’s view of a query to one that can be processed by the underlying RDBMS.
It provides support for a data definition language (DDL), a data manipulation
language (DML) and uses a set of system catalogues to support non-atomic data
types, SQL extensions and operations.

The SQL language can be divided into three sub languages which are the data
definition language (DDL), data manipulation language (DML) and data control
language (DCL). Each of these will now be described in turn.

ProSQL: A Prototyping Tool for SQL Temporal Language Extensions 193

4.1 Support for a DDL

The DDL is a GUI application used to define databases, normal, valid time period and
event tables and support for tuple time stamping, attribute time stamping (ATS) and
explicitly defined period attributes. When a database and its relation schemes are
defined it is not bound to a specific extension recorded in the RDBMS. The user
selects the extension that is used when they want to query a database. The failure to
bind a database to a given extension is not the result of an oversight. Query languages
that provide support for the same relational model, data types and tables can be used
on the same database structure in an experimental situation.

4.2 Definition of New Non Atomic Data Type

Before an extension’s language can be modeled its base types must be available to the
application. This includes its non-atomic data type. All the sub types of a generic
domain like an interval, for example DATE INTERVAL, INTEGER INTERVAL,
have to be declared separately, which renders their definition simple but relatively
tedious. New data types are declared using a collection of atomic types supported by
the underlying RDBMS, along with a character string for each element of the type
that can be appended to an attributes name. This is used to identify part of the data
type in the base RDBMS storage system.

The structure used above to map a statement belonging to an extension to an
equivalent structure supported by the underlying RDBMS is typical of the approach
used throughout the application as it usually allows a set of simple procedures to be
used to construct the mapped statements.

4.3 Database Definition

The next step in the definition of an extension is the definition of a database whose
relations utilise the extension’s novel data types and relation's properties and it
provides a test database when the extension is being defined.

Relations are defined using the GUI displayed in Figure 2 which is used to declare
a relation’s name and its properties. As an extension to SQL can be derived from a
uni-sorted or multi-sorted relational model or incorporate ATS a relation can have a
number of properties including implicit temporal attributes and be in NFNF. Support
for NFNF relations is limited as it can only support one level of nesting for attribute
time stamped values because of limitations of MS Access.

4.4 Support for a DML

Once data types have been declared and a test database configured the user then
defines additional predicate operators and functions using the DML. A GUI
application that is separate from the DDL provides support for the DML and allows
the user to define different SQL extensions, their associated operations and functions.
It should be noted that the DML only provides functionality for general queries and

194 J. Green and R. Johnson

cannot be used to UPDATE, DELETE or INSERT data as a data entry screen is
provided that performs these functions and, in general, evaluation of query languages
focuses on data retrieval. To declare an extension the user first names it and, after
doing so, is allowed to define the operators and functions associated with it. This is
done in two stages. The user first declares a name for an operator, states whether or
not it is a unary or binary operation and the data types that can be used. They have to
be declared in the order they are used in the operation with the data type for the left
side being declared first. The final stage is the definition of a set of operations that
allows the operator to be converted to a set of valid SQL statements of the base
RDBMS. An extension can be developed incrementally which permits the user to test
the extension as each operator is defined.

Fig. 2. Data Entry Screen for Base Table Definition

4.5 Definition of Operations

As stated before new data types are declared using a collection of atomic data types
that are supported by the underlying RDBMS. When a new data type is declared part
of the declaration is the definition of a name that can be appended to the attribute
names used in the relation scheme. To define a suitable mapping to the RDBMS’ SQL
for a non atomic data type’s operator the name of the data type’s element used on the
left hand side is declared first, followed by a theta predicate and the name of data
type’s element used on the right hand side. The user also has to declare where in the
sequence of mappings the definition occurs and the boolean operation (AND, OR)

ProSQL: A Prototyping Tool for SQL Temporal Language Extensions 195

that follows the mapping. The user continues adding mapping data until the definition
is complete.

4.6 Definition of Functions

The base RDBMS used in this application allows functions defined in a database to be
included in an SQL statement. This makes the inclusion of functions on data types
that do not depend on grouping or involve some other operation on tuples relatively
easy to implement. Support for functions or processes like coalescence that form a
fundamental part of an extension are more difficult to model and are described later.

To add a function that can be used in an extension’s SQL, first define the function
in the database supporting the DML. If the function’s arguments include a new data
type, such as a DATETIME interval, the parameters specified in the actual definition
of the base types of which it is made up, are used by the functions’ processes.

4.7 Definitions of Functions on Relations

Functions and processes that change the values in the tuple require more
consideration. For the temporal and interval extensions such functions are
coalescence, FOLD and UNFOLD and NORMALIZE ON. Much of the functionality
required to achieve valid time coalescence and FOLD and UNFOLD can be managed
using relatively simple processes and the use of temporary tables. (It should be
remembered that the prototype is being used to evaluate language extensions not to
devise algorithms that improve processing speed so simple procedures are more than
sufficient). To see how processes on tuples can be incorporated consider the SQL
statements in Figure 3.

(A) SEQUENCED VALIDTIME
SELECT A,B,C
FROM TABLEA

(B) INSERT INTO XYZ
SELECT * FROM TABLEA

(C) SELECT A,B,C,PERIOD1
FROM TABLEA
REFORMAT AS UNFOLD PERIOD1

Fig. 3. Queries with a prepended or appended statement to a SELECT .. FROM .. WHERE

Queries A, B and C are similar in that the projection on TABLEA can be executed
first and the processing required to achieve the statement SEQUENCED
VALIDTIME in (A), INSERT INTO XYZ in (B) or UNFOLD PERIOD1 can be done
afterwards. It is evident from (A) that some additions to the projection will have to be
made first before the base query is executed and the processes required to achieve
coalescence are run. Again these functions, or the elements that make up the users
view of the function, have to be defined first. This information can be held in the
system catalogs as illustrated in the tables above.

The inclusion of system catalogs in a conventional RDBMS is well known.
Copying that approach has resulted in an RDBMS being used to develop an

196 J. Green and R. Johnson

application that performs basic support for a number of SQL extensions using a single
user interface.

4.8 Limitations

To date the majority of work has concentrated on firstly implementing temporal
extensions to SQL and secondly implementing extensions to include the generic
interval data type. The working application is currently restricted to these data
domains although testing of other generic processes continues. It is hoped to develop
other generic extensions in the near future as opportunity allows. The authors believe
that a substantial range of interesting extensions can be readily modeled although
some inherent limitations of MS Access, such as support for only one level of nesting,
would probably make a full NFNF impossible.

5 Conclusions

ProSQL is a novel tool for prototyping extensions to SQL. The prototyping tool has
been used to define SQL extensions for ATSQL, TSQL and IXSQL in a few days. It
has successfully executed queries on databases using attribute time stamping, valid
time state tables and schemas using generic interval data types.

Early evaluation of a language or extension is desirable as the results could have a
positive influence on the language’s evolution. ProSQL allows the user to define an
emulation of one or more language extensions without rigidly tying the definition to
specific lexical terms. The researcher can experiment with the lexical forms used in a
query language extension, perform usability tests, undertake case studies for a range
of proposals or use it to evalaute interface characteristics for a proposed extension.

The approach adopted has been to build a wrapper around an existing database
management system, in this case Microsoft Access, which allow a designer to define
extensions to the basic relational database. The facilities include new data types, new
comparison operators as well as temporal features. While there are limitations to the
range of language extensions that can be implemented in this way, the authors
experience suggests that the range is sufficiently large and flexible to make this
approach useful for language developers and HCI researchers.

References

1. Blackwell, A. F. Metacognitive Theories of Visual Programming. Proceedings IEEE
Symposium of Visual Languages, 1996, Pages 240–246.

2. Chan, H. C. Wei, K. K, An empirical study on end users’ update performance for different
abstraction levels. Int. J. Human –Computer Studies (1994) Vol 4, Pages 309–328

3. Davis, J. S, Usability of SQL and menus for database query. Int. J. Man-Machine Studies,
1989, Pages 447–455

4. ORES: Towards The First Generation of Temporal DBMS Valid Time SQL. University Of
Athens, Agricultural University of Athens, 1994

ProSQL: A Prototyping Tool for SQL Temporal Language Extensions 197

5. Goralwalla, I. A., Tansel A. U., Ozsu, M. T, Experimenting with Temporal Relational
Databases. CIKM 95, Pages 296–303

6. Greene, S. L, Devlin, S.J, Cannata, P. E, Gomez, L.M. No IFS, ANDS, or ORS: A Study
of database querying. Int. J. Man-Machine Studies (1990), Vol. 32, Pages 303–326

7. Jarke, M, Turner, J, Stohr, E.A, Vassiliou Y, White, N.H, Michielsen, K. A Field
Evaluation of Natural Language for Data Retrieval., IEEE Transactions on Software
Engineering, Vol. SE-11, 1985 Pages 97–114

8. Lorentzos, N. A, Mitsopoulos, Y. G. SQL Extension for Interval Data., IEE Transactions
on Knowledge and Data Engineering, Vol. 9, No. 3, 1997

9. Rumbaugh, J, Blaha, M, Premerlani, W, Eddy, F, Lorensen, W. Object-Oriented Modeling
and Design. Prentice Hall International Editions.

10. Reisner, P, Boyce, R.F, Chamberlain, D.D. Human Factors Evaulation of Two Database
Query Langugaes- Square and Sequel., Proceedings of National Computer Conference
(1975), Pages 447–452

11. Reisner, P. Use of Psychological Experimentation as and Aid to Development of a Query
Language. IEEE Transactions on Software Engineering, Vol. SE-3, No. 3, 1997, Pages
218–229

12. Human Factors Studies of Database Query Languages: A Survey and Assessment.
Computing Surveys, Vol 13, No. 1, 1981

13. Shneiderman, B. Improving Human Factors Aspect of Database Interactions. ACM
Transactions on Database Systems, Vol 3., No. 4, 1978, Pages 417–439

14. Snodgrass, R T. The Temporal Query Language TQUEL. ACM Transactions on Database
Systems, Vol. 12, No. 2, 1987

15. Stonebraker, M, Brown, P, Object Relational DBMSs – The Next Great Wave. Morgan
Kaufman Publishers,

16. Snodgrass, R. T, Bohlen, M. H, Jensen, C. S., Steiner, A. Transitioning Temporal Support
in TSQL2 to SQL3. Time Centre Technical Report, TR-9, 1997

17. Toman, D. Point vs. Interval based Query Languages for Temporal Databases. PODS
1996, Pages 58–67

18. Torp, K, Jensen, C. S, Snodgrass, R. T, Stratum Approaches to Temporal DBM
Implementation, IDEAS Cardiff, 1998

19. Welty, C, Stemple, D.W, Human Factors Comparison of Procedural and Non Procedural
Query Language. ACM Transactions. on Database Systems Vol. 6, No.4, 1981 Pages 626–
649

20. van Welie, M, van der Veer, G, Eliens, A. Breaking Down Usability. Human Computer
Interaction – INTERACT 99, 1999, Pages 613–620

21. Yi-Miin Yen, M, Scammel, R. W. A Human Factors Experimental Comparison of SQL
and QBE. IEEE Transactions on Software Engineering, Vol. 19, No. 4, 1993, Pages 390–
409

MVMBS: A Multiple Views Supporting
Multiple Behaviours System for Interoperable

Object-Oriented Database Systems

M.B. Al-Mourad1, W.A. Gray2, and N.J. Fiddian2

1 Aston University, Computer Science Dept., B4 7ET UK
m.b.al-mourad@aston.ac.uk

2 Cardiff University, Computer Science Dept., CF24 3XF, UK
{w.a.gray, n.j.fiddian}@cs.cf.ac.uk

Abstract. This paper addresses the problem of integrating object-
oriented local database schemas by creating several tailored global views
using multiple structures and behaviours which fully match user require-
ments. Different users have different needs for integrating databases, and
even the same user might want to integrate the same data in a variety
of ways and/or include different behaviours to satisfy different tasks in
an organisation. Supporting the global views with multiple behaviour,
when possible saves effort, cost and time where the investment made in
developing them can be exploited again by the original owner of these
behaviours and also by new users in the interoperation context. We de-
scribe the theoretical framework we are using in the construction of
the (MVMBS) Multiple Views supporting Multiple Behaviours System.
MVMBS offers the potential for users to work in terms of integrated and
customised global views supported by multiple behaviours.

1 Introduction

The architectures of Multidatabase Systems (MDBS) range from tightly coupled
to loosely coupled [1], and they employ static [2,3] or dynamic [4,5] views in
accessing data from multiple databases. The emphasis of these systems has tra-
ditionally been placed on the structural aspects of data integration. Even though
the use of an Object-Oriented (OO) data model as the canonical data model for
database integration has been widely favoured [6], attention to behavioural as-
pects of such models has been ignored [7]. OO MDBSs generally do not present
object methods other than those implementing generic query and transaction
facilities to a global user, in spite of the fact that component databases may
have implemented application-specific methods with their local objects. Reuse
or sharing of these methods by other users in a MDBS environment saves effort,
cost and time where the investment made in developing them can be exploited
again by the original owner of these methods and also by new users in the
interoperation context. We suggest that interoperability between a set of het-
erogeneous OO databases is best achieved by building several tailored global

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 198–206, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

MVMBS: A Multiple Views Supporting Multiple Behaviours System 199

views supporting multiple behaviours to fully meet user requirements and this
allows local conflicts to be resolved in various ways. These views are built by
MVMBS and defined in terms of virtual classes and materialisation rules; they
are created by applying a set of semantically-rich integration operators to local
database schemas represented in the ODMG standard. The operators comprise
a language we call the Multiple Views supporting Multiple Behaviours Language
(MVMBL). To build such views and to facilitate the use of MVMBL we re-
quire identification of semantic relationships between object types in different
databases and resolution of schematic differences between these related object
types. MVMBS uses both structural and behavioural characteristics of objects to
detect object semantic similarity in Object-Oriented Database (OODB) schemas.

2 The Object Model

Real-world entities are modelled as a set of objects (O). An object oi ∈ O consists
of structure properties (attributes of the object) and behaviour properties (the
methods that can be executed on or by the object). We will refer to the attributes
and behaviours of an object as object properties [8] and together they identify
the object’s Type. Each object has an object identifier (OID). Objects that have
the same properties (Type) are grouped into sets called classes C. A class c ∈ C
has a unique class name, Properties(c), Type(c), and a set of instances Ext(c).
Formally, Properties(c)={A, M}, where:

– A is the set of all attributes of class c: A = {a1 : D1,, an : Dn}; where Di

(i = 1, n) is the type of attribute ai.
– M is the set of all methods of class c: M = {m1,m2,,mj} ; where mi

(i = 1, j) is the signature of method i and has the form: Name (Arg1 :
T1,, Argk : Tk) → (R1 : S1,, Rp : Sp) where Name is the method
name; Argi is an input parameter and Ti is the type of Argi((i = 1, k), k≥
0); and Rj is a return value and Sj its type ((j = 1, p), p≥ 0).

The domain of each method is a cross-product of the domains of its result values:
dom(m) ⊆ {×i=1,pdom(Rp)} and the domain of c is: dom(c) ⊆ {×i=1,ndom(ai)}
× {(×i=1,jdom(mj)}. For two classes c1 and c2 ∈ C: we call c1 a subset of c2,
denoted as (c1 ⊆ c2), if and only if: ((∀ o ∈ O and o ∈ c1)⇒ o ∈ c2). We call c1 a
subtype of c2, denoted as (c1 � c2), if and only if: Properties(c1) ⊇ Properties(c2)
and (∀ p ∈ Properties(c2) ⇒ domc2(p) ⊆ domc1(p)). We will call c1 a subclass
of c2, denoted by (c1 is a c2), if and only if (c1 ⊆ c2) and (c1 � c2).

3 Sharing Behaviour – Scope and Requirements

Let us consider the classes EMPLOYEE and WORKER in DB1 and DB2, respec-
tively (Fig. 1). Assume that both classes are semantically related and ideal for
integration by merging into a global class GLOBAL-EMPLOYEE (see section 5.7)
where its extension is the union of both EMPLOYEE and WORKER extensions

200 M.B. Al-Mourad, W.A. Gray, and N.J. Fiddian

Ext Membership

Instances

Merge

d =today_date − date _of_birth
return d

age()

return s

s = 0.20 * salary
If salary > B

tax()

salary: float
position: string

DB2
ADDRESS

s = 0.15 * salary
If salary > A

EMPLOYEE
name: string
home_address: string
position: string
date_of_birth: date
salary: float

float age()

DB1

WORKER

name: string

float tax()

salary: float

dateOfbirth: date
address: address

DB2

GLOBAL_EMPLOYEE

name: string
address: address
date_of_birth: date

float age()
float tax()

GLOBAL−DB

Fig. 1. Method property requirements

[3]. Typically, reusing the tax() method defined in local class WORKER at the
global level offers an additional feature to the global users. So they can share
this method by applying it to instances derived from the EMPLOYEE class in
DB1 as well as instances derived from class WORKER in DB2 . From the pre-
vious example we can differentiate between two different meanings, reusing and
sharing behaviour at the global level. Reusing behaviour is the ability to use the
behaviour defined in a component database class on instances of this class but at
global schema level. In contrast, sharing behaviour is the ability to use the same
behaviour but on instances belonging to other component database classes.

3.1 Semantic Requirements for Reusing and Sharing Behaviour in
MDBS

We found that sharing behaviour at the global level implies three basic seman-
tic requirements: property, property assertion validity and property value validity
requirements. For the sake of space limitations we will briefly describe the prop-
erty requirement alone as it is fundamental to this paper, and the reader is
invited to review [9] for fuller details. The global class that wishes to reuse or
share a method should ensure the properties required by the method in order to
perform its functionality. For example, the method (tax) in WORKER requires
the data represented in an attribute (salary) in order to perform its functional-
ity, which is calculating employee income tax based on salary. The global class
GLOBAL EMPLOYEE (which is a merger of both classes in the global schema)
must have the attribute salary in order to share the salary method defined in the
WORKER class. Formally: for semantically related classes c1 and c2 in DB1 and
DB2 respectively, with: Properties(c1)={A1,M1} and Properties(c2)={A2,M2}
Let us have m ∈M1 a method available in the class c1 and the global user would
like to reuse this method on the global class Gc that is an integration of the

MVMBS: A Multiple Views Supporting Multiple Behaviours System 201

classes c1 and c2 by applying one of the integration operators (see section 5.7).
We define the function MethodProperties(m,c) which returns a set of properties
(Properties(c*)) from class c that is required by the method m in order to per-
form its functionality: MethodProperties(m,c) = Properties(c*) = {A*,M*} ⊆
Properties(c). Assuming that c is an integration of c1 and c2, we can formally
recognise three cases:

– If MethodProperties(m,c) ⊆ {Properties(c1) ∩ Properties(c2)} and dom(m)
⊆ (dom(c1) ∪ dom(c2)) this means the method m is applicable on instances
retrieved from both class c1 and class c2. This corresponds to both Reusing
and Sharing at the same time.

– If ((MethodProperties(m,c) ⊆ Properties(c1) and dom(m) ⊆ dom(c1)) and
(MethodProperties(m,c) �⊆ Properties(c2) or dom(m) �⊆ dom(c2))). The
method m is applicable only on instances retrieved from class c1 (Ext(c1)),
and corresponds to Reusing only.

– If ((MethodProperties(m,c) ⊆ Properties(c2) and dom(m) ⊆ dom(c2)) and
(MethodProperties(m,c) �⊆ Properties(c1) or dom(m) �⊆ dom(c1))). The
method m is applicable only to instances retrieved from class c2 (Ext(c2)),
and corresponds to Reusing only.

4 Detection of Semantic Relationships

In our research we assume that two classes are Semantically Related when they
have corresponding intended Real World Semantics (RWS) for some universe of
discourse, and Semantically Incompatible when they are not semantically related;
where the real-world semantics of a class C, RWS(C), is defined as the set of
objects in the real world in C’s database schema definition. As we cannot depend
on the extension of classes in reality, we adopt class properties as the basis for
class comparison, assuming that the properties represent the intended meaning
of the classes. To detect whether two classes are similar, we designed a heuristic
module Class Similarity Detector (CSD) that quantifies the measure of similarity
between two classes according to a hierarchical aggregation of similar properties.
If the measure exceeds or equals a certain threshold (which can be altered by
the user), then we can consider the two classes to be similar. The result of CSD
application is presented to the user for review and response in two respects.
He/She has to: 1) accept, reject, or modify the heuristic result, solving any
conflict that may be found; 2) determine what type of relationship exists between
these classes (i.e. equivalent, overlap, inclusion, disjoint). The following equation
is used to determine whether two classes c1, c2 from two databases are similar
or not:

n∑

i=1

Fi(c1, c2)×Wi ≥ Threshold (1) where :

– Fi are the similarity functions and their result is a value in [0,1].
– Wi are the function similarity weights given by the user, and

∑n

i=1 Wi = 1.
– The threshold is a value in [0,1].

202 M.B. Al-Mourad, W.A. Gray, and N.J. Fiddian

Each function’s similarity weight can be altered and the user may assign a higher
weight for a function that he feels is more efficient or important than other
functions. We call each function a factor:

– Class Name Similarity Factor (CNSF): see (Fig. 2) for values:
– Class Property Similarity Factor (CPSF): to detect whether two properties

(attributes or methods) are similar or not we consider the name and type of
each property.

CPSF =
No. of equivalent properties

Average No. of properties in both classes

Two properties are considered as equivalent if the Property Similarity (PS)
factor exceeds or equals a threshold value, where PS is calculated by the
following equation:

PS=

{
0 ifPNS×WPNS=0

PNS×WPNS+PTS×WPTS otherwise

PNS is the Property Name Similarity factor and PTS is the Property Type
Similarity factor. WPNS and WPTS are the weights for PNS and PTS which
are determined by the values in (Fig. 2):

1 0.5 0

If they are the same name

If they have minor splelling

differences/ or they are synonyms

(based on WordNet thesaurus

if they are different names

CNSF

PNS

PTS

Factors
Values

Fig. 2. Factor Values

Two types are considered compatible if they are both members of a certain
type set (e.g. long/short integers). If the types are non-primitive objects (i.e.
user defined classes), CSD is re-consulted to detect the similarity of these
types.

– Class Behaviour Similarity Factor (CBSF): this considers the shareable be-
haviours from both classes c1, c2. We consider the behaviours mi from class
c1 where mi ∈ c1 and can be shared by class c2 (if MethodProperties(mi,c2)?
is true); likewise for behaviours mj from class c2 that can be shared by class
c1.

CBSF =
ShareableMeth(c1) + ShareableMeth(c2)

No. of methods in both classes

where ShareableMeth(c) is the number of shareable methods in a class c.

If the value of CBSF is high, this means that both classes c1 and c2 have similar
behaviours and therefore this factor adds a further valuable aspect to the process
of class similarity detection.

MVMBS: A Multiple Views Supporting Multiple Behaviours System 203

5 Overview of MVMBS Architecture

MVMBS is a semi-automatic knowledge based schema meta-integration tool (see
Fig. 3). It is directed by an inference engine using a real world data modelling
framework based on an OO modelling methodology, which uses a knowledge
base consisting of schema facts and predefined integration rules supplemented
by information generated during the MVMBS integration process or elicited
interactively from the global schema designer. The roles of the major software
modules are explained in the following sub-sections.

(SMD)
Method

Base

DB1

Materialisation U
se

s

DB2

Modify
Accept

Reject

Base
Global Properties

Class Comparison Processor Uses

>
Threshold

No
Yes

(CCP) Generates

Property
Base

Shareable Method Detector

Uses

Generates
U

ses

(EMD)
Equivalent Method Detector

Uses

Equal Method
Base

U
se

s

Generates

Class Similarity Detector

(GPB)

(CSD)

WordNet Schema Meta Translator

Global Classes
Classes are not Similar

Lexican

User Interface

Global Properties Builder

Feed Back

Equal
Similar Properties Detector

Get
Meta−Data Extractor

(SMT)

Rules

Meta Integration Language (MIL)
(MVMBL Operators)

Global Classes
System Interface

System Interface Meta
Translator

MVMBL Rules

Consults

Fig. 3. MVMBS architecture

5.1 Schema Meta Translator (SMT)

Existing data and schemas do not have to be modified unnecessarily. This is
assisted by the SMT, which by interpretation of local database schemas trans-
forms them into their representation in the MVMBS Internal Intermediate Data
Model (IIDM) which is compliant with the ODMG data model. Also, the local
schemas’ behaviours are mined in this process to extract the properties required
by each method. The properties of each method (name, type, arguments, argu-
ment types) are stored in the MVMBS IIDM (see the example in Fig. 4 (A)).

5.2 MVMBS Internal Intermediate Data Model (IIDM)

The MVMBS IIDM is created by a knowledge based modelling system. It creates
an object model of the schema based on the ODMG standard. This knowledge
base consists of facts that represent the meta-data extracted from the component
databases’ schemas during the schema translation phases. Each fact captures the
meta-data that belongs to one class and is represented in a Prolog frame.

204 M.B. Al-Mourad, W.A. Gray, and N.J. Fiddian

5.3 Class Comparison Processor (CCP)

This module compares two classes by using various aspects of their meta-data.
It scans the meta-data of the classes to detect potentially similar properties and
stores its findings as Prolog facts in the Property Meta Knowledge Base (property
base). This comparison is done in two phases, namely:
Phase 1: compares the names and types of all attributes in both classes and
generates facts that represent potentially similar or corresponding properties.
Phase 2: If CCP fails to detect a correspondence for an attribute in phase 1, it
compares the name of this attribute with the names of the methods in the other
class. If the attribute and a method name are found to be similar, CCP stores
the result in a Prolog fact. If no corresponding property is found for a property
or a method, a null value is assigned to the second property. CCP uses two
auxiliary modules: Equal (Similar Properties Detector) which detects whether
two properties are similar, and Get (Meta-data Extractor) which contains a
number of functions designed to obtain the meta-data required by CCP.

global_property(Schema1, Class1,

B) Property relationship similarity in MVMBS

name, home_address, position,
date_of_birth, salary]),

[Property1_Name, Property1_Domain],
Property1_Type,

A) Class predicate structure presentation in MVMBS IIDM

//attribute, relation or method

Function).
GlobalProperty_Domain_Type,

[GlobalPropertyName, GlobalPropertyType],

//primitive, or non primitiveDomain1_Type,
Schema2_Class2,
[Property2_Name, Property2_Domain],
Property2_Type,
Domain2_Type,

own_methods_arguments_types([[null]]),

own_methods_properties_names([[dateofbirth]]),
own_methods_properties_types([[date]])).

class(name(EMPLOYEE),of_schema(DB1),

own_methods_arguments_names([[null]]),

own_methods_names([age]),

own_inherited_properties_types(none),

own_attribute_types([string, string, string, date, float]),

own_inherited_properties_names(none),

superclasses_names(none),

own_methods_types([float]),

subclasses_names(none),

own_attribute_names(

Fig. 4. Example of facts in MVMBS IIDM

5.4 Shareable Method Detector (SMD)

SMD investigates the possibility of reusing the methods of the compared classes
based on the algorithm in section 3. The output of this module is stored in
the Methods Meta Knowledge Base (method base) which holds a fact about
the method in each class and expresses whether this method is usable by the
corresponding class or not.

5.5 Equivalent Method Detector (EMD)

EMD investigates potentially equivalent methods. It assumes that two methods
from the compared classes are semantically equivalent, if the following conditions

MVMBS: A Multiple Views Supporting Multiple Behaviours System 205

are fulfilled: 1) Both methods have similar names and types. 2) Both methods
have the same property requirements (facts from the method base and property
base are used for this purpose). 3)Both methods are detected as reusable by
corresponding classes. The output of this module is stored in the Equivalent
Methods Meta Knowledge Base (equal-method base) which holds facts about
potentially equivalent methods.

5.6 Class Similarity Detector (CSD)

CSD determines whether two classes are similar and consequently mergeable.
The result of CSD is presented to the user in the form of rich facts (see Fig.
4 (B)). The last slot is occupied by a function. If there is any conflict between
the correspondence properties, the user must provide a function to resolve this
conflict. After user approval, all facts are stored in the Global Properties Meta
Knowledge Base (global property base).

5.7 Meta Integration Language (MIL)

Once CSD finishes its operation, the user is able to start the integration process.
MIL performs the integration via MVMBL operators (Union, Merge, Intersect
and Include), see Fig. 5 and [10] for fuller details.

Operator Semantics

Merge(c1,c2) merges two classes into one global class

Union(c1,c2) generates a superclass for two local classes

Extension Ext(Gc)

Ext(c1) U Ext(c2)

Ext(c1) U Ext(c2) Prop(c1) Prop(c2)

Prop(c1) U Prop(c2)

U

Properties(Gc) ShareableMeth(Gc)

ShareableMeth(c1) U ShareableMeth(c2)

ShareableMeth(c1) U ShareableMeth(c2)

Intersect(c1,c2) generates a common subclass

U

Ext(c1) Ext(c2) Prop(c1) U Prop(c2) Meth(c1) U Meth(c2)

imports a single class Ext(c) Prop(c) Meth(c)Include(c)

Fig. 5. Summary of MVMBL operators

5.8 Global Class Materialisation Rules

The instances of the generated virtual classes are derived from their correspond-
ing local ones. This is done by possibly aggregating several local instances where
the same instance may have heterogeneous representations in different databases.
Specifying the rules that derive the global class instances and reconciling het-
erogeneous representations is the task of the set of materialisation rules that
augments each global view. MVMBS generates such rule sets automatically as a
result of applying one of the MVMBL operators. When a query is posed against
a global class, the query processor uses its corresponding materialisation rules to
decompose the global query into local sub-queries. The following is the general
syntax of an MVMBS rule, which is an upgraded version of [11]:

206 M.B. Al-Mourad, W.A. Gray, and N.J. Fiddian

Rule<name> on retrieve to <virtual class properties>, apply <virtual class
methods>

do instead: retrieve <local corresponding properties>, apply <local corresponding
methods>

where <condition> // the condition under which the rule is executed.

References

1. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous and autonomous databases. ACM Computing Surveys (1990)

2. Dayal, U., Hwang, H.: View definition and generalization for database integration
in a multidatabase system. IEEE Transactions on Software Engineering SE-10
(1984) 628–645

3. Motro., A.: Superviews: Virtual integration of multiple databases. IEEE Transac-
tions on Software Engineering SE-13 (1987) 785–798

4. Litwin, W.: O*sql: A language for object oriented multidatabase interoperabil-
ity. In Hsiao, D.K., Neuhold, E.J., Sacks-Davis, R., eds.: Interoperable Database
Systems (DS-5) (A-25), North Holland (1993)

5. Gingras, F., Lakshmanan, L.V.S.: nd-sel: A multi-dimensional language for in-
teroperability and olap. Proc. 24th International Conference on Very Large Data
Bases (1998) 134–145

6. Garcia-Solaco, M., Saltor, F., Castellanos, M.: Semantic heterogeneity in multi-
database systems. In Bukhres, O.A., Elmagarmid, A.K., eds.: Object-Oriented
Multidatabase Systems, A Solution for Advanced Applications. Prentice-Hall
(1996)

7. James, A., Salem, M.: Classification and resolution of behavioural conflicts in fed-
erated information systems. 4th Int’l Workshop Engineering Federated Information
Systems (EFIS2001) (2001) TU Berlin, Germany.

8. Castano, S., Antonellis, V.D., Gugini, M.G.: Conceptual schema analysis: Tech-
niques and applications. ACM Transactions on Database Systems 23 (1998)

9. Mourad, M.B.A., Gray, W.A., Fiddian, N.J.: Semantic requirements for sharing
behaviours in federated object-oriented database systems, Ukraine (2001)

10. Mourad, M.B.A., Gray, W.A., Fiddian, N.J.: Detecting object semantic similarity
by using structural and behavioural semantics. In: Proc. 5th World Multiconference
on Systemics, Cybernetics and Informatics, Orlando, USA (2001)

11. Stonebraker, M., Rowe, L.A., Hirohama, M.: The implementation of POSTGRES.
IEEE Transactions on Knowledge and Data Engineering 2 (1990) 125–142

Efficient Filtering of Composite Events

Annika Hinze

Institute of Computer Science
Freie Universität Berlin,Germany
hinze@inf.fu-berlin.de

Abstract. Event Notification Services (ENS) are used in various applications
such as remote monitoring and control, stock tickers, traffic control, or facility
management. The performance issues of the filtering of primitive events has been
widely studied. However, for a growing number of applications, the rapid notifica-
tion about the occurrence of composite events is an important issue. Currently, the
detection of composite events requires a second filtering step after the identifica-
tion of the primitive components. In this paper, we propose a single-step method
for the filtering of composite events. The method has been implemented and tested
within our ENS prototype CompAS. Using our method, the filter response time for
composite events is significantly reduced. Additionally, the overall performance
of the event filtering has been improved.

1 Introduction

Event Notification Services (ENS) are used in various applications such as traffic control
and remote monitoring project control. They have gained increasing attention in the past
few years. Several systems have been implemented, such as Siena [4], Le Subscribe [17],
or Ready [11]. An event notification service informs its users about new events that
occurred on providers’ sites. Events could be, for example, the change of a web-page,
a new temperature value, or the occurrence of a traffic jam. Users define their interest
in events by means of profiles. A user profile defines a periodically-evaluated query
(similar to a search query). Users may be interested in primitive (atomic) events, their
time and order of occurrence, and in composite events, which are formed by temporal
combinations of events. An example for a composite event is the crossing of a certain
temperature threshold after an experiment has been started in a laboratory.

After having studied efficient filtering of primitive events [12], this paper concen-
trates on the filtering of composite events. Composite events are formed by temporally
combined primitive events. The filtering of composite events is based on the detection
and filtering of their primitive components. The response time for a composite event is
the time between the occurrence of the last event contributing to the composition and
the user notification. To the best of our knowledge, all existing methods for composite
event detection consist of two steps: In a first step, the primitive profiles are evaluated
and in a second step, the composite profiles are identified. Thus, the composite event is
detected in a separate step after the filtering of primitive events. In this paper, we propose
a new method for filtering of composite events that integrates the detection of composite
events into the detection of primitive events: After the filtering of a primitive event, its

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 207–225, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

208 A. Hinze

contribution to a composite event is tested. In that way, the composite event is detected
successively. No additional step is required for the identification of the composite event
after the last contributing primitive event has been detected. The identification of the
composite event after the primitive event is accelerated and the overall filtering time is
reduced.

This paper is organized as follows: Section 2 gives an overview of necessary back-
ground information. Then, we analyze typical methods for the filtering of composite
events in Section 3. In Section 4, we introduce our approach of combined filtering of
primitive and composite events. We present and discuss the results of a performance
analysis of our prototype implementation in Section 5.

2 Background

This section is devoted to our context of study. It first describes our running example from
the field of computer-aided facility management (CAFM). Then, the basic event-related
concepts are introduced.

2.1 Application Scenario: Remote Monitoring

Remote monitoring and control applications in commercial buildings are an important
domain for the employment of event notifications. Examples are monitoring of single
factories, powerplants, and facilities. Let us consider a surveillance system for several
buildings that monitors lighting, heating, air conditioning, and sun protection (e.g., the
OWL system [3]). Such a service aims at the improvement of security, energy saving,
and flexibility, and at the reduction of service costs.

A number of sensors are located within each of the monitored buildings. The surveil-
lance system monitors the status of these sensor readings. In case of emergency, the
systems reacts, e.g., by sending notification to a technician or by triggering an automatic
emergency program. The system controls the building by monitoring the sensors: Some
sensors send status information on a regular basis to the system. Other sensors send only
critical events, i.e., if the status values cross a predefined threshold. A third group of
sensors passively collects data and is to be observed by the system.

Often, the building’s technicians and service personnel are interested in certain com-
binations of events. The following examples demonstrate user profiles in a facility man-
agement system:

P1 The air-condition technician is to be notified if the temperature in the offices crosses
a given threshold during the night.

P2 The service personnel is to be notified if a sensor does not send data for more than
half an hour.

P3 The chemical technician is to be notified if in a laboratory, concurrently, the tem-
perature is too low and the humidity too high.

P4 The security personnel is to be notified if at an office first a window is broken and
then the presence detector sends a signal.

Efficient Filtering of Composite Events 209

These profile examples describe profiles with human-oriented time requirements, but
other examples with stronger demands towards the response time are conceivable, e.g.,
for safety in a chemical laboratory. Typically, surveillance or facility management sys-
tems may have of the order of 104 profiles and an event frequency of 103 events per
second for each controlled building.

2.2 Concepts: Events, Profiles, and Notifications

A monitored system consists of a number of objects of interest, e.g. real world objects
such as offices or laboratories, or logical objects such as time. Objects have certain states,
defined by their properties, e.g., the temperature of a room.

Definition 1 (Event). An event (or event instance) is the occurrence of a state transition
of an object of interest at a certain point in time.

In contrast to states, events have no duration. Events may be state changes in databases,
signals in message systems, or real-world events such as the departures and arrivals
of vehicles. Within an event notification system, events are reported as event messages
describing the event. Within this paper, we do not explicitly distinguish events from their
reporting messages.

We consider primitive events and composite events, which are formed by combining
primitive events. We further distinguish two kinds of primitive events: time events and
content events. Time events describe the occurrence of a certain point in time (e.g., 5
o’clock). Content events involve changes of object states in general (e.g., the temperature
of a room). In this paper, we use the (attribute,value) pair notation for primitive event
examples, for instance: elaboratory = event(room number = 273, temperature =
35◦C, timestamp =14:22:03.456).

Definition 2 (Profile). A profile is a query that is periodically evaluated by the event
notification system against incoming events.

A simple example profile is ptemp = profile(temperature < 10 ◦C). The stream of
incoming events at an event notification service is called history, or trace of events.

We distinguish event instances from event classes: an event class is specified by a
query while an event instance relates to the actual occurrence of an event. We will simply
use the term events whenever the distinction is clear from the context.

Definition 3 (Event Class). An event class is a set of event instances that share certain
properties, e.g., attribute values. These properties are described by a query. Then an
event class is the set of all event instances for which the query evaluates to true.

Note that user profiles define event classes, e.g., all event instances regarding the tem-
perature. Even though instances of the same event class share some properties (e.g.,
temperature of a sensor), they may differ in other event attributes (e.g., location). Events
(instances) are denoted by lower Latin ewith indices, i.e., e1, e2, . . ., while event classes
are denoted by upper Latin E with indices, i.e., E1, E2, The fact that an event ei is
an instance of an event class Ej is denoted membership, i.e., ei ∈ Ej .
Definition 4 (Composite Event). Composite event instances are formed by temporal
combinations of event instances.

210 A. Hinze

Note that our notion of composite events differs from Gehani [8], where a composite
event is a set of the events it is formed of.

The definition of composite events requires temporal operators and additional pa-
rameters for the handling of duplicate events, for details see [13]. Composite event
operators are, e.g., sequence (E1;E2)t, conjunction ((E1, E2)t, disjunction (E1|E2),
and negation (E1)t. For example, a sequence (E1;E2)t occurs when first e1 ∈ E1
and then e2 ∈ E2 occurs. The parameter t defines in the profile the maximal temporal
distance between the events. The time of the sequence event instance e3 := (e1; e2)
is equal to the time of e2: t(e3) := t(e2). Additionally to the description of the com-
ponent events and the temporal restriction, profiles referring to composite events can
contain predicates regarding the composite event attributes. For example, the predicate
E1.temperature == E2.temperature could be defined for two temperature events.
This additional conditions are called binding predicates.

Definition 5 (Duplicate). Duplicates of events are event instances that belong to the
same event class.

Duplicates could be, e.g., all temperature events regarding laboratory 273, but also all
temperature events in the building referring to the same temperature value.

For profiles regarding composite events, the handling of duplicate events has to
be defined. For example, the air-condition technician is to be notified only once per
night about the high temperature, at the first occurrence. On the other hand, the service
personnel is to be informed about every occurrence of a failing sensor.

Two parameters carry the information about the user’s preferences for the duplicate
handling:

1. Event instance selection defines for each event, whether the user is interested in all,
the first, last, or nth event instance in a sequence of duplicate events.

2. Event instance consumption defines for each composite event, whether the event
instances participate in only one pair of event instances or in several pairs.

For the event instance consumption, consider the profile defined by the chemical techni-
cian: within 30 minutes the temperature reaches a peak for three times while the humidity
crosses the threshold but once. Only one notification needs to be sent. Similarly, the se-
curity personnel is not interested in all people entering a room after a broken window
was signaled, but only the first one.

3 Methods for Composite Event Filtering

Several proposals have been made for the filtering of composite events. We distinguish
approaches using automata (e.g., Ode [7]), petri nets (e.g., Samos [6], Eve [9]), or
trees (e.g., Ready [11], GEM [16]). Here, we do not consider the specific conditions of
distributed event filtering.

Example 1. Let us consider a composite event profile for the sequence of two events
within a time span T : ET = (E1;E2)T . The steps for the detection of the composite
event depend on the method used. Figure 1 displays simplified structures for detecting
the composite event instance ofET using the different methods described in this section.

Efficient Filtering of Composite Events 211

Petri Nets

Primitive Event
Filter for E1

Notification

Primitive Event
Filter for E

Conditions on E:
Sequence E ;E

2

1 2

detection of
primitive event
of class E

detection of
primitive event
of class E detection of

of class E
composite event

1

2

T

Petri Net for E
1

guard 1
Notification

Petri Net for E

guard 2 Composition
PN for

2
detection of

of class E
composite event

detection of
primitive event
of class E

detection of
primitive event
of class E

T21

Storage structure for
information on E 1

Composite
Evaluator

detection of
primitive event
of class E2

Notification

Automaton for E Automaton for E1 2

Storage structure for
information on E

detection of

of class E
composite event

detection of
primitive event
of class E

2

1 T

Automaton for E Automaton for E1 2

Notification

No complex

possible
composite events

detection of
primitive event
of class E

detection of
primitive event
of class E 1 2

Extended
Automata

and Graphs
Trees

Automata

Fig. 1. Methods for detection of composite events

Automata. Composite event expressions are similar to regular expressions if they are not
parameterized. Using this observation, it is possible to implement event expressions using
finite automata. The first approach for using automata has been made in the Compose
system of Ode [8], an active database system. The history of events provides the sequence
of input symbols to the automaton implementing the event expression. The automaton
input are the primitive event components from the corresponding composite event as
they occur in the history. If the automaton enters an accepting state after the input of a
primitive event, then the composite event implemented by the automaton is said to occur
at the time of this primitive event.

Automata are not sufficient if binding predicates have to be supported. The automata
have to be extended with a data structure for storing the additional event information of
the primitive events from the time of their occurrence to the time at which the composite
event is detected. This extension is shown in the second row in Figure 1.

Petri Nets. Petri nets are used in several event-based systems to support the detection
of complex events that are composed of parameterized primitive events, for example in
the active database system SAMOS [6], and the monitoring system HiFi [2]. In a Petri
Net created for a profile regarding a composite event, the input places refer to primitive
events, and the output places model the composite event. Each new profile describing
a composite event causes the creation of the appropriate Petri Net. The incremental
detection of composite events is described by the position of the markings in the petri

212 A. Hinze

net. The firing of the transition depends on the input tokens and the positive evaluation
of the transition guards. The occurrence of the composite event is signaled as soon as
the last element of a given sequence order is marked. Petri Net based composite event
detection is shown in the third row in Figure 1.

Matching Trees. Another approach to implement composite event filters are match-
ing trees that are constructed from profiles describing composite event structures. This
method has been used in Ready [11] and Yeast [15]. The primitive event parts are the
leaves of the matching tree, composites are the parent nodes in the tree hierarchy, as
shown in the fourth row in Figure 1. Parent nodes are responsible for maintaining bind-
ing information, which represents information for matched events, such as mapping of
event variables and successfully matching event instances. Binding information is up-
dated by child nodes on every match and is passed to the parent nodes. Parent nodes
perform further filtering. A composite event is detected if the root node is reached and
the respective event data are successfully filtered in the root node. Then context-related
information and binding information (e.g. the subscriber) is passed to the notification
component. Note that in tree-based composite filtering, components of a composite event
may be filtered unnecessarily, e.g., the second event of a sequence is filtered even though
the first event of the sequence did not occur.

Graphs. An approach very similar to the tree-based one described above is the
graph-based detection of composite events. Here, each composite event is represented
by a directed acyclic graph (DAG), where nodes are event descriptions and edges
represent event composition, see also the fourth row in Figure 1. Nodes are marked
with references to respective event occurrences. After event detection, parent nodes are
informed and checked for consumption recursively. References to events are stored
until consumption is possible. In addition to event composition edges, nodes are
accompanied with rule objects that are fired after the corresponding event occurred.
Graph-based composite detection is implemented in Sentinel [5] and Eve [9].

The processing time of a composite event is the time between the occurrence of
the last necessary primitive event to fulfill the composition until the notification is
sent. Thus, the response time for composite events is the time to identify the (last)
primitive event and the time to identify the appropriate composite events. We extend
our Example 1 as follows:

Example 2. For the profile describing the set of composite events ET = (E1;E2)T
as before, we now consider an exemplary trace: tr = 〈e1, e2, e3, e4, e5, e6, e7〉 with
{e3, e4, e6} ∈ E1 and {e1, e2, e5, e7} ∈ E2. We are interested in all matching composite
events. Figure 2 shows the event filtering using the different methods described above.
We do not show the filtering of each incoming event but only depict the filter efforts
contributing to the composite event. The events e3 and e4 do not form a composition
with e5, because the temporal distance is larger than T . Only the event instances e6 and
e7 match our composite profile.

Composite event filtering based on trees or graphs considers each matching primitive
event, regardless of their order or temporal distance. This results in a high number of
unnecessary filter operations.

Efficient Filtering of Composite Events 213

Petri Net and
Extended Automata

�
�
�

�
�
�

���� ������ ���� ������ ������ ������ ����

������������������������������������

���
���
���
���

Tree and Graph

Composite event detectedPrimitive evaluation

Composita evaluation

time

Time span of length T

Event intstance in class E

Event intstance in class E

1

2

Fig. 2. Composite event detection for exemplary trace as described in Example 2

Composite event filtering based on Petri Nets or extended automata considers only
matching primitive events that are in the desired order. Matching of temporal conditions
is performed during the composition phase. Unnecessary filter operations are performed
for non-matching composites.

All approaches for filtering of composite events applicable to parameterized composite
events (i.e., all but simple automata) have in common, that two steps are necessary to
identity composite events: The detection of primitive events followed by the evaluation
of the composite binding predicates.

In the next section, we propose our method to identify the composite event within
the single step of detecting the contributing primitive events.

4 Composite Event Detection in a Single Step

We use the idea of partial evaluation [14]: Primitive profiles contributing to composite
ones are evaluated only if they potentially contribute to a composite event. For example,
for the sequence of events (Ex;Ey), first only theEx-profile is evaluated. TheEy-profile
is included into the evaluation process only after an event ex did occur.

We further illustrate the idea of composite filtering in a single step by explaining
the differences to the two-step filtering. For doing that, we consider the following three
example profiles:

– User A: EA = E1 (profile regarding primitive events)
– User B:EB = (E1;E2)T (profile regarding composite events as in P4 in Section 2.1

and Example 2)
– User C: EC = E2 (profile regarding primitive events)

Figure 3 shows the principle of composite event detection in two steps for these three
profiles: The triangle represents the primitive event pool. The pool contains all profiles
regarding primitive events. Each incoming primitive event has to be filtered against all
profiles in that pool, e.g., using the efficient tree-based algorithm [1,10,12]. Users with
profiles regarding primitive events (i.e., users A and C) are notified after the detection of

214 A. Hinze

Composite Event Pool

A

B

C

User NotificationPrimitive Event Pool

(); T

(a) Situation after occurrence of event ◦ ∈ E1

Composite Event Pool

A

B

C

User NotificationPrimitive Event Pool

(); T

(b) Situation after occurrence of event × ∈ E2

Composite Event Pool

A

B

C

User NotificationPrimitive Event Pool

(); T

(c) Composite event filtering

Fig. 3. Composite event detection using two-step methods

these events. This detection of the primitive events is the first step in the event detection
mechanism.

The results of the primitive filtering serve as input for the composite filtering (events
e1 = ◦ and e2 = × in the Figures 3(a) and 3(b)). The profiles regarding composites
are stored in the composite pool, represented by the square in Figure 3. The incoming
primitive events are assigned to the composite profiles. If all contributing events for
a certain composite did occur, the composite event is signaled to the interested users
(user B in Figure 3(c)). If the time-span between the primitive events is larger than T ,
the composite profile is not matched, and the detected primitive events are dismissed.
Figure 4 shows the principle of composite event detection in a single step: The primitive
event pool and a temporal pool are required, the composite pool is not used. After the
detection of a primitive event, the interested users are notified (user A in Figure 4(a)).

Efficient Filtering of Composite Events 215

Primitive Event Pool User Notification

Temporal Pool

B

A

C

T

(a) Situation after occurrence of event ◦ ∈ E1 at time t1

Temporal Pool

User NotificationPrimitive Event Pool

t1+Tt1

B

A

C

(b) Situation after occurrence of event × ∈ E2

Fig. 4. Composite event detection using our single-step method

For storing the information about composite profiles, auxiliary profiles are created.
Instead of notifications to interested users, an internal notification regarding the auxiliary
profile is created. This notification triggers the insertion of the remaining composite part
into the primitive profile pool.1

Consider the auxiliary profile for the composite profile of userB: an internal auxiliary
user is notified about the occurrence of the partial composite event (see Figure 4(a)). The
auxiliary profiles for the internal user carry the information about the composite profile
as well as the information about its partial evaluation.

In Figure 4(b), after the detection of event ◦, the profile for event× has been inserted
into the pool. For the observation of the maximal time span T , a reference is inserted into
the temporal pool - an auxiliary terminator. Terminator references cause the removal of
the referenced profile from the pool. The temporal terminator in Figure 4(b) causes the
removal of the profile for user B at time t1 + T , where t1 is the time of the primitive
event ◦.

After the match of the final primitive event within the composite profile, the notifica-
tion to the user is sent. Using the single step method, the notification about the composite
does not suffer additional delays due to additional filtering of binding information for
the composition.

1 The remaining parts of profiles can be identified, for example, by analyzing the respective Petri
Net for the composite profile.

216 A. Hinze

time

�
�
�
�

������ ������ ������ ����

���� Primitive Evaluation Composita Evaluation

One−Step
Composite
Filtering

Time span of length T

Fig. 5. Composite event detection for exemplary trace as described in Example 3

In analogy to the example for the two-step approach (see Example 2), we discuss
the composite evaluation for an exemplary trace in the following example.

Example 3. We consider the profile describing the set of composite events ET =
(E1;E2)T and the exemplary trace tr = 〈e1, e2, e3, e4, e5, e6, e7〉 with e1, e2, e5, e7 ∈
E1 and e3, e4, e6 ∈ E2. Figure 5 shows the single-step filtering for that trace. Again, we
only depict the filter efforts contributing to the composite event.

Only those primitive events are evaluated that contribute to the composite event.
Additionally, the composite event is detected earlier. Few unnecessary filter operations
are performed for non-matching composites.

As we can clearly see in Figure 5, the filtering costs of the one-step method are less
than the costs of the two-step methods (cf. Figure 2).

Temporal Operators for Composite Events. In our example, we have shown the single-
step filtering for a simple temporal sequence. The principle can be translated for the other
temporal composition operators conjunction, disjunction, selection, and negation, see
Table 1. Here, for each temporal operator, we give the filter procedure that implements
the respective single-step method. The filter procedure is defined both graphically and by
description. In the graphics, we show the order of insertions into the profile and temporal
pool. For example, the temporal disjunction E1‖E2 requires the insertion of both the
profiles regarding E1 and E2; after the detection of either event instances in E1 or E2,
a notification is sent. For the negation, terminator references are required: At starting
time of the profile, a temporal profile is inserted that triggers a notification after the time
span t1. If an event instance of E1 occurs within that time span, the temporal profile
is removed and no notification is sent. Different from the sequence handling, here the
auxiliary terminator is attached to the primitive profile for the event in question. The
temporal restriction provides the accepting reference to the user to be notified.

Parameterized Composite Events. Profiles regarding composite events can also carry
additional parameters, as briefly introduced in Section 2. These parameters can also be
supported in the single-step approach, see Table 2.

The parameter for event instance detection influences which of the duplicated partial
events is stored. For example, for the first event in the duplicate list, the auxiliary profile
refers to the remainder of the composite profile. For the last event, two auxiliary profiles
have to be created: One that refers to the remainder of the composite profile (in case

Efficient Filtering of Composite Events 217

Table 1. Profile handling for various composite operators using our single-step algorithm

Operator Filter Procedure

Temporal Sequence
e.g. (E1;E2)t1

(;)1 E2

e1t +t1

E1 E2 t1
notif[]E

insert profile E1, after e1 ∈ E1 insert profile E2 and time profile
te1 + t1 with terminator to profile E2

Temporal Conjunction
e.g. (E1, E2)t1

(,)

1 E2

e1t +t1

t1
E1 E2E E

t +t1

2 1

e2

notif[]

E

insert profiles E1 and E2, after e1 ∈ E1 insert profile E2 and time
profile te1 + t1 with terminator to profile E2, react on e2 ∈ E2

respectively

Temporal Disjunction
e.g. (E1|E2)

notif[]

2E1

E2 E2E1

E1 (|)

(|)

notif[]E

insert profiles E1 and E2, notify after e1 ∈ E1 or e2 ∈ E2

Negation
e.g. (E1)

notif[]

1

E1startt +t1

E

insert profile E1 with an terminator to the time profile tstart + t1,
notify after matching time profile, each A starts the process anew

Selection
e.g. (E[i]

1)
[i−1]1

E1 E1

notif[]E [i]
[1] [2]

.....E

insert profile E1, after e1 ∈ E1 insert profile E1, notify after the
ithe1 ∈ E1

Legend: A B: after event A insert profile B A B: after event A remove profile B

there is only a single event instance), and another one that refers, again, to the already
matched partial profile (to detect the duplicates).

The parameter for event consumption influences how long partially matching events
have to be stored. We distinguish three modi: remove after match, hold after match,
and reapply filter after remove. For example, for remove after match mode, the partially
matching events are deleted after the composite has been found (i.e., only unique event
pairs are detected). For the hold after match mode, the auxiliary profiles for the remainder

218 A. Hinze

Table 2. Profile handling for various composite parameters using our single-step algorithm

Parameter Filter Procedure

All Duplicates
e.g. regarding E1

11 EE notif[]

do not remove profiles after match

First Duplicate
e.g. first e1 ∈ E1

1 E1notif[]E

remove profile after match

Last Duplicate
e.g. first e1 ∈ E1

before e2 ∈ E2

1

E1notif[]E2

E

keep updating event information until last event instance

All Pairs
e.g. of (E1;E2)t1

(;)1 E2

e1t +t1

E1 E2 t1
notif[]E

do not remove profiles after match

Unique Pairs
e.g. of (E1;E2)t1

1 E2 E1 E2(;)
t1

notif[]

e1t +t1

E

remove composite event information after after match
Legend: A B: after event A insert profile B A B: after event A remove profile B

of the composite profile remain in the system (i.e., all event instance combinations are
detected).

5 Performance Evaluation

In this section, the response times of the different filter methods for composite events
are evaluated. We discuss selected results of the tests performed on our prototypical
implementation. Additionally, we introduce implementation variants for the single-step
method and discuss their influence on the response time.

5.1 Performance Tests and Discussion

The test implementation of the one-step method is based on our event notification sys-
tem CompAS that has been developed within the project MediAS [18] at the Freie
Universität Berlin. The filter component of our system is based on a modified Gough-
algorithm for the filtering of primitive events [12]. For the filtering of composite events,
we implemented the tree-based algorithm as used, e.g., in the ENS Ready [11].

Efficient Filtering of Composite Events 219

Performance tests of composite events underly several parameters, e.g., the compos-
ite operator, the operator parameters, the time between the parts of the composite event
(composition distance), and the number of events and profiles.

For the performance, we measure the overall response time per event or per composite
event. The response time of composite events is the time between the occurrence of the
last contributing event and the time the user notification is sent.

We discuss selected test results obtained with our prototypical implementation. Sev-
eral combinations of parameters have been tested. For brevity, we restrict the presentation
to profiles regarding simple event sequences of two events (A;Z) without temporal re-
strictions. The events are posted to the filtering mechanism as continuous stream, such
that the additional delay due to event frequencies is not considered here.

We used events and profiles with one integer attribute and the attribute domain
[−100.000; 100.000]. To eliminate the influence of profile overlapping, only distinct
profiles have been defined.

For both, the two-step and the one-step method, we tested the following parameter
settings:

1. The first event instance within a group of duplicate events is selected, subsequent
instances of the same event class are ignored. If no duplicate event instances occur,
as in most of our tests, the results for selecting the first event instance equal those
for all instances and for the last event.

2. For the event composition, two opposite versions have been tested: single unique
pairs and all pairs. For single unique pairs, the first occurring pair triggers a notifi-
cation, afterwards the profile is removed. For all pairs, every possible combination
of event instances triggers a notification.

Response time depending on composition order. First, we evaluate the influence of
the composition order on response time. We show the test results for 10,000 profiles
regarding composite events and 10,000 starting events (distinctA-events). For our tests,
we formed g groups of ex events with an ey event at the end of each of the groups. Within
each group, first come 10, 000/g ex events and then one ey event that closes the group.
Figure 6 shows the influence of this event grouping on the response time.

We see that the overall response time for each event directly depends on the number
of groups, i.e., on the number of interleaving ey-events. In the two step method, eachEy
profile carries a list of matching Ex-profiles. The complete list has to be checked after
each ey-event. In the one-step method the Ey is only inserted after the occurrences of
ex events. Additionally, the Ey carries only references to those Ex-profiles that match
events that already occurred.

Response time depending on number of profiles. We evaluated the influence of the
number of profiles on the response time. We show the results for sequences in a single
group of events and for sequences in 1,000 groups of events.

Figure 7(a) and 7(b) show the response time per event (measured in milliseconds)
using the one-step and two-step methods for two different parameter settings.

For the case of events in a single group (Figure 7(a)), both methods using all events
are faster than the methods using only unique matches. For the unique matches, the
profiles are removed after the matches, causing maintenance costs.

220 A. Hinze

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 200 400 600 800 1000

fil
te

r
tim

e
in

 m
se

c

number of groups

10,000 events, 10,000 composite profiles

two step method
one step method

Fig. 6. Influence of composition order (event grouping

The one-step method with profile removal is faster than the two-step method with
profile removal. In the first method, the profiles regarding the ex-events are removed
directly after the ex-events have been detected. In the two-step method, all profiles are
only removed at the end of the event detection, i.e., after the ey-event. Therefore, the
performance benefit due to a smaller profile pool applies to the one-step method, but
does not affect the two-step method.

The one-step method without removal is faster than the two-step method without
removal. For the first method, less profiles are stored in the profile pool, i.e., less profiles
have to be evaluated. Additionally, the number composite profiles to be checked in each
step (in the composite pool or as auxiliary profiles) is lower for one-step.

In all four graphs, the filter time increases linearly depending on the number of
composite profiles between 0 and 10,000 profiles. In that interval, each of the profiles is
matched by exactly one event pair. For more than 10,000 profiles, an increasing number
of profiles remains unmatched. For the methods without profile removal, a flattened
logarithmical increase can be measured – the influence of the binary search on the
profile values. For the methods with removal, the removal costs have a major influence
on the response time.

In Figure 7(b), the effects already observed in Figure 7(a) are overlayed with the
influence of the event grouping as shown in Figure 6. The influence of interleaving
events (grouping) is strongest in the two-step method.

Response time depending on profile cardinality. In Figure 8, the response times for
different profile cardinalities are shown. The profile cardinality for a set of sequence-
profiles (Ex;Ey) describes the number of distinct profiles forEx andEy . This cardinality
is shown at the x-axis of the diagrams in Figures 8(a) and 8(b).

Figure 8(a) shows the overall response time for 30.000 events, for the one-step and
two-step methods. The filter time of the one-step method is in most cases less than the
filter tim for the two-step method. Only for the extreme case of one event starting off
30.000 sequences, the response time is equal.

Efficient Filtering of Composite Events 221

0

0.5

1

1.5

2

2.5

3

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

fil
te

r
tim

e
in

 m
se

c
pe

r
ev

en
t

number of composite profiles

two step method: all matches
one step method: all matches

two step method: first match
one step method: first match

(a) Events structured in 1 event-group

0

0.5

1

1.5

2

2.5

3

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

fil
te

r
tim

e
in

 m
se

c
pe

r
ev

en
t

number of composite profiles

two step method: all matches
one step method: all matches

two step method: first match
one step method: first match

(b) Events structured in 1,000 event-groups

Fig. 7. Response time depending on number of profiles

Figure 8(b) shows the composition times for the same experiments. Two values are
shown for each test: the overall time needed for composing events and the additional time
required after the last contributing event. As argued earlier, the latter defines, together
with the primitive filter time for the last event, the response time of composite events.
As composition time for the one-step approach, we measured the time for the handling
of auxiliary profiles. The composition time for the one-step method is shorter than that
for the two-step method. The additional response time for the composite events due to
a composition step is zero.

We argued, that for the efficiency analysis of composite event filtering only the
response time of the last contributing event has to be considered. We have shown in our

222 A. Hinze

analysis that the one-step method efficiently minimizes this response time for composite
events to zero. Additionally, the overhead of unnecessary profile filtering is reduced -
the overall performance increases.

5.2 Implementation Variants

For the implementation of the single-step method, several variations are conceivable,
which may lead to different performance results depending on the profile and event

0

100

200

300

400

500

600

700

800

900

30.000-1 20.000-10.00015.000-15.000 15.000 altern 10.000-20.000 1-30.000

fil
te

r
tim

e
in

 m
se

c

profile cardinalities

two step method: all matches
one step method: all matches

(a) Overall response time

0

100

200

300

400

500

600

700

800

900

30.000-1 20.000-10.000 15.000-15.000 15.000 altern 10.000-20.000 1-30.000

fil
te

r
tim

e
in

 m
se

c

profile cardinalities

two step method: response time for composite events
two step method: composition time

one step method: response time for composite events
one step method: composition time (=0!)

(b) Composition time

Fig. 8. Response time depending on profile cardinality

Efficient Filtering of Composite Events 223

distributions. Here, we briefly introduce the variations and discuss their consequences
for the filter performance.

1. Dynamically handle primitive profiles: This approach corresponds directly to the
algorithm introduced in the previous section. For the composite profiles, the partial
and auxiliary profiles are dynamically inserted into and deleted from the primitive-
profile pool. If the same profile has already been defined by a different user, then the
information is already in the pool and only references to the users have to be added.
If the profiles do not overlap to a large extent, this approach requires a filter algorithm
that supports frequent changes to the profile pool for adding and deleting profiles.

2. Mark/unmark primitive profiles: Another approach is the insertion of all partial and
auxiliary profiles at once, marking them for use and unmark if the profiles are not
used. The links referring to the profile owners have to be removed or unmarked as
well.
Response time is expected to be slightly higher than in the first approach, since the
markings have to be checked in each filtering step. If the profiles do not overlap,
this approach requires minor changes to the profile pool, but the pool is larger. More
disc space may be used.

3. Store primitive profiles, only reference handling: The third approach requires the
fewest changes to the profile pool: All partial and auxiliary profiles are inserted at
once. Active profiles have references to the respective users, inactive profiles have
no users assigned. Inserting and deleting of profiles results in inserting or deleting
(or marking and unmarking) of references.
The disk usage is similar to the one in the second approach. If the profiles do not
overlap, the response time is expected to be slower than in the other approaches: All
profiles have to be checked, also the ones without a reference to a user.

For all three approaches, the references could be inserted/removed or only
marked/unmarked. The second and the third approach are especially feasible for profile
sets with a large overlap. Then, almost all profiles do reference to some users; inserting
or deleting profiles results in changes to references.

6 Summary

In this paper, we presented an one-step algorithm for the filtering of composite events.
Current implementations use two-step algorithms that perform unnecessary filter opera-
tions. Our algorithm takes advantage of the idea of partial evaluation: only those profiles
are evaluated that may directly contribute to a composite profile. Only few unnecessary
filter operations are performed.

After the general introduction of our one-step algorithm, we presented methods
for the handling of profiles that use different composition operators. Additionally, we
discussed profile handling under various composition parameters.

We implemented both a two-step method and our one-step algorithm within our ENS
prototype CompAS. In extensive performance tests, we have shown that our one-step
method significantly reduces the response times for composite events with the effect that

224 A. Hinze

a composite event is detected as fast as a primitive event. Additionally, the overall filter
performance has been improved.

Additionally, CompAS is extended into a distributed event notification system for
facility management systems to improve scalability. The system is designed for easy
adaptation to changing application requirements and differently structured event sources.

Acknowledgements. We wish to thank the other members of the database group at the
FU Berlin for their helpful comments on our approach. We are especially grateful to
Steven König and Sven Bittner for the implementation.

References

1. M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra. Matching events in a content-
based subscription system. In Proceddings of SIGMOD Principles of Distributed Computing,
1999.

2. E. S. Al-Shaer, H. M. Abdel-Wahab, and K. Maly. Hifi: A new monitoring architecture for
distributed systems management. In International Conference on Distributed Computing
Systems, 1999.

3. Bernd Bruegge, Ralf Pfleghar, and Thomas Reicher. Owl: An object-oriented framework for
intelligent home and office applications. In Proceedings of the Second InternationalWorkshop
on Cooperative Buildings (CoBuild99), 1999.

4. A. Carzaniga, D. S. Rosenblum, and A. L Wolf. Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer Systems, 19(3):332–383, August 2001.

5. S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language for
active databases. Technical Report UF-CIS-TR-93-007, University of Florida, Gainesville,
Department of Computer and Information Sciences, March 1993.

6. S. Gatziu and K. R. Dittrich. SAMOS: An Active Object-Oriented Database System. IEEE
Quarterly Bulletin on Data Engineering, Special Issue on Active Databases, 15(1-4):23–26,
December 1992.

7. N. Gehani and H. Jagadish. Ode as an active database: Constraints and triggers. In Proceedings
of the Seventeenth International Conference on Very Large Databases (VLDB), 1991.

8. N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in active
databases: Model & implementation. In Proceedings of the 18th International Conference
on Very Large Data Bases, 1992.

9. A. Geppert and D. Tombros. Event-based distributed workflow execution with EVE. Technical
Report ifi-96.05, University Zurich, Computer Science Department, 20, 1996.

10. K. J. Gough and G. Smith. Efficient Recognition of Events in a Distributed System. In
Proceedings of the Australasian Computer Science Conference ACSC-18, 1995.

11. R. E. Gruber, B. Krishnamurthy, and E. Panagos. The achitecture of the READY event
notification service. In Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems Middleware Workshop, 1999.

12. A. Hinze and S. Bittner. Efficient distribution-based event filtering. In 22nd International
Conference on Distributed Computing Systems (ICDCS- 2002), Workshops: 1st International
Workshop on Distributed Event-Based Systems(DEBS), IEEE Computer Socienty, 2002.

13. A. Hinze and A. Voisard. A parameterized algebra for event notification services. In Proceed-
ings of the 9th International Symposium on Temporal Representation and Reasoning (TIME
2002), 2002.

Efficient Filtering of Composite Events 225

14. N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

15. B. Krishnamurthy and D. S. Rosenblum. Yeast: A general purpose event-action system.
Transactions on Software Engineering, 21(10), October 1995.

16. M. Mansouri-Samani and M. Sloman. GEM: A generalised event monitoring language for
distributed systems. IEE/IOP/BSC Distributed Engineering Journal, 4(2), Feb 1997.

17. J. Pereira, F. Fabret, H. Jacobsen, F. Llirbat, R. Preotiuc-Prieto, K. Ross, and D. Shasha.
LeSubscribe: Publish and subscribe on the web at extreme speed. In Proceedings of the ACM
SIGMOD Conference, 2001.

18. Project MediAS: Efficient Internet-wide Notification on Composite Events. Project Home-
page: http://page.inf.fu-berlin.de/∼hinze/projects/project medias.html.

Multilevel Secure Rules and Its Impact on the Design of
Active Database Systems

Indrakshi Ray

Colorado State University, Fort Collins, CO 80523
iray@cs.colostate.edu

Abstract. The event-condition-action paradigm (also known as triggers or rules)
gives a database “active” capabilities – the ability to react automatically to changes
in the database or in the environment. One potential use of this technology is in
the area of multilevel secure (MLS) data processing, such as, military, where the
subjects and objects are classified into different security levels and mandatory
access control rules govern who has access to what. Unfortunately, not much
work has been done in the area of multilevel secure active database system. In this
paper we define the structure of MLS rules and identify what effects these rules
have on the execution semantics of an active database system. Such knowledge is
essential before developing a multilevel secure active database system.

1 Introduction

Traditional database management system are passive: the database system executes
commands when requested by the user or application program. However, there are many
applications where this passive behavior is inadequate. Consider for example, a financial
application: whenever the price of stock for a company falls below a given threshold, the
user must sell his corresponding stocks. One solution is to add monitoring mechanisms
in the application programs modifying the stock prices that will alert the user to such
changes. Incorporating monitoring mechanisms in all the relevant application programs
is non trivial. The alternate option is to poll periodically and check the stock prices.
Polling too frequently incurs a performance penalty; polling too infrequently may result
in not getting the desirable functionalities. A better solution is to use active databases.

Active databases move the reactive behavior from the application into the database.
This reactive capability is provided by triggers also known as event-condition-action
rules or simply rules. In other words, triggers give active databases the capability to
monitor and react to specific circumstances that are relevant to an application. An active
database system must provide trigger processing capabilities in addition to providing all
the functionalities of a passive database system.

One potential use of this technology is in the area of secure data processing, such as,
the military which uses an underlying multilevel secure (MLS) database. A multilevel
secure database system is characterized by having a partially ordered set of security
levels (the ordering relation is referred to as the dominance relation); all the database
objects and the operations (transactions) on the database objects have security levels
associated with them. Mandatory access control policies determine which transactions
can access which objects. The idea is that information can flow from the dominated level
to the dominating level but not in the other direction.

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 226–244, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Multilevel Secure Rules and Its Impact 227

To the best of our knowledge, the only work in providing active capabilities to an
MLS database is done by Smith et al. [33]. Smith’s work is based on the MLS relational
model that supports polyinstantiation. Since this relational model is not widely prevalent,
the MLS active database system proposed by Smith is not used either. The absence of a
suitable MLS active database limits the potential use of active technology to applications
that use an MLS database as the underlying database. This paper aims at filling this gap.

Providing reactive capabilities in a MLS database system has two components. First,
we must provide a knowledge model for triggers. The knowledge model will specify
what kinds of rules can be supported, what can be said about these rules, and how can
the rules be classified into security levels. Next, we must provide an execution model for
the triggers. The execution model will specify the runtime strategies for rule execution.
The execution model must ensure that no illegal information flow occurs because of the
execution of triggers.

This paper has two contributions. Our first contribution is that we focus on the
knowledge model of an MLS active database system. Specifically, we show how to define
an MLS rule, and how to assign security levels to such rules. Our second contribution
illustrates the different execution models in existing active database systems, and the
impact our MLS rules have on these execution models. Specifically, we identify those
choices in execution model that can be supported without violating the MLS constraints.
This knowledge is essential before developing an MLS active database system.

The rest of the paper is organized as follows. Section 2 briefly describes the un-
derlying MLS model on which our work is based. Section 3 proposes the knowledge
model of an MLS active database system. Section 4 identifies the impact our knowledge
model has on the execution model. Section 5 describes the possible architectures for an
MLS active database. Section 6 describes the relevant related work in this area. Section
7 concludes the paper with some pointers to future directions.

2 Our Model of an MLS Database

A database system is composed of database objects. At any given time, the database
state is determined by the values of the objects in the database. A change in the value
of a database object changes the state. Users are responsible for submitting transactions
and application programs that are to be executed on the database. A transaction is an
operation on a database state. An application program may or may not perform an
operation on the database state. Execution of a transaction or application program may
cause the database to change state.

An MLS database is associated with a security structure that is a partial order, (L,<).
L is a set of security levels, and< is the dominance relation between levels. If L1 < L2,
then L2 is said to strictly dominate L1 and L1 is said to be strictly dominated by L2. If
L1 = L2, then the two levels are said to be equal. L1 < L2 or L1 = L2 is denoted by
L1 ≤ L2. If L1 ≤ L2,then L2 is said to dominate L1 and L1 is said to be dominated by
L2. Two levels L1 and L2 are said to be incomparable if neither L1 ≤ L2 nor L2 ≤ L1.
We assume the existence of a levelU , that corresponds to the level unclassified or public
knowledge. The levelU is the greatest lower bound of all the levels in L. Any data object
classified at level U is accessible to all the users of the database.

228 I. Ray

Each database object x ∈ D is associated with exactly one security level which we
denote as L(x) where L(x) ∈ L. (The function L maps entities to security levels.) We
assume that the security level of an object remains fixed for the entire lifetime of the
object.

The users of the system are cleared to the different security levels. We denote the
security clearance of user Ui by L(Ui). Consider a military setting consisting of four
security levels: top- secret (TS), secret (S), confidential (C) and unclassified (U) (where
U < C < S < TS). The user Jane Doe has the security clearance of top-secret. That
is, L(JaneDoe) = TS. Each user has one or more principals associated with him. The
number of principals associated with the user depends on his security clearance; it equals
the number of levels dominated by the user’s security clearance. In our example Jane
Doe has four principals: JaneDoe.TS, JaneDoe.S, JaneDoe.C and JaneDoe.U . At
each session, the user logs in as one of the principals. All processes that the user initiates
in that session inherit security level of the corresponding principal.

Each transaction Ti is associated with exactly one security level. The level of the
transaction remains fixed for the entire duration of the transaction. The security level
of the transaction is the level of the principal who has submitted the transaction. For
example, if Jane Doe logs in as JaneDoe.S, all transactions initiated by Jane Doe will
have the level secret (S).

We require a transaction Ti to obey the simple security property and the restricted
�-property [3] that are given below.

1. A transaction Ti with L(Ti) = C may read a database object x only if L(x) ≤ C.
2. A transaction Ti with L(Ti) = C may write a database object x only if L(x) = C.

Property 1 is the simple security property. This property places a restriction on the
objects that a transaction can read. A transaction can read an object only if the level of
the transaction dominates the level of the object. For example, a secret level transaction
can read secret and unclassified documents but not top-secret documents. Property 2
describes the restricted �-property. This property places a restriction on the objects that
a transaction can write. By virtue of this property, a transaction can write to database
objects that are at its own level. To prohibit a transaction from passing information from
the dominating level to the dominated level, a transaction at a dominating level is not
allowed to write to the objects at the dominated level. For example, if a top-secret level
transaction is allowed to write an unclassified document, then the transaction may pass
along top-secret level information to the unclassified document. For integrity reasons,
a transaction is not allowed to write to objects at the dominating level. For example,
an unclassified transaction can corrupt a top-secret level document by writing incorrect
information.

We give the formal definition of an MLS transaction below.

Definition 1. [MLS Transaction] An MLS transaction Ti is a set of read and write
operations on database objects which are preceded by the command begin and followed
by the command abort or commit. The transaction Ti is associated with security level
L(Ti) where L(Ti) ∈ L; it accesses database objects in accordance with the simple
security and the restricted �-property.

We use the term application program in a more general manner.

Multilevel Secure Rules and Its Impact 229

Definition 2. [MLS Application Program] An MLS application programAi is a set of
operations submitted by the user – the operations may or may not access the database
objects. An application programAi that accesses the database objects is associated with
security level L(Ai), where L(Ai) ∈ L; it accesses database objects according to the
rules specified by the simple security and the restricted �-property.

3 Rules in an MLS Active Database

In addition to transactions and application programs, an active database system also has
rules. A rule is specified by three components: event, condition and action. An event
causes a rule to be triggered. Active database systems have mechanisms that monitors
the database to check whether an event has occurred. If an event associated with a rule
occurs, the rule’s condition is evaluated. If the rule’s condition evaluates to true, then the
rule’s action is scheduled for execution. The details of rule execution are considerably
more complex than this simple description. We elaborate on the details of rule execution
in Section 4.

A rule is a database object on which we allow the following operations.

1. Create – this operation allows a new rule to be created.
2. Delete – this operation allows an existing rule to be deleted.
3. Update – this operation allows an existing rule to be modified.
4. Enable – this operation allows an existing rule to be enabled. Only enabled rules

can be triggered.
5. Disable – this operation allows an existing rule to be disabled.A disabled rule cannot

be triggered.
6. View – this operation allows an existing rule to be viewed.

Like other database objects in an MLS database, rules are also associated with secu-
rity levels. Each rule Rj is created by some principal, say P , and it inherits the security
level of the principal that created it, that is, L(Rj) = L(P). Creation, deletion, modifi-
cation, disabling, enabling of the rule corresponds to writing of the rule object. Hence,
by the restricted �-property these operations can be performed only by transactions or
applications whose security level is the same as that of the rule. Viewing the rule corre-
sponds to a read operation of the rule object. Thus, the view operation can be performed
by transactions or applications whose security levels dominate the level of the rule.

Next, we give the formal definition of an MLS rule.

Definition 3. [MLS Rule] An MLS ruleRj is defined as a triple< ej , cj , aj >where ej
is the event that causes the rule to be triggered, cj is the condition that is checked when
the rule is triggered and aj is the action that is executed when the rule is triggered. The
MLS rule Rj is associated with exactly one security level which we denote by L(Rj)
where L(Rj) ∈ L. The operations allowed on rules obey the mandatory restrictions
specified by the simple security and the restricted �-property.

Before describing how the security level of a rule is related to the levels of its
components (that is, events, conditions and actions), we must describe the components
of a rule in more details.

230 I. Ray

3.1 Events in an MLS Active Database Systems

Event specifies what causes the rule to be triggered. Possible events that can be supported
in an active database system are

1. Data modification/retrieval events – the event is raised by an operation (insert, up-
date, delete, access) on some database object.

2. Transaction event – the event is raised by some transaction command (e.g. begin,
abort, commit etc.).

3. Application-defined event – the application program may signal the occurrence of
an event.

4. Temporal events – events are raised at some point in time. Temporal events may be
absolute (e.g., 25th December, 2002) or relative (e.g. 15 minutes after x occurs).

5. External events – the event is occurring outside the database (e.g. the sensor recording
temperature goes above 100 degrees Celsius).

Events can further be classified into primitive and composite events.

– Primitive event – the event cannot be divided into subparts.
– Composite event – the event is raised by some combination of primitive events.

For example, inserting a tuple in Employee relation is a primitive event. Two hours
after a tuple has been inserted in Employee relation is a composite event.

A composite event is constructed using two or more primitive events connected by
an event operator. Any composite event e can be denoted as follows.

e = e1 op1 e2 op2 . . . en

where e1, e2, . . . , en are the primitive events making up the composite event E, and
op1, op2, . . . opn−1 are the event operators. Event operators can be logical event operators
(∨,∧ , etc.), sequence operators (;), or temporal composition operators (after, between,
etc.).

Assigning Security Levels to Events. First, we discuss how to assign security levels
to primitive events.

Security Level associated with Data Modification/Retrieval Event: The event e has
the same security level as the operation O that caused it, that is, L(e) = L(O). If
this operationO is performed by some transaction T , then the level ofO is the same
as the level of T .

Security level associated with the Transaction Event: The event E has the same se-
curity level of the transaction T that caused it, that is, L(e) = L(T).

Security Level associated with Application-Defined Event: The event e has the same
security level as the level at which the application A that generated it is executing,
that is, L(e) = L(A).

Security Level associated with Temporal Event: An absolute temporal event e is ob-
servable by any body and so its security level is public, that is, L(e) = U . A relative
temporal event is a composite event. The manner in which the level of composite
event is calculated is given below.

Multilevel Secure Rules and Its Impact 231

Security Level associated with External Event: The level of the event e is the greatest
lower bound of the security clearances of the users U1, U2, . . ., Un who can observe
this external event e, that is, L(e) = glb(L(U1), L(U2), . . . , L(Un)) (where L(Ui)
denotes the security clearance of user Ui).
An event like the outside air temperature is 110 degrees Fahrenheit, is observable
by all users and so its level is public. Whereas, an event like the sensor reading from
a military satellite that can be observed only by top-secret personnel, will have a
security level of top-secret.

Now we discuss how to assign security levels to composite events.

Security Levels associated with Composite Event: Consider the composite event E
given by, e = e1 op1 e2 op2 . . . en, where e is composed of primitive events e1,
e2, . . ., en. The security level of the composite event e is the least upper bound
of the levels of the primitive events e1, e2, . . ., en composing it, that is, L(e) =
lub(L(e1), L(e2), . . . , L(en)).

3.2 Conditions in an MLS Active Database System

In an active database, when a rule has been triggered condition specifies the additional
conditions that must be checked before the action can be executed. If the condition part
of the rule evaluates to true, then the action is executed. Possible conditions in a rule are

1. Database predicates – the condition might be a predicate on the database state
(average salary of employees greater than 50000).

2. Database queries – the condition might be a query on the database state. If the query
returns some results, the condition is said to be satisfied. If the query fails to return
any result, the condition is not satisfied.

3. Application procedures – the condition may be a specified as a call to an application
procedure (example, max exceeded()) which may or may not access the database.

Assigning Security Levels to Condition. Checking a condition involves reading
database objects associated with the condition. We define the level of a condition c,
denoted by L(c), as follows: It is the least upper bound of all the data that is ac-
cessed by the condition. That is,L(c) = lub(L(D1), L(D2), L(D3), . . . , L(Dn)) where
D1, D2, . . . , Dn are the data objects accessed by condition c.

3.3 Actions in an MLS Active Database System

When the rule is triggered and its condition evaluates to true, the action of the rule must
be executed. Possible actions in an MLS active database include

1. Data modification/retrieval operation – the action of the rule causes a data operation
(insert, update, delete, access).

2. Transaction operation – the action of the rule causes a transaction operation (e.g.
abort).

232 I. Ray

3. Application-defined operation – the action causes some procedure in an application
to be executed.

4. External operation – the action causes some external operations (e.g. informing the
user).

Some active database languages allow a rule to specify multiple actions. Usually
these actions are ordered which allows them to be executed sequentially.

Assigning Security Levels to Actions. This is how we assign security levels for the
actions.

Security Level associated with Data Modification/Retrieval Action: The action has
the same level as the operation it causes, that is, L(a) = L(O).

Security Level associated with Transaction Operation: The action a has the same
level as the transaction T , that is, L(a) = L(T).

Security Level associated with Application-defined Operation: The action a has the
same level as the application process A, that is L(a) = L(A).

Security Level associated with External Operation: In this case, the action is viewed
by external observers. The level of the action must be lower than or equal to the
security clearances of all the users viewing the action. The level of action a is the
greatest lower bound of the security clearances of the users U1, U2, . . ., Un who
can observe this operation, that is, L(a) = glb(L(U1), L(U2), . . . , L(Un)) where
L(U1), L(U2), . . ., L(Un) are the security clearances associated with users U1, U2,
. . ., Un respectively.

Security Level of Action composed of Multiple Constituents: Consider a rule
R =< e, c, a > where the action a is composed of multiple actions, a1, a2, . . . , ak.
To keep our model simple, we require that the level of all the actions must be the
same. That is, L(a1) = L(a2) = . . . = L(ak).

3.4 Relationship of Security Levels Associated with a Rule

The following illustrates the relationship of the level of the ruleRj with the levels of the
constituent event ej , the condition cj and the action aj .

1. L(ej) ≤ L(Rj)
2. L(cj) ≤ L(Rj)
3. L(aj) = L(Rj)

Item 1 states that a rule may be triggered by an event whose level is dominated by
the level of the rule. Item 2 states that a rule may require checking conditions at the
dominated level before it can be fired. Item 3 states that a rule can take an action only at
its own level.

In a secure environment it might be necessary for dominating levels to monitor
suspicious events taking place at some dominated level and take some precautionary
action; hence the need for L(ej) ≤ L(Rj). Moreover, L(ej) �> L(Rj) ensures that a
dominating event does not trigger a dominated rule and create a covert channel. The same

Multilevel Secure Rules and Its Impact 233

reasoning applies for condition cj ; thus, the rule Rj might check conditions involving
dominated level data (that is, L(cj) ≤ L(Rj)), but not data at the dominated levels
(L(cj) �> L(Rj)). The level of the action is the same as the level of the rule, that is,
L(aj) = L(Rj). Since L(aj) �< L(Rj), a rule at the dominating level cannot result
in an action at the dominated level and create a covert channel1. Also, since L(aj) �>
L(Rj), a rule at the dominated level while executing its action cannot corrupt data at
the dominating level.

4 Execution Model

The execution model of an active database specifies how the active database behaves at
run-time. The execution model will depend on the underlying DBMS. At this point, we
do not wish to commit to any particular DBMS. Hence, we do not propose a detailed
execution model for an MLS active database system. Instead, we identify the issues that
need to be addressed before developing an execution model.

Irrespective of the execution model used, the following activities (as outlined by
Paton et al. [29]) are involved during rule execution. When or how these activities are
carried out constitute the details of the execution model.

Event Detection Phase – refers to the detection of an event occurrence caused by an
event source.

Triggering Phase – triggers the rules corresponding to the events produced. The asso-
ciation of a rule with its event occurrence is termed rule instantiation.

Evaluation Phase – evaluates the condition of the triggered rules. The conflict set is
formed which is made up of all the rule instantiations whose conditions evaluate to
true.

Scheduling Phase – chooses which rule will be processed from the conflict set.
Execution Phase – carries out the actions of the chosen rule instantiation.

Next, we investigate each component of the execution model and identify what effect,
if any, our MLS rules have on these components.

4.1 Rule Processing Granularity

The granularity of rule processing indicates at which instances rules can be processed.
Widom and Ceri [38] have identified four kinds of granularity:

1. Always – rules may be processed at any point in time,
2. Smallest database operations – for example, insertion, deletion, update or fetch of a

single tuple.
3. Data manipulation statements – for example, at the end of every SQL statement

where a statement inserts, deletes, updates, or fetches numerous tuples.
4. Transaction boundaries.

1 Path of illegal information flow based on monitoring the usage of system resources.

234 I. Ray

Kinds of Granularity in an MLS Active Database. In our model, an event at the
dominated level can trigger a rule at the dominating level. Since the event may have been
generated by a transaction or an application program, we do not want the dominated
transaction to be suspended for the execution of a dominating rule and introduce the
possibility of a timing channel. A timing channel arises between a dominating level
and a dominated level when the dominating level can vary the amount of time required
to complete a task to signal information to the dominated level. Thus, the first three
kinds of rule processing granularity enumerated above cannot be supported in an MLS
Active Database. The only viable rule processing granularity is the fourth item, that is,
transaction processing boundaries.

4.2 Conflict Resolution and Rule Priorities

In sequential processing, at any given time, only one rule is chosen for execution. How-
ever, in an active database system many rules may be triggered at the same time. This
may happen because of several reasons: (i) several rules specify the same triggering
event, (ii) the rule processing granularity is coarse – many events are triggered before
the rules are processed, (iii) rules that are triggered but not chosen for execution remain
triggered.

In such a scenario, conflict resolution specifies how the rule to be executed can be
chosen. Some conflict resolution strategies are

1. a rule may be chosen arbitrarily,
2. a rule may be chosen based on static properties – time of rule creation or the data

on which rules are defined,
3. a rule may be chosen based on dynamic properties – most recently fired rule,
4. a rule may be chosen based on priorities that are specified during rule definition.

Priorities are specified by ordering the set of rules, by declaring relative priorities
between each pair of rules, or by assigning numeric priorities.

Conflict Resolution and Rule Priorities in an MLS Active Data base. We can specify
any of the conflict resolution policies enumerated above for rules having the same security
level. However, if there are rules belonging to different security levels, the conflict
resolution policy must always favor the dominated rule. This is because delaying a rule
at the dominated level because of the execution of a rule at the dominating level may
give rise to a timing channel.

In a multilevel secure active database system we can also specify priorities, but the
requirement is that no dominating rule must have a higher priority than a dominated rule.
Thus, if priorities are specified by ordering the set of rules, then all rules at dominated
levels must be ordered before any rule at the dominating level.

If numeric priorities are to be specified, one approach is to make the priority spec-
ification have two parts: one for the security level and the other for the number. For
rules having different security levels, the dominated rules will get preference over the
dominating rules. For rules having the same security level, the number will decide which
rule is chosen for execution.

Multilevel Secure Rules and Its Impact 235

Note that if dominated rules always get more preference than dominating rules, then
the dominating rules might suffer from starvation. One solution is to allocate fixed time
slots for each level. Suppose there are two levels: Low andHigh, where Low < High.
We allocate the time slot< T1, T2 > for rules at levelLow, the slot< T2, T3 > for rules
at level High, < T3, T4 > for rules at level Low etc. The problem with this approach
is that if there are no High rules for execution at < T2, T3 >, then processor time gets
wasted. To minimize wasting computational resource, a better approach would be to
study the processor requirements of the rules at different levels and then divide the time
slots accordingly.

4.3 Sequential versus Concurrent Execution

In sequential rule processing only one rule is executed at a time. If multiple rules are
triggered, the conflict resolution strategy decides which rule should be executed. An
alternate approach to sequential rule execution is concurrent execution. Concurrent rule
execution provides a better performance than sequential execution. There can be two
kinds of concurrent rule execution:

1. inter-rule concurrency – a rule is executed as one atomic transaction.
2. intra-rule concurrency – rules are divided into parts and each of these part is executed

as an atomic transactions. In other words, these parts are executed concurrently.

We can, of course, have systems that allow both the above options.
In inter-rule concurrency, each rule Rj generates a transaction Tj at the same level.

In intra-rule concurrency, each rule Rj generates two transactions at its own level: Tcj
(for evaluating the rule’s condition) and Taj (for executing the rule’s action). Note that,
we need to ensure that Taj commits only after Tcj commits and returns a true value.

Concurrent Execution in an MLS Active Database. Both inter-rule and intra-rule
concurrency can be supported in an MLS active database system. Each rule in such
a scenario generates one or more transactions at its own level. Since rules at differ-
ent levels generate transactions at different levels, these transactions must be executed
concurrently. The concurrency control algorithms must ensure that no illegal informa-
tion flow occurs due to the execution of rules. Multilevel secure concurrency control
algorithms [2] can be used in such a scenario.

4.4 Coupling Modes

Coupling modes are specified which dictate when a triggered transaction is processed
relative to the triggering transaction.

We need to specify when the condition will be evaluated relative to the triggering
event. We also need to specify when the action will be executed relative to condition
evaluation. Each of these can be specified using coupling modes.

236 I. Ray

Coupling Modes between Event and Condition. There are three basic kinds of cou-
pling modes between event and condition.

1. Immediate Coupling Mode between Event and Condition – The rule’s condition is
evaluated as soon as the event has occurred as a part of the triggering transaction.

2. Deferred Coupling Mode between Event and Condition – The rule’s condition is
evaluated after the triggering transaction has completed all its operation, but before
it has been committed.

3. Detached Coupling Mode between Event and Condition – The rule’s condition is
evaluated in a different transaction than the triggering one.

Coupling Mode between Event and Condition in an MLS Active Database
Let the triggering transaction be denoted as Ti and the triggered rule be denoted as Rj .
If L(Ti) < L(Rj) and the coupling mode between event and condition is immediate or
deferred then this may give rise to a timing channel – by manipulating the time taken
to execute the triggered rule, information may be transmitted from the level L(Rj) to
levelL(Ti). In other words, the immediate and deferred mode can be supported for cases
whereL(Rj) = L(Ti). WhenL(Rj) �= L(Ti), the immediate and deferred modes cause
a breach of security.

The detached coupling mode, however, can be supported safely in all cases. The
detached coupling mode also provides more concurrency than the immediate or deferred
mode. This is because in immediate or deferred mode the triggered rule and the triggering
transaction execute as one large transaction and hence this large transaction takes more
time to complete; this in turn delays the transactions that are waiting to lock items that
are locked by this large transaction. In detached coupling mode the triggered rule is
executed as a separate transaction and the performance problem associated with one
large transaction does not arise.

Coupling Modes between Condition and Action. Coupling modes can also be used
to specify when the rule’s action takes place relative to condition evaluation. Here also
three modes are specified.

1. Immediate Coupling Mode between Condition and Action – The rule’s action is
executed immediately after condition evaluation.

2. Deferred Coupling Mode between Condition and Action – The rule’s action is exe-
cuted as a part of the same transaction as the condition evaluation, but not necessarily
immediately.

3. Detached Coupling Mode between Condition and Action – The rule’s action and the
rule’s condition evaluation are executed as two different transactions.

Coupling Mode between Condition and Action in an MLS Active Database
Since the level of the transaction evaluating the rule’s condition is the same as the level
of the transaction executing the rule’s action, all the above modes can be supported in
a multilevel secure active database system. However, in detached coupling mode we
can take advantage of the intra-rule concurrency because the rule’s action execution and
condition evaluation are two separate transactions.

Multilevel Secure Rules and Its Impact 237

4.5 Iterative versus Recursive Algorithms

Often times the condition evaluation or action execution of a rule signals events which
in turn trigger other rules. In such a scenario, how should the rule processing proceed?
There are two choices:

1. recursive rule processing – the original condition evaluation or action execution is
suspended and any immediate rules triggered by the (condition evaluation or action
execution) event are chosen for execution,

2. iterative rule processing – the original rule proceeds to completion after which other
rules are chosen for execution.

Iterative vs. Recursive Algorithms in an MLS Active Database. Recursive rule pro-
cessing can be supported only if the triggering rule and the triggered rule have the same
security level. Recursive rule processing may introduce timing channels if the triggered
rule and the triggering rule belong to different security levels. This happens because the
dominated triggering rule is suspended to allow for the completion of the dominating
triggered rule – the dominating rule can manipulate the time taken to complete and
convey information to the dominated rule. Iterative rule processing, on the other hand,
does not suffer from this security breach and can safely be supported in an MLS Active
Database System.

4.6 Error Handling

An error may occur while a rule is being processed. Widom and Ceri [38] elaborates on
why an error may be generated during rule processing. Their reasons include (i) data
required by a rule for condition evaluation or action execution has been deleted, (ii)
authorization privileges required for rule condition evaluation or action execution have
been revoked, (iii) a rule’s condition or action reveals an error condition, (iv) the number
of rules processed exceeds the systems limits, (v) concurrent execution of transaction
creates a deadlock, or (vi) a system generated interrupt or error occurs.

Once an error occurs during rule processing, the question is how is the error handled.
There are various options for handling the error.

1. Abort the transaction responsible for the event that in turn triggered the rule.
2. Ignore the rule that caused the error and continue processing.
3. Backtrack to the state when rule processing started and either restart rule processing

or continue with the transaction.
4. Adopt a contingency plan that attempts to recover from the error state.

Error Handling in an MLS Active Database System. All the above options can be
supported for cases where the level of the rule is the same as the level of the transaction.
However, if the level of the triggering transaction is dominated by the level of the rule,
then option 1 cannot be supported because aborting a dominated level transaction because
of an error in a dominating rule constitutes a covert channel. In such a scenario option
4 may be the best one.

238 I. Ray

5 Architecture

The architecture of an active database system will depend on the knowledge model and
execution model of the active database system. In general, there are two approaches to
building active database systems. One is the layered approach where the active database
components are built on top of an existing passive database system. The alternate ap-
proach is of a built-in architecture where active database components become a part of
the database itself. The layered approach is easier to construct than the built-in one, but
it is not as efficient as the built-in one.

5.1 Architecture for an MLS Active Database System

In a multilevel secure active database system the built-in approach is preferred. The
main reason for this preference is performance. Also, for the layered approach we need
an existing efficient multilevel secure database as an underlying database which is not
widely available.

As mentioned previously, the actual architecture of an MLS active database system
will depend on the knowledge and execution model. However, we do describe an ar-
chitecture at a very abstract level of an MLS active database system (refer to figure 1).
This will give an idea of the extra components that must be supported for processing
MLS rules. The principal components are depicted by rectangles and the data stores are
depicted by ellipses.

History

Database

Rule Base Conflict Set

Trusted Query
Evaluator

Event Detector
High

Condition Monitor
Low

Scheduler
Trusted

Event Detector
Low

notification

read/write

condition evaluation

detected events

action
execution

triggered rules

read

Condition Monitor
High

read/write

read/write

read/write

Fig. 1. A High-Level Architecture for Processing MLS Rules

Multilevel Secure Rules and Its Impact 239

The main components are:

1. Event Detector at Level li – This is responsible for detecting events at level li. Note
that, event detector at level li can detect events at all levels that are dominated by li.
The database notifies the event detector al level li about all primitive events occurring
at levels dominated by li. Composite events are constructed using the knowledge
about incoming primitive events and past events obtained from the history.

2. Condition monitor at Level li2 – This is responsible for evaluating the conditions of
rules that are triggered by the events detected by the event detector li. The condition
monitor sends a request to the query evaluator to evaluate the condition. On the basis
of the response from the query evaluator, the condition monitor decides which rules
are triggered. These rules are then sent to the scheduler.

3. Trusted Scheduler – This is responsible for scheduling which rule is to be executed.
Since the scheduler accesses rules at different levels, it must be a trusted component.

4. Trusted Query Evaluator – This is responsible for executing database actions and
queries. We have shown the query evaluator to be a trusted component because it is
responsible for executing database operations at all levels. In real world, the query
evaluator will have several components, some of which are trusted and others which
are not.

The above is a very abstract view of rule processing. Each of these components
will be composed of sub-components and how these sub-components are connected will
constitute the low-level architecture of the MLS active database system.

6 Related Work

6.1 Related Work in Multilevel Secure Active Databases

Very little work appears in the area of multilevel secure active databases. The major work
in this area is by Smith and Winslett [33]. The authors show how an MLS relational model
can be extended to incorporate active capabilities. The underlying MLS relational model
supports polyinstantiation: that is, all MLS entities in this model can exist at multiple
security levels simultaneously. An MLS rule being an MLS entity can also exist at
multiple security levels. The main difference with our work is that this work is based on
the polyinstantiation model.

6.2 Related Work in Expert Systems

Morgenstern [26] considers the problem of covert channels in deductive databases that
are subject to mandatory security requirements. Berson and Lunt [4] describe the prob-
lems that must be solved in incorporating mandatory security requirements in a product
rule system. Garvey and Lunt [14] extend an MLS object-oriented database system with

2 We can have a single event detector and condition monitor instead of having event detectors and
condition monitors for each of the security levels. However, this would require a trusted event
detector and a trusted condition monitor. Developing trusted components requires considerable
effort. Hence, we choose to have event detectors and condition monitors for each security level.

240 I. Ray

productions rules. Expert system rules differ from active database rules. Expert system
rules are executed upon an explicit request for information; active database rules are
executed as side effects. Expert system rules are used for inferencing – the order of rule
execution is not important. This is not so with active databases. Both forward chaining
and backward chaining rules are supported in an expert system. Active databases, on the
other hand, support only forward chaining rules.

6.3 Related Work in Active Databases

Many work has been performed in the area of active databases. We will only describe
a few of these works. Most of these work differ in the knowledge model and execution
model. Some of these active databases use a relational model as an underlying database
and others use an object-oriented one.

Most commercial systems support some form of triggering mechanisms. Some of
the prototypes based on the relational model are Starburst [37], Ariel [17], POSTGRES
[35]. Starburst rule system is quite conservative – supports a limited set of facilities.
The most important feature of Starburst is its set-based execution model. Whenever an
event that is of importance to some rule takes place, the event is logged in a transition
table. At rule assertion points, this transition table is checked and the net-effect of all the
logged events is taken into consideration before firing a rule. The POSTGRES project
included a number of extensions to the relational model – providing active capabilities
is one such extension. POSTGRES supports immediate rule processing and does not
support the deferred modes. Ariel supports both ECA and condition-action rules. This
has important consequences for the implementation of the rule processing system.

Notable among the object-oriented models are HiPAC [24,30], NAOS [10], Chimera
[8], Ode [1] , SAMOS [15], Sentinel [9] and REACH [7]. HiPAC is one of the earlier
projects in active database systems and they have contributed to many of the pioneering
ideas: coupling modes, composite events, parallel execution of triggered rules in the form
of subtransactions, to name a few. Also, this project identified real-time applications
that can benefit from active database systems. NAOS is an active rule system for the
O2 commercial OODB database. However, NAOS has been implemented as a part of
kernel of O2. The NAOS execution model supports depth-first, recursive processing of
immediate rules and breadth-first iterative processing of deferred rules. SAMOS provides
active capabilities to the ObjectStore commercial OODB. The most significant feature
of SAMOS is the event detector, the semantics of which is based on petri nets. The event
language is also expressive and allows the specification of composite events. Sentinel
and REACH extends the C++ based OpenOODB system from Texas Instruments with
active capabilities. Chimera builds upon a deductive object-oriented database system.

6.4 Related Work in Multilevel Secure Databases

A large number of works also appears in multilevel secure database system. Majority
of these works [11,12,13,16,18,19,20,21,31,32,34] are in the area of relational database
systems and some [5,6,19,22,25,27,36] are in the area of object oriented database sys-
tems.

Multilevel Secure Rules and Its Impact 241

In a multilevel relational database system the data are classified into different security
levels, and the users are associated with different security clearances. An important issue
is the granularity at which the data can be classified. There are four possibilities: the data
may be classified (i) at the element level, (ii) at the attribute level, (iii) at the tuple level,
or (iv) at the relation level. A relation in which the data has been classified as above is a
multilevel relation.

Most of the work differ in the way they solve integrity and polyinstantiation problems.
Entity integrity ensures that no user sees a null value for the primary key of a relation.
Unless, no action is taken, entity integrity would be violated when a user with a low
clearance sees null for the cases where the primary key of a tuple is classified at a level
higher than the user. One solution is that all the primary key elements be classified at
the same level. The other solution is that the primary keys should be as low as any other
elements in the tuple. Referential integrity requires that a tuple of low security level
cannot reference a tuple of a high security level because the referenced tuple would
appear to be non existent to users with low clearance.

There are three kinds of polyinstantiation [12].A polyinstantiated relation [36] occurs
when two subjects at different security levels try to create a relation of the same name. A
polyinstantiated tuple occurs when a user inserts a tuple that has the same primary key
value as an existing tuple at the higher level. A polyinstantiated element [23] is created
if a user updates an element in a tuple which appears to be null (because the element has
a higher security classification than the user).

A lot of work appears in the area of multilevel secure object oriented databases. Some
of these work [5,25,36] consider single-level objects: each object is assigned a security
level and this security level applies to all the properties and the methods of this object.
The main advantage of this approach is its simplicity. The security kernel remains small
so that it can be efficiently verified. The disadvantage is that in real-world there is a need
for multilevel objects (where the different attributes of an object may be associated with
different security levels) which cannot be adequately modeled.

The alternate approach is of supporting multilevel objects. The main problem of
supporting multilevel object is that the security kernel becomes complex. Verifying
the trusted security kernel becomes a difficult task. To keep the security kernel sim-
ple, researchers [5,6] have proposed the idea of decomposing multilevel objects into
single-level ones and storing them as single-level objects. In such cases, mechanisms
are developed that ensure that the users get the multi-level view of the object, even
though they are stored as single-level ones.

Many security models pertaining to object-oriented database systems have been
proposed. The notable ones are the Jajodia-Kogan filter model [19], SORION model
[36], Millen-Lunt model [25] and the SODA model [22]. Olivier et al. [28] identify
security issues and properties that are relevant to the modeling and implementation of a
secure object-oriented database system.

7 Conclusion and Future Work

The absence of a multilevel secure active database limits the applicability of active
technologies to applications that use an underlying MLS database system. Our work

242 I. Ray

is a first step towards fulfilling this gap. We have identified what kinds of rules can
be supported and how these rules can be classified into security levels. Next, we have
identified what impact these rules have on the rule execution semantics. In many cases it
turns out that some features of active databases cannot be supported without introducing
illegal information flow. We have not based our work on any relational or object-oriented
models; our observations, therefore, will be useful to developers of any MLS active
database system.

A lot of work remains to be done. The next step will be to finalize on the rule execution
semantics. Consider, for example, iterative versus recursive rule processing. For an MLS
active database there are two possibilities: (i) support only iterative rule processing or (ii)
support iterative as well as recursive rule processing and limit recursive rule processing
to rules having the same security level. Option (ii) offers more flexibility but is more
complicated and potentially more time consuming. Note that, we need to study the kinds
of applications that will be executed on MLS active database systems before finalizing
on the rule execution semantics.

Once the rule execution semantics have been finalized we will develop a detailed
architecture for an MLS active database system. The detailed architecture will identify
the rule processing components and their interactions with the underlying MLS database.
This will also provide guidelines as to which of these components must be trusted. The
final step is to implement each of these components such that rule processing can be
performed in a secure and efficient manner.

References

1. R. Agarwal and N. Gehani. Ode (Object database and environment): The language and the
data model. In Proceedings of the ACM-SIGMOD International Conference on Management
of Data, pages 36–45, Portland, OR, May 1989.

2. V. Atluri, S. Jajodia, T.F̃. Keefe, C. McCollum, and R. Mukkamala. Multilevel Secure Trans-
action Processing: Status and Prospects. In P. Samarati and R.S̃. Sandhu, editors, Database
Security X: Status and Prospects, chapter 6, pages 79–98. Chapman & Hall, 1997.

3. D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition and multics
interpretation. Technical Report MTR-2997, MITRE Corporation, Bedford, MA, July 1975.

4. T. A. Berson and T. F. Lunt. Multilevel Security for Knowledge-Based Systems. In Proceed-
ings of the IEEE Symposium on Research in Security and Privacy, pages 235–242, Oakland,
CA, April 1987.

5. E. Bertino and S. Jajodia. Modeling Multilevel Entities using Single Level Objects. In Pro-
ceedings of the Third International Conference on Deductive and Object-Oriented Databases,
volume 760 of Lecture Notes in Computer Science, pages 416–428, Phoenix, AZ, December
1993. Springer-Verlag.

6. N. Boulahia-Cuppens, F. Cuppens, A. Gabillon, and K. Yazdanian. Virtual View Model to
Design a Secure Object-Oriented Database. In Proceedings of the National Computer Security
Conference, pages 66–76, Baltimore, MD, October 1994.

7. A.P. Buchman, H. Branding, T. Kundrass, and J. Zimmermann. REACH: A REal-time ACtive
and Heterogeneous Mediator System. Bulletin of the IEEE Technical Committee on Data
Engineering, 15(4), December 1992.

8. S. Ceri and R. Manthey. Consolidated specification of Chimera, the conceptual interface of
idea. Technical Report IDEA.DD.2P.004, Politecnico di Milano, Milan, Italy, June 1993.

Multilevel Secure Rules and Its Impact 243

9. S. Chakravarthy, E. Hanson, and S.Y.W. Su. Active data/knowledge base research at the
University of Florida. Bulletin of the IEEE Technical Committee on Data Engineering,
15(4):35–39, December 1992.

10. C. Collet, T. Coupaye, and T. Svensen. NAOS– efficient and modular reactive capabilities in
an object-oriented database system. In Proceedings of the Twentieth International Conference
on Very Large Databases, pages 132–143, Santiago, Chile, 1994.

11. O. Costich and J. McDermott. A multilevel transaction problem for multilevel secure database
system and its solution for the replicated architecture. In Proceedings of the IEEE Symposium
on Research in Security and Privacy, pages 192–203, Oakland, CA, May 1992.

12. D. Denning and T. F. Lunt. A multilevel relational data model. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, pages 220–234, Oakland, CA, May 1987.

13. P. A. Dwyer, G. D. Gelatis, and M. B. Thuraisingham. Multilevel security in database man-
agement systems. Computers and Security, 6(3):252–260, June 1987.

14. T. D. Garvey and T. F. Lunt. Multilevel Security for Knowledge-Based Systems. In Proceed-
ings of the Sixth Computer Security Applications Conference, pages 148–159, Tucson, AZ,
December 1990.

15. S. Gatziu, A. Geppert, and K. R. Dittrich. Integrating active concepts into an object-oriented
database system. In Proceedings of the Third International Workshop on Database Program-
ming Languages, Nafplion, Greece, August 1991.

16. J. T. Haigh, R. C. O’Brien, and D. J. Thomsen. The LDV Secure Relational DBMS Model.
In S. Jajodia and C.E. Landwehr, editors, Database Security IV: Status and Prospects, pages
265–279. Elsevier Science Publishers B.V. (North-Holland), 1991.

17. E. Hanson. Rule condition testing and action execution in Ariel. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 49–58, San Diego, CA,
June 1992.

18. D. K. Hsiao, M. J. Kohler, and S. W. Stround. Query Modifications as Means of Controlling
Access to Multilevel Secure Databases. In S. Jajodia and C.E. Landwehr, editors, Database
Security IV: Status and Prospects, pages 221–240. Elsevier Science Publishers B.V. (North-
Holland), 1991.

19. S. Jajodia and B. Kogan. Transaction Processing in Multilevel Secure Databases using Repli-
cated Architecture. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 360–368, Oakland, CA, May 1990.

20. S. Jajodia and R. Sandhu. Polyinstantiation Integrity in Multilevel elations Revisited. In
S. Jajodia and C.E. Landwehr, editors, Database Security IV: Status and Prospects, pages
297–307. Elsevier Science Publishers B.V. (North-Holland), 1991.

21. S. Jajodia and R. Sandhu. Toward a Multilevel Relational Data Model. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages 50–59, Denver,
CO, 1991.

22. T. F. Keefe, W. T. Tsai, and M. B. Thuraisingham. A Multilevel Security Model for Object-
Oriented Systems. In Proceedings of the National Computer Security Conference, pages 1–9,
Baltimore, MD, October 1988.

23. T. F. Lunt and E. B. Fernandez. Database Security. SIGMOD Record, 19(4):90–97, December
1990.

24. D.R. McCarthy and U. Dayal. The architecture of an active database management system. In
Proceedings of the ACM-SIGMOD International Conference on Management of Data, pages
215–224, Portland, OR, May 1989.

25. J. K. Millen and T.F. Lunt. Security for Object-Oriented Database Systems . In Proceedings
of the IEEE Symposium on Research in Security and Privacy, pages 260–272, Oakland, CA,
May 1992.

244 I. Ray

26. M. Morgenstern. Security and Inference in Multilevel Database and Knowledge-Base Sys-
tems. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 357–373, San Francisco, CA, May 1987.

27. M. Morgenstern. A Security Moddel for Multilevel Object with Bidirectional Relationship.
In S. Jajodia and C.E. Landwehr, editors, Database Security IV: Status and Prospects, pages
53–71. Elsevier Science Publishers B.V. (North-Holland), 1991.

28. M.S. Olivier and S. H. Von Solms. A Taxonomy for Secure Object-Oriented Databases. ACM
Transactions on Database Systems, 19(1):3–46, March 1993.

29. N.W. Paton and O. Diaz. Active Database Systems. ACM Computing Surveys, 31(1):63–103,
1999.

30. A. Rosenthal, S. Chakravarthy, B. Blaustein, and J. Blakeley. Situation monitoring for active
databases. In Proceedings of the Fifteenth International Conference OnVery Large Databases,
pages 455–464, Amsterdam, The Netherlands, August 1989.

31. R. Sandhu and S. Jajodia. Referential Integrity in Multilevel Secure Databases. In Proceedings
of the National Computer Security Conference, pages 39–52, Baltimore, MD, September
1993.

32. L. M. Schlipper, J. Filsinger, and V. M. Doshi. A Multilevel Secure Database Management
System Benchmark. In Proceedings of the National Computer Security Conference, pages
399–408, Baltimore, MD, October 1992.

33. K. Smith and M.Winslett. Multilevel secure rules: Integrating the multilevel and the active data
model. Technical Report UIUCDCS-R-92-1732, University of Illinois, Urbana-Champaign,
IL, March 1992.

34. P. D. Stachour and M. B. Thuraisingham. Design of LDV: A Multilevel Secure Relational
Database Management System. IEEE Transactions on Knowledge and Data Engineering,
2(3):190–209, June 1990.

35. M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation Database Management
System. Communications of the ACM, 34(10):78–92, October 1991.

36. M. B. Thuraisingham. Mandatory Security in Object-Oriented Database Systems. In Proceed-
ings of the International Conference on Object-Oriented Programming Systems, Languages
and Applications, pages 203–210, New Orleans, LA, October 1989.

37. J. Widom. The Starburst Rule System: Language Design, Implementation and Application.
Bulletin of the IEEE Technical Committee on Data Engineering, 15(4):15–18, December
1992.

38. J. Widom and S. Ceri. Active Database Systems Triggers and Rules For Advanced Database
Processing. Morgan Kaufmann, San Francisco, CA, 1996.

Using the Compliant Systems Architecture to
Deliver Flexible Policies within Two-Phase

Commit

Diana Howard, Henry Detmold, Katrina Falkner, and David Munro

School of Computer Science
The University of Adelaide
Adelaide 5005, Australia

{diana, henry, katrina, dave}@cs.adelaide.edu.au

Abstract. The compliant systems architecture (CSA) is a structuring
methodology for constructing software systems that exhibit strict separa-
tion of policy and mechanism. Components of an instantiated CSA adapt
to their environment under application control. This ability to evolve al-
lows a single system to provide optimal support for arbitrary applications
through flexible policy specification. Applications may determine their
preferred level of participation in the specification of policy.
In a distributed database system, two-phase commit (2PC) delineates
a family of algorithms governed by policies that affect different per-
formance, overhead and recovery characteristics. Whilst the literature
describes many different algorithms, a given implementation employs a
particular subset of policy choices. Consequently applications are captive
to decisions made by the underlying system and are unable to exploit
domain-specific knowledge. This paper outlines an instantiation of a dis-
tributed CSA and illustrates how it delivers flexibility within 2PC.

1 Introduction

System architectures are designed to support applications; they provide an ab-
straction over the underlying computer hardware. Their role is to facilitate appli-
cation performance, where possible metrics include execution time, throughput
and the provision of some particular functionality. To fulfil this role, systems
require policy and mechanism. Policies comprise strategies to achieve particular
goals, whereas mechanisms implement these strategies.

Traditional architectures are characterised by their rigid structure and the
tight encapsulation of policy and mechanism into static layers. Whilst this ab-
straction technique has well-known benefits, it limits policy and mechanism coop-
eration to that within individual layers. Furthermore, since policy is determined
within system levels, application-level code has only indirect and limited control.
Policy and mechanism designs for conventional systems are derived from simu-
lation and benchmarking of sample applications. Combinations of policies and
mechanisms that yield the best average performance across a majority of sam-
ples are adopted and set in concrete. An application whose behaviour does not

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 245–252, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

246 D. Howard et al.

match the average case must engage in a process of policy subversion, attempting
to coerce the system’s policies to meet the application’s distinct requirements.
Not only do conventional architectures fail to support different policy needs, but
they preclude applications from effecting any real alternatives.

Previous attempts to overcome the failings of conventional architectures in-
clude modern microkernels and adaptive systems. The former, exemplified by the
Exokernel [1], isolate mechanisms to the kernel and implement policies as user-
level libraries. Whilst applications may select the most appropriate policy by
choosing the corresponding library, control ends at this point. Adaptive systems
collate details of past and present system behaviour to determine future policy.
Recent research has produced a variety of adaptive systems in a range of contexts
including distributed databases [2], [3], [4]. Such examples typically address only
a single element of the overall system, such as replication or distributed commit,
and support limited, pre-determined options within that area. Adaptive systems
are ineffective in the face of phase changes because they operate incrementally.

In contrast, all components of a CSA can modify their behaviour based on
the current environment and application preferences [5]. A complete separation
of policy from mechanism underpins this concept of compliance. The segregation
is observed at every level of system design and incorporates information passing
across all architectural layers. The controlled exposure of policy allows applica-
tions to exploit and mould the system by directing policy choices dynamically.
The principal benefit of this approach is that individual applications can obtain
optimal support from a single system. The capacity for applications to describe
their unique requirements potentially leads to simpler semantics and improved
performance. Moreover, the extent to which applications concern themselves
with questions of policy is itself a matter of policy and as such is determined by
the application.

In building a CSA instantiation of a distributed database, there are many
components whose policies can profitably be placed under application control.
Distributed commit is an important exemplar due to the degree to which appli-
cation characteristics effect commit performance and hence overall throughput
[6]. There is a wealth of atomic commit protocols with differing performance
trade-offs and atomicity guarantees. The major family of commit algorithms
descends from the 2PC protocol [7] and offers various optimisations based on
different behavioural assumptions [8], [9], [10]. For applications concerned with
network resources, linear 2PC [7] reduces the message overhead; whereas decen-
tralised 2PC [11] is more appropriate when overall delay is the dominant factor.
Similarly, presumed commit [12] may outperform the standard 2PC protocol for
update transactions with a sufficient degree of distribution [6].

The major contribution of this work is to demonstrate how these application-
dependent choices may be specified flexibly and dynamically using a CSA. This
paper describes the key tenets of the architecture, as instantiated in a distributed
database context. A worked example fleshes out the capacity for applications to
control policy choices within 2PC. This process reveals where the algorithm relies

Using the Compliant Systems Architecture 247

on policy decisions, how applications may interpose their own policy and to what
advantage.

2 The Compliant Systems Architecture

The generic CSA is a structuring methodology that defines systems in terms of
operational abstractions or components; a formal treatment of this architecture
is presented in [5]. To instantiate a CSA, decisions must be made regarding:

– The operational abstractions in the architecture and their relationships.
– Possible layering within each operational abstraction.
– The set of system functions amenable to application control.
– How to specify policy information.
– How to pass system information between components and system functions.

These issues capture the requirements of a flexible architecture and how policies
and mechanisms will be separated and exposed.

Application

. . .

Communications Layer

. . .Store Store Store Store
Upcalls

Policy
M

ec
ha

ni
sm

Downcalls

Cache

Run-time
system

Cache

Run-time
system

Cache

Run-time
system

Fig. 1. An exemplar CSA instantiation

Figure 1 illustrates an instantiation of the distributed CSA framework, that
consists of four distinct architectural layers. The application layer views the re-
maining layers as a unified system through a single logical address space. The
second operational abstraction comprises a set of virtual machines, one per node
in the system. Each virtual machine is further decomposed into a run-time sys-
tem and a local cache. The communications layer facilitates communication be-
tween the virtual machines. A collection of object stores constitutes the fourth
layer and provides orthogonally persistent storage.

The instantiation described above is implemented in a compliant language
system called ProcessBase [5]. ProcessBase is strongly typed and supports first
class procedures and types, structural reflection and a flexible transaction sys-
tem. Existing research with ProcessBase has investigated how application control
may be implemented with respect to scheduling, concurrency control and dis-
tributed shared memory [13]. Current work is concerned with delivering flexible
policy choices in regard to distribution transparency.

248 D. Howard et al.

In general, core mechanism exists at each level of the architecture; policy
to control a particular mechanism may exist at any higher level. Mechanism
is invoked through a downcall, allowing information about policy to be shared
with a lower layer. Policy information can be requested through an upcall which
exists as a form of control interrupt, triggering the execution of policy code
written at the application level. Upcalls allow information about mechanism to
be shared with higher levels. Unlike conventional interrupts, upcalls are able
to pass information back when control returns to the lower level. Upcalls and
downcalls that pass information between components at the same level are called
lateral calls; these correspond to conventional function calls.

The definition of mechanism is static; mechanisms are the core activities that
define the services available to the application. For example, primitives include
the reading or writing of an object to or from a stable store, or the sending of
a communications message. The addition of compliant components requires the
identification of any further mechanism and the integration of this mechanism
into the appropriate layer. Policy is dynamic and uses the mechanisms provided
to reach its goal. Mechanism can, in turn, invoke policy to receive direction.

When exploring compliance in a practical setting, a pragmatic limit must
be placed on the available mechanisms. This CSA instance supports dynamic
policy specification at the topmost layer only. Mechanism at all lower layers
must perform upcalls to this layer in order to receive policy direction.

3 Application to Two-Phase Commit

To implement two-phase commit in a compliant fashion it is necessary to identify
what constitutes mechanism and policy. The purpose of a distributed commit
algorithm is to maintain the atomicity of a transaction executed across multiple
sites; hence, mechanism is defined as the actual commit or abort process and
policy as those decisions made to determine whether a transaction commits or
aborts.

The standard presentation of 2PC is delineated in Figure 2. Each process
involved in a given transaction acts as a participant in the commit protocol,
with a distinguished process taking on the role of coordinator. Note that the
coordinator’s first write is non-forced and the decision to commit requires a
unanimous vote in the affirmative. Participants only execute their second phase
if they vote in favour of commit in the first.

Mechanisms are required at the run-time system, communications and store
levels to perform low level operations at the request of a higher-level policy. The
core mechanisms required in this scenario are the abilities to read and write
records to the store and for processes to communicate with each other.

Invocation of the commit protocol occurs when an application finishes issuing
the operations involved in a transaction. In existing distributed database sys-
tems, this state is made known to the underlying transaction manager through
an instruction issued by the application; this is the point where application con-
trol ceases. Figure 3 delineates our design for distributed commit processing in

Using the Compliant Systems Architecture 249

Phase 1
(1) Send prepare to all
 participants
(2) Write prepare to log

Phase 2
(3) Wait for all votes
(4) Decide
(5) Write decision to log
(6) Send decision to all
 participants

Phase 1
(1) Receive prepare
(2) Vote
(3) Write vote to log
(4) Send vote to coordinator

Phase 2
(5) Wait for decision
(6) Write decision to log
(7) Send acknowledgement
 to coordinator

Fig. 2. The standard 2PC protocol, decomposed into the roles of coordinator (left) and
participant (right)

the ProcessBase architecture. Applications signal their readiness to complete a
transaction by invoking a downcall. Application control does not end here, how-
ever, because the implementation of 2PC incorporates upcalls that invoke policy
code to modify or optimise the existing algorithm. These upcalls may pass di-
rectly to the application or to application-level modules, such as the commit and
concurrency managers. Note that these particular modules belong to the same
conceptual layer; upcalls and downcalls between the two are lateral.

Communications Layer

Store

Run-time system

Application

Commit
Manager

Concurrency
Manager

Other
run-time
systems

Upcall
Downcall

Fig. 3. Policy interactions for 2PC in terms of upcalls and downcalls

3.1 Policy Identification

The previous sections have identified the operational abstractions in ProcessBase
and its methods for passing system information between components. It now
remains to derive the set of policies that should fall under application control in
a compliant transaction system. Policies considered here include the addition of
time-outs, how to decide and how to recover from node failures.

Time-Outs. A common modification to the standard specification of 2PC is to
introduce time-outs whenever processes block for messages. This situation arises

250 D. Howard et al.

for both the coordinator and participants at the start of their second phases.
Via an upcall, an application can detect blocked processes and take appropriate
action. For standard 2PC the alternative to blocking the coordinator is to abort
the transaction. For some styles of real-time transactions this may be desirable
[3]. However, this is, of course, a matter of policy. The same application in other
circumstances may prefer the possibility of a protracted commit to a speedy
abort. Participants that time-out can bypass a slow, or failed, coordinator. This
policy results in a cooperative 2PC [9] where participants attempt to learn the
final transaction status from each other.

Applications are free to determine policy on a per coordinator and per par-
ticipant basis. Control is achieved by the run-time system invoking an upcall to
the commit module at step (3) of the coordinator’s algorithm and at step (5)
of the participant’s. A still finer degree of control is obtained when applications
choose, through the same process, the period necessary to trigger a time-out. In
this situation, the relevant upcall returns the desired time-frame.

When policy determines that participating processes can time-out, a new
mechanism is required to enable these processes to communicate as per the
cooperative 2PC variant. These communication details are possessed by the co-
ordinator and can be distributed to the remaining processes via another upcall.

Deciding. According to the standard 2PC description and the isolation require-
ment of ACID transactions, a coordinator decides to commit a transaction only
when each participant votes in favour of the commit. Whilst this represents an
integral part of the algorithm, it is an important policy decision. The idea that
weakened atomicity guarantees are sometimes appropriate is not new. Commer-
cial database systems rarely employ the full ACID transaction model because
it is too restrictive for applications. However these systems still provide a fixed
model of atomicity that precludes flexible control over the degree of relaxation.

To incorporate a decision-making policy, the coordinator invokes an upcall in
step (4), passing the participants’ votes as parameters. The application’s policy
decision may be based on majority- or priority-based rules and have the capacity
to override local decisions to abort. In this scenario all participants must wait for
the agreed decision. Alternatively, the policy may delay the transaction commit
while it repeats operations sent to nodes that intend to abort. Application input
is necessary here because the semantics of “repeating operations” is entirely
application-dependent. Clearly, these policies alter the semantics of 2PC but in
a structured manner that introduces a level of flexibility over previous work.

Similarly, a voting upcall determines how each process votes in step (2) of
the participant algorithm. Time-outs can identify when real-time constraints
require processes to vote for a transaction abort. More interestingly, execution
of the upcall involves lateral calls with the concurrency manager to determine
whether the latter detected conflicts in the process’ operations. Conflicts are the
principal reason why participants vote to abort transactions. The concurrency
module performs conflict detection via its own set of policies and mechanisms.

Using the Compliant Systems Architecture 251

These lateral calls mean that an application’s domain-specific knowledge can be
applied to determine the voting response to conflict.

Recovery. Many variations on 2PC focus on optimisations for the case when
the coordinator fails before writing a decision to the stable log [8], [12]; an upcall
can also determine the appropriate behaviour here. Presumed abort is obtained
by directing the coordinator to abort and inform participants of this decision
only when polled by these processes. When the upcall causes the coordinator
to automatically send its abort decision to the participants the algorithm corre-
sponds to presumed commit. A third policy option is for the upcall to repeat the
voting phase to ascertain the original decision. This may be appropriate for “im-
portant” transactions where nodes are “reasonably” reliable and the overhead of
repeating phase one outweighs the consequences of aborting a potentially com-
mittable transaction. This policy may be revoked when the coordinator reaches
a certain failure rate. The recovery process has ramifications for the number and
timing of forced writes within a 2PC. For instance, presumed commit relies on
the presence of participant lists in the stable log.

Summary. This discussion covers just a few aspects of flexible policy spec-
ification in the realm of two-phase commit. The same techniques will produce
compliant communication patterns that encompass decentralised and linear 2PC.
Moreover, the policies explored above are not restricted to 2PC but can be easily
extended to other distributed commit techniques, such as three-phase commit.
ProcessBase’s capacity for evolution means that these policy options do not
have to be incorporated at the point of system or application design but may be
developed as their use becomes appropriate.

4 Related Work

Database systems that support adaptive commit protocols have a similar aim
to this work: to provide more suitable commit algorithms on a per-application
basis. Soparkar et.al [3] describe a framework in which atomicity semantics may
be relaxed when the system detects sufficient workload to threaten real-time
requirements. This study agrees that an application may derive real benefit from
the use of particular commit protocols. However the proposed system limits the
choice of protocol to standard 2PC or a single variety of relaxed commit based
on compensating transactions. The model fails to identify how the underlying
implementation would change policies, let alone how an application can apply
its knowledge to control the commit model employed for a given transaction.

Panadiwal and Goscinski [2] present an implementation of a client-server
based transaction service in which the commit protocol is adaptive in that it
may select write-ahead logging or shadow paging to maintain records on stable
storage. This work demonstrates the relationship between data storage strategies
and the performance of commit processing but does not address how applications
may specialise the storage policy to derive a more efficient commit protocol.

252 D. Howard et al.

5 Conclusion and Future Directions

The compliant systems architecture (CSA) is a methodology for facilitating ap-
plication control of system components. In a distributed database setting, one
such component is the commit protocol used to ensure transaction atomicity.
ProcessBase is a distributed instantiation of the CSA and supports high-level
policy specification. The contribution of this work is a demonstration of how this
system and the CSA framework provides flexible policies for distributed commit
processing and two-phase commit in particular.

The current instance of the ProcessBase architecture supports application-
level compliance, providing a pragmatic environment for tractable experimenta-
tion. Future research avenues include the detailed design and implementation of
those policies and mechanisms identified in Section 3. This will lay the ground-
work for an investigation into optimal policy choices for a range of database
applications and the measurement of this framework’s effectiveness.

References

1. Engler, D., Kaashoek, M., O’Toole, J.: Exokernel: An Operating System Architec-
ture for Application-Level Resource Management. In: Proc. of the 15th ACM Sym.
on Operating Systems Principles. (1995) 251–266

2. Panadiwal, R., Goscinski, A.: A High Performance and Adaptive Commit Proto-
col for a Distributed Environment. ACM SIGOPS Operating Systems Review 30
(1996) 52–58

3. Soparkar, N., Levy, E., Korth, H., Silberschatz, A.: Adaptive Commitment for
Real-Time Distributed Transactions. CS-TR 92-15, University of Texas (1992)

4. Wolfson, O., Jajodia, S., Huang, Y.: An Adaptive Data Replication Algorithm.
ACM Trans. on Database Systems 22 (1997) 255–314

5. Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G., Mayes, K., Munro,
D., Warboys, B.: A Compliant Persistent Architecture. Software – Practice & Ex-
perience 30 (2000) 363–386

6. Gupta, R., Haritsa, J., Ramamritham, K.: Revisiting Commit Processing in Dis-
tributed Database Systems. ACM SIGMOD Record 26 (1997) 486–497

7. Gray, J.: Notes on Database Operating Systems. In: Operating Systems: An Ad-
vanced Course. Volume 66 of LNCS. Springer-Verlag (1978) 393–481

8. Al-Houmaily, Y.: Commit Processing in Distributed Database Systems and in Het-
erogeneous Multidatabase Systems. PhD thesis, University of Pittsburgh (1997)

9. LeLann, G.: Error Recovery. In: Distributed Systems: Architecture and Implemen-
tation. Volume 105 of LNCS. Springer-Verlag (1981) 371–376

10. Stonebraker, M.: Concurrency Control and Consistency of Multiple Data in Dis-
tributed INGRES. IEEE Trans. on Software Engineering 5 (1979) 188–194

11. Skeen, D.: Nonblocking Commit Protocols. In: Proc. of the ACM SIGMOD Int.
Conf. on Management of Data. (1981) 133–142

12. Mohan, C., Lindsay, B.: Efficient Commit Protocols for the Tree of Processes Model
of Distributed Transactions. In: Proc. of the 2nd ACM Sym. on Principles of Dis-
tributed Computing. (1983) 76–88

13. Falkner, K., Detmold, H., Munro, D., Olds, T.: Towards Compliant Distributed
Shared Memory. In: 4th Int. Workshop on Software Distributed Shared Memory.
(2002) 305–310

A Concurrent Blink-Tree Algorithm Using a
Cooperative Locking Protocol�

Sung-Chae Lim1, Joonseon Ahn2, and Myoung Ho Kim3

1 WST Lab., Korea Wisenut Inc., Yangjae-dong, Seocho-gu, Seoul, 137-130, Korea,
sclim@dbserver.kaist.ac.kr

2 Hankuk Aviation University, Hwajundong, Koyang, Kyounggido 412-791, Korea
jsahn@mail.hangkong.ac.kr

3 Korea Advanced Institute of Science and Technology 373-1, Kusung-dong,
Yusung-gu, Taejon, 305-701, Korea, mhkim@dbserver.kaist.ac.kr

Abstract. We present a new concurrent Blink-tree algorithm that pro-
vides a concurrent tree restructuring mechanism for handling underflow
nodes as well as overflow nodes. Our algorithm does not require any
lock for downward searching and preserves bottom-up tree restructuring
without deadlock. To this end, we develop a new locking mechanism for
inserters and deleters and a node update rule that preserves the semanti-
cal tree consistency during tree restructuring. Our analytical experiment
shows that the overhead of additional disk I/O is acceptable.

1 Introduction

While various index structures have been proposed for high performance trans-
action processing, B-tree indexing has been typically used by many commercial
database systems [1]. Therefore, many concurrent B-tree algorithms have been
proposed to deal with concurrent accesses to B-trees efficiently [2,3,4,5,6,7,8,9].

Among the concurrent B-tree algorithms, it has been indicated that the Blink-
tree [3,5,6] which provides non-blocked downward searching and bottom-up node
splitting is among the best choices considering transaction throughput [13,14].
However, they have no concurrent mechanism for restructuring underflow nodes.
When underflow nodes cannot be handled, B-trees become sparse, which leads to
the degradation of performance [10,11]. In [6], underflow nodes are restructured
by a background mode process that retrieves all the tree nodes. This method
suffers from heavy retrieval cost and tree compaction time.

In this paper, we propose a concurrent Blink-tree algorithm that can handle
underflow nodes concurrently. We first present a new locking protocol which
provides a deadlock-free locking sequence to updaters competing for lock grants
on the same nodes. Also, we provide a node update rule for key transfer and
� This research was supported by IRC (Internet Information Retrieval Research Cen-

ter) in Hankuk Aviation University. IRC is a Kyounggi-Province Regional Rese-
arch Center designed by Korea Science and Engineering Foundation and Ministry of
Science & Technology.

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 253–260, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

254 S.-C. Lim, J. Ahn, and M.H. Kim

node merging to guarantee concurrent search operations to access nodes that
are under restructuring and maintain the consistency of B-trees [7,9].

The rest of this paper is organized as follows. Section 2 revisits the problem
of Blink-tree concurrency control (CC). In Section 3, we present a new algorithm
for the concurrent access to Blink-trees. Section 4 describes the node update rule
for deleters. Section 5 proves deadlock-freeness of our algorithm and Section 6
addresses performance issues. Finally, Section 7 gives a conclusion.

2 Preliminaries

2.1 Backgrounds on Blink-Tree Concurrency Control

Blink-tree is a modification of the B-tree such that sibling nodes at each level
are linked from the left to the right [3,6]. An internal node with n index entries
has the format < p1, k1, . . . , kn−1, pn, kmax, siblinglink >. siblinglink points to
the right sibling. pi points to the subtree having keys k such that ki−1 < k ≤ ki,
where kn = kmax. In leaf nodes, pi points to the record with key value ki.

If an inserter makes a node overflow, the inserter moves the right-half portion
of the node to a new node, updates the sibling links and kmax of the two nodes
and inserts a new index entry into the parent node [5]. If a process arrives at
a node searching for a target key greater than kmax of the node, which means
the node has been split, the reader moves to the next node by following the
sibling link. In this way, search operations can execute concurrently with node
splits not requesting any locks. This non-blocked downward search improves the
concurrency of B-trees and reduces the CPU cost for locking operations [13,14].

2.2 The Basic Idea of the Proposed Blink-Tree CC Algorithm

In Blink-tree, multiple updaters, each of which is an inserter or a deleter, may
get to their target leaf nodes following the same path. Handling underflow nodes
needs to exclusively access their parent and sibling nodes to transfer index entries
or merge half-full nodes. Also, handling overflow nodes needs to exclusively access
their parent nodes. Therefore, multiple updaters restructuring the same nodes
can cause deadlock.

In our locking protocol, we use two kinds of locks, the X mode and IX mode
locks. The X lock is not compatible with any lock, while the IX lock is compatible
with itself[12]. At the lock grant time of an IX lock, the function for lock request
returns a value, Shared or Alone. If there exist other IX-lock holders on the node,
Shared is returned. Otherwise, Alone is returned.

A lock holder can change the kinds of its locks. If a process P holding an X
lock on a node N requests a conversion to an IX lock, IX lock is immediately
granted to P. Also, IX lock is granted to other processes that have been blocked
requesting IX locks for N if such processes exist. If P holding an IX lock on a
node N requests a conversion to an X lock, P has the highest priority to hold
an X lock on the node. If there were other IX-lock holders on the node, P is
inserted to the waiting queue. Otherwise, P is granted the X lock immediately.

A Concurrent Blink-Tree Algorithm 255

procedure search for leaf(kvalue, Leaf) /* read the leaf with a key value of kvalue */
begin

Ptr ← the pointer to the root node; Height ← the height of the tree;
while (Height > 1) do /* pass down internal nodes */

Read the node pointed to by Ptr into a local memory node, N;
while (kvalue > N.largest key) do /* The node was split */

Ptr ← N.siblinglink;
Read the node pointed to by Ptr into the memory area N again;

endwhile
Ptr ← the pointer to the next child node; /* search down to the child level */
Decrease variable Height by 1;

endwhile
get node(Ptr, kvalue, Leaf ,Lockmode); /* lock and read the leaf node */

end.
procedure get node(Ptr, kv, Node, Lockmode)
begin

State ← lock(Ptr, Lockmode); /* lock node Ptr with a given lock mode, Lockmode */
label1: Read the node pointed to by Ptr into the local memory node, Node;
if (kv > Node.largest key) then

unlock(Ptr); Ptr ← Node.siblinglink; State ← lock(Ptr, Lockmode);
goto label1;

endif
end.

Fig. 1. The algorithm for procedures search for leaf() and get node()

Our locking protocol is based on lock stratification and lock cooperation.
The former defines a rule which prevents deadlocks associated with nodes at
multiple levels. The rule forces an updater which locks both a parent and child
nodes to have an X lock for the parent and IX locks for the child. When a
deleter observes that a sibling node to be restructured already has been locked by
another updater, it follows lock cooperation, which prevents deadlocks associated
with nodes at the same level and keeps trees consistent not losing any update.

3 The Proposed Blink-Tree CC Algorithm

3.1 The Key Search Algorithm

Fig. 1 shows procedures for key search. In our algorithm, all processes use the
procedure search for leaf() for their downward searching. Arriving at a leaf node,
they calls get node() to lock and read the node having a given key value. If
an IX lock is requested, lock() returns Shared or Alone at the lock grant time.
Otherwise, its return value has no meaning. In the procedures search for leaf()
and get node(), examining the largest key and chasing along sibling links are
necessary because the node can be split from overflow right before the arrival.

256 S.-C. Lim, J. Ahn, and M.H. Kim

3.2 Algorithm for Inserting a New Index Entry

The insertion algorithm performed by an inserter is as follows:

(1) Search the target leaf node and lock it in X mode; then, insert an index.
(2) Unless the node overflows, write the node and exit after releasing the lock.

Otherwise, go to the next step.
(3) Create a new node and lock the new node in IX mode.
(4) Perform a half-splitting by using the newly created node, and then convert

the X lock on the overflow node to IX mode.
(5) X Lock and read the parent node by using get node(). Then, release IX locks

on the half-splitting nodes.
(6) Insert an index entry pointing to the new node into the parent node. If the

parent node does not overflow, write it and exit after releasing all the locks.
Otherwise, go to step (3) for key insertion into the parent node.

In step (4), the X lock is converted to an IX lock to observe the lock strat-
ification rule. Unlike [5], we retain locks on the half-splitting nodes until an X
lock is granted on the parent node. Otherwise, a deleter may delete one of the
half-splitting nodes for node merging while the inserter is blocked.

3.3 Algorithm for Deleting an Index Entry

The deletion of an index entry is performed as follows.

(1) Search the target leaf node and lock it in X mode; then, delete the index.
(2) Unless the node underflows, write the node and exit after releasing the lock.

Otherwise, go to the next step.
(3) Convert the X lock on the underflow node to IX mode. Then, X lock and

read the parent node by using get node().
(4) Choose a sibling for key transfer (or node merging) and IX lock the node.
(5) If the lock request on the sibling returns Alone, update nodes according to

the steps described in Section 4. Otherwise, i.e., if the return value is Shared,
follow the lock cooperation procedure given in the next subsection.

3.4 Lock Cooperation

If IX locks are shared between a deleter and an updater, we call such case
a cooperation demanding situation (CDS). Only deleters can detect CDS when
they receive Shared from the IX lock request for a sibling node. To enable deleters
to deal with CDS, we use a state field in each node. When a deleter makes a
node N underflow and subsequently detects a CDS on the left(or right) sibling
of N, it sets the state field in N to LS(or RS). Otherwise, the state field is NULL.

Suppose a deleter Pd making node N underflow detects a CDS on the left
sibling Ns on which an updater P1 holds an IX lock. Then Pd checks the state
field in Ns. We describe the actions by Pd and P1 based on the two categories.

A Concurrent Blink-Tree Algorithm 257

(a) If Ns has value RS, it means that P1 is a deleter which already detected a
CDS on Pd and thus has a completely overlapped scope with Pd. In this case,
Pd terminate after releasing all its locks and P1 completes tree restructuring.

(b) Otherwise, it can be one of three cases: (i) P1 is an inserter, (ii) P1 is a
deleter that will detect a CDS on N, or (iii) P1 is a deleter that does not use
N for tree restructuring. For all cases, Pd releases the X lock on the parent
node after setting state of N with LS and suspends until P1 releases its lock
on Ns by converting the IX lock on Ns to X mode. Then, Pd will resume
tree restructuring after P1 performs its actions described below. In cases of
(i) and (iii) P1 completes its tree restructuring after acquiring the X lock
on the parent node. In (ii), P1 will later detect the completely overlapped
situation with Pd, and hence will leave the tree as Pd does in (a).

In case of a CDS on a right sibling, the same rules can be applied analogously.
The followings are steps for lock cooperation by Pd that detects a CDS on Ns.

(1) If Ns.siblinglink is not N, which means that Ns has been split, place a new
IX lock on the node pointed to by Ns.siblinglink and release the IX lock on
Ns; the newly locked node is regarded as Ns from now on.

(2) If the state field in Ns indicates a completely overlapped situation(i.e., the
state field is LS(RS) and Ns is the right (left) sibling), then write N into the
disk and exit after releasing all the locks; otherwise, go to the next step.

(3) Set N.state to LS or RS appropriately, and then write N into the disk.
(4) Release the X lock on the parent node and then request lock conversion on

Ns from IX mode to X mode (self blocking).
(5) Convert the X lock on Ns to IX mode, then lock and read the parent Np of

N. At this point, Ns may not be a correct sibling. For instance, an inserter
may split the parent and make N and Ns have different parents.

(6) Check N and Ns are adjacent in Np. If Ns is a correct sibling, read Ns and
restructure the three nodes N, Ns and Np following the update rule described
in Section 4. Otherwise, Pd releases the IX lock on Ns and goes to step (4)
of the deletion algorithm in Section 3.3. Note that lock cooperation is a part
of step (5) of the deletion algorithm in Section 3.3.

4 Restructuring an Underflow Node

Suppose a deleter P has locked and read nodes N, Ns and Np using the procedure
in Section 3.3. Here, N is an underflow node, Ns is a sibling of N and Np is their
parent. Currently, P is the unique process that can update these nodes.

4.1 Transferring the Index Entries

If Ns has sufficient index entries, P moves some index entries of Ns to N. This is
straightforward when Ns is the left sibling. That is, some rightmost index entries
in Ns are inserted into N and these index entries are deleted from Ns, and then
Np is properly updated. We should be careful when Ns is the right sibling and

258 S.-C. Lim, J. Ahn, and M.H. Kim

leftmost index entries in Ns are deleted because such deletion may spoil other
search operations which use the pointer to Ns. Therefore, we create a new node
which stores the remaining entries of Ns and replace Ns with the new node.

(1) Create a new node Nnew and write the right portion of entries in Ns into
Nnew. Nnew contains those entries of Ns which are not transferred to N.

(2) Write the left entry of Ns into N and update N.siblinglink to point to Nnew.
(3) Update the maximum key value for N in Np so that it reflects the index

transfer to N and replace the pointer to Ns with the pointer to Nnew.
(4) Update the first pointer of Ns to point to N and mark Ns invalid so that any

process arriving at this node can follow the pointer to N.
(5) Release all the locks and exit.

The invalidated node needs to be kept temporarily for processes that have the
pointer to Ns by reading the old value of its parent node.

4.2 Merging the Half-Full Nodes

Unless Ns has sufficient index entries, node merging is performed. In node merg-
ing, we always transfer entries in a right sibling Nr into a left sibling Nl.

(1) All the index entries of Nr are inserted into Nl and the sibling link of Nl are
updated with that of Nr. And we set the state field of Nl with NULL.

(2) The pointer to Nr and the old maximum value of Nl in Np are deleted. The
previous maximum value of Nr becomes that of Nl.

(3) Nr becomes invalidated as in the case of the leftward key transfer.
(4) If Np underflows, P performs (3) of the algorithm in Section 3.3 after releas-

ing locks on Nl and Nr. Otherwise, P releases all its locks and exits.

5 Deadlock-Freeness of the Proposed Locking Protocol

To prove deadlock freeness of our protocol, we use a lock-wait-for graph described
below. When a certain updater P requests an IX or X lock for node N and is
blocked due to lock conflict, we draw arcs heading for N from every node for
which P already holds any lock. We remove these arcs heading for N when the
lock is granted to P. For the proof, we have only to show that any cycle cannot
be formed in this lock-wait-for graph using the following lemmas.

Lemma 1. Any cycle composed of nodes at more than one level cannot be
formed in the lock-wait-for graph.

Lemma 2. Any cycle composed of nodes at only one level cannot be formed in
the lock-wait-for graph.

The first lemma can be easily proved from the lock stratification rule. We
can prove second lemma as follows. In our protocol, a process can hold only
an IX lock on a node N when it requests a lock for a sibling of N. Therefore,

A Concurrent Blink-Tree Algorithm 259

because IX locks are compatible with IX locks, a cycle composed of nodes at the
same level can be constructed from X lock requests only. Before a lock holder of
N requests an X lock for a left(right) sibling of N, it always confirms that the
state field of the sibling is not RS(LS) and sets the state field of N with LS(RS),
holding an X lock for the parent of the two nodes. From this, we can show that
any cycle composed of nodes at one level cannot be formed in the lock-wait-for
graph. The complete proof is omitted here because of limited space.

6 The Performance Overview

Because a deleter which detects a CDS has to set the state field in the underflow
node and re-read the parent node and the sibling node after the self-blocking
state, our lock cooperation has the overhead of additional one page (i.e. node)
write and two page reads. Because the overhead of disk I/Os may degrade the
performance, we investigate how often the CDS may occur.

Let the number of nodes in a tree be NT and suppose each update operation
can exist at a certain node with the probability of 1/NT . When two sibling
nodes are updated by two updaters, we call the updaters are adjacent. The
mean number of the pairs of updaters that are adjacent is denoted by Nadj .

Suppose NU number of updaters come into a tree in sequence. We define Ik
such that Ik = 1, if the k-th updater is adjacent to one of k-1 other updaters,
otherwise, Ik = 0. Then, the expectation of Yk =

∑k
i=1 Ii is given as follows:

E(Yk) = E(
k∑

i=2

Ii) <
k∑

i=2

E(Ii|Ii−1 = 0, . . . , I2 = 0) =
k∑

i=2

E(Ii|Yi−1 = 0) (1)

Since Nadj = E(YNU) and E(Ik|Yk−1 = 0) = 2∗(k−1)
NT

, we have the following.

Nadj <

NU∑

k=2

2 ∗ (k − 1)
NT

=
NU ∗ (NU − 1)

NT
, NU = 2, 3, 4, . . . (2)

Let each node have between 2D−1 and D index entries and Xn be the proba-
bility that a given node has n index entries where D ≤ n ≤ 2D−1. Equation (3)
shows Xn whose complete description can be found in [17].

Xn =
1

(n+ 1)
(H(2D)−H(D))−1, where H(D) =

D∑

i=1

1/i ≈ lnD (3)

XD is the probability that a deleter incurs an underflow and X2D−1 is the
probability that an inserter incurs an overflow. Assuming that the frequencies
of insertions and deletions are the same, the probability that an updater causes
tree restructuring is XD+X2D−1

2 . Then, the probability that a pair of adjacent

updaters results in a CDS is less than (XD+X2D−1)2

4 . Thus, the upper bound on
the mean number of CDS occurrences NCDS is driven as follows:

NCDS <
(XD +X2D−1)2

4
∗Nadj ≈ (

3
4ln2

)2 ∗ NU ∗ (NU − 1)
NT ∗ (D + 1)2 (4)

260 S.-C. Lim, J. Ahn, and M.H. Kim

From this, we can see NCDS is very small. For instance, NCDS is 2.6 ∗ 10−4

when there are 300 concurrent updaters in a Blink-tree with 5 M index entries.

7 Conclusion

We have presented a deadlock-free Blink-tree algorithm that can handle overflows
and underflows concurrently while supporting non-blocked downward searches.
To this end, we have developed a locking mechanism composed of lock stratifi-
cation and lock cooperation and methods for restructuring underflow nodes.

Since lock cooperation requires additional disk accesses, we have analyzed
the overhead based on a probability model. This shows that the overhead from
the lock cooperation is acceptable.

References

1. D. Comer: The Ubiquitous B-tree. ACM Computing Surveys, 11(2) (1979) 121–137
2. Bayer, R. and Schkolnick, M.: Concurrency of Operations on B-Trees. Acta Infor-

matica 9 (1977) 1–21
3. Philip L. Lehman and S. Bing Yao: Efficient Locking for Concurrent Operations.

ACM Transactions on Database Systems 6(4) (1981) 650–670
4. Udi Manber and Richard E. Ladner: Concurrency Control In a Dynamic Search

Structure. ACM Transactions on Database Systems 9(3) (1984) 439–455
5. Yat-Sang Kwong and Derick Wood: A New Method for Concurrency in B-Trees.

IEEE Transactions on Software Engineering 8(3) (1982) 211–222
6. Yehoshua Sagiv: Concurrent Operations on B∗-Tree with Overtaking. Journal of

Computer and System Science 33(2) (1986) 275–296
7. Shasha, D. and Goodman, N.: Concurrent Search Structure Algorithms. ACM

Transactions on Database Systems 13(1) (1988) 53–90
8. C. Mohan: ARIES:IM: An Efficient and High Concurrency Index Management

Method Using Write-Ahead Logging. ACM SIGMOD 21 (1992) 371–380
9. Ragaa Ishak: Semantically Consistent Schedules for Efficient and Concurrent B-

Tree Restructuring. International Conference on Data Engineering (1992) 184–191
10. Chendong Zou and Betty Salzberg: On-line Reorganization of Sparsely-populated

B+-trees. ACM SIGMOD 25 (1996) 115–124
11. Jan Jannink: Implementing Deletion in B+-Trees. ACM SIGMOD 24 (1995) 33–38
12. Gray, J. and Reuter, A.: Transaction Processing: Concepts and Techniques. Read-

ing Mass (1993) 449–490. Morgan Kaufmann Pub.
13. Johnson, T. and Shasha, D.: The Performance of Current B-Tree Algorithms. ACM

Transactions on Database Systems, 18(1) (1993) 51–101
14. V. Shrinivasan and Michael J. Carey: Performance of B+ Tree Concurrency Control

Algorithms. VLDB Journal 2 (1993) 361–406
15. Johnson, T. and Shasha, D.: The Performance of Current B-Tree Algorithms. ACM

Transactions on Database Systems 18(1) (1993) 51–101
16. Jayant R. Haritsa and S. Seshadri: Real-Time Index Concurrency Control. SIG-

MOD Record 25(1) (1996) 13–17
17. Theodore Johnson and Dennis Shasha: B-trees with Inserts and Deletes: Why Free-

at-Empty is Better than Merge-at-Half. Journal of Computer and System Science
40 (1993) 45–76

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 261–270, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Tools for Personalised Presentation of Information

Euan Dempster, Daniel Pacey, M. Howard Williams, Alison Cawsey,
David Marwick, and Lachlan MacKinnon

School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton,
Edinburgh EH14 4AS, UK

{euan, jdp, mhw, alison, dhm, lachlan}@macs.hw.ac.uk

Abstract. There is a growing interest in personalisation techniques due to the
rapid expansion of information systems on the Internet and the increasing
dependence on the latter for access to information and services. Personalisation
techniques are used to present information that is relevant to the user, and in a
form that suits the user or is most desirable from the point of view of the
information provider. Opportunities for personalisation are arising from the
recent improvements in communication and information systems and the
growing links between the two. This paper discusses briefly a framework for
personalisation and an initial prototype toolkit.

1 Introduction

Finding interesting and relevant information becomes more and more difficult to
achieve as the Internet continues its dramatic expansion. Personalisation provides a
growing set of techniques to assist in overcoming these problems.

Personalisation techniques can be loosely divided into those concerned with
acquisition of information about the user, and those concerned with using that
information in the production of adapted material [1]. The adaptation processes can be
further clarified into filtering operations which reduce the amount of material to be
presented to the user, and customisation operations which are concerned with the
structure and presentation of the material.

From the point of view of the information provider, personalisation offers a means
to provide information which is most relevant to the user’s needs. This is particularly
important if one is trying to interest the customer in buying something. One of the
most widely known examples of this is the Amazon web site. Techniques for
personalisation are discussed by [2] who presents a web-shopping assistant that
personalises information on products. The area of tourism is another area where
various forms of personalisation have been explored. An example in this area is
GUIDE [3], an online tourist guide where the tourist supplies a user profile. In the
medical domain personalisation is used to try and improve information
communication. Some examples of personalised medical web-sites are detailed in [4].
A review of personalised systems in general is given in [5].

262 E. Dempster et al.

An essential prerequisite for any form of personalisation is that there must be
some information on each user that is utilised to tailor the actions performed to
produce a different effect for different users. This information may be sought by
interacting directly with the user and capturing the information that each user is
willing to provide about themselves. In addition, it may be obtained by monitoring the
user’s actions when using a service and analysing the resulting information to
determine where the user’s interests lie. Content can be prepared for each individual
user and may additionally be formatted according to the tastes of the user if aesthetic
preferences have been indicated.

There are a number of existing tools incorporating user modeling. An example is
Doppelgänger [6], which applies a clustering algorithm to the profiles available to it,
to find similar users and to form group profiles. This is similar to stereotyping
methods but regular application of the clustering procedure allows changes in
individual profiles to be taken into account. Another example is GUMS - General
User Modeling Systems [7] which has simple stereotype hierarchies describing
stereotype members and rules describing the systems reasoning about them. At
runtime, GUMS accepts and stores new facts about the user, provided by the
application system, verifies the consistency of a new fact with currently held
assumptions, informs the application about recognised inconsistencies and answers
queries of the application concerning the currently held assumptions about the user.
Other examples of existing user modeling tools include IR-NLI [8], IR-NLI II [9],
UMT (User Modeling Tool) [10], TIMS [11], ELFI [12] and PROTUM (a PROlog
base Tool for User Modeling) [13].

Care must be taken when using personalisation techniques, especially when
dealing with information sensitive to a user, for example, the financial or medical
details of a user as considered by Bental et al. [5]. Security and confidentiality issues
[14] require to be explained carefully by such services to try and maintain user
confidence and, if used, these details should be kept up-to-date. If information is
shared with other services, externally or even internally within a large organisation,
the user should again be made aware of the issues and preferably given the option to
control which of their details are made available and to whom.

In this paper we discuss a framework that attempts to address the problems
encountered when implementing personalised sites. These problems include conflicts
between the information provider, the owner of the site and the user, relating to what
is considered important or relevant information. Another problem is the lack of desire
or motivation on the part of a user to supply information on themselves. There are
also presentation problems, such as users browsing information from different starting
points, which could result in a user starting in the middle of some information and
being confused or misled because of this. Filtering and customisation can in some
cases lead to information being removed which may be required later on, which can
also lead to problems. We describe briefly an architecture and a Toolkit , which
addresses a number of these problems and allows the rapid development of a wide
range of personalised information services by non-specialised staff.

Tools for Personalised Presentation of Information 263

2 The Personalisation Framework

Frameworks are important because they provide a means of classifying and
comparing elements in a particular problem space, leading to the development of
generic solutions that can be developed to address a range of more specific problems
with relative ease. Resulting applications are consistent, easy to maintain and
similarly structured, due to sharing the same underlying framework [15]. Our work
builds from our own previous work on frameworks - the MIPS project [16] and
complements previous research in the field on frameworks and architectures for
personalisation such as IMMPS [17] and a number of others [18, 19, 20, 21, 22].

The DIP project (Dynamic Information Presentation) has its primary focus on
personalisation. This is broken down into the identification, selection, assembly and
presentation of information for an individual user, based upon details provided either
directly by the user when answering explicit questions or inferred by the system
during observation of user activity. The DIP framework is based on practices and
problems that are already emerging in the commercial world, placing emphasis on the
personalisation of data elements from existing heterogeneous multimedia resources.

The DIP framework aims to address some of the problems associated with
personalised services and to facilitate the use of different personalisation techniques
in combination with one another. These techniques might be operating on behalf of
different parties, some acting for the interests of the Information Provider, others for
the interests of the user or even other external parties. A set of generic tools for
implementing systems based on the developed framework is being developed,
although additional or application-specific tools can be added later. The flexibility of
the framework has to facilitate the development of new personalised services, while
reducing the problems that may be encountered. A specific architecture based on this
framework has been developed.

In terms of knowledge, the architecture should have access to:
• Information about users of the service in the forms of user profiles [23]. In [9],

user modeling/profiling is referred to as the consideration of any kind of
information that a program has about its users, to be utilised in order to increase,
in a general sense, the level of human-computer interaction. They aim to improve
the performance of the system by first tuning the system’s external behaviour to
the interaction with the user and secondly by adjusting the system’s internal
operation to the user’s characteristics.

• Metadata details relating to the actual information that is available for use by the
service and an underlying ontology to define all aspects of the service. An
ontology is used to define concepts used in the system (such as metadata fields
and user profile attributes). Ontological information is important in the
construction of filtering and customisation rules, allowing easy extension by
adding new concepts relating to the existing model, and is useful for checking
values for errors.

• The actual documents, or links to external sources, containing the information
that is to be personalised.

In terms of processing, the architecture should be able to:
• handle acquisition of user information from explicit and dynamic methods,

264 E. Dempster et al.

• filter information by explicit and predictive methods [24],
• customise both information and presentation details [25],
• carry out the final rendering of the service for presentation to a user [26].

The flows for the DIP architecture, shown in Fig. 1, consist of three paths:
• Process flow paths denote the flow of the information that is finally

presented to the user.
• Information exchange paths track the information required to carry out

personalisation. It is obtained from the user, content and knowledge bases
and may be updated during processing.

• External data paths show how the documents that are not held in the content
base can be added to the working data structure from sources external to the
Information Providers.

The Customisation and Filtering stages can be repeated a number of times either
individually or in sequence. They utilise the Content, Knowledge and User Bases
where appropriate. They can be maintained independently by the Information
Provider.

The result of the Customisation and Filtering stages is an updated Working Data
Structure. This contains details of modifications relating to the content and
presentation. This Working Data Structure will be marked up, but will still contain, or
have links to, the original information to support backtracking in case of conflict
problems further on in the personalisation process. When other stages are complete,
the working data structure is passed to the Presentation stage, which processes the
decisions and prepares the final mark-up that is presented to the User.

Documents that are not held in the Content Base can be added to the Working
Data Structure from sources external to the Information Providers.

It is important to note that the process flow is distributed. Parts of the process may
take place on the client device in addition to processing by agents belonging to
Information Providers on their external servers.

Client processing will involve the final presentation processing and rendering of
the information but may also include some last minute customisations, which can
potentially take advantage of information about the user stored locally on their display
device. In some cases, further information about the user may be requested upon
displaying the service, which can be passed to the User Bases belonging to the
participating agents assuming appropriate authorisations are allowed.

Generic operations have been identified, such as searching the metadata for
particular values or transforming the structure of information that is being assembled
for personalisation. These can be developed into the more abstract functionality of
data handling, filtering, customisation and presentation. From this base a wide range
of personalised services may be developed, from basic applications using only one or
two techniques to complex services that combine them all.

Tools for Personalised Presentation of Information 265

Fig. 1. Process-Flow for DIP Architecture

Working
Data

Structure

CustomisationPresentation Filtering

Display

External
Sources

User

Process Flow

External Data

Information Exchange

User Base

Knowledge Base

Content Base

Service

3 Personalisation Toolkit

The aim of developing a personalisation Toolkit is to enable Web-site developers to
create and maintain personalised services for their site using a variety of
personalisation techniques. The broad range of techniques includes filtering based on
rules, user groups and content, customisation of the information and presentation to
suit individual users. The Toolkit makes extensive use of metadata to describe and
process the information that is made available by a personalised service.

 The broad structure of the Toolkit is:
• Service (required site dependent information)
• Filtering Engine
• Customisation Engine
• Output Engine
• User Interface (for operating the Interface and running services)

3.1 Service

The generic structure of the information required by a service being operated using
the Toolkit has a user base, consisting of user profiles, stereotypes and user groups.
There is also a content base which is made up of documents, look-up tables and

266 E. Dempster et al.

multimedia content such as images, videos, etc. Lastly there is the knowledge base
which contains the metadata mappings, ontology, rules and templates to be used to
personalise the service.

User Base
Profiles contain the documents storing information about each user of the service.
Similar to an individual document from the content base, the user profile should have
a method of validation which will define what elements from the ontology mapping
can be added to it to describe a user. Stereotypes and Groups are a specialised form of
user profile which can be merged with an individual user profile in such a way as to
make assumptions about the user and use this data in the processing of the service.

Content Base
The Content Base contains the individual documents that feature pieces of
information and metadata that are stored locally for use by a service. Each document
for a service should have at least an individual name and some meaningful content
with some associated metadata that describes the nature of the content in relation to
the service domain. Further information should easily be added to the service.

Knowledge Base
The knowledge base contains additional metadata that is mapped to internal or more
usefully external content as well as metadata relating to the rules and templates that
are available to the service. For example, pre-conditions for rules are stored as meta-
mappings. A metadata mapping should define the name of the service for which it is
used along with the path to the information to which it refers.

The ontology contains definitions that constrain the service. These definitions are
a mapping of the overall ontology for personalised services that can be created using
the Toolkit.

3.2 Filtering Engine

The information in the working data structure is filtered using filtering rules in the
form of style-sheets which perform transformations on the working data to add
content. A rule is chosen by matching pre-conditions against elements in the user
profile. The rules can be modified to filter, based on different requirements by
specifying different tests based on the user profile. Details of new filtering rules can
be added to filter under particular circumstances, including pre-conditions that will
trigger the rule.

3.3 Customisation Engine

The working data is customised using the customisation rules/style-sheets of the
service. These can be modified to customise, based on different requirements, for
example specifying which parts of the successfully filtered information should be
displayed or determining ordering constraints on the information. Details of new
customisation rules can be added, including pre-conditions that will trigger a

Tools for Personalised Presentation of Information 267

particular style-sheet or collection of style-sheets to be used in certain situations to
perform a complex sequence of customisations.

3.4 Output Engine

The working data is transformed in preparation for presentation, using the output
templates. Templates are required for processing the output of information by the
service. Templates are designed to interpret the changes made to working data by the
rules and to prepare it for output on a specific display device (e.g., HTML browser,
WAP phone). Details of new templates can be added, including pre-conditions that
will trigger a particular template to be used in certain situations.

3.5 User Interface

The user-interface consists of two main sections. The first section is a developer
interface which is being written to allow users to view and edit the files which are
generated for each stage of the processing of a service. The second section
automatically displays the output produced by a service when it is run and also
displays an automatically generated user profile form, produced from the service
ontology, at the start of the service. The processing engine output includes the results
of filtering and customisation on the working data, plus the marked-up output (output
files of other types may be used given appropriate templates for processing the output,
e.g. WAP).

There is a shared section which contains specific tools that have been created to
address common requirements between the different components of the Toolkit that
have presented themselves during the development. These tools take a number of
parameters than can be provided to describe the given context and can therefore be
reused and help reduce the complexity of the individual processing engines and the
Toolkit Interface.

4 Breastfeeding Prototype

One of the prototypes that has been developed is a breastfeeding site for pregnant
mothers. The user fills in an initial questionnaire, to the level of completeness they are
willing to offer, and then submits the form. From this questionnaire a user profile file
(XML) is produced. Further processing (XSLT [27]) is applied to get that into a form
suitable for the application, resulting in a profile e.g, Fig. 2.
 As can be seen, the profile consists of a number of keywords which reflect the
answers given by the user. These keywords include an indication of the user’s
response even where the requested information was not supplied. For example, for
"job", noanswer means that the user did not fill in an answer to the job question and
for "age", noyb means that they filled in the 'prefer not to answer' (none of your
business) option for the age question.

268 E. Dempster et al.

Fig. 2. User Profile

The user profile is then used in a top level filtering process. At this stage we
effectively have a working data file which contains the information that is or may be
of interest to the user.

The next process is to customise the information to be presented to the user. This
is achieved by applying stylesheets, representing rules, to the working data to identify
the data that is of interest to the user, using information from the content, knowledge
and user bases. This may be repeated until all customisations have been achieved.
Finally, stylesheets are applied to present the information to the user in a desirable
and appropriate format.

5 Conclusions

A framework has been developed which enables us to describe and categorise a range
of personalisation processes. A specific architecture based on this framework has been
developed and a set of tools is being realised that can be used to create personalised
services incorporating a range of techniques with relative ease. The basic structure of
the Toolkit was discussed.

The Toolkit consists of generic tools which operate on specific services. Thus, for
each new personalised service created the same basic engines (e.g., filtering and
customisation engines) are utilised to process the information for the user, although
the user, knowledge and content bases used are from the service specifically designed
for that web-site. This permits reuse of well defined generic tools in specialised
situations and should enable the rapid creation of personalised sites by non-specialist
people.

The Toolkit has so far been used to produce three prototype web-sites. These are;
a health news site, a breast-feeding information site for expectant mothers and a DVD
site which supplies information on all types of DVD films. A range of personalisation
techniques have been incorporated into these sites.

Tools for Personalised Presentation of Information 269

Acknowledgements. The authors acknowledge the support received from the
Engineering and Physical Science Research Council under grant reference
GR/N22229/01 (Dynamic Information Presentation). They also wish to thank Dr.
Jamie Inglis and Kerr Donaldson of the Health Education Board for Scotland (HEBS)
for their contribution to this work.

References

1. A. Kobsa, Generic User Modeling Systems. User Modeling and User-Adapted Interaction
11(1-2), Ten Year Anniversary Issue, 49–63 (2001)

2. Ardissono, L., Goy, A., Tailoring the interaction with users in electronic shops. In Kay, J.,
(ed), User Modelling: Proceedings of the Seventh International Conference, UM99,
Springer (1999)

3. Cheverst, K., Davies, N., Mitchell, K., Smith, P., Providing tailored (context-aware)
information to city visitors. in Brusilovsky, P., Stock, O., Strapparava, C., (eds), Adaptive
Hypermedia and Adaptive Web-Based Systems, 73–85. Springer (2000)

4. D. S. Bental, M. H. Williams, D. Pacey, A. J. Cawsey, L. M. McKinnon and
D.H.Marwick, Dynamic personalization of Web resources for presenting healthcare
information, Proc. MEDICON 2001, Croatia, June 2001, IFMBE Proceedings, 86–89
(2001)

5. Bental D., MacKinnon L., Williams H., Marwick D., Pacey D., Dempster E., Cawsey A.,
Dynamic Information Presentation through Web-based Personalisation and Adaptation -
An Initial Review, In Joint Proccedings of HCI 2001 and IHM 2001, A Blandford, J
Vanderdonckt, P Gray (Eds), pp 485–500, Springer (2001)

6. Orwant, J., Heterogeneous Learning in the Doppelgänger User Modeling System. User
Modeling and User-Adapted Interaction, 4(2): 107–130 (1995)

7. Finin, Tim and David Drager, GUMS - A General User Modeling System, Proceedings of
the 1986 Canadian Society for Computational Studies of Intelligence (CSCSI-86) (1986)

8. Brajnik G., Guida G. and Tasso C. Design and Experimentation of IR-NLI: An Intelligent
User Interface to Bibliographic Data Bases. In L.Kerschberg (Ed.), Expert Database
Systems - Proceedings From the First International Conference, The Benjamin/Cummings,
Menlo Park, CA, pp. 151-162. (EDS Conference 1986, Charleston, South Carolina (1987)

9. Brajnik G., Guida G. and Tasso C. User Modelling in Intelligent Information Retrieval.
Information Processing & Management, 23(4), pp. 305–320 (1987)

10. Brajnik G. and Tasso C., A Flexible Tool for Developing User Modeling Applications with
Nonmonotonic Reasoning Capabilities. In E.André, R.Cohen, W.Graf, B.Kass, C.Paris,
W.Wahlster (Eds.) UM92 - Third International Workshop on User Modeling –
Proceedings, August 9-13 1992, DFKI – Deutsche Forschungszentrum fuer Kuenstliche
Intelligenz, Kaiserslautern, FRG, pp. 42–66 (1992)

11. Strachan, L., Anderson, J., Sneesby, M., and Evans, M.. Pragmatic User Modeling in a
Commercial Software System. In Jameson, A., Paris, C., and Tasso, C., eds., User
Modeling: Proceedings of the Sixth International Conference, Wien, New York. Springer-
Verlag, 189–200 (1997)

12. Schwab, I., A. Kobsa and I. Koychev, Learning about Users from Observation. In:
Adaptive User Interfaces: Papers from the 2000 AAAI Spring Symposium. Menlo Park,
CA: AAAI Press (2000)

13. H. Vergara. PROTUM: A Prolog Based Tool for User Modeling. WIS Memo 10, WG
Knowledge-Based Information Systems, Department of Information Science, University of
Konstanz, Germany (1994)

270 E. Dempster et al.

14. Volokh, E., Personalization and privacy. Communications of the ACM, Vol 43, Number 8,
84–88 (2000)

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley (1995)

16. Conallen, J., Modeling Web Application Architectures with UML, Communications of the
ACM, October 1999, Volume 42 Issue 10 (1999)

17. Instone, K., An Information Architecture-Based Framework for Personalization Systems,
position paper for the CHI 2000 workshop "Designing Interactive Systems for 1-to-1 E-
commerce" (2000)

18. Kamyab, K., Charlton, P. and Mamdani, E.,An Ontological Framework to Support
Affective Personalisation Services in an Open Agent. Architecture International Workshop
on Affect in Interactions, Annual Conference of the EC I3 Programme, Siena (1999)

19. Kramer, J., Noronha, S. and Vergo, J., A User-Centred Design Approach to Personali-
zation, Communications of the ACM. 43.8 (2000) 44–48 (2000)

20. Kunz T. and J. Black. "An Architecture for Adaptive Mobile Applications", In Proceedings
of the 11th International Conference on Wireless Communications (Wireless'99) (1999)

21. Lei, Y., Motta, E. and Domingue, J., (2002). IIPS: an intelligent information presentation
system, Proceedings of the 7th international conference on Intelligent user interfaces
(2002)

22. Torre, I., Goals, Tasks and Application Domains as the Guidelines for Defining a
Framework for User Modelling. User Modeling 2001, 260-264 (2001)23. Rich, E., User
Modelling via Stereotypes. Cognitive Science, 3: 329–354 (1979)

23. Nicholas J. Belkin, W. Bruce C., Information Filtering and Information Retrieval: Two
Sides of the Same Coin? Communications of the ACM (CACM), Volume 35, Number 12
(1992)

24. Bental D., Cawsey A.J., Jones R.B., Patient Information Systems that Tailor to the
Individual, Journal of Patient Education and Counselling, 36, 171–180 (1999)

25. Ceri S., Fraternali P., Paraboschi S., Data-driven One-to-one Web Site, Generation for
Data-Intensive Applications, Proc. 25th VLDB, 615–626 (1999)

26. Kay, M., XSLT 2nd Edition - Programmer's Reference, Wrox Press Ltd, Birmingham, UK,
(2001)

A. James, B. Lings, M. Younas (Eds.): BNCOD 2003, LNCS 2712, pp. 271–279, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Extracting Database Information from E-mail Messages
1

Richard Cooper and Sajjad Ali

Computing Science, University of Glasgow, 17 Lilybank Gardens, Glasgow G12 8QQ
rich@dcs.gla.ac.uk

Abstract. We present an approach to extracting information (IE) from elec-
tronic mail messages for addition to a specific data repository. Whereas most IE
systems start with a syntactic analysis of the message, our software generates
possible sentence structures from the metadata and then pattern matches these
structures and generates update statements which can be used to add the new
data to the repository. The paper describes an initial version of a component
which handles a number of kinds of sentences, and also discusses approaches to
working with more complex communications.

1 Introduction

There are many mechanisms for acquiring the data needed by an information system,
from freshly entering real world data to automatic data capture. Electronic communi-
cation is important in modern information processing and lies somewhere between
these two extremes. Although, the messages contain data already accessible in the
computer, the data is loosely structured and unlikely to fit the repository managed by
the system. The work described here attempts to process electronic free text commu-
nication and extract structured data so that it can readily be added to the repository.

This project arose as part of a system for building informational websites in which
pages represent single items or catalogues and each page solicits fresh information
from the visitor [2]. Information is submitted by form or e-mail message to a mod-
erator who edits and transfers the data to the repository. The first version of the sys-
tem allowed the moderator to copy text from the messages to the repository and this
proved helpful but cumbersome [6]. Automating the moderator’s task was the major
stimulus to this project, by producing a component which automatically extracts data
from the messages in a form suitable for addition to the repository.

Identifying structured data from unstructured documents is referred to as Informa-
tion Extraction. In this case, the data are found in natural language text and the struc-
ture is the schema of the repository. The component identifies linguistic structures in
the message and transforms these into updates on the repository. On encountering
“The author of Emma was Jane Austen.”, the program turns this into the SQL com-
mand “update Book set Author = ‘Jane Austen’ where Title=’Emma’;”.

1 A fuller version is available as a technical report from the address above.

272 R. Cooper and S. Ali

 IE systems range from those which fully parse the text to those which match key-
words and ignore linguistic structures. The phases of Cardie [1] typify the former
approach: text tokenising; sentence structure identification; entity relationship struc-
ture extraction; anaphoric reference resolution; and template generation.

Most IE researchers try to develop adaptive systems. The Message Understanding
Conferences [4] produced a series of messages to challenge the ability of contributing
systems to learn to process novel syntactic structures. Adaptability is a key concept
behind a recent summer school in IE [7]. Systems are intended to develop both recog-
nisable syntactic structures and a knowledge base as new messages are encountered.

Our IE component does not require a full linguistic analysis, since of the enormous
number and variety of natural language sentences, we are only interested in a tiny
subset and are happy not to understand the rest. However, keyword matching seems
insufficient and ignores the support provided by the linguistic and domain structures.
Here, we take a much simpler approach which exploits the following assumptions
about the restricted world within which the component must function.

1. The information discovered is restricted to that expressed by the unchanging
schema of a database and so adapting the information structure is not an issue.

2. The schema structure is simple consisting of entities grouped into collections.
3. The natural language used is likely to be fairly simple and direct.
We therefore start from the repository schema and a set of templates2 for sentences,

using these to generate sentence patterns. This avoids a syntactic analysis at extraction
time and provides a component which is re-usable for different languages and do-
mains. The syntactic structure of the language is used in generating pattern once at
start-up time for each database rather than once for each message. We are also quite
happy to ignore sentences which have nothing to do with the domain.

However, in achieving this we have a number of problems to overcome:
1. There are many sentence structures which can express the same concept.
2. Most of the sentences will include anaphoric references, such as pronouns.
3. Although the database metadata is fixed, there are usually a number of alterna-

tive names that could have been chosen instead of the ones actually used.
The first version of the component takes a simple minded view of some of these

problems in order to demonstrate that even so, useful extraction can be achieved.

2 The Information Extraction Process

2.1 The Information Extraction Architecture

The system has three phases – schema generation, pattern generation and database
update statement derivation. The component recognises sentences and displays update
commands which the moderator can execute. Sentences expressing a single fact are
termed simple sentences, but we also need to be able to deal with compound sentences

2 In IE research, the term template usually means the structure in which the extracted data is

returned. Here we mean an abstract form of the sentences the component can recognise.

Extracting Database Information from E-mail Messages 273

of two kinds, ones which update entities of the same type and ones which require the
update of multiple entities of different types. Figure 1 illustrates the architecture.

Metadata

Pattern
Generation Patterns

Information
Extraction

Updates
in SQL

Hand Crafted
Patterns

Context

Pattern and
Update

Templates

Schema
Generation

E-mail
Message

Fig. 1. An Architecture for Information Extraction to a Database

Entity Property Domain 0 Store DKey 0 HKey Coll Ent FormIn

Book ISBN Varchar(20) R v v v v v
Book Title Varchar(30) R v v v v
Book Date Date R v v
Book Page-

Length
Number2 R v

Book Author Author R v v
Book Publisher Publisher R v v

Author ID Number2 R v
Author Name Varchar(20) R v v v v
Author Nation-

ality
Varchar(10) R v v

Author Birth-
Date

Date R v v

Author Death-
Date

Date R v v

Author Gender Gender R v v
Author Photo-

graph
Image F v

Author Writings Book R v v

Publisher ID Number2 X v
Publisher Name Varchar(20) X v v v v
Publisher Address Varchar(50) X v v v
Publisher Phone Varchar(20) X v v
Publisher Publishes Book X v v

Fig. 2. A Sample Data Repository Schema

274 R. Cooper and S. Ali

2.2 The Information Extraction Process

Step 1 Generating the Schema Structure
The data model is entity-based with a few additions[3]. Entity types have properties

with domain and storage type (relational, XML or multimedia file data). Each prop-
erty may appear on catalogue pages, on item pages and in information request forms.
Of relevance here is the three valued simple type Gender, which is used to disambigu-
ate pronouns of different genders. As an example, Figure 2 shows a schema for a web
site describing published books.

Of most importance here is the treatment of keys. The model supports traditional
database primary keys (called Dkeys), and also humanly intelligible keys (Hkeys),
vital since the Dkey is often be artificial and unavailable to the person sending the e-
mail. Even if we create an identifier for authors, visitors will communicate in terms of
the name – of course, the Dkey may be an Hkey as well (e.g. ISBN). Hkeys might not
be unique resulting in problems of ambiguity; and there may be more than one of
them, which means that searches for the entity will use all of those properties.

The IE process starts from a collection of templates, each of which has two parts –
one part for describing the structure of a group of sentences we expect to encounter
and the second describing the equivalent update command we expect to generate.

Step 2 Generating the Patterns
A message contains three kinds of word: structural words (“a”, “was”, etc.); meta-

data (“author”) or their synonyms (“writer”); and data, either fresh data that the visitor
is communicating or an Hkey referring to an entity. The pattern template structure
distinguishes these three and pattern generation takes the template, leaves the first set
of words unchanged, replaces the second set with meta-data and leaves the third as
place holders. The pattern template structure is a text string made up of words in-
cluding two kinds of placeholder for the metadata (surrounded by single angle brack-
ets) for type and property names and the data for Hkey and property values (in double
brackets)3. Here is one of the simplest examples:

Template: "The <PropName> of this <TypeName> is <<PropValue>>.”

Pattern: "The date of this book is <DateValue>.”

Recognised Sentence: "The date of this book is 1816.”

The first version of the IE component can only deal with simple structures – essen-
tially those whose main verb is “to be”. Such sentences make simple statements re-
lating data to metadata – e.g. “the value of this property is that data”. Sentences like
this are comparatively easy to deal with since they only require the replacement of
placeholders with the available metadata. The steps for generating patterns are as
follows.

Take each entity type in turn and each property of the entity type and replace all in-
stances of <PropName> and <TypeName> with the appropriate names and replace all

3 Thus moving from the general template to the more specific pattern and then to the exact

sentence has the appearance of removing one set of brackets.

Extracting Database Information from E-mail Messages 275

instances of <<PropValue>> and <<HkeyValue>> with placeholders for values for a
property. Should there be more than one HKey property, generate one set of patterns
for each. Using our example schema, “The <PropName> of <<HkeyValue>> is
<<PropValue>>”, will create 24 patterns (12 for Book – 6 properties by 2 Hkeys; 7
for Author since multimedia properties are excluded; and 6 for Publisher).

The pattern matching approach also works for compound structures such as:

Template: <<PropValue>> was the <PropName> of <<HkeyName1>> and <<HkeyName2>>.

Pattern: <authorName> was the author of <TitleValue1> and <TitleValue2>.

Recognised Sentence: Jane Austen was the author of ‘Emma’ and ‘Persuasion.

Rather more difficult to manage are sentences which use verbs other than “to be -
“Jane Austen wrote it.” is equivalent to “The author was Jane Austen.”, for instance.
In the first version we have resorted to the unsatisfactory technique of allowing the
system builder to insert hand crafted patterns and have these available alongside the
automatically generated patterns. In this case, the following would be added:

"<AuthorValue> wrote it."

After the IE process, the component will now have a value for a particular property,
in this case the date property. It can discover which entity the property is for, either
by context in this instance or by using the Hkey if this is supplied.

Step 3 Managing the Context
This assumes that a sentence is complete in itself, but this is rarely the case. Most

sentences have contextual references embedded in them – for example: “It was writ-
ten by Jane Austen”, so the component must use context to discover a referend before
the sentence can be processed. Pronouns (“Its title is Emma”), entity type names
(“The book’s title is Emma.”), and implicit context (“The title is Emma.”) must be
dealt with. Thus, the component has a context object with references to: the most
recently mentioned entity; the most recently mentioned entity of each gender; the most
recently mentioned entity of each type; and the most recently mentioned entity type.

The starting context is supplied by the page from which the e-mail is sent. The en-
tity of an item page or the entity type of a catalogue is used to populate the context
object. Thus the message might well start “The title is Emma.” if the message was
sent from an entity page representing a book. After a sentence has been dealt with, the
context is updated with the entities mentioned in the sentence. Thus “The author of
Emma was Jane Austen.” updates the most recent book, author, female and neutral
entity.

Step 4 Extracting the Information
The process consists of the following steps: identifying sentences; matching sen-

tence against patterns; ignoring sentences which don’t match; moderating multiple
matches; and extracting the data from the matched sentence.

Extracting data from a sentence proceeds as follows. Identify entities explicitly
specified by Hkey. Dereference a pronoun using one of the gender variables. Derefer-
ence a type name, using the variable of that entity type. Dereference implicit refer-

276 R. Cooper and S. Ali

ences using the most recently mentioned entity. If this is the wrong type, use the vari-
able for the entity type which has the property names identified.

Step 5 Generating the Updates
The extraction process leaves us with the property values for one or more entities.

To modify the repository to accommodate them, in the simplest case, this might mean
setting a single property of a single entity. More generally, it involves creation foreign
key references or setting multiple properties in multiple entities and even in creating
new entities.

Extraction gives the name of the type to be updated; the names of properties to be
updated; Dkey values of entities to be updated; and new property values. The update
statement is generated differently depending upon the property type. The simplest
SQL template is:

Update Template: update <TypeName> set <PropNamei> = <<PropValueij>>
where <DkeyName> = <<DkeyValueij>>;

The pattern generation process takes this template and generates an equivalent up-
date pattern for each sentence pattern, as shown in the example below:

Pattern: The title is < TitleValue >.

Update Pattern: update Book set title = <TitleValue> where ISBN = <BookDkey>;

Recognised Sentence: The title is Emma.

Update: update Book set Title = ‘Emma’ where ISBN = ‘0140620109’;

An entity property must be found first using a program module which takes the
Hkey value and returns the appropriate Dkey value for use as a foreign key with the
template above.

Step 6 Generating New Entities
There are two occasions when we need to add a new entity – a new entity that the

visitor is informing us about – “There is a book called Emma.” – and an entity prop-
erty value that turns out not be in the repository – “The author was Jane Austen.”. In
either case, the component turns the Hkey into a Dkey. If this fails to find a value, a
new entity must be created. Then the following SQL template is used:

Insert Template: insert into <PropTypeName>(<DkeyName>, <HkeyName>)
values(<<DkeyValue>>, <<HkeyValue>>)

Pattern: The author is < AuthorValue >.

Insert Pattern: insert into Author(ID, Name) values(<IDValue>, <AuthorValue>)4

Now the new entity can be used as the reference of a foreign key as before.

4 Note – Figure 4 shows screenshots from a previous version which used the more complex

syntax involving locating the positions of the columns used by the DKey and the Hkey and
filled in null values for the rest, all of which are optional.

Extracting Database Information from E-mail Messages 277

“This book1 was written by Jon Harper2. He3 is also the author of the Big Guru4.
It5 was published by JK Simth6. The publisher7 address is 7 torness Street Glasgow8.
Lorain Inkster9 wrote the book called Good Wishes10. She11 was born on 25-Mar-197512. ”

Fig. 3. A Typical E-mail Message

2.3 A System for Extracting Information from E-mail Messages

Messages sent to the server are held in a mail spool and the component displays a list
of available messages. At any time, a message can be deleted, stored permanently or
selected for IE, in which case the SQL appears in a window in which it can be edited
and committed. Here is a fully worked example as processed by the first version of our
system using Oracle. The message is shown in Figure 3 (typos left in).

Fig. 4. Screenshot of the Updates Generated

278 R. Cooper and S. Ali

In this message, “This book1” refers to a book entity shown on the current page and
is “The Master, ISBN 012-345-68”, and ” Jon Harper2” is the author and is not in the
database. The pronoun “He3” refers to “Jon Harper2” and there is another book called
“Big Guru4” also written by him. “It5” refers to the book “Big Guru4” that was pub-
lished by “JK Simth6” who are located at “7, Torness Street, Glasgow8”. “The pub-
lisher7” refers to “JK Simth6”. Similarly, “She11” refers to “Lorain Inkster9”.

Figure 4 shows the output from processing this message, leaving the context object
with the most recent entity type, Author; most recent entity, Lorain Inkster; most re-
cent gender entities, Lorain Inkster, Jon Harper and Good Wishes; most recent typed
entities: author Lorain Inkster, book Good Wishes, publisher JK Simth.

3 Conclusions

We have demonstrated a pattern matching approach to Information Extraction in
which the patterns are automatically generated from the metadata to accord with
whichever linguistic structures we choose to recognise. The pattern matching approach
is unusual in the IE world, but we can reasonably hope to be successful because we are
working in an extremely restricted universe of discourse, only being interested in
sentences which tell us facts that we can add to the data in our repository.

Even so, our first version is limited in the range of sentence structures we can han-
dle. We could compensate for this with the mechanism of instructions to contributors
on which sentence structures they can use. This is unsatisfactory since this is little
better than providing a form, and so our plan is to rectify the major deficiencies in
subsequent versions. Essentially, we have started from a simple account of language
and intend to add complexity later.

The full version of the paper [3] discusses our intentions with respect to the fol-
lowing deficiencies in the current version:
1. Synonyms for the metadata require the addition of not only a thesaurus but also a

full associative dictionary to allow us to transform nouns into verbs and so on.
2. Ambiguity arises in a variety of ways and although there will often be a need to

consult the moderator for a resolution, we should be able to extend the context with
a history of recent entities to help us deal with plural pronouns as well.

3. We need to extend the pattern template structure to handle subsidiary clauses.
4. We would like to evolve the schema of the repository as information comes in.
5. We need to extend our work so that the output is an update to an XML equivalent to

SQL we have used so far.
6. We would like to handle attachments, integrating the work of David Kerr [5].
7. We will tackle different languages, e.g. the emerging syntax for text messaging.

Acknowledgements. The authors would like to thank Anders Hermansen, Nicola
Laciok and David Kerr for early versions of this software.

Extracting Database Information from E-mail Messages 279

References

[1] C. Cardie, Empirical Methods in Information Extraction, AI Magazine, 18:4, 65–79
1997.

[2] R.Cooper, An Architecture for Collaboratively Assembled Moderated Information
Bearing Web Sites, Web based Collaboration, September, 2002.

[3] R.Cooper and M.Davidson, Managing Typed Hybrid XML and Relational Data Re-
positories, Technical Report in preparation, 2003.

[4] R. Gaizauskas and Y. Wilks, Information Extraction: Beyond Document Retrieval,
Journal of Documentation, 54(1):70–105, 1998.

[5] D. Kerr, Incorporating Multimedia Data into a Collaborative Web Site Design Tool,
MSc Dissertation, University of Glasgow, 2001.

[6] N. Laciok, An XML Component for a Collaboratively Developed Website, MSc Disser-
tation, University of Glasgow, 2000.

[7] M.T. Pazienza, Information Extraction: Towards Scalable, Adaptable Systems, Lecture
Notes in Artificial Intelligence 1714, Springer, 1999.

Author Index

Ahn, Joonseon 253
Al-Mourad, M.B. 198
Ali, Sajjad 271
Atkinson, Malcolm P. 1

Bell, David 58
Bhasker, Bharat 131
Bi, Yaxin 58

Cawsey, Alison 261
Chakravarthy, S. 38, 95
Cooper, Richard 271

Dempster, Euan 261
Detmold, Henry 245

Engström, Henrik 140

Falkner, Katrina 245
Fiddian, N.J. 198

Garcia-Arellano, Christian 75
Garcia-Molina, Hector 3
Gray, W.A. 198
Green, James 190

Hinze, Annika 207
Howard, Diana 245

Jacob, J. 38
Johnson, Roger 190

Kang, Hyunchul 19
Kim, Myoung Ho 253
Kim, SooHee 19

Lamb, Joanne 58
Lim, Sung-Chae 253
Lings, Brian 140
Liu, Jixue 4

MacKinnon, Lachlan 261
Marwick, David 261
Mishra, P. 95
Moon, ChanHo 19
Munro, David 245

Pacey, Daniel 261
Pandrangi, N. 38

Ray, Indrakshi 226

Sanka, A. 38
Sattler, Kai-Uwe 172
Schallehn, Eike 172
Sevcik, Ken 75
Srikumar, Krishnamoorthy 131

Tong, Nerissa 157
Tripathi, Satish K. 131

Vincent, Millist W. 4
Volz, Raphael 67

Williams, M. Howard 261

Yiannis, John 115

Zobel, Justin 115

	Front matter
	Lecture Notes in Computer Science
	Preface
	Acknowledgements
	Organization
	Table of Contents

	Chapter 1
	Chapter 2
	Chapter 3
	Introduction
	Preliminary Definitions
	XMVDs in XML
	XMVDs in XML and MVDs in Relations
	Mapping from Relations to XML

	Conclusions

	Chapter 4
	1 Introduction
	2 Related Work
	3 Rewriting XML Path Expressions
	3.1 Examples
	Example 3.1
	Example 3.2
	Example 3.3
	Example 3.4
	Example 3.5
	Example 3.6

	3.2 Model of XML View
	3.3 Determining Query Processing Type
	3.4 Rewriting of Path Expression
	3.5 Examples of Query Rewriting

	4 Implementation
	4.1 Table Schema
	4.2 View Selection and Query Rewriting
	4.3 XML Path Expression to SQL Mapping
	4.4 XML Tagging
	4.5 Preliminary Performance Evaluation

	5 Concluding Remarks
	References

	Chapter 5
	1 Introduction
	2 Related Work
	3	Problem Overview
	3.1	What Is a Change
	3.2	Importance of User Intent
	3.3	XML Problem Overview

	4	HTML Change Detection
	4.1	Changes of Interest in a Page
	4.2 Object Identification and Extraction
	4.3	 Detecting Changes to Objects
	4.3.1	CH-Diff: A Customized Change Detection Algorithm for HTML

	5	Change Detection for XML
	5.1	Change Operation
	5.2	CX-Diff: Customized Change Detection for Ordered Documents
	5.2.1	Object Extraction and Signature Computation
	5.2.2	Filtering Unique Inserts/Deletes
	5.2.3	Finding the Common Order Subsequence
	5.2.4	Optimization

	6	Change Presentation
	7	Conclusion
	References
	8 Appendix

	Chapter 6
	Introduction
	Motivation
	Data Model for Ontologies
	Modelling Client Functions
	Visual Query Formulation
	5.1 Macro Table Object and Table-Driven Queries
	5.2 The Client Interface
	5.3 An Example

	Conclusion
	Acknowledgement. The work is partially supported by the MISSION project (IST 1999-10655) and partially supported by the ICONS project (IST-2001-32429). These are funded by the European Framework V. The authors would like to acknowledge the contributions made by the MISSION client development team.
	References

	Chapter 7
	1 Introduction
	2 Fundamentals
	3 View Language
	4 External Ontologies
	5 Implementation
	5.1 Query Answering
	5.2 Materialization

	6 Discussion

	Chapter 8
	1 Introduction
	1.1 Problem Statement
	1.2 Plan and Contributions

	2 Related Work
	2.1 Indexing Techniques
	2.2 Clustering
	2.3 Quantization Techniques
	2.4 Clustering and Vector Quantization

	3 Comparison of Three Techniques
	3.1 Data Sets
	3.2 Environment
	3.3 Evaluation Results

	4 Clustered IQ-Tree
	4.1 Data Space Partitioning
	4.2 Clustering by a Modiÿed k-Means Algorithm

	5 Comparison of CIQ-Tree with the Other Techniques
	5.1 Experiments Based on Real Data Sets
	5.2 Experiments Based on Synthetic Data Sets

	6 Conclusions

	Chapter 9
	1	Introduction
	1.1	Focus of This Paper

	2	Association Rules
	2.1	Apriori Algorithm
	2.2	Candidate Generation
	2.3	Support Counting
	3.1	Methodology for Experimental Evaluation
	3.2	Cost Analysis of the Basic K-Way Join (Kwj) Approach
	3.3	Pruning the Input Table (Pi)
	3.4	Second Pass Optimization (Spo)
	3.5	Reuse of Item Combinations (Ric)
	4	Combinations of Basic Optimizations
	4.1	Second Pass Optimization on Pruned Input (SpoPi)
	4.2	Reuse of Item Combinations on Pruned Input (RicPi)
	4.3	Reuse of Item Combinations and Spo (RicSpo)
	4.4	Reuse of Item Combinations on Pruned Input with Spo (All)

	5	Summary of Experimental Results
	6 	Conclusions and Future Work
	References

	Chapter 10
	Introduction
	Compression in Retrieval Systems
	External Sorting
	External Sorting with Compression
	Compression Techniques for External Sorting
	Results
	Conclusions

	Chapter 11
	1 Introduction
	2 The Model and Notations
	3 Implementation of MaxDomino
	3.1 Transaction List Generation
	3.2 Hash Table Construction, Support Counting, and Itemset Pruning

	4 Experimental Results
	5 Summary and Future Research Directions
	References

	Chapter 12
	Introduction
	Background
	Maintaining a Join View
	Alternatives for Join View Maintenance Policies
	Consistency Implications
	Source Capabilities

	TMID -- A Testbed for Maintenance of Integrated Data
	Evaluating Maintenance Policies
	Analysing Policy Timings
	Analysing the Choice between Incremental and Recompute
	Analysing Auxiliary Views

	Conclusions
	Appendix

	Chapter 13
	Introduction
	The AutoMed Framework
	Optimising Transformation Pathways
	Semantics of Transformations and a Transformation Manipulation Language
	Properties of the TML
	Rules for Optimisation
	An Optimisation Example

	Conclusion

	Chapter 14
	1 Introduction
	2 Related Work
	3 Similarity Measures
	3.1 Basic Similarity Predicates
	3.2 Complex and Application-Specific Similarity

	4 Semantics of the Similarity Operators
	5 Implementation and Optimization
	5.1 Similarity Join
	5.2 Similarity-Based Grouping
	5.3 Implementation Using Oracle8i

	6 Evaluation
	7 Applications
	8 Conclusions

	Chapter 15
	Introduction
	Motivation
	Previous Work
	Application
	4.1 Support for a DDL
	4.2 Definition of New Non Atomic Data Type
	4.3 Database Definition
	4.4 Support for a DML
	4.5 Definition of Operations
	4.6 Definition of Functions
	4.7 Definitions of Functions on Relations
	4.8 Limitations

	Conclusions
	References

	Chapter 16
	 Introduction
	 The Object Model
	Sharing Behaviour -- Scope and Requirements
	Semantic Requirements for Reusing and Sharing Behaviour in MDBS

	Detection of Semantic Relationships
	Overview of MVMBS Architecture
	Schema Meta Translator (SMT)
	MVMBS Internal Intermediate Data Model (IIDM)
	Class Comparison Processor (CCP)
	Shareable Method Detector (SMD)
	Equivalent Method Detector (EMD)
	Class Similarity Detector (CSD)
	Meta Integration Language (MIL)
	Global Class Materialisation Rules

	Chapter 17
	Introduction
	Background
	Application Scenario: Remote Monitoring
	Concepts: Events, Profiles, and Notifications

	Methods for Composite Event Filtering
	Composite Event Detection in a Single Step
	Performance Evaluation
	Performance Tests and Discussion
	Implementation Variants

	Summary

	Chapter 18
	Introduction
	Our Model of an MLS Database
	Rules in an MLS Active Database
	Events in an MLS Active Database Systems
	Conditions in an MLS Active Database System
	Actions in an MLS Active Database System
	Relationship of Security Levels Associated with a Rule

	Execution Model
	Rule Processing Granularity
	Conflict Resolution and Rule Priorities
	Sequential versus Concurrent Execution
	Coupling Modes
	Iterative versus Recursive Algorithms
	Error Handling

	Architecture
	Architecture for an MLS Active Database System

	Related Work
	Related Work in Multilevel Secure Active Databases
	Related Work in Expert Systems
	Related Work in Active Databases
	Related Work in Multilevel Secure Databases

	Conclusion and Future Work

	Chapter 19
	Introduction
	The Compliant Systems Architecture
	Application to Two-Phase Commit
	Policy Identification

	Related Work
	Conclusion and Future Directions

	Chapter 20
	Introduction
	Preliminaries
	Backgrounds on Blink-Tree Concurrency Control
	The Basic Idea of the Proposed Blink-Tree CC Algorithm

	The Proposed Blink-Tree CC Algorithm
	The Key Search Algorithm
	Algorithm for Inserting a New Index Entry
	Algorithm for Deleting an Index Entry
	Lock Cooperation

	Restructuring an Underflow Node
	Transferring the Index Entries
	Merging the Half-Full Nodes

	Deadlock-Freeness of the Proposed Locking Protocol
	The Performance Overview
	Conclusion

	Chapter 21
	Tools for Personalised Presentation of Information
	Introduction
	The Personalisation Framework
	Personalisation Toolkit
	3.1 Service
	User Base
	Content Base
	Knowledge Base

	3.2 Filtering Engine
	3.3 Customisation Engine
	3.4 Output Engine
	3.5 User Interface

	Breastfeeding Prototype
	Conclusions
	Acknowledgements. The authors acknowledge the support received from the Engineering and Physical Science Research Council under grant reference GR/N22229/01 (Dynamic Information Presentation). They also wish to thank Dr. Jamie Inglis and Kerr Donaldson of the Health Education Board for Scotland (HEBS) for their contribution to this work.
	References

	Chapter 22
	Extracting Database Information from E-mail Messages1
	1 Introduction
	2 The Information Extraction Process
	2.1 The Information Extraction Architecture
	2.2 The Information Extraction Process
	2.3 A System for Extracting Information from E-mail Messages

	3 Conclusions
	References

	Back matter
	Author Index

