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Józefowska & Węglarz/ PERSPECTIVES IN MODERN PROJECT SCHEDULING

Tian & Zhang/ VACATION QUEUEING MODELS: Theory and Applications

Yan, Yin & Zhang/ STOCHASTIC PROCESSES, OPTIMIZATION, AND CONTROL THEORY

APPLICATIONS IN FINANCIAL ENGINEERING, QUEUEING NETWORKS, AND

MANUFACTURING SYSTEMS

Saaty & Vargas/ DECISION MAKING WITH THE ANALYTIC NETWORK PROCESS:

Economic, Political, Social & Technological Applications w. Benefits, Opportunities,

Costs & Risks

Yu/ TECHNOLOGY PORTFOLIO PLANNING AND MANAGEMENT: Practical Concepts and

Tools

Kandiller/ PRINCIPLES OF MATHEMATICS IN OPERATIONS RESEARCH

Lee & Lee/ BUILDING SUPPLY CHAIN EXCELLENCE IN EMERGING ECONOMIES

Weintraub/ MANAGEMENT OF NATURAL RESOURCES: A Handbook of Operations Research

Models, Algorithms, and Implementations

Hooker/ INTEGRATED METHODS FOR OPTIMIZATION

Dawande et al/ THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS

* A list of the early publications in the series is at the end of the book *



NETWORK SCIENCE, NONLINEAR

SCIENCE AND INFRASTRUCTURE
SYSTEMS

Edited by

Terry L. Friesz



Terry L. Friesz
Pennsylvania State University
University Park, PA, USA

Library of Congress Control Number: 2007921680

ISBN-13: 978-0-387-71080-8 (HB) ISBN-13: 978-0-387-71134-8 (e-book)

Printed on acid-free paper.

© 2007 by Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews
or scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now know or
hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if
the are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com



Contents

Preface vii

Chapter 1: A Revolution in Infrastructure Network Research and
Engineering?

Terry L. Friesz 1

Chapter 2: Networks and Dynamics: The Structure of the World We
Live In

Shaun Lichter and Terry L. Friesz 7

Chapter 3: Modeling Large Scale and Complex Infrastructure Systems
as Computable Games

Terry L. Friesz, Reetabrata Mookherjee, and Srinivas Peeta 53

Chapter 4: Dynamic Competition on Networks: Differential Variational
Inequalities, Limited Warfare and Internet Vulnerability

Terry L. Friesz 77

Chapter 5: Characterization and Monitoring of Nonlinear Dynamics and
Chaos in Manufacturing Enterprise Systems

S.R.T. Kumara and S.T.S. Bukkapatnam 99

Chapter 6: Evolutionary Traffic Flow Landscapes: A Fitness Approach
for ITS Management

Kingsley E. Haynes, Rajendra G. Kulkarni, and Roger R. Stough 123

Chapter 7: Network Connectivity Models: An Overview and Empirical
Applications

Aura Reggiani and Sandra Vinciguerra 147



vi Contents

Chapter 8: An Application of Complex Network Theory to German
Commuting Patterns

Sean P. Gorman, Roberto Patuelli, Aura Reggiani, Peter Nijkamp,

Rajendra Kulkarni, and Günter Haag 167

Chapter 9: Assessing Critical Components in Transportation Systems:
Economic Models and Complex Network Science Approaches

Satish V. Ukkusuri and José Holguín-Veras 187

Chapter 10: A Simulation-Based Dynamic Intermodal Network
Equilibrium Algorithm

Elaine Chang and Athanasios Ziliaskopoulos 201

Chapter 11: Modeling the Transient Nature of Dynamic Pricing with
Demand Learning in a Competitive Environment

Soulaymane Kachani, Georgia Perakis, and Carine Simon 223

Chapter 12: An Evolutionary Variational Inequality Formulation of
Supply Chain Networks with Time-Varying Demands

Anna Nagurney and Zugang Liu 269

Chapter 13: Some Amazing Properties of Road Traffic Network
Equilibria

Hillel Bar-Gera and David Boyce 305

Index 337



Preface

This book presents a record of a U.S. National Science Foundation Work-
shop held at the Pennsylvania State University in 2005. More detail about the
workshop may be found in Chapter 1.

Each chapter is largely self-contained. The special strength of the book is
the fact that it offers both introductory and advanced essays on each of its main
topics: network science, nonlinear science, and dynamic game theory – as well
as the application of those disciplines to infrastructure systems.



Chapter 1

A Revolution in Infrastructure Network Research and
Engineering?

Terry L. Friesz

Harold and Inge Marcus Chaired Professor of Industrial Engineering,

The Pennsylvania State University, University Park, PA 16802, USA,

E-mail: tfiesz@psu.edu

The Emergence of Network Science

In the past five years a number of physicists, Internet theorists, social
scientists and specialists in dynamic systems and complexity have made major
strides in the development of a general theory of networks. This theory and its
empirical foundation – increasingly referred to as network science – seeks to
explain why networks appear and how they grow and evolve. In fact network
science now has recognition among non-scientists, thanks in part to a recent
popular book by Barabási (2002) that marks the coalescence and emergence
of network science as a field of scientific inquiry. The agreement of other
scholars with Barabási ‘s assertion that a new science of networks is emerging
is documented in the recent comprehensive review of complex networks by
Newman (2003). The review by Newman explicitly recognizes the interdisci-
plinary nature of network science research and the major contributions to it
made by social scientists.

In brief, network science has uncovered immense similarities in diverse
networks – encompassing but not limited to social networks, the Internet, road-
ways and terrorist networks. One of its main insights is that sub-networks are
sometimes weakly coupled to one another while the sub-networks themselves
are internally fully connected, which topology frequently goes hand-in-hand
with the appearance of dominant hubs that have a disproportionate number
of incident links. These generalizations have been established through some
very ingenious experiments and mathematical analyses that challenge in a very
fundamental way the old ideas of random networks and Brownian motion.

Some of the most important contributions to network science have been
made by social scientists studying human activities expressed as so-called
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social networks. Many of the same general properties identified for physical
networks – such as small worldness and scale freeness – have been discovered
within social networks.

Engineering Relevance

An unanswered question is whether the results of network science will
prove useful in engineering applications. A specific version of this question
is whether network science can be applied to the study of infrastructure
networks. Especially interesting is the potential of fusing social network
models which describe human activity patterns in great detail with traditional
infrastructure network models to create a new generation of network models
that provide greater potential for understanding the interaction of social and
infrastructure networks.

A central issue in the fusion of social network and traditional physical
infrastructure network models is that of computability, since the fusion will
create networks of immense size.

The Workshop

The U.S. National Science Foundation provided funds to conduct a small
workshop on the relevance of network science and allied disciplines to in-
frastructure system research and engineering. At the workshop, Peter Dodds
and Lou Pecora presented seminars on network science and nonlinear science;
additionally the attendees were given a list of network science and nonlinear
science readings to be completed prior to the workshop.

The workshop was mainly attended by scholars who have been highly
active in one or more aspects of infrastructure systems research. In particular,
experts on dynamic games, optimization, nonlinear science, sociology, spatial
economics, transportation systems, GI-science, and regional science were
present. The delegates who attended are:

1. Terry L. Friesz, Penn State (convener)
2. Aura Reggiani, University of Bologna (Italy)
3. Kingsley Haynes, George Mason University
4. David Boyce, University of Illinois at Chicago
5. Peter Dodds, Columbia University
6. Jose Holguin-Veras, RPI
7. Srinivas Peeta, Purdue University
8. Georgia Perakis, MIT
9. Anna Nagurney, University of Massachusetts
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10. Sean Gorman, George Mason University
11. Roberto Patuelli, George Mason University
12. Louis Pecora, Office of Naval Research
13. Elaine Chang, University of South Florida

The goal of the workshop – which took place on 9, 10 and 11 May 2005 – was
to focus on how network science, and to a lesser extent nonlinear science, can
assist in constructing computable models that combine detailed social networks
with network flow models traditionally used to study physical infrastructure.

Even though the dominant physical infrastructure considered was trans-
portation, the delegates who attended and the authors of papers appearing
in this book possess considerable experience in modeling other forms of
infrastructure – including telecommunication systems, data networks, and
energy distribution networks.

The individual papers that appear as chapters of this book are of three
principal types:

1. those summarizing the literature on network science, nonlinear science and
game theory;

2. those offering original applications of network science, nonlinear science
and game theory to infrastructure systems; and

3. those illustrating how infrastructure networks have been modeled histori-
cally, including the identification of assumptions that limit their utility as
decision support tools.

All included papers are original manuscripts not previously published. It is
hoped that this compendium quite literally offers something for everyone
interested in innovating new paradigms for the study of infrastructure systems.

Findings of the Workshop

The workshop included a discussion of each manuscript presented, led by
designated discussants. In addition, after the final paper was presented, an
entire afternoon was used for a free form discussion of infrastructure modeling
and the potential for network science and nonlinear science to influence future
infrastructure modeling efforts.

The aforementioned free-form discussion led to the following major find-
ings of the workshop:

1. Network science may be viewed as an effort to find universal principles and
laws that apply to virtually all networks, be they social or technological.

2. Network science focuses on the phenomenon of emergence, which is largely
ignored by infrastructure engineers.
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3. Infrastructure engineers need to look in much greater depth at the phenom-
enon of emergence so that structural changes and phase shifts in engineered
network systems may be anticipated and guided rather than reacted to.

4. Computational considerations are paramount to infrastructure engineering,
for two reasons: (a) Most infrastructure systems are very large and complex,
and thereby often frustrate qualitative mathematical analysis; and (b) The
practice of infrastructure engineering includes planning and forecasting;
therefore it is necessary to compute – with reasonable accuracy – the future
infrastructure activity levels for relevant political/governmental decision-
making environments.

5. As a discipline network science has much to learn from the computational
prowess developed in infrastructure network engineering that allows equi-
libria and transient behaviors of extremely large networks to be calculated
without resort to simulation.

6. Nonlinear science has proven to be a powerful perspective for studying dy-
namical systems but as of yet there are no infrastructure network models that
have been thoroughly analyzed from the perspective of nonlinear science. In
particular dynamic models of network infrastructure design take the form
of optimal control problems for which a solution may be represented as a
system of simultaneous state and adjoint differential equations that can be
studied to identify complexity and emergence, especially the possibility of
chaos and strange attractors. Such an analysis has not been attempted and
represents a ‘hole’ in the infrastructure network design literature.

7. Nonlinear science as a discipline has grown up divorced from dynamic
game theory although the frontier in modeling infrastructure networks is
widely considered to be that of dynamic games played out by agents active
on infrastructure networks. This missing connection between dynamic game
theory and nonlinear science has begun to be addressed by some infrastruc-
ture engineers seeking to build computable dynamic game theoretic models
of specific infrastructures (most notably dynamic traffic assignment models
for automobile traffic), yet the skills and insights of applied mathematicians
are very greatly needed to fill this ‘hole’, as well.

8. Cybertechnology – a name and notion coined by the National Science
Foundation to describe the use of information technology to enhance the
effectiveness of the traditional infrastructure of scholarship – and cybernet-
works comprised of that technology must now be considered when modeling
infrastructure systems. The findings of network science concerning social
networks seem potentially relevant to the study of cybernetworks.
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The Future

A final finding of the workshop and one which seems appropriate to mark
the end of this initial chapter is: the momentum gained in this workshop needs
to be maintained by subsequent meetings and workshops for there indeed
seems to be a rising interest in the holistic view of infrastructure which is at
the heart of network science. As part of that holistic view, nonlinear science
should receive greater emphasis from infrastructure engineers, as there is
virtual unanimity among them that, in the so-called information age, the study
of infrastructure involves dynamics.

References
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Chapter 2

Networks and Dynamics: The Structure of the World
We Live In

Shaun Lichter1 and Terry L. Friesz2

1Department of Industrial and Manufacturing Engineering, The Pennsylvania

State University, University Park, PA 16802, USA, E-mail: lichter@psu.edu

2Harold and Inge Marcus Chaired Professor of Industrial Engineering,

The Pennsylvania State University, University Park, PA 16802, USA,

E-mail: tfriesz@psu.edu

Abstract Many complex networks of systems have structures with similar topological
properties: e.g. clustering, small world effect, and scale free structure. The
dynamics of a system – either static or dynamic – are effected by the topological
structure of the underlying network. Some examples of static and dynamic
systems that act on networks include social, epidemiological, and transportation
systems. This chapter gives an introduction to the analysis of nonlinear dynamics
as it applies to such systems.

Keywords: network science; complex networks; nonlinear dynamics

1. Introduction

In this chapter we seek to explain the basic knowledge that is needed to
understand and apply the results of network science and nonlinear science.
Familiarity with the material of this chapter will allow the reader to better
understand subsequent chapters of this book. The tone of this chapter is quite
informal, and the mathematical background required is that of elementary
calculus, an introduction to ordinary differential equations, and a working
knowledge of the essentials of graph theory. It is also desirable to have some
familiarity with transportation networks and the key issues arising in the
design and operation of infrastructure systems – although this last mentioned
familiarity is not essential.
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2. Network Science

Everyday, each one of us travels to work. Some people wake up at dawn in
order to make it to their New York or Los Angeles job on time. These people
have to leave at the break of day in order to beat the traffic. If there is an accident
on the highway on the way to work, it will take longer to get to other side of the
highway or they may even have to take an alternate route. If they have to travel
over a bridge, alternate routes may be very inconvenient. Some roads may have
construction or a street light may go out, all of which slow down the traffic
passing by. It may be curious to note that sometimes even if nothing has gone
wrong, that is, with no accidents and no construction, some roads may still be
highly congested simply because too many people are trying to use the same
road.

Why is it that some roads may break down and very few people even notice
and yet other roads can break down and the effects may be catastrophic? It
may not be at the front of the average driver’s mind, but on the way to work,
we each travel through a transportation network. This network is a web of
streets, highways, and intersections that we have to travel through to get from
our starting point (home) to our destination (work). Networks like this have
various topological properties, these are characteristics of the structure of the
network. Learning about the structure of the network will help us to be able
to answer questions like “The failure of which roads would cause the greatest
harm to the network?” Maybe more importantly, “What can we do to prevent
catastrophe?” Network Science is the study of the topology of networks and its
role in the functionality of the network.

2.1 Social Networks

Networks have been used quite a bit to model social relationships and this
easy model will help acquaint the reader with networks. In these models, each
person is represented as a vertex or a node. A relationship between two people
is represented as an arc or edge between their nodes. For example, in the very
small social network in Figure 1 Alice, Bob, and Charlie are all represented as
vertices. Since Alice is connected to Bob and Charlie via an arc, this means
that Alice knows Bob and Charlie. However, since Bob and Charlie are not
connected through an arc, they do not know each other.

From this simple representation of a social network, new questions may
come to mind. Who is connected to the most number of people? How many
people would you have to go through in order to connect a particular pair of
people? Which two people are the furthest away from one another? Which
people are the most crucial to the network? To begin to answer these questions,
some basic definitions will help clarify the language of the following pages.
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Figure 1. Social Network.

2.2 Basic Definitions

We shall have cause to employ the following notions central to graph theory
and network science:

vertex The connection of arcs, often referred to as a node.
edge The link or arc connecting two vertices.
degree of a vertex The number of edges connected to the vertex.
component of a vertex The set of vertices reached from the given vertex.
geodesic path The shortest path between two vertices in a network.
diameter The longest geodesic path of a network.

The definitions presented above have been taken from the review article by
Newman (2003).

2.3 Graph Theory is Born

The Pregel river splits into two paths around the island Kneiphof in the
city of Konigsberg, Prussia (now Kaliningrad, Russia). In Konigsberg, the
people of the city used to spend their Sunday afternoons walking over the
seven bridges that connected the island to the pieces of land surrounding the
island. The question of whether there was a path that allowed a person to walk
over all seven bridges exactly once arose among the patrons of coffee shops
near the bridges; it later became known in the scholarly literature as “the seven
bridges of Konigsberg” problem. Figure 2, gives an abstract depiction of the
configuration of the Konigsberg bridges at issue. The historical record also
indicates this question soon came to the attention of Leonhard Euler (1707–
1783), who isolated the underlying graph to obtain a depiction like that of
Figure 3 taken from Barabási (2002).

How did Euler approach this problem? Euler reasoned that if a traveler
wants to pass through a node (land mass), then he has to enter and leave, so
there must be an even number of arcs for each node that the traveler passes
through. Similarly, there must be an odd number of arcs for a node if a traveler



10 Shaun Lichter and Terry L. Friesz

Figure 2. Konigsberg Bridge.

Figure 3. Abstract Representation of the Konigsberg Bridge Problem.

is to begin or end his path at that node, but if he begins and ends his path at
the same node then there must be an even number of arcs at that node. So, for
what networks does there exist a path such that one can visit each arc once and
only once? For a solution to exist, there must be either zero (start and end at
same node) or two (start and end at different nodes) nodes with an odd number
of arcs and the rest of the nodes must have an even number of arcs. Any other
graph has no solution to the question posed.

For the Konigsberg Bridge question, we can easily verify that each node has
an odd number of arcs and since there are four nodes, there is no solution to the
question. However, one may also easily verify that adding or subtracting any
one bridge would make it a solvable problem. It just so happens that in 1875,
another bridge was erected and it was indeed possible to visit each bridge once
and only once. The appropriate path would be to begin and end at the two land
masses not connected by this new bridge.

Another version of the question is to ask whether there exists a path
beginning and ending at the same land mass, that will cross all seven bridges.
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This version will also be answered in the same way, but solution is simply
that a path exists only if there are no nodes with an odd number of arcs. If
this is the case, one can start at any node and there is a path from that node
that is a solution. Euler’s solution gave birth to a new field of math known as
graph theory, which would provide many rich methods used to analyze such
problems. In addition, the field of network science eventually emerged from
the field of graph theory.

2.4 Random Graphs

Paul Erdös and Alfréd Rényi made some of the first breakthroughs in
network science. They modeled networks as random graphs, by first selecting a
number, n, of nodes. They then connected every pair of nodes with a probability
p, forming what came to be known as random graphs or what are sometimes
called the “Poisson Random Graph” or “Bernoulli Graph.”

Paul Erdös and Alfréd Rényi were the first to thoroughly study the structure
of graphs. Mathematicians began to ask questions like, on a graph with n nodes
where each arc had a probability p of being connected, what is the probability
that the entire graph is connected? Where a connected graph is defined as one
in which any node can be accessed by any other node. In other words, for all
pairs of nodes, there exists a path between them. Certain properties of graphs
may change as n, the number of nodes, increases and mathematicians often
looked at the properties in the limit as n went to infinity.

More generally, it was found that random graphs often experience a phase
change. A component of a graph is a set of nodes that are connected. The
degree of a given node, is the number of arcs attached to it. This often is
the same as the number of other nodes attached to it, but in some networks,
there may be multiple arcs attaching two nodes. It was found that by varying
the average degree of the nodes in a graph, the structure of the graph may
change. Specifically, as the average degree increases, the random graph will
experience a rather quick phase transition. Before this transition, the graph will
be composed of many rather small components, the arc density will be very
low, and the graph will not be connected. However, after the quick transition,
the graph will have one “giant component” containing most nodes. The graph
still may not be connected, but it will be close, in that most nodes will be
connected to one another.

While it was found that these random graphs did exhibit some features such
as the “small world effect” mentioned in the next section, these random graphs
failed to display many of the other topological characteristics of real networks
(to be discussed in the coming sections). Hence, they were left behind for newer
models more capable of modeling the real networks around us. However, the
approach of Erdös and Rényi to study topological properties of graphs would
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have lasting effects in network science because they built the foundation of how
we fundamentally think about networks.

2.5 It’s a Small World

Surely, at one time or another, everyone has been told “you are within six
degrees of Kevin Bacon” [or something with essentially the same implication].
This phrase is one of the most popular examples of the small world effect that
is within networks. The idea of the small-world effect was first published by
Frigyes Karinthy in the short story Chains (Karinthy, 1929), where a character
claimed that all people in the world were connected via at most five people.

The scientific history of the small world effect dates back to the research of
Stanley Milgram (1967). Milgram randomly chose people in a seemingly far
off place like Wichita, Kansas and in a second study, Omaha, Nebraska. He
then sent them a letter with instructions on how to participate in his study. He
told them to send it to a divinity student in Sharon, Massachusetts in the first
study and to a Boston Stockbroker in the second study. However, there was a
catch. The participants were only allowed to give the letter to a person they
knew by their first name. The lists were mailed back to Milgram, so that he
could trace the progress of the letters. Milgram found that the completed letters
passed through an average of just under six people. While the methodology and
results of Milgram’s experiment have been contested by some, it is commonly
believed that the social network that we all live in, can be characterized by a
small world. At first glimpse it may seem surprising that random people chosen
could be connected by an average of less than six degrees. However, if we
consider how many people are within six degrees of us, then it may no longer
be surprising. Each person easily has fifty friends connected to them, most
people have hundreds.

Suppose we consider the random graph of Erdös and Rényi. Suppose each
node has on average one hundred links. Thus a given node X, has one hundred
other nodes within one degree of it, but each of these nodes also has an average
of one hundred nodes linked to it. So there are 1002 nodes within two degrees
of X and 1003 nodes with in three degrees and so on. Thus, there are 1006 nodes
within six degrees of X. This amounts to 1,000,000,000,000 nodes within six
degrees of X. This surely cannot be an argument that identifies the number of
people within six degrees of any person in the real world, since the current
world population is only at about 6.5 billion. The error in thinking intrinsic to
the argument just presented is fairly simple to find. Denote the group of nodes
within one degree of X as X1. Now each node in X1 also has on average 100
nodes within one degree of it. However, some of those nodes within one degree
of it are also in X1. So there is a significant overlap in the links, causing there
to be far fewer than 1006 nodes within six degrees of X. This may be a bit



2. Networks and Dynamics 13

Figure 4. Overlapping Sets and the Small World Effect.

confusing, so let us denote node Y as a node in X and denote Y1 as the set of
nodes within one degree of Y. Now, some of the nodes in Y1 may also be in
X1, as depicted in Figure 4.

This overlap in the links causes there to be far fewer than 100 nodes within
six degrees of X. This may seem crippling to the small world effect, but it
should be noticed that the current American Population is about 300,000,000
which is less than 1003.25 nodes. The degree of overlap between the nodes
within one link of X1 and those nodes in X1 will surely affect the number of
nodes within 6 degrees of X. However, the important thing to realize is that
as the number of links L grows, the number of nodes connected to X within
L links grows with a power relationship. The number of nodes within L links
should be able to be modeled approximately as βαLwhere β is some way of
estimating the average links per node and α is some parameter to estimate the
amount of overlap in links between nodes.

This may make you think, do all nodes have the same number of links? If
not, how could we estimate β? Is there a distribution for the number of links
L that some node X has? These questions will be looked into a bit more when
Hubs are considered. In addition, this model may bring new questions of how
exactly do we describe or find α? This is one of the questions that could be
answered by the clustering model presented next.

2.6 Clustering

The random graphs of Erdös and Rényi easily show the small world effect
found in social networks by Milgram. However, network applications such
as social networks often display other topological properties not captured by
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random graphs. One of the most obvious characteristics of social networks that
random graphs cannot model is social cliques or what Watts and Strogatz call
clustering (1998).

Random graphs connect any two nodes with a probability p. This means
that if Adam is friends with Bob and Adam is also friends with Cathy, then
Bob and Cathy have a probability p of being friends with each other (refer
to Figure 5). David, not a friend of Adam, also has a probability p of being
friends with Bob and a probability p of being friends with Cathy. So David is
just as likely to be friends with Bob or Cathy as Cathy and Bob are of being
friends with one another, even though Bob and Cathy have a mutual friend
(Adam). Random graphs do not appropriately model social networks because
this scenario is simply not realistic. Since Bob and Cathy are both friends with
Adam, they are more likely to be friends with each other than with David, who
is not friends with Adam.

Often people are a member of a social clique or group of friends where
everyone is friends with everyone else or almost everyone else. Two people
who are friends with Adam are more likely to know each other because they
may meet at a common social gathering, including birthday parties, family
events, work, or class. So this implies that if Adam is friends with Bob with
a probability p and also with Cathy, with a probability p, then Bob and Cathy
should be friends with a probability greater than p and David should be friends
with Bob and Cathy, each with a probability lower than p. In Figure 5 below,
this is shown by the thick solid lines representing the highest probability and the
thin small dotted lines representing the lowest probability. Watts and Strogatz
(1998) provided the first model that incorporated this property of clustering
into the topology of the network, while still maintaining the small world effect
(short path between any two nodes). They developed a model which began with
the network in a ring, where each node was connected to the nodes close to it,
but not those far away. In Figure 6, taken from Watts and Strogatz (1998), the
network on the left has 20 nodes, each of which is connected to its 4 neighbors.

Figure 5. Small World Social Network.
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Figure 6. Randomness and Clustering.

Then the method proceeds by starting with a vertex and the edge that
connects that vertex to the closest vertex clockwise to it. With a probability p

we rewire it to another vertex chosen uniformly at random (without duplication
allowed). Then we move to the next vertex in clockwise order. When the lap
is completed we move on to the edge with the next shortest link without ever
considering the same edge twice, again rewiring it with probability p. For small
p Watts and Strogatz (1998) found that the small world shown in the middle
diagram emerged. For this small world, the path length was rather short on
average due to some arcs going across the circle, yet the clustering coefficient
was very high because most neighbors were connected within one or two links.
Since each neighbor is connected within one or two links, the neighbor of a
node’s neighbor is also very close allowing clustering to become a part of the
topology of the network.

2.7 Hubs

Watts and Strogatz (1998) still did not fully capture all of the topological
properties of many of the networks around us. In their model, each node
begins with the same number of links. Even as p increases, since the links
are rewired with a uniform distribution, the distribution of the number of links
that a node has will not follow a power law distribution. Instead it will follow a
peaked distribution. One may think this is not a significant issue, seeing as we
should expect some type of bell shaped distribution from a random network.
However, Albert-László Barabási has found that the distribution of links in
various networks follow a power law distribution not a bell shape distribution.

Barabási found that various networks displayed a power law distribution.
This means that the great majority of nodes have very few if any links, while
just a few have the great majority of links. This seems intuitive when looking
at networks around us. Google has millions of links while most personal web
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pages simply have one or two. In fact, the ten largest airports in the United
States have flights to virtually any airport in the United States, if not the world.
For example, a recent check revealed that Philadelphia International Airport
had 255 flights arriving from 108 different airports. Yet, a local rural airport
typically only offers flights to two or three other airports. In University Park,
for example, the local airport has 8 flights arriving from 4 airports, all of which
are major airports. There are about twenty to thirty very large airports (in the
US) that most people fly out of when they need to travel a significant distance.
Yet, there are over 19,000 airports in the United States.1 From University
Park, Pennsylvania, there are 10 airports within 110. Of these 10 airports, 9
are small and 1, Harrisburg, is a bit larger. But, even Harrisburg had only 42
flights coming in from 12 cities on a recent day when we checked the published
schedules. When compared to Philadelphia, Harrisburg was linked to less than
1/6 the number of airports and had 1/9 the number of flights serving these
other airports. Harrisburg is the largest of the 10 closest airports to University
Park (within 110 miles) and Philadelphia is a large airport, but surely not
the largest. In 2004, Philadelphia was the 16th largest airport in the United
States. So for a network of airport connections in the U.S., there are more than
10 times the number of small nodes than there are large ones and the large
nodes often have far more than 10 times the number of links. This means that
the distribution of links of the networks around us surely are not bell shaped
because of this small number of nodes that have often more than 80% of the
total links incident upon them. Barabási refers, quite appropriately, to these
popular nodes as “hubs”. Barabási also began to call complex networks that
displayed the power distribution scale free networks. Since there is no single
node which can be chosen to characterize the population of nodes, there was
no scale in these networks, and hence the term scale free network was coined.

2.8 Modeling Hubs

So if the Watts-Strogatz model cannot portray a power distribution of links,
then how can we model it? Let’s start by looking a bit deeper at the Watts-
Strogatz model and try to find why it was bell-shaped to begin with. The model
presented by Watts and Strogatz (1998) begins with each node having the same
number of neighbors, denoted by k. Then through the rewiring process, p, the
probability of an edge being rewired is the same for all nodes on the ring.
Hence, when the rewiring is finished, each node has a minimum of half the
number of arcs that it began with. In addition, since the arcs are rewired to a

1 In 2003, there were 19,581 US airports, but only 5,286 were public airports according to
the Bureau of Transportation Statistics. Airline travel data can be obtained from the Bureau of
Transportation Statistics (2006).
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node with a uniform distribution, no node will gain that many more arcs than
the rest.

The number of arcs gained by any node will have a normal distribution,
while the number of arcs lost will have a binomial distribution. This will create
a unique distribution for the number of arcs a node will have. More importantly,
an upper and lower bound was just put on the number of arcs a node may have.
The lower bound was created because each node must keep k/2 arcs. Since this
may not be obvious, Figure 7 illustrates the process by which hubs are formed.
Suppose we have a particular node David that is connected to two neighbors
before it, Britney and Charles as well as two neighbors after it, Eli and Freddy
(this makes k = 4). Now each of David’s links to these other people may be
rewired with probability p. Now, let’s assume that in clockwise order, the order
is Britney, Charles, David, Eli, and Freddy. Then we will randomly decide if
Britney’s link to David is rewired when it is Britney’s turn, so this means if
this link is rewired then Britney will be re-linked to someone else (chosen
uniformly) and David will lose one of his four links (Britney is re-linked to
Harriet). Similarly, Charles’ link will go through the same process. However,
when we consider Freddy’s link to David, if it is rewired, then David will be re-
linked to another node (chosen uniformly). David will obviously have to keep
this link regardless of whether it is re-linked, while Freddy will be losing a link
if it is re-linked. Figure 7 also shows David being re-linked to Harriet (chosen
uniformly). In addition, Eli’s link will go through the same process. Thus David
must keep 2 links no matter what value of p or what random outcome occurs.
In the general case, this is one half of the starting links or k/2.

In Figure 7, not only is there a lower bound on the number of links, but there
is also an upper bound on the number of links a node can obtain. No node can
obtain more than N − 1 links, where N is the number of nodes in a network.
In a large complex network, this practically is not an upper bound. But there
is a limiting upper bound, one that is more of a statistical upper bound. There
are only 1

2NK links in the network and on average only 1
2pNK links will be

rewired. Since there are N nodes in the network and each will receive a rewired
link with equal probability, each node will receive rewired links according to
a binomial distribution. Each node will keep its original links according to a
binomial distribution as well. So, the number of links a node will have is the
sum of two binomial distributions. This resulting distribution is bell-shaped and
not a power distribution as the real complex network link distribution is.

At the core of his inquiries, Barabási (2002) asked two related questions:
(i) why is the random graph model insufficient to model the power distributions
of real networks? and (ii) how are real networks built? The first step in
answering these questions is to recognize that a real network is not built by
first making nodes and then randomly connecting them as Erdös and Rényi
assumed, nor is a real network created by configuring nodes in a certain way
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Figure 7. Emergence of Hubs.

and then changing the links as Watts and Strogatz (1998) assumed. When a
company, say an airline decides which cities to link with a flight, do they flip a
coin to decide whether to offer a certain flight? When David is trying to decide
who will be in his social circle, does he flip a coin to decide whether he should
ditch one friend for another? Does the airline company flip a coin to decide
whether to cancel the Los Angeles to Philadelphia flight and replace it with a
Philadelphia to State College flight?
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The truth of the matter is that most real networks are formed by just a few
nodes and a few links. The original links may be random or may not, but –
as the network grows – more and more links are added. However, they are not
added completely randomly or at least not uniformly so. Barabási hypothesized
that they are added with preferential attachment. That is, each new link would
be more likely to be added to those nodes which already had more links. Thus,
the bigger cities would be more likely to have new flights added. This allows
the rich to get richer, so to speak, and the big nodes to get huge, while the
small ones stay small. The combination of allowing a network to grow and
allowing it to grow with preferential attachment, forms the power distribution
characteristic of scale free networks.

2.9 Vulnerability and Epidemiology

As we have seen, the model of network evolution proposed by Barabási
often favors older more established nodes, but it does not preclude younger
ones. When a node is first created, it will only have a few links and those
links will be more likely to be connected to older more popular nodes. This
means that many of the smaller nodes are linked to the popular nodes, that
Barabási calls hubs. These hubs allow the existence of the small world effect
and clustering. This can be seen in the airline example of Figure 8, fairly easily.
The University Park airport is a very small node, connected to only four other
airports.

Figure 8. Airline Network Connecting University Park to the World.
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Recently the largest of these four was Detroit (9th) and the smallest was
Dulles in Washington, DC (23rd).2 So basically, this very small node was
connected to four hubs. These hubs are surely connected to all the other hubs,
even on the other side of the county, like San Francisco or Dallas. So, University
Park is connected within one link to 4 hubs, two in the Midwest and two in the
East. From these hubs, University Park is connected to all of the hubs in the
United States. So University Park is within 2 links of any hub in the country.
Then each small airport in the country is connected to a hub, so University
Park, is connected to virtually any other commercial airport in the US by only
3 links. This results in quite a small world, from the perspective of airport
connectivity. In addition, of the 10 airports within 110 miles of University Park,
most of them will have flights to Philadelphia as well; making them within 2
links of University Park and also causing the topological property we earlier
called clustering.

It is precisely the emergence of hubs that allows the small world effect to
occur. This topology induces a few other properties as well – including quick
diffusion of information and innovations as well as increased vulnerability. In
particular, Thadakamalla et al. (2004) have investigated what they called the
survivability of a network. According to Thadakamalla et al. there are four
aspects of survivability. The first of these is called the robustness of a network:
robustness can be measured by measuring the connectedness or the size of the
largest component, after a number of nodes are removed. A robust network
should be able to survive both random node breakdowns as well as targeted
attacks. Some networks will breakdown to various components that cannot
communicate with one another, after only a few nodes breakdown. A second
aspect is the responsiveness of a network, which is a measure of how quickly
the network can be traveled through. It is usually measured by averaging
the shortest paths between all pairs of nodes. A third aspect, flexibility of a
network, measures how often there exists an alternate path between any two
nodes. The clustering coefficient discussed earlier, is a good measure of the
flexibility of a network. The fourth aspect, the adaptivity of a network, is a
measure of how easily paths can be created and destroyed in order to change a
topological characteristic of the network.

Each of the four network characteristics identified by Thadakamalla et al.
is important in measuring how well a network will perform in the event that
nodes or arcs breakdown. In fact Thadakamalla et al. ran simulations on several
networks showing that scale-free networks were quite robust when random
nodes broke down. This means that quite a few nodes can fail and yet the
rest will still be connected to each other. Yet, scale-free networks are quite
vulnerable to attacks on their hubs. By contrast, random networks and small

2 Airline Statistics from the Bureau of Transportation Statistics (2006).
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Figure 9. The Effect of Vertex Removal.

world networks are less vulnerable to attacks, but more vulnerable to random
breakdowns. Albert, Jeong, and Barabási (2000) studied the vulnerability of
scale free networks. They did this by measuring the average vertex to vertex
distance as vertices are removed by random failures and by targeted attacks.
As seen in Figure 9 taken from Newman (2003), the mean vertex-to-vertex
distance is hardly affected by random attacks (squares), yet the mean vertex-
to-vertex distance significantly increases for targeted attacks (circles). Thus, we
can see that scale free networks survive random failures quite well, but do not
easily survive targeted attacks. These two studies used different measurements,
but in fact they show similar results.

The vulnerability of supply chain networks and the stubbornness of some
epidemics can be analyzed in a similar way with network structure. In particu-
lar, the SIR (susceptible/infective/removed) model is one mathematical model
of epidemics. It breaks up the total population into three sets of people: those
who are susceptible (S), infected (I), and removed (R). In the SIR model,
the population of each group is governed by coupled differentials equations
relating the populations. The basic SIR model given by Newman (2002) is the
system of equations in (1). Most mathematical models of epidemics, including
the SIR model assume that each person is equally likely to come into contact
with an infected person. However, this is simply not the case in most real
networks; so a rather challenging task arises – namely that of imposing a hub-
based topology on the simple set of ordinary differential equations comprising
the above model. Thus, the mathematical theory of epidemiology – as well
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as that of population migration and innovation diffusion – may need to be re-
thought.

ds

dt
= −βis (1)

ds

dt
= βis − γ i

dr

dt
= γ i

The above challenges not withstanding, it is constructive to consider what
might be the insights on epidemic management afforded by network science.
By turning the vulnerability of scale free networks on its head, it can be seen
that if a social network has a scale-free nature then the spread of a virus can
be stopped by targeting key people. If we vaccinate certain key people in
a social network, it is the same as making a targeted attack to break down
the connectivity of the social network. However, since random attacks on a
scale-free network, make a negligible impact on connectivity, this implies that
random vaccinations on a social network will make a negligible impact on
stopping the spread of a virus. The topology of a network can grossly effect the
spread of an outbreak over a network. Watts (2002) discusses cases in which for
one type of topological structure an outbreak may simply die out, yet in another
it will spread to every site (epidemic), while in other topological structures it
will depend on how quickly the infection can spread. This is one way in which
topological properties such as degree distribution and clustering can effect the
spread of disease.

Similarly, an epidemic’s transmission network may be compartmentalized
in such a way that an infection cannot spread quickly. Often the term commu-
nity structure is used to describe the property of networks where the nodes may
be split into different “classes” which have higher clustering coefficients within
each class.The spread of a Sexually Transmitted Disease will depend on a social
network. However, most people are more likely to interact sexually with others
of similar age and financial status, the same ethnicity, and different sex. So,
people do not simply interact uniformly with all other people allowing the
structure to play an integral role in the spread of an STD. For this reason, since
the SIR model assumes “full-mixing”, it is not always a good approximation.
Often in social networks, an epidemic may spread more slowly.

Power distribution networks and communication networks are similar to
epidemics viewed as networks, in that it is important for the network not to
breakdown if only one node or arc suffers failure or interdiction. However,
in these networks when an arc or node breaks down, the remaining load is
redistributed to the rest of the network. This may result in overloading more
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nodes or arcs, which then breakdown and the load is redistributed again. Hence
there are cascading failures until the network stabilizes. Boccaletti et al. (2006)
discuss the effects that topological properties, such as path redundancy, load
and capacity, can have on cascading network failures.

When it comes to viruses spreading through computer networks, however,
Balthrop et al. (2004) argue that this targeted vaccination technique may not
work as well. Viruses can “choose” a network topology by choosing their mode
of transmission: email, IP addresses, etc. Some of these networks, such as the
network created by IP addresses, are quite uniform while others such as the
one created by email traffic are close to scale-free. A virus can spread through
any of various networks created via a mode of transmission. So, if a virus is
attacked by vaccinating the 10 percent of the population most at risk, little may
be achieved if there is unknown scale-freeness. Balthrop et al. argue that any
vaccination technique that requires knowledge of the topology or assumes a
certain topology will be ineffective because networks topologies are constantly
changing and the virus may change the network it is acting on by changing its
method of infection.

Thus, Balthrop et al. (2004) propose instead a method called “throttling”
to thwart the spread of computer viruses. Many viruses depend on contacting
other machines hundreds of times a second in order to cause an epidemic.
However, people can at most contact a few computers a second and usually
much less. Throttling proposes to take advantage of this disparity by slowing
down the contact rate of computers. By only letting a computer contact one
other computer per second, people’s legitimate information flow is not slowed
down because this does not limit most people. However, a virus which may
need to make hundreds of contacts per second, will be slowed down by a factor
of 100. This means, however, that the epidemic propagates much more slowly.
With “new” time created in this fashion, traditional anti-virus software can be
updated to destroy a new virus. If throttling can slow a virus down to doubling
once per day or week, ordinary users can with – a near certainty equivalent –
update their antivirus software and stop the epidemic. Throttling in theory will
work on any network, regardless of topology.

2.10 Network Games

The topology of complex networks has been discussed in prior sections,
but now I turn to look at the routing of flows over a given network. The most
common example, is the traffic network that most of us travel through each
day on the way to work. Each person travels from their own home to their
workplace along a route that they expect to minimize their travel time. The
problem that each of us has surely encountered, is that of traffic or congestion.
A road can only hold so many people and as the number of people on a road



24 Shaun Lichter and Terry L. Friesz

increases, the time it takes to travel across it increases in some way also.
Additionally, each person does not consider the fact that for each road they
choose to take on the way to work, they are increasing the travel time for
every other person who needs to take that road. That is, they act selfishly in
noncooperation with others.

This network can be modeled in game theory as a complex network of nodes
and arcs, with infinite agents. Each agent has its own source and destination
(not necessarily unique) and controls a small fraction of the flow over the
network. Further, we assume that each person acts in a selfish manner, that
is, they do not consider the effect on others, when selecting their route. They
simply try to minimize their travel time. The cost that each agent incurs over
an arc is called the latency and the total flow over an arc is called the load. It is
generally assumed that the latency is a nondecreasing function of the load.

The Nash Equilibrium is the set of routing or set of flows that is reached
when each person travels selfishly. For the Nash Equilibrium, each agent will
incur the same cost for a given source and destination. That is, any two agents
that have the source destination pair, will incur the same latency regardless of
the route they took. This may not be immediately intuitive. To clear things up,
let us ponder the case if it were not true. Suppose agent A incurs a latency of
x and agent B incurs a latency of y for the same route and x < y. Then soon
enough, agent B would discover agent A’s route that is less costly and would
then switch to agent A’s route. But, then the original solution would not be at
equilibrium. Thus, in order for an equilibrium to occur, all agents must incur
the same cost for a given source and destination.

Since each person chooses their route in such a way as to minimize their
own travel time, the total travel time traveled by all (Social Cost) is higher than
it would be if this were minimized in a regulated network. Now, let me call the
socially optimal solution that which is achieved if the social cost is minimized
in a regulated network. This leads to the question, “How much worse is the
Nash Equilibrium then the social optimal?” The difference between the Nash
Equilibrium and the Social Optimal is commonly referred to as the “Price of
Anarchy.”

Roughgarden (2002) gives a simple example created by Pigou (1920) and
given in Figure 10, to display the difference between the Nash Equilibrium and
Social Optimal. Pigou’s example consists of one unit of flow that has to travel

Figure 10. Pigou’s Example.
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from s to t. The cost or latency of the top arc is 1 regardless of the load over the
arc, whereas the bottom arc has a latency equal to the flow over it. If there is
more than one unit of flow over the network, we can think of x as the fraction
of the total flow.

Now the Nash Equilibrium consists of the full unit of flow going on the
bottom arc, that is x = 1. Why? Well suppose it were just a bit less, so x < 1.
Then this implies that some agents are using the top arc and incurring a cost of
1 unit while others are going on the bottom arc and incurring a cost less than
1. So, clearly those agents incurring the cost of 1 on the top arc, would switch
to the bottom to save a bit. This would continue, until the cost of the top arc
equals that of the bottom, which happens to occur in this example when there
are no more agents using the top arc and all are on the bottom.

Yet this Nash Equilibrium is clearly not the social optimal. The social cost
is simply the total cost incurred which equals:

SC = ftop · ltop(ftop) + fbottom · lbottom(fbottom)

where f is the flow over the arc and l is the load dependent latency over the
arc. So

ltop(ftop) = 1

lbottom(fbottom) = fbottom

lets denote fbottom as x so

fbottom = x

ftop = 1 − x

lbottom(fbottom) = lbottom(x) = x

ltop(ftop) = ltop(1 − x) = 1

�⇒ SC = (1 − x) · (1) + (x) · (x)

then to find the x that minimizes SC is elementary calculus:

SC = x2 − x + 1
∂SC

∂x
= 2x − 1

∂SC

∂x
= 0 �⇒ 2x − 1 = 0

�⇒ x∗ = 1

2

�⇒ SC∗ =
(

1

2

)2

− 1

2
+ 1 = 3

4
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So, the social cost is minimized with a flow of 1
2 on each arc giving a Social

Cost of 3
4 . Note that this is different from the Nash Equilibrium, which had

all of the flow on the bottom arc (x = 1), but had equal costs for each arc
(lbottom(fbottom) = ltop(ftop) = 1). The arc latencies for the Social Optimal
are 1 for the top and 1

2 for the bottom. So those who take the top arc spend just
as much time, while those on the bottom save. Indeed, selfish routing does not
gain anything for anybody but simply results in some people being more hurt
than they need be if the socially optimal solution were used.

Tim Roughgarden and Eva Tardos (2002) found bounds for the price of
anarchy. They found when the arc latencies are a linear function of the arc
flows, the total latency of flows for the Nash Equilibrium will be no more than
4
3 of the total latency incurred by the optimal regulated routing. However, when
the latencies are not linear, but instead simply monotonic with respect to flows,
the price of anarchy can still be bounded. Now the flow of selfish routing is
bounded by the total latency achieved by routing twice as many units though
the regulated network.

For any Nash Equilibrium solution of flows in a network, each path from
a particular source to a particular destination must have the same total latency
(commodity). If this were not true, then there would exist an alternate route for
the same source and destination, with a lower latency. But, if this were the case
and each agent acts selfishly, they would surely prefer to switch to such a lower
latency route implying the non-optimality of such a solution. Beckman et al.
(1956) first showed such properties of the Nash Equilibrium Solution.

Braess’s Paradox has captured much of the work done in the game theoretic
applications in networks. The basic idea of Braess’s paradox is that for a given
network it is possible that adding an additional arc may result in increasing
the total latency as well as the latency of each agent for the Nash Equilibrium
Solution. At first blush, one may wonder how this could be true? Hence why it
is called a paradox. Roughgarden (2002) gave the example in Figure 11, which
should help demystify the paradox:

Figure 11. Braess’s Paradox.
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As Roughgarden explains, in the first network (before), the Nash Equilib-
rium for one unit of flow is for half to go on the top route and half on the bottom,
each paying a total latency of 3

2 . In this example, the solution also happens to
be the socially optimal solution as well. Now, if another arc with 0 latency is
added, the Nash equilibrium will change. In the new network (after), the Nash
Equilibrium solution will be for the entire unit of flow to take the path s, v,w, t

with a total latency of 2, which is greater than before. Meanwhile, the socially
optimal solution stays the same. This again, may not be intuitive, but suppose
a small fraction or a single agent decides to deviate from this path (s, v,w, t),
then it must take either (s, v, t) or (s,w, t). Now, if the agent decides to instead
take (s, v, t), then it will travel along (s, v) with all the other agents, saving
nothing. However, it will then have to travel across (v, t) for a cost of 1 while
all the others travel (v,w) for 0 and then (w, t) for less than 1 (since this
agent just left this path). Seeing that all the agents traveling (s, v,w, t) have
a lower total latency, this agent should not make such a change in path. A
similar argument can be used to show that (s,w, t) is also not a good choice.
So, the Nash Equilibrium results in each agent having a higher total latency in
this example, but how much higher?

Suppose we route two units through the (after) network, with half (1 unit)
taking (s, v, t) and half (1 unit) taking (s,w, t). Then the total latency is 4.
According to Roughgarden, in the general case, the flow of selfish routing
would be bounded by 4. Since, the latency functions are linear though, the
total latency of selfish routing is bounded by 4

3 that of the social optimal of 3
2 ,

which is 2. Thus, the selfish routing in this network is bounded by 2, which is
exactly what the Nash Equilibrium total latency is, so it is a case of the worst
case scenario.

The cases considered by Roughgarden assume that the latencies of each
user are independent of each other, that is the latency functions are separable.
Perakis found bounds for the considerably more complex case of non-separable
latency function Perakis (2004). Refer to Perakis (2004) to read more about
these more general cases. This is simply one extension of Braess’s paradox,
there has been a host of literature published in recent years on various aspects
of this topic.

It is important to keep the results of Braess’s paradox in mind because
sometimes it may be tempting to think that adding arcs or loads to a network
will increase flexibility or clustering coefficients or some other property,
making the network perform better, but while one characteristic may have been
made better it may be adversely effecting the performance of the network.
For very large networks, such adverse effects are difficult to find and analyze,
so this presents a potential danger in many large networks in communication,
supply chain, power supply, traffic, and others.
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3. Nonlinear Dynamics

Chaos is defined by Merriam-Webster’s Dictionary as “the inherent un-
predictability in the behavior of a natural system.” However, chaos is often
misunderstood in its everyday use. Often, people mistake the fact that chaos
is unpredictable for the idea that it is random. In fact, a chaotic system is
deterministic, yet unpredictable. A chaotic system is one in which a very
small difference in an initial condition, so small it may not be able to be
measured accurately, can result in significantly different results. So, the system
is unpredictable, but is not random.

Chaos is just one section of a broader field known as dynamics or nonlinear
dynamics. Dynamical systems are systems governed by deterministic laws,
however, sometimes even deterministic laws can result in unpredictability. The
discovery of these unpredictable, chaotic systems raised the interest in the field
of Dynamics.

3.1 A Brief History of Dynamics

In 1887, Henri Poincaré entered a contest on which he was supposed to
show that the solar system was dynamically stable according to Newton’s
Mechanics. Although, he could not do so, his work was revolutionary and the
judges (including Weierstrass) awarded him the prize anyway. As it turns out,
instead he was the first person to stumble upon a chaotic dynamical system.
Poincaré argued that even if the equations governing the system are known
and deterministic that “small differences in the initial conditions produce very
great ones in the final phenomena. A small error in the former will produce an
enormous error in the latter. Prediction becomes impossible...” (Nijkamp and
Reggiani, 1992).

The basic idea is that systems exist such that a small perturbation in initial
conditions can cause differences later that are not only numerically significant,
but in some applications, qualitatively significant as well. In such a system,
the two paths are obviously quite close at the initial time and thus it is easily
conceivable that they can again come close and even look quite similar for long
lengths of time. However, they are not the same and they lead to quite different
results. So, no matter how precisely such a system is measured, within that
precision, the error in measurement could result in quite different states at a
later time. This makes it impossible to predict the future state of a system, even
if the laws governing it are perfectly known and perfectly deterministic. This
lack of ability to predict the future state is seemingly random, but to call it
such would be a mistake because the system is governed by deterministic laws.
Systems such as these that are governed by deterministic laws are known as
dynamical systems and chaos is simply one class of dynamical systems.
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Unfortunately, although the work of Poincaré was immediately recognized
as valuable, like many other discoveries, it was neglected for many years. This
was most likely because such chaotic effects took place in infinite iterations and
empirical experimentation was not practical for the time. His foresight would
have to wait until the invention of the computer to be recognized for its full
value.

In 1961, a meteorologist Edward Lorenz created a simulation model of
weather conditions. One time he wanted to see the simulation a second time,
so he attempted to rerun his model from a point somewhere in the middle,
instead of the original conditions. To do this, he took the computer printout
of the state conditions at the new time he wanted to start at and plugged them
into his computer. To his surprise, the results were drastically different from the
original results that he wanted to repeat. Figure 12 from Stewart (1989) shows
how the two trajectories diverge.

His model was composed of deterministic equations. How could the results
be so different the second time? He entered the data that he had from the same
path and the equations were deterministic and yet the results were different.

He was eventually able to track it back to the fact that the computer used
six-digit numbers and his computer printout cut off the numbers with three
digits. So when he reentered the data for the second simulation, he only entered
three digits, but when the computer ran the simulation the first time, it had all
six. The conventional wisdom would tell most people that the last three digits
are not very significant. In most calculations, it would be considered accurate
to have three digits and six is above and beyond necessary. Yet, in this case
the perturbation caused by the fourth digit at some time in the middle of the
simulation was able to cause drastic changes in the results.

Figure 12. Lorenz Simulation.
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3.2 The Basics of Dynamics

Dynamical systems are systems that have a state (represented as a variable
or vector of variables) that changes over time in a manner which is governed
by deterministic laws or equations. That is, the system is dynamic in a determi-
nistic sense. Below are two examples:

xt+1 = f (xt ) (2)
·
x = f1(x, y) (3)
·
y = f2(x, y)

The dynamics are often given as a system of recurrence relations (as in 2) or
differential equations (as in 3). The recurrence relation can be iterated infinite
times to find the trajectory of the system as shown in Figure 13. A similar
trajectory can be found for the differential equations by using small discrete
steps to approximate a solution.

To “solve” the system, an equation must be found to directly find the state at
any time in the future (find an equation x(t) where x is the state of the system).
Dynamical systems can be linear or nonlinear, that is the functions f , f1, and
f2 in (2) and (3) may be linear or nonlinear functions. Linear systems have the
property of being able to be easily solved, yet they often do not provide the
array of behavior that can be found in nonlinear systems.

The dynamics of a system often involve parameters, which may or may not
change over time, but do effect the nature of the dynamics either way. Often
these parameters are responsible for the character of the system, causing it to
be stable, unstable, or even chaotic for different values of the parameters. For
example, the system shown above in (3) could have a solution for x and y

Figure 13. Trajectory.
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(trajectory whose x and y components are determined parametrically by these
equations):

x(t) = x0e
at

y(t) = y0e
bt

Now, the values of a and b will greatly affect the trajectories of the system.
Think about what may happen if a > 0 as opposed to a < 0 and similarly for b.

3.3 Phase Diagram or Phase Space

In Dynamics, it is often easier to see the character of a system by looking at
the phase diagram or phase space. In a phase diagram, each state of a system is
plotted by its dimensions (so time is not included), so it is a simple point in the
plot, sometimes called a phase point. Each state is then connected to the state
preceding it and succeeding it. For example, a system with two variables x and
y, would have a phase diagram with one axis for x and one axis for y. Then
each state S1, S2, S3, . . . are plotted as (x1,y1), (x2,y2), (x3,y3), . . . , where xi is
the value of x at time i and yi is the value of y at time i. For a discrete time
dynamical system we must then connect the points (x1,y1), (x2,y2), (x3,y3), . . .

to see the trajectory, but in a continuous dynamic system the transition between
states are continues curves in the plane. The trajectory of Figure 13 is an
example of a continuous time phase diagram. In a discrete system, only the
points are plotted and the line connecting them is only to visualize a path
between the states as shown in Figure 14.

It should also be noted that the particular trajectory that a system follows
is dependent upon the initial starting point. That is, the trajectory may be
significantly different if it begins from a different starting point.

Figure 14. Discrete Trajectory.
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3.4 Fixed Points or Equilibrium Points

Given the system

·
x = f1(x, y)

·
y = f2(x, y)

we can see that at any given point (x, y) we can calculate and find
·
x and

·
y. In

fact, v = (
·
x,

·
y) is the velocity vector for any given point (x, y). The vectory

field V of velocity vectors shows the flow of the system. Those points where

v = (
·
x,

·
y) = (0,0) have no flow and are thus called fixed points or equilibrium

points.
There are two types of fixed points, those that are stable and those that

are unstable. The stable points are fixed points whose neighboring points have
velocity vectors pointing towards them, showing that the flow moves into them,
and thus they are often called sinks or attractors. Similarly, the unstable fixed
points have neighboring points whose velocity vectors point away from them,
showing that the flow moves away from it, giving them the name repellers or
sources. Take the system

ẋ = x

ẏ = y

whose vector field is shown in Figure 15.

At (0,0),
·
x= 0 and

·
y= 0, which means that the system will not move from

(0,0). Hence it is a fixed point. As we can see all of the vectors point away from
the fixed point (0,0) meaning that the flow of the phase point beginning near
(0,0) will flow away from it. Thus, this point is unstable and is often referred
to as a source or repeller. A very similar system is:

·
x = −x

·
y = −y

whose vectory field is shown in Figure 16.

Again at (0,0),
·
x= 0 and

·
y= 0, so (0,0) is again a fixed point. As we can

see all of the vectors point toward the fixed point (0,0), meaning that the flow
of the phase point beginning near (0,0) will flow toward it. Thus, this point is
stable and is often referred to as a sink or attractor.
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Figure 15. Source.

Figure 16. Sink.

There is yet a third type of equilibrium point, called a saddle point. A
saddle point has two axes or manifolds going through it. The trajectories
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Figure 17. Saddle Point.

are asymptotic to one of the axes, known as the unstable manifold (refer to
Figure 17) in forward time. The other axis is the stable manifold, the trajectories
asymptotically come from this axes, that is in reverse time or the reverse
trajectory is asymptotic to the stable manifold. At first blush it may seem odd
that the trajectories approach the unstable manifold. So, it may help to think of
it this way: in the direction of the stable manifold, the trajectories approach
the saddle point as time goes to infinity, making it stable in this direction.
However, in the direction of the unstable manifold, the trajectories go away
from the saddle point, they are infinitely far away as time goes to infinity. It
should now seem much more reasonable to label the stable manifold as stable
and the unstable manifold as unstable.

The examples of systems in Figure 17, can once more be slightly modified
to:

·
x = −x

·
y = y

whose vectory field is shown in Figure 18.
Now we can see that the vector field forms a saddle point at (0,0) and the

x-axis is the stable manifold and the y-axis is the unstable manifold.
An important note to make is that in the above three systems I have simply

added a negative sign in one or two places and the topology of the vector field
has changed significantly. So, now we can see that if we plot the vector field for
the system and then we are given a starting position, we can follow the vectors
to form a trajectory from that starting position. This type of analysis does not
involve time, so we do not know how long it will take to follow a trajectory, but
we know it will eventually follow the trajectory. The important think to realize
is that minor changes in the differential equation governing the dynamics can
significantly alter the topology of the vector field and thus the solution paths.
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Figure 18. Saddle Vector Field.

3.5 Closed Orbits and Oscillators

A closed orbit is a loop or orbit, in which a system will periodically cycle
through. That is, if the system starts on the cycle, then it will continue to go
around it infinitely many times. At any time, it will visit each state infinitely
many more times in the future. An example is:

·
x = −y

·
y = x

whose trajectory is shown in Figure 19.
The vector field for the system is shown in Figure 20.

3.6 Attractors and Repellers

By plotting the trajectory from different initial points, one can then see the
behavior of the system. Many systems are periodic and will have a cycle or
orbit in the phase diagram, no matter where they begin from. Others will have
an asymptotic behavior where they will be attracted to a point or line. Still other
systems may show a spiral towards a single point in the center, like a hurricane
or water flushing down a toilet. Systems may show that different trajectories are
attracted to an orbit from nearby locations. The term attractor refers precisely
to these occurrences. The attractor may be a point, loop, or multidimensional
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Figure 19. Center.

Figure 20. Center Vector Field.

loop that the trajectory moves towards as time or iterations progress. In a more
mathematical view, the attractors are points or sets of points that the system
approaches in infinite time.

A given fixed point,
−
x, is a local attractor if it is approached from starting

points, x0, that are within a certain neighborhood of
−
x . Similarly,

−
x is a
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Figure 21. Limit Cycle.

globally attracting fixed point, if it is approached in infinite time by all starting
points, x0.

3

There are various types of attractors and repellers. A fixed point is a single
phase point which can either attract or repel trajectories (e.g. a stable fixed
point, unstable fixed point, saddle point). There may also be attractors and
repellers that are limit cycles. A limit cycle is a closed orbit, that is surrounded
by trajectories that are not closed. Figure 21 is an example where the dotted
trajectory is closed, but all the trajectories on the inside spiral toward it and
all of the trajectories on the outside spiral toward it as well. This is called an
attracting limit cycle. Another type of limit cycle will have a closed orbit, but
the trajectories are repelled from it, such a limit cycle is a repelling limit cycle.
Another case in where the system has a closed orbit with trajectories on the
inside that are attracted, yet on the outside they are repelled or vice versa. This
is neither attracting nor repelling in the sense described above.

Alternatively, in the case of a purely oscillating system, the phase portrait
will consist of infinitely many concentric loops shown in Figure 22. The vector
field for such a case is shown in the vector field for the center shown in
Figure 20.

There are several types of attractors and repellers in two dimensions
including fixed points and centers. Additionally, systems in three dimensions
will increase the variety of attractors and repellers to include what are called

3 The above definition of attractor is based on the definition of assymptotic stability. Liapunov
Stability is another type of stability.
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Figure 22. Center Trajectories.

strange attractors. These are significantly more complex and will be briefly
discussed later in this chapter.

3.7 Stability: Attracting, Liapunov, and Asymptotic

There are a few types of stability that are often used. The first is known as
attracting, where by a fixed point p or a path p(t), is attracting if all trajectories
within a given neighborhood of p approach it as time goes to infinity. The
second definition of stability is Liapunov Stability, by which a fixed point p

or solution path p(t), is Liapunov Stable if all trajectories starting within one
neighborhood of p, remain within a different neighborhood of p, for all time.
Now, a point or path p is Asymptotically stable if it is both attracting and
Liapunov Stable. It would be a good idea to stop here for a moment and ponder
the differences.

If p is attracting, this means that all trajectories within a distance δ of p

will approach p, as time proceeds. So, given any distance ε, the trajectory will
eventually be within ε of p, however, along the way, it may be infiniteley far
away. On the other hand, if p is Liapunov Stable, then this means that if a
trajectory began within δ of p, then it will be within ε for all time forward.
However, I should note that in the case of Liapunov Stability, this means that
given an ε there exists a δ such that if a path begins within a distance δ, it
remains within ε of the point or path p. However, δ may depend on ε, that is
if a smaller ε is given, then a smaller δ may be necessary. This is important
because p may be Liapunov Stable, but this does not imply that all paths in a
sufficiently small neighborhood of p will approach it in infinite time. They may
simply stay a distance of exactly ε1 < ε away for infinite time. For example,
paths may form concentric circles around a fixed point p.
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A small analogy may sum up the differences. Suppose we have a boy flying
a kite. The center (where the boy is standing) would be Liapunov Stable, as
long as the string on the kite remained the same length where ε is the distance
of the string. This does not mean the kite will ever get closer to the center (the
boy), but it does mean that the kite will never get further than the length of the
string. It is similar to a fly trapped inside a beach ball, there is no guarantee
it will ever reach the center, but surely it cannot leave. On the other hand,
suppose the kite started out on an infinitely long string, so it was nowhere near
the boy at the center. Then suppose, the string is steadily shortened, the kite
will eventually be pulled to the center. However, a large gust of wind may
come and it gets really close and then blows away again and the boy lets the
string go for a moment and it gets a bit further away, but then continues to be
pulled in. In this case, the center is attracting. Now, if the boy had never let the
string go, so that the kite continued to get closer and if we made the ε distance
equal to the length of the string, then the kite approaches the boy and it never
leaves the ε ball, so it is asymptotically stable.

In general, if a point or path is attracting, this means the trajectory will
approach it in infinite time. This does not mean that it necessarily gets closer
as time moves forward, a trajectory’s distance to the fixed point or path need
not be monotonically decreasing. This means, a trajectory can get really far
away before it comes back. In fact it can come close, then go far away, and
then close again, as many times as it wants before it eventually approaches the
fixed point or path.

Whereas in the case of Liapunov Stability, the trajectory must stay within
some distance of the fixed point or path, the trajectory is trapped by a finite ball
around the fixed point or path. However, that is all, it must stay in the ball, but
it never has to get any closer to the center than the edge of the ball. In fact,
it can simply orbit around the point on the perimeter of the ball and still be
Liapunov Stable.

The strongest definition of stability is asymptotic stability which requires
that a path approaches the fixed point or stable path and that trajectories with a
given distance δ do not get further than ε away for any given ε > 0. This means
that the paths have to approach the stable solution and that the paths can not
get infinitely far away along the way to approaching the fixed point or stable
path. For more mathematically rigorous definitions refer to Strogatz (1994) or
Jordan and Smith (1999).

3.8 Linear Stability Analysis

Suppose we have a two dimensional linear system, that is:
·
x = f1(x, y)
·
y = f2(x, y)
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with f1 and f2 being linear. Suppose our system is:

·
x = ax + by

·
y = cx + dy

then we let

x =
(

x

y

)
, A =

(
a b

c d

)

so that we now have:

·
x= Ax

This system is solved as it is solved in most first courses in linear algebra, by
first finding the eigenvalues and eigenvectors. In order for v to be an eigenvector
and λ to be an eigenvalue, Av = λv must be true, so

Av = λv

⇒ Av − λv = 0

⇒ (A − λI)v = 0

v ∈ N(A − λI)

where N(A − λI) is the null space of A − λI. However, if v �= 0 then A − λI

must be noninvertible and A−λI is noninvertible if and only if det(A−λI) = 0.

The characteristic equation f (λ) is defined as:

f (λ) = det(A − λI)

So then λ is an eigenvalue of A if and only if f (λ) = det(A − λI) = 0.

f (λ) = det(A − λI)

= det

(
a − λ b

c d − λ

)

= (a − λ)(d − λ) − bc

= ad − aλ − dλ + λ2 − bc

= λ2 − (a + d)λ + (ad − bc)



2. Networks and Dynamics 41

The trace of a matrix A is defined as the sum of its diagonal elements and has
the notation, tr(A). Substituting in the Trace and Determinant of A, we have
the common results:

f (λ) = λ2 − (a + d)λ + (ad − bc)

= λ2 − tr(A)λ + det(A)

Now, the characteristic equation is simply a quadratic equation and can be
solved using the quadratic rule:

λ = tr(A) ±
√

(tr(A))2 − 4 det(A)

2

The two eigenvalues are specifically:

λ1 = tr(A) +
√

(tr(A))2 − 4 det(A)

2

λ2 = tr(A) −
√

(tr(A))2 − 4 det(A)

2

The solution to the system is then:

x(t) = c1v1e
λ1t + c2v2e

λ2t

where v1 is the corresponding eigenvector to λ1, that is Av1 = λ1v1 and
similarly v2 for λ2. The values of c1 and c2 can be found with the initial starting
point. At t = 0:

x(t) = c1v1e
λ1t + c2v2e

λ2t

⇒ x(0) = c1v1e
λ1·0 + c2v2e

λ2·0

⇒ x(0) = c1v1 + c2v2

This system of equations can be solved with some basic row operations
from linear algebra. For a review of this material, refer to almost any first year
linear algebra text. Now, we can see that as t → ∞ the behavior of x(t) will be
dependent upon the values of λ1 and λ2, which in turn are dependent on tr(A)

and det(A). Let me define the discriminant D as D = (tr(A))2 − 4 det(A), so
that the eigenvalues are:

λ = tr(A) ±
√

D

2
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Figure 23. Fixed Point Classification.

Figure 24. Star, Node, and Degenerate Node.

Figure 23 is often used in order to classify linear systems,where the spirals
inside the parabola have D < 0 (or (tr(A))2 − 4 det(A) < 0) and the nodes
outside the parabola have D > 0 (or (tr(A))2 − 4 det(A) > 0). On the parabola
itself is where D = 0 (or (tr(A))2 − 4 det(A) = 0) and this is where the stars
and degenerate nodes exist. In Figure 24, trajectories for a star, node, and
degenerate node are given.
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4. Linearizing the Nonlinear

Now suppose that we again have a two dimensional system, but now it is
nonlinear. That is, we have:

·
x = f1(x, y)

·
y = f2(x, y)

with f1 and f2 now being nonlinear. Suppose, we have a fixed point a =
(x0, y0) to analyze the stability of a, we will see how a small perturbation from
a, effects the trajectory of the system. Our analysis closely follows Strogatz
(1994), but this is commonly done using a Taylor series approximation at the
fixed point. Thus, using the Taylor series approximation to find ẋ at the point
perturbed from the fixed point:

·
x (x0 + 	x,y0 + 	y) = f1(x0 + 	x,y0 + 	y)

≈ f1(x0, y0) + ∂f1

∂x
	x + ∂f1

∂y
	y

+ 1

2!

(
∂2f1

∂x2
(	x)2 + 2

∂f1

∂x

∂f1

∂y
	x	y + ∂2f1

∂y2
(	y)2

)
+ . . .

≈ f1(x0, y0) + ∂f1

∂x
	x + ∂f1

∂y
	y (4)

where the final line is an approximation if we assume that since 	x and 	y

are small that any terms smaller than them are not significant (these include
terms of (	x)2, (	y)2,	x	y, and all smaller terms). Similarly, for the second
equation:

·
y (x0 + 	x,y0 + 	y) = f2(x0 + 	x,y0 + 	y)

≈ f2(x0, y0) + ∂f2

∂x
	x + ∂f2

∂y
	y

By noting that
·
x (x0, y0) = f1(x0, y0), the above equations can be manipulated

as:

·
x (x0 + 	x,y0 + 	y)− ·

x (x0, y0) = f1(x0 + 	x,y0 + 	y) − f1(x0, y0)

≈ ∂f1

∂x
	x + ∂f1

∂y
	y (5)
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Similarly,

·
y (x0 + 	x,y0 + 	y)−

·
y (x0, y0) = f2(x0 + 	x,y0 + 	y) − f2(x0, y0)

≈ ∂f2

∂x
	x + ∂f2

∂y
	y (6)

From 5 and 6, comes the following linearized system of equations:

·
x (x0 + 	x,y0 + 	y)− ·

x (x0, y0) =
·

	x= d

dt
(	x) = ∂f1

∂x
	x + ∂f1

∂y
	y

·
y (x0 + 	x,y0 + 	y)−

·
y (x0, y0) =

·
	y= d

dt
(	y) = ∂f2

∂x
	x + ∂f2

∂y
	y

⇒
( ·

	x
·

	y

)
=

⎛
⎜⎜⎝

∂f1

∂x

∂f1

∂y

∂f2

∂x

∂f2

∂y

⎞
⎟⎟⎠

(
	x

	y

)

Now we have a linear approximation of the system and we can do the same
analysis as before, but with some dangers to beware of! Since we removed the
higher order terms from the taylor expansion, sometimes the linearization is
not correct. The cases that are “borderline” in the classification diagram above
are those where the linearization cannot be trusted. So, the linearization is good
for nodes, spirals, and saddles but not centers, stars, or degenerate nodes.

This should make sense because the borderline cases are delicate. A center
is like a spiral that lines up just perfectly and a star is like a node that is
perfectly straight. However, if the spiral needs to line up perfectly or the
node must be perfectly straight, then the small difference of the higher order
terms may destroy these rare cases. A rigorous explanation of the failure of
the linearization is quite complex and beyond the scope of this introductory
chapter, but refer to Strogatz (1994) for a more detailed explanation.

5. Strange Attractors

Most systems give rise to an attractor that is a fixed point or loop. However,
some attractors are far more complex and are known as strange attractors. One
of the most popular and also the first strange attractor to be discovered is the
Lorenz Attractor shown in Figure 25. Strange attractors can occur in continuous
or in discrete time dynamical systems. However, it should be noted that in the
continuous time case, they can only occur if the dimensionality of the system is
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Figure 25. Strange Attractor (Stewart, 1989).

three or greater, whereas in the discrete case, they can occur in even the single
dimension case (according to the Poincare-Bendixson theorem explained later).

6. Trajectories

It should be noted that a trajectory is simply the path taken in the phase
diagram, given an initial starting position. So if a system begins in a different
position, then it will have a different trajectory. Precisely those systems that are
interesting are those that are chaotic. These systems have trajectories that are
very sensitive to initial conditions. That is if the system starts at x, by some
time t , it will be radically different than if it had started at y, even if x and y

are very close.
When we say “very close” or “radically different,” this often means numeri-

cally close or different, but for different systems, “close” may take on different
definitions. For example, Lorenz coined the term, “Butterfly Effect.”The basic
idea was that if a butterfly flaps its wings then in some far off time, it may
cause a tornado in Texas. In this example, the state of the world without the
butterfly flapping its wings is “close” to the state where it does. Similarly, the
state without the Tornado is far from the state with it simply because in this
example we perceive the butterfly flapping its wings to be a small event and
the Tornado to be a large one. A different metric may be used on different state
spaces.

In a more practical sense, we may measure several variables such as
temperature, humidity, and wind speed in order to find the current state of
the weather. From, this initial state we may predict it will rain five days from
now. But, instead it snows because our measurements today were slightly off.
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So, two states that are very similar today may lead to states that are not only
numerically different but are qualitatively different as well.

Since different trajectories could lead to different states, it may be difficult
to understand the behavior of some systems by simply looking at one or two
trajectories. Some physical systems may be modeled by equations that are not
known perfectly, that is the parameters are estimates or the equations are not
exact. In this case, if the trajectories are not close enough for a set of initial
conditions, then it is difficult to describe the behavior because these model
approximations may be enough to cause radically different trajectories. For
such systems, it may be difficult to predict the topology of trajectories or their
stability.

Some systems may have different sets of trajectories exhibiting different
properties. One set could lead to a fixed point and another to a loop, for
example. In a more complex system, you may be missing a lot if you simply
look at one trajectory. Some systems are very complex and make it difficult to
describe or even know all of the classes of trajectories.

Other systems may have classes of trajectories that radically change as the
parameters change. So, looking at one trajectory and one parameter value will
just be one case. This gives rise to the investigation of bifurcations, where a
change in a parameter may cause a significant change in the behavior of the
system. As a system’s dimensionality increases, the complexity of its behavior
can get harder to describe because there can exist more and more classes of
trajectories which may act differently for different parameter values. Since we
can only plot a system in two dimensions on paper and three on a computer, it
gets very hard to imagine fully the behavior of higher dimension systems.

7. Bifurcations

Sometimes the trajectory or solution of a dynamical system is dependent
on a parameter. As the parameter changes, the trajectories will surely change,
however, the behavior or classification of the trajectory could change as well.
For example, if a trajectory depends on a parameter α and when α < αo the
structure of the phase space is a fixed point, but then when α � αo, the phase
space changes its structure to a limit cycle, then the system has experienced a
bifurcation at αo. Bifurcations can occur by creating or destroying an attractor
or repeller, or by changing an attractor or repeller from one type to another (e.g.
fixed point to limit cycle, or attractor to repeller).

7.1 Saddle-Node Bifurcation

The simplest example of a bifurcation is the saddle-node bifurcation where
equilibrium points are either created or destroyed. A nice example taken from
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Figure 26. Saddle Node Bifurcation.

Strogatz (1994) is:

·
x= a + x2

Remember that a fixed point or equilibrium point occurs where there is no flow,

that is where
·
x= 0. This means the equilibrium points may be found by finding

the roots of the equation 0 = a + x2. However, the number of roots depends on
the value of a:

a < 0 There are two real roots, x = √−a and x = −√−a

a = 0 There is one real root, x = 0
a > 0 There are no real roots

This means that if we let a > 0, then there are no equilibrium points, but if
we decrease a, then an equilibrium point is created when a = 0. Then, as a

is decreased further, the equilibrium point immediately splits into two points,
when a < 0. Thus there is a bifurcation at a = 0 because two equilibrium points
are created or destroyed, depending on which way you look at.

Since a fixed point exists when
·
x= 0, we can see that the roots in Figure

26 are the fixed points. None exist for a > 0, one at a = 0, and two for a < 0.
Refer to Figure 26 to see the graph of a saddle node bifurcation.

7.2 Transcritical Bifurcation

A transcritical bifurcation is one in which the equilibrium point changes is
stability from stable to unstable or vise versa as a parameter varies. A good
example of a transcritical bifurcation again from Strogatz (1994):

·
x= ax − x2
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Figure 27. Transcritical Bifurcation: Stability Swap.

Figure 28. Transcritical Bifurcation.

Now, when:

a < 0 x = a is an unstable fixed point and x = 0 is a stable fixed point
a = 0 x = 0 is a single half stable fixed point because the two fixed points

merged
a > 0 x = a is a stable fixed point and x = 0 is an unstable fixed point

Thus as a increased, x = 0 was a fixed point that lost its stability. The fixed
point x = a moved to the right as a increased and when it crossed x = 0, they
merged briefly as a half stable fixed point and then when it passed x = 0, it took
x = 0’s stability with it and left x = 0 as an unstable fixed point. Hopefully,
Figure 27 will help clarity this point.

In Figure 27, again we can see there are two roots for a < 0 as well as
a > 0, but only one for a = 0. Now, in order to analyze the stability we must

look a bit deeper at this diagram. Since
·
x= ax − x2, when the line is above

the parabola ax > x2 and
·
x> 0, so the flow is to the right, yet when the line is

below parabola, the flow is to the left.
From the Figure 28, we can see that when a < 0, the flow is away from x =

a, making this the unstable point, where as the flow is toward x = 0, making it
the stable point. When a = 0, the flow is to the left on both sides, here x = 0 is
called semi-stable. Then when a > 0, the fixed points swap stabilities making
x = 0 unstable and x = a stable.

There are many other bifurcations studied in dynamics. Virtually any
parameterized system could have a bifurcation and many can be unique in
there own way. We gave a single example of a saddle-node bifurcation and a
transcritical bifurcation. These are simply classes of bifurcations, but there are
many types which may not even be classified. In any event, two other types of
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bifurcations not discussed were the Pitchfork Bifurcation and Hopf Bifurcation.
Refer to Strogatz (1994) for a more in depth explanation of more bifurcations.

8. Poincare-Bendixson Theorem

The broad implications of this theorem are that all trajectories in a two
dimensional continuous time system must converge to either a fixed point or
a limit cycle. So chaotic behavior (strange attractors) can only occur in systems
with more than two dimensions or discrete time systems.

More specifically, the theorem says that if there exists a closed and bounded
region R, often called a trapping region, such that R contains no fixed points,
then all trajectories inside R must either be a closed orbit or spiral toward one.

9. Logistic Map

This is a population model first used by Pierre Francois Verhulst. The
biologist Robert May was the first one to shown the applications to Dynamical
Systems and Chaos Theory in his 1976. The logistic map is very simple in that
there is only one equation in the dynamics. Yet this single nonlinear dynamic
equation can give rise to very chaotic behavior.

The logistic map can be written as:

xt+1 = rxt (1 − xt )

where:

xt = population in year t (between 0 and 1 )

x0 = population in year 0 (between 0 and 1 )

r = rate of starvation and reproduction (positive number)

The fate of the population is quite dependent on r:

0 � r � 1 Population will die regardless of initial population
(xt → 0∀x0)

1 < r � 2 Population will quickly converge to r−1
r

2 < r � 3 Population will converge to r−1
r

,
but at a slower rate

3 � r � 1 +
√

6 Population will oscillate between two values
(dependent on r but not x)
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Figure 29. The Logistic Map (Stewart, 1989).

As the ranges increase the number of values xt oscillates between, keeps
doubling. It starts with two values and goes to 4 then 8 and 16, and so on. Until
about r � 3.57 where the logistic map become chaotic. In this region, a slight
difference in the initial condition can cause drastically different trajectories.
Then at r � 4, xt will diverge for almost all initial values.4

The logistic map is thus sensitive to the initial conditions for some values of
r and not sensitive for others. The logistic map is an example of a dynamical
system that goes through bifurcations multiple times. One of the amazing
things to note is that such an interesting example appears as a one dimensional
problem. This is because it is an iterative map (as opposed to a system of
differential equations), which can display much more complex behavior with
less dimensions.

10. Routes To Chaos

Most systems for some parameter values have nonchaotic behavior, that is
limit cycles, closed orbits, and fixed points. Then as a parameter is changed, the
system becomes chaotic. The way in which it becomes chaotic is referred to as
a “route to chaos.” There are various routes to chaos that a system may take.
In fact, for different parameter values, the system make take different routes.
The important thing to realize is that systems become chaotic in similar ways,
that is, there are classes called “routes to chaos.” The study of chaos theory is
still young and quite open to research, so there still may be many routes yet
to be discovered but nonetheless systems can be grouped by how they become
chaotic. For further reading on the routes to chaos, refer to Hilborn (1994).

Hilborn (1994) describes period doubling as a route to chaos, in which a
system has a limit cycle that becomes unstable as a parameter changes. Then,
at some point the period doubles, then it doubles again, and keeps doubling

4 Figure 29 taken from Stewart (1989) should bring clarity to this chaotic system.
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until the period becomes infinite so that the trajectory never makes a second
trip. At this point the system is chaotic.

Hilborn (1994) describes intermittency as a route to chaos when a system
has periodic behavior with irregular chaotic (non periodic) bursts of behavior.
Then, as a parameter is changed, the bursts of irregular behavior become longer
and more frequent, until the behavior is completely irregular at which time it is
said to be chaotic.

These are just two ways in which a system may become chaotic. For a more
rigorous description of these routes to chaos as well as others, refer to Hilborn
(1994) or any other text in nonlinear dynamics.

11. Concluding Remarks

After reading this chapter, the reader should certainly be convinced that
networks are all around us. The topology of these networks can certainly effect
the network’s vulnerability as well as its capacity to transport commodities.
While investigating any objective over a network, it is important to consider
the network’s topology.

The study of a network’s topology and its effects is a study in its own. How-
ever, topology can also effect the dynamics of systems. Dynamical Systems and
the theory of chaos has certainly gained much attention in recent years. Now,
there may be some systems governed by dynamics such as epidemics that will
certainly be effected by the topology of the network that it is acting on.
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Abstract Infrastructure systems for generalized transportation – such as goods, passen-
gers and water – take the form of networks. These networks typically have
interdependencies which are not addressed in engineering practice. In order to
make efficient policy regarding an infrastructure system, the impacts of that
policy on other interdependent infrastructure systems must be understood. The
combination of the different layers of the interconnected infrastructure network
may be thought of as a system of systems representing the grand infrastructure
system. Users of the system of systems may be thought of as agents competing
for the limited capacities of the network layers. Dynamic game theory is a natural
method for modeling systems of systems in an effort to make better infrastructure
decisions. However, to be of use, these models must be computable and thus
some different solution techniques for general equilibrium models are discussed.

Keywords: infrastructure; system of systems; spatial equilibria; dynamic games

1. Introduction

Although the main goal of this book is to investigate and conjecture about
the relevance of network science and nonlinear science to the study and
management of infrastructure, the emerging notion of a system of systems is an
allied paradigm that may be of great assistance in achieving that goal. Despite
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the fact that abstract and formal definitions may be given of both a system and
a system of systems, we believe a more helpful introduction to those notions
may be obtained from a rather informal look at infrastructure networks and
the reasons they may be considered a system of systems. In particular, we
argue below that individual traditional as well as cyber infrastructure systems
naturally take the form networks that are coupled to one another in a variety of
ways. Such coupled networks are per force a system of systems.

Similarly, the theory of dynamic games provides a natural language for
articulation of the system of systems view of infrastructure. In particular, most
difficult infrastructure decisions, of both a tactical and strategic nature, occur
because of prior, current or anticipated changes in individual infrastructure
systems and the competition that occurs among users of the bounded infrastruc-
ture services those systems provide. Dynamic game theory is a fundamental
paradigm for modeling such dynamic competition.

2. Infrastructure Services as Generalized Transportation

We follow Peeta et al. (2005) in acknowledging a growing awareness that
all infrastructure technologies involved in generalized transportation – broadly
defined to include goods, passenger, message, data, water and energy flows –
are organized as networks and that these networks are interdependent and can
be thought of as coupled layers of a grand infrastructure network. In addition,
as Peeta et al. (2005) point out, recent advances in information technology
constitute an enabling information infrastructure that provides synergism to
inter-layer couplings among traditional individual infrastructure networks. Yet,
the interdependence of infrastructure networks is generally ignored in engineer-
ing practice. That is to say, infrastructure network (IN) planning and design is
done one network at a time with only the most cursory acknowledgment of the
couplings that exist among INs. This inconsistency, once observed, begs the
question: What is the nature of the interdependencies among INs and can those
interdependencies be included in engineering analyses?

In that each IN is a type of system, all the individual infrastructure networks
together with their linkages to one another constitute a system of systems. Seen
in this way a system of systems is a natural perspective to take when studying
infrastructure. Moreover, this observation is not really new, for such systems
have been discussed in the transportation modeling literature using alternative
names. In particular, Sheffi (1985) refers to coupled, multi-modal transport
networks as hypernetworks, and it is just a short step from his perspective to
the more general notion of an infrastructure system of systems (ISS). More
recently Nagurney (2006) has used the name supernetwork to describe coupled
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networks of energy, transport and other physical flows that echo the system of
systems perspective of Peeta et al. (2005).

It is our contention in this paper that in order to make coherent policy
regarding the critical infrastructures of our national economy it is necessary to
answer the following question: How can interdependencies among individual
INs be expressed mathematically so that richer and more informative models
to support IN planning and design may be formulated and numerically solved?
A companion question, also needing an answer is: Will models that capture the
system of systems (SOS) perspective that seems so natural for description of
infrastructure systems be computable?

3. Origin of Regional and National Infrastructure Systems of

Systems

There are five main sources of interdependency or coupling among general-
ized transportation networks that comprise infrastructure systems. These are:

1. Physical Interdependencies. Infrastructure networks are sometimes cou-
pled by virtue of shared physical flow rights of way leading to joint capacity
constraints. Telecommunications and data networks are one example. Pas-
senger and goods networks are another.

2. Budgetary Interdependencies. Most infrastructures associated with gen-
eralized transportation networks involve some degree of public financing so
that the financing of one IN either directly or indirectly affects the financing
of others.

3. Market Interdependencies and Spatial Economic Competition. With the
increasing globalization of the world’s economy and the trend toward ever
more intelligent infrastructure, spatially separated supplies and demands for
the services and goods exchanged over INs generally form a single global
competitive market and, thereby, influence one another even when other
explicit interdependencies are not manifest. Moreover, because of the public
good aspect of many INs, numerous governmental regulations exist and
are emerging that control both intra- and inter-layer aspects of the spatially
extended economic competition that occurs via INs.

4. Information Interdependencies. With recent advances in enabling infor-
mation technology, comprehensive data and information infrastructures are
commonly available. As a consequence, database sharing and information
exchange among individual INs provides synergism and cost-efficiency.
For example, solution strategies to improve freight movements and the
quality of passenger travel share common databases on traffic conditions
across vehicular transportation networks. Similarly, urban water and energy
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utilities may share information on the socioeconomic characteristics of
individual households to more consistently predict future demands.

5. Environmental and Congestion Externalities. It is clear that transporta-
tion networks manifest congestion. It is also clear that transportation sys-
tems as well as power generation and distribution systems may generate
undesirable air and water effluents. These externalities are not confined to
the infrastructure network that created them; rather, they directly impact
other individual infrastructure networks. A simple example is that effluents
from power generation may contaminate water supplies, thereby increasing
the costs of delivering potable water to citizens.

When these sources of coupling are recognized, a natural conceptual model of
INs begins to emerge. Specifically, INs may be viewed as multilayer networks
with coupling constraints among the layers; these layers may be arranged in
various hierarchies, depending on their societal and engineering function. The
resultant multi-layer, coupled infrastructure networks constitute a system of
systems.

4. Defining A System of Systems

Recent literature offers several definitions of a system of systems (SoS).
Notable among these are Crossley (2004), Keating et al. (2003), Levis (2004)
and Sage and Cuppan (2001). A system of system (SoS) is thought of by
all these authors as a collection of systems, each of which is capable of
independent operation, that must interact to achieve their purposes or gain
value none can fully realize alone. Like a single system, an SoS is a collection
of components interacting to fulfill one or more functions. But the constituent
systems of an SoS can perform useful functions alone – something components
of a single system cannot – and removal of any system from an SoS need not
prevent its continued operation. So in terms of our infrastructure terminology
the systems of an SoS are INs and the SoS itself is the coupled collection of
INs.

A SoS is not a rare or seldom seen event. Rather, many societal needs
are met by SoSs. In each case, component entities interact with each other,
but they have operational and managerial independence, and their geographic
extent limits their interactions to flows of goods, customers, information,
and/or money. They usually operate in an environment of considerable risk and
uncertainty, and may exhibit unpredicted emergent behaviors as consequences
of their interactions. Some SoSs are mainly technological, e.g. the FAA’s
Traffic Alert and Collision Avoidance System (TCAS) in which hardware
and software on independently operating planes exchange information and
locations to produce alerts with little human intervention. Others are primarily
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human enterprise SoSs where human decision-making and interactions have a
central role; e.g., the congestion of an urban road network is governed almost
solely by the decisions of individual drivers. Most SoSs fall along a spectrum
between both extremes. Similarly, constituents within an SoS may share a
common goal or mission, each constituent may be operating entirely in its own
interest, or a combination of cooperating and competing systems may exist.

5. Foundation Disciplines for a Science of Infrastructure

As has been said above, the complete infrastructure of a city, region, or
country may be viewed as a set of generalized transportation networks coupled
to one another in the various ways discussed in Section 3. The key generalized
transportation networks, each itself a system of systems and which taken
together form a grand infrastructure SoS, are readily identified: transportation,
telecommunications, water distribution, energy distribution, supply chains
and cyberinfrastructure. Although extensive statistics could be presented to
establish the strategic importance of these generalized transport networks, there
is no real doubt concerning their vast scope and influence on any city, region,
or country.

Instead we want to stress that there are two overlapping perspectives
regarding SoS infrastructure scholarly inquiry: (1) that system architecture and
qualitative process engineering should be the primary foci of SoS research and
development, and (2) that extension of mathematical tools from operations re-
search, engineering design, economics, nonlinear science and network science
are needed to deal with the challenges presented by SoSs. This distinction
is fundamental. In this paper, and for that matter in this book, we take the
second point of view: namely, that of adapting mathematical tools drawn from
engineering design, operations research, economics, nonlinear science and
network science.

To clarify our point of view, it is helpful to offer brief definitions of the
foundation disciplines cited above. Engineering Design concentrates upon
the product development process for engineered systems; this encompasses
techniques to generate and track requirements, generate and improve design
concepts through trade studies and parametric optimization based on predic-
tive models. Operations Research is the collection of theoretical results and
algorithms for describing and managing engineered systems, usually with
an emphasis on efficiency. As such operations research is very intimately
connected to Game Theory, which is concerned with mathematical descriptions
of various types of competition. Nonlinear Science is the modern version of
dynamic systems; it focuses on unusual behaviors and gives special attention
to notions of stability, complexity and phase transition. Network Science is the
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newest of the foundation disciplines; it is leading the development of a general
theory of networks that has uncovered immense similarities in diverse settings.
Computer Science addresses issues including computational architectures, very
large scale distributed computing, data extraction and mining, standards for
data exchange, and secure multi-party computation.

5.1 Nonlinear Science

The special, complex behaviors of key state variables over time that is
emphasized in nonlinear science include bifurcation, catastrophe, chaos and
strange attractors. The appearance of such unusual behaviors in an engineered
system is usually viewed as highly problematic and undesirable. However,
seen from another angle, nonlinear science can tell us where and how to
look for problematic behaviors in SoSs. Once these problematic features are
found, intervention schemes that are technologically feasible and functionally
desirable for the application being studied may be designed and implemented
by engineers.

5.2 Network Science

In many ways the story is the same for network science, which identifies
and describes certain recurrent self-organizing behaviors in networks. Some
of this organizing behavior leads to networks that are inequitable in that the
“winner” of a competition conducted on a network may take all the rewards
and leave fellow competitors with none. Alternatively, sometimes network
structures evolve that are extremely secure but highly cumbersome to use,
while in other cases network structures evolve that are very user friendly but
highly vulnerable. Network science tells us where and when such network
configurations will emerge. In so doing network science is evidently crucial
to designing intervention schemes appropriate to a network controller’s stated
objectives.

Unquestionably, the most striking discovery at the heart of network sci-
ence is that many seemingly diverse networks have very similar topological
characteristics that arise from the aggregate behavior of a large number of
users whose individual behaviors range from wholly non-cooperative to fully
collusive. Among the similarities created by the behaviors of large ensembles
of network agents and shared by nearly all complex networks are: (1) weak
coupling among certain subnetworks that are internally nearly fully connected;
(2) occurrence of dominant hubs with disproportionate numbers of connected
links; (3) appearance of disparate fitness levels of individual nodes leading to
winner-take-all outcomes; (4) power law distributions for which small events
co-exist with large events; (5) phase transitions from disorder to order marked
by power law distributions; (6) self-similarity and lack of a natural scale;
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(7) strong correlation between resilience and self organization; (8) strong
correlation between topological robustness and exposure to attack; and (9)
emerging self-awareness and organic nature of complex networks. Most of the
features of networks from this list have been identified through the adaptation
of mathematics and measurement techniques from statistical mechanics and
the physics of very large systems; see Albert and Barabasi (2002), Gupta and
Campanha (2003), Newman (2003), Parisi (2004) and Venkatasubramanian et
al. (2004).

6. Cybernetworks and Cyberinfrastructure

The U.S. National Science Foundation (NSF) has coined the name Cyberin-

frastructure (CI) to describe the extension, made possible by high-performance
computing and advanced information technologies, of the traditional infrastruc-
ture associated with scholarship. Exploiting the full potential of CI is expected
to bring about significant increases in national productivity through enhanced
educational and research efficiency. Accordingly, for a fully modern and
general investigation of infrastructure as a system of systems, one must make
certain that one of the subsystems studied is cyberinfrastructure. This is a
challenging task in that somehow the general, features education and training,
distance collaboration and data/model sharing among the infrastructure schol-
ars must be given a mathematical representation.

The network science literature already contains a number of contributions
on modeling the type of dynamic information networks and social networks
that comprise cyberinfrastructure. For example, much has been written about
the affiliation, co-authorship and citation-based networks of scholars, including
Lotka (1926), Kretchschmer (1994), Persson and Beckmann (1995), Watts and
Strogatz (1998), Albert et al. (1999), Newman (2003), and Watts (2003). These
works, however, are concerned primarily with the identification and description
of social and information networks that arise in a given environment; they do
not provide a direct means of designing cyberinfrastructure networks.

7. Computable Games and Multi-Layer Infrastructure

Networks

The performance and evolution of SoSs can be significantly influenced by
the decisions taken by individuals or groups at various levels in the subsystems.
Typically the goals or intent of the various levels are in conflict, and the
situation being modeled is referred to as “competitive” or “non-cooperative”.
For example, non-cooperative decision-making strategies compounded by the
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advances in information technology, can manifest as cascading system fail-
ures, as has been illustrated by the massive power blackout in 2003 in the
northeastern United States where a specific energy delivery system became
the critical weak link in the power grid SoS. The literature on modeling
competitive systems has converged on the paradigm of non-cooperative game
theory as the fundamental modeling perspective. Non-cooperative games, in
addition to being apt descriptions of competition among agents, enjoys a rich
and compelling literature on efficient computation.

The computable game theory literature has focussed mainly on determining
static equilibria. However, much of the insight gained in the last 20 years
concerning computation of game-theoretic equilibria may be extended to
dynamic settings in which intelligent infrastructure systems operate. Peeta
et al. (2005) have researched multilevel network games that correspond to
systems of systems and in which decision-makers associated with distinct tiers
(systems) – such as manufacturing, distribution, retailing, and the like – may
compete within own tiers (systems) yet cooperate with some if not all non-own
tiers (systems). Examples of such SoS games include supply chains, financial
networks, and electric power distribution.

We discuss below how both equilibrium and the dynamic multi-layer IN
models can be coupled to traditional engineering notions of capital budgeting
and network design to create a new generation of IN mathematical and
software tools. These mathematical and software tools are intended to provide
a foundation for new advanced engineering decision support systems for IN
planning and design.

7.1 Background on Spatial Computable General Equilibrium

Models

Spatial computable general equilibrium (SCGE) models are spatial exten-
sions of computable general equilibrium (CGE) models [see, for example,
Scarf and Hansen (1973) and Mathiesen (1985a and 1985b)]. The spatial
extension is achieved by explicit mathematical representation of generalized
transportation networks over which goods and services move. As we have
already mentioned, the transportation networks of interest in this paper are
generalized transportation networks (GTNs) whose flows correspond to goods,
passenger, message, data, water and energy movements.

We next construct a generalization of the CGE model to describe an
economy comprised of spatially separated markets that are interconnected by a
generalized transportation network over which goods, passengers, messages,
data, water and energy flow; these coupled markets form a perfectly com-
petitive economy. We refer to each of these types of flow as a commodity

flow (or simply commodity for short). Moreover, each commodity i ∈ N
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corresponds to a specific infrastructure technology and is confined to a specific
infrastructure network whose graph we give the designation INi , so that the
grand (multicommodity) infrastructure network IN obeys

IN =
|N|⋃

i=1

INi

In the model developed in this section some simplifying assumptions are
made to streamline the exposition. The most important of these are that all
generalized transportation flows experience congestion and that routes are
determined from a Cournot-Nash non-cooperative game theoretic equilibrium.
In the general case, we would allow different behavioral principles to describe
routing on each subnetwork INi ; more discussion of this issue of multiple
network behavioral principles is provided below.

We will need the following notation:

R the set of locations indexed by r and s

M the activity set for every location indexed by j

N the commodity set for every location indexed by i

L the set of network links indexed by a


 the O-D pair/path incidence matrix
hi

p the flow of commodity i on path p ∈ P

f i
a

∑

p∈P

δaphi
p, the flow of commodity i on link a ∈ L

τ i
a(f) the unit cost of transporting commodity i over link a ∈ L

ci
p(h)

∑

a∈L

δapτ i
a(f), the unit cost of transporting commodity i over path p

ui
rs min

p∈Prs

ci
p(h), the minimum cost of transporting commodity i be-

tween O-D pair (r, s)
Prs the set of paths for O-D pair (r, s)
	 the link-path incidence matrix
δap an element of 	, where δap = 1 if link a belongs to path p and

δap = 0 otherwise
λrs

p an element of 
 where λrs
p = 1 if path p connects O-D pair (r, s)

and λrs
p = 0 otherwise

yr
j the output level of activity j in location r

π r
i the supply price of commodity i in location r

br
i the initial endowment of commodity i in location r

dr
i (π) the demand function in location r for commodity i

ars
ij (π,u) the input-output coefficient of activity j in location s relative to

commodity i produced in location r
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A(π,u) the price and transport cost dependent activity analysis matrix
T rs

i the demand for transportation of commodity i from origin r to
destination s

In general, to refer to a vector we simply drop the superscripts and/or sub-
scripts. For example, hi

p denotes the flow of commodity i on path p ∈ P and

h ∈ ℜ|P|×|N|
+ denotes the commodity path flow vector. It is also important to

observe that, in the notation above, we have considered a general case allowing
for spatially differentiated commodities. Spatially homogeneous commodities
may be represented by a suitable choice of coefficients in the A(π,u) matrix.
In order to simplify notation, final demand transactions are assumed to occur
locally.

The introduction of flow dependent generalized transportation costs, u(f),
implies that there is a difference between supply and demand prices in the econ-
omy. This difference in prices of commodities in different locations induces
generalized transportation demands. Clearly, the generalized transportation
demand is elastic in the sense that A(π,u) is dependent on u. Furthermore,
dependency of ars

ij (π,u) on both commodity prices and generalized transporta-
tion costs suggests that the traditional spatial price equilibrium conditions can
be enforced through a carefully constructed A(π,u) matrix.

In light of the preceding notation and the definition of the A(π,u) matrix,
the following identity relating the generalized transportation demand vector to
activity analysis submatrices holds:

T(π,y,u) = Ŵ[A(π,u)]T y (1)

where Ŵ(·) is an operator which properly calculates inter-market (that is, be-
tween nodes) generalized network transportation demands for a given activity
matrix.

To continue our development of an integrated model, we need to select a
routing principle for flows on the detailed generalized transportation network.
Specifically, we employ the concept of a Cournot-Nash equilibrium (CNE)
based on the arc and path impedance operators used by each subnetwork INi

to decide distribution and detailed routings. Furthermore, we assume in this
streamlined presentation that each path is associated with one and only one
subnetwork; this assumption is conceptually easy to relax but requires more
involved notation. For each subnetwork-specific path, we assume that there is
a unit impedance measure

�i
p

[
ci
p(h)

]
(2)
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where �i
p [., .] is a monotonic operator that modifies the generalized trans-

portation cost to create the appropriate impedance measure for path p of
infrastructure network INi .

We are now ready to give a statement of an integrated SCGE model:

DEFINITION 1. A spatial computable general equilibrium model of per-

fect competition, SCGE (b,d, A, c(h)), is to find a nonnegative vector

(π∗,y∗,h∗,u∗) such that the following constraints are satisfied:

1. no activity in any location earns a positive profit:

−A(π∗,u∗)T π∗
� 0 (3)

2. an activity in a location which is earning a negative profit is not operated

and an operated activity earns zero profit:

[−A(π∗,u∗)T π∗]T y∗ = 0 (4)

3. no commodity produced in any location is in excess demand:

b + A(π∗,u∗)y∗ − d(π∗) � 0 (5)

4. a commodity in excess supply is free and a positive price implies market

clearing via Walras’ Law:

[b + A(π∗,u∗)y∗ − d(π∗)]T π∗ = 0 (6)

5. excess path costs are nonnegative:

c(h∗) − 
T u∗
� 0 (7)

6. utilized paths have zero excess costs and paths with positive excess costs are

not used:

[c(h∗) − 
T u∗]T h∗ = 0 (8)

7. generalized transportation flows are conserved:


h∗ − Ŵ[A(π∗,u∗)]T y∗ = 0 (9)
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The definitions

x ≡

⎡
⎢⎢⎣

π

y

h

u

⎤
⎥⎥⎦ (10)

H(x) ≡

⎡
⎢⎢⎣

b + A(π,u)y − d(π)

−A(π,u)T π

c(h) − 
Tu


h − Ŵ[A(π,u)]T y

⎤
⎥⎥⎦ (11)

lead us to a concise nonlinear complementarity formulation of the integrated
model defined by (3)-(9):

H(x)T x = 0
H(x) � 0

x � 0

⎫
⎬
⎭ NCP(H,x), (12)

where

x ≡ {(π, y, h, u) : π ∈ ℜ|R|×|N|
+ , y ∈ ℜ|R|×|M|

+ , h ∈ ℜ|P|×|N|
+ , u} (13)

with

u ≡ {ui
rs : ui

rs = inf
p∈Prs

[ci
p(h)] ∀ r, s ∈ R, i ∈ N} ∈ ℜ|R|×|R|×|N|

++ (14)

Note that in (14), u ∈ ℜ|R|×|R|×|N|
++ denotes that u is defined in the positive half

plane of the corresponding Euclidean space. This condition is necessary for
NCP(H,�) to be equivalent to conditions (3)–(9) and is ensured by positive
generalized network transportation arc costs which compel path costs to also be
positive. Specifically, the cost positivity assumption in (14) is necessary for the
fulfillment of (9).1 Positive generalized transportation costs are not problematic
in a spatial model of real physical and economic processes.

The so-called conservation constraint (9) is really a result of combining
the traditional conservation constraints and the inter-locational generalized
transportation demand equation (1). As such (9) provides the critical linkage or

1 Briefly, expression (8) ensures that u∗ is a vector of minimum costs. So, if transportation
costs are positive it must be that each ui∗

rs > 0, as stated in (14). Since in NCP(H,�) we have
[
h − Ŵ[A(π,u)]T y]T u = 0, it follows that if each ui∗

rs > 0 then (9) holds always.
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coupling constraints between the CGE and the CNE. Although, as presented,
(9) is a relatively straight forward accounting identity first proposed by Friesz et
al. (1998) for inclusion in SCGE calculations to ensure submodel consistency.
It will be noted that (9) is, in the most general case, a nonlinear equality
constraint, holding the potential of making the SCGE model nonconvex even
if the generalized transportation cost (congestion) functions are monotonically
increasing. Yet, if such a nonconvexity arises it is for intrinsic reasons, since
(9) is an indisputable accounting identity and not an approximation or modeling
assumption.

The way this simple model is formulated implies that generalized trans-
portation networks are provided by an external agent, and, thus, there is
potentially a leakage of income out of the economy as it is modeled here.
This may be matched by an internal transportation sector devoted to physical
movements of goods and services in the activity matrix which demands local
resources and exports transportation services. However, in the simple model
of this section there is no guarantee of balance in the trade of transportation
services. Such a balance could, however, be enforced through the use of
additional constraints which are omitted here to simplify the mathematical
formulation and emphasize the simultaneous and consistent calculation of
economic activities and detailed network flows, which has not been heretofore
possible. That is to say, the framework presented here with a consistent
treatment of economic activities and detailed network flows can serve as a point
of departure for a wide variety of related SCGE models with increased realism
that are based on multi-layer generalized transportation networks.

Rather evidently, variational inequality formulations of the above SCGE
(b,d,A, c(h)) problem are also possible, allowing one to use existing results on
variational inequalities to establish existence properties and construct efficient
algorithms to compute solutions of SCGE models. An existence result for this
class of models based on the ideas of Goldsman and Harker (1990) may be
easily stated.

7.2 Multi-Layer Dynamic Infrastructure Network Models

If the layers are viewed as the collective engineering means by which a
market economy completes its transactions, one is led to a spatial computable

general equilibrium (SCGE) model of INs. In a SCGE model, generalized
transportation networks are represented in the considerable detail needed for
engineering analyses, rather than in the aggregate fashion typical of economic
forecasting models. This detailed representation of the INs enables one to study
the influence of specific IN features on all economic sectors and all locations
through comparative statics. Equilibria computed with an SCGE model, may
in turn be used to construct a disequilibrium dynamic model of coupled INs.
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Such a dynamic IN model allows study of nonlinear synergies and catastrophes
among infrastructure technologies that would go unnoticed so long as the
traditional one-network-at-a-time paradigm is employed.

We discuss below how both the equilibrium and the dynamic multilayer IN
models can be coupled to traditional engineering notions of capital budgeting
and network design to create a new generation of IN mathematical and
software tools. These mathematical and software tools are intended to provide
a foundation for new advanced engineering decision support systems for IN
planning and design. The discussion that follows is rather technical; someone
wishing to gain a highlevel overview of our thinking can read the prose
remarks introducing each section and subsection, without bothering with the
mathematical symbology.

7.3 Inter-Layer Coupling Constraints

We reiterate that , although a considerable amount of work has been done
on SCGE models, little attention has been given to creating a multi-layer
network spatial computable general equilibrium model that recognizes the
coupled nature of individual INs. It is clear that such a multi-layer model
will require the consideration of inter-layer coupling constraints. While the
exact nature of these constraints is yet to be determined, it is clear that the
layers are not independent. Indeed, as discussed in the introduction, most of the
interesting public policy questions in this area arise because of the inter-layer
dependencies. Hence, considerable attention will be devoted to these issues.

In the context of coupling constraints, it is important to consider coop-
erative, non-cooperative and collusive models. The non-cooperative case can
be viewed both as a Cournot-Nash mathematical game and as a Stackelberg-
Cournot-Nash mathematical game. Although it is too early to be definitive
about how best to mathematically describe imperfect, collusive network com-
petition, we are inclined at this time to recommend a hierarchical mathematical
program with side constraints to describe relevant market regulations as well
as the core of the game being played.

7.4 Dynamics of Disequilibrium

SCGE models like that of Section 7.1 may be employed to calculate a
general equilibrium among spatially separated markets that will describe the
detailed steady state flows on INs. We believe that in a historical period of rapid
information technology change, like the present, it is insufficient to calculate
equilibria and to base engineering plans and designs on those equilibria. Rather,
it is essential to determine the time-varying flows on INs, as these include
transient phenomena that may make the difference between the success or
failure of infrastructure and network engineering projects. An example is
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provided by the current California energy crisis where planning based on steady
state prices has been wholly inadequate.

What is needed are dynamics whose steady states are the equilibria that
result from SCGE models like that of the previous section. There are a variety
of approaches that may be followed in constructing such equilibrium tending

IN dynamics. Two approaches that we intend to consider are:

1. Equilibrium-tending adjustment mechanisms that make the time rate of
change of any state variable proportional to the “distance” of that variable
from its equilibrium value. This class of dynamics has recently been
emphasized by Fujita et al. (1999) to describe the formation of cities viewed
as concentrations of population and infrastructure; and

2. Projective dynamics that exploit the concept of a minimum norm projection
operator to imbed the equilibrium fixed point problem that is the SCGE
model into the definition of the time rate of change of a state variable.
See Smith et al. (1997) for a review and comparison of different classes
of projective dynamics and illustrations of how they are constructed from a
known equilibrium model.

7.4.1 Equilibrium Tending Dynamics

Let us suppose that the multi-layer infrastructure network SCGE model has
been solved and that its solution z∗ = (π∗,y∗,h∗,u∗) includes the vectors of
equilibrium commodity prices π∗, equilibrium production and consumption
quantities y∗, equilibrium path flows h∗ and equilibrium generalized trans-
portation costs u∗. The time rates of change of the state variables z may be
modeled as proportional to the “distance” from equilibrium:

dz

dt
= ζF

(∥∥z − z∗∥∥)
(15)

where ‖.‖ denotes the norm (or distance), ζ is a vector of proportionality
constants and F is a monotonic transformation.

Furthermore, side constraints can be added to these dynamics to form a
richer model. In the event, as will be the case for capital budgeting, these
dynamics are used to form an optimal control model, the side constraints can
be stated as explicit control, state, or mixed control-state constraints. When
the dynamics are used alone to describe the IN evolution for given initial
conditions, one must perform the necessary algebra to embed the constraints in
the right hand sides; certainly this is the approach taken by Fujita et al. (1999).
Sometimes this approach of direct substitution is not practical because the side
constraints cannot be manipulated in a way that allows such a substitution to
occur in closed form. In this eventuality, an alternative approach based on the
minimum norm projection operator is needed in order to create numerically
tractable constrained dynamics.
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7.4.2 Minimum Norm Projective Dynamics

In spatially separated, multi-commodity markets of the kind being consid-
ered here, there is no particular reason to believe that the rate at which the
market moves towards an equilibrium is proportional to the distance from that
equilibrium. Indeed, some profit opportunities may be easy to respond to even
though they are small (e.g., the difference in the price of gasoline at nearby
stations) and some profit opportunities may be difficult to respond to even
though they are large (e.g., excess demand for Internet services). Hence, one is
led to consider other types of dynamics.

One alternative approach that has received some attention is projective

dynamics. The idea is to start by describing an adjustment mechanism that its
behaviorally appealing (e.g., the relevant rate of change depends on the cost of
the underlying infrastructure, or the rate of change depends on the existing
capacity in the infrastructure network). Unfortunately, by themselves, these
kinds of adjustment mechanisms may lead to infeasibilities. For example, a
large difference in gasoline prices between two stations on Saturday, in and
of itself, might seem to warrant a large change in the number of cars that use
each station on Sunday. However, the number of people that purchase gasoline
on that Sunday might not be as large as the number of people that “should”
switch. One way to correct these kinds of infeasibilities is to use a simple
adjustment mechanism and then project the outcome onto the feasible region
using the minimum norm projection. Indeed, the so-called “cobweb” model can
be thought of as an example of projective dynamics. The primary advantage of
projective dynamics is that they allow one to construct descriptive models with
side constraints that are now amenable to direct algebraic incorporation into
the dynamics.

Using the notation of the previous discussion on equilibrium-tending dy-
namics, the essence of projective dynamics is captured by noting that

dz

dt
= lim

	t−→0

z (t + 	t)−z (t)

	t
(16)

and modeling the future state according to

z (t + 	t) =P� [z (t) + ρ	tS (t)] (17)

where S (t) is a signal (sometimes called the “velocity”) that determines the
increment/decrement of the current state to form the new state and P� [.]
denotes the minimum norm projection of its argument onto a set of constraints.
The set � is comprised of all pertinent technological, budgetary, policy and
regulatory constraints. Growing experience with such dynamics [see Smith
et al. (1997)] indicates that projective dynamics have substantial explanatory
power and are valid representations of many complex socio-technical systems.
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7.5 Network Design Criteria

In order to design INs and to allocate funds for their operations, maintenance
and replacement, one must articulate investment criteria. The one we shall
emphasize is the net present value of benefits. In calculating this present value
one may measure gross benefits as the sum of consumers’ and producers’
surpluses. Furthermore, costs will be measured as actual economic costs
specifically including congestion costs for each IN layer considered. Naturally,
net benefits are determined by subtracting such generalized costs from gross
benefits. It is important to recognize that there is a fundamental measurement

problem that has prevented rigorous net benefit calculations of this sort from

being made heretofore for networks with elastic user demands. This is the
difficulty surrounding the consumers’ surplus line integral. Because of the
immense importance of this problem to multi-layer IN capital budgeting, we
must give it a fairly detailed description.

All previous IN design and capital budgeting models reported in the
literature deal either with constant (inelastic) user demand or presume elastic
demand functions are separable. Yang and Bell (1998) and Huang and Bell
(1998) are among the few to have considered network design in the presence of
elastic demand, and they employ separable demand functions. However, when
consumption alternatives exist for network users, the assumption of demand
separability or the assumption of fixed demands is completely inadequate.
Moreover, for the price-quantity pair (�(T) ,T) consumers’ surplus for in-
frastructure services is given by the line integral.

CS (T) =
q∑

w=1

[∮ T

0

�w (v) dvw − �w (T) Tw

]
(18)

which includes the separable case.2 The first term of (18) measures gross
economic benefits and the second term is the payment made for benefits in
terms of congestion costs. Note that a line integral must be employed in order
to give an exact representation of net economic benefits in the presence of
elastic, nonseparable demand functions. This is because consumers’ surplus
necessarily involves the integration of functions of several variables when
demand functions are not separable. This is problematic because it is well
known that a line integral does not have an unique, unambiguous value unless
the Jacobian matrix formed from its integrand is symmetric. Such symmetry
restrictions amount to a requirement that cross price elasticities of demand be
proportional to one another, which is unlikely in any real world setting. See

2 In (18) u = �(T) is the relevant inverse demand function that specifies IN service price for a
given origin-destination flow T on the IN of interest.
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Jara-Diaz and Friesz (1982) for a discussion of these subtleties. Note also
that this symmetry restriction arises in all static settings regardless of how
the equilibrium problem is formulated because it stems from a theoretically
rigorous statement of user net benefits in the presence of elastic demand; that is,
from the inclusion of a rigorous statement of consumers’ surplus. As such, the
static equilibrium constrained network capital budgeting problem with elastic
service demands cannot be solved since we have no guidance about what path
of integration to employ in evaluating the consumers’ surplus line integral
intrinsic to its formulation.

However, the dynamic models discussed above may be used to calculate
consumers’ surplus in a mathematically rigorous fashion. It turns out that this
is quite easy when adjustment dynamics like (15) or alternatives based on the
minimum norm projection are known. In a dynamic setting (18) becomes

CS (T) =
∫ L

0
exp(−rt)

q∑

w=1

[∮ T

0

�w (v) dvw − �w (T) Tw

]
dt

where r is a fixed discount rate, L is the length of the planning horizon consid-
ered, and t is of course continuous time. Of course a complete consideration
of benefits and costs means there will be other integrals to express consumers’
surplus for other-than-infrastructure consumption as well as expressions for all
relevant producers’ surpluses.

7.6 Mathematical Formulation of the Dynamic Multi-layer IN

Design Model

Traditionally, optimal network design and capital budgeting have been
carried out in a static environment [Friesz (1985)]. The well-known Braess’
paradox requires that static design have network equilibrium constraints and
that they be articulated as a mathematical program with variational inequality
or other equilibrium-enforcing constraints [Friesz et al. (1992)]. Unfortunately,
such equilibrium constrained optimization models completely ignore the po-
tential disequilibria that can arise from changes in the effective capacity of
an IN arc. This static perspective holds the potential of recommending not
only suboptimal designs, but also of recommending economically infeasi-
ble designs. Such erroneous findings are possible when the present value
of disequilibrium impacts is substantially negative, as can occur when the
immediate disequilibrium response is a sharp congestion increase or when
the disequilibrium response is a mild congestion increase of relatively long
duration. An example drawn from current events is provided by a network
construction project intended to enhance telecommunications and data capacity
through laying fiber optic cable but which produces road traffic congestion
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for weeks or months prior to its completion; in this case, the present value
of construction impacts may be sufficiently negative to eradicate all positive
benefits in the post-construction period.

In light of these remarks, it is necessary to articulate a disequilibrium capital
budgeting model, by which is meant a model for selecting optimal effective
capacity enhancement trajectories for network arcs, with the time evolution
of flows and perceived path costs described by an appropriate disequilibrium
adjustment process. A model of this type will determine a temporal IN capacity
enhancement plan which recognizes that capacity perturbations produce dise-
quilibria which adjust toward equilibrium. Such a model is naturally expressed
as an optimal control problem or infinite dimensional mathematical program.
That is

maximize present value of net benefits

subject to

state dynamics

budget constraints

layer-to-layer coupling constraints

non-negativity constraints

arc capacity upper bound constraints

See Peeta et al. (2005) for the details of such a formulation. For our present dis-
cussion it is enough to recognize that a formulation like that above constitutes
an optimal control problem. That optimal control problem may be expressed
as an infinite dimensional mathematical program in the appropriate function
spaces.

7.7 Solution Techniques

Our envisioned multi-layer capital budgeting model is a hierarchical infinite
dimensional mathematical program; as such a variety of classical numerical
methods are available for its solution: two point boundary value problem
shooting methods, dynamic programming, time discretization/finite dimen-
sional mathematical programming and constrained descent methods in infinite
dimensional topological vector spaces. However, both the number of variables
and the number of constraints needed for the articulation of this model
for an actual multi-layer IN will certainly be in the thousands. Matters are
further complicated by the presence of explicit path variables in the model’s
formulation; this is a direct result of its dynamic nature and the fact that IN
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generalized transportation demands naturally occur at the origin-destination
level. A third feature of the multi-layer IN capital budgeting model is that it is
unavoidably nonconvex; this nonconvexity arises from the nonlinear equality
constraints expressing the coupling of the various network layers.

7.7.1 The Conventional Wisdom for Static Network Design

In computational network modeling many believe that the presence of
explicit path variables in a model formulation makes that model numerically
intractable because of the potential for extraordinarily large numbers of paths in
networks of realistic size. This point of view, which typically implies complete
path enumeration, has always been incorrect and only recently has the fear of
path variables begun to subside among network model builders. Path variables
are handled in all successful algorithms by path generation schemes which only
calculate paths as they are needed; this philosophy – which is essentially the
technique of column generation well known to mathematical programmers – is
at the heart of the well known and successful application of the Frank-Wolfe
algorithm to static network equilibrium calculations. What many do not realize
is that although the Frank-Wolfe algorithm is usually implemented in a way
that discards path information and saves only arc flows, it is straightforward
to develop and implement Frank-Wolfe type software which generates and
saves path identities. Such software is no less intrinsically computationally
efficient than Frank-Wolfe software which saves only arc information; the
main additional computational burden is the storage of the chains of arcs
defining paths. When the number of paths becomes large enough that some
kind of virtual storage is needed to save paths, there can in principle be
processing delays when paths are retrieved from memory. Yet even this is
not very significant, since paths are typically associated with origin-destination
pairs and there are on the order of only ten meaningful paths for each origin-
destination pair, a situation which allows the origin-destination pair to serve
as a pointer which takes one to more or less the exact memory location
instantly. Moreover, Friesz et al. (1992) and Friesz et al. (1993) have shown
how the Frank-Wolfe algorithm can be used very effectively as an a priori path
generator. This is done by making the network increasingly congested through
demand increases and saving path information from the Frank-Wolfe algorithm
until the generated paths exceed a pre-established circuitousness criterion.

Even though we do not believe the presence of path variables will in and
of themselves constitute a major computational impediment, the very large
overall size and nonconvex nature of the multi-layer IN capital budgeting
model suggest that nontraditional numerical methods for its solution must be
explored. We offer next a brief overview of some ideas relevant to developing
such nontraditional methods for our coupled IN capital budgeting model.
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7.7.2 Simulated Annealing

One approach that has been used successfully for non-cooperative static
games of both the Cournot-Nash and Stackelberg type is simulated annealing
(SA). It should be equally successful for finite-difference approximations of
the continuous time models we have been discussing. SA has its roots in
statistical mechanics and is in effect a kind of probabilistic search method. SA
was originally developed by Kirkpatrick et al. (1983) to solve combinatorial or
discrete optimization problems. Vanderbilt and Louie (1984) showed how this
method can be employed to obtain global solutions for continuous optimization
problems. In fact, SA has proven to be an effective technique for virtually any
continuous nonconvex optimization problem when rapid response times are not
mandated by the decision environment; see Anandalingam (1989). In SA, as
well as in more recent AI algorithms for mathematical programming based on
neural networks and genetic analogies, there are a lot of parameters under the
control of the analyst. This gives the analyst freedom to tailor the AI algorithm
of choice to a particular application. Sometimes, however, there is a price to
be paid for this extra freedom; namely, in some problems the selection of the
various parameters can initially pose a serious challenge, making convergence
difficult to achieve. This drawback, however, needs to be weighed against the
relative simplicity of AI software code for solving optimization problems. In
fact, our experience in training students and professionals indicates that most
individuals with some prior experience with one of the common programming
languages can write adequate SA software code after only a few hours of expo-
sure. This contrasts sharply with sophisticated decomposition algorithms and
other techniques traditionally favored by mathematical programmers for large
network problems that can require substantial mathematical sophistication and
careful software engineering to fully understand and implement.

For a description of the details of applying SA to mathematical formulations
like the one suggested here, see Friesz et al. (1992) and Friesz et al. (1993).
In fact, previously unknown equilibrium network design solutions which are
probably global optima have been found by Friesz et al. (1992) using this
approach for the much studied Sioux-Falls single infrastructure road transporta-
tion network. The numerical results reported by Friesz et al. (1992) and Friesz
et al. (1993) demonstrate unequivocally that simulated annealing is a viable and
effective algorithmic approach to network capacity expansion in an equilibrium
setting.

7.7.3 Agent-Based Simulation

Peeta et al. (2005) argue that dynamic multi-level network design may be
dealt with effectively by re-expressing the models discussed above via agent-
based simulation (ABS). They present numerical examples that show the ABS
perspective is successful. At the present moment only the ABS-based approach
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to solution of large-scale dynamic infrastructure network design models has
been applied to obtain numerical results for the Stackelberg-game formulations
proposed in this paper. Although simulated annealing has been successful
for static Stackelberg games, no application of that technique to dynamic
Stackelberg models of infrastructure networks has been carried out.
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Abstract In this paper we are concerned with a class of mathematical problems that arise
when modelling dynamic competition among conflicting agents that may or may
not reach an equilibrium. We call this class of problems differential variational

inequalities. We are further interested in the application of models belonging to
this class of problems to the study of (1) policy constrained, limited warfare and
(2) Internet vulnerability.
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1. Introduction

The latter half of the twentieth century saw impressive achievements in
the modeling, analysis and computation of competitive static equilibria, as is
underscored by the joint award of a Noble Prize to John Nash, John Harsanyi
and Reinhard Selten in 1993 for their fundamental work on mathematical
games and the relationship of games to equilibrium and optimization. Math-
ematicians, game theorists, operations researchers, economists, biologists and
engineers have employed noncooperative mathematical games and the notion
of equilibrium to model virtually every kind of competition.

In particular, non-cooperative game theoretic models have been successfully
employed to study economic competition in the marketplace, highway and
transit traffic in the presence of congestion, wars, and both intra- and inter-
species biological competition. One of the key developments that has made
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such diverse applications practical is our ability to compute static game-
theoretic equilibria as the limit of a sequence of well-defined subproblems
solvable by variants of traditional nonlinear programming, fixed point, and
complementarity algorithms.

In many applications, intermediate disequilibrium states of mathematical
games are intrinsically important. When this is the case, disequilibrium ad-
justment processes1 must be articulated, thereby, forcing explicit consideration
of time. As a consequence, the modeling of competitive disequilibria involves
dynamic or differential games. While great progress has been made in modeling
and computation of equilibria or steady states of competitive systems, game-
theoretic disequilibria and moving equilibria2 are relatively uninvestigated by
comparison.

The main body of technical literature relevant to game-theoretic disequilib-
ria and moving equilibria is that pertaining to so-called differential games, a
field of inquiry widely held to have been originated by Isaacs (1965). Although
a rather substantial body of literature known as dynamic game theory has
evolved from the work of Isaacs (1965), that literature continues to be strongly
influenced by the emphasis of Isaacs on the relationship of such games to
dynamic programming and to the Hamilton-Jacobi-Bellman partial differential
equation.3 A consequence of this classical point of view is that full use of
the mathematical apparatus of variational inequalities, discovered originally in
the context of certain free boundary value problems in mathematical physics,
has not occurred in the study of dynamic games. By contrast, in the last
fifteen years, variational inequalities have become the formalism of choice for
applied game theorists and computational economists solving various static
equilibrium models of competition. The “hole” in the dynamic game theory
literature owing to this failure to fully exploit the variational inequality perspec-
tive is significant, for variational inequalities substantially simplify the study
of existence and uniqueness. A variational inequality perspective for infinite
dimensional dynamic games also leads directly to function space equivalents
of the standard finite dimensional algorithmic philosophies of feasible direction
and projection familiar from nonlinear programming. Because our point of
view in this paper departs from that of differential game theory and classical

1 Such adjustment processes are typically expressed as difference equations or differential
equations. Sometimes, it is necessary to use a mixture of both types of dynamics; the adjustment
processes are then referred to as differential-difference equations.

2 We define moving equilibrium in a subsequent section; however, it is easiest at this juncture
to think of a moving equilibrium as a trajectory of decision variables that maintains the same
“balance” among those variables throughout time, although the variables themselves are time-
varying.

3 See for example Basar and Olsder (1998).
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dynamic game theory, we refer to the class of problems emphasized herein
as differential variational inequalities, terminology we shall shortly formally
define in Section 5.

2. Scope of this Paper

In mathematical modeling of competition among conflicting agents, re-
gardless of whether the application is one drawn from biology, economics or
military operations, there are three fundamental approaches:

1. statistical inference based on historical data,
2. detailed microsimulation, or
3. mathematical game theory,

where mathematical game theory is understood to be the process of construct-
ing a system of equations, inequalities and/or extremal principles that describe
the behavioral aspects of the competitive system of interest and technological
considerations affecting that system. This mathematical description is necessar-
ily an approximation of the real system, and it may be subject to mathematical
analysis to uncover qualitative properties (existence, stability, uniqueness, and
decision rules) and to numerical analysis to determine solutions needed for
prediction and control in specific decision environments. Generally speaking,
each of the three main categories of modeling approaches suffers from certain
weaknesses and enjoys certain strengths. In particular, statistical inference –
since it is based on historical data – cannot reliably predict system states when
significant structural changes occur within the system of interest. Furthermore,
microsimulation is generally very labor intensive and tends to involve numer-
ous ad hoc assumptions. Because of the fact that linkages among subsystems of
a microsimulation are usually accomplished through “if/then” logic, the result-
ing mathematical model is non-differentiable. As a consequence, qualitative
analyses of microsimulation models are extremely difficult.

Our presentation in this paper hinges on the distinction between microsim-
ulation models and a class of mathematical game theoretic models that may be
called game-theoretic screening models. This distinction is most easily made
by contrasting extreme versions of microsimulation and screening models.
To this end, consider an extremely detailed microsimulation that is virtually
an exact replication of the decision processes of the competitive agents of
interest and which outputs an agent-by-agent, decision-by-decision, minute-
by-minute description of the competitive system of interest.4 It is easy to

4 In fact such detailed microsimulations have been proposed and implemented by Los Alamos
Laboratory to describe human activity patterns for the entire United States. The Los Alamos
microsimulation requires the use of powerful, mainframe supercomputers.
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understand that such a detailed microsimulation consumes staggering amounts
of computational resources and that its software is intrinsically expensive to
program and maintain. In contrast is the screening model that identifies the
key relationships and provides an approximate mathematical articulation of the
system of interest using a few state and control variables, an extremal principal
and a few key constraints. It is virtually certain that such a screening model
will be much less labor intensive to create and will involve substantially fewer
computational resources; it may also be less accurate. Of course, in reality,
models exist along a continuum that has the two extremes just cited as its end
points, and all modeling applications involve a trade-off between the expense of
building a model and the accuracy of its predictions. These considerations not
withstanding, if a screening model can be put on a solid behavioral foundation,
it can be phenomenally cost effective.

It is our thesis in this paper that there is a new perspective for game-theoretic
mathematical modeling that results in especially powerful screening models
generally applicable to the study and control of competitive dynamic systems
and especially relevant to

1. extensions of classical dynamic game theory to more general decision
making environments;

2. the general problem of network interdiction and vulnerability; with special
emphasis on the Internet; and

3. the modeling of limited warfare in foreign economic environments.

The new perspective on game-theoretic mathematical modeling that we em-
phasize is called the differential variational inequality (DVI).

A DVI is in effect a controlled variational inequality. As such, study of
the DVI joins two important and already established branches of research in
applied mathematics and operations research, namely variational inequality
problems (VIPs) and optimal control problems (OCPs). As we discuss below,
DVIs arise naturally in the modeling of dynamic hierarchical competitive
systems and provide a means for integrating prescriptive (optimizing) and
descriptive (predictive) mathematical models of competition into a single
coherent and self consistent mathematical form. Particularly important to
the versatility of DVI models of competition is the fact that DVIs include
dynamic systems in the form of differential-difference equations among their
constraints; these dynamics can either model a moving equilibrium or a
disequilibrium adjustment process that may never reach equilibrium.

Moreover, because of the intimate connection of the DVI to the theory of
variational inequalities developed for mathematical programming applications,
both finite difference and continuous time numerical methods familiar from
mathematical programming immediately suggest themselves for obtaining
numerical results. We also argue below that the DVI perspective provides a
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unifying framework for dynamic games, differential games and mathematical
programs in function spaces. This unification will almost certainly allow the
sharpening of classical existence and uniqueness results for differential and
dynamic games; it will also provide a theoretical foundation for algorithms
based on sequences of extremal problems even when the game of interest is
itself not an extremal problem.

Furthermore, by exploiting the dynamic equations intrinsic to the con-
straints of a DVI one of the most vexing problems associated with the definition
of extremal versions of static noncooperative games may be overcome. We are
referring to the well-known result that requires the use of a line integral to
represent a general asymmetric noncooperative static game in extremal form.
Since line integrals are not generally single valued, the objective function of an
extremal formulation of a general asymmetric noncooperative static game is not
well defined. It is this property that makes it necessary to use infinite sequences
of mathematical programs to solve such static games. By contrast, for dynamic
games employing the DVI perspective, we may exploit the dynamic equations
among their constraints to define an unambiguous path of integration that
makes the extremal problem objective function well defined. We discuss this
important feature of DVIs in greater detail in Section 5.2.

In summary then, we believe and do argue below that DVIs extend tradi-
tional notions of dynamic and differential mathematical games used in studying
competition by providing a mathematical structure that

1. allows the description of systems in disequilibrium that may never reach an
equilibrium;

2. greatly facilitates qualitative (existence, uniqueness and stability) analyses
and algorithm development;

3. allows the introduction of additional doctrinal, regulatory, economic and
technological constraints without analytical or numerical complications;
and

4. is unimpacted by symmetry restrictions and does not presume an equivalent
extremal formulation.

Each of these features is discussed in separate sections below.
For the sake of brevity, the discussion that follows emphasizes deterministic

DVIs. However, because a DVI involves explicit state dynamics, it is possible
to extend the notion of a DVI to a stochastic setting involving stochastic
differential equations. In fact a stochastic DVI is needed to properly model
the Internet, as we later explain in our discussion of Internet vulnerability in
Section 7.



82 T. L. Friesz

3. Variational Inequalities Defined

VIPs or the related format of the nonlinear complementarity problem
(NCP), generalize the optimality conditions for nonlinear programs as well
as provide the structure for numerous problems in traffic equilibria, economic
equilibria, robotics, computational game theory and other areas; see Ferris and
Pang (1997) for a survey of such applications. The VIP can be succinctly stated
as follows:

DEFINITION 1 (Finite dimensional variational inequality problem). Let X be

a nonempty subset of ℜnand let F : X ⊆ ℜn → ℜn. V IP (X,F ) is to find a

vector x∗ ∈ X such that the following conditions hold

F
(
x∗)T (

y − x∗)
� 0 ∀y ∈ X ⊆ ℜn

The VIP is closely related to the nonlinear complementarity problem (NCP).
Suffice it to say that under appropriate regularity conditions VIPs and NCPs
are equivalent to one another. Under more stringent conditions, the solution of
a VIP is the solution of an NCP.

It is of course also possible to articulate the variational inequality problem
for an appropriately defined function space. For our purposes, we limit our
attention to a non-specific, abstract Hilbert space H so that the following
definition obtains:

DEFINITION 2 (Infinite dimensional variational inequality problem). Let X be

a nonempty subset of the Hilbert space H and let F : X ⊆ H → H. V IP (X,F )

is to find a vector x∗ ∈ H such that the following conditions hold

〈
F

(
x∗)

,
(
y − x∗)〉

� 0 ∀y ∈ X ⊆H

where 〈·, ·〉 denotes an inner product in H.

See Harker and Pang (1990) for a discussion of existence and uniqueness of
solutions as well as algorithms for solving the finite dimensional VIP. See
Friedman (1982) for a detailed presentation of infinite dimensional variational
inequalities in function spaces. A parallel literature exists for complementarity
problems but a review of it is omitted here for the sake of brevity.

For recent works related to specific VIP and NCP algorithms and ap-
plications in transportation and energy, see Gabriel and Pang (1992); Pang
and Gabriel (1993); Gabriel and Pang (1994); Bernstein and Gabriel (1997);
Gabriel and More’ (1997); Gabriel and Bernstein (1997); Gabriel (1998ab);
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Gabriel and Bernstein (2000); Gabriel, Kydes, and Whitman (2001). Algo-
rithms and applications for infinite dimensional VIPs are discussed by Kinder-
lehrer and Stampacchia (1980), Friedman (1982), Baiocchi and Capelo (1984),
and Le and Schmitt (1997). Interestingly, some of the most recent applications
of infinite dimensional variational inequalities, as well as research on numerical
methods for their solution, has occurred in the context of option pricing and
various exotic securities used in financial markets; see in particular Wilmott et
al. (1993).

4. The DVI Concept

The DVI is a special kind of variational inequality in function spaces that has
a mathematical structure similar to that of an optimal control problem in that
there are readily identifiable state and control variables, state dynamics, and
state/control constraints within the feasible region X of the preceding definition
of a VIP in Hilbert space. However, unlike optimal control problems, a DVI
employs no optimization criterion and there is no a priori presumption that an
equivalent optimization problem exists; although we shall explain below how
such an equivalent problem can be stated for certain plausible and not terribly
restrictive regularity conditions that do not include the symmetry requirements
familiar from static VIPs.

For the DVI, as for any variational inequality, the optimizing behaviors
of individual agents are described by separate necessary conditions that can
be collectively enforced by variational inequalities. Furthermore, there is no
presumption that individual agents have identical or even similar behaviors;
that is, each agent may be described by a separate variational inequality.
Moreover, the constraints necessary to modeling the core of any subgame
of interest are readily included in the DVI constraint set; as a consequence
the full spectrum of games ranging from total collusion through mixed
collusion/noncooperation to total noncooperation may be modelled, although
pure cooperation and pure noncooperation formulations will remain the most
computationally tractable, as is familiar from our experience with finite
dimensional variational inequalities.

The previously cited properties of DVIs mean that the DVI structure is
especially well suited for the study of general dynamic, hierarchical, multi-
agent, multi-behavior games that impose no a priori symmetry or separability

assumptions. Previous attempts to model such general games required either
that the games be written in extensive form (with accompanying computational
difficulties) or that their outcomes be found from microsimulation based on
ad hoc decision rules, since no tractable canonical form for such general
games that is amenable to large scale computation has entered the literature.
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Such general games are of substantial practical importance as we explain in
Section 6, after we introduce some alternative forms of the DVI appropriate
to abstract noncooperative Cournot-Nash-Bertrand and Stackelburg-Cournot-
Nash-Bertrand dynamic games.

5. DVI Extensions of Classical Noncooperative Mathematical

Games

As we have suggested above, the notion of a DVI may be used to extend
classical mathematical game theory to a dynamic or moving equilibrium5

setting without the assumption of symmetry of the Jacobian matrix formed
from the performance functions of game agents. Such an extension of classical
results is quite important since it allows the immediate generalization to
a dynamic setting of the well known Cournot-Nash-Bertrand (CNB) and
Stackelberg-Cournot-Nash-Bertrand (SCNB) game theoretical models for sta-
tic equilibria. Although dynamic CNB and SCNB games have been analyzed
heretofore, our reading of the literature indicates that in many instances re-
ported dynamic CNB and SCNB models either invoke notions of symmetry that
are unrealistic or employ algorithms that are inefficient in the sense that they
do not actively exploit the path of integration intrinsic to the state dynamics.

In order to continue our discussion, it is important to define what is meant
by a “dynamic equilibrium”, as the words “dynamic” and “equilibrium” are
sometimes viewed as mutually exclusive. For our purposes in this paper, we
will view a dynamic equilibrium as a circumstance wherein equilibrium is
enforced at each instant of time although state and control variables will gener-
ally be time varying. These variations with respect to time are exactly those
needed to maintain the balance of behavioral and economic circumstances
defining the equilibrium of interest. Samuelson (1947) has referred to this type
of equilibrium as a moving equilibrium, a name which is much more descriptive
and not as likely to be misunderstood. A moving equilibrium is similar to the
usual notion of a static game theoretic equilibrium, except that variables move
in unison to maintain equilibrium at each moment of time although there is no
steady state.6

5 The phrase “dynamic equilibrium” appears at first blush to be inconsistent since “equilib-
rium” can connote a steady state; for this reason we prefer the terminology “moving equilibium”
defined below.

6 Of course a formal mathematical definition of a moving equilibrium may be given, a task we
avoid here for the sake of brevity. See in particular Samuelson (1947), page 321.



4. Dynamic Competition on Networks 85

5.1 Formulation of Non-Cooperative Dynamic Equilibrium

Let us consider the case of a single class of game theoretic agents, each
of whom has qualitatively identical dynamics and dis-utilities. Moreover,
when the relationship among these agents is that of a dynamic Cournot-Nash
noncooperative equilibrium, the DVI of interest is described in the following
theorem [see Friesz et al. (2001a)]:

THEOREM 3. A dynamic CNB game-theoretic moving equilibrium among

agents described by the vector-valued disutility function F (u) ∈ H is equiv-

alent to the following differential variational inequality: find u∗ ∈ U ⊆ H such

that

〈
F

(
x∗, u∗, t

)
,
(
u − u∗)〉

=
∫ T

0
F

(
x∗, u∗, t

) (
u − u∗)

dt � 0 ∀u ∈ U ⊆ H

(1)
where H is a Hilbert space and

〈·, ·〉 denotes an inner product in H (2)

u
.= (ui (t))

m
i=1 (3)

U =
{
u : dx

dt
= f (x,u, t) ,Ŵ (u, x, t) � 0, x (0) = x0

}
(4)

F : V × U × ℜ1 −→ H (5)

f : V × U × ℜ1 −→ H (6)

Ŵ : V × U × ℜ1 −→ H (7)

for F (·, ·, ·), f (·, ·, ·) and Ŵ (·, ·, ·) convex in (x,u) and weakly continuous on

U , and x (u) a mapping from U to V , also a Hilbert space.

We take as implicit that the integral in (1) is a Lesbegue integral and that the
dynamics of U , namely

dx

dt
= f (x,u, t) , (8)

are flow balance statements that preserve equilibrium at each instant of time.
Thus, problem (1) is in effect a differential game of the Cournot-Nash-Bertrand
variety, whose solution is a so-called moving equilibrium. Note also that this
formulation makes no assumptions with regard to differentiability of F (·, ·, ·)
or u. In fact u may and will exhibit jump discontinuities. Furthermore no
symmetry restrictions are imposed on F (·, ·, ·). As a consequence of this
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generality, DVIs of this type may be used to model a very broad range
of phenomena noncooperative, especially noncooperative conflicts involving
players with equal quality of information; this includes, but is not limited to,
certain types of military warfare and ecommercial Internet driven economic
competition.

Because (1) is in the form of a variational inequality we can employ
powerful methods from numerical functional analysis for its solution and do
not need to develop detailed event based simulation software. That is to say,
(1)–(7) allows relatively cheap modeling of dynamic conflicts involving agents
that are equal in terms of their information and communication technologies.

A very interesting generalization of (1)–(7) that relaxes somewhat the
assumption of the equality of information and communication is to allow the
function F (·, ·, ·) to be replaced by an operator defined on a specific Hilbert
space. In particular one may employ operators that reflect the ability of certain
agents to look forward in time, without destroying the Cournot-Nash structure
that makes computing with (1)–(7) so tractable. These operators for selected
agents i ∈ S ⊂ [1,2, ..., n] are such that we make replacements in (1) according
to

Fi (x,u, t) −→ Fi (X,U, t)

where it is understood that X and U are time histories of the states and controls
and include future as well as past information; that is

X = (x (t) : t ∈ [0, T ])
U = (u (t) : t ∈ [0, T ])

}
(9)

for an especially omniscient agent, considering that T ∈ ℜ1
++ is the event

horizon. For more ordinary agents the prospective aspect of the look into the
future may be limited; that is

X = (x (t) : t ∈ [0,A])
U = (u (t) : t ∈ [0,A])

}
(10)

where A ∈ ℜ1
++ is such that

A < T ∈ ℜ1
++

The models needed for stipulating the historical operators Fi (X,U, t) may
vary from the truly simple to the very detailed. These operators need not be
smooth, and can in fact be based on numerical results of separate simulations
or time series analyses of real data.
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5.2 Equivalent Extremal Problems and Line Integrals

For a variational inequality of the type (1), an equivalent extremal problem
is

minZ (u) =
m∑

i=1

∫ T

0

∮ u

0
F (y,u, t) dydt (11)

u ∈ U ∈ (L [0, T ])m (12)

where the Hilbert space H for this problem is (L [0, T ])m, y is a dummy
variable of integration, F (·, ·, ·), f (·, ·, ·) and Ŵ (·, ·, ·) are convex in (x,u)

and weakly continuous on U , and the line integral
∮ u

0 must of course be
well defined.7 The line integral (11) is familiar from static finite dimensional
equilibrium modeling where it is extremely problematic since it is not generally
single valued and has a value dependent on the path of integration. However,
in the present context, the dynamics within U lead to

dy = f (y,u, t) dt (13)

A simple substitution of (13) into (11) leads directly to

minZ (u) =
m∑

i=1

∫ T

0

[∫ t

0
F (x, y, ξ)f (y,u, ξ) dξ

]
dt (14)

where is ξ is another dummy variable of integration. Evidently (14) is an ordi-
nary integral. Consequently, any DVI formulation of noncooperative dynamic
network equilibrium can be solved directly by finite dimensional mathematical
programming if a finite difference approximation is employed or by feasible
direction and projection methods in function space if continuous time is
employed since the presence of line integrals poses no particular difficulty.

5.3 Stackelberg and Other Moving Equilibria

One may also extend (1) by postulating alternative forms of competition
among the game agents (other than the CNB noncooperative assumption).
Of course one possibility is the well-known leader-follower framework of
Stackelberg-Cournot-Nash-Bertrand (SCNB) games that postulates a single
omniscient agent (the leader) and describes the remaining agents as CNB

7 (L [0, T ])m is the m-fold product of the space of square integrable functions for t ∈ [0, T ].
We also implicitly assume a regularity condition adequate to make the Kuhn-Tucker conditions
in the relevant Hilbert space valid.
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players. The Stackelberg assumption leads to a hierarchical optimal control
problem,8 with the outer problem being a classical optimal control problem
and the inner problem a variational inequality like (1). However, there is no
theoretical reason that several additional vertical and horizontal hierarchies
could not be modeled. In fact Thornton (1995) applies this sort of reasoning
to develop a multilevel dynamic model of US Army personnel management
and promotions.

To model games that are not purely (non)cooperative, we may add to the
constraints of U the constraints defining the core of the game. This will result
in further constraining U so that

1. individual and group rationality hold; and
2. Pareto optimality for the grand coalition holds.

The core of the game is the most general notion of solution of an arbitrary
game; most real-world games may be viewed as enforcing the core constraints
as well as constraints peculiar to the specific institutional framework being
studied. As Harker (1985) points out, enforcing the core makes the resulting
problem min-max in nature. For finite dimensional problems it has been possi-
ble to develop satisfactory computational schemes for core-constrained general
games through the use of relaxation and duality, so that the subproblems
encountered are conventional VIs. There is every reason to expect that similar
computational schemes could be developed for general games in function
spaces for which the subproblems will be DVIs.

Still other types of non-traditional hierarchical formulations of (1) extending
the Stackelberg notion of leaders and followers can be created. In particular,
one could allow sets of Cournot-Nash-Bertrand agents to be hierarchically
situated relative to other sets of CNB players. Also, empirically derived or
conjectural response functions can be embedded that allow game behaviors
among agents that have no classical analogues. This is because the structure
of (1)–(7) allows any “rule” to be embedded that can be stated in terms of the
state and control variables.

The mathematical formulations resulting from the Stackelberg and ad

hoc reaction function perspectives we have described above are nonlinear
variational inequality constrained mathematical programs in either ℜn, if a
finite difference approximation of the DVI is employed, or in Hilbert space.
As such, well known classical numerical methods can be applied to adduce
local solutions (the problems will be nonconvex). Alternatively, more modern
meta heuristics, AI and genetic algorithms can be employed. See in particular
Friesz et al. (1992), Friesz et al. (1993), Friesz and Shah (1999), Friesz and

8 We omit the symbolic statement of the dynamic SNCB model for the sake of brevity. See in
particular Friesz and Shah (2001b).
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Shah (2001a) and Friesz and Shah (2001b) for a discussion the application of
nontraditional algorithms, especially AI, to variational inequality constrained
mathematical programs occurring in the context of transportation networks.
See Luo, Pang and Ralph (1996) for a discussion of classical methods for such
problems.

5.4 Extension to a Stochastic Setting

The ability imparted by (10) to plan based on future information may be
stochasticized to account for intrinsic uncertainty, although we avoid for this
overview paper the mathematical detail involving the Itô calculus that such
an extension necessarily entails. Instead we merely comment that substantial
success has been reported in the financial engineering literature regarding the
numerical solution of infinite dimensional variational inequalities through finite
difference approximations. The stochasticized DVI models we envision will be
similar in mathematical structure to the option pricing stochasticized VIPs; so,
it is reasonable to expect that we can obtain similar numerical success with
finite difference methods for stochasticized DVIs. There is also reason to be
hopeful that direct use of feasible direction and projection methods in Hilbert
space will be effective; see in particular the excellent summary of mathematical
programming and variational inequality algorithms in Hilbert space contained
in Minoux (1986) as well as Luenberger (1969).

6. Disequilibrium Modeling

In the previous section, we considered identical agents and modeled a
time varying or so-called moving equilibrium. However, there is no a priori

reason that the DVI must be constrained by dynamics (8) that presume a
moving equilibrium obtains. One may, instead, postulate adjustment processes
that correspond to equilibrium tending behaviors. Dynamics based on such
adjustment processes are called disequilibrium dynamics and allow equilibrium
to be approached only in the limit of time T → ∞; furthermore, such models
may also be formulated in terms of relaxed notions of equilibrium/stability in
the sense of Lagrange.9 Because dynamics of this sort recognize that there
may be additional constraints (beyond the dynamics themselves) that need to
be enforced for the disequilibrium trajectories to be realistic, provision must
be made for the inclusion of technological, doctrinal, and policy constraints

9 By stability in the sense of Lagrange we mean that the trajectories stay within a bounded
region of state space after the passage of enough time, but convergence to a stationary point or
periodic attractor does not necessarily occur. This notion of stability admits chaotic attractors as
generalized equilibria.
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that modify the trajectories of states. The manner in which such constraints are
treated distinguishes one disequilibrium dynamic model from another, and in
fact we may identify two main schools of thought regarding the specification
of disequilibrium dynamics:

1. classical non-tatonnement dynamics; and
2. projective dynamics.

The next two subsections briefly describe these two points of view.

6.1 Non-Tatonnement Dynamics

In order to understand the notion of non-tatonnement dynamics [see Varian
(1984, pages 247–249) for a formal definition], we need to first clarify what is
meant by tatonnement dynamics. Generally tatonnement dynamics are based
on the assumption that the rate of change of each state variable is directly
proportional to some measure of how far the current system state is from
equilibrium. For example, the rate of change of price is proportional to the
excess demand, where by excess demand we mean the amount by which
demand exceeds supply. Since this difference may be positive or negative, price
rises or falls in accord with the sign of excess demand. Although the name
is perhaps poorly chosen, such tatonnement dynamics are referred to as non-

tatonnement dynamics when steps are taken to make the disequilibrium states
visited, prior to equilibrium, correspond to actual observable states of a system
of interest. As Varian (1984) points out, this is done by making the state vari-
ables correspond to flows of generalized commodities10 and introducing side
constraints that ensure inventories and backorders are appropriately accounted
for and modeled. Thus, classical non-tatonnement disequilibrium dynamic
models take the form of systems of differential, difference or combined
differential-difference equations with side constraints, and as such are naturally
suited for appending to a pure optimal control problem or to a DVI.

6.2 Projective Dynamics

Projective dynamics are concerned with formally embedding the constraints
of interest into a tatonnement model using the minimum norm projection for the
relevant Hilbert space. See Smith et al. (1997) for a review and categorization
of different types of projective dynamics. Although projective dynamics also
use an “excess” of some state variable to model the disequilibrium states,
they do not involve explicit side constraints beyond the dynamics themselves.
Rather, the constraints pertinent to the system’s description are used to define

10 A generalized commodity is any flow type that is infinitely divisible or nearly so for the
time-scale considered, as for example sugar, money, automobile trips, munitions and the like.
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a manifold onto which the excess signal is projected to create differential
equations whose right sides are nondifferentiable. It can be shown that such
projective dynamics may be re-stated as differential inclusions and the growing
body of functional analysis results for differential inclusions may be used
to perform qualitative (stability, existence and uniqueness) analyses of such
dynamic systems; see in particular the in-depth treatment of these issues by
Aubin and Cellina (1984).

6.3 Building Disequilibrium Game Theoretic Models

Non-tatonnement dynamics and projective dynamics may be used to
create disequilibrium dynamic extensions of the classical static Cournot-
Nash-Bertrand (CNB) and Stackelberg-Cournot-Nash-Bertrand (SCNB) non-
cooperative games that employ differential variational inequalities (DVIs). The
key result regarding disequilibrium modeling with non-tatonnement dynamics
is that a dynamic CNB equilibrium-tending game theoretic disequilibrium
among non-cooperative agents takes the form of a differential variational
inequality. If the dynamics are instead based on the notion of projective
dynamics, we obtain a rather more challenging version of the DVI. In
particular, when we generalize the notion of CNB equilibrium using projective
dynamics, we obtain dynamics whose right hand sides are nonsmooth and
which may be represented as differential inclusions [Aubin and Cellina (1984)].
If we similarly generalize the SCNB equilibrium, we obtain nonsmooth
optimal control problems (or, equivalently, optimal control problems involving
differential inclusions).

In addressing dynamic disequilibrium competition, we seek to solve dy-
namic CNB games stated as DVIs; the key relevant result, given in Friesz et al.
(2001a), is:

THEOREM 4. A dynamic CNB equilibrium-tending game-theoretic disequilib-

rium among agents described by the vector-valued disutility function F (u) ∈H

is equivalent to the following differential variational inequality: find u∗ ∈ U ⊆
H such that

〈
F

(
x∗, u∗, t

)
,
(
u − u∗)〉

=
∫ T

0
F

(
x∗, u∗, t

) (
u − u∗)

dt � 0 ∀u ∈ U ⊆ H

(15)
where is a H Hilbert space and

〈·, ·〉 denotes an inner product in H (16)

u
.= (ui (t))

m
i=1 (17)
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U =
{
u : dx

dt
∈ f (x,u, t) ,Ŵ (u, x, t) = 0, x (0) = x0

}
(18)

F : V × U × ℜ1 −→ H (19)

f ∈ V × U × ℜ1 −→ H (20)

Ŵ : V × U × ℜ1 −→ H (21)

for F (·, ·, ·), f (·, ·, ·) and Ŵ (·, ·, ·) convex in (x,u) and weakly continuous on

U , and x (u) a mapping from U to V , also a Hilbert space.

Note that f (x,u, t) is now a set and f (x,u, t) ∈ 0 is an inclusion that
describes the equilibrium obtained in the limit T → ∞.

SCNB models of disequilibrium employ DVIs like (15), together with the
relevant constraints cited above to model the CNB agents and an extremal
problem to model the Stackelberg agent. The result is a bilevel model in the
form of an optimal control problem with DVI constraints. This is the most
difficult class of DVI disequilibrium models from the point of view of analysis
and computation. Not to be confused with bilevel static SCNB games, these
infinite dimensional bilevel models are essentially unstudied as of the present.
Again the constraints defining the core of a general game may be appended
to U in order to describe other than pure noncooperation or pure collusion in
disequilibrium games.

7. Candidate Case Studies in Network Science

The modeling and computational approaches we have discussed above lend
themselves to two very timely case studies, namely

1. Economic Planning and Capital Budgeting in the Context of Limited

Warfare. This important application is discussed in some detail in the next
section, but in a nutshell may be described as planning for warfare that does
not destroy the civilian economy in the theater of operations

2. Internet Vulnerability. The Internet may be viewed as a competitive
dynamic system for which agents route individual packets of data or voice
over a network and possible links that these packets employ. A behaviorally
correct and computationally tractable mathematical model of the Internet
will allow the study of network vulnerability with an aim of neutralizing the
effects of sabotage and economic warfare.

Each of these applications necessitates a dynamic model of competition, as we
describe below.
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7.1 Economic Planning and Capital Budgeting for Networks in the

Context of Limited Warfare

It is now a recognized military doctrine that the United States and its
NATO allies should be prepared to fight simultaneously in multiple limited
engagement regional wars. A hallmark of this thinking is that collateral damage
to the civilian economy and its underlying infrastructure should be limited by
previously stipulated bounds, that will of course vary from conflict to conflict.
The desire to limit the deleterious impacts of warfare on the civilian economy
stems from the recognition that the post-war health of the economy where the
conflict occurs has a substantial impact on the total length of U.S. deployments
and subsequent economic aid. This doctrine of limited warfare means that the
problems of targeting infrastructure for disruption or destruction is intrinsically
multi-objective, hierarchical and game theoretic.

Because of the nonlinearities arising from infrastructure congestion ex-
ternalities, one cannot generally know by inspection or back-of-the-envelope
calculations, the full impact of degrading a given infrastructure component.
This nonlinearity of infrastructure is well recognized in network planning and
optimization, where it is referred to as the Braess Paradox (BP). Briefly stated
the BP concerns the possibility that increasing the capacity of a given in-
frastructure component may lead to an unanticipated network wide increase in
congestion. For the limited warfare application, BP is stated in a contrapositive
fashion as: degrading a specific infrastructure component may lead to localized
increases in efficiency that prevent an overall degradation of efficiency; indeed
it is even possible that efficiency will be globally enhanced for certain periods
of time. This seeming paradox arises from the potential for network game
agents to redistribute activities from the damaged components to decentralized
locations that actually provide better service coverage.

To answer the call for a means of predicting the impacts of infrastructure
interdiction, one is tempted to say that some kind of traditional economic fore-
casting may be used to predict the health of the war-impacted civilian economy.
Yet this is not so, primarily because economic forecasting is predicated on
analyses that describe statistical trends, not the shocks associated with war-
based destruction. Furthermore, large scale event driven simulations of the
economy of a particular region are both expensive and possibly not practical
if the region has not previously been studied in-depth. In fact, history is rife
with examples of failures to properly anticipate the economic and behavioral
consequences of warfare. Moreover, direct economic and information warfare
without firing a shot may well be seen in the 21st century. Consequently,
extended game theoretic models of the DVI type that simultaneously analyze
military operations and the functioning of the impacted civilian economy are
critical to the conduct of limited, economic and information warfare.
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In fact the limited warfare problem can be viewed as a special kind of eco-
nomic planning/capital budgeting problem of the DVI Stackelberg-Cournot-
Nash-Bertrand type wherein certain infrastructure is identified for surgical
removal. This “disinvestment” is constrained by military considerations as well
as the need to preserve some level of functioning of the civilian economy.
The limited warfare problem is intrinsically a disequilibrium problem since
the duration of transient effects is of great importance. Moreover the limited
warfare problem is also a hierarchical one in that, during the early phases of
a campaign, military objectives will clearly predominate, while the return to
economic equilibrium and the level of equilibrium prices will be of key concern
after force withdrawal.

7.2 Internet Vulnerability

The Internet is already a central feature of economic and intellectual life
in the United States and seems destined to assume a similar role around the
globe. Consequently, the vulnerability of the Internet and of component local
area networks connected to it to failures and attacks is an issue of increas-
ing importance to national security. Nonetheless very little effort has been
expended to date to develop strategic plans for the evolution and protection
of the Internet. This circumstance is largely due to the distributed nature of
data and services spawned by the Internet, whereby no single entity can be
identified as responsible for taking such a strategic view. In the language we
have introduced above, the Internet is a dynamic, many-agent mathematical
game wherein certain Stackelberg-like agents who control critical hardware
and protocols have great power, while others are atomistic Cournot-Nash-
Bertrand users with little power.

A dynamic game-theoretic model of the Internet is needed in order to cor-
rectly account for transient effects that may be of great policy concern, such as
attacks on large commercial Internet service providers that disrupt the national
economy, as well as attacks that seek to cripple specific military computers.
Furthermore, the Internet does not have conventional static equilibrium states,
but instead must be modeled using the Itô calculus, stochastic differential
equations and variational inequalities that do not presume stationary states
but allow self-similarity and so-called moving equilibria. Numerical solution
of the resulting dynamic model will be necessary, as there is essentially
no prospect that it can be solved in a closed form. Moreover, optimization
models pertinent to Internet design and control will necessarily be constrained
by these dynamics; as such Internet optimization models will likely require
algorithms that are a hybridization of simulation, heuristics and numerical
analysis techniques perhaps in a way not used before.

Critical to the construction of any model addressing the vulnerability of the
Internet is the need for a dynamic description of packet flows/packet switching
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over the Internet. Such dynamics must necessarily reflect the fact that, in the
current Internet, the rate at which a source sends packets is controlled by
the Transmission Control Protocol (TCP), implemented by software on the
computers that are the source and destination of the data. The basic idea behind
TCP is that when the network becomes overloaded, one or more packets are lost
and the loss of a packet is taken as the indicator of congestion. The loss of a
packet causes the destination to inform the source and the source slows its rate
of transmission; TCP then orders a gradual increase in the transmission rate
until congestion is again indicated.

Mathematical modeling of the dynamic process we have described and of
the related decisions that lead Internet users to contact sources and initiate
transmissions in the first place is by no means straightforward. Even so,
substantial agreement is beginning to emerge regarding the critical features
of the Internet that must be captured by an effective model. Existing literature
[see, for example, Kelly (1997), Willinger and Paxson (1998), Gibbens and
Kelly (1999), and Kelly (2000)] allows us to make the following observations
about the Internet:

1. Like the stock market, there is an amazingly detailed and accurate, tempo-
rally and spatially comprehensive, data record of Internet usage at all levels
of disaggregation, owing to the way TCP is implemented.

2. So-called burstiness describes Internet traffic whereby the natural time scale
for which Internet transmissions display periods-of-greater than average
activity and less-than-average activity is around 10 msec (in contrast with
classical telephony for which the time scale is 100 msec). However, bursts
of longer duration do occur on the Internet; indeed Internet traffic seems to
involve multiple time scales.

3. Like the stock market, empirical evidence suggests that so-called power law
distributions with high variability and fat tails describe the usage of individ-
ual sources and classes of sources on the Internet. That is to say, Poisson-
type queueing models used in traditional mathematical telephony are not
relevant. Indeed, empirical evidence indicates that the proper distributions
must correspond to what some have called fractal-Gaussian noise. This self-
similarity has been widely observed for Internet traffic, in that finer and
finer time scale resolution yields qualitatively similar distributions so that
a fractal nature is displayed. It is also likely that the fat tails of empirical
distributions arise from long range (in time) dependence associated with
substantial autocorrelations over time periods that are several multiples of
the intrinsic time scale.

4. Data indicate that with near statistical certainty, aggregate Internet traffic
grows exponentially. Although, Poisson-type models must be rejected as
a foundation for describing the arrivals of individual data packets within
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the Internet, there is very good evidence that Poisson models are quite
appropriate for characterizing arrivals of humans to the Internet.

5. Statistical inference is not a reliable means of modeling the Internet, aside
from forecasting an overall growth in its usage.

6. Simple deterministic differential equations will never be adequate for de-
scribing Internet dynamics.

7. Stochastic differential equations based on Brownian motion (Wiener proc-
esses) that are so popular right now in financial engineering are also not
fully appropriate since they presume Gaussian distributions without fat tails
[Mantegna and Stanley (2000)]. So one cannot without modification apply
the main results of the Itô calculus.

8. Any equilibria realized on the Internet will correspond to very short time
scales and, consequently, notions of moving equilibria and disequilibria
must be included in any dynamic models of the Internet.

9. Optimization and game-theoretic models needed for Internet design and
control will be dynamic, stochastic and require new algorithms and numer-
ical methods.

A consequence of this emerging consensus is that “simple” mathematical
models of the Internet are almost certainly doomed to have little explanatory
power.

Rather it will be necessary in modeling the Internet to deal directly with
its nonlinearity, stochasticity and dynamic nature that make it much more akin
to the stock market than to classical telephony. Even so, it will be necessary
to modify the stochastic differential equations/infinite dimensional variational
inequality approach developed for modeling securities11 before it may be used
to model the Internet. In so doing, one is lead directly to formulations that
view Internet users as noncooperative game agents whose realized rates of data
transmission are state variables devolving from dynamics that view protocols as
controls; these dynamics involve an intrinsic stochastic term that corresponds
to Levy-stable distributions with fat tails; that is, one is led directly to stochastic
DVIs.

8. Concluding Remarks

We have introduced the reader to the differential variational inequality
framework and discussed its usefulness in modeling dynamic games. An
introduction has been given to dynamic game theory and the different forms

11 See in particular Wilmott et. al (1993) for an excellent introduction to how stochastic
differential equations and infinite dimensional variational inequalities are applied to the study
of options.
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that these games may take. Furthermore, two case studies for ongoing and
future research into limited warfare and the Internet were introduced which also
take the form of dynamic noncooperative games and as such may be modeled
using the DVI framework.
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Abstract Much of the complexity in modern enterprises emerges from the nonlinear and
likely chaotic dynamics of the underlying processes. These processes are defined
over multiple scales of system granularity, for e.g., supply chain-level, through
shop floors, down to a machine or a core physical operation level. Character-
ization of this complexity is imperative for improving predictability of quality
and performance in modern physical and engineered systems. In this paper
we present some theoretical developments and tools aimed at advancing the
applications of nonlinear dynamic systems principles in manufacturing processes
and systems, with specific emphasis on characterizing and harnessing chaos in
these complex systems. We examine the current developments in addressing pre-
dictability in two important facets of a manufacturing enterprise, namely, process
level characterization and monitoring, and systems level characterization. For
each case, we concisely evaluate the relevant alternative approaches and layout
certain open issues. We hope that this paper will spur further development of
methodologies adapting nonlinear dynamics and chaos principles for advancing
various aspects of manufacturing enterprises.

Keywords: intelligent agents; manufacturing; fractals

1. Introduction

A vast majority of real-world systems and processes are nonlinear. They
exhibit a variety of behaviors depending on how these processes are initiated,
and their emergent behaviors can be completely altered by introducing various
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forms of stimuli. Also, most physical systems exhibit aperiodic, strange, and
irregular behaviors; periodic behavior is a rarity. However, for a long time,
many engineering applications have been using linear models to analyze and
control the underlying processes. This is because, accurate nonlinear models
are perceived to be computationally intractable. Many theories of real-world
systems including those in manufacturing are formulated based on a linear
perspective.

However, linear models do not capture several critical and strange behaviors
encountered in the real processes. With the advancements in computing power,
researchers have now realized the importance of studying nonlinear dynamics
and chaos associated with these processes. Concepts commonly bundled as
chaos theory have facilitated the study of these “strange” and complex behav-
iors.

During the last decade, several investigations into characterization, moni-
toring and control of manufacturing enterprise systems, from the enterprise-
level down to a machine level, have started to take a nonlinear viewpoint.
This paper reviews some of the recent advancements in the application of
nonlinear dynamics in manufacturing. Specifically, we plan to present some
of the authors’ decade-long investigations into characterization, monitoring,
and control of manufacturing systems at the process level (Section 3), as well
as characterization and performance prediction of a complex manufacturing
system (Section 4). We hope that our limited and focused review will exemplify
the advancements being made in the application of nonlinear dynamics to
several other manufacturing enterprise processes and aspects therein.

2. A Primer to Relevant Aspects of Nonlinear Dynamics

Many physical systems, including manufacturing enterprises that produce
continuous-time response, may be modeled by a set of differential equations
of the form

dx/dt = F(x)dt (1)

where F(x) is generally a nonlinear vector field. The solution to (1) results in
a trajectory

x = f (x(0), t) (2)

where f represents the flow that determines the evolution of x(t) for a
particular initial condition x(0).

If the system is dissipative, as the system trajectories evolve from different
initial conditions, the solutions usually shrink asymptotically to a compact
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(closed and bounded) subset of the whole state space. This compact subset,
representing the steady-state of the system, is called an attracting set. Every
attracting disjoint subset of an attracting set is called an attractor (Nayfeh,
1995; Moon, 1987). For specified operating conditions, represented by a
process parameter vector p, the dynamics may have multiple attractors. Unlike
linear systems, the different attractors may portray significantly different types
of behaviors ranging from static, quasiperiodic to chaotic.

As the attractors usually remain bounded, the flow exhibits a recurrent
pattern, where trajectories starting from near-by points within an attractor may
get separated exponentially as the system evolves. This condition is known
as the sensitive dependence on initial condition (SDIC), and the attractor
exhibiting SDIC is called a chaotic attractor. Trajectories from chaotic attractor
are irregular and aperiodic with a continuous broadband spectrum. Chaotic at-
tractors usually exhibit a special property of self-similarity or scale invariance –
i.e., the response appears similar over multiple scales of observation. These
scale invariant entities are commonly known as fractals.

An attractor may be locally stable or unstable depending on whether a
trajectory initiating from an immediate vicinity of an attractor converges
thereto, or diverges therefrom. Behavior of a nonlinear process may undergo
an abrupt change as p is varied. This phenomenon is called a bifurcation.
The value of p at which bifurcation occurs constitutes a bifurcation point.
Bifurcation diagrams graphically delineate the influence of p on the dynamics,
whose behavior is usually represented by a suitable “behavior functional” such
as the amplitudes or periodicity of different orbits. If a bifurcation can be
captured by means of local analysis around a simple attractor, it is said to
be local; otherwise the bifurcation is said to be global. Local bifurcations
are much easier to analyze. They occur whenever the linearized flow about
an equilibrium point has exactly one purely imaginary eigenvalue. Global
bifurcations take place in the presence of null eigenvalues and/or many purely
imaginary eigenvalues. Global bifurcations result in very complex patterns.
Their analysis is not tractable using currently available mathematical and
scientific tools. However, state space reconstruction techniques (Nayfeh, 1995)
may turn out to be extremely useful in capturing global bifurcations.

3. Process-Level Characterization, Monitoring and Control of

a Manufacturing System

Machining is one of the most ubiquitous operations in a manufacturing
system. About 70% of products produced in modern manufacturing enterprises
are known to undergo machining process at some stage of their production.
Outcome of this process oftentimes determines the quality and the operational
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performance of products emerging from a manufacturing enterprise system.
Machining dynamics is the coupled dynamics of cutting process (CP) and
machine tool structure (MTS). Variations in the uncut chip thickness resulting
from vibrations, in turn, cause cutting force variations, thus sustaining ma-
chining dynamics (Tobias, 1965). Apart from dynamic cutting forces resulting
from uncut chip thickness variations, disturbances due to chip breakage,
chip interference, non-homogeneity of the work material, etc., contribute to
vibrations in machining.

Local instabilities in machining dynamics may lead to an anomalous
condition called chatter, which often manifests as an accentuation in vibration
amplitudes, at times accompanied by a characteristic sound (Tobias, 1965;
Koenigsberger, 1970). Chatter is the chief determinant of quality during preci-
sion machining of critical components for aerospace and medical applications.
Chatter leads to poor surface finish, surface integrity and dimensional accuracy
of the workpiece. It promotes cutting tool wear and other modes of cutting
tool failure, damages the machine tool, and renders the work-area more prone
to accidents. Chatter cannot be completely eliminated due to the presence
of material and geometrical inhomogenities. Hence, modeling and control
techniques are essential for improving performance.

Several researchers have studied the initiation and growth of chatter in
machining through both purely experimental as well as lumped dynamic
modeling (see Ehmann, 1997 for a recent review). For a long time, chatter
was proposed to occur mainly due to the regenerative effects and mode
coupling (Tobias, 1965; Koenigsberger, 1970; Albercht, 1965; Minis, 1990),
assuming that machining dynamics is linear. Regenerative chatter can occur
when machining is performed on a previously machined surface. The surface
undulations left by the previous cut cause linear resonance conditions, thereby
accentuating the cutting tool vibrations. Mode coupling chatter results from
the resonance conditions prevailing due to the interaction between the cutting
force components acting in different directions. These propositions have been
able to explain many behavioral patterns of chatter, and they have led to the
development of many monitoring and control paradigms.

Almost contemporaneously, nonlinearities in machining dynamics were
recognized (Tlusty, 1981; Grabec, 1988; Lin, 1991). Tobias and his group
modeled cutting forces as a nonlinear (polynomial) function of the delay term
(x1(t)−x1(t − τ)), and its higher order derivatives. This model has formed the
basis for a few recent nonlinear dynamics-based studies of machining dynamics
and chatter. Tlusty and Ismail (Tlusty, 1981) proposed that the finiteness of
chatter amplitudes occurs due to momentary losses of workpiece−tool contact
and concomitant interruptions of the driving force. These were among the
earliest recognitions of the nonlinearities in machining dynamics. The so-called
secondary nonlinear effects like shear angle variations, ploughing phenomena,
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rake face processes, and chip segmentation have also been recognized to be
part of cutting process dynamics that can lead to chatter (Albercht, 1965;
Komanduri, 1981).

Grabec (Grabec, 1988) proposed a two degrees-of-freedom nonlinear model
to describe machining dynamics. He took coupled nonlinear variation of cutting
forces relative to tool deflections and its higher order terms into account, but
did not explicitly consider regenerative effects. Next, Lin and Weng (Lin, 1991)
considered the variation of the shear angle due to the regenerative effect and
improved Grabec’s nonlinear model. Bukkapatnam et al. (Bukkapatnam, 1995)
provided extensive experimental evidence that machining dynamics is low-
dimensional chaotic under normal operating conditions. Nayfeh et al. (Nayfeh,
1997) studied Tobias’ model, and characterized a subcritical hopf bifurcation
as the source of chatter. They also demonstrated, through experimentation with
boring process, that the post-bifurcation dynamics has multiple attractors which
are consistent with a subcritical Hopf bifurcation (Nayfeh, 1995). Kalmar-Nagy
et al. (Kalmar-Nagy, 1999) studied the same model and characterized the pre-
and post-bifurcation attractors. They have also characterized certain nonlinear
phenomena observed during machining operations.

However, most of the recent efforts concentrate on regeneration as the
source of chatter. In reality, machining dynamics exhibits a rich set of dynamic
behaviors. The current understandings and available models fail to explain
many behavioral patterns of the vibration and force signals obtained from
actual experiments (Bukkapatnam, 1999). These observations provide evidence
for the existence of multiple bifurcations in dynamics and various similar man-
ufacturing processes (Bukkapatnam, 2005). Future research in this direction
must address the application of nonlinear dynamics to characterize and analyze
these behaviors in order to improve predictability and monitoring of a process,
and hence the system performance.

3.1 Process Monitoring

Monitoring requirements for nonlinear processes and systems are much
more demanding than those for a linear process. For example, Fourier analysis
for the most part may not be of avail. Process monitoring usually involves the
following six subtasks:

1. Characterization: Assessing, through preliminary experimentation along
with statistical and nonlinear dynamic hypothesis testing, the behaviors
emerging as a consequence of complex system dynamics. The results of
characterization determine the exact methodologies to be employed in the
subsequent stages of monitoring.
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2. Data acquisition: Selecting appropriate sensors, designing and performing
experiments, and collecting sensor data in a form amenable to further analy-
sis.

3. Signal representation: Expressing/modeling a signal in terms of the compo-
nents of certain basis vectors, so that understanding of patterns contained in
the signal and the procedure for feature extraction will be much simpler and
efficient in the transformed space.

4. Signal separation: Filtering out undesired signal components (contami-
nants) from the measured signal so that the accuracy of state estimation can
be improved. This subtask is also called denoising.

5. Feature extraction: Extracting certain model parameters/coefficients from a
properly represented signal. The extracted features should be sensitive to the
state variables to be estimated.

6. State mapping: Associating the extracted features with an appropriate
representation of unknown state variables.

A typical monitoring system may not involve all the above six subtasks.
This is because the monitoring methodology, and the techniques employed
therein vary significantly with the characteristics of the process dynamics
and sensor signals. If the measured sensor signals are stationary, ARMA-
type standard time-series models will be sufficient for signal representation.
However, the measured signals from a manufacturing process or a system
are hardly stationary because of the complex nature of the underlying dy-
namics. Furthermore, if the dynamics were to be linear, the response consists
of finite multiple harmonics, and may be parsimoniously represented using
Fourier representation. If the process dynamics is nonlinear, depending on
the type of nonlinearity, nonlinear function approximations such as radial
basis functions, wavelet transforms and neural networks may be employed
for parsimonious signal representation. In addition, if the process dynamics
exhibits low-dimensional chaos, the response is usually fractal-like. In such a
case, parameters such as fractal dimensions serve as effective signal features.
A list of these alternative techniques for performing different monitoring tasks
is presented in Table 1. A detailed description of the individual subtasks is
provided in the following subsections.

Process Characterization: The twin assumptions that the dynamics of a
given process or system is chaotic and the sensor signals are not highly
contaminated1 underlie the application of fractal analysis. If these assumptions
are not valid, the values of parameters/coefficients calculated using fractal
analysis have little relevance to the characteristics of sensor signals. An
experimental validation of the assumption of the dynamics as being chaotic

1 Contamination refers to both measurements noise and dynamic contamination.
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Table 1. Different techniques for process monitoring – A summary

Monitoring subtask Technique Assumptions/conditions for applica-
tion

Data acquisition FFT Linear system with stationary additive
noise

DWT Nonstationary, piecewise linear models
Nyquist sampling Linear system
highest sampling rate Nonlinear, usually chaotic, systems

Signal representation Fourier analysis Linear systems with additive noise, har-
monic response

Wavelet analysis Nonstationary signal, piecewise linear
system

Karhunen-Loeve expansion Piecewise stationary stochastic process,
Linear system

ARMA-type models Stationary signal, linear system

Signal separation Band-pass filtering Linear system with stationary additive
noise

Linear opt-filtering algorithms “Known” additive noise
Wavelet-based denoising Nonstationary, possibly nonlinear signal
Neural network Unknown noise characteristics, known

desired behavior
Shadowing Chaotic signal with known noise distrib-

ution
Neighborhood method Known desired signal characteristics

Feature extraction Fourier coefficients Harmonic signal, linear system
Wavelet coefficients Nonharmonic, nonstationary signal
STFT Piecewise stationary linear system
ARMA Stationary signal, linear system
RBF Nonlinear system, response with addi-

tive noise
Fractal dimensions chaotic systems
“specialized” model coefficients System nonlinear characteristics under-

stood
Kalman filtering Linear system, stationary additive noise

State estimation EKF, EBKF Weakly nonlinear systems
Neural networks Unknown relationships

may be done using a battery of tests involving statistical and nonlinear
dynamics principles. A typical sequence of experiments for characterization
may be found in (Bukkapatnam, 1995; Bukkapatnam, 1999; Bukkapatnam,
2000; Bukkapatnam, 2005) For characterizing machining process dynamics,
we designed and conducted experiments, and performed graphical analysis of
the measured signals. The graphical analysis suggested that the dynamics may
be chaotic. In order to ascertain this result, we developed/used (i) surrogate data
test, (ii) quasiperiodicity test, and (iii) Lyapunov exponents test. The results of
these tests clearly established that turning process exhibits low-dimensional
chaos in the normal operating conditions. The main implication of this result is
that the dynamics is controllable using the principles of chaos theory.
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Data acquisition: If the process exhibits low-dimensional chaos, peri-
odogram and Fourier analysis of sensor signals are, to the most extent,
meaningless. The data acquisition system should possess the highest possible
sampling rate. This is especially true if one is interested in visualizing the
structure of an attractor.

The sensors should be selected such that the signals therefrom contain def-
inite pattern which can be mathematically related to unknown state variables.
For example, force and vibration signals contain patterns which that can be
related to the flank wear. Hence for flank wear estimation, we used force and
vibration sensor signals (Kumara, 1994).

Signal representation: Signal representation is the key step in process mon-
itoring because in many instances signal representation directly leads to signal
compression, separation and feature extraction. Signal representation is usually
carried out using linear time-series models such as ARMA, Fourier and wavelet
models. It consists of approximating a given signal by a combination of certain
basis functions. The model parameters lie in a transformed space, and these
coefficients sometimes serve as features. In signal representation, parsimony is
of utmost importance. That is the signal must be accurately represented using
minimum number of basis functions. In many instances, signal representation
is considered to be synonymous with signal compression.

Signal separation: Any signal obtained from on-line sensors is laden with
noise, which has to be properly filtered out. If the dynamics underlying the
signals were linear, Fourier analysis would have been adequate. But a nonlinear
measured signal can be contaminated by measurement noise and/or dynamical
noise (extraneous dynamics). Therefore, separation of contamination from the
measured signal becomes very difficult (Schouten, 1994). Techniques such
as shadowing, wavelet denoising, and neighborhood techniques may be used
when the signal emanates from a low-dimensional chaotic attractor.

For example, we used wavelet denoising method to perform signal sepa-
ration on force and vibration sensor signals obtained from experimentation.
Wavelet denoising method (Johnstone, 1995) involves performing a discrete
wavelet tranform (DWT) of the measured signal, obtaining the threshold
from the wavelet transform coefficients, performing soft-thresholding of those
coefficients and inverse transforming-back to the time-domain. In our case
(Bukkapatnam, 2000) the use of wavelet denoising enhances the performance
of feature extraction.

Feature extraction: If the signal is stationary or the process dynamics is
linear, the coefficients of the basis functions themselves serve as signal features.
However, especially when the process dynamics is chaotic, choice of basis
function is never “correct”. Therefore, other properties of signal have to be
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used. For example, for signal obtained from the turning process, we used fractal
dimensions of the measured signal as the features. The fractal dimensions
constitute a very parsimonious set of features that can be related to the
unknown state.

State mapping: The essence of state mapping involves developing a model
to relate the extracted signal features to the unknown state variables. The type
of model can range from a simple regression model and a differential equation
model to a neural network model. The choice of the model depends mainly on

• desired rate of generation of the state estimates,
• need for global modeling,
• understanding of the mathematical structure of the underlying signal-state

relationship, and
• level of accuracy desired.

For many manufacturing processes including the basic turning process, the
underling process mechanism is not completely understood. Hence neural
network models are common. For example, for continuous estimation of
tool wear in the turning process, two neural network architectures have been
proposed by the first author of this paper and his group in the Intelligent
Design and Diagnostics Research (now, LISQ) Laboratory, Pennsylvania State
University.

The first method, developed by Kamarthi (Kamarthi, 1994) involved relating
the signal feature with flank wear using a hybrid radial basis network. The
signal features corresponded to the coefficients of ARMA model of force and
vibration sensor signals and some coefficients in the wavelet representation of
acoustic emission signals. Flank wear was represented by the height of the flank
wear land.

The second method developed by Bukkapatnam et al. (Bukkapatnam, 2000)
used a simple two-layer feed forward neural network to relate the signal
features to the flank wear. The signal features consisted of the values of fractal
dimensions computed from the measured signal.

3.2 Specific Applications

In this section, we will concisely present some research highlights on using
nonlinear dynamics for sensing a particular type of nonlinear signal called
Acoustic Emission (AE) occurring in machining process. AE refers to the
high-frequency micro-elastic pulses generated in a material undergoing plastic
deformation. In machining, deformation and/or friction at the shear zone, the
rake and the flank faces are the three main sources of AE. Chip entanglement,
crack formation and propagation, and chip breakage are also known to be AE
sources (Byrne, 1995).
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Figure 1. Recurring patterns in a representative lag plot of AE signals reveal a
finite-dimensional attractor.

In the recent past, AE has emerged as a promising means to monitor
machining processes (Byrne, 1995; Blum, 1990; Kannatey-Asibu, 1981; Liu,
1996), especially to detect breakage and other catastrophic failures. Recently,
Bukkapatnam et al. analyzed AE signals collected from four different labo-
ratories across the USA and Europe using nonlinear analysis methodologies
(Bukkapatnam, 1999). They have found consistently recurring patterns un-
derlying high frequency AE components, which were hither to categorized
as noise. A sample lag plot of our findings is shown in Figure 1. Their
characterizations have confirmed that AE signals exhibit chaotic behavior,
and these high-frequency AE components emanate from a finite-dimensional
attractor of a nonlinear process. This result implies that the common practice
of filtering out high frequency non-stationary AE components as noise may not
be appropriate.

Building on this result, Bukkapatnam et al. designed an extremely compact
Suboptimal Wavelet Packet Representation (SWPR) for AE (Bukkapatnam,
1999), necessary for building real-time control models. This method was
recently enhanced to yield customized basis functions for AE (Knapp, 1998),
which was one of the first applications of lifting scheme in manufacturing.

Another challenge associated with sensing of nonlinear signals such as
AE is noise suppression. Unlike linear signals, noise may occur in the same
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frequency bands as the desired signal, and hence band-pass filtering may not be
appropriate. Bukkapatnam et al. developed a modified wavelet method (MWM)
to address noise suppression in AE and similar signals. An MWM-separated
signal strongly converges in mean to the best linear predictor of a noise-free
trajectory. Also, it will remain bounded relative to the noise-free trajectory even
in the presence of low multiplicative noise (Bukkapatnam, 2000).

The nonlinear quantifiers such as fractal dimensions extracted from MWM-
separated signals serve as excellent features for on-line state estimation.
Bukkapatnam et al. designed an over 90% accurate continuous estimator of
flank wear in machining using these fractal quantifiers (Bukkapatnam, 2000),
which capture the variation of machining dynamics with flank wear. Wavelet
coefficients can be used to estimated energy distributed over various scales of
resolution. These scale limited energies can serve as effective features to detect
various faults in a system (Kumara, 1999)

In addition to monitoring, nonlinear dynamics principles can significantly
advance process control. For example, chatter in machining, manifested as a
limit cycle, was suppressed through simple feedback linearization (Kalmar-
Nagy, 1999). Bukkapatnam et al. developed a robust control Lyapunov function
(RCLF) using their characterization of nonlinearity in machining (Bukkap-
atnam, 1999). The control input synthesized based on this RCLF was found
to suppress tool vibrations under both periodic and chaotic regimes, and was
found to suppress chatter faster than the input synthesized using linear models.

Also, manufactured surfaces often exhibit fractal-like characteristics
(Bhushan, 1995; Whitehouse, 1994). Fractal models provide insights on
various functional and operational behaviors of surfaces well as surface-
bearing components (Brown, 1998). Several quantifiers, including various
fractal dimensions, structure functions, energy functions, scaling functions,
as well as parameters such as power-law coefficients and lacunarity have
employed to characterize these surfaces. Structure functions computed through
multi-scale representations have also been found to be adequate quantifiers.
The various fractal dimensions computed from profiles and/or surface patches
are the most commonly used (Brown, 1993). These quantifiers have shown
remarkable correlation with certain functional characteristics, specifically those
of worn and fractured surfaces (Whitehouse, 1994). Apart from exhibiting
multifractal properties, surface profiles have been speculated to be signatures
of chaotic processes (Stark, 1999). The recent nonlinear analysis methods can
further enhance surface characterization, modeling, and, to an extent, control.
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4. Manufacturing Systems Characterization and Monitoring

Increasing global competition and eroding margins for manufacturers have
been turning many products into commodities. More than ever, customers
are demanding lower prices, higher quality, new and customized products.
Manufacturing in such challenging environment requires new approaches for
its design and operations. Because of the need for flexibility and fast adapt-
ability of the production schedule to changes in demands, a more dynamic,
rather than a static view of the production systems is needed. The advent of
inexpensive sensor and data-logging technologies enable the manufacturing
plants to operate in data-rich environments. These vast amounts of data can be
harvested to build dynamic manufacturing models that offer the opportunities
for realistic feedback and real-time control. This can help the system to respond
in a fast and flexible manner to unplanned events in real-time.

The objective of this study reported in this section is to present an approach
to model a manufacturing system that can capture the underlying nonlinear sto-
chastic dynamics so one can gain a dynamic view of the system performance in
terms of key variables such as work in process (WIP), backlog and throughput
(Earni, March 2006). The resulting model can also help to track variations
in the performance of a manufacturing system due to changing external
and internal conditions. This in turn will help to design/redesign appropriate
inventory and supply management policies. Also, by clearly understanding
the dynamics of a manufacturing system, one would be able to run “what-if”
scenarios to fully understand the implications of a disturbance (like machine
break down, or rush order) in the system, and react to them more proactively
instead of reactively. As an initial step in this direction, a simple discrete time
sampled flow model, based on fundamental production control principles, is
presented. It encapsulates a pull based manufacturing system. Based on this
model, different control theoretic analyses were attempted to gain insights to
better understand the performance of this system.

4.1 Manufacturing System Dynamics Modeling

The past research efforts on dynamic behavior of systems, specifically
manufacturing systems, used six different approaches. Most of the research
on improving the dynamic behavior of individual manufacturing enterprises is
mostly focused on supply chain management and may be broadly categorized
as follows.

Management games such as the Beer Game (Sterman, March 1989) are
useful tools to illustrate the benefits of different supply chain strategies. The
beer distribution game mimics the ordering and production decisions of a
supply chain and let the players decide how much products need to be ordered
to fulfill the demand. This game illustrates the effect of delays on order
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processing, production and shipping. These games provide anecdotal evidence
and are a good learning device although they cannot be used for verifiable
design of these systems. Other authors like van Ackere et al. (Ackere, 1993);
Kaminsky and Simchi-Levi (Kaminsky, 1998) have extended or computerized
this beer game approach.

Statistical approaches provide insights about the impact of demand prop-
erties such as standard deviation and correlation, and properties such as lead-
times and information paths on inventory costs. Statistical methods are often
used to quantify performance of real situations. These methods however, fail
to show how to reduce or eliminate the detrimental dynamic effects, such as
demand amplification. Physical insights into the causes and effects of system
structure on performance are rarely obtained from these approaches.

Industrial dynamics, also known as system dynamics advocated by For-
rester (Forrester, 1961), is a method of investigating the dynamical effects in
large nonlinear systems without resorting to complicated mathematical control
theory based models. Towill (Towill, 1994) studied the industrial dynamics
models within the context of living and planned supply chains as utilized
successfully by adopting a holistic approach in which the basic disciplines of
industrial engineering and business process reengineering are integrated into
a comprehensive methodology (Towill, 1993). Dejonckheere et al. (Dejonck-
heere, 2000) developed a control theoretic approach to measure and mitigates
the variance amplification of orders within order-up-to policies and proved
that these policies will always generate a bullwhip effect. Recent significant
contributions in this area include from (Chen, 2000; Chen, 2000; Popplewell,
1987)

Simulation approaches alone suffer from being cumbersome, time consum-
ing and only provide limited insight (Popplewell, 1987), but they do have the
advantage of being able to model nonlinearities while avoiding complicated
mathematics. Previous work using simulation is very prolific and includes (For-
rester, 1961) and (Coyle, November/December 1982), who studied traditional
supply chain structures (Cachon, 1997) and Waller, Johnson and Davis (1999)
who studied vendor managed inventory (VMI).

Pritschow and Wiendahl (Pritschow, 1995) presented a dynamic application
of control theory for production logistics and studied the effect of short term
market changes and disturbances on the performance. Kilpatrick (Kilpatrick,
2003) developed a comprehensive framework for improving production effi-
ciency using lean manufacturing principles. A model was created to analyze the
dynamics of linear distribution systems, and showed how lean manufacturing
represents an opportunity to sidestep many previously insurmountable difficul-
ties that arise as a result of producing to fill inventory levels. The current efforts
have addressed the characterization and modeling of manufacturing systems
as nonlinear processes (Parunak, 1991; Wiendahl, 1999; Bongaerts, 1997).
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Researchers have identified and characterized certain types of bifurcations in
these systems (Parunak, 1991). Van Brussel and his research group developed
the concept of holonic manufacturing to combine optimized schedules with
robustness to disturbances, and have developed algorithms and software to
implement this concept (Bongaerts, 1997).

Scholz-Reiter and Mueller (Scholz-Reiter, 2000) studied closed-loop pro-
duction systems supported by neural networks. In addition to the developed
buffer inventory control with neural networks, the suitability of neural networks
for control of throughput time in production systems was also examined.
The neural networks influence the release time of orders and the level of
buffer inventory at the work systems, due to the difference in set value of
throughput time. Conventional production control methods are normally based
on static models, Wiendahl and Breithaupt (Wiendahl, 1999) developed a
new general concept for dynamic modeling of job shop productions using
control theory methods. Two controllers were developed: distributed backlog
controller and a central WIP controller to track and improve the performance
of a manufacturing system. Kim et al. (Kim, 2004) proposed a discrete
dynamic model of a single workstation that can be used to design and
analyze control algorithms for closed loop production system that can track
the performance, especially in response to disturbances such as rush orders
and periodic fluctuations in capacity, while ensuring that dynamic behavior
remains favorable and robust. Methods of control engineering, such as transfer
function and frequency response analysis, are used to make to study and
improve the dynamic behavior of the system. Ratering et al. (Ratering, 2003)
proposed integrated methods of control engineering with methods of produc-
tion engineering to improve robustness and performance of production systems,
while making dynamic analysis tractable and improving the understanding of
complex behavior. Wiendahl and Westkamper (Wiendahl, 2002) used control
theory to link external and internal requirements of a production system with
manipulated variables of this system. Cho and Prabhu (Cho, September, 2002)
presented a continuous feedback control approach for real-time scheduling
of discrete events in distributed manufacturing applications and demonstrated
highly nonlinear and discontinuous dynamic behavior, specifically, when the
production demand in the manufacturing system exceeds the available resource
capacity, then the control system “chatters” and exhibits sliding modes. Duffie
and Falu (Duffie, 2002) developed a control-theoretic analysis with closed-loop
control of backlog and WIP.

4.2 Modeling and Implementation Details

The system considered is a three station one product manufacturing model
and is built on the concept of pull based manufacturing. The demand as seen by
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Figure 2. Schematic of a 3 stage assembly operation.

the final assembly operation (3) is translated into actual supplier requirements
(Figure 2) and sent to the upstream supply requirements. Work-in-process
(WIP), buffers before the workstation (jobs waiting for machine time), actual
product delivered in response to the demand (throughput) and cycle time are
some of the key performance indicators chosen to assess the performance of
this manufacturing system.

The model uses two types of flows – information and material flow are
modeled as discrete time functions. The information flow is the customer order
information and signal authorizing the station to start production. The variable
demand from the customer is received by the final workstation, and in response
this workstation generates a Kanban signal to the downstream workstation to
start production. This information is passed down the production sequence till
the end of the line. In this model, we assumed that it takes one hour to relay the
Kanban signal and two hours to actually deliver the products and an assembly
time of one hour for each workstation. All times in the models are assumed
to be deterministic. The initial conditions for all the variables is assumed to
be zero, assumption was also made that all the capacities of the stations were
known and equal for all times within the time horizon.

4.3 Results and Analysis

a. Behavior Analysis:
In this section, a comprehensive stability analysis of aforementioned manu-

facturing system is presented. Stability refers to the ability of a system return
back to equilibrium following a perturbation (e.g. demand change). In other
words, instability causes oscillatory (not necessarily periodic) behavior of
increasing magnitudes over time. Unlike physical systems, in manufacturing
systems global instability is rare since it is impossible for production rates
to increase without bound. However, linear dynamical systems approaching
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Figure 3. Manufacturing system behavior plots for varying conditions of demand.

instability typically exhibit oscillatory behavior which, in this application, is
manifested as demand amplification. So an appreciation of the configurations
of operating conditions that lead to instability should enlighten practitioners
to the mechanism of demand amplification (if the delay between the work-
stations is high) and lead to facilitate its attenuation. The performance of the
manufacturing system is analyzed using the models and tested for different
demand conditions with varying mean and variance and the response variables
like WIP at different workstations and throughput were monitored. The ranges
for both mean and standard deviation of the demand patterns tested lay between
0 and 10 items/hr. Based on the analyses, four different distinct state behaviors
were observed (Figure 3) – static (light purple), steady & low amplitude
(yellow), steady & high amplitude (green), and unsteady (dark purple). It is
also observed that behaviors found to be more sensitive to variations than the
level of demand (mean).

The results presented in Figure 3 motivates the dangers in defining single
operation policies, the static (Type 1) behavior of throughput can be observed
across a band where both the mean and variance are increased proportionally.
However, the system gradually starts to shift to steady (Types 2 and 3) before
finally going to unsteady state (Type 4) with increasing variance of demand
for the same mean. Also, increasing the mean keeping the variance constant
will shift the pattern from static to steady. Similar conclusions can be drawn



5. Characterization and Monitoring of Nonlinear Dynamics 115

Figure 4. Frequency Response Plots for the manufacturing system.

from the other WIP plots; the variance in the demand is essentially causing the
instability in the system. From the above discussion, one can conclude that the
inventory and other replenishment policies have to be carefully designed by
considering the relative location of the system response on the map.

b. Frequency Domain Analysis:
Frequency response analysis is important for three primary reasons. First, if

the frequency response is known the response of the manufacturing system
(throughput or WIP) can be predicted for any input conditions. Sinusoidal
waveforms can be combined to form other (non-sinusoidal) waveforms and
can be used to understand the system’s response to more complex inputs.
Second, by understanding this behavior one can design different manufac-
turing strategies for different operating conditions, with particular frequency
characteristics. Third main advantage in analyzing in frequency domain is that
nonlinear effects, such as powers and product interactions of the parameters,
can be detected with no additional experimentation. When the parameters are
driven by sinusoidal oscillations, it turns out that the interactions of the para-
meters are driven by compound oscillations which are the sums of sinusoidal
oscillations. Figure 4 shows the frequency response plots for both low demand
and high demand variation case, as you increase the variation associated with
the incoming demand, the dominant frequencies become distinct. For the case
of high demand variation, the dominant frequency is about 2.75 × 104 rad/hr
(458 rad/sec) i.e., in other words if the frequency of the incoming demand is
2.75 × 104 rad/hr the manufacturing system exhibits unstable behavior.

c. Linearized Response Analysis:
As evidenced from Figure 3, the system response under varying conditions

of demand is nonlinear. In order to fully understand this system behavior, the
nonlinear response is linearized around a particular operating settings. The
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Figure 5. Step Response for Products delivered (top) and WIP3 in response to a unit
demand.

Figure 6. Impulse Response of Throughputs and WIP (Station 3).

step response for this linearized model is shown in Figure 5 and Figure 6.
Figure 5 shows the linearized response for the throughput and work-in-process
at workstation 3 (WIP3) for a system with no initial buffer between the
workstations. As indicated the total lead time for this system is 12 hours, and it
takes about 25 hours (13 hours after the impact is felt) for the system to settle



5. Characterization and Monitoring of Nonlinear Dynamics 117

down and to recover from the impact with no steady state error. During the
transient phase of products delivered, it appears that there are some backlogs
in the orders. The WIP3 step response is more damped than the products
delivered response. The inventory or buffer policies between the workstations
determine the damped nature of the response, for example Figure 5 represents
the linearized step response with no initial buffer is a critically damped system,
while the response in Figure 6 is an under-damped system. Based on the desired
objectives of the manufacturing system, one can design inventory control
policies that are fast reacting, and more proactive in negating the effects of
this impact.

4.4 Comparison with Conventional Approaches

The model developed in the previous section assumes a thorough under-
standing of the physical phenomenon and relationships of a process. However,
most often this is not a viable option. Traditional approaches using Laplace
transforms (and other tools enunciated as part of control theory) or min-max-
plus algebraic approaches (discrete event models) are based on the formulations
obtained based on linear assumptions. Our proposed approach (next section)
addresses these issues by formulating a nonlinear dynamic model from real
time data gathered from the shop floor.

The use of DES models (since the states are simply discrete with no metric
structure) can cause combinatorial explosion of the state space. For e.g., if there
are x1 and x2 variables that describe the system, each can take the value of 0 or
1. Then the state space is only 4. On other hand, if there are 20 variables, x1 . . .

x20, each can only take 0 or 1. The state space is 220. This is the combinatorial
or exponential explosion will lead to large computational complexity, as state
transitions are usually not compactly representable using analytical functions

It was observed from our experience and from the literature that the
traditional discrete event based simulations take longer time to converge to
a solution, compared to continuous time based simulations. The discrete
event based models take about 20 hours to complete 100 simulations of 20
years while system dynamics model can accomplish a similar task in about
1 hour (Johnson, 2002). This result is very important because it does have
implications on how and what kinds of models need to be used to investigate
specific problems.

Scholz-Reiter et al. (Scholz-Reiter, 2005) showed that, for a chosen arrival
pattern, the autonomous control strategies can reduce throughput times and
are robust against unexpected disturbances. The use of DES models allows
a good description of real-world shop floor processes, but implementing
autonomous control strategies involves high programming effort. In contrast,
a continuous dynamic model allows an easy implementation of autonomous
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controls, although it describes logistic processes at a higher aggregation level
compared to a DES model.

4.5 Future Modeling Approaches

As mentioned earlier, modern manufacturing plants operate in a very data
rich environment. The data manifests from different sources and devices that
are designed for different specific purposes like quality control, safety control,
process control etc. The data from these different sources on a shop floor may
be harvested into information by building real time dynamic models of the
underlying system. The proposed modeling approach tries to apply dynamic
systems principles to derive data-driven models for manufacturing systems.
Nonlinear dynamic systems theory provides tools for modeling this complexity
and allows continuous monitoring and prediction of dynamic behavior during
operations.

5. Summary

This paper presented and critically compared alternative modeling and
monitoring approaches for studying the performance of a production system
at a process or a machine level as well as at the system level. From the
foregoing, it is evident that principles and practice of manufacturing can be
considerably advanced from using nonlinear dynamics and chaos theory. The
key reason is that the dynamics of most manufacturing processes and systems
is nonlinear. While the research at the process and machine levels have led to
the development of advanced monitoring and control approaches, challenges in
characterizing and modeling systems complex behaviors pose are affecting the
development of adequate predictive modeling approaches for manufacturing
enterprise systems.

Based on a continuous model developed for a simple manufacturing system
using production control principles, control theoretic analysis were conducted
to gain insight into the performance of the system, in order to better predict the
system performance under different conditions of both external and internal
disturbances. These dynamic models and results obtained can be used to
better design/redesign the production control policies to accommodate certain
deficiencies in the performance.

The research efforts thus far have addressed the adaptation of the existing
results in nonlinear dynamics body of knowledge into manufacturing. We
feel that the future efforts must address advancement of nonlinear dynamics
principles, as well as integration of the existing methods with other analysis
tools in order to realize the full potential of nonlinear dynamics and chaos
theory for manufacturing. For example, nonlinear dynamics researchers have
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traditionally not addressed the issues of how to construct nonlinear models
from actual process data, and how to treat noise present in real-world processes.
However, these issues are of great importance to manufacturing process and
systems characterization, especially since adequate and reliable data is very
difficult to obtain in manufacturing systems (Whitehouse, 1994). Research ef-
forts addressing these problems will advance not only manufacturing principles
and practice, but also will render a fundamental contribution to the field of
nonlinear dynamics.
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Abstract The road patterns of major metropolitan areas and constituent jurisdictions
evolve slowly through a complex set of independent and interdependent deci-
sions producing a transportation network. The resulting network must be used for
variety of commuting and spatial interaction activity. A typical trip taker spends
considerable time on the road to reach the workplace and other destinations.
Adding more links to existing road networks and/or increasing traffic capacity
by adding lanes does not necessarily decrease travel times (e.g. Braess’ paradox).
However a dense redundant network of roads provides a trip taker with alternate
routes when traffic jams occur. Such issues raise the question of, how to evaluate
the flow characteristics of the entire road network of a jurisdiction and its larger
region? How might the impact of adding more links/lanes or blocking existing
links/lanes be best measured?

To answer these and related questions, we propose a methodology to evaluate
a fitness criteria for road networks based on Kauffman’s NK model (1993)
and develop an information theoretic measure of the order or organization in
transportation networks.

Keywords: fitness landscapes; NK model; entropy; organization; ITS technology

1. Introduction

Urban road networks are characterized by traffic congestion, incidents and
accidents (Lave, 1985), resulting in travel delays for commuters and other trip
takers on urban road networks (Downs, 1992). The interaction costs of such
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congestion in a regional economy is enormous and factoring in work time lost
to business and commuters makes the sums astronomical (Arnott, Small, 1994).
Increasing capacity of existing freeways by adding more lanes is not always
possible or environmentally desirable and does not always ease the delays. The
much studied Braess’s paradox tells us that congestion may increase as capacity
is increased instead of reducing it (Murchland, 1970). However the costs of
incidents and accidents could be reduced if the trip taker is provided with timely
warnings of such events. ITS (Intelligent Transportation Systems) traveler
management systems hold the promise of providing information on traffic
conditions. However, providing data on traffic conditions alone may be of little
help if there is no underlying processing framework to evaluate and disseminate
the processed information. So what kind of framework might be useful to
process, evaluate and disseminate network flow data? Figures 1 and 2 show
schematics of a possible framework. An urban traffic flow network divided
among a number of zones has one or more traffic management center (TMC) in
each zone. The data collected by non-intrusive surveillance equipment (Figure
2) in each zone is processed by a traffic management center (TMC) in that zone
and disseminated to users. In this paper we develop an analytical model of the
TMC data processing unit and suggest some underlying considerations that
need to be assessed in developing a decision framework for traffic guidance
and management. The analytical model is based on concepts borrowed from
evolutionary biology, especially the concept of fitness landscapes (Kauffman,
1987) and information theory (Appelbaum, 1996; Suhir, 1997) to describe the
organization or order of traffic networks.

So far, with the exception of a few (Herman, 1982) almost all of the
modeling efforts to describe network traffic flows are based on physical
analogs. A survey of the literature shows many attempts to model the dynamics
as well as the equilibrium/disequilibrium network flow conditions that exist
on urban road networks. Both analytical and simulation/experimental studies
have been carried out (Friesz, Bernstein and Stough, 1996; Friesz, Bernstein,
Smith, Tobin and Wie, 1993; Friesz, Bernstein, Mehta, Tobin and Ganjalizadeh,
1994; Mahmassani, 1995; Mahmassani, 1990; Mahmassani, Hu and Jayakrish-
nan, 1992; Mahmassani and Peeta, 1992; Koutsopoulos, 1995.) While, some
modelers have addressed the stochasticity of traffic flows by trying to reduce
the randomness – following the so called micro-simulations approach (for
pioneering work see Chang, Mahmassani, Herman, 1985; Mahmassani, Chang,
1987) and the TRANSIMS model developed by the transportation group at
Los Alamos National Laboratory (Berkbigler, Loose, Davis, Williams, 1995;
Smith, Beckman, Anson, Nagel, Williams, 1995).

In this paper we look at urban traffic flow networks as open dynamic systems

consisting of a large number of agents (users) who interact with each other and
with changes in the environment, similar to biological agents who interact and
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Figure 1. Input data on traffic flow.

Figure 2. A Traffic Management Center (TMC) Flow Chart (schematic inspired by
Mahmassani, 1995).

adapt to ever changing surroundings. In such cases it may be that biological
and information theory based analogs rather than traditional physical analogs
could be used to explain complex dynamic traffic flow systems. Of course, such
an analogy to biological systems is limited to those evolutionary properties
that help explain traffic flows. Next we explain the motivational aspects for
considering a biological analog of a network traffic flow model.
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2. Motivation

In various degrees and shades biological models have been adapted by
fields as different as cosmology (evolutionary universe; Linde, 1994; Coleman,
Hartle, Piran, Weinberg, 1991), economics (evolutionary economics; Tu,1992;
Krugman, 1994, 1995; Arthur, 1989), and sociobiology (Wilson, 1995), to
name a few. Although many workers in other fields view evolution as a concept
to describe gradual changes (as opposed to revolutionary changes) in system
behavior (Fabian, 1998), this perspective is not necessarily consistent with the
evidence of punctuated evolution. Whatever the points of view, all evolutionary
systems consist of a large number of agents whose interactions give rise to
complex system-wide behavior: micro-level actions giving rise to macro-level
patterns of behavior.

Consider for example, an urban road traffic network consisting of a large
number of road segments. Workday traffic on a segment of a highway, typically
has the profile of the morning and evening rush hour peaks with the intervening
troughs for the rest of the day. However, it is quite unlikely that the traffic
pattern profile on a given day matches exactly with those of previous or
following workdays. Indeed the stochasticity of traffic patterns arises in part as
a consequence of “non-collaborative” trips taken by commuters. Commuters
are “aware” of other commuters’ plans to travel only to the extent that they
are going to share the limited resources of time and road space with other
unknown commuters. The commuters do not collaborate or inform each other
of their intended trips and schedules and plan accordingly for their journeys.
Most of the time, commuters follow a loose schedule that they create out of
their day to day experiences of trips on the roads. Thus, traffic is an aggregate
of the multitudes of decisions executed by commuters in a non-collaborative
manner giving rise to traffic patterns. And this occurs despite of master plans
intended to regulate traffic on the roads. Can information theory models help
explain the traffic patterns resulting from actions of distributed agents? Do
biological and information theory models help in understanding concepts such
as organizational order and adaptation? How good an explanation of traffic flow
networks is such a metaphor for the life-like processes.

The appeal of biological models comes from the following. Although
they are somewhat imprecise and fuzzy, they provide a powerful explanatory
framework for dealing with systems consisting of independent but interacting
agents; who change their behavior to suit the dynamics of the environment. So a
model based on these concepts could provide us with some insight into network
traffic flows. Such an insight might be used in the development of tools to assist
ITS systems and thereby improve the traffic flows in the network. For example,
suppose that we know about a specific property that is beneficial to a population
of agents. Then at least in theory, an abstract landscape defined in terms of
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this specific property can be constructed and the dynamics of this property
observed as the population adapts to and modifies the changing landscape. In
evolutionary biology such landscapes are defined by survival fitness. In the
analytical model described in this paper, we use the ease of flow of traffic on

the network as a fitness property to construct abstract traffic flow landscapes,
similar to the N-K model fitness landscapes proposed by Kauffman (1993).

However there are some important differences between the analytical model
presented here and the N-K model. The N-K model describes interactions
among agents in terms of boolean functions and relies on autonomous boolean
networks for emergence of organization. In this paper we use an information
theoretic approach to compute the ability of networks to display organization
and how such a method can be utilized by ITS to adapt to changes in network
flows. Additionally, we explain how the use of ITS related technologies can
help in maintaining an overall good fitness of traffic networks for the benefit of
both the users and the traffic managers.

The following part (III) describes the background of the current effort. It
includes a brief description of how traffic flows are measured, followed by an
introduction to the concept of fitness landscapes a` la the NK model. A brief
explanation of a network traffic flow landscapes is outlined. Section 4 develops
the analytical traffic flow landscape model, with a few rudimentary examples.
Part V describes a search process to find the higher fitness configurations of
a traffic flow landscape. Part VI specifies an information theoretic approach
to organization of traffic flow landscapes. Conclusions and future work are
discussed in the final part (VII).

3. Background

An urban region’s road network consists of many types of roads – highways,
major and minor roads, arterials and connecting roads. For a traffic fitness
landscape only those roads and links that are referred to as primary and
secondary roads/links as described in the TIGER/Line™ files Census Feature
Class Codes (1992) are included. Links are segments on highways, major roads
and arterials. Segments are characterized by the levels of service also called
an LOS (Highway Capacity Manual, 1985) which varies depending on the
traffic conditions on these segments. Thus for example, levels of service ‘A’
through ‘F’ are the six possible LOS. According to the Special Report 209 of
the Highway Capacity Manual, “the concept of levels of service is defined as
a qualitative measure describing operational conditions within a traffic stream,
and their perception by motorists and/or passengers. A level-of-service (LOS)
definition generally describes these conditions in terms of such factors as
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speed and travel time, freedom of maneuver, traffic interruptions, comfort and
convenience, and safety” (1985, pp. 1–3).

Fitness Criteria For Traffic Flows

Suppose we assign a numerical value to each LOS, then in theory we could
use these values as a fitness measure of each segment. Unlike the concept of
fitness in biology which is a property associated with survivability of a species,
the fitness in the traffic flow model refers to the idea of relative ease (high
fitness) or difficulty (lower fitness) of flow of traffic on segments of roads
in transportation network. The point is that, one can use the LOS concept
to represent traffic flow conditions at any time over an entire road transport
network. To quantify the qualitative concept of levels of service we suggest a
very simple method in Appendix A based on fractals.

Network Traffic Flow Landscapes

The word “landscapes” has topological connotations. Even though, the word
evokes images that everyone relates to in different ways, there are certain
properties that are common to many landscapes. For instance the landscapes
have morphology such as multiple peaks (either sharp or gentle) and troughs
and connecting ridges. The topology of a region makes it clear that to reach
point ‘P’ on one of the peaks from point ‘Q’ on another peak involves finding
the best possible route between these two points, avoiding regions of valleys.
Alternately, one may want to avoid the peaks and reach a desired valley region.
The landscape image suggests that there may be more than one peak that may
satisfy, given a set of criteria and that not all peaks and valleys are reachable
easily. Thus one may envision assigning a fitness value to criterion or criteria
set and then creating a visual image with peaks for good fitness values and
valleys for bad fitness. So how does one use the idea of fitness to create traffic
network landscape?

A network of ‘N’ segments with ‘L’ number of LOS has LN possible
configurations. (In terms of levels of service A through F, we have 6N possible
configurations for N segment network.) Each configuration is just one LOS
different than its neighboring D = N*(L – 1) other configurations. As was
mentioned earlier we associate with each LOS of a segment, a computed fitness
value. Note that, LOS of a segment may affect the LOS of its neighboring
segments. In the following part, we suggest an analytical expression to take
these interactions into account. The number of such interacting segments is
represented by an integer ‘K’, called the interaction parameter. Let us assume
for simplicity that, the fitness values of each segment are additive. Then, a
configuration where all segments of the network have LOS ‘A’, has the highest
fitness value (free flow traffic), say ‘Alpha’. At the other end is a configuration
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Figure 3. Schematic of a hypothetical fitness landscape.

where every segment has a LOS of ‘F’, this certainly has the lowest fitness
value (traffic jams on all segments), say ‘Omega’. Usually, the network with
‘N’ segments will be in one of the LN configurations with a value of fitness
that is less than ‘Alpha’ and more than ‘Omega’. But, the overall fitness of the
network is not a simple additive process, since the traffic on each segment is
affected by other segments, and more by near segments (nearest neighboring)
than far segments. Hence each segment’s fitness is a function of the fitness of
neighboring segments. Let us assume that there are ‘K’ such neighbors that
affect the fitness of any segment, where the value of ‘K’ can be between zero
and ‘N – 1’. When K = 0, each segment has traffic flows that are independent of
all other segments. On the other hand, when K = N – 1, each segment’s traffic
flow is affected by the traffic flows on all other segments.

Description of traffic networks in terms of LN configuration is analogous to
a system with LN states. A truly random system would show ergodic behavior
such that the probability of such a system being in any one of these states is the
same. But are traffic flows truly random? Probably not. Since traffic systems
show patterns at the macro level, we need to assess the degree to which these
patterns are constant or degree to which they evolve and organize into new
patterns that are mostly beneficial to participating agents. In the following
section we illustrate the development of the analytical model by a simple
example, almost a cartoon of a real life network.

4. Analytical Model of Traffic Flow Landscape

Consider an urban road network of N segments. The segments can be either
sections between mile stones or distances between consecutive traffic signals or
any other measure that has been defined with consistency across the network.
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The traffic flow levels on each segment are determined in terms of the LOS.
Thus each segment can have ‘A’ through ‘F’ levels of service. As a simplified
illustration, let us restrict the flow conditions to two levels of service, LOS of
‘A’ for free flow and LOS of ‘F’ for no flow. Let us assume that the fitness
contribution of a segment with LOS of ‘A’ is +1.0 and that with LOS of
‘F’ is 0.0. Obviously, it is possible to use another set of criteria to assign a
different set of fitness values. At any instant a set of segments with specific
flow levels constitutes a configuration of the entire road network among all
possible configurations. For example, for ‘N’ segments with ‘L’ flow levels,
the number of possible configurations is LN. For two types of flows (identified
by A and F) the total number of possible configurations of segment flows is
2N. Let ‘K’ refer to number of segments interacting with each other. Next we
explain the road configurations for different values of ‘K’.

4.1 K = 0 Case

Let us assume that a segment with full flow condition (A) contributes +1.0
to the overall fitness of the network, and a blocked segment (F) contributes 0.0
to the overall fitness of the network. Note that in this case, ‘K’ the number
of interactions among the segments is assumed to be zero, i.e., each segment
contributes to the overall fitness independent of all other segments. The entire
network configuration may be represented as a combination of +1.0 and 0.0s.
The total number of possible states is 2N. Thus, there are two trivial states that
one can find for the N segment network. One of these states has all the segments
blocked thus the network segments are represented as the following vector:

(F1,F2,F3, . . . ,FN ), (1)

and the total fitness Mg , is given by the following:

Mg =
N∑

i=1

f (Fi) = 0.0. (2)

The other state has all the segments in the free flow condition and may be
represented as the following vector:

(A1,A2,A3, . . . ,AN ), (3)

and the total fitness Mg , for this state is given by the following:

Mg =
N∑

i=1

f (Ai) = +N. (4)
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While every other state has a total fitness contribution that is between 0.0 and N.
Thus all the network states with their fitness contributions can be represented
in the form of an N*(L – 1) = D dimensional hypercube where each vertex
represents a state or configuration of the network and the value assigned to
the vertex is the fitness of the network in that particular configuration. Every
configuration is one LOS different than its neighbors in a ‘D’ dimensional
hypercube. This hypercube is the simplest example of a fitness landscape, it
has one minimum and one maximum and the rest of the fitness values are
between 0 and N. For example, if N = 4 and L = 2, then, the total number of
combinations are LN = 24 = 16. Table 1 shows each configuration and its total
fitness contribution. It is clear from the fitness values that there are multiple
configurations with the same fitness value. Configurations 2, 3, 5 and 9 all have
fitness of 1/4, while configurations 8, 12, 14 and 15 have fitness of 3/4. There
are 6 configurations with 1/2 fitness (4, 6, 7, 10, 11, 13). Thus if we assign
probabilities to each of these fitness values then it is clear that the configuration
with fitness value of 1/2 has a higher probability of occurrence. And intuitively
it makes sense that a configuration with all blocked segments has a very small
probability as does the configuration with all segments in a free flow situation.
Thus even a very simple coding scheme gives quite a bit of information on the
condition of a traffic network. This schema can be extended to a greater number
of levels or LOS to achieve a more realistic model of traffic flow conditions.

Table 1. Configuration vs. Fitness

Configuration Fitness value Avg. Fitness

K=0
1=F,F,F,F 0,0,0,0 0
2=F,F,F,A 0,0,0,1 1/4
3=F,F,A,F 0,0,1,0 1/4
4=F,F,A,A 0,0,1,1 1/2
5=F,A,F,F 0,1,0,0 1/4
6=F,A,F,A 0,1,0,1 1/2
7=F,A,A,F 0,1,1,0 1/2
8=F,A,A,A 0,1,1,1 3/4
9=A,F,F,F 1,0,0,0 1/4
10=A,F,F,A 1,0,0,1 1/2
11=A,F,A,F 1,0,1,0 1/2
12=A,F,A,A 1,0,1,1 3/4
13=A,A,F,F 1,1,0,0 1/2
14=A,A,F,A 1,1,0,1 3/4
15=A,A,A,F 1,1,1,0 3/4
16=A,A,A,A 1,1,1,1 1
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4.2 K = N – 1

Now, let us consider the case when each segment interacts with all the
other segments of the network. Since, we do not yet know how each segment
affects the other segments, let us assume that the complex interactions are
multiplicative in nature, that is if segments have high fitness values then the
result of interaction would be a high fitness contribution value. On the other
hand if one or more segments has lower fitness values then the result of the
interactions accordingly would reflect a low fitness contribution value.

Another way to represent the interactions is to use a modified Tanner
function (Tanner, 1961; Paelinck and Klassen, 1979),

π(f ′
i ) =

K+1∑

j=1

π(fj ) ∗
((

dij − 1
)
/dij

)
× exp(−α × dij ) (5)

where, ‘α’ is a proportionality constant, ‘dij’ is the distance (steps) between
segment ‘i’ and segment ‘j’, π (fj) is the fitness of segment ‘j’, π (fi) is the
fitness of segment ‘i’ and π (fi‘) the computed fitness of segment ‘i’ as a result
of the ‘k+1’ interactions between segment ‘i’ and other segments carried out
according to equation (5).

Next let us consider a set of configurations, each with 4 segments as before.
But now, let us represent the individual fitness values as random numbers
between 0 and +1. Then the total fitness of a configuration Mg, is given by
the following:

Mg =
N∑

i=1

π(f ′
i ), (6)

where ‘g’ is a configuration, π (fi’) is the fitness potential of a segment ‘i’
calculated using equation (5).

Once more, the fitness landscape is constructed as an N*(L – 1) dimensional
abstract hypercube where each vertex represents a configuration with a fitness
value that is a contribution from the segments of that configuration. Although,
the fitness landscape is bounded from above and below by 0 and N, it is now
much more rugged and has multiple peaks interspersed with deep valleys. For
example for a simple network of N = 4 and L = 2 (near free flow and near total
blockage) we obtain a hypercube with 24 = 16 configurations represented by its
vertices. Each configuration on a vertex has a fitness value that is either a peak
or a valley depending on the result of interactions among the four segments
of each configuration. In general, every vertex has a configuration that has ‘D’
other neighboring vertices with their own configurations. And all of these differ
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from each other in one LOS of a segment. Accordingly, the total fitness also is
a bit different for each vertex.

The two extreme cases of K = 0 and K = N – 1 show us how the fitness
landscape can change from a one maximum and one minimum fitness land-
scape to a multiple peak rugged landscape (Figure 5.) Note that the landscape
for the K = N – 1 case was generated using random values between 0.0 and
1.0 for fitness of each segment, and the interactions among the segments were
thought to be of multiplicative type. The configurations 4, 5 and 8 have a higher
fitness than the rest. The overall fitness level becomes smaller as the number of

Figure 4. Hypercube Representation of Genotypes for Genes N = 4.

Figure 5. Fitness Landscape N = 4, K = 3, L = 2.
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interactions increases from K = 0 to K = 3. This is due to the conflicting nature
of interactions among the segments and results in reduced fitness maxima.

In general, it may be said that as the value of K changes the fitness landscape
also changes from a single maximum/single minimum fitness landscape to a
rugged multiple max/min fitness landscape whose maxima and minima have
reduced fitness values. To create a fitness landscape for the entire network,
one may use a random fitness function or some other function that reflects the
general traffic conditions. In the later case the function could be a weighted
combination of a number of traffic properties, such as peak flow times/
numbers, density of the traffic, speed limits on the segments or any other
relevant property of the traffic on the road network.

The specification of the traffic flow fitness landscape model is complete
when the assignment of the fitness vectors for all the segments is done and the
traffic flow landscape represented as a hypercube in an N*(L – 1) dimensional
space for ‘L’ LOS traffic flow condition. As was previously mentioned, each of
the configurations at the vertex is one LOS different from its ‘D’ neighbors and
accordingly its fitness is a little bit different than the rest of its ‘D’ neighbors.

Now it is possible to make an estimate of the overall fitness of the road
network for all configurations using equation (6) as follows:

Ŵ = 1

LN

LN∑

g=1

Mg (7)

where Mg is the fitness of configuration ‘g’. Equation (7) serves as the general
fitness index of road networks.

5. Exploring the Traffic Flow Landscape

Since the traffic flows on roads change dynamically, they do not lend
themselves easily to modeling. One cannot associate a single equilibrium
point at which the traffic flows settle down into a regular pattern. Instead,
the traffic flows follow multi-equilibria metastable behavior, jumping from
one configuration gx to the next configuration gy on the fitness landscape
hypercube. The new configuration gy may or may not be in the immediate
neighborhood of gx, the process of moving from this configuration to the
next continues as the flow dynamics change on various segments. Note that
the movement over the fitness landscapes may not always result in a better
fitness configuration. Consider a configuration gx, from among all the other LN

configurations, then it can be shown that, in general the probability that gx has
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a better fitness value than its D neighbors is given by:

p(gx) = 1

D + 1
. (8)

The higher fitness value of configuration gx makes it a locally optimal config-
uration among its neighbors. Then for a landscape consisting of LN configura-
tions, the total number of such local optima is given by:

E ≈ LN

D + 1
, (9)

Thus there exist a large number of locally optimal configurations for a traffic
flow landscape. The local optima are the multiple equilibria that are scattered
all over the traffic fitness landscape.

Attractors and Attractor Basin

Next, let us consider the example of the simple road network with N = 4
segments, namely ‘a‘, ‘b’, ‘c’, ‘d’; and L = 2 LOS and 0 <= K <= 3 interactions.
Let us rank the 16 possible configurations according to their fitness values.
Let us assume that these segments are such that, during a time period ‘t’, the
traffic on segment ‘a’ moves on to segment ‘b’ and so on. Let ‘0101’ be the
configuration representing the current traffic conditions on the four segments.
Then in one time period, as the traffic moves, the new configuration could
be one of the following, ‘1010,’ the complement of previous configuration
or ‘0000’ all segments congested or ‘1111,’ all segments are in free flow
condition. None of these three successor configurations are one LOS differing
neighbors (just one of the segments with a different flow condition) of the pre-
vious configuration. In fact the flow conditions on the successor configuration
could be such that the resulting configurations are 2 or more but less than N
LOS differing neighbor configurations. Next let us consider a large network
with N segments. For such a network consisting of large number of segments,
the successor configuration could vary from being one LOS differing neighbor
to N LOS differing neighbors. If the successor configuration is the same from
one instant to another or if the successor configurations change back into the
original configuration then the original configuration becomes the attractor. In
other words, if a set of different configurations corresponding to small scale
perturbations in the flows on segments have the same successor configuration,
then the members of the set form the so called attractor basin and the successor
configuration may be designated as the attractor configuration or the so called
metastable equilibrium configuration. On the other hand, if the successor
configurations are all wildly different then it is an indication that the traffic flow
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patterns are changing chaotically and that the network has become unstable.
The changes in the configurations from one instant to next can be measured in
terms of the Hamming distance. Thus, the Hamming distance may serve as a
measure of instability of a road network.

Search for Local Optima

If one could construct a traffic flow landscape at a given instant then in
theory it is possible to estimate the time needed to reach an optimal solution.
Suppose that a traffic landscape has been constructed and currently the entire
network is represented as a configuration gx in this landscape. Next, an incident
occurs on one of the segments of the road network, the resulting traffic flow
with congestion can be viewed as a configuration gy on the same landscape
and the amount of time needed for the network to reach from the current
configuration corresponding to the congested segment, to one of the locally
optimal equilibria points is given by:

Topt =
log2(D−1)−1∑

t=0

Lt (10)

where ‘D’ is the dimensionality of the traffic landscape, ‘L’ the number of
LOS. The above result can be explained in terms of the rank ordering of the
configurations, the dimensionality of the landscape and self-avoiding biased
random walks on the fitness landscape. As was mentioned earlier, for a D =
N*(L – 1) dimensional hypercube, a configuration at a vertex is at least one
LOS different than its ‘D’ other neighbors. Thus if we start at a worst fitness
configuration, then moving to any of its neighboring ‘D’ vertices would lead
us to a configuration that has better fitness than the previous one. Since the
total number of configurations is LN, the rank order of the new configuration
is between 2 and LN. If one follows this in random fashion to move to a
vertex that has better fitness than the previous one, then every such move
makes the new configuration halfway closer to the remaining configurations.
So as the improvement continues, the process slows down such that for every
such move the time to search for a fitter neighbor doubles. Yet another way
to look at the ranked fitness landscape starting from the worst fitness vertex
gw is similar to travelling down a tree whose root is the current vertex and at
each level of the tree, each node (the new configuration) branches to ‘D’ other
configurations (See Fig. 6.) which are 1 LOS different and accordingly have a
different fitness level.

At the start of a given time period, we can construct a configuration tree
that has the root configuration corresponding to the current traffic flows on the
segments. Next we search randomly for a better fitness configuration on one of
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Figure 6. Partial Fitness Tree.

Figure 7. Partial Fitness Binary Tree.

the ‘D’ branches. Once such a configuration is found, then we are at the new
configuration and repeat the process until we reach a local optimum. The total
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time or the number of levels becomes a measure of the time needed to reach
a locally optimal configuration. Alternately, the configuration tree in Figure 6
can be changed into a binary tree (Horowitz and Sahni, 1985; Wilson, 1988),
such that at each node or configuration there are just two branches, the right and
the left branch (see Fig. 7). Every time we reach a node, we take the branch that
leads to a better fitness configuration till we reach a leaf node that corresponds
to a locally optimal configuration.

Similarly, we could use the above techniques to do the impact analysis on
the basis of increasing (decreasing) the total number of segments (N) or chang-
ing the value of ‘K’ (the number of interactions per segment) by generation of
a configuration tree and searching for a locally optimal configuration that has a
better fitness than the configurations in its neighborhood.

6. Organization and Traffic Flows

Suppose that an abstract traffic fitness landscape has been constructed for
‘L’ LOS, ‘N’ segments and ‘K’ interactions. Then, from equation (6) the total
fitness over all possible (LN) configurations is given by

M =
LN∑

g=1

Mg. (11)

Even for a small number of segments the total number of possible configu-
rations increases exponentially. For example, a network with 100 segments
and 6 levels of service has an astronomically large number of (6100) possible
configurations. In that case, does such a system show any organization at all?
In other words, if there is organization then there is a subset of configurations
that is more stable than others. So what is an indicator of such a phenomenon?

Consider a system characterized by a large number of configurations. If
we have little or no information about each of these configurations then
the only meaningful thing we can express about these configurations is that
each configuration occurs with probability ‘pi’ where ‘i’ ranges over all
possible configurations and that all such probabilities are equal. The amount
of information I (Applebaum, 1996; Suhir, 1997) that can be obtained from
this system in configuration ‘i’ is given by:

I = − log2(pi) (12)
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The expression for information ‘I’ in equation (12) can be converted from
logarithm of base 2 to logarithm of base 10 as follows:

log10(I ) = log2(I )

log2(10)
= 3.3219 × log2(I ) ≡ � log2(I ) (12A)

Since � is a constant and it will be ignored in the following discussion as the
log operation is assumed to be to the base 10.

In the case of a traffic flow network with ‘N’ segments and ‘L’ LOS, let us
define a fitness function ‘V’. The fitness function computes fitness value Mg
(equation 6) for each configuration, where ‘g’ ranges over [1, LN]. Note that
‘V’ is a one-to-many function, i.e. many configurations have the same value
of fitness. Let Rj,(where j <= g), denote the number of configurations with the
same fitness values. Since, the values that Rj can take a priori are unknown, Rj
can be expressed as a random variable.

Rj = #V (Mg) (13)

where ‘j’ ranges over an interval [1, r] and as before ‘g’ ranges over interval
[1, LN]. Let Pj denote the probability distribution associated with Rj. Then, the
expectation ‘E’ of such a distribution is defined as the amount of uncertainty
or information entropy ‘S’ in the system and is given by:

S = −
r∑

j=1

Pj × log(Pj ). (14)

As was said above, if there is little or no information about the config-
urations and hence the associated fitness values, all that can be said about
such a system is that Rj, i.e. the number of configurations with similar
values of fitness occur with equal probability or Rj has uniform probability
distribution. In that case such a system is said to have maximum uncertainty
or maximum entropy Smax (Jaynes, 1979). Such a system is characterized by
disorder or disorganization. On the other hand, a decrease in entropy of the
system indicates increasing order or organization in the system. So, how does
increasing order or decrease in disorder of a system occur?

Entropy ‘S’ of a traffic network changes according to probability distri-
butions of a random variable ‘R’, which is determined by the fitness ‘f ’
or each configuration which in turn depend on the type of flows on various
segments. Hence, at any instant, the difference in ‘Smax’ and ‘S’ is an indicator
of the organization or degree of order in the network. Thus we define an order
parameter as follows:

O = κ(Smax − S), (15)
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where, ‘κ’ is a proportionality constant and ‘O’ represents the inherent orga-
nizing capacity of the network.

The above discussion of entropy and order follows from the treatment of un-
certainty in information theory. An information theoretic definition of entropy
‘S’ of a system is a measure of uncertainty in a system (Applebaum, 1996;
Levine and Tribus, 1979; Wilson, 1969a, 1973a; Haynes, Phillips, Mohrfeld,
1980; Haynes and Phillips, 1981; Haynes and Storbeck, 1978). If we can reduce
uncertainty in the information content of a system then we will have reduced
the entropy of the system and accordingly its internal fitness will have improved
(see equation 15), an indication of organized traffic flow. Let us consider a tiny
network of N = 21 segments and L = 6 LOS; this network has a staggeringly
high number, 621 configurations. With no prior knowledge of flow conditions,
one must assume that each of these configurations is equi-probable. But as soon
as we gather traffic flow information on even a small number of segments,
the total number of possible configurations decreases. Further, by defining a
discrete random variable that takes on values according to a fitness criteria
(see equation 13), one can find the probability distribution of such a random
variable. From this the computation of entropy and order can be carried out as
suggested in equations (12) through (15). If one is able to maintain a specific
level of service on these segments, then every time we make an observation
we are certain to find a specific level of service. Then the probability of such
segments is 1 and the information content is zero, since log(1) = 0. As flow of
traffic on a definite number of segments becomes certain, the overall entropy
of the network decreases, indicating an increase in organization of the network.
The surveillance equipment to monitor traffic flows (Fig. 2) on segments of a
network can provide information that would reduce uncertainty in traffic flows
and increase its fitness. Additionally, if TMC is able to maintain higher flows
on different segments, it will modify the probability distribution of the flows.
This in turn will modify fitness landscapes that are favorable for efficient flows.

Alternately, measurement of flows on all segments gives us the current state
of the network. In terms of the traffic flow landscape we now know the vertex
that represents the state of the network. If this vertex corresponds to a good
fitness then TMC can maintain flows in the network corresponding to that
fitness level. On the other hand if a traffic network is on a bad fitness vertex,
then the TMC can take measures to improve the fitness of the network and
possibly evolve towards a region of better fitness on the fitness landscape. The
information on network flows could be used as input for ITS (Intelligent Traffic
System) technologies such as ATMS (Advanced Traffic Management System)
and ATIS (Advanced Traveller Information Service). In theory TMCs can be
distributed across a traffic flow network, each TMC monitoring and managing
a subset of segments of the network and helping to maintain efficient network
flows. Note that we do not address issues of interfacing all these TMC, in fact,
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each TMC is considered to be in operation independent of all the others. How
to co-ordinate TMCs will be addressed in reports on future research. One of the
features of the fitness landscape is its relative independence of factors such as
the fitness values and variations in parameter ‘L’ (Kauffman, 1993). Since the
traffic landscapes are mainly dependent on values of ‘N’ and ‘K’, each TMC
should be able to develop processes to maintain a level of service on segments
of a network that would always give a better fitness configuration.

7. Conclusion and Future Directions

Defining fitness vectors for traffic flows on a road network creates a rugged
fitness landscape. For large values of N (the number of segments in a network)
with K segments (K < N) influencing each of N segments, a very complex
traffic flow fitness landscape is generated. For K = 0, a simple traffic flow
landscape with a single global optimum is obtained. Such a traffic network
has all it’s segments independent of each other. As the value of K increases,
more complex traffic flow landscapes evolve. The other extreme occurs when
K = N – 1. In this case each segment influences the flow of traffic on all other
segments. This type of landscape has an infinite number of local optima and is
very rugged. A fitness landscape with K = N – 1 indicates a network in which an
incident on any one of the segments affects flows across the entire network. It is
a highly unstable network. On the other hand, a network with K = 0, an incident
affects only local flows. The traffic flow landscape model depends primarily on
the values of ‘N’ and ‘K’. A TMC like system can influence flows on different
segments of a part of a network such that over-all traffic flows across that part
of the network can be improved by reducing the level of uncertainty (entropy)
in the flows. In other words, increasing organization or order in the network.
Future work would involve:

1. Treating variations in flow levels as akin to the concept of mutation
(alleles) from evolutionary biology (see Appendix B for brief description of
Kauffman’s NK model). In general, flow levels in an urban traffic network
are characterized by LOS of C and D, i.e., moderately congested but show
variations represented by LOS of A, B (free flow and near free flow), E
(congested) or F (highly congested). Most of the mutations in biology are
deleterious, i.e. they reduce species fitness. Similarly, traffic flows of LOS of
E and F are more frequent and characterize congested traffic network rather
than the desirable variation of LOS of A and B type.

2. Interfacing of a network of TMCs across a network.
3. Determination of ranking of segments in a network according to the fitness

criteria.
4. Determination of response times to adjust to traffic incidents.
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5. Carrying out impact analysis for different scenarios of traffic flows.
6. Exploring the possibility of integrating the model with other dynamic traffic

management models based on ITS technology.
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Appendix A

Consider a road segment of length l and width w. Then the total area A of
the road segment is given by:

A = LD ∗ WDor if we express w as fraction of l then

A = LD ∗ (γ ∗ LD)or alternately it may be expressed as follows:

A = γ ∗ L2D, (A1) (A1)

Equation (A1) can be re-written as:

AαL2D (A2)

where D = 1, the dimension of the road segment. Now consider a stream of
vehicles traveling on the segment of the road. Thus at any instant there are
finite number of vehicles occupy a finite amount of space on a section of the
road.

Since, the vehicles on a road are discrete objects and occupy finite and
discrete amount of space, we can express the total area occupied by the vehicles
as follows:

a = n ∗ ld ∗ wd = n ∗ ld ∗ (δ ∗ ld), (A3)

where a is the average area occupied by a vehicle of average length l and
average width w and δ is a fractional measure for converting w into l. Equation
(A3) may be expressed as:

a = n ∗ δ ∗ l2d or aα(n ∗ l2d) (A4)

Let us express the average value of vehicle length l in terms of the length of
section of the road, then equation (A4) can be written as:

a = n ∗ δ ∗ l2d or aα(n ∗ (ε ∗ L)2d) (A5)



6. Evolutionary Traffic Flow Landscapes 145

From equations (A2) and (A4) the density of vehicles occupancy ρ may be
expressed as:

ρα
n ∗ (ε ∗ L)2d

L2D
or ρα

n ∗ ε2d ∗ L2D

L2D
. (A6)

We can express the density function ρ by introducing a proportionality constant
β in equation (A6) and get the following equation:

ρ = β ∗ n ∗ ε2d ∗ L2d

L2D
= (const.) ∗ L2(d−D). (A7)

Taking logarithm on both sides of equation (A7) gives us the following
equation:

log(ρ) = log(const.) + 2(d − D) ∗ logL. (A8)

Since, D = 1 we can get the following equation:

d = log(ρ) − log(const.) + 2 log(L)

2 ∗ log(L)
, (A9)

From equation (A8) we can get an expression for d as follows

d = 1 + log(ρ) − log(const.)

2 ∗ log(L)
(A10)

Value of d varies between a minimum of zero (free flow) and maximum = 1
(blocked segment) (see equation A10). This computed value of d can be used
as a measure of the level of service for assigning fitness values to sections of
roads.

Appendix B

Kauffman’s NK Model

The NK model describes emergence of order in biological systems as a re-
sult of a slew of complex, random, epistatic (non-reciprocating and inhibitory)
binary interactions among the most fundamental agents of self-organization,
the genes. A population of genes (genotypes) evolves over a fitness landscape
(a type of hill-climbing) as it adapts to changes in the environment. To get
a better understanding of the NK model, given below are definitions of the
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biological terms. Gene is the basic unit of inheritance. Genotype is a possible
configuration or arrangement of genes. Allele is a variation of a gene. Fitness
is any “well defined property” and the fitness landscape is a distribution of this
property across an ensemble (Kauffman, 1993).

The NK model of the evolutionary biologist Kauffman explains how a
variety of genotypes is able to adapt to so-called rugged fitness landscapes of
the environment in which these genotypes evolve. The ‘N’ stands for number
of genes and ‘K’ stands for number of interactions any single gene has with
other genes. Each gene may have ‘L’ alleles. Alleles are the variations in each
gene that give rise to a physical trait such as eye color of blue, brown, black
etc. Each gene contributes to the overall fitness of a genotype. At the same time
each is influenced by ‘K’ genes that are either nearest neighbors or are spatially
separated from the gene. Thus the result of all the interactions between ‘N’
genes and ‘K’ influencing genes is a fitness landscape with multiple peaks and
valleys. The peaks are associated with fitness values. Depending on the value
of ‘K’, the landscape varies from a simple profile (K = 0) to one with a very
complex profile (K = N – 1). The former (K = 0) refers to an environment
in which each gene is independent of all its neighbors and the latter refers to
a situation when each gene is influenced by all the genes (K = N – 1) in a
genotype.



Chapter 7

Network Connectivity Models:
An Overview and Empirical Applications

Aura Reggiani1 and Sandra Vinciguerra2

1Department of Economics, Faculty of Statistics, University of Bologna, Piazza

Scaravilli, 2, 40126 Bologna, Italy, E-mail: aura.reggiani@unibo.it

2 Department of Human Geography and Urban and Regional Planning, Faculty

of Geosciences, Utrecht University, Heidelberglaan 2, P.O. Box 80115, 3508 TC

Utrecht, The Netherlands, E-mail: S.Vinciguerra@geo.uu.nl.

Abstract In recent years great attention has been paid to complex networks and to their
related theories and models.

In this context, the concepts of Small World and Scale Free networks come to
the fore. A Small World network (SW) is based on ‘six degrees of separation’, or
the notion that everyone in the world is related to everyone else through at most
six acquaintances. Small World networks are similar in that they have a high
degree of local clustering or cliquishness and a relatively short average minimum
path, like a completely random network. A Scale Free (SF) network is principally
characterized by an abundance of nodes with only a few links, while a very small
number of nodes have a very large number of links, which are called hubs.

This paper examines the above issues in the context of regional dynamics
from both the methodological and empirical view point.

In particular, the first part aims to provide an overview on the concepts,
insights and research perspectives in spatial economics concerning SW and
SF networks, in the light of their physical and statistical characteristics, e.g.
diameter, clustering coefficient and vertex connectivity degree distribution.

The second part of the paper attempts to explore some empirical applications
in order to point out common features that characterize these networks in Socio
and Spatial Economic Sector.

The paper will end with methodological observations concerning the role of
exponential/power law in the spatial economic literature.

Keywords: spatial economics; network science; power laws; Scale Free; Small World
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1. Introduction

In the last few years literature on complex networks, and especially on
“Small World” (SW) and “Scale-Free” (SF) networks, has increased greatly.
Researchers in many fields can easily find applications on these models,
for example in social science, biology, economics, technology and telecom-
munication (see, e.g. Gorman, 2005; Patuelli et al., 2006; Schintler et al.,
2005a, 2005b).

Recently, attention has also been directed to the study of the connectiv-
ity properties and the topology of complex systems, especially on “who is
connected to whom”. In this context, complex systems are often modelled by
graphs, composed by vertices or nodes (representing the elements of the graph)
and edges or links (representing the interactions or connections between the
single elements of the graph). Graph theory has been the conceptual framework
of the recently developed network models, such as SW and SF networks.

In the next section, Random, SW and SF networks will be concisely
illustrated from a theoretical-methodological view point. Section 3 will present
some methodological remarks concerning SW and SF models, while Section
4 will be devoted to outline their applications in the space-economy. Section 5
will conclude the present chapter by highlighting methodological observations
concerning the role of SF models in the real spatial economic networks.

2. Random, Small World and Scale Free Networks: a Concise

Overview

The Random Network (RN) – introduced in graph theory by Erdős and
Rényi (1959) – identifies networks whose vertices are randomly connected
to each other. A RN is usually displayed as a graph composed by a number
of nodes N randomly connected by links with probability p. The cumulative
distribution1 of nodes degree (connectivity degree) follows a Poisson distribu-
tion, which means that the majority of the nodes on the network have the same
number of links, nearby the average degree <k>; nodes that deviate from this
average are rare (see Figure A1 in the Annex). A RN can be compared to a
homogeneous system which gives accessibility to the majority of the nodes in
the same way.

However, clustering characters often emerge in dynamic networks, by show-
ing that economies of density seem to run parallel to economics of motion. For
example, thinking to the nodes characterizing social and telecommunication

1 The cumulative distribution function describes the probability distribution of a real-valued
random variable X, F(x) = P(X ≤ x).
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networks, as well as to electricity cables and transport networks, it is clear that
possibly not all have the same number of links, and that these links are not
randomly placed. In these networks, clustering features seem more suitable.
They can be detected by the SW network.

The SW phenomenon2 has been formalized by Watts and Strogatz (1998)
in their study on topological properties of a network. These authors developed
a “SW model” focusing their attention on two different network parameters,
the diameter3 and the clustering coefficient.4 In particular, they demonstrated
that a SW network is identified by a high clustering coefficient C and a short
diameter L while a RN is characterized by short diameter and low clustering
coefficient (see Table 1 and Figure A1 in the Annex).

Attention must be paid to the difference between “SW effect” and Watts
and Strogatz’ “SW network”: the first can be seen as a property of several
network models and identifies only the fact that the diameter of a network is
short enough to reach in a few steps every vertex of the network. The “SW
network” describes something more: in addition to the short diameter, the
model is characterized by a high clustering coefficient. Referring to the “SW
effect”, there is it possible to claim that even RNs present a SW property, in
the sense that they have a short diameter. However, a RN does not belong to
SW networks because it lacks in high clustering coefficient. It should be noted
that ‘SW networks’ has been shown to emerge in several systems, from neural
networks (Watts and Strogatz, 1998) to the World Wide Web (Adamic, 1999),
to the power grid of the Western United States (Watts, 1999), to the diffusion
dynamics of infectious diseases (Boguñá et al., 2002).

Close to the SW network a further network approach, the so-called Scale
Free (SF) – which came to the fore in the ‘90s – it is worth to be investigated.
The SF network – conceived of by Barabási and Albert (1999) – is based on
two mechanisms:

• Incremental Growth: the networks are dynamic systems; the number of
nodes is not static; the network grows with time;

2 Taking inspiration from the “six degrees of separation” experiment on the US social network
made by Milgram (1968).

3 Diameter: (also called ‘characteristic path length’) measures the typical separation between
two generic vertices within the graph (a global property) in terms of number of links composing
the path. The formula is the following one: L(G) = 1

N(N−1)

∑
i �=j dij , where dij is the number

of links of the shortest path to reach vertex j from vertex i, and N is the number of nodes in the
network.

4 Clustering coefficient: measures the cliquishness of a typical neighbourhood (a local
property). The formula is the following one: C(G) = 1

N

∑
i Ci , where Ci is the ratio between

the number of existing links and the maximum number of possible links in Gi , sub-graph of the
neighbourhood of vertex i, N is the number of nodes of the network.
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• Preferential Attachment: the new vertices are not randomly connected to the
existing nodes; they are linked with greater likelihood to high connectivity
degree vertices.

According to Albert et al. (1999), the implementation of these two mechanisms
in a model is sufficient for the generation of SF networks.

With regard to its physical measurement, a SF network presents a diameter
shorter than a SW. In addition, a SF network presents a very high clustering
coefficient which decreases with the increase of the number of vertices in the
network (Table 1). Thus we can underline that a SF network strongly embeds
the SW properties.

Concerning its statistical measurement, a SF network is characterized by
a power law vertex connectivity degree distribution (Table 1). It should be
noted that the power law/SF property is not frequently found in the data
distribution. On the contrary, the Poisson or exponential law – which can
be methodologically connected to a RN – seems to characterize most of the
distributions. An appropriate way of detecting the type of network distribution,
is the vertex connectivity degree distribution. This is defined as the probability
P(k) of finding nodes with k links: P(k) = N(k)/N , where N(k) is the number
of nodes with k links, and N is the total number of nodes within the network
(Table 1).

The name “Scale Free” is originating from the fact that the power law
distribution does not change its form no matter which scale is used to observe it.
In other words, even though it is possible to change the scale of the distribution
data, the form of the distribution remains the same.

Table 1 shows that, concerning the form of the vertex connectivity degree
distribution in a network, we can recognize the following main typologies:

• A Poisson distribution,5 which identifies a RN6 (Erdős and Rényi, 1959)
• A power law distribution,7 which identifies a SF network (Barabási and

Bonabeau, 2003).

A power law distribution is different from the exponential/Poisson distribution.
It refers to networks displaying: a) an abundance of nodes with just a few
links; b) a small number of nodes with a very large number of links (the
so-called ‘hubs’8) (see Figure A3 in the Annex). It should be noted that the

5 Poisson distribution: P(k) ∝ e−〈k〉 〈k〉k
k! .

6 “RNs are also called exponential, because the probability that a node is connected to k other

sites decreases exponentially for large k” (Barabási and Bonabeau, 2003, p. 52).
7 Power law distribution: P(k) ∝ k−γ .
8 Hub: a single vertex with a large number of connections, the so called ‘preferential node’

(Barabási and Oltvai, 2004).
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Table 1. Overview on characteristics of RN, SW and SF networks. N indicates the
number of vertices of the network, k indicates the variable “number of links connected
to a node” and <k> is the average degree of the network, and γ is the exponent degree
of the power law distribution.

RN network SW network SF network

Physical Diameter L Short Short Very short
Measures scales as L ∼ lnN scales as L ∼ ln lnN

Clustering
coefficient C

Low High High, but it
decreases with the
increasing of the
network size N

Statistical
Measures

Vertex
connectivity
degree
distribution

Poisson

P(k) ∝ e−〈k〉 〈k〉k
k!

Similar to the RN,
decaying exponen-
tially for a large set
of vertices

Power law
P(k) ∝ k−γ

Exponent 2 < γ < 3
degree

different forms of the vertex connectivity degree distributions mirror different
economic meanings. The RN can be considered as a ‘democratic model’
(i.e. most vertices have approximately the same number of links, close to
the average degree), where “vertices with large connectivity are practically

absent” (Barabási and Albert, 1999, p. 510). The SW/SF network – owing
to its clustering character – can be considered ‘hierarchical’ in its economic
functions and activities.

In this context, the value of the coefficient in each type of statistical
distribution plays a critical role, since it determines the shape of the function.

Concerning the value of the exponent degree γ of the power law distribu-
tion, we can identify the following typologies:

a) in the case that the exponent degree is γ = 2, a hub-and-spoke9 net-
work emerges;

b) if the exponent degree varies between 2 and 3, the SF network presents a
much smaller diameter than the diameter of a RN or a SW network (Cohen
and Havlin, 2003). In general, the diameter of a SW network scales as
L ∼ lnN . However for this particular range of values for the exponent degree
(2 < γ < 3), the diameter of a SF network scales as L ∼ ln lnN , where N

is the number of vertices (Table 1). Thus a SF network can be considered as

9 Hub-and-spoke: is a topology of network that refers to the use of a central node to coordinate
activities between the other nodes, which are not connected between them but all to the central
one; like a bicycle wheel, a location is selected to be a hub and the paths that lead from points of
origin and destination are considered spokes.
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“Ultra Small World” network: “Although the small-world effect is considered

as a property of random networks, scale free networks are ultra small”
(Barabási and Oltvai, 2004, p. 106). In addition a hierarchy of hubs emerges;

c) in the case of an exponent degree equal to 3, the power law function decays
faster than in the various cases;

d) in the case of an exponent degree γ > 3, hubs are no longer important
and the diameter scales again as for a SW network. Moreover, according
to Barabási and Oltvai10 (2004), the SF network’s behavior becomes similar
to that of a RN. In particular, by increasing the coefficient value even more,
the number of hubs in the network decreases, while all the other nodes have
only a few links, until there are no more hubs and the network’s behaviour
reverts to being similar to a RN, even though the degree distribution does not
turn into an exponential function.

A final observation concerns the ‘history’ of power law in science. Power law
distribution is not something new in science. It has already been observed in
nature that many real systems fit a power law function (see, Chapter 1 in Bak,
1996). It is often associated with the theory of the Rank Size Rule11 (Zipf,
1949), which describes the relationship between the ranks of cities and their
population (see Figure 1). It should be noted that Nitsch (2005) determines that
the distributions of city population are typically best described by a power law
with exponent 1.0.

We can then assert that the conventional Rank Size/power law, conceived by
Zipf, has been in a way revisited – in a network perspective – by Barabási and
his collaborators. The novelty in the SF network is represented by the clustering
concept, which also offers a socio-economic aspect to the empirical evidence
of Zipf’s power-law.12

After this outline on RN, SW and SF networks, in the next section we
will focus on some of the methodological remarks, mainly concerning the
differences between SW and SF networks.

10 Barabási and Oltvai (2004) affirm that a SF network emerges only for an exponent value of
the power law distribution between 2 and 3, but they do not clearly explain the reason.
11 Rank Size Rule’s (Zipf’s law) formula is the following: Pn = P1/n, where Pn is the
population of town ranked n,P1 is the population of the largest town and n is the rank of the
town.
12 The rank/frequency plot – introduced by Zipf in 1949 – of the cumulative distribution function
P(x) is defined, for example, as the occurrence frequency of words in a text, or the probability
to find the same word (e.g. “the”) in a text. P(x) is the fraction of words with frequency greater
than or equal to x. Alternatively, it is possible to plot the number of words (absolute value)
with frequency greater than or equal to x. The difference between the two methods is only
in the normalization of the data. Then the values associated to the words will be sorted into
the decreasing order of frequency and plotted with their ranks as a function of their frequency
(Newman, 2005).
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Figure 1. Example of an application of the Rank Size Rule on the population of all
US cities where the population is 10000 or more, in year 2000. Both histograms plot
the same data, but the one on the right is plotted on a double logarithmic scale
(Newman, 2005, p. 324).

3. Scale Free and Small World Networks: Methodological

Reflections

Several studies were developed in recent years in order to better investigate
from a theoretical, methodological and empirical view point if these type of
networks emerge in real complex systems.

The question is how to define a SF network. Amaral et al. (2000, p. 11149)
assert that SF networks are a sub class of SW networks. They distinguish three
classes of SW networks:

1. Scale-free networks, characterized by a vertex connectivity degree distribu-
tion that decays as a power law;

2. Broad-scale networks, characterized by a vertex connectivity degree distri-
bution that has a power law regime followed by a sharp cut-off;

3. Single-scale networks, characterized by a vertex connectivity degree distri-
bution with a fast decaying tail.

Many criticisms have been made on the SF theory, asserting that the SF is
too simplistic for the Internet and its definition is often ambiguous (Chen et
al., 2002). The introduction of the rewiring principle13 in the SF model, after
incremental growth and preferential attachment by Albert and Barabási (2000),
was one of responses to these criticisms.

In addition, in 2002 Albert and Barabási pointed out that SW and SF
networks are different types of network phenomena: the former explaining

13 Rewiring principle: see Note 3.
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clustering and the latter explaining the power law for the vertex connectivity
degree distribution.

A further interesting definition has been offered by Dorogovtsev and
Mendes (2003), who make a distinction between equilibrium networks (non-
growing networks) and non-equilibrium networks (growing networks), by
studying connectivity degree distributions (how large their tails are) and the
related simple properties. In this context, they classify SW as equilibrium

networks and SF as non-equilibrium networks.
A clear delineation of where SW and SF networks diverge is still missing

in the literature, even though scientific efforts in this direction come recently to
the fore. For example, Gorman and Kulkarni (2004, p. 9) outline the subsequent
SW and SF properties: “It can be safely said that the two models are inter-

related and that generally speaking, SF networks exhibit the clustering and

short average path length of SW networks, but not all SW networks exhibit the

power law distribution of SF networks”.
It should be noted that SF networks might also be denominated “Scale Rich”

because of the co-existence in the networks of nodes of widely different degrees
(scales), ranging from nodes with one or two links connected to major hubs, to
nodes with a high number of links (Barabási and Oltvai, 2004, p. 104).

In the next section we will present a brief review of empirical applications
of SF networks mainly carried out in the socio-economic-spatial field, in order
to point out their common features.

4. Empirical Applications to Spatial Economic Networks

4.1 A Concise Overview

On the basis of the previous methodological observations, a methodological
concern regards the identification of a SF network versus a SW/RN. Clearly, the
empirical evidence – from the statistical viewpoint – of a power law versus an
exponential law might be considered as a fundamental procedure in this respect.

A first schematic approach is to take empirical data on network connectivity
and plot them in order to investigate, with statistical tests, if these data fit a
power law function. In this context, it is interesting to observe the differences
between power law and exponential function.

The exponential law is a function frequently utilized in literature, and in
the network case it should represent the probability of node connection in a
RN. It essentially shows a decay function that reaches zero for high values of
the x-axis. On the contrary, the power law maintains a higher tail and never
reaches zero, even in the long run. Figure 2 shows an example of the two types
of function, by considering an exponent degree equal to 1. In particular, in
Figure 2 the distance between the two curves decreases in the long run. In
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Figure 2. Power law vs. exponential law functions: simulation experiments for an
exponent degree value equal to 1.

Figure 3. Power law vs. exponential law functions: simulation experiments for an
exponent degree value equal to 2.8.

addition, this ‘vertical’ distance between the two curves is even smaller by
increasing the value of the coefficient (see Figures 3 and 4). The related log-
log transformations are illustrated in Figures B1, B2 and B3 in Annex B.
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Figure 4. Power law vs. exponential law functions: simulation experiments for an
exponent degree value equal to 3.5.

On the basis of the previous considerations, we can extract some common
elements in the applications carried out in the spatial economic field. Table 2 –
although not exhaustive – shows the most recent SF applications in both the
spatial economic and social sector.

First, it can be stated that the majority of the networks presented in
Table 2 shows a coefficient degree γ – in the related power law distribution –
between 2 and 3. Since, according to Barabási and Oltvai (2004), this range
of values identifies the existence of a SF network, we can deduce that the so-
called ‘virtual’ networks, such as internet and market investments, show SF
characteristics, while the physical networks, such as commuting and telephone
calls, show a power law with a very low exponent degree (and thus the absence
of a SF network of Barabási type).

This result confirms the ‘irrelevance’ of distances in SF networks. Conse-
quently, it seems difficult to detect the emergence of a Barabási SF network in
physical systems, like commuting, where geographical distance is relevant. In
general, it seems that in the networks where distance becomes important in the
preferential attachment mechanism, there is a ‘practical’ reason that obstructs
the spreading of an ideal SF network, i.e., the relative costs in terms of time
and money. It should be noted that SF networks are simple models, without
the constrictions which inevitably emerge in empirical networks. Thus, not
always the empirical networks indicate the presence of SF properties, but at the
same time they cannot be classified as RNs because connections are not always
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Table 2. Empirical values of the coefficient γ which characterise the degree distribution
of power law networks (size = number of nodes; <k> = average degree).

Networks Size < k > γ References

Networks without SF Features γ < 2

Sardinian inter-municipal commuting 375 43.33 – De Montis et al., 2005
network
Internet infrastructures EU 209 – 0.54 Schintler et al., 2005b
Commuting network in Germany 439 18.21 1.11 Russo et al., 2006
Co-authors, SPIRES 56627 173 1.2 Newman, 2001
E-mails 59912 2.88 1.81 Ebel et al., 2002
Internet infrastructures USA (2000) 326 – 1.83 Schintler et al., 2005a
WWW, site 260000 – 1.94 Huberman et al., 1999

SF Networks 2 < γ < 3

World-Wide Airport Network 3880 9.7 2 Barrat et al., 2004
Phone-call 53000000 3.16 2.1 Aiello et al., 2000
Co-authors, neuro 209293 11.54 2.1 Barabási et al., 2002
Internet, domain 3015–4389 3.42–3.76 2.1–2.3 Faloutsos, 1999
WWW 40000000 7 2.1–2.38 Kumar et al., 1999
WWW 325729 4.51 2.1–2.45 Albert et al., 1999
WWW 200000000 7.5 2.1–2.72 Broder et al., 2000
Market Investments – NAS 2053 – 2.22 Garlaschelli et al., 2005
Market Investments – NYS 240 – 2.37 Garlaschelli et al., 2005
Internet, router 150000 2.66 2.4 Govindan, 2000
Internet, router 3888 2.57 2.48 Faloutsos, 1999
Co-authors, math 70975 3.9 2.5 Barabási et al., 2002
Words, co-occurence 460902 70.13 2.7 Cancho et al., 2001
Words, synonyms 22311 13.48 2.8 Yook et al., 2002
Market Investments – MIB 3063 – 2.97 Garlaschelli et al., 2005

Networks without SF Features γ > 3

Citation 783339 8.57 3 Redner, 1998
Comic Book Characters 6486 14.9 3.12 Alberich et al., 2002

implemented randomly. Some kind of ‘preferential attachment’ certainly exists,
even though not exactly of the SF type (Russo et al., 2007).

It is moreover important to identify a SF network because of its strong
features in terms of robustness and vulnerability. In the case of a random
attack on nodes, the SF network will strongly persist, because a random attack
will probably damage nodes that have only a few connections, which are the
majority; nevertheless in case of an attack against the main hubs, the network
will easily be fragmented. On the other hand, RNs are weak against a random
attack which will cause the split of the network.

Recent simulations on SF networks demonstrate that the damage of just a
few of the major hubs will provoke the crash of the whole system (Gorman et
al., 2007). Consequently, it is important to identify hubs in the network in order
to prevent targeted attacks and preserve the system (Gorman, 2005). In this
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context, further studies are needed in order to understand whether connections
can be redistributed over time after a node is added or destroyed; undoubtedly,
this is strongly related to the nature of the network, especially on which nodes
and links it is identified.

Since the network typology seems either to facilitate or hamper the emer-
gence of the SF characteristics, it would also be useful to identify the critical
factors leading to such developments. Hence, it might be worthwhile to explore
new models to be able to grasp those empirical networks which do not match
all the SF network features, for example by introducing the geographical
distance as a decision tool in the “preferential attachment” mechanism. Further
decision tools strongly influencing the topology of the network might be the
cost function of the spreading of the network and/or the cost of adding a new
node/link. For example, if the cost of nodes is relatively higher than the related
connections (eg., building a new airport in the airport transport network), we
would expect the emergence of a densely connected network; on the contrary,
if the cost of a new connection is relatively higher than for a new node (as in the
case of the network of the internet backbone infrastructure), we would expect
a less densely connected network.

Geographical distance is also important when treating firm networks: so-
cial network analysis is more often applied to investigate cooperation and
interaction between firms within the same sector. It seems that the location
of firms within the same district or the same region (geographical proximity)
helps the rising of collaboration and interaction between them, by spreading of
innovation and knowledge (Boschma, 2005).

4.2 Additional Functions Detecting Scale Free Networks

In the previous sections we outlined how power law – with a degree
exponent varying between 2 and 3 – is usually considered the principal function
detecting a SF network.

In addition, it is worthwhile to outline another function able to identify a SF
network: the power law with exponential cut-off.14 This function is similar
to the power law, however here the tail decays as an exponential function.
This function – introduced by Jeong in 2001 – can be more easily adapted
to empirical data. Indeed some of the applications included in Table 2, such as
the e-mail network (Ebel et al., 2002), are based on this function (see Figure 5).

The exponential cut-off presents a slightly different form from the power
law, but it displays the same SF properties (see Section 2). At the same time,
the related coefficient degree follows the SF values previously discussed.

14 Power law with exponential cut-off formula: P(k) ∼ (k + k0)−γ e−(k+k0)/kc , where k0 and
kc are constants and γ is the coefficient degree of the Power law function. For details see
Vinciguerra (2005).
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Figure 5. Degree distribution of the e-mail network, on a double logarithmic plot
(source: Ebel et al., 2002, p. 035103-1).

5. Concluding Remarks

There is still much to be learnt about complex networks, however some
preliminary remarks can be highlighted. First, SF networks, even if dynamic
systems, do not consider the “death” of nodes. An example is provided by
internet, where every day new web-pages (considered as nodes) are added to
the system, while simultaneously other pages “die”, and with them all the links
to those pages, even if they persist for a long time in the search engines. This
means that a lot of links, which are no longer useful, still exist.

Second, the introduction of a new node, as in the case of airport networks,
will probably cause a redistribution of connections, not only for the nodes be-
longing to the same cluster, but also for the whole network. This redistribution
is affected: a) by the importance of the node; b) by the nodes in the proximities;
and c), by the weight of new connections. The mechanism of growth in the SF
model can also cause congestion in a long term period; for example, a hub in
an airport can support only a limited number of flights per minute, thus the
question is, what will happen when saturation is reached.

Concerning the dynamics of SF networks, no studies – to our knowledge –
exist on the persistence of the SF properties over time, in other words, if the
network can be identified as a SF from the beginning to the last observation, or
if the topology of the network is changing, over time, into a RN.

The problem of forecasting the SF network and its dynamic trajectory is still
an open research issue. More experiments, especially in a dynamic framework,
are then necessary, in order to understand how the topology of SF networks
evolves and whether the hierarchy of hubs is changing over time (e.g. the
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decay of some hubs for the airport network, or the persistence of Google for
the internet).

In conclusion, SF networks appear to be a useful tool in order to detect
economic hubs and clusters in spatial economic networks. The main concern is
whether a real spatial network can be identified as a SF; hence studies making
use of rigorous statistical tests to demonstrate the existence of SF networks
are needed. In this context, it is important to explore how cultural, political,
economic and technological factors may influence positively or negatively the
development of a SF network.

References

Adamic L. A., 1999, “The Small World Web”, Lecture Notes in Computer Science, 1696, 443–
452.

Aiello W., Chung F. and Lu L., 2000, Proceedings of the 32nd ACM Symposium on the Theory

of Computing (ACM, New York), 171–180.
Alberich R., Miro-Julia J. and Rosselló F., 2002, “Marvel Universe looks almost like a Real

Social Network”, Los Alamos Archive, cond-mat/0202174
Albert R. and Barabási A. L., 1999, “Emergence of Scaling in Random Networks”, Science, 286,

509–512.
Albert R. and Barabási A. L., 2000, “Topology of Evolving Networks: Local Events and

Universality”, Physical Review Letters, 85, 24, 5234–5237.
Albert R. and Barabási A. L., 2002, “Statistical Mechanics of Complex Networks”, Reviews of

Modern Physics, 74, 47–97.
Amaral L. A. N., Scala A., Barthélémy M. and Stanley H. E., 2000, “Classes of Small-World

Networks”, PNAS 97, 21, 11149–11152.
Bak P., 1996, How Nature Works, Springer-Verlag, Berlin.
Barabási A. L., 2002, Linked: the New Science of Network, Cambridge Massachusetts, Perseus

Publishing.
Barabási A. L. and Bonabeau E., 2003, “Scale-Free Networks”, Scientific American, 288, 60–69.
Barabási A. L. and Oltvai Z. N., 2004, “Networks Biology: Understanding the Cell’s Functional

Organization”, Nature Reviews – Genetics, 5, 101–113.
Barabási A. L., Jeong H., Ravasz R., Neda Z., Vicsek T. and Schubert A., 2002, “Evolution of

the Social Network of Scientific Collaborations”, Physica A, 311, 590–614.
Barrat A., Barthélemy M., Pastor-Satorras R. and Vespignani A., 2004, “The Architecture of

Complex Weighted Networks”, PNAS, 101, 11, 3747–3752.
Boguñá M., Pastor-Satorras R. and Vespignani A., 2002, “Epidemic Spreading in Complex

Networks with Degree Correlations”, Physical Review E, 66, 047104.
Boschma R. A., 2005, “Proximity and Innovation. A Critical Assestment”, Regional Studies, 39,

1, 61–74.
Broder A., Kumar R., Maghoul F., Raghavan P., Rajalopagan S., Stata R., Tomkins A. and Wiener

J., 2000, “Graph structure in the Web”, Computer Networks, 33, 309.
Chen Q., Chang H., Govindan R., Jamin S., Shenker S. J. and Willinger W., 2002, “The Origin

of Power Laws in Internet Topologies Revisited”, in Proc. of IEEE Infocom.
Cohen R. and Havlin S., 2003, “Scale-Free Networks are Ultrasmall”, Physical Review Letters,

90, 5, 058701.
Cowan R., 2004, “Network Models of Innovation and Knowledge Diffusion”, MERIT Research

Memorandum # RM2004-016.



7. Network Connectivity Models 161

Crucitti P., Latora V., Marchiori M. and Rapisarda A., 2001, “Complex Systems: Analysis and
Models of Real-World Networks”, Energy and Information Transfer in Biological Systems,
World Scientific Editors.

De Montis A., Barthélémy M., Campagna M., Chessa A. and Vespignani A., 2005, “Emergent
Topological and Dynamical Properties of a Real Inter-Municipal Commuting Network:
Perspectives for Policy-Making and Planning”, ERSA – Congress of the Regional Science

Association, Amsterdam.
Dorogovtsev S. N. and Mendes J. F. F., 2003, Evolution of Networks: From Biological Nets to

the Internet and WWW, Oxford University Press.
Dorogovtsev S. N. and Mendes J. F. F., 2001, “Effect of the Accelerating Growth of Communi-

cation Networks on their Structure”, Physical Review E, 63, 025101.
Ebel H., Mielsch L. I. and Bornholdt S., 2002, “Scale-Free Topology of E-Mail Networks”,

Physical Review E, 66, 035103 (R).
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ANNEX A

In this Annex A the graphical representation of the different types of
network models (RN, SW and SF networks) will be illustrated.

Figure A1. Visualization of a graph representing a RN, simulation made with 20 nodes
(left side) (source: elaboration by the authors). On the right side, the Poisson distribution
indicates the vertex connectivity degree distribution of a RN (source: Barabási, 1999,
p. 105).
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Figure A2. SW networks: transition from a local ordered structure to a RN, dependent
of p(left side); the cliquishness (or clustering coefficient) and path length distributions
(right side) (source: Cowan, 2004, p. 9–10).

Figure A3. Visualization of a graph representing a SF network, simulation made with
20 nodes (left side) (source: elaboration by the authors). On the right side, the power law
distribution indicates the vertex connectivity degree distribution of a SF network (source:
Barabási, 1999, p. 511).
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ANNEX B

In this Annex B the graphical representation of the log transformation
concerning Figures 2–4 (power law vs. exponential law functions) will be
illustrated.

Figure B1. Log-log plot version of Figure 2.

Figure B2. Log-log plot version of Figure 3.
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Figure B3. Log-log plot version of Figure 4.
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Abstract Simulating the structure and evolution of complex networks is an area that has
recently received considerable attention. Most of this research has grown out of
the physical sciences, but there is growing interest in their application to the so-
cial sciences, especially regional science and transportation. This paper presents
a network structure simulation experiment utilizing a gravity model to identify
interactions embodied in socio-economic processes. In our empirical case, we
consider home-to-work commuting patterns among 439 German labour market
districts. Specifically, the paper examines first the connectivity distribution of the
German commuting network. The paper next develops a spatial interaction model
to estimate the structure and flows in the network concerned. The focus of this
paper is to examine how well the spatial interaction model replicates the structure
of the German commuting network as compared to complex network models.
Finally, the structure of the physical German road network is compared to the
spatial flows of commuters across it for a tentative supply-demand comparison.

Keywords: complex networks; commuting; infrastructure
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1. Introduction

The separation of residential and job decisions have led to complex commut-
ing patterns which have extended in geographical scale over the past decades.
As a consequence, home-to-home trips have adopted multi-regional network
configurations and have thus led to complex interactive networks. Commuting
has become an important field of study in geography, transportation science
and regional science (see Rouwendal and Nijkamp, 2004). Commuting has
long been studied mostly in terms of forecasting and approximating flows (see,
for example, Fotheringham, 1983; White, 1977, 1986). Recent works include
the application of models such as the one developed at STASA (Haag et al.,
2001). However, less efforts have been done in studying the structure and
connectivity properties of commuting networks. A certain amount of literature
is available, which studies commuting in a spatial framework. In a recent
paper, Cörvers and Hensen (2003) used regional modelling in order to study
functional relationships between regions. This approach was carried out in
order to improve understanding of commuting behaviour. In particular, the
authors’ objective was to overcome the limitations of administrative regions
in defining new areas that would maximize internal commuting.

A number of works have also been touching on the incorporation of the
spatial configuration of commuting destinations, in particular with the works
by Fotheringham (see mainly Fotheringham, 1983), who introduced competing
destinations models. The competing destinations approach allowed to introduce
in the Spatial Interaction Models (SIMs) an element representing the effects of
the clustering of destinations, by means of particular accessibility measures.
The judgement on this methodology is, however, not uniform. Network ap-
proaches to commuting have also been proposed, both at urban level (see, for
example, Sheffi, 1985), and at zonal level (Thorsen et al., 1999). A graph theory
approach has instead been proposed by Binder et al. (2003).

The above approaches, though, mainly revolve around the analysis of the
effects of the road network on commuting. One further level of analysis is there-
fore necessary, which looks at the behaviour shown in terms of connections
between the nodes of the commuting network. Several questions, in fact, need
to be answered about the network. Is it highly centralized or decentralized?
What are the efficiency and reliability implications of this and other of its
connectivity properties? Complex network theory – if applied to commuting
networks – can help answering these questions. A wide literature bloomed
in recent years, studying the structural and performance implications – on
transportation networks – of hypothetical natural disasters or terrorist attacks.
The centralization or clustering levels of networks are therefore critical in such
discussion.
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In this paper, we intend to analyse the network properties of observed home-
to-work commuting in Germany. The findings of this analysis are ultimately
compared to the ones found by carrying out two simulation models: the first
model is an unconstrained SIM, while the second model proposed is modelled
according to the scale-free network theories recently made popular by the
works of Barabási and Albert (BA) (Barabási, 2001; Barabási and Albert,
1999), showing that networks with preferential attachment-based growth tend
to be highly efficient and centralised. In addition to the above analysis, we also
propose an analysis of the main German road network, by means of a shortest-
path algorithm, and subsequently compare the structural properties found – for
the road network – to the ones found for the real data and the simulation models.

The paper is therefore structured as follows: the next section briefly reviews
complex network theories and their main implications to our discussion.
Section 3 presents a some issues associated with SIMs, and introduces the
model carried out for our experiments. Subsequently, Section 4 will first present
the results of our empirical application. First, the data used for our analysis are
presented, then the findings of the comparison between the properties of the
observed commuting network and the simulation models are shown. Finally, a
discussion of these findings in respect of the ones obtained by an analysis of
the physical German road network is presented. Lastly, conclusions and future
research directions are drafted in Section 5.

2. Complex Network Theory: A Brief Review

This section briefly reviews the main issues related to complex network the-
ories, and in particular their implication for transportation networks. Contrary
to the attention complex networks have been receiving in recent years, the
study of such networks is not particularly new. Before Albert and Barabási’s
groundbreaking discoveries, original research had in fact been carried out some
forty years ago by Erdös and Renyi (ER) (1960), whose major assumption
was an underlying random network structure. However, because of lacking
computational power and suitable data, for the majority of the 20th century
these theories were not adequately challenged and represented the basis for the
most common methods of network simulation (Barabási, 2001).

Finally, Albert and Barabási (2002) found, in more recent times, that
(large) complex networks were actually behaving according to three main
characteristics:

1. Short average path length
2. High level of clustering
3. Power law and exponential degree distributions
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In detail, short average-path length indicates that any two nodes on the network
can be reached with a limited number of hops. High clustering, instead, occurs
because of nodes locating topologically close to each other in cliques that are
well connected to each other. This property had been formalised by Watts and
Strogatz (1998). Finally, the frequency distributions of node density (or, more
generally, number of connections) are called degrees and can follow power-
law distributions. This third property implies connections that cut across the
graph, directly linking different clusters of vertices. These direct links between
clusters bring an increased level of efficiency – in terms of number of hops –
to the network. This result shows the limits of the ER models, in which the
exponential decay of the degree distribution did not imply a higher number of
connections available to the most important nodes.

The novelty in the AB approach was in fact incorporating an additional
component: network growth. Consequently, not only the number of nodes in
the network can increase, but new nodes are found to have a higher probability
of connecting to other nodes that are already well-connected. Formally, the
mechanisms that govern network growth towards a power-law degree distribu-
tion are (Chen et al., 2001):

a. Incremental growth – As observed above, the number of nodes in the AB
models is allowed to grow.

b. Preferential connectivity – Preferential connectivity expresses the fre-
quently encountered phenomenon that new nodes have a higher probability
to connect (or reconnect) to an existing node that already has a large number
of connections (i.e. high vertex degree).

c. Re-wiring – Re-wiring can be considered as a consequence of the previous
principle, as some links can be removed and re-connected in the network,
though pointing at new nodes, on the base of preferential connectivity.

Still, after the recent developments described, there is a debate on how complex
networks should be classified. Different ideas, for example, are proposed by
Albert and Barabási (2002) and Amaral et al. (2000) (see Schintler et al.,
2005). Generally, the cause-and-effect relationships underlying large complex
networks are still not exactly clear. Furthermore, the measures according to
which networks should be measured are also in discussion. For example, Li et
al. (2004, p. 11) suggest that – in the case of engineered networks – robustness
should be “defined in terms of network performance” and be “consistent with
the various economic and technological constraints at work.” Remarkably, Li et
al. employ a gravity model in generating their network’s maximum throughput.

A certain amount of literature is now available on the analysis of transporta-
tion networks in terms of complex theory. Because of their short average-path
length, airline networks have been considered by Amaral et al. (2000) as a
small-world network, referring to the model presented by Watts and Strogatz
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(1998). On the other hand, the same authors note that structural limitation of
airline networks, such as limited space available in the airports, may hinder the
emergence of scale-free properties. Other authors found similar results. Latora
and Marchiori (2002) analysed the Boston subway network, while Schintler
and Kulkarni (2000) observed congested road networks. Both articles found
small-world network properties in the analysed networks.

Generally, one might argue that transportation networks are less prone to
evolve into a scale-free structure over time given the fact that they tend to be
planar. In fact, in planar networks, the maximum number of connections for
a single node can be limited by the physical space available to connect it to
other nodes, and it is this fact that makes the large number of connections
needed for finding a power-law distribution more difficult to obtain. Further,
it may be observed that highly centralized transportation networks can be
subject to threats to viability, in case of destruction of large hubs (Kwan et
al., 2003). Scale-free networks have many implications, but a far-reaching
consequence of their unique hub structure is that they are very fault tolerant,
while also susceptible to attack (Albert et al., 2000). Specifically, a scale-
free network model remains connected when up to the 80% of nodes are
randomly removed from the network, but when the most connected nodes are
removed, the average path length of the network increases rapidly, doubling its
original value when the top 5% of nodes are removed (Albert et al., 2000). In
short, targeting the most connected nodes can cause significant damage to a
scale-free network, making it highly susceptible to a coordinated and targeted
attack. Further, these numbers and findings were highly similar to the ones
found when real-world networks were tested, including the Internet at the
autonomous system level, and the WWW. When the most connected networks
and web pages were attacked, the network rapidly failed. Albert et al.’s work
was complimented by the analysis of Callaway et al. (2000), modeling network
robustness and fragility as a percolation, and by Cohen et al. (2001), who used
related methodologies. Preliminary analyses of these models on spatial network
data have shown similar results when cities are the nodes and fiber connections
between them are the links. Utilizing a model of node connectivity and path
availability, Grubesic et al. (2003) found that the disconnection of major hub
cities can cause the disconnection of peripheral cities from the network. Spatial
analysis of network failure has also been done for airline networks, finding
similar results for the Indian airline network (Cliff et al., 1979).

Starting from these considerations, the next section will present the SIM
that was modelled as an approximation of preferential attachment, in order to
be compared to a scale-free model inspired by the theories described above.
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3. Spatial Interaction Models: An Approximation Tool for

Preferential Attachment

3.1 Spatial Interaction Models for Identifying Commuter Flows in

the German Labour Market Network

Spatial interaction models are arguably one of the most common methods
employed and studied for estimating commuting flows (see, recently, Thorsen
and Gitlesen, 1998; Johansson et al., 2003; Jörnsten et al., 2004). Generally,
SIMs have long been a popular technique for describing and explaining
behavioural, demographic and economic phenomena in space (see Sen and
Smith, 1995, for an extensive presentation of the family of methods). The
main reason for the widespread utilization of SIMs is their simple mathematical
form, in addition to the intuitive assumptions underlying the approach. It should
be remembered that the most common specification of SIM had its origins
in a resemblance to Isaac Newton’s law of universal gravitation. The idea
of utilizing models derived from this theory had already been introduced,
in the 19th century, in the field of social sciences by Carey (1858) and
Ravenstein (1885), and subsequently mathematically formalized by Stewart
(1941). Remarkably, SIMs have been shown to have theoretical justification
in the entropy theory and in utility maximization/cost minimization (see, for
example, Nijkamp, 1975; Nijkamp and Reggiani, 1992). While Isard (1960)
first suggested the use of SIMs in regional science, the entropy root of SIMs
introduced by Wilson (1967, 1970), and subsequently the micro-economic
derivation introduced by McFadden (1974, 1979) contributed to make SIMs
more suitable to interpret spatial-economic phenomena.

The common form of an SIM (here presented as double-constrained) is as
follows:

Tij = AiBjOiDjf (−βcij ) for i = 1, . . . , I ; j = 1, . . . , J, (1)

where:

Ai = 1/
∑

j

BjDj exp(−βcij ); (2)

Bj = 1/
∑

i

AiOi exp(−βcij ); (3)

Tij measures the flow of interaction between the origin i and the destination
j , depending on the stock variables Oi and Dj , as well as on the deterrence
function f (−βcij ), and on the balancing factors Ai and Bj (see Reggiani,
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2004). Generally, Fotheringham and O’Kelly (1989, p. 10) formulate a SIM
in the general framework of the Alonso model (1978) as follows:

Tij = f (μ1v
1
1,μ2v

2
1, . . . ,μpv

p

1 ;α1w
1
j , α2w

2
j , . . . , αqw

q
j ;βcij ), (4)

where vi and wj are measures of the “propulsiveness” and the “attractiveness”
of i and j , respectively. Parameters μ, α and β link the above variables to the
flows Tij .

The deterrence function in (1) is depending on the deterrence factor β and
the interaction costs cij . cij might also be considered as generalized costs.
In our experiment, distances were used as a proxy of the interaction costs,
since the analysis was carried out at the German district level (kreise). The
functional form of the deterrence function is also a relevant issue. While in its
first formulations the distance deterrence function was shaped as a power law
function – as used in the Newtonian formula – Kulldorf (1955) showed that
an exponential deterrence function seemed to better fit migration phenomena.
Subsequently, the exponential deterrence form emerged mathematically from
the entropy maximization approach developed by Wilson (1967). The power
form outlines a larger amount of flows – with respect to the exponential form –
in the presence of long distances or travel times. In our analysis, the power
law specification was used, as it showed to fit the data better. In addition to
the shape of the deterrence function, the value of the β deterrence factor was
researched. In the experiments conducted here, a value of 1.5 was chosen for
the β deterrence factor, on the basis of a calibration procedure carried out on
the available data expressed in the form of an unconstrained SIM. In particular,
the unconstrained SIM used in our experiments is specified as follows:

Tij = KEiEjd
−β
ij (5)

In Equation (5), the flows Tij are the employees commuting from the origin
district i to the destination district j . They are a function of the number of
persons Ei and Ej employed in the two districts, as well as of the distance dij

between the two, in addition to a scaling factor K . The model that we propose
is of course overly simple. However, what is relevant for our experiments is
not the correct estimation of the German commuting flows, but instead the
connectivity and structure of the commuting network (see Section 3.2).

When employing an SIM for estimating inter-urban commuting flows,
additional issues should be cited. One of them is the treatment of internal
commuting. In particular, the distance between the working and living areas
is, by definition, null (although travel time or costs would not necessarily be).
This issue is at times solved by assigning an arbitrary value to the distance for
internal commuting. Alternatively, the flows assigned to internal commuting
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can be omitted in the analyses. A number of additional ways to treat internal
commuting are available in the literature. The method suggested by Thorsen
and Gitlesen (1998) starts from the consideration that intra-commuting might
imply different transportation means, such as biking or walking. Thorsen
and Gitlesen suggest an additional component to be added to the deterrence
function exponent. This component would represent – depending on the case –
either a start-up (generalized) cost for commuting between different zones, or a
premium, interpreting the benefit of intra-commuting. An example model with
these characteristics, reminiscent of the Champernowne deterrence function
(see, for example, Sen and Smith, 1995), is presented by Thorsen and Gitlesen
(1998, p. 279) for a double-constrained specification. Alternatively, the authors
suggest that labour market characteristics might be used to influence the
elements on the diagonal of the O/D matrix.

In our case, the elements of the diagonal are omitted from the analysis. This
choice was made mainly due to the network approach to commuting identified
in the paper. As we analyse the connectivity and structural properties of the
German commuting network, the measure of the number of commuters within
a certain district would not add additional information about the network, apart
from the “socio/economic weight” of a certain node. On the other hand, the
number of fulltime employees in each district already grasps this aspect.

3.2 Interpretation of Spatial Interaction Behaviour as Preferential

Attachment

The usual practice in the use of SIMs, when dealing with commuting flows,
is to employ the models in forecasting future flows, given certain conditions.
In our experiments, we propose the utilization of the simple SIM shown
in Equation (5) as a tool for approximating the connectivity and structural
properties of a commuting network. In particular, we want to verify if an SIM
can allow for preferential attachment behaviour. As seen in Section 2, in the
models introduced by Barabási and Albert nodes have a higher probability
of connecting to other nodes that are already well-connected. The hypothesis
that we will test in the next section is that commuting networks follow a
similar preferential attachment-based behaviour in terms of connectivity and
structure. They would not be the first transportation network to be referred to
in these terms. In fact, hub-n-spoke networks operated by airlines are, as seen
in Section 2, a well-known example of preferential attachment behaviour (see,
for example, Bowen, 2002, and most importantly Wojahn, 2001).

An additional reason for the consideration of commuting networks in
such a framework can be found if we think of preferential attachment as
a maximization of utility levels. The idea is that utility is maximized by
connecting to the most connected nodes of the network, as they give access
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to other points in the network by a minimal number of hops (therefore
minimizing generalized costs). If so, this hypothesis would be consistent with
the theoretical basis of utility maximization that justifies the use of SIMs. In
particular, the hub-n-spoke network might – conceptually – be interpreted as a
network tree consistent with a nested logit/hierarchical SIM structure (for the
compatibility between nested logit and double constrained SIM, see Nijkamp
and Reggiani, 1992).

The next section will first describe the data available for the experiment (see
Section 4.1). We will then test the hypothesis of a SIM as an approximation
of preferential attachment, by comparing the network properties observed for
our naïve SIM, for a scale-free network, and for the real commuting network
(Section 4.2). Subsequently, in Section 4.3 we will present the results of a
structural analysis of the German road network (the physical network on which
commuting is actually performed), and compare the properties found with the
results previously obtained.

4. The Empirical Analysis

4.1 The Data Available

As shown in Section 3.1, the SIM estimated for our experiment formally
employs two types of data:

a. The number of employees working in each German district. These are
fulltime employees, for which the data were collected – as part of a yearly
survey – in the year 2002.

b. The distance between each couple of origins and destinations. This is ex-
pressed in Kilometres, and acts as a proxy for more effective measurements,
such as cost or travel time.

Moreover, additional data are available for our experiment. In order to calibrate
our SIM shown in model (5) (see Section 3.1), information on the German
commuting flows has been used. The data consists, for each origin-destination
couple (i, j), of the number of employees living in district i, and working
in district j . These are therefore home-to-work data, which are available for
the year 2002. The distribution of the number of commuters for each origin-
destination couple, ranked in descendent order, is shown in Figure 1.

Figure 1, which is adapted to a log-log scale, shows the decrease in the
number of commuters for the (descendent) rank of origin-destination couples.
The curve seems to better fit a power-law distribution rather than an exponential
one. However, the highest values in the data – which are the first values in
the descending order rank – do not reach the levels expected for a power law
fitting. This could reasonably be due to physical constraints given by city size
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Figure 1. The distribution of commuters flows over the couples of origins and destina-
tions.

and congestion issues. Nevertheless, the distribution shown in Figure 1 does not
tell about the intrinsic properties of the network. The next section will therefore
analyse the connectivity properties of the observed commuting network and of
the ones developed by the models presented in our exercise.

4.2 Analysis of Network Structure and Connectivity Properties in

Germany

The goal for this experiment is to discover how well a spatial interaction
model can be used to accurately model preferential attachment and the resulting
structure of the German commuting network. The use of the BA model as a
structural model for network connectivity has received considerable attention,
critique and extension. This section of the paper strives to refine the BA
model for application to spatial economic networks, specifically the patterns
of connectivity found in German commuting to work. The focus of the analysis
is how well the spatial interaction model builds the topology on the real world
network and not just its connectivity distribution. Li et al. (2004) have found
that the power-law distributions created by many network generation models
can result in a wide range of actual topologies.

The first step of the analysis was to specify an accurate SIM for the
German commuting network. Many economic and social forces shape the
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Figure 2. Network Visualization of the Network BA Model, Spatial Interaction Network
Model, and German Commuting Network.

contours of commuting patterns. A simple supply-and-demand model based on
employment and distance was used in this initial case. The SIM was formalized
in Section 3.1, Equation (5). Once the spatial interaction for all possible pairs of
German labor markets is calculated, a threshold for connectivity is determined.
In this case, a threshold of 100 commuters was determined as the cut off
for what would be considered an adequate economic flow for there to be a
connection in the network between two (labor) districts. The resulting edge
list of pairwise connections between districts was then used for comparison
to the BA model and real-world data. The BA model created for comparison
was based on a 439-node network with a 0.3 connectivity probability, an alpha
parameter of 0.3, and an initial three districts to connect to. Once both networks
are modeled, they are compared to each other and the real commuting network
structure. The resulting network topologies can be seen in Figure 2.

From a visual inspection of the three network visualizations, the spatial
interaction network model comes closest to replicating the German commuting
network, although it lacks the same level of interconnectivity seen in the real
data. The BA model illustrates even less interconnectivity than the spatial
interaction model, with most connections going directly to the hubs, with little
of the connectivity between spokes seen in the real commuting data.
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Figure 3. The resulting connectivity distributions of the BA network model, spatial
interaction network model, and the German commuting network.

In order to provide the next level of analysis the connectivity distribution of
each network is calculated as a log-log plot. The results of all three network
connectivity distributions are plotted in Figure 3. The number of connections
for each district is ranked in descendent order.

Interestingly, neither of the models recreated the power-law connectivity
distributions seen in the real data. They have instead exponential distributions
of connectivity. The two models also have much steeper slopes, each with
an exponent over 1 while the real data is just over 0.5. Of the two, the
SIM is modestly closer in slope and distribution to the real data, but not
enough to be of consequence. Overall, the three distributions are highly similar
despite the slight numeric differences, while the topology visualizations seen
in Figure 2 are vastly different. This is most prominent in the SIM and the BA
model, which have very similar connectivity distribution, but entirely different
topology visualizations. To examine these topologic differences, a variety of
structural indicators are calculated.

For each network, a series of indicators is calculated, which provide a
comparison of the structure of each network generated (see Table 1).

The first indicator presented in Table 1 is the clustering coefficient, which
provides the first insight into what delineates the structural differences in
the three networks. The lack of clustering seen visually in the BA model is
found in the statistics, with a far lower coefficient than that of the SIM or
of the real world data. The SIM overestimates the level of clustering seen
in the real data, but is considerably closer than the BA model. The diameter
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Table 1. Network properties of the BA network model, spatial interaction network
model, and the German commuting network.

Real Data BA Model SIM

Clustering Coeff. 0.659 0.29 0.803
Diameter 4 6 5
Average Degree 18.21 12.469 18.462
Std. Dev. Degree 19.268 19.174 26.805
Max Degree 213 154 235
Min Degree 5 0 1
Centralization 44.68% 32.46% 50.36%
Betweeness Mean 313.125 251.866 297.083
Betweeness Std. Dev. 1929.005 935.554 1997.69

parameter calculates the longest shortest-path in the network, and provides a
measure of the efficiency of the structure. All three networks have relatively
small diameters, and the real world commuting network is the most efficient.
Again, the diameter of the SIM is closer than the one of the BA model, off by
only 1. The subsequent set of statistics deals with the number of connections
nodes in the network have. These are the statistics that are more of local
connectivity indicators, and not global structural indicators of the networks.
From a connectivity standpoint, the SIM does a nice job of accurately capturing
the average, maximum, and minimum of the degree connectivity seen in the
real commuting data. It falls short in capturing the standard deviation of average
connectivity, where the BA model is closer, but the average connectivity is
still six degrees off of the real data. The centralization parameter measures the
amount of core connectivity in the network. The SIM overestimates the amount
of centralization, while the BA model underestimates it. However, the SIM
is closer to the real data values. Lastly, a measure of betweenness is offered
for each network. Betweenness is a measure of routing frequency, where all
shortest paths across a network, and then the number of times each node is used
in all paths, are calculated. This provides a convenient measure of the global
structure of the network, since the indicator samples paths across all segments
of the network. The average and standard deviation of betweenness for the SIM
and the real data are very close. This confirms what was seen previously in the
network visualization, which illustrated a similar topological structure between
the two networks. The significant differences between the real network and the
BA model, according to betweenness measures, confirm the distinct differences
between the two also seen in the visualization.
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4.3 A Structural Analysis of the Physical Commuting Network by

Means of Shortest Path Algorithm

In addition to studying the flows of commuters between cities, it is also
possible to study the infrastructure they utilize. The economic flows of com-
muters and the physical links of infrastructure are intrinsically connected, but
belong to two very different network structures. Commuting flows belong to
logical networks, which are non-planar in nature, since the fact that two links
intersect does not mean a node actually exists at their intersection. A flow in the
commuter network could therefore be between Frankfurt and Munich with only
two nodes and one link, even though the physical path goes through Stuttgart.
The physical network, on the other hand, is planar; the intersection of two links
creates a navigable intersection. In order to travel from Munich to Frankfurt,
several intermediate nodes have to be traversed. Commuting data represent the
flows across the physical network, but the two networks are quite different in
nature and structure.

Figure 4. The German road network.
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To begin to address the relationship and differences of these networks, the
physical road network of Germany is analysed. Unlike the commuting flow
network, it is straightforward to visualize what the road network looks like
with a simple map. Figure 4 provides a map of the German road network.

In Figure 4, the white lines are major roads in Germany, while the dots
represent major cities connected by the roads. While the map does illustrate
the layout of the road network, it does not give much insight into its structural
properties. In order to gain some perspective on the structure of the road
network, a routing frequency analysis was performed. The road network was
first partitioned into nodes and links, then shortest-paths were calculated to
and from all nodes in the networks. Links were then assigned a frequency
count, based on the number of times the link was utilized in all possible
link combinations. This provided a structural analysis of which links, in the
German road network, are most critical and heavily utilized in all possible
travel combinations. To visualize these results Figure 5 was built.

Figure 5. German road network routing frequency analysis.
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In Figure 5, the height and colour (lighter to darker) of the peaks is
determined by the number of routes that use a particular link in the road
network. The higher the frequency of routes, the higher the peak. The routes
that connect through the middle of the country are particularly well utilized,
especially the routes connecting Berlin to Frankfurt and Stuttgart. The routes
connecting Berlin to Munich and Hamburg are also prevalent. In general, routes
in Western Germany have a higher frequency than Eastern Germany routes. It
should be noted that this analysis is simply based on shortest-path frequency
and does not account at all for socio-economic dimensions like population or
employment as with the previous gravity model.

4.4 Concluding Remarks

The present analysis does provide preliminary insights into the German
infrastructure network, which underpins the economic commuter network
flowing on top of it. The intuitive next direction is to combine the two networks
and examine their interdependencies. It would be useful to investigate the
relationship between the economic flows of commuters and the physical net-
work structure of the roads they use. Are the highest flows of commuters also
utilizing the highest-frequented structural links? How well does the physical
structure of the network match the economic flows across it? If there is failure
in the physical network, how will it impact the economic flow of commuters
or, more importantly, logistics and supply chain networks? Unfortunately, it
was not possible, at this stage, to obtain a geo-referenced map of the German
districts to map the commuter flows on top of the physical routing frequency.
Such a possibility would at least provide a first-cut comparison of commuting
links in a labour district to the number of routing paths. These are all possible
future directions for the research.

5. Conclusions

The aim of this paper was to provide a comparative analysis among
different approaches on the theme of commuting from a network perspective.
In particular, we were interested in studying the structure and properties of
the German commuting network. In order to better understand this real-world
commuting network, we needed to compare it to different network models
that could approximate it. Two models (an SIM and a scale-free model) were
developed, based on widely different assumptions. However, both models
aimed at simulating a “preferential connectivity” behaviour, according to which
well-connected nodes in the network have a higher probability of attracting
connections from other nodes over the network.
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A comparison of the real (network) commuting data with the ones generated
by our two models was carried out in two ways: a) a visual comparison of the
network structures; b) a comparison of the network properties calculated for
the three networks. The visual comparison showed that the SIM seemed to
better approximate the decentralized configuration of the commuting network.
The scale-free network showed instead a highly centralized structure. These
observations were then reinforced by the comparison of the network properties
parameters. Although showing similar values for some network parameters,
the SIM, rather than the scale-free model, provided values that were more
consistent with the ones calculated for the real data.

An additional analysis was subsequently carried out, examining the German
physical road network. This analysis on the road infrastructure visually showed
which points, according to a shortest-path routing algorithm, are (theoretical)
critical points in the German road network, as they are central to the routes
calculated over the network.

Summarizing, our experiments made a first attempt at interpreting com-
muting networks from a complex network perspective. More detailed exper-
iments might be carried out, by developing more refined SIMs (like double-
constrained SIMs) and scale-free models, which should include parameters that
better suit the type of network that is being approximated. A further experiment
might be to weigh the number of connections – in a scale-free approach – with
the volume of commuters. Also, a set of new experiments could be carried
out, by integrating commuting flows (and maybe other economic factors) with
the physical road network, as suggested in Section 4.4. For example, it could
be interesting to observe how changes in the physical road network would
influence the results of a SIM, where the distance deterrence factor is not
expected to vary (Jörnsten et al., 2004). Also, the use of double-constrained
SIMs is necessary, in order to account for spatial characteristics. General
equilibrium models, employing variables such as wages or migration might
be used for comparison sake.
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Abstract This paper reviews and discusses modeling approaches to identify critical
components of transportation systems. The review includes approaches based on
economic theory, complex network science techniques and network optimization
models. The economic model derives the criticality of the components of the
transportation system using concepts from welfare economics. To derive approx-
imate insights into assessing critical components, a model based on complex
network science is developed. This model uses the shortest distance as a measure
for the efficiency of the network with and without the components. Finally, the
paper discusses network interdiction models, which are useful in identifying
critical links under strategic behavior of agents. The modeling methodologies
presented here are a promising step in assessing critical components and in the
optimal use of scarce funding to improve transportation security.

Keywords: transportation; complex networks; transportation economics

1. Introduction

The tragic events of September 11th, 2001 catapulted transportation security
to the forefront of issues. In this context, policy makers and researchers
have to develop strategies and policies to protect the nation’s transportation
infrastructure against external threats such as terrorism. At the same time, the
transportation system has to deal with unparallel growth in demand across all
modes, both passengers and freight. This poses a significant challenge because
security measures tend to restrict mobility and trade. In this context, assessing
the importance of a given component of the network provides important
guidance in identifying the potential benefits of alternative strategies to increase
security. Among other things, it also helps maximize the effectiveness of scarce
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resources. The critical assessment of different components of the multi-modal
infrastructure network (e.g., bridges, ports, highways, airports) has not received
significant study in the past. Nevertheless, a number of policy measures have
been issued by the Federal government (e.g., the Customs Trade Partnership
Against Terrorism, Container Security Initiative, 24 hours manifest rule, the
2002 Maritime Transportation Act) in an attempt to provide an across the
board increase in network security. However, these policies do not provide any
guidance to local and state agencies on how to prioritize investments aimed at
increasing transportation network security.

Executive Order 13010, issued by President Clinton on July 15, 1996, (Clin-
ton, 1996) established the President’s Commission on Critical Infrastructure
Protection (PCCIP) in order to develop a national strategy for protecting these
infrastructures from various threats and to assure their continued operation.
Eight different types of infrastructure, including transportation, were identified
as critical, in that their incapacitation or destruction would have a debilitating
effect on the nation’s defense or economic security. Presidential Decision
Directive 63 (PDD63) issued on May 28, 1998, (Clinton, 1998) builds on
the PCCIP’s October 1997 recommendations. The report called for a national
effort to assure the security of the United States increasingly vulnerable and
interconnected infrastructures. PDD63 set up a new institutional structure
to deal with this important challenge. The interdependences among critical
transportation infrastructure systems calls for a concerted modeling effort to: (i)
better characterize the inherent risks and (ii) to prioritize the existing infrastruc-
ture systems to manage them safely. This paper specifically deals with the latter,
i.e., assessing the importance of components in transportation systems.

The criticality of a component of the transportation network can be studied
using different modeling techniques. The potential approaches range from
techniques based on economic evaluation of projects; to techniques based
on complex network theory, which provides useful approximations to the
evaluation.

The paper conducts a critical examination of alternative approaches to
model transportation security related problems. The paper starts with a con-
ceptual discussion of the economic paradigm traditionally used to assess the
economic value of component of the transportation infrastructure. Using this
paradigm as the starting point, the paper then discusses network models and
models based on complex network theory that may provide useful approxi-
mations to the economic model, and complementary views to the analysis of
transportation security problems. The final section of the paper concludes with
thoughts on research opportunities in this subject area.
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2. Assessing Criticality in Transportation Networks

Assessing the importance of a component of the transportation network
requires understanding of the economic value to its users, and society at
large. The essence of this process is best understood as a special kind of
economic analysis in which the objective is to assess the economic value of
losing the facility by a terrorist attack, for instance; as opposed to the more
traditional objective of assessing the economic value of adding capacity to
the transportation network. This section focuses on providing a conceptual
discussion of the multi-layered nature of the user types, their relationships with
the physical network, and alternative methods to assess criticality.

Computing the economic value of a critical component of the infrastructure
system invariably leads to welfare economics, and to the different metrics to
assess consumer surplus. For completeness sake, a brief review of key concepts
is provided next. In accordance to welfare economics, the economic value of
a good is defined by the economic benefits it brings to both consumers and
producers. In its simplest (Marshallian) form (after Marshall, 1924; though it
was originally inspired by Dupuit in the XIV Century, reprinted in Dupuit,
1952), estimates of the economic benefits to consumers (consumer surplus) and
to producers (producer surplus) could be obtained by integration of the areas
between the demand function and the equilibrium point, and the area between
the equilibrium point and the supply curve. In general:

Consumer surplus:

CS =
∫ ∞

Pe

Qdp (1)

Producer surplus:

PS = PQ −
∫ Qe

0
mdQ = PQ − C(Q) (2)

Figure 1 (a) represents the case of a good with a demand function D
and supply function S0. As shown, the consumer surplus represents the net
difference between the amount the users are willing to pay and what they
actually pay, i.e., the area above the equilibrium price and below the demand
function, is equal to CS0; while the producer surplus, defined as the difference
between the price at which producers are willing to produce and the current
market price, is equal to PS0. Figure 1 (b) of the figure shows the impact of
a capacity reduction that moves the supply function to the left of S0 to S1. As
shown, the reduction of supply reduces consumer and producer surpluses. In
economic terms, the total welfare in the before condition is W0 = CS0 + PS0;
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Figure 1. Consumer and Producer Surplus.

while the welfare for the after condition becomes W1 = CS1 + PS1. The net
economic impact of the change is: B = W1 − W0.

The reader must be aware that in economic analysis of transportation
projects, the paradigm just described needs some significant adjustments. First,
there is no formal supply function as in the production of goods; instead
the equilibrium process is determined by the interplay between the demand
function and the average costs and capacities perceived by the users. Second,
since the equilibrium is determined by the costs perceived by the users, the
externalities produced by the drivers are not taken into account. This leads to an
imperfect market that, in the absence of optimal congestion pricing, would not
achieve an efficient solution in which welfare is maximized (that occurs when
the costs of externalities are internalized). Third, since transportation benefits
and costs accrue over time, the analysis has to take into account how both
producer and consumer surplus change with traffic conditions. For simplicity
sake all these details are set aside for the time being.

In the context of a regional transportation planning agency, an estimate of
the change in consumer surplus produced by a transportation project could
be obtained with the assistance of a suitable regional transportation model.
Running the model with and without the facility in question, would lead to
two sets of values of generalized costs (Cij ) and equilibrium origin-destination
flows (Qij ). Assuming a linear relationship between the two equilibrium
solutions, which leads to the rule of half, and summing across all origins and
destinations (i, j ), the change of consumer surplus could be estimated as:

	CS =
∑

i,j

[(
C1

ij − C0
ij

)
Q1

ij + 1/2
(
C1

ij − C0
ij

) (
Q0

ij − Q1
ij

)]
(3)

where the superscripts (0) refers to the initial condition and (1) the condition
after.
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Computation of equation (3) requires running the transportation model
twice (with and without the project) for each time period of analysis, which
is required to assess how changes in consumer surplus evolve over time, for
the duration of the disruption. Although relatively simple to compute, the
metric shown in equation (3), has a fundamental limitation: it does not take
into account the likely income effects – associated with a major change in
the transportation network – that are likely to take place. These changes in
disposable income are bound to move upward (in the case of an income
increase) or downward (in the case of an income reduction) the demand
function which introduce an error in equation (3), in what is referred to as
income effect (as opposed the substitution effect, i.e., movement along the
same demand function, considered by Marshall). This phenomenon was first
analyzed by Hicks (1943) who concluded that the solution was to isolate
the income and substitution effects. This could be illustrated with the aid of
Figure 2. (after Brent, 1997), which shows the indifference curves for two
different situations: with (U0) and without the facility in question (U1). As
shown, the utility of the initial condition is larger than the utility without the
facility.

Figure 2 shows in the vertical axis a numeraire that represents all goods
and services except the consumption of good X (transportation service through
the facility). As shown, in the initial condition, the budget line (1) intercepts
indifference curve U0 at point A, leading to an optimal level of consumption
equal Q0. After removal of the facility, the likely increase in transportation
costs would lead to an increase in the slope of the budget line (2), which
pivoting around its intercept will become tangent to another indifference curve
U1 at B (leading to a consumption of Q1). As outlined by Hicks (1943), in order
to compensate the users for the loss of utility at the new prices, the users would
have to receive an additional income equal to 	mC (obtained by translating
budget line 2, that represents the new prices, until it becomes tangent to the
original indifference curve). (This increase represents the income effect.) Since
the income effect has been isolated, the new point D (in the original indifference
curve) represents what Hicks (1943) defined as compensated demand.

A second way to isolate the income effect is to do the analyses with the
new indifference curve (U1). Translating the budget line 1 until it is tangent to
U1 leads to point C. The difference in income between the original intercept
and the intercept of the translated budget line two, i.e., 	mE, represents the
amount of income users would be willing to give up in order to keep the price
at its original level. The resulting point c represents the equilibrated demand.

The lower part of Figure 2 shows the changes in consumer surplus for
the original demand (P0abP1), for the compensated demand (P0cbP1) and the
equilibrated demand (P0cdP1). These alternative measures of consumer surplus
are usually referred to as: Marshallian (M), Compensating Variation (CV) and
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Figure 2. Hickian measures of consumer surplus.

Equilibriating Variation (EV). As shown, in the case of a loss of a facility, the
CV will always be smaller or equal to M, while EV will always be larger an
equal to M (the order is reversed in the case of an improvement, e.g., adding a
transportation facility).

It is clear that the proper metric to use is the equilibriating variation
(EV) because the issue at hand is one of disruption avoidance, in which
the important question is how much each user is willing to pay to keep the
status quo. Unfortunately, the computation of EV cannot be easily integrated
to the standard transportation model because it requires specific knowledge
about income effects. (The authors are not aware of the existence of any
approximation formulas, such as the one by Willig (1976) that links M and
CV, for EV and M.) In the absence of more appropriate measures, there is no
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choice but estimating the value of a facility on the basis of the Marshallian
measure (M) which, as discussed before, is likely to overestimate the facility’s
economic value.

In spite of its intellectual appeal, the economic approach discussed in the
previous section, that uses the Marshallian measure of consumer surplus,
requires a relatively sophisticated use of the transportation models usually
developed for Metropolitan Planning Organizations (MPOs). As shown before,
the output of a transportation demand model would become the input of the
economic analysis. This requires economic training of the kind not typically
found at even the largest MPOs. The objective of the next section is to
propose the use of alternative approximate techniques that may prove useful
in providing approximate insights of the relative importance of individual
facilities, without having to conduct complex modeling.

3. Approximation Techniques for Assessing Criticality in

Transportation Networks

This section discusses three different models for modeling criticality in
transportation networks. The first two models are approximate models which
assess the components in the transportation network. The final model, a
network interdiction model, identifies the different components which are to
be protected without assessing the importance on individual components, or
attempting to prioritize them.

The starting point for the discussion is equation (3) that shows how to com-
pute the change in consumer surplus produced by a change in transportation
supply. In its simplest form, the economic impact of a capacity change on
the users is a function of both the change in demand and generalized costs.
This suggests that a way to simplify the assessment process would be to use
techniques that consider only one of these variables, either the change on
network demand, or the change in transportation cost. These alternative metrics
are discussed next.

3.1 Approximations Based on Traffic Flows

Probably, the simplest approximation of importance to the transportation
facility is the one that relies on the number users of the facility in question.
Using data provided by traffic counts has some practical advantages because
traffic counts are: (1) readily available; (2) relatively accurate; (3) easy to
update; and (4) routinely (and in some cases continuously) collected by
transportation agencies. However, traffic counts are only remotely connected
to the indicator of benefits shown in equation (3) which depends on origin-
destination flows.
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Nevertheless, traffic data do provide an indication of the intensity of use. In
this context, defining tij as the traffic between two connected nodes i and j , one
could compute a set of approximate indicators of criticality for both links and
nodes, under the assumption that the criticality of a facility is proportional to
its number of users. However, it shall be clear that this kind of metric does not
attempt to compute the economic consequences of removing a link or a node
from the transportation network (because these changes manifest themselves in
the form of changes in generalized costs that these approaches fail to consider).

3.2 Approximations Based on Network Analysis: Network Science

Models

The second approximate techniques to assess critical components accounts
for network topology and measures the efficiency of the components based on
the shortest path costs (as opposed to changes in the traffic level discussed in
the previous section). These techniques consider the impact that removing a
link or a node has on the level of connectivity of the network. These techniques
are based on graph theory with link weights to represent network attributes.
For example, the weight of each link could represent the distance, cost or a
combination of the distance and the flow of material (people) between the
nodes i and j . To find the critical components of G, the efficiency of the
graph G must be defined first. The efficiency of G, as defined by Crucitti et
al. (2003), is calculated on the basis of the shortest paths (dij ), between any
two nodes i(origin) and j (destination). The shortest path is computed using
a label setting algorithm (see for instance, Ahuja et al., 1993). Assuming that
the typical spatial interaction principles apply to the exchanges of goods or
people along the network, the efficiency κij of the flow between node i and j

is inversely proportional to the shortest path distance dij , i.e., κij = 1
dij

, ∀i, j .
The average efficiency of the graph G can be defined as following:

�(G) =

∑
∀i �=j∈G

κij

N(N − 1)
= 1

N(N − 1)

∑

∀i �=j∈G

1

dij

(4)

where �(G) denotes the efficiency of graph G. The above equation gives the
value of �(G) in the range of [0,∞). To normalize this value we define the
most efficient network in which there is a direct connectivity between nodes
i and j , where flow moves through the network in the most efficient manner
following the definition of Latora and Marchiori, (2004). Hence, �(Gideal)

is defined as the most efficient network when all the nodes in a network are
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connected with all the other nodes. This is equal to:

�(Gideal) = 1

N(N − 1)

∑

∀i �=j∈G

1

xij

(5)

where xij is the most efficient way of reaching j from i in a fully connected
network. In this research efficiency is calculated for the transportation network
by dividing it with �(Gideal) to get a value between[0,1]. The harmonic mean
is used to calculate the efficiency in (4) and (5) as the harmonic mean was found
to be a better average estimator than arithmetic mean to characterize the mean
flow of information in communication networks (Latora and Marchiori, 2003).

With the overall efficiency of a graph G in place, the value of each node i to
the overall system can be calculated by computing the efficiency of the graph
G with and without the node in the graph. A new graph is defined by removing
the facility under analysis, which leads to a new graph G−i , which does not
include facility i. The importance of facility i is calculated as:

ℑ(i) = �(G) − �(G−i), ∀i ∈ V (G) (6)

where, ℑ(i) indicates the value of link i to the overall network and �(G−i)

represents the efficiency of the network by deactivating the node i in graph G.
Based on the magnitude of ℑ(i), the critical components of the network are
identified as the ones that have the highest value of ℑ(i). This analysis can be
used to identify the critical components of the network.

The main algorithm used in the above methodology is the shortest path
(SP) algorithm. This is a well researched problem and can be solved very
efficiently. The worst case complexity of Dijkstra’s algorithm is known to be
O(n2), where n is the number of nodes. However, the complexity of identifying
critical components is greater, as this operation is performed n times, for each
facility in the network with and without it. Therefore, the total SP calculation
in the base network is O(n3). The same complexity holds for calculating the
most efficient network. The importance of each node i requires the above
operation of calculating the one to all SP’s |V| times for each node. Overall, the
algorithm requires O(n4) worst case time for running this algorithm. Hence,
we conclude that the worst case complexity of the above procedure is O(n4).
Since, the worst case complexity is in polynomial time, this method can be
used efficiently to identify critical components for large scale networks.

3.3 Network Interdiction Models

This section discusses a special kind of models that, although not directly
concerned with assessing how critical a component of the network is, provide
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insight into the strategic behavior of an adversary interested in maximizing
disruptions to the transportation network, and those interested in interdicting
these agents from causing network damage.

In a simplistic fashion, three agents are at play. The first one is the agent
interested in maximizing network security (broadly defined), the interdictor.
In reality, this “agent” may in fact represent a collection of agencies, or
individuals. However, for the purposes of this paper, it is assumed that their
coordinated actions could be represented by the actions of a (super) agent.
The second agent represents the adversary that threatens to disrupt the trans-
portation network, e.g., terrorists trying to blow up a bridge. Another type of
a disruptive agent are the natural forces (e.g., hurricanes, earthquakes) that
tends to have a random and significant impact on the transportation network,
as demonstrated by hurricane Katrina. For purposes of discussion, these three
agents are referred to as: interdictor, adversary and nature. It shall be clear that
although both adversary and nature can and do produce significant network
disruptions, only adversary and interdictor engage each other in the tactical and
strategic interactions studied by game theory (on which the discussion in this
section is based on). However, nature could be incorporated into this type of
models by replacing the original objective function (disruption maximization),
with probability functions that reflect the likelihood of damage to individual
components by a natural event.

In this context, it is obvious that another distinction must be made between
two important cases that differ based on the information that the interdictor
and adversary know about each others’ strategies. The first one considers
the case in which interdictor takes actions to reduce the vulnerability of a
transportation facility, and attackers are aware of these strategies. For instance,
road inspections at critical transportation facilities are likely to be known to
potential attackers. This situation could be interpreted as a Stackelberg game
with the interdictor as the leader of the game, and adversary as the follower.
Some type of network interdiction models are leader-follower games where
the two players are in a warlike conflict (Wood, 1993). The follower operates
a network in order to optimize a particular objective function such as moving
container shipments through a given network as quickly as possible. The leader
attempts to limit the follower’s objective by interdicting arcs, for example, by
attacking arcs to destroy them, either to completely eliminate the movement or
reduce the capacity.

The second case is related to a situation in which neither interdictor nor
the adversary are unaware of the strategies of each other, although they have
information on the set of all available strategies. An example of this would be
a situation in which interdictor tries to minimize disruptions in the network by
conducting random inspections at key locations; while the adversary is doing
the opposite, i.e., trying to maximize network disruptions. This is in essence
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a non-cooperative game. Some formulations of network interdiction models
(e.g., Salmeron et al., 2004) are equivalent to a non-cooperative game with a
Nash equilibrium solution, as shown in P1.

(P1) max
δ∈	

min
p

cTp (7)

s.t.

g(p, δ) ≤ b (8)

p ≥ 0 (9)

An interdiction plan is described by a binary vectorδ, whose kth entry δk is 1
if component k of the system is attacked and is zero otherwise. For a given
interdiction plan, the inner problem is an optimal traffic-flow problem that
minimizes either the cost of the entire system (System Optimal Assignment)
or each user’s cost (User Equilibrium). This is denoted by cTp. The vector
p denotes the traffic flow in the transportation network in consideration and
c represents the generalized non-linear costs on each link of the network.
The outer maximization chooses the most disruptive plan from the external
agents viewpoint, δ ∈ 	 where 	 represents the discrete set of attacks that an
external agent will be able to carry out. The set of constraints corresponds to a
set of functions that involve the flow balancing constraints. Other additional
constraints would depend on the specific transportation network structure
(e.g., multiple modes, user groups) in consideration. Most of the interdiction
problems involve a binary decision variable with a deterministic outcome.
The k-most vital arcs problem (Corely and Shaw, 1982) is usually a special
case of the interdiction problems, in which the interdictor seeks to destroy
exactly k arcs to interdict the network most effectively. The k-most vital arcs
problem being NP-complete (Ball et al., 1989), it follows that most of the
interdiction problems are NP-complete and hence computationally difficult to
solve. However, many approaches like Benders decomposition, super valid
inequalities (Israeli and Wood, 2002) and new bi-level algorithms (Salmeron
et al., 2004) have been developed to solve real size networks.

The models discussed in this section consider the strategic behavior of the
adversary who wishes to infiltrate a road network to send materiel or cause
damage and the interdictor wishes to minimize the damage by interdicting
arcs in the network. Different variations of this problem could be studied
under different assumptions such as budget constraint for the interdictor; where
he/she cannot spend more than a pre-specified amount on the interdiction
plan. Further extensions include accounting for stochasticties in arc capacities
and network demands leading to more difficult formulations and solution
approaches. Some of these models have been demonstrated for defense related
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problems such as nuclear smuggling problems (Morton and Pan, 2004). Note,
that the final result from these models gives the network arcs that are interdicted
rather than any prioritization scheme for the arcs or nodes. This differentiates
this modeling approach from the ones proposed in 3.1 and 3.2.

4. Conclusions

The paper discusses alternative modeling techniques that could be used to
assess the criticality of transportation facilities. The paper starts with a compre-
hensive discussion of the economic techniques to assess the economic value of
transportation facilities. The authors conclude that the traditional (Marshallian)
measure of consumer surplus is likely to overestimate the economic value
of a facility, because of the lack of consideration of income effects. After
discussing several metrics to assess the consumer surplus, the authors conclude
that the most appropriate metric is what Hicks (1943) defined as “equilibriating
variation.” This is because this is the metric that provides an estimate of the
economic value of maintaining the status quo conditions in the network.

The paper then discusses approximate techniques to assess criticality of
transportation facilities. Two set of approximation techniques, based on traffic
flows and shortest path distances, are discussed. The technique that focuses on
network changes was further studied in connection with network science con-
cepts. A final group of techniques, based on the notion of network interdiction
models are also analyzed.

A contribution of this paper is in proposing a model based on complex
network science for identifying critical components in a transportation net-
work. This can be applied to identify critical components in a transportation
network. This methodology has potential to be applied for identifying critical
components in large transportation networks when the interactions can be
estimated.

By systematically studying the interventions in this manner, organizational
responsibilities, technology investments and mitigation efforts can be identified
and preparedness for external threats be accommodated in a holistic manner.
The external threats to transportation systems are critical and it is imperative
to interdict and minimize them. However, it is also important to strike a
balance between the vital economic function of the transportation system
(i.e., to ensure the seamless movement of goods and people) and the security
interventions. This raises challenging issues which are yet to be resolved in
securing critical transportation networks against hostile threats. As mentioned
before, there are key challenges with organizational responsibilities, funding,
reliable information about passenger/goods movements, and tradeoffs between
trade facilitation versus transportation security. Modeling these offers a unique
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perspective in gaining insights into decision making which otherwise would
be conjecture and ad-hoc. Securing transportation systems is a priority and
to be effective it must be organizationally, strategically and economically
sustainable.
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Abstract This paper introduces a Variational Inequality (VI) formulation for the time-
dependent combined mode split and traffic assignment problem. Travel costs are
represented by generalized cost functions and mode choices are deterministically
obtained based on assignment to intermodal least cost paths without accounting
for possible randomness in travelers’ choices. The intermodal user equilibrium
(IUE) is estimated using an inner approximation (IA) algorithm that results in
a nonlinear program with linear constraints. The algorithm converges assuming
continuous and monotonic path travel cost functions. The paths on multimodal
networks are computed with an intermodal optimum path algorithm; a cell
transmission-based simulator, enhanced to account for both automobile and
transit vehicles, is used to estimate the path travel costs. A heuristic search ap-
proach is proposed and implemented in the VISTA simulation-based framework.
Computational results are presented on example networks to test convergence
and equilibrium.

Keywords: user equilibrium; traffic assignment; variational inequalities; simulation

1. Introduction

In decisions regarding construction of transportation infrastructure, adop-
tion of transportation policies and implementation of transportation technolo-
gies, mathematical models are often used to predict or estimate the impacts
of the alternatives under consideration. Mathematical models are performed
before or in place of costly field tests and full-blown implementations. The
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challenge in transportation modeling is to develop models that correctly
represent traveler behavior, while remaining mathematically tractable. Travel
behavior is extremely complex to model as each trip includes different types
of choices, including, but not limited to, destination choice, mode choice
and route choice. Traditionally, urban transportation planning has treated each
type of choice in separate models, thus ignoring the interdependence of these
choices within a trip. Further, the state of the practice continues to model travel
behavior in a static realm, wherein travel conditions are averaged over the
time period being modeled, typically one or more hours representing a peak
period or off-peak period. As a result, time-varying travel conditions, such as
congestion, queuing, and transfer delays, are ignored.

This paper discusses a network-based approach to estimating intermodal
route choice, accounting for time-varying realities in urban transportation
networks, such as congestion, queuing and transfer waiting times. The literature
shows that several combined mode and route choice models have been pro-
posed for the static problem; however, static combined models do not provide
a realistic representation of time-varying traffic conditions. Moreover, while
much research has been done in the field of dynamic traffic assignment (DTA)
to capture time-varying traffic conditions, much of this work has focused on
automobile movements and automobile route choices, under the assumption
that mode choice is relatively unaffected by the minute-to-minute dynamics of
traffic conditions. As information technology matures, mode choice will likely
become a real-time decision, instead of a long term planning decision separate
from the route choice.

The proposed intermodal combined mode and route choice model predicts
person trips over a multi-modal network, such that mode, route and transfer
choices are modeled as simultaneous decisions. As such, changes in congestion
resulting from changes in mode choices are captured. Further, ridership and
mode share, which are central issues in transit policy evaluation, may be
directly observed in the model. The intermodal route choices are determined
using a decomposition algorithm, which iterates among traffic simulation,
route cost calculation and allocation of flows (trip assignment) to minimize
a gap function corresponding to the variational inequality formulation of the
dynamic intermodal equilibrium problem. An implementation of the algorithm
is proposed that relies on a cell transmission-based traffic simulator to maintain
feasibility of the vehicle movements, and to evaluate the path travel times
and transit transfer times. The vehicle simulation model captures queuing,
signal delays and bus movements. Further, intermodal paths are generated using
an algorithm that calculates time-varying least-cost paths. The algorithm is
shown to converge for cases with continuous, monotonic cost functions, and
computational experiments are performed to explore convergence properties
for less ideal conditions. For example, tests with varying levels of demand,



10. Intermodal Network Equilibrium Algorithm 203

signal timing and transfer waiting times are tested to explore their effects on
monotonicity of the cost functions and resulting gap function, as well as on
convergence of the algorithm.

2. Background

Mode split and traffic assignment models have traditionally been estimated
in separate steps; however, these decisions are, in fact, interdependent. Over the
past few decades, several approaches to combining these steps have been pro-
posed in an effort to capture the interaction between mode and route choices.
Early research in this area saw the development of many static combined
mode split and traffic assignment models; however, static combined models do
not provide a realistic representation of time-varying traffic conditions. Later,
advancements in dynamic traffic assignment (DTA) improved the realism with
which time-varying traffic conditions are captured, but the bulk of work in
DTA has focused on the propagation and route choices of automobiles, taking
automobile trip tables as an exogenous input, and thus assuming that mode
choice is relatively unaffected by the minute-to-minute dynamics of traffic
conditions. However, as information technology matures, it is expected that
mode split will become a real-time decision, instead of a long-term planning
one separate from the route choice. As such, a model’s ability to capture both
mode and route choices will enhance the realism of the model, since changes
in congestion resulting from different mode choices can be captured. Further,
ridership and mode share, which are central issues in transit policy evaluation,
can be directly observed in a combined model.

Early approaches to modeling the combined static mode split and assign-
ment problem were proposed by Florian (1977), Florian and Nguyen (1978),
Abdulaal and LeBlanc (1979). These models consisted of mathematical pro-
gramming (MP) formulations of the network equilibrium with logit functions
to capture the mode split. Aashtiani (1979) formulated the traffic equilibrium
problem as a non-linear complementarity problem, which could also be applied
to multi-class, multimodal and destination choice user equilibrium problems.
Later, Dafermos (1982) and Florian and Spiess (1983) presented variational
inequality (VI) formulations of the problem. Each of these formulations
assigned trips only to pure modes, without considering mid-trip mode transfers.

Fernandez et al. (1994) presented a MP model that allowed for mid-trip
mode transfers by having the more meaningful modal combinations defined
as new modes in the mode choice set. Boile, Spasovic and Bladikas (1995)
presented a more flexible intermodal model with pure auto trips on one branch
and rail and intermodal trips on another branch. The route and transfer flows are
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then determined based on a user optimal assignment, such that mode transfer
options are not required to be explicitly defined.

More recently, Abrahamsson and Lundqvist (2003) proposed combined
equilibrium models that solve the destination and mode choices simulta-
neously, and then iterate that result with the route choice. Wu and Lam
(2003) presented a VI formulation of the combined mode split and stochastic
assignment problem to estimate intermodal pedestrian and transit trips under
congested conditions, but did not include automobile trips in their model. De
Cea, Fernandez and Dekock (2003) proposed a VI formulation of the combined
mode split and assignment problem to be solved using a diagonalization
algorithm within the ESTRAUS modeling framework.

These static approaches are limited by their inability to capture the time-
dependent network conditions. Specifically, link travel times, which are calcu-
lated using link performance functions, are assumed to be static through the
model period, such that congestion and queuing effects are ignored. Further,
static assignment models do not capture the exact arrival and departure times
of buses, so waiting times are estimated based on transit schedule frequency, if
they are considered at all.

The combined mode and route choice problem has only recently been
addressed in a time-dependent context. Two simulation-based models, DY-
NASMART (Mahmassani, Peeta and Ziliaskopoulos (1993)) and TRANSIMS
(Los Alamos National Laboratories (2002), have the capability of model-
ing intermodal trips. DYNASMART was originally developed to solve the
automobile-only DTA problem. Its simulator capabilities were extended by
Abdelghany and Mahmassani (2001) to capture bus movements, such that
buses are tracked along their routes their arrival times at each stop are recorded.
Further, link capacity and flow rate are adjusted for the duration that a bus is
stopped on a given link. Intermodal paths are generated by a multi-objective
routing algorithm. Vehicle trips are simulated such that if a trip includes a car
portion for the whole trip or part of it, then a car is generated and moved into the
network. Transit vehicles are generated according to a pre-determined schedule
and follow pre-determined routes. As with the single-mode DYNASMART
model, the assignment pattern is determined using a Method of Successive
Averages approach.

The TRANSIMS model is an activity-based model with modules that
estimate such trip aspects as activities, destinations, modes and routes. A traffic
simulator models vehicle movements, based on which travel times may be
determined. The trip assignment pattern is determined by an iterative heuristic
algorithm, for which no proof of convergence has been provided.

More recently, Benjamins, Lindveld and van Nes (2002) and Carlier et al.
(2003) proposed a model architecture for multimodal transport modeling. They
recasted the combined mode and route choice problem as a pure route choice
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problem within a multimodal network, and formulated the problem as a VI
that assumes a stochastic UE. The solution algorithm iterates through path-
finding and route-choice, which are modeled using random utility theory in
separate modules. Multi-user class assignment is used to accommodate the
heterogeneity of choice preferences. No proof of convergence or correctness
were provided for the solution algorithm.

This paper presents a VI formulation of the time-dependent combined
mode split and traffic assignment problem. Travel costs are represented by
generalized cost functions, and mode choices are deterministically obtained
based on assignment to intermodal least cost paths, and no stochastic, logit-type
relations are used. The user equilibrium intermodal trip assignment is estimated
using an inner approximation (IA) algorithm, which searches the feasible space
for the assignment that minimizes the equilibrium gap function. The algorithm
is proven to converge for cases with continuous, monotonic cost functions;
however, since cost functions in intermodal networks may not be continuous
and monotonic a heuristic search approach is proposed, and computational
results are presented for a test network.

3. Model Formulation of Intermodal Trip Equilibrium

For the intermodal assignment problem, we consider a multimodal network
G(M,V,A,T) where M is the set of available modes, V is the set of nodes, A the
set of arcs and [0,T] the assignment period. The network may be considered a
series of modal subnetworks, such that each modal subnetwork contains nodes
and links, and transfers between modes are limited to transfer links, which
connect modal subnetworks.

Next, let d t
rsb be the number of trips from node r and to node s(r, s ∈ V ) at

time t ∈ [0, T ] and generated by travelers of behavior type b. The behavior type
is associated with a set of cost parameters within a generalized cost function to
define travelers’ travel preferences.

Further, let P be the set of all spatiotemporal paths from all origins to all
destinations, i.e. P = {p1,p2, . . . pπ }. Each path pk,1 � k � π belongs to a
set P(r,s,t,b), which contains all paths defined for travelers of behavior type b
departing at time t in [0, T ] from node r to node s(r, s ∈ V ).

As with the single-mode version of the algorithm, we denote with ξpk

the number of travelers choosing to follow intermodal path pk(� in vector
notation), and ψpk

(�), the travel cost on path pk(�(�) in vector notation).
The intermodal travel cost includes different kinds of travel and transfer costs,
and is thus calculated based with a generalized cost function. The function
includes weighted costs of fixed and time dependent travel and transfer costs.
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Further, the cost parameters or weights may be defined differently for behavior
types to reflect differences in individual travel choice preferences.

The demand relationships
∑

pk∈P(r,s,t,b) ξ
pk = d t

rs form a closed, bounded,
convex space D ⊂ Rπ . As such, any assignment � in D is feasible, given that
the traveler propagation law adopted allows all travelers to complete their trips
within time T .

The Wardrop equilibrium is reached when no traveler has a less costly alter-
native route. Further, it is assumed that a travelers’ selection of an alternative
path is a unilateral decision based on the current traffic conditions. The Wardrop
user equilibrium intermodal path assignment can be defined mathematically as
�∗ in D where

ψpx

(�∗) > ψpy

(�∗) implies that ξpx = 0 ∀px,py ∈ P(r, s, t, b) ∀r, s, t, b

In other words, at the equilibrium path assignment, any path that is more costly
than the minimum cost path remains unused. Alternatively, it can be stated that

�
(
�∗)T

� > �
(
�∗)T

�∗ ∀� ∈ D

This formulation is less strict than the previous one as it allows some travelers
to choose more costly routes, as long as the total route cost is reduced; however,
the equilibrium point coincides with the Wardrop equilibrium.

Suppose we have a solution �′ ∈ D such that

ψpx (
�′) > ψpy (

�′) for some px,py ∈ P(r, s, t, b) and r, s, t, b

but that ξpx
> 0 for some px , where px �= pyξ rstbp’ > 0. This suggests that

switching vehicles along px to the cheaper route py will reduce the total cost by

ψpx (
�′) ξpx − ψpy (

�′) ξpy

> 0

Therefore, if the resulting path assignment is �′′, then

�
(
�′)T

�′′ < �
(
�′)T

�′ ∀�′′ ∈ D

As such, we have shown that

ψpx

(�∗) > ψpy

(�∗) implies that ξpx = 0 ∀px,py ∈ P(r, s, t, b) ∀r, s, t, b

if and only if

�
(
�∗)T

� < �
(
�∗)T

�∗ ∀� ∈ D



10. Intermodal Network Equilibrium Algorithm 207

Therefore, an equilibrium solution, �∗, exists where

�
(
�∗)T (

� − �∗)
≥ 0 ∀� ∈ D (1)

Relationship (1) is a variational inequality (VI) formulation of the dynamic user
equilibrium assignment problem. Smith (1979) and Dafermos (1980) showed
for the static traffic assignment problem, the VI formulation with space D being
compact and �(�) assumed to be monotonic and continuous, there exists a
unique solution.

For the dynamic intermodal trip assignment problem of the same form, it is
reasonable to assume that the same proofs hold given the same assumptions.
Specifically, based on Smith’s and Dafermos’ work, we claim that a solution
�∗ to the VI formulation (1) exists where the space D is compact and �(�) is
assumed to be monotonic and continuous. In fact, generalized cost functions
for intermodal problems are rarely continuous, due to traffic signal delays
and congestion, as well as transit fares and intermodal transfer times. As a
result, the existence of an equilibrium point is not guaranteed in most realistic
problems. Further, due to temporal interactions of travelers assigned earlier
with those assigned later, monotonicity may not hold. Lack of monotonicity
precludes proof of solution uniqueness, as well as algorithm convergence.
However, in practice the assumption of monotonicity is reasonable, since path
costs tend to be dominated by number of travelers on that path, rather than those
on other paths, and thus that costs do not decrease with number of travelers on
a path. In addition, while in reality the cost function may be discontinuous, and
thus an exact solution may not exist, it is still possible to try to approach the
equilibrium condition where nobody can switch to a lower cost path.

At this point we have not proposed a specific cost function, or even a form of
a cost function, because the VI formulation applies with any generalized cost
function, keeping in mind that continuity and monotonicity of cost functions
ensure existence and uniqueness of a solution.

In the next section, a solution algorithm is proposed, and convergence of
the algorithm is proven for the case where the cost function is assumed to
be continuous and monotonic. However, as explained, since cost functions
are typically neither continuous nor monotonic in reality, the algorithm is
recognized to operate as a heuristic, and alternative implementations that
appear to improve convergence in practice are discussed.

4. Inner Approximation Solution Algorithm

The algorithm proposed in this section estimates the equilibrium path
assignment using inner approximation methods, and has thus been named the
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Inner Approximation (IA) dynamic user equilibrium algorithm. Convention-
ally, vehicle assignment has been performed using the method of successive
averages (MSA), which assigns trips equally among the set of past solutions.
In contrast, rather than assuming that all previous solutions contribute equally
to the final equilibrium, the IA algorithm searches the feasible set of path
assignments for the assignment that minimizes an equilibrium gap function.

The name of the algorithm, Inner Approximation, was selected because the
procedure searches within a subspace that is defined by a set or subset of the
extreme points of the feasible space. The approach is similar to simplicial
decomposition, but differs in the descent direction used at each iteration.
Specifically, with simplicial decomposition the descent direction is the extreme
direction that results in the greatest improvement in the value of the gap
function, whereas with inner approximation, the descent direction is an average
of the extreme directions that violate the equilibrium condition.

An inner approximation approach is proposed to solve the intermodal DUE
problem, where the travel time cost function is assumed to be continuous
and monotonic. The approach minimizes a gap function defined as shown in
Equation (2).

VSmith (�) =
N∑

i=1

max2
{

0,−� (�)T (Pi − �)
}

(2)

where Pi is an extreme point of the convex hull D, and N is the number of
extreme points defined. This gap function was defined based on a gap function
originally proposed by Smith (1983) for the static user equilibrium problem,
and abides by the definition of a gap function, namely

i. V (�) = 0 ∀� ∈ �

ii. V (�) ≥ 0 ∀� ∈ D

(3)
The proposed IA algorithm then iteratively selects a descent direction of

VSmith within the assignment space D, and a step length that minimize the gap
function in that direction. The algorithm, shown in Figure 1, terminates when
the value of the gap function is V (�) = 0. The IA algorithm’s search procedure
may be implemented using any vehicle and person propagation relationships,
and is presented here with path costs estimated based on simulation of travel
conditions.

To find the minimum point of (2), a descent direction and step length are
selected, a new solution is found and the search procedure is repeated. The
descent direction is composed of a weighted average of the extreme directions
that deviate from equilibrium, as shown in Equation (4). This direction is
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Step 0. Initialize

Set n = 0.
Set link travel time to free flow.
Calculate least cost paths for each rstb.
Set �0 to all-or-nothing assignment of d t

rsb
to least cost path for rstb.

Simulate travel conditions with assignment �0.
Update link travel times.

Step 1. Choose new solution

Choose descent direction 	n.
Select step length λn = argminλ(VSmith(�n + λ	n)) using golden section search.
Assign demand to �n+1 = �n + λn	n.

Step 2. Update costs

Simulate traffic conditions with assignment �n.
Update link and path travel times.

Step 3. Check for convergence

If VSmith(�n+1) � 0
Set n = n + 1.
Return to Step 1.

Else
Terminate.

Figure 1. The IA algorithm.

labeled 	Smith, since it was originally proposed by Smith (1983) for application
to the static assignment problem.

	Smith n =

N∑
i=1

max
(
0,−� (�n)

T (Pi − �n)
)
· (Pi − �n)

N∑
i=1

max
(
0,−� (�n)

T (Pi − �n)
) (4)

The new solution thus becomes

�n+1 = �n + λ	Smith n

where n is the iteration number, 	Smith n is the descent direction for iteration
n, and λ is the step length (0 � λ � 1). Smith (1983) showed that the direction
	Smith guarantees an improvement of

	V = ∇V (�) · 	� ≤ −2V (�)

in the gap value with each step. While Smith’s proof was presented for
application to the static assignment problem, the logic applies more generally
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to VI problems of the form (1) under the assumption that the cost function
is continuous and monotonic. As such, the proof of convergence using also
applies to the intermodal dynamic trip equilibrium problem and the proposed
IA algorithm.

In cases where the assumptions of continuous and monotonic cost functions
do not hold, the algorithm is considered a heuristic, since the existence of a
solution is not guaranteed when the cost function is not continuous. Further,
a non-monotonic cost function may result in the search procedure terminating
at a local minimum of the gap function without reaching a true equilibrium
point. As in the single-mode case, since it is known that the global minimum
of the gap function must be 0, and that this global minimum corresponds to an
equilibrium path assignment, the gap value provides a convenient measure of
the deviation of any given solution from the equilibrium condition.

For problems where the assumptions of continuity and monotonicity do not
hold, the convergence of the heuristic algorithm with different search strategies
is proposed as an implementation alternative to Smith’s weighted average of the
extreme points. This implementation alternative is described in the next section.

5. Heuristic Implementation

The proposed heuristic version of the IA algorithm includes three different
search phases, each similar to the procedure outlined in Figure 1, but differing
in their gap functions and descent directions. Based on numerical observations,
the gap functions and descent directions of each phase are proposed for
different stages of the search for the equilibrium solution.

The first phase of the IA algorithm uses an extreme direction search
approach to minimize the gap function,

Vextreme (�) =
N∑

i=1

max
{

0,−� (�)T (Pi − �)
}

(5)

where Pi is an extreme point of the convex hull D, and N is the number of
extreme points defined. Each extreme point Pi represents an all-or-nothing path
assignment, and any point in D, including the equilibrium solutions, �∗ ∈ � ⊆
D, can be defined as a convex combination of the extreme points Pi .

Equation (5) is consistent with the definition of a gap function (3), so
if the cost functions are reasonably approximated as continuous, monotonic
functions, then the global minimum of the gap function corresponds to an
equilibrium path assignment.

To find the minimum point of (5), a numerical search approach is used,
such that a descent direction (in the assignment space D) and step length
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are selected, a new solution is found and the search procedure is repeated.
In Phase 1, the algorithm selects, as the descent direction, an extreme point
composed of an all-or-nothing assignment to the shortest paths. The new
solution thus becomes

�n+1 = (1 − λ)�n + λPn

where n is the iteration number, Pn is the extreme point descent direction
selected for iteration n, and λ is the step length (0 � λ � 1).

Upon termination of Phase 1, the algorithm continues with Phase 2, which
is the weighted average approach described in described in Section 3. More
specifically, during this phase the algorithm minimizes the gap function

VSmith (�) =
N∑

i=1

max2
{

0,−� (�)T (Pi − �)
}

by searching in the direction

	Smith n =

N∑
i=1

max
(
0,−� (�n)

T (Pi − �n)
)
· (Pi − �n)

N∑
i=1

max
(
0,−� (�n)

T (Pi − �n)
)

The new solution thus becomes

�n+1 = �n + λ	Smith n

where n is the iteration number, 	Smith n is the descent direction for iteration
n, and λ is the step length (0 � λ � 1).

The gap function used in the third phase, based on the cost gap formulation
of the equilibrium, is shown in Equation (6).

Vcost (�) =
∑

r∈V

∑

s∈V

∑

t∈[0,T ]

∑

p∈P(r,s,t)

ξp
(
ψp (�) − ψpmin rst (�)

)
(6)

Equation (6) is consistent with the definition of a gap function (3), so if the cost
functions are reasonably approximated as continuous, monotonic functions,
then the global minimum of the gap function corresponds to an equilibrium
path assignment.
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In this phase, the descent direction is Xn, where each element of Xn is set
to the values

xpxn =

⎧
⎨
⎩

ξpxn if p is neither the min nor max cost path for rst n

ξpxn + ξpmax rstn if p is the min cost path for rst n

0 if p is the max cost path for rst n

The new solution thus becomes

�n+1 = (1 − λ)�n + λXn

where n is the iteration number, Xn is the descent direction selected for
iteration n, and λ is the step length (0 � λ � 1).

The proposed implementation of the IA algorithm is outlined in Figure 2.
The figure shows that, as with the original algorithm shown in Figure 1, the
practical implementation iterates between searching in the feasible assignment
space, and updating of path costs according to the selected assignment;
however, the practical implementation includes variations in gap functions
and descent directions, which were empirically found to be effective search
strategies.

The person assignment-based intermodal IA algorithm shown in Figure 2
was implemented in the VISTA framework. The implementation makes use
of VISTA’s Routesim traffic simulator to estimate car and bus travel times
according to cell transmission model vehicle propagation relationships. Based
on the simulator’s spatio-temporal vehicle trajectories, bus arrival times at bus
stops are then used to determine person travel times on buses, as well as bus
stop waiting times. The road link travel times, bus travel times and bus stop
waiting times are then used, along with fixed transfer costs, such as parking
fees and bus fares, as well as distance-based pedestrian link travel times, to
calculate generalized costs.

These costs are used to update path costs for all paths in the path set. Further,
for path generation in Phase 1, these costs are used in an intermodal least cost
path algorithm to generate intermodal paths. A new equilibrium assignment is
then estimated according to the IA descent direction and line search procedure.

In this implementation, because Routesim simulates only vehicle move-
ments, rather than person movements, it does not capture the relationships
between buses and their passengers. Specifically, the effects of increased
loading and dwell time are not captured, nor the effects of bus crowding and
capacity limits. To illustrate, given an assignment pattern along with a set of
link travel times and bus stop arrival times, the bus vehicle loading can be
determined and dwell times can be assigned based on the number of boardings
and alightings at each bus stop. Those dwell times are then used in the simulator
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Phase 0 – Initialize

Set n = 0.
Set link travel time to free flow.
Calculate least cost paths for each rstb.
Set �0 to all-or-nothing assignment of d t

rs to least cost path for rstb.

Phase 1 – Search in Extreme Point Direction

Simulate traffic conditions with assignment �n.
Update link travel times.
If (n = 0) or ((|path set|n − |path set|n−1) > routing-stop-percentage ∗ |path set|n−1)

Calculate least cost paths for each rst .
Add new paths to path set.

Set descent direction (all-or-nothing assignment to least cost paths, Pn).
Select step length λn = argminλ(Vdemand((1 − λ)�n + λPn)) using golden section search.
Assign demand to �n+1 = (1 − λn)�n + λnPn.
If n < assignment-max-extremes

Repeat Phase 1.
Else

Go to Phase 2.
Set n = n + 1.

Phase 2 – Search in Smith Direction

Simulate traffic conditions with assignment �n.
Update link travel times.
Choose descent direction 	n.
Select step length λn = argminλ(Vsmith(�n + λ	n)) using golden section search.
Assign demand to �n+1 = �n + λn	n.
If Vsmith(�n+1)/Vsmith(�n) > assignment-switch-ratio

Repeat Phase 2
Else

Go to Phase 3
Set n = n + 1

Phase 3 – Search in Non-extreme Direction

Simulate traffic conditions with assignment �n.
Update link travel times.
Choose descent direction Xn.
Select step length λn = argminλ(Vcost((1 − λ)�n + λPn)) using golden section search.
Assign demand to �n+1 = �n + λXn.
If (Vcost(�n+1)/�rstpψrstp(�n+1) > cost-gap-percentage)

Repeat Phase 3.
Set n = n + 1.

Else
Terminate.

Note:
The routing-stop-percentage, assignment-switch-threshold, assignment-switch-ratio and
cost-gap-percentage are convergence parameters that can be set within the VISTA implementation of IA.

Figure 2. The IA algorithm implemented in VISTA.



214 Elaine Chang and Athanasios Ziliaskopoulos

to model bus stopping behavior. Next, the link and path travel costs are updated
based on the simulator results and a new assignment is calculated. However, the
new assignment is based on dwell times that were associated with the previous
iteration’s assignment pattern. A similar problem with the offset of assignment
solutions and simulation results exists when calculating crowding and capacity
on buses. In other words, the inability to model person movements explicitly
results in a disconnect between the interaction of passengers with bus vehicles.

In addition, the model and algorithm account for individual preferences by
allowing different generalized cost functions to be defined for different traveler
groups; however, no effective method of calibrating these cost functions exists.
As such, the model is cannot currently be used to solve real-world intermodal
assignment problems.

In general, the search procedure assumes that a path’s cost increases with
the number of people loaded on that path; however, as previously explained,
due to path interactions, the cost function may not behave this way on actual
networks. As such, the algorithm is considered heuristic and its convergence
cannot be proven; however, in practice preliminary results show reasonably
close approximations to equilibrium.

It should be noted that while the rate of convergence is not guaranteed, it
is certain that the algorithm will not diverge. This is true because should it be
found that the solution cannot be improved in a particular direction, then the
step length will be set to λ = 0, such that �n+1 = �n. The gap function is thus
limited to Vn+1 � Vn. This holds true for the gap functions of all three phases.

6. Computational Results

The person assignment-based intermodal DTA model was implemented in
VISTA, and test results on a small test network of cars and buses are presented
in this section. First, the test network is described along with a discussion of
convergence of the IA algorithm for the test network. Next, a sample analysis
of transit signal priority is presented for the test network. No tests on real-world
networks are currently planned, since real-world tests will require detailed
person trip data and disutility parameters, which may be difficult to obtain,
calibrate and validate.

The intermodal test network, shown in Figure 3, includes 82 roadway
intersection nodes and 169 roadway links. In addition, the network is traversed
by five bus routes, each traveling in two directions, and bus stops are connected
the nearest roadway nodes by pedestrian links to allow for intermodal transfers.
Trips are generated at 26 nodes in 19 zones, and parking areas are located at
all trip ends, as well as at bus stop transfer locations. In addition, 21 interior
arterial and ramp intersections are signalized (see Figure 4).
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Figure 3. Intermodal Test Network.

Figure 4. Signalized Intersections in the Intermodal Test Network.

A total demand of 24,341 person trips is loaded into the network in the first
1.5 hours of a 3-hour simulation period. These trips were divided among two
behavior types as defined in Table 1. The costs parameters are defined such that
travelers of the first behavior type prefer auto travel to bus travel. Travelers of
the second behavior type consider auto travel, bus travel and bus transfer time
equally onerous, but consider walking time more slightly more onerous.
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Table 1. Traveler behavior types.

Behavior Number of Auto Travel Bus Travel Bus Transfer Pedestrian Travel
Type Travelers Cost Factor Cost Factor Cost Factor Cost Factor

($ / hr) ($ / hr) ($ / hr) ($ / hr)

1 12,134 5.04 5.40 5.76 7.20
2 12,207 5.40 5.40 5.40 5.76

Further, bus fares were set to $0.50 for initial boardings as well as transfers,
and parking fees were $2.00 at all parking locations in the network.

The IA algorithm was performed on the test network with each phase was
permitted to run until it was unable to improve its solution. Specifically, Phase
1 was permitted to generate paths until the number of new paths generated was
negligible (less than 1% of the path set, in this case). Phase 1 terminated with
a demand gap of 0.00, but with a cost gap of 0.75%. The demand gap value of
0.00 suggests that an equilibrium assignment has been found, but the cost gap
indicates that the solution may still be improved. The apparent inconsistency

Figure 5. Convergence of the Cost Gap per Trip for the Intermodal Test.
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occurs because the demand gap is calculated as a system cost, so inefficiency in
one traveler’s assignment may be compensated by an improvement in another
traveler’s assignment. In contrast, the cost gap considers travelers individually,
without allowing for one traveler’s inefficiency to be compensated by an
improvement in another traveler’s route choice. Since both Phases 1 and 2
of the IA algorithm attempt only to minimize the demand gap, the stopping
criteria for both phases were satisfied by the demand gap of 0.00, the algorithm
continued with Phase 3 to minimize the cost gap. Figure 5 shows the value
of the average cost gap per trip with each iteration throughout the algorithm.
As expected, the cost gap fluctuated throughout Phase 1. This occurred because
the addition of new lower-cost paths and extreme points resulted in increases in
the demand and cost gap values. The plot shows that, despite the fluctuations,
the extreme direction search of Phase 1 brought the cost gap down to about
0.75%. Next, Phase 3 reduced the cost gap down to the final value of 0.25%, or
approximately $0.01 per trip for an average trip cost of $2.26.

The total computational time required for the test was 15.1 hours on a
machine with dual 2GHz Athlon servers with 4GB RAM; however, there were
several other large processes running on the machine at the same time, so it is
expected that the computational time would be much lower with a dedicated
machine. Table 2 shows a breakdown of the number of iterations, the number
of simulations required, and the computational time required for each phase.
More specifically, in each phase, each iteration includes a line search during
which several step lengths are tested. For each step length test, a simulation

Table 2. Computational Time for Test Run A.

Phase Number of Number of Computational
Iterations Simulations Time

1 – path generation 9 35 11:58:44
2 – – –
3 6 34 03:03:37
Total 15 69 15:02:21

Table 3. Line Search Parameters.

Parameter Value

Assignment-search-low 0.38
Assignment-search-high 0.62
Assignment-stop-difference 0.05
Assignment-previous-gap-ratio 0.99
Assignment-worst-gap-ratio 0.05
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run is performed. With the line search parameters set to the values shown in
Table 3, each line search required 3–8 simulations, with each simulation taking
an average of 28 seconds. In addition, each performance of the least cost path
algorithm for path generation required an average of 2.8 minutes. The most
time-consuming part of the procedure was the storing of path assignments after
each iteration, a process that required over an hour each time.

In Phase 1, the routing-stop-percentage was set to 1%, such that when the
number of new paths generated was less than 1% of the total number of paths in
the path set, the time dependent shortest path calculation was no longer invoked
for subsequent iterations. Figure 6 shows the growth of the path set through the
eight path iterations of Phase 1 during which paths were generated. The plot
shows that many paths were added in the early iterations, but that the growth
of the path set leveled off in later iterations to a final path set size of 1091 for
425 OD pairs for 2 behavior types.

TSP Strategy 1 was provided along bus routes 100 and 110, where each
route had a headway of 3 minutes. The average travel times of priority routes,
listed in Table 4, show that TSP resulted in 17% and 32% improvements over
base case travel times for routes 100 and 110, respectively. It would be expected

Figure 6. Growth of the Path Set.
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Table 4. Bus Route Travel Times along TSP Corridor.

Route Number Corridor Base Case TSP Case Difference Difference
of Buses Length Travel Time Travel Time

Travel Time Travel Time
(miles) (min) (min) (min)

100 40 3.8 7.0 5.8 -1.2 17%
110 40 3.8 9.2 6.3 -2.9 32%

Table 5. Bus Ridership on Priority Routes.

Route Number of Base Case TSP Case Difference
Buses Bus Ridership Bus Ridership

100 40 32 34 2
110 40 108 115 7

Table 6. Automobile Travel Times along TSP Corridor.

Direction Base Case Test Case Base Case TSP Case Difference Difference
Number Number Average Average
of Autos of Autos Auto Speed Auto Speed

(mph) (mph) (mph)

EB 2,161 2,161 31.0 34.7 3.7 12%
WB 2,476 2,476 13.9 19.4 5.6 40%

Table 7. System-wide measures.

Direction Base Case Test Case

Total System Cost $50,517.50 $50,464.00
Total Person Travel Time (hrs) 1,199.2 1192.6
Total Vehicle Travel Time (hrs) 120.3 109.9
Total Vehicle Miles Traveled (mi) 163,876 160,672

that such in improvement in bus travel time would correspond with an increase
in ridership for that route; however, Table 5 shows that in fact, routes 100 and
110 experienced only minimal increases in ridership.

Examination of the average automobile travel speeds on the corridor reveals
that just as bus travel times improved, automobile travel speeds also increased,
as shown in Table 6. An increase of 3.7mph in the EB direction and 5.6mph in
WB direction resulted in little incentive to switch to bus travel.
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In addition, Table 7 shows that TSP reduces system-wide costs, travel times
and vehicle miles traveled. With the intermodal approach, the person travel cost
is observed directly in the model, along with person travel times. In addition,
vehicle-based statistics can also be observed.

7. Conclusions

This paper proposed an IA assignment algorithm to find the equilibrium path
assignment for the dynamic intermodal person-trip assignment problem. The
algorithm assumes continuous and monotonic cost functions. In reality, traffic
signals and mode transfers may result in discontinuous travel time costs, and
path interactions may cause path costs to be non-monotonic; however, despite
the problems with these assumptions, preliminary tests of the algorithm show
that it efficiently approaches an equilibrium solution.

The IA algorithm was implemented within the framework of the VISTA dy-
namic traffic assignment software. As with the original automobile assignment-
based VISTA model, the intermodal person trip-based approach iterates be-
tween traffic simulation, path calculations, and network assignment; however,
the intermodal path calculation finds the least cost intermodal path, where costs
are defined to reflect traveler preferences regarding travel time, fares, parking
costs and other factors. The interactions of cars and buses in the shared roadway
network are captured by VISTA’s Routesim simulator, which propagates vehi-
cles according to cell transmission model logic. Further, turning movements,
signalized intersections and transit signal priority logic are included in the
simulator. The simulator also captures the added length of bus vehicles, as well
as their frequent stopping behavior. Since person movements are not captured
by Routesim, the interactions of buses and passengers are not captured; for
example, dwell times do not reflect the number of boardings and alightings,
and bus crowding and capacity limits are not modeled.

Computational results were presented to illustrate the convergence behavior
and computational time required to run the intermodal IA algorithm. In
addition, sample tests of TSP on the intermodal network were performed.
No tests on real-world networks are currently planned, since real-world tests
will require detailed person trip data and disutility parameters, which may be
difficult to obtain, calibrate and validate.

In short, this approach captures interactions between cars and buses in the
simulator, as well as intermodal route choices, such that bus travel times and
travel time variability can be observed in the simulator output. Since mode
choice is determined within the model, the impacts of transit policies on
ridership are captured by the model and can be directly observed in the model
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output. Future work in this area includes development of effective methods of
calibrating the generalized cost functions.
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Abstract This paper focuses on joint dynamic pricing and demand learning in an
oligopolistic market. Each firm seeks to learn the price-demand relationship
for itself and its competitors, and to set optimal prices, taking into account its
competitors’ likely moves. We follow a closed-loop approach to capture the
transient aspect of the problem, that is, pricing decisions are updated dynamically
over time, using the data acquired thus far.

We formulate the problem faced at each time period by each firm as a Math-
ematical Program with Equilibrium Constraints (MPEC). We utilize variational
inequalities to capture the game-theoretic aspect of the problem. We present
computational results that provide insights on the model and illustrate the pricing
policies this model gives rise to.

Keywords: dynamic pricing; demand learning; variational inequalities; game theory

1. Introduction

1.1 Brief Presentation of the Problem, Motivation and Application

Areas

Determining the right price to charge customers requires a company to have
a wealth of information and data. In particular, the company needs information
concerning the customer base, the company’s own cost structure, as well as
information concerning the competition and the market itself. Furthermore, it
requires that prices can be adjusted in a timely fashion at minimal cost. Until
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recently, neither was possible. As a result, traditional pricing techniques were
often static.

The fast development of information technology and e-commerce had a
dramatic impact on the market place. Thanks to these tools, the sellers can
gather information about customers and competitors; they can also update
prices dynamically at low cost and hence, they allow the sellers to implement
dynamic price optimization.

Early applications of dynamic pricing include industries where short term
supply is hard to change, such as airlines, cruise boats, hotels, electricity
markets. Other industries then realized the benefits of dynamic pricing strate-
gies including retailers in brick-and-mortar stores as well as online, so much
so that many companies now resort to dynamic price optimization solution
providers, such as DemandTec, Khimetrics, Manugistics, Oracle, Pros Revenue
Management and Sabre.

1.2 Literature Review

In recent years, revenue management and particularly pricing have drawn
increased interest from both practitioners and researchers in many fields.

Revenue management is an extensively studied field, for which thorough
reviews are available. Hence we refer the reader to these reviews, and focus
more on the pricing and learning literature.

1.2.1 Revenue Management and Pricing Literature

The recent book by Talluri and van Ryzin (2004) provides a thorough review
of the theory and practice of Revenue Management. Review papers include
McGill and van Ryzin (1999), Bitran and Caldentey (2002). They provide an
overview of pricing models in Revenue Management, whereas the survey paper
of Weatherford and Bodily (1992) concentrates on Revenue Management in the
airline industry.

Elmaghraby and Keskinocak (2003) provide a research overview of dy-
namic pricing. They observe that three main characteristics of the market
environment influence the pricing problem: first, whether replenishment of
inventory is allowed; second, whether demand arrivals are independent over
time; third, whether customers act myopically or strategically.

Dynamic Pricing models with no replenishment, and independent demands
over time rely on common assumptions: a market with imperfect competition
(e.g monopoly), a finite selling horizon with finite stock and no replenishment.
The demand is typically decreasing in price. The goal of the firm in these
settings is to maximize the expected profits over the selling horizon.

Gallego and van Ryzin (1997) and Feng and Gallego (1995) model the
demand as a Poisson process with a rate that is decreasing in price. Bitran
et al. (1998) as well as Bitran and Mondschein (1997) consider a demand
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rate which depends on time and has a known distribution. Lazear (1986),
Elmaghraby et al. (2002) model the demand using reference prices; Lazear’s
demand model is deterministic whereas Elmaghraby et al. (2002) assume that
demand is stochastic with a known distribution. Achabal and Smith (1998)
model demand as depending on price, time and inventory level. Maglaras
and Meissner (2004) examine two problems: dynamic pricing in a monopoly
with imperfect competition and dynamic capacity control with exogenous
prices. They show that these problems have a common formulation as a
single resource, single product pricing problem. In all these papers except
for Elmaghraby et al. (2002), the customers are assumed to act myopically.
Lazear (1986) and Elmaghraby et al. (2002) study periodic pricing policies
where prices are updated at discrete time intervals, whereas Gallego and van
Ryzin (1997) and Bitran and Mondschein (1997) study continuous time pricing
policies. Some models restrict themselves to a fixed number of price changes,
as in Feng and Gallego (1995), Bitran and Mondschein (1997) and Feng and
Xiao (2000).

For models of dynamic pricing with inventory replenishment, independent
demand and myopic customers, most of the research focuses on a monopoly
market, in a single or multi-product setting. Whereas the typical Inventory
Management research considers price to be static, and exogenous, the fol-
lowing papers consider joint inventory management and pricing. Federgruen
and Heching (1999), Zabel (1970), and Thowsen (1975) address the optimal
inventory and pricing of a seller who faces uncertain demand and changes its
prices periodically. They find that a base stock list price policy is optimal in a
wide range of settings. Rajan et al. (1992) focus on changes that occur within
an order cycle for a firm selling perishable products. Popescu and Wu (2005)
study dynamic pricing for customers with repeated interactions: in this setting,
customers are sensitive to the pricing history through a reference price. They
show that the pricing strategy has long term implications, in that promotions
which increase short-term profits, may decrease future profits. Adida and
Perakis (2005) propose a nonlinear fluid model for joint dynamic pricing and
inventory control with no backorders.

Competition was studied extensively in the traditional Economic literature.
The book by Friedman (1983) presents the theory of oligopoly, and Vives
(1999) provides a modern theory of oligopoly using the new tools of Game
Theory. Fudenberg and Tirole (1986), as well as Maskin and Tirole (1988)
study dynamic oligopoly. Sweezy (1939) conjectures a kinked-demand curve in
competitive oligopoly. Stigler (1947) also focusses on the kinky demand curve
and shows the stickiness of prices in an oligopoly. Recent work in dynamic
pricing considers competitive settings: Dockner and Jørgensen (1988) consider
optimal pricing strategies in an oligopoly market, but from a marketing
perspective. Bernstein and Federgruen (1999) built an inventory model for
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supply chains in an oligopoly, where the decision variables include prices,
service levels and inventory control. Kachani and Perakis (2002) propose a
deterministic fluid model for dynamic pricing in a capacitated, make-to-stock
manufacturing system. Perakis and Sood (2005) propose a dynamic pricing
model and study Nash equilibria in an oligopoly for perishable products.

1.2.2 Dynamic Pricing with Learning

When demand is uncertain, it is natural that the seller tries to learn it over
time. Hence dynamic pricing approaches often address the issue of learning the
demand function. Carvalho and Puterman (2004), and Carvalho and Puterman
(2004) consider the problem of dynamic pricing when only the form of the
demand function is known, not the parameters. They assume a prior distribution
on the parameters, and update the parameters over time by using Kalman
filters. Aviv and Pazgal (2004) propose a Markov-modulated demand model.
In such a model, the state of the market encompasses all relevant information
concerning the demand. In a partially-observed Markov Decision Process, the
information about the state is incomplete. The seller starts with some prior
information concerning the parameters of the state, and update their beliefs
through a Bayesian update scheme. In Aviv and Pazgal (2004), Aviv and Pazgal
consider a continuous-time model, where demand has a prior distribution.
They show that there is a trade-off between a low price which yields a loss
in revenue, and a high price which lowers the probability of purchase, and
slows learning. Dada and Petruzzi (2002) consider a finite horizon, discrete
time problem for perishable product, with restocking. At each time period, both
supply and demand are decision variables. Demand is a deterministic function
of price, with initially unknown parameters which are assumed to follow a
prior distribution. Boyd and Lobo (2003), justify price variations in the market
by the rational learning behavior of the firms. They consider a monopoly with
stochastic linear demand whose parameters are not known but assume a prior
distribution. Balvers and Cosimano (1990) focus on a monopoly with stochastic
linear demand with unknown intercept and slope. The slope is assumed to
have a persistent effect, and thus prompts learning. They define the speed of
learning, which is controlled by the firm since it depends on the price and show
that learning implies muted responses to changes in demand or market price.
Rustichini and Wolinsky (1995) study a monopoly which faces an uncertain
demand, and learns about it through its pricing experience. The demand curve
facing the monopoly is not constant and differs from the informed monopoly’s
policy. They show that even when the rate at which the demand varies is
negligible, the stationary probability that the monopoly’s policy deviates from
the full information counterpart is non negligible. Mirman et al. (1995) examine
a monopoly in a two-period horizon. They develop conditions under which
the firm will find it optimal to adjust its initial price or quantity away from
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their myopic level in order to increase informativeness of observed market
outcomes and thus increase future expected profits. Bertsimas and Perakis
(2006) address dynamic pricing in a monopoly and a duopoly, where demand
is a priori unknown, but learned over time.

Finally, learning is also addressed in the statistics and decision theory liter-
atures: Kalyanam (1996) proposes a model that draws on Bayesian estimation,
inference and decision theory to learn uncertain demand. Barto and Sutton
(1998) provide an introduction to reinforcement learning, with wide application
areas. Learning also arises in stochastic processes when the parameters are
unknown, as in Easley and Kiefer (1988).

1.3 Contributions

This work builds up on the work by Bertsimas and Perakis (2006). The main
contributions of this work are the following:

• Unlike most of the models in the literature concerning dynamic pricing and
learning which deals with a monopoly, the model we introduce explicitly
incorporates competition and uses ideas from Game Theory to compute
market equilibria.

• Furthermore, our approach addresses the capacitated case: each firm has a
limited inventory without replenishment.

• The bulk of the literature on dynamic pricing and learning either assumes
that the demand follows a certain probability distribution, or that the seller
has a certain prior distribution on the demand. These assumptions seem too
strong, and therefore, our model constitutes an attempt to relax them.

• We follow a closed-loop approach, since pricing decisions are updated
periodically to take into account new information as it becomes available
at each time period. On the other hand, open loop policies set prices for each
time period once and for all at the beginning of the selling horizon, without
periodic review.

• The goal of this research is to design an approach which enables the seller to
learn the price-demand relationship. As a result, this approach should yield
better estimates than an open-loop policy.

• From a mathematical perspective, we formulate the problem faced at each
time period by each firm as a Mathematical Program with Equilibrium
Constraints (MPEC).

• We provide some computational results, and build some intuition in the 2
firm-2 period case.

1.4 Structure of the Paper

The remainder of the paper is organized as follows: In Section 2, we present
the Dynamic Pricing Problem faced by each seller at each time period. We
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introduce the main characteristics of the problem and the demand model. In
Section 3, we show that the dynamic pricing problem can be decomposed into
three steps; first, assuming the price-demand parameters known, each seller
would like to find the Nash equilibrium demands that would emerge on the
market. Second, using the optimal demands computed in Step 1, each seller
seeks to estimate the price-demand parameters for himself and his competitors.
Finally, once the optimal demands and parameters are computed, each firm
can set optimal prices for future periods, as well as find its competitors’
optimal pricing policy. In Section 4, we show that the transient dynamic pricing
problem can be formulated as a Mathematical Problem with Equilibrium
Constraints (MPEC). In Section 5, we focus on the case of a duopoly with
2 time periods, and derive closed form solutions to the problem. In Section
6, we try to get some insights into the closed form solutions and present
some computational results of the joint dynamic pricing and learning approach.
Finally, we conclude with a discussion of the contributions of the approach.

2. Presentation of The Dynamic Pricing Problem

2.1 Main Characteristics of the Problem

The following features characterize the pricing problem we consider in this
paper:

• The prices are set periodically over a finite selling horizon {1, . . . , T }. That
is, at the beginning of each period t ∈ {1, . . . , T }, each firm sets its prices for
the period pt

i .
• We consider a single, perishable product with finite inventory without

replenishment. That is, at the end of the selling horizon T , all unused
inventory is lost. Furthermore, we restrict our study to products such that the
marginal cost of an extra unit of demand is sufficiently small. This allows us
to focus on revenue maximization rather than profit maximization. Yet, this
assumption is not critical.

• The market we consider is a noncooperative oligopoly characterized by a
few firms on the supply side, and a large amount of buyers on the demand
side. Therefore, the profit of each firm depends on the prices set by all the
competing firms.

• Competition in the market can be described by a Cournot model, where
prices are determined by the allocations, or demands of the firms. This is
indeed the model commonly used to describe markets where short-term
supply is hard to adjust, and therefore holds for such perishable products
as airline tickets, hotel bookings, electricity markets, etc.
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• The price-demand relationship is unknown a priori, but learned over time.
Only the functional form of the demand is assumed to be known. We assume
parametric families of demand functions characterized by coefficients called
price elasticities. For tractability purposes, we focus in this paper on linear
price-demand relationships. Nevertheless, this work can be extended to
nonlinear families of price-demand functions.

• We assume that we can characterize the behavior of each firm in the market
(e.g price follower or optimizer). In the remainder of the paper, we will
consider all firms to be revenue maximizers; this implies that we focus on
revenue and not profit maximization. In other words, their pricing policy is
to maximize their total revenue over the entire selling horizon.

2.2 Notations of the Model

We introduce the following notations which will be useful in the remainder
of the paper:

• T : selling horizon after which all unused capacity is lost;
• Ci, i = 1, . . . ,N : finite inventory of each firm over the entire selling horizon;

we call this inventory the total capacity of the firm.
• For a vector x with components xt

i , i = 1, . . . ,N, t = 1, . . . , T , we
denote xi = (x1

i , . . . , xT
i ) the subvector corresponding to firm i, and xt =

(xt
1, . . . , x

t
N ) the subvector corresponding to time period t .

• p̂t
i : price set by firm i at period t ; p

t,h
i : historical price set by firm i at period

t ;
• d t

i : market share, of firm i at period t ; β t
i : vector of price sensitivities of firm

i at period t : it has components β t
i0, β

t
i1, . . . , β

t
iN : β t

i0 denotes the intercept
of the demand function, i.e the demand faced by firm i when all firms set
their price to 0, and can be interpreted as the total demand for firm i; β t

ii is
the sensitivity of firm i’s demand to its own price; β t

ij , j �= i are the price
sensitivities of firm i’s demand to its competitors’ prices.

• [β]: matrix of price sensitivities for all the firms, and in all time periods; its
coefficients are βτ

ij for i, j = 1, . . . ,N , τ = 1, . . . , T .
• d t

i (p
τ
i ,pτ

−i): demand function of firm i at period t . Its arguments are pt
i

and pt
−i , where the index −i denotes all the competitors of firm i, i.e {j =

1, . . . ,N |j �= i}.

2.3 The Demand Model

One assumption of our model is that the demands as a function of the prices
belong to a parametric family. The demands are assumed to be independent
over time, that is, the demand in period t solely depends on the prices set in
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that period. In the rest of the paper, for the sake of simplicity, the true demands
are assumed to be linear functions of the prices:

d t
i (p

t
i ,p

t
−i) = β t

i0 − β t
iip

t
i +

N∑

j=1,j �=i

β t
ijp

t
j

The price-demand relationship for all firms and in all periods can therefore be
summarized by the matrix formula:

d = [β]p + �β0

Moreover, we assume that firm i’s demand at t is a decreasing function of firm
i’s current price pt

i and an increasing function of its competitors’s current price
pt

−i . In other words, the price sensitivities β t
ii and β t

ij , ∀j �= i are positive. This
means that the demand faced by firm i decreases as i increases its prices, and
increases when its competitors increase theirs.

In the remainder of the paper, we will work with demands as our decision
variables. This is indeed the standard approach in markets for which short-
term supply is hard to adjust, such as airlines, electricity markets, etc. It
therefore applies to our setting of perishable product, with no replenishement
of inventory. Furthermore, this allows us to best exploit the information that
is available to each firm as well as the particular structure displayed by the
problem when written in demand variables.

We therefore need to state conditions under which the price-demand rela-
tionship d = [β]p + �β0 can be inverted. This is equivalent to finding conditions
sufficient for the matrix of estimates of the price sensitivities [β] to be non-
singular. In that case, we denote by [α] its inverse. We refer to the parameters
αt

ij as the price-demand parameters since they characterize the price-demand
relationship. More specifically, the parameters satisfy the following constraints:

1. αt
ii > 0, ∀ i = 1, . . . ,N ∀t = 1, . . . , T

2. |αt
ij | > 0, ∀ i, j = 1, . . . ,N, i �= j ∀t = 1, . . . , T

3. αt
ii >

∑
j �=i |αt

ij |, ∀ i = 1, . . . ,N, ∀t = 1, . . . , T

4. αt
ii >

∑
j �=i |αt

j i |, ∀ i = 1, . . . ,N, ∀t = 1, . . . , T

PROPOSITION 2.1. If the parameters α satisfy constraints 1 to 4, then the

matrix [α] is invertible.

PROOF. Assumptions 1 to 4 concerning the price sensitivities imply that ∀i =
1, . . . ,N, ∀τ = 1, . . . , T , we have:

ατ
ii >

∑

j �=i

|ατ
ij |
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ατ
ii >

∑

j �=i

|ατ
ji |

Therefore, the matrix [α] is strictly diagonally dominant, hence positive
definite. Consequently, it is invertible. �

Therefore, the price-demand relationship can be written as:

p = �α0 − [α]d + ǫ

or equivalently:

pt
i (d

t
i , d

t
−i) = αt

i0 − αt
iid

t
i −

N∑

j=1,j �=i

αt
ijd

t
j

where ǫt
i is a random noise. The firm makes the following distributional

assumption on the random noise: ǫt
i are independent random variables with

a gaussian distribution N(0, (σ t
i )

2). An unbiased estimate of the variance of
each parameter is (see Rice, 1995):

s2(αt−1
ij ) =

t∑
τ=1

(pτ
i − ατ

i0 +
N∑

j=1
ατ

ijd
τ
j )2

t − N − 1

since N + 1 parameters (ατ
ij j = 0, . . . ,N ) have already been estimated from

the data.
In addition, in order to allow more flexibility in the modeling of the demand,

we consider parameters which slowly vary in time:

‖αt
i − αt+1

i ‖ � δi‖αt
i‖, ∀ i = 1, . . . ,N, ∀ τ = 1, . . . , T − 1

where δi are prespecified constants called volatility parameters, which impose
the condition that the parameters αt

ij are Lipschitz continuous.
For instance, the usual regression condition sets δi = 0, which implies that

the parameters are constant in time.
Finally, the parameter estimates must be chosen such that the prices they

define are nonnegative:

ατ
i0 −

N∑
j=1

ατ
ijd

τ
j � 0 ∀ i = 1, . . . ,N, ∀ τ = 1, . . . , T

∀d � 0 s.t
T∑

τ=1
dτ
i � Ci ∀ i = 1, . . . ,N
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In order to ensure the strict inequalities in constraints 1 to 4, we make the
following assumptions:

ASSUMPTIONS 1. There exists ε > 0 such that:

1. αt
ii � ε, ∀ i = 1, . . . ,N, ∀t = 1, . . . , T

2. |αt
ij | � ε, ∀ i, j = 1, . . . ,N, ∀t = 1, . . . , T

3. (1 − ε)αt
ii �

∑
j �=i |αt

ij |, ∀ i = 1, . . . ,N, ∀t = 1, . . . , T

4. (1 − ε)αt
ii �

∑
j �=i |αt

j i |, ∀ i = 1, . . . ,N, ∀t = 1, . . . , T

2.4 The Information Structure

In this subsection, we specify what information is available to each firm at
the beginning of each period.

• We assume that at the beginning of the selling horizon, the firms know the
total capacities of each of the sellers in the market Ci, ∀i = 1, . . . ,N . For
instance, an airline who competes on a given flight knows the number of
seats and the number and type of plane its competitors allocated to that flight;
in the hotel industry, hotel managers know the total number of rooms of their
competitors; car rental companies may have access to the number and type
of cars used by their competitors, etc.

• Furthermore, at each time period t , each firm observes the prices that were
set in the previous period pt−1

1 , . . . , pt−1
N . This is a realistic assumption in

a lot of markets, such as airlines tickets, leisure goods such as hotel, cruise,
equipment rentals, etc. Indeed, nowadays, information technology and the
internet enable both companies and customers to have access to a wealth
of prices. For instance, websites such as Expedia, Travelocity, Orbitz, etc
display the prices of all airlines competing for a given flight; similar websites
exist for concert, hotel, cruise tickets, as well as equipment rentals.

• Each firm also observes the demand that it captured in the previous period,
i.e. d t−1

i . However, in order to be more realistic, we do not assume that a firm
observes its competitors’ realized demands. For instance, hotel managers do
not have access to the vacancies of their competitors, airlines do not know if
their competitors’ flights departed with empty seats, etc.

2.5 Objectives of Each Firm

At the beginning of each time period t , given the data available, that was
specified in the previous section, each firm seeks to:

• Estimate the price-demand parameters of all the firms: αi, ∀i = 1, . . . ,N .
• Find the market-equilibrium demands corresponding to these parameter

estimates.
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• Finally, each firm wants to use its estimates of the parameters and the
demands to set its own future prices so as to maximize its total revenue over
the entire selling horizon, while guessing its competitors’ optimal pricing
policy.

3. The Transient Dynamic Pricing Problem

In this section, we focus on the transient problem, which each firm faces
at the beginning of selling period t ∈ {2, . . . , T }. As outlined in the previous
section, the firm seeks to estimate the price-demand parameters, in order to
be able to compute the market-equilibrium demands, and set its prices for
future periods, while guessing its competitors’ optimal policy. The problem
can therefore be decomposed into three steps. In Step 1, we will consider
the problem of finding the market-equilibrium demands, assuming the price-
demand parameters are known. In Step 2, we address the problem of estimating
the price-demand parameters for fixed demands. Finally, in Step 3, we turn to
the price setting for future periods.

3.1 Step 1: Computation of the Demands

First, in what follows, we will take the view point of an external observer of
the market. In other words, each firm is on an equal footing, and has the same
data available about itself and its competitors. Thus, at this point, we do not
incorporate in our model the fact that each firm observes its own past demand.
This enables us to take advantage of the symmetry of information between the
firms.

Furthermore, we assume that the price parameters α are known. Each firm
i seeks to find the Nash equilibrium demands that emerge in the market. As
each firm is a revenue maximizer, then for fixed demands of its competitors
d−i , its best response demands are those which maximize its total revenue over
the entire selling horizon. Each firm therefore solves a best response problem
BRi(d−i, αi):

max
di

�i(di) =
T∑

τ=1
dτ
i

(
ατ

i0 −
N∑

j=1
ατ

ijd
τ
j

)
(1)

s.t
T∑

τ=1
dτ
i � Ci (2)

ατ
i −

N∑
j=1

ατ
ijd

τ
j � 0, ∀τ = 1, . . . , T (3)

di � 0 (4)



234 Soulaymane Kachani, Georgia Perakis, and Carine Simon

The objective function �i(di) = ∑N
τ=1 dτ

i pτ
i (dτ

i , dτ
−i) is the total revenue of

firm i over the entire time horizon, and in (1), the price-demand relationship
has been replaced by its actual expression. Constraint (2) incorporates the fact
that the problem we are addressing is capacitated, that is, the total demand
captured by the firm cannot exceed its overall capacity. Constraint (3) states
that the prices defined by the price-demand relationship should be nonnegative.
Finally, constraint (4) is the nonnegativity of the demands.

Notice that in this subsection, we compute the demands assuming that
the price-demand parameters α are known. Subsection 3.2 deals with the
estimation of these parameters.

Furthermore, each firm solves a similar problem for all its competitors, in
order to determine their best response policies. This approach is reasonable
since we have assumed that all the firms are revenue maximizers. Hence, in
order to compute the market equilibrium demands, each firm simultaneously
solves N best response problems: BRi(d−i, αi), ∀ i = 1, . . . ,N .

The solution to these N simultaneous optimization problems determines the
market equilibrium demands for each firm, at each time period, as functions
of the price-demand parameters. These demands are the Nash equilibrium
demands in the market.

We call BR(α) the optimization problem corresponding to the computation
of the Nash equilibrium demands as a function of the parameters α.

In Section 4.1, we establish existence of the Nash equilibrium under the
conditions 1 to 4 on the parameters stated above.

3.2 Step 2: Estimation of the Parameters

If the firms somehow knew the demands on the market, they could estimate
their own price-demand parameters, as well as their competitors’: each firm
i seeks the price estimate given by the price function: pτ

i (dτ
i , dτ

−i) = ατ
i0 −∑N

j=1 ατ
ijd

τ
j to be the best estimate of the observed price p̂τ

i for all past periods
τ = 1, . . . , t − 1. Thus it minimizes the error between the above price function,
and the past market prices that were observed. To perform this estimation, one
may use either the absolute value error:

∣∣∣∣p̂τ
i − ατ

i0 +
N∑

j=1

ατ
ijd

τ
j

∣∣∣∣

or the squared error:

1

2

(
p̂τ

i − ατ
i0 +

N∑

j=1

ατ
ijd

τ
j

)2
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Note that for known demands, the problem of estimating the price-demand
parameters by minimizing the squared error is the traditional linear regression
or least-squares estimation.

However, in reality, the demands are not known, but the Nash equilibrium
demands were computed in Step 1 as a function of the parameters α. Due to
the capacity constraints, which make each best-response problem nonseparable
in time, the Nash equilibrium demands are functions of the parameters for all
time periods 1 to T . Therefore, the error term 1

2(p̂τ
i − ατ

i0 + ∑N
j=1 ατ

ijd
τ
j (α))2

for τ < t involves parameters α1 through αT . As a result, the firms also need
to estimate future price parameters αt to αT , as a function of past parameters
α1 through αt−1.

If the parameters are stationary, then a good estimate of future parameters
is an average of all previous parameters:

∀τ = t + 1, . . . , T ατ
i =

τ∑
θ=1

ωθ
i α

θ
i , where

τ∑

θ=1

ωθ = 1

If, on the other hand, the parameters are expected to increase or decrease in
time, then an ARIMA(0,1,1) process might capture the trend effect. In the rest
of the paper, for the sake of simplicity, we will work with time average of past
parameters. Therefore, each firm needs to solve the following N optimization
problems: ∀ i = 1, . . . ,N :

min
αi

1
2

t−1∑
τ=1

(
p̂τ

i − ατ
i0 +

N∑
j=1

ατ
ijd

τ
j

)2

(5)

s.t ατ
ii � ε ∀ i = 1, . . . ,N, τ = 1, . . . , T (6)

(1 − ε)ατ
ii �

∑
j �=i

|ατ
ij | ∀τ = 1, . . . , T (7)

(1 − ε)ατ
ii �

∑
j �=i

|ατ
ji | ∀τ = 1, . . . , T (8)

‖ατ
i − ατ+1

i ‖ � δi‖ατ
i ‖ ∀τ = 1, . . . , T − 1 (9)

ατ
i = 1

τ

τ∑
θ=1

αθ
i ∀τ = t + 1, . . . , T (10)

dj = (d1
j , . . . , dT

j ) ∈ BRj (d−j , αj ) ∀j = 1, . . . ,N (11)

Note that the objective function (5) can be equivalently written as the absolute
value error. Constraints (6), (7), (8) and (9) correspond to conditions 1 to
4 that were imposed on the parameters to guarantee that the price-demand
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relationship is invertible. Constraint (10) reflects the fact that the parameters
are allowed to vary slowly in time. Constraint (11) is the estimate of future
parameters as an average of the past parameters. Finally, constraint (12) cap-
tures the fact that the demands are the market equilibrium demands computed
in Step 1.

Furthermore, for known demands, the estimation problem of firm i solely
involves firm i’s parameters. Each estimation problem thus yields the set of
optimal parameters for that firm, as a function of the demands of all firms.

However, the Nash equilibrium demands computed in Step 1 are func-
tions of all firms’ parameters. Hence when solving for the Nash equilibrium
demands, each estimation problem is therefore coupled to the others. As a
consequence, the N estimation problems need to be solved simultaneously.
The simultaneous solution to the N problems yields the set of optimal price-
demand parameters for all firms and for all time periods.

3.2.1 An Alternative Estimation Problem

Let us assume that on top of observing the prices on the market, we
have price data available for τ = 1, . . . , T , for instance, from a database of
historical prices. Let p

τ,h
i be an estimate of pτ

i based on historical data. Then
at the beginning of period t , each firm may use the prices p̂τ

i it observed for
τ = 1, . . . , t − 1 in order to estimate past parameters, along with its historical
prices p

τ,h
i in order to estimate future parameters. Therefore, Step 2 can be

reformulated as: ∀ i = 1, . . . ,N :

min
αi

1

2

t−1∑

τ=1

(
p̂τ

i − ατ
i0 +

N∑

j=1

ατ
ijd

τ
j

)2

+ 1

2

T∑

τ=t

(
p

τ,h
i − ατ

i0 +
N∑

j=1

ατ
ijd

τ
j

)2

(12)

s.t ατ
ij � ε ∀ j = 1, . . . ,N, τ = 1, . . . , T

(1 − ε)ατ
ii �

∑

j �=i

|ατ
ij | ∀τ = 1, . . . , T

(1 − ε)ατ
ii �

∑

j �=i

|ατ
ji | ∀τ = 1, . . . , T

‖ατ
i − ατ+1

i ‖ � δi‖ατ
i ‖ ∀τ = 1, . . . , T − 1

dj = (d1
j , . . . , dT

j ) ∈ BRj (d−j , αj ) ∀j = 1, . . . ,N

The differences with the previous model (equations (5) to (12)) lies in the
fact that the estimation (equation (17)) is performed for all time periods up
to T instead of only past time periods. Thus at each time period t , we seek to
minimize the sum of two types of error: the squared error between the prices
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observed on the market, and the estimate given by the price function for all past
periods 1 to t − 1, and the squared error between the historical prices and the
price function for periods t to T . Therefore, unlike in the previous model for
Step 2, we need not find estimates of future price parameters as a function of
past parameters. The solution to this problem is the set of optimal parameters
for firm i for all time periods.

3.3 Step 3: Price-Setting for Future Periods

Steps 1 and 2 yield the estimates of the market-equilibrium demands, and of
the price-demand parameters. Each firm can therefore use these estimates to set
its prices for periods t to T , as well as guess its competitors’ optimal pricing
strategy, by plugging the estimates computed into the price function.

In this subsection, we now assume the position of one of the firms on the
market, say firm i.

In fact, by taking the point of view of one of the firms in the market, say
firm i, we can incorporate the fact that firm i knows more about itself than it
does about its competitors. Indeed, it can observe its own past demand. Hence
at period t , the demands d1

i , . . . , d t−1
i are data to firm i rather than unknown

variables. We denote by d̂1
i , . . . , d̂ t−1

i the observed values for firm i’s demands.
As a consequence, once Steps 1 and 2 are solved, Firm i can recompute a
better estimate for its price-demand parameters and can also recompute its best
response policy given that its past demands are data. The best-response problem
for firm i thus becomes:

max
d t
i ,...,d

T
i

T∑
τ=t

dτ
i

(
ατ

i0 −
N∑

j=1
ατ

ijd
τ
j

)
(13)

s.t
T∑

τ=t

dτ
i � Cτ

i (14)

dτ
j � 0 ∀ τ = t, . . . , T (15)

This best-response problem differs from that computed in Step 1 in 2 ways:
first of all, the objective function (13) is the maximization of the revenue for
future periods t through T ; second, the constraint that the total demand does
not exceed capacity has been replaced by constraint (14), where Cτ

i = Ci −∑t−1
τ=1 d̂τ

i is firm i’s remaining capacity at time t : it states that the demand over
future periods should not exceed the remaining capacity at t . The competitors
’s demands remain the same as in Step 1, due to the asymmetry of information:
indeed, they do not observe firm i’s demand.
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Taking this modification into account, the estimation problem for firm i

becomes:

min
αi

1
2

t−1∑
τ=1

(
p̂τ

i − ατ
i0 + ατ

iid
τ
i +

N∑
j=1,j �=i

ατ
ijd

τ
j

)2

s.t ατ
ij � ε ∀ i, j = 1, . . . ,N, ∀ τ = 1, . . . , T

(1 − ε)ατ
ii �

∑
j �=i

ατ
ij , ∀ i = 1, . . . ,N, ∀τ = 1, . . . , T

(1 − ε)ατ
ii �

∑
j �=i

ατ
ji, ∀ i = 1, . . . ,N, ∀τ = 1, . . . , T

‖αt
i − αt+1

i ‖ � δi‖αt
i‖, ∀ i = 1, . . . ,N, ∀ τ = 1, . . . , T − 1

ατ
i =

τ∑
θ=1

ωθαθ
i , ∀τ = t + 1, . . . , T

dj ∈ BRj (αj , d−j ) ∀j �= i (16)

The difference between the above optimization problem and that solved in
Step 2 for firm i lies in the fact that the demands for firm i are not those
determined through the Nash equilibrium problem, but the observed demands
d̂τ
i τ = 1, . . . , T . On the other hand, the estimation problems of firm i’s

competitors are those of Step 2.
As a result, the set of Nash equilibrium demands, and the set of parameters

simultaneously solving the N estimation problems are firm i’s estimates of
the best-response demands and optimal parameters, and can be used in order
to compute its own, as well as its competitors’ optimal pricing strategy for
future periods. If d and α denote the solutions to Steps 1 and 2, as modified by
firm i, then the set of optimal prices for future periods are: ∀τ = t, . . . , T , and
∀j = 1, . . . ,N :

pτ
j = ατ

j0 −
N∑

k=1

ατ
jkd

τ
k

In particular, firm i sets its price for period t to:

pt
i = αt

i0 −
N∑

j=1

αt
ijd

t
j

3.4 A Transient Learning Approach

At the beginning of each time period t = 1, . . . , T , each firm solves
the three-step dynamic pricing problem. Therefore, at each time period, it
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updates its estimate of the price functions of all firms, as well as setting its
optimal prices for period t . It incorporates each time the additional information
collected at the previous time period, in order to improve its estimates. On can
therefore say that the firm learns the price-demand relationship as time goes on.

4. The Dynamic Pricing Problem as an MPEC

In this section, we reformulate the previous model using ideas from the
theory of variational inequalities. We show that the Nash equilibrium problem
in Step 1 can be reformulated as a Joint Variational Inequality. This Joint
Variational Inequality can be interpreted as a user-equilibrium problem in the
transportation setting. Therefore, we will exploit this analogy by using methods
from the transportation field in order to solve the Joint Variational Inequality.
(See Subsection 4.2 for more details).

4.1 Reformulation of Step 1

First of all, we state and prove a famous result: under some assumptions
satisfied by our model, the optimization problem BRi(d−i, αi) is equivalent to
a Variational Inequality.

PROPOSITION 4.1. If the objective function −�i of BRi(d−i, αi) is a contin-

uously differentiable and convex function of the variable di and the feasible set

Ki = {di � 0 | ∑T
τ=1 dτ

i � Ci; ατ
i0 − ∑N

j=1 ατ
ijd

τ
j � 0, ∀ τ = 1, . . . , T } is a

closed and convex set, then the problem:

min
di

−�i(di)

s.t di ∈ Ki

is equivalent to the Variational Inequality denoted V Ii:

−∇�i(di)
′(d̃i − di) � 0, ∀ d̃i ∈ Ki

PROOF. Ki is a closed and convex set due to the continuity and convexity of
the functions that define its constraints.

Furthermore, the objective function:

−�i(di) = −
T∑

τ=1

dτ
i

(
ατ

i0 −
N∑

k=1

ατ
ikd

τ
k

)
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is continuously differentiable. Its gradient is a vector of T components, each
component being:

−∂�i

∂dτ
i

= 2ατ
iid

τ
i +

∑

k �=i

ατ
ikd

τ
k − ατ

i0

Its Hessian matrix is a T × T diagonal matrix of coefficients: 2ατ
ii . Moreover,

since the ατ
ii are positive by assumption, the Hessian matrix of the objective

function is positive definite, hence −�i is convex. Therefore, the optimization
problem BRi(d−i, αi) is equivalent to a variational inequality V Ii :

T∑

τ=1

(
2ατ

iid
τ
i +

∑

j �=i

ατ
ijd

τ
j − ατ

i0

)
(d̃τ

i − dτ
i ) � 0 ∀d̃i ∈ Ki

�

Furthermore, the following result holds:

PROPOSITION 4.2. The N best response problems solved by each firm are

equivalent to a single joint variational inequality denoted JVI:

N∑

j=1

T∑

τ=1

(
2ατ

jjd
τ
j +

∑

k �=j

ατ
jkd

τ
k − ατ

j0

)
(d̃τ

j − dτ
j ) � 0

∀d̃ = (d̃1, . . . , ˜dN ) ∈ K = K1 × . . . × KN

PROOF. Let d = (d1, . . . , dN ) be solution of the N Variational Inequalities:
then ∀ i = 1, . . . ,N , we have:

−∇�i(di)
′(d̃i − di) � 0 ∀ d̃i ∈ Ki

We can sum these N inequalities and obtain:

−
N∑

i=1

∇�i(di)
′(d̃i − di) � 0 ∀ d̃ ∈ K1 × . . . × KN

Hence d is solution to the joint variational inequality JVI.
Conversely, if d is solution to JVI, then by choosing d̃j = dj ∀ j �= i, we

get that d is also solution to V Ii .
Thus, the two formulations are equivalent. �
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4.2 The Transportation Analogy

In this subsection, we focus on the case where the price-demand parameters
are given (i.e. realized demand of competitors can be observed). Furthermore,
we assume that the capacity constraint of the best-response problem of each
firm is binding, i.e.:

∀ i = 1, . . . ,N,

T∑

t=1

d t
i = Ci

We show that under these assumptions, the best-response problem of a seller
can be interpreted as a nonseparable user-equilibrium problem. Such a model
is often used in the transportation field, as shown in Figure 1.

The analogy between this pricing problem and a Wardrop user-equilibrium
problem is as follows: we have N origin-destination pairs (one for each seller).
Each O-D pair is linked by T arcs, each arc corresponding to one time period.
Seller i’s capacity Ci becomes the total demand for travel from the origin to the
destination point of i, i.e the number of travelers who want to travel from that
origin to that destination. Moreover, the demand dτ

i in time period τ of seller i

becomes the flow on arc τ joining the O-D pair corresponding to i, that is the
number of travelers who wish to travel on arc τ . tτi corresponds to the travel
time function on that arc.

The equivalent transportation problem corresponding to the maximization
of the revenue of seller i over the selling horizon is the following: Ci

selfish drivers try to minimize their travel time to go from an origin to a
destination given the arc travel time functions shown in Figure 1. The solution
to this problem will verify the following property (also called Wardrop second
principle):

PROPOSITION 4.1 (Wardrop (1952)). At equilibrium, all used arcs have equal

and minimal travel times.

Therefore, we can exploit this analogy by using methods from transportation
problems in order to solve the joint variational inequality JVI. Indeed, the
traffic equilibrium problem is a special class of optimization problems for
which efficient and theoretically sound solution methods have been derived.
In particular, we can use a relaxation scheme to solve the joint variational
inequality. It is a special case of a general iterative scheme devised by Dafermos
(1980).
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Figure 1. Best-response problem of Seller i with capacity Ci .

4.3 Steps 1 and 2 as a Mathematical Problem with Equilibrium

Constraints

For fixed demands, each one of the N optimization problems solved in
Step 2 has a convex objective function, and depends only on the parameters
of the considered seller. Therefore, Step 2 is equivalent to a single optimization
problem, obtained by summing the objective functions of the N problems
solved in Step 2:

min
α

1
2

N∑
i=1

T∑
τ=1

(
p̂τ

i − ατ
i0 +

N∑
j=1

ατ
ijd

τ
j

)2
(17)

s.t ατ
ij � ε ∀ i, j = 1, . . . ,N, ∀τ = 1, . . . , T

(1 − ε)ατ
ii �

∑
j �=i

ατ
ij , ∀ i = 1, . . . ,N, ∀τ = 1, . . . , T

(1 − ε)ατ
ii �

∑
j �=i

ατ
ji, ∀ i = 1, . . . ,N, ∀τ = 1, . . . , T

‖αt
i − αt+1

i ‖ � δi‖αt
i‖, ∀ i = 1, . . . ,N, ∀ τ = 1, . . . , T − 1

ατ
i =

τ∑
θ=1

ωθαθ
i , ∀τ = t + 1, . . . , T

Furthermore, the solution to Step 1 is given as a function of the price-demand
parameters, which are then estimated in Step 2. Therefore, Step 1 can be
seen as the lower level of the optimization problem solved in Step 2. Hence
the two steps can be formulated as a single problem involving two levels
of optimization, the lower level being a joint variational inequality. Such
a problem is called a Mathematical Program with Equilibrium Constraints
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(MPEC):

min
α

1
2

N∑
i=1

T∑
τ=1

(
p̂τ

i − ατ
i + ατ

iid
τ
i +

N∑

j �=i

ατ
ijd

τ
j

)2

s.t ατ
ij � ε, ∀ i, j = 1, . . . ,N, ∀τ = 1, . . . , T

(1 − ε)ατ
ii �

∑
j �=i

ατ
ij , ∀ i = 1, . . . ,N, ∀τ = 1, . . . , T

(1 − ε)ατ
ii �

∑
j �=i

ατ
ji, ∀ i = 1, . . . ,N, ∀τ = 1, . . . , T

‖αt
i − αt+1

i ‖ � δi‖αt
i‖, ∀ i = 1, . . . ,N, ∀ τ = 1, . . . , T − 1

ατ
i =

τ∑
θ=1

ωθαθ
i , ∀τ = t + 1, . . . , T

N∑
j=1

T∑
τ=1

(
2ατ

jjd
τ
j − ατ

j0 +
N∑

k �=j

ατ
jkd

τ
k

)
(
d̃τ
j − dτ

j

)
� 0 (18)

∀ d̃ = (d̃1, . . . , ˜dN ) ∈ K = K1 × . . . × KN

where Ki = {di � 0 | ∑T
τ=1 dτ

i � Ci; ατ
i0 − ∑N

j=1 ατ
ijd

τ
j � 0, ∀ τ =

1, . . . , T }.
The main difference between the above problem and equations (5) to (12)

corresponding to Step 2 is that constraint (12) corresponding to the fact that the
demands are the Nash equilibrium demands which were determined in Step 1,
has been replaced by constraint (19) (i.e the joint variational inequality JVI).
Therefore, instead of solving Step 1 separately, as a function of α, and then
solving for α in Step 2, we can solve them jointly.

5. Computational Results

In this paper, we investigate two topics from a computational perspective.
First, we would like to explore the market behavior under the proposed demand
model. Second, we would like to test the joint dynamic pricing and learning
approach.

5.1 The Demand Model

We study the demand model in a market consisting of 2 firms, and a
selling horizon of 2 time periods, in order to gain some insights in the
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market equilibrium demands computed in the previous section. We carry out
a sensitivity analysis of the Nash equilibrium demands, prices and revenues
when the parameters and the capacities vary.

5.1.1 Methodology

We fix all but one of the coefficients of the price function of firm 1, and then
compute the market equilibrium demands, prices and revenues for each firm
and in each time period, as a function of the varying parameter α1

10, α1
11 or α1

12;
furthermore, we repeat the process for various values of the capacities, in order
to capture the effect of the capacities as well.

We start with the following set of values for the demand functions:

d1
1 = 100 − 5p1

1 + 3p1
2 d1

2 = 110 + 2.7p1
1 − 4.5p1

2

d2
1 = 100 − 4.5p2

1 + 2.7p2
2 d2

2 = 110 + 2.3p2
1 − 4p2

2

In other words, the price functions are approximately the following:

p1
1 = 54.1667 − 0.3125d1

1 − 0.2083d1
2 p1

2 = 56.9444 − 0.1875d1
1 − 0.3472d1

2

p2
1 = 59.1179 − 0.3393d2

1 − 0.2290d2
2 p2

2 = 61.4928 − 0.1951d2
1 − 0.3817d2

2

For each one of the parameters α1
10, α1

11, α1
12, we plot the Nash equilibrium

demands, prices and revenues for each time period and for each firm, as a
function of this parameter.

5.1.2 Comparison of the Nash Equilibrium Demands, Prices and Revenues

of the Firms

It is obvious that if their parameters are equal, then both firms will have
equal demands, prices and revenues at equilibrium. We would like to compare
the firms’ equilibrium when we deviate from the symmetric case. The symmet-
ric price functions are the following:

p1 = 25 − 0.3125d1 − 0.1875d2

p2 = 25 − 0.1875d1 − 0.3125d2

Furthermore, we consider 2 cases as far as capacities are concerned: both firms
have tight capacity or both have unused capacity. We study asymmetric cases
as far as the price functions are concerned: first, we study the Nash equilibrium
when α11 > α22, all other parameters being equal; then we study the case when
α12 > α21, all other parameters being equal. Finally, we focus on the Nash
equilibrium for α10 > α20. The observations are the following:
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• α11 > α22: firm 1’s price is more sensitive to its own demand than firm 2’s
price.

If the firms’ capacities are tight at equilibrium, then their demands both
equal their capacity, but firm 2 prices higher, and therefore gets a bigger
revenue.

If the firms have unused capacity at equilibrium, then firm 1’s demand and
price are both lower than firm 2’s, resulting in a lower revenue.

• α12 > α21: firm 1’s price is more sensitive to firm 2’s demand than firm 2’s
price.

In case of tight capacity, then firm 1 prices lower than firm 2, and gets a
lower revenue;

In case of unused capacity remaining, then both firm 1’s demand and price
are lower than firm 2’s, hence firm 1’s revenue is lower.

• α10 > α20:
In the tight capacity setting, firm 1 prices higher and therefore gets a

higher revenue.
In the case of unused capacity remaining, then firm 1 has a higher demand

and charges a higher price, and therefore gets a higher revenue.

5.1.3 Sensitivity Analysis on the Nash Equilibrium

The observations below correspond to the graphs displayed at the end of the
paper.

• First of all, we note that a change in a parameter α1
ij affects the equilibrium

demands, prices and revenues in the first period only, when there remains
unused capacity at equilibrium; otherwise, the equilibrium demands, prices
and revenues in both time periods, for both firms depend on α1

ij .
• Furthermore, firm 1 is more affected by a change in his own parameter than

his competitor: the magnitude of the change in firm 1’s demand, price, or
revenue at time 1 for a given change in α1

1j is greater than that of firm 2.

• Effect of an increase in α1
10:

Figure 2 (resp. 3, resp. 4) displays the evolution of the equilibrium
demands (resp. prices, resp. revenues) of the firms in each time period as
a function of α1

10.
The main effect is an increase in d1

1 , p1
1 and thus π1

1 , as well as a decrease
in these quantities for firm 2, regardless of the capacity. When capacity is
tight for firm 1, d2

1 decreases, p2
1 increases, resulting in a decrease in π2

1 .
When firm 2’s capacity is tight only, then d2

2 increases, p2
2 decreases, and π2

2
increases. Finally, if both firm’s capacities are tight, then d2

2 , p2
2 and therefore

π2
2 also increase.

• Effect of an increase in α1
11:
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Figure 2. Nash equilibrium demands as a function of α1
10.

Figure 2 (resp. 3, resp. 4) shows the evolution of the equilibrium demands
(resp. prices, resp. revenues) of the firms in each time period as a function of
α1

11.
Whatever the capacities, d1

1 , p1
1 and thus π1

1 always decrease, whereas
they increase for firm 2. On the other hand, if firm 1’s capacity is tight, then
we also observe that d2

1 increases, p2
1 decreases, and π2

1 increases, whereas
for firm 1’s or firm 2’s capacity tight, d2

2 decreases, p2
2 increases, and π2

2
slightly decreases.

• Effect of an increase in α1
12:

Figure 2 (resp. 3, resp. 4) displays the evolution of the equilibrium
demands (resp. prices, resp. revenues) of the firms in each time period as
a function of α1

12.
Whatever the firms’ capacities, we observe that firm 1’s demand, price and

revenue in period 1 decrease, whereas they increase for firm 2. When both
firms’ capacities are tight, then d2

1 increases, p2
1 decreases, and π2

1 increases,
whereas d2

2 , p2
2 and π2

2 all decrease. If firm 1’s capacity is tight, not firm 2’s,
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Figure 3. Nash equilibrium prices as a function of α1
10.

then the demand, price and revenue for firm 1 in period 2 all increase; d2
2 still

decreases, but p2
2 increases, resulting in a decrease in revenue. Finally, if firm

2’s capacity is tight only, then d2
1 still increases, but p2

1 now decreases, and
the corresponding revenue increases, whereas all three functions decrease
for firm 2.

5.2 The Joint Dynamic Pricing and Learning Approach

5.2.1 Methodology

At each time period of the approach, we are solving a least squares
problem in which we fit each data point (pτ

i , dτ
1 , . . . , dτ

N ) with coefficients
ατ

i0, α
τ
i1, . . . , α

τ
iN . Hence to estimate N + 1 coefficients, we only rely on a

single data point, and the problem is clearly underdetermined. In order to
solve this issue, we assume that a certain number of price observations are
available to each firm at each time period. For instance these might be price
estimations from pre-sale data, or historical prices, etc. At each time period,
the firm therefore has Y > N + 1 observed prices.
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Figure 4. Nash equilibrium revenues as a function of α1
10.

Furthermore, in order to assess the quality of the model, we assume that
we know the true model of demand, i.e true values for the parameters β .
This enables us to compute the corresponding demands and prices. The price
observations are also obtained through simulation from using these parameters.
We can then compare the parameters, prices and demands computed at each
time period of the approach with the true values.
The input of the model are the following:

• N : number of firms in the market;
• T : number of time periods of the selling horizon;
• Y : number of price observations per time period;
• σp: standard deviation of the observed prices ;
• Ci : capacities of the firms ;
• α: true parameters (or equivalently β);
• δ: volatility of the parameters.

The computations were performed using Gauss-Newton method on a Unix
workstation with 1GB of RAM and a processor of 2.4 GHz.
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Figure 5. Nash equilibrium demands as a function of α1
11.

In this section, we show the estimates of the parameters, demands, prices and
revenues computed by the approach. We focus on the 2firm-2-period example.
We assume Y = 30 price observations available at each time period, with
standard deviation σp = 1. The firms’ capacities are C1 = 100, C2 = 100. We
assume the true model of demand to be:

ατ
ij = ᾱτ

ij + ǫτ
ij

where ǫτ
ij is chosen to be gaussian with mean 0 and standard deviation σ τ

i0 = 0.5
and σ τ

ij = 0.05.
The values ᾱt

ij are such that:

p1
1 = 54.1667 − 0.3125d1

1 − 0.2083d1
2 p2

1 = 59.1179 − 0.3393d2
1 − 0.2290d2

2

p1
2 = 56.9444 − 0.1875d1

1 − 0.3472d1
2 p2

2 = 61.4928 − 0.1951d2
1 − 0.3817d2

2
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Figure 6. Nash equilibrium prices as a function of α1
11.

We ran 1,000 simulations, and computed the optimal demands, parameters, and
prices for each simulation, to obtain their average and standard deviation. We
compared these to the average and standard deviation on the true demands,
parameters and prices.

The results are the following:

• the average parameters obtained through simulation differ from the true
parameters by 0.05%; the matrix of the variances of all the simulated
parameters is:

σ(α1) =
(

0.2169 0.0022 0.0022
0.1969 0.0022 0.0028

)

σ(α2) =
(

0.2387 0.0023 0.0021
0.2393 0.0023 0.0023

)

In other words, the standard deviation of the constant parameters is of the
order of 0.4, and that of the other parameters is order of 0.04.
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Figure 7. Nash equilibrium revenues as a function of α1
11.

• The average demands obtained through simulation differ from the true
demands by 0.56%; the matrix of standard deviation of the demands is:

(
σ(d1

1 ) σ (d2
1 )

σ (d1
2 ) σ (d2

2 )

)
=

(
6.77 6.77
6.43 6.23

)

• the average prices of the simulation differ from the true prices by 0.031%,
and the matrix of the standard deviation of the prices is:

(
σ(p1

1) σ (p2
1)

σ (p1
2) σ (p2

2)

)
=

(
2.95 2.87
2.87 2.57

)

6. Application: 2-Firm 2-Period Dynamic Pricing Problem

We focus on the case of 2 firms and 2 pricing periods, in order to gain
additional insights on the model and provide analytical evidence on the



252 Soulaymane Kachani, Georgia Perakis, and Carine Simon

Figure 8. Nash equilibrium demands as a function of α1
12.

computational results. Indeed, in this simple case, we can derive closed form
solutions to the Nash equilibrium and estimation problem.

6.1 Solution to the Nash Equilibrium Problem

6.1.1 Best Response Problem of Each Firm

For the more general T -period problem, firm 1 solves the following best-
response problem: for fixed demand of firm 2: BR1(d2, α1):

max
(d1

1 ,...,dT
1 )

∑T
t=1 d t

1(α
t
10 − αt

11d
t
1 − αt

12d
t
2)

s.t.
∑T

t=1 d t
1 � C1

d t
1 � 0

We now establish the following optimality conditions:
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Figure 9. Nash equilibrium prices as a function of α1
12.

PROPOSITION 6.1. The Karush-Kuhn-Tucker conditions are necessary and

sufficient for optimality of BR1(d2, α1).

PROOF. The gradients of the inequality constraints are linearly independent,
establishing necessity.

Furthermore, −�1 is convex, and the functions defining the inequality
constraints are linear, establishing sufficiency. �

The KKT conditions can be written as:

∂�1

∂d t
1

− λ1 � 0 (19)

d t
1

(
∂�1

∂d t
1

− λ1

)
= 0 (20)

T∑

t=1

d t
1 � C1 (21)
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Figure 10. Nash equilibrium revenues as a function of α1
12.

λ1

(
T∑

t=1

d t
1 � C1

)
= 0 (22)

d t
1 � 0 ∀t = 1, . . . , T (23)

λ1 � 0 (24)

where λ1 is the Lagrange multiplier corresponding to the capacity constraint.
Constraints (21) and (22) are the first order optimality conditions: note that if
d t

1 > 0, then constraint (22) has to be satisfied with equality: ∂�1
∂d t

1
− λ1 = 0.

Constraints (21) and (22) can be explicitly written as:

αt
10 − 2αt

11d
t
1 − αt

12d
t
2 − λ1 � 0

d t
1(α

t
10 − 2αt

11d
t
1 − αt

12d
t
2) = 0
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Constraint (23) is just the capacity constraint. Constraint (24) is the com-
plementary slackness condition: the multiplier λ1 is equal to zero unless the
capacity constraint is tight.

Hence two cases arise: either the capacity constraint is tight, i.e all capacity
is used at the optimum, or there remains unused capacity at the optimum.
The following proposition gives the characterization of firm 1’s best-response
demands.

PROPOSITION 6.2.

1. If
∑T

t=1
αt

10−αt
12d

t
2

2αt
11

< C1, then firm 1’s best response demands are equal to:

∀ t such that d t
1 > 0:

d t
1 = αt

10 − αt
12d

t
2

2αt
11

(25)

2. Else, if
∑T

t=1
αt

10−αt
12d

t
2

2αt
11

� C1, then firm 1’s best-response demands are: ∀ t

such that d t
1 > 0:

d t
1 = αt

10 − αt
12d

t
2

2αt
11

− λ1

2αt
11

(26)

where λ1 = (
∑T

t=1
1

2αt
11

)−1
(∑T

t=1
αt

10−αt
12d

t
2

2αt
11

− C1

)

6.1.2 Computing the Nash Equilibrium

The Nash equilibrium demands are the demands which simultaneously
solve both firms’ best-response problems. Three cases arise at equilibrium: both
firms have unused capacity, exactly one firm has unused capacity, or both firms
have tight capacity. We now characterize the Nash equilibrium of the 2-firm-2-
period problem in each case:

PROPOSITION 6.3. If both firms have unused capacity at equilibrium, then the

Nash equilibrium demands are:

⎛
⎜⎜⎝

d1
1 (α)

d1
2 (α)

d2
1 (α)

d2
2 (α)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2α1
22/	

1 −α1
12/	

1 0 0
−α1

21/	
1 2α1

11/	
1 0 0

0 0 2α2
22/	

2 −α2
12/	

2

0 0 −α2
21/	

2 2α2
11/	

2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α1
10

α1
20

α2
10

α2
20

⎞
⎟⎟⎠ (27)
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where 	t = 4αt
11α

t
22 − αt

12α
t
21. This holds for parameters α such that:

2α1
22α

1
10 − α1

12α
1
20

	1
+ 2α2

22α
2
10 − α2

12α
2
20

	2
� C1

2α1
11α

1
20 − α1

21α
1
10

	1
+ 2α2

11α
2
20 − α2

21α
2
10

	2
� C2

We make the following observations concerning the influence of the parameters
on the Nash equilibrium demands:

• Nash equilibrium demand of firm 1 as a function of α11:
d t

1(α) is decreasing in αt
11, namely when firm 1’s price is more sensitive to

its own demand, then its demand increases. This is in agreement with Figure
5.

• Nash equilibrium demand of firm 1 as a function of α22:
If αt

12 > 0 then d t
1 is decreasing in αt

22. If the sensitivity of firm 1’s demand
to firm 2’s price is positive (i.e when firm 2’s price is greater, firm 1’s demand
also is), then d t

1(α) decreases as firm 2’s demand is more sensitive to changes
in its own prices.

If αt
12 < 0 then d t

1(α) is increasing in αt
22.

• Nash equilibrium demand of firm 1 as a function of α12:
d t

1(α) is decreasing in αt
12 , as illustrated in Figure 8. When firm 1’s

demand is more sensitive to firm 2’s price, then its demand at equilibrium
is lower.

• Nash equilibrium demand of firm 1 as a function of α21:
d t

1(α) is increasing in αt
21: as firm 2’s demand becomes more sensitive to

firm 1’s price, then firm 1’s equilibrium demand is higher.
• Nash equilibrium demand of firm 1 as a function of α10:

d1
1 is increasing in αt

10. This corresponds to Figure 2.
• Nash equilibrium demand of firm 1 as a function of α20:

If αt
12 > 0, then d t

1 is decreasing in αt
20.

PROPOSITION 6.4. If both firms’ capacities are tight at equilibrium, then let

ᾱij = α1
ij +α2

ij and 	 = 4ᾱ11ᾱ22 − ᾱ12ᾱ21. The Nash equilibrium demands are

given by:

⎛
⎜⎜⎝

d1
1 (α)

d1
2 (α)

d2
1 (α)

d2
2 (α)

⎞
⎟⎟⎠ = 1

	

⎛
⎜⎜⎜⎜⎜⎝

2ᾱ22 − α2
21ᾱ12
2ᾱ11

−α1
12 −α2

21ᾱ12
2ᾱ11

α2
12

−α1
21 2ᾱ11 − α2

12ᾱ21
2ᾱ22

α2
21 −α2

12ᾱ21
2ᾱ22

−α1
21ᾱ12
2ᾱ11

α1
12 2ᾱ22 − α1

21ᾱ12
2ᾱ11

−α2
12

α1
21 −α1

12ᾱ21
2ᾱ22

−α2
21 2ᾱ11 − α1

12ᾱ21
2ᾱ22

⎞
⎟⎟⎟⎟⎟⎠
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×

⎛
⎜⎜⎝

2α2
11C1 + α1

10 − α2
10

2α2
22C2 + α1

20 − α2
20

2α1
11C1 + α2

10 − α1
10

2α1
22C2 + α2

20 − α1
20

⎞
⎟⎟⎠ (28)

This holds for parameters α such that:

2α1
22α

1
10 − α1

12α
1
20

	1
+ 2α2

22α
2
10 − α2

12α
2
20

	2
� C1

2α1
11α

1
20 − α1

21α
1
10

	1
+ 2α2

11α
2
20 − α2

21α
2
10

	2
� C2

Hence, when the capacity constraint of both firms is tight, the Nash equilibrium
demand of each firm in one time period depends on the parameters of the firms
in both time periods, as well as on the capacity of both firms.

As both firms have tight capacity, we know that d2
1 (α) = C1 − d1

1 (α) and
d2

2 (α) = C2 − d1
2 (α). As a result, the Nash equilibrium is determined by the

values of the demands in period 1, and we can write a simpler system solved
by d1

1 and d1
2 .

Let 	, 	1 and 	2 be as defined above, and let:

[At ] =
(

2αt
11 αt

12
αt

21 2αt
22

)

Finally, let d̄1 and d̄2 be the Nash equilibrium demands in the unconstrained
case. Then in the case where both firms have tight capacity, the demands in
period 1 at equilibrium are such that:

(
d1

1 (α)

d1
2 (α)

)
= 	1

	

(
d̄1

1
d̄2

1

)
− 	2

	

(
d̄1

2
d̄2

2

)
+ 	1

	

[
[A1]−1[A2]

(
C1
C2

)

−[A1]−1
(

α2
10

α2
20

) ]
+ 	2

	

[(
C1
C2

)
− [A2]−1

(
α1

10
α1

20

)]

Hence the Nash equilibrium in this case can be expressed as a function of the
unconstrained Nash.

Similarly, we establish the following in the last case:

PROPOSITION 6.5. If exactly one firm has unused capacity at equilibrium, say

firm 2 without loss of generality, then the Nash equilibrium demands are:

d1
1 (α) =

(
	1

2α1
22

+ 	2

2α2
22

)−1 (
	1

2α1
22

d̄1
1 − 	2

2α2
22

d̄2
2 + 	2

2α2
22

C1

)
(29)
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d2
1 (α) =

(
	1

2α1
22

+ 	2

2α2
22

)−1 (
	2

2α2
22

d̄1
2 − 	1

2α1
22

d̄2
1 + 	1

2α1
22

C1

)

d1
2 (α) = α1

20

2α1
11

− α1
21

2α1
22

(
	1

2α1
22

+ 	2

2α2
22

)−1 (
	1

2α1
22

d̄1
1 − 	2

2α2
22

d̄2
2 + 	2

2α2
22

C1

)

d2
2 (α) = α2

20

2α2
11

− α2
21

2α2
22

(
	1

2α1
22

+ 	2

2α2
22

)−1 (
	2

2α2
22

d̄1
2 − 	1

2α1
22

d̄2
1 + 	1

2α1
22

C1

)

where d̄1
t
, d̄2

t
denote the solution to the market equilibrium in the uncon-

strained case. The set of parameters α for which this holds is:

2α1
22α

1
10 − α1

12α
1
20

	1
+ 2α2

22α
2
10 − α2

12α
2
20

	2
� C1

2α1
11α

1
20 − α1

21α
1
10

	1
+ 2α2

11α
2
20 − α2

21α
2
10

	2
� C2

6.2 Solution to the Estimation Problem

Since we derived closed-form solutions for the Nash equilibrium demands,
as a function of the parameters α, the MPEC is therefore equivalent to a single-
level optimization problem in variable α. The set of feasible parameters α is
partitioned into four regions, each region corresponding to one of the four Nash
equilibria computed above (both firms have tight capacity, both have unused
capacity, firm 1 has tight capacity only, firm 2 has tight capacity only).

For the sake of tractability, we relax the constraint of slowly varying
parameters and consider the following simplifying assumption:

The matrix of price-demand parameters is such that:

(
αt

11 αt
12

αt
22 αt

21

)
=

(
αt 1
1 αt

)

In this simpler case, we derive the single-level problem which is equivalent to
the MPEC.

PROPOSITION 6.6. The objective function of the estimation problem is the

following:

1

2

T∑

t=1

(
p̂t

1 − αt
10 + αt

αt
10 + αt

20

2αt
10 + 1

)2

+
(

p̂t
2 − αt

20 + αt
αt

10 + αt
20

2αt
10 + 1

)2
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if the parameters α verify the following constraints:

T∑

t=1

2αtαt
10 − αt

20

4(αt )2 − 1
� C1

T∑

t=1

2αtαt
20 − αt

10

4(αt )2 − 1
� C2

1

2

(
p̂1

1 − α1
10 + 2α1 α1 + α2 − 1

4(α1 + α2)2 + 1

(
2
(
α1 + α2 + 1

)(
C1 + C2

)
+ α1

10 − α2
10

+α1
20 − α2

20

))2

+ . . . + 1

2

(
p̂2

2 − α2
20 + 2α2 α1 + α2 − 1

4(α1 + α2)2 + 1

×
(

2
(
α1 + α2 + 1

)(
C1 + C2

)
+ α2

20 − α1
20 + α2

10 − α1
10

))2

if the parameters α verify the following constraints:

2α1α1
10 − α1

20

4(α1)2 − 1
+ 2α2α2

10 − α2
20

4(α2)2 − 1
� C1

2α1α1
20 − α1

10

4(α1)2 − 1
+ 2α2α2

20 − α2
10

4(α2)2 − 1
� C2

1

2

(
p̂1

1 − α1
10 +

(
α1 − 1/2

)(
2α1 − 1

2α1
+ 2α2 − 1

2α2

)−1((
α1

10 − α1
20

2α1

)

−
(
α2

20 − α2
10

2α2

)
+

(
2α2 − 1

2α2

)
C1

))2

+ . . .

+1

2

(
p̂2

2 − 1/2
(

2α1 − 1

2α1
+ 2α2 − 1

2α2

)−1((
α2

10 − α2
20

2α2

)

−
(
α1

20 − α1
10

2α1

)
+

(
2α1 − 1

2α1

)
C1

))2

if the parameters α verify the following constraints:

2α1α1
10 − α1

20

4(α1)2 − 1
+ 2α2α2

10 − α2
20

4(α2)2 − 1
� C1
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2α1α1
20 − α1

10

4(α1)2 − 1
+ 2α2α2

20 − α2
10

4(α2)2 − 1
� C2

An expression symmetric to the one above holds for parameters α verifying the

following constraints:

2α1α1
10 − α1

20

4(α1)2 − 1
+ 2α2α2

10 − α2
20

4(α2)2 − 1
� C1

2α1α1
20 − α1

10

4(α1)2 − 1
+ 2α2α2

20 − α2
10

4(α2)2 − 1
� C2

Therefore, in the 2-firm-2 period case, the problem consisting of solving Steps
1 and 2 is equivalent to a single level optimization problem, with objective
function given in Proposition 6.6.

Note that this problem is nonlinear, non convex.

7. Conclusion

In this paper, we introduced a transient model for joint dynamic pricing
and demand learning. We studied a market in a competitive environment and
a capacitated setting, where each firm seeks to learn at each time period the
price-demand relationship for itself and its competitors, and set its prices for
future periods optimally, while guessing its competitors’ future optimal policy.

We first formulated the model as a three-step optimization problem: In Step
1, each firm learns the market equilibrium demands. In Step 2, it finds the
most accurate estimate for the price-demand parameters, given the optimal
demands determined in Step 1. In Step 3, it sets its own prices and guesses
its competitors’ revenue-maximizing prices for future periods.

We then showed that Steps 1 and 2 could be reformulated as a Mathematical
Program with Equilibrium Constraints: the lower level variational inequality is
equivalent to the N best-response problems that were solved in Step 1, whereas
the upper level objective function is the sum of the objective functions of the
N estimations performed in Step 2.

We then focused on the case of a market with 2 firms, with 2 time periods;
we derived closed form solutions for the Nash equilibrium, and showed that the
MPEC is therefore equivalent to a single-level optimization problem.

Finally, we gained insights into the behavior of the market in the 2-firm-
2period setting and reported on early computational results concerning the
approach.
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Appendix

A. Proofs of the Propositions of Section 6

A.1 Proof of Proposition 6.2

1. If
∑T

t=1
αt

10−αt
12d

t
2

2αt
11

< C1, then the best-response problem of firm 1 is equiv-

alent to an unconstrained problem. As a consequence, the Karsh-Kuhn-
Tucker conditions are necessary and sufficient for optimality, with λ1 = 0.

Therefore, equations (20) and (21) yield: d t
1 = 0 or d t

1 = αt
10−αt

12d
t
2

2αt
11

.

2. Else, if
∑T

t=1
αt

10−αt
12d

t
2

2αt
11

� C1, then the solution to the unconstrained prob-

lem are such that the total demand in the unconstrained case exceed capacity.
Therefore, the capacity constraint (22) is tight at optimality:

∑T
t=1 d t

1 = C1.
Hence equation (21) yields: for all t such that d t

1 > 0, then:

d t
1 = αt

10 − αt
12d

t
2

2αt
11

− λ1

2αt
11

Then equality in (22) implies

λ1 =
(

T∑

t=1

1

2αt
11

)−1 (
T∑

t=1

αt
10 − αt

12d
t
2

2αt
11

− C1

)

A.2 Proof of Proposition 6.3

Assume both firms have unused capacity at equilibrium. Then from Propo-
sition 6.2, their best response demand is equal to:

d t
1 = αt

10 − αt
12d

t
2

2αt
11

d t
2 = αt

20 − αt
21d

t
1

2αt
22

As a result, the Nash equilibrium demands solve the following system:

(
2αt

11 αt
12

αt
21 2αt

22

) (
d t

1
d t

2

)
=

(
αt

10
αt

20

)
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Let 	t = 4αt
11α

t
22 − αt

12α
t
21. Inverting the previous system, then the Nash

equilibrium is given by:

(
d t

1
d t

2

)
= 1

	t

(
2αt

22 −αt
12

−αt
21 2αt

11

) (
αt

10
αt

20

)

This holds whenever the total demand is less than the capacity for both firms.
In other words, the set of parameters α for which this holds is given by:

T∑

t=1

2αt
22α

t
10 − αt

12α
t
20

4αt
11α

t
22 − αt

21α
t
12

� C1

T∑

t=1

2αt
11α

t
20 − αt

21α
t
10

4αt
11α

t
22 − αt

21α
t
12

� C2

For T = 2 time periods, the system of equations corresponding to the Nash
equilibrium is therefore:

⎛
⎜⎜⎝

2α1
11 α1

12 0 0
α1

21 2α1
22 0 0

0 0 2α2
11 α2

12
0 0 α2

21 2α2
22

⎞
⎟⎟⎠

⎛
⎜⎜⎝

d1
1

d1
2

d2
1

d2
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

α1
10

α1
20

α2
10

α2
20

⎞
⎟⎟⎠

Or equivalently:

⎛
⎜⎜⎝

d1
1

d1
2

d2
1

d2
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2α1
22/	

1 −α1
12/	

1 0 0
−α1

21/	
1 2α1

11/	
1 0 0

0 0 2α2
22/	

2 −α2
12/	

2

0 0 −α2
21/	

2 2α2
11/	

2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α1
10

α1
20

α2
10

α2
20

⎞
⎟⎟⎠

where 	t = 4αt
11α

t
22 − αt

12α
t
21

A.3 Proof of Proposition 6.4

Firm 1’s best-response demands are given by equation (27), and similarly
for firm 2. Hence for T time periods, the Nash equilibrium demands solve the
following system of equations: ∀ t = 1, . . . , T :

2αt
11

(
T∑

τ=1

1/(2ατ
11)

)
d t

1 + αt
12

⎛
⎝∑

τ �=t

1/(2ατ
11)

⎞
⎠d t

2
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−
∑

τ �=t

(
ατ

12

2ατ
11

)
dτ

2 = C1 +
T∑

τ=1

αt
10 − ατ

10

2ατ
11

2αt
22

(
T∑

τ=1

1/(2ατ
22)

)
d t

2 + αt
21

⎛
⎝∑

τ �=t

1/(2ατ
22)

⎞
⎠d t

1

−
∑

τ �=t

(
ατ

21

2ατ
22

)
dτ

1 = C2 +
T∑

τ=1

αt
20 − ατ

20

2ατ
22

Note that the equations giving the best-response demand for each time period
are coupled to other time periods.

For 2 periods, this yields the following system:

⎛
⎜⎜⎝

2(α1
11 + α2

11) α1
12 0 −α2

12
α1

21 2(α1
22 + α2

22) −α2
21 0

0 −α1
12 2(α1

11 + α2
11) α2

12
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21 0 α2
21 2(α1

22 + α2
22)

⎞
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⎛
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2
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⎞
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Let ᾱij = α1
ij + α2

ij . The determinant of the matrix is: 	 = 4ᾱ11ᾱ22 −
ᾱ12ᾱ21. The system can then be written as:

⎛
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2ᾱ11

−α1
12 −α2

21ᾱ12
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2ᾱ22

α2
21 −α2

12ᾱ21
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In order for this to hold, one must verify that the unconstrained Nash equilib-
rium yields total demands that exceed the firms’capacities:

T∑

t=1

2αt
22α

t
10 − αt

12α
t
20

4αt
11α

t
22 − αt

21α
t
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� C1

T∑

t=1

2αt
11α

t
20 − αt

21α
t
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4αt
11α

t
22 − αt

21α
t
12

� C2

A.4 Proof of Proposition 6.5

Without loss of generality, assume firm 1’s capacity is tight at equilibrium,
and firm 2’s is not. Hence firm 1’s best response demands are given by equation
(27), whereas firm 2’s best response demands are given by equation (26) where
the indices 1 and 2 have been switched. Therefore, for 2 time periods, the Nash
equilibrium demands solve the following system of equations:

(
2
(
α1
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11
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− α1

12α
1
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)

Denote by d̄1
t
, ¯ds2

t
the solution to the market equilibrium in the unconstrained

case. Then inverting the system yields the following expressions for the Nash
equilibrium demands:

d1
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(
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Furthermore, for this to hold, it must be that the parameters α lie in the
following set:
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Abstract This paper first develops a multitiered supply chain network equilibrium model
with fixed demands and proves that the governing equilibrium conditions satisfy
a finite-dimensional variational inequality. The paper then establishes that the
static supply chain network model with its governing equilibrium conditions
can be reformulated as a transportation network equilibrium model over an
appropriately constructed abstract network or supernetwork. This identification
provides a new interpretation of equilibrium in supply chain networks with fixed
demands in terms of path flows. The equivalence is then further exploited to con-
struct a dynamic supply chain network model with time-varying demands (and
flows) using an evolutionary (time-dependent) variational inequality formulation.
Recent theoretical results in the unification of projected dynamical systems and
evolutionary variational inequalities are presented and then applied to formulate
dynamic numerical supply chain network examples and to compute the curves of
equilibria. An example with step-wise time-dependent demand is also given for
illustration purposes.

Keywords: supply chain; variational inequalities; evolutionary processes; dynamics

1. Introduction

Transportation science has pushed the frontiers in the development and
application of rigorous methodologies for the modeling, analysis, and solution
of complex network-based problems in which humans interact with critical
infrastructure as well as with available technologies. Seminal contributions
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have been made by numerous authors. Beckmann, McGuire, and Winsten
(1956) first rigorously mathematically formulated the traffic assignment or
transportation network equilibrium problem and showed that the equilibrium
conditions in which no user has any incentive to alter his route of travel
coincided with the Kuhn-Tucker conditions of an appropriately constructed
optimization problem. Dafermos and Sparrow (1969), subsequently, coined the
terms “user-optimization” and “system-optimization” to distinguish between
solutions corresponding to, respectively, Wardrop’s (1952) first and second
principles of travel behavior and also provided algorithms that exploited the
network structure. Dafermos (1980) identified the Smith (1979) formulation of
transportation network equilibrium as a finite-dimensional variational inequal-
ity, an identification that revolutionized the modeling of a spectrum of network
equilibrium problems and applications in different disciplines. For an overview
of the impact of the Beckmann, McGuire, and Winsten (1956) book, see the
paper by Boyce, Mahmassani, and Nagurney (2005). For an overview of finite-
dimensional variational inequalities and network-based applications, see the
book by Nagurney (1999) and the references therein.

Transportation science has also spearheaded the development of mathemat-
ical frameworks to capture disequilibrium behavior associated with the dynam-
ics of users engaged in selecting their routes of travel between origins and
destinations. For example, projected dynamical systems theory (cf. Dupuis and
Nagurney (1993) and Nagurney and Zhang (1996) and the references therein)
was developed, in part, in order to model the behavior of travelers prior to the
achievement of an equilibrium state as formulated by a variational inequality
problem. The book by Ran and Boyce (1996) contains an overview of dynamic
transportation network models and algorithms, along with references to the
literature to that date. Formulations of dynamic models of multilayer networks
can be found in Nagurney and Dong (2002) and in Zhang, Peeta, and Friesz
(2005).

Recently, Cojocaru, Daniele, and Nagurney (2005) built the basis for
the merging of projected dynamical systems and that of evolutionary (time-
dependent) variational inequalities (which are infinite-dimensional). These two
theories had been developed and advanced in parallel, in order to further de-
velop the theoretical analysis and computation of solutions to problems, often,
network-based, in which dynamics plays a central role. Cojocaru, Daniele,
and Nagurney (2006) demonstrated that the merger of these two theories
allows for the modeling of problems that present two theoretically distinct
timeframes. They provided the formulation of the associated double-dynamics
theory, discussed the question of uniqueness of such curves of equilibria, and
also provided conditions for stability properties of such curves in a given
neighborhood.
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In this paper, we focus on the interplay of transportation network equilib-
rium models and supply chain network problems and we demonstrate how
theory derived from the former class of problems can be used to provide
entirely new interpretations of the latter as well as to inform a new kind of
time-dependent modeling framework, which is motivated by the unification of
projected dynamical systems theory and evolutionary variational inequalities.
This paper is organized as follows. In Section 2, we present the multitiered sup-
ply chain network equilibrium model with fixed demands, which is motivated
by the supply chain network equilibrium model proposed by Nagurney, Dong,
and Zhang (2002). In Section 3, we then recall the fixed demand transportation
network equilibrium model of Dafermos (1980) and Smith (1979), along with
the path-based and link-based variational inequality formulations, which are
finite-dimensional. In Section 4, we establish that the supply chain network
equilibrium model of Section 2 can be reformulated as a transportation network
equilibrium model as described in Section 3, over an appropriately constructed
abstract network or supernetwork (cf. Nagurney and Dong (2002) and the
references therein). A similar equivalence was made by Nagurney (2006) for
the case of elastic demands.

In Section 4, we utilize the recently developed unification of the theories of
projected dynamical systems and evolutionary variational inequalities to con-
struct a dynamic supply chain network model with time-dependent demands,
which is viewed as a dynamic transportation network problem. We also provide
some theoretical results. In Section 5, we discuss the computation of curves of
equilibria and we illustrate the modeling framework through several numerical
dynamic supply chain numerical examples, including one with a step-wise
demand function.

2. The Supply Chain Network Model with Fixed Demands

In this Section, we develop a fixed demand version of the supply chain
network model proposed in Nagurney, Dong, and Zhang (2002). The model
consists of m manufacturers, n retailers, and o demand markets, as depicted in
Figure 1. We denote a typical manufacturer by i, a typical retailer by j , and a
typical demand market by k. The links in the supply chain network represent
transportation/transaction links. The majority of the needed notation is shown
in Table 1. The equilibrium solution is denoted by “∗”. All vectors are assumed
to be column vectors, except where noted.

The top-tiered nodes in Figure 1 represent the manufacturers, who produce a
homogeneous product and sell to the retailers in the second tier. The consumers
at the demand markets are represented by the nodes in the bottom tier of the
supply chain network and they acquire the product from the retailers.
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Figure 1. The Network Structure of the Supply Chain.

Table 1. Notation for the Supply Chain Network Equilibrium Model.

Notation Definition

q vector of the manufacturers’ production outputs with components:
q1, . . . , qm

Q1 mn-dimensional vector of product flows transacted/shipped be-
tween manufacturers and retailers with component ij : qij

Q2 no-dimensional vector of product flows transacted/shipped be-
tween retailers and the demand markets with component jk: qjk

γ n-dimensional vector of shadow prices associated with the retail-
ers with component j : γj

d o-dimensional vector of market demand with component k: dk

fi(q) ≡ fi(Q
1) production cost of manufacturer i with marginal production cost

with respect to qi :
∂fi
∂qi

and the marginal production cost with

respect to qij : ∂fi (Q
1)

∂qij

cij (qij ) transaction cost between manufacturer i and retailer j with
marginal

transaction cost:
∂cij (qij )

∂qij

s vector of the retailers’ supplies of the product with components:
s1, . . . , sn

cj (s) ≡ cj (Q1) handling cost of retailer j with marginal handling cost with respect

to sj :
∂cj

∂sj
and with the marginal handling cost with respect to qij :

∂cj (Q1)

∂qij

cjk(Q
2) unit transaction cost between retailer j and demand market k
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We first describe the behavior of the manufacturers and the retailers. We
then discuss the behavior of the consumers at the demand markets. Finally, we
state the equilibrium conditions for the supply chain network and provide the
finite-dimensional variational inequality governing the equilibrium.

2.1 The Behavior of the Manufacturers and their Optimality

Conditions

Let ρ∗
1ij denote the price charged for the product by manufacturer i in

transacting with retailer j . The price ρ∗
1ij is an endogenous variable and will be

determined once the entire supply chain network equilibrium model is solved.
We assume that the quantity produced by manufacturer i must satisfy the
following conservation of flow equation:

qi =
n∑

j=1

qij , (1)

which states that the quantity of the product produced by manufacturer i

is exactly equal to the sum of the quantities transacted/shipped between a
manufacturer and the retailers. The production cost function fi for each
manufacturer i; i = 1, . . . ,m, as delineated in Table 1, can, in view of (1),
be reexpressed as a function of the flows Q1.

Hence, assuming that the manufacturers are profit-maximizers, we can
express the optimization problem faced by manufacturer i as:

Maximize
n∑

j=1

ρ∗
1ijqij − fi(Q

1) −
n∑

j=1

cij (qij ), (2)

subject to: qij ≥ 0, for all j ; j = 1, . . . , n.
The first term in (2) represents the revenue and the subsequent two terms

the production cost and the transaction costs, respectively, for manufacturer i.
We assume that the manufacturers compete in a noncooperative manner

in the sense of Cournot (1838) and Nash (1950, 1951), and the production
cost functions and the transaction cost functions for each manufacturer are
continuously differentiable and convex. The optimality conditions for all
manufacturers i; i = 1, . . . ,m, simultaneously, can then be expressed as the fol-
lowing variational inequality (cf. Nagurney, Dong and Zhang (2002), Bazaraa,
Sherali, and Shetty (1993), Gabay and Moulin (1980); see also Dafermos and
Nagurney (1987) and Nagurney (1999)): determine Q1∗ ∈ Rmn

+ satisfying:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)
∂qij

+
∂cij (q

∗
ij )

∂qij

− ρ∗
1ij

]
×

[
qij − q∗

ij

]
≥ 0, ∀Q1 ∈ Rmn

+ . (3)
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2.2 The Behavior of the Retailers and their Optimality Conditions

The retailers, in turn, purchase the product from the manufacturers and
transact with the consumers at the demand markets. Thus, a retailer is involved
in transactions both with the manufacturers as well as with the demand markets.

Let ρ∗
2j denote the price charged by the retailer j for the product. This price

will be determined endogenously after the the model is solved. We assume that
the retailers are also profit-maximizers and, hence, the optimization problem
faced by a retailer j is given by:

Maximize
o∑

k=1

ρ∗
2jqjk − cj (Q

1) −
m∑

i=1

ρ∗
1ijqij (4)

subject to:

o∑

k=1

qjk ≤
m∑

i=1

qij , (5)

and the nonnegativity constraints: qij ≥ 0, and qjk ≥ 0, for all i; i = 1, . . . ,m,
and k; k = 1, . . . , o.

The first term in the objective function (4) represents the revenue whereas
the second and third terms represent, respectively, the handling cost and the
payout to the manufacturers. Constraint (5) expresses that the total quantity of
the product transacted with the demand markets by a retailer cannot exceed the
total amount that the retailer has obtained from the manufacturers.

We assume that the retailers also compete in a noncooperative manner
and that the handling cost for each retailer is continuously differentiable and
convex. Then the optimality conditions for all the retailers simultaneously
can be expressed as the variational inequality: determine (Q1∗,Q2∗, γ ∗) ∈
Rmn+no+n

+ satisfying:

m∑

i=1

n∑

j=1

[
∂cj (Q

1∗)
∂qij

+ ρ∗
1ij − γ ∗

j

]
×

[
qij − q∗

ij

]

+
n∑

j=1

o∑

k=1

[
−ρ∗

2j + γ ∗
j

]
×

[
qjk − q∗

jk

]

+
n∑

j=1

[
m∑

i=1

q∗
ij −

o∑

k=1

q∗
jk

]
×

[
γj − γ ∗

j

]
≥ 0,

∀(Q1,Q2, γ ) ∈ Rmn+no+n
+ . (6)
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As noted in Table 1, the term γj is the Lagrange multiplier/shadow price
associated with constraint (5) for retailer j and γ is the n-dimensional vector
of all the shadow prices.

2.3 The Consumers at the Demand Markets and the Equilibrium

Conditions

We now discuss the behavior of the consumers at the demand markets. The
consumers take into account the prices charged by the retailers and the unit
transaction costs incurred to obtain the product in making their consumption
decisions. In the static model, we assume that the demand for the product at
each demand market is fixed and known (later in this paper, we will develop
the dynamic model in which we allow the demand to be time-varying). Hence,
the following conservation of flow equations must hold:

dk =
n∑

j=1

qjk, k = 1, . . . , o, (7)

where dk is fixed for each demand market k.
We assume that the unit transaction cost functions cjk are continuous

functions for j ; j = 1, . . . , n and k; k = 1, . . . , o, and are of the form given
in Table 1.

The equilibrium conditions for consumers at demand market k then take the
form: for each retailer j ; j = 1, . . . , n:

ρ∗
2j + cjk(Q

2∗)
{= ρ∗

3k, if q∗
jk > 0,

� ρ∗
3k, if q∗

jk = 0.
(8)

Conditions (8) state that, in equilibrium, if the consumers at demand market
k purchase the product from retailer j , then the price the consumers pay is
exactly equal to the price charged by the retailer plus the unit transaction
cost. However, if the sum of the price charged by the retailer and the unit
transaction cost exceeds the price that the consumers are willing to pay at
the demand market, there will be no transaction between this retailer/demand
market pair. In equilibrium, condition (8) must hold simultaneously for all
demand markets. We can express these equilibrium conditions as the following
variational inequality: determine Q2∗ ∈ K1, such that

n∑

j=1

o∑

k=1

[
ρ∗

2j + cjk(Q
2∗)

]
× [qjk − q∗

jk] ≥ 0, ∀Q2 ∈ K
1, (9)

where K1 ≡ {Q2|Q2 ∈ Rno
+ and (7) holds}.
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In Nagurney, Dong, and Zhang (2002), it was assumed that the demand
functions associated with the demand markets were elastic and depended
upon the prices of the product at the demand markets. Nagurney (2006),
subsequently, proved that the elastic demand supply chain network equilibrium
model could be reformulated as an elastic demand transportation network
equilibrium model (cf. Dafermos and Nagurney (1984); see also Fisk and
Boyce (1983)) over an appropriately constructed supernetwork. That paper,
however, did not introduce any dynamics.

2.4 The Equilibrium Conditions of the Supply Chain

In equilibrium, the optimality conditions of all the manufacturers, the
optimality conditions of all the retailers, and the equilibrium conditions for
all the demand markets must be simultaneously satisfied so that no decision-
maker has any incentive to alter his transactions. We now formally state the
equilibrium conditions for the entire supply chain network as follows.

DEFINITION 1 (Supply Chain Network Equilibrium (Fixed Demands)). The

equilibrium state of the supply chain network with fixed demands is one where

the flows of the product between the tiers of the decision-makers coincide and

the flows and prices satisfy the sum of conditions (3), (6), and (9).

We now state and prove:

THEOREM 1 (Variational Inequality Formulation of the Supply Chain Network
Equilibrium). The equilibrium conditions governing the supply chain network

according to Definition 1 coincide with the solution of the (finite-dimensional)

variational inequality given by: determine (Q1∗,Q2∗, γ ∗)∈K2 satisfying:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗
)

∂qij

+
∂cij (q

∗
ij )

∂qij

+ ∂cj (Q
1∗

)

∂qij

− γ ∗
j

]
×

[
qij − q∗

ij

]

+
n∑

j=1

o∑

k=1

[
cjk(Q

2∗
) + γ ∗

j

]
×

[
qjk − q∗

jk

]

+
n∑

j=1

[
m∑

i=1

q∗
ij −

o∑

k=1

q∗
jk

]
×

[
γj − γ ∗

j

]
≥ 0,

∀(Q1,Q2, γ ) ∈ K
2, (10)

where K2 ≡ {(Q1,Q2, γ )|(Q1,Q2, γ ) ∈ Rmn+no+n
+ and (7) holds}.
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PROOF. We first demonstrate that an equilibrium pattern according to Defini-
tion 1 satisfies the variational inequality (10). We sum up inequalities (3), (6),
and (9), and, after algebraic simplifications, obtain (10).

We now prove the converse, that is, a solution to variational inequality (10)
satisfies the sum of conditions (3), (6), and (9), and is, therefore, a supply chain
network equilibrium pattern according to Definition 1.

First, we add the term ρ∗
1ij − ρ∗

1ij to the first term in the first summand
expression in (10). Then, we add the term ρ∗

2j − ρ∗
2j to the first term in the

second summand expression in (10). Because these terms are all equal to zero,
they do not change (10) and we obtain the following inequality:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)
∂qij

+
∂cij (q

∗
ij )

∂qij

+ ∂cj (Q
1∗)

∂qij

− γ ∗
j + ρ∗

1ij − ρ∗
1ij

]

×
[
qij − q∗

ij

]
+

n∑

j=1

o∑

k=1

[
cjk(Q

2∗) + γ ∗
j + ρ∗

2j − ρ∗
2j

]
×

[
qjk − q∗

jk

]

+
n∑

j=1

[
m∑

i=1

q∗
ij −

o∑

k=1

q∗
jk

]
×

[
γj − γ ∗

j

]
≥ 0,

∀(Q1,Q2, γ ) ∈ K
2, (11)

which can be rewritten as:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)
∂qij

+
∂cij (q

∗
ij )

∂qij

− ρ∗
1ij

]
×

[
qij − q∗

ij

]

+
m∑

i=1

n∑

j=1

[
∂cj (Q

1∗)
∂qij

+ ρ∗
1ij − γ ∗

j

]
×

[
qij − q∗

ij

]

+
n∑

j=1

o∑

k=1

[
−ρ∗

2j + γ ∗
j

]
×

[
qjk − q∗

jk

]

+
n∑

j=1

[
m∑

i=1

q∗
ij −

o∑

k=1

q∗
jk

]
×

[
γj − γ ∗

j

]

+
n∑

j=1

o∑

k=1

[
ρ∗

2j + cjk(Q
2∗)

]
× [qjk − q∗

jk] � 0,

∀(Q1,Q2, γ ) ∈ K
2. (12)
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Clearly, (12) is equal to the sum of the optimality conditions (3) and (6), and
the equilibrium conditions (9) and is, hence, a variational inequality governing
the supply chain network equilibrium according to Definition 1. �

The variational inequality (10) is different from the variational inequality
formulation of elastic demand supply chain network equilibrium problems
derived by Nagurney, Dong, and Zhang (2002), as expected, since the feasible
set is different and we do not have demand functions, but, rather, we now
assume fixed demands.

At the end of Section 4, we describe how to recover the nodal prices in the
supply chain network with fixed demands consisting of the top tier prices: ρ∗

1ij ;
for i = 1, . . . ,m; j = 1, . . . , n; the middle tier prices: ρ∗

2j ; j = 1, . . . , n, and the
demand market prices: ρ∗

3k ; k = 1, . . . , o. The nodal prices of the supply chain
network guarantee that the optimality conditions (3), (6), and the equilibrium
conditions (8) hold separately at the solution of the variational inequality (10).

The following corollary establishes that, in equilibrium, the supply chain
structure is as in Figure 1. Of course, links that have equilibrium flows of zero
can, in effect, be eliminated from the supply chain network. This corollary
is also useful in establishing the equivalence of the supply chain network
equilibrium problem with fixed demands with the transportation network
equilibrium problem with fixed demands over an appropriately constructed
abstract network or supernetwork, as we demonstrate in the next Section.

COROLLARY 1. The market for the product clears for each retailer in the

supply chain network equilibrium, that is,
∑m

i=1 q∗
ij = ∑o

k=1 q∗
jk for j =

1, . . . , n.

PROOF. Clearly from (10), we know that, if γ ∗
j > 0, then

∑m
i=1 q∗

ij =∑o
k=1 q∗

jk holds. Now we consider the case where γ ∗
j = 0 for some retailer

j . Let us examine the first terms in inequality (10). Since we have assumed
that the production cost functions, the transaction cost functions, and the
handling cost functions are convex, it is not unreasonable to further assume
that either the marginal production cost or the marginal transaction cost or the
marginal handling cost for each manufacturer/retailer pair is strictly positive

at equilibrium. Then we know that ∂fi(Q
1∗)

∂qij
+ ∂cij (q∗

ij )

∂qij
+ ∂cj (Q1∗)

∂qij
> 0, which

implies that q∗
ij = 0, for all i, for that j . It follows then from the third term in

(10), that
∑o

k=1 q∗
jk = 0. Hence, we have that

∑o
k=1 q∗

jk = 0 = ∑m
i=1 q∗

ij for
any j such that γ ∗

j = 0. Therefore, we conclude that the market clears for each
retailer in the supply chain equilibrium. �
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Since we are interested in the determination of the equilibrium flows and
prices, we can transform constraint (5) into:

o∑

k=1

qjk =
m∑

i=1

qij , j = 1, . . . , n. (13)

Now we can define the feasible set as K3 ≡ {(Q1,Q1) ∈ Rmn+no
+ , such that

(13) holds}.
In addition, for notational convenience, we let

sj ≡
o∑

k=1

qjk, j = 1, . . . , n. (14)

The following results then follow immediately:

COROLLARY 2. A solution (Q1∗,Q2∗) ∈ K3 to the variational inequality

problem:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)
∂qij

+
∂cij (q

∗
ij )

∂qij

+ ∂cj (Q
1∗)

∂qij

]
×

[
qij − q∗

ij

]

+
n∑

j=1

o∑

k=1

[
cjk(Q

2∗)
]
×

[
qjk − q∗

jk

]
≥ 0, ∀(Q1,Q2) ∈ K

3; (15)

equivalently, a solution (q∗,Q1∗, s∗,Q2∗) ∈ K4 to:

m∑

i=1

[
∂fi(q

∗)
∂qi

]
×

[
qi − q∗

i

]
+

m∑

i=1

n∑

j=1

[
∂cij (q

∗
ij )

∂qij

]
×

[
qij − q∗

ij

]

+
n∑

j=1

[
∂cj (s

∗)
∂sj

]
×

[
sj − s∗

j

]

+
n∑

j=1

o∑

k=1

[
cjk(Q

2∗)
]
×

[
qjk − q∗

jk

]
≥ 0, ∀(q,Q1, s,Q2) ∈ K

4, (16)

where K4 ≡ {(q,Q1, s,Q2)|(q,Q1, s,Q2) ∈ Rm+mn+n+no
+ and (1), (7), (13),

and, (14) hold}, also satisfies variational inequality (10).
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PROOF. We prove Corollary 2 by contradiction. In particular, we demonstrate
that if (10) is not true, then (15) does not hold. We assume that for some
(Q1,Q2) ∈K3 with γ ∈ Rn

+ that the left-hand side of (10) is less than or equal
to zero, which implies that:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)
∂qij

+
∂cij (q

∗
ij )

∂qij

+ ∂cj (Q
1∗)

∂qij

]
×

[
qij − q∗

ij

]

+
n∑

j=1

o∑

k=1

cjk(Q
2∗) ×

[
qjk − q∗

jk

]

≤
m∑

i=1

n∑

j=1

γ ∗
j

[
qij − q∗

ij

]
−

n∑

j=1

o∑

k=1

γ ∗
j

[
qjk − q∗

jk

]

−
n∑

j=1

[
m∑

i=1

q∗
ij −

o∑

k=1

q∗
jk

]
×

[
γj − γ ∗

j

]
. (17)

But, after algebraic simplification and the use of Corollary 1, the right-hand
side of (17) is reduced to zero. Hence, (15) cannot hold, and the conclusion
follows.

We can obtain variational inequality (16) from variational inequality (15)
through simple algebraic relationships and the use of (1), (13), and (14). �

3. The Transportation Network Equilibrium Model with

Fixed Demands

In this Section, we review the transportation network equilibrium model
with fixed demands, due to Smith (1979) and Dafermos (1980).

Consider a network G with the set of links L with K elements, the set of
paths P with Q elements, and the set of origin/destination (O/D) pairs W with
Z elements. We denote the set of paths connecting O/D pair w by Pw; the links
by a, b, etc; the paths by p,q , etc., and the O/D pairs by w1, w2, etc.

The flow on path p is denoted by xp and the flow on link a by fa . The
travel cost experienced by a user on a path p is denoted by Cp and the travel
cost incurred on a link a by ca . We assume that the user link cost functions
are continuous. We also denote the travel demand associated with traveling
between O/D pair w by dw and the travel disutility by λw , where dw is assumed
to be fixed and known for all w.
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Hence, the following conservation of flow equations must hold:

dw =
∑

p∈Pw

xp, ∀w, (18)

that is, the travel demand associated with an O/D pair must be equal to the sum
of the flows on the paths that connect that O/D pair.

The following conservation of flow equations relate the link flows to the
path flows:

fa =
∑

p∈P

xpδap, ∀a ∈ L, (19)

where δap = 1, if path p contains link a, and δap = 0, otherwise. Hence, the
flow on a link is equal to the sum of the flows of paths that contain that link.

The user cost on a path is equal to the sum of user costs on links the path
consists of, which can be represented by the following:

Cp =
∑

a∈L

caδap, ∀p ∈ P, (20)

For the sake of generality, we allow the user cost on a link to depend upon
the entire vector of link flows, denoted by f , so that

ca = ca(f ), ∀a ∈ L. (21)

As established by Smith (1979) and Dafermos (1980), a path flow pattern
x∗ ∈ K5, where K5 ≡ {x|x ∈ R

Q
+ and (18)holds} is said to be a transportation

network equilibrium (according to Wardrop’s first principle; see Wardrop
(1952) and Beckmann, McGuire, and Winsten (1956)), if, once established, no
user has any incentive to alter his travel decisions. The state can be expressed
by the following equilibrium conditions which must hold for every O/D pair
w ∈ W and every path p ∈ Pw:

Cp(x∗) − λ∗
w

{= 0, if x∗
p > 0,

≥ 0, if x∗
p = 0.

(22)

Conditions (22) express that the user costs of all utilized paths joining an
O/D pair are equal and minimal. As described in Dafermos (1980) and Smith
(1979) the transportation network equilibrium pattern according to conditions
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(22) coincides to the following finite-dimensional variational inequality in path
flows: determine x∗ ∈ K5 such that

∑

w∈W

∑

p∈Pw

Cp(x∗) ×
[
xp − x∗

p

]
≥ 0, ∀x ∈K

5. (23)

We now provide the standard variational inequality form of (23). In partic-
ular, we define the function that enters the variational inequality F(x) ≡ C(x)

and the feasible set K ≡K5. We then seek to determine x∗ ∈ K such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ K,

where 〈·, ·〉 denotes the inner product in n-dimensional space where n here
is equal to the dimension of path flows, that is, Q. In Section 5, we present a
dynamic version of the transportation network equilibrium problem formulated
as an evolutionary variational inequality and we will use this standard form in
connecting the static formulation with the dynamic one.

We now provide the equivalent variational inequality in link flows, which
will be utilized in the demonstration of the supernetwork equivalence in Section
4. For additional background, see the book by Nagurney (1999) and the
references therein.

THEOREM 2. A link flow pattern is a transportation network equilibrium if

and only if it satisfies the variational inequality problem: determine f ∗ ∈ K6

satisfying

∑

a∈L

ca(f
∗) × (fa − f ∗

a ) ≥ 0, ∀f ∈ K
6, (24)

where K6 ≡ {f ∈ RK
+ | there exists an x satisfying (18)and (19)}.

The continuity of the link cost functions and the compactness of the
feasible sets K5 and K6 guarantee the existence of solutions to both variational
inequalities (23) and (24) from the standard theory of variational inequalities
(see Kinderlehrer and Stampacchia (1980)).

4. Transportation Network Equilibrium Reformulation of

Supply Chain Network Equilibrium with Fixed Demands

In this Section, we establish the supernetwork equivalence of the fixed
demand supply chain network equilibrium with a properly configured trans-
portation network equilibrium model as discussed in Section 3.
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We consider a supply chain network as discussed in Section 2 which consists
of m manufacturers: i = 1, . . . ,m; n retailers: j = 1, . . . , n, and o demand
markets: k = 1, . . . , o. The supernetwork GS of the isomorphic transportation
network equilibrium model is depicted in Figure 2 and is constructed as
follows. The supernetwork GS consists of the single origin node 0 at the
top tier, and o destination nodes at the bottom tier denoted, respectively,
by: z1, . . . , zo. Thus, there are o O/D pairs in GS denoted, respectively, by
w1 = (0, z1), . . ., wk = (0, zk),. . ., wo = (0, zo). Node 0 is connected to each
second-tiered node xi , where i = 1, . . . ,m. Each second-tiered node xi , in turn,
is connected to each third-tiered node yj , where j = 1, . . . , n. Each node yj ,
in turn, is connected with a corresponding node y′

j in the fourth tier by a single
link. Finally, from each fourth-tiered node y′

j there are o links emanating to
the bottom-tiered nodes zk . There are, hence, 1 + m + 2n + o nodes in the
supernetwork in Figure 2, K = m + mn + n + no links, Z = o O/D pairs, and
Q = mo paths.

We now define the links in the supernetwork in Figure 2 and the associated
flows. Let ai denote the link from node 0 to node xi with associated link flow
fai

, for i = 1, . . . ,m. Let aij denote the link from node xi to node yj with
associated link flow faij

for i = 1, . . . ,m and j = 1, . . . , n. Also, let ajj ′ denote
the link connecting node yj with node yj ′ with associated link flow fajj ′ for

Figure 2. The GS Supernetwork Representation of Supply Chain Network Equilibrium
with Fixed Demands.
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j ; j = 1, . . . , n; and j ′; j ′ = 1, . . . , n. Finally, let aj ′k denote the link joining
node yj ′ with node zk for j ′ = 1′, . . . , n′ and k = 1, . . . , o and with associated
link flow faj ′k . We group the {fai

} into the vector f 1; the {faij
} into the vector

f 2; the {fajj ′ } into the vector f 3, and the {faj ′k } into the vector f 4.
Hence, a typical path in GS , pijj ′k , consists of four links: ai , aij , ajj ′ , and

aj ′k . We denote the path flow associated with path pijj ′k by xpijj ′k . Also, we
let dwk

denote the known fixed demand associated with O/D pair wk and we let
λwk

denote the travel disutility associated with O/D pair wk .
We assume that the link flows satisfy the conservation of flow equations

(19), that is:

fai
=

n∑

j=1

n′∑

j ′=1′

o∑

k=1

xpijj ′k , i = 1, . . . ,m, (25)

faij
=

n′∑

j ′=1′

o∑

k=1

xpijj ′k , i = 1, . . . ,m; j = 1, . . . , n, (26)

fajj ′ =
m∑

i=1

o∑

k=1

xpijj ′k , j = 1, . . . , n; j ′ = 1, . . . , n, (27)

faj ′k =
m∑

i=1

n∑

j=1

xpijj ′k , j ′ = 1, . . . , n;k = 1, . . . , o. (28)

Also, we have that

dwk
=

m∑

i=1

n∑

j=1

n′∑

j ′=1′
xijj ′k, k = 1, . . . , o. (29)

A path flow pattern induces a feasible link flow pattern if all path flows are
nonnegative and (25)–(29) are satisfied.

Given a feasible product shipment/transaction pattern for the supply chain
model with fixed demands, (q,Q1, s,Q2) ∈ K4, we may construct a feasible
link flow pattern on the network GS as follows: the link flows are defined as:

qi ≡ fai
, i = 1, . . . ,m, (29)

qij ≡ faij
, i = 1, . . . ,m; j = 1, . . . , n, (30)

sj ≡ fajj ′ , j = 1, . . . , n; j ′ = 1, . . . , n′, (31)

qjk = faj ′k , j = 1, . . . , n; j ′ = 1′, . . . , n′;k = 1, . . . , o. (32)
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Note that if (q,Q1, s,Q2) is feasible then the link flow pattern constructed
according to (30)–(33) is also feasible and the corresponding path flow pattern
that induces such a link flow pattern is, hence, also feasible.

We now assign travel costs on the links of the network GS as follows: with
each link ai we assign a travel cost cai

defined by

cai
≡ ∂fi

∂qi

, i = 1, . . . ,m; (34)

with each link aij we assign a travel cost caij
defined by:

caij
≡ ∂cij

∂qij

, i = 1, . . . ,m; j = 1, . . . , n; (35)

and with each link jj ′ we assign a travel cost defined by

cajj ′ ≡ ∂cj

∂sj
, j = 1, . . . , n; j ′ = 1, . . . , n. (36)

Finally, for each link aj ′k we assign a travel cost defined by

caj ′k ≡ cjk, j ′ = 1, . . . , n′;k = 1, . . . , o. (37)

Hence, a traveler traveling on path pijj ′k experiences a travel cost Cpijj ′k
given by

Cpijj ′k = cai
+ caij

+ cajj ′ + caj ′k = ∂fi

∂qi

+ ∂cij

∂qij

+ ∂cj

∂sj
+ cjk. (38)

Also, we define the travel demands associated with the O/D pairs as follows:

dwk
≡ dk, k = 1, . . . , o (39)

and the travel disutilities:

λwk
≡ ρ3k, k = 1, . . . , o. (40)

Consequently, according to the fixed demand transportation network equi-
librium conditions (22), we have that, for each O/D pair wk in GS and every
path connecting the O/D pair wk , the following conditions must hold:

Cpijj ′k − λ∗
wk

= ∂fi

∂qi

+ ∂cij

∂qij

+ ∂cj

∂qj

+ cjk − λ∗
wk

{
= 0, if x∗

pijj ′k
> 0,

≥ 0, if x∗
pijj ′k

= 0,
(41)
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where
∑

p∈Pwk

x∗
pijj ′k

= dwk
. (42)

We now provide the variational inequality formulation of the equilibrium
conditions (41) in link form as in (24). A link flow pattern f ∗ ∈ K6 is an
equilibrium according to (41), if and only if it satisfies:

m∑

i=1

cai
(f 1∗) × (fai

− f ∗
ai

) +
m∑

i=1

n∑

j=1

caij
(f 2∗) × (faij

− f ∗
aij

)

+
n∑

j=1

n′∑

j ′=1′
cajj ′ (f

3∗) × (fajj ′ − f ∗
ajj ′ )

+
n′∑

j ′=1

n∑

k=1

caj ′k (f
4∗) × (faj ′k − f ∗

aj ′k
) ≥ 0, ∀f ∈ K

6, (43)

which, through expressions (30)–(33), and (34)–(37) yields:

m∑

i=1

[
∂fi(q

∗)
∂qi

]
×

[
qi − q∗

i

]
+

m∑

i=1

n∑

j=1

[
∂cij (q

∗
ij )

∂qij

]
×

[
qij − q∗

ij

]

+
n∑

j=1

[
∂cj (s

∗)
∂sj

]
×

[
sj − s∗

j

]

+
n∑

j=1

o∑

k=1

[
cjk(Q

2∗)
]
×

[
qjk − q∗

jk

]
≥ 0,

∀(q,Q1, s,Q2) ∈K
4. (44)

But variational inequality (44) is precisely variational inequality (16) governing
the supply chain network equilibrium with fixed demands.

Hence, we have the following result:

THEOREM 3. A solution (q∗,Q1∗, s∗,Q2∗) ∈ K4 of the variational inequality

(16) governing a supply chain network equilibrium coincides with the (via

(30)–(33) and (34)–(37)) feasible link flow for the supernetwork GS constructed

above and satisfies variational inequality (24); equivalently, variational in-

equality (43). Hence, it is a transportation network equilibrium according to

Theorem 2.
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We now describe how to recover the prices in the supply chain network
with fixed demands. The vector of equilibrium prices ρ∗

3 associated with the
product at the demand markets can be obtained by setting (cf. (40) and (41)):
ρ∗

3k = Cpijj ′k = λ∗
wk

for each demand market k. The vector of equilibrium prices
ρ∗

2 associated with retailers, in turn, can be obtained by setting (cf. (8) and
(37)): ρ∗

2j = λ∗
wk

− caj ′k =
[
ρ∗

3k − cjk(Q
2∗)

]
for any j, k such that q∗

jk > 0. The
equilibrium prices ρ∗

1ij , in turn, can be recovered by setting (cf. (3), (34), and

(35)): ρ∗
1ij =cai

+ caij
=

[
∂fi(Q

1∗)
∂qij

+ ∂cij (q∗
ij )

∂qij

]
for any i, j such that q∗

ij > 0.

We now further discuss the interpretation of the supply chain network
equilibrium conditions. These conditions define the supply chain network
equilibrium in terms of paths and path flows, which coincide with Wardrop’s
(1952) first principle of user-optimization in the context of transportation
networks over the network given in Figure 2. Thus, we have an entirely
new interpretation of supply chain network equilibrium in the case of known
demands, which is as follows: all used paths connecting the source node 0 and
a particular destination node have equal and minimal costs, and the cost on the
utilized paths for this O/D pair is equal to the disutility (or the demand market
price) that the consumers pay.

It is worth noting that the above identification yields and yet another
application that can be formulated and solved as a transportation network
equilibrium problem. For additional applications, including spatial price equi-
librium problems and Walrasian price equilibrium problems, see Nagurney
(1999) and the references therein.

We also point out that for a relatively price-insensitive product, such
as, for example, gasoline or milk, the fixed demand assumption is, indeed,
practical, and we expect that the model will provide a good approximation.
We further emphasize that the equivalence established above between supply
chain networks and transportation networks with fixed demands provides new
opportunities for further modeling enhancements. In Section 5, we exploit this
equivalence when we develop a dynamic supply chain network equilibrium
model with time-varying demand.

5. Dynamic Supply Chain Networks with Time-Varying

Demands

In this Section, we utilize the isomorphic transportation network established
in Section 4 to develop a dynamic supply chain network model using an
evolutionary variational inequality formulation. In Daniele, Maugeri, and Oettli
(1998, 1999), evolutionary variational inequalities were utilized to model time-
dependent transportation equilibria (see also Ran and Boyce (1996) and the
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references therein). Cojocaru, Daniele, and Nagurney (2005) demonstrated
that time-dependent transportation equilibrium problems, as well as related
dynamic spatial price equilibrium problems, and financial equilibrium prob-
lems, could be unified under a general evolutionary variational inequality
definition over a unified constraint set. Nagurney, Liu, Cojocaru, and Daniele
(2005) exploited the supernetwork equivalence between electric power net-
works and transportation networks, and developed an evolutionary variational
inequality model for time-dependent electric power generation, distribution,
and consumption. See the book by Nagurney (2006b) for additional theory and
applications of dynamic supply chains.

In this Section, we consider the nonempty, convex, closed, bounded subset
of the Hilbert space L2([0, T ] ,RQ) (where T denotes the time interval under
consideration and μ = constant and very large) given by

K̂ =
{
x ∈ L2([0, T ] ,RQ) : 0 ≤ x(t) � μ a.e. in [0, T ];

∑

p∈Pw

xp(t) = dw(t),∀w, a.e. in [0, T ]
}
. (45)

Hence, for definiteness, and greater ease in relating the discussion to the
existing literature, we, without any loss of generality, consider the vector of
path flows on the network at time t to be denoted by x(t) with an individual
element by xp(t) and with dw(t) denoting the demand associated with O/D pair
w at time t .

Thus, we assume that the demands, dw(t), for all O/D pairs w are time-
varying which means that the path flows will also change over time. We define:

〈〈�,x〉〉 =
∫ T

0
〈�(t), x(t)〉dt (46)

where � ∈ L2([0, T ] ,RQ)∗ and x ∈ L2([0, T ] ,RQ). Let the function F

be F : K̂ → L2([0, T ] ,RQ). We now provide the standardized form of the
infinite-dimensional evolutionary (time-dependent) variational inequality (cf.
Cojocaru, Daniele, and Nagurney (2005, 2006)): determine x∗ ∈ K̂ such that:

〈〈F(x∗), x − x∗〉〉 ≥ 0, ∀x ∈ K̂. (47)

Sufficient conditions (including monotonicity-type conditions) that guaran-
tee the existence of a solution to (47) are discussed in Daniele, Maugeri, and
Oettli (1999).
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Cojocaru, Daniele, and Nagurney (2006) have established that for the
case of Hilbert spaces H (namely, L2([0, T ],RQ)) the following infinite-
dimensional projected dynamical systems (PDS) can be related to the evolu-
tionary variational inequality (EVI) (47) as follows:

dx(t, τ )

dτ
= �

K̂
(x(t, τ ),−F(x(t, τ ))), x(t,0) ∈ K̂, (48)

where

�
K̂
(y,−F(y)) = lim

δ→0+

P
K̂
((y − δF (y)) − y)

δ
, ∀y ∈ K̂, (49)

with the projection operator P
K̂

: H → K̂ given by

‖P
K̂
(z) − z‖ = inf

y∈K̂
‖y − z‖. (50)

Dupuis and Nagurney (1993) established the relationship between a pro-
jected dynamical system and a variational inequality in the case of finite
dimensions. Cojocaru and Jonker (2004), subsequently, provided the relation-
ship of the two formulations in infinite-dimensional Hilbert spaces. Recently,
Cojocaru, Daniele, and Nagurney (2006) showed the following:

THEOREM 4. Assume that K̂ ⊆ H is non-empty, closed, and convex. Assume

also that F : K̂ → H is a pseudo-monotone vector field, that is, for every pair

of points x, y ∈ K̂, we have that

〈F(x), y − x〉 �⇒ 〈F(y), y − x〉 ≥ 0,

and that F is Lipschitz continuous, where H is a Hilbert space. Then the

solutions of EVI (47) are the same as the critical points of the projected

differential equation (48), that is, they are the functions x∗ ∈ K̂ such that

�
K̂
(x∗(t),−F(x∗(t))) = 0, (51)

and vice-versa.

Applying Theorem 4, we conclude that the solutions to the evolutionary
variational inequality: determine x∗ ∈ K̂ such that:

∫ T

0
〈F(x∗(t)), x(t) − x∗(t)〉dt ≥ 0, ∀x ∈ K̂, (52)
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coincide with the critical points of the equation:

dx(t, τ )

dτ
= �

K̂
(x(t, τ ),−F(x(t, τ ))), (53)

that is, the points satisfying

�
K̂
(x∗(t, τ ),−F(x∗(t, τ ))) ≡ 0 a.e. in [0, T ], (54)

which are apparently stationary with respect to τ .
Note that in the formulation of the infinite-dimensional PDS (53), there

are two “times,” the meaning of which is discussed in Cojocaru, Daniele,
and Nagurney (2007). Intuitively, at each moment t ∈ [0, T ], the solution
of the evolutionary variational inequality (47) represents a static state of the
underlying system. As t varies over [0, T ], the static states describe one (or
more) curves of the equilibria. On the other hand, τ here is the time that
describes the dynamics of the system until it reaches one of the equilibria of
the curve.

The dynamic, evolutionary variational inequality analogue of the static,
finite-dimensional variational inequality (23) is now immediate. We substitute
the vector of path costs into (47) and we obtain the evolutionary variational
inequality for time-dependent transportation network equilibria given by: de-
termine x∗ ∈ K̂ such that:

〈〈C(x∗), x − x∗〉〉 ≥ 0, ∀x ∈ K̂, (55)

where C is the vector of path costs.
According to Theorem 3, the supply chain network equilibrium problem

with fixed demands can be reformulated as a fixed demand transportation
network equilibrium problem over the supernetwork GS given in Figure 2.
Hence, the evolutionary variational inequality (55), in turn, provides us now
with a dynamic version of the supply chain network model in which the
demands vary over time, where the path costs are given by (38) and these are
functions of path flows that now vary with time.

In the next Section, we illustrate the dynamic supply chain network model
with concrete numerical examples.

6. Dynamic Numerical Supply Chain Network Examples with

Computations

In this Section, we provide numerical examples in order to demonstrate how
the theoretical results in this paper can be applied in practice. In particular, we
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consider numerical supply chain network examples with time-varying demands
and product flows.

To solve the associated evolutionary variational inequality, we utilize the
approach set forth in Cojocaru, Daniele, and Nagurney (2005, 2006, 2007),
in which the time horizon T is discretized and at each fixed point in time we
solve the associated projected dynamical system (cf. also Nagurney and Zhang
(1996)). We have chosen the examples so that the corresponding vector field F

satisfies the requirements in Theorem 4 (see also Nagurney, Dong, and Zhang
(2002)), which we expect to be readily fulfilled in practice.

We utilized the Euler method for our numerical computations. The Euler
method is induced by the general iterative scheme of Dupuis and Nagurney
(1993) and has been applied by Nagurney and Zhang (1996) and Zhang and
Nagurney (1997) to solve the variational inequality problem (23) in path
flows as well as to approximate the continuous time trajectories associated
with the corresponding projected dynamical system until the stationary point
is attained. We applied the Euler method at discrete time points over the
time interval T . Obviously, this procedure is correct if the continuity of
the solution is guaranteed. Continuity results for solutions to evolutionary
variational inequalities, in the case where F(x(t)) = A(t)x(t)+B(t) is a linear
operator, A(t) is a continuous and positive definite matrix in [0, T ], and B(t)

is a continuous vector can be found in Barbagallo (2007). In the examples that
we present here such assumptions are fulfilled. Of course, the examples could
also be computed via the computational procedure given in Daniele, Maugeri,
and Oettli (1999) but here we utilize a time-discretization approach which also
has intuitive appeal.

The Euler method was implemented in FORTRAN and the computer
system used was a Sun system at the University of Massachusetts at Amherst.
The convergence criterion utilized was that the absolute value of the path
flows between two successive iterations differed by no more than 10−5. The
sequence {ατ } in the Euler method (cf. Nagurney and Zhang (1996)) was set
to: .1{1, 1

2 , 1
2 , 1

3 , 1
3 , 1

3 , . . .}. The Euler method was initialized by distributing the
demand for each O/D pair equally among the paths connecting the respective
O/D pair for each discretized point in time.

Example 1

In the first numerical example, the supply chain network consisted of one
manufacturer, three retailers, and one demand market as depicted in Figure 3.
The supernetwork representation which allows for the transformation (as
proved in Section 4) to a transportation network equilibrium problem is given
also in Figure 3. Hence, in the first numerical example (see also Figure 2) we
had that: m = 1, n = 3, n′ = 3′, and o = 1.
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Figure 3. Supply Chain Network and Corresponding Supernetwork GS for Numerical
Examples 1 and 2.

The notation is presented here in the form of the supply chain network
model as delineated in Table 1. We provide the complete supernetwork repre-
sentation in terms of O/D pairs, paths, etc. The translations of the equilibrium
path flows, link flows, and travel disutilities into the equilibrium flows and
prices is then given, for completeness, and easy reference.

The production cost function for the manufacturer was given by:

f1(q(t)) = 2.5q1(t)
2 + 2q1(t).

The transaction cost functions faced by the manufacturer and associated
with transacting with the retailers were given by:

c11(q11(t)) = .5q11(t)
2 + 3.5q11(t), c12(q12(t)) = .5q12(t)

2 + 2.5q12(t),

c13(q13(t)) = .5q13(t)
2 + 1.5q13(t).

The operating costs of the retailers, in turn, were given by:

c1(Q
1(t)) = .5(q11(t))

2, c2(Q
1(t)) = .5(q12(t))

2, c3(Q
1(t)) = .5(q13(t))

2.

The unit transaction costs associated with transacting between the retailers
and the demand market were:

c11(Q
2(t)) = q11(t)+ 1, c21(Q

2(t)) = q21(t)+ 5, c31(Q
2(t)) = q31(t)+ 10.
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We utilized the supernetwork representation of this example depicted in
Figure 3 with the links enumerated as in Figure 3 in order to solve the
problem via the Euler method. Note that there are 9 nodes and 10 links in
the supernetwork in Figure 3. Using the procedure outlined in Section 4, we
defined O/D pair w1 = (0, z1) with the user link travel cost functions as given
in (34)–(37).

There were three paths in Pw1 denoted by: p1,p2,p3. The paths were
comprised of the following links:

p1 = (a1, a11, a11′, a1′1), p2 = (a1, a12, a22′, a2′1), p3 = (a1, a13, a33′, a3′1).

The time horizon T = 1. The time-varying demand function was given by:

d1(t) = 100 + 10t.

We discretized the time horizon T as follows: t0 = 0, t1 = 1
2 , and t2 = T =

1. We report the solutions obtained by the Euler method at each discrete time
step, for which we had, respectively, demands: d1(t0) = 100; d1(t1) = 105, and
d1(T ) = 110.

Example 1: Solution at Time t = t0 = 0:

The Euler method converged and yielded the following equilibrium path
flow pattern:

x∗
p1

(t0) = 34.44, x∗
p2

(t0) = 33.44, x∗
p3

(t0) = 32.12.

The corresponding equilibrium link flows (cf. also the supernetwork in
Figure 3) were:

f ∗
a1

(t0) = 100.00,

f ∗
a11

(t0) = 34.44, f ∗
a12

(t0) = 33.44, f ∗
a13

(t0) = 32.12,

f ∗
a11′ (t0) = 34.44, f ∗

a22′ (t0) = 33.44, f ∗
a33′ (t0) = 32.12,

f ∗
a1′1

(t0) = 34.44, f ∗
a2′1

(t0) = 33.44, f ∗
a3′1

(t0) = 32.12.

The incurred equilibrium path travel costs (cf. (38)) were: Cp1(t0) =
Cp2(t0) = Cp3(t0) = λ∗

w1
(t0) = 609.83.

We now provide the translations of the above equilibrium flows into the
supply chain network flow and price notation using (30), (31), (32), and (33).
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The flows were:

Q1∗(t0) := q∗
11(t0) = 34.44, q∗

12(t0) = 33.44, q∗
13(t0) = 32.12,

s∗
1 (t0) = 34.44, s∗

2 (t0) = 33.44, s∗
3 (t0) = 32.12,

Q2∗(t0) := q∗
11(t0) = 34.44, q∗

21(t0) = 33.44, q∗
31(t0) = 32.12,

and the production quantity was: q∗
1 (t0) = 100.

The demand price at the demand market was, hence, (cf. (40)):

ρ∗
31(t0) = 609.83,

which corresponds to the travel costs on the paths (all are used) connecting the
O/D pair.

It is easy to verify that the equilibrium conditions were satisfied with
excellent accuracy.

Example 1: Solution at Time t = t1 = 1
2 :

The Euler method converged and yielded the following equilibrium path
flow pattern:

x∗
p1

(t1) = 36.11, x∗
p2

(t1) = 35.11, x∗
p3

(t1) = 33.78.

The corresponding equilibrium link flows (cf. also the supernetwork in
Figure 3) were:

f ∗
a1

(t1) = 105.00,

f ∗
a11

(t1) = 36.11, f ∗
a12

(t1) = 35.11, f ∗
a13

(t1) = 33.78,

f ∗
a11′ (t1) = 36.11, f ∗

a22′ (t1) = 35.11, f ∗
a33′ (t1) = 33.78,

f ∗
a1′1

(t1) = 36.11, f ∗
a2′1

(t1) = 35.11, f ∗
a3′1

(t1) = 33.78,

with a production quantity: q∗
1 (t1) = 105. The equilibrium path travel costs

were now: Cp1(t1) = Cp2(t1) = Cp3(t1) = λ∗
w1

(t1) = 639.83.
The translations into the corresponding equilibrium supply chain flows at

time t1 can easily be done as described for time t0.
The demand price at the demand market was now:

ρ∗
31(t1) = 639.83,

which corresponds to the travel costs on the paths (all paths are again used)
connecting the O/D pair.
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It is easy to verify that the equilibrium conditions were again satisfied with
excellent accuracy.

Example 1: Solution at Time t = T = 1:

We applied the Euler method to the end of the time horizon where T = 1.
The Euler method now yielded the following equilibrium path flow pattern:

x∗
p1

(T ) = 37.77, x∗
p2

(T ) = 36.77, x∗
p3

(T ) = 35.45.

The corresponding equilibrium link flows (cf. also the supernetwork in
Figure 3) were:

f ∗
a1

(T ) = 110.00,

f ∗
a11

(T ) = 37.77, f ∗
a12

(T ) = 36.77, f ∗
a13

(T ) = 35.45,

f ∗
a11′ (T ) = 37.77, f ∗

a22′ (T ) = 36.77, f ∗
a33′ (T ) = 35.45,

f ∗
a1′1

(T ) = 37.77, f ∗
a2′1

(T ) = 36.77, f ∗
a3′1

(T ) = 35.45.

The translations into the corresponding equilibrium supply chain flows can
be easily done as above for time t0.

The demand price at the demand market was now:

ρ∗
31(T ) = 669.83,

which is equal to λ∗
w1

(T ) = Cp1(T ) = Cp2(T ) = Cp3(T ).

Explicit Formulae for Example 1 for the Time-Dependent Equilibria

We now note that, due to the linearity of F in this example, as well as the
separability of the components of F , and the special structure of the topology
of the supernetwork in Figure 3, we can write down explicit formulae for
the path flows over time [0, T ]. See also, Dafermos and Sparrow (1969) who
made the same observation in the context of transportation network equilibrium
problems on networks in which all paths connecting an O/D pair consisted
of single links, and the user link cost functions were linear and separable.
Cojocaru, Daniele, and Nagurney (2005, 2006) provided explicit formulae
for solutions to dynamic transportation network examples of such special
topologies and cost structures.

In particular, we obtain the following formulae for the equilibrium path
flows for Example 1 at each point t :

x∗
p1

(t) = 3.33t + 34.44,
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x∗
p2

(t) = 3.33t + 33.44,

x∗
p3

(t) = 3.33t + 32.12,

and these formulae are valid even for T > 1, that is, outside the range [0,1],
which is of concern here. We also have an explicit formula for the travel
disutility where:

λ∗
w1

(t) = 60t + 609.83, for t ∈ [0, T ].

We now, for completeness, translate these formulae into supply chain
network model formulae (30)–(33) with time-varying flows (see also (55)).
Please refer also to the supernetwork in Figure 3. In particular, we have the
time-dependent equilibrium supply chain flows are given by:

q∗
1 (t) = f ∗

a1
(t) = x∗

p1
(t) + x∗

p2
(t) + x∗

p3
(t) = 10t + 100;

Q1∗(t) := q∗
11(t) = f ∗

a11
(t) = x∗

p1
(t) = 3.33t + 34.33,

q∗
12(t) = f ∗

a12
(t) = x∗

p2
(t) = 3.33t + 33.44,

q∗
13(t) = f ∗

a13
(t) = x∗

p3
(t) = 3.33t + 32.12;

s∗
1 (t) = f ∗

a11′ (t) = x∗
p1

(t) = 3.33t + 34.44,

s∗
2 (t) = f ∗

22′(t) = x∗
p2

(t) = 3.33t + 33.44,

s∗
3 (t) = f ∗

a33′ (t) = x∗
p3

(t) = 3.33t + 32.12,

and

Q2∗ := q∗
11(t) = f ∗

a1′1
(t) = x∗

p1
(t) = 3.33t + 34.44,

q∗
21(t) = f ∗

a2′1
(t) = x∗

p2
(t) = 3.33t + 33.44,

q∗
31(t) = f ∗

a3′1
(t) = x∗

p3
(t) = 3.33t + 32.12.

Example 2: A Numerical Supply Chain Example with Step-wise Time

Varying Demand

The second example had the same data as Example 1, except that the
demand now had a step-wise structure. The supply chain network and the
supernetwork were, hence, as in Figure 3. In particular, the demand was of
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the form given below on the time interval [0, T ]:

d1(t) =

⎧
⎪⎪⎨
⎪⎪⎩

s1, if 0 < t ≤ t1,
s2, if t1 < t ≤ t2,
. . . ,

sk, if tk−1 < t ≤ tk = T ,

where, in this example, we have that:

d1(t) =
{

100, if 0 < t ≤ t1 = 1
2 ,

110, if t1 < t ≤ t2 = T = 1.

Such a structure may reflect, for example, a seasonable demand for a product
In this setting, we know that the equilibrium curve (solution of the evolu-

tionary variational inequality) is a step function, with the steps given by the
function d1(t), where:

x∗(t) =
{

x∗
1 , if 0 < t ≤ t1 = 1

2 ,
x∗

2 , if t1 < t ≤ t2 = 1 = T .

Again, given the simplicity of the supernetwork topology and the cost
structure, we obtain an explicit solution:

x∗(t) = (x∗
p1

(t), x∗
p2

(t), x∗
p3

(t))

=
{

(34.44,33.44,32.12), if 0 < t ≤ t1 = 1
2 ,

(37.77,36.77,35.45), if t1 < t ≤ t2 = 1 = T .

Figure 4. Time-Dependent Equilibrium Path Flows for Example 1.
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Figure 5. Time-Dependent Equilibrium Path Flows for Example 2 with Step-Wise
Demand.

Of course, the transformation of the these equilibrium path flows into the
equilibrium link flows and the supply chain network flows can be done as was
done for Example 1 since the supernetwork topology is one and the same for
Examples 1 and 2.

In Figures 4 and 5 we provide the graphs of the time-dependent equilibrium
path flows for Examples 1 and 2, respectively.

Example 3

In the third numerical example, the supply chain network consisted of two
manufacturers, one retailer, and two demand markets. Hence, we now had that
m = 2, n = 1, n′ = 1′, and o = 2.

The data were now as follows: The production cost functions for the
manufacturers were given by:

f1(q(t)) = 2.5q1(t)
2 + q1(t)q2(t) + 2q1(t),

f2(q(t)) = 2.5q2(t)
2 + q2(t)q1(t) + 2q2(t).

The transaction cost functions faced by the manufacturers and associated
with transacting with the retailers were given by:

c11(q11(t)) = .5q11(t)
2 + 3.5q11(t), c21(q21(t)) = .5q21(t)

2 + 1.5q21(t).

The operating cost of the retailer, in turn, was given by:

c1(Q
1(t)) = .5(q11(t))

2.
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The unit transaction costs associated with transacting between the retailers
and the demand market were:

cjk(Q
2(t)) = qjk(t) + 1, for j = 1,2;k = 1,2.

We utilized the supernetwork representation of this example depicted in
Figure 6 with the links enumerated as in Figure 6 in order to solve the
problem via the Euler method. Note that there are 7 nodes and 7 links in
the supernetwork in Figure 6. Using the procedure outlined in Section 4, we
defined O/D pair w1 = (0, z1) and O/D pair w2 = (0, z2) with the user link
travel cost functions as given in (40)–(43).

There were two paths in Pw1 denoted by: p1,p2 and two paths in Pw2

denoted by: p3 and p4, respectively. The paths were comprised of the following
links:

p1 = (a1, a11, a11′, a1′1), p2 = (a2, a21, a11′, a1′1),

p3 = (a1, a11, a11′, a1′2), p4 = (a2, a21, a11′, a1′2).

The time horizon T = 1. The time-varying demand functions were given
by:

d1(t) = 100 + 5t, d2(t) = 80 + 4t.

Figure 6. Supply Chain Network and Corresponding Supernetwork GS for Numerical
Example 3.
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We discretized the time horizon T as follows: t0 = 0, t1 = 1
2 , and t2 = T =

1. We report the solutions obtained by the Euler method at each discrete time
step, for which we had, respectively, demands: d1(t0) = 100, d1(t1) = 102.5,
and d1(T ) = 105, and d2(t0) = 80, d2(t1) = 82, and d2(T ) = 84.

Example 3: Solution at Time t = t0 = 0:

We applied the Euler method to the beginning of the time horizon where
t = t0 = 0. The Euler method now yielded the following equilibrium path flow
pattern:

x∗
p1

(t0) = 49.90, x∗
p2

(t0) = 50.10, x∗
p3

(t0) = 39.90, x∗
p4

(t0) = 40.10.

The corresponding equilibrium link flows (cf. also the supernetwork in
Figure 4) were:

f ∗
a1

(t0) = 89.80, f ∗
a2

(t0) = 90.20

f ∗
a11

(t0) = 89.80, f ∗
a21

(t0) = 90.20,

f ∗
a11′ (t0) = 180.00,

f ∗
a1′1

(t0) = 100.00, f ∗
a1′2

(t0) = 80.00,

with incurred equilibrium path travel costs: Cp1(t0) = Cp2(t0) = λ∗
w1

(t0) =
815.50 and Cp3(t0) = Cp4(t0)=λ∗

w2
(t0) = 815.50.

The translations into the corresponding equilibrium flows are now given:

Q1∗(t0) := q∗
11(t0) = 89.80, q∗

21(t0) = 92.90,

s∗
1 (t0) = f ∗

a11′ (t0) = 180.00,

Q2∗(t0) := q∗
11(t0) = 100.00, q∗

12(t0) = 80.00.

The demand prices at the demand markets were:

ρ∗
31(t0) = 815.50, ρ∗

32(t0) = 815.50,

which correspond to the travel costs on the paths (all are used) connecting the
respective O/D pair.

Example 3: Solution at Time t = t1 = 1
2 :

We applied the Euler method to time t = t1 = 1
2 . The Euler method now

yielded the following equilibrium path flow pattern:

x∗
p1

(t1) = 51.15, x∗
p2

(t1) = 51.35, x∗
p3

(t1) = 40.90, x∗
p4

(t1) = 41.10.
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The corresponding equilibrium link flows (cf. also the supernetwork in
Figure 3) were:

f ∗
a1

(t1) = 92.05, f ∗
a2

(t1) = 92.45

f ∗
a11

(t1) = 92.05, f ∗
a21

(t1) = 92.45,

f ∗
a11′ (t1) = 184.50,

f ∗
a1′1

(t1) = 102.50, f ∗
a1′2

(t1) = 82.00,

with equilibrium path costs:

Cp1(t1) = Cp2(t1) = λ∗
w1

(t1) = 835.75,

Cp3(t1) = Cp4(t1) = λ∗
w2

(t1) = 835.75.

The translations into the corresponding equilibrium supply chain flows are
now given:

Q1∗(t1) := q∗
11(t1) = 92.05, q∗

21(t1) = 92.45,

s∗
1 (t1) = f ∗

a11′ (t1) = 184.50,

Q2∗(t1) := q∗
11(t1) = 102.50, q∗

12(t1) = 82.00.

The demand prices at the demand markets were now:

ρ∗
31(t1) = 835.75, ρ∗

32(t1) = 835.75,

which correspond to the travel costs on the paths (all are used) connecting the
respective O/D pair.

Example 3: Solution at Time t = T = 1:

Finally, we applied the Euler method to the end of the time horizon where
t = T . The Euler method now yielded the following equilibrium path flow
pattern:

x∗
p1

(T ) = 52.40, x∗
p2

(T ) = 52.60, x∗
p3

(T ) = 41.90, x∗
p4

(T ) = 42.10.

The corresponding equilibrium link flows (cf. Figure 4) were:

f ∗
a1

(T ) = 94.30, f ∗
a2

(T ) = 94.70,

f ∗
a11

(T ) = 94.30, f ∗
a21

(T ) = 94.70,
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f ∗
a11′ (T ) = 189.00,

f ∗
a1′1

(T ) = 105.00, f ∗
a1′2

(T ) = 84.00.

The equilibrium path costs, in turn, were now:

Cp1(T ) = Cp2(T ) = λ∗
w1

(T ) = 856.00, Cp3(T ) = Cp4(T ) = λ∗
w2

(T ) = 856.00.

The translations into the corresponding equilibrium supply chain flows
were, hence:

Q1∗(T ) := q∗
11(T ) = 94.30, q∗

21(T ) = 94.70,

s∗
1 (T ) = f ∗

a11′ (T ) = 189.00,

Q2∗(T ) := q∗
11(T ) = 105.00, q∗

12(T ) = 84.00.

The demand prices at the demand markets were now:

ρ∗
31(T ) = 856.00, ρ∗

32(T ) = 856.00,

which correspond to the travel costs on the paths (all are used) connecting the
respective O/D pair.
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Abstract One of the first mathematical models of a physical network interacting with
human behavior was the model of road traffic equilibria with variable flow
(demand) formulated by Martin Beckmann and colleagues in 1954. Beckmann
applied the recently-proved theorem of Kuhn and Tucker to incorporate an
assumption and two hypotheses concerning road traffic into a single mathemat-
ical formulation. The model considers a road network consisting of nodes and
links. Associated with each directional link is an increasing function relating
its travel time, or generalized travel cost, to its flow. The behavioral hypotheses
represented by the model are as follows:

1. All used routes from node p to node q have equal travel times, and no unused
route has a lower travel time;

2. The total flow over all routes from node p to node q is determined by a
decreasing function of this minimum and equal, or equilibrium, travel time.

In large-scale implementations of the model, nodes p and q represent small
areas called zones, at which flows originate and terminate; other nodes represent
intersections on the road network. The formulation minimizes an artificial
function, subject to definitional constraints. The optimality conditions of this
model correspond to the above two hypotheses. Subsequently, more general
formulations were investigated based on variational inequality, nonlinear com-
plementarity and fixed point theory.

Beckmann’s formulation and its descendents considered traffic flows over a
relatively long period of time, during which network conditions may be regarded
as constant. The peak commuting period in the morning or evening is a typical
example. Such models are static, and the flows departing from and arriving at
nodes are constant over the time period. Models that consider shorter periods of
time, and for which the departure and arrival rates are variables, are dynamic.
These models seek to represent the effect of changing network conditions during
a longer time period, including accidents and other incidents disrupting flow.
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Although Beckmann did not propose an algorithm for solving his formula-
tion, in the 1970s researchers began to solve large-scale traffic equilibria. Until
recently, these solutions were rather approximate, and did not reveal the structure
of the solution, especially with regard to the number and pattern of equilibrium
routes. In 2003, Bar-Gera and Boyce proposed an algorithm that reveals this
structure for the first time. Subsequently, they began to explore the properties of
this solution for large-scale implementations, such as for the Chicago region. The
initial results of these explorations for the Chicago region were unexpected and
regarded as “astonishing” by one informed observer. One result examined is the
relation between the number of routes between a pair of zones and the frequency
with which this number occurs in the network. The authors observed that the
number of routes increases greatly as the level of congestion increases.

This chapter seeks to introduce traffic network equilibrium models to schol-
ars from a broad range of backgrounds, mainly focusing on static models of
urban road traffic. Findings on the solution properties of static models for a
large network for three congestion levels are presented. A discussion of the
applicability of the findings to other types of networks, such as electrical power
and supply chain networks, concludes the paper.

Keywords: traffic equilibria; congestion

1. Introduction

Perhaps the first mathematical model of a functioning, physical network
and associated human behavior represented road traffic equilibria with variable
flow (demand), as formulated by Martin Beckmann in 1954 (Beckmann et al.,
1956). Beckmann applied the recently-proved theorem of Kuhn and Tucker
(1951) to incorporate an assumption and two hypotheses concerning road
traffic into a single mathematical formulation. The model considers a road
network consisting of nodes and links. Associated with each directional link
is a function relating its travel time, or generalized travel cost, to its flow. As
represented by the function, travel time is assumed to increase as flow increases
without limit. The behavioral hypotheses represented by the model are the
following:

1. All used routes from node p to node q have equal and minimal travel times;
2. The total flow over all routes from node p to node q is a decreasing function

of this minimum and equal, or equilibrium, travel time, as well as exogenous
originating and terminating total flows.

In large-scale implementations of the model, nodes p and q represent small
areas called zones, at which the flows originate and terminate; other nodes
represent intersections on the road network.

The formulation that Beckmann devised may be described as the min-
imization of an artificial function, subject to definitional constraints. The
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Kuhn-Tucker optimality conditions of this model correspond to the above two
hypotheses. Subsequently, more general formulations were investigated based
on variational inequality, nonlinear complementarity and fixed point theory; see
for example Nagurney (1999) and Bar-Gera and Boyce (2003).

Beckmann’s formulation and its descendents considered traffic flows over
a relatively long period of time, during which network conditions may be
regarded as constant. The peak commuting period in the morning or evening
is a typical example. Such models are termed static, and the flows departing
from and arriving at nodes are constant over the time period. Models that
consider shorter periods of time, and for which the departure and arrival rates
are variables, are termed dynamic. These models seek to represent the effect of
changing network conditions during a longer time period, including accidents
and other incidents disrupting flow.

Beckmann did not propose an algorithm for solving his formulation. Given
the primitive computers of the time, he and his coauthors did not consider
its solution for large-scale urban networks as being possible (Boyce, 2007).
Subsequently, many researchers have taken up the problem of solving models
of large-scale traffic equilibria. Until recently, these solutions were rather
approximate, and did not reveal the structure of the solution, especially with
regard to the number and pattern of equilibrium routes. Bar-Gera (2002,
2006) and Bar-Gera and Boyce (2003) proposed an algorithm that reveals this
structure for the first time. Subsequently, they began to explore the properties
of this solution for large-scale implementations, such as the 1790 zone, 39,000
link model of the Chicago region (Bar-Gera and Boyce, 2005).

The objective of this paper is to present new findings about the structure of
the solution of such models, and to interpret these findings. The paper consists
of the following sections:

1. a relatively non-technical description of the traffic network equilibrium
model;

2. presentation of findings on the solution properties of traffic equilibrium
models for a large network for three congestion levels;

3. a brief review of models of other types of networks, such as freight
transportation, supply chain, utility and data telecommunication networks,
and comments on the applicability of these findings for road transportation
to such networks.

2. Traffic Network Equilibrium Model

The traffic network equilibrium problem stated in the Introduction may be
formally expressed in several mathematical forms. One of the most general
is the fixed point formulation. The variational inequality problem formulation
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is also quite general, which is closely related to the nonlinear complemen-
tarity problem. Formulations based on nonlinear optimization with linear
constraints are more restricted, but more amendable to solution. Finally, newer
developments based on orthogonality and normal cones by Patriksson and
Rockafellar (2003) offer perhaps the most general synthesis to this point; see
also Patriksson (2006).

The following description depicts the model in terms of its basic variables
and assumptions; a more detailed description including the solution procedure
is found in the Appendix. Consider a study area that is divided into a set
of zones, Z, connected by transit services and by a road network. The road
network consists of a set of nodes, N , and a set of directional links, A. A
route is a sequence of nodes, [v1, . . . , vk], such that [vi, vi+1] ∈ A. The set of
available routes from origin p ∈ Z to destination q ∈ Z is Rpq , and the set of
all routes is R.

The purpose of the model is to predict:

1. the mode-origin-destination (MOD) flow, dmpq , in persons per hour, for
every mode m ∈ {a=auto, t=transit}, origin p ∈ Z, and destination q ∈ Z;

2. the distribution of auto OD flows to route flows hr , for every route r ∈ R, as
determined by the route choices of travelers.

Auto OD flows are the sum of person-trips per hour divided by a constant
auto occupancy factor (1.2 persons/auto) and the given OD truck flows, d truck

pq ,

in equivalent passenger cars per hour: dauto
pq = dapq/1.2 + d truck

pq . Hence∑
r∈Rpq

hr = dauto
pq . Total link flows are the result of route flow aggregation,

fa = ∑
r∈R:a⊆r

hr . A solution is feasible if it respects the constraints on total

origin flows,
∑
mq

dmpq = d•p•, and on total destination flows,
∑
mp

dmpq = d••q ,

where d•p• and d••q are given originating and terminating flows. MOD flows
have the doubly-constrained logit form, dmpq = Ap · Bq · exp(−μ · umpq),
where μ is a cost sensitivity parameter, and balancing factors, Ap,Bq , that
ensure the constraints hold on total origin and destination flows. Therefore, OD
flows are a decreasing function of generalized travel cost; the exponential cost
function may be expanded to include a nested logit function for mode choice;
the multinomial function is assumed here. These functions may be motivated
in various ways, including random utility theory and entropy-based methods
(Erlander and Stewart, 1990).

Model inputs (umpq) refer to transit and road levels of service. Transit
costs are in-vehicle travel time civtt

tpq , out-of-vehicle travel time covtt
tpq , and

fare c
f are
tpq , for travelling from origin p to destination q by transit, which

are fixed regardless of flow. Origin-destination generalized cost by transit
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utpq is a weighted sum of the three components plus a constant bias. Auto
travel time on link a is an increasing function of total link flow, t ta(fa) =
t t0

a · (1 + 0.15 · (fa/ka)
4), where t t0

a and ka are respectively the free-flow travel
time and capacity of the link. Link generalized cost is ta = t ta(fa) + 0.15 · la ,
where la is the link length and the coefficient, 0.15, reflects a combination of
both the direct effect of distance on generalized cost and the indirect effect of
fuel consumption. Fixed additional auto costs, acapq , account for the parking
fees and out-of-vehicle travel times at the origin and destination. The route
generalized cost is cr = acapq + ∑

a⊆r

ta . The minimum OD generalized cost by

auto is uapq = min{cr : r ∈ Rpq}. For every route r ∈ Rpq , define the excess

cost as: ecr = cr − uapq . The user-equilibrium assumption is that the excess
cost of every used route is zero.

3. Solution Properties of Static Models for the Chicago

Regional Network

To provide a general background for interpreting the findings for the route
pattern, we present selected overall measures of the model solution for travel
by auto, transit and truck in Table 1 for three values of the cost sensitivity
parameter μ. The values were chosen so that the cost sensitivity doubles from
the first to second to third solutions. The table gives the total person flows
by mode and vehicle flows by auto and truck between zone pairs (interzonal)
and within zones (intrazonal), and the total generalized costs for the same
categories including parking fees and out-of-vehicle time. The mean values
shown are the ratio of total costs to total flows.

The lowest cost sensitivity (CS) value (0.05) has the highest travel cost
and congestion level, since travelers are relatively insensitive to travel costs.
As a result, the percentage of travelers using transit is highest for this value,
and transit is more attractive to higher cost trips. Therefore, mean transit
costs rise together with mean auto costs. The lower half of the table showing
intrazonal trips is less important, since the cost of auto travel within zones is
fixed. Nevertheless, some insights may be gained by studying these values in
association with the upper half of the table.

Table 2 shows the number of OD pairs and total number of routes in the
three solutions grouped by the number of user-equilibrium routes per OD pair.
These groupings are defined by order of magnitude, except for the first four
rows, which are shown in more detail. Notice how the number of OD pairs with
one route increases from 0.9 M to 1.8 M as the cost sensitivity increases from
0.05 to 0.20. The number of OD pairs with only one route may be regarded
as surprising and quite remarkable. Likewise, it is completely unexpected that
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Table 1. Summary Measures for the Chicago Region for the Morning Peak Period,
6:30–8:30 am

147 OD pairs have more than 100,000 routes each, comprising 13% of all
routes in the network. The maximum number of routes per OD pair for the
three solutions is: 459,264 routes for 0.05 (four OD pairs with origin 1777);
21,360 routes for 0.10; and 1,920 routes for 0.20. The location of these three
cases is shown in Figure 1. See also Figure 2 for a map of the road network.

4. Solution Properties of Traffic Equilibrium Models

In this section, two sets of charts illustrating the solution properties of the
model described above are presented. The first set of charts, Figures 3–10, show
the Number of OD Pairs in the upper figure, and the Total Number of Routes
in the lower figure, for a specified Number of Routes per OD Pair. Also shown
on these figures is the Cumulative Proportion of OD Pairs and Total Routes.
Figures 3 and 4 pertain to cost sensitivity of 0.05, the lowest value considered to
date, which has the largest number of routes. Figures 5 and 6 show comparable
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Table 2. Number of OD Pairs and Total Routes by Cost Sensitivity and Routes per OD
Pair

results for a cost sensitivity of 0.10, and Figures 7 and 8 show results for a cost
sensitivity of 0.20. Figures 9 and 10 present a composite result for these three
cost sensitivity values. A discussion of these results follows these eight figures.

Let us first consider Figures 3 and 4 as examples. In the upper left-hand
corner of Figure 3, we see a point representing OD pairs connected by one
route; as indicated in Table 2, 897,845 OD pairs of a total of 3,202,310
interzonal pairs are connected by one route. The next point to the right shows
there are 573,978 OD pairs with two routes. Continuing in this manner to the
lower right-hand corner, we note there are four OD pairs with the maximum
number of routes, 459,264. Moreover, there are many instances of only one
OD pair with a certain number of routes, as shown by the numerous points on
the horizontal axis. Above that row of points, we can distinguish sets of OD
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Figure 1. Zone System of the Chicago Region

pairs with two, three, four and five routes. Note that the use of the log-log scale
to present these results tends to downplay the enormous numbers of routes and
OD pairs; however, this scale appears to be the only practical way to present
all the data in one figure. Also shown in Figure 3 is the Cumulative Proportion
of OD Pairs plotted on the right-hand vertical axis in reverse order. The four
OD pairs with the maximum number of routes are shown in the lower right as a
proportion of 1.25E-06, and the OD pairs with only one route make up the last
proportion of 0.280 in the upper left.

In Figure 4, we see the same results presented in a way that emphasizes
the number of routes. As before, OD pairs with one route appear in the upper
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Figure 2. Roadway Network of the Chicago Region

left-hand corner as point (897,845, 1). But now the second point appears as
(1,194,756, 2), since the total number of routes with two routes per OD pair
is twice the number of OD pairs. The case with the smallest number of total
routes is a single OD pair with 223 routes, shown as the lowest point in the
figure. The case with the largest number of total routes, 3,906,136, is 71 OD
pairs with 55,016 routes each, which can be seen in Figure 3 as the point very
close to the plot of the Cumulative Proportion of OD pairs. In Figure 4, the
Cumulative Proportion of Total Routes is also plotted in reverse order.
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Figure 3. Number of OD Pairs by Number of Routes for CS - 0.05

Figure 4. Total Number of Routes by Number of Routes for CS - 0.05

The corresponding figures for cost sensitivity values of 0.10 and 0.20 permit
us to compare the Number of OD Pairs and Total Number of Routes for these
three solutions. Note that all charts are plotted on the same axes to permit
easy comparison. The number of OD pairs with only one route increases
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Figure 5. Number of OD Pairs by Number of Routes for CS - 0.10

Figure 6. Total Number of Routes by Number of Routes for CS - 0.10

substantially as the cost sensitivity increases, as was also shown in Table 2.
Likewise, the maximum number of routes decreases from 459,264 to 21,360
for CS of 0.10 to 1,920 for CS of 0.20. Finally, Figures 9 and 10 attempt to
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Figure 7. Number of OD Pairs by Number of Routes for CS - 0.20

Figure 8. Total Number of Routes by Number of Routes for CS - 0.20

portray all three solutions on the same charts for easier comparison; however,
some points are obscured by overprinting.

These initial results suggested several questions for further study. The first,
which is explored here, concerns the generalized travel costs corresponding
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Figure 9. Number of OD Pairs by Number of Routes per OD Pair

Figure 10. Total Number of Routes by Number of Routes per OD Pair

to these OD pairs. Are the unexpectedly large number of OD pairs with
only one route simply connecting nearby OD pairs? Or, are there actually
widely separated OD pairs connected by only one route in the traffic network
equilibrium? Likewise, what is the cost between those OD pairs with very large
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Figure 11. Number of OD Pairs by OD Cost: 1 Route per OD Pair

Figure 12. Number of OD Pairs by OD Cost: 2–9 Routes per OD Pair

number of routes? In the next set of charts, I explore the relation of the number
of OD pairs to generalized travel cost for the three cost sensitivity solutions.

Figures 11–15 show the Number of OD Pairs by Generalized Travel Cost,
stated in auto in-vehicle minutes, for each of five groupings of the Number of
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Figure 13. Number of OD Pairs by OD Cost: 10–99 Routes per OD Pair

Figure 14. Number of OD Pairs by OD Cost: 100–999 Routes per OD Pair

Routes per OD Pair: 1 route; 2–9 routes; 10–99 routes; 100–999 routes; and
1,000 and more routes. These groupings were chosen following examination
of finer groupings, and experimentation with various definitions. Figures 16–
18 show the same results by cost sensitivity of the solution. All of the figures
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Figure 15. Number of OD Pairs by OD Cost: > 999 Routes per OD Pair

are plotted on the same scales of the horizontal and vertical axes for easy
comparison.

Let us first consider Figure 11 showing the distribution of OD pairs with one
route across the range of generalized costs, 0 to 240 minutes. The distribution of
these OD pairs is remarkably broad, indicating at equilibrium that single routes
connect OD pairs over a very wide range of costs, and definitely do not only
connect nearby OD pairs. For the lowest value of cost sensitivity (0.05), the
upper limit of cost reaches 213 minutes, whereas for the highest value (0.20),
the upper limit is 198 minutes. The maximum number of OD pairs for the
highest cost sensitivity of 0.20 reaches 29,000 pairs at 40 minutes, whereas for
the lowest value, the maximum is about 10,700 pairs, also at 40 minutes. The
intermediate cost sensitivity solution (0.10) lies between these two solutions.

For OD pairs with 2 to 9 routes, the three solutions effectively coincide
from costs of 1 to 65 minutes. Then the solutions diverge with the lowest cost
sensitivity solution extending to a maximum cost of 234 minutes. Figures 13–
15 show a larger number of OD pairs and greater generalized cost for the 0.05
solution, as compared with the two other solutions. The shapes of the curves
are similar to the groupings of 1 and 2–9 routes. One OD pair with more than
999 routes in the 0.05 solution has a cost of 214 minutes, as compared with a
cost of only 34 minutes for the 0.20 solution. In studying the charts, the reader
should recall that the higher costs in the 0.05 solution are the result of two
interrelated factors: lower sensitivity to travel costs, and higher link and route
costs resulting from increased traffic on the road network.
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Figure 16. Number of OD Pairs by Cost and Routes: CS - 0.05

Figure 17. Number of OD Pairs by Cost and Routes: CS - 0.10

As noted above, Figures 16–18 reassemble the same results into one chart
for each of the three solutions. By comparing these three charts, the reader
can observe, for example, the number of OD pairs connected by one route is
less dominant in the 0.05 solution than in the 0.20 solution. Accordingly, the
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Figure 18. Number of OD Pairs by Cost and Routes: CS - 0.20

number of OD pairs with more than 999 routes is about 20,000 in the 0.05
solution, as compared with only five in the 0.20 solution. These charts should
also be interpreted in conjunction with Table 2.

5. Patterns of Routes for OD Pairs with the Maximum

Number of Routes

The maximum number of routes connecting an OD pair in the network is
surprisingly large, and may appear to be implausible. To explore this property
of the solutions, maps of the links used by any route connecting an OD pair
were prepared. In Figures 19–21, the links corresponding to these routes are
shown for three OD pairs: (1777–270), one of the four OD pairs with 459,264
routes, the maximum number in the solution with CS = 0.05; (1761–762), the
OD pair with the maximum number of routes in a solution with CS = 0.14;
(628–32), the OD pair with the maximum number of routes in the solution with
CS = 0.20. The second case is included here because the OD pair for CS = 0.10
is very similar to that for CS = 0.05, and because the road network connecting
(1761–762) is less grid-like than the other cases. See Figure 1 for the location
of these OD pairs. Shown below are the cost sensitivity values, the number of
routes, the user-equilibrium generalized cost of all routes, and the OD flow in
vehicles per hour (vph).

Figure 19 shows the traffic equilibrium route structure for three model
solutions for the zone pair which has the maximum number of routes in
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Figure 19. OD Pair 1777-270

Figure 20. 20. OD Pair 1761-762

the solution with CS = 0.05. The left map shows the routes for the most
congested solution, as compared with the two other solutions shown in the
center and right. The routes shown in the right map are simple and highly
plausible. The routes consist of a single sequence of links, except near the
origin zone, where several alternative routes for traveling to I-94 occur. In
the center figure, additional routes appear, again near the origin. Once the
routes pass into Illinois at the southeast end of the long diagonal link, the
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Figure 21. 21. OD Pair 628-32

Chicago Skyway, there is only one sequence of links. In the left map, a very
rich route structure emerges in which the north-south expressway (I-90-94)
is displaced by the Lake Shore Drive. Presumably this shift occurs because
the expressways are heavily utilized by other flows in this rather congested
solution. All of the route segments appear plausible, given the relatively simple
network representation employed.

Figure 20 shows the route structures for the three solutions for a zone pair
which had the maximum number of routes, 5,088, in another solution with CS
= 0.14, not presented elsewhere in the paper. The right map is very simple, but
includes a number of minor alternatives that result in 160 routes. The center
map has additional alternative subroutes, which result in over 14 times as many
routes as in the right map. The left map has a similar structure, but the total
number of routes is 30 times the right map. All of the routes appear to be quite
plausible.

Figure 21 shows the route structure for the zone pair with the maximum
number of routes in the solution with CS = 0.20. This zone pair connects
two inner suburbs, Oak Park to Evanston. The road network is a strong grid;
many alternative routes with the same travel cost result from this structure. The
principal difference between the right and center maps is the two alternative
north-south routes near the destination; the right-hand route is an arterial road,
and the left-hand route is the I-94 expressway. The absence of these two routes
in the center map reduces the total number of routes by 70%. In the more
congested left map, the number of routes is more than twice the right map,
and the route structure has more major alternatives. However, the expressway
route in the right map does not reappear, presumably because it is highly
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congested by travel between other OD pairs, just as in Figure 19. In the left
map, many more grid street segments are used, which result in a large number
of route combinations. Note that in each figure shown, the equilibrium travel
costs increase from right to left by roughly equal intervals, and the flows also
increase from right to left as a result of the decreasing cost sensitivity.

6. Conclusions from the Analysis

This exploratory research has extended the initial inquiry presented in Bar-
Gera and Boyce (2005) by comparing three solutions to a traffic network
equilibrium problem with variable flows. Only the cost sensitivity parameter
values differ among the three solutions in order to study the effect of travel
cost and congestion on the structure of equilibrium routes. As the number of
solutions studied expands, the characteristics are consistent and predictable.
However, the number of routes in the network equilibrium is large and perhaps
unexpected.

A natural question about the results concerns which solution most closely
represents reality in the Chicago region. Based on estimation of the para-
meters from 1990 data (Boyce and Bar-Gera, 2003), we would suggest the
cost sensitivity parameter value most likely lies between 0.1 and 0.2. This
statement, however, is a substantial oversimplification of the complexity of
models actually applied in travel forecasting. Those models recognize that
travel for each purpose and by each socio-economic group has its typical cost
sensitivity, and that it is inappropriate to group these travelers into a single
class. Investigation of a multi-class model, then, is one next step that ought to
be pursued.

Another research question concerns the effect of the Chicago road net-
work, and the network coding procedure, on the findings. Two experienced
practitioners have suggested that the results presented here may be highly
dependent on such attributes. Analysis of more road networks of various
layouts is therefore indicated. A related question concerns the treatment of
intersections and turning movements in the solution. In the present analysis
no turning delays were assumed. Practitioner models include turning penalties
and turn prohibitions, in order to reproduce observed link flows. We prefer to
utilize turn-specific cost functions, but these have not been introduced so far.
Therefore, much detailed investigation awaits us in the next round of analysis.

7. Implications for Other Types of Networks

In the context of this book on Network Science, it is appropriate to
explore and speculate on whether and how the findings for traffic network
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equilibrium presented above apply to other types of networks. To this end,
we offer a brief review of the literature of which we are aware. The idea of
examining networks from a broad perspective is represented in the writings of
several authors. Nagurney and Dong (2002) synthesized many network-related
problems in their recent book, Supernetworks. Barabási (2002) also sought
to relate a variety of networks to the experience of individuals through their
personal experiences with urban traffic, air travel and the Internet. As a point
of departure, we list several types of networks that share some characteristics
with the type of network studied in this paper:

1. urban traffic networks
– personal travel (personal auto; public transit; taxi)
– trucking (parcel delivery; motor carrier; private trucking)

2. interregional transportation networks
– personal travel (airlines and general aviation; auto; bus; rail passenger;

ship)
– freight shipments (airline; parcel delivery; motor carrier; pipeline; private

trucking; railroad; barge and ship, and intermodal combinations of these
modes)

3. supply chain management networks (management of the physical flows of
goods, and the virtual flow of information, between and among stages in a
supply chain)

4. utility networks
– water
– natural gas
– electricity
– district heating

5. telecommunication networks
– telephone
– data networks
– cable

In considering these networks, one key distinction concerns whether the
shipments are origin-destination-specific, or whether the shipments are inter-
changeable or fungible. Early problems in transportation, such as the clas-
sical Transportation Problem of Linear Programming and the Spatial Price
Equilibrium Problem, assumed that shipments were interchangeable. Such
shipments are termed single commodity. In contrast, most actual transportation
problems encountered in reality are not interchangeable, and therefore are
termed multiple commodity.

Utility networks are nearly always single-commodity networks, although
there may be some distinctions about natural gas shipments that are unknown
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to us. Freight transportation shipments, in contrast, are generally not inter-
changeable, although grain shipments that comply with quality thresholds
are fungible. Moreover, telecommunication networks, which are sometimes
classified as utilities, are certainly not engaged in transmitting interchangeable
commodities.

A second distinction concerns the agents who control and use the networks.
Each type of network tends to have a distinctive terminology for its agents, so
generalizations are problematic. Adopting transportation terminology, never-
theless, may get us started in classifying agents. The operator of the transporta-
tion network is generally called the carrier. The carrier provides the services,
and sets the price in terms of the shipment characteristics (weight, distance,
transit time, frequency of service, loss and damage, reliability, etc.), subject
to possible regulation by a public body. The user of the services is called the
shipper, which determines the amount to be shipped, the timing of the release
of the shipment to the carrier, the choice of the type of carrier to be used, and
other details such as packing specifications and insurance to reduce risk of loss
and damage.

In some cases, such as personal travel by automobile, the shipper and
carrier may be the same entity; in such cases, the carrier uses an infrastructure
system by paying a toll or a user fee. Similar examples may be found for
other networks.

Drawing on the experience with transportation networks, the behavior of
shippers and carriers may be represented as constrained optimization problems,
or generalizations of these, such as variational inequalities and fixed point
problems. To formulate the problem, one must decide whether a hierarchy
exists among the agents, as in a hierarchical game, or alternatively whether
they interact on the same level. For example in freight transportation networks,
one can define the following hierarchy:

Regulation: international, national and regional regulatory agencies
(world and continental trade organizations; national regula-
tory agencies; state/provincial regulatory agencies)

Carriers modal and intermodal corporations competing for freight
traffic

Shippers corporations, associations and private individuals requiring
freight services

Each of these levels can be represented by an optimization problem, for
example, with sets of variable controlled by each level. Alternately, if the
agents’ interactions are all on the same level, their optimality and equilibrium
conditions can be aggregated to form a single set. For example if the conditions
of each agent are represented by a variational inequality, they can be summed
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to form one overall expression. We next examine some examples of problem
formulations from transportation, supply chain, utility and telecommunication
data networks.

Urban Traffic and Intercity Travel Networks

Only a brief indication of the large body of accumulated research findings
on this topic will be mentioned here. The original model formulation achieved
by Martin Beckmann (Beckmann et al., 1956) may be regarded as the genesis
of the entire field of network models that combines the behavior to travelers and
other decision makers with the passive operation of a transportation network.
See Boyce (2007) for an account of the history of this development, and
Boyce and Bar-Gera (2004) for a review of multiclass models. Unlike classical
network models in which travel costs were regarded as fixed, Beckmann et al.
succeeded to formulate two models with flow-dependent cost functions, and
to show that their solutions correspond to: (a) the behavioral hypothesis that
all used routes have equal and minimal travel costs, which is now called user-

equilibrium or user-optimal behavior; (b) the minimization of total travel cost,
which is now called system-optimal. Their models were also relatively general
in that origin-destination flows (demand) were functions of travel costs, rather
than being exogenous.

Beckmann and his coauthors investigated these conditions in terms of two
model formulations, derived their optimality conditions, and showed that the
system-optimal solution could be achieved in a user-optimal road network by
imposing a set of tolls. Earlier, Wardrop (1952) had described these two be-
havioral hypotheses, but unlike Beckmann he proposed no model formulation;
however, Wardrop’s name is now generally associated with these concepts.

An extensive synthesis of urban traffic network models is provided by
Patriksson (1994). For a more recent review, see Florian and Hearn (1999).
Marcotte and Nguyen (1999) also provide a collection of papers that review
this area.

Freight Transportation Networks

Several notable attempts to formulate and solve freight transportation
models may be found in the literature beginning in the 1960s. Perhaps the
first successful effort to represent the behavior of shippers and carriers in a
single model system, and to implement and solve the formulation empirically
was by Friesz and his collaborators in the early 1980s. Friesz et al. (1986) is
representative of this research. Crainic (1999) provides an extensive review of
this area, including his own extensive contributions.

The authors formulated two models, one representing shipper behavior,
and the second representing the behavior of carriers. In the former model,
shippers seek to minimize the delivered price of their shipments, as well as
determine the shipment pattern of commodities from origins to destinations.
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Price is defined as a weighted sum of transit time and a portion of the monetary
cost of shipment charged by the carrier. Since shippers compete for possibly
scarce freight transportation capacity, their choices of mode and carrier are
user-optimal with regard to their shipper’s network. The model is similar to a
multi-class version of the model studied earlier in this paper for personal travel.

Carriers, in contrast, are represented as routing shipments over more de-
tailed networks so as to minimize their total operating costs. In this sense, their
routing decisions are system-optimal. The authors clearly defined the distinc-
tion of user-optimal and system-optimal in a system of freight transportation
models, and succeeded to implement and solve the model for 15 groups of
commodities over the U.S. railway network.

Supply Chain Management Networks

Network models that aim to manage the flow of physical products and
associated information have come of age only recently, although early papers in
this field date from the early 1970s; see the annotated bibliography of Geunes
and Pardalos (2003). Supply chain networks seek to depict the relationships
among suppliers, assemblers of products, wholesalers, retailers and finally
consumers. The advent of the Internet had a profound effect on all stages of
this process, and the transfer of supply chain functions to Internet websites
may be expected to continue indefinitely into the future.

Nagurney has recently expounded on questions related to the conceptual
and mathematical representation and solution of problems on such networks
(Nagurney et al., 2002; Nagurney, 2005). Friesz et al. (2004) have also been
active in exploring the mathematical foundations of this area of research.

Utility Networks

Electrical power systems offer another fascinating opportunity to explore
and apply large-scale network models with a variety of economic interpreta-
tions. Patriksson (1994, pp. 56–57) offers a brief review and 20 references,
noting that Duffin (1947) may have been the first to apply early notions of
optimization to modeling electrical circuits. More recently, models of electrical
power systems were proposed by Hobbs et al. (2000) and Hobbs (2001) based
on Nash-Cournot game theory.

Nagurney and Matsypura (2006) describe a model of electric power gen-
eration, supply, transmission and consumption, drawing on their experience
with supply chain network modeling. Their paper considers the behavior of
several types of decision makers operating in a decentralized manner in a single
variational inequalities formulation. The capability to represent the behavior of
several agents in a rather general, consistent and interrelated way is impressive,
and suggestive of applications to other types of network problems, such as the
freight carrier-shipper problem already described.
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The behavior of agents in their model with regard to profit maximization,
pricing and production appears plausible. However, it would seem there must
be alternative models with regard to price setters versus price takers, as well as
production quotas, such as might be adopted by a cartel. These models would
appear to include hierarchical relationships, which may be possible to represent
in hierarchical variational inequalities formulations. This point also applies to
supply chain models.

Data Networks

Bertsekas and Gallager (1987) synthesized an extensive range of material on
data telecommunication networks, including their own journal papers; also, see
Patriksson (1994, p. 58) for a short review, including eight references. Sansò
and Soriano (1999) offer a recent collection of papers on the subject.

In Chapter 5, Routing in Data Networks, Bertsekas and Gallager formulated
and investigated a system-optimal model of routing of data in congested
telecommunication networks, which they note bears a strong resemblance to
system-optimal transportation network problems; see, in particular, Section 5.5.
Inasmuch as flows in data networks are very fast compared with transportation
networks, the authors discuss with some care their assumption that the model
considers average flows which change only very slowly over time, using the
term stationary to describe this condition. Such models are often called static

in transportation networks, as contrasted with more recent developments of
dynamic models which are not considered here.

Two approaches for solving the routing model are described. The standard
approach in practice at that time was to route data on the shortest time route.
They state “A more sophisticated alternative is optimal routing based on flow
models.” This second approach is explored in terms of flow deviation and
gradient projection methods. The first, which is standard in transportation
network modeling, was also suggested for data networks by Fratta et al. (1973).
The second algorithm, which has also been applied to transportation networks,
was suggested for this problem by Bertsekas (1980).

Conclusions for Network Modeling

Finally, we reflect briefly on the implications of findings from our traffic
equilibrium research for other areas of network modeling.

The first implication concerns whether the location and number of routes
actually matter to the modeler and to the client for whom the model is solved.
In the case of road traffic, the answer is certainly yes, routes do matter,
especially if they are the most likely routes in terms of flow (Bar-Gera,
2006). A technique called Select Link Analysis is used by practitioners to
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determine which travelers benefit from a proposed network improvement, or
which travelers would be impacted by a proposed road toll, for example. For
the purpose of such analyses, the location of routes and the most likely route
flows clearly do matter.

In freight transportation network and supply chain network modeling, a
similar interest in predicting which shipments are impacted by network links
temporarily taken out of service because of derailments, floods, etc. is clearly
important. Whether there are similar concerns for electric power networks is
less clear, and depends on physical and economic considerations in power
system operation and pricing that are beyond our expertise.

Second, the capability to solve network models to precise levels of con-
vergence may well be important in other applications for reasons that are
different from traffic networks. At this time there is no general agreement that
precise solutions of traffic equilibria are useful. Until recently, however, the
ability to solve these problems precisely did not exist, so practitioners were not
able to investigate to what extent the observed differences in the performance
of alternative plans were cause by the plans themselves, as contrasted with
errors arising from the precision of the solution of their models. As these
solution methods become available in practitioner software systems, it will be
interesting to observe whether they result in changes to professional practice.

A third point concerns the application of models for planning system
infrastructure versus operating the system. In road traffic networks, static
models of network equilibria, similar to the one described in this paper, are used
for long-range planning of infrastructure investment, and to some extent for
shorter-range impact analyses. Dynamic models may be used in the future for
real-time traffic operations, but to our knowledge are not used for this purpose
presently.

Models of freight transportation networks and electric power systems are
potentially useful for infrastructure planning. On the other hand, we have found
no evidence that models of data networks were used in infrastructure planning
for the Internet, which was largely a private and competitive undertaking.
Likewise, we are unaware of models of airline system infrastructure being
used by aviation agencies to plan regional, national or international airport
systems. Differences in problem definition and decision making, then, are the
keys to understanding why such models are useful in one field and not useful
in another.
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Appendix – Model Description

From H. Bar-Gera and D. Boyce (2005)

We consider a study area that is divided into a set of zones, Z, connected
by transit services and by a road network. The road network consists of a set
of nodes, N , and a set of directional links, A. In the Chicago regional model
there are 1790 zones, 12,982 nodes and 39,018 links. A route is a sequence of
nodes, [v1, . . . , vk], such that [vi, vi+1] ∈ A. The set of available routes from
origin p ∈ Z to destination q ∈ Z is Rpq , and the set of all routes is R.

The purpose of the model is to predict: (a) the mode-origin-destination
(MOD) flow dmpq , in persons per hour, for every origin p ∈ Z, destination
q ∈ Z, and mode m ∈ {a=auto, t=transit}; (b) the distribution of auto OD
flows to route flows hr , for every route r ∈R. Auto OD flows are the sum of
person-trips divided by a constant auto occupancy factor (aof = 1.2) and the
given OD truck flows d truck

pq , in equivalent passenger cars per hour: dauto
pq =

dapq/aof + d truck
pq ; hence

∑
r∈Rpq

hr = dauto
pq . Total link flows are the result of

route flow aggregation, fa = ∑
r∈R:a⊆r

hr . A solution is feasible if it respects

the constraints on total origin flows,
∑
mq

dmpq = d•p•, and on total destination

flows,
∑
mp

dmpq = d••q , where d•p• and d••q are given inputs. In the model

implemented for the Chicago Region, total MOD flows amount to 1.5 million
(1,513,211) persons per hour, while total truck flows amount to 0.4 million
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(445,184) passenger-car-equivalents per hour, representative of the morning
peak period (6:30–8:30 am) in 1990.

The remaining model inputs refer to transit and road levels of service.
Transit data are in-vehicle travel time civtt

tpq , out-of-vehicle travel time covtt
tpq ,

and fare c
f are
tpq , for travelling from origin p ∈ Z to destination q ∈ Z by transit.

These are fixed regardless of flows. Origin-destination generalized cost by
transit, utpq , is a weighted sum of the three components plus a constant bias; in
the results reported here the transit bias is zero, and the weights are 0.25, 0.90,
and 0.08 respectively.

Travel time by auto on link a, tta , is a function of total flow, t ta(fa) =
t t0

a · (1 + 0.15 · (fa/ka)
4), where t t0

a and ka are respectively the free-flow travel
time and capacity of the link. Link generalized cost is ta = t ta(fa) + 0.15 · la ,
where la is the link length and the coefficient, 0.15, reflects a combination of
both the direct effect of distance on generalized cost and the indirect effect of
fuel consumption. Fixed additional auto costs, acapq , account for the parking
fee and out-of-vehicle travel time at the origin and destination. The route
generalized cost is cr = acapq + ∑

a⊆r

ta . The minimum OD generalized cost

by auto is uapq = min{cr : r ∈ Rpq}. For every route r ∈ Rpq , define the excess

cost as: ecr = cr − uapq . The user-equilibrium assumption is that the excess
cost of every used route is zero. Approximate UE solutions are evaluated by
the maximum excess cost over all used routes. MOD flows have the doubly-
constrained logit form, dmpq = Ap · Bq · exp(−μ · umpq), with cost sensitivity
μ = 0.2, and balancing factors, Ap,Bq , that ensure the constraints hold on
total origin and destination flows. Approximate solutions of this model are eval-
uated by total misplaced MOD flow,

∑
mpq

|dmpq − Ap · Bq · exp(−μ · umpq)|.
The combined model of user-equilibrium and mode-origin-destination

choice with the specific structure described above can be formulated mathe-
matically either as a fixed point problem, or as a convex optimization problem
(Bar-Gera and Boyce, 2003). For the generalized link cost function stated above
(separable, monotonically increasing), the equilibrium, or optimal, solution
uniquely determines total link flows. Total link flows in turn uniquely determine
link costs, route costs, and the set of minimum cost routes, referred to here as
the set of UE routes. Of course, the route flows on this set of UE routes are not
unique.

The model is solved by an origin-based assignment algorithm; route flow
solutions are described by a set of restricting a-cyclic subnetworks Ap for
each origin, and origin-based approach proportions αpa ∈ [0,1], such that
αpa = 0 for all a /∈ Ap , and

∑
a∈Ap :ah=v

αpa = 1∀p ∈ Z,v ∈ N,v �= p. The

implicit set of routes from origin p is the set of all routes within Ap , that
is Rpq[Ap] = {r ∈ Rpq : a ⊆ r ⇒ a ∈ Ap}. The implicit route flows are given
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by hr = dapq · ∏
a⊆r

αpa . For the OBA algorithm, the number of UE routes per

OD pair is unrelated to the number of iterations, unlike algorithms based on
linearization methods.

The availability of route flows and approach proportions allows (a) ad-
justments of mode-origin-destination flows while retaining the current route
proportions, (b) adjustments of restricting subnetworks to accommodate more
routes, and (c) efficient adjustments to approach proportions that utilize second
order derivatives of the objective function. The resulting algorithm offers
precise convergence for large-scale networks. For the specific model of the
Chicago Region presented here, the algorithm produced a solution with max-
imum excess cost of 1E-13 equivalent auto in-vehicle minutes of travel time
and total misplaced MOD flow of 1E-10 person-trips per hour.

By itself, a precisely converged solution does not necessarily guarantee a set
of routes that is similar to the true, unique set of UE routes. As link flows and
link costs converge towards their equilibrium values, so should excess costs.
Therefore, excess costs of UE routes should decrease continuously towards
zero, while the excess cost of any non-UE route should converge to a strictly
positive value. The minimum equilibrium excess cost of all non-UE routes,
considered as the rejection gap, is strictly positive as well. In principle, if
a threshold below the equilibrium rejection gap is chosen, then at a certain
finite level of convergence, the excess cost of all UE routes will be below the
threshold, and the excess cost of all non-UE routes will be above the threshold.

We chose to include all routes with excess cost below a threshold of 2E-12.
The smallest excess cost of a rejected route is at least 30E-12, which determines
the estimated rejection gap. Therefore, there are no routes with 2E-12 < excess
cost < 30E-12. There are several reasons to believe that the chosen set of routes
is probably similar and perhaps identical to the true set of UE routes. One
reason is the stability of the set of included routes in the final iterations of the
origin-based assignment. Another reason is the order of magnitude difference
between the chosen threshold and the estimated rejection gap. Additional
reasons are discussed in Bar-Gera (2006), particularly the fact that the chosen
set of routes maintains consistent consideration of alternative route segments,
a fundamental property of sets of minimum cost routes in general and the set
of UE routes in particular.
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