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Foreword

Akiva Moiseevich Yaglom (1921–2007) was a major figure of turbulence research,
closely associated with the giant scientistAndrei Nikolaevich Kolmogorov. For more
biographical information on A.M. Yaglom, see the obituary by Peter Bradshaw (in
Flow, Turbulence and Combustion, vol. 80 (3), 287–289, April 2008), a copy of
which follows this Foreword.

Together with Andrei Monin, A.M. Yaglom was the author of “Statistical Fluid
Mechanics: Mechanics of Turbulence” (MIT Press vol. 1 1971, vol. 2 1975, repub-
lished by Dover Publications, 2007). With editing help from John L. Lumley, this was
a much augmented and revised English edition of the Russian originals published
in 1965 (vol. 1) and 1967 (vol. 2) by Nauka Press, Moscow. These books, usually
known as MY1 and MY2, by far the most detailed account of the subject (close
to 2000 pages), had become the standard references in turbulence research when
Yaglom emigrated to the USA in 1992. Still very active, he set out to revise Monin
andYaglom’s book, starting with those aspects of vol. 1 dealing with “Hydrodynamic
Instabilities and Transition to Turbulence,” a subject which had grown very much
since 1971 and which he was following closely. After about ten years of work, four
monographs totalling more than 800 pages were produced in preliminary form by
the Center for Turbulence Research (CTR, Stanford University) with considerable
editing help from Peter Bradshaw. This material (CTR Chap. 2–5) covered only
about one quarter of the topics of MY1 but in a coherent and self-consistent way
suitable for a standalone publication rather than a new edition of MY1. In 2004, at
the 10th European Turbulence Conference (Trondheim)Yaglom discussed the matter
with the publisher Springer and this is how the project of the present book was born.
During the next three years, A.M.Yaglom prepared an introductory chapter (Chap. 1
of the present book) and worked on two additional chapters which unfortunately
could not be completed before his death. The present book thus contains an intro-
ductory chapter and the CTR Chap. (2–5) entitled, respectively, “Basic experimental
facts and introduction to linear stability theory”, “More about linear stability theory;
studies of the initial-value problem”, “Stability to finite disturbances: energy method
and Landau’s equation” and “Further weakly-nonlinear approaches to laminar-flow
stability: Blasius boundary layer flow as a paradigm”.
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vi Foreword

Publication of the present book has been further delayed because the original
files of the CTR monographs and of the figures could not be located. Fortunately
many people helped in restoring the material. Thanks are thus due to Peter Bradshaw,
Julia Yaglom, Yuni Rodman-Yaglom, Naomi Sherman, Victor Privalsky and many
others. Thanks are also due to Springer Verlag and particularly to Nathalie Jacobs,
Anneke Pot and Crest Premedia Solutions, Pune. Each chapter ends with the author’s
own acknowledgments in which he expresses his gratitude to those who helped him
scientifically or otherwise.

Uriel Frisch, Nice



In memory of Akiva M. Yaglom

Akiva Moiseevich Yaglom died in Boston, MA on 13 December 2007, after a short
illness. Akiva and his brother Isaak were born on 6 March 1921 (correct date: there are
other versions) in Kharkov, Ukraina (then part of the Soviet Union). They were said
to be as alike as two drops of water. Isaak was also a distinguished mathematician,
and the brothers wrote several books together. The family moved to Moscow in 1925.
Isaak died in 1986, and Akiva said that only a twin could understand what it was like
to lose a twin. Perhaps the first of Akiva’s many honors was a prize in the Moscow
Mathematical Olympiads, a competition for high school students, in 1938. Akiva
shared this prize with his brother Isaak. The prize was presented to him by Andrei
N. Kolmogorov, one of the organizers of the competition. Kolmogorov remembered
him when they met in 1941, and in spring 1943 invited Akiva to do graduate work
with him in Moscow. Kolmogorov’s interest in encouraging young mathematicians
led, in rather similar circumstances, to his acquisition of Aleksandr M. Obukhov as a
graduate student: the third of these famous meteorologists, Andrei S. Monin entered
Kolmogorovs group by a more conventional route.

The present writer does not know if these applied statisticians ever discussed the
probability that their given names should all begin with the same letter. In 1994,
Akiva contributed a detailed and affectionate review A.N. Kolmogorov as a fluid
mechanician and founder of a school in turbulence research to vol. 26 of Annual
Reviews of Fluid Mechanics. Some of the material in the present obituary comes from
that review. Its frontispiece shows Yaglom and Kolmogorov, flanked by Kraichnan
and Millionshchikov, at a 1961 conference in Marseille. Yaglom’s undergraduate
studies at Moscow University were interrupted by the Great Patriotic War (World
War II) and in the Autumn of 1941, when the invasion was nearing Moscow and
many of its citizens were moved to safer locations, he transferred to Sverdlovsk,
about 1300 km East of Moscow, where Moscow University was evacuated. He had
previously volunteered for military service but was rejected because of poor eyesight:
he said that most of his friends who joined up were killed and that his rejection was
probably great good luck for him. Like his fortuitous discovery by Kolmogorov, it
was certainly great good luck for Fluid Mechanics.

Yaglom remained interested in fundamental physics while working on turbulence.
After he finished graduate study, I.E. Tamm and V.L. Ginsburg offered him a post at
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viii In memory of Akiva M. Yaglom

the Lebedev Physics Institute of the Russian Academy of Sciences, He was informed
that part of his work would be connected to the atomic bomb project. That offer
provided an exceptional opportunity to pursue his interest in fundamental physics, but
he declined it since he disliked the idea of developing a bomb for Stalin. He therefore
took a post at the Institute of Theoretical Geophysics of the Russian Academy of
Sciences (now the A.M. Obukhov Institute of Atmospheric Physics). He intended
to return to theoretical physics as soon as he could do so without being involved in
the fission bomb project. However, working in theoretical physics while remaining
uninvolved in military projects never became possible in Soviet Russia, and Yaglom
remained at the Institute (a third piece of great good luck for Fluid Mechanics). He
also rose to Full Professor at Moscow University. He and his wife June emigrated to
the United States in 1992, when he was 70 years old but still working enthusiastically
on scientific problems. He had kept up contacts in the West, both personal and postal,
and the present writer knew him as a valuable pen friend for many years before
meeting him.

At the suggestion of his friend the late Marten Landahl of the Department of
Aeronautics and Astronautics at M.I.T., Akiva settled there with the title of Research
Fellow, and continued scientific work. Until the last, he worked 10–12 hours a day,
going to his MIT office almost every day and spending long hours in his home office.
His work was supported by the Stanford/NASA Center for Turbulence Research
(CTR), to which he made several working visits, and later by the Poduska Family
Foundation. He also did some consulting work in the Boston area. He travelled
extensively to conferences and other events, including several visits to Russia.

Yaglom was the author or co-author of six books and 120 scientific papers, by no
means all on turbulence. One of the books written in collaboration with his brother
was translated into English as Information Theory, and was very recently described as
the principal Russian text [on this subject]. Another, multi-volume, book by the twins
was Challenging Mathematical Problems with Elementary Solutions (latest edition
2007) based partly on problems prepared for the Moscow Mathematical Olympiads
which continue to this day.

Right up to the time of his death, he was working on the revision of Statistical
Hydromechanics, universally known as Monin & Yaglom and covering instability
and transition as well as turbulence. His work on the Instability volume is being
assembled for publication. Monin died on 22 Sept. 2007, less than three months
before his junior author, but he had been inactive for some years. Akiva’s honors,
as well as the above-mentioned high-school prize which really founded his career,
included the degree of Doctor of Science (awarded in Russia for a corpus of work
rather than a single thesis), the Otto Laporte Award of the American Physical Society
(1988) and the Lewis Fry Richardson Medal of the European Geosciences Union
(2008). The award was announced before Akiva died: his widow June was invited to
accept the medal for him in Vienna in April.

Richardson’s classic book “Weather Prediction by Numerical Process” was pub-
lished just one year after Yaglom was born. Now, at the time of his death, there are
plans to build a computer dedicated to realizing Richardson’s dream numerical so-
lutions for the whole of Earth’s atmosphere, but with rather more computing power
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than Richardson’s humorous concept of a myriad (nominally 10,000) human oper-
ators of mechanical calculating machines. Like Kolmogorov, Akiva Yaglom took a
great interest in school-level education, and in his later years he supported Shalom
House in Brighton, MA, which is a school dedicated to combining orthodox Jew-
ish education with high-grade courses in mathematics and science. Books were his
life-long passion, and he collected a unique library of several thousand volumes.

Let Debra Spinks, Administrative Manager of CTR at the time of Akiva’s visits
to Stanford, have the last word: I remember best that he was a fascinating, gentle soul.

Peter Bradshaw, Stanford University
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Chapter 1
The Equations of Fluid Dynamics and Some
of Their Consequences

1.1 Principal Equations of Fluid Mechanics

It is well known that the overwhelming majority of both natural and man-made
flows of fluids1 do not vary smoothly in space and time but fluctuate in a quite
disordered manner, exhibiting sudden and irregular (but still continuous) space- and
time-variations. Such irregular flows are called “turbulent”. A very large amount of
information is required to describe the whole of a field of turbulence2 in space and
time, but as a rule only statistical properties, such as time averages are useful to
scientists and engineers. Various semi-empirical, approximate methods have been
devised to calculate the simpler statistical averages directly.

In contrast to turbulent flows, smooth and regular motions of fluids are called
“laminar”, the name coming from the erroneous concept of layers of fluid sliding
over one another. Laminar flows are produced in fluid initially at rest by regular
forces, generating ordered motions described by smoothly changing solutions of the
fluid dynamics equations. Turbulent flows usually arise from small disturbances pro-
duced in laminar flows by extraneous disturbances. Except at low Reynolds numbers,
even small influences usually grow, increasing in disorder until a fully-turbulent state
is reached. The process of growth of small random disturbances leading to transfor-
mation of a regular laminar flow into a fully disordered turbulent motion is the subject
of this book. However we must begin with a brief review of the classical equations
of fluid mechanics.

Most attention will be paid to the simplest case of incompressible fluid of constant
density ρ. In this case the flow velocity u(x, t) = {u1(x, t), u2(x, t), u3(x, t)} will

1 As usual the word ‘fluid’ denotes here any liquid or gaseous medium.
2 The word turbulence (Latin turbulentia) originally refers to the disorderly motion of a crowd
(turba). It was first used (in a sense close to that accepted today) around the year 1500 by the
famous painter (and, as it was discovered much later, also a remarkable inventor and scientist)
Leonardo da Vinci (who used the Italian spelling la turbolenza; see Frisch (1995, p. 112). However
Leonardo did not write his scientific notes for publication and, being left-handed, his writings must
be read with the help of a mirror. Leonardo’s notes remained little known up to the modern times,
and by this reason the word ‘turbulence’ in its scientific meaning is often attributed to Kelvin; see,
e.g., Lamb (1932), Sect. 366.

A. M. Yaglom†, U. Frisch (ed.), Hydrodynamic Instability and Transition to Turbulence, 1
Fluid Mechanics and Its Applications 100,
DOI 10.1007/978-94-007-4237-6_1, © Springer Science+Business Media Dordrecht 2012



2 1 The Equations of Fluid Dynamics and Some of Their Consequences

satisfy the equation of mass conservation (“continuity”) in the simple form:

∂uα
∂xα

= 0. (1.1)

(Here and henceforth, we will always adopt Einstein’s summation convention, ac-
cording to which whenever an index occurs twice in a single-term expression, the
summation is carried out over all possible values of this index; hence ∂uα/∂xα has
here the same meaning as

∑3
α=1 (∂uα/∂xα)). In the case of fluid of variable density

where ρ = ρ(x, t), the continuity equation becomes:

∂ρ

∂t
+ ∂(ρuα)

∂xα
= 0. (1.2)

However, as mentioned above, in this book the fluid will usually be assumed to be
incompressible with constant density; therefore Eq. (1.2) will be used only rarely.

The fundamental dynamic equations of fluid motion express Newton’s second
law of conservation of momentum applied to a small volume of fluid. In the case of
incompressible fluid of constant density ρ, they have the form

∂ui
∂t

+ uα
∂ui
∂xα

= Xi − 1

ρ

∂p

∂xi
+ v�ui , i = 1, 2, 3. (1.3)

Here Xi = Xi(x, t) is the value at the point x and the time t of the ith component of
the externally-applied “body” force per unit mass of fluid, if any, p = p(x, t) is the
pressure, and v = μ/ρ is the kinematic viscosity of the fluid (whileμ is the ordinary
“molecular” viscosity). As usual, � = ∂2/∂xα∂xα denotes the Laplace operator
(Laplacian): in a compressible flow the viscous term is more complicated (see below).
The three Eq. (1.3) are the classical Navier-Stokes (briefly, N-S) equations which
describe the motions of incompressible viscous fluids of constant density.

Fluids with a kinematic viscosity ν so small that its influence on the fluid motions
may be disregarded are called either inviscid, or ideal, or perfect. Then the last term
in the Eq. (1.3) can be discarded, giving the simpler Euler dynamic equations for the
flow of an ideal fluid, incompressible or compressible:

∂ui
∂t

+ uα
∂ui
∂xα

= Xi − 1

ρ

∂p

∂xi
, i = 1, 2, 3. (1.4)

In the case of a compressible fluid the fluid density ρ = ρ(x, t) may vary in time and
from point to point; therefore the equations of motion of a viscous fluid are more
complicated than Eq. (1.3). For the general case of flow of a viscous compressible
fluid the fundamental dynamic equations have the form

∂(ρui)

∂t
+ ∂(ρuiuα)

∂xα
= ρXi − ∂p

∂xi
+ ∂

∂xα

[

μ

(
∂ui
∂xα

+ ∂uα
∂xi

− 2

3

∂uβ
∂xβ

δiα

)]

+ ∂

∂xi

(

ζ
∂uβ
∂xβ

)

, i = 1, 2, 3, (1.5)
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where δiα = 1 if i =α and = 0 if i �=α (see e.g., Landau and Lifshitz (1987), Sect. 10,
or any of the numerous monographs devoted to laminar flows, such as those of
Goldstein (1938) and of Lagerstrom (1964)3). We see that these equations include
not one coefficient of viscosity μ but two such coefficients: the ordinary viscosity
μ and the so-called second viscosity ζ . Note also that in many compressible-fluid
flows the dependence of the coefficients μ and ζ on spatial coordinates (due usually
to their dependence on the variable temperature T of the fluid) is so small that these
coefficients may be assumed constant. Then Eq. (1.5) may be simplified to

ρ

(
∂ui
∂t

+ uα
∂ui
∂xα

)

= ρXi − ∂p

∂xi
+ μ�ui +

(
ζ + μ

3

) ∂2uα
∂xi∂xα

, i = 1, 2, 3.

(1.6)

The four Eqs. (1.2) and (1.5) (or (1.6)) describing the motions of compressible fluids,
contain five unknown functions: ρ, p, u1, u2 and u3. Therefore these equations do not
form a closed system (thermodynamic equations are needed as well: see below). In
practice, however, compressible fluid flows often have quite small variations of the
density ρ so that it may be adequate to assume that ρ is constant (for more detailed
discussion of this assumption see, e.g., Landau and Lifshitz (1987), Sect. 10). In
such cases the four Eqs. (1.2) and (1.5) (or (1.6)), supplemented by the appropriate
initial and boundary conditions, give acceptable values of the four functions ui(x, t),
i = 1, 2, 3, and p(x, t).

Now let us return to flows of incompressible (constant-density) fluids. Here the
full system of fluid-dynamic equations comprises only the simple form (1.1) of the
equation of continuity and the three N-S Eq. (1.3). These four equations contain four
unknown functions p, u1, u2 and u3 of the variables x and t, but in fact pressure p
may be easily eliminated from Eq. (1.3). We need only take the curl of both sides
of Eq. (1.3), which in tensor notation is written as the operator εkβi ∂

∂xβ
. (Here εkβi

is a completely skew-symmetric tensor of the third rank, sometimes called the unit
alternating tensor, and the indices k, β, i can take any of the values 1, 2 and 3. Thus
the operator is equal to zero if two, or all three, of the indices are the same: εkβi = +1
if (k, β, i) are in cyclic order (1, 2, 3; 2, 3, 1 or 3, 1, 2) and εkβi = −1 if they are in
anticyclic order). Assuming, for simplicity, that there are no external forces Xi we
arrive at the system of three equations

∂ηk

∂t
+ uα

∂ηk

∂xα
− ηα

∂uk
∂xα

= v�ηk , k = 1, 2, 3, (1.7)

where

ηk = εkβα
∂uα
∂xβ

(1.8)

3 All material presented in this chapter can be found in a great number of textbooks and monographs
on fluid mechanics. Therefore the few references presented here must be considered as only some
examples of numerous books containing the stated results.
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are the three components of the vorticity vector. In principle, the three velocity
components ui(x, t) may be determined from Eqs. (1.7) and (1.8). Then the pressure
field p(x, t) is the solution of the Poisson equation,

�p = −ρ ∂
2(uαuβ)

∂xα∂xβ
, (1.9)

that is obtained by applying the operation ∂/∂xi to the N-S Eq. (1.3) with Xi = 0.
From Eq. (1.9) it follows that, to within a harmonic function of x,

p(x) = ρ

4π

∫
∂2[uα(x′)uβ(x′)]

∂x
′
α∂x

′
β

dx′

|x−x′| , (1.10)

where the integration is taken over the whole volume of the fluid. In the case of a flow
occupying the whole unbounded space the supplementary harmonic function must
take a constant value. Since only derivatives of the pressure appear in the equations of
motion, the constant term in the expression for pressure plays no role at all; thus here
Eq. (1.10) may be considered as being fully accurate. However, for flows in finite
regions the harmonic addition to Eq. (1.10) must be determined from the boundary
conditions for the pressure; here in a number of cases it may be also proved that this
addition must take a constant value which may be ignored.

The main part of this book will be devoted to flows of fluids of constant density,
satisfying the N-S Eq. (1.3) and the continuity Eq. (1.1). However in Chap. 2 we
will also consider “thermally-inhomogeneous” flows, in which the fluid temperature
T (and hence also the fluid density ρ) depends on the spatial point x and possibly
the time t. In a gravitational field, this can lead to so-called “buoyant convection”,
in which the flow is determined mainly by buoyancy rather than (say) horizontal
pressure gradients. Therefore we must consider equations which are valid in all
conditions between buoyant convection and “forced convection”: the latter is the
name used for ordinary flows with negligible buoyancy effects.

In the flow of a thermally-inhomogeneous compressible fluid the continuity and
dynamical Eqs. (1.2) and (1.5) (or (1.6)) contain five unknowns and hence do not
form a closed system. To close this system one must add a fifth equation, obviously
for some temperature-dependent quantity—e.g. the equation of the budget of the
total energy per unit volume of moving fluid. This energy is equal to ρ(u2/2 + e),
where u = u(x, t) is the magnitude |u| of the flow velocity u(x, t) at point x and time
t, and e = e(x, t) is the thermal internal energy of unit mass of fluid, a function of
temperature. An alternative, and indeed more popular, choice is the total enthalpy,
but the total-energy equation is easier to understand. The general equation for the
total-energy budget can be found, e.g., in the books of Landau and Lifshitz (1987),
Sect. 49, Monin and Yaglom (1971), Sect. 1.5, and Lagerstrom (1964), Sect. B.2. It
has the form

∂

∂t

(
ρu2

2
+ ρe

)

= − ∂

∂xα
[ρuα(u2/2 + e + p/ρ) − uβσβα − κ∂T /∂xα] + uαρXα ,

(1.11a)
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where ρ(u2/2 + e) is the total energy per unit volume of moving fluid, σβα = σαβ is
the viscous stress tensor,

σαβ = μ

(
∂uα
∂xβ

+ ∂uβ
∂xα

− 2

3

∂uγ

∂xγ

δαβ

)

+ ζ
∂uγ

∂xγ

δαβ (1.11b)

(compare with Eq. (1.5)) and κ is the coefficient of thermal conductivity of the fluid
(see any of the above-mentioned books). Using Eqs. (1.2), (1.5) and some known
thermodynamic equations4, we can convert Eq. (1.11a) into the following balance
equation for the entropy s of unit mass of a perfect gas:

ρT

(
∂s

∂t
+ uα

∂s

∂xα

)

= σαβ
∂uα
∂xβ

+ ∂

∂xα

(

κ
∂T

∂xα

)

. (1.12)

Equations (1.11a) and (1.12) are equivalent, and either may be used in a closed
system of equations for flows of a compressible (and/or thermally inhomogeneous)
fluid.

To obtain such a closed system of equations for the five unknown functions, we
must express the entropy s as a function of the pressure p and the density ρ (or the
temperature T ) with the aid of the general equations of thermodynamics and the
equation of state of the fluid (gas or liquid) which connects the quantities p, ρ, and
T. Let us begin with a perfect gas, which has the well-known equation of state

p = RρT (1.13)

where T is the absolute temperature (measured in degrees Kelvin) and the constant
R is equal to the difference cp − cv (here cp and cv are specific heats of the gas at
constant pressure and at constant volume, respectively). It is easy to show that in
the present case s = −R ln ρ + cv ln T + const. = −R lnp + cp ln T + const. (see,
e.g., Landau and Lifshitz (1980), Sect. 43). Combining these equations with the
entropy Eq. (1.12) and using the equation of state (1.13) it is possible to transform
the energy-balance Eq. (1.11a) into the general equation for the “heat” budget in the
flow of a perfect gas

cvρ

(
∂T

∂t
+ uα

∂T

∂xα

)

= −p∂uα
∂xα

+ ∂

∂xα

(

κ
∂T

∂xα

)

+ ρε, (1.14)

or the equivalent form

cvρ

(
∂T

∂t
+ uα

∂T

∂xα

)

= ∂p

∂t
+ uα

∂p

∂xα
+ ∂

∂xα

(

κ
∂T

∂xα

)

+ ρε, (1.14a)

4 This use of the thermodynamic quantities and equations may raise some doubts, since a fluid flow
with nonzero gradients of velocity and temperature does not constitute a system in thermodynamic
equilibrium. However in all the books cited here it is explained that in the case of the moderate
gradients encountered in real fluid flows, the fundamental thermodynamic quantities may be defined
in such a way that all their ordinary properties, and the corresponding equations will be valid (for
more details see, e.g., Sect. 49 of the book by Landau and Lifshitz (1987) or one of the more special
publications, such, as, e.g., the paper by Tolman and Fine (1948) and the books by Chapman and
Cowling (1952) and Hirschfelder et al. (1954)).
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where in both cases ρε = σαβ∂uα/∂xβ (see, e.g., Monin and Yaglom (1971),
Sect. 1.5). Monin and Yaglom (1971) will henceforth be referred to as MY1. It
is easy to show that ε is the rate at which energy per unit mass of fluid is transferred
from kinetic energy to thermal internal energy via the work done by the flow (the
velocity gradients) against the viscous stresses. In cases where there are additional
heat sources in the flow produced by external radiation, chemical reactions, phase
transitions, etc., a further source tern ρQ must be added to the right-hand sides of
Eqs. (1.11a), (1.12), (1.14) and (1.14a). However such cases will not be considered
in this book.

Above, we considered only flows of perfect gases having the very simple equation
of state (1.13). However a heat-balance equation of the form (1.14a) may also be
obtained for thermally-inhomogeneous flows of purely-viscous liquids. Here, instead
of the equation of state (1.13), we must use the equation for thermal expansion of
liquids

ρ − ρ0 = −βρ0(T − T0) (1.15)

where ρ and ρ0 are the densities of the liquid at temperatures T and T0, and β is the
coefficient of thermal expansion of this liquid (if β is constant, T0 is arbitrary). It can
be shown that in this case the heat-balance Eq. (1.14a) becomes

cpρ

(
∂T

∂t
+ uα

∂T

∂xα

)

= βT

(
∂p

∂t
+ uα

∂p

∂xα

)

+ ∂

∂xα

(

κ
∂T

∂xα

)

+ ρε (1.16)

while in any incompressible fluid
∂uβ
∂xβ

= 0 and the expression for ε can be simplified

to

ε = 1

2
ν
∑

α,β

(
∂uα
∂uβ

+ ∂uβ
∂xα

)2

(1.17)

(see, for example, Squire (1953)). The coefficient β for ordinary liquids is usually
very small (for example, β ≈ 1.5 × 10−4 per degree for water at 15◦C). Thus in Eq.
(1.16) we may ignore the term containing this coefficient, and obtain

∂T

∂t
+ uα

∂T

∂xα
= χ�T + ε

cp
(1.18)

where χ = κ/cpρ is the thermal diffusivity of any fluid, which we will assume to
be constant in liquids. The term ε/cp on the right-hand side of Eq. (1.18) describes
the general heating of this medium caused by the internal friction of the liquid;
this heating under real-life conditions usually plays an insignificant role and in the
majority of cases it may be neglected. Then Eq. (1.18) simplifies still further and
transforms into the ordinary equation of heat conduction in any moving medium with
constant properties:

∂T

∂t
+ uα

∂T

∂xα
= χ�T . (1.19)
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Let us now emphasize that the heat-conduction Eq. (1.19) is applicable not only to
liquids, but also to gases, provided that the velocity of the gas is much less than the
corresponding sound velocity a = (γp/ρ)1/2, where γ = cp/cv, i.e. provided that the
Mach number u/a is low. It may be also shown that at such flow velocities, variations
in pressure p are small compared to the absolute pressure and play a considerable
smaller role in Eq. (1.14a) than variations in the temperature T. Therefore terms
containing p on the right sides of Eq. (1.14a) may be ignored. Then we may easily
obtain Eq. (1.18) for gases and then, if we also ignore heating of the gas due to
viscous dissipation of kinetic energy we get Eq. (1.19).

Note, however, that comparison of Eqs. (1.18) and (1.14) shows that in Eq. (1.14),
in contrast to Eq. (1.14a), it is impossible to ignore the additional “pressure work”
term − p∂uα/∂xα , since the local compressions and expansions caused by variations
of density during heating and cooling must be taken into account in the heat equation,
even in the case of small velocities (low Mach number). However, at low Mach
number the velocity field may be assumed completely “incompressible” (at least in
the cases when the temperature differences in the flow are small in comparison with
its absolute temperature T0). Under these conditions, it may also be assumed in the
expression for ε that ∂uα/∂xα = 0, i.e. ε may once again be simplified to the form
Eq. (1.17). In the case of an incompressible medium Tds = de (where, as usual, ds
and de are increments of the entropy and of the internal energy of unit mass of fluid).
Thus, in an incompressible fluid ε will be exactly equal to the increase of internal
energy per unit mass per unit time, i.e., to the amount of kinetic energy dissipated
(transformed into heat) per unit time per unit mass of fluid (cf. Landau and Lifshitz
(1987), Sect. 16). Although this quantity may generally be ignored in the calculation
of the temperature field, it is nevertheless a very important physical characteristic
of turbulent flow, where energy is extracted from the fluctuating part of the velocity
field as well as the mean.

The exceptionally important role played by the rate of the energy dissipation in the
mechanics of turbulent flows became obvious after the development by Kolmogorov
(1941a, b) of the general theory of “locally isotropic turbulence” from which it
follows that the small-scale structure of any turbulent flow with high enough Reynolds
number Re = UL/v (where U and L are the velocity and length scales characterizing
the large-scale structure of the flow considered) is isotropic, universal and depends
only on two physical parameters ε and v. The description of Kolmogorov’s famous
theory, its numerous applications and further developments comprise the main part
of the book by Monin andYaglom (1971) and of many other books and survey papers
(those by Hunt et al. (1991); Frisch (1995); Nelkin (1994); Yaglom (1981, 2004)
and Lundgren (2004) are only a few examples). However in this book Kolmogorov’s
theory will not be considered (but the energy-dissipation rate ε will be met with
several times).

Let us now stress that Eq. (1.19) is identical in form to the well-known diffusion
equation

∂ϑ

∂t
+ uα

∂ϑ

∂xα
= χ�ϑ (1.20)
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that describes the variation in concentration ϑ(x, t) of an arbitrary “passive admix-
ture” (a contaminant which has no effect on the dynamics of the flow, otherwise
known as a “passive scalar”). The only difference is that in the latter case the coeffi-
cient χ must be interpreted not as the coefficient of thermal conductivity, but as the
molecular coefficient of diffusion of the contaminant in the fluid of the base flow.

The “passive admixture” assumption implies that the velocity field ui(x, t) may
be determined, independently of the distribution of ϑ , from the ordinary system of
equations for the flow of a incompressible fluid, and then substituted into Eq. (1.20) to
calculate ϑ . If we take ϑ to be temperature then the temperature differences between
different points of the fluid must be sufficiently small that the changes they produce
in the physical properties of the fluid have no effect on the flow (this is quite a serious
consideration in liquids because the viscosity changes rapidly with temperature). At
the same time the temperature differences must be large enough for heating due
to viscous dissipation or any unwanted sources of heat to be neglected, so that Eq.
(1.19) can be used instead of Eq. (1.18). In this case the temperature inhomogeneities
will simply move with the fluid, at the same time being smoothed out by molecular
conduction.

We have already mentioned the effect of buoyancy on flows in a gravitational
field, and this is another important case of flows in which the temperature cannot
be considered as a passive admixture is that of non-uniformly heated fluids in the
presence of the gravitational field. “Free convection” in which the motion is driven
entirely by buoyancy forces, is sufficiently different from “forced convection” with
negligible buoyancy effects that it is helpful to derive equations of motion for this
special case free-convection equations. We will consider here only a somewhat sim-
plified version of the most general free-convection equations, which will be adequate
for the flows to be discussed in this book.

Let us assume first of all that the velocity in the flows to be considered here is
small enough for us to ignore variations in the density produced by variations of
pressure (but not of temperature). Therefore we can use the ordinary equation of
continuity (1.1) and N-S Eq. (1.3) but we must include in the latter the body force
X = −gez (where g is the gravitational acceleration and ez is the unit vector of the
vertical axis Ox3 = Oz) and remember that the density ρ depends on temperature T
(when discussing flows with variable fluid properties it is convenient to define T as
the absolute temperature). Let us also assume that T = T0 + T1 where T0 is a constant
reference temperature, say the temperature in the unheated part of the flow (if any)
and T1 is a small deviation from T0. It is clear that then ρ = ρ0 + ρ1, where ρ0 is the
constant density corresponding to temperature T0 and ρ1 = ρ− ρ0 is given by the
equation

ρ1 = −βρ0T1 (1.21)

(the coefficient of thermal expansionβ = −1/ρ0(∂ρ0/∂T )p for an ideal gas satisfying
Eq. (1.13) is equal to 1/T0). Note that if T = T0 = constant and ρ= ρ0 = constant,
the pressure p0 will not be constant but will decrease with increasing height z = x3
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as the weight of the column of fluid above the point considered decreases:

p0(x3) = −ρ0gx3 + const. (1.22)

Putting p =p0 + p1, ρ= ρ0 + ρ1, we have, to first-order accuracy,

1

ρ

∂p

∂x3
= 1

ρ0

∂p0

∂x3
+ 1

ρ0

∂p1

∂x3
− ρ1

ρ2
0

∂p0

∂x3
= −g + 1

ρ0

∂p1

∂x3
+ gβT1.

From this it follows that the third Navier–Stokes equation (for the velocity component
in the z or x3 direction) becomes

∂u3

∂t
+ uα

∂u3

∂xα
= − 1

ρ0

∂p1

∂x3
+ ν�u3 − gβT1 (1.23)

(the last term on the right side of this equation, which includes T1, quantitatively
confirms the qualitatively obvious fact that in buoyant flows the temperature cannot
be considered as a passive admixture). The first and second N-S equations may be
written in the usual form (1.3) with ρ replaced by the constant reference density ρ0,
while p is taken to mean the height-dependent deviation p1 of the true pressure from
its reference value p0. Finally, the equation for the temperature, as always when the
medium may be assumed incompressible, is the equation for heat conduction in a
moving fluid

∂T1

∂t
+ uα

∂T1

∂xα
= χ�T1 (1.24)

(as usual, we ignore the term including the rate of energy dissipation ε).
The set of five approximate equations presented here, (1.1), (1.3) with i = 1 and

2, (1.23), and (1.24), which contains five unknown functions ui(x, t), i = 1, 2 and 3,
p1(x, t) and T1(x, t), describe the free (buoyant) convection of the fluid. These
equations are often called the Boussinesq equations (or the Boussinesq approximation
for fluid-flow equations) because they were used in the old book of Boussinesq
(1903). However Joseph (1976), Sect. 64, was apparently the first to point out that
practically the same equations (and also the same modifications) were used still earlier
by Oberbeck (1879, 1888). Therefore in Joseph’s book of 1976 these equations
(and also some related systems) of free-convection equations were called not the
Boussinesq equations but the Oberbeck–Boussinesq equations: justice was done
after nearly a century. According to Joseph, the prevalence of the term ‘Boussinesq
equations’ is due to Rayleigh, who did not know Oberbeck’s papers and therefore
used just this term in his paper of 1916 which became extremely popular. Some
authors of subsequent books and papers have adopted Joseph’s re-naming of the
equations were in fact first obtained by Oberbeck (see, e.g., the books by Drazin and
Reid (1981) and Drazin (2002)). However, for simplicity we will follow custom and
refer to the ‘Boussinesq equations’. Note that the closed system of five differential
equations with five unknowns presented above will be applicable to all the convective
flows discussed in this book, while detailed analysis of the conditions of applicability
of this and allied systems of convective-flow equations may be found in the books
by Chandrasekhar (1961); Joseph (1976) and Koschmieder (1993) and in the papers
by Spiegel and Veronis (1960) and Michaljan (1962).
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1.2 Some Examples of Exact and Approximate Solutions
of the Equations

In Sect. (1.1) we discussed the general form of the fluid-dynamical equations, but in
fact the full equations will be used only rarely in this book. Here, we will consider
a few exact solutions of these equations that will be used repeatedly below (some
further solutions may be found in the survey of Wang (1991)). All these solutions
correspond to simple laminar flows whose stability to small disturbances will be
examined later in this book. We will begin with the idealized steady and streamwise-
homogeneous two-dimensional plane-parallel flow in the Ox direction between two
infinite parallel walls in the planes z = z1 and z = z2 at a finite distance H from each
other. (Below we will use the ordinary Cartesian coordinates (x, y, z) = (x1, x2, x3)
and for definiteness will assume that the two walls are at z = 0 and z = H where H > 0).
The external force Xi will usually be assumed to be zero.

Let us note immediately that in the case of steady plane-parallel flows of viscous
fluid with the velocity field u(x) = {u(z), 0, 0}, writing the general vorticity Eq. (1.7)
for the vorticity component η2 = ∂u/∂z − ∂w/∂x (spanwise) yields the very simple
result d3u(z)/dz3 = 0. This means that the function u(z) must be a polynomial of z
with no term of higher order than z2. Similarly, when the x-component velocity varies
with the “spanwise” coordinate y as well as with z, but all other velocity components
remain zero so that u(x) = {u(y, z), 0, 0}, two Eq. (1.7) for the vorticity components
η2 and η3 imply that here �2u(y, z) = const., where �2 denotes the two-dimensional
Laplacian.

1. Plane Couette flow (briefly, PCF). This is the flow between two parallel walls
moving in the x-direction with two different constant velocities U1 and U2 driving
the fluid in the same direction. We will set U2 −U1 = 2U0 > 0 (the inequality 2U0 > 0
specifies that the upper wall has the greater velocity (U2), and the factor 2 is added
because in PCF studies the half-difference of wall velocities is traditionally used as the
velocity scale). Since the equations of fluid mechanics are invariant in the change to a
new inertial (‘Galilean’) system of spatial coordinates, only the difference 2U0 affects
the flow while the mean velocity U3 = (U1 +U2)/2 characterizes the unimportant
transport of the whole mass of fluid with constant velocity U3. The velocity of the
fluid in the case considered here is everywhere parallel to the Ox axis while all fluid-
dynamical quantities depend only on the coordinate z = x3. Hence the continuity Eq.
(1.1) and the second N-S Eq. (1.3) with i = 2 are satisfied identically here, while the
first and the third N-S equations take the forms

d2u

dz2
= 0,

dp

dz
= 0, (1.25)

where u(z) = u1(z) is the streamwise, and only, velocity component. Hence here
p is constant over any cross-section of the flow and u(z) = az + b. In addition the
boundary conditions u(0) =U1, u(H) =U2 imply that u(z) =U1 + (U0/H1)z, where
H1 = H/2. We see that this laminar flow has a linear velocity profile which, of course,
satisfies the condition d3u(z)/dz3 = 0 for viscous flow. In addition to the form of the



1.2 Some Examples of Exact and Approximate Solutions of the Equations 11

velocity profile, it is often desirable to evaluate some simpler characteristics which
help us to compare different flows. One characteristic (dimensionless parameter) that
proved to be very useful was introduced for special purposes (which will be explained
in Sect. 2.1) by Reynolds (1883), but later it proved very useful in general: it was
named the Reynolds number and denoted by Re. Re is the dimensionless combination
UL/ν, where U is some typical velocity of the large-scale features of the flow, L is
the corresponding length scale, and ν, as usual, denotes the kinematic fluid viscosity.
Taking the half-difference of wall velocities U0 and the half-distance between the
wallsH1 as the most convenient velocity and length scales of the large-scale features
of this flow (called the plane Couette flow for reasons which will be explained below),
the Reynolds number in its most popular form becomes Re =U0H1/ν.

Laminar plane Couette flow is described by the simplest exact solution of the
N-S equations, and because of its simplicity, it soon attracted the attention of some
of the founders of the modern theoretical fluid mechanics. See, for example, the
references in Chap. 2 of this book to the early studies of PCF stability by Kelvin
and Rayleigh, and by Lorentz (1907), who regarded the study of Couette flow as a
valuable introduction to more difficult studies of pipe-flow stability. However setting
up a good approximation to plane-parallel flow between infinite parallel planes in
the laboratory, where the planes are necessarily of finite size, is not a simple task.
Therefore experiments on this flow (which will be briefly considered in Chap. 2)
were first carried out only in the second half of the 20th century.

2. Plane Poiseuille flow (briefly, PPF). Now let us consider a steady two-
dimensional flow between stationary walls at z = 0 and z = H due to the action of
an external force applied at infinity and producing a negative streamwise pressure
gradient ∂p/∂x < 0, independent of y and z. It is clear that the velocity is everywhere
along the Ox axis and depends only on z, so that u(z) = u1(z) is again the only nonzero
component of the velocity field u(x, t). Exactly as in plane Couette flow, the continu-
ity Eq. (1.1) and the second N-S Eq. (1.3) with i = 2 are satisfied identically. However
the first and the third N-S Eq. (1.3) now take the forms

∂p

∂x
= μ

d2u

dz2
,

∂p

∂z
= 0 (1.26)

(where instead of the kinematic viscosity ν the ordinary viscosity μ= ρν now ap-
pears). The second Eq. (1.26) shows that, again as in plane Couette flow, the pressure
p is independent of z, i.e. constant over any cross-section of the flow, depending only
on x. Moreover, using the first Eq. (1.26) it is easy to show that the streamwise pres-
sure gradient dp/dx is independent of x (and therefore dp/dx = −�ip/l where −�ip/l
is the normalized drop of the pressure between the planes x = x0 and x = x0 + l which
is the same for all values of x0 and l). The same equation shows that the velocity
profile u(z) has the form: u(z) = [(dp/dx)/2μ]z2 + az + b where a and b are constants.
(This velocity profile clearly also has zero third derivative). The constants a and b can
be easily determined from the standard no-slip boundary conditions on immovable
solid walls: u(z) = 0 for z = 0 and z = H. These boundary conditions together with the
first Eq. (1.26) lead to the following final expression for the velocity profile in plane
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Poiseuille flow (the reason for the name will be explained below):

u(z) = 1

2μ

dp

dz

[(

z − H

2

)2

− H 2

4

]

. (1.27)

Equation (1.27) shows that velocity profiles u(x, z) depend here only on z and
hence have the same parabolic form at all values of x with a maximum value
− (dp/dx)H2/8μ in the middle of the fluid layer, z = H/2. Using this maximum
velocity as the velocity scale U0 of this flow and its half-width H1 = H/2 as the
flow length-scale L we obtain the representative Reynolds number for this flow as
Re =U0H1/ν = − (dp/dx)H3/16ρν2.

As in the case of plane Couette flow, plane Poiseuille flow in a layer between
two infinite parallel walls is clearly a mathematical idealization, but an adequate
approximation is much more easily realized in the laboratory. Therefore experimental
studies of PPFs began much earlier, and have been much more numerous, than similar
studies of plane Couette flow.

1. Plane Couette-Poiseuille flow (briefly, PCPF). We have already shown that
the velocity profile u(z) in any steady plane-parallel flow of viscous fluid must
be a polynomial in z with no term of higher order than z2. Therefore the general
steady parallel flow in the Ox direction between solid, but not necessarily stationary,
walls at z = 0 and z = H, is the so-called plane Couette-Poiseuille flow (sometimes
called also the plane Poiseuille-Couette flow; see., e.g., Cowley and Smith (1985) or
Balakumar (1997)) where the velocity u(z) is represented by a quadratic polynomial
of z including both the linear component (corresponding to some plane Couette flow)
and the quadratic (parabolic) component (corresponding to some plane Poiseuille
flow). This means that such a velocity profile corresponds to the fluid motion in the
Ox-direction which is produced by a constant negative longitudinal pressure gradient
−dp/dx combined with x-wise motion of one wall (or of both walls with different
velocities). Since only the difference of wall velocities is of importance, we will
assume for simplicity that only the upper wall is moving in the Ox direction with
constant positive velocity 2Uw while the lower wall is stationary.

The velocities u(x) of all the PCPF family have only one non-zero component,
the streamwise velocity, u(z), which depends on only one coordinate, z. The linear-
plus-parabolic profile that satisfies the boundary conditions is

u(z) = 1

2μ

dp

dz

[(

z − H

2

)2

− H 2

4

]

+ 2Uw

H
z (1.28)

where dp/dz is the constant negative pressure gradient generating the Poiseuille com-
ponent of the flow, and 2Uw is the positive streamwise velocity of the upper wall
producing the Couette component. Note that u(z) is just the sum of the Poiseuille com-
ponent given by Eq. (1.27) and the Couette component discussed above. Equation
(1.28) is an exact solution of the N-S equation for the general steady plane-parallel
fluid flow between two walls. It is a very trivial solution: the N-S equations are
nonlinear (strictly, quasi-linear) which means that in general we cannot simply add
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two solutions to get a third—but this is what we have just done. The explanation is
that the nonlinear terms in the N-S equations are those that represent the acceleration
of the fluid, which is zero in all the PCPF family so only the linear terms appear.
Another possible representation of the velocity profile of Eq. (1.28) is:

U1(z1) = (4 − A)z1 − (4 − 2A)z2
1 (1.28a)

where z1 = z/H (hence 0 ≤ z1 ≤ 1), U1(z1) = u(z1H)/u(H/2) and A = u(H)/u(H/2).
Here A is a dimensionless parameter which characterizes the relative contribution
of the Couette component to the combined flow and grows with the increase of this
contribution. As defined here, A varies from zero in pure plane Poiseuille flow to 2 in
pure Couette flow. Some additional results related to stability properties of various
Couette-Poiseuille flows will be presented later in this book.

Now we will pass from two-dimensional plane-parallel flows in a layer between
two parallel planes to some other laminar flows which will be also considered at
greater length later in this book. Let us begin with a flow very often met with in real
life; steady laminar flow in a straight circular pipe of constant diameter D, generated
by a constant negative pressure gradient.

4. Circular Poiseuille (or Hagen-Poiseuille) flow in a pipe (briefly, CPF). Let us
assume that the Ox axis coincides with the axis of an infinitely long pipe. Then the
velocity u of a steady flow in this pipe will have only one, streamwise, nonzero
component which will be independent of the time t and of the streamwise coordinate
x and thus will have the form u1(y, z)ex = u(y, z)ex. The continuity Eq. (1.1) is satisfied
identically, as in the other flows discussed in this section, and as before the second
and third N-S Eq. (1.3) imply that ∂p/∂y = ∂p/∂z = 0, i.e. that the pressure p = p(x) is
constant over any cross-section of the pipe. For the circular pipe it is convenient to
use polar coordinates (r, φ) in the (y, z) plane with origin on the Ox axis. Then by the
circular symmetry of the pipe, u(r, φ) = u(r). From this it follows that in cylindrical
coordinates the first N-S Eq. (1.3) has the form

dp

dx
= μ

r

d

dr

(

r
du

dr

)

. (1.29)

Since the left-hand side of this equation depends only on x and the right-hand side
only on r, both sides must have the same constant value. In particular, dp/dx = const =
−�lp/l, where �lp is the pressure drop along a pipe section of length l. Taking into
account the boundary condition u(D/2) = 0 and the fact that u(r) is a bounded function
of r, we obtain from Eq. (1.29) the following result:

u(r) =
[(

−dp
dx

)

/4μ

]

(R2 − r2), (1.30)

where R = D/2 is the pipe radius. We see that as in plane Poiseuille flow the ve-
locity profile (along any diameter) is parabolic with the maximum velocity, on
the pipe axis, equal to U0 = − dp

dx
R2

4μ . The Reynolds number is most often defined
as Re =U0R/ν. (In engineering work, in pipes of any shape the maximum veloc-
ity U0 is often replaced by the cross-sectional-mean velocity: for a circular pipe,
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Um = 1
πR2

∫ 2π
0

∫ R
0 u(r)rdrdϕ = U0/2. The reason is that the volume flow rate, the

quantity of greatest interest, is justUm times the cross-sectional area. Then the length
scale is usually taken as the pipe diameter D = 2R is used. The Reynolds number has
the same value whichever pair of scales is used; UmD/v =U0R/v.

As before, the solution (1.30) of the N-S equations clearly refers to an idealized
flow, since the pipe is taken to be infinitely long, and the flow to be strictly independent
of x. However measurements showed that the flow becomes independent of x (“fully
developed”) at acceptably small distances from the pipe inlet, of the order of R2U0/ν.
(According to numerical calculations by Schiller (1934), cited also in the popular
survey of Goldstein (1938), Vol. 1, Sect. 139, the pipe flow can be considered as being
fully-developed at x ≈ 0.1R2U0/ν). Experimental on laminar flows in circular pipes
began quite early in the development of modern fluid dynamics. Hagen (1839) and
Poiseuille (1840–1841) independently, and almost simultaneously, studied liquid
flows in round pipes and measured, in particular, the dependence of the volume
flow rate on the pressure gradient dp/dx). Their results agree excellently with Eq.
(1.30); for a more detailed description of the history and the results of these early
studies of pipe flows see, e.g., the surveys by Rouse and Ince (1957) and Sutera
and Skalak (1993). These early experiments motivated the later naming of flow in
a citcular pipe “Poiseuille flow” (sometimes, more justly, “Hagen-Poiseuille flow”).
(The name of “plane Poiseuille flow” was given to the flow produced by a constant
pressure gradient in the gap between two parallel planes because of its resemblance to
circular Poiseuille flow). The results given here for flows in pipes were first obtained
by Stokes (1845) (who also derived Eq. (1.32), below).

5. Circular Couette (or Taylor-Couette) flow between two concentric rotating
cylinders (briefly, CTCF). Our next example is also a flow within a cylindrical
boundary, the steady motion of a fluid in the annulus between two infinite coax-
ial concentric cylinders of radii R1 and R2 >R1, rotating about their axis at different
angular velocities�1 and�2. The pressure drop along the axis will be assumed to be
zero, so all hydrodynamic quantities are independent of the x coordinate, measured
along the axis of the cylinders. Let us again introduce polar coordinates (r, φ) in the
plane Oyz perpendicular to the axis of the cylinders. Then it follows from symmetry
that only the velocity component uφ = u is nonzero, and that the velocity u and the
pressure p depend only on the coordinate r. From this it follows that Eq. (1.1) and
the first of the N-S Eq. (1.3) are satisfied identically, while the second and third Eq.
(1.3), converted to polar coordinates, have the forms

1

ρ

dp

dr
= u2

r
,

d2u

dr2
+ 1

r

du

dr
− u

r2
= 0. (1.31)

The general solution of the second Eq. (1.31) has the form: u(r) = ar + b/ r; then the
boundary conditions u(r) =�1R1 for r =R1 and u(r) =�2R2 for r =R2 determine the
function u(r) uniquely as:

u(r) = �2R
2
2 −�1R

2
1

R2
2 − R2

1

r + (�1 −�2)R2
1R

2
2

R2
2 − R2

1

1

r
. (1.32)
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Using the first Eq. (1.31) it is now easy to find the function p(r) but we shall not need
this result here. Note only that the flow given by Eq. (1.32) is similar in many respects
to plane Couette flow, considered above as Example 1—there we had to do with the
flow between two different planes parallel to the same Oxy-plane and moving in the
same Ox-direction with different velocities, while now we are dealing with the flow
between two concentric cylinders rotating with different angular velocities. This latter
flow is sometimes called the circular Couette flow; in fact it was first experimentally
investigated by Couette (1888, 1890) in his studies of viscous friction in liquids.
After circular Couette flow was so named, his name was also applied to the flow
between two infinite parallel planes in relative motion, to emphasize its similarity to
the cylindrical case actually investigated by Couette. Note that after the publications
of the results of brilliant experimental and theoretical studies of the stability of flow
between concentric cylinders rotating with different angular velocities which were
performed by G. I. Taylor (1923) (for more details of these studies see Chap. 2
below), this flow has often been called Taylor–Couette flow.

6. Boundary layers on solid surfaces. Up to now we have discussed exact solu-
tions of the Navier–Stokes equations describing some simple laminar flows in spatial
regions finite in the direction of at least one coordinate axis. In all these cases the
nonlinear terms in the N-S equations representing the acceleration of the fluid were
zero: the remaining linear equations are much simpler to solve. Now we consider the
idealized plane-parallel flow in a space which is unbounded for x ≤ 0, and in which
the fluid far upstream has constant velocity U in the Ox direction. The “spanwise”
line x = 0, z = 0, −∞ < y < ∞ is the leading edge of an infinitely wide solid body in
the region 0 ≤ x ≤ L (where L may be equal to infinity). A typical body might be one
with the x−z plane section of a lifting airfoil, but a simpler case for discussion is a thin
flat plate. We seek a solution for the flow above the plate, i.e. in the half-space z > 0.
In an inviscid flow the velocity would still be U everywhere. Since there is no upper
boundary to constrain it, the real, viscous flow never becomes “fully developed” with
zero acceleration like the internal flows considered above, but continues to depend
on x. Exact (algebraic) solution of the full N-S equations, including the nonlinear
acceleration terms, is not possible; and numerical solutions of these equations are
complicated and expensive. Therefore we will discuss only approximations to the
N-S equations and their—simpler—numerical solutions, which are adequately accu-
rate in many flows at high Reynolds number Re (crudely speaking, “low viscosity”
flows) over flat plates or other bodies which are important in real life. It is natural
to think that at high Re the viscous terms in the N-S equations will be much smaller
than the nonlinear terms and may be ignored, i.e., the fluid may be assumed inviscid.
However this assumption is invalid near solid surfaces because on such surfaces the
flow of a viscous fluid with any value of viscosity ν must satisfy the “no-slip” and
“no-permeability” boundary conditions, according to which all components of flow
velocity on these surfaces must be equal to zero. Therefore when a fluid, even with
arbitrarily small viscosity, flows over a solid surface, there must be a layer near the
surface in which viscosity significantly affects the motion, because there is a region
of significant velocity gradient (rate of shear strain) as the velocity increases from
zero at the surface to a finite value somewhere within the fluid. It is natural to think
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that at very small values of ν the viscosity-dependent layer will be very thin but it will
be seen that its existence can lead to large differences between the ideal inviscid flow
and the real-life one. The concept of a viscosity-dependent layer near a solid surface
was introduced by Prandtl (1904), who proposed the name Grenzschicht, translated
as boundary layer. Prandtl noted that the thickness of a boundary layer must decrease
with increase of the Reynolds number Re and he also presented a simplified set of
equations of motion for such layers. Since the appearance of Prandtl’s classical paper,
a great deal of effort has been devoted to boundary-layer studies. The results have
been discussed in practically all fluid-mechanics textbooks, and at greater length in
numerous specialized monographs and survey papers. (As typical examples we may
mention the books we have repeatedly cited above, by Monin and Yaglom (1971,
Sect. 1.4) and by Landau and Lifshitz (1987, Sect. 39). Examples of special litera-
ture devoted to boundary layers include the survey by Nickel (1973), monographs
by Goldstein (1938); Schlichting (1951); Loitsianskii (1962); Lagerstrom (1964);
Cebeci and Cousteux (1999), and the fundamental treatise by Schlichting and Ger-
sten (2000) representing the 8th English edition of Schlichting’s famous book, first
published in 1951 and republished many times in various countries (in particular
in 9 German and 8 English editions, successively revised and enlarged). Note also
that in his survey of the early development of boundary-layer studies in Russia,
Loitsianskii (1970) mentioned that flows near solid bodies in moving fluids were
briefly considered in the early 1880s and 1890s by two famous Russian scientists D.
I. Mendeleyev and N. E. Zhukovskii (the latter name in non-Russian languages is
sometimes spelled in the French phonetic form, Joukowski) who both stressed the
great practical importance of such flows but did not propose quantitative models.

Now we consider the above-mentioned simple case of the boundary layer in a
two-dimensional parallel flow of fluid of small kinematic viscosity ν =μ/ρ having
constant velocity U in the Ox-direction, with a flat plate in the plane z = 0 with its
leading edge at x = 0 and its trailing edge at x = ∞. By definition of a two-dimensional
flow, the lateral velocity u2 = v is zero everywhere. A boundary layer will be formed,
in which the streamwise flow velocity u1 = u will change from u = 0 at z = 0 up to
some value practically indistinguishable from U at the upper edge of the layer. At
a sufficiently large value of x, L say, the Reynolds number Re = UL/ν will be large;
therefore it is natural to expect that the thickness δ of the boundary layer at x = L,
compared with L, will be small.5 Within the boundary layer, δ is a typical length
scale in the Oz-direction, while L is a typical length scale in the Ox-direction. U is
the typical scale of velocity anywhere in the flow. Therefore in this layer ∂2u/∂z2

will have the same order as U/δ2 and thus the main viscous term of the first N-S

5 It seems natural to expect that the thickness δ will decrease with the increase of flow viscosity (a
proof of this statement will be presented somewhat later). Note also that the value of δ cannot be
determined uniquely since the boundary layer has no strictly defined upper edge and the velocity
u = u(x, z) of flow in this layer tends with increase of z to the free-stream velocity U only asymptot-
ically as z → ∞. Hence δ must be defined somewhat artificially. In practice it is often taken to be
equal to the distance from the plate at z = 0 up to the level z at which u attains a given, sufficiently
great fraction of U, e.g., 0.99 U (in this case δ is μ sometimes denoted by δ99). Some other possible
definitions of the thickness δ will be indicated later.
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equation ν(∂2u/∂z2) will have the order of vU/δ2. However for validity of the first
N-S equation, the main viscous term must have there the same order of magnitude
as the main its nonlinear term u∂u/∂x, evidently having the order of U2/L (while
all other terms will have considerably smaller orders of magnitude). Hence here
U 2/L ∝ vU/δ2, i.e.,

δ ∝
√
νL

U
= L√

Re
, Re = UL

ν
. (1.33)

(Alternatively, it is clear that if the value of δ at x = L depends only on U, L and ν, the
relation in Eq. (1.33) is the only dimensionally-correct one). We see that the relative
thickness of the boundary layer is proportional to (Re)−1/2, i.e. δ/L decreases rapidly
with increasing Re. In general,

δ ∝
√

vx

U
at the point x. (1.34)

Note that in the boundary layer on a flat plate, ∂u/∂z ∞ U/δ. Therefore the viscous
shear stress at the solid surface, τ(x) =μ(∂u/∂z)z = 0 is of order μU/δ so, using
Eq. (1.33), we find that the local skin friction coefficient Cf = τ/ρ U 2 varies as
(Re)−1/2.

Let us now briefly discuss the calculation of the two-dimensional (briefly, 2D)
velocity field {u(x, z), w(x, z)} of a boundary layer in steady flow over a long (and
infinitely wide) plate. The N-S and continuity equations have the forms

u
∂u

∂x
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂z2

)

,

u
∂w

∂x
+ w

∂w

∂z
= − 1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+ ∂2w

∂z2

)

,

∂u

∂x
+ ∂w

∂z
= 0,

(1.35)

where w = u3 (and, as above, u = u1). Recall now that within the boundary layer the
velocity u is equal to a finite fraction of the free-stream velocity U and thus it has
the same order as U. Hence here ∂u/∂x and ∂u/∂z have the orders of U/L and U/δ
respectively. Thus integrating the third Eq. (1.35) with respect to z would show that
within the boundary layer the velocity w has the order of δ(U/L) = (δ/L)U, i.e. w is
approximately (Re)1/2 times less than u. Further, analyzing the second Eq. (1.35) it is
easy to show that all its terms, with the exception of the term containing ∂p/ ∂z, have
orders not greater than U2δ/L2 = (U2/L)(δ/L); hence for the equation to balance, the
term containing ∂p/ ∂z must also have an order not greater than this. Ignoring terms
of such low orders we can disregard the second Eq. (1.35) as a whole, using it only
to show that within the boundary layer ∂p/ ∂z = 0 to a good approximation, and thus
at any point of the layer p is equal the pressure in the free stream above this point.
Therefore in the first Eq. (1.35) the partial derivative ∂p/ ∂x can be replaced by dp/dx
and may be determined from the first Euler Eq. (1.4) of ideal-fluid dynamics.
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Taking into account that in a thin boundary layer v∂2u/∂z2 � v∂2u/∂x2, we obtain,
for the case where U = const., the following system of two equations determining
the velocity components u(x, z) and w(x, z) in the two-dimensional boundary layer
on a flat plate (by definition v = 0):

u
∂u

∂x
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
+ ν

∂2u

∂z2
,

∂u

∂x
+ ∂w

∂z
= 0. (1.36)

The pressure-gradient term should be a total derivative, dp/dx
These are the equations derived by Prandtl in the year 1904. They are to be

solved with the boundary conditions: u = w = 0 for z = 0, 0 ≤ x ≤ L; u(x, z) → U(x) as
z → ∞. (In the case of unsteady flow the first Eq. (1.36) will include a contribution
∂u/∂t to the left-hand side (the acceleration following the motion of the fluid) and it
will be necessary to supplement the spatial boundary conditions at z = 0 and z → ∞
by initial conditions at t = 0. However this case will not be considered here.

After the appearance of Prandtl’s paper of 1904 both Prandtl himself and some
other authors proposed several new derivations of Eq. (1.36) showing, in particu-
lar, how these equations must be modified to make them applicable to a number of
boundary layers more general than those considered in the original paper. In partic-
ular, it was then proved that, slightly modified, Prandtl’s equations are applicable
also to boundary layers in flows over surfaces of moderate curvature, such as air-
foils. Related results may be found in cited above monographs by Goldstein (1938);
Lagerstrom (1964); Loitsianskii (1962); Cebeci and Cousteux (1999), and Schlicht-
ing and Gersten (2000). Here we will discuss the numerical calculations of Blasius
(1908) for the flow which we have already discussed qualitatively: the boundary
layer on a very long and wide flat plate in the half-plane z = 0, x > 0, with steady flow
in the half-space z > 0 having everywhere constant velocity U in the Ox direction. In
such a flow the pressure p is the same everywhere; therefore the pressure-gradient
term may be omitted from the first Eq. (1.36). For simplicity Blasius assumed that
both the width D and the length L of the plate are infinite. Thus we will discuss here
the solutions of two simple equations

u
∂u

∂x
+ w

∂u

∂z
= ν

∂2u

∂z2
,

∂u

∂x
+ ∂w

∂z
= 0, (1.37)

which satisfy the conditions

u = w = 0 for z = 0, x ≥ 0; u → U as z → ∞ (1.38)

By virtue of the second Eq. (1.37), the “continuity equation”, both velocity
components u and w may be expressed in terms of the unique stream function
ψ(x, z)

u = ∂ψ/∂z, w = −∂ψ/∂x. (1.39)
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So that the calculations could be applied to boundary layers at any Reynolds number
and on any scale, Blasius chose to work in dimensionless variables: The above-
mentioned statement that u/U and w

√
x/Uv must depend only on the combination

in (1.33) corresponds to the following form of the stream function ψ :

ψ = √
νxUf (ζ ), where ζ = z

√
U/νx. (1.40)

The dimensionless z coordinate is proportional to z/δ, and the stream function has the
only possible dimensionally-correct form using the present independent variables.
We then have

u = Uf ′(ζ ), w = 0.5
√
νU/x(ζf ′ − f ). (1.41)

where w was obtained by integrating the continuity equation. Substituting the two
Eqs. (1.41) into the first Eq. (1.37), we obtain the following differential equation of
the third order for the function f (ζ ):

ff ′′ + 2f ′′′ = 0 (1.42a)

while (1.38) leads to following boundary conditions for this equation

f (0) = f ′(0) = 0, f ′(∞) = 1. (1.42b)

Three boundary conditions are necessary and sufficient for determination of the
unique solution of the third-order differential Eq. (1.42a). Note that Eqs. (1.41) and
(1.40) show that the vertical profiles of velocities u(x, z) and w(x, z) in laminar
boundary layers on a large horizontal flat plate at different values of parameters U, ν
and x will always be (geometrically) similar to each other. Also, if in Eq. (1.40) the
combination νx is replaced by 2νx, then all the subsequent arguments will undergo
only some trivial changes but the final equation replacing (1.42a) will have the slightly
simpler form:

ff ′′ + f ′′′ = 0 (1.42c)

(with boundary conditions. The form (1.42c) is now used more frequently than
Blasius’ Eq. (1.42a) in both current research and textbooks, for example the com-
paratively new popular books of Drazin and Reid (1981); Schlichting and Gersten
(2000) and Schmid and Henningson (2001)).

In his numerical solution of Eq. (1.42a) with boundary conditions (1.42b) Blasius
(1908) represented f (ζ ) by a power series near ζ = 0 and by an asymptotic series for
ζ → ∞ and then combined these two representations. Some later authors used more
accurate numerical methods, but all led to results close to those found by Blasius;
see, e.g., again the above-mentioned books by Goldstein (1938); Lagerstrom (1964);
Cebeci and Cousteux (1999), and, first of all, the most complete book of Schlichting
and Gersten (2000) and references therein.6 Given the solution for f (ζ ), profiles

6 Note, in particular, that an exact solution of Eq. (1.42a) under conditions (1.42b) was obtained
long ago by the famous mathematician Weyl (1942).
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Fig. 1.1 Comparison of the
computed by Blasius (1908)
profiles of the longitudinal
flow velocity u(x, z) in the
boundary layer on a flat plate
with given by experimental
data of Nikuradze (1942)
describing the results of his
measurements made in a
laboratory boundary layer on
a horizontal plate placed in a
big wind tunnel

Fig. 1.2 Blasius’ computed
z-profile of the vertical flow
velocity w(x, z) in the
boundary layer over a flat
plate

of velocities u(z) and w(z) can be computed and compared with experimental data:
This was a useful check on the approximate numerical method used by Blasius.
Some early measurements of velocities in the boundary layers on a flat plate at
z = 0 will be briefly discussed at the end of Sect. 2.1 (see, in particular, Fig. 2.4
there). In addition to this, an expressive early example of the comparison of wind-
tunnel measurements of u(x, z) in a flat-plate boundary layer with the results of
numerical computations is shown in Fig. 1.1. Here Blasius’ computed values of the
function u(ζ )/U are compared with rather accurate experimental data of Nikuradze
(1942). The agreement is excellent.7 Blasius’computations of the normalized vertical
velocity w

√
x/vU shown in Fig. 1.2, which also agrees rather well with the much

less numerous available measurements.
For the purposes of this book, we do not need to discuss Blasius’ pioneering

results, or later and more extensive computations of laminar boundary layers, in
more detail. Somewhat more attention will be paid here to the determination of the

7 This remarkable figure was included in the first German edition of the well-known book by
Schlichting (1951) and then it was reproduced in all revised re-publications of this book and in
many other books and survey papers dealing with flat-plate boundary layers.
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boundary-layer thickness δ representing the main vertical (i.e., normal to the plate)
length scale of the boundary-layer on a flat plate.

The question about the evaluation of the thickness δ, which was already briefly
broached above, where formula (1.34), following from dimensional analysis, was
given for the x-dependence of this thickness (equated there to the height δ99 at which
u(x, z) = 0.99U). However this formula was incomplete since there was omitted the
unknown numerical coefficient (which could not be found by dimensional analysis).
The results of Blasius’ calculations give the opportunity to compute a more exact
value of δ = δ99. In fact Blasius did this computation and; it showed that the thickness
of a flat-plate boundary layer is

δ ≈ 5

√
νx

U
. (1.43)

The numerical factor is not an exact integer.
Let us remember that Eq. (1.43) refers to a rather arbitrary definition of boundary-

layer thickness δ = δ99. This definition of δwas widely used in boundary-layer studies
during a number of years but later some scientists began to stress that it has no
physical justification. It seemed more realistic for them to use some definition of
the boundary-layer thickness which is directly related to the vertical distribution of
the velocity u(x, z) within the flat-plate boundary layer and thus has some definite
physical meaning. As a result at least three new definitions of the flat-plate boundary-
layer thickness were proposed. They are the so-called displacement thickness δ1,
momentum thickness δ2 and energy thickness δ3 defined by the equations:

δ1 =
∞∫

0

[

1 − u(z)

U

]

dz, δ2 =
∞∫

0

u

U

(
1 − u

U

)
dz, δ3 =

∞∫

0

u

U

(

1 − u2

U 2

)

dz.

(1.44)

Note that symbols δ∗ and θ are often used for the displacement and momentum
thicknesses, respectively.

Using the results of Blasius’ computations of the function u(x)/U, it is possible to
compute the values of all three boundary-layer thicknesses (1.44); these computations
led to the following results:

δ1 ≈ 1.72

√
νx

U
, δ2 ≈ 0.66

√
νx

U
, δ3 ≈ 1.04

√
νx

U
. (1.45)

Note that all these new boundary-layer thicknesses are considerably smaller than the
thickness δ = δ99 of Eq. (1.43). The physical meaning of the thicknesses δ1 and δ2,
which explains the names used here, is discussed, e.g., in the book by Monin and
Yaglom (1971), pp. 50–52; for more information about all three thicknesses, see the
book by Schlichting and Gersten (2000).

Above, the Reynolds number of the boundary-layer flow on a flat plate of length L
was defined as Re = UL/ν, while near a point with given value of x the combination
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Re = Ux/ν was used as the local Reynolds number. However, for discussion of local
properties the length scale chosen is usually the local boundary-layer thickness, so
the most relevant Reynolds number is based on that thickness is most suitable, but
in this case it will be necessary for the researcher to decide which of the four above
definitions of the length δ is the most relevant.

It was noted above that in the early investigations of the boundary-layer flows
only the thickness δ = δ99 was commonly used. One of the earliest measurements
of the dependence of this thickness on x in a good laboratory model of the Blasius
boundary layer was performed by Hansen (1928) whose results will be shown in
Fig. 2.4 of Sect. 2.1. These results at small and moderate values of x agree quite well
with Eq. (1.43) confirming that δ grows with x as

√
x (only the numerical coefficient

in Eq. (1.43) found by Hansen was closer to 5.5 than to 5.0 but such small difference
was, of course, not striking at all when results of so early and difficult laboratory
measurements were considered). Much more important was Hansen’s discovery that
the validity of Eq. (1.43) was confirmed only at not too large values of x, while at
larger x the growth of δ with x became much faster than was predicted by Eq. (1.34).
This circumstance will be explained in Sect. 2.1.

Up to now we have considered only boundary layers on flat plates, the velocity
outside the boundary layer (and therefore the pressure) being the same everywhere.
A more complicated problem arises when the speed of flow over a flat plate at z = 0,
x ≥ 0, (or a body of finite thickness near the (x, z) plane) varies as U = U(x). Here
the first Eq. (1.37) will include the additional term U∂U/∂x on the right-hand side
indicating that the pressure p(x) in the flow above the plate depends on x. On the other
hand the second Eq. (1.37) and the boundary conditions (1.38) in such cases have the
same forms as in the case of Blasius’ boundary layer. The second Eq. (1.37) implies
the possibility of expressing the velocities u and w in terms of the stream function
ψ(x, z) by Eq. (1.39) Moreover, the boundary conditions (1.38) and the arguments
leading to Eqs. (1.40), (1.41) and to the boundary conditions (1.42b) for the function
f (ζ ) undergo now almost no modifications, but the basic Eq. (1.42a) determining
this function will now include an additional term (or terms) produced by the term
U∂U/∂x in the first Eq. (1.37) and depending on the function U(x). Theoretical
studies of boundary layers in streamwise-varying flows yielded many papers, books
and monographs, including, in particular, the papers by Falkner and Skan (1931);
Hartree (1937); Goldstein (1939) and Mangler (1943), and special review sections
in the books of Goldstein (1938), Chap. IV, Drazin and Reid (1981), pp. 231–233,
Lagerstrom (1964), Sect. B.14, Panton (1996), Sect. 20.5, Cebeci and Cousteux
(1999), Sect. 4.3, and Schlichting and Gersten (2000), Sect. 7.2. If the external-flow
velocity is a function of x, Eq. (1.42a) or (1.42c) for the stream function are replaced
by a more general equation of the form:

f ′ ′′ + α1ff ′′ + α2 − α3(f ′)2 = 0, (1.46)

where α1, α2 and α3 are three constants but the function f (ζ ) satisfies the same
boundary conditions, (1.42b). There was much interest in a special case, the so-
called Falkner–Skan boundary layers to which correspond equations of the form
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(1.46) where either α1 = 1 or α1 = 2, but in both cases α2 =α3 =β (the letter β is
traditionally used here). If α1 = 1, we obtain

f ′ ′′ + ff ′′ + β[1 − (f ′)2] = 0, (1.46a)

While if α1 = 2 coefficient 2 must be added to the second term of the left side, as
required by Eq. (1.46). (The two versions of this equation naturally correspond to
the two versions (1.42a) and (1.42c) of the main equation of Blasius’theory of the “flat
plate” boundary layer and again are due to two very similar possible normalizations
of the stream function ψ and the z-wise coordinate ζ). In the extensive literature on
laminar boundary layers both forms of Eqs. (1.42a) and (1.46a) may be found; in fact
these forms lead to very close results differing only by some normalizing factors. Let
us also note that the third form of the Falkner–Skan equation was used in the book
by Cebeci and Cousteux (1999), p. 65, where coefficient β is replaced by coefficient
m directly connected with the pressure gradient in the internal flow (and in the case
of constant pressure gradient coinciding with coefficient m in Eq. (1.47), below).

The Falkner–Skan Eq. (1.46a) withβ = 0 clearly describes Blasius’boundary layer
on a flat plate in a flow of constant velocity parallel to the plate. For 0 <β < 1 Eq.
(1.46a) corresponds to the boundary layer in a flow past a two-dimensional wedge
where dp/dx < 0—i.e. the velocity U(x) increases with x – while forβ < 0 this equation
describes the flow past a corner where dp/dx > 0 and the velocity decreases when x
increases (for more details see Schlichting and Gersten’s book; some information
about this matter may be also found in other monographs mentioned above Eq.
(1.46)). Note that if β �= 2, then Eq. (1.46a) corresponds to the boundary layer below
an external stream whose velocity U = U(x) obeys a power law:

U (x) ∼ xm, where m = β/(2 − β) and hence β = 2m/(m+ 1) (1.47)

(the case where β = 2 is here excluded; then m = ∞ and velocity U(x) grows expo-
nentially when x is increasing). Thus the Falkner–Skan equation is applicable to the
boundary layer above a flat plate if the external flow over a considerable region of
the x-axis can be approximated well enough by a power law (1.47), and in this case
the value of β is connected with the exponent m of the velocity law by Eq. (1.47). We
see that 0 <β < 2 corresponds to favorable pressure gradients accelerating the flow,
while the Falkner–Skan profiles with β < 0 correspond to adverse pressure gradients
retarding the flow. In Fig. 1.3, taken from the book of Panton (1996), dimensionless
velocity profiles in Falkner–Skan boundary layers are plotted for a number of positive
and negative values of the parameter m. These profiles show the dependence of the
normalized streamwise velocity u(z)/U on the normalized distance from the surface
η = z

√
(U/vx ). Here U(x) is the external flow velocity and u(z) is the velocity at

the point (x, z) within the boundary layer. The profile for m = 0 is of course Blasius’
velocity profile from Fig. 1.2, repeated for comparison, while graphs for positive
and negative values of m correspond to boundary layers in flows with favorable and
adverse pressure gradients, respectively.

Some solutions of Falkner–Skan Eq. (1.46a) and of more general Eq. (1.46) were
considered in Sect. 7 of Schlichting and Gersten’s book, Sect. 4.2 of the book of
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Fig. 1.3 Longitudinal
velocity profiles u(x, z)/U (x)
in Falkner–Skan laminar
boundary layers with mean
velocity U (x) ∼ xn at
different values of the
exponent m. (After Panton
(1996))

Cebeci and Cousteux, and in the other books and papers cited above Eq. (1.46).
Note also that mathematical properties of Eq. (1.46a) with β ≥ 0 were studied by
Weyl (1942) who found their exact solutions in cases where β = 0 (as mentioned
above) and β = 1/2, while for other β > 0 he developed very effective methods for
numerical solution of these equations. Moreover, the form of the Falkner–Skan
velocity profile u(z)/U corresponding to very large values of β was additionally
computed by Lagerstrom (1964), pp. 125–129 (see also Drazin and Reid (1981),
pp. 231–232) who also explained the physical conditions in which such a flow may
arise.
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Chapter 2
Basic Experimental Facts and Introduction
to Linear Stability Theory

2.1 Concept of Turbulence; Transition to Turbulence in Tubes,
Channels, and Boundary Layers

The difference between laminar and turbulent regimes of flow is revealed in a number
of phenomena which are of great significance for many engineering problems. For
example, the action of a flow on rigid walls (i.e., friction on walls) in the case of a
turbulent regime is considerably greater than in the case of a laminar regime (since
the transfer of momentum in a turbulent medium is much more intense). The presence
of irregular fluctuations of velocity leads also to a sharp increase in mixing (transfer)
of heat or mass as well as momentum: extremely intense mixing is often considered
as the most characteristic feature of turbulent motion. The increase in mixing implies
an increase in the apparent diffusivities of the fluid (viscosity, thermal conductivity,
etc.). For all these reasons, the determination of the conditions of transition from
a laminar to a turbulent regime is a very pressing problem. Moreover, finding the
mechanism of the initiation of turbulence must surely aid our understanding of its
general nature and facilitate the study of the laws of turbulent flow, which are of
great importance in practical work.

Unfortunately, many features of the transition from laminar to turbulent flow are
not completely clear at present. Different opinions have been expressed even about
the basic reasons why almost all flows become turbulent. For example, in 1934
the famous French mathematician Leray suggested that transition to turbulence is
related to a breakdown of validity of solutions of the three-dimensional Navier-
Stokes equations, which describe laminar fluid flow. However, this suggestion was
not supported by the majority of experts in fluid mechanics. Nowadays nearly all
scientists adhere to the old idea of Reynolds (1883), according to which a turbulent
flow is also described by the Navier-Stokes equations, but the smooth solution of
these equations, which corresponds to a laminar flow, becomes unstable to small
perturbations of the flow parameters, which are always present in real life.

At present, there is an enormous body of literature devoted to the study of hydro-
dynamic instability and transition to turbulence. This literature includes a number
of general expositions of the subject (e.g., by Lin (1961a); Chandrasekhar (1961);
Betchov and Criminale (1967); Joseph (1976); Goldshtik and Shtern (1977); Drazin
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and Reid (1981); Georgescu (1985), and Zhigulev and Tumin (1987)); several dozens
of monographs on various special topics related to this subject (the books by Eckhaus
(1965); Gershuni and Zhukhovitskii (1972); Kachanov et al. (1982); Yudovich
(1984); Straughan (1992); Koschmieder (1993), and Chossat and looss (1994) are
typical examples); many specialized collections of papers (see, e.g., Eppler and Fasel
(1980); Meyer (1981); AGARD Reps. (1984, 1994); Swinney and Gollub (1985);
Kozlov (1985); Arnal and Michel (1990); Hussaini and Voigt (1990); Reda et al.
(1991); Hussaini et al. (1992), Ashpis et al. (1993), Kobayashi (1995), and Corke
et al. (1996)); many dozens (if not hundreds) of review papers (those by Schlichting
(1959); Dryden (1959); Shen (1964); Drazin and Howard (1966); Stuart (1971a);
Reshotko (1976); Monin (1978, 1986); Morkovin (1988, 1991); Bayly et al. (1988);
Herbert (1988); Reed and Saric (1989); Kachanov (1994), and Reed et al. (1996)
are only a few examples); and several thousand journal papers and reports. Also,
many books and papers consider the general theory of stochastization and transition
to chaotic behavior for various classes of dynamic systems, which is apparently re-
lated to transition to turbulence in fluid flows (this relation will be discussed later in
this book). Of course, it is impossible to consider in one book, even if only briefly,
all topics related to instability and transition. Below we shall confine ourselves to
a short description of the most important (and firmly established) results for a few
quite simple flows which are often encountered in practice, and devote most of our
attention to the principles involved. For the details of the mathematical calculations
and a more complete description of the experiments, and also for matters relating
to more complex flows, the reader is referred to the aforementioned sources and/or
special articles.

The first results on the conditions for the transition to turbulence were obtained
by Hagen (1839). Hagen studied flows of water in straight circular tubes of fairly
small diameter and established that, with gradual decrease of the viscosity of water
(brought about by increasing its temperature), the velocity of flow for the same
pressure drop first increases to some limit and then begins to decrease again. The jet
of water issuing from the tube before this limit is reached has a smooth form, but
after passing through this limit it shows sharp fluctuations. Hagen also showed that
a variation in the nature of the flow may be effected by changing the pressure drop
(i.e., the mean velocity) or the radius of the tube; he could not, however, obtain any
general criterion for the transition from laminar to turbulent flow.

In the second half of the 19th century, important contributions to the understanding
of the nature of turbulent flows were made in france by B. de Saint Venant and J.
Boussinesq (see, e.g., Boussinesq (1877, 1897) and the discussion of the early history
of turbulence studies by Frisch (1995), Sect. 9.6.1). It was shown that turbulence is
produced by oscillatory motions of fluid elements which increase the fluid viscosity.
So, the important notion of the turbulent (or eddy) viscosity, which will be widely
used later in this book, was introduced very early on. However, the general criterion
for transition to turbulence was established only by Reynolds (1883) who used the
concept of mechanical similarity of fluid flows.

The Reynolds criterion is that the flow will be laminar so long as the Reynolds
number Re = UL/v (where U and L are typical velocity and length scales of the flow
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and v is the kinematic viscosity of a fluid) does not exceed some critical value Recr,
while for Re > Recr it will be turbulent. It is well known (and also is explained in
Sect. 1.3 of MY1) that Reynolds number has the significance of a ratio of charac-
teristic values of the forces of inertia and viscosity. The inertia forces lead to the
approach of initially remote fluid volumes and thus contribute to the formation of
small-scale inhomogeneities in the flow. The viscous forces, on the other hand, lead
to the equalizing of velocities at neighboring points, i.e., to the smoothing of small-
scale inhomogeneities. Thus for small Re, when viscous forces predominate over
the inertia forces, there can be no sharp inhomogeneities in the flow, i.e., the fluid-
mechanical quantities will vary smoothly and the flow will be laminar. For large
Re, on the other hand, the smoothing action of the viscous forces will be weak, and
irregular fluctuations—sharp, small-scale inhomogeneities—will arise in the flow,
i.e., the flow will become turbulent.

To verify this criterion experimentally and to measure the value of Recr for a
circular Poiseuille flow, Reynolds carried out a series of experiments with water
flows in glass tubes connected to a reservoir. In these experiments a source of colored
liquid was placed on the axis of the tube at the intake. For small Re, the colored water
took the form of a thin, clearly defined filament, indicating a laminar regime of flow.
As Re increased, at the instant of passing through the critical value, the form of the
colored jet sharply changed; at quite a small distance from the intake into the tube,
waves appeared in the filament; further on, separate eddies were formed, and towards
the end of the tube the whole of the liquid was colored. If in such an experiment
the flow is illuminated by an electric spark, it may be seen that the colored mass
consists of more or less distinct swirls which indicate the presence of vorticity. For
subcritical Re numbers close to Recr, transient phenomena are observed in a laminar
flow. According to Reynolds these phenomena consist of the intermittent appearance
of short-term bursts (“flashes”) of high-frequency fluctuations which fill the entire
cross section of the tube but only for fairly short sections of its length. In the initial part
of the tube, with Re > Recr, the flow has a similar character. However, as Re increases,
the length of the initial part where the flow is not entirely turbulent decreases rapidly;
at large enough values of Re, the flow usually becomes turbulent at a short distance
from the beginning of the tube.

Subsequent experimental studies of tube flows are very numerous; the work by
Schiller (1932, 1934); Binnie and Fowler (1947); Rotta (1956); Lindgren (1957,
1959–1963, 1965, 1969); Leite (1959); Wygnanski and Champagne (1973); Wyg-
nanski et al. (1975); Rubin et al. (1980); Teitgen (1980); Bandyopadhyay (1986);
Huang and Huang (1989); Breuer and Haritonidis (1991); Darbyshire and Mullin
(1995), and Draad et al. (1995) are just typical examples. Interesting data were also
obtained by O’Sullivan and Breuer (1994) from direct numerical simulations of tube
flows; an excellent presentation of some of the experimental results for such flows
can be found in the textbook by Tritton (1988), Sects. 2.6 ad 18.3. It was found in the
above-mentioned works that for Re > Recr, but in the intermediate (“transitional”)
regime described above, the mean fraction of the time in which a turbulent regime is
observed at a given point (the “coefficient of intermittency”) increases monotonically
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Fig. 2.1 Approximate dependence of the critical Reynolds number Recr for a tube flow on the
amplitude A (measured in some special units) of a disturbance produced by a short jet ejected in
the tube through a hole. The error bars indicate the range of amplitudes within which decay of the
disturbance or transition to turbulence are both possible. (After Darbyshire and Mullin (1995))

with increase of the distance x from the intake into the tube (or from another cross-
section where an initial disturbance was generated). This increase is explained by the
fact that the local velocity of the leading edge of a “turbulent flash” filling the whole
cross section exceeds the local velocity of its trailing edge. (Reynolds’ “flash” is now
usually called a “turbulent slug”; this name has superseded the earlier name of “tur-
bulent plug”.) This shows that laminar fluid near each end of the slug is brought into
turbulent motion and makes the slug longer. As a result, some slugs occasionally over-
take others and then the two coalesce to form a single, longer slug. It was also found
by Wygnanski and his collaborators that two different types of intermittent turbulent
formations can occur in a circular tube. The first type is represented by the above-
mentioned slugs and is usually caused by small disturbances in the boundary layer at
the initial portion of the tube wall. The slugs usually appear at relatively large values
of Re (most often above 3000, if Re = UmD/v is formed from the flow velocity aver-
aged over the tube cross-section,Um, and the tube diameter D). The formations of the
second type are called “turbulent puffs”; they are generated by larger disturbances at
the entrance of the tube and can be observed at lower values of Re. Both the puffs and
the slugs can be also produced by artificial disturbances within the fully developed
Poiseuille flow (see, e.g., the papers by Darbyshire and Mullin, by Draad et al. and
Fig. 2.1). At small enough values of Re and small amplitude of the initial disturbance,
puffs generated through an artificial disturbance eventually decay and the flow reverts
to laminar behavior, while at higher Reynolds numbers and/or disturbance ampli-
tudes, puff splitting occurs and two puffs are formed from one. At even higher values
of Re, the puffs coalesce and form a slug and then transition to developed turbulence
can occur (Rubin et al. (1980); Breuer and Haritonidis (1991); Darbyshire and Mullin
(1995)). The streamwise velocity variations are usually quite different for slugs and
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puffs (see, e.g., the above-cited papers by Wygnanski and Champagne, Wygnanski
et al., Teitgen, Bandyopadhyay, Huang and Huang, and Darbyshire and Mullin; ex-
amples of instantaneous velocity fields in planes interacting a slug are presented by
Draad et al.). Note also that the slugs usually appear randomly in time at a small dis-
tance from the tube intake, but under some conditions they can also originate period-
ically; see Tritton (1988), and Stassinopoulos et al. (1994) for possible explanations.

Reynolds’ experiments were carried out in tubes of various diameters with a
smooth intake from the reservoir. Variation of Re =UmD/v was accomplished by
varying the rate of flow or the viscosity of the water (by altering the temperature) or
by changing to a tube of different diameter D. The value of Recr in these experiments
was on the average close to 12,830. However, such results were obtained only by
exercising the greatest care to eliminate disturbances in the water entering the tube.
Reynolds’ investigations showed that the value of Recr, corresponding to the transi-
tion from laminar to turbulent flow, depends considerably on these disturbances (or,
as we say, the “initial turbulence,” which is determined principally by whether the
entry to the tube is sharp or streamlined). Therefore, Recr may prove to differ very
much between different experiments. If the tube entry is sharp, disturbances are pro-
duced by vortices separating from the leading edge. These disturbances are usually
characterized by relatively short-time, high-frequency fluctuations of velocity. Their
intensity U ′/Um (where U ′ is the typical magnitude of streamwise velocity fluctua-
tion) may be fairly large, but, if Re is low enough, the disturbances do not alter the
laminar nature of the flow and have no significant effect on the mean velocity profile
and the pressure drop. For such Reynolds numbers, the disturbances which arise
are attenuated as they travel downstream. If the Reynolds number is increased, then
at the instant that it attains its critical value (which depends on the intensity of the
disturbances and possibly on their scale and frequency), the disturbances suddenly
generate turbulence. It is found that when the value of Recr corresponding to transition
to turbulence is the smaller, the greater the intensity of the disturbances. References
to a number of successive experiments in which the transition to turbulence was
delayed to higher and higher values of Recr by reducing the intake disturbances by
various means can be found in MY1 on pp. 75–76 (this delay is called persistence
of the laminar regime). Here we only note that in the recent experiments by Draad
et al. (1995) the tube flow was laminar at Re = 53,000 while much earlier Pfenninger
(1961) showed that a tube flow can be fully laminar even at Re = 100,000.

We see that the Reynolds number in itself is not a unique criterion for transition to
turbulence; for flow in a tube it is apparently impossible to find a universal value Recr

such that for Re > Recr the flow is bound to be turbulent. The maximum Reynolds
number at which the initial disturbances decay and hence laminar flow is maintained
is a function of U ′/Um, Recr(U ′/Um) say, which decreases with increasing U ′/Um.
To show this, Darbyshire and Mullin (1995) studied a laminar water flow in a long
tube where disturbances of several types having various amplitudes A were injected
into the flow through a hole (or several holes) in the tube placed 70D downstream
of the tube entry. They found that in this case the value Recr, such that at Re < Recr

the disturbances decay while at Re > Recr transition to turbulence occurs, decreases
with the increase of A, but the function Recr(A) is in this case “fuzzy” and not
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single-valued since at any Re there is a short range of amplitudes within which
either outcome is possible (see Fig. 2.1; similar graphs were also given in this paper
for some other types of disturbance).

The value of Recr depends, in general, not only on disturbance amplitude but
also on other characteristics of the initial disturbances and on the flow conditions
producing the disturbances. For example, since disturbances can be generated by
roughness of the inner surface of the tube, the value of Recr must depend on the tube
roughness and decrease with increasing roughness height. However, in this book we
shall not consider this effect (which is of importance not only for tube flows but also
for other flows along solid walls), and here we restrict ourselves to references only to
the old survey by Goldstein (1938) and the experimental investigations of roughness
influence on tube-flow transition to turbulence by Lindgren (1959–1963), Parts VII
and VIII. Some more recent studies of roughness effect will be mentioned later when
the stability of boundary-layer flows is considered.

Without knowing the degree of disturbance of the laminar flow, we can apply
only a rather weak criterion to indicate the conditions under which only a laminar
regime of flow is possible. To find this criterion we must determine the Reynolds
number Recr min which Corresponds to the transition from laminar to turbulent flow
for the largest possible level of disturbance of the laminar flow at the intake into the
tube. For Re < Recr min the flow will always remain laminar, i.e., any disturbance,
regardless of its intensity, will be damped.

Experiments to measure Recr min were performed by Reynolds himself. Since in
these experiments it is necessary to introduce into the tube fluid that is as disturbed
as possible, the method of dye injection is clearly unsuitable here. As a result we
must determine the transition to turbulent regime in some other way(for example,
by the variation of the skin friction law which determines the dependence of the
mean velocity on the pressure drop). In Reynolds’ experiments the minimum critical
value of Re =UmD/v was found to be Recr min ≈ 2030. Values close to this (usually
lying between 1750 and 2300) were also obtained in subsequent investigations by
Binnie and Fowler (1947); Leite (1959); Lindgren (1957, 1959–1963); Sibulkin
(1962); Wygnanski et al. (1975); Breuer and Haritonidis (1991); and Darbyshire
and Mullin (1995). In particular, Wygnanski et al. and Breuer and Haritonidis found
that Recr min ≈ 2200, while Darbyshire and Mullin, who considered several types
of disturbances and take into account the fuzziness of the dependence of Recr on
disturbance amplitude, obtained a slightly smaller estimate, Recr min ≈ 1760.

Similar results were also found for flows in channels of rectangular cross-section.
Transition to turbulence in such flows was studied, for instance, by Davies and
White (1928); Sherlin (1960); Narayanan and Narayana (1967); Patel and Head
(1969); Karitz et al. (1974); Nishioka et al. (1975); Carlson et al. (1982); Kozlov
and Ramazanov (1980, 1984); Herbert (1983, 1984); Nishioka and Asai (1985);
Alavyoon et al. (1986); Klingmann (1989, 1992), and Klingmann and Alfredsson
(1990). In most of this work the aspect ratio (width-to-depth ratio of channel) was
high enough to justify regarding the channel flow as a plane Poiseuille flow (i.e.,
the flow between infinite parallel planes at z = 0 and z = H produced by a constant
pressure gradient dp/dx and having a parabolic velocity profile; see, e.g., pp. 34–35
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Fig. 2.2 “Turbulent spot” in
the transitional flow in a
water channel made visible
by addition of small
aluminium flakes to water.
(After Cantwell et al. (1978))

in MY1). In fact, the strict conditions for this are not clear and, as was stated in a
review paper by Herbert (1983), this may explain some part of the discrepancies in
the data from different laboratories. However, we will not dwell on this circumstance,
and for simplicity will call all the flows discussed below “plane Poiseuille flows”.

According to thorough measurements by Carlson et al. and Alavyoon et al. transi-
tion to turbulence in a plane Poiseuille flow occurs at a Reynolds number Re = UH1/v
(where H1 is the half-depth of the channel and U is the maximum velocity at
channel axis) slightly exceeding 1000; more precisely, according to those authors,
Recr ≈ 1100 for such flow. Nearly the same estimate Recr = 1000 was suggested by
Orszag and Kells (1980) on the basis of direct numerical simulations of the time
evolution of a plane Poiseuillc flow with some combinations of two- and three-
dimensional wave-like disturbances superposed on it. The available data also show
that the value of Recr can be considerably increased by reducing the disturbances in
the flow. Karnitz et al., by reducing U’/U to 0.3 %, maintained the flow laminar up
to Re = 5000 and Nishioka et al. found that at a level of 0.05 % plane Poiseuille flow
remains laminar up to Re ≈ 8000. Patel and Head (1969) were apparently the first to
note that the transition of a plane Poiseuille flow to turbulence begins with the sudden
appearance of bursts of intense velocity fluctuations in the form of isolated “turbulent
spots”. (Such sopts were in fact detected as far back as the early Fifties in bound-
ary layer transition, which will be considered below.) Later the flow-visualization
studies by Carlson et al. (1982) and Alavyoon et al. (1986), hot-wire measurements
by Henningson and Alfredsson (1987), Klingmann (1989, 1992), and Klingmann
and Alfredsson (1990), and numerical simulations of disturbance development by
Henningson et al. (1987); Henningson (1989), and Henningson and Kim (1991) re-
vealed many additional features of these spots and of the transition process initiated
by them in a plane Poiseuille flow (see, e.g., and excellent picture of a turbulent spot
in a water flow resembling plane Poiseuille flow in Fig. 2.2 taken from the paper by
Cantwell et al. (1978)), It was shown in papers mentioned above that after the first
spots appear and begin to expand, new spots continue to appear (i.e., the turbulent
region is spreading) and then the spots begin merging with each other; as a result



36 2 Basic Experimental Facts and Introduction to Linear Stability Theory

the whole flow becomes turbulent. Many other interesting details of the structure of
turbulent spots have been deduced from experimental and numerical data; some of
them will be mentioned below.

Let us now consider data on transition to turbulence of a plane Couette flow
between two infinite parallel planes, one of which is stationary and the other moving
with constant velocity U. This flow has a linear velocity profile (see, e.g., pp. 33–34
in MY1), and is the simplest exact solution of the Navier-Stokes equations, but it is
more difficult to make a satisfactory laboratory test rig for plane Couette flow than
for flows in a circular tube or rectangular channel. Therefore it is not surprising that
there have not been very many successful laboratory studies of a plane Couette flow.
The first of them were apparently due to Reichardt (1956, 1959), and Robertson
(1959); the more recent experiments that include attempts to determine the value of
Recr for plane Couette flow are those by Leutheusser and Chu (1971); Aydin and
Leutheusser (1979, 1987, 1991); Tillmark and Alfredsson (1991, 1992); Daviaud
et al. (1992); Dauchot and Daviaud (1994, 1995), and Malerud et al. (1995), see also
Bech et al. (1995) and the summary report by Tillmark (1995) where the description
of some other experiments can be found. There have also been attempts to estimate
the critical Reynolds number for a plane Couette flow from studies of circular Couette
flow between rotating cylinders of radii R1 and R2 >R1 at different dimensionless
widths γ = (R2 − R1)/R1 by examination of the limit of Recr as γ → 0 (Wendt
(1933); Taylor (1936b); Tillmark and Alfredsson (1992)). Moreover, plane Couette
flows can now be rather accurately simulated numerically (see the description of
several such simulations by Bech et al. (1995)). Such simulations were used for the
determination of Recr and for detailed study of the transition process by Orszag and
Kells (1980), and by Lundbladh and Johansson (1991).

The difficulties in setting up a plane Couette flow experimentally may explain part
of the spread in measured values of Recr . Another part is apparently due to the absence
of a rigorous and unique definition of Recr . Usually this number is determined in the
experiments by introducing some particular disturbance in the flow and examining its
further development. It is, as a rule, assumed that at small enough Re the disturbance
must decay; beginning from some value of Re it produces a spot similar to that
shown in Fig. 2.2; and only if Re ≥ Recr will the spot persist after the disturbance is
removed. However, the value of Recr determined in this way can naturally depend
on the nature and intensity of the disturbance.

Values of Recr for a plane Couette flow obtained before 1990 were in the wide
range of 260–750, where Re is defined in terms of half the channel depthH1 and half
the velocity differenceUm. (For example, according to Leutheusser and Chu (1971);
and Aydyn and Leutheusser (1979, 1987, 1991), Recr ≈ 260–300, while according to
Reichardt (1956) Recr ≈ 750). The early numerical-simulation study by Orszag and
Kells (1980) showed only that Recr < 1000. The results of more recent experiments
are considerably closer to each other. So, the experimental results by Tillmark and
Alfredsson (1992), and Tillmark (1995) agree excellently with the results obtained by
Lundbladh and Johansson (1991) from direct numerical simulation: all these studies
lead to the conclusion that apparently Recr ≈ 360 (the same estimate was given by
Bech et al. (1995)). The close estimate Recr ≈ 370 was found in two quite different
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experiments by Daviaud et al. (1992), and Malerud et al. (1995). However Dauchot
and Daviaud (1994, 1995), who used the same apparatus as Daviaud et al., pay atten-
tion to the difference between two critical Reynolds numbers: the number Recr min

such that at Re < Recr min any disturbance must decay, and the number Recr guaran-
teeing the possibility of formation of a persistent spot. Dauchot and Daviaud stressed
that at Re > Recr min a persistent spot is formed only If the disturbance amplitude A
exceeds some critical value Acr , and they studied the dependence of A =Acr(Re) on
Re. It was-found that this dependence is well represented by a power law of the form
Acr(Re) ∝ (Re−Rec)−α where Rec ≈ 325 and α > 0.Hence Acr(Re) → ∞ as Re →
Rec and this gives grounds for concluding that Recr min = Rec ≈ 325. The difference
between Recr min and Recr , and the dependence of the effect of the disturbance on its
amplitude, can explain most of the scatter in experimental values of Recr for a plane
Couette flow. The flow-visualization studies by Tillmark and Alfredsson, Deviaud
et al., and Dauchot and Daviaud, the precise optical measurements by Malerud et al.,
and the careful treatment by Lundbladh and Johansson of data from direct numerical
simulations in the presence of superposed disturbances, have revealed many details
of the transition to turbulence. All these studies showed that the general features
of transition in a plane Couette flow are qualitatively similar to those for transition
in a plane Poiseuille flow, though quantitative characteristics in the two flows are
somewhat different.

Results for transition to turbulence similar to those given above have been obtained
in studies of boundary layer flows around solid bodies. Transition to turbulence in
the boundary layers on the wings and bodies of aircraft, and the bodies of ground
and marine vehicles, very strongly affects the drag and is therefore.of paramount
importance, especially for aviation. Moreover, transition plays an important role in
many other engineering processes. Therefore it is not surprising that an enormous
body of literature (which includes a great part of the material in review paper and
specialized collections referred to at the beginning of this section) is devoted to
boundary—layer stability and transition studies. Here we shall consider only the
simplest case of the boundary layer formed on a flat plate by a flow of constant velocity
U, flowing parallel to the plate; moreover, at present we shall restrict ourselves to
consideration of a few classical facts discovered rather early. Some results of more
recent and more refined experimental studies of transitions in boundary-layer flows
will be considered later, together with results of related theoretical investigations.

The Reynolds number of the boundary layer may be defined, e.g., by Reδ = Uδ/v,
where δ is the thickness of the boundary layer. Alternatively we may use the more
easily measured quantity Rex = Ux/v, where x is the distance from the leading edge
of the plate measured along the flow. The numbers Reδ and Rex are connected by a
functional dependence; for example, for a laminar flow without longitudinal pressure
gradient it is known that Reδ ≈ 5(Rex)1/2 (see, e.g., Eq. (1.49) in MY1). Proceeding
downstream, both Reδ and Rex increase, and at some point xcr , they attain the “critical
value” when the flow sharply changes its nature and becomes turbulent. Thus, for
x < xcr (more precisely, for Reδ < Reδcr and Rex < Rexcr) the flow in the boundary
layer will be laminar while for x > xcr (i.e., Reδ > Reδcr and Rex > Rexcr) it will be
turbulent. In the neighborhood of xcr a “mixed regime” is formed in which only
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discrete bursts of turbulence are observed; these arise at some points in the form
of turbulent spots which grow in size and coalesce with each other as they move
downstream. The appearance of turbulent spots leads to the realization, at points
near xcr, of alternating laminar and turbulent flow conditions. It is clear that at the
beginning of the transition region both the frequency of occurrence and the duration
of the turbulent state are quite small, while at the end of it the flow becomes laminar
only very rarely and briefly. It should be noted that the transition region can be quite
long, a significant fraction of xcr, especially if disturbances in the external flow are
weak.

We see that transition to turbulence in boundary-layer flows proceeds similarly
to transition in plane Poiseuille and Couette flows. Note that transition via turbulent
spots was in fact first discovered in boundary layers by Emmons (1951) and Emmons
and Bryson (1951); see, e.g., Schlichting (1959); Sect. 14, Elder (1960); and Coles
(1962). (Only a few rather old sources are indicated here since we restrict ourselves
to a rough, simplified description of the transition process. There is extensive exper-
imental and theoretical literature devoted to the study of turbulent spots, their origin,
structure, and evolution; some of the results obtained and a number of additional
references can be found, e.g., in the surveys by Tritton (1988); Sect. 18.2, and Riley
and Gad-el-Hak (1985); and in the recent theoretical paper by Conrado and Bohr
(1995).) The study of the appearance and subsequent evolution of “turbulent spots”
in plane Poiseuille and Couette flow was of course stimulated by the boundary layer
results.

The first measurements of the critical Reynolds number of a boundary-layer
flow were made quite early. In 1924 Burgers and Van der Hegge Zijnen, and in
1928 Hansen, made such measurements in wind tunnels (again see Schlichting (1959)
and also Fig. 2.4 in MY1, borrowed from Hansen’s paper). According to the data of
these authors (confirmed also by data from some subsequent investigations)

Rexcr = (Ux/v)cr ∼ 3 × 105 ÷ 5 × 105,

which corresponds to

Reδcr = (Uδ/v)cr ∼ 2750 ÷ 3500.

Later it was shown that, as in the case of flows in tubes and plane channels, the crit-
ical Reynolds number of a boundary layer depends considerably on the disturbance
level of the ambient flow. Depending on this level Rexcr may vary from 1 × l05 to al-
most 3 × l06 (see Fig. 2.3, which illustrates the dependence of Rex cr on U′/U, where
3U′2 is the mean square velocity fluctuation of the ambient flow). According to this
Figure (which is taken from a relatively old survey but on the whole agrees satisfac-
torily enough with modern data) Rex cr min is of the order 105 for boundary-layer flow
and Rexcr tends to a definite limit (of the order 3 × l06) as the intensity of existing
disturbances tends to zero. Note however that in Fig. 2.3 the disturbances are charac-
terized only by the corresponding mean square velocity fluctuation, measured with a
hot wire, though in fact Rexcr can also depend on some other disturbance character-
istics (e.g., on typical length scale; see in this respect Eq. (2.1) below). Furthermore
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Fig. 2.3 Dependence of the critical Reynolds number for the boundary layer on a flat plate on the
free-stream disturbance level (After Dryden (1959)). (The different symbols on the figure denote
the data of different investigators)

sound waves in the wind tunnel can affect transition: a hot wire can record velocity
fluctuations due to sound waves as well as turbulence, but a global mean square
velocity fluctuation may not be an adequate standard of comparison for results from
different tunnels with different mixes of sound waves and true turbulence.

Stimulation of transition to turbulence by disturbances in the flow also explains
the fact that the critical Reynolds number is considerably smaller for flow along a
rough plate with natural or artificial irregularities. According to numerous measure-
ments, even one isolated wall irregularity can bring about the transition of a laminar
houndary layer into a turbulent one, provided that this irregularity is large enough.
Even more important is the effect of a number of irregularities scattered over the
whole plate (see also a similar remark about the roughness effect on tube-flow tran-
sition above in this section, the references there, and the reviews and collections of
papers cited at the beginning of the section, which often discuss the wall-roughness
effect; Morkovin (1990b) is only one example of such discussion). The value of Rexcr

is also changed considerably by the wall curvature and/or even quite small longitu-
dinal pressure gradients in the incident flow (positive (adverse) pressure gradients
usually destabilize the flow while negative (favorable) gradients as a rule increase
stability). In accord with the suggestion by Morkovin (1969), the strong effect of the
above-mentioned factors on boundary-layer transition is often called “receptivity”
(to external disturbances, roughness, wall curvature, longitudinal pressure gradients,
etc.); in this respect see also Sect. 2.92 of this. book. However, here we shall only
refer again to the literature indicated at the beginning of this section, and briefly
consider one special effect produced by a longitudinal pressure gradient which is
often of great practical importance and can also shed some light upon the possible
Influence of disturbance scale on Rexcr.
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Fig. 2.4 Schematic form of
the streamlines (dotted) and
the velocity profiles (solid) at
different points in the flow
past a right cylinder

2.2 Flow Past Solid Bodies; Boundary-Layer Separation
the Drag Crisis and the Dependence of Recr on Intensity
and Length Scale of Available Disturbances

Transition to turbulence in a flow of viscous fluid past a solid body may occur not
only in the boundary layer but, alternatively, in the wake behind the body, whether
the wake begins at the trailing edge (streamlined body) or at separation points part
way along the body (bluff body).

The formation of the turbulent wake of a bluff body is generally connected with
the retarding action of a positive longitudinal pressure gradient in the flow. Let us
consider, for example, a right circular cylinder with an irrotational flow perpendicular
to its axis (see Fig. 2.4 which shows the flow past the upper part of the cylinder).
Outside the boundary layer the fluid may be assumed ideal and its motion irrotational.
The streamlines of this potential motion are closest together on the upper part of
the cylinder (point C) where the tangential velocity attains a maximum. By the
well-known Bernoulli equation

u2/2 + p/ρ = const

the pressure in the outer flow will attain a minimum at C, so that it will decrease
along AC and increase along CE. Such changes in the pressure along the surface of
the body will also take place in the boundary layer (since across the boundary layer
the pressure hardly varies). Consequently, on CE the fluid in the boundary layer
must move in the direction of increasing pressure, which leads to retardation. This
retardation will have the strongest effect, of course, on the fluid particles moving
very close to the surface of the cylinder, i.e., possessing the least velocity. At some
point D downstream from C, these particles will come to a standstill, and beyond D
they will be moving backwards with respect to the fluid particles further from the
cylinder surface which have not been so strongly retarded. The formation of reversed
flow on the surface of the body beyond D forces the outer flow away from the surface
of the cylinder; and “separation of the boundary layer” from the surface occurs, with
formation of a dividing stream-surface DF in the fluid. It is clear that the velocity U
decreases sufficiently rapidly beyond C, separation of the boundary layer is bound to
occur. Even if the boundary layer is laminar before separation, after separation it will
behave as a free mixing layer and will quickly become turbulent (for considerably
smaller Re than for an unseparated boundary layer since ther presence of the wall has
a stabilizing effect on the flow.) The dividing stream-surface DF, which at infinite
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Reynolds number is a surface of tangential discontinuity of the velocity, is very
unstable (see below) and is quickly transformed into one or more vortices. In the
region FDE beyond the dividing stream-surface a large-scale vortex is formed close
to the cylinder, with a second such vortex being formed on the lower part of the
cylinder. These vortices separate in turn from the cylinder, are carried downstream,
and gradually are dispersed; in their place new vortices are formed (see, e.g., Photos
42–48 in the album by Van Dyke (1982)).

As a result, a turbulent wake is formed behind the body in which the motion is
rotational, while outside the layer the motion is irrotational (i.e. potential). In fact, the
fluid outside the boundary layer may be assumed to be ideal; it follows, therefore,
that during its motion, the circulation of the velocity along any closed contour is
conserved, and hence in the case of steady motion the curl of the velocity is constant
along streamlines. Therefore, it is evident that a region of turbulent rotational flow
at a distance from a body can only arise when streamlines leave the boundary layer
(in which the motion will be rotational due to the viscosity), i.e., when the fluid from
the boundary layer is mixed with that of the region outside it.

It is also clear that the streamlines cannot leave the region of flow in which the
curl of the velocity is nonzero, i.e., the region of the turbulent wake (although they
can enter the wake from the region of potential flow). In other words, fluid can
flow into the turbulent wake from the potential (irrotational) region but cannot flow
out of the turbulent wake. At the same time, fluctuations of velocity can penetrate
from the truly-turbulent wake into the region of potential flow, although with con-
siderable attenuation. In fact, for potential motion of an incompressible fluid, the
dynamical vorticity equations (obtained by applying the operation of taking the curl
to the Navier-Stokes equations of motion) will be satisfied identically. Therefore,
in this case the flow will be described by the single condition of incompressibil-
ity ∂ui/∂xi = 0. This condition is equivalent to Laplace’s condition ∇2φ = 0 for
the velocity potential φ, which defines the velocity: ui = ∂φ/∂xi. Let z be the
coordinate across the wake. Then the field φ(x, y, z), which describes the velocity
fluctuations, may conveniently be decomposed into periodic components of the form
φ = φ0(z) exp [i(k1x + k2y)]. From ∇2φ = 0, it follows that d2φ0/dz2 = k2φ0,
where k = (k2

1 + k2
2)1/2 is the wave number, inversely proportional to the horizontal

(Oxy-plane) length scale of the periodic fluctuations under consideration. Discard-
ing the physically meaningless solution for φ0 which increases with increasing z,
we find that the attenuation of the fluctuation amplitude in the region z > 0 is given
by the factor e−kz. Therefore, the quicker the fluctuations are attenuated, the smaller
the scale. Consequently, at a sufficient distance inside the potential motion, only
comparatively smooth large-scale fluctuations arise. For such fluctuations the en-
ergy dissipation does not play a large role; thus almost all the dissipation in the flow
will take place in the rotational turbulent wake.1

1 The analysis described is due to Landau; see, e.g., Landau and Lifshitz (1987), Sect. 35, or any
of the numerous previous editions of this book. This analysis plays the central role in the detailed
investigations of the velocity field outside a turbulent region of the flow that were begun by Phillips
(1955) and Stewart (1956).
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Fig. 2.5 Dependence of the
drag coefficients of a sphere
and a circular cylinder on the
Reynolds number

The considerable energy dissipation in the whole region of the turbulent wake
leads to a considerable increase in drag of bodies having separated boundary layers.
As a rule, this drag will be the smaller the narrower the turbulent wake, i.e., the
further downstream separation occurs. For sufficiently large Reynolds numbers (but
assuming that the boundary layer remains laminar up to the separation point) the
drag coefficient Cw = W

0.5ρU2S
(where W is the total drag and S is the area of the

body or its cross section) is independent of Re because the position of the separation
point is independent of Re (as is found from the equation (∂u/∂z)z=0 = 0, in which it
may be shown that the Reynolds number does not occur). However, when we reach
the Reynolds number at which the boundary layer becomes turbulent just before the
separation point for a laminar boundary layer, separation will move downstream and
may be suppressed altogether: in this case the turbulent wake becomes considerably
narrower and the drag of the body decreases sharply (perhaps to a small fraction of
its previous value). This phenomenon is called the drag crisis. It is explained by the
fact that the momentum transfer within a boundary layer increases sharply when it
becomes turbulent. Therefore, the entrainment of fluid from the high-speed outer
flow by the boundary layer is considerably increased, so that the fluid particles in
the boundary layer can penetrate much further in the direction of increasing pressure
than in the case of a laminar boundary layer.

The drag crisis in the case of flow past a sphere was first observed by Eiffel (1912).
The transition from large to small drag occurs in this case for Reynolds number
Re = UD/v (where D is the diameter of the sphere) close to 5.0 × 105; according to
Eiffel the drag coefficient Cw decreases approximately from 0.5 at Re = 105–0.15
at Re = 106. Later, it was also found that the minimum value of Cw in very careful
experiments is less than 0.1. The coefficient Cw for a circular cylinder behaves in
the same way. The dependence of the drag coefficient for a sphere and a cylinder
on Re is shown in Fig. 2.5. It is clear from the discussion in Sect. 2.1 that the drag
crisis will arise the earlier the greater the disturbance level of the ambient flow, i.e.,
the smaller the critical Reynolds number for transition to a turbulent regime in the
boundary layer. This is confirmed clearly by the experiments by Prandtl (1914) who
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achieved passage through the drag crisis in the flow past a sphere by fitting a wire
ring around the sphere, i.e., by introducing additional disturbances into the flow to
cause transition to turbulence in the boundary layer.

The necessary condition for separation of the boundary layer is an increase of
pressure in the direction of flow along some part of the surface of the body. This
condition is satisfied not only for flow past convex surfaces, but also in other cases,
e.g., for flow along a flat plate if the ambient velocity decreases with increasing
distance x from the leading edge, or flow in an expanding conical tube (diffuser) or
sharply bent tube.

The formation of the turbulent wake behind a solid body is just one case of the
transition to turbulence of free (unbounded) flows such as jets, wakes, and mixing
layers separating two unbounded flows of different velocities. Some remarks related
to the other cases will be made later in this book.

The separation of the boundary layer under the action of a negative pressure gradi-
ent may also explain to a certain extent the effect of disturbances in the ambient flow
on the value of Rexcr. We may assume that this effect is connected with the genera-
tion by disturbances of fluctuating pressure gradients, which leads to the formation
at some random points of unstable S-shaped velocity profiles (as at point E, Fig. 2.4)
stimulating the transition to turbulence. On the basis of this hypothesis, G.I. Taylor
(1936a) tried to estimate the form of the dependence of Rexcr on the disturbance
characteristics (later, Wieghardt (1940) simplified Taylor’s arguments).

Taylor proceeded from the approximate Karman-Pohlhausen theory of a laminar
boundary layer in the presence of a longitudinal pressure gradient dp/dx. According
to the theory the shape of the velocity profile at a given x depends only on a single
dimensionless parameter � = − δ2

vUρ
dp

dx
where δ is the boundary layer thickness.

In a constant-pressure turbulent boundary layer (on a flat plate) dp/dx = 0, where
now p designates the mean pressure, but fluctuations of pressure may also exist.
Taylor proposed that in this case not the mean pressure gardient (which is equal
to zero) but the root-mean-square (RMS) value of the fluctuating pressure gradient
is an important physical parameter. Therefore the character of the fluid motion at
a station x = constant is supposed to be determined in this case by the parameter
� = − δ2

uUρ
δp′
δx

(where p′ is the pressure fluctuation and δ/δx signifies the RMS value
of the derivative ∂/∂x). In other word, according to Taylor, the point of transition from
laminar to turbulent flow is determined by the parameter � attaining some critical
value �cr. But the equations of motion show that − 1

p

δp′
δx

must be of the same order

of magnitude as u′ δu′
δx

= 1
2
δu′2
δx

where u′ is the flucuation of the longitudinal velocity

in the ambient flow. Furthermore, we may put δu
′2
δx

∼ U ′2
λ

, where U′ is a RMS value
of the velocity fluctuations, and λ is the so-called Taylor miscroscale of turbulence
which is determined from the condition

(
δu′
δx

)2 = U ′2
λ2 (this scale will be used several

times in later sections of the book). The scale λ may be expressed in terms of the
external (integral) scale of turbulence L (which defines the typical length scale of
the largest eddies) as follows: the mean rate of energy dissipation ε ∼ v(δu′/δx)2

is proportional to vU ′2/λ2, but it is known that, for large values of U′L/v, it is also
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Fig. 2.6 Dependence of Recr on U ′
U

(
D
L

)1/5
for flow past a sphere

proportional to U′3/L (see, e.g., Sreenivasan (1995)). Consequently,

λ ∼ L

(
U ′L

v

)−1/2

,
1

ρ

δp′

∂x
∼ U ′2

λ
∼
(
U ′5

vL

)1/2

.

Taking into account that for a laminar boundary layer on a flat plate δ ∼ (vx/U )1/2,
we obtain

� = − δ2

vUρ

δp′

δx
∼
(
U ′

U

)5/2( x

L

)1/2
(
Ux

v

)1/2

.

Thus, taking Rexcr = ϕ(�cr), we obtain

Rexcr =
(

Ux

v

)

cr

= F

[
U ′

U

( x

L

)1/5
]

. (2.1)

We may take the length L in this equation to be some characteristic dimension of the
device generating the turbulence (for example, if the turbulence is set up by a grid in
a wind-tunnel, then, not too far downstream, L will be roughly equal to the distance
between the rods of the grid). We see that according to this theory Rexcr depends not
on U′/U alone but on the product (U ′/U )(x/L)1/5

The result (2.1) has been deduced here for the case of flow past a flat, plate.
However, it may be generalized to flows past other bodies by replacing the coordinate
x with s, the distance from the point where the flow impinges on the body to the point
of transition of a boundary layer from a laminar to a turbulent regime, reckoned along
the contour of the body, or by some characteristic dimension of the body D, and by
using, instead of Rex = Ux/v, Res = Us/v or Re = UD/v. In spite of the lack of rigor
in its deduction, this result is in very good agreement with experimental data (see,
e.g., Fig. 2.6 which gives the data of Dryden et al. (1937), who measured the value
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of Recr for boundary layers on spheres of different radii with different values of the
intensity and scale of the turbulence in the free stream).

Local separations of a boundary layer due to fluctuations of the Iongitudinal
pressure gradient, producing short-time unstable S-shaped profiles of velocity at
some random points, apparently play an important part in the generation of turbulence
in the near-wall region of a boundary layer with Re > Recr (or > Recr min in the case
of a high level of external disturbances). The solid wall always exerts a stabilizing
influence on the flow in its vicinity, but if Re > Recr, significant velocity fluctuations
can be usually observed even at relatively small distances from the wall. These
fluctuations affect the instantaneous values of longitudinal pressure gradients and
lead to the appearance of local flow instabilities. As a result of these instabilities a
complex system of specialized vortical structures appears in the near-wall region of
the flow; this system has been thoroughly investigated during the last three decades.
Recent theoretical and experimental work suggests that the physical processes In the
near-wall region may play a crucial role in transition to turbulence in flows bounded
by solid walls (e.g., in the formation of turbulent spots and slugs). We will consider
these topics in more detail later.

2.3 Hydrodynamic Instability

It has been mentioned already that at present it is universally accepted that the velocity
and pressure fields in any fluid flow, whether laminar or turbulent, are solutions of
the equations of fluid mechanics (Navier-Stokes equations) satisfying given initial
and boundary conditions. Steady laminar flow, in particular, is described by steady
solution of these equations; however, in the case of turbulent flow, each individual
example of the flow corresponds to a very complex nonsteady solution. The non-
existence of laminar flow for sufficiently high Reynolds numbers (in spite of the fact
that the equations of fluid mechanics have a steady solution for any Re) clearly shows
that not every solution of Navier-Stokes equations corresponds to a real fluid motion.
It is natural to associate this with the familiar assertion that the solution of dynamic
equations describing the real motion must surely be stable to small disturbances. In
other words, small disturbances of the motion, which are always present, must be
damped in time so as not to change the general nature of this motion. In the other case,
when small disturbances increase with time, the motion deviates considerably from
the original solution, which continues to exist but no longer describes the real motion.

Therefore, we may expect that the value of Recr corresponds to the point on the
Re-axis at which stability is lost; for Re < Recr the laminar flow is stable, and with
Re > Recr it is unstable and apparently becomes turbulent under the influence of the
existing small disturbances. (It will be shown later that this assertion is in fact not
always true. In some cases the loss of stability leads to the transformation of the
given laminar flow into another, more complex, laminar flow, and the transition to
turbulence occurs only after several losses of stability of the resulting laminar flows.
However, we shall not discuss such a possibility here.) If our expectation is met, then,
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by the mathematical study of stability applied to laminar solutions of fluid dynamics
equations, we may (at least in principle) theoretically determine the corresponding
critical Reynolds number. This explains the exceptional attention given to the study
of hydrodynamic stability by many great scientists beginning with O. Reynolds, Lord
Kelvin, and Lord Rayleigh.

Turbulence is characterized by very complicated irregular fluctuations of the ve-
locity and the other fluid-mechanical fields. In general, the flow of fluid at a given
instant of time is determined by the values of the collection of all independent fluid-
dynamic and thermodynamic fields characterizing the instantaneous state of the
moving fluid. (In the simplest case of incompressible fluid, this collection con-
sists of the pressure and the three components of the velocity field u(x) =
{u1(x), u2(x), u3(x)}, which is solenoidal (having vanishing divergence), in the whole
three-dimensional space or its region filled by the fluid. If the fluid is thermally in-
homogeneous, the temperature field T (x) must be also included in the collection; in
the study of admixture dispersion by fluid turbulence, the field of concentration c(x)
must be taken into account; for compressible fluid both the fields of density and tem-
perature (or entropy) must be added to the list.) For the fluid flow the phase space at
a given instant t consists of all admissible values of these fields; a set of fixed values
determines a phase point ω. Temporal evolution of the flow corresponds to a phase
trajectory ω(t), which is a curve in the phase space. (For steady flow this trajectory
degenerates into a point; for periodic flow it is a closed curve, i.e., a loop or cycle.)
The set of phase trajectories ω(t) = Ttω(0) where −∞ < t < ∞, corresponding to
all phase points ω(0), determine a group of mappings of the phase space into itself,
which is called the phase flow and describes the temporal evolution of the fluid flows
corresponding to all initial conditions.

The fluid flow can be considered as continuous movement of a phase point along
the corresponding phase trajectory, i.e., as a dynamic system in the infinite dimen-
sional (functional) phase space �. An infinte dimensional dynamic system is a very
complicated mathematical entity, but in fact it can always be approximated by a
simpler dynamic system in a finite dimensional space. For this purpose the values
of all the fluid mechanical fields must be replaced by values of a finite number of
“generalized coordinates” which determine the fields with sufficiently high accuracy.
The number of these coordinates will then give the effective number of “degrees of
freedom” of the flow considered.

Let us consider the simplest case of incompressible fluid having constant temper-
ature. To define the generalized coordinates we may begin from a decomposition of
the fluid motion into elementary components. These components must be such that
the sum of all their energies is equal to the total energy of the flow while the state of
each of them is characterized by a fairly small number of parameters. The parameters
of all the elementary components of motion will be generalized coordinates of the
flow, and the number of these coordinates which can vary under given external condi-
tions will be the total number of degrees of freedom of the flow. From a mathematical
veiwpoint, decomposition of the motion into elementary components is equivalent to
the expansion of the velocity field in terms of an orthogonal system of functions. In
such an expansion each of the functions will describe the velocity field of the corres
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ponding elementary component of the motion, while the coefficients of the expansion
will be generalized coordinates of the flow. The choice of an appropriate orthogonal
system of functions is dictated by the form of the flow boundaries and the condi-
tions imposed at these boundaries. For flows in a finite volume, the complete system
of orthogonal functions will always be countable (i.e., the functions of the system
can be numbered by consecutive integers 1, 2, 3, . . . ); thus, such flows will have
no more than a countable set of generalized coordinates. The concept of a flow
in an infinite space is always a mathematical idealization; using this idealization
we must often apply families of functions determined by values of continuous pa-
rameters and to allow the existence of a continuous spectrum (such examples will
be encountered below in this chapter). However, this is of no importance, since in
bounded space-time regions any fluctuation may be approximated as accurately as
it is desirable by a countable (and even a finite) collection of harmonic oscillations.

For steady laminar flow the values of the generalized coordinates will be defined
uniquely by the given external and boundary conditions so that the number of degrees
of freedom of a laminar flow is zero. The number of degrees of freedom of a turbulent
flow in a finite volume will be very great, but it is also finite. In fact when the
velocity field is expanded in a series in terms of orthogonal functions, the various
components will describe elementary motions of different scales. As the order of the
component increases indefinitely, the corresponding scale tends to zero. However,
due to the viscosity, fluctuations of too small a scale cannot exist. With steady external
conditions the coefficients of the expansion of the velocity field in terms of orthogonal
functions of sufficiently high order will be independent of time. This means that the
number of degrees of freedom of the flow will be finite. Also, the number of degrees
of freedom must increase with decrease of the coefficient of viscosity, in other words,
with the increase of Re. According to the estimate of Landau and Lifshitz (see, e.g.,
Monin and Yaglom (1975), p. 349), the number of degrees of freedom of a turbulent
flow in a finite volume will be proportional to Re9/4 for large enough Re, where Re
is the Reynolds number of the overall flow. Consequently, the number of degrees of
freedom will increase rapidly with the increase of Re, and for developed turbulence
with large Reynolds numbers it will reach enormous values.

When the flow is approximated by a finite-dimensional dynamic system, its devel-
opment in time may depend not only on the values of the generalized coordinates, but
also on the values of the corresponding generalized velocities. Then the phase space of
a system must be determined as the space of all the simultaneous values of generalized
coordinates and velocities, and the phase trajectory is a line in this phase space.

Let us consider the evolution of a fluid flow under fixed, steady conditions (which
include the presence of a constant influx of energy necessary for the existence of
a steady flow of viscous fluid) but with variable initial conditions. Decomposition
of the flow into elementary components permits us to consider it as a set of in-
teracting elementary nonlinear oscillators. Each oscillator may obtain some energy
directly from the external influx or from the other oscillators and also may lose en-
ergy to viscous dissipation or by transport to other oscillators. Under such conditions
self-excited oscillations may arise. The possibility of such oscillations arising is de-
termined by the relationship between the energy E + acquired by the oscillator and
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a b c

Fig. 2.7 Different variants of the dependence of the energy gained and lost by an oscillator on the
amplitude of the oscillations

the energy E− lost by it, for various amplitudes a of the oscillations (see Fig. 2.7).
If E− > E+ for all amplitudes (Fig. 2.7a), then the oscillations will evidently be
damped for any initial amplitude, and the system will be stable to any disturbances.
if E− < E+ for a1 < a < a0, but E− > E+ for a < a1 or a > a0 (Fig. 2.7b), then
oscillations with initial amplitude a < a1 will be damped, but those with initial am-
plitude a > a1 will increase until their amplitude attains the equilibrium value a0.
In this case, the system will be stable to small disturbances but unstable to distur-
bances of sufficiently large amplitude (such a system is called a system with hard
self -excitation). Finally, if E+ > E− however small the amplitude (Fig. 2.7c), the
system will be unstable to infinitely small disturbances (i.e. unconditionally unstable)
and will practically always be in a regime of self-excited oscillations with amplitude
a0 (system with soft self -excitation).

It will be shown below that in fluid flows all three situations shown in Fig. 2.7 may
arise. However, it is a very difficult task to find the conditions determining which
situation actually exists in a given flow, and the solution is known only for some
special cases.

2.4 Simple Examples of Unconditionally Unstable Fluid Flows

The existence of Recr min, and the dependence of Recr for flows in tubes, channels,
and boundary layers on the initial disturbance level, show that for a range of Re values
exceeding Recr min these flows represent self-excited systems with hard excitation.
Now we shall show some simple examples of fluid motions that are unstable even
with respect to infinitely small disturbances, i.e., are systems with soft excitation.

One of the simplest examples of an unconditionally unstable flow is the above-
mentioned flow near a surface of tangential velocity discontinuity. In this case, the
unconditional instability may be explained qualitatively with the aid of simple physi-
cal considerations. Let us consider an ideal fluid of zero viscosity, two layers of which
slide over each other with equal and opposite velocities U and −U , forming a surface
of discontinuity of velocity. (The case of arbitrary unequal velocities U1 and U2 of
two layers can be reduced to this one by means of transformation to a new system
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Fig. 2.8 Schematic form of the streamlines and the pressure distribution close to a disturbed surface
of a tangential velocity discontinuity

of coordinates moving with the velocity (U1 + U2)/2 in the streamwise direction.)
Let us assume that as a result of some disturbance on the suface of discountinuity, a
small-amplitude wave is formed (see Fig. 2.8). For simplicity, we assume that this
wave is nonprogressive. Under these circumstances, the streamlines above the wave-
crest will draw closer together, i.e., the velocity will increase, while in the troughs
the streamlines will become farther apart and the velocity will decrease. According
to Bernoulli’s equation, u2/2+p/ρ = constant, the pressure will fall above the crest
and rise in the troughs (in Fig. 2.8 this is denoted by the plus and minus signs). Thus
a transverse pressure gradient arises in the fluid, tending to increase the amplitude
of the wave. Later, this increase in amplitude leads to the wave disintegrating into
individual vortices, forming the beginning of the turbulent zone.

In a real fluid, of course, the waves which arise can be progressive, but the
processes of their evolution are similar. In a viscous fluid the sliding of two layers
over one another is impossible, and instead of the surface of discontinuity there will
be a narrow transition layer between the two flows, in which the velocity profile
will be S-shaped. The investigation of the stability of such a layer will be more
complicated; however, here also both theory and experiment show that it is very
unstable (see below, Sect. 2.93).

Two fluid layers moving with different velocities in the same direction parallel
to the dividing surface of “velocity discontinuity” can be produced relatively easily
in the laboratory; the evolution of surfaces of discontinuity of this type can also be
observed in experiments with a jet issuing from an orifice and then expanding in
a space filled with the same (but motionless) fluid. The instability of a surface of
tangential velocity (and density) discontinuity was first noted by Helmholtz (1868)
and then was rigorously studied by W. Thomson, the future Lord Kelvin (see Kelvin
(1871)). Later Rayleigh (1883) considered the instability of a surface of density
discontinuity in the presence of a gravitational force perpendicular to this surface,
while Taylor (1950) investigated the instability of the arbitrary surface of disconti-
nuity between two fluids accelerated in the direction perpendircular to it. At present
the instability of surfaces of discontinuity, separating two regions of flow, filled with
the same or different fluids, moving with different velocities, is usually called the
Kelvin (or Kelvin-Helmholtz) instability, if it is not affected by external force, and
the Rayleigh-Taylor instability, if there is an accelerating force normal to the surface.
The instability of a surface of tangential velocity discontinuity and some other simple
cases of the Kelvin-Helmholtz instabilities are considered in many textbooks (e.g.,
in those by Lamb (1932); Sect. 2.32; Landau and Lifshitz (1987); Sect. 29; Tritton
(1988); Sect. 17.6; and panton (1996) Sect. 22.2); see also Drazin and Reid (1981)
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and the survey paper by G. Birkhoff (1962). A survey of work on the Rayleigh-Taylor
instability was given by Sharp (1984).

Another simple example of unconditional instability is the equilibrium, in a grav-
itational field, of stationary stratified fluid with variable density ρ = ρ(z) increasing
with height. It is clear that with any function ρ(z), the equations of motion of incom-
pressible fluid will allow a solution u(x, y, z, t) = 0, corresponding to a state of rest;
the gravitational field will only produce a vertical pressure variation according to the
law

1

ρ

∂p

∂z
= −g, i.e.,p(z) = g

∞∫

z

ρ(z′)dz′ + const. (2.2)

Now suppose that as a result of some disturbance, some element of the fluid is
displace from level z to a new level z′ = z + h. If the density ρ decreases with height,
then for h > 0 the element will tend to move downwords under the force of gravity,
and for h < 0 it will tend to rise under the action of buoyancy, so that the equilibrium
will be stable. However, if the density increases with height, then for any value of
h the displaced element will tend to move even further from its orginal position,
and the state of equilibrium will be unconditionally unstable. Moreover, for an ideal
(inviscid) fluid the equations of motion will also have a steady solution for any density
profile ρ = ρ(z) and any profile of the x-component of velocity u = u (z) (with zero
components of velocity along the other axes). Using the same argument, this flow will
be unconditionally unstable for dρ/dz > 0. For dρ/dz < 0, the question of stability
of the flow is considerably more complex; at this early stage in the discussion we
can only say, by similarity, that the criterion of stability here must be expressed in
terms of the so-called Richardson number, i.e., the dimensionless parameter

Ri = −
g

ρ

dρ

dz
(
∂u
∂z

)2 . (2.3)

The case of a fluid that is stratified with respect to the z axis is of great importance
for geophysical fluid mechanics. In fact, flows in the atmosphere and ocean are
almost always stratified; the dependence of density ρ(z) on z arises here from the
temperature profile T (z) and (in the case of an ocean) the salinity profile c(z). (For
simplicity, only the influence of temperature will be considered below.) However,
in this case the incompressibility assumption, used above, is often not a satisfactory
approximation since it ignores the following effect: when fluid moves vertically its
temperature changes and fluid either expands and therefore cools or is compressed
and therefore warms up. To take this effect into account, we must use the equation of
state and the elementary thermodynamic identities (for more detailed presentation
see, e.g., Landau and Lifshitz (1987), Sect. 4).

Assuming that the displacement of fluid elements occurs at constant entropy, we
find that an element displaced from level z to level z + h will be lighter for h > 0 than
the surrounding fluid, but heavier for h < 0 if, and only if

dT

dz
< − gT

cpV

(
∂V

∂T

)

p

, (2.4)
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where T is now the absolute temperature and V is the specific volume. Condition
(2.4) will be a condition of unconditional instability of the state of rest in the presence
of a temperature profile T = T (z). When the medium may be considered as an ideal
gas,

(
∂V
∂T

)
P

= R
p

= V
T

, so that the criterion of instability will take the form

dT

dz
< − g

cp
= −γ − 1

γ

g

R
, γ = cp

cv
, (2.5)

(the criterion will be found in this form in all textbooks on dynamical meteorology). In
meteorology, Ga = γ−1

γ

g

R
is called the adiabatic temperature gradient or adiabatic

lapse rate (for air, this gradient is approximately 1◦C/100 m). Cases for which—
(dT/dz) is greater than, equal to, or less than Ga are called, respectively, stable,
neutral, or unstable stratification.

Another representation of the conditions of instability (2.4) or (2.5) is often used
in meteorology; this is connected with the introduction of the so-called potential
temperature, defined by

θ = T

(
p0

p

) γ−1
γ

, (2.6)

where p0 is some standard pressure (usually taken as the normal sea-level pressure),
instead of the ordinary temperature T. By the entropy equation for an ideal gas,
cp ln θ = s + const., where s is the entropy of unit mass of fluid. Therefore, the
potential temperature does not vary in an adiabatic process, so that θ is equal to the
temperature which the air would attain if brought adiabatically to standard pressure
p0. It is easy to see that dθ

dz ∼ dT
dz − Ga. Thus, using the concept of the potential

temperature, the instability criterion (2.4) may be formulated as follows: the state
of rest will be unstable if dθ/dz < 0 (i.e., if the potential temperature decreases
with height) and stable if dθ/dz > 0 (i.e., if the potential temperature increases with
height).

If an arbitrary wind velocity profile exists, the motion in the case of unstable
stratification will likewise be unstable; for stable strafification, however, the stability
or instability of the motion must be determinded in some way by the value of the
Richardson number

Ri =
g

T

(
dT
dz −Ga

)

(
du
dz

)2 =
g

θ
dθ
dz

(
du
dz

)2 . (2.7)

2.5 Linear Stability Theory and Method of Normal Modes

Of course, the conditions for instability of a fluid flow are by no means as easy to find
in every case as in the above examples. Quite often determination of such conditions
is a complicated problem, and to solve it a number of sophisticated methods has been
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developed. These methods and their numerous applications make up the contents of
a special branch of science called hydrodynamic stability theory. Some of the results
from this theory will be briefly presented in the following sections of this chapter.

The simplest means of investigating hydrodynamic stability is the general method
of small disturbances. For simplicity, we will consider a flow of incompressible fluid
of constant density ρ (and hence also of constant temperature T ). The method of
small disturbances is based on writing the velocity field ui(x, t) and the pressure p(x, t)
which satisfy the dynamic equations in the form ui = Ui + ui ′,p = P + p′, where
Ui(x, t) and P(x, t) are particular solutions of the equations under investigations,
and ui ′,p′ are small disturbances. Substituting the given expressions for ui and p
into dynamic equations, and ignoring all the products of two disturbances, we obtain
linear equations for u′

i and p′ whose solution represents the first approximation of
the method of small disturbances. Later, if desirable, the next approximation can be
considered that takes into account also the terms quadratic with respect to first-order
solutions, and so on. However, here we shall limit ourselves to the first approximation
only; it is usually called the method of small disturbances.

Thus, the method of small disturbances uses only approximate linear equations
for the disturbances and neglects all the higher-order corrections which are important
in the case of finite disturbances. Because of this the application of this method to the
study of hydrodynamic instability is often called the linear theory of hydrodynamic
stability or the theory of stability with respect to infinitesimal disturbances. Note
that instability of a given laminar flow with respect to infinitesimal disturbances
does not mean that the flow necessarily becomes turbulent; it only shows that the
original laminar flow can no longer exist and must be transformed into some other
flow. Nevertheless, the determination of conditions for such an instability is clearly
an important first step in the investigations of laminar-turbulent transition. Therefore
it is not surprising that for more than 100 years (beginning in the 70 s and 80 s of the
19th century) much work has been devoted to the development of the linear stability
theory. Let us now consider some general approaches and specific results obtained
in the course of this work.

In the case of a flow of incompressible fluid, the dynamic equations are the
Navier-Stokes equations. Substituting in them Ui + u′

i and P + p′ instead of ui and
p, ignoring quadratic terms in disturbances, assuming that external forces Xi are
absent, and taking into account that Ui and P themselves satisfy the equations of
motion, we obtain linear equations for u′

i and p′ in the form

∂u′
i

∂t
+ Uα

∂u′
i

∂xα
+ u′

α

∂Ui

∂xα
= − 1

ρ

∂p′

∂xi
+ v∇2u′

i
,

∂u′
α

∂xα
= 0. (2.7a, b)

Differentiating Eq. (2.7a) with respect to xi , summing with respect to i, and using
Eq. (2.7b), we may obtain a Poisson equation for p′ (similar to Eq. (1.9′) in MY1),
which expresses p′ in terms of u′

i. Hence the solution of Eq. (2.7) will be determined
by fixing only the initial values u′

i(x, 0) of the functions u′
i(x, t). We may thus (at
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least in principle) attempt to establish conditions guaranteeing the existence of such
initial values ui(x, 0) that the corresponding solution of the initial value problem will
not be damped as time tends to infinity. These conditions will then be conditions
for the instability, with respect to infinitesimal disturbances, of the solution Ui , P
of the Navier-Stokes equations. If there exists a solution of Eq. (2.7) that increases
with t without bound, then the solution Ui , p of the Navier-Stokes equations is
called strictly unstable. (According to this terminology, the strict instability of a
flow differs from the ordinary instability because neutrally stable flows—i.e. those
for which the corresponding Eqs. (2.7) have no solutions growing in time, but have
some solutions which are neither damped nor increasing with t- are unstable but not
strictly unstable. However, below we shall usually not distinguish between ordinary
and strict instabilities.) Of course, if the solution Ui , P is stable with respect to
infinitesimal disturbances, it may nevertheless be unstable with respect to finite
disturbances u′

i ,p′ (described by essentially nonlinear equations). To verify whether
this is so or not quite different methods of investigation are needed; some of them
will be considered later in this book.

When the solutionUi = Ui(x),P = P (x) describes a steady laminar flow of fluid,
the coefficients of the system of equations (2.7) will evidently be time-independent.
In this case, the system will have particular solutions of the form

u′(x, t) = e−iωt fω(x),p′(x, t) = e−iωtgω(x), (2.8)

the time-dependence of which is given by the exponential factor e−iωt with, generally
speaking, a complex “frequency” ω. (Here and below, when complex functions are
used to describe real flow characteristics, it is always assumed that these character-
istics are equal to the real parts of the functions considered.) The permissible values
of the characteristic frequency ω and the corresponding amplitudes fω(x), gω(x) will
then be determined from the eigenvalue problem for a linear system of partial differ-
ential equations. When the coefficients of this system are independent of some space
coordinates, the number of independent variables in the system may be reduced by
assuming that the dependence of the amplitudes fω and gω on the corresponding
coordinates will also be exponential, with a given “wave number” (i.e., the spatial
scale of the disturbance is prescribed in the directions of the coordinate axes along
which the undisturbed flow is homogeneous.) Thus, for example, if the undisturbed
flow depends only on the coordinate x3 then we may put

fω(x) = ei(k1x1+k2x2) fω;k1,k2
(x3), gω(x) = ei(k1x1+k2x2)gω;k1,k2 (x3); (2.9)

where the characteristic frequency ω = ω(k1, k2) and the amplitudes fω;k1,k2
and

gω;k1,k2 will be determined from the eigenvalue problem for a system of ordinary
differential equations containing the parameters k1 and k2. Similar equations, with
exp[i(k1x1 +k2x2)], fω;k1,k2

(x3) and gω;k1,k2 (x3) replaced by exp(ik1x1), fω;k1
(x2, x3)

and gω;k1 (x2, x3), will be obtained for flows which depend essentially on two
coordinates x2 and x3.

The stability analysis based on the study of elementary (“normal”) disturbances
whose time dependence is described by simple exponential factors e−iωt , where ω
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is a complex constant, was well known in the first half of the nineteenth century in
applications to mechanics of systems of with a finite number of degrees of freedom.
In the second half of that century it was adapted by Stokes, Rayleigh, and Kelvin to
problems in fluid mechanics. Disturbances that depend exponentially on time (i.e.,
are proportional to e−iωt ) are usually called the normal components, normal modes,
or eigenmodes of the problem. Stability analysis by the method of normal modes
equates the instability of the dynamical system considered to the existence of at least
one normal mode with a real value of the constant ω (and equates strict instability to
the existence of at least one increasing mode with positive imaginary part of ω). In
the framework of this method, it is convenient to define the critical Reynolds number
Recr as the smallest value of Re at which a real eigenfrequency ω first appears; then
at Re = Recr the flow will be unstable while at Re > Recr it will be strictly unstable.
Hence, determination of the conditions for hydrodynamic instability by the mormal-
mode method can be reduced to the investigation of a definite eigenvalue problem
for a system of differential equations. The applications of this method to a number
of specific problems will be considered in the next four sections.

It is reasonable, however, to begin with some general remarks related to the
normal-mode method. The method is, in fact, based on the assumption that any
disturbance of the laminar flow considered can be represented by a (finite or in-
finite) sum of normal modes depending exponentially on the time t. Hence, it is
always assumed here (but usually not stated explicitly) that an infinite number of
discrete eigenvalues ω exists for this kind of stability problem and that the system of
the corresponding eigenfunctions fω(x) is complete in the space of all vector func-
tions f = (f1, f2, f3) corresponding to possible fluid flows (i.e., those satisfying
the continuity equation ∂fi/∂xi = 0 and all the necessary regularity and bound-
ary conditions). (The pressure eigenfuncions gω(x) are not mentioned here, since it
can be assumed that p′ has been already expressed in terms u′

i .) If there is a spatial
homogeneity of the flow with respect to one or two coordinates, then it must be as-
sumed that the functions fω;k1

(x2, x3) or fω;k1,k2
(x3), where the wave numbers k1 or k1

and k2 are fixed and ω = ω(k1) or ω(k1, k2) passes through all the eigenfrequencies
corresponding to given values of wave numbers, form a complete system in space of
admissible vector functions of two or one variables.

The problem of completeness in the theory of hydrodynamic stability is not a
simple one. The concept of completeness (i.e., of the coincidence of the linear span
for a given infinte system of functions with the entire space of all the functions
considered) requires the introduction of some norm ‖ f ‖ in function space permit-
ting the distance ‖ f − g‖ between two functions to be determined (this is necessary
for the limit of an infinite series of functions to be defined). For most of the usual
quadratic norms (given, e.g., by kinetic energy per unit volume), the function space
is a Hilbert space, with scalar product ( f , g ) determined by the given norm (so
that ‖ f ‖ = ( f, f )1/2). (For information about Hilbert spaces and linear operators in
them see, e.g., Halmos (1951); Riesz and Sz.-Nagy (1955); Dunford and Schwartz
(1958, 1963, 1971)), Reed and Simon (1972); Akhiezer and Glazman (1980); or
Griffel (1981). For an elementary introduction to applications of Hilbert space meth-
ods to fluid mechanics see Doering and Gibbon (1995).) Then a linear differential
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equation can be represented as an operator equation Λ f = 0 where Λ is a linear
operator in Hilbert space. If the operator � is self-adjoint, i.e., (Λ f, g) = ( f,Λ g)
for any two functions f and g, all the eigenvalues of � are real, and conditions for
the completeness of the system of corresponding eigenfuctions can be determined
from the well-known spectral theory of self-adjoint operators. Note also that in this
case the two eigenfunctions corresponding to different eigenvalues are necessarily
orthogonal in the Hilbert space; this facilitates the expansion of any given function
into eigenfunctions and makes such expansions much more useful.

However, the eigenvalue problems which appear in the theory of hydrodynamic
stability are those of a linear non-self-adjoint operators in a function space. Non-self-
adjoint linear operators can have complex eigenvalues, and here the spectral theory
exists only for some special classes of operators and is more complicated and less
complete then the spectral theory of self-adjoint linear operators; see, e.g., Gokhberg
and Krein (1965); and Dunford and Schwartz (1971). Nevertheless, some general
criteria for the completeness of the system of eigenfunctions of non-self-adjoint op-
erators (and the related associated functions appearing when there are degenerate
eigenvalues) were given by Keldysh (1951); (see also Keldysh and Lidskii (1963))
and Naimark (1954). The first mathematical proof of the eigenfunction expansion
theorem (i.e., of the existence of an infinite number of eigenvalues to which corre-
sponds a complete system of eigenfuncions) for a problem of hydrodynamic stability
theory was given by Haupt (1912), who studied stability of plane Couette flow with
respect to two-dimensional disturbances. However, this early paper did not attract
much attention, and the next study of the completeness problems of hydrodynamic
stability theory appeared only in 1960, when Schensted investigated stability of
plane Poiseuille (or Couette-Poiseuille) flow with respect to two-dimensional dis-
turbances and of circular Poiseuille flow with respect to axisymmetric disturbances.
She proved the eigenfunction expansion theorem for both these problems. More
general results (related to arbitrary flows within a finite volume) were found by
Yudovich (1965, 1984) who referred to the general theorem by Keldysh, used so-
phisticated mathematical techniques, and formulated his results in a form intended
for mathematicians. (Note that the cases of flows, which are either homogeneous
along the direction of x1-axis and have finite area of (x2, x3) –cross-section or are
homogeneous in the planes x3 = const. and have finite extent in the direction of the
axis x3 can be reduced to cases of flows in finite three-dimensional domains if the
wave numbers are fixed for directions of homogeneity.) More direct formulations of
eigenfunction expansion theorems for eigenvalue problems from the linear theory
of hydrodynamic stability were given by Di Prima and Habetler (1969); Sattinger
(1970) (see also Sect. 2.3 of the book by Georgescu (1985)); and Herron (1980,
1982, 1983). Di Prima and Habetler used Naimark’s result to prove the eigenfunc-
tion expansion theorem for a wide class of non-self-adjoint eigenvalue problems,
including the problems arising in the linear stability analysis of a plane-parallel flow
between two parallel plates, a flow between two concentric rotating cylinders, and
an immovable horizontal layer of fluid heated from below. Sattinger studied a wide
class of fluid flows in a bounded three-dimensional domain and used, for the proof of
the completeness theorem, some general results related to the Hilbert-Schmidt class
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of linear operators which are presented in the book by Dunford and Schwartz (1963).
The paper by Herron (1980) is devoted to plane-parallel flows of a stratified fluid of
variable density and will therefore be referred later (in Sect. 2.83). In his next paper
(Herron (1982)) the case of “nearly parallel” flows between solid walls at z = 0 and
z = H was considered. Such flows have velocity U (x) = {U (x, z), 0,W (x, z)} where
|W | � |U | , |∂U/∂x| � |∂U/∂z| , and the x derivative ofW is also fairly small. Then
it is possible, to a first approximation, to neglect the dependence of the velocity on x
and to assume that U(x) = {U (z), 0,W (z)}. The study of the stability of such flows
with respect to infinitesimal two-dimensional wave-like disturbances leads to a non-
self-adjoint eigenvalue problem different from the problems considered by Di Prima
and Habetler and by Sattinger. Herron used some general results by Gohberg and
Krein (1965) and with their aid proved the eigenfunction expansion theorem for the
nearly-parallel case too; in addition he showed also that the number of unstable eigen-
values (having a positive imaginary part) is here always finite (maybe equal to zero).
Finally, Herron (1983) investigated a more complicated case of a nearly-parallel flow
in a domain unbounded in the z-direction; this paper will be discussed later.

When the system of eigenfunctions is complete, any initial value u(x, 0) can be
expanded in a series in terms of these eigenfunctions. Thus the general solution
of the initial value problem for Eqs. (2.7) may be expressed as a superposition
of elementary (“normal”) modes. Therefore it may seem that the general stability
problem is reducible here to the corresponding eigenvalue problem. In other words,
it seems that to answer the question, whether the given flow is stable or not, it
is sufficient to determine whether all or not all characteristic frequencies ω have
a negative imaginary part �mω < 0.2 Where there is a spatial homogeneity with
respect to one or more coordinates, the various characteristic frequencies ω will,
generally speaking, depend on the spatial “scales” of the disturbances (i.e., on the
wave numbers k1 or k1 and k2) and on Re. As Re → 0, the imaginary parts of all
frequencies ω will tend to negative values (because for ρ= const., the state of rest is
always stable). However, as Re increases, the imaginary parts of certain frequencies
may increase, and finally become at first equal to zero and then positive. The value
of Re at which the real frequency first appears is just the critical Reynolds number
Recr given by the eigenvalue analysis. This value of Recr can be determined from the
equation maxj �mωj = 0 where ωj = ωj (Re) (or, if there is a spatial homogeneity,
ωj = ωj (Re, k1) or ωj = ωj (Re, k1, k2) is the jth eigenvalue and the maximum is
taken over all values of j (and, in a homogeneous case, all values of k1 or k1 and
k2). Of course, this critical value of Re corresponds to instability with respect to
arbitrarily small disturbances and therefore it might be denoted by Recr max in the
notation of Sect. 2.1.

A number of applications of this method for determination of the critical value
Recr (or, more precisely, Recr max) to specific fluid flows will be considered in Sects.

2 In the case of parallel (or nearly-parallel) flows homogeneous in the Oxl direction the spatial
formulation of the stability problem is also possible (and often is even the more natural). In this
formulation the frequency ω is assumed to be real and fixed but the longitudinal wave number
k1 is now the unknown (and in general complex) eigenvalue. However, we shall postpone the
consideration of the spatial stability problems until Sect. 2.9.
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2.6–2.9. It will be seen that, according to laboratory measurements, in some cases the
basic laminar flow ceases to exist at Re = Recr exactly, and for Re > Recr it is trans-
formed into a new laminar flow which is stable at Re exceeding (but not too much)
the observed value of Recr. (The transition to a turbulent regime occurs here only
after loss of stability of this new laminar flow (or even after several consecutive such
losses of stability), at a Reynolds number considerably greater than Recr = Recr max.)
However, in some other flows the transition to turbulence observed in laboratory
experiments always occurs at values of Re much smaller than the value Recr max

predicted by eigenvalue analysis. One possible explanation of this discrepancy is
that the eigenvalue analysis is valid for infinitesimal disturbances only; therefore,
it is possible that, for the finite disturbances which exist in all real experiments,
nonlinear effects are important and lead to loss of stability at Re < Recr max. This
explanation seems to be natural, and for many year it was generally accepted
and repeated in numerous publications (including MY1 and many more recent
sources, e.g., the excellent books by Drazin and Reid (1981); and Tritton (1988)).
However, recently it was shown that failure of eigenvalue analysis may often have
also other reasons related to the internal inadequacy of this method. Hence some
supplementary general remarks about the eigenvalue approach must be made here.

Note first of all that the possibility of expanding an arbitrary solution of the system
(2.7) in a series in terms of particular solutions of the form of Eq. (2.8) occurs often
but not always. In particular, the situation is more complicated if the system (2.7)
is singular (i.e., for example, if a coefficient of a leading derivative in this system
becomes zero at some point) or if the flow region is unbounded in the direction of the
flow non-homogeneity. In this case, the completeness of the system of eigenfunctions
cannot be proved simply, and even the very concept of the eigenfunction (and of the
eigenvalue) must be defined with care. Often (both for non-homogeneous flows and
for flows homogeneous in some directins, with fixed wave numbers k1 or k1 and k2)
a continuous part of the spectrum of eigenvalues arises, with corresponding eigen-
functions satisfying unusual boundary conditions or possessing a more complicated
structure (e.g., not vanishing at infinity or having discontinuities of the derivatives at
a singular point). In applications, these “improper” eigenfunctions sometimes simply
go unnoticed; then the system of simple “elementary solutions” (eigenodes of the
form (2.8)) is obviously incomplete (see, e.g., Lin (1961b); Lin and Benny (1962);
Case (1962); Drazin and Howard (1966); Drazin and Reid (1981)). The correct form
of the eigenfunction expansion theorem states here that any initial value can be rep-
resented as a sum over all the eigenfunctions corresponding to a discrete spectrum,
supplemented by an integral over the improper eigenfunctions corresponding to a
continuous spectrum (which needs special rigorous definition). This clearly compli-
cates both the formulation and the proof of the theorem. Nevertheless, even in cases
where a continuous spectrum exists, the corrected completeness theorem is often
(though not always) valid.

Consider, for example, the important case of a plane-parallel flow in the half-
space 0 ≤ z < ∞ with the Blasius velocity profile (described, e.g., in Sect. 1.4 of
MY1), which represents a useful model of the boundary-layer flow over a flat plate.
Here the eigenfrequency spectrum includes both the discrete and the continuous
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parts, but the eigenfunction expansion theorem (which implies the completeness
of the system of all eigenfunctions) is valid, as was shown by Salwen and Grosch
(1981) (for more details see Sect. 2.92). A much more general case was considered
by Herron (1983): he studied the linear stability problem for a wide class of ‘nearly
parallel’flows with the velocity profile {U(z), 0, W (z)} in the half-space 0 ≤ z < ∞ or
in the whole space −∞ < z < ∞. (The flows considered include convenient models
for boundary-layer flows in the presence of streamwise pressure gradient and for
plane jets, wakes, and mixing layer.) For the resulting eigenvalue problems, the
strict definitions of the spectrum, eigenfunction, and expansion theorem were given,
and then the eigenfunction expansion theorem was proved under sufficiently general
regularity conditions.

In cases where the eigenfunction expansion theorem is proved, it is possible,
in principle, to determine the “eigenfrequencies” ω corresponding to all (proper
and improper) eigenfunctions, and then to apply the eigenvalue approach to the
solution of the stability problem. However, other circumstances often make direct
applications of the eigenvalue analysis difficult. Up to this point we have in fact
assumed (without indicating this explicitly) that all the eigenvalues ωj are distinct;
in other words, we have neglected possible degeneracies of the frequency spectra.
Such neglect does not take into account the fact that, as was discovered some time
ago (in particular, by Schensted (1960) and Betchov and Criminale (1966)), the
frequency spectrum in some flows necessarily contains degenerate (i.e., multiple
or coalescing) eigenfrequencies. What is more, it was shown later that in many
cases the degeneracies in the frequency spectrum are due to existing symmetries
of the stability problem and therefore they must occur (see, e.g., Langford et al.
(1988); Shanthini (1989) or Chossat and Iooss (1994) and the references therein).
It is known that in the case of a multiple eigenfrequency ωj of a non-self-adjoint
operator, the corresponding eigenfunction of the form (2.8) must be supplemented
by associated functions containing polynomial factors, in addition to the exponential
function of time. Hence, if ωj is real, these functions will correspond to unstable
solutions which grow algebraically in time, and if �mωj < 0, then the corresponding
solutions will grow algebraically at small values of t and begin to decay exponentially
only at times of the order of Tj = 2π/ωj . In this case, however, it is possible that at
shorter times the algebraic growth will amplify the initial small disturbances so much
that linear stability theory will cease to be applicable to them. Moreover, there are
purely physical reasons showing that algebraic growth of small three-dimensional
disturbances is quite common in fluid mechanics and may play a very important role
in transition to turbulenc; see, e.g., Landahl (1980, 1993) and Chap. 3 of this book.

Besides the algebraic growth produced by degeneracies of the frequency spectrum,
there are other possible causes for strong initial growth of infinitesimal disturbances,
even in cases where all the eigenfrequencies of the linear system are distinct and lie
in the lower half-plane of the complex-variable plane. It was noted above that self-
adjoint linear equations (i.e., equations corresponding to self-adjoint linear operators
in a Hilbert space of functions) have the following valuable property: the eigenfunc-
tions corresponding to two different eigenvalues are necessarily orthogonal to each
other (i.e., represent two orthogonal vectors of Hilbert space). This property is valid
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not only for self-adjoint equations but also for a wider class of the so-called normal
linear operators L in a Hilbert space, having the property that LL∗ = L∗L where L∗ is
the operator adjoint to L, i.e., such that (Lf , g) = (f, L∗g) for any f and g (see, e.g.,
Dunford and Schwartz (1958, 1971); Kato (1976, 1982) or Pazy (1983) for more
information about such operators). The linearized fluid dynamics equations of linear
stability theory include non-self-adjoint operators in all really interesting cases, but
in some flows the corresponding operators prove to be normal while in others they
are nonnormal (and sometimes even “very far from normal”). The strict meaning of
the words “very far from normal” will be explained later; here it is enough to say that
for “very strongly nonnormal” operators the eigenfunctions corresponding to dif-
ferent eigenvalues are not only non-orthogonal, but even nearly linearly dependent.
It is clear that even in the case where such eigenfunctions form a complete system
of functions, it is not reasonable to base the analysis on the expansions of arbitrary
functions in terms of this system. It can be shown that in this case, even if all the
eigenfrequencies are stable (i.e. lie in the lower half-plane), a small initial disturbance
may sometimes be amplified by an enormously large factor before the asymptotic
exponential decay becomes apparent. Moreover, this exponential decay may be-
come fictitious since the asymptotic behavior is very sensitive here to the inevitable
pre-existing small perturbations (see, e.g., Schmid et al. (1993)). This shows that
results from the linear stability theory obtained by eigenvalue analysis of equations
corresponding to nonnormal operators must always be considered with caution.

Nevertheless it will be shown below that in some cases eigenvalue analysis leads to
brilliant scientific results which agree excellently with the experimental data and rep-
resent important steps in the development of fluid mechanics. Also, even the results
of this analysis whose physical relevance is now in doubt are often quite important
for proper understanding of subsequent works. Therefore the next subsections will
be devoted to results of the linear stability theory obtained with the aid of eigenvalue
analysis.

2.6 Linear Stability Analysis of Flow Between Two Rotating
Cylinders

One important linear stability problem, which is amenable to complete mathematical
analysis, is related to studies of stability for a steady circular Couette flow between
two rotating coaxial cylinders. This flow can be modeled relatively easily in a labo-
ratory3 and in fact the first apparatus producing a fluid flow between one stationary
and one rotating cylinder were built quite early (independently by Couette (1888);
and Mallock (1888) for measuring fluid viscosity; for further details see Donnelly

3 Of course, the coaxial cylinders have a finite length in any laboratory model, while the theory
usually deals with the idealized case of a flow between infinite cylinders. However, both the exper-
imental data and results of theoretical computations show that if the cylinders are long enough, the
effects of finite length are significant only near the ends of cylinders and can be neglected when the
middle part of the flow field is considered.
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(1991, 1992)). These early experiments attracted attention to the study of stability
of circular Couette flow; two great scientists, Lord Rayleigh and Sir Geoffrey (G.I.)
Taylor, were central figures in the early developments of these studies, and the results
obtained by them are now a classical part of fluid mechanics.

LetR1 and�1 be the radius and angular velocity of the inner cylinder, andR2 >R1

and�2 those of the outer cylinder. In cylindrical coordinates r,ϕ,z with Oz axis along
the axis of the cylinders, the velocity field of a circular Couette flow will be defined
by the familiar equations (see, e.g., Eq. (1.28) in MY1).

Ur = Uz = 0, Uϕ = U (r) = Ar + B

r
,

A = �2R
2
2 −�1R

2
1

R2
2 − R2

1

, B = −R
2
1R

2
2(�2 −�1)

R2
2 − R2

1

,
(2.10)

First, let us ignore the effect of viscosity. Then we may define the criterion of instabil-
ity from the following elementary physical considerations, which are not completely
rigorous but seem quite convincing. In a steady laminar flow, the centrifugal force
acting on an element of the fluid will be balanced by the radial pressure gradient.
Now, let an element of mass m move under the action of the velocity disturbance
from a position with coordinate r0 to a position with coordinate r > r0. Then by the
law of conservation of angular momentum mrU(r), its velocity in the new position
will equal r0U (r0)/r. Therefore, a centrifugal force mr0

2

r3 U
2(r0) will now act on this

fluid element. If this force is greater than the radial pressure gradient at a distance
r from the axis, then this force will move the considered fluid element still further
outwards, and hence the initial position of the element will be unstable. The radial
pressure gradient at a distance r is equal in magnitude to the undisturbed value of
centrifugal force at this distance. Therefore, the condition of instability (which was
established for inviscid Couette flow by Rayleigh (1880, 1916b)), will have the form

[r0U (r0)]2 − [rU (r)]2 > 0 for some r0 and r > r0, or, in other words,

d

dr
[rU (r)]2 < 0 for some r. (2.11)

(This derivation of Rayleigh’s criterion, which differs a little from the original argu-
ments by Rayleigh, is due to Karman (1934); see also Di Prima and Swinney (1985),
pp. 142–143; and Koschmieder (1993), pp. 206–207.)

Following Coles (1965, 1967), and taking into account that U(r)/r is the angular
velocity of the flow and that d(rU)/rdr is the axial vorticity, we may easily rephrase
the criterion (2.11) as follows: a flow is unstable if the vorticity (local rotation)
is opposite in sense to the angular velocity (overall rotation). In such (or slightly
modified) form, this criterion is apparently valid for many inviscid circulatory flows
(cf. Joseph (1976), Chap. 6, and Mutabazi et al. (1992)).

Using Eq. (2.10), Rayleigh’s instability criterion may be reduced to the form(
�2R

2
2 −�1R

2
1

)
U < 0. If the cylinders are rotating in opposite directions, then U

will change sign somewhere between the cylinders, and in this case the flow will
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certainly be unstable. When both rotate in the same direction, we may put �1 > 0,
�2 > 0, and then U(r) > 0 everywhere; in this case the Rayleigh criterion of instability
takes the form

μ = �2

�1
<

(
R1

R2

)2

. (2.12)

When the inner cylinder is fixed and the outer one rotates, then �1 = 0 while U(r)
has everywhere the same sign as �2; hence, in this case the flow must be stable
according to Rayleigh’s criterion. In the opposite case, when only the inner cylinder
rotates,�2 = 0 while�1 and U(r) are of the same sign; so in this case the flow must
always be unstable.

A rigorous mathematical derivation of the result (2.12), by the method of small
disturbances applied to inviscid flow between rotating cylinders, was given by Synge
(1933, 1938a) for the case of axisymmetric disturbances (i.e., independent of ϕ). (In
this respect see also Chandrasekhar (1960, 1961); Shen (1964); Warren (1976);
Joseph (1976); Drazin and Reid (1981); Georgescu (1985); and Lortz (1993) where
many additional details of Synge’s derivation were given and the eigenvalue problem
was considered also for the case of arbitrary normal modes.) The general case of
non-axisymmetric infinitesimal disturbances (proportional to exp(i(kz + nϕ−ωt)))
was also considered by Krueger and Di Prima (1962); Bisshopp (1963) and Warren
(1976) (see also the book by Drazin and Reid). These authors found that in the
case of inviscid flow between rotating cylinders all the non-axisymmetric modes of
disturbance have smaller growth rates than that for the most unstable axisymmetric
mode (at least if the gap between cylinders is narrow, i.e., R1/R2 is close to one).

Rayleigh’s inviscid instability criterion for circular Couette flow clearly disagrees
with early experimental findings by Couette (1888, 1890), in the case where the inner
cylinder is fixed and the outer one is rotated, according to which there is a change in
the flow structure at Some specific value of�2. This change is apparently caused by
the loss of stability at this�2, whereas according to Rayleigh’s criterion the flow must
be stable for any value of�2. On the other hand, this criterion agrees well with find-
ings of another early experimenter, Mallock (1888, 1896), who found that if �2 = 0
but�1 �= 0 (i.e., if only the inner cylinder rotates), then instability occurs at any value
of �1. However, this experimental result was inconsistent with conclusions from
another paper by Rayleigh, published in 1913. Later Taylor (1921) constructed an ap-
paratus in which both cylinders could rotate independently and found that Rayleigh’s
criterion (2.12) often does not hold when the cylinders rotate in opposite senses (i.e.,
are counter-rotating). He concluded that this inconsistency was probably due to ne-
glect of the effect of viscosity. This circumstance forced him to arrange a thorough
theoretical investigation of the instability conditions for circular Couette flow of a
viscous fluid, supplemented by careful experimental verification of the results. This
undertaking culminated in the appearance of his brilliant theoretical and experimen-
tal paper (Taylor 1923) whose importance for all the subsequent development of the
investigations of hydrodynamic instability cannot be overestimated.

Since in circular Couette flow between sufficiently long cylinders the undisturbed
velocity field (4.10) depends only on the r-coordiante, the appropriate form of Eqs.
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(2.8) and (2.9) is

u′
r (x, t) = ei(kz+nϕ−ωt)f (r)(r), u′

ϕ(x, t) = ei(kz+nϕ−ωt)f (ϕ)(r),

u′
z(x, t) = ei(kz+nϕ−ωt)f (z)(r),p′(x, t) = ei(kz+nϕ−ωt)g(r).

(2.13)

Here k is the axial wave number (and 2π /k is the wavelength of the disturbance
in the Oz direction); n, the azimuthal wave number, is a nonnegative integer deter-
mining the dependence of the disturbance on the angle ϕ; and f (r) = f ω;k,n(r) =
[f (r)(r), f (ϕ)(r), f (z)(r)] and g(r) = gω;k,n(r) are the r-dependent “amplitudes” of the
disturbance, with given axial wavenumber k, azimuthal wavenumber n, and charac-
teristic frequencyω. Substituting from Eqs. (2.10) and (2.13) into the general system
of equations (2.7), and taking into account the boundary conditions u(r ,ϕ, z, t) = 0
for r =R1 and r =R2, we arrive at the eigenvalue problem determining the spectrum
of permissible frequencies for given k and n. It may be shown (see, for example, Di
Prima (1961)), that this problem, after certain transformations (including, in partic-
ular, the elimination of f (z) and g), may be reduced to the following system of two
differential equations in two unknown functions f (r) and f (ϕ):
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(2.14)

where A and B are determinded from Eq. (2.10) and N is the differential operator

N = −v

(
d2

dr2
+ 1

r

d

dr
− n2

r2
− k2

)

− i

(

ω − nU (r)

r

)

. (2.15)

The boundary condition for which the sixth-order system (2.14) must be solved take
the form

f (r)(r) = f (ϕ)(r) = df (r)

dr
= 0 for r = R1 and r = R2. (2.16)

The boundary-value problem (2.14–2.16) has no singularities. It follows from the
general theorems about systems of this type that for any values of k and n the system
has an infinite number of eigenvaluesωj = ωj (k, n,�1,�2,R1,R2, v). Furthermore,
the corresponding set of eigenfunctions ( f (r), f (ϕ)) is complete in the Hilbert space of
pairs of functions on the intervalR1 ≤ r ≤R2, satisfying conditions (2.16) and having
finite values of the integral of

∣
∣f (r)

∣
∣2+∣∣f (ϕ)

∣
∣2 (see, e.g., the literature cited in Sect. 2.5

above and the Remarks to Chap. II in the book by Joseph (1976) which contain
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addtional references). Therefore, the values at t = 0 of the corresponding functions
(2.13), where k passes through all the real values and n through all the integer values,
is complete in the space of all permissible initial values [u′(x, 0),p′(x, 0)]. This fact
justifies the attempt to apply the eigenvalue method of the Linear stability theory,
i.e., to study the set of eigenvalues ωj (k, n, �1, �2, R1, R2, v) in order to find the
conditions guaranteeing that all the eigenvalues lie in the lower half-plane �m ω < 0.

However, instead of solving the complete eigenvalue problem (2.14–2.16), all
early stability studies dealing with circular Couette flow (beginning with Taylor’s
work (1923)) assumed that n = 0, i.e., they considered only axisymmetric velocity
disturbances, which do not depend on ϕ. The reason for this was that data from
almost all early experiments (with the exception of data by Lewis (1928) which
were unnoticed at first) gave the impression that when the Reynolds number Re
increases the disturbance that first becomes unstable is always axisymmetric. Under
the assumption that n = 0, the system (2.14–2.15) can be considerably simplified and
reduced to the form

(

L− k2 + iω

v

)

(L− k2)f (r)(r) = 2k2

v

(

A+ b

r2

)

f (ϕ)(r),

(

L− k2 + iω

v

)

f (ϕ)(r) = 2

v
Af (r)(r),

(2.17)

where

L = d2

dr2
+ 1

r

d

dr
− 1

r2
= d

dr

(
d

dr
+ 1

r

)

. (2.17′)

The boundary-value problem (2.17–2.16) for fixed k has an infinite number of
eigenvalues ωj (k,�1,�2,R1,R2, v) but the corresponding eigenfunctions will not
determine a complete system of functions in the space of all permissible initial veloc-
ity fields u′(x) (if only because all the corresponding values of u′(x) are independent
of ϕ). Nevertheless, the region of the (�1,�2)-plane to which there correspond unsta-
ble disturbances of the form exp[i(kz − ωt)] f (r) (i.e., disturbances of this form with
�mω ≥ 0) was identified for a number of years with the whole region of instability
[see, e.g., Landau and Lifshitz (1944, 1953, 1958); Lin (1961a); Chandrasekhar
(1961); Stuart (1963)). Although it was shown later that this identification is not
exactly correct, we will begin with results valid for disturbances with n = 0 and only
after this consider the general case.

According to many early measurements the disturbance that first becomes unsta-
ble is not only axisymmetric but also nonoscillatory; in other words, this disturbance
corresponds to an eigenmode with n = 0 and purely imaginary eigenfrequency ω.
Relying on this observation, Taylor (1923) limited his investigation of the eigen-
value problem (2.17–2.16) by studying only the case of purely imaginary values
of ω; the same assumption has been used by many subsequent investigators of the
subject. Later, several authors tried to prove mathematically that �e ω= 0 for the
most unstable mode; but nobody could find such a proof under general conditions.
Apparently the strongest result was obtained by Yih (1972), who showed that if both
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cylinders are rotating in the same sense and Rayleigh’s condition (2.12) is valid
(i.e., 0 ≤μ≤ (R1/R2)2), then at any fixed value of Re = �1r

2
1/v ≥ 0 there exists

an infinite number of axisymmetric eigenmodes, and to all these modes (both sta-
ble and unstable) there correspond purely imaginary eigenfrequencies ωj . Since in
1972 there was no doubt that at μ> (R1/R2)2 unstable modes do not exist at all,
Yih’s result showed that in the case of cylinders rotationg in the same sense ω must
be purely imaginary for the most unstable eigenmode, if such eigenmode exists.
Therefore the loss of stability takes place here when an eigenvalue ω= 0 appears.
For flows between counter-rotating cylinders (μ< 0) this result was not proved (and
now it is known that it is incorrect, if μ=�2/�1 is negative and large enough in
absolute value; see below). However, it has long been assumed that experimental
data show that the most unstable mode is always axisymmetic and nonoscillatory.
If it is true, then for determination of the boundary of the instability region (the
so-called “neutral curve”) it is enough to assume that ω= 0 in the system (2.17–
2.16) and then to find for which values of �1 and�2 the obtained simplified system
of equation has a solution. The fact that the transition from stability to instability
proceeds through a steady state, corresponding to zero eigenvalue ω= 0, is often
called in fluid mechanics the “principle of exchange of stabilities” (this term was
first introduced by H. Poincare more than 100 years ago in a somewhat different
context, and its use has a long history; see, e.g., Joseph (1976), Remarks to Chap.
II, and Drazin and Reid (1981), p. 12). Now it is known, however, that this principle
has a limited domain of validity; in particular, it is not valid for circular Couette
flows if μ is negative and large in absolute value (again see the discussion later in
this section). The system for the case where n = 0, (2.17–2.16), includes five di-
mensionless parameters, R1/R2 > 0,�2/�1, κ = k(R2 − R1) = kd,ω0 = ω/�1,
and Re = �1R1d/v (if �1 = 0, then it must be replaced by �2 in the last two
equations). Hence, here ω0 = ω0(R1/R2�2/�1, κ , Re). For fixed values of R1/R2,
�2/�1 and κ this system of equations allows us to determine the smallest (and usu-
ally unique) value of Re, Re(κ)cr say, such that ω0(R1/R2,�2/�1, κ , Re(κ)cr ) = 0
(i.e., the axisymmetric disturbance with dimensionless wave number κ is neutral
at Re = Re(κ)cr). Thus, Re(κ)cr is the critical Reynolds number for axisymmetric
disturbances with axial wave number k = κd. The schematic form of the function
Re(κ)cr is shown in Fig. 2.9, taken from Tritton’s book (1988); the shape of the neu-
tral curve in the (Re, κ)-plane given here is closest to that for �2/�1 = 0, d/R1 � 1
(see also Fig. 2.15a, b but note that they correspond to quite different values of�2/�1

and d/R1). The points (Re,κ) outside the area bounded by the curve Re = Re(κ)cr

correspond to stable disturbances, with �mω < 0, and the points inside this area
to unstable disturbances. The minimum value of Re(κ)cr, which corresponds to the
leftmost point of the Re(κ)cr curve, is the value of Recr = Recr min according to linear
stability theory, while the corresponding value of κcr = kcr d determines the wave
number kcr of the disturbance which first becomes unstable as Re increases. Results
of accurate numerical computations of the function Re = Re(κ)cr for�2/�1 = 0 and
a number of values of R1/R2 in the range 0.975 ≤R1/R2 ≤ 0.1 can be found in the
papers by Di Prima and Eagles (1977); and Dominguez-Lerma et al. (1984).
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Fig. 2.9 Schematic form of
the neutral-stability curve
Re = Re(κ)cr in the (Re,κ)
plane (after Tritton (1988)).
(This curve depends on values
of R2/R1 and �2/ �1; the
given shape is close to that for
�2/�1 = 0 and
(R2-R1)/R1 � 1)

The numerical solution of the system (2.17–2.16) was not a simple problem in
the precomputer era, even for the special case where ω= 0. This is the reason why
Taylor (1923), who first performed such computations, considered only the narrow-
gap case where d =R2–R1 �R1. He used an expansion of the solution of Eqs.
(2.17) in terms of a special set of orthonormal functions, which reduced the differ-
ential equation to an infinite system of linear algebraic equations. Later a number
of other methods of numerical solution was proposed, both for Eqs. (2.17) and for
the more complicated Eqs. (2.14). Many results of the computations performed,
supplemented by numerous additional references, can be found, e.g., in the books
by Chandrasekhar (1961); Joseph (1976); Goldshtik and Shtern (1977); Drazin and
Reid (1981); Koschmieder (1993); and Chossat and Iooss (1994); and in the papers
by Sparrow et al. (1964); Walowit et al. (1964); Roberts (1965); Babenko et al.
(1982); Dominguez-Lerma et al. (1984); Di Prima and Swinney (1985); Afendikov
and Babenko (1985); Babenko and Afendikov (1985); Langford et al. (1988); Takhar
et al. (1989a, b); Gwa and Cohen (1992); Gebhardt and Grossmann (1993); and many
others; see also the extensive bibliography and valuable survey paper by Tagg (1992,
1994). The appearance of general-pupose digital computers and subsequent advances
in computer technology substantially affected the development of these investiga-
tions and made it possible to carry out in the 1960s and 1970s many computations
which seemed impossible earlier, and in the 1980s and 1990s to carry out much more
extensive and diverse computation than those done before 1980. Modern comput-
ers also allowed the eigenvalue and normal-mode computations to be supplemented
by results of direct numerical simulations of disturbance development in circular
Couette flows (i.e., numerical solutions of the appropriate nonlinear equations of
motion); see, e.g., Jones (1981, 1982, 1985); Moser et al. (1983); Marcus (1984);
and Hirschberg (1992). The experimental methods used for laboratory verifications
of computational results have also improved greatly during recent years (see, e.g.,
Weidman (1989); and Donnelly (1992)).
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a b

Fig. 2.10 Position of the region of instability in the plane (�1, �2) for Couette flow between
rotating cylinders, for R2/R1 = 1.13 a and R2/R1 = 2 b. The region of instability is shaded in the
figure; the black dots represent experimental results while the white circles in figure a and the solid
line in figure b are found by computations. The dotted lines indicate the boundary of the region of
instability for the corresponding flow of an inviscid fluid (after Rayleigh)

As the first example of results from numerical calculations, let us consider
Fig. 2.10a, taken from Taylor’s classic paper of 1923. This fugure shows the region
of the (�1, �2)-plane in which unstable axisymmetric disturbances are possible for
R1/R2 = 0.880. The instability region is shaded in this figure; the small white circles
represent the results of Taylor’s calculations of the points belonging to the neutral
curve in the (�1/v, �2/v)-plane, while the black dots show the measured values of
(�1/v, �2/v) at which instability first appears as the angular velocity �2 is slowly
increased. We see that theoretical and experimental results agree excellently with
each other and determine the same neutral curve (the solid line in Fig. 2.10a). This
figure and the similar figure for R1/R2 = 0.743, also given in Taylor’s paper, rep-
resent the first great (even epoch-making) success of the theory of hydrodynamic
stability, which was confirmed by the results of numerous subsequent investigations.
The neutral curves in the (�1, �2)-plane (or, what is the same, in the (Re1, Re2) or
(Re∗

1, Re∗
2)—plane, where Rei = �iRid/v, Re∗

i = �iR
2
i /v, i = 1, 2), calculated for

a number of other values of R1/R2 = η (ranging from 0.1 to 0.964) and for various
ranges of �2/�1 =μ, are presented, and often compared with the available data,
in papers by Chandrasekhar (1958); Chandrasekhar and Elbert (1962); Donnelly
(1962); Sparrow et al. (1964); Walowit et al. (1964); Snyder (1968b); Di Prima and
Swinney (1985) and others. In particular, a summary of calculated and measured
neutral curves in the (Re∗

1, Re∗
2)-plane found before 1968 is presented in Snyder’s pa-

per (1968b). Here, as one more example, we show in Fig. 2.10b the instability curve
for R1/R2 = 0.5 (which is a typical wide-gap case) calculated by Chandrasekhar
(1958) and compared with data by Donnelly and Fultz (1960), which are indicated
by black dots in the figure (see also Chandrasekhar (1961); Chandrasekhar and El-
bert (1962); and Donnelly (1962)). Note that in both cases represented in Fig. 2.10
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Fig. 2.11 Dependence of the critical Reynolds number Re1,cr for Couette flow between inner rotating
and outer stationary cylinders on the radius ratio η= R1/R2. The solid and dashed lines represent
the results of numerical computations by Gebhardt and Grossmann (1993); and the approximate
equation by Esser and Grossmann (1996); respectively, while dots show experimental results by
different investigators (after Gebhardt and Grossmann and Esser and Grossmann)

(and also for all other values of R1/R2), the calculations predict unstable distur-
bances only if �1/�2 < (R1/R2)2 (i.e., within the region of instability for inviscid
Couette flow). This fact agrees with the relatively old theoretical result by Synge
(1938b); (see also Chandrasekhar (1961), Sect. 70) who showed that in the case
where �1/�2 > (R1/R2)2 instability with respect to axisymmetric disturbances
will not occur for any value of Re. It is natural to assume that in this case circular
Couette flow will also be stable at any Re with respect to any non-axisymmetric
infinitesimal disturbance. This last assumption has not so far been proved in full
generality, but it agrees with all available experimental data; if it is correct, it means
that here the viscosity has only a stabilizing effect. Figure 2.10 shows also that when
�2/�1 = const < (R1/R2)2 , instability to infinitesimal disturbances must arise if
the value of Re is sufficiently high.

Accurate computations of the linear growth rate γ = �mω for the most un-
stable disturbance at several supercritical values of Re > Recr were performed by Di
Prima and Eagles (1977); and Dominguez-Lerma et al. (1984), for Couette flows with
�2 = 0 and various values of η = R1/R2.Di Prima and Swinney (1985) listed a num-
ber of computed values of Re1,cr = (�1R1d/v)cr, where d =R2 −R1, for Couette
flows with�2 = 0 and various values of η (in Fig. 2.10a, b Re1,cr corresponds to points
of intersection of the neutral curve and ordinate axis). Later Gebhardt and Grossmann
(1993) computed the values of the function Re1,cr(η) for a great number of values of η;
their results are shown in Fig. 2.11 together with the available experimental results.

Esser and Grossmann (1996) tried to find an analytic expression, albeit approxi-
mate, for the function Re1,cr(η) by generalizing to the case of circular Couette flow
of viscous fluid the arguments of Rayleigh (1916b); and Karman (1934) which lead,
in the inviscid case, to the instability criterion (2.12). For this it was necessary to
take into account the effect of viscosity on the motion of fluid particles (i.e., the loss
of fluid particle energy and momentum produced by viscous force) and to determine
the condition under which the hypothetical exchange of two neighboring fluid rings



68 2 Basic Experimental Facts and Introduction to Linear Stability Theory

produced by their virtual motions will lead to increase of the kinetic energy (i.e., such
exchange will be energetically disadvantageous). By introducing some reasonable
hypotheses the authors obtained for the function Re1,cr(h) an expression of the form

Re1,cr(η) = 1

α2

(1 + η)2

2η[(1 − η)(3 + η)]1/2 ,

where α≈ 0.155 (this value of the constant α was determined from the comparison
of the results for Re1,cr as η → 1(in the “narrow-gap limit”) with values obtained
from Eqs. (2.17)). The resulting function Re1,cr(η) is shown in Fig. 2.11 by a dashed
line; as one can see, it agrees excellently with the results of numerical calculations.

A similar method was applied by Esser and Grossmann to determine an analytic
approximation for the function Re1 = Re1 (Re2), which corresponds to the neutral
curve in the (Re1, Re2) plane. The equation obtained depends on η; for η= 0.2, 0.5
and 0.964 it implies forms of the neutral curve which agree quite satisfactorily with
the experimental data by Donnelly and Fultz (1960); and Snyder (1968b). These
approximate equations for functions Re1,cr(η) and Re1(Re2) shed additional light on
the physical mechanism of considered instability.

According to the discussion above, both experimental data and the results of
numerical calculations show that transition from stability to instability in circular
Couette flows very often occurs when, for some value kcr of the axial wave number,
one of the eigenvalues ωj becomes zero (the cases where transition occurs differ-
ently will be considered later). At slightly supercritical Reynolds numbers (when
0 < Re − Recr � Recr) there will be a narrow band of unstable eigenmodes. In this
case the most unstable mode (which has the greatest rate of growth) is the mode
that loses stability first of all, and at slightly supercritical values of Re this mode
suppresses all the other unstable modes. Moreover, in circular Couette flow the am-
plitude growth rate of the most unstable mode usually decreases with increasing
amplitude, and as t → ∞ the amplitude tends to a finite limiting value. (This process
depends on the nonlinear terms in the equations of motion and will be considered at
greater length later). Therefore, instability in circular Couette flow usually leads to
the development of a new (secondary) steady motion with an axisymmetric velocity
field of the form u = U + u′ where u′ = exp (ikcrz)f (r). This motion consists of a
series of so-called Taylor vortices (discovered, calculated and described by Taylor in
his pioneering paper of 1923)—cellular toroidal vortices spaced regularly along the
axis of the cylinders at distances close to kcr/π. (Since the value of kcr differs not
too much from π/d in many cases, the vertical scale of these vortices is often nearly
the same as their horizontal scale R2–R1). The streamline pattern of these vortices,
computed from the corresponding eigenfunctions f (r), is shown in Fig. 2.12 (for
more precise plots, see, e.g., Drazin and Reid (1981)); excellent flow visualization
photographs of the vortices can be found, e.g., in books by Joseph (1976); Drazin
and Reid (1981); Van Dyke (1982); Tritton (1988); Koschmieder (1993); and Chos-
sat and looss (1994). With further increase of the Reynolds number in Couette flow,
there will be a whole series of · transformations of the flow structure leading finally
to fully developed turbulent flow. This part of the story will be discussed at length
later.
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Fig. 2.12 Streamline pattern
of vortex disturbance for flow
between rotating cylinders.
(After Shen (1964))

We have already explained that consideration only of axisymmetric disturbances,
in Taylor’s paper (1923) and in a long series of subsequent investigations, was based
on some observational results but had no rigorous theoretical justification. However,
Taylor himself noticed the appearance of non-axisymmetric vortical structures in
flow between rotating cylinders, though he considered this as a phenomenon related
to a secondary nonlinear instability. Non-axisymmetric disturbances in some circular
Couette flows (related to cases of counter- rotating cylinders with rather large negative
value of the ratio μ = �2/�1) were also observed in the work by Lewis (1928), but
this work did not attract much attention at the time and became widely known only
in the late 1960s. Nevertheless, from the beginning of the 1960s several attempt were
mde to investigate theoretically the behavior of non-axisymmetric disturbances of
the form (2.13), where n �= 0, in laminar Couette flows between rotating cylinders.

The early history of these investigations is described at length in MY1, pp. 104–
107; it will be repeated here more briefly but will be supplemented by results from
more recent work. In the first studies of the general eigenvalue problem (2.14–2.16)
by Di Prima (1961); and Roberts (1965), only zero and positive values ofμwere con-
sidered, and it was found that at such values ofμ the disturbance which first becomes
unstable is always axisymmetric. In other words, it was found that ncr = 0 forμ ≥ 0,
where ncr is the azimuthal wave number of the disturbance which becomes unstable
first of all when Re increases. However, a somewhat surprising result of these early
investigations was that the critical Reynolds number for non-axisymmetric distur-
bances with small non-zero values of n was only slightly larger (by a few percent
in all cases) than the value of Recr for the most unstable axisymmetric disturbance
with n = 0. The first work in which an asymptotic analysis of the eigenvalue prob-
lem (2.14–2.16) was carried out for μ< 0 was the dissertation of Krueger (1962).
According to his results, if μ< −0.8 and the gap between the cylinders is very small
(i.e., d/R1 � 1), then ncr = 1, i.e., some non-axisymmetric disturbance with n = 1
becomes unstable at a smaller value of Re than any axisymmetric disturbance. A
more complete investigation was made by Krueger et al. (1966). They calculated,
under the assumption that either d/R1 → 0 or d/R1 = 1/20, the values of Re1,cr =
(�1R1d/v)cr for 0 ≤ n ≤ 5 and 0 ≥ μ ≥ −1.25 (in fact the so-called Taylor
number Ta (a special dimensionless combination of R1,R2,�1,�2 and v which is
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a b

Fig. 2.13 Regions in the (μ, η) plane a and in the (Re2, η) plane b in which normal modes with
different azimuthal wave number n first becomes unstable as Re1 is increasing. (After Langford
et al. (1988))

proportional to (Re1)2 if�2 = 0 and d/R1 has a fixed value) was used here instead of
Re). It was found by Krueger et al. that forμ< −0.78 the most unstable disturbance is
non-axisymmetric, and that the value of ncr is in general increasing whenμ decreases
(for example, if d/R1 = 1/20, then ncr = 0, 1, 3, 4, and 5 for μ= −0.70, −0.80,
−0.90, −1.00, and −1.25, respectively). Krueger et al. also found that the difference
between the minimum value Tacr or Recr (which corresponds to n = ncr) and the value
of Tacr or Recr determined from an examination of axisymmetric disturbances with
n = 0 only, increases with the increase of both −μ and δ = d/R1, but in all cases
considered it as very small (usually only a few percent). These results were refined
and augmented by the results of subsequent stability calculations for circular Couette
flows between counter-rotating cylinders by Romashko (1981); Demay and Iooss
(1984); and Afendikov and Babenko (1985); all these results also agree satisfactorily
with the early experimental data of Lewis (1928); Nissan et al. (1963) and Snyder
(1968a). However, the most complete computational and experimental results for
the stability of laminar flows between counter-rotating cylinders with respect to
infinitesimal disturbances were obtained by Langford et al. (1988); supplemented
by Tagg et al. (1990) (see also Tagg (1994)). Langford et al. numerically solved
the eigenvalue problem (2.14–2.16) (transformed by them into a more convenient
form) for n = 0, 1, 2, 3, and 4 and various values of the dimensionless parameters
κ = kd, η = R1/R2,μ = �2/�1, and Re2 = �2R2d/v = Re1μ/η (where Re1 =
�1R1d/v) in the rangesκ ≥ 0, 0.4 ≤ η < 1, −1.2 < μ < −0.3, and 0 > Re2 > −400.
Since the determination of stability boundaries was the main interest, most attention
was given to eigenvalues ω with vanishing imaginary part �mω = 0 (computed
separately for five values of n). The results of the computations included the value
n = ncr, which corresponds to the disturbance that first becomes unstable, and also
the regions in the (μ, η) and (Re2, η) planes which correspond to various values
of ncr (see Fig. 2.13a, b; no computations were made for n > 4, and higher values
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Table 2.1 Bicritical points computed for four particular values of η=R1/R2, with corresponding
critical values of some important parameters (after Langford et al. (1988))

ncr → (n + 1)cr Re2,cr Re1,cr μ κcr for κcr for ω(r)
cr /n�1 ω(n)

cr /(n + 1)�1

ncr (n + 1)cr for ncr for (n + 1)cr

wave wave wave wave

η= 0.500
0 → 1 −73.70 95.25 −0.3874 4.079 3.813 0 0.2813
1 → 2 −300.85 175.94 −0.8550 6.354 5.280 0.3365 0.2825
η= 0.736
0 → 1 −87.71 114.82 −0.5622 3.631 3.590 0 0.3345
1 → 2 −126.45 132.91 −0.7004 3.872 3.796 0.3670 0.3216
2 → 3 −326.98 202.37 −1.1890 3.765 4.722 0.3702 0.3047
η= 0.800
0 → 1 −99.25 129.55 0.6129 3.571 3.551 0 0.3445
1 → 2 −124.60 141.80 0.7030 3.726 3.678 0.3663 0.3355
2 → 3 −243.40 186.67 1.0430 3.871 4.114 0.3731 0.3174
η= 0.883
0 → 1 −128.93 166.88 −0.6822 3.516 3.511 0 0.3546
1 → 2 −142.81 173.83 −0.7254 3.592 3.574 0.3654 0.3505
2 → 3 −189.68 193.78 −0.8643 3.704 3.708 0.3711 0.3418
3 → 4 −345.74 248.16 −1.2300 3.779 4.070 0.3688 0.3253

of ncr might correspond to some small regions in the upper left-hand corners of the
figures). The dividing lines in Fig. 2.13a and b correspond to flows where at least
two different neutrally stable wave disturbances can exist at Re1 = Re1,cr (Langford
et al. called such points the “bicritical points”). Values of the functions κcr(Re2) and
ω(r)

cr (Re2) (where ω(r) = �eω) change discontinuously at the bicritical points while
the functions Re1,cr (Re2) are continuous here but have discontinuous derivatives (see
Table 2.1 and Figs. 4–6 in the paper by Langford et al.).

Langford et al. supplemented their eigenvalue computations by detailed experi-
mental investigation. The radius ratio η of their apparatus was gradually increased
in steps of 0.05 and for all values of η experiments of two types were performed.
In the first type, one cylinder speed was held constant (usually the outer so that Re2

was fixed) and the other cylinder speed was adjusted until transition to non-Couette
type of flow was observed. Such observations were made for many values of Re2

varying from 0 to −400. In the experiments of the second type the speed ratio μ
was held constant (and varied from measurement to measurement in the range from
about −0.3 to −1.2) but the values of�1 and of −�2 = −μ�1 were both increased
until transition was observed. At all the observed transitions the values of Re1, Re2,
μ, η, κ , and ω(r)/�1 were tabulated and the results obtained were listed in a special
document suitable for distribution (for more details see the original paper). Compar-
ison of the experimental and theoretical results showed excellent agreement (see e.g.
Fig. 2.14).

Let us recall that the forms of both the neutral curves shown in Fig. 2.10 were found
from computational results for Couette-flow stability with respect to axisymmetric
(n = 0) disturbances. Also recall that when Re1 increases, a non-axisymmetric dis-
turbance can become unstable earlier than any axisymmetric disturbance only if −μ
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Fig. 2.14 True
neutral-stability curves
Re1 = Re1,cr(Re2) (solid) and
curves Re1 = Re1,cr(Re2,0)
(dotted) for three values of η.
Small circles indicate
experimentally determined
critical values of Re1.. (After
Langford et al. (1988))

is quite high (at μ< −0.7 if η= 0.88, and at μ< −0.4 if η= 0.5; see Table 2.1).
Therefore, results related to instability with respect to disturbances with higher val-
ues of n can affect only the far left part of the two above-mentioned curves. Moreover,
these results imply that the changes in this part of the curves are so small that they
apparently cannot be detected in Fig. 2.10a and b. In fact, it has already been noted
that Krueger et al. (1966) found that the true critical Reynolds number Re1,cr (which
corresponds to the disturbance, with any n, that first becomes unstable) always
differed very little from the value of Re1 at which some axisymmetric disturbance
became unstable. These results were confirmed by Langford et al. (1988) who treated
much more extensive data. They computed the values of the minimum Reynolds
number Re1,cr(Re2, n) at which, for given Re2, a neutrally stable disturbance with
the azimuthal wave number n first appears. They covered the range −400 < Re2 < 0
and the following values of n and η: n = 0, 1, 2, 3, and 4; η= 0.883, 0.800, 0.736, and
0.500 (just these four values of η are represented in Table 2.1). At given n the func-
tion Re1,cr(Re2, n) determines the boundary, in the (Re1, Re2)-plane, of the region
of Couette-flow instability with respect to disturbances of the form (2.13) where
n is fixed. These curves (for the abovementioned values of n and η) were pre-
sented by Langford et al. together with the true neutral curve Re = Re1,cr(Re2) =
min n[R1,cr(Re2, n)]. It was found that the difference between the “conditional neu-
tral curve” Re = Re1,cr(Re2, 0), which corresponds to axisymmetric disturbances,
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Fig. 2.15 Neutral-stability
curves Re1 = Re1,cr(κ ,n) in
the (Re1,κ) plane for n = 1, 2
and 3, and the cases where
(μ, η) = (−1, 0.64),
Re1,cr = 169.1 a or
(μ,η) = (−1.4, 0.64),
Re1,cr = 246.3 b. (After Tagg
(1994))

a

b

and the unconditional (true) neutral curve Re = Re1,cr(Re2) is negligible except at
large negative values of Re2 and is rather small in all cases considered (see Fig. 2.14,
which shows some of the computed results together with the corresponding experi-
mental data). However, for larger negative values of μ, taking account of instability
to non-axisymmetric disturbances leads to a considerable change of the neutral curve
in the (�1,�2) [or (Re1, Re2)] plane (see, e.g., schematic Fig. II.6 in the book by
Chossat and looss (1994)).

Results of some additional computations of stability characteristics for Couette
flows between counter-rotating cylinders (i.e., for μ< 0) were presented by Tagg
et al. (1990); and Tagg (1994). In particular, these papers contain data allowing
determination, for several combinations of μ and η values, of the neutral curves
Re1 = Re1,cr(κ , n) in the (Re1, κ) plane, which correspond to disturbances with given
azimuthal wave number n (recall that the schematic graph of the function Re1(κ)cr

in Fig. 2.9 corresponds to the special case where n = 0, μ= 0, and 1 −η� 1). In
Fig 2.15 (taken with some modification from Tagg (1994)) the curves Re1 =
Re1,cr(κ , n), where n = 1, 2, and 3, are shown for (μ,η) = (−1, 0.64) and (μ,η) =
(−1.4, 0.64). We see that in both cases the disturbance which first becomes unstable
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has azimuthal wave number n = 2; however the second of these two cases is somewhat
peculiar since here two non-axisymmetric normal modes with the same azimuthal
wave number n = 2 but different axial wave numbers, κ1,cr and κ2,cr, become unstable
at practically the same value of Re1 = Re1,cr.

However the main topic investigated by Tagg et al. (1990) is only indirectly re-
lated to stability studies for normal wave-like modes of the form (2.13). The modes
(2.13) with n = 0, real k and purely imaginary ω correspond to axisymmetric stand-
ing waves, which grow or decay depending on the sign of �mω. If n �= 0 and ω

is purely imaginary, the disturbance (2.13) is a standing helical wave. However, if
�eω = ω(r) �= 0, then the distrubance (2.13) is a propagating wave which is moving
either in the axial direction Oz (if n = 0) or in a spiral manner (if n �= 0). Therefore,
if ω(r) �= 0, then it is desirable to take into account that in the case of propagating
disturbances there are two different types of instability. Namely, the instability of a
disturbance can be distinguished according to whether it is convective (the distur-
bance grows in time only in the reference frame moving with the disturbance but
it decays to zero at any fixed position) or absolute (the disturbance grows in time
at fixed position). Tagg et al. paid most attention to the determination of the types
of instability for disturbances in Couette flows between counter-rotating cylinders.
The distinction between convective and absolute instabilities was first noted about
the middle of this century, and later it became quite important in plasma physics;
however, more recently this distinction has attracted much interest in fluid mechanics
also. To distinguish between the two types of instability, it is necessary to consider
the initial value problem for a disturbance localized at t = 0, i.e., here it is not enough
to study only the behavior of separate normal modes. Since the convective/absolute
alternative is especially important for fluid flows in tubes, channels, boundary layers,
jets, and wakes, we shall consider this topic at greater length in Sect. 2.93, where the
main results of the paper by Tagg et al. (1990) will also be described.

In the case of strongly counter-rotating cylinders (large negative μ), the normal
mode which first becomes unstable when the Reynolds number is increasing is os-
cillatory (i.e., here �eω �= 0). Therefore, in this case transition from stability to
instability produces some kind of time- periodic flow and not a steady Taylor-vortex
flow as sketched in Fig. 2.12. It can be shown that two different types of flow can ap-
pear in this case at Re = Recr—either spiral vortices traveling along the cylinder axis,
or so-called “ribbons” that travel only in the azimuthal direction. The choice between
these possibilities depends on nonlinear mode interactions and cannot be determined
by linear stability theory; see. e.g., Tagg (1994) or, for more details, Chossat and
Iooss (1994). Of course, ifμ< 0, a series of transitions to more and more complicated
forms of flow also appears, in an orderly sequence, as Re increases, until finally the
flow takes the form of disordered turbulent motion. In the remarkable early paper
by Coles (1965), it was first shown that a great number of different flow states can
coexist in the parameter space corresponding to flows between rotating cylinders.
This result was later confirmed and augmented by other authors; see e.g. the expres-
sive Fig. 2.16, taken from the paper by Andereck et al. (1986). More data for the
various forms of supercritical circular Couette flow can be found in the collection of
papers edited by Andereck and Hayot (1992). However, results of this type cannot
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Fig. 2.16 Regions of different flow states in the (Re1, Re2) plane for the experiments where the
outer cylinder speed �2 (and hence also value of Re2) is fixed and the inner cylinder speed �1 is
slowly increasing. (After Andereck et al. (1986))

be explained by the linear theory of hydrodynamic stability; therefore, they will be
not considered in this chapter of the book.

It was also found by Coles (1965) and by some other authors that transitions to
and from a given flow state when the Reynolds number at first increases and then
decreases is often accompanied by hysteresis effects, and that a non-Couette state can
sometimes exist even at Re < Recr. The last result can be explained by the temporal
growth of some stable (i.e., asymptotically decaying) modes (see the final part of
Sect. 2.5 and also the next chapter of this book) or by nonlinear interactions of stable
modes. These possibilities stimulate interest in the study of damped eigenmodes be-
low the stability threshold. It was, in particular, shown by Ko and Cohen (1987); and
Gwa and Cohen (1992) that even atμ≥ 0, where neutral and most unstable modes are
necessarily nonoscillatory, there can exist damped axisymmetric oscillatory modes
(with n = 0, �eω �= 0). More extensive damped-mode data were presented by Geb-
hart and Grossmann (1993) who computed a number of characteristics (including a
great number of subcritical eigenvalues, forms of several individual eigenfunctions,
and flow patterns) for both axisymmetric and non-axisymmetric damped modes at
positive, zero, and negative values of μ.

In the theoretical investigations mentioned in this section, the ideal circular Cou-
ette flow between infinite concentric rotating cylinders was assumed. However, in
the experiments the cylinders always had a finite length L, and although the ratio
R2/L was usually rather small, the end effects could distort the agreement between



76 2 Basic Experimental Facts and Introduction to Linear Stability Theory

the experimental and calculated characteristics. Many related studies in the theory of
hydrodynamic stability have included additional factors affecting the flow between
rotating cylinders. There have been studies taking into account possible small ec-
centricity of the two cylinders, the influence of axial or circumferential pressure (or
temperature) gradients, and/or axial, circumferential, or radial magnetic fields, or
the replacement of the usual fluid by a non-Newtonian fluid, etc. Some of these addi-
tional effects are considered in the books by Chandrasekhar (1961); Joseph (1976);
Goldshtik and Shtern (1977); Drazin and Reid (1981); Koschmieder (1993); An-
dereck and Hayot (1992); and Chossat and Iooss (1994); references to many papers
on these subjects can be found in the comprehensive bibliography and subsequent
survey by Tagg (1992, 1994). However we will not discuss these subjects here.

2.7 Linear Stability Analysis for a Layer of Fluid Heated
from Below

Now we pass to consideration of another classical stability problem where the predic-
tions which follow from the linear stability theory agree quite well with the results
of laboratory experiments. This problem concerns the conditions for stability of
an immovable horizontal layer of homogeneous fluid in the presence of a vertical
temperature gradient dT/dz �= 0.

Assume that a layer of fluid is bounded by walls at z = 0 and z = H, having fixed
temperatures T0 and T1. Also assume that the temperature difference�T = T0 − T1

is not too high in absolute value, so that |�T | /Tm � 1 where Tm = (T0 +T1)/2 and
T0 and T1 are absolute temperatures measured in degrees Kelvin. Then the velocity
and temperature fields u(x, t) and T(x, t) will satisfy with good accuracy the so-called
Boussinesq (or Oberbeck-Boussinesq; see, e.g., MY1, Sect. 1.5, and Joseph (1976),
Sect. 54) and heat conduction equations

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ v∇2ui + δi3[gβ(T − T0) − g], i = 1, 2, 3, (2.18)

∂ui
∂xi

= 0, (2.19)

∂T

∂t
+ ui

∂T

∂xi
= χ∇2T , (2.20)

where p is the pressure, ρ0 = constant is the density corresponding to temperature
T0 (or to temperature Tm which is supposed to differ little from T0) and β is the
coefficient of thermal expansion of fluid (which is equal to 1/Tm for an ideal gas).
Equations (2.18–2.20), with temperature boundary conditions T (x1, x2, x3, t) = T (x,
y, z, t) = T0 for z = 0 and T = T1 for z = H, clearly have the steady solution

ui = 0, i = 1, 2.3, T = T (z) = T0 − γ z,

p = p(z) = p0 − gρ0(z + γβz2/2)
(2.21)
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where γ = �T/H (i.e., −γ is the vertical temperature gradient), andp0 = p(0). This
solution corresponds to the state of rest. (Of course, if the molecular viscosity and
thermal diffusivity are neglected, i.e. it is assumed that v =χ = 0, then the vertical
temperature profile T (z) can take arbitrary initial values in a state of rest.) The study
of the stability for the state of rest is just the problem that will be considered in this
section.

It was noted in Sect. 2.4 that in the case of an ideal fluid with v = χ = 0, the state
of rest is stable when temperature T (z) is increasing with height and is unstable when
T (z) is decreasing with height. Hence, if v = χ = 0, then the solution (2.21) of the
equations of motion is stable if T1 > T0 and unstable if T1 < T0. If was long assumed
that in the case of a real viscous and heat-conducting fluid, the same condition T1 < T0

will also be necessary and sufficient for the instability of the state of rest. However,
it was proved by Rayleigh (1916a) (who was himself surprised by the unexpected
result obtained) that in a viscous heat conducting fluid the solution (2.21) of equations
(2.18–2.20) will be unstable only if the temperature difference �T is greater than
some positive ‘critical value’�Tcr (depending on H, v and χ ).

Rayleigh’s theoretical investigation was stimulated by experimental results by
Bénard (1900, 1901), who studied carefully convective motions in thin layers (thick-
ness of the order of 1 mm) or various liquids above a heated horizontal metal plate
(detailed description of Bénard’s experiments can be found in Koschmieder’s book
(1993)). For this reason, convection in a horizontal layer of fluid heated from below
is often called the Bénard (or Bénard-Rayleigh) convection. Unfortunately, Bénard’s
name proved to be somewhat misleading, since it was shown in the middle of the
20th century that the fluid motions observed by Bénard were in fact mostly driven
not by buoyancy forces, which produce ordinary thermal convection, but by varia-
tion of the temperature-dependent surface tension at the upper free surface of liquid
(see, e.g., Block (1956); Pearson (1958); Zierep and Oertel (1982); Tritton (1988)
Sect. 4.5; Koschmieder (1993), Chap. 3). Surface-tension-driven vertical motions
in fluid layers are now often called Marangoni convection; see, e.g., Zierep and
Oertel (1982). However, not all authors have found this name appropriate. Therefore
Nield (1968); and Koschmieder (1993) proposed to call the surface-tension-driven
convection in a fluid layer (first really observed by Bénard) the Bénard convection,
while for the buoyancy-driven convection in such a layer, Nield and also Thompson
and Sogin (1966)) used the name Rayleigh-Jeffreys convection (Jeffreys’ work will
be considered below) and Koschmieder used the name Bénard-Rayleigh convection.
However, these the surface-tension-driven convection will not be considered.

Rayleigh applied the normal-mode approach of the linear theory of hydrodynamic
stability to the study of convection in a layer heated from below. Putting T =
T (z) + T ′,p = p(z) + p′ and then linearizing Eqs. (2.18–2.20) with respect to the
disturbances ui, T′ and p′ we obtain the following system of five equestion with five
unknowns:

∂ui
∂t

= − 1

ρ0

∂p′

∂xi
+ v∇2ui + δi3gβT

′, i = 1, 2, 3, (2.22)
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∂ui
∂xi

= 0, (2.23)

∂T ′

∂t
− δi3γ ui = χ∇2T ′. (2.24)

Taking the divergence (∂/∂xi) of vector Eq. (2.22), we find that ∇2p′ =
ρ0gβ∂T /∂z, z = x3. Applying the Laplace operator �= ∇2 to the third Eq. (2.22)
we can now eliminate p′ from this equation; the resulting equation and Eq. (2.24)
form a system of two equations with two unknowns, w = u3 and T′. It is easy to
eliminate either w or T′ from this system; this leads to the following equation for
T′(x, t)

∇2

(
∂

∂t
− v∇2

)(
∂

∂t
− χ∇2

)

T ′ − gβγ

(
∂2

∂x2
+ ∂2

∂y2

)

T ′ = 0, (2.25)

(where x = x1, y = x2) and to exactly the same equation for the unknown w(x, t). The
first two of Eqs. (2.22) together with Eq. (2.23) also allow u1 = u and u2 = v to be
determined; see, e.g., Drazin and Reid (1981) or Koschmieder (1993).

If we transform the derived equations to dimensionless variables ξ = x/H , η =
y/H , ζ = z/H , τ = tχ/H 2 and after this, following eqs. (2.8) and (2.9), seek T′(x, t)
in the form of a product

T ′(x, t) = �T exp [i(k1ξ + k2η − ωτ )]θ (ζ ), (2.26)

we obtain from Eq. (2.25) the following one-dimensional problem
(
d2

dς2
− k2

)(
d2

dς2
− k2 + iω

)(
d2

dς2
− k2 + iω

Pr

)

θ + k2Raθ = 0, (2.27)

where k2 = k2
1 + k2

2 ,ω is the unknown eigenvalue, Pr = v/χ is the Prandtl number,
and the new dimensionless combination

Ra = gβγH4

vχ
= gβ�TH3

vχ
, (2.27′)

is the so-called Rayleigh number. (This combination became well-known after its
appearance in Rayleigh’s paper (1916a) but it was in fact first introduced by L.
Lorenz in 1881; see Joseph (1976), Sect. 54.) Assuming that

w(x, t) = (χ/H ) exp [i(k1ξ + k2η − ωt)]W (ζ ), (2.26′)

We obtain for W (ζ) the same Eq. (2.27) with the function θ (ζ) replaced by W (ζ ).
The boundary conditions on rigid surfaces of constant temperature are

T ′ = w = ∂w/∂z = 0, (2.28)

(the last two of these clearly follow from the usual no-slip condition). It was also
assumed by Rayleigh that at free surfaces of constant temperature the temperature
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disturbance T ′, the vertical velocity w, and the tangential stress all vanish. From this
it follows that at free surfaces

T ′ = w = ∂2w/∂z2 = 0. (2.28′)

Using Eqs. (2.22–2.24) it is now easy to show that boundary conditions (2.28) and
(2.28′) for functions T′(x, t) and w(x, t) of the exponential forms (2.26) and (2.26′)
can be also rewritten as follows

W = W ′ = W (iv) − (2k2 − iω/ Pr)W ′′ = 0 on rigid surfaces, (2.29)

W = W ′′ = W (iv) = 0 on free surfaces, (2.29′)

Or, if we are studying the eigenvalue problem for θ (ζ),

θ = θ ′′ = θ ′′′ − (k2 − iω)θ ′ = 0 on rigid surfaces, (2.30)

θ = θ ′′ = θ (iv) = 0 on free surfaces, (2.30′)

where primes and superscript(iv) symbolize differentiation of the corresponding order
with respect to ζ. The eigenvalue problem (2.27) with boundary conditions (2.30–
2.30′) and the same problem for W (ζ ) with boundary conditions (2.29–2.29′) include
three dimensionless parameters: Pr, Ra, and the dimensionless wave number k. The
Prandtl number Pr characterizes the physical properties of the fluid, and for any given
fluid its value is fixed. (Possible dependence of v and χ on temperature is neglected
here; note that in gases the Prandtl number is really nearly constant.) Consequently,
for a given fluid and fixed types of walls (rigid or free) there will correspond to any
given values of k and Ra an associated set of eigenvalues ωj (k, Ra). Note that in
the idealized case of two free surfaces the eigenvalue problems for the functions
W (ζ) and θ (ζ) coincide; here, therefore, it is evident that the sets of eigenvalues
ωj (k, Ra) for both problems are the same. In the more realistic cases of two rigid
surfaces or one rigid and one free surface, the boundary conditions for the functions
W (ζ) and θ (ζ) are not the same. However it is clear from physical reasons that here
also the eigenvalues ωj (k, Ra), which determine the complex ‘frequencies’ of the
corresponding normal modes of the convective flow, must be the same for the two
eigenvalue problems considered.

Rayleigh was interested first of all in elucidating the qualitative features of the
convection process. Therefore, in his paper (1916a) he analyzed only the mathemat-
ically much simpler (but physically unreal) problem of convection in a layer of fluid
between two free boundaries at constant temperatures. We know that this problem
is reducible to the eigenvalue problem (2.27) with boundary conditions (2.30′) for
ζ = 0 and ζ = 1. This type of eigenvalue problem can be solved and analyzed rather
easily. It is not difficult to show that all solutions of Eq. (2.27) satisfying the specified
conditions are of the form θ (ζ ) = sin πjζ , j = 1, 2, . . . Substituting these solutions
into Eq. (2.27) we obtain, for any integer value of j, a quadratic equation which de-
termines two eigenvalues ωj1 and ωj2. It easy to verify that if Ra ≤ 0 (i.e., if�T ≤ 0
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so that the temperature of the lower boundary is not higher than that of the upper
boundary), then �mωj1 < 0 and �mωj2 < 0 for any j and any wave number k.
Hence for �T ≤ 0 all normal modes of disturbance are stable, and hence the state
of rest is stable too. In this case, all eigenvalues ωj1 and ωj2 are purely imaginary
for sufficiently low values of |�T | , but at higher values of |�T| some eigenvalues
turn out to be complex (with negative imaginary parts). However, when Ra > 0 (i.e,
the lower boundary has higher temperature than the upper one), all the eigenvalues
ωj1 and ωj2 are purely imaginary (i.e., the principle of exchange of stabilities is
valid), but now the imaginary parts of all the eigenvalues are non-positive only if
Ra is small enough. However, if Ra exceeds some critical value Racr, the imaginary
parts of some eigenvalues become positive, showing that the state of rest is unstable.

It is also easy to determine the exact value of Racr and the value, kcr, of the wave
number corresponding to the normal mode which first becomes unstable. In fact, to
find the critical values of Ra and k, it is sufficient to consider Eq. (2.27) with ω= 0,
i.e.,

(
d2

dς2
− k2

)3

θ + k2Raθ = 0, (2.31)

If we substitute the solution θ = sin πjζ in Eq. (2.31), we obtain the critical Rayleigh
number Ra(k, j)cr which corresponds to the jth eigenmode of neutral disturbances
(with ω= 0) having given dimensionless wave number k:

Ra(k, j )cr = (j 2π2 + k2
)3
/k2. (2.32)

It is clear from this equation that for any given k the minimum critical Rayleigh
number corresponds to the first eigenmode, i.e., to a disturbance with j = 1. Hence
the value of Racr can be determined as the minimal value of Ra(k, 1)cr = Ra(k)cr over
all values of k: Racr = mink[(π2 + k2)3/k2]. Now elementary computation leads to
the results

Racr = 27π4/4 ≈ 657.5, kcr = π
√

2/2 ≈ 2.2. (2.33)

Results (2.33) for the idealized model of a fluid layer bounded by two free surfaces
were found by Rayleigh (1916a), who tried to use them to explain Bénard’s ex-
perimental findings, if only qualitatively. First of all he was interested in Bénard’s
observation that when the state of rest loses its stability a specific “cellular regime”
is formed in the layer of fluid: the flow decomposes into a number of regular ver-
tical cells (now called Bénard’s cells), often having the form of identical regular
hexagonal prisms where fluid is ascending in the middle of cells and descending
near their boundaries.4 This observation makes one think that a cellular solution
of Boussinesq’s equations replaces the state of rest at the onset of instability. At

4 Later it was discovered that such order of updrafts and downdrafts is typical only for liquids, while
in the case of cellular convection in gases, gas is usually descending in the middle and ascending
near the boundary of a cell [see, e.g., Koschmieder (1993)].
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slightly supercritical Rayleigh numbers Ra > Racr, the amplitude of the most unsta-
ble cellular solution will at first increase exponentially with time, but then its growth
rate will gradually decrease and the amplitude will tend to a finite limiting value
corresponding to a steady finite-amplitude cellular convection.

It was stressed by Rayleigh that in his theory the value of k2 = k2
1 +k2

2 determines
only the typical horizontal size of possible cells but not their form. In fact, the
exponential function exp �[i(k1ξ + k2η)] can be replaced in Eqs. (2.26) and (2.26′)
by an arbitrary linear combination of such functions with different values of k1 and
k2 but a fixed value of k2

1 + k2
2 . And what is more, instead of such combinations it

is also possible to use, in Eqs. (2.26) and (2.26′), an even more general arbitrary
function φ(ξ , η) satisfying the so-called membrane (or Helmholtz’s) equation

∂2φ

∂ξ 2
+ ∂2φ

∂η2
+ k2φ = 0. (2.34)

It is clear that solutions of this equation can describe quite different forms of cells.
Rayleigh did not find the solution corresponding to hexagonal cells and considered
only the simplest “cellular solution” with square cells, but he also estimated the
value of k for the case of hexagonal cells of given size and showed that the value
in Eq. (2.33) of kcr does not differ too much from the value of k corresponding to
the hexagonal cells observed by Bénard. Later, Christopherson (1940) determined
the exact solution of Eq. (2.34) describing regular hexagonal cells (this solution
can now be found in the books by Gershuni and Zhukhovitskii (1972); Drazin and
Reid (1981); and Koschmieder (1993)) while Bisshopp (1960) discussed some more
general cellular solutions.

Bénard’s experimental results stimulated attempts by a number of scientists to
explain the appearance of hexagonal cells after the onset of convection with the
aid of the non-linear Boussinesq equations. However, these works lost much of
their interest when it became known that Bénard’s experiments have little relation to
natural buoyancy-driven convection. For the same reason the closeness of Rayleigh’s
theoretical value for kcr to the value of k corresponding to Bénard’s observations
seems now to be accidental. However, Rayleigh’s paper (1916a) has retained all its
importance as a classical contribution to to linear theory of hydrodynamic stability,
containing the first derivation of a non-trivial condition for convective instability.

In the case of the more realistic problems of convection in a layer of fluid between
two rigid boundaries of fixed temperatures, or between a rigid boundary below and a
free surface above, some complicated analytic expressions can be also found for the
functions θ (ζ) and W (ζ). However, here these expressions are of little help since the
eigenvalues ωj must now be determined from complicated transcendental equations
which can be solved only numerically. The approximate calculation of values for Racr

and kcr in the case of two rigid or one rigid and one free boundaries was first made by
Jeffreys (1926, 1928). Jeffreys’ results for the case of two rigid boundaries proved to
be sufficiently precise, but in the case of one rigid and one free surface, the boundary
conditions used on the upper free surface were later found to be unsatisfactory. More
accurate results for this case were obtained by Low (1929); and Pellew and Southwell
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(1940). Still later, modern computers allowed all critical values to be determined with
very high accuracy. The values accepted today are: Racr = 1707.8, kcr = 3.117 for
the case of two rigid boundaries, Racr = 1100.7, kcr = 2.682 for one rigid and one free
boundary (see, e.g., Drazin and Reid (1981); and Koschmieder (1993); for the rigid-
rigid case more precise values having many supplementary significant digits can be
found in the paper by Dominiguez-Lerma et al. (1984)). We see that the presence
of rigid boundaries increases the value of Racr considerably and Increases also the
values of kcr but to a lesser degree. Pellew and Southwell (1940) gave a simple proof
of the general “principle of exchange of stabilities”, introduced by Jeffreys (1926)
as an assumption. According to this principle all the eigenvalues ωj are real in the
case of a horizontal layer of fluid heated from below. The proof of this statement
can now be found, e.g., in the books by Gershuni and Zhukhovitskii (1972); Joseph
(1976); Drazin and Reid (1981); and Koschmieder (1993) (the first two of these also
contain some generalizations of the stated result). The values of Racr and kcr (and also
the values of the critical Rayleigh numbers Ra(k)cr for disturbances with fixed wave
number k, which give the ‘neutral curve’ in the (Ra, k)-plane) are determined by Eq.
(2.31), and it is clear that they do not depend on the Prandtl number Pr. However, the
growth rates σ = �mω of supercritical unstable disturbances at Ra > Racr, (and also
the decay rates −σ = −�mω of subcritical stable disturbances at Ra < Racr) must be
determined from Eq. (2.27); therefore, they depend on Ra, k, and Pr. It was shown
above that in Rayleigh’s case of two free boundaries these rates are the roots of a
quadratic equation with coefficients depending on the above-mentioned parameters;
in cases of rigid-rigid or rigid-free boundaries their evaluation is more complicated
and includes some numerical computations. (Note also that the case of one rigid and
one free boundary is computationally more complex than the cases of two boundaries
of the same type, where the problem exhibits an additional mirror symmetry with
respect to the plane z = H/2. Therefore, in the “rigid-free’ case, in contrast to ‘free-
free’ and ‘rigid-rigid’ cases, the set of all eigenfunctions W (ζ) and θ (ζ) does not
decompose into two subsets of functions, even and odd with respect to the mid-point
ζ = 1/2. For more details of problems with asymmetric boundary conditions see,
e.g., Clever and Busse (1993, 1995)). The function Ra(k)cr for Rayleigh’s free-free
case was indicated above; some results for the rigid-rigid and rigid-free cases were
given by Pellew and Southwell (1940) [see also Fig. 2.17, taken from the review
paper by Busse (1989)). Values of growth rates σ at small positive values of Ra −
Racr and k close to kcr are given for the free-free case by analytical equations, but
for the rigid-rigid case some numerical computations are also needed; see, e.g., the
papers by Newell and Whitehead (1969); Cross (1980); and Dominigues-Lerma
et al. (1995). Some results for asymmetric boundary conditions were computed by
Kvernvold (1979); and Clever and Busse (1993, 1995) who, however, paid most
attention to nonlinear stability analysis.

Most experimental verifications of the results from the linear stability theory of
fluid layers heated from below concern comparisons of the theoretical values for
Racr with the laboratory data. The loss of stability for the state of rest of a fluid
layer (i.e., the onset of convection) can be detected visually as the appearance of a
cellular structure in the fluid if some visualization technique is used and the value of
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Fig. 2.17 The neutral-stability curves of the onset of convection in the (k, Ra) plane for a fluid
layer bounded by two rigid walls (solid line) and by two free surfaces (dashed line). (After Busse
(1989)).

�T = T0 − T1 is increased gradually (or �T is held constant but the gas pressure
is increased and hence v and χ are decreased; see Thompson and Sogin (1966)).
Instead of visual observation, which are always subjective to a certain degree, it is
posible to use measurements of the heat transfer through the fluid layer at different
values of Ra; such measurements are easily made and they provide the most accurate
results. In the state of rest the rate of heat transfer across unit area of the layer, Q,
is clearly given by the equation Q = κ∇T = κ�T/H where κ = cpρχ is the
molecular coefficient of thermal conductivity; hence Q is proportional here to �T
and Ra. After the onset of convection the molecular conduction of heat through the
fluid begins to be supplemented by heat transfer by vertical fluid motions. Therefore,
Q begins to exceed κ �T/H, and this produces the “break” in the heat transfer curve
at Ra = Racr, showing the dependence of Q (or the Nusselt number Nu = QH/κ�T)
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Fig. 2.18 Dependence of the
Nusselt number Nu = QH/

κ�T on Ra/Racr, where Racr

is the value of Ra at which Nu
begins to grow above the
value Nu = 1, for silicone oil
(according to Koschmieder
and Pallas (1974)). The value
of Racr was found to be 1675,
i.e., only 2 % smaller than the
theoretical value 1708

on �T or Ra; Fig. 2.18, taken from the paper by Koschmieder and Pallas (1974), is
typical. (Similar graphs were constructed by these authors for two other types of oil
having different viscosities and Prandtl numbers; the corresponding values of Racr

in both cases differ from the theoretical value 1708 by no more than 4 %). Surveys of
the results obtained by this method for fluid layers filling large aspect ratio containers
with L/H � 1 (where L is the width, or diameter, of the container), bounded at the
bottom and top by rigid boundaries, are presented in the books by Drazin and Reid
(1981, Sect. 12); and Koschmieder (1993, Sect. 5.4); one more impressive example
is given by Tritton (1988, Fig. 22.1). According to all these sources, results of the
numerous available measurements of Racr agree with the theoretical value 1708 to
within about 5 %.

Another method for verification of the linear theory of fluid-layer instability is
based on comparison of the theoretical value for kcr with measured sizes of the cells
that appear at the onset of convection. It is natural to assume that if (Ra −Racr)/Racr �
1, then the resulting “cellular pattern” (often called also the “planform of convection”)
must be described by the solution of Eq. (2.34) with the dimensionless wave number
k very close to kcr. (The shape of the cells is also a very important characteristic
of the cellular pattern, but it cannot be used for verification of the theory since the
linear instability theory does not determine the shape. Moreover, the experimental
data collected by Koschmieder (1993) in Sect. 4.2 of his book show that the cell
shape is strongly affected by the size and form of the horizontal cross-section of the
container and by its lateral boundaries, whereas the theory assumes that the cross-
section is infinite and has no lateral boundaries at all.) In practice the exact solution
of Eq. (2.34) describing the cellular pattern is usually not employed to determine
k, but it is assumed that the typical horizontal size (“width”) of cells arising at the
onset of convection is equal to half the wavelength λ = 2πH/k corresponding to
the dimensionless wave number k. The “measured value” of k deduced from this can
then be compared with the theoretical value of kcr. Note that the ever-present lateral
boundaries restrict the set of possible “measured values” of k since the cross-section
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of the container must be filled by an integer number of nominally identical cells
of width λ/2 = πH/k. Nevertheless, it seems natural to think that in the case of
containers of large aspect ratio, the lateral boundaries and the finite cross-section will
be of little significance for the observed process of convection. If so, then the width
of the cells appearing at the onset of convection must be close to λcr/2 = πH/kcr.

Two examples of such experimental determinations of kcr for the fluid layer be-
tween two rigid plates are presented in the book by Drazin and Reid (1981), p. 60;
one more such example is analyzed at greater length by Koschmieder (1993), p. 83.
The general conclusion from these examples is that this method for experimental
determination of kcr leads to values which agree within a couple of percent with the
theoretical value of kcr for a fluid layer between two rigid surfaces. Thus, the compar-
isons of the measured values for Racr and kcr with results of theoretical computations
show that there is no reason to doubt that the normal-mode approach to the linear
theory of hydrodynamic stability quite accurately describes the onset of convection
in a layer of fluid between two rigid walls.

In a number of relatively old publications (including also MY1, p. 111), it was
stated that for layers of fluid between one rigid and one free boundary at constant
temperatures the theoretical value Racr ≈ 1100 is confirmed by experimental data
with the same accuracy as for layers between two rigid boundaries. However, these
statements were based on rather old data whose accuracy is unsatisfactory according
to modern standards. In fact it is very difficult to provide an accurate fulfillment
of boundary conditions (2.28′) (and hence also of (2.29′) and (2.30′)) on real free
surfaces of liquid layers, and to guarantee the absence there of supplementary effects
affecting the motions of liquid elements. In particular, it is very difficult to preserve
strictly constant temperature at the upper free boundary of a layer of liquid, and
the existence of temperature variations implies variations of surface tension, which
0 produce supplementary motions. It has been already noted above that surface-
tension variations apparently played the main role in Bénard’s experiments; it is also
possible to show that in these expriments the boundary conditions (2.28′) used by
Rayleigh in his model computations are not all valid at the upper boundaries of the
liquid layers. An attempt to construct a convection theory based on real conditions
at the free boundary of a liquid layer under air was made by Nield (1964), who
took into account both the buoyancy and the surface tension effects and obtained
estimates for Racr and kcr which differ considerably from the values that follow from
Rayleigh’s conditions (2.28′) applied to the upper boundary. Nield’s estimates do
not contradict Koschmieder’s (1967) measurements of convection in a liquid layer
under air. Note also that sufficiently strong convective motions of a liquid can deform
its free surface, and this deformation can substantially affect the instability charac-
teristics and sometimes lead to violation of the principle of exchange of stabilities,
making the convection pattern not stationary but oscillatory (see, e.g., Gershuni and
Zhukhovitskii (1972); and Benguria and Depassier (1987)).

Let us also note that not all Rayleigh’s boundary conditions (2.28) are strictly valid
on all rigid surfaces bounding fluid layers. Of course, conditions related to the vertical
velocity w are evident consequences of the no-slip and no-permeability conditions,
which are always valid in a viscous fluid. However the assumption of complete
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absence of temperature fluctuations at the rigid boundary (i.e., the exact constancy
of boundary temperature) is often only a poor approximation. This approximation
is adequate for a massive boundary with infinite thermal conductivity, i.e., it is
appropriate in the case where a layer of liquid is bounded by a thick plate of copper
or other metal; however, in other cases special measures must be taken to guarantee its
validity. On the other hand, in the case of an insulating solid boundary the boundary
condition T′ = 0 must be replaced by the condition ∂T ′/∂z = 0, introduced by
Jeffreys (1928); in some other cases, constant values of the heat flux, or some linear
combination of temperature and heat flux, must be assumed instead of constant values
of temperature (see Sparrow et al. (1964)). Values of Racr and kcr corresponding to
some other boundary conditions which are appropriate, e.g., in the cases of a fluid
layer bounded by rigid plates of finite thermal conductivities having infinite or given
finite thicknesses, or by a deformable free upper boundary, or by a free boundary at
non-constant temperature, can be found in the papers by Hurle et al. (1967); Nield
(1968); Jakeman (1968); Benguria and Depassier (1987); Clever and Busse (1995);
and the book by Gershuni and Zhukhovitskii (1972).

Rayleigh’s problem on the stability conditions for an infinite horizontal fluid
layer is a simple example from an extensive class of problems related to convective
instabilities of fluids. This class includes the generalizations of Rayleigh’s problem to
horizontal layers of non-Boussinesq or non-Newtonian fluids, to layers with internal
sources of heat, layers fixed in a rotating coordinate frame, layers of conducting fluids
in the presence of electric and/or magnetic fields, layers of density-stratified fluids;
it also includes stability studies for fluids at rest in bounded containers of various
forms (in particular, studies of the influence of lateral walls on convection in bounded
fluid layers; see, e.g., Sect. 5.2 in Koschmieder (1993)) and for non-horizontal fluid
layers; and a great number of problems about stability conditions for various flows
of thermally inhomogeneous fluids. Some of these problems are considered in the
books by Chandrasekhar (1961); Gershuni and Zhukhovitskii (1972); and Gershuni
et al. (1989); there is also a great deal of literature in journals and collections of
papers. However it is not possible to consider even a small part of this material here.

2.8 Introduction to the Linear Stability Theory of Parallel Fluid
Flows

Above, we considered two examples of the application of the linear theory of hydro-
dynamic stability to particular fluid flows. These examples were selected because
the presence of a special supplementary force (a centrifugal force in the example
studied in Sect. 2.6 and an Archimedean force of buoyancy in Sect. 2.7) leads to a
comparatively simple form of the resulting eigenvalue problem, which permits one
to obtain quite definite results allowing experimental verification. However, from
both the purely theoretical and the applied points of view, the study of stability for
flows in tubes and boundary layers on solid bodies seems to be much more impor-
tant and challenging. Unfortunately, the application of the linear stability analysis to
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these flows encounters serious mathematical difficulties, which even today cannot
be considered to have been completely solved. Therefore we postponed the discus-
sion of these stability problems until now, and below we will confine ourselves to
consideration of the simplest cases of tube and boundary-layer flows, and of some
other sufficiently simple flows where the application of mathematical methods is not
too complicated.

The laminar flow in a circular tube is parallel and axially symmetric, and the
boundary layer along a flat plate is an example of approximately (but not exactly)
plane-parallel flow in the half-space z ≥ o. However, we shall begin with the analysis
of a simpler case, the strictly plane-parallel laminar two-dimensional flow in a plane
channel bounded by planes z = 0 and z = H. Let us assume that the velocity of this
flow is everywhere parallel to the axis Ox1 = Ox and is given by a function depending
only on the coordinate z. Note that according to the Navier-Stokes equations, in the
case of a steady plane-parallel flow of viscous fluid with the velocity U(x, y, z) =
U1(z)e1 (where e1 is the unit vector parallel to Ox), the function U(z) must be poly-
nomial and at most quadratic in z. Hence strictly plane-parallel flow between walls
at z = 0 and z = H can always be represented as a linear combination of the plane
Couette flow with linear velocity profile and the plane Poiseuille flow with parabolic
velocity profile. However, keeping in mind that we are interested in strictly plane-
parallel flows as possible models of more complicated real flows, we shall also
consider arbitrary profiles of U1(z) in the hope that the results obtained may be
applicable to flows that are only approximately plane-parallel.

2.8.1 The Orr-Sommerfeld Equation

Let us apply the method of small disturbances to a plane-parallel flow in a channel
between walls at z = 0 and z = H having a given velocity profile U1(z). Here Eqs.
(2.7) clearly have the form

∂u′
i

∂t
+ U1

∂u′
i

∂x
+ w

dU1

dz
δi1 = − 1

ρ

∂p′

∂xi
+ v∇2u′

i , i = 1, 2, 3, (2.35)

∂u′
i

∂xi
= 0, (2.36)

where x = xl, z = x3, w = u3 and primes denote disturbances of the primary fields.
Taking the divergence ∂/∂xi of (2.35) and using (2.36) we obtain

∇2p′ = −2ρ
dU1

dz

∂w

∂x
. (2.37)

Then, taking ∂/∂x3 = ∂/∂z of this equation and ∇2 = ∂2/∂xi∂xi of the third Eq.
(2.35), we can easily eliminate p′ from the latter equation and transform it to the
form

(
∂

∂t
+ U1

∂

∂x

)

∇2w − d2U1

dz2

∂w

∂x
− v∇4w = 0. (2.38)
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In the case of solid walls at z = 0 and z = H the boundary conditions for w will be:
w = ∂w/∂z = 0 at z = 0 and H.

Applying the normal-mode method of linear stability theory, we can replace the
general Eqs. (2.8) and (2.9) by a single equation

w(x, t) = U0 exp [i(k1ξ + k2η − ωτ )]W (ζ ), (2.39)

where dimensionless variables ξ = x/H , η = y/H , ζ = z/H , and τ = tU0/H are
used instead of dimensional variables x, y, z, t, and w is normalized by a velocity scale
U0. (As a suitable velocity scale U0, a typical value of the non-perturbed velocity
U(z), e.g., the maximum of U(z), can be taken.) Of course, equations of the form
(2.39) must be assumed to be valid for u′ = u′

1, v = u′
2, and p′ too, but they can be

omitted here. It is convenient and usual to represent the dimensionless ‘frequency’
ω as

ω = k1c, (2.40)

where c is the dimensionless ‘streamwise phase velocity’. Substitution of (2.39) and
(2.40) into (2.38) gives the equation

(U − c)

(
d2W

dζ 2
− k2W

)

− d2U

dζ 2
W + i

k1Re

(
d4W

dζ 4
− 2k2 d

2W

dζ 2
+ k4W

)

= 0,

(2.41)

(where U(z) =U1(z)/U0 is the dimensionless velocity profile, k2 = k1
2 + k2

2 and
Re =U0H/v) with boundary conditions

W (0) = W ′(0) = W (1) = W ′(1) = 0, (2.42)

(here primes symbolize differentiation on ζ). This is the famous 0rr-Sommerfeld (or
(O-S) equation which for many years was the main equation of hydrodynamic stabil-
ity theory studied in many hundreds of papers. For special cases of plane Poiseuille
and Couette flows, Eq. (2.41) was first derived by Kelvin (1887); however, at present
it is usually called by the names of Orr (1907); and Sommerfeld (1908) who both
considered only the simplest case of plane Couette flow but independently reduced
the investigation of stability to solution of the eigenvalue problem relating to the
two-dimensional form of this equation.

Equation (2.41) is in fact a generalization of the equation most often called the
O-S equation. Equation (2.41) includes three given parameters: k1, k = (k2)½, and
Re, and the unknown, and in general complex, eigenvalue c = c(r) + ic(i). The eigen-
value problem (2.41–2.42) will usually have nontrivial (i.e., non-zero) solutions only
for some discrete (finite or infinite) set of eigenvalues cj = c

(r)
j + ic(i)

j depending on

the parameters k1, k (or k2) and Re. It is possible to show that c(i)
j < 0 for any j, k1 and

k2 at small enough values of Re; thus, here all the normal modes of disturbance with
any wave numbers k1, k2 are decreasing exponentially with time, i.e., they are stable.
Now let Re increase; then at some critical value Re(k1, k2)cr (depending on k1 and k2)
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of Re, an eigenvalue cj having vanishing imaginary part �mcj = c
(i)
j = 0 appears for

the first time, while at a slightly greater Reynolds number Re > Re(k1, k2)cr the
imaginary part c(i)

j becomes positive. The value Re(k1, k2)cr is then the critical
Reynolds number for normal modes of disturbance with dimensionless wave numbers
k1 and k2.

The critical Reynolds number Recr of the plane-parallel flow with velocity profile
U1(z), which determines the threshold for the loss of stability with respect to in-
finitesimal wave-like disturbances, is equal to min(Re(k1, k2)cr) where the minimum
is taken over all values of k1 and k2. The determination of Recr was considered for
many years to be the main problem of the general (or, at least, of the linear) theory
of hydrodynamic stability.

Let us now show that when seeking the value of Recr it is sufficient to only consider
particular two-dimensional velocity disturbances of the form

w(x, t) = w(x, y, t) = U0 exp [i(kξ − ωτ )]W (ζ ). (2.43)

In this case k1 must clearly be replaced by k in Eqs. (2.41) and (2.41) hence we obtain
the equation

(U − c)(W ′′ − k2W ) − U ′′W + i

k Re
(W (iv) − 2k2W ′′ + k4W ) = 0 (2.44)

(with the same boundary conditions (2.42)), where the superscripts again denote
differentiation with respect to ζ. Equation (2.44) contains only two parameters, k
and Re. Now, denoting Rek1/k = Rek1/k(k2

1 + k2
2)1/2 by Re∗, we can rewrite Eq.

(2.41) in a form identicle to Eq. (2.44) but with
Re replaced by Re∗ < Re. Therefore, if at some value of Re Eq. (2.41) has a non-

trivial solution for some values k1 and k2 �= 0 corresponding to a (complex) eigenvalue
cj , then Eq. (2.44), in which k = (k2

1 + k2
2

)1/2
, necessarily has a non-trivial solution

corresponding to the same eigenvalue cj at a smaller value Re∗ = Rek1/(k2
1 + k2

2)1/2

of the Reynolds number. In particular, if a normal mode of disturbance of the form
(2.39) with horizontal wave numbers k1 and k2 �= 0 is unstable at some value of Re,
then a two-dimensional normal mode of the form (2.43) with k = (k2

1 + k2
2)1/2 will be

unstable at an even smaller value of Re, equal to Re k1/k. We see that the disturbance
that becomes unstable at the smallest value of Re is always two-dimensional and has
the form of a wave propagating in the x direction. Hence only such waves need be
considered when the determination of Recr is the main aim, i.e., here it is possible
to limit oneself to consideration of Eq. (2.44) only. Just this equation (and not the
more general Eq. (2.41)) is usually called the Orr-Sommerfeld (or O-S) equation.

The stated result regarding the possibility of reducing Eq. (2.41) to the form (2.44)
is due to Squire (1933); it is often called Squire’s theorem, while the transforma-
tion k1 → k, Re → Rek1/k (and the related transformation of fluid dynamic quantities
converting the three-dimensional normal mode of disturbance at Reynolds number
Re into a two-dimensional normal mode at smaller value of Re corresponding to
the same eigenvalue c) is called Squire’s transformation. It is usually assumed that
Squire’s theorem means that only two-dimensional disturbances of the form (2.43)
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need be considered in the linear stability theory of plane-parallel flows. For such
disturbances v(x, t) = 0 and ∂u/∂x + ∂w/∂z = 0, where u, v, w are velocity dis-
turbances directed along axes Ox, Oy and Oz. Therefore, instead of velocity field
u′(x, t) = {u(x, z, t), 0, w(x, z, t)} we can use a stream function ψ(x, z, t) {of the
form ψ(x, z, t) = exp [ik(ξ − cτ )]ψ(ζ )}, determining the velocity components by
the equations

u = ∂ψ/∂ζ , w = −∂ψ/∂ξ. (2.45)

It is easy to see that the stream function amplitude ψ(ζ) will also satisfy the O-S
equation (2.44)

(U − c)
(
ψ′′ − k2ψ

)− U ′′ψ + i

kRe

(
ψ(iv) − 2k2ψ′′ + k4ψ

) = 0, (2.44′)

and boundary conditions corresponding to (2.42)

ψ(0) = ψ′(0) = ψ(1) = ψ′(1) = 0. (2.42′)

It was noted by Squire in 1933 (but was seldom indicated in subsequent works), that
in transforming Eqs. (2.35–2.36) into the single Eq. (2.38) for w(x, t), one discards
possible solutions of the initial equations satisfying the condition w(x, t) = 0. In
this case also p′(x, t) = 0 and, therefore, both horizontal components of velocity
fluctuation u1 and u2 (primes at the symbols denoting velocity fluctuations are now
omitted) satisfy the same equation (∂/∂t +U1∂/∂x)ui = v�ui , i = 1, 2. For normal
modes which are proportional to exp[i(k1ξ +k2η−k1cτ )) it follows from (2.36) that
k1u1 + k2u2 = 0 and the dimensionless amplitudes V1(ζ) and V2(ζ ) = −(k1/k2)V1(ζ )
of two non-zero velocity components satisfy the equation

V ′′
j − k2Vj − ik1 Re (U − c)Vj = 0, j = 1, 2, (2.46)

with boundary conditions Vj (0) =Vj (1) = 0. For given values of k1 �= 0 and k2 �= 0,
Eq. (2.46) has a spectrum of eigenvalues cj (k1, k2, Re) that supplements the eigen-
value spectrum of the O-S equation (2.44) and corresponds to a new family of
three-dimensional normal modes of disturbance. However, it is easy to show that
all the new modes are stable and hence unimportant for the determination of insta-
bility conditions. In fact, multiplying Eq. (2.46) by the complex conjugate function
V∗

j , integrating with respect to ζ from 0 to 1, and considering the real part of the
resulting equation, we get

−
1∫

0

(∣
∣dVj

/
dζ
∣
∣2 + k2

∣
∣Vj
∣
∣2
)
dζ − �mck1Re

1∫

0

∣
∣Vj
∣
∣2dζ = 0, (2.47)

This shows that �mc < 0. Therefore the normal mode that first loses its stability
when Re is increasing is always two-dimensional and independent of η (i.e., of y).
Hence, in determining the condition for instability by the method of normal modes,
we need only study the eigenvalue problem for the O-S equation (2.44).
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The eigenvalues of the O-S equation depend on the parameters k and Re, i.e., they
have the form cj (k, Re) where j is the number of the eigenvalue. The critical Reynolds
number Recr is then the smallest value of Re for which mink,j[�mcj (k, Re)] = 0,
where the minimum is taken over all real values of k and integer values of j. Similarly
the critical wave number kcr is such that �mcj (kcr, Recr) = 0 for the value of j
corresponding to the neutrally stable normal mode (say, for j = 1). Note that here,
generally speaking, the real part c1(r) of the eigenvalue c1(kcr, Recr) with vanishing
imaginary part is different from zero. This means that the “principle of exchange of
stabilities” is not valid here, and at Re = Recr the neutrally stable mode of disturbance
represents a wave propagating along the Ox axis with phase velocity c(r)

1 . For values
of Re somewhat larger than Recr, a fairly small range of k values close to kcr exists for
which �mc1(k, Re) is positive (and the real part c(r)

1 (k, Re) of c1(k, Re) is nonzero).
Waves with values of k from this range will form a wave packet, which will grow with
time and simultaneously move downstream (with the group velocity of the packet). In
this respect, the instability under discussion differs from that of the flows considered
in Sects. 2.6 and 2.7, where unstable disturbances usually did not move and, at a
given point, grew to form finite-amplitude Taylor vortices or Bénard cells.

The range of k values having the property that at given Re (slightly exceeding Recr)
the inequality �mc1(k, Re) = c

(i)
1 (k, Re) > 0 is valid (i.e., the two-dimensional nor-

mal mode of disturbance corresponding to wave number k is unstable) corresponds
to the set of unstable two-dimensional normal modes. However, three-dimensional
normal modes can also be unstable if Re > Recr. Therefore the investigation of the
behavior of three-dimensional modes of disturbance in a steady plane-parallel fluid
flow at supercritical Reynolds numbers Re > Recr is also of interest. Such an in-
vestigation was carried out, in particular, by Watson (1960); and Michael (1961).
They showed that within the framework of the normal-mode method of the linear
stability theory for any plane-parallel flow there always exists a range of values of
Re, Recr < Re < Re1, within which, of all the unstable wave disturbances, the most
rapidly increasing disturbance (i.e., that having the greatest rate of growth �mcj ) is
necessarily two-dimensional. (This statement will not be correct for all values of Re;
furthermore, in the case of disturbances with fixed wave number k, the most unstable
disturbance is three-dimensional for certain values of k). Therefore, assuming that at
slightly supercritical values of Re the most unstable wave disturbance will suppress
all the others so that only its amplitude grows, we must expect that a finite range
of supercritical Reynolds numbers will exist, within which the flow will differ from
the initial plane-parallel flow only by the superposition on it of the most unstable
(and hence two-dimensional) normal mode of disturbance. Some further information
about three-dimensional waves unstable at a given supercritical value of Re can be
found in the paper by Magen and Patera (1986).

Note now that, according to the available experimental data on transitions to tur-
bulence of steady plane-parallel and almost plane-parallel flows, three-dimensional
disturbances often begin to play a fundamental role right from the first appearance
of hydrodynamic instability, i.e., at least for Re = Recr and in some cases even for
values of Re smaller than the value of Recr calculated by the normal-mode method
(see, e.g., Klebanoff et al. (1962); Kachanov et al. (1982); Herbert (1988); Kachanov
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(1994) and also Sect. 2.1 above and Chap. 3 below). These unexpected results were
usually explained by the authors considering this topic (including the present ones;
see MY1, p. 114) by the apparent influence of the inadequately-studied non-linear
effects. However, recent developments in the linear theory of hydrodynamic insta-
bility led to the conclusion that the above-mentioned experimental facts can also
be explained within the framework of linear disturbance theory if we replace the
normal-mode method by a more general approach which will be considered later.

It was implicitly assumed above that the Orr-Sommerfeld eigenvalue problem
(2.44–2.42) (or, what is the same, (2.44′–2.42′)) has a purely discrete eigenvalue
spectrum cj , j = 1,2, . . . . This statement was, in fact, first proved by Lin (1961b);
(see also Drazin and Reid (1981), p. 156) under the condition that the function
U1(z) (or, what is the same, U(ζ) =U1(z)/U0), which describes the velocity profile
and hence is determined only for 0 ≤ z ≤ H (or 0 ≤ ζ ≤ 1), can be continued
to the whole plane of a complex variable as an analytic entire function of z (or ζ).
(This condition is clearly valid for linear and quadratic velocity profiles describing
Couette, Poiseuille, and Couette-Poiseuille flows.) Later the same result was proved
under more general conditions by Schensted (1960); Yudovich (1965); Di Prima and
Habetler (1969); and Herron (1982); (cf. also Sattinger (1970); Yudovich (1984);
Georgescu (1985) and Sect. 2.5 of this book). All these authors also proved that the
corresponding system of eigenfunctions Wj(ζ) [or ψj(ζ)) is complete in the space of
all functions of ζ, 0 ≤ ζ ≤ 1, square-integrable and vanishing at the end points together
with its derivatives. Therefore, any function of ζ having a continuous derivative which
vanishes with the function itself at ζ = 0 and ζ = 1 can be expanded into an uniformly
convergent series in terms of the eigenfunctions of the O-S equation. Similarly,
any two-dimensional disturbance of the velocity (or stream-function) field can be
expanded in a convergent series in terms of corresponding normal modes. Much
additional information about these eigenfunction and normal-mode expansions can
be found in the book by Drazin and Reid (1981). A number of useful inequalities for
the eigenvalues of the O-S problem (2.44–2.42) was found by Joseph (1968, 1969);
Yih (1969, 1973); Georgescu (1970) and Warren (1976). Some of these inequalities,
which give sufficient conditions for stability of plane-parallel viscous flows with
respect to infinitesimal wave-like disturbances, are considered in the books by Joseph
(1976); Drazin and Reid (1981); and Georgescu (1985).

It was mentioned above that the O-S equation is also often applied as a reasonable
first approximation to stability studies for so-called nearly plane-parallel flows—
steady two-dimensional flows with the velocity field U(x) = {U(x, z), 0, W (x, z)},
where |W | � |U | and |∂U/∂x| � |∂U/∂z| . The class of nearly plane-parallel
flows includes many important flows, for example boundary layers on flat plates,
plane jets issued from thin linear apertures along the Oy axis, plane wakes behind
long thin cylinders, and mixing zones between two plane-parallel flows, flowing one
above the other with different velocities. In these cases it is often possible to neglect
the z component of the velocity and the dependence of the x component on z, i.e.,
to consider the flow as being strictly plane-parallel in the first approximation (see
some specific examples in Sects.2.92 and 2.93; another approximation was used in
the papers by Herron referred in Sect. 2.5). Considering the flow as plane-parallel
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we can use the appropriate O-S equation; however, the O-S equation must now be
valid in an unbounded region—either the halfspace z ≥ 0 or the whole space. (In
these cases the length scale H must of course be defined not as the total thickness
of the flow region but as some typical vertical scale of the unbounded flow.) The
boundary conditions at infinity are just the same here as at solid walls in the case of
channel flow: both W (ζ) and W ′(z) [or ψ(ζ) and ψ′(ζ)) must vanish at infinity, i.e.,
tend to zero as ζ → ∞ or, for flows in the whole space, ζ → ± ∞. However, in
the case of unbounded flow, the statement that the eigenvalue spectrum of the O-S
problem is purely discrete is incorrect—here this eigenvalue problem has, as a rule,
both discrete and continuous spectra. The continuous spectra of the O-S equations
will be considered at greater length later in this book, where the stability problems
for some particular unbounded nearly plane-parallel flows will be discussed.

2.8.2 The Rayleigh Equation and the Stability Analysis
for Plane-Parallel Flows of an Inviscid Fluid

The O-S eigenvalue problem (2.44–2.42) is quite complicated and its solution re-
quires the use of sophisticated and cumbersome mathematical procedures. Since the
available data show that the critical Reynolds number Recr is very large for many
plane-parallel flows, it seems natural to expect that, for Reynolds numbers near or
above Recr, the terms, of Eq. (2.44) which contain the factor Re−1 and describe the
action of the viscous forces will be small compared with the other terms, which are
independent of Re. If so, then we may first consider the fluid as ideal (i.e., inviscid)
and ignore the terms of (2.44) which are proportional to Re−1.Thus, instead of (2.44)
we obtain the abridged equation

(U − c)(W ′′ − k2W ) − U ′′W = 0, (2.48)

(primes denote differentiation), which was studied in detail by Rayleigh (1880, 1887,
1895, 1913) and is now called the Rayleigh equation. The same equation will of
course be valid, in the case of an ideal fluid, for the stream-function amplitude ψ.
Rayleigh’s equation determines the amplitudes of two-dimensional wave-like distur-
bances (proportional to expik(x − ct)}). Within the framework of the normal-mode
approach to hydrodynamic stability theory, the limitation to such disturbances can
again be justified by the Squire transformation, showing that if there exists an unsta-
ble three-dimensional wave (i.e., a disturbance proportional to expik1(x,− ct) + k2y}
where �mc > 0), then a two-dimensional wave also exists which is more unstable (i.e.,
faster growing) than the initial three-dimensional wave (see, e.g., Drazin and Howard
(1966) or Drazin and Reid (1981)). Note also that, in the case of a two-dimensional
unstable flow of ideal fluid, the fastest growing wave is always two-dimensional,
though this statement can be incorrect for a viscous fluid; see, e.g., Gaster (1970).
Moreover, no analog of the Squire theorem exists for arbitrary (not wave-like) dis-
turbances. This fact did not attract much attention in the past, but, as we shall see, it
proves to be rather important.
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For better conformity with the notation used in most other work, we will not
yet transform the dynamic equations to dimensionless independent and dependent
variables. Therefore, U, W and c will now have the dimension of velocity (and ψ the
dimension of velocity multiplied by length); U, W and ψ will depend on z (where
0 ≤ z ≤ H; note that notation U(z) is now used instead ofU1(z), and primes will denote
differentiation on z (and not on ζ = z/H)). Rayleigh’s equation is not of the fourth
but of the second order, and this is naturally seen as a considerable simplification.
We cannot require that four boundary conditions (2.42) (or (2.42′)) be satisfied by a
second-order equation. It is known, however, that for a flow of inviscid fluid only the
normal component of the velocity must be equal to zero on solid walls. It is easy to
see that from this it follows that conditions (2.42) and (2.42′) must be replaced here
by the condition W = 0 and kψ = 0 on the walls (and also at infinity). Moreover, in
a plane-parallel flow of ideal fluid the velocity profile U(z) can be arbitrary.

A number of examples where the Rayleigh equation can be explicitly solved
in terms of some elementary or known transcendental functions of mathematical
physics was collected by Russell (1994). Note however that although Eq. (2.48) is
mathematically simpler, the behavior of its solutions may in some respects be more
complicated than those of the O-S equation (2.44). This is because in Eq. (2.44)
the coefficient of the highest-order derivative of the unknown function is a non-
zero constant, while in Eq. (2.48) this coefficient depends on the variable z, and if
neutrally stable modes are studied it can vanish at some point z0 where the velocity
of the undisturbed flow U(z) is equal to the phase velocity c of the considered
normal mode. (Recall that only the neutrally stable modes with real values of c
need be studied for determination of the instability criterion.) It was proved quite
early by Rayleigh that the phase velocity c of any neutral wave mode will always
be between the minimum and the maximum velocity of the undisturbed flow (i.e.,
Umin ≤ c ≤Umax), so that a point z0 where U − c = 0 always exists within the flow.
This point z0 is a singular point of the Rayleigh equation and the presence of such a
point complicates the analysis considerably.

There are several different proofs of Rayleigh’s statement, above; one of the
simplest, which is due to Drazin and Howard (1966), is the following. Let us rewrite
Eq. (2.48) in the form

{(U − c)2F ′}′ − k2(U − c)2F = 0, F = W/(U − c). (2.48′)

Now multiply this equation by the complex conjugate function F* and then integrate
it from z = 0 to z = H. Since W (0) =W (H) = 0 (and hence also F(0) = F(H) = 0),
integrating by parts we obtain for nonsingular F that

H∫

0

(U − c)2
{∣
∣F ′∣∣2 + k2|F |2

}
dz = 0. (2.49)

The last equation shows that F cannot be nonsingular when c is real, and therefore
for real c the difference U − c must vanish at some point, z0 say.
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Equation (2.49) can be rewritten as

H∫

0

[U (z) − c]2�(z)dz = 0, where �(z) > 0 (2.49′)

(and �(z) is nonsingular for any complex c with non-zero imaginary part). If c =
c(r) + ic(i) is a complex number with c(i) �= 0, then the imaginary and real parts of
(2.49′) imply the relations

H∫

0

U�dz = c(r)

H∫

0

�dz,

H∫

0

U 2�dz = [(c(r))
2 + (c(i))

2
]

H∫

0

�dz.

(2.49′′)

The first of these two equations shows that U(z) −c(r) must change sign somewhere,
and hence U −c(r) must vanish at some point z0 for any eigenvalue c, so thatUmin ≤ �e
c ≤Umax always (this result, which was also known to Rayleigh, generalizes the result
given above for real eigenvalues c). Now let Umin = a and Umax = b; then clearly
(U −a)(U −b) ≤ 0 everywhere. Using Eqs. (2.49′′) we easily obtain that

0 <

H∫

0

(U − a)(U − b)�dz =
{[

c(r) − 1

2
(a + b)

]2

+ [c(i)
]2 − 1

4
(b − a)2

} H∫

0

�dz

and hence
[

c(r) − 1

2
(a + b)

]2

+ [c(i)
]2 ≤

[
1

2
(b − a)

]2

.

This means that all the eigenvalues c = c(r) + ic(i) of the Rayleigh equation with
c(i) > 0 (i.e., those corresponding to unstable modes) lie in a semicircle in the complex
c-plane with center at the point (Umax +Umin)/2 of the real axis and radius (Umax −
Umin)/2 (i.e., having the segment (Umin, Umax) of the real axis as its diameter). (In
other words, any eigenvalue c, real or complex, must lie in or on the circle having
this segment as its diameter.) This is the semicircle theorem of Howard (1961).
(Another simple proof was given by Warren (1976) who also proved an analog of
this theorem for the Couette flow between concentric rotating cylinders.) A number
of generalizations and sharpenings of this result is also known; see, e.g., Drazin and
Howard (1966); Sattinger (1967); Kochar and Jain (1979); Jain and Kochar (1983);
Makov and Stepanyants (1984) and also Sects. 2.83 and 2.84 below.

In addition to the semicircle theorem, many other bounds for the eigenvalues c
(depending on the velocity profile U(z) and often on the wavenumber k too) can
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be also found in the available literature; see, e.g., Drazin and Howard (1966); and
Craik (1972). These bounds give additional necessary conditions for instability (more
exactly, for the existence of exponentially growing wave-like disturbances in the flow)
and restrict the values of the wavenumbers of such growing disturbances.

Since U (z) − c ≈ U ′(z0)(z − z0) at points z near the singular point z0, it follows
that if U′(z0) �= 0, W′′(z) will tend to infinity as [U′′(z0)W (z0)]/[U′(z0){z − z0}] when
z→ z0. Hence, W′(z) will be proportional to In(z − z0) in the vicinity of z0; also
ψ′(z) = ∂ψ/∂z, which is proportional to the streamwise velocity of disturbance
u(x, z), will be proportional to In(z − zo). We see that near the singular point the
velocity of the neutral mode of disturbance tends to infinity and is described by a
multivalued function, which gives rise to a difficult question: which branch of the
multivalued function must be taken here? The usual method of overcoming all the
resulting difficulties consists of going back from Rayleigh’s abridged equation to
the complete O-S equation, but then we lose the advantage of the simplicity of Eq.
(2.48). In fact, the available methods that use this approach are quite cumbersome;
see, e.g., Lin (1961a), Chap. 8, Drazin and Howard (1966); and Drazin and Reid
(1981). Another method, which permits us to get rid of the singularity, consists of
supplementing the Rayleigh equation not with viscous terms, but with terms quadratic
in the velocity disturbances (see e.g. Stuart (1971b)); however, this method lies
outside linear stability theory. One more method that allows the relative simplicity
of the inviscid theory to be used consists in replacing the normal-mode approach by an
analysis of the corresponding initial-value problem; this method will be considered
at length in the next chapter.

There is also the further difficulty that if c in Eq. (2.48) is a complex eigenvalue
(corresponding to the eigenfunction W (z)), then the complex conjugate c* of c will
also be an eigenvalue of this equation (corresponding to the eigenfunction W*(z)).
Consequently, in addition to the damped normal mode, the equations for the vertical
velocity and for the stream function will always have a solution in the form of a
growing wave. Therefore, for an inviscid fluid it is meaningless to define the stable
case as the case when only damped normal modes occur. Thus the very definition
of stability based on the consideration of normal modes (i.e., elementary wave-like
solutions) must be changed. Stability must now be defined as the absence of growing
(and hence also of damped) wave-like disturbances. Therefore, the normal-mode
criterion for stability is now that the Rayleigh equation has only real eigenvalues c
for any value of k.

One more difficulty is that the singularity of Eq. (2.48), which is connected with
the coefficient of the highest derivative becoming zero, leads to the presence, for
a wide range of conditions, of only a finite number of discrete eigenvalues c (see,
e.g., Rosencrans and Sattinger (1966); and Sattinger (1967)). Hence, it is clear that
the set of all normal modes (the stability of which is determined by the value of the
imaginary part of the corresponding eigenvalue c) is not complete here, and not all
disturbances can be approximated by a linear combination of such modes. Therefore,
it is natural to think that a continuous spectrum of eigenvalues c must exist here in
addition to the usual discrete spectrum. In fact, the existence of such a continuous
spectrum can be proved rather easily, as was shown by Rayleigh ((1894), Vol. 2,
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pp. 391–400). However, surprisingly, the importance of this fact was disregarded
(and the continuous spectrum was not taken into account), not only by Rayleigh
himself but also by all other workers until much later. Note that the eigenfunctions
W (z) [or ψ(z)] for eigenvalues of the continuous spectrum do not satisfy the ordi-
nary “regularity conditions” and they are often not ordinary functions at all but the
so-called “generalized” “functions” (or “distributions”) systematically studied only
in the second half of the twentieth century (see, e.g., Schwartz (1961); Gel’fand
and Shilov (1958); Lighthill (1968), or Lumley (1970)). The very great difference
between spectra (i.e., sets of all eigenvalues) and eigenfunctions of the complete
O-S equation and the abridged Rayleigh equation clearly shows that there is no sim-
ple connection between the eigenvalues and eigenfunctions of these two equations,
so that eigenvalues and eigenfunctions of the abridged equation cannot be obtained
from those of the complete equation by simple passage to the limit as v → 0 (cf. Case
(1961); Lin (1961b); and Lin and Benney (1962)).

The continuous spectrum of the Rayleigh equation was studied by Faddeev (1972)
at the suggestion of Arnol’d. The main idea of his work is quite simple (see also Dikii
(1976)). Let us denote by� the operator d2/dz2 − k2 in the space of functions in the
segment 0 ≤ z ≤ H, vanishing at the end-points z = 0 and z = H. Then Rayleigh’s eq.
(2.48) can be written in the form

(U − U ′′�−1)� = c�, � = �W. (2.50)

We see that c is the eigenvalue of the sum of two linear operators—the operator
of multiplication on the given function U(z) and the operator U ′′�− 1. The first of
these operators clearly has a continuous spectrum consisting of all the values of
the function U(z), i.e., of all the real numbers in the range from Umin to Umax (the
corresponding eigenfunctions here are Dirac’s δ functions, which are the best-known
generalized functions). The second operator U ′′�−1 can be represented as an integral
operator in the space of functions on a finite interval. Such operators belong to the
class of so-called completely continuous (compact) operators, which always have
purely discrete spectra. It is natural to expect that such an addition will not change
the continuous spectrum of the eigenvalue problem (2.50) which will always fill the
interval (Umin, Umax).

The rigorous proof of this statement forms the most important part of Faddeev’s
paper. He begins by rewriting Eq. (2.50) in the form of an integral equation, which
includes the Green function of the operator�. It follows from this representation that
the operator on the left-hand side of (2.50) belongs to the class of operators studied
by Friedrichs (1948) in his theory of the perturbations of continuous spectra (see also
Faddeev (1964); and Dunford and Schwartz (1971)). From the results of Friedrichs’
theory, it follows that in fact the continuous part of the spectrum of problem (2.50)
consists of the above-mentioned finite interval; and the discrete spectrum, if it is
infinite, can have accumulation points (limits of sequences of discrete eigenvalues)
only on the same interval.

The investigation of the discrete spectrum of the problem (2.50) is more com-
plicated, and here only partial results were obtained by Faddeev. He noted that,
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according to a theorem of Rayleigh (which will be proved below), if U ′′(z) does not
vanish (i.e., if the velocity profile has no inflection points) then the problem (2.50)
has no discrete eigenvalues at all; hence in this case its spectrum consists only of the
interval (Umin, Umax). If the velocity profile U(z) is monotone and U ′′(z) vanishes at
only one point, then there exists a value K > 0 such that for k2 > K the spectral prob-
lem (2.50) has only a continuous spectrum while for k2 < K the continuous spectrum
is supplemented by one pair of discrete complex-conjugate eigenvalues. In the case
where U(z) is monotone but U ′′(z) vanishes at a finite number m of points, there can
be several (not more than 1 + m/2) pairs of complex discrete eigenvalues. However,
if the velocity profile is not monotone, the discrete spectrum can have a considerably
more complicated form.

Note also that much more general results were recently obtained by Vishik (1996)
who described the continuous spectrum of linear equations for infinitesimal distur-
bances of arbitrary three-dimensional flow of ideal fluid. For such flows a continuous
spectrum can have many different (and often quite complicated) forms.

Let us now consider some general results of the stability theory of plane-parallel
inviscid flows. The important work of Rayleigh (mentioned above) served as a starting
point of the theory. In particular he showed, as early as 1880, that if U ′′(z) is nonzero
everywhere within the flow, then the abridged eq. (2.48) cannot possess complex
eigenvalues c with �mc �= 0. The proof of this theorem is very simple. Rewriting
Eq. (2.48) in the form

W ′′ − k2W − U ′′W
U − c(r) − ic(i)

= 0,

multiplying throughout by the complex conjugate function W* and integrating from
z = 0 to z = H (i.e., over the whole thickness of the fluid layer) we obtain

H∫

0

(∣
∣W ′∣∣2 + k2|W |2

)
dz +

H∫

0

(
U − c(r) + ic(i)

)
U ′′|W |2

(
U − c(r)

)2 + (c(i)
)2 dz = 0. (2.51)

With c(i) �= 0, the imaginary part of this equation can become zero only if U ′′(z)
changes sign somewhere between z = 0 and z = H. This proves Rayleigh’s statement.
(The important strengthening of this classical result by Faddeev (1972) was discussed
above.)

It was widely accepted for many years that the Rayleigh theorem gave complete
proof of the stability (i.e., the absence of growing disturbances) of any plane-parallel
inviscid flow whose velocity profile does not possess an inflection point at which
U ′′(z) = 0. However, the situation is, in fact, not so simple. The theorem states
only that in the case of such flows no discrete complex eigenvalues of the Rayleigh
equation can exist. But it was explained above that the Rayleigh equation has not
only a discrete but also a continuous spectrum.

Therefore, in order to use normal-mode analysis to prove that no growing in-
finitesimal disturbance can exist in a flow with a velocity profile without inflection
points, it is necessary to show that the continuous spectrum of Eq. (2.48) is also
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real, and that every infinitesimal velocity disturbance can be represented in terms
of (ordinary or generalized) normal modes corresponding to eigenvalues belonging
either to the discrete, or to the continuous, spectrum of Rayleigh’s equation. As was
explained above, a strict proof of the theorem about the reality of the continuous
spectrum of Eq. (2.48) was given by Faddeev (1972); however, he did not con-
sider the corresponding eigenfunction expansion theorem (which apparently has not
been investigated up to now). Let us also recall the important remarks at the end of
Sect. 2.5 about the possible existence of algebraically-growing solutions, and about
the deficiency of expansions in terms of eigenfunctions in the case of non-normal
operators. Hence it is clear that the question of the connection between the validity
of Rayleigh’s condition of absence of inflection points in the velocity profile and the
stability of the flow needs further investigation.

Some of the recent results related to this question will be considered in the
next chapter of this book. Here we shall only note that some related partial re-
sults were obtained long ago by Case (1960a, 1962); and Dikii (1960a) on the basis
of study of the initial-value problem for the dynamic equation (2.38) with v = 0.
However, their results (which will be discussed at greater length later) concern only
two-dimensional disturbances (independent of y), with the velocity field u(x, t) =
{u(x, z, t), 0, w(x, z, t)}. It was also shown by Dikii (1976) that, for some important
classes of velocity profiles U(z) guaranteeing the absence of complex eigenvalues
c in Eq. (2.48) (and including all the profiles without inflection points), the ab-
sence of growing infinitesimal velocity disturbances independent of y can be proved
with the aid of the conservation law (2.57) (see the text following this equation).
Another approach to the study of the connection between the absence of points
where U ′′(z) = 0 and stability of flow with velocity profile U(z) with respect to
two-dimensional velocity disturbances, which is applicable even to finite (i.e., not
infinitesimal) such disturbances, was proposed by Arnol’d (1965); it will be con-
sidered in a later Chapter). However, all the above-mentioned results concern only
two-dimensional velocity disturbances. Since no theorem similar to Squire’s is valid
for disturbances of arbitrary form, the stated results do not guarantee the absence
of growing three-dimensional infinitesimal disturbances in cases when Rayleigh’s
equation has no complex eigenvalues. And, in fact, it will be shown below that
according to recent developments in the theory of hydrodynamic stability, growing
disturbances (both infinitesimal and finite) can appear much more often in fluid flows
than was thought earlier.

The Rayleigh theorem gives only a necessary, but not a sufficient, condition for the
existence of complex eigenvalues c. A stronger necessary condition for the existence
of exponentially-growing wave-like disturbances in a plane-parallel inviscid flow was
given by Fjørtoft (1950). Let c = c(r) + ic(i) be a complex eigenvalue with c(i) �= 0:
if we add the real part of equation (2.51) to the imaginary part of the same equation
multiplied by (c(r) −K)/c(i) where K is an arbitrary constant, we obtain

H∫

0

(U −K)U ′′|W |2
|U − c|2 dz < 0. (2.52)
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Fig. 2.19 Two types of
velocity profiles U(z) with
one inflection point; Fjørtoft’s
condition is valid for profile b
but not valid for profile a

a b

This shows that if there exists a constant K such that [U(z) −K] U ′′(z) ≥ 0 for any z,
then an eigenvalue c with c(i) �= 0 cannot exist. Fjørtoft’s condition is clearly a gener-
alization of Rayleigh’s, since if U ′′(z) has the same sign everywhere then Fjørtoft’s
condition is clearly valid for any K such that |K| > max |U(z)| and KU"(z) < 0. On
the other hand, if U ′′(z) vanishes at some point z = z0 and K = U(z0) =Us , then we
find that a complex eigenvalue c can exist only if U ′′(U −Us) is negative somewhere
in the field of flow. In particular, if U(z) is a monotonic function and U ′′(z) vanishes at
one point z0 only, then for the existence of growing wave-like solution the inequality
U ′′(U −Us) < 0 must be fulfilled at every z �= z0. Thus, for example, in a flow with
the velocity profile shown in Fig. 2.19a unstable wave-like disturbances can exist,
but in a flow with the velocity profile shown in Fig. 2.19b they cannot exist.

It was noted above that if Rayleigh’s equation (2.48) has no complex eigenval-
ues, then it is possible only to prove that the corresponding inviscid flow is stable
with respect to two-dimensional infinitesimal disturbances, and even this proof is in
general rather difficult. However, if the absence of complex eigenvalues c is related
to the non-fulfillment of Rayleigh’s or Fjørtoft’s necessary condition, then a much
simpler proof based on a special conservation law can be given.

In the case of an inviscid fluid, the linearized dynamic equation for the stream
function ψ(x, z, t) of a two-dimensional velocity disturbance u(x, t) = {u(x, z, t), 0,
w(x, z, t)} clearly has the form of Eq. (2.38) with v = 0:

(
∂

∂t
+ U

∂

∂x

)

�2ψ − U ′′ ∂ψ
∂x

= 0, (2.53)

where �2 = ∂2/∂x2 + ∂2/∂z2 is the two-dimensional Laplacian. If the dependence
of ψ on x and t is given by an exponential factor exp[ik(x −ct)], Eq. (2.53) becomes
Rayleigh’s equation (2.48) for the stream-function amplitude ψ(z); but assuming
only that ψ(x, z, t) = exp(ikx) ψ(z, t) we obtain

(∂/∂t + ikU )(ψ ′′ − k2ψ) − ikU ′′ψ = 0, (2.54)

where primes again denote differentiation on z. Let us now multiply Eq. (2.54) by
the complex conjugate function ψ* and integrate it on z over all the thickness of the
flow (i.e., from z = 0 to z = H). The real part of the resulting equation can then be
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written as

− d

dt

H∫

0

(∣
∣ψ ′∣∣2 + k2|ψ |2

)
dz + �e

⎡

⎣ik

H∫

0

U
(
ψ ′′ − k2ψ

)
ψ ∗ dz

⎤

⎦ = 0. (2.55)

(This procedure is analogous to the derivation of Eq. (2.49) from Eq, (2.48′).) If
K is now a constant such that [U(z) −K]/U"(z) is a continuous function of z, then
multiplying Eq. (2.54) by

(
ψ ′′ ∗ −k2ψ∗) (U −K)/U ′′, integrating the product from

z = 0 to z = H, and taking the real part of the resulting equation, we obtain

− d

dt

H∫

0

U −K

U ′′
∣
∣ψ ′′ − k2ψ

∣
∣2dz + �e

⎡

⎣ik

H∫

0

U (ψ ′′ ∗ −k2ψ∗)ψdz

⎤

⎦ = 0. (2.56)

The sum of Eqs. (2.55) and (2.56) has the form

d

dt

H∫

0

[
∣
∣ψ ′∣∣2 + k2|ψ |2 + U −K

U ′′
∣
∣ψ ′′ − k2ψ

∣
∣2
]

dz = 0. (2.57)

Equation (2.57) describes a new integral invariant of fluid motion which is quadratic
with respect to the stream function ψ(z, t). If now (U −K)/U ′′ > 0 for all values of z,
andψ(z),ψ ′(z) andψ ′′(z) (i.e., the stream function, velocity of flow, and vorticity) are
very small at t = 0 (i.e., the initial disturbance is very small), then according to (2.57)
the integrals of |ψ |2,

∣
∣ψ ′∣∣2 and

∣
∣ψ ′′∣∣2 will be small at any t > 0. Hence, if the Fjørtoft

condition is valid, then the smallness of disturbance at the initial moment guarantees
the smallness of the mean square values of stream function, velocity and vorticity of
the disturbance at all values of t. This shows that under the specified conditions the
flow is stable with respect to two-dimensional infinitesimal disturbances.

The conservation law (2.57) is due to Dikii (1976). It is related toArnol’d’s method
(1965) of stability investigation, which used the non-linear fluid dynamic equations
and is therefore also applicable to finite disturbances.

Fjørtoft’s necessary condition for the existence of wave-like unstable modes of
disturbance is more restrictive than the older condition due to Rayleigh. However, in
general this new condition is also insufficient. In particular, it was shown by Tollmien
(1935) that in the case where U(z) = sin z and the solid walls are placed at zl < 0 and
z2 > 0, Rayleigh’s equation has no complex eigenvalues if z2 −zl <π , and it is easy to
verify that the Fjørtoft condition is valid here (cf. also Drazin and Howard (1966), p.
35, or Drazin and Reid (1981), p. 136). In the same paper, Tollmien showed that the
presence of an inflection point of the velocity profile is sufficient for the existence of
at least one complex eigenvalue c in the very important cases of (i) channel flows with
velocity profiles symmetric with respect to the midplane z = H/2 and monotonically
increasing in the lower half of the channel (as shown in Fig. 2.20), and (ii) flows
of boundary-layer type with velocity profiles of the form shown in Fig. 2.19a (see
also Lin (1961a), Sect. 8.2; Drazin and Howard (1966); and Dikii (1976), Sect. 8).
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Fig. 2.20 Velocity profile of
a channel flow where,
according to Tollmien’s
result, there exists an unstable
wave-like disturbance

Another necessary condition for the existence of complex eigenvalues c of Rayleigh’s
equation, which is also sufficient in the case of a monotonic profile U(z) with only
one inflection point, was given by Rosenbluth and Simon (1964); (see also Dikii
(1976); and Craik (1972)).

Conditions that are sufficient for the existence of an eigenvalue c with �m
c > 0 clearly imply that the corresponding flows are unstable with respect to infinites-
imal disturbances. However, conditions for the non-existence of eigenvalues c such
that �m c > 0, which attracted so much attention in the past when they were con-
sidered to be genuine conditions for hydrodynamic stability, have now partly lost
their importance. In fact, it is now clear that these conditions show only that the
corresponding flows are stable with respect to a special (relatively restricted) class
of infinitesimal disturbances. This circumstance will be discussed at greater length
in the next chapter.

2.8.3 Stability Analysis for Plane-Parallel Flows of a Stratified
Inviscid Fluid

In the earlier part of this section, only flows of a homogeneous fluid having constant
density ρ were considered. However, flows of inhomogeneous fluids with variable
density ρ(x) appear quite often in various applications. In particular, the study of such
flows has great importance to geophysics. The density of atmospheric air depends
on the air temperature T (and also on the pressure p, but this last dependence can be
often neglected as is done when the Boussinesq approximation is applied to equations
of motion) while the density of oceanic water depends on both the temperature T
and the salinity s (dependence on pressure is here negligible for most purposes).
Since the mean temperature, salinity (and also pressure), and, therefore, the density
almost always vary with height (or depth) z, flows in the atmosphere and ocean are
usually stratified. Having these examples in mind, we shall now briefly consider
the problem of hydrodynamic instability for plane-parallel flows of incompressible
stratified fluid with given velocity and density profiles U(z) and ρ(z). Note that by
convention z is chosen vertically upwards in the atmosphere, vertically downwards
in the ocean. Since geophysical flows are usually characterized by very high values
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of the Reynolds number, we shall neglect the action of viscosity, i.e. assume that the
fluid is inviscid.

Studies of instability for stratified fluid flows have a rather long history. Ap-
parently, the first problem considered, the stability of a plane-parallel flow in an
unbounded space, having constant velocity and density U1 and ρ1 for z < 0 and dif-
ferent but constant velocity and density U2 and ρ2 for z > 0, was briefly outlined by
Helmholtz (1868); and investigated by Kelvin (1871). (These papers were mentioned
in Sect. 2.4 in relation to Kelvin-Helmholtz instability.) The stability of a stationary
layer of stratified fluid (i.e., the case where U = 0) was studied by Rayleigh in 1883.
For one special case of stratified plane-parallel flow with continuous profiles U(z)
and ρ(z), important results about stability were obtained by G.I. Taylor in 1914,
but were published by this author only much later, at first because of the war and
then because he was waiting in vain for experimental data confirming his theoretical
results (see Taylor (1931)). However, even today there are many unsolved problems
in the theory of stability of stratified flows.

The fluid dynamic equations for an inviscid incompressible fluid of variable
density have the form

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)

= − ∂p

∂xi
− δi3gρ, i = 1, 2, 3. (2.58)

∂uj
∂xj

= 0, (2.59)

∂ρ

∂t
+ uj

∂ρ

∂xj
= 0. (2.60)

(If the variations of the density ρ are due only to the variations of the temperature T,
we may use the variable T in these equations instead of ρ; see, e.g., Sect. 2.7. Note
also that not only the molecular viscosity, but also the molecular diffusivity of mass
and/or temperature (which can affect the evolution of the field ρ (x, t)), are assumed
to be negligibly small in these equations.) For any given profiles U(z) and ρ (z) > 0,
Eqs. (2.58–2.60) have the following stationary solution

ui = ui(z) = U (z)δi1, ρ = ρ(z), p = p(z) =

⎧
⎪⎪⎨

⎪⎪⎩

p(0) −
z∫

0
ρ(z′)dz′ for z > 0,

p(0) +
0∫

z
ρ(z′)dz′ for z < 0.

(2.61)

To study stability of this solution, we write, as usual,

ui = ui(z) + u′
i(x, t), ρ = ρ(z) + ρ ′(x, t), p = p(z) + p′(x, t), (2.62)

and substitute (2.62) into (2.58–2.60). Then, we obtain a system of five equations
with five unknowns u′

i, i = 1,2,3, ρ ′ and p′.
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It is easy to eliminate from this system all the variables except u′
3 = w. Then we

arrive at the following equation for w
(
∂

∂t
+ U

∂

∂x

)2 (

�w + ρ ′

ρ

∂w

∂z

)

−
(

U ′′ + ρ ′

ρ
U ′
)(

∂

∂t
+ U

∂

∂x

)
∂w

∂x

− g
ρ ′

ρ
�2w = 0, (2.63)

where x = x1, � and �2 are three-dimensional and two-dimensional (horizontal)
Laplacians, and primes now denote not disturbances, but differentiation of profiles
U(z) and ρ(z) on z. In the case of a homogeneous fluid of constant density, ρ ′ = 0
and Eq. (2.63) reduces to Eq. (2.38) with v = 0 (cf. also Eq. (2.53)). Seeking for
normal modes and therefore using Eqs. (2.39) and (2.40) in which the variables are
made dimensionless with length and velocity scales H and U0 characterizing the
vertical thickness of the flow and its typical velocity, we obtain the equation

(U − c)
(
W ′′ − k2W

)− U ′′W − ρ ′

ρ

gH

U 2
0

k2W

k2
1(U − c)

+ ρ ′

ρ
[(U − c)W ′ − U ′W ] = 0, (2.64)

where now U = U(ζ ) = U(z)/U0 is dimensionless and primes denote derivatives with
respect to dimensionless length ζ = z/H. Equation (2.64) generalizes Rayleigh’s
equation (2.48), to which it reduces when ρ ′ = 0. Here c is the unknown eigen-
value, and the boundary conditions require W to vanish at solid walls and at infinity.
In the case of discontinuous profiles U(z) and ρ(z) (which attracted considerable
attention in the past but will not be considered here), special boundary conditions
must be satisfied at the discontinuity points; see, e.g., Drazin and Howard (1966);
Dikii (1976); and Drazin and Reid (1981).

Equation (2.64) has many similarities to Rayleigh’s equation: here too if c is a
complex eigenvalue then the complex conjugate value c* is also an eigenvalue (corre-
sponding to the eigenfunction W*) and the coefficient of the highest-order derivative
necessarily becomes zero at some point in the flow, making this point singular. Note
also that in the case of stratified fluid, the singularity at the point where U(z) = c
survives even if v �= 0; see, e.g., Dikii (1960b). If both the viscosity and the heat or
mass diffusivity differ from zero, we obtain a non-singular eigenvalue problem, but
this time it is of the sixth order; see, e.g., Koppel (1964); and Herron (1980).5

Equations (2.63) and (2.64) contain three terms proportional to ρ ′/ρ. The term
which is proportional to g describes the influence of density variations on the buoy-
ancy (or gravitational lowering) of fluid particles while the other two terms describe

5 It was also shown by Herron that if the thickness H of the fluid layer is finite, the general results by
Di Prima and Habetler (1969) can be applied to this non-singular eigenvalue problem of the sixth
order to show that here an infinite sequence of discrete eigenvalues cj always exists, and the set of
corresponding eigenfunctions Wj(ζ) is complete in the functional space of all admissible functions
W (ζ). In the case of a singular eigenvalue problem, such a statement is of course incorrect.
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the influence of these variations on particle inertia. In many applications ρ(z) varies
with height much more slowly than U(z), so that

∣
∣ρ ′/ρ

∣
∣� 1 (since the length scale

H determines the distance over which the velocity U changes significantly), but the
Froude number Fr = U0/(gH )1/2 is also much smaller than 1 and therefore

Ri∗ = −gH
U 2

0

ρ ′

ρ
= −gH

2

U 2
0

1

ρ

dρ

dz
, (2.65)

is not negligibly small. (Since U0/ H is the typical scale for the vertical shear dU/dz,
Ri∗ is, in fact, the overall Richardsom number of the flow.) In such cases, we can
neglect the terms of equations (2.63) and (2.64) which contain ρ ′/ρ but do not contain
g. Then, we obtain the simpler equations

(
∂

∂t
+ U

∂

∂x

)2

�w − U ′′
(
∂

∂t
+ U

∂

∂x

)
∂w

∂x
= ρ ′

ρ
g�2w, (2.63′)

(U − c)(W ′′ − k2W ) − U ′′W = gH

U 2
0

ρ ′

ρ

k2

k2
1(U − c)

W , (2.64′)

(recall that in Eq. (2.63′) all the variables are dimensional while in Eq. (2.64′) they
are dimensionless). The approximation leading to Eqs. (2.63′–2.64′) is similar to the
Boussinesq approximation (and will simply be called the Boussinesq approximation
below); it reduces to the ordinary Boussinesq approximation in cases where the den-
sity variations are due only to variations of temperature. Equation (2.64′) represents
the simplest generalization of Rayleigh’s equation to the case of nonhomogeneous
fluid; it is often called the Taylor-Goldstein equation since it was used in early works
by Taylor (1931); and Goldstein (1931) (but in fact was simultaneously introduced
in a more general form also by Haurwitz (1931)).

Yih (1955) (see also Drazin and Reid (1981), Sect. 44) applied Squire’s transfor-
mation k1 → k, k2 → 0 to Eq. (2.64′) (which does not differ from Eq. (2.64) in this
respect). This transformation shows that to each three-dimensional wave-like distur-
bance with the horizontal wave numbers (k1, k2) there corresponds a two-dimensional
normal mode with the same value of complex streamwise velocity c but with wave
numbers ((k2

1 + k2
2)

1/2
, 0) and smaller Froude number Fr2 = k1Fr/(k2

1 + k2
2)1/2 (i.e.,

smaller velocity scale U0). Thus, if the three-dimensional wave is unstable, i.e.,
�mc = c(i) > 0, then the corresponding two-dimensional wave is also unstable and
has magnified growth rate

(
k2

1 + k2
2

)1/2
c(i) (instead of k1c(i)). Therefore, the most

rapidly growing (i.e., most unstable) normal mode must be two-dimensional; for
this reason only such modes are usually considered. (Restriction to two-dimensional
disturbances does not seem to be justified at present; this circumstance will be ex-
plained in the next chapter but at this place we shall pay no attention to it.) For
two-dimensional modes the eigenvalue problem arising in the study of hydrodynamic
stability for plane-parallel flows of inviscid stratified fluid has the form

(U − c)
(
W ′′ − k2W

)− U ′′W + [Ri∗/(U − c)]W
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+ (ρ ′/ρ)
[
(U − c)W ′ − U ′W

] = 0, (2.66)

or in cases where the Boussinesq approximation is used,

(U − c)
(
W ′′ − k2W

)− U ′′W + [Ri∗/(U − c)]W = 0, (2.66′)

(this simplified form of equation (2.64′) is usually called the Taylor-Goldstein equa-
tion). In Eqs. (2.63) and (2.63′), the Laplace operators� and�2 must be replaced by
the operators (∂2/∂x2 + ∂2/∂z2) and ∂2/∂x2 in cases where only two-dimensional
disturbances are considered. Note also that in the case of a two-dimensional dis-
turbance its velocity field {u(x, z, t), 0, w(x, z, t)} may be expressed in terms of the
stream function ψ(x, z, t) (of the form U0H exp[ik(ζ− cτ )]ψ(ζ), where ζ = x/H,
ζ = z/H, and τ =U0t/H, if a normal mode is considered). The functions ψ(x, z, t)
and ψ(ζ) clearly satisfy the same equations as w(x, z, t) and W (ζ), with boundary
conditions ∂ψ/∂x = 0 (i.e., ψ = const.) and kψ = 0 on the rigid boundaries and at
infinity.

Rayleigh (1883) considered the simple but rather important case of the stability
problem for a stationary stratified fluid layer (i.e., U(z) = 0). Here the Taylor-
Goldstein equation (2.65′) written in ordinary dimensional variables (note that no
velocity scale U0 exists in this case) takes the form

c2
(
W ′′ − k2W

)+N2W = 0, (2.67)

where N = (−gρ ′/ρ)1/2 is the so-called Brunt- Väisälä frequency (which is real
in the case of stable stratification where ρ ′ = dρ/dz < 0). Rayleigh proved that
a stationary layer is stable if and only if N2 > 0 everywhere (i.e., the density is
decreasing with height and stratification is everywhere stable). In this case Eq. (2.67)
determines the velocity spectrum of internal gravity waves. Rayleigh determined
this spectrum for the special case where ρ(z) = ρ0 exp (−z/H ) and hence N2 =
g/H = const. More general results for internal waves can be found, for example, in
the books by Krauss (1966); and Yih (1980) see also Sect. 44.2: in Drazin and Reid
(1981) and the collection edited by Mobbs and King (1993).

In the case of an arbitrary velocity profile U(z), it is also natural to think that the
flow will be definitely unstable if dρ/ dz is somewhere positive, showing that light
fluid is located below heavier fluid. Therefore, the most interesting case is where
dρ/ dz < 0 (and hence N2(z) > 0 and Ri∗ > 0) everywhere, and the stabilizing effect of
the decrease of density with elevation is competing with the destabilizing effect of
velocity shear. To study this case we shall follow Howard (1961) and transform the
equation (2.66) for W (ζ) into an equation for the function Fn(ζ ) = (U − c)n−1W.

(In fact Howard used Boussinesq’s approximation and therefore replaced Eq. (2.66)
by the simpler Eq. (2.66′), but this replacement produced only minor changes in the
derivations and did not change the main corollaries.) It is easy to verify that Eq.
(2.66) implies the following equation for Fn:

[ρ(U − c)2(1−n)F ′
n]

′ − {n[ρ(U − c)1−2nU ′]′ + ρk2(U − c)2(1−n)

+ ρ(U − c)−2n[n2(U ′)2 − Ri∗]}Fn = 0.
(2.68)
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Multiplying this equation by the complex conjugate function F∗
n and integrating it

from ζ = 0 to ζ = 1 (i.e., through the full thickness of the fluid layer) we obtain the
identity

1∫

0
{ρ(U − c)2(1−n)(

∣
∣F ′

n

∣
∣2 + k2|Fn|2) + n[ρ(U − c)1−2nU ′]′|Fn|2

+ ρ(U − c)−2n[n2(U ′)2 − Ri∗]|Fn|2}dζ = 0.
(2.69)

(If the Boussinesq approximation is used, then ρ can be taken outside the square
brackets in the first two terms of Eq. (2.68) and the second term of the integrand
in Eq. (2.69).) Considering Eq. (2.69) with different values of n, Howard derived a
number of stability properties (see also Drazin and Howard (1966), Sect. V).

Putting n = 1, Howard obtained a curious (though not very useful) estimate for
c(i) = �mc, first found by Synge (1933). For n = 0, Eq. (2.69) can be represented in
the form (2.49′) with the equality sign replaced by the inequality sign > . It is clear
that in this case the proof of Howard’s semicircle theorem given in Sect. 2.82 can
be repeated without any change; the additional term containing Ri∗ (which leads to
the necessity of replacing = with > ) only strengthens the inequalities used, and was
in fact omitted by Howard. Note also that for n = −1, Eq. (2.69) takes especially
simple form if the Boussinesq approximation is used and U′(z) = constant (i.e., for a
stratified Couette flow). It is easy to see that it then follows from this equation with
n = −1 that if Ri ≤ −2 everywhere within such a flow, real eigenvalues c cannot
exist (this remark is due not to Howard but to Kuo (1963); see Sect. 3.23 in Chap. 3
for more details). Finally, putting n = 1/2 in (2.69) and taking the imaginary part of
the identity obtained, Howard found that

−c(i)

1∫

0

ρ

{
∣
∣F ′

1/2

∣
∣2 + k2

∣
∣F1/2

∣
∣2 −

[
1

4
(U ′)2 − Ri∗

] ∣
∣F1/2

∣
∣2

|U − c|2
}

dζ = 0 (2.70)

and hence, if c(i) �= 0,

1∫

0

ρ

[
1

4
(U ′)2 − Ri∗

] ∣∣F1/2

∣
∣2

|U − c|2 dζ > 0. (2.71)

Therefore, no complex eigenvalues c can exist, if

Ri∗

(U ′)2 = − gdρ/dz

ρ[dU/dz]2 = Ri (2.72)

is greater than 1/4 everywhere in the flow. This is the sufficient condition for the
absence of unstable two-dimensional normal modes of disturbance in a plane-parallel
flow of stratified fluid, which was first proved in a more complicated way by Miles
(1961) under the additional condition that the functions U(z) and ρ(z) are both
analytic (this condition was later found to be unnecessary).
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Let us now make some remarks about these results. It was noted above that in
his derivation of the semicircle theorem, Howard neglected the term characterizing
stratification. However it is natural to expect that stable stratification must contract
the domain of possible complex values of c. This expectation led to the appearance
of a series of papers devoted to the refinement of the semicircle theorem for flows
of stably stratified fluids, with the aid of estimates for the term containing Ri∗.
Apparently the first results of this type were given by Banerjee and Jain (1972);
Banerjee et al. (1974); and Banerjee et al. (1978), who found reduced domains for
c—values dependent on both stability characteristic and velocity distribution U(z).
Then Kochar and Jain (1979) used two equations (2.69) with n = 0 and n = 1/2 to
prove the following semiellipse theorem, which sharpened the theorem by Howard:
In the case of a stably stratified plane-parallel flow of inviscid incompressible fluid
the complex phase velocities c of unstable normal modes of disturbance must lie
inside a semiellipse in the upper half-plane of the complex plane, with a major axis
coinciding with the segment Umin ≤ c(r) ≤Umax of the real axis and a minor axis
whose length is smaller than Umax −Umin by the factor

{
[1 + (1 − 4Rim)1/2]/2

}1/2
,

where Rim is the minimum value of the Richardson number (2.3). (It is assumed here
that Rim ≤ 1/4 since it is known that otherwise the unstable normal modes cannot
exist at all.) However, the stated semiellipse theorem is in some respect weaker
than Miles’ result, since the theorem gives a semielliptic domain even for Rim = 1/4
and Miles proved that no unstable wave-like disturbances can exist if Rim = 1/4.
Later, therefore, Jain and Kochar (1983) used more precise estimates for the terms of
Eqs. (2.69), and obtained an improved form of the semiellipse theorem, specifying
a domain for values of c(i) which disappears at Rim = 1/4. A further refinement
of the Howard-Kochar-Jain theorem was made by Makov and Stepanyants (1984);
they took into account that the available computations of eigenvalues c for specific
velocity and density profiles U(z) and ρ(z) (e.g. those by Drazin and Howard (1966);
Turner (1973); and Gossard and Hooke (1975)) showed that the location of these
eigenvalues in the complex plane depends strongly on the wave number k of the
disturbance considered. Therefore Makov and Stepanyants repeated, more carefully,
all the manipulations with identities (2.68) made by Howard and improved by Kochar
and Jain, preserving and estimating accurately the terms proportional to k2, which
were omitted by previous authors. As a result they obtained new boundaries for the
domains of eigenvalues c with �mc > 0, corresponding to different values of k. The
new domain for k = 0 coincides with the semiellipse found by Kochar and Jain (1979)
but for k �= 0 it proves to be located inside this semiellipse, being considerably smaller
in area and agreeing much better with numerical and laboratory determinations of the
eigenvalues c. Some other k -dependent bounds for the eigenvalues c of the Taylor-
Goldstein equation were given by Craik (1972); while Russell (1994) presented some
examples where this equation can be explicitly solved.

Note now that Miles’ condition (namely, Ri > 1/4 everywhere) is only sufficient,
but not necessary, for the absence of complex eigenvalues c of the Taylor-Goldstein
eigenvalue problem (both in its original form (2.66′) or the more precise form
(2.66) that does not use the Boussinesq approximation). In fact the real spectrum
of eigenvalues, which includes not only discrete values c but also the continuous
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spectrum which is always present, is not determined by the minimum value of
Ri alone but depends strongly on the exact forms of the profiles of ρ(z) and
U(z) (and also varies with the wave number k). For example, the case where
U (z) = az, ρ(z) = ρ0 exp (−bz), 0 ≤ z < ∞, was studied by Taylor (1931),
who found the arguments showing that apparently if Ri = gb/a2 > 1/4, then an infi-
nite sequence of real eigenvalues cj exists, but there are no complex eigenvalues,
while if 0 < Ri < 1/4 then there are no eigenvalues (either real or complex) at all.
(Taylor did not prove these statements rigorously; they were proved only much later
independently by Dyson (1960); and Dikii (1960c).) Since it was known from the
classical paper by Richardson (1920) that increasing Ri increases the stability of the
flow, the sharp change of the eigenvalue spectrum at Ri = 1/4 was interpreted at first
by Prandtl and Schlichting as an indication that the flow is stable if Ri > 1/4 but un-
stable if Ri < 1/4 (see, e.g., Prandtl (1949); and Schlichting (1959, 1979)). However,
later Case (1960b); and Dikii (1960b) independently analyzed the general solution of
the appropriate initial-value problem and showed that the flow considered by Taylor
is in fact stable with respect to any infinitesimal two-dimensional disturbance (and
hence also to any normal mode of disturbance, whether two- or three-dimensional)
at any non-negative value of Ri (this result will be discussed at greater length in the
next chapter). Hence we see that violation of Miles’ condition does not imply that
unstable normal modes necessarily exist.

Several additional sufficient conditions for non-existence of unstable two-
dimensional wave-like disturbances were given byYih (1970, 1974a, 1980). This au-
thor showed that if both the functions U(z) and ρ(z) are analytic, ρ(z) is monotone de-
creasing and U(z) is monotone increasing with z, and either (ρU′)′ > 0 and (log ρ)" >
0 everywhere or U" < 0 and (log ρ)" < 0 everywhere, then no complex eigenvalues c
can exist. In the case of homogeneous fluid ρ (z) = constant; hence in this case both
the indicated conditions reduce to Rayleigh’s condition of the absence of inflection
points on the velocity profile, which is valid for any (analytic or nonanalytic) profile
U(z). Therefore it is natural to hope that the analyticity assumptions used by Yih are
in fact also not necessary for validity of the stated results.

The search for sufficient conditions for the existence of unstable normal nodes
of disturbance in density-stratified inviscid shear flows has not so far been very suc-
cessful. Nevertheless, some interesting (though relatively restricted) conditions were
given by Yih in the papers and book indicated above, and by Baines and Mitsudera
(1994) who followed Yih (1974b) in studies of the physical mechanism of stratified-
flow instability. Note again in this respect (cf. Sect. 2.82 above) that existence of an
eigenvalue c with �m c > 0 definitely shows that the flow considered is unstable with
respect to infinitesimal disturbances, while non-existence of such eigenvalues only
signifies the non-existence of exponentially growing disturbances of a special form.

Many additional results and calculated specific examples from linear stability
theory for plane-parallel stratified flows (mostly, but not always, considered to be
inviscid) can be found in particular in the papers by Drazin and Howard (1966);
Howard and Maslowe (1973); Strehle (1979); Engevik et al. (1985); Caulfield
(1994); and Baines and Mitsudera (1994) and books by Turner (1973); Gossard
and Hooke (1975); Dikii (1976); Yih (1980) and Drazin and Reid (1981). These
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Fig. 2.21 Neutral-stability
curves in the plane (g, k)
(where all the parameters and
variables made dimensionless
so that (−ρ ′/ρ) = Ri∗) for
stratified Couette flow with
U(z) = z and −ρ ′/ρ
= 1 + α2z2 , −1≤ z≤ 1, in
cases where α= 6 a and
α= 16 b. (After Howard and
Maslowe (1973); the regions
of instability are shaded in the
figure.)

a b

papers and books contain great numbers of important supplementary references and
many graphs of ‘neutral curves’ in the (Fr, k)-plane (or planes with coordinates
(g, k)∞(Fr−2, k), (N∗, k), or (Ri∗, k), whereN∗ and Ri∗ denote some overall values,
independent of z, of the Brunt-Väisälä frequency and Richardson number) separating
the region where complex eigenvalues c with �m c > 0 exist from the region where
there are no complex eigenvalues c at all. It was found, in particular, that the ‘neu-
tral curves’ for plane-parallel flows of stratified fluids are often multiply-connected,
i.e., consist of several isolated curves (see, e.g., Fig. 2.21, taken from the paper by
Howard and Maslowe (1973)).

2.8.4 Remarks Concerning Linear Stability Theory
of Axisymmetric and Some Other Non-Plane-Parallel Flows

Up to this point, only the stability of plane-parallel flows has been considered in
this section though arbitrary parallel flows were mentioned in its title. A general
parallel steady flow (i.e., one having parallel streamlines) has a velocity field of the
form U(x) = {U(y, z), 0, 0} where the points (y, z) pass through all the plane Oyz
or a given part of it. (The function U(y, z) must satisfy the two-dimensional Laplace
equation �2U = 0 if the fluid has non-zero viscosity but can be arbitrary in the case
of an inviscid fluid.) For plane-parallel flows the function U(y, z) depends on only
one coordinate (denoted by z above). Now we shall consider another important case,
that of axisymmetric flows where U(y, z) = U(r) depends only on r = (y2 + z2)1/2.

As in the stability problem of Sect. 2.6 (where the primary flow was also axisym-
metric but not parallel), it is natural to use cylindrical coordinates r, φ, x (in Sect. 2.6
the coordinate x was replaced by z).

Transforming Eqs. (2.7) to these coordinates, we obtain the following system of
four linear partial differential equations with four unknowns, u′

r , u′
φ , u′

x and u′, which



2.8 Introduction to the Linear Stability Theory of Parallel Fluid Flows 111

are functions of the variables r, φ, x and t:
(
∂

∂t
+ U

∂

∂x

)

u′
r = − 1

ρ

∂p′

∂r
+ v

(

Lu′
r − 2

r2

∂u′
φ

∂φ

)

,

(
∂

∂t
+ U

∂

∂x

)

u′
φ = − 1

ρr

∂p′

∂φ
+ v

(

Lu′
φ + 2

r2

∂u′
r

∂φ

)

,

(
∂

∂t
+ U

∂

∂x

)

u′
x + dU

dr
u′
r = − 1

ρ

∂p′

∂x
+ v

(

Lu′
x + u′

x

r2

)

,

∂ru′
r

∂r
+ ∂u′

φ

∂φ
+ ∂ru′

x

∂x
= 0, (2.73)

where

L = ∂

∂r

1

r

∂

∂r
r + 1

r2

∂2

∂φ2
+ ∂2

∂x2
. (2.73′)

Seeking for normal modes of disturbance, we must represent the unknown function
in a form similar to (2.13) with z replaced by x; moreover, as in Sects. 2.81–2.83, we
shall introduce the phase velocity c satisfying the relation ω= kc. Then the partial
differential equations with the unknowns u′

r , u′
φ, u′

x and p′/ρ will be transformed
into ordinary differential equations in the unknown functions f (r), f (φ), f (x) and g of
one variable r. It is easy to see that in the case of an inviscid fluid with v = 0 these
equations take the form

ik(U − c)f (r) + g′ = 0,

ik(U − c)f (φ) + (in/r)g = 0,

ik(U − c)f (x) + U ′f (r) + ikg = 0,

ikf (x) + [f (r)]′ + f (r)/r + inf (φ)/r = 0, (2.74)

where now (and also below) primes denote differentiation on r. Eliminating all the
unknown functions except f (r)(r) = F(r) (here F(r) is only a new shorter notation)
from this system, we obtain a single second-order differential equation of the form

(U − c)
d

dr

{
r

n2 + k2r2

d(rF )

dr

}

− (U − c)F − d

dr

(
rU ′

n2 + k2r2

)

rF = 0. (2.75)

The corresponding boundary conditions state that F(r) = 0 on the solid boundaries
of the flow (which clearly must have cylindrical form) and F(r) → 0 as r → ∞ in
the case of unbounded flow; while F(0) = 0 if n �= 1, and F(0) is bounded if n = 1,
in the case of a flow enveloping the axis r = 0 (see, e.g., Batchelor and Gill (1962)).
Equation (2.75) and the indicated boundary conditions form the eigenvalue problem,
which determines the possible values of c.

Equation (2.75) is due to Rayleigh (1892), who founded the theory of hydro-
dynamic stability of ideal (inviscid) fluid flows in the axisymmetric case too. Note
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that, as in the case of plane-parallel flows, when transforming Eqs. (2.74) (or their
generalizations to the case where v �= 0) into the single equation for the unknown
f (r) = F(r), we lost solutions of the initial equations satisfying the conditions f (r) = 0.
However, it is easy to show that all the normal modes satisfying this condition are
stable, i.e., are such that �mc ≤ 0 (independently of the value of the viscosity v; see
Lew (1955); and Schade (1962)). Therefore, these supplementary solutions need not
be considered when the method of normal modes is used for determination of the
instability conditions.

Equation (2.75) is an analog of Rayleigh’s equation (2.48) relating to the stability
theory for plane-parallel flows of inviscid fluid. There is, however, an important
difference between these two equations: Eq. (2.48) includes, except for c, only one
supplementary parameter k, while two such parameters, k2 and n2, enter Eq. (2.75).
This is because no analog of Squire’s theorem is valid for axisymmetric parallel
flows; therefore, it is impossible here to specialize to disturbances whose geometrical
form depends on a single parameter. (The original papers by Rayleigh give the
impression that he foresaw this difference since, studying the stability of plane-
parallel flows, he considered only two-dimensional velocity disturbances, but passing
to the axisymmetric case he considered general wave-like disturbances proportional
to exp{i(kx + nφ−ωt)}.)

Let us now divide Eq. (2.75) by U − c, and then multiply the resulting equation
by the complex conjugate (rF)* of rF and integrate the imaginary part of the product
over the whole range of r-values within the flow. Then we get the following result

c(i)

r2∫

r1

|q(r)|2Q′(r)dr = 0 (2.76)

where c(i) = �mc, q(r) = rF(r)/ (U − c), Q(r) = rU′(r)/ (n2 + k2r2), and r1 and r2
are the boundaries of the flow (the cases r1 = 0 and/or r2 = ∞ are not excluded).
Therefore, the necessary condition for the existence of complex eigenvalues c =
c(r) + ic(i) where c(i) > 0 (i.e. of exponentially growing wave-like disturbances) is
that Q′(r) should change sign at some point of the flow. This condition, which can
be considered as the translation to the case of axisymmetric flows of Rayleigh’s
condition of the necessity of an inflection point in the velocity profile of a plane-
parallel flow, was also demonstrated by Rayleigh.

Batchelor and Gill (1962) showed that the stronger necessary condition by Fjørtoft
for the existence of exponentially growing wave-like disturbances in a plane-parallel
inviscid flow can also be easily transferred to the case of inviscid axisymmetric
parallel flows. For this we must only add to the real part of Eq. (2.75) multiplied
by rF*/ (U − c) the imaginary part of the same product multiplied by (c(r) − K)/c(i),
where K is some constant and it is assumed that c(i) �= 0. Integrating the sum over r
we easily get the relation

r2∫

r1

|q(r)|2[U (r) −K]Q′(r)dr < 0 (2.77)
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which is similar to relation Eq. (2.52). It follows from Eq. (2.77) that a complex
eigenvalue c cannot exist if there exists a constant K such that [U(r) −K]Q′(r) ≥ 0
for any r (cf. Fjørtoft’s related condition given in Sect. 2.82).

Multiplying Eq. (2.75) by q*(r) = [rF(r)/ (U − c)]* and then integrating the
product with respect to r, Batchelor and Gill found the relation

r2∫

r1

(U − c)2

{
r

n2 + k2r2

∣
∣q ′(r)

∣
∣2 + 1

r
|q(r)|2

}

dr = 0. (2.78)

This equation is of the same form as (2.49′) though the function� now has a different
meaning. Therefore Eq. (2.78) leads to the same consequences as Eq. (2.49). First
of all, it is clear that Eq. (2.78) cannot be satisfied if c is real and outside the range
of U. (If c is real and inside the range of U, the derivation of (2.78) fails, since q(r)
has a singularity at the point where U(r) = c.) Moreover, as in the case of Eq. (2.49)
it follows from Eq. (2.78) that c(r) = �ec cannot lie beyond the range of possible
values of U(r) (this result was known to Rayleigh), and that Howard’s semicircle
theorem, which restricts the range of possible values of c in the complex c -plane in
the case of a plane-pareallel primary flow, is also valid for an axisymmetric parallel
primary flow (and has exactly the same formulation).

For the special case of axisymmetric disturbances (where n = 0), Schade (1962)
derived some supplementary results concerning their stability. In particular he
showed that the results of Tollmien (1935), concerning the simple sufficient con-
ditions for inviscid instability of some important classes of plane-parallel flows, can
be transferred to axiymmetric flows. (Note that in the case of sufficient conditions
for instability it is enough to show that under the conditions considered there exists
at least one exponentially growing disturbance of any form).

Stability studies for parallel axisymmetric flows of a viscous fluid (v �= 0) are
much more complicated. Here also it is possible to obtain, from Eqs. (2.73–2.73′),
a system of four linear equations for the amplitudes f (r), f (ø), f (x), and g of a normal
mode, but now they will differ from (2.74) by a number of additional terms propor-
tional to v. These terms very much complicate the elimination of all the unknowns
except one from the system, and render such an elimination not very useful since
it always leads to a very cumbersome equation which does not yield to analysis.
Therefore the elimination has usually been carried out on the assumption that only
axisymmetric disturbances with n = 0 are relevant. In this case, clearly, Eqs. (2.73–
2.73′) decompose into the system of three equations for the unknowns u′

r , u′
x and p′

and one equation (the second Eq. (2.73)) for the unknown uφ ′. This circumstance
considerably simplifies the subsequent analysis (see, e.g., Synge (1938a), Pretsch
(1941), and other papers cited in Sect. 2.94 below and in the book MY1 in connection
with the examination of results of stability studies for a circular Poiseuille flow).

Let us now say a few words about the normal mode approach to the stability
theory of general parallel steady flows with velocity field U(x) = {U(y, z), 0, 0}. For
simplicity we shall restrict ourselves to consideration of flows of an ideal (inviscid)
fluid with v = 0. The stability theory of general parallel flows of ideal fluid was
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begun by Hocking (1968); its subsequent development was stimulated by related
geophysical problems (see, e.g., the papers by Blumen (1971, 1975) and references
therein). Seeking for normal modes we must assume that the disturbances u′, v′,
w′ and p′/ρ are proportional to exp(ik(x − ct)) with coefficients of proportionality
(the wave amplitudes) dependent on y and z. Linearized dynamic equations for the
disturbances and the incompressibility condition then give a system of four linear
partial differential equations for the four amplitudes of velocity and pressure waves.
Eliminating from this system all the unknowns except the amplitude g = P(x, y) of
the pressure wave, Blumen obtained the following equation for P

[U − c)−2Py]y + [(U − c)−2Pz]z − k2(U − c)−2P = 0 (2.79)

where the subcripts y and z denote differentiation on the indicated variables. The
fluid dynamic equations imply that v′ ∝ Py, w′ ∝ Pz. The rigid boundaries of the
flow can consist of planes parallel to the Ox-axis or, more generally, have the form
of a cylindrical surface of arbitrary cross-section with the axis parallel to Ox. The
boundary condition on any smooth rigid wall has the form ∂P/∂n = 0 where n
denotes the direction normal to the wall. In particular, if the flow is bounded by solid
walls at y = y1, y = y2, z = z1 and z = z2, the boundary conditions are:

Py = 0 for y = y1, y2, P z = 0 for z = z1, z2. (2.80)

In the case of unbounded flow the boundary conditions at infinity will be

Py → 0,Pz → 0 as (y2 + z2)
1/2 → ∞.

Consider the simplest case where the flow is bounded by the planes y = y1, y2;
and z = z1, z2. Multiplying Eq. (2.79) by P*, the complex conjugate of P, and then
integrating over the flow field and using boundary conditions (2.80), we obtain the
equation

y1∫

y2

z2∫

z1

(U − c∗)2

∣
∣Py
∣
∣2 + |Pz|2 + k2|P |2
∣
∣(U − c)2

∣
∣2

dydz = 0. (2.81)

(The same equation will be valid in the case of flow in a tube domain of arbitrary
bounded or unbounded cross-section, with a smooth boundary; but in this case the
integration will be taken over the corresponding cross-section.) Eq. (2.81) is again of
the form (2.49′) and hence it implies the same corollaries as the latter equation. If c
is real, then (2.81) clearly cannot be satisfied for c outside the range of U = U (y, z)
(note that the derivation of (2.81) fails ifU−c vanishes somewhere). If c is complex,
then it follows from (2.81) that Howard’s semicircle theorem is valid here and has
exactly the same formulation as in particular cases of plane-parallel or axisymmetric
primary flows.

Having in mind possible geophysical applications, Blumen (1971, 1975) con-
sidered from the beginning the case of a general parallel flow of stratified fluid,
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having a densityρ = ρ(z) which depends on the vertical coordinate z. As in the
problem studied in Sect. 2.83 the dynamic equations will have the form (2.58–
2.60), though now the primary laminar flow will have a velocity field of the form
ui = ui(y, z) = U (y, z)δi1 (and the density and pressure fields will again be de-
termined by Eqs. (2.61)). In geophysical applications it is often convenient to use
different vertical and horizontal length scales H and L; therefore, Blumen normalized
x and y by L, z by H, horizontal velocities U, c, u′ and v′ by the horizontal velocity
scale U0, and w′ by U0H/L; for t ,p′/ρ and ρ ′ the ordinary scales L/U0,U 2

0 and ρ0

were used. Assuming that the disturbances u′v′, w′,p′/ρ and ρ ′ are proportional to
exp[ik(x−ct)] (where here and later the symbols x and t, and also y and z, denote nor-
malized dimensionless coordinates and time) and eliminating from the system of five
equations for the five wave amplitudes all the unknowns except g = P(y, z), Blumen
obtained the following differential equation for P, generalizing equation (2.79):

{
Py

(U − c)2

}

y

−
{

k2P z

Ri∗ − (γ k)2(U − c)2

}

z

− k2P

(U − c)2 = 0 (2.82)

where Ri∗ denotes the overall Richardson number (2.65) and γ = H/L.Multiplying
this equation by P* and then integrating the product over the flow field (aasumed to
be bounded by the planes indicated in (2.80)), we obtain

y2∫

y1

z2∫

z1

(U − c∗)2

{∣
∣Py
∣
∣2 + k2|P |2
∣
∣(U − c)2

∣
∣2

+ (γ k)2|Pz|2
∣
∣Ri∗ − (γ k)2(U − c)2

∣
∣2

}

dydz

=
y2∫

y1

z2∫

z1

Ri∗k2|Pz|2
∣
∣Ri∗ − (γ k)2(U − c)2

∣
∣2
dydz. (2.83)

If Ri∗ > 0, then Eq. (2.83) can be represented in the form (2.49′) with the equality
sign = replaced by the inequality sign > . Exactly as in Sect. 2.83, it follows from
this that Howard’s semicircle theorem is again valid and has the same form as in the
case of a plane-parallel flow of constant-density fluid.

Examples of more detailed investigations of stability properties for non-stratified
and stratified parallel flows with velocity U(y, z) depending on two variables can be
found in the above-mentioned papers by Hocking and Blumen.

Simple general results also follow from the application of the normal-mode
method to the study of stability for steady flows with straight streamlines, every-
where parallel to fixed plane (say the z-plane)but directed differently at different
distances from this plane. In this case the velocity vector has the form U(x) = {U(z),
V (z), 0}. Studies of such flows can have important geophysical applications since
flows in atmospheric and oceanic boundary layers have velocity fields of this type
(where z is the vertical coordinate); in aeronautical engineering such flows can be
used as models of the boundary layers of swept wings.

Seeking for normal modes, we must assume that the disturbances u′, v′, w′ and
p′/ρ (for the time being the density is assumed to be constant) are proportional to exp
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{i(k1x + k2y −ωt)} with coefficients (wave amplitudes) depending on z. It is easy
to verify that under the assumption that the viscosity is equal to zero, the resulting
equation for the coefficient W (z) of the vertical velocity disturbance w′ will have the
form:

(kQ− ω)(W ′′ − k2W ) − kQ′′W = 0 (2.84)

where k = (k2
1 + k2

2)1/2,Q = Q(z) = [k1U (z) + k2V (z)]/k and primes denote
differentiation on z, while in the case of a viscous fluid the zero on the right hand
side of (2.84) must be replaced by the term −iv(d2/dz2 − k2)2W (see, e.g., Landahl
and Mollo-Christensen (1992)). Writing ω= kc as usual, we can easily see that Eq.
(2.84) differs from the classical Rayleigh equation (2.48) only by replacement of the
function U(z) by the function Q (z) which depends on both components U andV of the
velocity U(x). Similarly, the equation for a viscous fluid differs from the classical O-S
equation (written in dimensional variables) only by replacement of the velocity profile
U(z) by Q(z). Therefore all the results from the linear theory of plane-parallel flows
presented above in Sects. 2.81 and 2.82 can be reformulated for flows with velocity
field {U(z), V (z), 0} with the aid of simple replacement of the function U(z) by Q(z).

Let us now assume that the fluid is stratified, i.e., its density ρ(z) depends on the
vertical coordinate z, while the velocity U(x) is the same as above. In this case, as was
shown by Russell (1994), the equation for the amplitude W (z) of the normal mode
of vertical velocity disturbance will have the form of the Taylor-Goldstein equation
(2.66) (or (2.66′) if the Boussinesq approximation is used) but the function U(z) will
again be replaced by the function Q(z). It follows from this that all the results derived
by the normal-mode method for stratified plane-parallel flows of ideal fluid can be
reformulated as results related to flows of a stratified ideal fluid having a velocity
field U(x) of the form {U(z), V (z), 0}.

2.9 Applications of Normal-Mode Stability Analysis to Specific
Parallel and Nearly Parallel Flows

In Sect. 2.8 several general results of the normal-mode stability analysis of parallel
fluid flows were presented and discussed. In this section we shall consider applica-
tions of this analysis to particular classes of parallel and nearly parallel laminar flows
such as flows in wide rectangular channels (“two-dimensional” in the first approxima-
tion), circular tubes, boundary layers, and free flows in jets, wakes and mixing layers.

2.9.1 Plane-parallel Flows Bounded by Solid Walls: Couette,
Poiseuille and Couette-Poiseuille Flows

Steady plane-parallel flows in a domain bounded by two parallel solid walls at z = 0
and z = H are apparently the most simple laminar flows. Let the axis Ox be directed
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along the flow velocity U(z). It has already been noted above that the Navier-Stokes
equations show that the function U(z) must be a polynomial of degree not greater than
two. Hence the class of flows considered consists of plane Couette flows between two
walls moving with respect to each other, plane Poiseuille flows where the walls are im-
movable and the flow is produced by a constant longitudinal pressure gradient dP/dx,
and general Couette-Poiseuille flows where one of the walls is moving with respect
to the other and there is also a constant streamwise pressure gradient of either sign.

A plane Couette flow with a linear velocity profile of the form U(z) =U0z/H
represents the simplest solution of the Navier-Stokes equations; in particular, the
vanishing of the second derivative U ′′(z) considerably simplifies both Rayleigh’s
and Orr-Sommerfeld’s equations. Therefore it is not surprising that the study of the
stability of this flow has attracted considerable attention for many years. In MY1 and
in the book by Drazin and Reid (1981) a number of references can be found to the
rather old stability investigations of Couette flow by Kelvin, Rayleigh, Orr, L. Hopf,
von Mises, and Southwell and Chitty made at the end of the 19th or the beginning of
20th centuries. The methods used in these papers are often not sufficiently rigorous by
modern standards and all of them study only some special, and not general, modes of
disturbance. It is however important to note that in none of these works was any evi-
dence found of instability (i.e., of existence of disturbances that do not tend to zero as
t→ ∞). Note also that Orr (1907) showed that some disturbances can increase con-
siderably when t is increasing from the initial value t = 0 before they begin to decrease
tending to zero (this work will be discussed at greater length in the next chapter).

A number of subsequent applications of the normal-mode method of linear sta-
bility anlysis to a plane Couette flow is also considered in the above-mentioned
two books. Therefore, here we shall mention only a few works not indicated in
MY1: Shtern (1969, 1970); Davey (1973); Gallagher (1974); Reid (1979); and Davis
and Morris (1983). In these papers, and older papers mentioned in MY1, various
asymptotic and numerical methods were applied to the Couette-flow Orr-Sommerfeld
equation; moreover, Reid (1979) found some exact solutions of this equation. Some
of the papers also cantain interesting mathematical results; for instance, Grohne
(1954) proved the existence of a sequence of higher modes of wave-live distur-
bances in a plane Couette flow at given k and Re. Later, the complex eigenvalues
c (k, Re) corresponding to these higher modes were precisely computed by a num-
ber of investigators (see, e.g., Gallagher’s paper (1974); and the books by Betchov
and Criminale (1967); Goldshtik and Shtern (1977); and Drazin and Reid (1981)).
However, in all the published work only stable wave-like disturbances were found
(i.e., the imaginary parts of all the eigenvalues cj were negative). Therefore, most
investigators were convinced that no unstable infinitesimal wave-like disturbances
exist in plane Couette flow, even before the rigorous proof of this statement was
finally given by Romanov (1971, 1973) (quite different proof was later indicated by
Herron (1991)). This discovery seems to contradict the experimental data showing
that any steady laminar flow becomes unstable at large enough values of Re (recall
in particular the experimental studies of plane Couette flows described in Sect. 2.1).
To explain this contradiction it was usually assumed that a plane Couette flow is un-
stable for finite disturbances (this last assumption was first formulated by Rayleigh
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in 1914). It will, however, be shown in the next chapter that the apparent contradic-
tion can also have quite another explanation, related to some general defects of the
normal-mode method of the linear stability analysis.

Let us now consider stability studies of plane Poiseuille flow with a parabolic
velocity profile of the form U(z) =Umax[1 −(2z/H −1)2] whereUmax is the maximum
flow velocity in the center of the channel. (Recall that a plane Poiseuille flow is usually
considered as a natural model of flow in a wide enough channel of rectangular
cross-section.) Since U ′′(z) = −8Umax/H2 does not vanish here, it was generally
assumed for many years that a flow of ideal fluid with such a velocity profile is
stable with respect to infinitesimal disturbances, by virtue of Rayleigh’s theorem.
(In the next chapter we shall discuss questions about the validity of this assumption
at greater length.) It seemed also natural to think, in the early years of stability
studies, that viscosity can only increase the stability of the flow.6 At the same time,
experiments definitely showed that laminar flows in wide rectangular channels are
always unstable at large values of Re (again see Sect. 2.1). Therefore the mathematical
study of stability of a plane Poiseuille flow attracted much attention from quite
early times (an incorrect proof of stability of such flow was published by Kelvin in
1887). The most important early paper devoted to this subject was due to Heisenberg
(1924), who investigated in detail the asymptotic behavior of the solution of the
corresponding Orr-Sommerfeld equation with large value of Re (i.e., small v) and
proved that for sufficiently large Reynolds numbers a plane Poiseuille flow will
become unstable. This result, which confirmed the statement that viscosity can cause
instability, seemed paradoxical to many people; since it was obtained by sophisticated
mathematical procedures, and on a physical (rather than n mathematical) level of
rigor, it aroused serious doubt for a long time. Another kind of approximate analysis
was applied to the Orr-Sommerfeld equation by Tollmien (1929, 1930), but this
author did not consider Poiseuille flows. Only in 1945 did Lin’s careful calculations,
based on asymptotic expansions of a special type, confirm (and make more precise)
Heisenberg’s conclusion on the instability of Poiseuille flow for large (but finite)
Re (see also Lin (1961a)). Later it was also shown that Heisenberg’s method of
asymptotic analysis can rather easily be made rigorous and quite useful (see, e.g.,
Drazin and Reid (1981) and Tsugé and Sakai (1985)).

The main improvement of Heisenberg’s results by Lin consists of sufficiently
accurate computation of the shape of the neutral stability curve maxj [�mcj(k, Re)] =
0 in the (k, Re) plane. This curve corresponds to neutrally stable disturbances and
separates the region of points (k, Re) such that only stable two-dimensional wave-like
disturbances with a wave number k can exist for given Re, from the region of points

6 Note that this “natural idea” did not seem to be completely evident to Reynolds (1883) [see also
Drazin and Reid (1981), p. 124] and its groundlessness was convincingly shown rather early by
Prandtl (1921, 1922) in his studies of parallel flows with velocity profiles consisting of segments of
straight lines. However, the physical mechanism of the very interesting phenomenon of instability
caused by viscosity remains to be obscure and leading to conflicting opinions up to now [see, e.g.,
the old arguments by Prandtl (1921) and Lin (1961a, Chap. 4) and the recent discussion by Baines
et al. (1996)]. Therefore it is not surprising that earlier the suggestions of such a phenomenon
permanently aroused strong disrust.
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Fig. 2.22 The form of the
neutral curve in the (k, Re)
plane for a plane Poiseuille
flow according to calculations
of Lin (1945, 1961a)

(k, Re) corresponding to possible unstable two-dimensional waves. Later this neutral
curve was recalculated by a number of authors using the newly-available electronic
computers and different numerical techniques. The results obtained were, as a rule,
sufficiently close to those of Lin shown in Fig. 2.22 (here, as in Sect. 2.1, Re = UH1/v
is formed from the maximal velocity U =Umax and the channel half-widthH1 = H/2).
The point of the neutral curve which is farthest to the left determines the values of
the critical Reynolds number Recr and critical wave number kcr; according to Lin
Recr ≈ 5300, kcr ≈ 1/H1. Several examples of close (but not identical) estimates for
Recr and kcr obtained by other authors during the Fifties and Sixties are presented in
MY1; however, the most precise results were found a little later by Orszag (1971) (and
were confirmed also by Chock and Schechter (1973) who used another numerical
method): Recr = 5772.22, kcr = 1.02/H1 (the corresponding form of the neutral curve
differs very little from that shown in Fig. 2.22). As Re → ∞, both branches of the
neutral curve (upper and lower) tend to zero (the upper branch as Re− 1/11, and the
lower as Re− 1/7; see, e.g., Lin (1961a)). Thus, as Re increases, wave disturbances
with fixed but not too large k lie first in the stability region (i.e., are damped), then
fall in the region of instability, and, finally, again prove to be stable. Therefore, when
Re → ∞ (i.e., v → 0) all wave-like disturbances become stable.

Shen (1954) and Grosch and Salven (1968) calculated the form of the curves
maxj[�mcj(k, Re)] = const., which determine the rates of growth for unstable wave-
like disturbances of plane Poiseuille flow at different values of k and Re. Grohne
(1954) proved that the Orr-Sommerfeld equation also has an infinite number of higher
normal modes in the case of the basic Poiseuille velocity profile. He carried out the
first eigenvalue computations for the four different modes and found that all the
eigenvalues c corresponding to higher modes have negative imaginary parts (i.e.,
correspond to damped wave disturbances) at any values of k and Re. Hence, only
the first eigenvalue c1, corresponding to the first mode, has an imaginary part that
becomes positive for some values of k if Re is high enough. This result was confirmed
by a number of other authors who studied the higher eigenvalues cj in more detail
(and discovered the existence ofseveral families of higher modes); see e.g. Grosch
and Salven (1968); Orszag (1971); Mack (1976); Antar (1976); Stocker and Duck
(1995). In the books by Goldshtik and Shtern (1977); and Drazin and Reid (1981)
some information about the higher modes of eigenvalues is presented, together with
several examples of eigenfunctions corresponding to eigenvalues c (k, Re).
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It was indicated in Sect. 2.1 that in some experiments, where special measures were
taken to reduce the level of pre-existing disturbances, the flow in a wide rectangular
channel was maintained laminar at values of Re of the order of (or even slightly
greater than) the value Recr ≈ 6000 determined by normal-mode stability analysis
of plane Poiseuille flow. However, these experiments are quite exotic; under normal
conditions transition to turbulence is usually observed in wide rectangular channels
at Reynolds numbers as low as Re ≈ 1000. Such early manifestations of instability
were for many years attributed to the effects of nonlinear terms in the equations of
motion. However, recently a quite different explanation of the observed failure of
the linear normal-mode analysis was proposed; it will be considered in the following
chapter of this book.

The most general steady, plane-parallel flow of viscous fluid in a layer 0 ≤ z ≤ H
bounded by solid walls is the combined plane Couette-Poiseuille flow with a
(dimensionless) velocity profile of the form

U1(z1) = (4 − A)z1 − (4 − 2A)z2
1, 0 ≤ z1 ≤ 1, z1 = z/H ,

U1 (z1) = U (z1H) /U

(
1

2
H

)

.

Here A = U1(1) = U (H )/U
(

1
2H
)

is the nondimensional parameter which is equal
to zero for pure Poiseuille flow and to two for pure Couette flow. The stability of
Couette-Poiseuille flow was studied by the normal-mode method by Potter (1966);
Hains (1967); and Reynolds and Potter (1967), and their results are in substantial
agreement. Some additional information about eigenvalues and neutral curves for
this flow can be found in papers by Cowley and Smith (1985); and Stocker and Duck
(1995).

According to these studies, superimposing a Couette flow on a Poiseuille flow
always has a stabilizing effect, and increases Recr considerably. (For example,
changing the upper wall velocity from zero (for Poiseuille flow) to 10 % of the
maximum Poiseuille velocity leads to an increase in Recr of 236 %.) Moreover,
when A increases from the value A = 0 corresponding to pure Poiseuille flow, the
plane Couette-Poiseuille flow becomes stable to all infinitesimal wave-like distur-
bances (i.e., Recr tends to infinity) when A reaches a value of about 0.55—long before
the linear (Couette) velocity profile is reached at A = 2.

2.9.2 Nearly Plane-parallel Boundary-layer Flows

It has been already said earlier (in Sect. 2.1, p. 17) that the most important applications
of hydrodynamic stability theory are related to studies of various boundary-layer
flows. Transition to turbulence in such flows is accompanied by large changes in
frictional drag and heat-transfer rate at the wall, which often have great engineering
importance. It is therefore only natural that the literature on boundary-layer instability
is very extensive, and only a very small part of it can be discussed here.
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Let us begin with the simplest idealized case of a laminar boundary layer on a flat
plate of infinite width and length (occupying the half-plane 0 ≤ x < ∞, −∞ < y <

∞, z = 0) in a fluid moving with given constant velocity U in the Ox direction. Here
the thickness of the boundary layer δ is increasing with x and the two components of
fluid velocity, u = u(x, z) and w = w(x, z), differ from zero and depend on coordinates
x and z. Hence this boundary-layer flow is not plane-parallel. However, it is known
that at large values of Re ≡ Reδ = Uδ/v (i.e., at very high values of Rex =
Ux/v∞Re2

δ) the thickness δ increases very slowly, the vertical velocity w is much
smaller than u, and the dependence of U on x is quite weak: specifically,

dδ

dx
∞ 1

Re
,
|w|
|u| ∞

1

Re
and

|∂u/∂x|
|∂u/∂z| ∞

z

x
<
δ

x
∞ 1

Re
.

Therefore, in studying wave disturbances of a boundary layer with wavelengths
much smaller than Re × δ, it is possible to use the plane-parallel approximation,
i.e., to consider the flow as being plane-parallel with only one non-zero velocity
component u = U(z), where U(z) is identical to the Blasius velocity profile of a
laminar constant-pressure boundary layer. This profile has the form

U (z) = Uf (ζ ), where ζ =
√
U

v

z√
x

, f (ζ ) = φ′(ζ ) (2.85a)

[(vx/U)1/2 =αδ, where α≈ 0.2, is considered here as a constant length) and φ(ζ)
is the solution of the following boundary-value problem for a nonlinear ordinary
differential equation:

φφ′′ + 2φ′′′ = 0, φ(0) = φ′(0) = 0, φ′(∞) = 1. (2.85b)

In the plane-parallel approximation, the stability problem for a boundary-layer flow
is quite similar to those for Couette and Poiseuille flows, differing only by the re-
placement of a flow region of finite thickness H by the semi-infinite region 0 ≤ z < ∞
and by a more complicated form of the velocity profile—now given not by an explicit
formula but by a third-order differential equation with definite boundary conditions.

The first attempts to calculate the critical Reynolds number Recr and the neutral-
stability curve maxj[�mcj (k, Re)] = 0 for a boundary layer flow having the Blasius
velocity profile were due to Prandtl’s collaborators Tollmien (1929) and Schlichting
(1933a) (see also the surveys by Schlichting (1959, 1979)). Both of them used some
approximations valid only at high values of Re (i.e., small v) and also some special
expansions for solutions of the inviscid Rayleigh equation (2.48), while the Blasius
velocity profile was replaced in these papers by a simple polynomial approximation
{see Drazin and Reid’s book (1981) for more details}. According to Tollmien’s cal-
culations Re∗

cr ≈ 420 (where Re∗ = Uδ*/v, δ* ≈ 0.35δ is the displacement thickness
corresponding to the Blasius velocity profile) and kcrδ*≈ 0.34, while according to
Schlichting Re∗

cr ≈ 575, kcr δ* ≈ 0.23; the general form of the neutral-stability curve
found by both authors was approximately the same. (In terms of the more easily mea-
sured Reynolds number Rex = Ux/v, Tollmien’s result implies that Rex cr ≈ 6 × 104,
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Fig. 2.23 Curves of constant
amplification rates
c(i) = const. and of constant
phase velocity c(r) = const.
for wave disturbances in a
plane boundary-layer flow
with Blasiu’s velocity profile.
(After Obremski et al. (1969))

while according to Schlichting Rex cr ≈ 1.1 × 105.) Later Lin (1945, 1961a) and
Shen (1954) repeated these calculations using slightly different asymptotic expan-
sions and polynomial approximation for the velocity profile. Both sets of results
proved to be close to Tollmien’s: Re∗

cr ≈ 421, kcrδ* ≈ 0.37. The neutral curve �m
c1(k, Re) = 0 (where c1 is the eigenvalue with the greatest imaginary part) has a
form similar to that in plane Poiseuille flow (but now the upper and lower branches
decrease asymptotically, as Re increases, as Re− 1/10 and Re−1/4). The curves �mc1

(k, Re) = const., which determine the growth rates of various unstable wave distur-
bances, were computed, in particular, by Schlichting (1933a); Shen (1954); Wazzan
et al. (1966); and Obremski et al. (1969); see e.g. Fig. 2.23. The results of some
subsequent computations related to boundary-layer stability will be discussed later.

Tollmien’s and Schlichting’s results on boundary layer stability at first provoked
the strong skepticism of many fluid mechanics experts since the values of Recr ob-
tained seemed to be too low (cf. the empirical values of Rex cr given in Sect. 2.1) and
the predicted appearance of two-dimensional waves before transition to turbulence
contradicted all the available observational data, in which waves were not found.
Therefore, it was often assumed in the 1930s and early 1940s that the linear stability
theory is useless for the understanding of transition to turbulence (see, e.g., the paper
by Taylor (1939) published in the Proceedings of the 5th International Congress of
Applied Mechanics, and the discussion of this subject at the Congress). However,
this skeptical attitude to the linear stability theory disappeared after the publication
of the classical paper by Schubauer and Skramstad (1947), describing the results
of their experiments made in the early Forties and later becoming one of the most
frequently cited papers in fluid mechanics.

The experiments of Schubauer and Skramstad were carried out in the wind tunnel
of the National Bureau of Standards in Washington, D.C., having extremely low
initial turbulence. In this tunnel the parameter U′/U (where U′ is the root-mean-
square value of velocity fluctuations outside the boundary layer) can be as low as
0.0003–0.0002 when certain precautionary measures are taken. This proves to be
very important, since there are some data showing that when U′/U exceeds roughly
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Fig. 2.24 Comparison of the
wave numbers of neutral
disturbances in the boundary
layer on a flat plate observed
by Schubauer and Skramstad
(dots) with neutral curve
calculated by Lin

0.002 (as in all of the older tests), the transition to turbulence in the boundary layer
is apparently affected strongly by free-stream disturbances (either in accordance
with Taylor’s scheme described in Sect. 2.2, or as a result of the mechanism of
interaction of the free-stream disturbances with the boundary layer flow studied by
Criminale (1967), or in some other way7). However, when U′/U < 0.002 and the
Reynolds number Re is increasing, at some value of Re random two-dimensional
disturbances of sinusoidal form appear in the flow, and under certain conditions their
amplitude increases downstream in accordance with the deductions of the linear
disturbance theory. The presence of such regular oscillations was demonstrated as
early as 1940 by Schubauer and Skramstad, using careful hot-wire anemometer
observations. Later, for more accurate verification of the theoretical deductions,
they used a thin metal ribbon placed in the boundary layer, set in oscillation by
an electromagnet and producing artificial disturbances of fixed frequency ω. They
found a number of neutral (neither growing nor damped) almost purely sinusoidal
fluctuations of velocity, which corresponded with satisfactory precision to points on
the neutral curve in the stability diagram (see Fig. 2.24).

After the work by Schubauer and Skramstad (1947), vibrating ribbon experiments
became a popular method of studying the evolution of disturbances in various laminar
boundary layers and other near-wall laminar flows; see, e.g., the papers by Klebanoff
et al. (1962); Ross et al. (1970); Reynolds and Saric (1986); Asai and Nishioka
(1989) and Klingmann et al. (1993) and the surveys by Kachanov et al. (1982);
Kachanov (1994) and Saric (1990, 1996) containing many additional references. All
experiments made at low enough values of U′/U confirmed that a gradual increase
of Re leads to the appearance of two-dimensional sinusoidal waves in a boundary-
layer flow. These waves, which agree well with the early theoretical predictions

7 Many features of the mechanisms that cause the external (i.e., free-stream or environmental)
disturbances to enter the boundary layer and generate unstable internal disturbances stimulating
transition to turbulence are unknown at present. Morkovin was the first who in 1969 began to stress
the importance of studying the related processes and proposed to call them the boundary layer
receptivity. Later the studies of receptivity took a quite important part in transition investigations;
see, e.g., Reshotko (1984), Goldstein and Hultgren (1989), Kozlov and Ryzhov (1990), Morkovin
(1990a), Saric (1992, 1996), Voke and Yang (1995), Duck et al. (1996), and papers on receptivity
in the collections edited by Hussaini and Voigt (1990) and Kobayashi (1995) where many addi-
tional references can also be found. Note, however, that the word receptivity is also often used to
denote the influence of any factors stimulating boundary layer transition – e.g., of roughness, wall
inhomogeneities or leading-edge properties.
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Fig. 2.25 Comparison of experimental data by Reynolds and Saric (1986) for normalized ve-
locity profile U(z)/U and amplitudes of streamwise-velocity TS-wave V (z)/ (V (z))max (circles)
with theoretical predictions (solid lines). The data are from the vibrating-ribbon experiment
where f = w/2� = 50hz.,U = 9.6m/s(and Re = (Ux/V )1/2 = 780,F = wv/U 2 =
56.4 × 10−6), [V (z)]max/U = 1.5%

by Tollmien and Schlichting, are now known as Tollmien-Schlichting waves (or T-S
waves). The results of the experiments, as a rule, agree satisfactorily (and sometimes
excellently) with deductions from the linear stability theory; as an example, Fig. 2.25
shows the data obtained by Reynolds and Saric (1986); (and given also in Saric’s
surveys (1990, 1996)). Figure 2.25 shows that the measured velocity profile U(z)
of a flat-plate boundary layer agrees excellently with the Blausius profile while
the measured amplitudes f (u)

ω,k(z) = V (z) of wave disturbance (TS wave) of the
streamwise velocity produced by a vibrating ribbon agree excellently with values of
V (z) given by the solution of the corresponding Orr-Sommerfeld eigenvalue prob-
lem (in its spatial formulation, where ω is a given constant and k is the unknown
eigenvalue; see below).

Note now that the disturbances produced by a vibrating ribbon differ in fact from
the ordinary normal modes with fixed real wave numbers k and complex angular
frequencies ω = kc = ω(r) + iω(i), determined by the eigenvalue problem (2.44) with
given boundary conditions. Gaster (1962, 1965) was one of the first who noted
that here the model of a spatially growing (or damping) wave (2.43) with fixed
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real frequency ω (equal to the frequency of ribbon oscillations) and complex wave
number k = k(r) + ik(i) seems to be more appropriate (in fact the suitability of such
model for hydrodynamic-stability studies was noted also much earlier by Orr (1907,
p. 16) and then by Landau and Lifshitz (1953, 1958)). In the case of such modes
the values of k = k(ω, Re) must be found from the eigenvalue problem (2.44) where
c = ω/k, ω is a given constant and k is the unknown complex eigenvalue. Then
the real part k(r) determines the wavelength of the disturbance while the imaginary
part k(i) determines the rate of spatial damping (or growth) of the wave amplitude
with the increase of x. Just such damping or growth rates were in fact observed by
Schubauer and Skramstad. To convert their results from spatial to temporal rates of
change (the only case for which theoretical estimates were then available), Schubauer
and Skramstad transformed distances x into time intervals t by dividing x by the
phase velocity c(r) of the disturbance. It was, however, noted by Gaster (1962) that
this procedure is not rigorous and, if there is any dispersion, it is more reasonable
to transform lengths x into time intervals using the group rather than the phase
velocity. According to Gaster (1962, 1965) the Schubauer-Skramstad transformation
has satisfactory precision only in the case of disturbances with comparatively small
amplification rates, for which the group and phase velocities are roughly equal. For
the general case, Gaster developed a reasonable approximate procedure of conversion
from spatially to temporally growing modes (see also the discussion of his work by
Drazin and Reid (1981); Mack (1984) and Saric (1992, 1996)).

For modern electronic computers the solution of the eigenvalue problem (2.44)
for unknown complex k (with fixed real ω) is not much more complicated than
determination of the unknown complex eigenvalues c (with fixed real k); the fact
that c enters the equation linearly and k nonlinearly does not now play an important
part. Therefore, it is not surprising that a number of computations of spatially growing
normal modes in the Blasius boundary layer were also made in the last thirty years
(the results of the earliest among them are presented in Sect. 54 of the book by
Betchov and Criminale (1967)).8

Most of the early computations of eigenvalues and eigenfunctions for both the
temporally and spatially growing normal modes used some combination of numeri-
cal methods applied at small and moderate values of Re and asymptotic expansions
of the desired solutions at large values of Re. The study of asymptotic expansions
plays an important part in the well-known book by Drazin and Reid (1981) on hy-
drodynamic stability and continues to be quite important at the present time; see,
e.g., the survey by Cowley and Wu (1994) and Healey’s papers (1995a, b). How-
ever, rapid improvements in electronic computers made possible direct numerical

8 In reality, the model of spatially growing normal modes is also an approximation, which is more
precise than the model of temporally growing modes but nevertheless does not describe the results of
the vibrating ribbon experiments exactly. A more accurate analysis of the evolution of disturbances
generated by such ribbons was developed by Ashpis and Reshotko (1990), Gaster and Sengupta
(1993), Sengupta et al. (1994), and Hill (1995). Modern computers also permit direct numerical
simulation of the evolution of such disturbances in a boundary-layer flow; see, e.g., Spalart and
Yang (1987), Fasel and Konzelmann (1990), Kleiser and Zang (1991), and also the paper by Rist
and Fasel (1995) where a slightly different model of disturbance generator was used.



126 2 Basic Experimental Facts and Introduction to Linear Stability Theory

a

b

Fig. 2.26 a The form of the neutral curve for a plane boundary-layer flow in the (F, Re∗) plane
where F = ωv/U2, according to calculations by Klingmann et al. (1993). b Neutral curve for a plane
boundary layer on a log-log plot (where ω* = ωδ*/U) according to Healey (1995b).

solutions of the Orr-Sommerfeld equations and determination of the corresponding
eigenvalues and eigenfunctions for a wide range of Re values, without any use of
asymptotic approaches. Apparently the first direct computation of the spatial neutral
curve (relating to spatially growing modes, i.e., represented by a curve in (ω, Re∗)-
plane) for the Blasius plane-parallel boundary layer was due to Jordinson (1970). His
main results (namely: Re∗

cr ≈ 520, kcrδ* ≈ 0.30), surprisingly, proved to be closer
to those of Schlichting than to those of Tollmien, Lin, and Shen. However, the form
of the neutral curve in the (ω, Re∗)-plane found by Jordinson was later confirmed
by Kümmerer (in his 1973 Dissertation; see also Kümmerer (1976)) and by Davey
(1982), and it also agrees satisfactorily with recent numerical results by Klingmann
et al. (1993) (see Fig. 2.26a) and by Healey (1995a, b) who carried out extended
computations of the neutral curve for a very wide range of Re∗ values (much beyond
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105; see Fig. 2.26b). Therefore, this form seems to be reliable. However, the experi-
mental data by Schubauer and Skramstad agree better with the older (and apparently
less precise) findings by Tollmien and Lin than with those by Jordinson.

The British scientists collaborating with Jordinson assumed at first that the appar-
ent contradiction was due to the non-parallel character of real boundary layers, which
was neglected in all the above-mentioned theoretical calculations. Therefore, Barry
and Ross (1970) revised Jordinson’s calculations, including in the Orr-Sommerfeld
equation some small terms approximately describing the increase of the boundary-
layer thickness with x. These corrections brought the neutral curve closer to that
found by Lin (in particular, they slightly reduced the value of Re∗

cr). It was found by
Ross et al. (1970) that the new curve agrees better with the old data of Schubauer and
Skramstad and with the new data of similar experiments carried out by the authors
in the low-turbulence wind tunnel at the University of Edinburgh. Therefore, it was
concluded by Ross et al. that nonparallelism of the boundary-layer flow cannot be
neglected in computations of its stability characteristics (see also Drazin and Reid
(1981), p. 227). However, subsequent development of theoretical and experimental
studies of boundary-layer stability cast doubt on the validity of this statement.

A number of papers on the influence of the non-parallel character of a boundary
layer on its stability was published after 1970. The works by Bouthier (1972, 1973);
Ling and Reynolds (1973); Gaster (1974); Saric and Nayfeh (1975, 1977); Smith
(1979); Van Stijn andVan deVorren (1983); and Bridges and Morris (1986) are typical
examples; see also similar developments in papers by Corner et al. (1976) and Lakin
and Grosch (1955). All the authors mentioned supplemented the Orr-Sommerfeld
equation by additional terms, describing approximately the influence of the growth
of the boundary-layer thickness, and used asymptotic expansions taking into account
the slowness of horizontal changes in comparison with vertical ones. Note, however,
that both the additional terms and the asymptotic expansions were selected differently
by different authors. Therefore, it is not surprising that the results obtained proved
to be different, too (though all authors came to the conclusion that nonparallelism
destabilizes the flow, i.e., increases the domain of unstable disturbances in the (ω,
Re)-plane). Hence, the published papers do not permit a reliable quantitative estimate
to be made for the influence of growth of the boundary-layer thickness on its stability.

Another method, which fully uses the wonderful possibilities of modern com-
puters, was applied to the same problem by Fasel and Konzelmann (1990). These
authors studied the evolution of two-dimensional wave-like disturbances in a non-
parallel laminar boundary layer by numerical solution of the Navier-Stokes equations
with the appropriate initial and boundary conditions. The results obtained were then
compared with those following from the Orr-Sommerfeld equation corresponding
to the plane-parallel Blasius model of a boundary layer. Here, in other words, di-
rect numerical simulation (DNS) of the Navier-Stokes flow dynamics is used for
determination of the effect of non-parallelism. Note that DNS began to be used in
hydrodynamic-stability and transition studies as far back as the late 1970s and was
immediately found to be quite fruitful; see, e.g., the paper by Wolf et al. (1978) and
the surveys by Kleiser and Zang (1991); Joslin et al. (1993) and Reed (1994) devoted
to this topic. As to Fasel and Konzelmann’ s work, it showed that the non-parallel
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neutral curve obtained by the DNS method differs very little from the Jordinson curve
corresponding to the plane-parallel model of a Blasius boundary layer, but differs
more significantly from most of the results obtained when non-parallel corrections
were taken into account (the only exception was found for some results by Gaster
(1974) which led to rather small deviations of the non-parallel neutral curve from
the parallel one; this is also true for results by Ling and Reynolds (1973); which
were not mentioned by Fasel and Konzelmann). A similar conclusion was reached
by Bertolotti et al. (1992) who also considered the DNS of plane-wave development
within the Blasius boundary layer with increasing thickness, and simultaneously ap-
plied to the same problem the “Parabolized Stability Equations”, simplified partial
differential equations of parabolic type which proved to be a very convenient tool
for solving the stability problem (for more information about this method see Joslin
et al. (1993) and Herbert (1994)). The results obtained with the aid of these two
rather different approaches agreed well; this agreement confirms the accuracy of
both methods. The neutral curve obtained by Bertolotti et al. for a boundary layer
with growing thickness did not deviate much from the neutral curve for the plane-
parallel boundary layer shown in Fig. 2.26 and the observed small deviation could by
no means be held responsible for discrepancies between results of some vibrating-
ribbon experiments and theoretical results for parallel flow. (Recall that the results on
vibrating-ribbon experiments by Reynolds and Saric (1986) agree excellently with
the deductions from parallel-flow stability theory; see e.g. Fig. 2.25.) Hence, it must
be concluded that observed discrepancies apparently had no relation to the growth
of the boundary-layer thickness.

The discrepancy between theoretical and experimental estimates of the neutral
curve may be related to incomplete fulfillment in laboratory facilities of the strict
requirements used in theoretical derivations. Saric (1990, 1996) and Bertolotti et al.
(1992) discussed possible violations of theoretical assumptions in real experiments.
Apparently it is most difficult to guarantee the absence of small pressure gradients at
the leading edges of flat plates of finite thickness. Hence, such gradients can probably
explain the observed significant deviations of a number of previous experimen-
tal results from the theoretical conclusions obtained for parallel constant-pressure
boundary layers. This circumstance was taken into account in recent vibrating-ribbon
experiments by Klingmann et al. (1993) made in the new low-turbulence wind tunnel
at the Royal Institute of Technology in Stockholm. In these experiments, exceptional
attention was given to fulfillment of the constant-pressure requirement with the high-
est attainable accuracy. These precautions resulted in much better agreement with
the parallel-flow theory than that found in earlier experiments of the same type (see
Fig. 2.27). Relying on the results of these experiments and on calculations by Fasel
and Konzelmann (1990) and Bertolotti et al. (1992); Saric (1996) and Reed et al.
(1996) came to the conclusion that in the absence of leading-edge pressure gradients
the parallel-flow theory is good for all Reynolds numbers used in experiments.

Let us now stress again that the critical Reynolds number Recr of a boundary-
layer flow determined from the left-most point of the neutral-stability curve is always
considerably lower than the values of Re at which the real transition to turbulence
takes place. This may be explained by remarking that the linear stability theory
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Fig. 2.27 Comparison of the neutral-stability points in (F, Re∗) plane found in experiments by
Klingmann et al. (1993) in a flat-plate boundary layer with theoretical neutral curves calculated for
the plane-parallel model of a boundary layer (solid line) and according to the non-parallel theory
of Gaster (1974) (dotted line)

determines only the value of Recr min, and instability to infinitesimal disturbances
does not have to be accompanied by instantaneous transition to the turbulent regime.
It seems reasonable to assume that at the instability point oscillations occur in the
flow, are amplified as they move downstream, and only for some larger value of
x lead to transition to developed turbulence. However, this explanation loses some
of its plausibility because the path to transition that usually occurs, both in wind-
and water-tunnels and in real life, is the so-called by-pass transition, where the
initial disturbances are so large that the appearance of small-amplitude wave-like
disturbances (theTS waves) and their subsequent growth in accordance with the linear
theory are by-passed, i.e., cannot be observed. The phenomenon of by-pass transition
has attracted much attention (see, e.g., Morkovin (1969, 1991, 1993); Breuer and
Kuraishi (1993); Reshotko (1994); Saric (1992, 1994, 1996), Reed et al. (1996)) but
the details are strongly dependent on the disturbance field and the topic will not be
considered here. Note only that it considerably diminishes the possibility of reliable
determination of the transition point x from the results of the linear stability theory.
Nevertheless, since prediction (and/or control) of the boundary-layer transition point
is enormously important for many engineering applications, there have been many
attempts to use the linear theory of TS-waves to develop approximate methods of
prediction the boundary-layer transition point. The most well-known (and widely
used) such method is the so-called en method, proposed independently by A.M.O.
Smith and J.L. Van Ingen in the mid-1950s and based on the results of linear stability
theory for the growth of wave amplitudes. This very rough engineering method will
not be considered here (but see, e.g., Arnal (1984, 1994); Mack (1984); Saric (1994,
1996); Arnal et al. (1995) and Reed et al. (1996) where some other applications of
the linear theory are also considered); it is mentioned mainly to stress that linear
theory of boundary-layer stability continues to have many applications to important
practical problems.

The wide applicability of conclusions from the linear theory of boundary-layer
stability naturally stimulated attempts to develop this theory further and to carry
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out analogous calculations of the neutral curve and the stability diagram (containing
graphs of the curve �m c1(k, Re) = const. [or �m c1(ω, Re) = const.)) for many
other types of boundary layers met in practice (e.g., for velocity profiles differing
from the Blasius profile, for boundary layers in the presence of external forces or in
fluids with dynamic equations different from the Navier-Stokes equations, etc.). The
forms of U(z) studied included boundary-layer profiles corresponding to flows past
curved surfaces or the presence of a favorable or adverse pressure gradient, to flows
over a porous plate when there is suction or blowing of the fluid through the plate, to
boundary layers with heat transfer, compressible and/or three-dimensional boundary
layers, hydromagnetic boundary layers and many others. A number of results of
such calculations can be found in the books by Betchov and Criminale (1967);
Levchenko et al. (1975); Drazin and Reid (1981); Kachanov et al. (1982); Zhigulev
and Tumin (1987); in the survey papers by Mack (1984) and Arnal (1984, 1994);
and in numerous scientific papers and reports (those by Wazzan et al. (1966, 1967,
1986); Obremski et al. (1969) and Nayfeh and Padhye (1980) are typical examples;
see also the collections of papers listed at the beginning of Sect. 2.1). A specific
example of such investigations is the calculations by Wazzan et al. and Obremski
et al., of stability characteristics for the Falkner-Skan (FS) velocity profiles, which are
self-similar boundary-layer velocity profiles corresponding to a free-stream velocity
U(x) varying with x as xm. The profiles U(x, z) can be described in this case by
the same Eq. (2.85a) as in the case of the Blasius profile, but Eq. (2.85b) for φ(ζ)
now must be supplemented by a term +β(1 − φ′2) on the left-hand side, where β =
2 m/ (1 + m). The FS profiles are often also used to describe non-self-similar boundary
layers with arbitrary pressure gradient, choosing the local value of m as m = (x/U)
dU/dx the pressure gradient is favorable if m > 0 and adverse if m < 0, while m = 0
corresponds to the Blasius profile. Some results of computations by Obremski et al.
(related to the plane-parallel model of FS boundary layers) are shown in Figs. 2.28a, b
and 2.29.

Note that the form of the neutral curves in both the (k, Re) and the (ω, Re) planes
depends considerably upon whether or not the velocity profile U(z) has a point of
inflection (i.e., whether d2U/dz2 becomes zero for some z > 0). In the latter case, the
neutral curve will have the same character as in cases of plane Poiseuille flow or the
Blasius boundary layer, i.e., as Re → ∞ both its branches asymptote to the abscissa
(cf. Figs.2.22 and 2.25). Thus, when the velocity profile has no inflection point, any
wave disturbances of fixed wavelength (or fixed frequency) will finally become stable
if the Reynolds number increases sufficiently. However, when the velocity profile
does possess an inflection point, the upper branch of the neutral curve will have a finite
asymptote as Re → ∞ (see Fig. 2.30), and the ordinate of this asymptote depends
upon the distance of the inflection point from the wall. In other words, there exists
a range of wavelengths (or frequencies) such that corresponding wave disturbances
are unstable however large the value of the Reynolds number. Obviously, this is
connected directly with the definitive role played by the presence of an inflection
point in the velocity profile, in the inviscid problem of instability with respect to
wave disturbances.
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Fig. 2.28 Curves c(i) = const.
and c(r) = const. in the (k,
Re∗) plane for the velocity
profiles from the
Falkner-Skan family
corresponding to β = 0.05 a
and β = −0.05 b. (After
Obremski et al. (1969))

a

b

Fig. 2.29 Dependence of the
critical Reynolds number
Re∗

cr for the Falkner-Skan
family of boundary-layer
profiles on the parameter β
and on the determined by β
value of the boundary-layer
form-factor H = δ*/θ (where
θ is the momentum thickness
of the boundary layer). (After
Drazin and Reid (1981) who
used the results of
computations by Obremski
et al.)
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Fig. 2.30 Schematic form of the neutral curve in the (k, Re) plane for a flow with velocity profile
possessing an inflection point (e.g., for a boundary layer in the presence of an adverse pressure
gradient)

Above, most attention was paid to the curve of neutral stability �mc1 (k, Re) =
0 [or �mc1 (ω, Re) = 0], which depends only on the first (the most unstable or,
in a stable region of (k, Re) or (ω, Re) plane, the least stable) eigenvalue c1 of
the Orr-Sommerfeld temporal or spatial eigenvalue problem. However, the other
eigenvalues are also interesting in some cases. It has been already mentioned in
Sect. 2.5 that the completeness of the system of eigenfunctions was proved for the
temporal eigenvalues of the boundary-layer stability problem by Salwen and Grosch
in 1981. In this proof the functions corresponding to all discrete eigenvalues and also
to all points of the continuous spectrum were included in the eigenfunction system.
Therefore, to study the temporal or spatial evolution of an arbitrary disturbance
with the aid of the normal-mode decomposition, the whole eigenvalue spectrum of
the Orr-Sommerfeld equation must be known. The higher eigenvalues are also of
interest in some approaches to the practically important problem of boundary Iayer
receptivity, mentioned above. This justifies a brief discussion of the results of studies
of the higher eigenvalues.

Recall that it was proved by Schensted (1960) and Di Prima and Habetler (1969);
for the case of a plane-parallel flow of finite thickness (and by Herron (1982) for
similar nearly plane-parallel flows) that for any velocity profile there exists an infi-
nite number of discrete eigenvalues, and the system of corresponding eigenfunctions
is complete in the appropriate functional space. In the case of parallel boundary-
layer flow in the half-space 0 ≤ z < ∞, the system of eigenfunctions corresponding
to discrete eigenvalues cannot be complete because of the existence of the con-
tinuous spectrum, but it was natural to think that some higher eigenvalues of the
Orr-Sommerfeld problem might exist here too. Therefore, the problem of finding
them (in both temporal and spatial formulation) was bound to attract attention.

Apparently Jordinson (1971) was the first to carry out an approximate computation
of several higher eigenvalues of the spatial and temporal Orr-Sommerfeld problem
(i.e., assuming that either k or w = ck is the unknown complex eigenvalue while the
other parameters are fixed and real) for a plane-parallel flow with the Blasius velocity
profile. (Some of the numerical values found by him were corrected in subsequent
publications but all the qualitative results were found to be correct.) A simplified
method of eigenvalue computation was then suggested by Gaster and Jordinson
(1975) who gave some examples of its applications. Later the higher eigenvalues
of the stability problem for parallel boundary-layer flow were studied, in particular,
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by Corner et al. (1976); (in spatial formulation), Mack (1976); Kümmerer (1976);
Antar (1976) and Antar and Benek (1978) (in temporal formulation) and by Murdock
and Stewartson (1977) and Lakin and Grosch (1955) (for both formulations of the
problem). (Corner et al. and Lakin and Grosch also considered some small corrections
to eigenvalues, approximately describing the effect of nonparallelism of the flow, but
these corrections will be not discussed here.) The obtained results give the impression
that the number of discrete eigenvalues of the problems is apparently finite in both
formulations (and relatively small, maybe equal to six or seven), but that there also
exists a continuous spectrum of eigenvalues (this was formulated most explicitly by
Murdock et al. and Antar et al.).

Lakin and Grosch (1955) carried out the most detailed investigation of the higher
normal modes to date. Studying the simpler case of temporal eigenvalues they apply
the mathematical method of Lidskii and Sadovnichii (1968) (developed by these
authors for the study of the Orr-Sommerfeld eigenvalue problem in a finite domain)
to the case of a semi-infinite region. This method permitted a quite rigorous proof
that, if the profile U(z) has derivatives of all orders (a condition which is satisfied
by the Blasius function), then for fixed Re and k there can be only a finite number
of discrete eigenvalues c. This mathematical theorem agrees well with the available
computational results (including those by Lakin and Grosch themselves).

The computation of the spatial eigenvalues k = k(r) + ik(i) (at fixed real ω) is
more complicated, and to date no mathematical theorems related to them have been
proved. However, it has been already mentioned that the results of computations of
such eigenvalues show that their number at given values of ω and Re is also finite.
The fact that in the case of parallel flow with a Blasius velocity profile (or another
profile of the same type) discrete and continuous spectra exist for both temporal and
spatial Orr-Sommerfeld eigenvalue problems is now well known (see, e.g., Murdock
and Stewartson (1977); Grosch and Salwen (1978a, b); Salwen and Grosch (1981);
Lakin and Grosch (1955) and Herron (1983)). For the temporal problem Grosch and
Salwen (1978a) showed that if the complex phase velocity c = ω/k is taken as the
unknown eigenvalue and both c and k are made dimensionless by the length and
velocity scales L and U (where L may be selected arbitrarily and U is the free-stream
velocity), then the continuous spectrum at given values of k and Re fills the half-line

c = 1 − i
ak

Re
, 1 ≤ a < ∞, (2.86)

in the complex c-plane. (This result was later discussed by Craik (1991).) The real
part 1 of all values (2.86) shows that all the normal modes corresponding to the
continuous spectrum have the same phase velocity U, while the negative imaginary
parts show that all these modes are damped. It was shown by Grosch and Salwen
that to each eigenvalue (2.86) there correspond two different ‘eigenmodes’. The
completeness of the system of all normal modes (corresponding to a discrete or to a
continuous spectrum) in the space of all two-dimensional disturbances was proved
for this temporal eigenvalue problem by Salwen and Grosch (1981) (who used the
results by Gustavsson (1979)) and by Herron (1983).
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The situation with the spatial version of the Orr-Sommerfeld eigenvalue problem
for plane-parallel flow in the half-plane 0 ≤ z < ∞ having a Blasius (or related) ve-
locity. profile proved to be more complicated. Grosch and Salwen (1978a) found
only one branch of a continuous spectrum for the spatial eigenvalue problem. This
branch fills a curve in the upper half-plane of the complex k-plane; hence all the cor-
responding eigenmodes are damped. However, slightly later Grosch and Salwen (b)
discovered that the continuous spectrum of the eigenvalue problem in fact includes
four different branches consisting of points in the upper half-plane. A detailed de-
scription of the four branches of the continuous spectrum and of the eigenfunctions
corresponding to them was given by Salwen and Grosch (1981) who, however, could
not prove the completeness of the system of eigenfunctions belonging either to dis-
crete or to continuous spectra. Apparently, the completeness theorem for this spatial
eigenvalue problem has not been proved up to now.

2.9.3 Plane-Parallel Flows in an Unbounded Space: Models
for Plane Jets, Wakes, and Mixing Layers. Convective
and Absolute Instabilities

Now we shall consider the stability problem for certain plane-parallel flows in an
unbounded space −∞ < z < ∞ which model plane laminar jets, wakes, and mix-
ing layers. Schematic forms of the velocity profiles for these flows are shown in
Fig. 2.31a–f. Here profiles 2.31a, b represent two models of a jet, while Fig. 2.31c
gives a model of a plane-wake profile, and in Fig. 2.31d–f three models of a profile
produced by two adjoining flows of different velocities are depicted.

Let us begin with a jet velocity profile of the type shown in Fig. 2.31b, described
by the equation

U (z) = U0 sec h2 z

H
= 4U0

(ez/H + e−z/H )2 . (2.87)

It is easy to see that this velocity profile has inflection points (i.e., U ′′(z) = 0) at
z/H = ±[ln(2+√

3)]/2 ≈ ±0.6585 (where U(z) = 2U0/ 3). During the 1960s it
was shown by several authors that the flow of an inviscid fluid with such a velocity
profile is unstable with respect to infinitesimal wave-like velocity disturbances; see,
e.g., Drazin and Howard (1966); Betchov and Criminale (1967), Sect. I.6; or Drazin
and Reid (1981), Sect. 31.9, where the main results of the corresponding stability
analysis are presented. However, in studying such a flow it seems natural to assume
that v �= 0. This is because, according to the calculations of Schlichting (1933b) and
Bickley (1937) (see also Goldstein (1938), Vol. I, Sect. 57; or Schlichting (1979),
Chap. IX, Sect. f), equation (2.87) represents, with good accuracy, the similarity
solution of the Navier-Stokes equations for the longitudinal velocity profile u1 = U
in a laminar plane jet (issuing from an infinitely thin linear aperture along the line
x = 0, z = 0, into a space filled with the same fluid). Here the parameters U0 and H
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Fig. 2.31 Schematic form of
the velocity profiles for some
plane-parallel flows in an
unbounded space: a and
b—models of a plane-jet
flow; c—plane wake; d—flow
with a tangential velocity
discontinuity; e and
f—mixing layers of two plane
flows of different velocity

a b

dc
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e f

Fig. 2.31 (Continued)

will depend on x only comparatively weakly, while the transverse velocity, u3 = w,
will be small in comparison with the longitudinal component. Thus a plane-parallel
flow of viscous fluid with profile (2.87) may be considered as a model of a plane
jet at a great distance from the aperture. Just in this connection its stability has been
analyzed by the normal-mode method by several authors. References to a number of
relatively old such works dating from the late 1950s and early 1960s can be found
in the book MY1 and the paper by Ko and Lessen (1969); here we shall mention in
addition only the results of the digital solution of the corresponding Orr-Sommerfeld
equation found by Kaplan (1964); (see also Betchov and Criminale (1967); Sect. 16)
and Silcock (1975); (see also Drazin and Reid (1981), Sect. 31.9).

As has been explained above, the normal-mode method of determination of the
neutral curve in the plane (k, Re) [or (ω, Re)) for a given flow is based on the inves-
tigation of an eigenvalue problem for the corresponding Orr-Sommerfeld equation
(2.44) (or (2.44′)). The unboundedness of the flow restricts the discussion to those
solutions of these equations which are damped at infinity. In this case, moreover,
because of the symmetry of the profile (2.87), all the eigenfunctions W(z) and ψ(z)
may be divided into even and odd with respect to z, corresponding respectively to
antisymmetric and symmetric disturbances of the horizontal velocity u1. Experi-
ments, the results of inviscid analysis (which show that if v = 0 the disturbances with



2.9 Applications of Normal-Mode Stability Analysis to Specific Parallel . . . 137

Fig. 2.32 The neutral curve
in the (k, Re) plane for a plane
jet with velocity profile
(2.87), according to the
calculations of Kaplan (1964)

even ψ(z) always have larger growth rate than those with odd ψ(z)), and also some
crude theoretical estimates give the impression that the most unstable disturbances
are always those with even ψ(z) (and W (z) = −ikψ(z)). Therefore, most authors
confine themselves, in detailed calculations, to the case of the region 0 ≤ z < ∞ and
the boundary conditions ψ(∞) = ψ′ (∞) = 0 and ψ′(0) = ψ′′′ (0) = 0 corresponding
to even modes. The results of all calculations carried out before 1975 agreed fairly
well with each other; they showed that Recr, where Re =U0H/v, is very small here
(close to 4.0; the smallness of Recr is typical of flows with velocity profiles having
an inflection point) while kcr is close to 0.25/H. Moreover, according to these results
the region of unstable wave numbers expands monotonically as Re increases; see,
e.g., Fig. 2.32 where the results of Kaplan’s computations are presented. (This au-
thor also found the form of stability curves �mc = c(i) (k, Re) = const. and �ec = c(r)

(k, Re) = const.; see Betchov and Criminale (1967), Fig. 16.1.) The paper by So-
prunenko (1965) was apparently the first where results related to stability of both
even and odd modes were given; according to this paper Recr ≈ 90 for odd modes
(i.e., it is much greater than Recr for even modes, as was expected). The early esti-
mates of Recr for even and odd modes, and also the conclusion from Fig. 2.32 that
as Re → ∞ all disturbances with k < 2/H are unstable, were confirmed by Silcock
(1975), who carried out the most accurate and comprehensive stability computations
for both antisymmetric and symmetric wave-like disturbances of a flow with velocity
profile (2.87). However, his neutral curves (represented in Fig. 2.33) show that in
the case considered the instability region has in fact a more complicated shape than
that found in previous studies: it does not expand strictly monotonically with Re,
but includes also a supplementary small stability region at small values of k/H (not
exceeding several hundredths) and moderate values of Re > Recr. Drazin and Reid
(1981), p. 235 (see also Drazin (1961)), state that the existence of this new stability
region was also earlier conjectured by J.T. Stuart on the basis of a careful asymptotic
study of stability for very long waves (i.e., small values of k).

Note now that for real jets the value Re ≈ 4 is generally attained in a region of the
flow in which the jet cannot be considered plane-parallel. Apparently Ko and Lessen
(1969) were the first who carried out calculations of plane-jet stability characteristics
based not only on the plane-parallel model of a jet, but also on a simplified ‘nearly
plane-parallel’ model which took into account, although only approximately, the
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Fig. 2.33 Form of neutral curves for even and odd modes in the case of a plan jet with velocity
profile (2.87), according to Silcock (1975). (After Drazin and Reid (1981))

non-parallelism of the flow. They investigated the spatially growing normal modes
(with real ω and complex k) and found that their non-parallel flow corrections in-
creased the value of Recr for a plane-jet flow from Recr ≈ 4.0 to Recr ≈ 12.4 and
therefore led to results that do not contradict the rather scattered experimental data
of Sato and Sakao (1964). However, Ling and Reynolds (1973) criticized the non-
parallel model of Ko and Lessen and instead suggested the use of a perturbation
expansion about the parallel-flow solution (in powers of a small ‘parameter of non-
parallelism’) of solutions of the temporal stability problem for a non-parallel-flow
model. Their method is based on some crude approximations having a limited re-
gion of applicability; it led to the conclusion (which contradicts the results of all
other authors) that the non-parallel corrections significantly change the shape of the
low-wavenumber part of the neutral stability curve in the (k. Re)-plane for both
the plane-jet and plane-wake flows, but this change reduces (and not increases) the
value of Recr. Other nearly-parallel-flow models of spatial stability problem, which
take into account only some of the non-parallel effects, were considered by Haaland
(1972) and Bajaj and Garg (1977); in both these studies it was found that Recr ≈ 11.5
for a slightly non-parallel plane jet. Later Garg (1981) investigated a more complete
model of a nearly-parallel plane jet with the velocity profile (2.87), similar to the
model used by Bouthier (1972, 1973) for the non-parallel boundary-layer flow with
a Blasius velocity profile. Garg found that according to this model Recr ≈ 20 (and
noted that this result also does not contradict the data of Sato and Sakao (1964)).
However, all the non-parallel models proposed use some non-rigorous assumptions
whose accuracy is unclear (cf. the corresponding discussion in Sect. 2.92). It would
be interesting to investigate the influence of non-parallelism on the plane-jet stability
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by direct numerical simulation (see again the related discussion in Sect. 2.92), but
such an investigation has apparently never been carried out.

The determination of the value for Recr and calculation of the neutral curve in the
(k, Re) (or (ω, Re)) plane for the plane-jet flow requires, as in the case of other plane-
parallel or nearly plane-parallel flows, the investigation of only the lower normal
mode of wave-like disturbances. It is, however, natural to assume that higher-order
modes of disturbance also exist in this flow. We do not know any works dealing with
the higher disturbance modes of the flow with velocity profile (2.87), but for a sim-
plified model of a plane jet with the polygonal velocity profile shown in Fig. 2.31a,
several such modes were found by Yamada (1964). This author studied the corre-
sponding Orr-Sommerfeld equation (using the natural “matching condition” at the
corners of the velocity profile) and found that in this case Recr ≈ 4 and kcr ≈ 0.25/H
for antisymmetric velocity disturbances, whereas Recr ≈ 20 and kcr ≈ 1/H for sym-
metric disturbances, in reasonable agreement with the results for the jet with a smooth
velocity profile. Moreover,Yamada also disclosed the existence of a number of eigen-
modes of both antisymmetric and symmetric types, with only the first mode leading
to unstable dIsturbances and the, values of Recr and kcr mentioned above. The anal-
ogy between the normal disturbance modes of the boundary-layer flow and the even
(or odd) modes in plane-parallel jet flows suggests that the total number of discrete
higher modes in a jet flow must be finite; however, this assumption has apparently
never been proved.

It is also natural to expect that a continuous spectrum of wave-like disturbances
must also exist in the case of plane-parallel jet flows in an unbounded space. In fact,
the existence of such a spectrum for a wide class of model jet velocity profiles U(z)
was proved by Grosch and Salwen (1978a); (see also the paper by Herron (1983)
who proved the existence of the continuous spectrum of frequencies ω or the phase
velocities c for a very wide class of plane-parallel or nearly plane-parallel velocity
profiles, in the half-space or the entire unbounded space). Grosch and Salwen con-
sidered both the temporal (k real, c and ω = kc complex) and spatial (ω real, k and
c = ω/k complex) formulations of the nomal-mode problem and also investigated
the form of ‘generalized eigenfunctions’ corresponding to the points of the contin-
uous spectrum (detailed results were given for the velocity profile (2.87) and were
also discussed by Craik (1991)). It was shown that in the temporal formulation the
continuous spectrum at given values of k and Re fills the half-line

c = −i ak
Re

, 1 ≤ a < ∞, (2.88)

in the complex c-plane, and to each point of this half-line there correspond two
‘eigenmodes’ both having the form of temporally-decaying standing waves. The
completeness of the system of the eigenmodes corresponding to either a discrete
or a continuous spectrum, and the expansion theorem expressing any regular two-
dimensional disturbance in terms of eigenmodes, were proved under rather general
conditions by Herron (1983).

In the case of spatial formulation only a part of the full continuous spectrum was
found in the paper (1978a) by Grosch and Salwen; this part fills a definite curve in the
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complex c-plane and the corresponding modes form a family of spatially decaying
traveling waves. Other parts form three different branches; their general description
is given by Salwen and Grosch (1981); however, they paid no special attention to
the case of a jet flow, and the completeness of their system of eigenmodes was not
proved.

Consider now the case of a two-dimensional wake behind a solid body covering
the line x = 0, z = 0 in a steady uniform flow having constant velocity U0 parallel to
the Ox axis. Such a wake has a velocity profile of the form shown in Fig. 2.31c. In the
particular case of a wake of flat plate parallel to the flow direction, it is known (see,
for example, Goldstein (1933); or Goldstein (1938), Vol. II, Sect. 2.48; or Schlichting
(1979), Chap. IX, Sect. e) that at not too small distances from the solid body the wake
can often be considered as being two-dimensional and having a ‘Gaussian’ velocity
profile of the form

U (z) = U0[1 − αe− ln 2(z/H )2
]. (2.89)

Here α= [U0 −U(0)]/U0 is the dimensionless velocity defect on the center line and
the factor ln2 is included in the exponent to make the length H equal to the half-
width of the wake, determined by condition U0 −U (H ) = 1

2 [U0 −U (0)]. The linear
stability of even disturbance modes in such a wake flow was investigated (in both
temporal and spatial formulations) by Wazzan et al. (1973). (They assumed that
α= 0.692 to correspond to the experimental data of Sato and Kuriki (1961), but in
fact, if Uo −U(0) is used as the velocity scale, results do not depend on the value of
α). According to Wazzan et al. Recr = {[U0 −U(0)]H/v}cr ≈ 3.55 for the ‘Gaussian
wake’; the forms of the neutral curves they found are shown in Fig. 2.34, in (k, Re)
and (ω, Re) planes. (The question about the possible existence of a supplementary
stability region similar to that found by Silcock for a jet flow has not been considered
in the available literature.) The curves of constant spatial amplification rates k(i)H =
const. in the (ω, Re)-plane were also computed by Wazzan et al., together with the
characteristics of the most unstable disturbances at several values of Re, which were
found to be in satisfactory agreement with the data of Sato and Kuriki for the wake
region where the plane-parallel approximation and linear stability theory seem to
be applicable. Another computation of the neutral curve (in the (k, Re)-plane) for
the wake flow with velocity profile (2.89) was made by Ling and Reynolds (1973),
who also considered approximate non-parallel flow corrections which proved to be
similar to those found by these authors for a plane-jet flow.

One more important type of flow in an unbounded space is that for which U(z) →
U0 as z → ∞ and U (z) → −U0 as z → −∞. The simplest flow of this type is the
idealized flow with a broken velocity profile shown in Fig. 2.31d; this flow describes
a plane surface of tangential velocity discontinuity. More real profiles of the same
type are shown in Fig. 2.31e, f (the last one has two symmetric inflection points); they
correspond to the laminar mixing layer of two plane-parallel flows, flowing one above
the other with different velocities. As has been already mentioned in Sect. 2.4, the
inviscid instability of flows with the velocity profile shown in Fig. 2.31d was strictly
proved as early as Helmholtz (1868); and Kelvin (1871); as for the flow represented
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a

b

Fig. 2.34 The neutral curves for a Gaussian plane wake in the (k, Re) plane a and in the (ω, Re)
plane b, according to Wazzan et al. (1973)

by Fig. 2.31e, its instability was proved by Rayleigh (1894). The temporal and
streamwise evolution of unstable wave-like disturbances in the flow of an inviscid
fluid with the hyperbolic-tangent velocity profile of the form shown in Fig. 2.31f
was also investigated some time ago, in every detail, by Michalke (1964, 1965);
and Gotoh (1965); see also the books by Betchov and Criminale (1967); and Drazin
and Reid (1981). Taking the viscosity into account, the stability of a flow with the
hyperbolic-tangent velocity profile was studied for the case of relatively large values
of Re by Lessen (1950); who found that here Recr < 20 (in Lin (1961a), it was
deduced erroneously from this that in this case Recr is close to 20). However, later,
Tatsumi and Gotoh (1960) showed that the plane-parallel flow of a viscous fluid in
an unbounded space, corresponding to a plane mixing zone of two parallel flows, is,
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Fig. 2.35 Position of the
neutral curve and the region
of instability (shaded) in the
(k, Re) plane for a mixing
layer (with the hyperbolic-
tangent velocity profile)
between two, plane-parallel
flows, according to the data of
Betchov and Szewczyk
(1963)

in fact, unstable at all values of Re for a very wide range of possible velocity profiles
(i.e., here Recr = 0). The form of the neutral curve in the (k, Re)-plane for a plane
mixing zone with the hyperbolic-tangent velocity profile U(z) =U0 tanh (z/H) was
carefully calculated by Betchov and Szewczyk (1963) by numerical integration of the
corresponding Orr-Sommerfeld equation; the results obtained are shown in Fig. 2.35
(for another presentation of these results see Drazin and Reid (1981), Fig. 4.28). The
details of the integration procedure used, and many additional results, may be found
in Betchov and Criminale (1967), Sect. 13.

The higher-order normal modes of wake and mixing layer flows have apparently
never been studied. The continuous spectrum of normal disturbances in such flows
was briefly considered by Grosch and Salwen (1978a).

Up to this point, only wave-like disturbances (with either the frequency ω or
the wave number k being complex) have been considered in Sects. 2.8 and 2.9.
However, a parallel fluid flow is always an open flow where fluid particles do not
remain at any time within a fixed bounded domain but are advected downstream
without limit. Here, therefore, it is not enough merely to know whether growing
wave disturbances can exist in the flow or not. If disturbances growing with time
exist, then it is also important to know whether such a disturbance, localized at t = 0
in some bounded domain, will be swept away by the mean motion (thus leading to
the original undisturbed state at any fixed location) or whether this disturbance will
spread out in all directions, leading eventually to exponential growth everywhere.
As it has been already noted in Sect. 2.6 when the paper by Tagg et al. (1990)
was discussed, in the first case the flow is called convectively unstable while in
the second case it is absolutely unstable. (Note that the concepts of convective and
absolute instabilities are not Galilean invariant, and a given convectively unstable
flow can become absolutely unstable after transition to another inertial system of
coordinates. Hence, the use of these notions in fact implicates that the system of
coordinates used is constrained by some physical condition (e.g., by the requirement
that a solid wall, or the aperture of a nozzle, or the solid body generating a wake,
must be motionless).)

This terminology was apparently introduced in some studies of plasma instabilities
(see, e.g., the surveys by Briggs (1964); and Bers (1983) and other sources related
to physics of plasma mentioned by Huerre and Monkewitz (1985, 1990)). However,
in fact the distinction between convective and absolute instabilities was noted much
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earlier, in particular by Twiss (1951) and Landau and Lifshitz (1953). The useful
criterion for absolute instability, which apparently also originated in plasma physics,
is closely related to the normal-mode method of linear stability theory but is based
on consideration of generalized space-time waves with complex values of both ω

and k.
Let us recollect that in the temporal formulation of the instability problem the

wave number k is assumed to be real and fixed, while ω = ω (k, Re) are complex
eigenvalues of the Orr-Sommerfeld eigenvalue problem. In the spatial formulation
ω is real and fixed and k = k (ω, Re) are complex eigenvalues. If, however, both ω

and k are assumed to be complex, then the Orr-Sommerfeld equation and boundary
conditions imply a ‘dispersion relation’ of the form

D(k,ω, Re) = 0. (2.90)

Here D is the function which at given Re determines the possible values of the pair
(k, ω) of complex numbers for which the Orr-Sommerfeld equation has a solution
satisfying the given boundary conditions. The computation of the dispersion relation
(2.90) requires only the determination of a great number of eigenvalues ω(k, Re) for
various complex values of k and positive values of Re.

The eigenvalue problem of hydrodynamic stability theory with both k and ω

complex was first considered by Betchov and Criminale (1966) for some examples
of jet and wake velocity profiles and Re = ∞ (i.e., in the inviscid approximation).
They determined numerically the dependence of complex k on complex c = ω/k and
found that this dependence is apparently analytic everywhere, with the exception of
a few singular points in the complex c-plane. Later, Gaster (1968) investigated this
general eigenvalue problem for the full Orr-Sommerfeld equation with v �= 0. He
explained why the singularities discovered by Betchov and Criminale must occur,
and showed that the singularities in the c -plane are at the points where dc/dk = 0,
while the singularities in the ω-plane (if the dependence of ω on k and vice versa
are studied) correspond to points where dω/dk = 0, and hence the wave packets have
zero group velocity. Moreover, Gaster estimated the contribution of the singularities
to the perturbations generated by a pulse (i.e., localized initially at a point), which
was proved to be very significant.

The results mentioned are in fact used in the derivation of the general criterion for
absolute instability, which was first proposed by Briggs (1964) and then became stan-
dard. Here the resolved dispersion relation ω = ω(k, Re) (where ω and k are complex)
is used and attention is paid mainly to the corresponding branch-point singularities
in the complex ω-plane, i.e., to points ωs = ω(r)

s + iω(i)
s where ∂ωs(k, Re)/∂k = 0.

According to the criterion, the type of the instability is determined by the location
of the points ωs : if all the singularities lie in the lower half-plane (i.e., ω(i)

s < 0 for
all points ωs), then it is a convective instability, but if there is a point ωs in the up-
per half-plane (so that ω(i)

s > 0), then the flow is absolutely unstable. For the proof
of this criterion and further discussion related to it see, e.g., the papers by Huerre
and Monkewitz (1985, 1990) and Huerre (1987); cf also the book by Lifshitz and
Pitaevskii (1981), Sect. 62.
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One of the first proofs of the convective nature of instability in a fluid flow
was given by Iordanskii and Kulikovskii (1965). These authors considered plane
Poiseuille flow and showed that at high enough Reynolds number its instability is
convective. Later Deissler (1987) combined the asymptotic analysis for large values
of Re with the results of numerical solution of the Orr-Sommerfeld equation for
complex k and ω in a wide range of Re, and showed that plane Poiseuille flow is
convectively unstable for any Re larger than Recr, where Recr is the critical Reynolds
number of the linear stability theory. (Note that in the book by Landau and Lifshitz
(1987), Sect. 28; it was stated that the nature of the instability in a plane Poiseuille
flow is unknown for moderately large values of Re; this remark now is not true.)
For plane-parallel boundary-layer flow with the Blasius velocity profile, the existing
calculations (in particular by Gaster (1968, 1975) and Tam (1981)) suggest that here
the instability also has a convective nature.

Investigations of the nature of instability in mixing layers, jets and wakes in
an unbounded space are very numerous; the papers by Koch (1985); Huerre and
Monkewitz (1985, 1990); Hultgren and Aggarwal (1987); Monkewitz (1988); Yang
and Zebib (1989); Hannemann and Oertel (1989); Pavithran and Redekopp (1989);
and the collection of papers edited by Eckelmann et al. (1993) containing a great
number of additional references, are just typical examples. In these flows the nature
of instability often depends upon the values of some specific parameters and can
change when these values are changed. So, for example, in the case of a mixing layer
with the velocity profile U(z) =U0 tanh (z/H) +U1, which is unstable at any value
of Re, the nature of the instability depends upon the value of the ratio S =U0/U1

(the dependence on U1 demonstrates that the nature of the instability is not Galilean
invariant). According to Huerre and Monkewitz (1985) at Re = ∞ (i.e., in an inviscid
fluid) the instability of this mixing layer will be convective if S < Scr ≈ 1.315, but for
S > Scr the flow will be absolutely unstable. Later Pavithran and Redekopp (1989)
considered a more complex model of a weakly-compressible mixing layer between
two streams of different velocities and temperatures, having hyperbolic-tangent pro-
files of U(z) and T (z); here the regions of convective and absolute instabilities depend
on several parameters and often have complicated shapes. Results by Betchov and
Criminale (1966) and Mattingly and Criminale (1972) imply that at Re = ∞ a plane-
parallel wake flow with the velocity profile U(z) =U1 [1-Q sech2 (z/H)] will be
convectively unstable when Q < 0.94 and absolutely unstable when Q > 0.94. Later,
more detailed studies of convective and absolute instabilities in wake flows with var-
ious values of Re and various forms of the velocity profile were carried out by Koch
(1985); Monkewitz and Nguyen (1987); Hultgren and Aggarwal (1987); Monkewitz
(1988); Hannemann and Oertel (1989); Yang and Zebib (1989); Wallace and Re-
dekopp (1992) and some other authors; see also the survey by Oertel (1990) and the
collection edited by Eckelmann et al. (1993). In these papers the distributions of the
regions of convective and absolute instabilities were studied in different wakes and
for different values of Re and it was shown that in all cases an absolutely unstable
region begins to form only when Re exceeds a definite critical value (close to 20
in the case of a cylinder wake), and grows with increasing Re. Note also that ac-
cording to Monkewitz and Nguyen (1987) the wakes behind two-dimensional bluff
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bodies can sometimes be convectively unstable near the body, absolutely unstable
further downstream, and again convectively unstable still further. Jet flows are con-
vectively unstable (but this is apparently not documented in the available literature);
the absolute instability appears here only when a jet (which can be either plane or
round) is heated or otherwise has variable density (see, e.g., Monkewitz and Sohn
(1988); Sreenivasan et al. (1989); Huerre and Monkewitz (1990); and Krizhevsky
et al. (1996) and references therein).

Until this point we have considered convective and absolute instabilities only for
flows of a fluid moving in a space that extends to infinity. However these concepts are
also meaningful in cases where undisturbed fluid particles remain in bounded flow
regions but the unstable disturbances have the form of growing waves propagating
to infinity. Just such a case occurs in circular Couette flow between strongly counter-
rotating cylinders. It has already been mentioned in Sect. 2.6 that Tagg et al. (1990)
investigated conditions under which the instability of such a flow at Re ≥ Recr will
be of convective or of absolute type. They computed the lines in the (η, μ) plane
dividing the regions with different values of the critical azimuthal wave numberncr for
first appearing (as Re1 increased) absolute instability and found that the line dividing
regions where ncr = 0 and ncr = 1 is nearly identical to the line computed by Langford
et al. (1988) who considered arbitrary instabilities of any type (see Fig. 2.13a in
Sect. 2.6), while in other cases the new dividing lines are placed significantly to the
left of the corresponding lines in Fig. 2.13a.

Another pair of conflicting instability concepts, which attracted much attention
in recent years, is given by local/global concepts of instability. These concepts refer
to nearly plane-parallel flows where the mean velocity is slightly nonuniform in the
streamwise direction. There, local instability means the instability of a plane-parallel
flow with the local velocity profile, while the term global instability is used for the
presence of instability modes involving the entire flow field. These concepts will not
be considered here; a good survey of the related results was given by Huerre and
Monkewitz (1990) and Monkewitz et al. (1993).

2.9.4 Circular Poiseuille Flow and Certain Other Axisymmetric
Flows

The problem of the instability and transition to turbulence of Poiseuille flow in a
circular tube is probably the most intriguing and interesting of all stability problems,
closely related to the classical experiments of O. Reynolds described in Sect. 2.1.
However, this problem is also very difficult and, in spite of many attempts to solve
it, until now only a few rigorous results have been obtained in this field. Therefore,
our discussion of this stability problem will of necessity be rather short.

Circular Poiseuille flow corresponds to the axisymmetric steady solution of the
Navier-Stokes and continuity equations satisfying the condition that the velocity field
u(x) = {U(r), 0, 0} vanishes at r = R, where R is the tube radius. According to this
solution U(r) = A(R2 −r2), whereA = [−∂p/∂x]/4ρv = const.As was explained in
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Sect. 2.84, linearized equations for the velocity component and pressure disturbances,
written in cylindrical coordinates r, φ, x, have in this case the form (2.73–2.73′) with
U(r) as given above.

As in Sect. 2.84, we shall consider only the normal modes of disturbance, i.e.,
we shall assume that the velocity and pressure disturbances are proportional to
exp{i[k(x − ct) + nφ]} with coefficients (‘wave amplitudes’) depending only on r.
In the inviscid approximation (i.e., for v = 0), equations for these amplitudes have
the form (2.74), which implies equation (2.75) for the amplitude F(r) of the radial
velocity component. If n = 0 and U(r) ∼ (R2 −r2), then the last term on the left-hand
side of Eq. (2.75) vanishes. It is easy to see that in this case no discrete eigenvalues
c exist and the eigenvalue problem related to Eq. (2.75) has only a continuous spec-
trum filling the interval [Umin, Umax] = [0, AR2]. (This situation is exactly the same
as that for plane Couette flow of an inviscid fluid.) However, in the spatial formu-
lation, i.e., when ω = kc is fixed and real an k is a complex eigenvalue, the inviscid
Poiseuille-flow eigenvalue problem has an infinite sequence of easily-determined
purely-complex eigenvalues kj with �mkj > 0, i.e., corresponding only to damped
waves; see Gill (1965). When n �= 0, the explicit determination of the eigenvalues is
not so simple but if the temporal eigenvalue problem is considered (i.e., k is real), then
Eq. (2.76) can be applied. It is easy to show that in this case the function Q′(r) in Eq.
(2.76) does not change sign inside the flow; hence the circular Poiseuille flow in an
inviscid fluid can have no modes of disturbance growing with time for any value of n.

In the case of viscous fluid with v �= 0, the determination of the possible normal
modes of disturbance for the circular Poiseuille flow is much more difficult, and
here our knowledge is still rather poor. For a rather long time, almost all authors
considered only the simplest case of axisymmetric normal modes of disturbance
(i.e. independent of φ so that n = 0); see, e.g., Sexl (1927a, b); Pretsch (1941);
Pekeris (1948); Schensted (1960); Gill (1965; here the spatial eigenvalue problem
was studied), Betchov and Criminale (1967), Sect. 56; Davey and Drazin (1969); and
Drazin and Reid (1981), Sect. 31.2. A number of additional references can be found
in these sources and in the book MY1. It has already been noted in Sect. 2.84 that in
this case the system of Eqs. (2.73–2.73′) can be transformed into a system of three
equations for the unknowns f (r), f (x) and g, and one equation for the unknown f (φ).
The last equation can be solved independently, and usually the boundary conditions
imply that the zero solution f (φ) = 0 must be used. Then the unknowns f (x) and g can
be eliminated from the remaining three equations leading to a singular fourth-order
differential equation for f (r) (having a singular point at r = 0), which, together with
the appropriate boundary conditions, define an eigenvalue problem which determines
possible values of c or k.

Schensted (1960) proved that this eigenvalue problem (in its temporal formula-
tion, i.e., when c is the unknown eigenvalue) has an infinite set of discrete eigenvalues
and the corresponding system of eigenfunctions is complete (i.e., any axisymmetric
initial disturbance can be expanded in these functions). In the other work mentioned
above, results of numerous computations of eigenvalues and eigenfunctions were pre-
sented, and it turned out that all the eigenvalues found correspond to stable modes
(i.e., here �mc < 0 or, in the spatial formulation, �mk > 0). Therefore, all the experts
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long ago became confident that the circular Couette flow is stable with respect to
any infinitesimal axisymmetric disturbance, though a rigorous proof of this fact was
found only in 1991 by Herron. (Before this the above-mentioned confidence was sup-
port by the profound mathematical analogy between the eigenvalue problems related
to stability of plane Couette flow and stability of circular Poiseuille flow for axisym-
metric disturbances and by the available relatively old experimental data by Leite
(1959); Reshotko (1958); Kuethe and Raman (1959) and Kaskel (1961), who studied
streamwise evolution of some axisymmetric disturbances produced artificially in the
initial part of tube flow.)

The stability problem for the general case of arbitrary nonaxisymmetric distur-
bances (n �= 0) in circular Poiseuille flow proved to be even more complicated than
that for axisymmetric disturbances. Results related to this general problem began to
appear only rather recently. Betchov and Criminale (1967) even assumed that circular
Poiseuille flow may be unstable to some infinitesimal nonaxisymmetric disturbances.
However, the observed possibility of extending the laminar regime of a tube flow to
extremely high values of Re by decreasing the disturbance level inclined most people
to believe that the Poiseuille flow in a tube is stable with respect to any infinitesimal
disturbance. Sharing this popular opinion, and taking into account also he results of
a few early computations of eigenvalues c = c(k, n, Re) for some nonaxisymmetric
disturbances with n �= 0, Monin and Yaglom (in MY1) and Drazin and Reid (1981)
included the assertion of the stability of circular Poiseuille flow with respect to any
infinitesimal disturbance in the texts of their books. This assertion was. supported
in MY1 by references to the paper by Lessen et al. (1968), where the normal modes
with n = 1 were computed for a range of k and Re values, and to a preliminary an-
nouncement by Salwen and Grosch (1968) about the results of computations of some
normal modes with n ≤ 5, while Drazin and Reid referred only to a subsequent more
complete publication by Salwen and Grosch (1972). (An error in the computations
described by Salwen and Grosch (1968, 1972); was later corrected by Salwen et al.
(1980).) However, progress in computer performance led to the appearance during
the 1970s and early 1980s of a number of works where the eigenvalues c(k, n, Re)
corresponding to the lower normal mode of the circular-Couette-flow stability prob-
lem were calculated for wide ranges of integers n (sometimes up to n = 30), and
for large portions of the (k, Re)-plane extending up to very high values of Re; see,
in particular, the papers by Vilgelmi et al. (1973); Kalugin et.al. (1976), Vander-
borck and Platten (1978), Salwen et al. (1980), the book by Goldshtik and Shtern
(1977) and also the paper by Garg and Rouleau (1972) devoted to consideration of
the spatial formulation (ω real and fixed, k complex) of the Poiseuille-flow stability
problem for both axisymmetric (n = 0) and the simplest nonantisymmetric (n = 1)
disturbances. All the eigenvalues found in these works (and also in all other available
reliable sources) correspond only to stable normal modes. Therefore, at present, in
spite of the absence of a strict proof, there is no doubt that unstable normal modes
of disturbance, either axisymmetric or nonaxisymmetric, do not exist in a circular
Couette flow.

The stability problem for the fluid flow in an annular channel between two con-
centric cylinders, produced by a pressure gradient parallel to the axis of the cylinders,
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generalizes in some respects the problems for circular Poiseuille flow and for plane
Poiseuille flow since both these flows can be considered as limiting cases of the flow
in an annular channel. A number of results obtained in the course of solution of this
general stability problem can be found in the books by Joseph (1976) and Goldshtik
and Shtern (1977).

Besides the circular Poiseuille flow there are other interesting and practically
important axisymmetric flows, in particular axisymmetric jet and wake flows. An
axisymmetric jet originates when a fluid under the action of over-pressure flows
through a circular aperture into a space which we shall assume to be filled with the
same fluid at rest; an axisymmetric wake is formed when an uniform fluid flow of
constant velocity u = {U0, 0, 0} meets an axisymmetric (with respect to Ox axis) solid
body. These flows are not strictly parallel—their diameter increases with distance
from the flow origin, and therefore the radial velocity component does not vanish
and the axial velocity component depends not only on r but also on x. However, if
the Reynolds number is large enough, then in an axisymmetric jet (and quite often
in a wake too) the radial velocity component will be small compared with the axial
component and the axial velocity will change with x much more slowly than with r.
In other words, under these conditions the flow will be nearly parallel and it can
be considered locally (when only the flow in a short interval of the Ox axis is of
interest), with relatively good precision, as being parallel with a velocity field of the
form {U(r), 0, 0}.

Below, most attention will be given to axisymmetric jets; wakes will be mentioned
only occasionally. Let us begin with the inviscid theory, where the normal-mode
method can be reduced to the eigenvalue problem for Rayleigh’s equation (2.75).
Exactly as for the plane Rayleigh equation (2.48), Eq. (2.75) has only either real
eigenvalues or pairs of complex conjugate eigenvalues c, and has a singularity at the
point rc (which can be complex if U(r) is an analytic function and c is complex)
where U(r) = c. This singularity considerably Complicates the correct physical in-
terpretation of the complex conjugate eigenfunctions F(r) and F*(r) corresponding
to eigenvalues c and c*; see, e.g., Lin (1961a), pp. 123–26; and Batchelor and Gill
(1962), pp. 535–536. However, these complications do not concern the amplified
modes, which are most interesting for determination of the instability conditions.

The first model example of an axisymmetric jet of inviscid fluid unstable with
respect to axisymmetric disturbances, was also given by Rayleigh (1879). Much
later, Batchelor and Gill (1962) systematically considered the normal-mode stability
theory for axisymmetric jets of inviscid fluid. In their paper, the jet flow was assumed
to be parallel, and detailed computations were carried out for two models of the
velocity profile U(r): an idealized discontinuous ‘top-hat’ profile (i.e., U(r) =U0

for r < R, U(r) = 0 for r > R; cf. Fig. 2.31a), which had already been considered by
Rayleigh, and a more realistic smooth profile of the form

U (r) = U0

(1 + r2/R2)2 . (2.91)

The ‘top-hat’ profile models a jet issuing from the open final cross section of a tube
at small distances from this cross section; profile (2.90) is a good approximation



2.9 Applications of Normal-Mode Stability Analysis to Specific Parallel . . . 149

(valid at a great distance from the jet origin) in the case of a strong jet produced
by a point source in an unbounded space filled with motionless fluid (see, e.g.,
Landau and Lifshitz (1987), Sect. 23, where results of Landau’s paper of 1943 are
presented, or Batchelor and Gill (1962) and Lessen and Singh (1973)). In the case of
the top-hat profile there exists only one mode of discrete eigenvalues c = c(k, n) of
the temporal stability problem. Equation (2.75) cannot be used directly in the case
of a discontinuous profile U(r); so another method was used by Batchelor and Gill.
It permitted them to determine analytically the physically-plausible eigenvalues c(k,
n); their imaginary parts proved to be positive at all values of k and n, showing that
amplified normal modes exist here for any k and n, i.e., the flow is very unstable. In
the case of a profile U(r) of the form (2.91), numerical computation showed here that
only wave disturbances with n = 1 appear to be unstable for some values of k. Similar
results were also obtained by Sato and Okada (1966) for the ‘Gaussian’axisymmetric
wake (i.e., a wake with velocity profile U(r) =U0 [1 −α exp {−ln2(r/R)2}]; cf.
Eq. (2.89)). In this case the inviscid stability theory showed that unstable wave-like
disturbances may again exist only for n = 1; moreover, the computed growth rates
for unstable disturbances turn out to agree well with the experimental data of Sato
and Okada for a laboratory axisymmetric wake having a Gaussian velocity profile
(with α= 0.3).

The paper by Batchelor and Gill stimulated the appearance of a number of other
publications devoted to the study of stability of axisymmetric jets by the normal-mode
method. In the interesting survey of this topic by Michalke (1984), containing many
additional references, several velocity profiles U(r) used in such studies by him and
some other authors were listed. Michalke then selected five of these profiles (both
profiles considered by Batchelor and Gill were included) for subsequent analysis. The
Batchelor-Gill profiles depend on one-dimensional parameter R characterizing the jet
radius; the other three selected profiles depend on R and on one more dimensionless
parameter b, characterizing the shape of the profile. By varying the value of b it is
possible to approximate the observed jet velocity profiles at different distances from
the jet origin.

In contrast to Batchelor and Gill, Michalke considered not the temporal but the
spatial version of the stability theory (ω fixed and real, k complex), which is more
suitable for comparison of the theoretical results with the available observations.
This replacement does not cause many changes (but now the fact that k is a complex
eigenvalue does not imply that k* is also an eigenvalue). In particular, in a jet with a
top-hat velocity profile, unstable waves with any values of ω and n can exist, while
in the case of profile (2.91) unstable waves correspond only to n = 1 and a restricted
range of ω. In the case of the other profiles considered by Michalke, waves growing
with x exist for some restricted ranges of frequencies ω, at least when n = 0 and 1 but
apparently for higher values of n also (cf. the paper by Mattingly and Chang (1974)
where for one of these profiles results of calculations were presented (and compared
with the experimental data) for n = 0, 1, and 2).

The most significant discrepancy between results of temporal and spatial stability
theory consists in the existence, according to the spatial theory, of additional normal
modes of wave-like disturbances in some frequency ranges, having no analogues in
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the temporal theory. These new modes were discovered by Michalke and were called
by him “irregular” Since they have some unusual properties. The physical meaning
of these modes is not clear; therefore, they will not be considered here.

It has been already explained that in the case of an axisymmetric flow of viscous
fluid with v �= 0, the equations for normal modes of disturbance become much more
complicated than in the case of inviscid flow. Nevertheless, in the late 1960s the nu-
merical solution of these more complicated equations also became practicable with
newly-available computers. In consequence of this, a number of works on applica-
tions of viscous stability theory to free axisymmetric flows appeared in a short time.
One of the first was the dissertation by Burridge (1968) devoted to the stability of a
round jet with the velocity profile (2.91). Based on the results of Batchelor and Gill,
Burridge investigated only the temporal stability of the first nonaxisymmetric dis-
turbance with n = 1, and found numerically that in this case Recr = (U0R/v)cr ≈ 37.5
(and kcr = 0.43/R). Slightly later Kambe (1969) published results of the inviscid and
viscous stability analysis for the axisymmetric jet with a parabolic velocity profile
(having a slope discontinuity at the jet edge). He found that such a jet is stable with
respect to axisymmetric (n = 0) disturbances but for small enough values of v (in-
cluding v = 0) it is unstable to disturbances with n = 1 or 2 (and apparently with any
higher values of n also). Calculations of the eigenvalues c(k, n, Re) for this case
showed that here Recr ≈ 32.8 for disturbances with n = 1, but it takes considerably
greater values for disturbances with n > 1 (i.e., the first nonaxisymmetric disturbances
are more unstable than all the others).

Contents of the papers by Lessen and Singh (1973) and by Mollendorf and Gebhart
(1973), published almost simultaneously, are partially overlapping: both contain the
results of spatial normal-mode stability computations of eigenvalues k (ω, n, Re) for
a viscous round jet with velocity profile (2.91). (Lessen and Singh, who did not know
about Burridge’s dissertation, also gave the results of temporal stability analysis.) It
was found in both papers that the axisymmetric modes are stable at any value of Re
and that instability is possible only for nonaxisymmetric disturbances with n = 1. The
values of Recr obtained agreed quite well with each other (and with Burridge’s earlier
results): Recr = 37.9 according to Lessen and Singh, and Recr = 37.6 according to
Mollendorf and Gebhart. Later Morris (1976) repeated the same spatial stability
computations once more and found that Recr = 37.64, kcr = 0.44/R, ωcr = 0.1U0/R;
apparently these figures are the most reliable.

A neutral stability curve in the (ω, Re)-plane and stability charts (the graphs of
curves k(i) (ω, Re) = const. and k(r) (ω, Re) = const.) can also be found in all three
of the above-mentioned papers. Lessen and Singh also gave similar curves in the
(k, Re)-plane, related to temporal stability and amplification rates. Moreover, they
noted that according to the figures presented, the viscous amplification rates (both
temporal c(i) and spatial k(i)) are greater than the corresponding inviscid rates for
certain ranges of wavenumbers or frequencies. Some values of the viscous rates even
exceed the largest values of the inviscid rates, thus showing that for some values of Re
a jet of viscous fluid is more unstable than the inviscid jet. This discovery evidently
contradicts the popular belief that viscosity always plays a stabilizing role in free
shear flows with a point of inflection. It also implies the existence of some closed
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Fig. 2.36 Curves of constant amplification rate in the (ω, Re) plane for a round jet with the velocity
profile (2.90), according to Morris (1976)

curves of constant amplification rate in the (k, Re) and (ω, Re) planes and even
suggests the possibility of existence of an additional minor neutral stability curve,
similar to that first predicted for the case of a plane jet by Stuart (and by Drazin
(1961)) and later found by Silcock (see Fig. 2.33). The last remark was made by
Lessen and Singh but was not confirmed by the results of their computations (nor
of those by Mollendorf and Gebhart), which were insufficiently precise for this aim.
Only the more thorough computations by Morris (1976) permitted the discovery of
some closed curves of constant spatial amplification rate; see Fig. 2.36. As to the
suggested possibility of the existence of an additional minor stability region inside
the main neutral curve, it has not been proved (nor disproved) up to now.

The papers by Lessen and Singh, Mollendorf and Gebhart, and Morris also contain
much additional information about the normal-mode stability properties of the jet
flow considered. In particular, several example of eigenfunctions of the correspond-
ing temporal and spatial eigenvalue problems are depicted there, together with graphs
showing the dependence on Re and ω of some stability characteristics of disturbance
modes with n = 0, 1 and 2; a few examples of eigenvalues corresponding to higher
normal modes are also given (but nothing is said about the continuous spectrum of
normal modes, which apparently also exists in this case). Besides this, all the three pa-
pers mentioned also include results of normal-mode viscous stability calculations for
some axisymmetric free flows other than a simple jet with the velocity profile (2.91).

In the first of these papers, the temporal and spatial stability analysis of a round
Gaussian wake with velocity profile U(r) =U0 [1−α exp{−ln4(r/R)2}] was also
considered. (Above in this section and in Eq. (2.89) the factor -ln2 was used instead
of -ln4 in the equation for the Gaussian wake profile. The factor -ln2 means that
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the length scales R and H are the so-called half-wake radius and thickness, i.e., the
distances at which the velocity defect is one-half of its greatest value at the center of
the wake. However, since in Eq. (2.91) R is the radial distance at which the velocity is
one-quarter of its maximal value, it is convenient now to use the ‘quarter-wake radius’
as the length scale R; therefore -ln2 is replaced by -ln4.) Both the temporal (in the (k,
Re) plane) and the spatial (in the (ω, Re) plane) neutral stability curves for the wake
(given by Lessen and Singh together with graphs for curves of constant amplification
rates) show that here Recr = {[U0 −U(0)]R/v}cr ≈ 32.6. This value does not differ
much from the value of Recr for a jet flow (note that the length and velocity scales are
selected similarly for the two flows). Examination of the curves where c(i) = const.
and k(i) = const. shows, however, that the amplification rates increase with Re −Recr

considerably faster in a wake than in a jet. Hence it is possible to conclude that the
axisymmetric wake is more unstable than the axisymmetric jet. At the same time,
comparison of values for Recr given here and in Sect. 2.93 shows that plane jets and
wakes are more unstable than the axisymmetric ones.

Morris supplemented his computation of stability characteristics for the fully
developed jet far from the jet orifice, where its velocity profile is given by Eq. (2.91),
by computations of the same characteristics for two other forms of jet velocity profile
corresponding to two stages of transition from the top-hat velocity profile very close to
the jet exit to the profile (2.91) far away. (Both these forms were proposed by Michalke
(1971) and were also used in his survey of 1984, which included a summary of Morri’s
results.) For these two profiles some reasonable values of the additional parameter
b were selected and then the values of Recr were computed for the axisymmetric
(n = 0) and the first nonaxisymmetric (n = 1) modes of disturbance. The dependence
of the spatial amplification rate k(i) on ω was also computed for various values of
Re. It was found that, in all cases considered, Recr for axisymmetric disturbances is
higher than for nonaxisymmetric disturbances with n = 1, so that the latter are more
unstable than the former.

Mollendorf and Gebhart supplemented the stability computations for the ordinary
jet by similar computations for the more complicated case of a vertical jet with
given profiles of vertical velocity U(r) and temperature T (r) in the presence of
thermal diffusivity and buoyancy (i.e., the Boussinesq form of the dynamic equations
and the heat budget equation replaced the Navier-Stokes equations). According to
the results obtained, positive buoyancy destabilizes vertical jet flow. However, the
volume limitations for this survey do not permit us to consider the contents of this
paper in greater detail or to discuss the influence of other physical factors which
can significantly affect the stability of jet flows. Note only that Michalke’s survey
(1984) contains special sections devoted to consideration of the influence on the jet
stability of the Mach number effect (i.e., of fluid compressibility at high velocities),
temperature effect (for the heated jets), and external flow effect (when the jet orifice is
moving with respect to the surrounding fluid; see also Michalke (1993) and references
there). Since at present the most important jets are clearly those which are issued
from apertures of airplane jet engines, it is clear that the last three physical factors
have very great engineering importance; therefore, it is not surprising that there are
many works devoted to their investigation.
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The determination of corrections for nonparallelism of axisymmetric steady jet
flows requires the replacement of the ‘parallel’ primary velocity field u(x) = {U(r),
0, 0} by a more precise (and general) model of the form u(x) = {U(r, x), V (r, x),
0}. Here V is the radial velocity, and it is assumed that axial variations with x of
velocity components are much slower than their radial variations with r, while the
absolute value of V is much smaller than that of U. It is then reasonable to replace
the coordinate x by the ‘slow variable’ X = εx (where ε is a small ‘parameter of
nonparallelism’) and to rewrite the velocity field in a form u(x) = {U1(r, X), εV1 (r,
X), 0}. After that it may be assumed that the disturbances can be expanded in powers
of ε; in particular, for an axial velocity disturbance u′ generated by a vibrating point
force of angular frequency ω, this expansion has the form

u′(x, r ,φ, t) = [uo(r ,X) + εu1(r ,X) + . . .] × exp{i[k(X)x + nφ − ωt]} (2.92)

(cf. Bouthier (1972); and Gaster (1974)). The determination of the most interesting
functions u0(r, X) (which includes the factor describing the slow growth or damping
of the disturbance amplitude with x, produced by nonparallelism) and k(X) (which
determines the variation of the wave length with x) requires the introduction of
some supplementary hypotheses (determining, in particular, the mean jet velocity
components U1(r, X) and V1(r, X)) and the completion of complicated computations
using the solution of the corresponding parallel-flow problem. Therefore Crighton
and Gaster (1976), who first used such an approach to determine non-parallel flow
effects on jets, calculated only the evolution of axisymmetric disturbances (n = 0) in
inviscid (v = 0) jet flow. They assumed that the axial velocity U(r, x) was described
by a specific profile equation proposed by Michalke (1971), with parameters slowly
varying with x in accordance with experimental data; the radial velocity component
V was then determined from the continuity equation. The results of the numerical
calculations showed that the growth of the unstable normal modes with x was not
purely exponential, but proved to be restricted to a certain peak value of the amplitude
by non-parallel flow effects (earlier, such restrictions had always been attributed to
non-linear effects). The calculated disturbance modes agreed satisfactorily with the
organized structures observed in a round jet by Crow and Champagne (1971). Later
Plaschko (1979, 1983); (see also Michalke (1984), Sect. 3) applied the same approach
to nonaxisymmetric disturbances (n = 1 and 2) in inviscid jet flow, and found even
better agreement with the available experimental data for orderly structures in round
jets. As to the computations of similar non-parallel flow corrections for axisymmetric
viscous jets, nothing is known to us about this matter.

The available literature contains many other examples of normal-mode stability
computations for various classes of laminar flows. However, space limitations make
it impossible to include more material in this chapter.
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Chapter 3
More About Linear Stability Theory: Studies
of the Initial-Value Problem

3.1 Beginning of the Story: The Works of Kelvin and Orr

The normal-mode method of the linear stability theory, which was considered in
Chap. 2, deals only with special “wave-like” infinitesimal disturbances of a given
laminar flow. This method equates the strict instability of a steady flow to the exis-
tence of at least one wave-like disturbance (proportional to e−iωt and, in the case of
homogeneity in the streamwise direction Ox, also to eikx which grows exponentially
as t → ∞ or, in the spatial formulation, as x → ∞), and states that ordinary insta-
bility means that there exists a wave-like disturbance which is not damped at infinity.
(The adjectives “strict” and “ordinary” will be omitted below in all cases where the
difference between two types of instability is unimportant or it is clear from context
which instability is considered.) However, is this definition of instability always ap-
propriate? Is it not more reasonable to call a flow unstable, if there exists at least one
small disturbance of any form which grows without bound after a long-enough time?
Moreover, in practice even a bounded but large-enough initial growth of a small dis-
turbance can violate the applicability of the linear stability theory, and make the flow
unstable whatever be the asymptotic behavior of this disturbance according to linear
theory. In Sect. 2.5 we have already noted in this respect that practical usefulness of
the method of normal modes must not be exaggerated. In this chapter this topic will
be considered at greater length.

A study of the time evolution of an arbitrary infinitesimal disturbance requires
consideration of the solution of the general initial-value problem for linear equations
(2.7a,b), obtained by linearization of the Navier-Stokes equations with respect to
disturbances u′

i , i = 1, 2, 3, and p′. The first attempt to construct the general solution
of such an initial-value problem, for the simplest case of a plane Couette flow with
linear velocity profile U (r) = bz, 0 ≤ z ≤ H , was made quite early by Kelvin
(1887a) (who was still called William Thomson at this time, but was created Baron
Kelvin of Largs in 1892). He found a family of exact solutions of Eq. (2.7) for
this flow, which depended on three wave numbers k1, k2, k3 (where k3 = nπ/H
with an integer value of n) and two amplitude coefficients W0 and V0 (the second of
them for the spanwise velocity component u′

2 = v). Kelvin’s solution for the vertical
velocity u′

3 = w has the form
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w(x, t) = W (t)

k2 + (k3 − k1bt)2 exp i[k1x + k2y + (k3 − k1bt)z] + w(0)(x, t) (3.1)

whereW (t) = W0 exp
{−vt

[
K2 − k1k3bt + (k1

2/3)b2t2
]}

, k2 = k2
1 +k2

2 ,K2 = k2
1 +

k2
2 +k2

3 and w(0) (x, t) is the vertical velocity component corresponding to the solution
of Eqs. (2.7) which satisfies the initial condition w(0) (x, 0) = 0 for any x and the
boundary conditions guaranteeing that w(x, t) = ∂w(x, t)/∂z = 0 for any x, y and
t, if z = 0 or z = H. (Similar solutions found by Kelvin for disturbances of the other
two velocity components and the pressure may be omitted here.) Since w(x, 0) =
(W0/K

2) exp [i(k1x + k2y + k3z)], the Fourier analysis allows one to represent any
initial value of the vertical velocity disturbance in the form of an integral of the
function w(x, 0) over all real values of k1 and k2 and a sum over all integer values of
n. Noting now that the solution (3.1) decreases exponentially as t → ∞ (W (t) is an
exponentially decreasing function and it seems natural to suppose that because of this
w(0) (x, t) must also fall off exponentially with time), Kelvin came to the conclusion
that any infinitesimal disturbance of a plane Couette flow must tend asymptotically
to zero as t increases to ∞, i.e. that this flow is stable with respect to all such
disturbances.

Kelvin’s conclusion was disputed by Rayleigh (1892) and Orr (1907). Rayleigh’s
criticism was mainly directed at the arguments presented in Kelvin’s paper (1887b),
where Eq. (2.41) (now usually called the Orr-Sommerfeld equation) was first derived,
but was used erroneously for proving the stability of plane Poiseuille and Couette
flows since only real, and not complex, values of the frequency ω were considered
by the author. Latter Orr noted (and Rayleigh agreed) that a similar objection can
be applied to Kelvin’s arguments in the paper (1887a), since here the function w(0)

(x, t) was represented as an integral of a harmonic fluctuation f (x,ω)eiωt over all
real values of ω, while in fact the possible complex values of ω should also be taken
into account. Thus, Kelvin considered only some special solutions of the initial
value problem, and therefore their asymptotic decay did not prove the stability of
Couette flow. (A more modern modification of the same criticism was given by
Marcus and Press (1977), who showed that Kelvin’s reasoning can be used to prove
the linear stability of a flow with the linear velocity profile U(x) = {bz, 0, 0} in
an unbounded space −∞ < z < ∞, but not in a layer of finite thickness between
two solid walls.) So, it became clear long ago that Kelvin’s proofs (1887a, b) of the
stability of plane Couette and Poiseuille flows to infinitesimal disturbances contained
incorrigible flaws. Therefore, for a long time very little attention was paid to these
papers in the literature on fluid mechanics.

However, Kelvin’s papers of 1887 contained some valuable arguments as well. It
has already been noted that in the paper (1887b) the very important equation (2.41)
was derived. in the paper (1887a) an exact solution of the linearized fluid dynamics
equations was found, which decays algebraically (as t−2) as t → ∞, if ν = 0; it was
quite different from exponentially decaying (or growing) normal-mode solutions,
which Rayleigh began to study (for inviscid flows) a little earlier and which for
almost a century completely ousted from the theory of hydrodynamic stability the
study of solutions with algebraic asymptotic behavior. Moreover, it was mentioned
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in passing in the same paper that “solution w(0)(x, t) rises gradually from zero at t = 0
and later comes asymptotically to zero again as t increases to infinity.” Discussing
this paper, Orr (1907) remarked that for some values of viscosity ν and wave numbers
ki , i = 1, 2, 3, the whole Kelvin solution (3.1) also at first rises rapidly with time
from its initial value at t = 0, and only later begins to decrease, tending to zero—this
important remark by Orr will be considered in detail below.

Durnig the 20th century interest in exact solutions of dynamic equations was
generally growing, and this led to revitalization, in the second half of this century,
of attention to “Kelvin’s modes of disturbance” (3.1). These modes were then re-
examined by a number of scientists, some of whom (e.g., Moffatt (1967); Rosen
(1971); Marcus and Press (1977)) apparently did not know Kelvin’s old results,
and rediscovered them (for more details see the interesting review by Craik and
Criminale (1986)). It was, in particular, pointed out in this review that a single
Kelvin mode is, in fact, an exact solution not only of the linearized equations (2.7)
where U = {bz, 0, 0}, but also of the full Navier-Stokes equations for the disturbed
velocity field u(x, t) = U + u (x, t) with U as above. This interesting fact (which
is, however, not especially important for stability studies since superpositions of
exact solutions of nonlinear equations usually do not satisfy them, while stability
theory has to do with superpositions of modes) was unknown to Kelvin and Orr. It
was mentioned in passing by Moffatt (1967) and, according to Craik and Criminale,
was independently discovered after 1965 (i.e., about 80 years after the appearence
of Kelvin’s paper) by a number of people (including both the authors) and was
apparently first discussed in a publication on hydrodynamic stability only by Tung
(1983). The above-cited review also contains a number of references to papers where
Kelvin’s solution was generalized to flows with a linear velocity profile incorporating
either Coriolis force (Tung (1983) is just one of them), or density stratification, or both
these effects; some of the results relating to stratified flows will be presented later in
this chapter. Moreover, Craik and Criminale also found exact “Kelvin-like” solutions
of the Navier-Stokes equations for the velocity field u = U + u′ (without any restriction
on the sizes of summands U and u′) whereUi(x, t) = bij (t)xj +bi(t), (i, j = 1, 2, 3,
and summation over the repeated index j is, as usual, assumed), so that the “basic
velocity field” U (x, t) is here, in general, neither steady nor parallel.

Let us now return to Orr’s paper (1907). Here it is remarked (on pp. 74–75) that a
superposition of an infinite number of functions exp(iωnt), where � mωn ≥ 0 for all
n, “may at some time have a value which is exceedingly great compared with its initial
value, and may even become infinite”; this is in fact a strong criticism of the method
of normal modes (which, at the same time, underwent significant development in
Orr’s paper). Orr pointed out that a stability investigation requires the study of the
time evolution of a general solution of the disturbance initial-value problem, but he
limited himself to consideration only of some special exact solutions of it. In Part I
of his paper the stability of inviscid (ideal) fluid flows was investigated, so the main
references here were to Rayleigh’s papers (1880, 1887, 1892, 1895) devoted to ideal-
fluid stability studies. For an inviscid plane Couette flow with velocity profileU (z) =
bz, 0 ≤ z ≤ H , Orr found an exact solution for the vertical velocity of the disturbance
w (x, t) which, after some simple transformations, can be represented in the form
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w(x, t) = W0 exp [i(k1x + k2y)]

k2 + (k3 − k1bt)2

[

ei(k3−k1bt)z − ei(k3−k1bt)H
sinh kz

sinh kH

− sinh k(H − z)

sinh kH

]

(3.2)

where, as in (3.1), k = (k1 + k2)1/2. Solution (3.2) can be considered as the limiting
form of Kelvin’s solution (3.1) as v → 0. The last two terms in the brackets here
correspond to the term w(0) (x, t) in (3.1); they provide the fulfilment of the boundary
condition that w = 0 at z = 0 and z = H , but do not vanish at t = 0 [therefore
here w(x, 0) �= (W0/K

2) exp {i (k1x + k2y + k3z)}]. However, replacing these two
terms by slightly more complicated combination of trigonometric and hyperbolic
functions, it is not difficult to obtain an exact solution with just such an initial value
of the vertical velocity; see Orr (1907), pp. 26–27, or Drazin and Howard (1966),
p. 28. Expressions for the other velocity components corresponding to solution (3.2)
or Orr’s related solution are not so simple; they were given by Orr only for the case
of a two-dimensional disturbance where v = 0 and k2 = 0.

Orr pointed out that the solutions obtained imply the existence of small dis-
turbances of inviscid plane Couette flow, which can grow indefinitely before they
begin to decay with time. In fact, let us assume that k1 > 0, k3 > 0 and b > 0 and
exclude from consideration the close vicinity of solid walls, where z ≤ εH or z > H
(1 − ε) for some very small number ε. Then it is possible to choose kH large enough
(i.e., the horizontal wavelengths small enough compared to the flow thickness H)
to make negligibly small the contributions of the second and third terms in the
brackets on the right side of Eq. (3.2). In such a case |w(x, t)| will grow with time
from its initial value |w(x, 0)| = |w|o to a maximum |w|max at time topt ≈ k3/k1 b with
|w|max/|w|0 ≈ (k2 +k2

3)/k2 = 1+k2
3/(k

2
1 +k2

2).This shows that |w| can reach an arbi-
trarily large value if k3 is chosen to be large enough (and topt then also becomes very
large). According to Eq. (3.2), |w(x, t)| diminishes with time without limit (asymp-
totically as (t − topt)−2) after the critical time topt ; however, if the disturbance grows
greatly at smaller values of t, then the validity of the above equation (which follows
from the linear stability theory) at t > topt becomes quite questionable. This is the
reason why Orr said that, according to his results, plane Couette flow of inviscid
fluid is practically unstable, and this can explain the flow instabilities observed in
other, but similar, types of flows.

In the case of a two-dimensional disturbance with k2 = 0, similar results were
obtained by Orr for the temporal evolution of the corresponding streamwise velocity
component and kinetic energy density per unit mass, T*, of the disturbance. It was
found that for some values of k1 and k3 these quantities also increase greatly when
time increases from t = 0 up to a certain critical time tcr and only after this time
do they decrease, tending to zero; see also an account of these results by Orr given
by Farrell (1982). Plane-parallel inviscid flow with an arbitrary continuous velocity
profile U(z), 0 ≤ z ≤ H, was also considered by Orr; however, no strict proofs were
obtained for this case and only some qualitative reasons were presented, which gave
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the impression that as a rule the situation here does not differ very much from that
of a plane Couette flow.

Special attention was given by Orr in Part I to the important case of Poiseuille flow
in a circular tube. This flow has the parabolic velocity profile U (r) = A(R2 − r2),
0 ≤ r ≤ R, and only the most simple axisymmetric two-dimensional velocity dis-
turbances of the form u′(x, t) = {u(r , x, t), 0, w(r , x, t)} , where u = u′

x and w = u′
r

are streamwise and radial velocity components, were considered in his paper. An-
alyzing the time evolution of such disturbances in an inviscid fluid, Orr found that
if w(r , x, 0) = U0 exp

[
i
{
k1x + (k2r)2

}]
(the initial value of the component u can

be easily determined in this case from the continuity equation), then the values of
the disturbance amplitude and of its kinetic energy both increase with time at first
(and the values of k1 and k2 may be chosen to give whatever growth is wanted) and
only later begin to decay, tending to zero as t → ∞. Orr supposed that the exis-
tence of such strongly growing disturbances can explain instability of a tube flow as
studied by Reynolds (1883). (Note however that Orr’s results do not agree well with
the results of recent more accurate computations which will be considered below in
Sect. 3.34. These new results suggest that only nonaxisymmetric disturbances can
undergo substantial transient growth in a tube flow.)

In Part II of his paper Orr turned to the stability problem for viscous flows and
therefore most attention was paid to Kelvin’s papers (1887a, b). Orr presented de-
tailed analysis of errors made by Kelvin in his reasoning and then considered the
special exact solution (3.1) of linearized dynamic equations for disturbed plane Cou-
ette flow of viscous fluid. He explained that the supplementary solution w(0) (x, t)
of these equations, which provided the fulfilment of the boundary conditions at the
walls, can be made as small as is wanted everywhere except in the close vicinity of
the walls, if the wave numbers ki , i = 1, 2, 3, are chosen to be very large compared
with 1/H (i.e., wavelengths in all directions are much smaller that the thickness of
the flow). Hence, if kiH � 1 for all three values of i and the point x is not too close to
a wall, then the time evolution of the first term on the right side of (3.1) will play the
main part. The numerator of this term decreases exponentially with time [at first as
exp (−vK2t) and finally as exp{− 1

3 v(k1b)2t3} ], but the denominator also decreases
with time until t = tcr = k3/k1b, and therefore it is clear that, if the viscosity v is
sufficiently small, the disturbance w(x, t) will at first grow with time in spite of the
exponential decrease of W (t). It is clear that if v is so small that the decrease of W (t)
between t = 0 and t = tcr is negligible, the growth of |w(x, t)| may be made as large
as desired by appropriate choice of wave numbers ki . According to Orr, the existence
of disturbances having such properties show that the plane Couette flow of a viscous
fluid is practically unstable for sufficiently small viscosity v (i.e. for sufficiently high
values of the Reynolds number Re = H2 b/v).

Orr also made some approximate calculations for the case of two-dimensional
disturbances, where k2 = 0 and v(x, t) = 0. He determined the size of a disturbance
by specifying its kinetic energy density T ∗, allowed moderate values for k1H and
k3H , and used two modifications of Kelvin’s solution (3.1) which satisfied two
different boundary conditions at the walls (both simplifying the standard conditions
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Table 3.1 Characteristics of
plane-wave disturbances
optimally growing in plane
couette flow at various values
of Re. (After Butler and
Farrell (1992))

Re t k1 k2 Emax/E(0)

4000 467 0.0088 1.60 18956
2000 234 0.0175 1.60 4739
1000 117 0.035 1.60 1184.6
500 59 0.067 1.60 296.0
250 30.2 0.12 1.61 73.9
125 16.1 0.144 1.63 18.55
62.5 8.2 0.0024 1.65 4.87
31.25 3.21 0 1.62 1.50

of vanishing velocity there). It was found that for moderate values of k1H and k3H the
maximal growth of kinetic energy T ∗ not only depends on Re = H 2b/v, but is also
very sensitive to the form of boundary conditions. According to these calculations,
at Re ≈ 1900, the maximal value of T ∗(t)/T ∗(0) can be close to 10,000, at least
for one form of the boundary conditions used. This is, of course, only a crude
estimate (since it was obtained for incorrect boundary conditions) but it strengthens
Orr’s conclusion about the practical instability of the flow considered, in spite of
the asymptotic approach of T ∗(t)/T ∗(0) to zero as t → ∞. (The crude estimate by
Orr of the maximum possible growth of the disturbance kinetic energy in Couette
flow may be compared with the results of the first computation of this maximum
by Butler and Farrell (1992), presented in Sect. 3.33, Table 3.1; note however that
Re = H 2b/4v in this table.)

It is worth noting that for Orr himself the proof of practical instability to in-
finitesimal disturbances of a plane Couette flow and of some other simple flows
of an inviscid or slightly viscous fluid was apparently the main aim of his investi-
gation. (This explains why Orr did not study the general initial-value problem for
an arbitrary disturbance; for his purposes it was enough to consider only special
exact solutions of disturbance equations). Curiously enough, although his paper of
1907 became a standard reference in all the literature on hydrodynamic stability,
it was usually referred only in relation to the so-called Orr-Sommerfeld equation,
which was, in particular, widely used (at first unsuccessfully and then successfully)
to prove the stability (in the sense accepted in the normal-mode method) of Couette
flow with respect to infinitesimal disturbances. At the same time, all other Orr’s
results (except, perhaps, those on the “energy method” of nonlinear hydrodynamic
stability theory, which will be considered later in this book) were almost never men-
tioned in the literature for many decades (Willke’s paper (1972) was apparently one
of the earliest exceptions to this). It was only recently that Orr’s concept of prac-
tical instability and his results related to it achieved wide popularity, began to be
cited frequently, and became cornerstones of modern, quite sensational, develop-
ments in the linear theory of hydrodynamic stability—described, in particular, by
Trefethen et al. (1993) and Grossmann (1995, 1996). Let us now consider these
developments.
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3.2 Studies of the Inviscid Initial-Value Problem
for Disturbances in Plane-Parallel Flows

3.2.1 Discussion of General Results and Associated Examples

Many years passed by after Kelvin’s unsuccessful attempt (1887a) to find the general
solution of the initial-value problem for an infinitesimal disturbance in a particular
steady laminar fluid flow before the next such attempt was made. One of the first new
publication on the initial-value approach to hydrodynamic-stability theory was the
interesting paper by Eliassen et al. (1953) who studied evolution of two-dimensional
disturbances in a plane-parallel flow of an inviscid stratified fluid with the velocity
profile U (z) = bz and density profile ρ(z) = ρ0 exp (−az), 0 ≤ z ≤ H. However,
these authors themselves commented that their mathematical derivations were not
rigorous (see also critical remarks about this work by Dikii (1960a) and Hartman
(1975)). Later a more rigorous approach to the same problem was made by Case
(1960b); Dikii (1960a) (in both these papers it was assumed that H = ∞,) and
some other authors. These works will be considered at greater length in Sect. 3.23.
For now, we will discuss the more simple case of a plane-parallel flow of inviscid
homogeneous (i.e., constant-density) fluid, whose stability was also studied by the
initial-value-problem method by Case (1960a) and Dikii (1960b).

Let us assume at first, as Case and Dikii did, that the disturbance is two-
dimensional, i.e., u′(x, t) = {u(x, z, t), 0, w(x, z, t)}. Then, substituting this distur-
bance and the mean velocity U = {U (z), 0, 0} into the linearized dynamical equations
(2.7) with v = 0, and then eliminating the unknowns u and p′ from the system
obtained, we come to the following equation (often referred to as the Rayleigh equa-
tion in space and time) for the unknown function w(x, z, t) satisfying the boundary
conditions w(x, z, t) = 0 at z = 0 and z = H:

(
∂

∂t
+ U

∂

∂x

)(
∂2

∂x2
+ ∂2

∂z2

)

w − U ′′(z)
∂w

∂x
= 0. (3.3)

Here U ′′ = d2U/dz2; as in Chap. 2, we will denote by primes both differentiations
on z and fluctuations of fluid-dynamic quantities, hoping that this will not cause
confusion. Equation (3.3) has the same form as Eq. (2.53) for the stream function
ψ(x, z, t) of a two-dimensional disturbance, and it differs from the more general
Eq. (2.38) only by the absence of terms containing ∂/∂y and v.

The method of normal modes consists of finding the “wave-like” solutions of
Eq. (3.3) (proportional to ei

(kx−ωt) = eik(x−ct)). The set of “eigenvalues” ω (or c =
ω/k), for which wave-like solutions exist, form the discrete frequency (or phase-
velocity) spectrum of flow disturbances (depending, generally speaking, on k). It is
however well known that the set of all wave-like solutions of Eq. (3.3) is not complete
(i.e., their linear combinations do not exhaust all the possible disturbances) since a
continuous spectrum also exists here (see Sect. 2.82). It has been already mentioned in
this book (cf. also Drazin and Reid (1981), Sect. 21) that usually only a finite number
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of wave-like solutions of Eq. (3.3) exists for a given flow at each value of the
wavenumber k. In the simplest case of a plane Couette flow, where U ′′(z) ≡ 0,
it is very easy to show that wave-like solutions do not exist at all; here, therefore, the
discrete spectrum is empty at any k. It follows from the results of Faddeev (1972) and
Dikii (1976) that such solutions also cannot exist in the case of any velocity profile
U (z) having no inflection points, i.e., such that U ′′(z) does not vanish within the
flow (the absence here of complex eigenvalues c was proved as far back as 1880 by
Rayleigh). All this made clear the inadequacy of the method of normal modes for
the linear theory of hydrodynamic stability (at least, for inviscid fluids) and was an
important stimulant for renewal of studies based on the consideration of the general
initial-value problem.

The complicated form of the normal-mode spectrum of Eq. (3.3) suggests that
double Fourier transforms with respect to x and t are not convenient for the study of
the corresponding initial-value problem. Case (1960a, b) and Dikii (1960a, b) both
found that combined Fourier-Laplace transforms (which were earlier applied to the
solution of some initial-value problems arising in the linear theory of hydrodynamic
stability by Eliassen et al. (1953) and Miles (1958)) are much more suitable for this
purpose. Let us take a Fourier transform with respect to x and a Laplace transform
with respect to t of Eq. (3.3). Then the unknown function w(x, z, t) is replaced by
the Fourier-Laplace integral

ŵ(k,p; z) =
∞∫

0

e−ptdt
∞∫

−∞
e−ikxw(x, z, t)dx. (3.4)

(Here the Fourier integral indicates that Fourier components with given wave number
k are, considered, i.e., it is assumed that w(x, z, t)∞eikx. However, the assumption
about the proportionality of w to eiωt , which is a cornerstone of the normal-mode
method, is not used here.) Applying the Fourier-Laplace transform to all terms of
Eq. (3.3) we obtain

[

{p + ikU (z)}
(
∂2

∂z2
− k2

)

− ikU ′′(z)

]

ŵ(k,p; z) =
(
∂2

∂z2
− k2

)

ŵ(k; z, 0) (3.5)

where ŵ(k; z, t) is the Fourier transform with respect to x of the function w(x, z, t).
Replacement of the variable p by c = ip/k transforms (3.5) to the form

ik

[

{U (z) − c}
(
∂2

∂z2
− k2

)

− U ′′(z)

]

ŵ(k, −ikc; z) = w0(z) (3.5′)

where w0 (k, z) coincides with the right-hand side of Eq. (3.5). So, instead of the
homogeneous partial differential equation (3.3) we now have to treat the inhomoge-
neous ordinary differential equation (3.5) or (3.5′) with its right-hand side determined
by the initial value w(x, z, 0).When the solution ŵ(k,p; z) is found, the vertical ve-
locity w(x, z, t) can be determined by the inversion formula for a Fourier-Laplace
integral (3.4):
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w(x, z, t) = 1

2π

∞∫

−∞
eikxdk

1

2πi

γ+i∞∫

γ−i∞
ept ŵ(k,p; z)dp (3.6)

where t > 0, −∞ < x < ∞, 0 < z < H , and γ is chosen so that the integration
contour in the complex p-plane is to the right of all singularities of the integrand.

The solution of the inhomogeneous equation (3.5′) can be written as

ŵ(k, −ikc; z) =
H∫

0

G(z, z′; k, c)w0(z′)dz′ (3.7)

where G(z, z′; k, c) is the appropriate Green’s function (the solution of the same
equation with the Dirac delta function δ(z − z′) on the right). The Green’s function
G can be given as

G(z, z′, k, c) = w2(z)w1(z′)
ik[U (z′) − c]W (c)

for z′ < z, (3.8)

= w1(z)w2(z′)
ik[U (z′) − c]W (c)

for z′ > z,

where w1(z) and w2(z) are solutions to the homogeneous part of (3.5) satisfying
conditions w1(0) = w2(H ) = 0 and w′

1(H ) = w′
1(0) = 1, while W (c) = w1w′

2 −
w2w′

1 = w1(H ) = −w2(0) is the Wronskian of these two solutions (all primes denote
here differentiation on z). For the special case of a plane Couette flow, whereU ′′(z) ≡
0, it is easy to find the explicit expression of the function G in terms of hyperbolic
functions (see, e.g., Case (1960a); Drazin and Howard (1966); Dikii (1976); Drazin
and Reid (1981); or Henningson et al. (1994); and also Criminale et al. (1991)
where three different representations of this function are given). Equations (3.6–3.8)
determine the general solution of the initial-value problem for the vertical velocity
w, and the same equations with functions w’s replaced byψ ′s give the solution of the
initial-value problem for the stream function ψ(x, z, t) (which at any non-zero value
of wavenumber k also satisfies the zero boundary conditions). In the case of plane
Couette flow, the solution corresponding to the initial value of w orψ represented by
a single Fourier component naturally coincides with the solution found by Orr (1907)
which falls off as t−2 when t → ∞. For the much more general case of arbitrary, but
sufficiently smooth, initial conditions, Case (1960a) found that in plane Couette flow
|w(x, z, t)| and |ψ(x, z, t)| at any point (x, z) usually decrease as t−1 when t → ∞.

However, exact determination of the exponent in the decay law is a tricky problem
and Case’s results do not agree with the earlier deduction by Eliassen et al. (1953).
who found that for rather general initial conditions |w(x, z, t)| = |∂ψ/∂x| decays in
Couette flow as t−2 when t → ∞, and it is only |u(x, z, t)| = |∂ψ/∂z| that decays as
t−1. The estimate by Eliassen et al. of the decay of |w(x, z, t)| = |∂ψ/∂x| in Couette
flow was later confirmed by Engevik (1966) and Brown and Stewartson (1980).

Dikii (1960b) used his solution of the initial-value problem for small disturbances
in a plane Couette flow for the proof of its stability of another type with respect to
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such disturbances. Namely, he showed that for some wide enough class of smooth
initial values the quantities |w(x, z, t)| and |ψ(x, z, t)| at any values of x and z are
functions of t which are bounded by some constants, decreasing to zero when the
initial values of w andψ and of their spatial derivatives of the first two orders tend to
zero. The different formulations of results by Dikii and the authors mentioned above
were due to the fact that Eliassen et al., Case, Engevik, and Brown and Stewartson
were looking for conditions of “asymptotic stability,” i.e., of dying-out at infinity,
of any small enough disturbance, while Dikii studied conditions for Lyapunov’s
stability, which means that any disturbance remains bounded at any t by a constant,
which can be made arbitrarily small by sufficiently strong diminution of the initial
disturbance.1 Neither of these definitions of stability conflicts with Orr’s “practical
instability” mentioned in Sect. 3.1–in the case of “Lyapunov stability,” this is
because k is now assumed to be fixed, so an increase of k3, as in Orr’s arguments,
increases the derivatives of the initial values.

In the case of an arbitrary smooth velocity profileU (z) no explicit formula for the
Green’s function G can be found. Therefore, we must now investigate the asymptotic
behavior of the second integral on the right side of Eq. (3.6), where ŵ(k,p; z) is given
by Eq. (3.7). For this aim it is convenient to deform the contour of integration on
p to the left and thus to transform it into a new contour which is confined to the
left half-plane of the complex-variable plane except for some loops surrounding the
singularities of the function G(z, z′, k, c) = G(z, z′, k, ip/k). It was shown by Dikii
(1960b, 1976) and Case (1960a) (see also Drazin and Howard (1966), p. 31) that the
only substantial singularities of this functions are poles at zeros of W (c), i.e., at such
values of c that the corresponding homogeneous version of Eq.(3.5′) has a solution
w(z) satisfying the conditions w(0) = w(H ) = 0. For these and only these c’s, wave-
like solutions of Eq. (3.3), proportional to eik(x−ct), exist and hence these c’s form
the discrete phase-velocity spectrum of the stability problem considered. The poles
at zeros of W (c) (under very broad conditions there are no more than a finite num-
ber of them at any k) make wave-like contributions to the vertical velocity w (or
stream function ψ) with given longitudinal wavenumber k, and these contributions
are proportional to e−ikct (or have the form of these exponential functions multiplied
by powers of t in the case of multiple eigenvalues c). The remaining part of the
integral corresponds to a continuous spectrum of phase velocities (this spectrum is
responsible for the singularities of G, which are due to the vanishing of U (z′) − c];
asymptotic behavior of this part can be investigated as in the case of Couette flow,
and for smooth enough velocity profiles U (z) the results are the same as for this
special case (see again the above-mentioned publications by Case and Dikii). We see
that, in spite of the fact that in an inviscid plane-parallel flow there usually exist only
a few possible wave-like disturbances, any sufficiently smooth, two-dimensional

1 According to Lyapunov, a trajectoryU0(t), 0 ≤ t < ∞, of a dynamic system in a phase space with a
norm ||U ||is stable, if for any ε > 0 there exists a number δ(ε) > 0 such that for any initial valueU (0)
satisfying the inequality ||U (0)−U0(0)|| < δ(ε) the inequality ||U (t)−U0(t)|| < ε is valid for any t.
For more details about such stability and discussion of its application to fluid mechanics, see Sect. 4.1
in Chap. 4 of this series. Lyapunov’s stability clearly depends on the selection of the norm ||U ||
which in studies by Dikii included the absolute values of the function and its two derivatives on z.
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initial disturbance (it was found later that both stated conditions are essential) can
grow in such a flow, without bound as t → ∞, only at the expense of unstable
wave-like disturbances, i.e., only in cases where there exist complex or multiple real
eigenvalues of the corresponding Rayleigh’s equation.

At first sight, the results of Dikii and Case, related to the general velocity profile,
give the complete solution of the initial-value problem for small enough disturbances
of steady inviscid flows; and, apart from this, they rehabilitate the normal-mode ap-
proach, showing that instability of these flows can be produced only by unstable
normal modes. However, this first impression is incorrect. To say nothing of the
fact that both these authors were dealing only with the simplest plane-parallel flows
with smooth velocity profiles U (z), we must stress again that here only smooth
two-dimensional disturbances were studied (in spite of the fact that there is no ana-
log of Squire’s theorem valid for initial-value problems) and the possible strong
transient growth of initially small disturbances (studied long ago by Orr for both
two-dimensional and three-dimensional disturbances) was not even mentioned. Thus,
important restrictions of the problem were accepted in the above-mentioned papers,
and many questions related to the initial-value-problem approach were left there
unsolved.

Interesting results about the asymptotic behavior of three-dimensional infinitesi-
mal velocity disturbances of inviscid steady flows were obtained by Arnold (1972).
He showed that in the case of some such flows the growth of three-dimensional un-
stable disturbances differs considerably from the case of the more ordinary flows
and disturbances usually considered in the linear theory of hydrodynamic stability.
In some exceptional flows studied by this author, an infinite number of very different
types of unstable disturbances can exist and the absolute value of the disturbance
vorticity ζ = {ζ1,ζ2,ζ3} can grow exponentially with time, regardless of the char-
acter, and location in the complex-variable plane, of the spectrum of exponents ω
corresponding to “normal modes,” i.e., to velocity disturbances proportional to eiωt .
All these exceptional flows are strictly three-dimensional and fairly complicated;
therefore, the will not be considered in this book. However, it was remarked by
Bogdat’eva and Dikii (1973) (see also Dikii (1976), Sect. 9) that Arnold’s arguments
show also that in the case of three-dimensional disturbances of a steady inviscid
flow the length |ζ | of the disturbance vorticity vector can grow without bound with
time, even in simple plane-parallel flows with velocity U = {U (z), 0, 0} having no
complex eigenvalues ω of the corresponding Rayleigh’s equation (and thus being
stable according to normal-mode formulation of linear stability theory). The growth
of vorticity is linear in time in these simple flows and it does not indicate that the flow
is unstable in the ordinary sense since all velocity components (and also the vertical
component of vorticity) are here bounded for all values of t and only the horizontal
vorticity components are rising without bound.

Bogdat’eva and Dikii based their modification of Arnold’s arguments on the study
of evolution of three-dimensional disturbances in a plane-parallel flow with given
velocity profileU (z).Here the equation for the vertical velocity w(x, t) = w(x, y, z, t)
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has the form
(
∂

∂t
+ U

∂

∂x

)

∇2w − U ′′(z)
∂w

∂x
= 0 (3.9)

(cf. again Chap. 2, Eq. (2.38)), i.e., it differs from Eq. (3.3) only by replacement
of the two-dimensional Laplacian by the three-dimensional Laplacian ∇2 = �.

Note now that in the case of two-dimensional disturbances, where u′(x, t) =
{u(x, z, t), 0, w(x, z, t)}, it is enough to have only an equation for w, since here,
when w is known, u(x, z, t) can be easily determined from the continuity equation
∂u/∂x + ∂w/∂z = 0 (and the pressure disturbance, if needed, can be determined
form Eq. (2.37)). However, for general three-dimensional disturbances the values
of w(x, y, z, t) do not determine the velocity field u′(x, t) = {u, v, w}; therefore, in
this case at least one more equation is needed. (As the third and fourth equations
needed for determination of all the velocity-component and pressure disturbances,
the continuity Eq. (2.36) and (2.37) can then be used).

The most convenient equation to supplement Eq. (3.9) is the equation for the
vertical vorticity component ζ3 = ∂v/∂x − ∂u/∂y. It follows easily from Eq. (2.35)
that this equation has the form

(
∂

∂t
+ U

∂

∂x

)

ζ3 − U ′ ∂w

∂y
= 0. (3.10)

When w is determined from Eq. (3.9), (3.10) allows ζ3 to be determined, and when
w and ζ3 are known, the continuity Eq. (2.36) allows the horizontal velocities u and
v to be found (cf. Eq.(3.15) below). Note also, that Eqs. (3.9) and (3.10) imply the
equation

(
∂

∂t
+ U

∂

∂x

)[

U ′′ ∂ζ3

∂x
− U ′ ∂∇2w

∂y

]

= 0, (3.11)

which shows that the combination in the brackets can depend only on x−Ut, y, and
z. let us now apply the Fourier transformation with respect to horizontal coordinates
x and y and consider, for the sake of simplicity, only one Fourier component. This
means that the velocity and vorticity components of the disturbance considered are
assumed to be proportional to exp [i(k1x + k2y)] with amplitudes depending on z
and t (but, contrary to the normal-mode method, the form of dependence on t is now
not restricted). Let k1 �= 0 (the case where k1 = 0 will be considered later); then it
follows easily from Eq. (3.11) that

ζ3 = k2U
′

k1U ′′ (w
′′ − k2w) + eik1Ut

[

ζ3 − k2U
′

k1U ′′
(
w′′ − k2w

)
]

t=0

(3.12)

where again k2 = k2
1 +k2

2 . (If the initial-value problem has already been solved for the
vertical velocity w, Eq. (3.12) gives the explicit solution of the same problem for the
vertical vorticity ζ3). Note now that ifU ′′(z) �= 0 for all values of z (i.e., if Rayleigh’s
condition is valid) and also in more general cases where Fjørtoft’s condition is valid
(and hence there exists such constant velocity K that [U (z)−K]/U ′′(z) is a continuous
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nonnegative function of z) the functions |w|, |w′| and |w′′) are bounded by some
constants c0, c1, and c2 which do not depend on t. (This statement follows, in
particular, from Dikii’s conservation law

d

dt

H∫

0

[|w′|2 + k2|w|2 + U −K

U ′′ |w′′− k2w2|2]dz = 0 (3.13)

which can be proved in exactly the same way as its special form (2.57) was proved
for the case of two-dimensional disturbances, if Eq. (2.53) is replaced by Eq. (3.9).2)
Hence it follows from Eq. (3.12) that for flows where U ′′(z) �= 0 everywhere, |ζ3| is
also bounded by some constant. Equation (3.12) also shows that |ζ3| does not tend to
zero as t → ∞ even if the vertical velocity does, since the second term on the right-
hand side of this equation represents a harmonic oscillation with fixed amplitude.
However, this amplitude decreases to zero when the initial values of ζ3, w, and w′′
tend to zero; therefore the behavior of the vertical vorticity is not in conflict with
Liapunov’s stability (with appropriate definition of the norm) of the flow with respect
to infinitesimal disturbances.

If U ′′(z) vanishes at some point (or points), then Eq. (3.12) implies that |ζ3U
′′| is

bounded by some constant. Therefore, in this case |ζ3| can possibly grow with time
without bound, at inflection points of the velocity profile.

For a given Fourier component of the disturbance the definition of the vorticity
component z3 and the equation of continuity take the forms

ζ3 = ik1v − ik2u, w′ = −ik1u − ik2v, (3.14)

where w′ = ∂w/∂z, and hence

u = i
(
k1w′ + k2ζ3

)
/k2, v = i

(
k2w′ − k1ζ3

)
/k2. (3.15)

It follows from this that in Rayleigh’s case (when U ′′(z) �= 0 everywhere |u| and |v|
do not tend to zero as t → ∞ but are bounded by some constants (which become
zero when the initial disturbance and its first and second derivatives on z tend to zero).

However, the horizontal vorticity components ζ1 and ζ2 in this case can in-
crease infinitely when t → ∞. To illustrate this Bogdat’eva and Dikii considered
the simplest solution of Eqs. (3.9) and (3.10) where w = 0 (i.e., u′(x, t) =
{u(x, y, z, t), v(x, y, z, t), 0}).Then Eq. (3.12) shows that here the Fourier components
of the vertical vorticity have the form ζ3 = A(z) exp [i{k1(x −U (z)t) + k2y}] where
A(z) exp [i(k1x+k2y)] = ζ3(x, y, z, 0). According to Eq. (3.15), components u and v
are proportional to ζ3 when w = 0; hence these three functions of x, y, z, and t all have
the same form. Therefore, here −∂v/∂z = ζ1 and ∂u/∂z = ζ2 include terms of the

2 It is true that Eq. (3.13) implies only that if the initial values of |w|, |w′| and |w′′| are small
enough, then their root-mean-square values will be bounded by some small constants at any value
of t. However, using results of the initial-value-problem investigations, it is possible to prove that
in fact the values of these functions of t and z will be uniformly bounded by some small constants
for all t > 0 and 0 < z < H; see, e.g., Dikii (1976).
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form B(z)k1tU
′(z) exp [i{k1(x − U (z)t) + k2y}] representing harmonic oscillations

with amplitudes growing linearly with time. If w(x, y, z, 0) �= 0, then the arguments
become somewhat more complicated but the situation here, as a rule, is the same as
for disturbances with vanishing vertical velocity. In fact, according to Eq. (3.12), in
this case ζ3(x, y, z, t) also includes the summand of the same form as above (with
A(z) equal to the initial Fourier amplitude of the combination in the brackets on the
right-hand side of Eq. (3.12)), and, according to Eq. (3.15), u and v include the
summands of this form too. However, ζ1 and ζ2 by definition include the derivatives
−∂v/∂z and ∂u/∂z, respectively, and this implies that these vorticity components in-
clude harmonic oscillations with amplitudes proportional to time t. Thus we see that
the horizontal velocity components u and v of a three-dimensional small disturbance
of a plane-parallel steady flow with velocity profile U(z) without inflection points are
bounded at any t by small constants (but do not go asymptotically to zero as t → ∞)
while horizontal vorticity components ζ2 and ζ3 can here increase indefinitely with
time. Whether under such conditions a flow must be called stable or unstable depends
on the precise definition of the term “stability” employed (in particular, Arnold (1972)
regarded the unbounded growth of vorticity as an indication of flow instability).

The existence of the strong dependence of the evolution of a disturbance on
smoothness of its initial value was demonstrated by Willke (1972) on some rather
peculiar examples relating to two-dimensional disturbances in an inviscid plane Cou-
ette flow. However, he began with consideration of the old Orr’s solution (3.2), where
k2 = 0, of the linearized inviscid Navier-Stokes equations for the velocity field u=
U + u′, where U = {bz, 0, 0} , u′ = {u(x.z.t), 0, w(x, z, t)} , 0 < z < H. He neg-
lected in this solution the terms involving hyperbolic functions, which are of impor-
tance only in close proximity to the solid walls at z = 0 and z = H, and instead of
the vertical velocity w(x, z, t) he used the stream function ψ(x, z, t) which satisfies
the same equation as w. It has in fact already been noticed in Sect. 3.1 that, if k1, k3

and b are positive, then solution (3.2) for ψ implies that |ψ(x, t)| = |ψ | increases
from the initial value |ψ |0 at t = 0 to the value |ψ |max ≈ [1 + (k3/k1)2]|ψ |0 at t =
tmax ≈ k3/k1b, and then decreases, tending to zero as t → ∞. According to Eq. (3.2)
|ψ | falls off like (t − tmax)−2 on either side of the time tmax. Willke noted in this re-
spect that the above conclusions (with appropriate change of the values for |ψ |max and
tmax) are valid not only for wave-like disturbances, where ψ(x, z, 0), w(x, z, 0) and
also the initial vorticity ζ (x, z, 0) = −(∂2/∂x2+∂2/∂z2)ψ(x, z, 0) = ∂u(x, z, 0)/∂z−
∂w(x, z, 0)/∂x are proportional to exp [i(k1x + k3z)], but also for disturbances with
much more general initial values of the form ζ (x, z, 0) = exp (ik1x)f (z), where
k1 �= 0 and the function f (z) is twice continuously differentiable. (To obtain this last
result, which according to Willke, was already known to Orr, it is only necessary
to expand the function f (z), 0 ≤ z ≤ H , into Fourier’s series and apply Orr’s so-
lution to all Fourier components. Note that proportionality to t−2 of the asymptotic
decay rate of |w| was later proved by Henningson et al. (1994) also for smooth
three-dimensional disturbances in Couette flow with k1 �= 0; See below about this
matter.)



3.2 Studies of the Inviscid Initial-Value Problem for Disturbances . . . 189

Then Willke considered more complicated cases where the initial disturbance is
very irregular and does not satisfy the smoothness requirements used in previous
investigations of Couette-flow stability. His investigation of these cases employed
a nonstandard mathematical technique and some subtle analytical results; the con-
clusion obtained will be described only briefly below.

Willke assumed that the initial disturbance was specified not by a smooth ordinary
function but by a “generalized function” (or, what is the same, a “distribution”)
which can have any degree of irregularity (see literature on such functions listed in
Sect. 2.82, p. 84). In such a case it is natural to look for solutions of the corresponding
dynamic equations which are also represented by generalized functions, i.e., to use
the generalized-function (or else distribution-theoretic) approach to these differential
equations (see the book by Gel’fand and Shilov (1958) devoted to discussion of this
approach). This allowed Willke to analyse rather easily the laws of growth and
decay for arbitrarily irregular solutions and to find estimates for the dependence
of the highest possible growth rate on a numerical characteristic of the degree of
irregularity of the generalized function describing the initial disturbance. To show that
his estimates are strict, Willke considered a special sequence of complicated solutions
represented by lacunary series of solutions of the form (3.2) (i.e., by infinite sums of
functions of this form with k2 = 0, fixed value of k1, rapidly increasing values of k3

and decreasing amplitudes W0
′s; these sums do not converge at fixed points (x, z, t)

but converge in some special sense to a definite generalized function). The first term
of the above-mentioned sequence of solutions is an ordinary (but nondifferentiable)
function; all the further terms are generalized functions related to first- or higher-order
derivatives of continuous nondifferentiable functions. (These generalized functions
can be accepted as flow variables in the same way as more common examples of such
functions which include Dirac’s δ-functions and their derivatives.) With the aid of
some analytical results Willke showed that his “generalized solutions” can match all
the growth-rate bounds found by him for irregular two-dimensional disturbances of a
Couette flow. It turned out that these solutions can grow (for any length of time) like
any positive integer power of t, and then decay arbitrarily slowly (like an arbitrarily
small negative fractional power of t). The transient growth proportional to a high
positive power of t can be reached only for very irregular disturbances represented
by complicated generalized functions, but arbitrarily slow ultimate decay is possible
for disturbances with continuous, but not differentiable, initial vorticity ζ (x, 0).

Willke’s paper (1972) was devoted to investigation of rather exotic two-
dimensional disturbances of an inviscid plane Couette flow, which are interesting only
theoretically but not in practice (at least until now). However, in the 1980s and 1990s
many more realistic examples of disturbance developments in plane-parallel inviscid
flows were also studied, and some of them were again related to plane Couette flow.As
typical examples we can mention the papers by Shepherd (1985) and Farrell (1987)
where development of simple two-dimensional disturbances to an inviscid plane
Couette flow in unbounded space −∞ < x, y, z < ∞ was considered as a proper
model of some important meteorological phenomena. The unboundedness of space
makes unnecessary the terms of Eq. (3.2) containing hyperbolic functions, which
were added to satisfy the boundary conditions at the walls; hence here Orr’s solution
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corresponding to two-dimensional disturbances with k2 = 0 takes the form:
w(x, t)∞ψ(x, t)∞[k1

2 + (k3 − k1bt)2]
−1

exp [i(k1x+(k3−k1bt)z)], while ζ (x, t)∞
exp [i(k1x+ (k3 − k1bt)z)]. Using these equations Shepherd studied the evolution of
a standing wave composed of a pair of two-dimensional Orr’s waves with the same
amplitude W0 and wave vectors (k1, 0, k3) and (k1, 0, −k3). If k1 > 0, k3 > 0 and
b > 0, then the first of these two waves will gain energy from the mean motion until
time k3/k1b and will lose it after this time, while the second wave will lose energy
at any time t. As to the total energy density of a standing wave, it will decrease
monotonically if k2

1 > 3k2
3 , i.e., θ = arctan (k3/k1) < π/6, and will at first in-

crease and then decrease if θ > π/6. For the isotropic collection of standing waves
with homogeneous circular distribution of angles θ the total energy was found to
remain constant in time, while for some other simple distributions of wave-vector
directions moderate transient growth of energy was discovered. Farrell (1987) tried
to estimate the value of the inverse-shear time scale b−1 appropriate for modeling
the mid-latitude free-atmosphere processes and found that it is typically of the order
of 10 h. Therefore, he concluded that the asymptotic laws of wave development in a
steady Couette flow at t � b−1 are usually irrelevant for modeling real atmospheric
processes since for such times this model is unsuitable, but the transient growth
of waves can serve as a reasonable model of the initial stage of the development
of a disturbance at the expense of the energy of mean atmospheric motion. The
accumulated wave energy can then be transferred to some quasi-stationary large-
or medium-scale atmospheric structures (e.g., in cyclogenesis) or be spent to gen-
erate modal disturbances whose subsequent development must be studied within
the framework of the normal-mode theory. In this respect Farrell studied the en-
ergetics of the solitary-wave and wave-packet developments, and considered the
temporal evolution of the Couette flow disturbances for a number of specific ini-
tial values of the corresponding stream function (such as the “checkerboard initial
value” ψ(x, z, 0) = A cos (k1x) cos (k2z); Shepherd’s isotropic wave packet where
ψ(x, z, 0) = AJ0(kr), J0 is the Bessel function and r = (x2 + z2)1/2; a Gaussian
isotropic wave packet whereψ(x, z, 0) = A exp [− (kr)2)]; and an anisotropic local-
ized disturbance whereψ(x, z, 0) = A exp [−(k0r)2] cos (k1x+k2z).) Most attention
was paid to the last of these examples, where a considerable transient growth of dis-
turbance energy (depending on and increasing with s = k2/k1) was found and where
the time evolution of the disturbance shape agreed qualitatively with data of some
meteorological observations.

General three-dimensional disturbances in bounded inviscid plane Couette flow
between walls at z = 0 and z = H can be analyzed by the method applied by Case
(1960a) and Dikii (1960b) to the study of two-dimensional disturbances. Let us
replace the one-dimensional Fourier transform on the left-hand side of Eq. (3.4) by
the two-dimensional Fourier transform of the function w(x, y, z, t) with respect to
horizontal coordinates x and y (or, what is the same, assume that w(x, y, z, t) =
w̃(k1, k2, z, t) exp{i(k1x+ k2y)} and take the Laplace transform of w̃(k1, k2, z, t) with
respect to t). Using Eq. (3.9) instead of (3.3), it is easy to show that the resulting
Fourier-Laplace transform of w(x, y, z, t) (or the Laplace transform of w̃((k1, k2, z, t)),
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which we will denote by ŵ(k1, k2,p; z), satisfies an equation very like Eq. (3.5). The
only differences are that the two factors ik entering Eq. (3.5) must now be replaced by
ik1; w̃(k; z, 0) must be replaced by w̃(k1, k2, z, 0), the Fourier transform of w(x, y, z, 0)
with respect to x and y (or the value of the coefficient w̃(k1, k2, z, t) at t = 0) while k2

must be interpreted as k2
1 + k2

2 . Denoting the Laplace-transform variable p by −ik1c

we arrive at an equation of the form (3.5′) for ŵ(k1, k2, −ik1c; z) with ik replaced
by ik1 and w0(z) = (∂2/∂z2 − k2)w̃(k1, k2, z, 0). Solution of this inhomogeneous
linear equation can again be represented in the form (3.7), with Green’s function
G given by (3.8) with k replaced by k1 (recall that in the case of Couette flow an
explicit expression of the function G can be easily obtained). When ŵ(k1, k2,p; t) is
known, the vertical velocity w can be determined by the inversion formula for either
a composite triple Fourier-Laplace integral generalizing (3.6) or, if w is assumed to
be proportional to exp [i(k1x + k2y)], a one-dimensional Laplace integral.

The general expression for w(x, y, z, t) obtained is close to that found by Case
(1960a) for two-dimensional disturbances in Couette flow. Henningson et al. (1994)
showed that according to this expression w̃(k1, k2, z, t) decays as t−2 as t → ∞ if
k1 �= 0 and the above function w0(z) is smooth enough. Transient growth of the ver-
tical velocity at small and moderate values of k1t must also occur here for reasons
explained by Orr as for back as 1907. However, the temporal behavior of the hori-
zontal velocity components is different and the simplest way to show this is based
on the study of the vertical vorticity ζ3.

The simple Eq. (3.12) cannot be used in the case of Couette flow, whereU ′′(z) = 0
at all values of z. However, when one Fourier component of the disturbance is studied
and hence derivatives ∂/∂x and ∂/∂y can be replaced by factors ik1 and ik2, Eq. (3.10)
for ζ3 can be easily integrated to yield the result

ζ3(z, t) = ζ3(z, 0)e−ik1U (z)t + ik2U
′(z)e−ik1U (z)t

t∫

0

w(z, t ′)eik1U (z)t ′dt ′ (3.16)

(the dependence of the vorticity ζ3 and velocity w on horizontal coordinates, given
by the factor exp [i(k1x + k2y)], is not indicated here). The first term represents
the advection of the initial vertical vorticity by the flow velocity U (z), while the
second term represents the integrated effect of the vertical velocity, the so-called lift-
up effect (see Landahl (1975)). Note that, according to Eqs. (3.15), the horizontal
velocity components u and v include terms proportional to ζ3; so this effect consists of
the generation of horizontal velocity perturbations by lifting-up of the fluid elements
in the presence of the mean shear. The lift-up effect increases with increasing U′, as
it must, and with decreasing spanwise wavelength 2π/k2 (for a physical explanation
of this last dependence see, e.g., Henningson (1988) or Henningson et al. (1994)).
In cases where vertical velocity disturbances decay fast enough as t → ∞, the
integral in (3.16) converges to a finite limit and the second term on the right side
describes a permanent scar in the disturbance, convecting downstream with the local
mean velocity, discovered by Landahl (1975) (see also Bogdat’eva and Dikii (1973)
and Gustavsson (1978)). In Rayleigh’s plane-parallel flows, where U ′′(z) �= 0 for
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all z, the value of the scare is given by the last term in brackets on the right side
of (3.12); for a plane Couette flow it was shown by Henningson et al. (1994) that
ζ3(z, t) ≈ ζ3(z, 0) exp [ − ik1bzt] + ik2w(z, 0) bt at small values of t and ζ3(z, t) ≈[
ζ3(z, 0) − iπ k2

k1

sin hkz sin hk(H−z)
k sin hkH w0(z)

]
e−ik1bzt at large values of t, where b and w0(z)

have the same meaning as above. We see that ζ3(t), aside from the convected initial
value, contains a term which grows linearly for short times and for large times
represents a permanent scar convected downstream, depending on the initial value
of the vertical velocity w and on the wave numbers k1, k2, and k = (k2

1 + k2
2)

1/2
.

Three-dimensional disturbances of an inviscid plane Couette flow between solid
walls were also studied by Criminale and Drazin (1990) and Criminale et al. (1991).
Their method for solution of the general initial-value problem was based on the tran-
sition to the “convected coordinate system” (ξ = x −U (z)t , y, z) used much earlier
by Kelvin (1887a) and Orr (1907) (see also Craik and Criminale (1986)). Criminale
and Drazin considered two particular solutions of the initial-value problem, while
Criminal et al. found the explicit non-Fourier-transformed form of the general solu-
tion and then considered at length the case where w(x, y, z, 0)∞ exp [i(k1x + k2y)].
Most attention was paid here to the particular case where (∂2/∂z2 −k2)w(x, y, z, 0) =
exp [i(k1x+k2y)]W0(z) andW0(z) = W0(z; z0,L) has the form of a rectangular pulse
of unit area with the center at z = z0 and the thickness 2L (henceW0(z) → δ(z − z0)
as L → 0). Since equations obtained for the velocity components (u,v,w) proved
to be complicated, an integrated positive measure of disturbance size (the “energy,”
whilch for purely two-dimensional disturbances coincided with the ordinary kinetic
energy density) was introduced. Evaluation of this measure showed that solution of
the initial-value problem considered usually decays monotonically with time (or, as
an exception, preserves their size); hence, the phenomenon of the transient distur-
bance growth is here mostly lacking. The rate of decay is practically independent of
the position of the pulseW0(z), but depends strongly on its relative thickness μ = L/H,
dimensionless wave number κ = kH, and wave-vector orientation θ = arctan(k2/k1),
growing with increasing μ and κ and with a decrease of θ from π/2 to zero. In
particular, if θ = 0 (i.e., the disturbance is two-dimensional) and either μ = 0 or
κ � 1, then the “energy” of the disturbance remains constant with time; the same is
true for cases where μ �= 0 and κ is not small but θ = π/2. Moreover, if μ = 0 (i.e.,
W0(z) = δ(z − z0)) and θ �= 0 (i.e., the disturbance is really three-dimensional), then
the horizontal velocities velocities u and v at z = z0 grow linearly with time and
at |z − z0|/H � 1 their growth is practically linear up to very large values of bt
(i.e., here there is a considerable transient algebraic growth of the disturbance). This
shows again that in cases of singular initial conditions the behavior of disturbances
can differ considerably from that for smooth initial values (see also the paper by
Willke (1972) discussed above).

Criminale and Drazin (1990) considered, along with the case of a plane Couette
flow, development of disturbances in two other steady inviscid plane-parallel flows
with piecewise linear velocity profiles: in two-layered unbounded flow whereU (z) =
b1z for z > 0,U (z) = b2z for z < 0, and b2 �= b1; and in a piecewise-linear model
of a boundary layer where 0 ≤ z < ∞, and U(z) = bz for 0 ≤ z < H , while
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Fig. 3.1 Piecewise-linear
models of velocity profiles for
some plane-parallel fluid
flows: a model of a
boundary-layer profile used
by Gustavsson (1978) and
Criminale and Drazin (1990);
b model of a mixing-layer
profile used by Bun and
Criminale (1994) and
Criminale et al. (1995); c and
d models of plane-jet and
plane-wake profiles by
Criminale et al. (1995);
e model of a plane
Poiseuille-flow profile by
Henningson (1988) compared
with the exact parabolic
profile

a b

c

e

d

U (z) = bH = U0 for z > H (see Fig. 3.1a). For disturbances in these flows the
following schematic initial conditions at t = 0 were used; (a) unit point pulse of
velocity, (b) unit point pulse of vorticity, (c) monochromatic three-dimensional plane
wave of velocity, and (d) a similar wave of vorticity. The possibility of stimulation
of nonlinear effects by transient algebraic growth of an initially small disturbance
was discussed by the authors, and such growth was illustrated by results related to
the case of the initial condition (c), first considered, for disturbances of a Couette
flow, by Orr (1907).

Later Bun and Criminale (1994) and Criminale et al. (1995) applied the initial-
value-problem approach to detailed study of the evolution of three-dimensional
disturbances in schematic piecewiselinear models of an inviscid plane mixing layer
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(with profile U(z) shown in Fig. 3.1b (and also in Fig. 2.31e in Chap. 2)) and (in the
second of those papers) also of a plane jet (Fig. 3.1c) and a plane wake (Fig. 3.1d). It
was mentioned in Sect. 2.93 that as long ago as 1894 Rayleigh proved that unstable
normal modes (growing exponentially as t → ∞) exist in a plane mixing layer with
the velocity profile given in Fig. 3.1b. It is easy to show that the same statement is also
true for inviscid piecewise-linear free shear flows in an unbounded space with the
velocity profiles shown in Figs. 3.1c and 3.1d. (Recall that in Sect. 2.93 models of vis-
cous plane jets and wakes with analytic velocity profiles, differentiable everywhere,
were considered and the results showed that such flows definitely have unstable nor-
mal modes of disturbance in the inviscid case too; see also the remarks following
Eq. (2.87), which contains a number of references related to this topic. In the case
of piecewise-linear jet and wake models the corresponding proofs are even simpler
since here the exact analytic solutions for equations of the linear stability theory may
be used instead of the approximate numerical solutions used in the cases of analytic
velocity profiles.) It might be concluded from this that consideration of the general
initial-value problem for piecewise-linear plane free flows in an unbounded space
is superfluous, since the classical normal-mode theory has already proved that these
flows are unstable with respect to small disturbances, which can grow here as exp
(ω(i) t) as t → ∞, whereω(i) is the greatest imaginary part of the discrete eigenvalues
of Rayleligh’s equation (2.48) with c = ω/k.However, results by Bun and Criminale
(1994) and by Crilminale et al. (1995) show that this conclusion is incorrect in many
cases. According to these results the behavior of three-dimensional disturbances in
these flows is dominated by the exponential growth of unstable normal modes only
for very large times, while for earlier times the transient algebraic growth, which is in
fact due to the continuous spectrum of Rayleigh’s equation, plays the main part. This
transient growth can lead to a quite substantial rise of the velocity disturbances before
the exponentially-growing normal modes become dominant. Just this rise apparently
produces the early nonlinear transformation of the whole flow structure which has
often been observed experimentally. Similar results were deduced by Criminale et al.
from the numerical solution of the appropriate initial-value problem for the case of
inviscid jets and wakes with differentiable analytic velocity profiles.

Let us now mention two other investigations of the initial-value problem for
small disturbances in plane-parallel steady inviscid flows with piecewise linear ve-
locity profiles. In the PhD thesis by Gustavsson (1978) a general solution of the
problem was given for the same piecewise linear model of a boundary-layer flow
that was later considered by Criminale and Drazin (and is sketched in Fig. 3.1a).
Gustavsson paid special attention to the case of a localized three-dimensional ini-
tial disturbance. Then Henningson (1988) applied Gustavsson’s method to study
the evolution of disturbances in the piecewise linear model of a plane Poiseuille
flow shown in Fig. 3.1e. Note also the paper by Breuer and Haritonidis (1990) who
numerically solved the initial-value problem for a localized disturbance in a plane-
parallel boundary-layer flow with the Blasius velocity profile. (As mentioned above,
in the case of curved velocity profiles the initial-value problem for small velocity
disturbances can only be solved numerically.) In these investigations (and also in
the survey by Henningson and Alfredsson (1996)) it was stressed that the general
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solution of the initial–value problem includes terms of two different types, which
are directly separated in analytical solutions and can also be detected in numerical
results.

The first of these types is represented by terms of the Fourier–transformed solu-
tions for velocity components which contain the factor e−ik1U (z)t (see e.g. Eqs. (3.1),
(3.2), (3.11) and (3.16) above, which include a number of such terms). Here the
inversion of the Fourier transform leads to functions of y, z and ξ = x − U (z)t ;
this indicates that the corresponding disturbances are convected streamwise with the
local flow velocity U(z). Such disturbances were, in fact, first discovered by Kelvin
(1887a) and Orr (1907) and were also at length studied by Criminale and his col-
laborators in the papers indicated above; they often undergo considerable transient
growth followed by decline. These disturbances were called convective by Gustavs-
son (1978); in the case of inviscid flow they correspond to a continuous spectrum of
Rayleigh’s equation (which, for bounded flows, fills the interval Umin ≤ c ≤ Umax

of the real axis; see Sect. 2.82, p. 85). Besides convective terms, Fourier trans-
forms of solutions of the initial-value problem also include “terms of the second
type,” proportional to e−ik1c(k)t , where k = (k2

1 + k2
2)

1/2
and c(k) is a special function

that appears in the course of the solution. In some cases there are several functions
c(k), appearing in different terms of the second type; these functions can be either
real or complex, and they can also be determined by analysis of the corresponding
Rayleigh’s equation (which, according to Chap. 2, has the same form (2.48) for two-
and three-dimensional disturbances, and includes only k but not k1 and k2). Inver-
sion of the Fourier transform translate these terms into functions of x-c(k)t, which
describe three-dimensional waves with the wave vector k = (k1, k2) and streamwise
phase velocity c(k) (or �e c(k) if c(k) is complex), and are related to normal modes
studied in Chap. 2.3 Since the frequency ω = k1c(k) (or frequencies ωi = k1ci(k),
if there are several functions c(k)) of waves corresponding to second-type terms)
depend on k, these waves are dispersive; therefore Gustavsson called the collection
of these waves the dispersive disturbances.

The normal-mode approach to stability theory paid most attention to individual
normal modes with given values of k and c (or ω). However, in studies of the
initial-values problems, all plane waves making non-zero contribution to the Fourier
expansion of the initial disturbance must be simultaneously taken into account. In the
important case of an initially-localized disturbance, the Fourier expansion includes
a vast collection of waves with different wave vectors k = (k1, k2). Hence here the
laws of wave-packet evolution must be applied.

The convective disturbances are convected streamwise with velocity U(z); hence
their evolution is relatively simple. However, the evolution of dispersive disturbances
with angular velocities ω = k1c(k) is more complicated. According to kinematic
wave theory (see, e.g., Landau and Lifshitz (1958, 1987), Sects. 66, 67, or Whitham

3 They are not identical to normal modes since the functions c(k) do not coincide with the discrete
eigenvalues of Rayleigh’s eigenvalue problem, which do not exist in many important cases. In fact,
functions c(k) correspond to limits, as Re → ∞, of discrete eigenvalues of the Orr-Sommerfeld
eigenvalue problem for given profile U(z); their determination from the Rayleigh equation requires
careful examination of the analytic continuation fo this equation into the complex-variable plane.
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(1974)), if there is a wave packet which is concentrated in a bounded spatial re-
gion and is composed of waves with various wave numbers (k1, k2), then the group
of waves with the “central wave” of the form A(z) exp { i[k1(x − ct) + k2y]} , c =
c(k) = c

(√
k2

1 +K2
2

)
, is moving, not simply streamwise with the phase velocity c (k)

but with the two-component horizontal group velocity C = {Cx(k1, k2),Cy(k1, k2)}
where

Cx = ∂ω

∂k1
= c + k1

2

k

dc

dk
,Cy = ∂ω

∂k2
= k1k2

k

dc

dk
. (3.17)

If the initial disturbance is concentrated in a close vicinity of the point (0, 0, zo), then
at time t > 0 its dispersive waves with wave numbers (k1, k2), where k2

1 + k2
2 = k2 is

fixed, will form a packet whose horizontal projection will be concentrated near the
point (x, y) where

x

t
= c + k2

1

k

dc

dk
,

y

t
= k1k2

k

dc

dk
. (3.17′)

Gustavsson (1978) noted that Eqs. (3.17′) imply the following simple result

(
x

t
− c − k

2

dc

dk

)2

+
(y

t

)2 =
(
k

2

dc

dk

)2

. (3.18)

It follows from this that in the case of disturbance initially located near the
point (0, 0, z0), the dispersive wave components with wave numbers (k1, k2), where
k1

2 + k2
2 = k2 = const., spread horizontally over a circle whose center at time t

is at the point (ct + ktdc/dk, 0), with radius (kt/2)dc/dk. The location of these cir-
cles corresponding to different values of k is shown, for piecewise-linear models
of boundary-layer and plane Poiseuille flows, in figures presented by Gustavsson
(1978); (see also Henningson (1988); Henningson et al. (1994); and Henningson
and Alfredsson (1996)). (In Poiseuille flow there are two different functions c1(k)
and c2(k) corresponding to disturbances symmetric and antisymmetric with respect
to the channel midplane z = H/2, However, the waves with phase velocity c1(k)
are characterized by much greater spreading than waves with velocity c2(k), which
moreover take quite different values in the cases of piecewise-linear and of real,
parabolic, Poiseuille profiles.) Note also that, according to the above-mentioned pa-
pers, the spreading of localized disturbances by wave dispersion (i.e., the dispersive
effect) forms only a small part of the total disturbance spreading, which is mainly
due to Landahl’s lift-up effect mentioned above.

Henningson (1988) and Breuer and Haritonidis (1990), who considered quite
different flows, both made careful calculations for the case where the initial distur-
bance had the form of two pairs of counter-rotating eddies, schematically shown
in Fig. 3.2. Here the initial streamwise velocity disturbance u is equal to zero and
therefore v = −∂ψ/∂z, w = ∂ψ/∂y where the stream function ψ(x, y, z) is very
close to zero everywhere outside a small spatial region surrounding the “central
point” with coordinates (0, 0, z0). [This form of the initial disturbance was chosen be-
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Fig. 3.2 Schematic shape of
the initial velocity field for a
localized disturbance
considered by Russell and
Landahl (1984), Henningson
(1988), and Breuer and
Haritonidis (1990)

cause it was used for similar purposes by Russell and Landahl (1984).) In Figs. 3.3a, b
taken from Breuer and Haritonidis (1990) (and reprinted also by Henningson et al.
(1994)), contours of vertical and horizontal disturbance velocities w and u are plot-
ted in the (x, z) plane for y = 0 and for several values of t. The distribution of the
vertical velocity does not change qualitatively with t, but typical values of w de-
crease, and the entire structure moves downstream with a velocity approximating
the typical group velocity of waves in the boundary layer. Simultaneously, the ve-
locity distribution expands in the streamwise direction, which also agrees well with
theoretical predictions for dispersive disturbances. Contours of w = const. in the
(x, y) plane, also presented by Breuer and Haritonidis (1990) for one value of z, show
quite definitely the development of the wave-packet-like character of the vertical ve-
locity distribution with increasing time t. The only feature in Fig. 3.3a resembling
convective disturbances is the patch of low-speed fluid moving streamwise at large
heights (the edge of the boundary layer is located near z = 3δ∗) ahead of the main
disturbance, with a speed approaching the free-stream velocity U0.

The distributions of the streamwise disturbance velocity u shown in Fig. 3.3b
contrast strongly with the distributions of w. Since initially u = 0, transient growth
of streamwise velocity clearly must take place. Computational results in Fig. 3.3b
demonstrate that the growth of |u| is dominated by the lift-up effect. This effect at
first produces a region of negative values of u which travels at the local undisturbed
velocity and is immediately followed by a high-speed region of fluid. The mean
velocity gradient existing in the lower part of the boundary layer generates the tilting
of the shear layer between low-speed and high-speed regions and the stretching of
the structure in the x direction; as a result, an inclined shear layer is formed whose
intensity and streamwise length increase with time. Thus, the streamwise velocity
disturbances are mainly of a convective nature.

Constant-velocity contours in the (x, y) plane were also presented by Henningson
(1988) (see also Henningson et al. (1994)) for the piecewise-linear model of plane
Poiseuille flow, showing normal and streamwise disturbance velocities at a fixed
value of z and several values of t. These contours show the same typical features as
the later results of Breuer and Haritonidis. Here again vertical velocity disturbances
w are mostly dispersive, and their contours show that a wave-packet with wave-crests



198 3 More About Linear Stability Theory: Studies of the Initial-Value Problem

a

b

Fig. 3.3 Computations by Breuer and Haritonidis (1990) of contours in the (x, z)-plane of the
vertical velocity w(x, y, z, t) (a), and the streamwise disturbance velocity u(x, y, z, t) (b) in an
inviscid boundary-layer flow at y = 0 and several values of t. Velocities, lengths, and times are
scaled with the free-stream velocity U0, displacement thickness δ∗, and ratio δ∗/U0, respectively.
Solid and dotted lines represent positive and negative velocity values; contour spacing is 0.2w0 for
w-contours, and to 2w0 for u-contours, where w0 is the maximum value of w(x, y, z, 0)
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swept back at 45◦ emerges rather quickly from the initial disturbance. In this case
the amplitude of w disturbances also decreases with time, while the disturbance as a
whole spreads in the horizontal plane. In contrast to this, the streamwise component
u grows quickly, and a moderate values of t its typical value exceeds that of w more
than tenfold and is dominated, not by the wavepacket, but by an intense shear layer.
Comparison of these results with those of Breuer and Haritonidis gives the impression
that the main features of the disturbance development are not too sensitive to the
details of the undisturbed velocity profile.

Breuer and Haritonidis (1990) also performed an experimental investigation of
disturbance evolution in a laboratory boundary layer on a flat plate. The initial dis-
turbance was created by the impulsive motion, first up and then down, of a small
flush-mounted membrane at the wall and thus consisted of two small-amplitude
three-dimensional disturbances of opposite signs. The observed disturbance evolu-
tion during small enough initial time intervals was found to be in good qualiltative
agreement with the results of inviscid calculations, showing the rapid formation of an
intense inclined shear layer and a strong increase of streamwise disturbance velocity.
Further downstream, viscous effects were detected; at not too small initial amplitude
of disturbance, the nonlinearity clearly manifests itself.

3.2.2 Further Examples of Unstable Disturbances in Inviscid
Plane-Parallel Flows

It was shown above that transient growth of initially small disturbances often takes
place in plane-parallel flows of inviscid fluid, and can lead to immense increases of
disturbance size and energy. It was also proved that, under rather general conditions,
the horizontal components u and v of the disturbance velocity do not decay with time.
Now we will consider several specific examples of unstable disturbances, some of
which, apparently, can be of importance in many flows encountered in nature and
engineering.

It was mentioned, in particular, by Willke (1972) and Criminale et al. (1991) that
in a plane-parallel inviscid flow the vertical velocity w of a small-enough disturbance,
which is independent of the streamwise coordinate x (i.e., such that k1 = 0 in its
Fourier representation) does not damp with time. It was, however, simply shown by
Ellingsen and Palm (1975) that if in the case of such disturbance the velocity shear
U′(z) of the primary flow and the initial vertical disturbance velocity w do not vanish,
then the streamwise velocity u of the disturbance increases indefinitely with time so
that the flow is clearly unstable with respect to this disturbance. In fact, in this case
Eqs. (2.35) and (2.37), with n = 0, take the forms

∂u

∂t
+ U ′w = 0,

∂v

∂t
= − 1

ρ

∂p

∂y
,

∂w

∂t
= − 1

p

∂p

∂z
, (3.19)

∇2p = 0, (3.20)
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where ∇2 = ∂2/∂y2 + ∂2/∂z2 and the disturbances of flow variables are denoted
by small letters without primes. Since p(y, z, t) denotes a pressure disturbance van-
ishing at infinity, it follows from (3.20) that p = 0. Equation (3.20) shows that all
nonconstant Fourier components of p vanish and thus p = 0 is the only physically
acceptable solution; recall also that to prove instability it is enough to show that there
exists a growing solution.) This implies that w (and also v) do not depend on time;
therefore, according to the first Eq. (3.19)

u(y, z, t) = u(y, z, 0) − U ′(z)w(y, z, 0)t , (3.21)

and hence, ifU ′(z) �= 0 and w(y, z, 0) �= 0, then |u| increases linearly with time. This
result of Ellingsen and Palm was apparently one of the first examples of disturbances
growing algebraically (and not exponentially) without bound as t → ∞.

Of course, disturbances independent of x, which preserve their intensity from
−∞ to ∞ in the streamwise direction, are not those that are really encountered in
turbulent flows. It was, however, shown by Landahl (1980) that similar arguments
can also be applied to the much more important class of three-dimensional localized
initially-infinitesimal disturbances, vanishing at time t = 0 outside some bounded
region surrounding the coordinate origin. Let us now present his arguments.

In the general case where independence of x is not assumed, the partial derivative
∂/ ∂t must be replaced in Eqs. (3.19) byD/Dt = ∂/∂t+U (z)∂/∂x, while zero right-
hand sides of the first Eq. (3.19) and Eq. (3.20) must be replaced by −ρ−1∂p/∂x

and −2ρU ′(z)∂w/∂x = −∂(2ρU ′w)/∂x, respectively (see Eqs. (2.35) and (2.37)
in Chap. 2). Let us now integrate the corrected form of the first Eq. (3.19) over the
whole x-axis. Then for the localized disturbance we obtain

∂u

∂t
= −wU ′(z), where u =

∞∫

−∞
udx, w =

∞∫

−∞
wdx, (3.22)

and it is assumed that both the integrals in the given definitions of u and v exist.
Integration over x of the corrected third of the Eqs. (3.19) yields

∂w

∂t
= − 1

ρ

∂p

∂z
, where p =

∞∫

−∞
pdx. (3.23)

However, it follows from the solution of the corrected Eq. (3.20) (i.e., from
Eq. (2.37)) that p may be represented as a derivative with respect to x of a finite
integral, which vanishes for large values of x. Hence p = 0, and from Eq. (3.23) it
follows that w is independent of time. Integration of Eq. (3.22) then gives

u(y, z, t) = u(y, z, 0) − U ′(z)w(y, z, 0)t. (3.24)

This result has the same form as Eq. (3.21), but now velocities of a localized flow
disturbance integrated over the x-axis replace the x-independent point values. It is
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clear that the new equation has an immeasurably wider domain of application than
Eq. (3.21) due to Ellingsen and Palm.

Equation (3.24) does not imply that the velocity u itself necessarily increases
with time. In fact, the integrated velocity u could increase because the disturbance
spreads streamwise without becoming more intense, and Landahl showed that this is
exactly what occurs. He carefully inspected the general solution of the initial-value
problem for a localized three-dimensional disturbance in a steady plane-parallel flow
between solid walls, with velocity profile U(z), and proved that under rather general
conditions, guaranteeing the absence of exponentially-growing normal modes in the
flow, the streamwise propagation speed of such disturbance lies between minimum
and maximum values of U(z),Umin and Umax, and that asymptotically the front of
the disturbance propagates just with the velocity Umax and its back with the velocity
Umin. Then, using Eq. (3.24) Landahl showed that as t → ∞

E(y, z, t) ≡ 1

2

∞∫

−∞
(u2 + v2 + w2)dx >

[U ′(z)]2w 2(y, z, 0)t

2(Umax − Umin +�)
(3.25)

for any � > 0. Hence, if U ′(z) �= 0 and w(y, z, 0) = w0 �= 0, then the total kinetic
energy E(t) grows at least as fast as linearly as t → ∞, but this growth is natu-
rally explained by linear growth of the streamwise extent of the disturbed region.
Landahl’s analysis of the initial-value-problem solution for a three-dimensional lo-
calized disturbance shows that here, under wide conditions, |w| decays as t−1 at large
times; since the size of the disturbed region is growing linearly in time, such decay is
consistent with constancy of the integrated vertical velocity w(t). However the same
analysis leads to the conclusion that, in the case of a localized three-dimensional dis-
turbance, the value of |u| remains bounded as t → ∞ (see also Eqs. (3.15) and (3.12)
above). Hence the linear growth of the integrated streamwise velocity, which follows
from Eq. (3.24), must be explained by streamwise elongation of the disturbed region.
Such elongation clearly transforms any group of small localized three-dimensional
disturbances of a shear flow into a streaky structure–a collection of longitudinal nar-
row streaks of either high-speed or low-speed fluid. At present there are numerous
data, both from the flow-visualization experiments and from direct numerical simula-
tions, which show that longitudinal streaky structures arise very often in transitional
and fully turbulent shear flows. Such structures are typical, in particular, for flows
behind the “turbulent spots” that appear during the initial stage of transition to tur-
bulence (see, e.g., Sect. 2.1, Chap. 2), and in the near-wall regions of turbulent flows
bounded by solid walls. The widespread occurrence of streaky turbulent structures
gives ground for the suggestion that Landahl’s (1980) algebraic growth of the energy
of streamwise velocity disturbances can be of fundamental importance in many flows
where transition to turbulence and formation of complicated eddy structures occur.

Landahl’s simplified stability analysis of 1980 predicted the asymptotic behavior
at t → ∞ of the streamwise and vertical velocity disturbances integrated over the
x-axis, u(y, z, t) and w(y, z, t). However for better understanding of the nature of
eddy structures generated by algebraic instability it was necessary to study, at greater
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length, the behavior of disturbances in fluid flows of various types. Having this in
mind and taking into account the important role played by near-wall flows in all
phenomena related to interactions of fluid flows with the contiguous solid bodies (in
particular, in fluid friction and heat or mass exchange), Landahl (1990, 1993a, b,
1996, 1997) gave much attention to the evolution of a weak three-dimensional
disturbance arising in the near-wall layer of a turbulent boundary layer.

Landahl (1993a, b) stressed that there are three different physical processes in-
volving (and affecting) weak disturbances: i) disturbance interaction with the shear
of the undisturbed flow; ii) viscous damping of velocity disturbances; and iii) their
nonlinear interactions with themselves. The first two processes are described by the
linearized dynamic equations, and only the study of the third process requires the
use of the full nonlinear Navier-Stokes equations. These three processes are charac-
terized by the following quite different time scales: i) shear-interaction time scale
ts = [dU/dz|z=0]−1; ii) viscous-interaction scale tv = [L2v−1(dU/dz)−2]

1/3
; and

iii) nonlinear-interaction scale tn = L/u(0), where L is the typical streamwise length
of the initial disturbance and u(0) is the scale of the streamwise disturbance velocity.
Taking into account observational data on weak velocity disturbances in the near-
wall regions of turbulent boundary layers on a flat plate, Landahl estimated that here
typically tv/ts ≈ 20, tn/ts ≈ 100. Hence usually ts � tv � tn and therefore the
viscous damping beging to play a role at relatively late times (namely, at t = O(tv));
at earlier times the evolution of a disturbance can be accurately enough described by
the inviscid linear stability theory. Moreover, the nonlinear terms of dynamic equa-
tions need not be taken into account until still later (at t = O(tn)). In this section,
devoted to the inviscid linear theory, we shall consider only the initial stage of the
evolution of weak disturbances in a boundary layer flow.

Let us restrict ourselves to the plane-parallel model of a boundary-layer flow,
which neglects the influence of the weak nonparallelism caused by the dependence
of the boundary-layer thickness on x. Then the inviscid linearized dynamic equations
will have the form of Eqs. (2.35–2.36) with v = 0, implying Eqs. (2.37) and (2.38),
again with v = 0 (cf. also remarks preceding Eqs. (3.22) and (3.23)). Replacing
the streamwise coordinate x by the convected coordinate ξ = x − U (z)t , and then
integrating the first two of Eqs. (2.35) and Eq. (2.38) with v = 0 (i.e., the first two
Eqs. (3.19) and (3.9) corrected as above) over “Lagrangian time,” following a fluid
element moving with the undisturbed velocity U(z), Landahl obtained the equations:

u(ξ , y, z, t) = u0(ξ , y, z) − U ′(z)l −�x/ρ, (3.26a)

v(ξ , y, z, t) = v0(ξ , y, z) −�y/ρ, (3.26b)

∇2w(ξ , y, z, t) = ∇2w0(ξ , y, z) + U ′′lx . (3.26c)

In these equations the subscript zero denotes the initial values, subscripts x and y
denote the partial derivatives, and the liftup of a fluid element l and the pressure
impulse � are determined as follows
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l(x, y, z, t) =
t∫

0

w(x − U (z)(t − t1), y, z, t1)dt1, (3.27)

�(x, y, z, t) =
t∫

0

p(x − U (z)(t − t1), y, z, t1)dt1.

Substituting the definition (3.27) of the liftup l into Eq. (3.26c) we obtain an integro-
differential equation for the vertical velocity w. On the other hand, substituting the
explicit solution of the Poisson equation (3.26c) (see Eq. (3.30) below) in the first
Eq. (3.27) we arrive at an intergro-differential equation for the liftup l. Differentiating
Eq. (3.26a) on x and Eq. (3.26b) on y and taking into account that ∂u/∂x+ ∂v/∂y+
∂w/∂z = 0 for an incompressible fluid, we find the following two-dimensional
Poisson equation for the pressure impulse �:

∇2
h� = −wz−uoξ (ξ , y, z) − v0y(ξ , y, z) + U ′(z)lx , ∇2

h = ∂2

∂x2
+ ∂2

∂y2
, (3.28)

where again subscript zero denotes initial values while subscripts ξ , y and x denote
differentiation. Hence� can be expressed in terms of w, l, and the initial disturbance
velocities. When� and l are known, horizontal velocities u and v can be easily found
from Eqs. (3.26a,b). (The value of l determines the most important “lift-up term”
U′(z)l of the streamwise-velocity equation (3.26a), which was in fact first introduced
long ago by Prandtl (1925); see also Landahl (1985)). Equations (3.26–3.28) were
applied by Landahl (1993a, 1996, 1997) to determination of the asymptotic (“long-
time”) behavior of all the velocity and vorticity components of a localized disturbance
with initial velocities u0, v0 and w0 vanishing outside a bounded domain having the
streamwise length scale L and the “center” at a point with x = y = 0.

Analysis of the behavior of l, w, u and v for t → ∞ (i.e., for T → ∞, where
T = tU′(z) is the dimensionless time) proves to be quite complicated but the explicit
solution (3.30) of the Poisson equation (3.26c) nevertheless allows one to obtain
some interesting results. Studying the vertical velocity w, Landahl found that

w(x, y, z, t) ≈ f1(ξ , y, z)T −1 for T � 1, (3.29a)

where f1 is a function of three variables determined by the initial values of ∇2w.
This result clearly agrees with the conclusion about integrated velocity w given in
Landahl (1980). The long-time behavior of the streamwise velocity u was found to
be particularly complicated but it is also admissible to analysis. For fixed bounded
values of |ξ |/L Landahl showed that

u(ξ , y, z, t) ≈ −U ′(z)f2(ξ , y, z)T γ for T � 1, (3.29b)

where f2 is another function of three variables given by some special integral
transform of ∇2wo(x, y, z) while γ = zU ′′(z)/U ′(z). As to the spanwise velocity
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v(x, y, z, t), its values at T � 1 may be determined with satisfactory accuracy from
the approximate equality

∂u/∂x + ∂v/∂y ≈ 0. (3.29c)

We see that the horizontal velocity components approach a “frozen shape” in a
coordinate system moving with the local velocity U(z), and simultaneously decay
or grow (depending on the sign of γ ) algebraically with time. For velocity profiles
without inflection points U ′′(z) < 0 for all z. Hence in flows with such profiles the
disturbances will decay algebraically at the rate γ = γ (z) which takes very small
values near the wall (and tends to zero when z → 0).

Different results were found by Landahl for the case of a fixed streamwise location
(i.e., for fixed x where |x| = O(L)). Here

u(x, y, z, t) = f3(y, z) ln T + f4(y, z) for T � 1, (3.29d)

where f3 and f4 are some integral transforms of the function F (y, z) =∫∞
−∞ ∇2w0(x, y, z)dx. Therefore, there will be a logarithmic growth with time of

the streamwise velocity of a disturbance before the algebraic decay takes over. Such
logarithmic growth was observed by Lundbladh (1993) in numerical solutions of the
linearized Navier-Stokes equations describing the evolution of a weak localized dis-
turbance in plane Couette and Poiseuille flows (which differ from the boundary-layer
flow studied by Landahl but apparently must be subjected to the same asymptotic
laws). Streamwise velocities of disturbances independent of x lead to the appearance
of streaks where fluid is flowing with velocity unequal to U(z). The streaks have
cross-flow structure which is approximately independent of x, while their lengths
grow with time in proportion to tU(z).

The formation of streaks in the near-wall region of a turbulent boundary layer, first
observed by Kline et al. (1967) and later confirmed and investigated by many authors,
was the main subject of Landahl’s paper (1990). Here, in particular, some results of
the mostly inviscid numerical calculations were given for the case of the development
of a localized disturbance in a boundary layer with velocity profile U(z) close to the
mean-velocity profiles observed in turbulent boundary layers. The initial shape of the
disturbance was a pair of counter-rotating streamwise rolls (similar to those shown in
Fig. 3.2) either fully symmetric or slightly non-symmetric with respect to the plane
y = 0. The results obtained (partially presented in Fig. 3.4) showed that the streaks
are weakly represented in the case of a symmetrical initial structure, but even small
initial asymmetry in the spanwise direction y makes them much longer and more
persistent.

To find the unknown function w(x, y, z, t) the Poisson equation (3.26c) may be
handled by standard methods. According to known results for this equation in the
half-space −∞ < x, y < ∞, 0 ≤ z < ∞, with zero boundary conditions at z = 0
and at infinity, the formal solution of Eq. (3.26c) may be written as
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a

b

Fig. 3.4 Contours of constant streamwise velocity u in the plane z+ ≡ zu∗/v = 15 of a boundary
layer at t+ ≡ t(u∗)2/v = 40 [where u∗ = (vdU/dz|z = 0)

1/2
], for a symmetrical initial structure

of the disturbance, and b slightly asymmetrical initial structure (after Landahl (1990)). Solid and
dotted lines represent positive and negative values, respectively; contours start at u = −W0, with
spacing equal to 0.25w0 where w0 is the velocity scale characterizing the intial distribution of
vertical velocity

w = − 1

4π

∞∫

−∞
dx ′

∞∫

−∞
dy ′

∞∫

0

dz′[∇2w0(ξ ′, y ′, z′)

+ U ′′(z′))lx(x ′, y ′, z′, t)]
[

1

R
− 1

R1

]

, (3.30)

where ξ ′ = x ′ − U (z′)t and

R = [(x − x ′)2 + (y − y ′)2 + (z − z′)2]
1
2 ,

R1 = [(x − x ′)2 + (y − y ′)2 + (z + z′)2]
1
2
.

(3.30a)
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In Eq. (3.30), it is convenient to replace integration over x ′ by integration over ξ ′;
then dx′, x′ and x−x′ must be replaced in this equation by dξ ′, ξ ′ + U (z′)t and
ξ − ξ ′ + [U (z) − U (z′)]t. This explicit solution was the basis of the asymptotic
analysis by Landahl whose main results were briefly outlined above.

3.2.3 Initial-Value Problems for Disturbances in Inviscid
Stratified Flows

Applications of the method of normal modes to stability analysis of inviscid stratified
plane-parallel flows, whose horizontal velocity U(z) and density ρ(z) depend on the
vertical coordinate z, were considered in Chap. 2 Sect. 2.8.3. Recall now that at
the beginning of Sect. 3.21 it was pointed out that the papers by Eliassen et al.
(1953), Dikii (1960a) and Case (1960b), devoted to applications of the initial value
method of stability analysis to some stratified plane-parallel flows, were among the
earliest papers using such an approach to hydrodynamic stability theory. Let us
additionally remark that in the papers by Miles (1958), Hartman (1975), and Brown
and Stewartson (1980), which were also mentioned in Sect. 3.21 as examples of this
approach, the primary flows considered were also stratified. We see therefore that
publications dealing with applications of the initial-value method of stability analysis
to stratified flows are definitely not rare. Hence it seems reasonable to devote some
space to consideration of such publications.

As everywhere in Sect. 3.2 we shall assume that the primary flow is plane-
parallel and inviscid. Let us begin with the paper by Dikii (1960a), which differs
from the other above-mentioned papers by the definition of stability used. Namely,
Dikii proved the Lyapunov stability of exponentially-stratified Couette flows, where
U (z) = bz, ρ(z) = ρ0 exp (−az), in a half-space 0 ≤ z < ∞ (bounded by a flat
solid wall at z = 0), while the other authors interpreted stability as the absence of
disturbances growing unboundedly with time. It was also assumed by Dikii that
Ri = ga/b2 > 0, i.e., that the density is decreasing with height and hence the
density stratification is stable. (It seems to be obvious that in the case of unstable
stratification, where ρ(z) increases with z and Ri < 0 everywhere, the flow will be
unstable; a proof of this fact will be indicated below in this section.) We have already
mentioned in Sect. 2.83 that this problem was first studied by Taylor (1931) by the
method of normal modes; this author presented convincing arguments showing that
the spectrum of eigenvalues c for the eigenvalue problem related to Eq. (2.66′) (at
present usually called the Taylor-Goldstein, or T-G, equation) is here quite different
in cases where Ri > 1/4 and where 0 < Ri < 1/4. However, Taylor’s results did
not imply a clear answer to the question about the stability (or instability) of the
flow to small disturbances. Therefore Dikii did not give much attention to the normal
modes, but studied the solution of the initial-value problem for Eq. (2.63), which
determines the vertical velocity w of a disturbance. The disturbance was assumed
to be two-dimensional and hence w depended only on x, z and t. Note also that
the Boussinesq approximation, which simplifies all the equations, was not used by
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Dikii, but he noticed that the introduction of this approximation would not change
his results.

To find the required solution, Dikii first replaced the streamwise coordinate x in
Eq. (2.63) by the convected coordinate ξ = x−bzt , and then applied to the unknown
function w(ξ , z, t) the combined Fourier-Laplace transform (where Fourier and
Laplace transforms were taken with respect to variables ξ and z, respectively).
As a result, an ordinary differential equation of the second order was obtained
for the Fourier-Laplace transform ŵ(k,p; t) of w(ξ , z, t), where this transform was
considered as a function of t dependent on two parameters, the Fourier- and Laplace-
transform variables k and p. The solution of this equation was then found in the form
of a sum of two indefinite integrals of some combinations of hypergeometric func-
tions with weight functions determined by complicated integral equations, which
included initial values of w and ∂w/∂t. Applying the inversion formula (similar to
Eq. (3.6)) to the Fourier-Laplace transform ŵ(k,p; t), Dikii found the general solution
w(ξ , z, t) of the initial value problem. A cumbersome investigation of the asymptotic
behavior of this solution allowed him to prove that if initial values of w and ∂w/∂t
are smooth enough, then for any Ri > 0 the absolute value of the vertical velocity
|w(ξ , z, t)| remains bounded at any time t > 0 by a constant which can be made arbi-
trarily small by sufficient diminution of the absolute values of these initial values. This
statement just proved the Lyapunov stability of the considered stratified flows with
respect to small and smooth initial disturbances. In his paper Dikii paid most attention
to a single Fourier component of the disturbance, i.e., to the case where w(x, z, t) =
eikxW (z, t). In this case asymptotic behaviors of |w(x, z, t)| and |w(ξ , z, t)|, when
t → ∞ but the other two independent variables have fixed values, are the same;
however, in some other cases, considered below, they can differ considerably.

The initial-value approach was also used for the study of time evolution (first of
all as t → ∞) of disturbances in exponentially stratified Couette flows (where the
vertical extent 0 ≤ z < ∞ was sometimes replaced by 0 ≤ z ≤ H < ∞ or −∞ <

z < ∞ with appropriate change of the boundary conditions) by Eliassen et al. (1953),
Case (1960b), Kuo (1963), Hartman (1975), Chimonas (1979), Brown and Stewart-
son (1980), and Farrell and Ioannou (1993a) (this list surely is not complete). Since
these papers are quite typical of applications of the initial-value approach to stability
of stratified flows, we shall consider below, almost exclusively, flows with linear
velocity and exponential density profiles. Note that in all the above-mentioned pa-
pers the Boussinesq approximation was used, and, as a rule, only two-dimensional
disturbances were studied, with the aid of the combined Fourier-Laplace transform
(3.4) with respect to variables (x,t), applied to the vertical velocity w(x, z, t) (or, what
is practically the same, to the stream function ψ(x, z, t)) (rarely-met deviations from
this procedure will be noted below). However, the investigation of the asymptotic be-
havior of these transforms as t → ∞ proved to be sophisticated and requiring great
skill; therefore it is not surprising that some of the results obtained were inaccurate
and differed from more precise results given in other publications.

In the early investigation by Eliassien et al., where the thickness H was assumed
to be finite, arguments were presented which made very plausible the assumption
(which later was proved to be correct) that for Ri > 1/4 the T-G eigenvalue problem
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has an infinite number of real discrete eigenvalues (note that for the case where
0 ≤ z < ∞ the existence of such real eigenvalues was proved by Taylor (1931);
however, if −∞ < z < ∞, then, as we shall see later, no discrete eigenvalues exist at
any value of Ri). Eliassen et al. assumed also that the eigenfunctions corresponding
to the set of all discrete eigenvalues form a complete system in a space of admissible
initial values of w orψ ; however, this assumption was proved later to be incorrect. (If
it were correct, any solution w(x, z, t) orψ(x, z, t) would be representable in the form
of a linear combination of neutral normal modes, i.e., would be a bounded undamped
function of t; hence the flow would be stable. It was in fact later proved to be stable,
but the proof turned out to be not so simple.) As for the case where 0 < Ri < 1/4,
Eliassen et al., relying on some nonstrict arguments, came to the conclusion that in
this case the T-G eigenvalue problem has no discrete eigenvalues and that the flow
is stable, since here, as t → ∞,|w|∞t−1 and |u|∞tμ−1/2, where μ = (1/4 − Ri)1/2

(here and below μ always denotes the positive value of the square root of 1/4 − Ri, or
that having a positive imaginary part). For 0 > Ri > −3/4 (i.e., 1/2 < μ < 1) Eliassen
et al. found that the T-G eigenvalue problem also has no discrete eigenvalues, but the
flow is unstable since here again |u|∞tμ−1/2 as t → ∞ (however |w|∞tμ−3/2, i.e., it
tends to zero). Moreover, it was also found in this paper that for Ri < −3/4 there exists
at least one pair of complex eigenvalues (the number of such pairs increases with
decrease of Ri) of the corresponding T-G eigenvalue problem; therefore, here the
flow is unstable and some disturbances in it grow exponentially with time. This last
conclusion and the majority of the results on discrete spectra and on flow stability or
instability were later rigorously proved by other authors; however certain suggested
asymptotic relations were found to be incorrect.

Case (1960b) followed Taylor and studied stability of exponentially-stratified
Couette flows in the half-space 0 ≤ z < ∞. Based on the analytical results by
Dyson (1960) (which were independently found also by Dikii (1960c)) he proved
rigorously that for such flows at any Ri > 0 there are no complex eigenvalues satisfying
the T-G eigenvalue problem, but Ri > 1/4 then at each wave number k there exists
an infinite number of real eigenvalues, while for 0 < Ri < 1/4 there are either one
or zero real eigenvalues at any k (see also discussion of this topic in Sect. 2.83).
However, it was also showed by Case that in the case considered the T-G equation
at any Ri > 0 has a continuous spectrum which fills the half-lines 0 < c < ∞ and
−∞ < c < 0. According to Case’s calculations (which were later found to be
inaccurate), |w| includes not only undamped oscillations, corresponding to discrete
real eigenvalues, but also a contribution from the continuous spectrum which is
represented by a function tending to zero as t−1/2, if Ri > 1/4, and as tμ− 1/2, if
0 < Ri < 1/4; therefore Case concluded that the flow is stable at any Ri > 0.

Kuo (1963) considered the general solution of the initial-value problem for a three-
dimensional vertical velocity disturbance w(x, y, z, t) in an exponentially-stratified
Couette flow, having either stable or unstable stratification and filling either a layer
of finite thickness H or a half-space 0 ≤ z < ∞. The solution found by him used
a preliminary transformation from w(x, y, z, t) to a Fourier-Laplace transform ŵ(k1,
k2,p; z), combining a two-dimensional Fourier integral with respect to the horizontal
coordinates and a Laplace integral with respect to time. Following Taylor (1931),
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Kuo showed that the study of stability for three-dimensional waves proportional to
exp [i(k1x+k2y)] can be reduced to the corresponding two-dimensional problem with
modified Richardson number Ri1 = (1+k2

2/k
2
1) Ri > Ri (cf. also the corresponding

discussion in Sect. 2.83). Therefore, it is enough to consider only two-dimensional
disturbances below. Note also that most attention was given by Kuo to the investiga-
tion of normal-mode disturbances; since we are currently discussing the initial-value
problem, the results of this investigation will be only briefly indicated here.

First, Kuo noticed that in the case of a stratified Couette flow, whereU ′′(z) ≡ 0, the
Boussinesq approximation implies the following simple form of the integral relation
(2.69) found by Howard (1961) for n = −1:

H∫

0

ρ{(U − c)4(|∂F−1/∂z|2 + k2|F−1|2) − (U − c)2(2 + Ri )(U ′)2|F−1|2}dz = 0

(3.31)

where c is an eigenvalue satisfying the T-G eigenvalue problem and, contrary to
Eq. (2.69), all the variables are now assumed to be dimensional (here the height H
can take both finite and infinite values). If Ri ≤ −2 then for real c the integrand in
the left-hand side of Eq. (3.31) is everywhere positive, and hence no real eigenvalues
c can exist in this case. For exponentially stratified Couette flows in an infinite layer,
where H = ∞, Kuo showed that complex eigenvalues c exist if and only if Ri < −2
(i.e., for Ri < −2 wave-like disturbances exponentially growing with time surely
exist). In addition to this he also calculated the number of discrete eigenvalues c for
any Ri < 1/4 (for Ri > 1/4 this number is infinite while for Ri < 1/4 it is always finite)
and repeated without criticism Case’s conclusion that |w| ∝ tμ−1/2 as t →∝, if
0 < Ri < 1/4, supplementing it with the statement that this conclusion holds also for
0 > Ri > −2 (i.e., for 1/2 < μ < 3/2 when tμ−1/2 grows unboundedly with t).

For a Couette flow of finite height H having unstable exponential stratification
(so that ρ−1∂ρ/∂z = b > 0) Kuo found that here complex eigenvalues c (and hence
exponentially growing normal modes of disturbance) exist only for Ri < −3/4, while
for 1/4 > Ri > −3/4 no discrete eigenvalues exist at any wavenumber k. Therefore
the time evolution of the disturbance velocity w in this case is determined by the
contribution from the continuous spectrum of T-G eigenvalues. According to Kuo,
this contribution leads to the same asymptotic law as for H = ∞, so that here again
|w|∞tμ−1/2 for large enough values of t. Moreover, Kuo also investigated the spec-
trum of discrete eigenvalues c (which depends on k) at various values of Ri for both
H = ∞ and finite H. (Note that according to (3.31) Kuo’s real eigenvalues c in cases
of strong stability (large negative Ri) must be fictitious. In fact, the corresponding
eigenfunctions have singularities and therefore do not represent true solutions; cf.
discussion by Eliassen et al. (1953)). Finally, Kuo investigated the shapes of the most
unstable disturbances in unstably-stratified Couette flows and found that they can ex-
plain the results of some meteorological observations and laboratory experiments.
However, we have no space to discuss this matter in more details.
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Later Chimonas (1979) analyzed anew the asymptotic behavior of disturbances to
exponentially stratified Couette flow, for −∞ < z < ∞ and Ri < 1/4. (The unbound-
edness of the low domain simplifies all the computations, while it seems probable
that most of the asymptotic results will be the same as for flows in a bounded layer
or half-space.) According to Chimonas, if ξ = x − bzt , then in the case of un-
bounded flow |w(ξ , z, t)| ∝ t2

μ−1 at large values of t and fixed values of ξ and z.
Chimonas explained the difference between his result and that found by Case by
the fact that Case, contrary to him, determined the asymptotic behavior of |w(x, z, t)|
at fixed values of x and z by assuming that the initial disturbance was of bounded
extent in x. It is clear that then the disturbance velocity w (x, z, t) must fall off
at a fixed point (x, z) more rapidly with t than at fixed values of (ξ , z) and that
here the physically most interesting behavior is that at fixedξ and not at fixed x.
In addition Chimonas also determined the asymptotic behavior as t → ∞ of the hor-
izontal velocity, density and pressure disturbances u(x, z, t), ρ ′(x, z, t) and p′(x, z, t).
He found that at Ri < 1/4, |p′| decays as t2μ−1, but both |u| and |ρ ′| grow with t as
t2μ (i.e., without limit). Proceeding from this, Chimonas asserted that at 0 < Ri < 1/4
exponentially-stratified inviscid Couette flows are unstable. This assertion contra-
dicted the results of the other available investigations of the same topic and therefore
from the very beginning seemed to be dubious; later an error in Chimonas’ analysis
was indicated by Brown and Stewartson (1980).

Correct asymptotic relations replacing those suggested by Chimonas (and also
results found by Eliassen et al. Case, and Kuo) were published by Hartman (1975).
His results incorporate also the earlier results by Phillips (1966), Chap. 5, and Booker
and Bretherton (1967) relating to development of internal waves in stably-stratified
ocean or atmosphere; so it is reasonable to begin with some conclusions from the latter
two publications. To investigate the influence of the velocity shear on the evolution
of oceanic internal waves, Phillips used a model example of wave development in
an exponentially-stratified inviscid Couette flow filling an unbounded space. In this
respect he considered particular solutions of Eq. (2.63′) for small disturbances, of
the form

w(x, y, z, t) = W (t) exp [i(k1ξ + k2y)] = W (t) exp [i(k1x + k2y − k1btz)],
(3.32)

where ξ = x − bzt and b = ∂U/∂z = U ′(z) is a constant velocity shear. (Phillips
explained that his model, in which the dependence of the velocity shear U′(z)
and Brunt-Väisälä frequency N (z) = (−gρ ′/ρ)1/2 on z was neglected, is appro-
priate only for wave motions of small vertical scale; therefore the dependence of
these motions on z was also neglected. However the possible dependence on y was
taken into account, in contrast to all the work considered above in this subsection
except that of Kuo.) Phillips noted that the general solution of the second-order
differential equation for W (t) implied by Eq. (2.63′) can be expressed in terms
of hypergeometric functions, but in his book only the case of strong stability (or
weak shear), where Ri =N2/b2 � 1, was studied at length. He showed that in
this case the solution obtained represents a three-dimensional wave motion whose
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amplitude, wave numbers and direction of propagation are slowly changing with
time. According to this solution, the amplitude and the wavelength (which is in-
versely proportional to the length of the three-dimensional wavenumber vector) are
continuously decreasing and the direction of propagation is approaching the vertical
axis. These features of the wave motions considered agree more or less satisfactorily
with some features of real oceanic internal waves, but for us here the most important
discovery by Phillips is his finding that in the case of very strong stability (i.e. for
Ri � 1)W (t) = |w(x, y, z, t)| is asymptotically proportional to t−3/2 as t → ∞.
Wave amplitudes for the horizontal velocity components u(x, y, z, t) and v(x, y, z, t)
were also found to decrease, but more gradually, only as t−1/2. Hence the motion
becomes more and more horizontal with time and its mean kinetic-energy density
per unit mass T ∗(t) decreases asymptotically as t−1. However, the rapid decrease of
the vertical scale leads to unlimited increase of the vertical gradients of u and v and
hence also of horizontal components of the vorticity field, ζ1 and ζ2.

Booker and Bretherton (1967) further developed Phillips′ approximate theory.
They were primarily interested in atmospheric internal waves, and paid most attention
to wave motions near the critical height zcr where the undisturbed velocity U(zcr)
coincides with the phase velocity c of the wave. For the present discussion it is
important that these authors also analyzed the general solution of the initial-value
problem for the wave-like vertical-velocity disturbance w(x, z, t) (variable y is absent
here since only two-dimensional waves were considered), for a flow model which
included a layer where both U′(z) and N(z) took constant values. The results obtained
included the discovery of some particular solutions which are valid within this layer
(and in the case of exponentially-stratified Couette flow in the whole space too, a fact
mentioned by the authors in passing), under the condition that Ri = N2/U ′2 > 1/4.
Asymptotically (i.e., for large enough values of t) these solutions have the forms of
damped waves

w(x, z, t) = W1(z)tμ−3/2eik(x−bzt) +W2(z)t−μ−3/2eik(x−bzt) (3.33)

where, as usual, b = U ′(z) = const. and μ = (1/4−Ri)1/2 (hence μ has a purely imag-
inary value here). Corresponding solutions for the horizontal velocity component
have the forms

u(x, z, t) = U1(z)tμ−1/2eik(x−bzt) + U2(z)t−μ−1/2eik(x−bzt), (3.34)

showing that horizontal velocity also decays, but more slowly. These equations rep-
resent a slight refinement (concerning the admissibility of the amplitude dependence
on z) of the asymptotic laws found by Phillips, but Booker and Bretherton discovered
that these laws are valid not only for Ri � 1 but for any Ri exceeding 1/4.

Hartman (1975) considered only the idealized model of exponentially-stratified
Couette flow in an unbounded space, and found a simple form of the general so-
lution to the initial-value problem for an infinitesimal two-dimensional disturbance
{u(x, z, t), 0, w(x, z, t)} = u(x, z, t). Instead of the vertical velocity w or the stream
function ψ chosen as the dependent variables in many previous studies, Hartman
solved the initial-value problem for the non-zero vorticity component ζ = ∂u/∂z −
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∂w/∂x = −∇2ψ. Using the convected “spatial coordinates” (ξ , z) = (x − btz, z) he
found that the dependence on the variable t of the two-dimensional Fourier transform
ζ̂ (k1, k2; t) of ζ (ξ , z, t), with respect to coordinates (ξ , z), can be determined from
a second-order differential equation, whose solution for the given initial values of
ζ and ∂ζ/∂t at t = 0 can be simply expressed through standard hypergeometric
functions. This solution was then skillfully used for the investigation of wave-
packet propagation in unbounded stratified Couette flow under the condition that
Ri > 1/4 supplemented by comparison of the results obtained with those of Booker
and Bretherton (1967). It was also mentioned that this solution can be applied to
the determination of the behavior of localized disturbances in unbounded stratified
Couette flow at 0 < Ri < 1/4, but this specific application is omitted from Hartman’s
paper. However, he described the asymptotic behavior of his solutions at large values
of t (more correctly, of the dimensionless time T = U′(z) t = bt) and these results are
most interesting for the present discussion.

According to Hartman the main terms of the asymptotic expressions for the general
solution of the initial-value problem have the following forms:

ζ̂ (k1, k2; t) ≈ a1t
μ+1/2 + a2t

−μ+1/2, if Ri �= 1/4, (3.35a)

ζ̂ (k1, k2; t) ≈ a3t
1/2 ln t , if Ri = 1/4, (3.35b)

at T = bt � 1, where the coefficients a1, a2 and a3 depend on k1, k2 and the initial
conditions. We see that vorticity is growing without limit at any Ri. Now, using
the simple relationship between the Fourier transforms of the vorticity ζ and the
stream function ψ given by Hartman, it is easy to find the main terms of asymp-
totic expressions for the Fourier transforms ŵ(k1, k2; t) and û(k1, k2; t) of the vertical
and horizontal velocity components w(x, z, t) and u(x, z, t). Obtained in this way,
asymptotic relations at Ri �= 1/4 have the form, recalling that μ = (1/4−Ri)1/2

ŵ(k1, k2; t) = c1t
μ−3/2 + c2t

−μ+3/2, (3.36)

û(k1, k2; t) = d1t
μ−1/2 + d2t

−μ+1/2, (3.37)

while for Ri = 1/4 (i.e., μ = 0) an additional logarithmic factor must be included in
the right-hand parts. These equations imply that T∗ (k1, k2; t), the averaged density
per unit mass of the kinetic energy for a wave-component of the disturbance with
wave numbers (k1, k2), satisfies the relationships:

T ∗(k1, k2; t) ∞ t2μ−1 if Ri < 1/4,

T ∗(k1, k2, t) ∞ t−1 if Ri > 1/4.
(3.38)

Later Farrell and Ioannou (1993a) supplemented Hartman’s results (3.35–3.38) by
similar results for Fourier transforms of the density disturbance, ρ̂(k1, k2; t), and of
the averaged total energy density (per unit mass), E(k1, k2; t), for the disturbance
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component with wave numbers (k1, k2). (The total energy density can be repre-
sented as E(k1, k2; t) = T ∗(k1, k2; t) + V (k1, k2; t) where V (k1, k2; t) is the density
of the potential energy disturbance for fluid elements of variable density ρ(x, t) in a
gravitational force field.) The asymptotic relationships are:

ρ̂(k1, k2; t) = e1t
μ−1/2 + e2t

−μ−1/2, (3.39)

E(k1, k2; t) ∞ t2μ−1 if Ri < 1/4, E(k1, k2; t) ∞ t−1 if Ri > 1/4. (3.40)

Recall that wave numbers (k1, k2) correspond to waves of the form exp [i{k1(x −
bzt) + k2y}]; therefore in the material space the decay laws (3.35–3.40) are related
to asymptotic behavior at fixed (x − bzt, z) and not at a fixed point (x, z).

Equations (3.36) and (3.37) clearly agree with the results found by Phillips (1966)
and Booker and Bretherton (1967) for decay laws relating to waves in an unbounded
stably-stratified Couette flow. However, Phillips derived these laws only for the case
where Ri � 1, and Booker and Bretherton generalized them to the wider class of
stratified Couette flows with Ri > 1/4. Now we see that these results are true for
these flows with any value of Ri, positive, zero, or negative, the only exception
being Ri = 1/4 exactly, where there is a degeneracy (the merging of two solutions)
which produces the appearance of a slight correction. According to Eqs. (3.38)
and (3.40), the growth or decrease of energy of wave-like disturbances in an un-
bounded exponentially-stratified Couette flow is always algebraic, not exponential.
This proves that for this flow the Taylor-Goldstein equation has no discrete eigenval-
ues at any value of Ri (as explained earlier, this statement is incorrect in cases where
the Couette flow considered has one or two solid boundaries).

Brown and Stewartson (1980) also considered the question of the precise form of
decay laws for waves in an unbounded exponentially-stratified Couette flow. They
did not mention the paper by Hartman (1975) and apparently did not know about
it, but their main result is the same as that found by Hartman: it consists in the
confirmation of Eq. (3.33), proved by Booker and Bretherton (1967) for the case
where Ri > 1/4, supplemented by the proof that this result is in fact true for any Ri
(the slight correction needed at Ri = 1/4 was unnoticed here). Brown and Stewartson
also indicated the error in the derivations by Case (1960b) and Chimonas (1979).

We have already mentioned the paper by Farrell and Ioannou (1993a). This paper
is also devoted to the study of development of small two-dimensional disturbances
to an inviscid, exponentially-stratified Couette flow with Ri ≥ 0, filling either an
unbounded space or a layer between two parallel walls. However, here the authors
pay most attention, not to asymptotic results for t → ∞, but to transient development
of disturbances during finite time intervals. First of all they are interested in the
possibility of considerable growth of disturbances during the early stage of their
development, as first discovered, for the case of a Couette flow of constant-density
fluid, by Orr (1907).

Farrell and Ioannou remark that, according to results by Phillips (1966) and
Hartman (1975), in the case of an unbounded exponentially-stratified Couette
flow, the time-dependent amplitude ζ̂ (k1, k2; t) ≡ Z(t) of a Fourier component
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Z(t) exp [i(k1ξ + k2z)] of the vorticity field can be explicitly expressed in terms
of the standard hypergeometric functions, and for given initial conditions it can be
accurately determined by numerical integration of the relevant second-order differen-
tial equation. When Z(t) is known, it is easy to determine also the Fourier amplitudes
Ψ(t),W (t),U (t) and R(t) of the disturbance stream function ψ , the velocity compo-
nents w and u, and the density ρ ′′ that satisfy the asymptotic relationships (3.35–3.37)
and (3.39). Farrell and Ioannou do not consider the asymptotics further, but pose a
question about the initial conditions which yield greatest growth of the total distur-
bance energy in a specific time Topt = (bt)opt (the corresponding disturbance is then
called the optimal disturbance for the timeTopt ). However, to make this question fully
definite it is necessary to clarify what is meant in this case by “initial conditions.”

For unique determination of the development of a flow disturbance it is necessary
to give the initial values of two of its independent fluid-dynamic fields, e.g., fields of
the vorticity ζ and its time derivative ∂ζ/∂t (as Hartman did), or of the stream function
ψ (uniquely determining two velocity components u and w ) and the density ρ ′ (this
second choice was made by Farrell and Ioannou). Since the finding of the optimal
value for two fields ψ(x, z, 0) and ρ ′(x, z, 0) is a complicated task, and plane waves
form an orthogonal basis in the functional space of functions in an unbounded space,
Farrell and Ioannou restricted themselves to determination of only the optimum
plane-wave initial values of ψ and ρ ′. In this case the initial conditions are given
by the initial values Ψ0 and R0 of amplitudes for the stream-function and density
waves, and by the corresponding wave numbers k1 and k2; the relative energy growth
G(t) = E(t)/E(0) is dependent only on the wave-number ratio s = k2/k1 and not on
k1 and k2 individually. So, for the determination of the optimal wave disturbance, it is
only necessary to find the maximum value of a function of three variablesΨ0,R0 and s.

At fixed value of t, the maximal valueGmax(t) of G(t), and the values of the three
variables corresponding to its maximum, clearly depend on the choice of the time t. In
Sect. 3.1 we referred to Orr (1907) to mention that the maximal growth |w|max/|w|0
of the vertical velocity for a plane-wave disturbance in an inviscid plane Couette
flow of constant-density fluid can be made as large as desired, if it is permitted to
increase indefinitely the time topt at which this growth is reached. Farrell and Ioannou
calculated the values Gmax(t) for different values of t and Ri; the results obtained
are shown in Fig. 3.5. It was found that for small values of t (measured in the shear
units b−1, i.e., given by values of T = bt) the function Gmax(T ,Ri) is practically
independent of Ri and only slightly exceeds unity, but later on it begins to increase
and becomes significantly dependent on both variables, increasing indefinitely with
T and decreasing with Ri. Farrell and Ioannou remarked that, in real geophysical
flows, ambient fluctuations usually impose a time scale beyond which the growth of
disturbances according to the theory is definitely disrupted. Therefore the computa-
tions of the function Gmax(T ,Ri) for very large values of T are practically useless.
As a reasonable representative value they selected Topt = 6 in their study, noting that
other choices for Topt usually do not change the results qualitatively. In Fig. 3.6 the
values of G(T ) = E(T )/E(0) for the optimal plane wave corresponding to Topt = 6
are plotted against T for a number of nonnegative values of Ri. We see that for zero
and small positive values of Ri the value of G(Topt) for Topt = 6 is in the range from
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Fig. 3.5 Maximal energy growth Gmax(T, Ri) for plane-wave disturbances with optimal values of
Ψ0, R0, and s in a stratified Couette flow, as a function of the time of maximal growth T = bt and
Ri. The contour values are those of log10Gmax (T, Ri). (After Farrell and Ioannou (1993a))

Fig. 3.6 Dependence on T = bt of the normalized energy G(T ) = E(T )/E(0) of a plane-wave dis-
turbance in a stratified Couette flow having maximal possible energy growth at T = 6, for different
values of Ri. (After Farrell and Ioannou (1993a))

25 to 40, while at Ri = 4, it is close to 7. Note the appearance of near-persistence of
G(T ) (i.e., of the total energy E(T )) at T > Topt when Ri is in the range 0.1 < Ri < 0.3;
such persistence can have some practical importance. Similar graphs of the functions
T ∗(t)/T ∗(0), and V (t)/V (0), showing the dependence of kinetic and potential ener-
gies of the optimal disturbance on t and Ri, are also presented by Farrell and Ioannou,
together with some data characterizing the optimal initial values and discussion of
the results obtained.
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In the case of a stratified Couette flow in a layer between two parallel solid
walls (for example, in a channel of finite depth) the problem proves to be more
complicated, since here there are no closed-form solutions of the dynamic equations
satisfying the required boundary conditions. The corresponding T-G equation has
in this case a continuous spectrum of eigenvalues filling the real-axis interval
Umin ≤ c ≤ Umax (exactly as in the case of a constant-density flow in a channel;
see Sect. 2.82) supplemented, for Ri > 1/4, by an infinite number of real discrete
eigenvalues. Farrell and Ioannou approximately determined the optimal disturbances
in this case, by replacing the differential equations in the interval 0 ≤ z ≤ H by
finite-difference equations in a domain with a sufficiently large number N of mesh
points. The algebraic finite-difference equations then have only a finite number 2N
of discrete eigenvalues cj, and the general solution can be represented by a linear
combination of the corresponding eigenvectors multiplied by exp [ik(x − cj t)].
The energy E(t) takes the form of a Hermitian positive-definite quadratic form of
2N variables, with coefficients depending on t. Finding of the maximum value for
G(t) = E(t)/E(0) is now a more difficult problem than in the case of an unbounded
Couette flow, but this problem is also accessible to modern computers. Computations
made for different values of N showed that results for N = 30 are as a rule sufficiently
accurate in this case. Using this approximate method, the authors presented two
examples of optimal initial disturbances (corresponding to Topt = 6, Ri = 0.2 and
0.75, and fixed k) and of their forms at T = Topt = 6 and T = 15, supplemented by
graphs of the same type as in Fig. 3.6 showing the dependence of the total, kinetic,
and potential energies of the optimal disturbance (again for Topt = 6) on Ri and T.

In this subsection, only studies of hydrodynamic stability of exponentially-
stratified Couette flows have been discussed so far. Moreover, with the exception of
the works by Kuo and by Phillips, only two-dimensional disturbances were consid-
ered in these studies. Note in this respect that the first applications of the normal-mode
stability investigations to various inviscid stratified flows were made very early (more
than a hundred years ago by Kelvin (1871), who studied the case of an unbounded
flow having very simple discontinuous velocity and density profiles, and then by
Taylor (1931) and Goldstein (1931), who considered several more complicated ex-
amples of profiles U(z) and ρ(z)). Later many other normal-mode stability studies
of inviscid stratified flows, involving a great number of new examples, were carried
out. However, until now only a few papers have appeared in the physics and engi-
neering literature on applications of the initial-value method to stability studies for
stratified non-Couette flows. True, Chimonas (1979), in addition to the main example
of unbounded exponentially-stratified Couette flow, presented some general results
relating to unbounded flows with arbitrary profiles U(z) and ρ(z), but the derivation
of these results had the same defect which invalidated Chimonas’ results for Couette
flows. Moreover, Brown and Stewartson (1980) noted in passing that in the case of
arbitrary smooth profiles U(z) and ρ(z) it is only necessary to replace the constants
U′(z) = b and Ri in the main terms (3.33) of the asymptotic expansions for w(x, z, t)
(or ψ(x, z, t)) by functions U′(z) and Ri(z) depending on z, but apparently no proof
for this assertion has been published.
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However, in the above remark about the rarity of papers on the subject in the
physics and engineering literature the mention of “physics and engineering” was
meaningful. It was stressed at the beginning of Sect. 2.83 that atmospheric and
oceanic flows represent the most important practical examples of stratified fluid
flows. Therefore, it is not surprising that stability of stratified flows is discussed more
often, and usually at greater length, in the geophysical literature. In fact, the above
mentioned works of Taylor, Dikii, Case, Dyson, Eliassen et al., Phillips, Booker and
Bretherton, Farrell and Ioannou, and Hartman all originated from geophysical prob-
lems. And in the geophysical literature many other publications can be found where
the initial-value method of stability investigations is applied to some particular invis-
cid atmospheric and oceanic flows, for determination of either the asymptotic laws
of the disturbance evolution or its transient development. As typical examples we can
mention the papers by Pedlosky (1964), Burger (1962), Yamagata (1976a, b), Farrell
(1982, 1988b, 1989), Tung (1983), and Farrell and Moore (1992). However, the flows
considered in these papers are not so simple as the exponentially-stratified Couette
flows and often involve some additional geophysical factors (e.g., the baroclinity or
the Coriolis force) which require additional space for description and discussion of
the corresponding examples. Unfortunately, space limitations make it impossible to
include this material in the present book.

3.3 The Initial-Value Problem for Viscous Parallel Flows

In Sect. 3.2 the fluid was assumed inviscid, but any real fluid (with the sole exception
of liquid helium in the state of superfluidity) has viscosity v �= 0, and this can
significantly affect the flow. Therefore, inviscid fluid mechanics is an approximation,
which in cases where Re � 1 often (but, of course, not always) has relatively high
accuracy. It was noted in Sect. 3.22 that, according to Landahl (1993a, b), in studies
of the evolution of weak localized disturbances in the near-wall region of a boundary
layer, viscous effects can be neglected only during an initial time interval of duration
t � tv where tv is the so-called viscous-interaction time scale determined by the
values of the viscosity v, the mean-velocity shear dU/dz, and the streamwise length
scale of the disturbance, L. In general, the role of viscous effects can be determined
only by comparison of the deductions from inviscid theory with the results of more
complete theory which takes viscosity into account.

Let us recall that in the first attempt by Kelvin (1887a) to solve the initial-value
problem for a weak flow disturbance (which proved to be unsuccessful but never-
theless led to discovery of some important new results) the flow considered was a
viscous Couette flow, and that later Orr (1907) also considered development of dis-
turbances with given initial values in such viscous flow. Orr showed that there exist
initial values which lead to very great growth of disturbances during the beginning
stage of their evolution and proposed on this basis the important concept of “prac-
tical instability.” It has already been indicated, in Sect. 3.21, that the early results
by Kelvin and Orr only began to attract attention many years after their appearance,
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when they stimulated a significant new development of the initial-value approach to
flow-stability investigations. Now we will discuss the present situation concerning
the initial-value problems for disturbances in viscous flows.

3.3.1 Wave-Packet Approximations for Solutions
of the Initial-Value Problem

The first new attempts to solve the initial-value problem for disturbances to some
viscous laminar flows, which appeared after Kelvin’s (1887a) and Orr’s (1907) old
papers, had no relation to these early works but were made with the purpose of ex-
plaining the results of observations of flow instabilities collected during the 1940s
and 1950s. The normal-mode method of linear stability theory, well known at that
time, connected the instability of a plane-parallel flow with the appearance of the
so-called Tollmien-Schlichting (for short, T-S) waves-two-dimensional plane waves
growing exponentially with time. It was indicated in Sect. 2.92 that at first the T-S
stability theory seemed to be unsuitable as an explanation of real flow instabilities,
since the available boundary-layer observations did not confirm the existence of T-S
waves. Later such waves were observed in the brilliant wind-tunnel experiments by
Schubauer and Skramstad, and their development was found to agree excellently
with the theoretical predictions by Tollmien and Schlichting. However, in these ex-
periments a plane wave was artificially excited in the upstream part of the flow, while
for other shapes of initial disturbances transition to turbulence usually began with
the appearance of “turbulence spots,” which grew, coalesced with each other, and
gradually filled up all the flow domain (cf. Sects. 2.91 and 2.92). Thus, although the
Schubauer-Skramstad experiments proved the accuracy of the T-S theory, questions
nevertheless arose about the reconciliation of known theoretical results with exper-
imental data, because the latter showed that flow instabilities are in most cases not
accompanied by the appearance of T-S waves.

It seems natural to try to explain this phenomenon by supposing that at su-
percritical Reynolds numbers (even slightly supercritical, i.e., when Re > Recr but
(Re − Recr)/Recr � 1) the whole group of different T-S waves is usually simulta-
neously excited and forms a wave packet where individual waves are masked and
thus are hardly observable. Note that at any Re > Recr there exists one most unstable
mode, with the maximal value of � mω = ω(i) where ω= k1c is an eigenvalue of the
Orr-Sommerfeld (O-S) eigenvalue problem (2.41–2.42). (According to Sect. 2.81,
the eigenvalue ω=ωj (k1, k2) at given Re depends on two wave numbers, k1 and
k2, and the integer j; therefore max ω(i) must be taken with respect to all possi-
ble values of k1, k2, and j.) For any k1 and k2, let j = 1 correspond to the most
unstable mode (or, if there are no unstable modes, then to the least stable), so that
maxjω

(i)
j (k1, k2) = ω

(i)
1 (k1, k2).Variations of the functionω(i)

1 (k1, k2) = s(k1, k2) with
k1 and k2 are as a rule smooth and gradual, and hence its maximum in a wave-number
plane is rather broad. Therefore, at Re > Recr there exists a number of different un-
stable normal modes with nearly the same growth rate, and an unstable initial dis-
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turbance can include many of them. This makes convincing the above-mentioned
explanation of the non-observability of individual T-S waves in the majority of
experiments on boundary-layer instability.

The arguments given above are qualitative and they naturally stimulate a number
of related quantitative studies of the initial-value problems for disturbances in slightly
supercritical steady viscous flows. One of the first such studies was due to Benjamin
(1961) (see also Drazin and Reid (1981), Sect. 47.1) who used the representation of
the solution for the initial-value problem in terms of normal modes. It was explained
in Sects. 2.81 and 2.91 that in a plane-parallel flow of a finite thickness there exists,
for any values of horizontal wave numbers (k1, k2) and Reynolds number Re, an
infinite set of normal modes for the vertical velocity disturbance w, having the form

wj (x, t) = Wj (z) exp [i(k1x + k2y − ωj t)], j = 1, 2 . . . (3.41)

(similar expressions are also valid for the horizontal velocity disturbances u and v and
pressure disturbancep′). Hereωj = ω

(r)
j +iω(i)

j = ω
(r)
j +isj are complex eigenvalues

of the O-S problem and Wj (z) are the corresponding eigenfunctions, ωj and Wj (z)
both depending on k1, k2 and Re. If the set of eigenfunctions Wj(z) is complete in
the space of admissible vertical profiles of w, the general solution of the initial-value
problem for the vertical-velocity disturbance can be presented in the form

w(x, t) =
∞∫

−∞

∞∫

−∞

∞∑

j=1

wj (k1, k2)Wj (z) exp [i{k1x + k2y − ω
(r)
j (k1, k2)t}

+ sj (k1, k2)t]dk1dk2 (3.42)

where wj (k1, k2) are coefficients in the expansion of the two-dimensional Fourier
transform ŵ(k1, k2, z) of the initial value w(x, 0) in a series of terms proportional
to eigenfunctions Wj (z). However, the form (3.42) of the required solution is too
cumbersome to be useful.

To simplify this result, Benjamin noted that, at Re > Recr there is usually not more
than one unstable mode for given k1 and k2, while all the other modes are stable. Let
us again assume that, for any k1 and k2, j = 1 corresponds to the most unstable (or,
if all modes are stable, to the least stable) normal mode, with the greatest value of
ω

(i)
j = sj .Making the natural assumption that the main contribution to the asymptotic

behavior of w(x, t) as t → ∞ is due to the most unstable modes, it is now possible to
omit all terms with j �= 1 from the right-hand side of (3.42). Such neglect simplifies
Eq. (3.42), but not enough to make it easily applicable to real fluid flows.

It is however natural to suppose that the most unstable normal mode with the
greatest rate of growth (i.e., the wave with the maximal value s = maxk1,k2s1(k1, k2)
of the imaginary part of the eigenvalue ω1), together with a group of modes with
j = 1 and wave numbers k1 and k2 close to those for the most unstable mode (and
hence corresponding to values of s1(k1, k2) close to s), will after some initial time
fully dominate all the other modes. Relying on this assumption Benjamin (1961)
(and also Criminale (1960) and Criminale and Kovasznay (1962); see below) pro-
posed to replace the functions s1 (k1,k2) and ω(r)

1 (k1, k2) in equations of the form of
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Eq. (3.42) by their Taylor’s expansions in the neighborhood of the point (k(0)
1 , k(0)

2 )
where s1(k1, k2) takes its maximal value s, and to preserve in these expansions only
terms not higher than second order. Recall now that according to Watson’s result
(1960), mentioned in Sect. 2.81, the most unstable normal mode is necessarily two-
dimensional for a substantial range of Re > Recr, so that (k(0)

1 , k(0)
2 ) = (k0, 0). Using

such value of (k(0)
1 , k(0)

2 ) in the above-mentioned Taylor’s expansions, and assuming
that the initial disturbance w(x,0) was localized near the point where x = 0 and y = 0,
Benjamin derived from Eq. (3.42) the following asymptotic result:

w(x, t) ≈ W (x, y, z)t−1est as t → ∞. (3.43)

In Eq. (3.43) the dependence of the amplitude W on z is determined by the eigenfunc-
tion corresponding to the most unstable mode, while for given z this amplitude takes
the maximal value at x = Ugt , y = 0 (whereUg = (∂ω(r)

1 /∂k1)
k1=k0,k2=0 is the group

velocity of the most unstable wave) and is negligibly small outside of an ellipse in
the (x, y)-plane with the center at the point (Ugt , 0) and semiaxes proportional to t1/2

(i.e., with the area proportional to t). We see that a localized disturbance is convected
downstream at the group velocityUg in the form of an expanding elliptically-shaped
perturbed region. Note also that in this case the wave-packet amplitude does not grow
exponentially with t, as do the amplitudes of individual normal modes, but, due to
interference of wave-packet components, as t−1est .

The theory sketched above is approximate and its degree of accuracy cannot
be easily determined. However Benjamin (1961) showed that the results obtained
describe, satisfactorily enough, some results of his experiments on a slightly unstable
film flowing down in inclined plate. He also mentioned the possibility of applying
the same approach to study boundary-layer instabilities, and referred in this respect
to a lecture by Criminale, which was later published as a report (see Criminale
(1960)) and still later was used as the basis of the interesting paper by Criminale and
Kovasznay (1962).

Criminale and Kovasznay considered the initial-value problem for localized dis-
turbances in a plane-parallel boundary-layer flow with the Blasius velocity profile
U(z). In such flow there is no infinite family of discrete eigenvalues ωj determining
a set of eigenfunctions Wj (z) complete in an appropriate function space—as it was
explained in Sect. 2.92, only a few discrete eigenvalues exist here, but they are supple-
mented by a continuous spectrum. Therefore, the form (3.42) of the general solution
for a vertical-velocity initial-value problem is inapplicable in this case. However, this
form is not needed in arguments based on the assumption that the contribution of all
higher normal modes (corresponding to either a discrete or a continuous spectrum)
to a disturbance development is negligibly small in comparison to the contribution of
the most unstable modes. Since at any values of Ri, k1, and k2 in a Blasius boundary
layer, there exists “the first mode” with the greatest value ofω(i), Eq. (3.42) can be ap-
plied to this flow too, if the equality symbol in this equation is replaced by symbol ≈,
index j is replaced by 1, and the summation symbol in the integrand is omitted.

The approach to the initial-value problem used by Criminale (1960) and Crimi-
nale and Kovasznay (1962), coincides with that used by Benjamin (1961), but their
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investigation is much more comprehensive. The authors used the data of previous
computations of the O-S eigenvalues and eigenfunctions corresponding to the unsta-
ble two-dimensional waves in a Blasius boundary layer, and supplemented them by
some new numerical results relating to unstable three-dimensional (oblique) waves.
As the initial condition for vertical velocity disturbance at a level z1 in the outer portion
of the boundary layer (the exact value of z1 is of small importance according to the re-
sults obtained) Criminale and Kovasznay considered an axisymmetric Gaussian pulse
with small enough standard deviation. Generating reasonably-truncated Taylor’s ex-
pansions of ω(r)(k1, k2) and ω(i)(k1, k2) = s(k1, k2) around the point of maximum
amplification, the authors analytically determined the behavior of w(x, y, z1, t) at
small and large values of dimensionless time τ = Uk0t (where U is the free-stream
velocity and k0 is the streamwise wave number of the most unstable wave). For
intermediate values of τ , some numerical computations were presented. The main
terms of the asymptotic equations found for τ → ∞ agreed with Eq. (3.43) and
with the conclusion obtained by Benjamin (1961), that at large t the distribution of
vertical velocity of the disturbance in planes z = const. has the shape of an expanding
elliptical wave packet traveling downstream at the group velocity.

Benjamin’s and Criminale and Kovasznay’s papers stimulated a number of
subsequent investigations of developments of weak localized disturbances in slightly-
supercritical plane-parallel flows of viscous fluid. In particular, Tam (1967) applied
to this problem the general method used by Case (1960a) and Dikii (1960b) for
study of disturbance development in plane-parallel inviscid flows. Case and Dikii
looked for the general solution of the two-dimensional Eq. (3.3), while Tam instead
considered the three-dimensional viscous equation (2.38) of the form

[
∂

∂t
+ U (z)

∂

∂x

]

∇2w − U ′′(z)
∂w

∂x
− v∇4w = 0 (3.44)

where 0 ≤ z ≤ H and where w = w(x, y, z, t) and ∂w/∂z vanish at z = 0 and
z = H. Therefore Tam replaced the simple Fourier-Laplace integral (3.4) by the triple
Fourier-Laplace integral

ŵ(k1, k2,p; z) =
∞∫

0

e−ptdt
∞∫

−∞

∞∫

−∞
e−i(k1x+k2y)w(x, y, z, t)dxdy. (3.45)

Equations (3.44) and (3.45) imply the following equation for the Fourier-Laplace
transform ŵ(k1, k2,p; z):

[

{p + ik1U (z)}
(
∂2

∂z2
− k2

)

− ik1U
′′(z) − v

(
∂2

∂z2
− k2

)2
]

ŵ(k1, k2,p; z)

= w0(k1, k2; z) (3.46)

where

k2 = k2
1 + k2

2 , w0(k1, k2; z) =
∞∫

−∞

∞∫

−∞
e−i(k1x+k2y)∇2w(x, y, z, 0)dxdy (3.47)
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(and hence w0(k1, k2; z) depends only on the initial value w(x, y, z, 0)). It is easy to
see that the left-hand side of Eq. (3.46) coincides with the O-S equation (2.41) where
−ik1c = −iω = p.According to (3.45–3.47), the solution of Eq. (3.44) correspon-
ding to the above boundary and initial conditions can be written as

w(x, y, z, t) = 1

8π3i

∞∫

−∞

∞∫

−∞

H∫

0

γ+i∞∫

γ−i∞
G(z, z′; k1, k2,p)w0(k1, k2; z)

ei(k1x+k2y)+ptdpdz′dk1dk2. (3.48)

Where G (z, z′; k1, k2, p) is the Green function of Eq. (3.46) for the indicated boundary
conditions (cf. Eqs. (3.6) and (3.7)). Similarly to the case of inviscid flow, the Green
function G can be explicitly constructed if four linearly independent solutions of
homogeneous Eq. (3.46) are known. Moreover, again similarly to the inviscid case,
the asymptotic behavior of the solution (3.48) for t → ∞ is fully determined by the
singularities of the function G of the complex variable p laying on the right-hand half
of the p-plane, and the only substantial singularities are poles at points corresponding
to eigenvalues c = ip/k1 of the corresponding O-S eigenvalue problem.

In the case of a slightly supercritical flow only a pair of simple poles of G lies in
the right-hand half of the p-plane, and these poles exist only for k = (k1, k2) lying
within some small vicinity of the point k0 = (k0, 0) corresponding to the most un-
stable normal mode. Therefore, only the values of k within this vicinity of k0 make
significant contributions to the asymptotic behavior of w(x, t), and for any such k
only the contributions of the complex values of p = − iω which correspond to the
poles of G need to be taken into account. To estimate contributions of these poles
to the integral on the right side of (3.48), Tam used the general equation determin-
ing the functional form of (p −p0)G in the vicinity of the pole p0 of G, and the
trinomial Taylor-series approximation of the functions s(k1, k2) = �ep(k1, k2) and
ω(i)(k1, k2) = −�mp(k1, k2) for normal modes with wavenumber vectors k = (k1, k2)
close to k0. Substituting all these equations into Eq. (3.48), Tam derived from it the
same asymptotic equation for the behavior of disturbance w(x, y, z, t) as t → ∞ as
was found by Benjamin (1961) and Criminale and Kovasznay (1962). In conclusion,
he also noted that the asymptotic shape of an expanding ellipsoidal disturbance is
similar to the shape of turbulent spots often observed in laminar flows at the beginning
of their transition to turbulence.

A more detailed analysis of the solution of the initial-value problem for an initially
localized disturbance to plane-parallel viscous flow with Re < Recr was performed
by Easthope and Criminale (1992), for the case of a model boundary layer with the
piecewise linear velocity profile shown in Fig. 3.1a. The authors applied the Fourier
transform with respect to horizontal coordinates to all terms of Eq. (3.44), then, us-
ing the simplicity of the profile U(z), found an analytical equation describing with
good accuracy the dependence of w on t and z, and finally determined the other
velocity components and pressure and inverted the Fourier transform numerically.
They plotted the function w(x, y, z, t) for z ≈ 0.1H and several values of t, and also
showed the spreading of the wave packet with time. The results obtained agreed well
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with the asymptotic predictions by Benjamin (1961) and Criminale and Kovasznay
(1962) and describe in more details the initial stage of packet development. In par-
ticular, these results duplicated some of the experimental findings (corresponding
to relatively small values of t) by Gaster and Grant (1975) (whose experiments will
be discussed below), although they were insufficient to explain the data obtained
by these authors for larger values of t. Note also that, according to Easthope and
Criminale’s results, the vertical velocity w rises rapidly at small values of t but then
begins to decay, while the components u and v (and the vertical vorticity ζ3) continue
to increase at least linearly with t. Therefore, the computations confirmed Landahl’s
(1980) general predictions based on quite different arguments.

General solutions of the initial-value problem for initially localized disturbances
to the boundary-layer flow were considered also at first by Gustavsson (1979) and
Hultgren and Gustavsson (1981) and then by Brevdo (1995a, b). These authors
replaced real boundary layers with gradually growing thickness by a model plane-
parallel flow in the half-space having the Blasius velocity profile. Gustavsson, and
Hultgren and Gustavsson obtained some particular results (which will be considered
in Sect. 3.32 below) about the stability properties of disturbances at such flow at
subcritical values of Re. Brevdo studied in detail asymptotic behavior of wave packets
in the considered model flow at supercritical values of Re; he proved, in particular,
that for a wide range of Re values exceeding Recr the plane waves and wave packets
in this flow can be only convectively, but not absolutely, unstable (cf. Sect. 2.93 in
Chap. 2 where, in particular, a similar result by Deissler (1987) relating to a plane
Poiseuille flow was indicated).

Another approach to the asymptotic analysis of approximate wave-packet solu-
tions of the initial-value problem for localized weak disturbances was proposed by
Gaster (1968a) who applied it first to the Blasius boundary-layer flow and then, jointly
with Davey (see Gaster and Davey (1968)), to the highly unstable two-dimensional
wake in unbounded space having a Gaussian velocity profile. Here the wave-packets
produced by an initial pulsed disturbance in a point in the fluid were represented by
the following equation

w(x, y, z, t) =
∫

c1

∫

c2

ŵ(k1, k2; z) exp
[
i
(
k1
x

t
+ k2

y

t
− ω

)
t
]
dk1dk2 (3.49)

where ŵ(k1, k2; z) is the two-dimensional Fourier transform of the initial value
w(x, y, z, t, 0)ω = ω(k1, k2) is the complex eigenvalue of the O-S problem corre-
sponding to the most unstable wave with the wave-number vector k = (k1, k2), and
the integration paths c1 and c2 in the complex k1- and k2-planes are obtained from
the horizontal axes −∞ < kj < ∞, j = 1, 2, by continuous deformations placing
them above all the singularities of the integrand.

To find the asymptotic behavior of w(x, t) for t → ∞, it is necessary to determine
the asymptotic of an integral whose integrand includes the exponential of a function
Ψ(k1, k2) multiplied by a large factor t. Gaster (1968a) followed his analysis for the
vibrating ribbon problem (presented in Gaster (1965), cf. Sect. 2.92) by applying
the method of steepest descent to evaluation of the integral on the right-hand side of
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(3.48). For this it was necessary to expand the function Ψ about its stationary saddle
points where

cgx = ∂ω

∂k1
= x

t
, cgy = ∂ω

∂k2
= y

t
(3.50)

and cgx and cgy are group velocities of the wave packet in the x and y directions. How-
ever the precise location of the saddle points in the complex (k,ω) = (k1, k2,ω) space
is a tricky problem requiring some complicated computations. At first both Gaster
(1968a) and Gaster and Davey (1968) did not take into account all the complications
involved, and therefore the asymptotic wave-packet shapes found by them proved to
be distorted by some spurious contributions. Later Gaster’s result for boundary-layer
wave packets was corrected by the author himself (see Gaster (1979, 1981, 1982a)
and also Craik (1981, 1982)), while Gaster and Davey’s results for wave packets
in an unbounded plane wake were corrected by Gaster’s student Jiang (1991). At
the same time some other methods of the wave-packet shape evaluation were also
developed by Gaster (1975); Landahl (1972, 1982); and Craik (1981, 1982).

A simple theoretical model of early stages of wave-packet development in the
Blasius boundary layer was proposed by Gaster (1975) as an explanation of experi-
mental data collected at the same time by Gaster and Grant (1975). These data were
from careful hot-wire-anemometer measurements of the development of a distur-
bance produced by a short acoustic pulse injected in the flat-plate boundary layer
over a large plate in a wind tunnel through a small hole near the leading edge of the
plate. According to the results obtained, the resulting wave packet is roughly elliptic
in plane view at small distances from its origin, but further downstream the disturbed
region spreads out (roughly in proportion to elapsed time t) and distorts, becoming
distinctly bowed into a crescent shape. Gaster’s model represents a wave packet as a
superposition of a large number of wave-like normal modes of the ordinary form

u(x, t) = u(z) exp [i(k1x + k2y − ωt)] (3.51)

(cf. Eq. (3.41); now u is used instead of w since only the streamwise velocity of
disturbance was measured by Gaster and Grant). However, contrary to earlier wave-
packet models, Gaster supposed that k2 and ω are two given real constants while the
streamwise wavenumber k1 = k1(k2, ω) is a complex function of two variables equal
to the most unstable eigenvalue (i.e., that having the numerically-greatest negative
imaginary part) of the corresponding spatial O-S eigenvalue problem. Hence, a wave
packet was considered as a superposition of spatially (and not temporally) growing
waves. Moreover, all higher normal modes and also the continuous spectrum of
eigenvalues in the O-S problem in a half-sapce were ignored by Gaster, exactly
as was done in the other studies mentioned above. That is, he used the following
approximation to the general solution of the initial-value problem for the streamwise
velocity,
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u(x, t) ≈
∞∫

−∞

∞∫

−∞
u(k2,ω; z) exp [i{k1, (k2,ω)x + k2y + ωt}]dk2dω (3.52)

where u(k2,ω; z) is the Fourier transform, with respect to y and t, of the value
u(0, y, z, t) of the streamwise velocity disturbance at x = 0.

Note also that in fact Gaster introduced in his paper of 1975 (and studied at greater
length in Gaster (1982b), for two-dimensional packets but for a much wider range of
x-values) some corrections of the simple Eqs. (3.51) and (3.52), which approximately
described the influence on the packet development of the slow growth of boundary-
layer thickness δ or displacement thickness δ∗ (and or Re) with streamwise distance
x. However, consideration of the proposed corrections would take too much space
here, so only a simplified version of the arguments given in the original publications
will be presented.

To evaluate the right-hand side of (3.52), Gaster (1975) replaced the double inte-
gral by an appropriate integral sum. First of all, he carefully calculated a great number
of eigenvalues k1(0,ω) for two-dimensional waves with k2 = 0 and different values
of the wavenumber k1, also varying the Reynolds number Reδ∗ = Uδ∗/v (Where δ∗
is the displacement thickness of the boundary layer) within a range corresponding
to the streamwise locations of the measurements of Gaster and Grant (1975). The
eigenvalues corresponding to three-dimensional (oblique) modes with k2 �= 0 were
computed from the eigenvalues for two-dimensional waves with the aid of Squire’s
transformation, described in Sect. 2.81, which can also be applied to spatial for-
mulation of the eigenvalue problem. Gaster and Grant’s measurements include time
records of the streamwise velocity u(x, t) at a fixed value of z and various values
of x and y. The amplitudes u(k2,ω; z) entering the integrand in Eq. (3.52) represent
the two-dimensional Fourier transform of the function u(0, y, z, t) with respect to y
and t, for fixed value of z. For a disturbance produced by a narrow acoustic pulse of
short duration the dependences on both y and t must be close to Dirac δ-functions,
and therefore it was natural to assume that the initial (ω, k2)-spectrum must be quite
flat in both frequency ω and spanwise wavenumber k2. Gaster and Grant found that
this assumption agreed well enough with frequency-wavenumber spectral data at
different distances x from the hole in the plate where the disturbance was intro-
duced, and therefore this assumption was used by Gaster (1975) as a reasonable first
approximation.

The amplification (or attenuation) of various normal modes was determined from
the measured values of the (ω, k2)-spectra for values of u(x, y, z, t) at the selected
value of z and various x. At the same time this amplification could also be calculated
by the linear theory of hydrodynamic stability, determining the most unstable values
of k1(k2,ω) for any given values of k2,ω, and Re. According to Gaster (1975) the
measured and calculated values of the amplification agreed well, giving additional
confirmation of the satisfactory accuracy of the linear stability theory and of the
approximation (3.52). The calculated shapes of the disturbed regions, i.e., of the
regions where the relative amplification of the wave-packet power exceeded some
appropriate threshold value, also agreed well with the experimental data by Gaster
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and Grant at not-too-large values of x. In other words, Gaster’s theoretical model
predicted with satisfactory accuracy the observed variations of the overall shape of
the disturbed region and the way it expands as the wave packet traveled downstream.
Note, however, that good agreement between the results of normal-mode summation
and the observations was found only for the early stages of wave-packet develop-
ment. For larger values of x the observed shape of the packet was found to be more
distorted and Gaster (1975) attributed these definite discrepancies between theory
and experiment to nonlinear effects.

Another explanation of these discrepancies is the possibility that the summation
of normal modes is insufficient for the determination of long-time behavior, the
main contribution to which is due to saddle points of the dispersion relation ω =
ω(k1, k2, Re ) for complex wavenumbers k1 and k2. It has been already noted above
that the asymptotic saddle-point analysis was first applied to wave-packet develop-
ment by Gaster (1968a) and Gaster and Davey (1968) but since the exact form of
the dispersion relation is usually unknown and cannot be easily determined, these
attempts were not wholly successful. Later Gaster (1979, 1982a) thoroughly an-
alyzed the applications of the saddle-point method to the evaluation of long-time
development of two-dimensional (2D) wave packets (composed of 2D waves) in a
plane-parallel Blasius boundary layer. He found that the method gives accurate re-
sults for all but very short times after the generation of the disturbance, and he also
theoretically estimated the errors for various simplified asymptotic representations
of 2D packets. For three-dimensional (3D) wave packets Gaster (1981) considered
some approximate asymptotic representations (including that used by Benjamin and
by Criminale and Kovasznay), and estimated their accuracies (which was found
to be sufficiently good) by comparison of the results obtained with those given by
numerical integration. Independently Craik (1981, 1982) proposed evaluating the
developments of wave packets generated by short-term localized 3D disturbances in
unstable plane-parallel flows by a saddle-point method, using simplified algebraic
models of the 3D dispersion relations. For models containing enough free numeri-
cal parameters it is possible to achieve good agreement with the available results of
computations of the O-S eigenvalues, and Craik then showed that the saddle-point
method leads to conclusions which also agree well with the results for wave-packet
development. In particular, Craik’s models imply the initial elliptic shape of a packet,
its subsequent bending to a crescent shape, and the expected behavior of packets in
cases where Re considerably exceeds Recr.

One more method for evaluation of the wave packet development was first used
for a special purpose by Landahl (1972) who later (in 1982 and 1985) developed it
further and applied it to representation of evolution for rather general localized 3D
packets of waves growing both in space and time. This new method is based on the
kinematic wave theory by Whitham (1965, 1974) (see also the short presentation by
Landahl and Mollo-Christensen (1992), Cap. 6). Whitham’s theory in its original
version dealt only with conservative waves; therefore, its application by Landahl
(1972) to waves with small dissipation at first gave rise to some criticism. However,
later formal extension of kinematic wave theory to the case of such waves was
developed by several authors (in particular, by Jimenez and Whitham (1976) and
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Chin (1980)). This extension confirmed Landahl’s results of 1972 and showed (see
Landahl (1982, 1985)) that the kinematic wave theory leads to results equivalent to
those given by the saddle-point method and can be used also for representation of
some nonlinear features of wave-packet propagation.

Advances in computer technology led, during the last decade, to a number of in-
vestigations of wave-packet developments in laminar boundary-layer flows by direct
numerical simulations (DNS), i.e., by numerical solutions of Navier-Stokes equations
with the initial and boundary conditions corresponding to a steady boundary-layer
flow disturbed at the instant t = 0 by a strongly localized small disturbance. Some
examples of such simulations were described, in particular, by Lenz (1986), who
considered only two-dimensional disturbances, and by Fasel et al. (1987) and
Konzelmann (1990). Note that the modern development of computational meth-
ods makes it unnecessary to linearize the navier-Stokes equations with respect to
flow disturbances, and hence permits combined DNS study of the nonlinear stage of
wave-packet development and its initial linear stage. Moreover, the boundary-layer
development can also be numerically simulated independently of the computation
of disturbances, and the influence of the growth of the boundary-layer thickness
is automatically taken into account. We will not consider here details of the avail-
able DNS results for wave-packet development, but simply note that the results
of the above-mentioned authors show excellent qualitative and fully satisfactory
quantitative agreement with the experimental results obtained by Gaster and Grant
(1975).

3.3.2 Resonance and Degeneracy Growths of Disturbances
in Subcritical Flows

Section 3.31 was devoted mostly to consideration of disturbance development in
supercritical laminar flows, with Re > Recr, and to discussion of some possible reasons
for the so-called by-pass transition to turbulence (see Sect. 2.92), where no T-S waves
are observed. In this and the following sections, the main case to be discussed will
be that of subcritical flows, with Re < Recr, and a possible explanation will be given
of the subcritical transitions that are frequently observed (e.g., in plane Couette and
circular Poiseuille flows, where Recr = ∞, and in plane Poiseuille flows, where
Recr ≈ 5770, while transition to turbulence usually occur at Re ≈ 1000; see Sects.
2.1 and 2.9). For this purpose it will be necessary to pay more attention to general
solutions of the initial-value problems for localized disturbances in laminar flows.

The general solution (3.48) of the initial-value problem for the disturbance vertical
velocity w(x, y, z, t) in a laminar channel flow was considered above in the discussion
of the paper by Tam (1967). The same solution was later studied by Gustavsson
(1979) with application to subcritical disturbance development in a Blasius boundary
layer (strictly, a plane-parallel flow in the half-space 0 ≤ z < ∞ with the Blasius
velocity profile). Gustavsson used a slightly different, but equivalent, form of the
integrand in Eq. (3.48); he expressed the Green’s function G explicitly, in terms of
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four linearly independent solutions of the homogeneous Eq. (3.46). Like Tam, he
was mainly interested in the asymptotic behavior of the vertical velocity w(x, t) as
t → ∞, which is determined by the contribution to w made by singular points of the
integrand in the complex p-plane. However, in the case of a Blasius boundary layer,
the simple poles of the integrand, at values of ip = ω equal to discrete eigenvaluesωj

of the corresponding O-S equation, are supplemented by a branch point. Therefore
in this case the path of integration in the p-plane must be deformed around the branch
cut ending at the branch point. As in the case of a channel flow, the poles at points
pj = −iωj contribute to the log-time behavior of w, the summands proportional to
e−iωjψ , which describe the asymptotic behavior of the T-S wave components of the
vertical velocity, depending exponentially on time. Now, however, the loop enclosing
the branch cut also makes a non-zero contribution to the value of w, which determines
the component of w generated by the continuous spectrum of the O-S eigenvalues.
Gustavsson showed that this component also eventually decays exponentially, but at
small values of t its dependence on time is algebraic (with exponent depending on
the shape of the initial disturbance). He also showed that the duration of the initial
period of algebraic variation increases, and the rate of exponential decay as t → ∞
decreases, with increase of the disturbance length scale.

More detailed analysis of Gustavsson’s solution of the initial-value problem for a
disturbance in a Blasius boundary layer was carried out by Hultgren and Gustavsson
(1981) for the special case of disturbances having a streamwise length scale l very-
large compared to the boundary layer thickness δ. (It was explained by the authors
that since the parallel-flow assumption was used, l had to satisfy the double inequality
δ � l � δ Re .) In this case k1δ � 1, and it is easy to show that then the integrand
to the inverse Laplace transform in Eq. (3.48) does not possess any poles, and hence
only a branch cut in the p-plane (describing the continuous-spectrum contribution)
must be taken into account. Applying some algebraic manipulations to Gustavsson’s
solution for w(x, t), Hultgren and Gustavsson found that if l/δ � 1 (so that the depen-
dence of w on x can be neglected in the first approximation), then inside the boundary
layer w(y, z, t) ≈ w(y, z, 0) = w0(y, z) (i.e., the vertical velocity essentially remains
constant) for small times t � δ2/v, but w ∞U0(tv/δ2)−2 (i.e., it decays as t − 2)
for large times t � δ2/v. The results for w(y, z, t) were then used to find the asymp-
totic behavior of horizontal velocity disturbances. Using Eq. (2.35) for the streamwise
velocity disturbance u, and the continuity equation (2.36), and neglecting the depen-
dence of u and the pressure disturbance p on x, Hultgren and Gustavsson obtained
for u and the spanwise velocity v the following two equations

∂u

∂t
− v

(
∂2

∂y2
+ ∂2

∂z2

)

u = −U ′w, (3.53)

∂v

∂y
= −∂w

∂z
.

Here the vertical velocity disturbance w(y, z, t) was known from the above results;
therefore Eqs. (3.53) could be used for finding the horizontal components of the
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disturbance velocity. The second Eq. (3.53) allows the spanwise velocity component
v(y, z, t) to be found quite easily; it leads to obvious results which will be omitted here.
The first Eq. (3.53) has the form of a heat-conduction (or diffusion) equation with
a source term. Hultgren and Gustavsson showed that the solution of this equation
corresponding to a given initial value u(y, z, 0) = u0(y, z) can be written as a sum of
two terms T1 and T2, the first of which depends on u0(y, z) and the second on the
solution for w(y, z, t). For an arbitrary value of t, this solution must be evaluated
numerically, but its asymptotic behavior at small and large times is given by simple
analytic expressions. At small times t � δ2/v the termT1 differs from the initial value
u0(y, z) only by a small viscous correction, while the main part of T2 has the form
−U′(z)w0(y, z)t (again with a small viscous correction).Thus the inviscid result of
Ellingsen and Palm (1975) (see Eq. (3.21)) was recovered (with a viscous correction
and a viscous limit of validity) directly from the solution of the initial-value problem.
At times t � δ2/v, it was found that the streamwise velocity disturbance u(y, z, t)
decays as t−2 in both the boundary layer and the free stream.4

Thus, the algebraic initial growth of u(x, t) was derived by Hultgren and Gus-
tavsson (1981) from a solution of the initial-value problem for disturbances with a
large streamwise scale. More complete analysis of the considered general solution
of the initial-value problem was carried out by Brevdo (1995a, b); these papers were
already mentioned in Sect. 3.31. Note now that there are also many other special
cases where solutions of the initial-value problem imply the algebraic growth of
disturbance velocities; see, for example, the discussion of Easthope and Criminale’s
paper (1992) in Sect. 3.31. In Sect. 3.2, when discussing the inviscid Eq. (3.9), it
was noted that for two-dimensional disturbances, of the form {u(x, z, t), 0, w(x, z, t)},
the only dynamical equation needed is that for the vertical velocity disturbance w;
in this case, once w is known, the streamwise velocity disturbance u follows from
continuity (and, if needed, the pressure disturbance p can also be determined easily).
However, if general three-dimensional disturbances are considered, then to find the
whole velocity field, at least one more dynamic equation is needed. In Sect. 3.2, the
inviscid Eq. (3.10) for the vertical vorticity component ζ3 = ∂v/∂x − ∂u/∂y was
recommended as such a supplementary equation.

The same considerations clearly apply to viscous flows. In this case, Eq. (3.9)
for the vertical velocity disturbance w(x, t) in a steady plane-parallel flow must be
replaced by Eq. (3.44), which includes a viscous term. Also, Eq. (3.10) for ζ3 must
now also be supplemented by an additional viscous term turning it into

(
∂

∂t
+ U

∂

∂x

)

ζ3 − v∇2ζ3 = U ′ ∂w

∂y
. (3.54)

4 These results were found for the plane-parallel model of the Blasius boundary layer. In reality
the thickness of a boundary layer increases with x and this must lead to gradual weakening of the
influence of viscosity. This effect was studied by Luchini (1996) who found that in the model of a
boundary layer with the thickness depending on x a three-dimensional disturbance can exist which
algebraic growth produced by the lift-up effect overcomes the viscous damping. Therefore, within
the limits of the linear stability theory and of the model of a boundary layer of infinite streamwise
extent, this disturbance is growing at all times.



230 3 More About Linear Stability Theory: Studies of the Initial-Value Problem

In the case of purely horizontal velocity disturbances, where w(x, t) ≡ 0, Eq. (3.54)
for the vorticity ζ3 has the same form as the equations for both horizontal velocity
components u(x, t) and v(x, t) given for this case in Sect. 2.81 (before Eqs. (2.46)). It
was explained there that in steady plane-parallel flows these equations for u and v de-
scribe some normal modes having the form of horizontal-velocity waves, in addition
to the better-known T-S waves. These new modes (sometimes called the Squire modes
in contrast to the more ordinary Orr-Sommerfeld modes where w satisfies the O-S
equation) always decay with time and therefore may be ignored when the normal-
mode approach to the linear theory of hydrodynamic stability is used. It can also be
shown (see, e.g., Reddy et al. (1993); Reddy and Henningson (1993); Henningson
et al. (1994); or Schmid and Henningson (2001)) that, according to linear stability
theory, the energy of any horizontal-velocity disturbance {u(x, y, z, t), v(x, y, z, t), 0}
always decays monotonically with time (in contrast to the case of vertical velocity
disturbances w(x, t) where the possibility of very large initial growth had been proved
already by Orr (1907)). Hence, one might think that infinitesimal disturbances with
zero vertical velocity can also be omitted in stability studies using the initial-value-
problem approach. However, this conclusion is incorrect, since it does not follow
from the above-mentioned results that horizontal velocity components and vertical
vorticity of a disturbance are irrelevant in the general case where all components of
the velocity vector u(x, t) = {u(x, t),v(x, t),w(x, t)} differ from zero.

In the general case, Eqs. (3.44) and (3.54) form a closed system of two equations,
with two unknowns w and ζ3. Equation (3.44) may be solved independently from
Eq. (3.54), and the solution obtained for w then substituted into Eq. (3.54). Let us
consider the normal modes of disturbance which are proportional to exp [i(k1ξ +
k2η− ωτ )] (where, as in Sects. 2.81 and 2.92, ξ = x/H , η = y/H , and τ = tU0/H

are dimensionless horizontal coordinates and time, H and U0 being appropriate
length and velocity scales). Then the dimensionless vertical-velocity amplitudeW (ζ )
(where ζ = z/H ) will satisfy the O-S equation (2.41) (with c = ω/k1), while the
dimensionless vertical-vorticity amplitudeZ(ζ ) will satisfy an equation having a left
side of the same form as in Eq. (2.46) (again with c = ω/k1), but the non-zero term
ik2U

′W (ζ ) on the right side.
In Chap. 2 it was explained that in the case of the O-S eigenvalue problem (i.e.,

for the O-S equation with the appropriate boundary conditions) there corresponds,
to any values of k1, k2, and Ri, an infinite (in the case of flows in channels of
finite depth) or finite (for plane-parallel flows in an unbounded or semibounded
space) set of eigenvalues ωj (k1, k2, Re ) determining a set of O-S waves. Another
set of eigenvalues ω0

j (k1, k2, Re ) corresponds to the Squire (briefly, Sq) eigenvalue
problem (i.e., to the Sq equation (2.46) with the appropriate boundary conditions),
and determines a set of Sq waves.As was said above, the Sq waves always decay, since
� mω0

j (k1, k2, Re ) < 0 for any values of j, k1, k2 and Re (for information about the
eigenvalues ω0

j see, e.g., Davey and Reid (1977) where the same eigenvalue problem
appeared in a different context). However, � mωj (k1, k2, Re ) is negative for any j, k1

and k2 only if Re < Recr.
Let us assume that Re < Recr; then all O-S and Sq waves decay as τ (i.e., t) tends to

infinity. Therefore the flow is stable from the standpoint of the normal-mode approach
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to linear stability theory. Note, however, that the Sq waves represent vorticity waves
corresponding to “free oscillations” of the vorticity and horizontal velocity fields,
while Eq. (3.54) contains on the right side a “force” U ′∂w/∂y.5 Here, therefore,
“forced,” not “free,” solutions of the Sq problem must be considered.

For Re < Recr viscous effects lead to damping of all wave-like disturbances as
t → ∞. It is however known that even forced oscillations that eventually die out
can be strongly amplified initially in the case of a resonance, i.e., when a frequency
of free oscillations of (say) a mechanical structure coincides with a frequency of the
applied force. Therefore, it is natural to investigate whether a resonance can occur in
forced excitation of vertical-vorticity waves, and if so what will be its consequences.

Solutions of the homogeneous Eq. (3.54) for a wide range of conditions can be
expanded into Sq waves, while a force can be represented by a series of O-S waves.
Therefore a resonance is possible here if values of k1, k2 and Re exist, such that
ωj (k1, k2, Re ) = ω0

i (k1, k2, Re ) for some integers j and i. Apparently Gustavsson
and Hultgren (1980) were the first to formulate the resonance problem of linear hy-
drodynamic stability theory, and to study it for the case of a plane Couette flow.
They began with numerous computations of the Couette-flow O-S and Sq eigenval-
ues belonging to the first four eigenvalue modes. Instead of complex frequencies ω
they used the complex phase velocities c = ω/k1, which depend on two variables
k = (k1

2 + k2
2)1/2 and k1Re (while in case of the Sq eigenvalues, c + ik2/k1Re = c’

depends only on k1Re). The computations showed that for any value of k at least
two values of k1Re exist, such that c(k, k1Re) = c0(k, k1Re) (where c and c0 are
the Couette-flow O-S and Sq eigenvalues) for either the first or the second eigenalue
mode. If c = c0, then clearlyω(k1, k2,Re) =ω0(k1, k2,Re) for k2 = (k2−k1

2)1/2. Thus,
for corresponding values of k1, k2,Re (and maybe also for some other still-unknown
values of these variables), a resonant excitation of the vertical vorticity (and horizon-
tal velocity ) waves can occur in a plane Couette flow. In such cases the corresponding
wave-like solutions of Eq. (3.54) (and the related horizontal-velocity waves too) will
include a resonance term depending on time as τe−iωτ . Since � mω = ω(i) < 0, this
term will eventually die out, but at first, as long as −ω(i)τ � 1, it will grow linearly
with time. Gustavsson and Hultgren found that the slowest exponential decay (and
hence the longest period of the resonance growth of a disturbance, and the largest
value of an amplitude at the end of this period) are usually reached for k ≈ 2 (but
at k ≈ 2 there exists a broad wave packet consisting of waves with similar growth
properties). At large values of Re the structures which grow most significantly in the
initial period have a streamwise elongated shape, and the duration of their period of
growth increases with Re. In the limit Re → ∞, the linear resonant growth is real-

5 The physical mechanism of the “force effect” is rather simple: If U ′ �= 0, the vertical velocity w
leads to vertical displacements of fluid particles transferring their original streamwise velocity to a
new height with different mean velocity U, i.e., producing additional disturbances of the streamwise
velocity (Landahl’s lift-up effect mentioned in Sect. 3.2). IfU ′ �= 0, and ∂w/∂y �= 0, then the lift-up
effect will vary with the span wise coordinate y creating regions of non-zero derivative ∂u/∂y and
hence acting as a source of vertical vorticity. Note also that the first Eq. (3.53) describes forced
streamwise velocity oscillations where the force on the right side represents the lift-up effect.
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ized at all times (in full accordance with Ellingsen and Palm’s (1975) and Landahl’s
(1980) results considered in Sect. 3.22).

An investigation of possible resonances in a subcritical plane Poiseuille flow was
performed by Gustavsson (1981, 1986) (see also Benney and Gustavsson (1981)).
Since there were no data to determine whether the coincidences c = c0 are possible or
impossible in this case, Gustavsson calculated anew a number of the corresponding
O-S and Sq eigenvalues c and c0. He found that, contrary to the case of a plane
Couette flow, in the case of a plane Poiseuille flow resonances can occur only for
certain isolated points (k, k1Re).A number of such Poiseuille-flow “resonance points”
(where c = c0) was indicated in Gustavsson’s papers (1981, 1986) where it was also
stated that their number is apparently infinite.

It has been mentioned above that resonant excitation of disturbances is usually
responsible for only a part of the total values of u(x, t), v(x, t), and ζ3(x, t).As a rule,
initial disturbances include many different Fourier components, and generate wave
packets in which waves corresponding to resonant values of k and k1Re are masked
by all the other waves. However, even for the Fourier component of a disturbance
with such wave numbers k1 and k2 that ((k1

2 + k2
2)1/2, k1Re) is a resonance point

in the (k, k1Re)-plane, the wave amplitude is not exactly proportional to τe−ik1cτ .

According to Gustavsson’s general solution of the corresponding initial-value prob-
lem, the resonant term (i.e., the contribution of the resonance pole of the integrand in
Eq. (3.48) in the complex p-plane) has the form [r1 + r2k1τ ] exp[i(k1ξ + k2η− k1cτ )]
where r1 and r2 are complex numbers (depending on initial conditions and the pa-
rameters ζ , k1, k2, and Re). Hence the time-dependent wave amplitude, R(τ ), is
equal to (r1 + r2k1τ )exp (k1� m cτ ) where c = c(k, k1Re) is the joint O-S and Sq
eigenvalue. We see that the amplitude R(τ ) includes two terms, the first of which
decreases exponentially (since � m cτ < 0 in a subcritical flow) while the second
at first grows linearly (this is just the resonance growth) and only later begins to
decay. It is easy to see that the general character of the time evolution for the wave
disturbance considered depends on the sign of the difference �e(r2/r1)−� m c; only
if it is positive will the amplitude R(τ ) grow initially and decay at later times (see,
e.g., Shanthini (1989)).

Gustavsson (1986) computed time-dependent amplitudes R(τ ) of the resonant
vertical-vorticity waves for a number of resonance parameters (k1, k2,Re) and initial
values w0(k1, k2; z) (defined by Eq. (3.47)). It turned out that all the computed
amplitudes decay monotonically with time. This shows that here the contributions of
a monotonically-decreasing term with coefficient r1 usually dominate the disturbance
development. Of course, Gustavsson’s computations covered only a limited range
of conditions but, nevertheless, his results cast doubt on the assumption that the
resonance mechanism is the main cause of the observed transient growth of flow
disturbances.

Studies of the possible resonances in the case of plane-parallel boundary-layer
flows were carried out by Benney and Gustavsson (1981), who investigated three
examples of a velocity profileU (ζ ) but published only results for the Blasius profile.
For boundary layers only a finite number of discrete eigenvalues c (or ω = k1c)
exists, so here there are not too many choices for possible direct resonances. Calcu-
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lations of both O-S and Sq eigenvalues suggested that in boundary-layer flows no
exact resonances (i.e., no values of k and k1Re such that c(k, k1Re) = c0(k, k1Re))
occur for any of the considered velocity profiles. (Later Jang et al. (1986) discovered
that an exact resonance, which may be physically important, exists in a turbulent
boundary layer, where the velocity profile is quite different from that in laminar lay-
ers. However, this topic is beyond the scope of this chapter of our book.) Moreover,
Benney and Gustavsson found that in the case of laminar boundary layers some near-
resonances exist, i.e., here the difference c − co can take quite small absolute values.
The authors stated that such near-resonances can also produce substantial growth of
disturbances, which can lead to important consequences when the nonlinear mecha-
nisms of the disturbance development, also considered in their paper, are taken into
account. However, we have no space to discuss this matter here.

Gustavsson (1989) also studied the forcing mechanisms and resonances occurring
in disturbed Poiseuille flow in a circular tube. Equations for small disturbances of an
axisymmtric laminar flow were given in Sect. 2.84, where cylindrical coordinates,
r ,φ, x were used instead of rectangular coordinates x, y, z. Gustavsson showed that in
a tube flow, resonances can occur only in the case of non-axisymmetric disturbances
(depending onφ). (Recall that in plane-parallel flows resonances are possible only for
three-dimensional disturbances, depending on the spanwise coordinate y.) Therefore,
Gustavsson considered only the normal modes with the azimuthal wave number
n �= 0.

Gustavsson used Eqs. (2.73) to obtain a system of four homogeneous differential
equations for the r-dependent amplitudes g, f (r), f (φ) and f (x) of normal modes cor-
responding to reduced pressure p/ρ and three components (ur , uφ , ux) of disturbance
velocity. (This system differs from Eqs. (2.74) by viscous terms which were omitted
in Sect. 2.84.) Then he eliminated all unknowns except g from the system, and thus
found a sixth-order homogeneous differential equation for the pressure amplitude
g(r). The dimensionless form of this equation utilizes the normalized radial coor-
dinate r/R instead of r (a dimensional radial coordinate will not be used below and
therefore r will later denote just the normalized radial coordinate) and includes the
following dimensionless parameters: k, n, c = ω/k, and Re =U0R/v, where R and
U0 are the tube radius and the centerline velocity, k is the streamwise wave number
multiplied by R, and c is the phase velocity of the modal pressure wave divided by
U0. The boundary conditions require that all three velocity components vanish at
the tube wall (i.e., at r = 1) and are finite at the tube axis; they allowed Gustavsson
to obtain six boundary conditions for the function g(r). The boundary conditions,
together with the equation for g, form an eigenvalue problem determining a set of
eigenvalues cj(k, n, Re) for the given values of k, n and Re.

The third Eq. (2.73) relating to streamwise disturbance velocity ux leads to the
following dimensionless ux-amplitude equation

∇̃2f (x) − ik Re (U − c0)f (x) = Re (U ′f (r) + ikg),

∇̃2 = 1

r

d

dr
(r
d

dr
) − k2 − n2

r2
, (3.55)
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where now U(r) = 1 − r2 is the velocity of the circular Poiseuille flow divided byU0,
a prime denotes the derivative d/dr and c0 is the dimensionless streamwise velocity
of the ux-mode. The homogeneous version of Eq. (3.55), where the right-hand side
is replaced by zero, together with boundary conditions requiring that f (x) = 0 for
r = 1 and tends to a finite value when r → 0, form the ux-mode eigenvalue problem
determining the set of eigenvalues c0

i (k, n, Re ). The right side of Eq. (3.55) contains
a linear combination of functions g and f (r), and it is easy to deduce from Eqs. (2.73.)
that U ′f (r) = i∇̃2g/2k. Therefore, the inhomogeneous Eq. (3.55) can be regarded
as an equation describing forcing of the streamwise velocity component by a specific
force linearly depending on g(r) (i.e., in fact by the pressure force). A resonance oc-
curs here when, for some values of k,n ≥ 1, and Re, a pressure eigenvalue cj(k, n, Re)
coincides with some streamwise-velocity eigenvalue c0

i (k, n, Re ).
To find resonances, Gustavsson calculated values of discrete eigenvalues cj and c0

i

for a great number of combinations of values for k2, kRe and n, where k was assumed
to be complex. He found that resonances are very numerous (apparently there are
infinitely many of them) and listed 36 resonances presenting the corresponding values
of k, n, and Re together with the values for the phase velocity and damping rate of
resonance waves. However, no attempt to investigate the possible resonance growth
of velocity disturbances was made.

Above, we considered a number of studies of the initial algebraic growth of
small disturbances in steady parallel viscous flows. Special attention was given to
resonance effects, which play an important part in many mechanical problems. Let
us now recall that in Sect. 2.5, in the introductory discussion of the normal-mode
approach to linear theory of hydrodynamic stability, it was indicated that initial
algebraic growth of disturbances can also be caused by the degeneracies of the
frequency spectra, i.e., by coalescences of frequencies for some pairs of normal
modes. Some references to papers on this topic were given in Sect. 2.5; here we
shall briefly consider only the papers by Koch (1986), Jones (1988), and Shanthini
(1989) devoted to investigations of degeneracies in the Orr-Sommerfeld spectra of
some standard steady plane-parallel flows.

Let us, however, begin with a general remark. According to the above discussion,
resonant growth of small disturbances is due to a coalescence of two eigenvalues
belonging to spectra of two different fluid-dynamic fields, while degeneracy growth
is due to a coalescence of two eigenvalues belonging to the spectrum of one such
field. These two mechanisms clearly have some internal similarity; therefore, it is
sometimes said (see, e.g., Koch’s paper) that degeneracy growth is caused by a reso-
nance between two normal modes of the same fluid-dynamic field. At the same time
it is also possible to look at this matter the other way round. The two equations (3.44)
and (3.54), with the appropriate boundary conditions, form a two equation system
for the unknown vector field {w(x, t), ζ3(x, t)} = q(x, t) determining (together with
the equation of continuity (2.7b)) all three components of the disturbance velocity
u(x,t). The normal modes of the vector field q are the solutions of the system which
are proportional to exp {i(k1x + k2y − ωt)]. It is clear that for any given values of
k1 and k2, the finding of such solutions is reducible to solution of a two-equation
eigenvalue problem determining the spectrum of the admissible eigenfrequenciesωj .
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It was shown by Henningson and Schmid (1992) (see also Eq. (3.66) in Sect. 3.33)
that this spectrum of the field q consists of all the O-S eigenvalues ωj , j = 1, 2,. . . ,
and all the Sq eigenvalues ω0

i , i = 1, 2, . . . (recall that in the case of a channel flow
both the O-S and Sq frequency spectra are discrete and infinite). Hence the resonance
condition: ωj = ωoi for some j and i, determines a part of the degeneracies in the
combined spectrum of the two-equation eigenvalue problem relating to the vector
field q(x, t), while degeneracies in the O-S and Sq spectra determine two other parts
of the set of all such degeneracies. This shows that the distinction between resonances
and degeneracies is in fact even smaller than it seems at first. The situation with the
tube-flow resonances studied by Gustavsson (1989) is completely similar to that in
the case of channel flows: here also resonances form a part of the degeneracies in
the spectrum of eigenfrequencies of the vector field {p(x, t)/ρ, ux(x, t)} (see Schmid
and Henningson (1994)).

Now we will pass to consideration of the O-S-spectrum degeneracies. Koch (1986)
and Shanthini (1989) both used Gustavsson’s (1979, 1986) general solution of the
initial-value problem for a small disturbance in a steady plane-parallel viscous flow to
determine the contribution to the disturbance development of a double eigenvalue of
the corresponding O-S eigenvalue problem. To such an eigenvalue there corresponds
a double pole of the integrand in Eq. (3.48) in the complex p-plane. The contribution
of such a pole to the inverse Laplace transform in this equation is of the same form as
the resonant contribution considered above,(r1 + r2k1t) exp(−iωot) where ωo is the
complex double eigenvalue. (Now we return to the dimensional variables and assume
that the O-S eigenvalue problem is formulated for the unknown eigenfrequencies ω.
If phase velocities c = ω/k1 are the sought-for eigenvalues, then, of course, ωo must
be replaced by k1co. Moreover, in the case of spatial formulation of the O-S eigenvalue
problem, the Laplace transform must be carried out with respect to x, so that here
p = ik1, where k1 = k1(ω, k2, Re) are the unknown eigenvalues, and the contribution
of the double polepo = iko1 in the p-plane to the disturbance amplitude has the form
(r1 + r2x) exp(iko1x)).

Note that, in contrast to the resonant growth which is possible only for
three-dimensional disturbances, the degeneracy growth can take place for either
three-dimensional or two-dimensional disturbances. For two-dimensional distur-
bances k2 = 0 and the O-S eigenvalue depend on only two parameters, k1 = k and
kRe (in the case of temporal formulation of the problem or ω and Re) (in the case
of spatial formulation). Jones (1988) studied multiple eigenvalues of the temporal
O-S eigenvalue problem for a plane Poiseuille flow, considering only symmetric
two-dimensional normal modes of disturbances {u(x, z, t), 0, w(x, z, t)}. (Since the
velocity profile of a Poiseuille flow in a channel bounded by walls at z = 0 and z = H
is symmetric with respect to the channel midplane z = H/2, the vertical-velocity am-
plitude W (z) of a normal mode is always eilther symmetric or antisymmetric with
respect to this plane, i.e., is represented by either an even or an odd function of
z1 = z−H/2. According to this, the normal modes fall into symmetric and antisym-
metric ones; the most unstable mode is always symmetric.) Jones recomputed the
Poiseuille-flow O-S eigenvalues and found 16 double eigenvalues ci for symmet-
ric normal modes in flows with values of R = kRe in the range 0 < R < 6000. All
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the double eigenvalues ci found have negative imaginary parts (i.e., correspond to
damped modes) and real parts close to each other. However, Jones made no attempt
to estimate the possible transient amplitude growth for the degenerating modes he
found.

Koch also paid great attention to double O-S eigenvalues in plane Poiseuille
flow, although he stated that his prime object was to study spectral degeneracies in
boundry-layer flows. Like Jones, he considered only symmetric normal modes but
concentrated on the spatial eigenvalues k1 (ω, k2, Re) where the values k2 �= 0 were
also permitted. He began with accurate computation of a number of eigenvalues k1(ω)
for the case where k2 = 0 and Re = 104; here no double eigenvalues were found. Then
he studied the more general case where both variables k1 and ω take complex values
and, following Gastser (1968b) and Gaster and Jordinson (1975), he determined six
branch points in the complex k1-plane which correspond to modal degeneracies (i.e.,
to singularities of the “dispersion relation” D(k1, ω) = 0; cf. Sect. 2.93 above). After
this he began to vary the value of Re (keeping k2 zero) in the hope that �mω would
vanish for some of the singular points (k1,ω) However, in the range 103 ≤ Re ≤
2.104, no singular points on the realω-axis were discovered. The next step was to
vary the spanwise wave number k2; then at least one degeneracy of the spatial O-S
modes was found at real values of ω, k2 and Re, but at a high value of Re which
in practice would definitely correspond not to laminar but to fully turbulent plane
Poiseuille flow. Hence, Koch discovered no degeneracies of the spatial O-S spectrum
which might possibly induce certain growth of disturbances.

However, application of the same procedure to a Blasius boundary-layer flow
(beginning with computations at k2 = 0 and Re = 580, where Re = (Uox/v)1/2 =
Rex

1/2 = Re δ∗/1.72, with subsequent varying of values for Re and k2) was found
to be more fruitful. Here again no coalescences of spatial eigenvalues k1(ω, k2, Re )
were obtained for k2 = 0 and real values of ω and Re, although the complex singular
points (k1,ω) were numerous here, Then the value of k2 was varied, still at Re = 580,
and the double complex eigenvalue k1 ≈ 0.21 + 0.07i was found for ω = 0.1 and
k2 = 0.283 (all the variables are given in dimensionless form). The spatial spectral
degeneracy found was easily traced to other Reynolds numbers (degeneracy values
of k1, k2, and ω for five values of Re up to Re = 2200 were presented). Koch also
indicated the variation of the degeneracy frequency ω and spanwise wave number k2

with the parameter β characterizing the family of the Falkner-Skan velocity profiles
(where β = 0 corresponds to the Blasius boundary layer, see Sect. 2.92). Thus, it
was shown that in the case of boundary-layer flows there are some double spatial
O-S eigenvalues which possibly can induce certain growth of disturbances.

Shanthini (1989) studied the degeneracies of the temporal O-S eigenvalues in
plane Poiseuille flow for two-dimensional and three-dimensional O-S modes of both
symmetric and antisymmetric types. He discovered several new double eigenvalues,
and thoroughly investigated the first six degeneracies (four for symmetric and two for
antisymmetric modes) to determine which of these degeneracies can produce growth
of flow disturbances and what maximal amplitude can then be reached. It was found
that growth is possible only in the cases of the first symmetric and first antisymmetric
degeneracies, where amplitudes can become at most seven and two times larger
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that their initial values, respectively. The unexplored degeneracies of higher orders
seemed to Shanthini to be unpromising as growth sources; moreover, the majority
of them correspond to supercritical values of Re and hence cannot play any role in
the “by-pass” transition process. Nevertheless, later Reddy and Henningson (1993)
examined the maximal energy growths G∗ = maxt > 0[E(t)/E(0)) (an exact definition
of this quantity will be given in the next subsection) for disturbances corresponding
to four other degeneracies of the Poiseuille-flow O-S eigenvalues, and found that in
these cases the values of G* are in the range from 1.00 to 5.15. Similar calculations
were made by Reddy and Henningson for four degeneracies of O-S eigenvalues they
found in plane Couette flow; here 1.00 ≤ G∗ ≤ 1.30.

Summing up the results of this subsection, we may say that they confirm that
resonances and degeneracies can produce some contributions to the often-observed
transient growth of flow disturbances. However, none of the investigators whose work
was considered above found a resonance or degeneracy growth rate large enough to
explain the numerous experimental and computational data showing very significant
transient growth of flow disturbances. (See in this respect the discussion of the inad-
equacy of resonance and degeneracy mechanisms of disturbance energy growth in
the papers by Butler and Farrell (1992), p. 145, and Reddy and Henningson (1993),
Sect. 6.2, which will be considered later in this book.) Note also, that among the
works discussed above the greatest growth was found by Hultgren and Gustavsson
(1981) who did not refer to resonance or degeneracy mechanisms at all (they consid-
ered the case where the O-S equation has only continuous eigenvalue spectrum), but
investigated some special solutions of the general initial-value problem. Therefore it
seems natural to think that some other mechanism of disturbance growth must exist
which is more universal and more effective than resonance and degeneracy mecha-
nisms. To seek such a mechanism, the general solutions of the initial-value problems
for flow disturbances will be considered at greater length in the next subsection.

3.3.3 Complete Solutions of the Initial-Value Problem and
Transient Growth of Disturbances in Plane-Parallel Flows

Tam’s (1967) general solution (3.48) of the initial-value problem for the vertical
velocity w(x,t) of a small disturbance to a steady plane-parallel flow, and its more ex-
plicit form given by Gustavsson (1979), were mentioned several times in Sects. 3.31–
3.32. However, the general solution was used by these authors only to find the part
of the complete vertical-velocity field which determines the asymptotic behavior
of w(x,t) as t → ∞. Now we shall consider some studies in which the complete
solutions of the initial-value problem for three-dimensional disturbance velocity
u(x, t) = {u(x, t), v(x, t), w(x, t)} (or, what is equivalent, for {w(x, t), ζ3(x, t)} where
ζ3 = ∂v/∂x − ∂u/∂y) were applied to investigation of the behavior of small
disturbances in the initial stage of their evolution.

Gustavsson’s (1981, 1986) representation of the exact solution to the initial-value
problem for the vertical velocity w of a three-dimensional disturbance in plane
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Poiseuille flow was rewritten at greater length by Shanthini (1989), while an equally
detailed solution for the vertical vorticity ζ3 in plane Couette flow was given by
Gustavsson and Hultgren (1980). Both these explicit solutions were given for the
three-dimensional Fourier-Laplace transforms of the fields studied, and in the cited
papers they were used only for evaluation of the disturbance growth caused by spec-
tral degeneracies or resonances (see Sect. 3.32). Later Gustavsson (1991) combined
his previous results to obtain, for the case of plane Poiseuille flow, a complete solution
of the initial-value problem for both fields w(x,t) and ζ3(x,t), which fully determine
the three-dimensional velocity u(x,t) of a disturbance. He applied this solution to the
special case where a single O-S normal mode of the vertical velocity w(x,t), excited
the vorticity field ζ3(x,t). In this case w(x,t) =W (z)exp[i(k1x + k2y −ωt)) and this
allows the solution of Eq. (3.54) for ζ3 to be simplified. The initial value ζ3(x,0)
was set equal to zero in this paper, and hence only the induced vertical vorticity was
included in the solution of initial-value problem. The given values of the O-S mode
and the derived values of ζ3(x,t) were used by Gustavsson to determine the kinetic
energy of a disturbance

T ∗(t) = 1

2

∞∫

−∞

∞∫

−∞

H∫

0

(u2 + v2 + w2)dxdydz. (3.56)

Using a Fourier representation with respect to horizontal coordinates, Eq. (3.15)
allows us to rewrite Eq. (3.56) in the general case as

T ∗(t) = 1

2

∞∫

−∞

∞∫

−∞

H∫

0

1

k2
(|ζ̂3|2 + |ŵ′|2 + k2|ŵ|2)dk1dk2dz (3.56′)

where k2 = k1
2 + k2

2, while the circumflex and prime respectively denote a Fourier
transform and a derivative with respect to z. According to (3.56′), the energy density
in the wave-number plane, E(k1, k2; t), is given by

E(k1, k2; t) =
H∫

0

1

2k2

(
|ζ̂3|2 + |ŵ′|2 + k2|ŵ|2

)
dz. (3.57)

Gustavsson considered the case of subcritical Reynolds numbers, Re < Recr, (where
Recr ≈ 5772) and carried out the energy computations for a single O-S mode of the
vertical velocity, in the hope that results for the least-damped mode would indicate
the possible maximal rate of transient growth of energy. Following his paper, we will
non-dimensionalize the spatial coordinates, time, wave numbers, and flow variables
by the use of the Poiseuille-flow maximum (centerline) velocity Uo and the channel
half-depth H1 = H/2 as units of velocity and length, and define Re =UoH1/v. The
dimensionless amplitude of the forcing O-S mode was chosen by Gustavsson so that
E(k1, k2; 0) = 1 (where k1 and k2 are the wave numbers of the exciting w-mode and
ζ3(0) = 0). He then showed that the dimensionless energy density of the induced
normal vorticity
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a b

Fig. 3.7 Dependence on t/ Re (where t = t∗U0/H1 is the dimensionless time) of the energy density
e(t) for normal vorticity induced in a plane Poiseuille flow by the least-damped symmetric a and
antisymmetric b O-S normal modes of the vertical velocity with energy density E(0) = 1, in the
case where Re = 1000, k1 = 0.1, k = (k1

2 + k2
2)1/2 = 1. (After Gustavsson (1991))

e(k1, k2; t) = 1

2k2

2∫

0

|ζ̂3|2dz

depends only on k1, k2 (or k) and t/ Re = t∗v/H1
2 (where t∗ is the dimensional time)

The computations showed that when Re is not exceptionally small, the energy
density e(t) at first grows with time much faster than the energy of the forcing O-S
mode decays due to viscosity. Therefore, the total kinetic energy density E(t), which
includes e(t), grows rapidly with time and can greatly exceed the initial energy density
E(0) = 1. Some of the results obtained for Re = 1000, k1 = 0.1 and k = 1 and the
least-damped symmetric and antisymmetric (with respect to the channel midplane)
O-S vertical-velocity modes are presented in Fig. 3.7. (Note that in a plane Poiseuille
flow the symmetric vertical-velocity mode excites the antisymmetric vertical vorticity
mode and vice versa). In Fig. 3.8, again for Re = 1000, contours in the (k1, k2)-plane
are shown for e(k1, k2, t), the energy density of the normal vorticity excited by the
least-damped symmetric O-S mode, at t = 80 (which is close to the time when the
maximum value of e(k1, k2, t) is reached for k2, ≈ 2, k1 = 0). According to Fig. 3.8, at
the highly-subcritical Reynolds number Re = 1000, the kinetic energy density of the
induced disturbance can take values which are almost two hundred times greater than
the initial energy E(0). Gustavsson also showed that at other values of Re, e(k1, k2, t)
in the region of the (k1, k2)-plane with substantial energy growth is approximately
proportional to Re2, if k1 and t are rescaled in proportion to Re−1 and Re, respectively.
Hence at subcritical values of Re higher than 1000 the ratios e(t)/E(0) and E(t)/E(0)
can considerably exceed 1000. If the forcing O-S mode of the vertical velocity is not
the least-damped symmetric or antisymmetric mode, then the growth of e(t) is not so
great but, nevertheless, computations show that at Re = 1000 second and even third
symmetric and antisymmetric modes can also produce substantial transient growth of
disturbance energy. Figure 3.8 also shows that the main growth is achieved for small
values of k1 (corresponding to streamwise wave-lengths much greater that the full
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Fig. 3.8 Contours in the
(k1, k2)-plane for the energy
density e(k1, k2; t), at t = 80,
of the vertical vorticity ζ3

induced in a plane Poiseuille
flow with Re = 1000 by the
least-damped normal O-S
mode of the vertical velocity
with E(k1, k2; 0) = 1. The
labels are values of the energy
density; the adjacent contours
correspond to increments of
20 in the energy-density
values. (After Gustavsson
(1991))

height of the flow and the span wise wavelength of a disturbance). Hence the forcing
most effectively generates streamwise-elongated flow structures, whose amplitudes
can reach rather high values before viscous decay becomes appreciable. This is, in
fact, true also for supercritical Poiseuille flows at not-too-high values of Re, where
an unstable O-S mode exists but in many cases grows much more slowly during
the initial stage of evolution than the induced vertical vorticity ζ3 (see, e.g., Farrell
(1988a), p. 2094, and Reddy and Henningson (1993), Fig. 9).

Gustavsson’s student Diedrichs (1996) computed the energy growth in a plane
Couette flow for a disturbance with ζ3(x, 0) = 0 and w(x,0) corresponding to the
least-damped O-S mode of the vertical velocity, either symmetric or antisymmetric
with respect to the channel midplane. On the basis of results by Gustavsson (1991)
and Butler and Farrell (1992) showing that the greatest growth is most often obtained
for structures infinitely elongated in the streamwise direction, Diedrichs confined his
study to x-independent disturbances with k1 = 0. Hence the O-S modes considered
were of the form w(x,t) =W (z) exp[i(ky−ωt)) (such modes are sometimes called
the Stokes modes). According to Diedrichs’ computations for Couette flow with
Re = 1000 (where the channel half-depth H1 and the half-difference of the wall
velocities Uo are taken as the length and velocity scales), in the case of vertical
vorticity forcing by the least-damped symmetric Stokes mode, the maximum growth
of energy density is obtained for k = 1.66, where E(t)/E(0) ≈ 1157 for t ≈ 139. Con-
siderably smaller growth occurs when the least-damped antisymmetric Stokes mode
induces the growth of vertical vorticity; here the maximum value of E(t)/E(0) is close
to 116 (and is reached at t ≈ 46 for the optimal spanwise wave number k ≈ 2.72).
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Fig. 3.9 Contours in the
(k1, k2)-plane for the
maximum energy growth
G(k1, k2) = maxt [E(k1, k2, t)/
E(k1, k2, 0)] of the plane-
wave disturbance induced in a
Blasius boundary layer with
Re =U0 δ

∗/v = 500 by the
least-damped O-S mode of
the vertical velocity, under the
condition that the initial
vertical vorticity is equal to
zero. The adjacent contours
correspond to increments of 5
in the G-values. (After Breuer
and Kuraishi (1994))

These results agree quite well with the results of Butler and Farrell (1992) which
will be considered later. Diedrichs also investigated the disturbance growth in some
other channel flows with more complicated velocity profiles (either “Couette-like”
or “Poiseuille-like”), where even greater growth of energy can be achieved than in
ordinary Couette and Poiseuille flows; however, these results will not be considered
here.

Transient growth of small disturbances in various boundary-layer flows was stud-
ied by Breuer and Kuraishi (1994). Following Gustavsson (1991), these authors also
paid most attention to disturbances with fixed horizontal wave numbers k1 and k2,
having initially-zero vertical vorticity ζ3 and a vertical velocity w corresponding to
the least-damped O-S mode; however, the case of a localized initial disturbance
with the shape depicted in Fig. 3.2 was also briefly considered. The boundary layers
investigated were mostly three-dimensional (i.e., with non-zero cross-stream veloc-
ity V (z) as well as a velocity component U(z) parallel to the free-stream velocity
outside the boundary layer, as is typical for boundary layers over swept wings)
and also often had non-zero pressure gradient. Such more complicated boundary
layers will not be considered in this series; therefore, only some of Breuer and Ku-
raishi’s results for a simple two-dimensional Blasius boundary layer are shown in
Fig. 3.9. In this figure the contours in the (k1, k2)-plane of the maximum energy
growth G(k1, k2) = maxt > 0[E(k1, k2; t)/E(k1, k2; 0)) are presented for the case of a
disturbance imposed at t = 0, with Re δ∗ = Uoδ

∗/v = 500 (here Uo and δ∗ are the
free-stream velocity and boundary-layer displacement thickness, respectively, and
k1 and k2 are made dimensionless with δ∗). We see that, as in the case of plane
Couette flow, the maximum possible energy growth is substantial and occurs for
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disturbances with quite small values of k1 (thus, strongly streamwise-elongated) and
finite k2 (in the range from 0.6 to 0.8). The greatest numerical values of energy
growth in Fig. 3.9 are considerably smaller than in Fig. 3.8, but the computation
procedure used by Breuer and Kuraishi did not permit reliable estimates of G(k1, k2)
for k1 < 0.1, while in Fig. 3.8 the greatest growth rates do correspond to very small
values of k1.

Let us now assume that, in a given plane-parallel channel flow, w(x,0) =W (z)
exp[i(k1x + k2y)] where W (z) is an arbitrary function. If the growth of disturbance
energy has already been computed for cases where the forcing is due to a single
O-S mode of vertical velocity, then to find the disturbance development in the case
of arbitrary W (z) we need only expand this W (z) into O-S eigenfunctions and then
superpose the solutions corresponding to normal-mode components of W (z). More
general results, related to behavior in the real time-space of the vorticity ζ3(x, t)
induced by arbitrary vertical-velocity disturbance w(x, t), can be obtained by ex-
panding the initial value w(x, 0) in a two-dimensional Fourier integral, applying the
above results to individual Fourier components, and then carrying out the inverse
Fourier transformation. Some computations of this type were performed for the case
of a localized initial disturbance in a plane Poiseuille flow by Henningson (1991)
and Henningson et al. (1993), whose results will be considered later in this subsec-
tion. A simpler approach was used by Criminale et al. (1997) who investgated the
problem of the transient growth of disturbances in plane Couette and plane Poiseuille
flows, based on the direct numerical solution of Eqs. (3.44) and (3.54) for w(x, t)
and ζ3(x, t) with given initial values w(x, 0) and ζ3(x, 0). The initial values were
assumed to be represented by two-dimensional Fourier integrals, but the subsequent
expansion of individual Fourier components into O-S and Sq eigenfunctions was
not used in this paper. Dimensionless forms of Eqs. (3.44) and (3.55) (where all
independent and dependent variables were again non-dimensionalized by using the
undisturbed velocity at the channel midplane, Uo, and the channel half-depth, H1,
as units of velocity and length) imply the following equations for two-dimensional
Fourier transforms, ŵ(k1, k2; z, t) and ζ̂ (k1, k2; z, t), of w(x, y, z, t) and ζ3(x, y, z, t) :

[{
∂

∂t
− ik1U (z)

} (
∂2

∂z2
− k2

)

+ ik1U
′′(z)

]

ŵ − 1

Re

(
∂2

∂z2
− k2

)2

ŵ = 0, (3.58)

[
∂

∂t
− ik1U (z)

]

ζ̂ − 1

Re

(
∂2

∂z2
− k2

)

ζ̂ = −ik2U
′(z)w. (3.59)

By shifting the origin of z to the channel midplane, the vertical extent of the flow
can be transformed to the segment −1 ≤ z ≤ 1. Then the dimensionless undisturbed
velocity U(z) becomes equal to 1−z2 or z for plane Poiseuille or Couette flow,
respectively, while boundary conditions take the form:

ŵ(−1, t) = ŵ(1, t) = ŵ′(−1, t) = ŵ′(1, t) = 0, ζ̂ (−1, t) = ζ̂ (1, t) = 0. (3.60)

In Eq. (3.58–3.60), as always, k2 = k2
1 + k2

2 and primes denote derivatives with
respect to z.
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Criminale et al. solved the differential equations (3.58), (3.59) by a finite-
difference method on a uniform grid. The results were verified by grid-independence
checks and by recomputing known results for O-S eigenvalues and eigenfunctions.
It was found that the computational scheme allowed the values of the energy density
E(k1, k2; t) = E(t) for both Couette and Poiseuille flows to be determined rela-
tively swiftly for any given values of k1, k2 and Re, and arbitrary initial values
ŵ(k1, k2; z, 0) = Wo(z) and ζ̂ (k1, k2; z, 0) = Zo(z). The authors published some
results of computations for various combinations of five forms of the function
W0(z) (viz.W0 = Ao(1 − z2)2 ≡ W (1)

o (z), (Ao/nπ )( cos nπ − cos nπz) ≡ W0
(2)(z),

W (2)
o (z)(4πλ)−1/2e−z2/4λ = W (3)

o (z), and two other forms which were anitsymmetric
in z) with three forms of the function Zo(z) (viz. Zo = 0,A1 cos [(2n− 1)πz]/2, and
A1 sin nπz), whereAo, A1, andλ are positive constants and n is an integer. At first they
considered the case of two-dimensional disturbances with k2 = 0. Here, results were
obtained for a disturbance with k1 = 1.48 in plane Poiseuille flow with Re = 5000
and a disturbance with k1 = 1.21 in plane Couette flow with Re = 1000. (The choice
of values for k1 was motivated by the results of Butler and Farrell (1992), considered
later in this section.) If n = λ= 1 and Ao =A1, then, for all combinations of initial
valuesWo(z) and Zo(z) considered, the disturbance decays monotonically with time
in Poiseuille flow, while in Couette flow some combinations of the initial values Wo

and Zo lead to minor disturbance growth, increasing the energy density E(t) by less
than a factor of two. These conclusions seemed somewhat strange since, according
to the above-mentioned paper by Butler and Farrell, substantial growth can occur
for two-dimensional disturbances in both Poiseuille and Couette flows. Therefore
Criminale et al. continued their study by considering the case of the second above-
mentioned form forWo(z) with n > 1, corresponding more closely to disturbances for
which Farrell (1988b) and Butler and Farrell (1992) found maximum growth. Then
it was found that in plane Poiseuille flow the second form ofWo (z), together with the
assumption that ζ3(x, 0) = 0 (i.e., the first form of Zo(z)), leads to maximal growth
of disturbance energy for n = 7, when the maximum value E(t)/E(0) = 12 is reached
at t = 14.1. Similarly, in the Couette flow the greatest growth was found for the same
combination of functions Wo(z) and Zo(z) if n = 3, when E(t)/E(0) reaches a maxi-
mum value of 4.8 at t = 7.8. The calculated values of the times when the maximum
growths are reached agree well with values obtained by Butler and Farrell (1992) for
quite different initial conditions but the maximum growths are appreciably smaller
than those found in the latter paper.

In the case of three-dimensional disturbances, with k2 �= 0, much greater growth
can occur. Again on the basis of the results of Butler and Farrell (1992), Criminale
et al. gave special attention to consideration of disturbances with k1 = 0, k2 = 2.044
in plane Poiseuille flow with Re = 5000, and disturbances with k1 = 0, k2 = 1.66
in plane Couette flow with Re = 1000. All possible combinations of the above-
mentioned forms for vertical velocity and vorticity profiles Wo(z) and Zo(z) were
studied, with a number of values for n, λ, A0 and A1, but results were given in
the paper only for n = λ = 1 (leading to maximal disturbance growth in the cases
considered) and A1 =A0, if ζ3(x, 0) �= 0. In Fig. 3.10 the functions G(t) = E(t)/E(0)
are shown for three-dimensional disturbances in plane Poiseuille and Couette flows
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ba

Fig. 3.10 Dependence on dimensionless time t of the energy-growth function G(t) = E(t)/E(0) for
a plane-wave disturbance with k1 = 0 and k2 = 2.044 in plane Poiseuille flow with Re = 5000
a, and a plane-wave disturbance with k1 = 0, k2 = 1.66 in plane Couette flow with Re = 1000 b,
for various initial values of the vertical velocity and zero initial value of the vertical vorticity. The
three curves correspond to the values Wo(1)(z), Wo(2)(z), and Wo(3)(z) of the initial vertical-velocity
amplitude Wo(z). (After Criminale et al. (1997))

having the above-mentioned values of k1 and k2, zero initial vertical vortilcity ζ3(x, 0)
and the three forms of the initial vertical-velocity profile Wo(z) indicated above. We
see that the three forms ofWo(z) lead to very similar forms of the function G(t), with
maximum values close to 4500 or 1150 in the case of Poiseuille or Couette flow,
respectively. These maximum values of G(t), and also the times when the maxima are
reached, proved to be only slightly different from values found by Butler and Farrell
(1992) for the “optimal initial conditions”, which will be considered later. However
Criminale et al. found that for two Wo(z) profiles that were antisymmetric in z, the
disturbance growth for ζ3(x, t) = 0 was much smaller than that shown in Fig. 3.10.

Non-zero initial vertical vorticity ζ3(x, 0) = Zo(z) exp [i(k1x + k2y)] also con-
siderably reduces the values of G(t). This can be explained by the fact that the initial
(non-induced) vertical vorticity contributes to the value of E(0) but decays rapidly
with time, while only the induced vertical vorticity grows with time and produces
growth of E(t). It was shown by Criminale et al. that, in the case of the first Wo(z)
profile introduced by them, the function G(t) nevertheless grows quite appreciably
with time for both non-zero forms of Zo(z) with A1 =Ao, while for the other four
forms of Wo(z) considered, the maximum of G(t), in cases where Zo(z) �= 0, proves
to be many times smaller than that for the first form.

Computations by Criminale et al. also confirmed the conclusion of Gustavs-
son (1991) that G∗ = maxt > 0G(t) is almost exactly proportional to Re2, while the
time t∗ when this maximum is reached is proportional to Re. Since, according to
Fig. 3.10, G∗ ≈ 4540 for Poiseuille flow with Re = 5000 and ≈ 1150 for Couette
flow with Re = 1000, we deduce that, for the initial conditions considered, G∗ ≈ 180
for Poiseuille flow with Re = 1000 (in good agreement with the result by Gustavs-
son relating to another initial condition), while G∗ ≈ 29000 for Couette flow with
Re = 5000.
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Let us now consider some other approaches to investigation of transient distur-
bance growth. Henningson (1991) (see also Henningson et al. (1994); Henningson
and Alfredsson (1996); and Schmid and Henningson (2001)) used the general Eqs.
(3.44) and (3.54) somewhat differently. Studying the disturbance development in a
plane Poiuseuille flow, he also assumed that the horizontal wave numbers k1 and k2

of disturbance vertical velocity and vorticity w and ζ3 are fixed (and thus w(x, t) =
ŵ(k1, k2; z, t) exp [i(k1x + k2y)], ζ3(x, t) = ζ̂ (k1, k2; z, t) exp [i(k1x + k2y)]) where
ŵ(k1, k2; z, t) and ζ̂3(k1, k2; z, t) satisfy Eqs. (3.58) and (3.59)). However, instead of
solving these equations, he expanded the functions ŵ(k1, k2; z, t) and ζ̂3(k1, k2; z, t) in
eigenfunctions of the O-S and Sq equations (2.41) and (2.42) corresponding to wave
numbers k1 and k2. The possibility of expanding ŵ(k1, k2; z, t) in the O-S eigenfunc-
tions follows from the completeness of the system of these eigenfunctions, proved
by Schensted (1960) and Di Prima and Habetler (1969) (see Sect. 2.5); the general
solution ζ̂ (k1, k2; z, t) of Eq. (3.59) may be represented as the sum of the general
solution of the corresponding homogeneous equation with zero right-hand side (this
summand may be expanded in Sq modes) and some particular solution of the in-
homogeneous equation. Henningson showed that such a particular solution can be
constructed rather easily for the case where ŵ(k1, k2; z, t) is represented by single O-S
mode or by a given linear combination of such modes. Therefore, his approach avoids
using the complicated Fourier-Laplace-transformation technique for determination
of the general solution of the initial-value problem.

In the case where ŵ(k1, k2; z, t) is given by a single O-S normal mode (say the
first, i.e., the least stable one) and hence ŵ(k1, k2; z, t) = ŵ(z, t) = AW1(z)e−iω1t

(whereW1(z) and ω1 are the first O-S eigenfunction and eigenfrequency, and A is an
arbitrary coefficient), Henningson’s solution has the form

ζ3(x, t) =
⎡

⎣
∞∑

j=1

Cje
−iωoj t+

∞∑

j=1

D
(1)
j

e−iω1t − e
−iωoj t

ω1 − ωoj

⎤

⎦ ζ3j (z)ei(k1x+k2y), (3.61)

where ζ3j (z), ωj andω0
j denote the jth Sq eigenfunction and O-S and Sq eigenfrequen-

cies, respectively, whileCj andD(1)
j are coefficients in the expansions of the functions

ζ̂ (k1, k2; z, 0) = ζ̂ (z, 0) and −iAk2U′(z)W1(z) into Sq eigenfunctions ζ3j (z), 1 ≤
j < ∞. (This solution, where all the frequencies and coefficients are complex,
can be checked easily by direct substitution into Eq. (3.59).) In the more general case
where

ŵ(k1, k2; z, t) =
∑

m

AmWm(z)e−iωmt (3.62)

(i.e., ŵ is given by a sum of O-S modes), the solution (3.61) clearly takes the form

ζ3(x, t) =
⎡

⎣
∑

j

Cj e
−iωoj t +

∑

m,j

D
(1)
mj

e−iωmt − e
−iωoj t

ωm − ωoj

⎤

⎦ ζ3j (z)ei(k1x+k2y). (3.63)
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A Taylor series expansion of the right-hand side of (3.63) in powers of time gives,
for small values of t, the result

ζ (x, t) =
∞∑

j=1

[Cj (1 − iωoj t) − i
∑

m

D
(1)
mj t +O(t2)]ζ3j (z)ei(k1x+k2y) (3.64)

(where O symbolizes order of magnitude), This shows that the normal vorticity (and
hence, by virtue of (3.15), the horizontal-component velocities u and v also) ini-
tially grow linearly with time. Moreover, Henningson noted that, according to an
asymptotic expansion given by Drazin and Reid (1981), p. 159 at small k1Re and
large Re the eigenfrequencies ωm and ω0

j are inversely proportional to Re. Hence,
at high Reynolds numbers and small enough values of k1, all the O-S and Sq eigen-
frequencies take values close to zero and they coalesce as Re → ∞. This means that
at high Reynolds numbers and small streamwise wave numbers a number of near-
resonances and near-degeneracies necessarily exists. This circumstance can explain
the substantial growth of disturbances elongated in the streamwise direction in flows
with large Re.

Summing all the terms in the right-hand side of (3.62) which do not tend to zero
as Re → ∞, Henningson (1991) (see also Henningson et al. (1994); Schmid and
Henningson (2001)) found that at small values of k1Re and large Re

ζ̂ (z, t) = ζ̂ (z, 0) − ik2U
′(z)ŵ(z, 0)t +O

(
t

Re

)

. (3.64′)

According to (3.15) this equation coincides, when Re → ∞, t = O(1), and k1 = 0
with the known inviscid result (3.21) due to Ellingsen and Palm.

Henningson also calculated a number of values for the coefficients D(1)
j in

Eq. (3.61) (note that in the case of a non-self-adjoin eigenvalue problem, the eigen-
functions of the adjoint problem are needed for the computation of the expansion
coefficients; see, e.g., Schensted (1960); Eckhaus (1965); Betchov and Criminale
(1967); Joseph (1976); or Schmid and Henningson (2001)). It was found that values
of D(1)

j are sometimes many tens (or even many hundreds) times greater than the
maximum amplitude of the driving O-S mode. Henningson then used Eq. (3.61)
for calculation of the time development of the normal-vorticity amplitude in plane
Poiseuille flow, disturbed by a superimposed vertical velocity represented by the
least-stable O-S mode with the maximum of the amplitude AW1(z) equal to one. He
assumed that ζ3(x, 0) = 0, and either Re = 3000, k2 = 1 with varying k1, or k1 = 0,
k2 = 1 and varying Re. In all these cases significant initial transient growth of vorticity
amplitude was observed, increasing with decreasing k1 (i.e., increasing streamwise
wavelength) and increasing Re. For small values of k1 and not-too-small subcriti-
cal Re (equal to or exceeding 3000), it was found that the maximum amplitude of
the normal vorticity can be fifty or more times larger than the amplitude of the ini-
tial normal-velocity wave. These results clearly agree well with those obtained by
Gustavsson (1991).

Solution (3.63) was applied by Henningson to the study of the normal vorticity
development in plane Poiseuille flow, produced by a localized initial disturbance
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of the shape shown in Fig. 3.2. The results obtained were compared with direct
numerical simulation of the same vorticity development (i.e., with numerical solution
of the corresponding Eqs. (3.44) and (3.54)). These results of Henningson (1991)
were developed further by Henningson et al. (1993), whose paper will be considered
later in this section.

Strong renewed interest in transient disturbance growth, arising in the late 1980s
and early 1990s, led several authors to pay special attention to the “optimal initial
conditions” providing maximal growth of the initial disturbance. One of the first
investigations of this type was due to Farrell (1988a) who studied the development
of two-dimensional disturbances in plane Poiseuille and Couette flows. Since ζ3 ≡
∂v/∂x − ∂u/∂y = 0 for a two-dimensional disturbance, where u(x,t) = {u(x, z, t),
0, w(x, z, t)}, only Eqs.(3.44) and (3.58) (where ∂w/∂y and k2 are equal to zero) are
of importance in this case. Farrell based his analysis on consideration of a Fourier
component ψ(z, t)eikx of the stream function ψ(x, z, t). (Then−ikψ(z, t)eikx will
be the corresponding Fourier component of the vertical velocity w(x, z, t); hence
it makes no difference whether stream function of vertical velocity is considered.)
To simplify the computations, he approximated differential equation on the interval
0 ≤ z ≤ H (here we use dimensional independent and dependent variables again)
by finite-difference equations with a sufficiently high number N of mesh points
(cf. in Sect. 3.23 the description of a similar approach used by Farrell and Ioannou
(1993a)). Thus, the function ψ(z,t) and the O-S eigenvalue problem (relating to the
case where ψ(z, t) = ψ(z)e−iωt ) were replaced, respectively, by the vector-function
ψ(t) and by the finite-difference version of the classical O-S problem dealing with
a system of N linear algebraic equations. The value of N was chosen to be 100, giv-
ing results practically indistinguishable from exact ones. The algebraic eigenvalue
problem has N discrete eigenvalues ωj (or cj = ωj/k) and N eigenvectors ψj . The
N-dimensional vector ψ(0) corresponding to the Fourier amplitude ψ(z,0) of the
initial stream function ψ(x,z,0) (such correspondence will be denoted below as
ψ(z, 0) ⇒ ψ(0)) can be expanded in eigenvectors ψj of the discretized O-S equation.
Let this expansion be

ψ(0) =
N∑

j=1

ajψj ;

then the evolution in time of the initial disturbance is described by the equation

ψ(z, t)eikx ⇒ ψ(t)eikx =
n∑

j=1

ajψje
ik(x−cj t). (3.65)

The initial conditions are now given by the vector a with components, aj, j = 1, . . . ,
N. To make the concept of “optimal initial conditions” definite, we must introduce
a measure for the disturbance magnitude and determine what specific meaning is
given to the word “optimal”. Farrell considered two different measures of disturbance
magnitude: the simplest L2 measure, corresponding to the norm
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||ψ ||L =
⎡

⎣

H∫

0

|ψ(z, t)|2dz

⎤

⎦

1/2

,

and the energy measure based on the norm

||ψ ||E =

⎧
⎪⎨

⎪⎩

1

2

H∫

0

[k2|ψ(z, t)|2 + |ψ ′(z, t)|2]dz

⎫
⎬

⎭

1/2

=

⎧
⎪⎨

⎪⎩

1

2

H∫

0

[|u|2 + |w|2]dz

⎫
⎬

⎭

1/2

where a prime again denotes a derivative with respect to z. Both the measures (squares
of the corresponding norms) were approximated by positive-definite quadratic forms
of variables aj , with coefficients depending on t. As to the meaning of the “optimal-
ity”, it must be chosen in accordance with the optimization problem being solved.
Two such problems were investigated by Farrell: i) Determination of the minimum
initial disturbance exciting a chosen normal mode of unit measure (for example, the
least stable or, if Re > Recr, the unstable mode), and ii) Determination of the shape
of the initial disturbance that produced the maximum growth of the disturbance
magnitude over a fixed reasonably chosen time interval. For the two measures of
disturbance magnitude given above, both problems can be reduced to the relatively
simple problem of finding a conditional maximum (or minimum) for a quadratic
form of N variables. The most striking feature of the solution of the first problem
(relevant to the best way to produce the most persistent wave) was the discovery
that the optimal initial conditions for generation of a given mode are very different
from this mode itself. Therefore, it is most advantageous here not to put the energy
available at the time t = 0 directly into the mode which one wants to excite, but to
use this energy quite differently.

Farrell’s problem ii) is more interesting to us, being much closer to the topic
of this subsection. It represents an attempt to estimate maximal possible transient
growths of a disturbance over various finite time intervals (cf. again the discussion
of the paper by Farrell and Ioannou (1993a) in Sect. 3.23). Farrell showed that the
required initial disturbance is given by the eigenvector of some specific N × N matrix
corresponding to its greatest eigenvalue, while the eigenvalue itself determines the
relative growth of the disturbance magnitude. Then he illustrated this general result
by two examples. The first of these concerned the development of the disturbance
with kH1 = 1 that grows maximally in theL2 or energy norm (both were considered)
over the first 20 time units (i.e., from t = 0 to t = 20 H1/Uo where, as usual, H1

and Uo are the channel half depth and the maximum undisturbed velocity) in a plane
Poiseuille flow with supercritical Reynolds number Re = 104. The precise form of the
optimum disturbance depends on the choice of the norm but many general features
of this disturbance are common in both cases and differ strikingly from the features
of the unstable normal mode with the same value of k. However, in course of its
development the form of the optimal disturbance approaches the form of the unstable
mode. The maximal kinetic energy density of the disturbance which can be reached
over 20 time units is 61 times greater than the initial disturbance energy density;



3.3 The Initial-Value Problem for Viscous Parallel Flows 249

and the transient growth rate found was nearly two orders of magnitude greater than
the rate of the exponential growth of the unstable mode at Re = 104. The second
example considered dealt with a disturbance having the same wave number k as
above and growing maximally in the energy norm over 12 time units in Couette flow
with Re = 103 (now the velocityUo entering the definition of Re is the half-difference
of wall velocities). Here the growth rate was smaller than in the first example, and
the maximal energy density exceeded the initial energy density only by a factor of
about 11.

Later some supplementary results concerning maximally growing two-
dimensional disturbances in plane Poiseuille and Couette flows were mentioned
in passing by Butler and Farrell (1992) who gave their main attention to develop-
ment of three-dimensional disturbances. In particular they stated that, in the case of
a Couette flow with Re = 1000, comparison of the optimal two-dimensional distur-
bances found for various dimensionless wave numbers κ = kH1 and growth periods
τ = tUo/H1 shows that the maximal transient growth of the kinetic energy den-
sity E(t) = ||ψ(x, z, t)||2E occurs for a disturbance with κ = 1.21 where E(t)/E(0)
reaches the maximal value 13 at τ ≈ 9 but then begins to decrease. In the case of a
plane Poiseuille flow a similar investigation was carried out for Re = 5000 (i.e., for
a subcritical value, half the supercritical Re used in Farrell’s paper (1988a)). It was
found that here κ = 1.48 for the most strongly growing two-dimensional disturbance,
whose energy density E(t) reaches a value close to 46E(0) at τ ≈ 14 but then also
starts to decrease. These results stimulated Criminale et al. (1997) to choose the same
values of κ and Re in a subsequent study of two-dimensional disturbance growth in
plane Couette and Poiseuille flows. It was noted above that the maximum energy
growths found in this paper for the initial conditions considered was appreciably
smaller than those obtained by Butler and Farrell for optimal initial conditions.

The maximum energy growth found by Farrell and by Butler and Farrell for two-
dimensional disturbances in a plane Poiseuille flow were much smaller than those
found, for example, by Gustavsson (1991) and Henningson (1991), who analyzed the
evolution of some particular disturbances but did not solve optimization problems.
Recall that the last-mentioned two authors both considered three-dimensional distur-
bances and stressed that the growth mechanisms studied by them were in principle
three-dimensional. In fact, two-dimensional disturbances produce no forcing of the
vertical vorticity (and horizontal velocities) by vertical velocity, which plays such
an important part in the dynamics of three-dimensional disturbances. The principal
growth mechanism for two-dimensional disturbances is based on the extraction of
the energy from the sheared mean flow by disturbances through the action of the
“Reynolds stress of a disturbance” uw having a sign opposite to that of the velocity
shear of the undisturbed flow dU/dz (see in this respect the energy-balance equation
(3.74) in Sect. 3.4 and the papers by Farrell and Butler and Farrell cited above).
However, according to all available data, this mechanism is much less efficient than
the mechanism of vertical-velocity forcing of vertical vorticity.

The above discussion makes it clear that Farrell’s paper (1988a) must be consid-
ered only as an introduction to the main part of the paper by Butler and Farrell
(1992) devoted to application of Farrell’s variational procedure to the study of
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the development of small three-dimensional disturbances in plane-parallel Couette,
Poiseuille, and Blasius boundary-layer flows. In this case Eqs. (3.44) and (3.54)
(or, if the horizontal Fourier components of disturbances are studied, Eqs. (3.58)
and (3.59)) must be solved simultaneously. Butler and Farrell looked for normal-
mode solutions, i.e. assumed that w(x, t) = W (z) exp [i(k1x+ k2y−ωt)], ζ3(x, t) =
Z(z) exp [i(k1x+k2y−ωt)].These expressions were substituted into Eqs. (3.44) and
(3.54) leading, together with the usual wall boundary conditions, to an eigenvalue
problem determining the spectrum of complex eigenvalues ωj at given real values of
k1 and k2. For plane Couette and Poiseuille flows the set of eigenvalues is discrete
and the system of corresponding eigenfunctions is complete in the Hilbert space of
vector functions {W(z), Z(z)} equipped with the energy norm. For a Blasius bound-
ary layer the situation is more complicated but this circumstance is immaterial for
the work considered here, where the differential equations are in all cases replaced
by finite-difference ones. In fact, it the functions W (z) and Z(z), where 0 ≤ z ≤ H ,
are replaced by N-dimensional vectors W and Z, representing the values at N finite-
difference locations, then the resulting algebraic eigenvalue problem, relating to a
(2N × 2N)-matrix, will always have 2N eigenvalues. Now any vector pair (W,Z)
may be expanded in the corresponding eigenvectors. Hence, the initial disturbance
may be represented as

{W(0), Z(0)} =
⎧
⎨

⎩

2N∑

j=1

ajWj ,
2N∑

j=1

ajZj

⎫
⎬

⎭
,

and at time t this disturbance will be transformed into

{W(t), Z(t)} =
⎧
⎨

⎩

2N∑

j=1

ajWj e
−iωj t ,

2n∑

j=1

ajZj e
−iωj t

⎫
⎬

⎭
.

According to Eq. (3.56′), the square of the energy norm for three-dimensional
disturbances has the form

||(w, ζ3)||2L = 1

2

H∫

0

{|w|2 + k−2
(|∂w/∂z|2 + |ζ3|2

)}
dz.

Butler and Farrell showed that at time t the expansion coefficients (a1, . . . , a2N ) of
the “optimal initial disturbance” coincide with the components of the first eigenvector
(i.e., that corresponding to the greatest eigenvalue) of some specific 2N × 2N matrix,
which depends on t, while its greatest eigenvalue is equal to the optimal-disturbance
energy gain E(t)/E(0) (where the kinetic energy density E(t) is given by the square of
the energy norm). Thus, finding the optimal initial disturbances and computing the
corresponding energy growths is reduced to solving some tedious but quite standard
problems of linear algebra. Some results obtained in this way are presented in Butler
and Farrell’s paper.
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Fig. 3.11 Plot of the
energy-growth function
G(t) = E(t)/E(0) for the
globally optimal,
x-independent optimal
(streamwise vortex), and
two-dimensional (2-D)
optimal disturbances, and for
disturbances which grow the
most in time topt = τ equal to
5 and 20 time units, in
Couette flow with
Re = 1000. (After Butler and
Farrell (1992))

Results related to the optimal (i.e., most strongly growing) wave-like two-
dimensional disturbance to plane Couette flow with Re = 1000 were described above.
They were computed simply for comparison with similar results relating to three-
dimensional disturbances. Since the previous results of other authors (e.g., those by
Gustavsson shown in Fig. 3.8) showed that three-dimensional disturbances which
do not vary in the streamwise direction (i.e., those with k1 = 0) apparently grow
more strongly than all the others, Butler and Farrell first studied the development of
such disturbances in the same case of Couette flow with Re = 1000. They found that
maximum energy growth is achieved for a disturbance with k2H1 = 1.66. (Only non-
dimensional wave numbers kH1 and times tUo/H1 will be used later in this subsection,
so they will be denoted below simply by symbols k and t. Also the frequencies ω and
coordinates x, y, z will now always be assumed to be non-dimensionalized.) For a dis-
turbance with k2 = 1.66, the energy density E(t) increases up to 1166E(0) at t = 138.
Such large energy growth is utterly surprising for a flow which was so long considered
to be absolutely stable. Note, however, that it is achieved for a streamwise-unbounded
disturbance (having the form of an infinite streamwise vortex) and is reached after a
rather long development time.

Butler and Farrell then arranged a search for a globally optimal disturbance among
those with any values of k1 and k2 in order to check whether streamwise-vortex dis-
turbances were in fact the most strongly growing. They found that this is not so, since
the most strongly growing wave-like disturbance in a Couette flow with R = 1000
depends on all three coordinates, has the wave numbers k1 = 0.035 and k2 = 1.60, and
reaches its maximum energy Emax (equal to 1185E(0) at t = 117. This disturbance
is also strongly elongated in the streamwise direction (since k1 � 1) and requires a
long time to reach the maximal energy (since t � 1), and its maximum growth is only
slightly larger than that for the streamwise vortex. However, as shown in Fig. 3.11,
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the streamwise vortex decays considerably more slowly, after reaching maximum
energy, than the globally optimal disturbance. In Fig. 3.11 the dependence of the
energy density on time is also shown for the optimal two-dimensional disturbance
and for disturbances achieving the maximal energy admissible at t = 20 and at t = 5.
In the latter two cases the rates of energy growth at small values of time are greater,
but the maxima are much lower than those for the optimal streamwise vortex or the
globally optimal disturbance.

Results by Butler and Farrell relating to globally optimal disturbances in Couette
flows with Re varying from 31 to 4000 are presented in Table 3.1. We see that the
values of the spanwise wave number k2 are nearly the same for all these disturbances.
At the same time the streamwise wavelength 2π/k1 (which at all values of Re is much
greater than the flow thickness 2H1 or the spanwise wavelength 2π/k2) and the time t
for maximum growth to occur both increase as Re, and the maximum energy growth
Emax/E(0) increases as (Re)2, at high Reynolds numbers.

In the case of plane Poiseuille flow it was shown that the globally optimal dis-
turbance has the form of a streamwise vortex with k1 = 0. At Re = 5000, maximum
energy growth was determined to be E(t) = 4897E(0), reached at t = 379, for a
spanwise wave with k2 = 2.04 and with stream function ψ(y, z, t) antisymmetric in
z (where it is assumed that −H1 ≤ z ≤ H1 and the stream function is defined by
equations −∂ψ/∂y = w and ∂ψ/∂z = v). Unlike Couette flow (where nothing
similar occurs), Poiseuille flow also contains a second set of strongly-increasing dis-
turbances independent of x, whose energy growths are about half of those for globally
optimal disturbances but whose stream function is symmetric in z (and the distur-
bances themselves are optimal in the set of all disturbances with symmetric stream
functions). At Re = 5000 the symmetric optimal disturbance has the spanwise wave
number k2 = 2.64 and its energy grows from E(0) = 1 up to the maximum value
E(t) ≈ 2819 at t ≈ 270. Note that Gustavsson (1991) and Diedrichs (1996), who
studied the growth of the vertical vorticity induced by the least-damped symmetric
or antisymmetric O-S modes in plane Poiseuille and Couette flows, both found max-
ima of E(t)/E(0), and times t needed to reach these maxima, which are rather close
to values obtained by Butler and Farrell for corresponding optimal disturbances.
Moreover, Criminale et al. (1997), who studied some non-modal disturbances with
k1 = 0 and optimal values of k2 (found by Butler and Farrell for x-independent dis-
turbances), also obtained, for both Poiseuille and Couette flows, values for maxima
of E(t)/E(0) and for times t which are very close to those given by Butler and Farrell
for optimal disturbances. These facts lead one to believe that the transient turbulence
growth is not very sensitive to the shape of the initial disturbance.

As to the boundary-layer flow, it was modeled by a plane-parallel flow in the half-
space 0 ≤ ζ < ∞ with the Blasius velocity profile U(z). (See, however, footnote 4
on p. 64 relating to the influence of the gradual thickening of a boundary layer.)
Recall now that results found for Poiseuille flow show that the most strongly growing
disturbances are confined to the shear regions near the walls. Since the velocity shear
U′(z) decreases rapidly with z in a Blasius boundary layer, it seemed reasonable to
assume that, to find the most strongly growing disturbances, the boundary-layer flow
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may be replaced by a synthetic channel flow with the Blasius velocity profile and
with the upper wall at a height z where the velocity U(z) is practically independent
of z (i.e., indistinguishable from the free-stream velocity U0). Just such a model was
used by Butler and Farrell; its adequacy was verified by comparison of a few first
O-S eigenvalues computed for this model (more precisely, for its finite-difference
approximation) with those computed for a semi-infinite boundary layer with the
smooth Blasius velocity profile. (Of course, changing to this model greatly changes
the spectrum of O-S eigenvalues: for a real Blasius boundary layer it consists of a
few discrete eigenvalues supplemented by a continuous spectrum, while in a channel
flow the O-S spectrum is discrete and infinite, but in the case of a finite-difference
approximation it is finite. However, the form of the O-S spectrum does not, as a
rule, significantly affect the transient growth of disturbances and the forms of the
most strongly growing structures; see, e.g., Farrell and Ioannou (1993c).) Butler and
Farrell defined the Blasius boundary layer by the Reynolds number based on the
free-stream velocity U0 and the displacement thickness δ∗, Reδ∗ = Uoδ

∗/v;U0 and
δ∗ were also used to make wave numbers k and times t′ dimensionless.

The globally optimal disturbance in this synthetic-channel model of a boundary
layer was found to be a streamwise vortex independent of x. At Reδ∗ = 1000 this
disturbance has spanwise wave number k2 = 0.65 (which is close to the optimal value
of k2 in Fig. 3.9), and its energy density grows from the value E(0) up to a value
Emax = 1514E(0), reached at t = 778, while for the optimal two-dimensional dis-
turbance with k2 = 0 in this flow, k1 = 0.42, and the energy gain Emax/E(0) = 28 at
t = 45. At other values of Reδ∗ the globally optimal disturbances have the same value
of k2, but the time t when the maximum energy is reached and the value of the max-
imum energy growth, Emax/E(0), are proportional to Reδ∗ and (Reδ∗ )2, respectively.
Later Butler and Farrell (1993) tried to apply their method of finding optimally grow-
ing small disturbances to a turbulent boundary layer, with a mean velocity profile
quite different from the Blasius one. The idea was to seek an explanation of some well-
known, but until now inexplicable, features of near-wall regions in turbulent bound-
ary layers (cf. also the work by Jang et al. (1986), referred to in Sect. 3.32, which
had a similar purpose). However, discussion of the 1993 paper by Butler and Farrell
must be postponed until after a general introduction to near-wall turbulent flows.

Some other methods for determination of the optimally growing wave-like
disturbances with given horizontal wave numbers k1, k2 in plane Poiseuille and Cou-
ette flows, and computation of the corresponding growth functions G(k1, k2; t) =
E(k1, k2; t)/E(k1, k2; 0) (which also depend on Re), were proposed by Reddy and
Henningson (1993) and Criminale et al. (1997). Reddy and Henningson used their
method, which will be described shortly, to obtain a number of new results relating
to characteristics of the optimally growing disturbances and values of their maxi-
mal growth G∗(k1, k2) = maxt > 0G(k1, k2; t) for various values of k1, k2 and Re. In
particular, they plotted growth contours G∗(k1, k2) = const., in the (k1, k2)-plane for
several values of Re, and, for two-dimensional disturbances with k2 = 0, plotted
growth contours of G∗ = G∗(k1,Re) in the (k1, Re)-plane. (Recall that a disturbance
is called “optimally growing.” or, more precisely, “optimally growing from t = 0
till time t” if it produces the greatest value of G(k1, k2; t); this disturbance clearly
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depends on t. However, the “globally optimal” disturbance, for which G(k1, k2; t)
as a function of t has the highest maximum, does not depend on t.) In their com-
putations Reddy and Henningson used the expansion of functions ŵ(k1, k2; z, t) and
ζ̂ (k1, k2, z, t) in the O-S and Sq eigenfunction, which follows from Eq. (3.63). In fact,
according to this equation, the general solution {ŵ(k1, k2; z, t), ζ̂ (k1, k2; z, t)} of Eqs.
(3.58), (3.59) can be represented as

{ŵ(k1, k2; z, t), ζ̂ (k1, k2; z, t)} =
∞∑

m=1

Amqm(z)e−iωmt +
∞∑

j=1

Bjpj (z)e−iωoj t (3.66)

where qm(z) = {Wm(z),Vm(z)} and pj(z) = {0, kζ3j (z)} are definite two-dimensional
vector-functions of z. These vector-functions are simply the eigenfunctions of the
two-dimensional eigenvalue problem arising from Eqs. (3.58–3.59) when the deriva-
tives ∂/∂t are replaced by −iω, where ω is the unknown eigenvalue (see, e.g.,
Henningson and Schmid (1992)). Therefore, Eq. (3.66) represents the expansion of
the solution of Eqs. (3.58–3.59) in the corresponding two-dimensional eigenfunc-
tions. (For the sake of simplicity it is assumed here that all eigenvalues ω′ s are
distinct.) Reddy and Henningson proposed arranging the terms on the right-hand
side of Eq. (3.66) in order of decreasing imaginary parts of the corresponding eigen-
values ωk (either ωm or ωoj ), and preserving only a limited number N of terms, taking
into account that � mωk � 0 for large values of k so that the corresponding terms
of (3.66) would be negligibly small for practically any t > 0. The truncation of the
series (3.66) was combined with a special vertical discretization (differing from the
simplest uniform grid discretization) which reduces the computation of unknown
eigenvalues and eigenfunctions to problems from linear algebra. All this makes the
numerical procedure somewhat different from that used by Butler and Farrell (the
latter is less economic in number of arithmetic operations needed).

The results of the computations were presented by Reddy and Henningson in
a number of figures and tables. As examples, in Figs. 3.12a−3.14 contours of
G∗(k1, k2) = G∗(k1, k2; Re) are shown for Poiseuille flow, in the (k1, Re)-plane
for the case of two-dimensional disturbances, having k2 = 0, and in the (k1, k2)-
plane for the case where Re = 1000; also, contours of the normalized function
k2G∗(k1, k2)/ (k2Re)2 are presented in the (k,k1Re)-plane, where k = (k2

1 + k2
2)

1/2
,

for both Couette and Poiseuille flows with two different values of Re. Figure 3.14
confirms the conclusion by Reddy and Henningson that, at all not too small values of
Re, k2G∗(k1, k2)/k2Re)2 is almost a function of k and k1Re alone, especially at low
values of k1Re. Therefore the curves in Fig. 3.14 make possible the determination of
the values G∗(k1, k2) for plane Couette and Poiseuille flows at any not-too-small value
of Re. In particular, Trefethen et al. (1993) used this result, together with some data
of other authors, to compute the contours of G∗(k,Re) = maxk2

1+k2
2=k2G∗(k1, k2, Re )

for Poiseuille flow. Their results presented in Fig. 3.12b supplement Fig. 3.12a and
show to what extent the growth of three-dimensional disturbances can exceed the
growth of two-dimensional ones. The contours of G∗(k1, 0, Re) and G∗(k, Re) for
plane Couette flow are similar to those in Fig. 3.12 (the first of them are presented in
the paper by Reddy and Henningson) but they contain no shaded regions, since no
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unstable normal modes exist in a plane Couette flow at any value of Re. Some other
results of Reddy and Henningson’s paper will be briefly considered in Sect. 3.4.

Criminale et al. (1997) proposed to use expansion of the values {ŵ(k1, k2;
z, 0), ζ̂ (k1, k2; z, 0)} in a Fourier series with respect to the vertical coordinate z and
then to solve Eqs. (3.58), (3.59) with the initial conditions represented by a properly
truncated series, and to find the optimal growth function G(k1, k2; t) by solving the
variational problem relating to the values of Fourier coefficients. According to these
authors, such a procedure has an advantage over that based on the expansion (3.66)
used by Reddy and Henningson, but only its application to the study of the optimal
two-dimensional disturbance in a plane Poiseuille flow at Re = 5000, which was
found by Butler and Farrell (1992), briefly outlined in their paper.

Schmid et al. (1994) and Lundbladh et al. (1994) (these two papers strongly
overlap) also considered the problem of transient growth for small disturbances in a
plane Poiseuille flow, but for the spatial evolution of disturbances (in the streamwise
x-direction), rather than the temporally-evolving case discussed above. Therefore, it
was assumed that w(x,t) and ζ3(x, t) are proportional to exp{i(k1x + k2y − ωt)},
where k2 and ω are given real values while k1 is the unknown complex eigen-
value. Then Eqs. (3.44) and (3.54) imply the known O-S equation (Eq. (3.58) with
∂/∂tand ŵ replaced by iω and W, respectively) for the vertical-velocity amplitude
W (z), and an inhomogeneous equation for the amplitude Z(z) of the vertical vorticity
ζ3 (Eq. (3.59) with the same replacements as above and ζ̂ replaced by Z). These two
equations, supplemented by the usual boundary conditions at the walls z = 0 and
z = H, form an eigenvalue problem in which the eigenvalue k1 appears in powers up
to the fourth. This complicates the solution, but the authors showed that this eigen-
value problem can be transformed, with the aid of some manipulations, to a standard
linear eigenvalue problem for the system of three differential equations, to which
known numerical techniques can be applied. Then the authors discretized the eigen-
value problem in the vertical z-direction, transforming it into an algebraic eigenvalue
problem, expanded the velocity field in terms of the eigenvectors found, and trun-
cated this expansion to reduce the number of arithmetic operations needed. Using the
appropriate definition of the local “energy density” E(k2, ω; x) = E(x) (introduced
by Henningson and Schmid (1994)), they reduced the determination of the maximal
energy amplification G(x) = maxu(0)E(x)/E(0) (where the maximum is taken with
respect to all “initial” velocity disturbances u(0, y, z, t) with given values of k2 and
ω) to the solution of an algebraic variational problem very similar to that studied
by Reddy and Henningson (1993). In Fig. 3.15a the results given in both indicated
papers for the function G∗(k2,ω) = maxx>0G(k2,ω; x) at Re = 2000 are presented
as contours in the (ω, k2) -plane. They show that, at this Re, the maximum value
of G∗(k2,ω), which is close to 100, is reached at ω= 0 (i.e., for a steady distur-
bance) and k2 ≈ 2 (as usual for a plane-Poiseuille primary flow, the wave numbers,
frequencies, coordinates, and flow variables are made dimensionless by using the
half-depth H1 and the maximum Poiseuille-flow velocity U0 as unit length and ve-
locity). In Fig. 3.15b graphs of the function G(2, 0; x) are given for Re = 500, 1000,
and 2000. These graphs show that the decrease of Re leads to a significant decrease
of G∗ = maxxG(x) but has less effect on the streamwise coordinate xmax where the
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a b

Fig. 3.12 a Contours of G∗(k1, 0, Re) in the (k1, Re)-plane for plane Poiseuille flow (after Reddy
and Henningson (1993)). Dotted line: G∗ = 1; solid lines, from left to right: G∗ = 10, 20, 30, . . . ,70;
in the shaded region exponentially growing O-S modes exist and hence unbounded energy-growth
is possible. b Contours of G∗(k, Re ) = maxk2

1 +k2
2=k2G

∗(k1, k2, Re ) in the (k, Re)-plane for plane
Poiseuille flow (after S. Reddy, whose results were published in slightly different form by Trefethen
et al. (1993), and in the form presented here in the book by Panton (1996)). Two dotted lines:
G∗ = 100 and 1000, the left-most solid curves correspond to increments of 5000 in the G∗-vlaues;
the shaded region has the same meaning as in Figure a

a b

Fig. 3.13 Contours of G∗(k1, k2, Re) in the (k1, k2)-plane for plane Poiseuille flow with Re = 1000
(after Reddy and Henningson (1993)). a Dotted line: G∗ = 1; solid lines, from outer to inner: G∗ = 2,
5, 10, 20, 60, 100, 140. b Lower-left part of (a); lines from outer to inner correspond to G∗ = 10,
20, 40, . . . ,140, 160, 180

value G∗ is reached. The cusps on the curves reflect the dependence of the optimal
disturbance on x: at cusp points the shape of the optimal w-disturbance switches
from symmetry to antisymmetry with respect to the channel midplane.
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a b

Fig. 3.14 Contours of k2G∗(k1, k2, Re)/k2
2Re2 in the (k, k1 Re)-plane for plane Couette and

Poiseuille flows (after Reddy and Henningson (1993)). a For Couette flows with Re = 1000 (solid
lines) and Re = 500 (dotted lines, sometimes merging with solid ones); the contours, from outer to
inner, correspond to values: 0.4, 0.6, 0.8, 1.0, 1.1 (× 10−3). b For Poiseuille flows with Re = 3000
(solid lines) and Re = 1500 (dotted lines); the contours from outer to inner correspond to values:
0.3, 0.6, 0.9 1.2, 1.5, 1.8 (× 10−4)

a b

Fig. 3.15 Spatial growth of disturbance energy in plane Poiseuille flows (after Schmid et al. (1994)
and Lundbladh et al. (1994)). a Level contours of G∗(k2, ω, Re) in the (k2, ω)-plane for Re = 2000.
The contours, from outer to inner, corresponds to levels: 5, 10, 20, . . . ,100. b Plots of the functions
G(k2, ω, Re; x) for k2 = 2, ω= 0, and various values of Re; the curves correspond. (From bottom
to top) to Re = 500, 1000, and 2000

Spatial development of small disturbances in a plane Poiseuille flow was also
studied by Criminale et al. (1997), by the method of direct numerical simula-
tion, i.e., by numerical solution, at Re = 5000, of the complete Navier-Stokes
(N-S) equations for the disturbed velocity U(x) + u(x, t) and the deduced pressure
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Fig. 3.16 Computed spatial
energy-growth curve Gs (x)
for disturbance with
near-optimal (with respect to
temporal growth) initial
conditions in plane Poiseuille
flow with Re = 5000. The
dashed line represents the
temporal energy-growth curve
G(t) computed for the same
Re and initial values, and
rescaled in both coordinates
to make the maxima of spatial
and temporal growth curves
equal and corresponding to
the same abscissa. (After
Criminale et al. (1997))

[P (x) + p(x, t)]/ρ. Here ρ is the density, U(x) = {1 − z2, 0, 0}, −1 ≤ z ≤ 1, and
P (x)/ρ = Po/ρ − 2x/Re are Poiseuille-flow velocity and deduced pressure,
while u(x, t) and p(x, t) are velocity and pressure fluctuations of a small dis-
turbance (all variables are assumed to be non-dimensionalized). The boundary
conditions are the spatially-initial (“inflow”) condition u(0, y, z, t) at x = 0 and the
usual solid-surface conditions at z = ±1. The authors chose time-independent
(steady) inflow conditions: ζ3(0, y, z) = 0 and w(0, y, z) = Ao(1 − z2)2 cos 2y. This
model W (1)

o (z) of the vertical-velocity amplitude was used in this paper when the
temporal disturbance development was studied, with wavenumber values k1 = 0,
k2 = 2. These wavenumbers correspond to temporal disturbance growth close to
the maximum possible at Re = 5000 (see Table 3.1 and Fig. 3.10a above). From
the continuity equation, the horizontal velocity components at x = 0 are u(0, y, z) =
0, v(0, y, z) = 2Aoz(1 − z2)2sin2y. The initial amplitudeAo was taken to be 10−7; this
small value was chosen to guarantee that the growing disturbance remains small
so that the results agree with those implied by linearized dynamic equations. The
computed spatial growth curve Gs(x) = E(x)/E(0) for the given inflow conditions
is shown in Fig. 3.16. This growth curve has a shape similar to those shown in
Fig. 3.10a for temporal growths of some fixed disturbances in Poiseuille flow at the
same Reynolds number. The Gs(x)-curve has a much higher peak, and is consid-
erably smoother, than the upper G(x)-curve in Fig. 3.15b, which corresponds to a
lower Reynolds number Re = 2000 and concerns not a fixed disturbance but a family
of disturbances depending on x (and is in fact composed of two separate growth
curves, for symmetric and antisymmetric w-disturbances). To illustrate graphically
the similarity between spatial and temporal growth curves, Criminale et al. also com-
puted the temporal growth curve G(t) = E(t)/E(0) in Poiseuille flow at Re = 5000,
for the disturbance having an initial velocity u(x, y, z, 0) equal to the inflow velocity



3.3 The Initial-Value Problem for Viscous Parallel Flows 259

u(0, y, z, t) defined above (this was possible since this u(0, y, z, t) was chosen to be
independent of t). This new growth curve was then rescaled; abscissa t was replaced
by x/0.561, and ordinate G by GT = 0.831G (the factors were chosen to make the
maxima of the spatial and temporal growth curvesGs(x) andGT (x) coincide in mag-
nitude and location in x). The functionGT (x) obtained is also shown in Fig. 3.16; as
can be seen, it differs only insignificantly from Gs(x).

Farrell and Ioannou (1993b) studied the optimally growing temporally-evolving
three-dimensional disturbances of infinite plane. Couette flow having constant shear
U′(z)=b in the unbounded space—∞ < z < ∞. For such a flow the O-S equation has
no discrete eigenvalues and hence the O-S spectrum is purely continuous. However,
here the investigation of the disturbance development is simplified by the existence
in this case of a complete set of analytic solutions which are orthogonal (in the inner
products corresponding to both the L2 and energy norm) and which have the form
of plane waves, with constant horizontal wave numbers k1 and k2 and vertical wave
number k3 depending lineary on time. (Recall that such solutions were in fact first
found by Kelvin (1887a) and Orr (1907) but then were forgotten for a long time; see
Sect. 3.1, and particularly Eqs. (3.1) and (3.2) where on the right-hand sides the last
term in (3.1) and the last two terms in (3.2) must be omitted in the case of infinite
Couette flow without walls.)

The initial value problem for disturbances in an infinite couette flow was solved
in full generality (with inclusion of an external force and a mass source affecting
the flow) by Criminale and Smith (1994). However, here the imposed generality
of the problem statement and the search for fundamental solutions and universally
applicable generalized Green’s function led to rather complicated equations, and
restricted the authors mainly to the inviscid solution (providing the correct leading
term in cases where the time t is not too long and the disturbance length scale l is
not too small). In contrast to this, Farrell and Ioannou considered only some simple
particular solutions where the initial values w(x,0) and ζ3(x, 0) both have plane-wave
or checker-board shape (i.e., are proportional either to exp{i(k1x + k2y + k3z)} or
to cos (k1x) cos (k2y) cos (k3z)) If the optimal growth is interpreted as the maximal
energy-density growth G(t) = E(t)/E(0) attainable at some time t by appropriate
choice of the values for W0, Z0, k1, k2, k3 (i.e., for amplitudes of initial plane-
wave or checkerboard structures and for three wave-number components), then the
optimal values of G(t) will be the same for viscous and inviscid fluid and will increase
infinitely with time t. (This is so since the influence of viscosity can be arbitrarily
decreased by a large enough increase of disturbance length scale l determined by
the wave numbers ki .) Therefore, Farrell and Ioannou (1993b) first computed the
maximal growth G(Topt) attainable in an inviscid fluid in a specific non-dimensional
time Topt = (bt)opt (cf. the discussion of the related paper by Farrell and Ioannou
(1993a) in Sect. 3.23). The values of G(Topt) were found to be different for single-
plane-wave and checkerboard initial conditions. However, for large values of Topt,
of the order of several tens or a hundred, they usually take high values of the order
of 103 or even 104

.

To take into account the effect of viscosity, it was enough to consider only the initial
conditions constrained to have a fixed value of k1. Then Re may be defined as bl2/v =
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bk2
1/π

2v, the optimal values of k2/k1 and k3/k1 may be uniquely determined for any
given value of Topt, and the value of G(Topt) will be a function of Re. For example,
if k1 = 1, then for Re = 100, 1000, 10000 and checkerboard initial conditions, it was
found that maximum growth G(Topt) is achieved at Topt = 7, 15, 30, and is equal to
12.5, 109, 707, respectively. It was also noted that in real flows the ambient turbulent
fluctuations usually interfere with the regular growth of a velocity disturbance by
disrupting the corresponding flow structures; therefore, the results for large values
of Topt are often of no physical meaning. Bearing this in mind, Farrell and Ioannou
presented a contour plot of G(T ) in the (k1, k2)-plane for Re = 1000 and checkerboard
initial conditions, with a moderate value of Topt = 10. It was found that in this case
Gmax(10) ≈ 115, which can be reached for practically all k < 1 if tan−1(k2/k1) ≈ 63◦.
In another paper, Farrell and Ioannou (1993c) showed that the contour plot ofGmax(T )
for T = 10 in their paper (1993b), is similar in many respects to contours ofGmax for
plane Couette and Poiseuille flows in channels of finite height. This similarity reflects
the similarity in the flow structures responsible for maximal growth of disturbance
energy in the three flows considered.

Practically all specific computations of transient disturbance growth considered
above in this subsection concerned horizontally unbounded disturbances (in most
cases plane waves with given horizontal wave numbers, but also unbounded checker-
board structures). However, real disturbances appearing in natural, engineering, and
laboratory flows of fluids are most oft en due to some factors affecting only a fi-
nite fluid volume and producing a localized initial disturbance. Note that in Sects.
3.22 and 3.23 much attention was given to papers by Henningson (1988), Breuer
and Haritonidis (1990), and Landahl (1980, 1990, 1993a, 1996) devoted to study
of evolution of localized disturbances in an inviscid fluid, while in this section the
papers by Henningson (1991) and Henningson et al. (1993) on the same evolution in
viscous fluids have been mentioned already. Now it is the time to dwell at somewhat
greater length on the results of the last-mentioned paper.

The major part of this paper was devoted to numerical investigation of the devel-
opment of a localized disturbance in a plane Poiseuille flow. The case of a disturbance
initially consisting of two pairs of counter-rotating vortices (see Fig. 3.2) filling the
height of the channel and symmetric with respect to its midplane was investigated in
most detail. (Recall that this is just the case that was earlier studied by Henningson
(1988) and (with a change of the z-dependence to one appropriate for the boundary-
layer flow) by Russell and Landahl (1984); and Breuer and Haritonidis (1990); and
was also considered by Henningson et al. (1990); and Henningson (1991)). How-
ever, in the paper by Henningson et al. (1993) an initial disturbance consisting of the
same two pairs of eddies, but rotated around the vertical z-axis by some angle θ , was
also considered (such rotation clearly changes the wave-number composition of the
initial disturbance). Moreover, to investigate the sensitivity of the results obtained
to changes in the primary flow or initial disturbance, the authors also considered a
quite different initial disturbance shape (used only in the study of nonlinear effects
which will not be discussed here) and added some remarks on comparison with the
related boundary-layer results (corresponding to a disturbance having similar general
shape but different z-dependence). Developing further the approach by Henningson



3.3 The Initial-Value Problem for Viscous Parallel Flows 261

Fig. 3.17 Contours in the (x, z)-plane of streamwise velocity u(x, y, z, t) at y = 0 and t = 25 of
a localized disturbance, sketched in Fig. 3.2, in plane Poiseuille flow with Re = 3000. Solid and
dashed lines correspond to positive and negative u-values. (After Henningson et al. (1993))

(1991), Henningson et al. (1993) computed the time evolution of the disturbances
by two different methods. The first was the method of direct numerical simulation
(DNS), i.e., of numerical solution of the N-S equations for the case of small enough
amplitude of the initial disturbance. The second method used a truncated eigenfunc-
tion expansion of the Fourier-transformed initial data {ŵ(k1, k2; z, 0), ζ̂ (k1, k2; z, 0)}
(cf. The description above of the paper by Reddy and Henningson (1993)) combined
with the subsequent application of Eq. (3.15) and inverse Fourier transformation of
the resulting Fourier components of velocity and vorticity.

The DNS results given by Henningson et al. (1993) for Re = 3000 show strong ini-
tial growth of the streamwise velocity component during a few tens of time units (as
usual, length and time units are set equal toH1 andH1/Uo) with formation of the fa-
miliar wave-packet structure at the rear (later time) of the disturbance and the streaky
structure at the front (see also Fig. 3.3 and the experimental data by Klingmann and
Alfredsson (1991) and Klingmann (1992), revealing similar features). According to
these results, the streamwise-velocity amplitude quickly becomes about one order of
magnitude larger than the amplitude of the vertical velocity, although the streamwise
velocity at t = 0 was zero. The contours of constant streamwise velocity in the (x, z)
plane, shown in Fig. 3.17 for the lower half of the channel, clearly demonstrate the
stretching of the disturbance structure in the streamwise direction (the initial horizon-
tal spread of the disturbance was close to two units), with generation of alternating
high-speed and low-speed regions and formation of inclined shear layers between
them (cf. again Fig. 3.3b). Figure. 3.18a shows the dependence of the disturbance
energy on time for a localized initial disturbance similar to that shown in Fig. 3.2, and
for the same disturbance rotated by the angle θ = 10◦, 20◦ and 45◦. (This figure was
based on the DNS data but the eigenfunction-expansion computations gave practi-
cally the same results.) We see that some initial energy growth is present at any θ , but
for θ = 0 it is significant only at small values of t and is quickly replaced by decay,
while increasing the value of θ increases the energy growth. (This is because rota-
tion of the disturbance in the physical space rotates the wavenumber spectrum in the
(k1, k2)-plane and increases the contribution of the region of small values of k1. Recall
also Landahl’s result of 1990, illustrated with Fig. 3.4, that breaking of the symme-
try of the initial disturbance with respect to a plane y = const. increases the transient
growth and leads to generation of streaky structures corresponding to small values
of k1.) Computation of the percentage contribution to disturbance energy at different
values of t from three components of velocity, and from the vertical vorticity as such,
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showed that at θ = 0 the percentage contributions of both the vertical and spanwise
velocities w and v decrease monotonically with time, while the contributions of u
and ζ3 increase monotonically and at t ≥ 15 the contribution of ξ3 fully dominates
all the others; essentially the same results are valid also for the cases where θ �= 0.
These results agree well with the assumption that forcing of the vertical vorticity by
the vertical velocity plays the main part in the transient growth of small disturbances.
Similar results were obtained by Henningson et al. for the development of distur-
bances of the type shown in Fig. 3.2 in a Blasius boundary layer (see Fig. 3.18b,
where some results for a boundary layer with Re δ∗ = 1000 are presented; time is
measured here in δ∗/U0 units).

The study of the transient growth of disturbances in plane parallel flows will be
continued in Sect. 3.4. However, now we will passs to consideration of the very
important case of circular Poiseuille flow (flow in a round tube).

3.3.4 Transient Growth of Small Disturbances in the Poiseuille
Flow in a Round Tube

In Chap. 2, in the very beginning of Sect. 2.9.4, it was pointed out that the problem
of stability of Poiseuille flow in a round tube is apparently the most challenging and
mysterious problem in the theory of hydrodynamic stability. It was also noted there
that this problem has been studied repeatedly by a number of first-rate scientists but
nevertheless is still far from being solved. However, in Sect. 2.94 only applications
of the classical normal-mode method to this problem were considered. Now we will
consider studies of transient disturbance growth in circular Poiseuille flow in a tube,
which represent a natural extension of the investigations described in the previous
subsection.

Just as in the case of plane-parallel flows, the first attempt to consider this topic
was made by Orr (1907). He could not overcome the analytical difficulties appear-
ing in the general case and was forced to simplify the statement of the problem.
Therefore, in Chap. II of Part I of his paper, he confined himself to the study
of a flow of inviscid fluid in a tube of radius R, where a disturbance which was
small (i.e., satisfying the linearized equations) and axisymmetric, having the veloc-
ity u(x, t) = {ur (r , x, t), 0, ux(r , x, t)} (i.e., no circumferential component uφ)
was superimposed on the primary steady axisymmetric Poiseuille flow with the ve-
locity U(x) = {U(r), 0, 0}, U(r) = A(R2 − r2). As was indicated in the concluding
part of Sect. 3.1, Orr considered solutions of the initial-value problem for the ve-
locity u(x,t) corresponding to several initial values ur (r, x, 0) of the radial velocity
ur (since uφ = 0, the axial velocity ux can be easily determined from values of ur
with the help of the equation of continuity given in Sect. 2.84). He found a class
of initial conditions (indicated in Sec 3.1) which for some values of the parameters
implies a very great increase of the disturbance kinetic energy with time before the
ultimate decay as t → ∞. Therefore, he concluded that the circular Poiseuille flow
of an inviscid fluid is practically unstable (cf. again Sect. 3.1). In the beginning of
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a

b

Fig. 3.18 a Energy-growth function G(t) = E(t)/E(0) for some localized disturbances in plane
Poiseuille flow with Re = 3000. Each disturbance either had the initial shape sketched in Fig. 3.2
(solid line) or its initial shape was obtained from that in Fig. 3.2 by rotation around the z-axis by the
angle θ = 10◦, 20◦, or 45◦ (dashed, dotted, and chain-dashed lines, respectively). b Energy-growth
function G(t) for localized disturbances in the boundary-layer flow with Re =Uo δ

∗/v = 1000 having
an initial shape either similar to that shown in Fig. 3.2 (solid line) or obtained from it by rotation by
the angle θ = 10◦ or 45◦ (dashed and dotted lines, respectively); time is measured in δ∗/Uo units.
(After Henningson et al. (1993))

Part II of his paper Orr also noted that although he could not obtain similar results
for viscous flow in a circular tube, he considered a proof of instability of the inviscid
flow as also a proof of instability for the case where viscosity is not exactly zero but
is small enough. However, these results by Orr had been completely forgotten when,
about 80 years later, the subject was investigated anew by several scientists.

The first new study of the circular-Poiseuille-flow instability by a method go-
ing beyond the limits of the traditional normal-mode approach was due to Boberg
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and Brosa (1988). They tried to develop a nonlinear theory describing all stages of
transition of a tube flow to turbulence. However, a very important part was played
in their investigation by a study of a purely linear mechanism of extracting the ki-
netic energy from the mean flow, by transiently-growing small nonaxisymmetric
disturbances with azimuthal wave number n = ±1. Boberg and Brosa carried out
a numerical simulation of the corresponding process, based on the expansion of
the disturbed velocity field into the so-called “Stokes functions” which are in fact
the eigenfunctions of the N-S equations corresponding to very slow motion of fluid.
Their severe truncations of the expansions used made many of their results only qual-
itatively relevant to the real onset of turbulence in a tube, although some important
features of real disturbance development were described with satisfactory accuracy.
The paper by Boberg and Brosa was also quite important as the trigger for many
subsequent investigations of instability and transition by non-standard methods.

Slightly later, the paper by Gustavsson (1989) was entirely devoted to transient
disturbance growth in circular Poiseuille flow. In this paper the important role of
nonaxisymmetric disturbances in the disturbance-growth mechanism was revealed,
and the equation which describes the forcing of the streamwise velocity of a distur-
bance by its pressure was derived. However, Gustavsson gave his main attention to
the search for resonances between disturbance pressure and streamwise velocity, as-
suming that such resonances can make substantial contribution to algebraic growth
of disturbances. This was the reason why his paper was considered in Sect. 3.32,
devoted to resonances and degeneracies. However, later it became clear that reso-
nance contribution does not play a substantial part in the disturbance growth (see the
discussion of this topic in Sect. 3.33). Therefore, Gustavsson’s paper of 1989 cannot
now be considered as of great importance.

Later Gustavsson’s student Bergström (1992) investigated the development of
small nonaxisymmetric, x-independent, disturbances in Poiseuille tube flow. This
work was stimulated by results by Ellingsen and Palm (1975) and Hultgren and Gus-
tavsson (1981) who found that x-independent disturbances often grow algebraically
with time in plane-parallel flows (see Sects. 3.22 and 3.32 above). It was also taken
into account that the absence of x-dependence considerably simplified the stability
analysis.

In fact, neglecting all x-derivatives in Eq. (2.73) (and hence assuming that the
normal modes of a disturbance are proportional to ei(nφ−ωt)) it is easy to obtain
a simple fourth-order differential equation (with coefficients depending on n and
Re =UoR/v, where Uo is the centerline velocity) for the amplitude f (r)(r) of the
radial-velocity normal mode. This equation, with the physically-obvious boundary
conditions for f (r)(r) at r = 0 and r = R, forms the radial eigenvalue problem, which
was found to be easily solvable in terms of Bessel functions. In particular, it was
shown that the dimensionless eigenvalues ωj , j = 1, 2, . . . (below, all independent
and dependent variables will be non-dimensionlized by appropriate combinations of
R and U0) are given by the equation ωj = −iĴ 2

n+1,j (Re)−1 where Ĵn+1,j is the jth

zero of the Bessel function Jn+1. Since all ωj have negative imaginary and vanishing
real parts, the normal modes derived are non-oscillating and damped. When ur is
known, the azimuthal velocity uφ can be found from the continuity equation (the last
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of Eqs. (2.73)); in particular, uφ = (i/n)∂(rur )/∂r for velocity disturbances with
azimuthal wave number n. Proceeding further, one may obtain, for the amplitude
f (x)(r) of the streamwise-velocity mode, a second-order inhomogeneous differential
equation with the term ReU ′f (r)(r) on the right. This term describes forcing of x-
independent stream-wise velocity disturbances by a radial velocity disturbance ur (r,
φ, t). Below, most attention will be given to development of the streamwise velocity
ux(r, φ, t) induced by a normal mode of the radial-velocity field.

Bergström fixed the value of n ≥ 1 of the azimuthal wave number, assuming
that ux(r, φ, t) = ux (r, t) einφ and that ur (r ,φ, t) = f

(r)
j (r)ei(nφ−ωj t) is represented

by a single (jth) radial-velocity normal mode corresponding to this wave number.
Moreover, he also accepted the initial condition ux(r, φ, 0) = 0, thus considering
only the component of the streamwise velocity ux which is induced by the radial-
velocity disturbance. He showed that it is possible to find an explicit expression for
the Laplace transform

ûx(p, r) =
∞∫

0

e−ptux(r , t)dt

of the function ux(r, t) and then to determine this function itself by inverse Laplace
transformation. Normalizing the initial radial-velocity disturbance ur (r, φ, 0) by the
condition that Er (0) = 1 (where the “radial kinetic energy” Er (t) is defined as the
integral of (ur (r, φ, t))2/2 over the tube cross-section), Bergström calculated the
values of the “streamwise kinetic energy” Ex(t) (defined similarly to Er (t)) for a
number of values for n, j, Re, and t (where t is measured in the R/U0 units). Since
it was shown that Ex (t)/ (Re)2 depends only on t/ Re but not on t and Re separately,
only the dependence of Ex(t)/ (Re)2 on n, j, and t/ Re = T had to be determined.

According to the above results, Er (t) = exp (−|ωj |t) = exp (−Ĵ 2
n+1,j T ) falls off

exponentially with t. Since uφ ∝ ∂(rur )/∂r , it follows that the “azimuthal kinetic
energy” Eφ (t) (the integrated valued of u2

φ /2) also decays as exp (−|ωj |t). However,
the streamwise kinetic energy Ex(t) behaves differently. Ex(0) = 0 since ux(r, φ,
0) = 0, but when t increases, Ex(t)/ (Re)2 at first grows algebraically with time,
reaches a maximum value E0 =E0 (n, j) at some value T0 (n, j) of t/Re, and then
begins to decay (asymptotically at the same rate as the energies Er (t) and Eφ (t)).
Results of computations (partially presented in Fig. 3.19) clearly showed that the
disturbance component with n = 1 and j = 1 dominates the total growth of kinetic
energy in the initial stage of disturbance development. Note that since the maximal
values of Ex(t) is proportional to (Re)2, it increases rapidly if Re increases (i.e.,
v decreases). According to Bergström’s computations, if Re = 1000 and Er (0) = 1,
then maxt>0Ex(t) ≈ 167 for n = 1, j = 1, but this maximum value decreases quickly
with n and even quicker with j (see Fig. 3.19).

Subsequent computations of disturbance development in Poiseuille tube flow,
relating to the general case of disturbances depending on three coordinates x, r,
and φ, were carried out by Bergström (1993a), Schmid and Henningson (1994)
and O’Sullivan and Breuer (1994). In this case normal modes are proportional
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a

b

Fig. 3.19 The normalized energy-growth function Ex (t)/ (Re)2 for the streamwise kinetic energy
Ex (t) of an x-independent disturbance in circular Poiseuille flow induced by the radial-velocity
disturbance represented by the jth normal mode with azimuthal wave number n having initial
kinetic energy Er = 1, for a j = 1, n = 1, 2, . . . ,7, and b n = 1, j = 1, 2 or 3. (After Bergström
(1992))

to ei(kx+nφ−ωt) = ei[k(x−ct)+nφ]; therefore, the wave number k also appears, and
frequency ω can be replaced by phase velocity c = ω/ k, Bergström (1993a), like
Gustavsson (1989), began his investigation with the derivation, from dynamic
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equations (2.73), of a sixth-order homogeneous differential equation for the pressure-
mode amplitude g (r). This equation and the boundary conditions appropriate to it
form the pressure-field eigenvalue problem, with coefficients depending on k, n and
Re. This problem determines the set of eigenvaluesωj or cj, where j = 1, 2, . . . How-
ever, contrary to Gustavsson’s approach, Bergström did not supplement the equation
for g(r) by the inhomogeneous differential equation (3.55) for the streamwise am-
plitude f (x)(r). Instead of this he showed that when g(r) and c are known, f (x)(r) and
the radial-velocity amplitude f (r)(r) can be determined with the help of equations of
the form

f (r)(r) = Lg(r), f (x)(r) = Mf (r)(r) + Ng(r), (3.67)

where L, M, and N are three linear differential operators (with coefficients depending
on k, n, Re and c), while f (φ)(r) can be determined from values of f (r)(r) and f (x)(r)
with the help of the equation of continuity. Therefore, according to his analysis,
solution of the pressure-field eigenvalue problem allows the normal modes of all
velocity components to be found as well.

Bergström solved the pressure-field eigenvalue problem numerically and found a
number of complex eigenvalues cj and eigen-function gj(r). Using Eqs. (3.67) and
(2.74) he also evaluated the amplitudes f (x)

j (r), f (φ)
j (r), and f (r)

j (r) of normal veloc-
ity modes. Then he considered disturbances represented by finite linear combinations
of normal modes

u(x, r ,φ, t) =
N∑

j=1

Ajuj (r)eι[k(x−cj t)+nφ], uj =
{
f
(x)
j , f (r)j , f (φ)j

}
. (3.68)

The kinetic energy density E (k, n; t) = E(t) of such a disturbance is given by a certain
positive-definite quadratic form of coefficientAj, and hence the method of Butler and
Farrell (1992) can now be applied to determination of the maximum possible value
of the energy growth G(t) = maxAE(t)/E(0), where A = {A1, . . . ,AN} determines
the shape of the initial velocity field u(x,0). The value of G(t) depends on k, n
and Re, and can also depend on the number N of normal modes considered, and the
selection of these modes. However, if the modes are numbered in order of decreasing
imaginary parts of the eigenvalues cj (i.e., in order of increasing mode-damping), the
computational results show that an increase of N above some not-too-high lmiting
values leaves the value of G(t) practically unchanged. Therefore, the dependence
on N is immaterial, if N is not too small. The dependence of G(t) on t is shown in
Fig. 3.20a for Re = 1000, n = 1, and several values of k. This figure shows that the
maximal possible growth G∗ = maxt > 0 G(t) increases with decreasing k (i.e., here
again the greatest growth occurs for streamwise-elongated disturbances), although at
small values of time the disturbances with smaller streamwise wavelength can grow
faster than strongly-elongated structures. Note that even at k = 0.01 (wavelength l ≈
600R) the largest energy amplification G∗ = 72.4 is considerably smaller than the
value maxt > 0 Ex(t)/Er (0) ≈ 167 found by Bergström in 1992 for a non-optimal
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Fig. 3.20 The growth
functions G(t) for
optimally-growing
disturbances in circular
Poiseuille flow with Re =
U0 R/v = 1000 having wave
numbers a n = 1, k = 0.01,
0.5, 1; and b n = 1, 2, . . . , 5,
k = 0.01. (After Bergström
(1993a))

a

b

x-independnet disturbance with k = 0 (see Fig. 3.19). Dependence of G(t) on n is
shown in Fig. 3.20b for the case where Re = 1000 and k = 0.01; according to this
figure, G∗ = maxt > 0G(t), at small k, decreases with increase of n, but at small values
of t the disturbances with greater azimuthal wave numbers can grow faster than that
with n = 1. (At larger values of k the disturbances with n ≥ 1 can sometimes grow
more than that with n = 1; see Fig. 3.21 below.) It was also shown by Bergström that
the energy of the streamwise velocity component usually dominates the growing
energy, especially for streamwise-elongated disturbances with small values of k.

Schmid and Henningson (1994) and O’Sullivan and Breuer (1994) employed a
form of the linearized dynamic equations which differs from that used by Gustavsson
and Bergström. In both these 1994 papers, the authors followed Bergström’s paper of
1993 by considering the normal modes with fixed wavenumbers k and n and unknown
frequency ω or phase velocity c = ω/k. However, in these papers the four equations
(2.73), with the unknown functions ux , ur , uφ and p, were replaced by two equations,
for the radial velocity ur and the radial vorticity ζr = ∂uφ/∂x − ∂ux/∂rφ, as was
suggested long ago by Burridge and Drazin (1969). The definition of the vertical
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vorticity and the equation of continuity make it easy to express the streamwise and
azimuthal velcotiy components ux and uφ in terms of ur and ζr ; in particular, for
disturbances proportional to ei(kx+nφ) we obtain

ux = ik

rK2

∂(rur )

∂r
+ in

rK2
ζr , uφ = in

r2K2

∂(rur )

∂r
− ik

K2
ζr (3.69)

where K2 = k2 + n2/r2. Equations (3.69) are similar to Eqs. (3.15), which express
horizontal velocity components of a normal-mode disturbance in a plane-parallel
flow in terms of vertical velocity and vorticity; thus, these new equations may be
considered as representing the form taken by Eqs. (3.15) in cylindrical coordinates.
Burridge and Drazin (1969) showed that for disturbances proporiotnal to ei(kx+nφ)

the linearized dynamic equations (2.73) can be reduced to the following system of
two equations for functions −irur = φ and iζr/K2r = ψ associated with ur and ζr :

[(
∂

∂t
+ ikU

)

"− ikK2r

(
U ′

K2r

)′]
φ = 1

Re
["2φ − 2kn"ψ],

(
∂

∂t
+ ikU

)

ψ − i
nU ′

K2r3
φ = 1

Re

[

#ψ + 2kn

K4r4
"φ

]

(3.70)

Here K has the meaning indicated above, a prime denotes differentiation with
respect to r, and " and # are the following second-order differential operators:

" = 1

r2
− 1

r

d

dr

(
1

K2r

d

dr

)

,# = K4r2 − 1

r

d

dr

(

K2r3 d

dr

)

. (3.70′)

In Eq. (3.70) it may be assumed that the unknown functions φ=φ (r, t) and ψ =ψ

(r, t) depend only on r and t, and represent “amplitudes” preceding the factor ei(kx+nφ).

Assuming now that the disturbance depends exponentially on time, one may replace
∂/∂t by −iω (or −ikc) and consider only the stationary amplitudes φ(r) andψ(r). We
now supplement Eqs. (3.70), (3.70′) by the boundary conditions at r = 1 and r = 0. At
r = 1, φ =φ′ =ψ = 0, while at r = 0 we haveφ=φ′ = 0 if n = 0 ; orφ=ψ = 0, with
φ′ finite, if n = ± 1; or φ =φ′ =ψ = 0 if n ≥ 2. We thus obtain the general vector
eigenvalue problem of the linear theory of tube-flow stability (see, e.g., Schmid and
Henningson (1994)). This problem determines the sets of eigenvalues ωj (or cj) and
eigenfunctions φj , ψ j allowing the normal modes of all velocity components to be
found.

Schmid and Henningson (1994) solved the eigenvalue problem numerically, and
found a great number of eigenvalues ωj and eigenfunctions fj and ψj corresponding
to various combinations of wavenumbers k and n. Following Reddy and Henningson,
they numbered the eigensolutions in order of increasing mode-damping and then,
fixing the values of k and n, expanded vector q(r,t) = {φ (r, t),ψ (r, t)} = {−irur (r, t),
iζ r (r, t)/K2r} into the eigensolutions

q(r , t) =
N∑

j=1

Ajqj (r)e−iωj t , qj (r) = {φj (r),ψj (r)}. (3.71)
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(the integer N determines the degree of the series truncation). Using Eqs. (3.69) it
is easy to show that the energy density E(k, n; t) = E(t), which also determines the
energy norm ||q(r , t)||E = [E(t)]1/2 in the space of vector-functions q(r, t), is given
here by the equation

E(k, n; t) ≡ E(t) = π

1∫

0

[ |φ′|2
K2r2

+ |φ|2
r2

+K2r2|ψ |2
]

rdr. (3.72)

Equations (3.71) and (3.72) allow the energy E(t) to be represented as a positive-
definite quadratic form of the coefficientsAj. Hence here again the variational method
of Butler and Farrell (1992) may be used for determination of the optimally-growing
disturbance and the maximum energy growth G(t) = maxA (E(t)/E(0)) where
A = {A1, . . . ,AN}. As above, G(t) depends here on the values of k, n, and Re,
while the dependence on N was found to be immaterial if N is not too small (it was
indicated by Schmid and Henningson that for N > 7 the results vary with N by less
than 1.2 %).

In Fig. 3.21 the calculated functions G(t) are presented for k = 0, 0.1, and 1, n = 1,
2, 3, and 4, and Re = 3000. For k = 0 it was proved by Bergström (1992) (and was
confirmed by Schmid and Henningson (1994) and by O’Sullivan and Breuer (1994))
that G(t)/ (Re)2 depends only on t/ Re; therefore the data in Figs. 3.21a and 3.21b
refer to any values of Re. In Figs. 3.21c and 3.21d, values of time on the abscissa are
also divided by Re but here this does not make the data sufficient for determination of
the energy growth at any Re. For n = 0 (axisymmetric disturbances) some transient
growth was found under the condition that kRe > 370 but it proved to be quite small
(here maxt > 0 G(t) ≤ 3 in all cases investigated). Note also that Bergström (1992)
appeared to find a larger energy growth for disturbances with k = 0 than that indicated
in Fig. 3.21a, but he normalized E(t) by the initial energy of only one radial velocity
component. Therefore, data in Fig. 3.19 must be rescaled for comparison with data in
Fig. 3.21a (cf. Fig. 4 by O’Sullivan and Breuer (1994) who performed the necessary
rescaling and found that it brings Bergström’s results much closer to those by Schmid
and Henningson). As to the results of Bergström (1993a) presented in Fig. 3.20, they
do not contradict those in Fig. 3.21.

Contours of G∗(k, n, Re) = maxt>0G (t) in the (Re, kRe)-plane were also given
by Schmid and Henningson separately for n = 0, 1, 2, and 3; they show that for n > 0
the maximum energy amplification increases with decreasing k and that G∗/(Re)2

becomes practically independent of Re at large values of the Reynolds number.
Some examples of the initial velocity fields leading to the maximum energy growth
are presented in Schmid and Henningson’s paper, together with some other results
which will be discussed in Sect. 3.4.

O’Sullivan and Breuer (1994) also made computations related to those performed
by Schmid and Henningson (1994). In both these papers, Eqs. (3.70) and (3.70′)
with the unknown functions φ(r, t), ψ(r, t) were used to find the eigenvalues ωj
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or cj =ωj/k and the eigenfunctions φj(r), ψ j(r). However, these results were applied
by O’Sullivan and Breuer only to the study of the tube-flow eigenvalues and for
evaluation of some specific initial conditions. They followed Gustavsson (1991) and
assumed that ur (x, 0) corresponds to some normal-mode solution of the linearized
stability equations (3.70) and (3.70′) while the initial radial vorticity ζr (x, 0) is
equal to zero. Two other velocity components, ux(x, 0) and uφ (x,0), can then easily
be determined with the help of Eq. (3.69) and the initial pressure p(x,0) can be
found from dynamic equations (2.73). The resulting initial conditions are clearly
non-modal since infinitely many normal modes are needed to annihilate the non-
zero radial vorticity entering the full normal-mode solution. However, such initial
conditions seem to be interesting since they guarantee strong transient growth of
radial vorticity ζr (x, t). Moreover, comparison of Gustavsson’s results of 1991 with
those of Butler and Farrell (1992) suggests that, in the case where ur (x, 0) corresponds
to the least-stable normal mode, the energy growth must be close to the optimal one.

O’Sullivan and Breuer did not try to expand the chosen initial values in normal
modes {φj , ψ j}, j = 1, 2,. . . , but used direct numerical simulation, i.e., numerical
solution of the N-S equations in the cylindrical domain with given initial and bound-
ary conditions. The numerical factor entering the normal-mode solution representing
ur (x, 0) was chosen to be small enough to make nonlinear effects unimportant even
when the velocity disturbances grow by more than four orders of magnitude. The
DNS results are shown in the paper for a number of initial normal modes of radial
velocity, several values of n, and values of k varying from 0 to 0.5. The results showed
considerable transient growth of disturbances in almost all cases considered, in some
cases comparable with the optimal growth determined by Schmid and Henningson. It
was also shown that growth curves G(t) at Re = 1000 and Re = 2000 are practically
the same if the doubling of Re is accompanied by the halving of k.

There were only a few experiments on tube flows which gave data that can be
compared with the above theoretical conclusions. However, Bergström’s (1993b,
1995) results are worth mentioning in this respect. In the first of the indicated papers,
results of the measurements by the laser-doppler anemometer of the spatial develop-
ments of disturbances in a tube water flow were presented. The non-axisymmetric
localized disturbances (corresponding to azimuthal wave numbers n = 1 and 5) were
introduced in flows with several values of Re through 60 small holes made in the
tube wall at a fixed value of the streamwise coordinate x. Then the disturbance am-
plitudes were measured at a number of downstream positions. In the experiments
described in the second paper, localized initial disturbances of an air flow in a tube
were produced, at several values of Re, by two jets induced radially into the tube
by diametrically opposed loudspeakers and then amplitudes of the streamwise dis-
turbance velocity were measured by a hot-wire anemometer at different radial and
axial positions. Transiently-growing disturbances (growing at first and later begin-
ning to decay) with theoretically reasonable streamwise velocity were detected in
both experiments; especially conclusive results were obtained in the second set of
experiments, where the evolution with x of the peak amplitude and spatial distri-
bution of the streamwise velocity were investigated in detail. It was shown that the
disturbances having most significant transient growth correspond to n = 1 and are
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a

b

Fig. 3.21 The growth functions G(t) for optimally-growing disturbances in circular Poiseuille flow
with Re = 3000 having wave numbers n = 1, 2, 3, or 4 and a k = 0; b k = 0, data for small times;
c k = 0.1; and d k = 1. The solid, dashed, chain-dashed, and dotted lines correspond to n = 1, 2, 3,
and 4, respectively; in a and b the scaling of G by (Re)2 and t by Re makes the graphs correct at
any value of Re. (After Schmid and Henningson (1994))
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Fig. 3.21 (Continued)

c

d

streamwise elongated; these results agree well with available theoretical predictions.
The maximal growth of the disturbance energy was found to be increasing with
the Reynolds number, but in all cases this growth was considerably smaller than
that calculated for the case of optimally growing disturbances. However, this is
only natural since the produced initial disturbances were clearly far from optimal.
In any case, it was important that the reality of the transient disturbance growth
was experimentally confirmed. As to the above theoretical results, indicating the
possibility of the energy growth of tube-flow disturbance by three or even more orders
of magnitude, they definitely indicate a mechanism that can affect the transition of
tube flows to turbulence. Note again that such transition, which was first described
by Hagen in 1839 and then was carefully investigated by Reynolds in 1883, remains
up to now unexplained.
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3.4 Some General Remarks About Transient Growth of Small
Disturbances in Parallel Fluid Flows

Results of Sects. 3.33–3.34 show that in a viscous fluid with a subcritical value of Re,
weak disturbances, whose evolution is described by linearized dynamic equations,
often grow very significantly with time at first, and only later begin to decay. For
Re > Recr the situation is not too much different since here the rate of transient growth
of small disturbances often greatly exceeds the rate of growth of the unstable normal
mode (having the form of the O-S wave in the case of a plane-parallel flow). As a
result the nonlinear interactions of transiently growing weak disturbances can become
quite important, not only in subcritical flows with Re < Recr but also in supercritical
flows at times when the unstable normal mode is still very weak and practically
unobservable. Thus, in both these cases the nonlinear interactions can lead to the
so-called bypass transition to turbulence where the normal modes play no role at all
(see Sect. 2.92).

The above arguments may produce the impression that transition studies must
be based mainly on the nonlinear theory while the linear development of small dis-
turbances is here only of secondary interest. However, in fact the solutions of the
linearized initial-value problems are here also of primary importance since they pro-
vide the initial conditions for the subsequent nonlinear development. Moreover, some
authors even suggested that the exact form of non-linear interactions of not-too-small
disturbances is in fact of secondary importance. According to these authors, the only
requirement limiting the form of nonlinear interactions producing transition to tur-
bulence is the following one: they must lead to not-too-late breakdown of growing
disturbances, which transfers the accumulated energy, prior to its appreciable vis-
cous decay, to numerous small disturbances subjected again to transient growth in
accordance with the linear stability theory (see, e.g., the remarkable early paper by
Boberg and Brosa (1988) and the recent survey by Baggett and Trefethen (1997)).
This suggestion (which is not taken for granted by everybody) stimulated the ap-
pearance of a number of quite different simple low-dimensional models of nonlinear
interactions leading, as a rule, to relatively similar conclusions which do not contra-
dict the available data; see, in particular, the two above-mentioned papers and the
papers by Trefethen et al. (1993), Gebhardt and Grossmann (1994), Baggett et al.
(1995), and Grossman (1996), which will be considered at greater length in Chap. 4.

Henningson and Reddy (1994) (see also Henningson (1995, 1996) and Schmid
and Henningson (2001)) stressed that the possibility of transient growth of small
enough disturbances obeying linear dynamic equations is necessary for the transition
of a given flow to turbulence. This conclusion follows from consideration of the
energy balance of disturbances. Let an incompressible fluid fill a spatial domain V,
which is either finite or bounded by solid walls or is bounded in some directions
but unbounded in the directions of one or two coordinate axes. Assume further that
there is a flow in domain V with the velocity and pressure fields U(x) + u(x, t) and
P (x)+p(x, t). Here {U (x),P (x)} is a steady solution of the N-S equations satisfying
the “no-slip” boundary conditions at solid walls and independent of the coordinates
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with respect to which the domain V is unbounded, while {u(x, t), p(x, t)} are the
velocity and pressure of a disturbance (of an arbitrary size) which is periodic in
directions of unboundedness. Consider the kinetic energy of the disturbance

E(t) = 1

2

∫

V ′

3∑

j=1

u2
j dx (3.73)

where dx is an element of volume in the three-dimensional space of points x and V′ is
the whole domain V, if it is bounded in all directions, or the part of V′ bounded by one
disturbance period in directions of unboundedness. Then using the N-S equations it
is easy to obtain for E(t) the following equation for the energy balance:

dE(t)

dt
= −

∫

V ′

ujui
∂Uj

∂ri
dx − v

∫

V ′

3∑

j ,i=1

(
∂Uj

∂ri

)2

dx (3.74)

where, as always, summation is carried out over three values of indices occurring
twice in the same term (see, e.g., Monin and Yaglom (1971), Sect. 2.9, or Joseph
(1976), Sect. 3). Equtaion (3.74) was first derived by Reynolds (1894) and was then
used by Orr (1907); at present it is usually called the Reynolds-Orr (or R-O) equation.

Both terms on the right-hand side of Eq. (3.74) are of the second order with re-
spect to the disturbance velocities. The second of them describes the dissipation of
the disturbance energy due to viscosity, and is always negative, while the first term,
which describes the exchange of energy between the undisturbed flow and the distur-
bance, can be of any sign but, as a rule, is positive (the transfer of energy is usually
directed from the undisturbed flow to the disturbance). If so, then the relative value
of the two considered terms will determine whether the energy of the disturbance
decreases or increases. If we transform Eq. (3.74) to dimensionless quantities, mea-
suring distance, velocity, and time in units of characteristic length L, velocity U, and
time L/U, respectively, then the dimensional coefficient v in the second term on the
right-hand side will be transformed into the dimensionless coefficient v/UL = 1/Re.
Hence, if the Reynolds number Re is sufficiently small, the negative second term on
the right-hand side will always dominate the positive first term, and the energy of any
disturbance will be damped, i.e., the flow will be stable to disturbances of any shape
and amplitude. Equation (3.74) in principle makes it possible to obtain certain esti-
mates from below Recr min, which bounds the range of “sufficiently small” Reynolds
numbers, within which the energy of any disturbance can only decrease. This remark
is due to Reynolds, who tried to use Eq. (3.74) for estimation of Recr min in his paper
of 1894 where the quantities Re and Recr min first appeared. Later this equation was
used many times for the same purpose by a number of authors; some of them will be
indicated below, partly in this section and partly in Chap. 4, Sect. 4.1. In cases where
the flow is unbounded in some directions and the disturbance is periodic with respect
to the corresponding coordinates (say, to x and y with wavelengths λ1 = 2π/k1 and
λ2 = 2π/k2, respectively) the domain V′ depends on k1 and k2 and hence here the
Reynolds number below which the right-hand side of (3.74) is necessarily negative
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also depends on k1 and k2. Let us denote this value by Re1(k1, k2). Then at Re < Re1

(k1, k2) the energy density E(k1, k2; t) of any disturbance with horizontal wave num-
bers (k1, k2) cannot grow with time (thus, E(k1, k2; t) ≤ E (k1, k2; 0) for any t > 0)
and hence if Re < mink1,k2 Re1(k1, k2) = Recrmin we may be sure that the energy E(t)
of any disturbance will be damped.

In the above-mentioned paper by Henningson and Reddy (see also Reddy and
Henningson (1993); Schmid and Henningson (1994); and Henningson and Alfreds-
son (1996)) the importance of the fact that the nonlinear terms of the N-S equations for
the disturbance velocity u(x, t) drop out, when Eq. (3.74) is derived, was especially
emphasized. (These terms play no role since they produce a divergence term in the
integrand of the first integral on the right-hand side of Eq. (3.84) and thus by virtue of
the boundary conditions this term disappears after application of the Gauss theorem.)
Therefore, Eq. (3.74) preserves its form when the full N-S equations are replaced
by the linearized Eq. (2.7) describing the time evolution of very small disturbances.
This implies that if the energy of some disturbance of any amplitude grows with time
in a flow satisfying the above conditions (and such growth is necessary for transition
to turbulence since otherwise E(t) < E(0) for any disturbance and any t > 0), then
certainly the energy of an infinitesimal disturbance of the same shape will be also
growing, at least for small values of t. Since for Re < Recr only transiently growing
infinitesimal disturbances can exist and the disturbances appearing in real flows are
usually quite small at the beginning, it is natural to assume that subcritical transitions
to turbulence of laminar flows encountered in engineering and nature begin, as a rule,
with the transient algebraic growth of randomly arising small disturbances.) It is easy
to show that subcritical transition is impossible for flows where the transient growth
of infinitesimal disturbances cannot occur; see Henningson and Reddy (1994)).

According to results by Busse (1969) and Joseph and Carmi (1969) for plane
Poiseuille flow, and similar results by Joseph (1966) for plane Couette flow and
by Joseph and Carmi (1969) for circular Poiseuille flow, Recr min ≈ 49.6, 20.7, and
81.5, respectively, for these three flows (for more details see Sect. 4.1 in Chap. 4 of
this series). Hence in these flows, at values of Re smaller than the given values of
Recr min, energy of a disturbance of any size will decrease monotonically with time,
while at Re > Recr min, disturbances of any size will exist whose energy will grow
with time, at least for not too large values of t. Farrell and Ioannou (1993b) carried
out a similar computation for the case of an unbounded Couette flow and showed
that for disturbances with the given horizontal wave numbers k1 and k2 no growth
is possible if Re = bl2/v ≡ bπ2/k2v < 2π2 ≈ 19.7, where b is the velocity shear
and k = (k2

1 + k2
2)

1/2
. Thus, in this case a range of “sufficiently small” values of v

exists within which the energy of any disturbance with a given value of k decays, but
“sufficiently small-scale” disturbances can grow here at any value of viscosity.

In Sects. 3.2–3.3, where transient growth of small disturbances in laminar
plane-parallel flows was discussed, two physical mechanisms of such growth were
indicated: the direct transfer of the kinetic energy of the undisturbed laminar flow
with velocity U(z) to streamwise disturbance energy u2/2 occurring when uwdU/dz
takes negative values; and the forcing of the vertical vorticity of disturbance by
spanwise variations of vertical velocity w closely related to Landahl’s lift-up effect,
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which produces streamwise high- and low- velocity streaks. Butler and Farrell (1992)
suggested the term “vortex tilting” for the second, most effective, growth mecha-
nism since here the growth is due to spanwise tilting of the vertical vorticity. There
is, however, also a mathematical explanation of the growth mechanism, which is
related to some special features of linearized fluid dynamics equations which have
been mentioned briefly in Sect. 2.5.

Let us rewrite the lienarized dynamic equations for the disturbance velocity u =
u(x, t) in the operator notations:

∂u
∂t

= −iLu. (3.75)

where L is a time-independent linear operator (easily derived from the N-S equations)
in the space of divergence-free vector functions u(x), x ∈ V , satisfying the boundary
and periodicity conditions indicated above. (The factor −i on the right-hand side is
added to make the eigenvalues of L equal to the complex frequenciesω of the normal
modes entering Eq. (2.8) in Sect. 2.5.) To use the highly developed mathematical
theory of linear operators in Hilbert spaces we must extend Eq. (3.75) to the space
of complex vector-functions u(x, t) satisfying the above conditions and having finite
norm ||u(x, t)|| < ∞, where

||u(x, t)||2 = 1
2

∫

v′

|u(x, t)|2dx = Eu

is the kinetic energy (or, for unbounded flows, kinetic energy density) of a distur-
bance. Then the disturbance velocity at any value of t will belong to the Hilbert space
H of vector functions u(x) with the scalar product

(u, v) = 1
2

∫

v′

[u(x) · v∗(x)]dx

where the asterisk denotes complex conjugation. This allows us to consider the
evolution operator L on the right-hand side of Eq. (3.75) as an operator in H, and
define for it the adjoint operator L∗ as a linear operator satisfying the condition
(Lu, v) = (u,L∗v) for any u and v. The best studied are the self-adjoint operators
L satisfying the condition L∗ = L. According to the spectral theory of self-adjoint
operators, any such operator L has a real spectrum (which can be discrete, continu-
ous, or mixed) and every element of H can be expanded into eigenvectors of L (or
“generalized eigenvectors” corresponding to points of a continuous spectrum) where
the eigenvectors corresponding to different eigenvalues are orthogonal to each other.
This important property of eigenvector orthogonality is valid also for the wider class
of the normal linear operators in a Hilbert space H having the property that LL∗ =L∗L
(see, e.g., Dunford and Schwartz (1958, 1971); Rudin (1973); Kato (1976, 1982)
and Pazy (1983) for more information about this topic6). For normal operators the

6 Note that the properties of self-adjointness and normality of an operator L depend not only on the
operator itself but also on the norm (and scalar product) introduced in the space H. Thus, both these
properties can be lost (or gained) when the norm is changed.
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spectral representation theorem is also valid and according to it every element of
H can again be expanded into reciprocally orthogonal eigenvectors (“generalized”
for points of a continuous spectrum) of L, but the spectrum of eigenvalues in this
case is placed in the complex plane. However, the evolution operator L entering the
linearized N-S equations written in the form(3.75) is very often not only non-self-
adjoint but also non-normal (in particular, it is non-normal in all cases of parallel
shear flows considered in this chapter7). Nevertheless, as was indicated in Sect. 2.5,
the existence of a complete system of eigenfunctions and the corresponding eigen-
function expansion theorem has also been proved for all these cases (and for some
more general cases too), in particular by Di Prima and Habetler (1969), Yudovich
(1965, 1984) and Herron (1980, 1982, 1983). It was also noted in the indicated
section that for non-normal operators eigenvectors corresponding to different eigen-
values are as a rule not orthogonal. This last circumstance is very important and it
has direct relation to the strong transient growth of small disturbances in parallel
shear flows.

Let us normalize all the eigenvectors making their norms equal to one. Then in
the expansion of a vector u of the Hilbert space H into orthogonal eigenvectors the
squared norm ||u||2 (i.e., the energy, if in accordance with the above agreement the
“energy norm” is used) is equal to half the sum of the squares of all the expansion
coefficients. Therefore, the square of any coefficient is here definitely not greater than
twice the energy. However, when the eigenvectors are not orthogonal, the energy is
given by some complicated positive-definite quadratic form of the coefficients and
in this cases individual coefficients can take very large values. This is especially
so when the operator L is “strongly non-normal,” which means that its eigenvec-
tors corresponding to different eigenvalues are not only non-orthogonal but in some
cases even nearly linearly dependent. Then only small parts of some new eigenvec-
tors will provide really new contributions to the linear combination of all previous
eigenvectors. Suppose for definiteness that at t = 0 the initial condition u(x, 0) is a
vector-function of unit norm so that Eu(0) = 1. Let us now represent the solution
u(x, t) of Eq. (3.75) in the form of eigenfunction expansion

u(x, t) =
∑

j

ajuj (x)e−iωj t

where aj are expansion coefficients, while uj(x) are the normalized eigenvectors and
ωj the eigenvalues of operator L. If L is “strongly non-normal” then coefficients
aj corresponding to nearly linearly dependent eigenvectors must be quite large to
provide significant values of the “really new contributions” from these eigenvectors.
At the same time, these coefficients must lead to the near-cancellation of linearly
dependent parts of various vectors to yield the initial value u(x, 0) of unit norm

7 The situation is different in the case of stability problems four Couette-Taylor flow between two
rotating coaxial cylinders and for convection in a layer of fluid heated from below. This fact leads
to a fundamental difference between these two problems and stability problems for parallel shear
flows, and means that the initial-problem approach is not useful in the case of the former two
problems.
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in spite of large values of aj. For moderate values of t, the sum still consists of
large terms, even if �m ωj < 0 for all subscripts j and hence all the exponentials
are decaying functions. However, since the time-dependent factors exp(−iωjt) differ
from each other, the cancellation that occurs at t = 0 need not occur later and therefore
the norm of the solution u(x, t) at positive but not too large values of t can exceed
considerably its initial value ||u(x, 0)|| = 1. At still greater values of t, the decaying
factors exp(−iωjt) begin to play the main part making the growth of the norm of u(x,
t) only transient.

Given here the “mathematical explanation” of the transient growth of small distur-
bances, whose evolution is described by non-normal dynamic operators, was given
by Henningson (1991) who first found that the coefficients of an eigenfunction ex-
pansion of a small disturbance in a subcritical plane Poiseuille flow sometimes take
surprisingly high values (so, some of the expansion coefficients for the initial dis-
turbance with Eu(0) = O(1) in a flow with Re = 3000 were found to be of the order
of 103). Later Reddy et al. (1993) developed a method for crude estimation of the
order of expansion coefficients and showed that this order grows very rapidly as
Re increases: according to their estimates, for two-dimensional disturbances to a
plane Poiseuille flow with Eu(0) = 1 the coefficients may have the order of 108 if
Re = 10000, of 1010 if Re = 15000, and of 1016 if Re = 40000. Very large expansion
coefficients definitely show that the corresponding evolution operator is “strongly
(even enormously, if Re is relatively high) non-normal” and hence must produce
very great transient growth of disturbance energy. On the other hand, rapid transient
growth of small disturbances shows by itself that the corresponding evolution oper-
ator L must be strongly non-normal. The given “mathematical explanation” of the
reason of the rapid transient growth of small disturbances clearly has no relation to
the search for the physical mechanisms producing such growth; it only explains how
these mechanisms affect the form of the evolution operator L.

Let us emphasize in conclusion that the study of the possibility of large transient
growth of small disturbances is only a part of the comprehensive investigation of
transition of laminar flows to turbulence. In the majority of papers considered above,
most attention was given to “optimally growing disturbances” or, at least, to dis-
turbances whose growth is “nearly-optimal”. However, most often the disturbances
appearing in flows encountered in real life are rather far from optimal ones. So, in
the future it will be quite desirable to combine the study of transient growth with the
study of the sources producing disturbances in real flows (of the flow receptivity to
various disturbing factors in the terminology of Morkovin (1969); cf. Sect. 2.9.2 in
Chap. 2) and of characteristics of the resulting disturbances.

Let us now consider briefly (omitting all technical details) some mathematical
tools used in studies of growth potential for a given non-normal evolution operator
L. (For proofs of the statements given below and the additional details see, e.g., the
books by Kato (1976, 1982), Pazy (1983), and the accounts by Reddy et al. (1993) and
Trefethen (1996)). As is known, the range of possible rates for exponential growth
or decay of disturbances as t → ∞ is given by the spectrum Λ of the evolution
operator L. In particular, the exponential growth is impossible (i.e., the flow is stable
according to the normal-mode stability theory) if and only if all points ofΛ are in the
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lower half-plane of the complex-variable plane C (i.e., have non-positive imaginary
parts). The spectrum Λ can also be defined as the set of complex numbers z such
that the resolvent Rz = (zI − L) −1 of the operator L (hereIis the identity operator)
has an infinite norm. (The norm ||A|| of a linear operator A in the Hilbert space H
is defined as supu∈H ,||u||=1||Au|| where sup denotes the maximum or, if it does not
exist, the least upper bound.) However, in fact, behavior of the solutions u(x, t) of
Eq. (3.75) is not determined by the spectrum Λ of L alone but depends also on the
region in complex plane C where the norm ||Rz || of the resolvent is “very large”.
Therefore it is natural to consider, parallel with the spectrum Λ of L, the greater set
of complex numbers Λε which includes not only Λ but also all such numbers z that
||(zI − L)−1|| > ε−1 (or, what is the same, that ||Λu − zu|| ≤ ε for some u ∈ H with
||u|| = 1), where ε is a given (usually small) positive number. The set Λε is called
the ε-pseudospectrum of L; under wide conditions it can also be defined as a set
of eigenvalues of all the operators of the form L + K where K is a “small” operator
with ||K || < ε. The concept of a pseudospectrum was independently introduced in the
1970s and 1980s by a number of authors who often used different names for it, and
at present the applications of this concept are very numerous and diverse. For more
details about this topic, see recent surveys by Trefethen (1992, 1996) containing
many examples and additional references; this author is also now writing a book on
this subject.

If L is a normal operator, its pseudospectra have simple shape since here

||Rz|| ≡ ||(zI − L)−1|| = 1

dist{z,�} (3.76)

for any z �∈Λ, where Λ is the spectrum of L and dist {z, �} is the distance from the
point z of the plane C to the set Λ. Therefore, in this case the ε-pseudospectrum is
simply the union of disks of radius ε centered at all points ofΛ. However, if L is non-
normal, then the equality in (3.76) is replaced by ≥, and the norm of the resolvent
Rz may be quite large even if the point z is far from the spectrum Λ. Therefore, the
figure showing the pseudospectra of L also gives some information about its degree
of non-normality, which is characterized by the excess of the depicted pseudospectra
over their shapes given by Eq. (3.76).

The pseudospectra of the evolution operator L characterize its “degree of non-
normality” and thus have definite relation to the transient growth possible for the
solutions of Eq. (3.75). Another set in the complex plane C also useful for estimation
of this growth is the numerical range of L which is the set Γ of all complex numbers
which can be represented as scalar products (Lu, u) where u ∈ H and ||u|| = 1. It is
clear that all the eigenvalues of L are contained in Γ. Moreover, under some wide
conditions (which are fulfilled for evolution operators L of steady parallel fluid flows
and below will be always assumed to be satisfied) the spectrum Λ lies as a whole in
the closure of the set Γ (consisting of the points of Γ and all limits of sequences of
such points). The ε-pseudospectra Λε also lie not far from the numerical range Γ; it
may be proved that Λε lies in the set Γ+�ε formed by the union of disks of radius
ε with centers in all points of Γ.
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Fig. 3.22 Pseudospectra and
the numerical range for
operators L determining the
evolution of antisymmetric
wave disturbances with k1 = 1
and k2 = 0 in plane Poiseuille
flow with Re = 3000 (a), and
plane Couette flow with
Re = 1000 (b) (after Reddy
et al. (1993) and Reddy and
Henningson (1993)). • -
eigenvalues (in the case of
ε-pseudospectra they are
represented by discs of radius
ε); dotted lines represent
boundaries of the numerical
ranges; solid lines, from outer
to inner are the boundaries of
the ε-pseudospectra for
ε= 10−1, 10−2, 10−3, 10−4 in
Figure (a) and for ε= 10−1,
10−2, . . . , 10−6 in Figure (b)

b

a

The importance of the numerical range of L for the analysis of behavior of dis-
turbances u(x, t) satisfying Eq. (3.75) is due to the following Hill-Yosida theorem
(see, e.g., Pazy (1983)): ||u(x, t)|| ≤ ||u (x, 0)|| for all initial values u(x, 0) and all
t ≥ 0 if and only if Γ lies in the closed lower half-plane of C (i.e., �m z ≤ 0 for
all z ∈ Γ). The last condition may also be formulated in terms of ε-pseudospectra;
namely, it is equivalent to the condition that �m z ≤ ε for all z ∈Λε and any ε≥ 0. It
is easy to show that the conditions given here of absence of any disturbance growth
are equivalent to the condition following from the energy-balance equation (3.74).
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Fig. 3.23 The spectra
(represented by shaded
regions) and the upper
boundaries of the
ε-pseudospectra (the solid
lines, from outer to inner,
correspond to ε= 10−2,
10−2.5, 10−3, and 10−3.5) for
plane Poiseuille flow at
Re = 1000 a, and Re = 10000
b. (After Trefethen et al.
(1993))

The estimation of the constant C = maxu(x,0),t≥0[||u(x, t)||/||u(x, 0)||], which
determines the maximum possible growth of the disturbance energy, is more difficult
than the determination of conditions guaranteeing that C = 1. A definite estimate can
be obtained if norms ||Rkz || = ||(zI − L)−k|| are known for all integers k > 0 and all
z lying in the upper half-plane of C (see, e.g., Pazy (1983) and Reddy et al. (1993)),
but this estimate is rather complicated and it will not be presented in this book. It
can also be proved that if C ′ = maxε>0[maxz∈�ε� z /ε] > 1, then C > C′, but this
estimate of C is not simple enough and moreover is less precise than the numerical
estimates of the maximum possible growth of the disturbance energy described in
Sects. 3.33 and 3.34.

Many graphs showing the shapes of computed pseudospectra Λε and numerical
rangesΓ for dynamic operators L corresponding to various steady parallel flows were
published, together with some comments about connection of pseudospectra with
transient growth of disturbances, by Trefethen et al. (1993), Reddy et al. (1993),
Reddy and Henningson (1993), A. Trefethen et al. (1994), Schmid and Henningson
(1994), and Trefethen (1996). Some typical examples of such graphs are presented
in Figs. 3.22 and 3.23. In Fig. 3.22 the pseudospectra Λε and numerical ranges
Γ are shown for the evolution operators L determining the development of two-
dimensional disturbances, antisymmetric with respect to the channel midplane and
with dimensionless wave number k1 = 1, in plane Poiseuille flow with Re = 3000
and plane Couette flow with Re = 1000. The figure makes it clear that the operator
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L is here non-normal (the pseudospectra are much greater than the union of disks
centered at the eigenvalues). Note that the greatest excess in pseudospectrum areas
is observed near the intersection of eigenvalue branches; this makes it clear that the
eigenvectors corresponding to eigenvalues in this region are especially far from be-
ing reciprocally orthogonal. In Fig. 3.23 the upper boundaries of the spectrum and
several pseudospectra are depicted for plane Poiseuille flows with Re = 1000 and
10000. The eigenvalues z =ωj and complex numbers z belonging to pseudospectra
clearly depend on the disturbance wave numbers k1 and k2 ; in Fig. 3.23 they are
collected for all values of wave numbers and therefore in place of discrete spectra
shown in Fig. 3.22 we have here continuous spectral regions symmetric with respect
to the axis �ez = 0. These regions lie wholly in the lower half-plane if Re < Recr, but
they have bumps extended into the upper half-plane if Re > Recr.
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Chapter 4
Stability to Finite Disturbances: Energy Method
and Landau’s Equation

The main part of Chap. 2 and the whole of Chap. 3 were devoted to topics of linear
stability theory dealing with the evolution of very small flow disturbances satisfying
the linearized fluid dynamics equations. In Chap. 2 it was shown that the classical
normal-mode method of the linear theory of hydrodynamic stability often leads to
results which strongly disagree with experimental data. It was also indicated there that
these disagreements are apparently due to nonlinear effects, which make linearization
of the equations of motion physically unjustified. In Chap. 3 it was explained that
the necessity for consideration of the full nonlinear dynamic equations often follows
from the fact that many solutions of the initial-value problems for linearized fluid
dynamics equations grow considerably at small and moderate values of the time
t even in the cases when the normal-mode analysis shows that these solutions decay
asymptotically (i.e. at t → ∞).

The nonlinear theory of hydrodynamic stability has achieved a high level of de-
velopment. Although the theory is still far from being completed, it has elucidated
many formerly mysterious properties of fluid flows which are interesting for physi-
cists and important for engineers. There is now an enormous literature on this subject
and only a small part of it, dealing with relatively simple flows of incompressible
fluids, will be considered in this book. In the present Chapter two topics from the
nonlinear stability theory will be discussed: the energy method of stability analysis
(short introductory consideration of this method was included in Sect. 3.4 above)
and Landau’s approach to the weakly nonlinear stability theory which described the
initial period of the nonlinear development of flow disturbances.

4.1 The Energy Method of Stability Analysis
and its Generalisations

4.1.1 Flows of Fluids of Constant Density

Remember first of all what was said about the energy method in Sect. 3.4 of
Chap. 3. There, a flow of an incompressible constant-density fluid in a domain V was

A. M. Yaglom†, U. Frisch (ed.), Hydrodynamic Instability and Transition to Turbulence, 291
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considered, where V is either bounded by solid walls or is unbounded in the directions
of some coordinate axes xj . It was assumed that the velocity and pressure fields of
the flow are of the some of the form U(x) + u(x, t) and P(x) + p(x, t), where {U(x),
P(x)} are the velocity and pressure of some steady ‘undisturbed flow’(which, in the
case of unbounded flow, has the property that U and ∇P do not depend on those
coordinates xj that correspond to directions of flow unboundedness), while u(x, t),
p(x, t) are the velocity and pressure of some disturbance of arbitrary size (which in
the case of unbounded V is periodic, with given periods lj = 2π/kj , with respect to
the coordinates xj ). Hence {U(x), P(x)} and {U(x) + u(x, t), P(x) + p(x, t)} both
satisfy the Navier–Stockes (for short, N-S) equations with “no-slip” boundary con-
ditions at solid walls. Note also that the derivation of the energy-balance equation is
unchanged if the undisturbed flow is unsteady and spatially periodic (with periods
lj ) in directions in which V extends to infinity; moreover, the walls bounding the
domain V can be moving, and V can depend on t.

The energy-balance equation for a flow disturbance follows easily from the equa-
tions of motion for u = (u1, u2, u3), which are the differences between the N-S
equations for Ui + ui and those for Ui alone, for i = 1, 2, 3:

∂ui
∂t

+ Uj
∂ui
∂xj

+ uj
∂Ui

∂xj
+ uj

∂ui
∂xj

= − 1

ρ

∂p

∂xi
+ v

∂2ui
∂xj ∂xj

, (4.1a)

∂uj
∂xj

= 0 (4.1b)

where, as usual, the summation is carried out over all three values of any indices which
occur twice in single-term expressions (“repeated indices”). Let us now multiply Eq.
(4.1a) by ui , sum the equations obtained for i = 1, 2, 3, and then integrate the sum
over the regionV ′, whereV ′ coincides withV ifV is bounded, while ifV is unbounded
then V ′ includes only one period lj in directions in which V extends to infinity. It is
easy to see that the result of the integration can be written in the form

dE(t)

dt
= −

∫

v′

ujui
∂Uj

∂xi
dx − v

∫

v′

3∑

j ,i=1

(
∂uj
∂xi

)2

dx (4.2)

where dx is an element of volume in the three-dimensional space of points x and

E(t) = 1

2

∫

v′

3∑

j=1

u2
j dx (4.3)

is either the total kinetic energy of a disturbance (if V is bounded) or the energy
density per wavelength (the unimportant factor ρ representing the constant density
of the fluid is here omitted for simplicity). Equations (4.2) and (4.3) are just Eqs.
(3.74) and (3.73) of Sect. 3.4 and the first of them is just the Reynolds-Orr (or R-O)
equation of the energy balance. This was first derived more than a hundred years ago
by Reynolds (1894) (who took U as the average flow velocity and u as the deviation
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of the velocity at a point from the average) and was later studied and used by Orr
(1907) (whose interpretation of the velocities U and u was the same as that given
above). It was noted in Sect. 3.4 that the single nonlinear term of Eq. (4.1a) for the
velocity ui—the last term of the left-hand side—makes no contribution to Eq. (4.2),
since it produces a divergence term which drops out after the integration by virtue
of boundary conditions. As a result, all the terms of the R-O equation turn out to be
quadratic in the disturbance velocities ui ; therefore, the sign of the left-hand side of
the R-O equation does not change when the velocity u(x, t) is multiplied by some
factor (i.e., this sign does not depend on the disturbance intensity). It was also noted
in Sect. 3.4 that changing to dimensionless quantities transforms the energy-balance
Eq. (4.2) into an equation of the same form but with dimensionless coordinates and
velocities (measured in appropriate length and velocity units L and U) and with the
dimensional factor v replaced by the dimensionless combination v/UL = 1/Re.

From the R-O Eq. (4.2), where all the velocities and coordinates are now assumed
to be non-dimensionalized, it follows that if UL/v = Re takes a value which is greater
than the value of the ratio

[
∫

v′

3∑

j ,i=1

(
∂uj
∂xi

)
2dx

]

[

− ∫
v′

ujui
∂Uj

∂xi
dx

]

= R[u(x)]

(4.4)

for a given solenoidal (zero-divergence) vector field u(x) = {u1(x), u2(x), u3(x)}
which satisfies all the necessary boundary and periodicity conditions, and if u(x,
t = 0) ≡ u(x), then dE(t)/dt> 0 at t = 0. On the other hand, if Re is smaller than
(or equal to) the greatest value of R[u(x)] accessible for the class of solenoidal
fields u(x) satisfying the necessary boundary and periodicity conditions, and if the
undisturbed flow is a steady one, then for any shape and size of the initial field u(x,
t = 0) of disturbance velocity for derivative dE/dt will be nonpositive at any t ≥ 0.
Therefore, we may conclude that the minimal Reynolds number Recr min, which first
appears in the paper by Reynolds (1883), coincides with the minimum value of
R[u(x)] over all solenoidal vector fields u(x) representing possible initial values of
the disturbance velocity. Such a definition of Recr min implies that at Re<Recr min

the undisturbed flow considered is globally (i.e., unconditionally) and monotonically
stable (for more details about these concepts see, e.g., Joseph (1976); Manneville
(1990); Dauchot and Manneville (1995), and Chap. 2 in Godreche and Manneville
(1998)). Later it was also shown that if the flow region V is bounded in at least one
spatial direction (and hence can be contained between some pair of parallel planes),
then for any Re<Recr min there exists a positive constant �=� (Re) such that
E(t) ≤ E(0) exp(−�t) for any t> 0; therefore, in this case the disturbance energy
falls off exponentially with time (see, e.g., Serrin (1959), and also the books by Joseph
(1976), Sect. 4, Galdi and Rionero (1985), Chap. 1, Georgescu (1985), Sect. 1.1.5,
and Straughan (1992), Chap. 3).

If Re∗ is the smallest value of R[u(x)] corresponding to some subset of all ad-
missible disturbance velocities u(x), then the inequality Recr min <Re∗ is clearly
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valid, and hence Re∗ is an estimate of Recr min from above. Reynolds (1894) used
his version of Eq. (4.2) for just such an estimate from above of Recr min for plane
Poiseuille flow. For this purpose he determined the minimum value of R[u(x)] for
one special family of admissible two-dimensional vector fields u(x) = {u(x, z), 0,
w(x, z)} depending on two numerical parameters (not counting the amplitude whose
value is unimportant) and thus proved that in this case Recr min ≤ 517, where Re
is based on the distance H between the walls and the mean velocity of the undis-
turbed flow Um = 2Umax/3. Later Sharpe (1905) carried out a similar computation
for a quite different two-parameter family of two-dimensional disturbances u(x),
and in this way found a considerably lower estimate, Recr min ≤ 167, of the minimum
Reynolds number for plane Poiseuille flow. Sharpe also applied this method to esti-
mation from above of Recr min for the circular Poiseuille flow in a round tube; here
the value of minu(x)R[u(x)] for a particular two-parameter family of axisymmetric
velocity disturbances gave Recr min < 470, where Re is based on the tube diameter
D and the undisturbed mean velocity Um. Then Lorentz (1907), computed the value
of minu(x)R[u(x)] for a class of ‘elliptic whirls’ disturbing a plane Couette flow and
found that for this case Recr min ≤ 288 where Re = HU/v, H is the flow thickness and
U is the velocity of the moving wall.

It was already clear to Orr (1907) that only very crude estimates of Recr min can
be found from investigations of special low-parametric subsets of disturbance ve-
locities u(x). For this reason Orr did not consider any such subsets, but set up the
variational problem of finding the solenoidal vector field u(x) which satisfies the
required boundary conditions (and periodicity conditions, if V is unbounded), and
minimizes the functional (4.4) where U(x) is a given undisturbed velocity field. Orr
noted that he tried to solve this problem for three-dimensional vector fields u(x) but
found it to be too difficult (remember that this was written in 1907). Therefore he
considered only two-dimensional disturbances u(x) = {u(x, z), 0, w (x, z)} (or, in the
case of tube flow, {ux(x, r), 0, ur(x, r)} assuming that such disturbances must be less
stable than three-dimensional ones. For two-dimensional disturbances the solenoidal
vector field u(x) may be represented in terms of the scalar stream function Ψ(x, z) (or
Ψ(x, r)) and substituted in this form into Eq. (4.4). In particular, for a plane-parallel
undisturbed flow with velocity profile U(z), the functional R[u(x)] in the case of a
two-dimensional disturbance can be written as

R[Ψ(x, z)] =
∫∫

(�Ψ)2dxdz
∫∫

∂Ψ
∂x

∂Ψ
∂z

dU
dz dxdz

; (4.5)

and a similar equation may be obtained for tube flow. Therefore, determination of the
value of Recr min corresponding to two-dimensional disturbances can be reduced to the
variational problem of finding the minimum value of functional (4.5) (or some similar
functional for an axisymmetric primary flow) over the set of twice-differentiable
functions Ψ(x, z) (or Ψ(x, r)) satisfying the appropriate boundary conditions (in
particular, conditions ∂Ψ/∂z = ∂Ψ/∂x = 0 at plane solid walls). This was just the
variational problem Orr tried to solve for the cases of plane Couette flow and plane
and circular Poiseuille flows. Unfortunately, his assumption that two-dimensional
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disturbances are the most unstable was later found to be incorrect, and also some of
his numerical methods proved to be not sufficiently precise. However, this fact does
not diminish Orr’s main achievement, the first accurate formulation of the general
variational problem of the energy method of stability theory.

Subsequent investigations of the stability of some simple parallel flows by the
energy method were carried out during the 1910s and 1920s, in particular by Hamel
(1911); Havelock (1921), and von Kármán (1924) (the first publication of the author’s
results of 1910, presented at the time only in a lecture). These workers also considered
only two-dimensional disturbances, and used rather crude approximate solutions of
Orr’s variational problem. The papers by Tamaki and Harrison (1920) and Harrison
(1921) were devoted to the study of the stability of circular Couette flow by the energy
method, but the first of these papers was erroneous, while in the second the extremum
was sought only among a rather special and narrow set of disturbances. However,
for many years the inaccuracy of these calculations seemed to be an insufficient
explanation of the fact that all estimates of the critical Reynolds numbers obtained
by this method (often being ‘estimates from above’) turned out to be considerably
lower than both the values of Recr given by the normal-mode method of linear stability
theory and the experimentally observed values of Re corresponding to transition of
real flows to turbulence. This circumstance gave rise to extensive criticism of the
energy method by a number of authors, proclaiming that, even in principle, this
method can give only serious underestimates of Recr. The observed inadequacy of the
method was usually explained by the fact that the minimization of the functional (4.4)
(or (4.5)) was carried out over a set of disturbance velocities (or stream functions)
satisfying only the required boundary and incompressibility conditions, while the
equations of motion were not taken into account at all. Critical remarks of this
kind can be found, e.g., in the books by Lin (1955), p. 59, Monin and Yaglom
(1971), p. 152 (here a reference is given to the paper by Petrov (1938), where it
was allegedly shown ‘that the value ofΨ(x, z) minimizing the functional (4.5) cannot
generate a dynamically possible motion’), and Hinze (1975), p. 77, and also in papers
by Serrin (1959), p. 4, and Joseph (1966), pp. 181–182 (these two papers will be
considered below at greater length). However, this criticism is in fact unjustified;
the energy method considers only the flow conditions at one instant of time, and at
fixed time t the velocity u(x, t) can take any value satisfying the above boundary
and incompressibility conditions. (This fact was stressed by Lumley (1971) who
also analyzed the arguments by Petrov (1938) to show their inconsistency). Since in
the energy method minu(x)R[u(x)] is taken over all possible instantaneous values of
disturbance velocity, then—if the undisturbed flow is steady—at any Re below this
minimum dE(t)/dt will be negative at any non-negative value of t, i.e., the energy of
the disturbance will decay monotonically with time for any intensity and shape of
the initial disturbance.

Let us stress, however, that the validity of the inequality Re ≤ Recr min = minu(x)

R[u(x)], which guarantees the monotonic decrease of the disturbance energy with
time, is only a sufficient (but not necessary) condition for flow stability. On the other
hand, the validity of the opposite inequality Re>Recr min is a necessary (but not
sufficient) condition for flow instability. Remember also that in Chap. 2 it was noted
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Fig. 4.1 Schematic
representations of various
stability regions of a given
flow in the (E(0), Re)-plane.
(After Joseph (1976))
Re1 = Recr min; Re2 = Re0,cr;
Re3 = Recr; 1-the region of
global and monotic stability;
2-the region of global
nonmonotonic stability; 3-the
region of conditional stability;
4-the region of instability

that the normal-mode method of the linear stability theory gives the value of Recr

such that Re>Recr is a sufficient (but not necessary) condition for flow instability
(while the opposite condition Re<Recr is a necessary, but not sufficient, condition
for flow stability). Therefore, the value of Recr min can be quite different from both
the value or Recr of the linear stability theory and the value of Re characterizing real
transition to turbulence. Thus it is only natural that, even when sufficiently precise
computations of minu(x)R[u(x)] = Recr min are used, the energy method often leads to
values of Re which are far below the Reynolds numbers observed at transition of flow
to turbulence (and below the linear-theory values of Recr which are usually higher
than Reynolds numbers at laminar-turbulent transition). Let us stress again in this
respect that Recr min determines only the threshold value of the Reynolds numbers
corresponding to global (unconditional) monotonic stability of the flow considered,
i.e., the validity of the condition Re<Recr min is both necessary and sufficient for
being sure that any initial disturbance will decay monotonically tending to zero as
t → ∞. However, certain range Recr min <Re<Re0, cr of Reynolds number exceed-
ing Recr min can exist, having the property that if Re belongs to it then any disturbance
will necessarily decay to zero as t → ∞ but the energy of some disturbance will
transiently grow during some finite time intervals. This range corresponds to global
(but nonmonotonic) flow stability and it is clear that transition to (undamped) turbu-
lence cannot happen at Re<Re0, cr. The range of Reynolds numbers corresponding
to conditionally stable flows adjoins the globally-stable-flow range 0 ≤ Re ≤ Re0, cr;
at values of Re from this range the disturbances satisfying some definite condition
necessarily decay to zero while others can grow indefinitely. The most usual con-
ditions guaranteeing the decay of disturbances have the form of energy limitations:
the disturbance necessarily decays as t → ∞ if its initial energy E(0) does not
exceed some threshold value E0(Re) depending on Re. The value of E0(Re) clearly
must decrease monotonically with the increase of Re apparently tending to zero at
Re = Recr (where Recr is the critical value of the linear stability theory dealing with
the infinitesimal disturbances) and to infinity at Re = Re0, cr (see schematic Fig. 4.1;
additional information may be again found in Joseph (1976); Manneville (1990);
Dauchot and Manneville (1995), and Godrèche and Manneville (1998)). As to the



4.1 The Energy Method of Stability Analysis and its Generalisations 297

transition to turbulence, it occurs most often at some Reynolds number intermediate
between Re0, cr and Recr.

Earlier in this section some very early papers on the energy method of the sta-
bility theory were mentioned. In the 1930s, 1940s, and early 1950s this theory did
not attract much attention; note, however, two remarkable papers by Sorokin (1953,
1954) which will be discussed later in this section. Slightly later the important paper
by Serrin (1959) appeared, stimulating a number of authors to resume stability inves-
tigations by the energy method. This resulted in a great number of new publications
relating to many different problems on hydrodynamic stability.

Serrin began with an accurate derivation of the fundamental R–O Eq. (4.2) under
rather general conditions (he considered a general unsteady flow in the presence of
an external force in the region V bounded by walls which could be moving). Then
he formulated the variational problem by Orr as a problem of finding the maximum
of the functional

∏
[u(x)] = ∫

v′
ujui(∂Uj/∂xi)dx under the following conditions:

D[u(x)] = ∫
v′

3∑

i,j=1
(∂uj /∂xi)2 d x = 1 and div u(x) = 0, where u(x) satisfies the nec-

essary boundary and periodicity conditions. Serrin wrote down the Euler-Lagrange
(E-L) equations corresponding to this variational problem, which included Lagrange
multipliers (since a conditional extremum was sought). He also showed that the
equations obtained can be easily transformed into an eigenvalue problem for a sys-
tem of partial differential equations similar to the N-S equations of fluid dynamics.
(A slightly different derivation of these E-L equations, under slightly more general
conditions, was given by Lumley (1971), while the corresponding eigenvalue prob-
lem was also considered by Galdi and Rionero (1985), Chap. 1, Geovgescu (1985),
Sects. 1.1.2 and 1.3.1, and Straughan (1992), Chap. 3.) However, in the 1950s the
determination of the exact solution of the eigenvalue problem seemed to be very
difficult. Therefore Serrin concentrated his main efforts on the derivation of some
approximate results, based on some relatively crude general inequalities.

In particular, Serrin showed that in the case of an arbitrary bounded region V with
smooth enough boundary and a maximum diameter D the following inequality holds:
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where a = 3+√
13

2 π2 ≈ 32.6, for any solenoidal vector field u(x) in V vanishing on
the boundary of V (this is a particular case of the known Poincaré inequality; see,
e.g., Straughan (1992)). Using then the obvious relations
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J dx ≥ 0, Serrin obtained the inequality
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where Umax is the maximum of the modulus of the undisturbed velocity U(x).
Equations (4.2), (4.3), (4.6) and (4.7) easily imply that

E(t) ≤ E(0) exp

(
U 2

max

v
− av

D2

)

, i.e., Recr min =
(
UmaxD

v

)

cr min

≥ √
a (4.8)

where
√
a = [(3 + √

13)/2]
1/2
π ≈ 5.71. This ‘estimate from below’ of the critical

Reynolds number may seem to be too low but we must remember that the value of
Recr min can be much smaller than that of Recr found from transition experiments,
and we should also take into account that the result (4.8) is based on rather crude
inequalities and is very universal, being applicable to any bounded region of diameter
D or less and to any flow in this region.

Serrin obtained similar estimates for flows in arbitrary straight channels of vari-
able width not exceeding D (i.e., with width H(y) which can depend on y and satisfies
the condition maxy H(y) ≤ D) and straight tubes of arbitrary cross section with di-
ameter not exceeding D. Serrin proved that the inequalities (4.6) and (4.7) are valid
for these cases too (with region V replaced by V ′), except that the constant a in
Eq. (4.6) is equal to π2 in the case of a straight channel and to 2π2 in the case
of a straight tube. Therefore, the new universal stability estimates have now the
forms: Recr min = (Umax D/v)cr min ≥ π ≈ 3.14 for channels of maximum width D and
Recr min = (UmaxD/v)cr min ≥ √

2π ≈ 4.43 for tubes of maximum diameter D.
Finally Serrin applied analogous arguments to a circular Couette flow between

concentric cylinders of radii R1 and R2 rotating with angular velocities �1 and �2

(where index 1 relates to the inner cylinder and �1 > 0). Here (see e.g. Eq. (2.10),
Sect. 2.6) the undisturbed velocity is given by

U(x) = U(r ,ϕ, z) = {Ur ,Uϕ ,Uz} =
{

0,Ar + B
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, 0

}

,
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1
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2
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R2
2 − R2

1

.

(4.9)

Using these equations it is easy to show that
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[

π

log (R2/R1)

]2

(4.10b)
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Fig. 4.2 Position of the region of instability to infinitesimal disturbances, and the region of stability
to any finite disturbance, for Couette flow between rotating cylinders, studied by Taylor (1923).
The upper dashed region corresponds to instability to infinitesimal disturbances, while flows cor-
responding to points of the shaded strip are definitely stable to any finite disturbance. (After Serrin
(1959)) the continuous straight line in the figure is the boundary of the region of instability for the
case of an inviscid fluid (Chap. 2)

where, as usual, V ′ is a part of the flow region having a width in the z direction
equal to one disturbance wavelength (which can take an arbitrary value). Combining
inequalities (4.10) with the R-O Eq. (4.2), Serrin obtained the relation

dE(t)

dt
≤ ( |B| − bv)

∫

v′

3∑

i=1

u2
i

dx
r2

(4.11)

which, together with the expressions for the coefficients B and b, implies that circular
Couette flow is stable to arbitrary disturbances if

|�2 −�1|
v

≤ (R2
2 − R2

1)

[
π

R1R2 log (R2/R1)

]2

(4.12)

(another proof of condition (4.12) was given by Joseph (1976), Sect. 37). The region
(4.12) of the (�1, �2)-plane is usually only a small part of the region of stability to
infinitesimal disturbances (see, for example, Fig. 4.2 for the case whereR1 = 3.55 cm,
R2 = 4.03 cm, so that R2/R1 = 1.13, which was studied experimentally by Taylor
(1923); his results for this case were presented in Chap. 2, Fig. 2.10). The smallness
of the region of universal stability in comparison to that of stability to infinitesimal
disturbances may seem to be only natural, but let us also note that the result (4.12)
is far from being exact, being based on the rather crude inequalities (4.10).

Shortly after the appearance of Serrin’s paper of 1959, Velte (1962) improved the
possible values of the coefficient a in the Poincaré inequalities (4.6) relating to the
particular classes of fluid flows considered by Serrin. Namely, he showed that this
coefficient is in fact not less than 6π2 in the case of flows in bounded regions of
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diameter D, not less than 3.74π2 for flows in straight channels of bounded width,
and not less than 4.7π2 for flows in straight tubes of bounded diameter. These results
imply the following sharpening of Serrin’s estimates: Recr min ≥ √

6π ≈ 7.7 for flows
in bounded regions, Recr min ≥ √

3.74π ≈ 6.1 for flows in straight channels, and
Recr min ≥ √

4.7π ≈ 6.8 for flows in straight tubes, where Reynolds number is
based on the maximum flow velocity and the maximum diameter or width of the
flow region.

The indicated estimates from below of Recr min may be made more precise if their
‘universality’is relaxed, i.e. if they are sought in more restricted sets of spatial regions
V and/or velocity fields U(x). One of the first such attempts was made by Payne and
Weinberger (1963) who considered the special case where V is a sphere of diameter
D. These authors found that in this case the maximal possible value of the coefficient
a in Eq. (4.6) is 4a2

1 where a1 is the lowest positive root of the equation tan a1 = a1. It
follows from this that a ≈ 80 and hence Recr min ≥ 8.94 in the case considered. Since
it is clear that the coefficient a cannot decrease when the region is shrinking, the
last result gives the final improvement of Serrin’s estimate of Recr min for bounded
regions of fixed maximal diameter, admitting no further corrections.

Later Sorger (1966a) (see also Joseph (1976), Sects. B7 and B8) independently
considered the more general case of a region V bounded by two concentric spheres of
radii R1 and R2, (where 0 ≤R1 <R2, and 2R2 = D) and proved that here

√
a = 4a2

1
where a1 is the minimal zero of some combination of the Bessel functions of
the first and second kinds, of order 3/2, taken at arguments a1 and ηa1 where
0 ≤ η=R1/R2 < 1 (for η= 0 this combination of Bessel functions becomes a func-
tion proportional to tan a1 − a1, as it must do according to the result of Payne and
Weinberger). Sorger (1966a) also found exact analytical solutions of the variational
problem of determininig the largest possible value of a for two-dimensional flows
in a planar region V, bounded by a circle of diameter D or by two concentric cir-
cles of radii R1 and R2 = D/2>R1; he used these solutions to determine relatively
narrow ranges for the true values of a (and thus also for values of Recr min = a2) in
the cases of flows in a circular tube or in a circular channel between two concentric
cylinders. Some energy-method estimates of Recr min for flows in unbounded regions
which cannot be confined between a pair of parallel planes were given by Galdi and
Rionero (1985), Chaps. 2 and 3; see also Chap. 5 of Straughan’s book (1992).

In the second half of the 1960s, numerical methods began to be widely applied
to solution of the main variational problem of the energy theory of hydrodynamic
stability, for a number of primary flows U(x) given in various spatial regions V
(some of these methods were considered by Straughan (1992), pp. 217–224). This
allowed the determination, with good accuracy, of values of the stability bounds
Recr min = minu(x)R[u(x)] (cf. Eq. (4.4)) for many important flows, both of homoge-
neous fluids of constant density ρ and of inhomogeneous fluids of variable density
ρ(x, t) (dependent, for example, on the temperature T (x, t)). The main results ob-
tained in the late 1960s and early 1970s were summarized in the two-volume book
by Joseph (1976). Let us recall in this respect that in Chap. 3, Sect. 3.4, it was
mentioned that both Busse (1969) and Joseph and Carmi (1969) solved numerically
the general (three-dimensional) variational problem of the energy stability theory
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for plane Poiseuille flow and found that Recr min = 49.6, while Joseph and Carmi si-
multaneously found that Recr min = 81.5 for circular Poiseuille flow in a round tube,
and Joseph (1966) calculated that Recr min = 20.7 for plane Couette flow in a layer
bounded by two parallel walls. (For Poiseuille flows Re is formed with the maximal
velocity Umax and the channel half-width H1 or the tube radius R, while in the case
of Couette flow the half-difference of wall velocities U0 and half-distance between
wallsH1 are used as velocity and length scale). The paper by Joseph and Carmi also
contains the energy-method determination of the value of Recr min for Poiseuille flow
(produced by a constant axial pressure gradient) in the annuli between two concen-
tric round cylinders of different radii, while Joseph (1966) considered in addition the
case of stratified Couette flow between parallel walls where the temperature of the
lower wall is higher than that of the upper one (his main result for this case will be
presented later). Note in conclusion that all the above-mentioned papers include the
determination of the ‘most dangerous’ disturbances which correspond to the maxi-
mum value of R[u(x)] (i.e., are the most unstable). The results presented here, and
also many results of the energy method of stability theory for more complicated flows
(e.g., the pressure-gradient flows in annuli between concentric cylinders which are
either sliding with respect to each other or rotating, or flows between rotating con-
centric spheres) can be found in the book by Joseph (1976). However, we wil not
linger here to consider these more complicated flows. Instead, we will return to the
applications of the energy method to the classical stability problem of Couette flow
between concentric rotating cylinders.

Above, we mentioned the early, rather inaccurate, papers of Tamaki and Har-
rison (1920) and Harrison (1921) devoted to this problem, and also described the
derivation by Serrin (1959) of the important universal stability condition (4.12). Note
now that in the same paper Serrin supplemented the exact inequality (4.12) by some
stronger but not fully rigorous conclusions. Namely, he assumed without proof that
Orr’s variational problem in the case of a Couette flow between rotating cylinders
has an axially symmetric solution of the form u(x) = û(r)eikz where cylindrical coor-
dinates r, φ, z are now used and the wave number k takes arbitrary real values. Then
the system of Euler-Lagrange differential equations determining the solution of the
energy-method variational problem relating to such disturbances can be reduced to
an eigenvalue problem for a linear system of two ordinary differential equations, with
unkown functions ûr (r), ûφ(r). Serrin could not solve this problem in the general
case but he showed that in the case of a ‘small gap’ between the cylinders, i.e. where
R2 −R1 � (R2 +R1)/2, his system of differential equations can be approximated
by a pair of simpler equations, leading to an eigenvalue problem whose solution is
known from previous work on hydrodynamic stability. Then the smallest eigenvalue
of the problem studied (which depends on k so that the minimum over all real values
of k must be considered) will determine the new stability criterion (with respect to
axisymmetric disturbances) valid in the small-gap case. According to Serrin it has
the form

|�2 −�1|
v

≤ 2
√

1708√
R1R2(R2 − R1)

. (4.13)
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This somewhat tentative criterion gives the ‘stability region’ in the form of a strip
similar to that presented in Fig. 4.2 but having much greater width.

Later Sorger (1966b, 1967) proved, under rather wide conditions, the existence of
an axially symmetric solution of the form u(x) = û(r)eikz for Orr’s variational prob-
lem for the case of circular Couette flow. He also developed a method to determine
numerical values of the function ûr (r) = ûr (r; k), and of the corresponding critical
Reynolds number Recr min (k), where Re = U(R1)(R2 −R1)/v, for various values of k
and η=R1/R2. (Reynolds number Recr min (k) determines the boundary of stability
with respect to axisymmetric disturbances with wave number k).The results obtained
were then compared with those obtained from the linear theory of hydrodynamic sta-
bility, and used to determine the dependence of the value of Recr min = min0 ≤ k≤ ∞
Recr min (k) on the value of η.

More detailed study of the stability of circular Couette flow was carried out by
Hung (1968) and Joseph (see Joseph and Hung (1971) and Joseph (1976), Chap. 5).
In particular, Hung (1968) solved numerically the general (three-dimensional) Orr’s
variational problem relating to the circular Couette flow for a number of values of
η=R1/R2, A and B (see Eq. (4.9)). The found solution determined the region of
‘universal stability’ of Couette flow to arbitrary disturbances. According to Hung’s
results (partially presented by Joseph (1976) in Sect. 37) the stability region in all
cases studied was of the form |�2 −�1| /v ≤ R̃cr(η)(R2

2 − R2
1)/(R1R2)2, where

R̃cr(η) is some universal function of η. We see that here again the stability region
has the shape of a strip, similar to that presented in Fig. 4.2, whose width depends
on values of R1 and R2. It was also found that the disturbances which first become
unstable when |�2 −�1| /v is increasing are axisymmetric in all the cases studied,
and similar to the Taylor vortices described in Sect. 2.6. Remember that in this
section it was also noted that according to experimental results over a wide range of
flow conditions, when circular couette flow becomes unstable the appearing unstable
disturbance mode is a set of axisymmetric Taylor vortices. These results stimulated
Joseph and Hung to began a more complete energy-balance investigation of the
stability of Couette flow to axisymmetric disturbances.1

Joseph and Hung integrated the equations of motion for the squares u2
r = w2, u2

φ =
v2 and u2

z = u2 of the velocity components of an axisymmetric disturbance over
the spatial region V ′ (whose span in the z-direction is equal to the wavelength
of the disturbance), and considered equations for 1

2
d
dt

〈w2 + u2〉 = d
dt
E(1)(t) and

1
2
d
dt

〈v2〉 = d
dt
E(2)(t) (where angle brackets denote the integrals over V ′) neither of

which contains pressure terms (since ∂p/∂φ = 0 in the case of axisymmetric dis-
turbances). Summing these two equations one will obtain the R-O energy Eq. (4.2)
for E(t) = E(1)(t) + E(2)(t), which is used in the energy method of stability theory.

However, it is easy to see that the convergence to zero of E(t) = 1
2

〈
3∑

i=1
u2
i

〉

is only

1 Joseph and Hung’s paper of 1971 in fact represented a continuation of the work, unknown to them,
of Pritchard (1968) who studied the same problem by the same method but restricted himself to
consideration of linearized dynamic equations. (Pritchard’s paper will be described at greater length
in Sect. 4.12).
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one of many consequences of the decay to zero of disturbance velocity u(x, t) as
t → ∞. Since the half-sum of squared velocity components has an important phys-
ical meaning, the requirement that E(t) → 0 is a very attractive stability condition.
Nevertheless, instead of this we may in principle require that the spatial average of
some other nondegenerate positive-definite quadratic form of velocity components
converges to zero as t → ∞. Such convergence also shows that the disturbance
decays to zero (and quite often it implies also the convergence to zero of E(t)); hence
the absence of an explicit physical meaning of the selected quadratic form cannot
be considered as a radical defect of the new method. These arguments clearly allow
one to suggest a great number of modifications of the classical energy method of
stability analysis.

Joseph and Hung (1971) (see also Joseph (1976), Sect. 40) proposed to use the con-
dition d[E(1)(t) +λE(2)(t)]/dt = dEλ(t)/dt < 0, where λ is some positive constant
and the disturbance velocity field u(x) is axisymmetric, as a new condition of stability
with respect to axisymmetric disturbances (replacing the more usual requirement of
negativity of dE(t)/dt). The new condition implies that Eλ(t) = E(1)(t) + λE(2)(t)
decays to zero monotonically as t → ∞; since E(t) ≤ min[1, λ] Eλ (t), the energy
E(t) also decays to zero in this case. However, if λ �= 1, the set of primary Couette
flows, and of initial disturbances u(x) for which dEλ (t)/dt< 0, does not coincide
with the similar set corresponding to the condition dE(t)/dt ≡ dE1(t)/dt< 0. There-
fore, the study of exact conditions guaranteeing that dEλ (t)/dt< 0 for λ �= 1 leads to
the possibility of finding some new classes of stable disturbances of circular Couette
flows.

The Reynolds–Orr energy-balance Eq. (4.2) implies that the given class
%

D of
velocity disturbances u(x) is certainly stable (and what is more, its kinetic energy
decays monotonically as t → ∞), if Re < min

u(x)⊂%
D
R[u(x)] = Recr min, where

R[u(x)] is given by Eq. (4.4) and all lengths and velocities are measured in the
units L and U used in the definition of Re. (Below it will be assumed that class

%

D
consists of all axisymmetric velocity fields, therefore the value Recr min will refer to
axisymmetric disturbances only). However the balance equation for the ‘modified
energy’Eλ(t) with λ �= 1 differs from Eq. (4.2); therefore, conditions guaranteeing
that dEλ(t)/dt< 0 must also differ from conditions guaranteeing the negativity of
dE(t)/dt. The most important difference between the balance equations for Eλ(t)
and for E(t) is due to the fact that the nonlinear terms of the N–S equations for
u(x, t) do not contribute to the dynamic equation for dE(t)/dt but do affect the
value of dEλ(t)/dt. It was noted above that the absence from Eq. (4.2) of the terms
produced by the nonlinear terms in these N–S equations means that all terms on
the right-hand side of this equation are of second order with respect to the velocity
components ui . Therefore, the ratio R[u(x)] of such terms does not depend on the
intensity (‘amplitude’) of the disturbance u(x). However, if λ �= 1, then the equation
for dEλ(t)/dt contains a term of third order in the velocity components (equal to
(1 − λ) (wv2/r)). This makes the sign of dEλ (t)/dt dependent not only on v (i.e. on
Reynolds number Re), the parametersR1,R2 and�1,�2 of the primary Couette flow,
and the shape of the initial disturbance u(x), but also on some characteristic of the
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Fig. 4.3 Schematic
representation of Joseph and
Hung’s (1971) results for
stability of a flow between
rotating cylinders to
axisymmetric disturbances.
Re1 = Recr min; Re2 = Reλ,cr ;
1-the region of global stability
and monotonic decay of E(t);
2-the region of conditional
stability and monotonic decay
of Eλ (t); 3-combined region
of nonmonotonic stability and
instability

intensity of u(x) (it is convenient to use the value of Eλ(0) as such characteristic).
As a result the main conclusion derived by Joseph and Hung from the study of
conditions guaranteeing the negativity of dEλ(t)/dt has the form of a theorem about
the conditional stability of axisymmetric disturbances in a circular Couette flow,
determining a new stability region for such disturbances. The new stability region is
a part of the (Re,Eλ)-plane which consists of such points that at the Reynolds number
Re the ‘generalized energy’ Eλ(t) of any axisymmetric disturbance with the initial
‘energy’Eλ (0)<Eλ decays monotonically to zero as t → ∞ (and hence the energy
E(t) also decays to zero but its decay can be nonmonotonic). Note that for some
nonnegative values of λ the new stability region can perfectly well include some
points where Re>Recr min and hence the energy E(t) will not decay monotonically.
In this case the new result represents an informative specification of the general
statement about the possible existence of conditionally stable flows illustrated in
Fig. 4.1 (see schematic Fig. 4.3 which represents graphically just this case of the
Joseph and Hung theorem).

We will not give here the exact formulation of the theorem by Joseph and Hung
but only its general character. The role of the functional (4.4) is now played by the
functional Rλ[u(x)] = 〈Dλ[u(x)〉/〈Pλ[U(x), u[x]〉 , where 〈Dλ[u(x)]〉 is the sum of
the viscous terms in the equation of motion for Eλ (t) = 〈

u2 + λ v2 + w2
〉
/2, di-

vided by the kinematic viscosity v (more exactly, by (Re)−1 since the equation forEλ
(t) is now assumed to be non-dimensionalized) while 〈Pλ [U(x), u(x)] 〉 is the sum
of production terms, linear in the undisturbed velocity gradient dU(r)/dr. The new
functionalRλ [u(x)] is a natural replacement for the functional (4.4) when the ‘mod-
ified kinetic energy’Eλ (t) is considered instead of the energy E(t). Let Reλ,cr denote
minu(x)Rλ [u(x)], where the minimum is taken over the whole class of disturbance
velocities considered (i.e., over the class of velocities of all axisymmetric distur-
bances). Then, if Re<Reλ,cr, the sum of all right-hand-side terms of the equation for
dEλ(t)/dt which are of second order in the components ui will be negative. However,
this does not mean that the derivative dEλ(t)/dt will necessarily be negative, since
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the term of the equation for dEλ(t)/dt which is of third order in the components ui is
not taken into account here. Remember that the size of this term, relative to the terms
which are quadratic in ui , depends on the intensity of the disturbance u(x) (which can
be measured, e.g., by the modified kinetic energyEλ(0)) and increases with increase
of this intensity. Therefore, a condition guaranteeing the negativeness of dEλ(t)/dt
must in some way restrict possible values of the initial disturbance intensity and thus
diminish the possible influence of the third-order term.

These circumstances explain the following final form of the theorem found by
Joseph and Hung (1971): if Re<Reλ,cr and Eλ(0) < G (Reλ,cr −Re, λ, R1, R2, �1,
�2), where G is a definite function of given arguments proportional to (Reλ,cr −Re)2,
then dEλ (t)/dt< 0 for any nonnegative value of t, and Eλ (t) decays to zero mono-
tonically and not slower than expotentially (hence E(t) = min[1, λ] Eλ (t) also
decays to zero not slower than expotentially). This theorem clearly makes sense only
if Reλ,cr >Recr min = minu(x)R[u(x)] and also Re>Recr min, since at Re<Recr min

the energy of any axisymmetric disturbance decays monotonically to zero. How-
ever, if Recr min <Re<Reλ,cr, then Joseph and Hung’s theorem contains valuable
information: it proves that here the ‘generalized energy’ Eλ(t) of any axisymmet-
ric disturbance, with an initial amplitude so small that Eλ(0) < G =Gλ (Re) (for
the sake of simplicity other arguments of the function G are here omitted) decays
monotonically to zero in a circular Couette flow. This means that for Re within
this interval, axisymmetric disturbances are conditionally stable (namely, stable
under the condition that Eλ(0) <Gλ(Re)). Since the value of G is proportional to
(Reλ,cr −Re)2, it vanishes at Re = Reλ,cr and hence at this value of Re the theorem
can be applied only to infinitesimal disturbances (see again the schematic Fig. 4.3
illustrating the Joseph–Hung theorem). In this figure Re2 = Reλ,cr represents the
smallest Reynolds number at which there exists an axisymmetric disturbance having
arbitrarily small value ofEλ (0) and such that its ‘generalized energy’Eλ(t) does not
decay monotonically to zero as t → ∞. The value Reλ,cr, which clearly must be
greater than Recr, depends on the choice of ‘energy’Eλ(t)(and of the class of con-
sidered disturbances). This value differs from the Reynolds number Re1 = Recr min,
determining the threshold below which the energy E(t) of any axisymmetric distur-
bance decays monotonically, and can exceed this number. Figure 4.3 refers just to this
case.

It was noted above that λ can be chosen as any positive number. Note now that the
usefulness of the Joseph-Hung theorem increases as the number Reλ,cr and the func-
tionGλ (Re) shown in Fig. 4.3 increase, leading to enlargement of the region of stable
disturbances indicated in this figure. Joseph and Hung showed that when Re<Reλ,cr

is fixed, the value of Gλ(Re) increases without limit as R1/R2 → 1 orλ→ 1 (the last
result agrees well with the known fact that no restriction of the disturbance amplitude
is needed at λ= 1). Moreover, these authors also considered the problem of deter-
mination of the optimum value λ0 of λ corresponding, at given values of R1, R2, �1

and�2, to the maximum possible value of Reλ,cr. They proposed a relatively simple
numerical method for computation of λ0. Especially simple results were obtained for
the case where R2

2�2 < R2
1�1 and�2/�1 > 0. In this case an analytic approxima-

tion of high precision was found for the optimal value λ0. Using this approximation it
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was possible to compute quite accurately the values of Reλ0,cr (i.e., of the maximum
value of Re at which Joseph and Hung’s theorem makes sense). It was found that
here the values ofReλ0,cr practically coincide with the values of the critical Reynolds
numbers Recr given by the linear theory of hydrodynamic stability. This coincidence
may be considered as being natural, since the critical values Recr and Reλ0,cr both
apply here only to infinitesimal axisymmetric disturbances u(x) (because for the
class of Couette flows studied by Joseph and Hung the linear stability theory shows
that Recr is just the boundary of stability with respect to axisymmetric disturbances).
Neverthelss, the coincidence is interesting, since it connects results obtained by two
different approaches to the same problem. Note also that the approach by Joseph and
Hung inspired many subsequent studies of various stability problems which will be
considered at the end of Sect. 4.13.

An even more surprising coincidence relating to the same problem was found
slightly earlier by Busse (1970). He considered the classical energy method of
Reynolds and Orr, and compared stability results given by this method with
those following from the linear theory of hydrodynamic stability. He analyzed
the ‘narrow gap’ approximation, where (R2 −R1)/(R2 +R1) � 1, assuming that
the relative difference of angular velocities also asymptotically vanishes simulta-
neously, so that (�2 −�1)/(�2 +�1) � 1. Busse found that then, if in addition
(�2 −�1)/(�2 +�1) = −4(R2 −R1)/ (R2 +R1), the Reynolds-Orr energy method
leads to an eigenvalue problem which coincides exactly with the eigenvalue prob-
lem (2.17–2.17′) arising in the linear theory of hydrodynamic stability for circular
Couette flow. Therefore, in this case the stability boundaries (the critical Reynolds
numbers, Re, or Taylor numbers, Ta = �2

1R1(R2 − R1)3/v2 often used instead of
Re) given by the linear stability theory for the case of infinitesimal disturbances and
by the energy method for disturbances of arbitrary size are exactly the same (and
hence Recr = Recr min, Tacr = Tacr min). A similar result was obtained by Busse for a
plane Couette flow rotating around the y-axis with some definite angular velocity;
in this case it was again found that Recr = Recr min. Some other examples (dating as
far back as the 1950s) of flows where the critical values of the dimensionless flow
parameter given by the linear stability theory and by the energy method coincide
with each other will be considered in the following subsection; see also the paper by
Wahl (1994) which contains further examples.

The discovery of flows where Recr = Recr min evidently refutes the opinion, which
was popular in the first half of the twentieth century, that the stability region given
by the energy method must in principle be much smaller than the stability region
determined by the linear theory of hydrodynamic stability. This discovery was then
supplemented by the development by Joseph and Hung (1971) of the method which
enlarged the region of validity of ‘energy stability’ results by introduction of the
concept of ‘conditional stability’ and replacement of the energy density E(t) by
some other positive-definite functional of disturbance variables. This work led to
a considerable revival of interest in the energy (and generalized-energy) methods
of stability theory. Many of the papers devoted to this subject concerned motion
of fluids with varying temperature (and hence also density) in a gravitational field
producing a significant buoyancy effect. Therefore it will be reasonable to begin the
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next subsection by considering energy-method investigations of flow stability for a
fluid with variable temperature.

4.1.2 Stability of Convective Motions and Related Stability
Problems

In Subsect. 4.11 much attention was given to the classical Taylor problem of stability
of Couette flow between coaxial rotating cylinders. However, there is another classi-
cal problem which also played a very important part in the early development of the
linear theory of hydrodynamic stability. This is the famous Bénard–Rayleigh prob-
lem of stability of a stationary horizontal layer of fluid heated from below, which
was considered in Sect. 2.7. Now we will turn to the applications of the energy
method to this and to some other stability problems where buoyancy forces are of
great importance.

In the case of motion of a fluid of variable temperature under gravity, the N–S
dynamic equations must be replaced by some more general equations. Under rather
general conditions, which in this book will be assumed to be always valid, we can
neglect density variations except in the buoyancy term and, as in Sect. 2.7, use the
Boussinesq equations. Let U(x) be the primary velocity field (it can also depend on
time t but we will not consider this case) and T (x) be the undisturbed temperature
field. Then the nonlinear Boussinesq, continuity and heat conduction equations for
the disturbances ui and ϑ of the velocity and temperature will have the following
form:

∂ui
∂t

+ Uj
∂ui
∂xj

+ uj
∂Uj

∂xj
+ uj

∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ v∇2ui + δi3gβϑ , i = 1, 2, 3,

(4.14a)

∂ui
∂xi

= 0, (4.14b)

∂ϑ

∂t
+ ui

∂T

∂xi
+ Ui

∂ϑ

∂xi
+ ui

∂ϑ

∂xi
= χ∇2ϑ , (4.14c)

where p is the deviation of the pressure field from the undisturbed pressure P, g is
the acceleration due to gravity, and β is the coefficient of thermal expansion of the
fluid. The boundary conditions on stationary solid walls at constant temperature have
a very simple form: u(x, t) =ϑ (x, t) = 0. More complicated boundary conditions
must be used in the cases of moving walls, solid walls of non-constant temperature
(i.e., those which have fixed finite thermal conductivity, or are characterized by fixed
heat flux normal to the wall), and free surfaces of liquids; see e.g. the discussion of
this question in Sect. 2.7 of this book, and in Sect. 55 of Joseph’s book (1976) where
some additional references relating to this subject can also be found. However, in the



308 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

discussion below most attention will be given to the simplest case of zero boundary
conditions for velocity and temperature disturbances at the walls.

The Boussinesq Eq. (4.14a) differ from the N-S equations only by the additional
term gβϑ in the equation for u3 = w. This term produces an extra term in the energy-
balance Eq. (4.2) which now takes the form

dE(t)

dt
= −

∫

v′

ujui
∂Uj

∂xi
dx + gβ

∫

v′

u3ϑdx − v
∫

v′

3∑

j ,i=1

(
∂uj
∂xi

)2

dx

= −
〈

ujui
∂Ui

∂xi

〉

+ gβ 〈u3ϑ〉 − v

〈
3∑

j ,i=1

(
∂uj
∂xi

)
2
〉

= P1 + P2 − vD (4.15)

which differs from the R-O Eq. (4.2) by the extra term P2 = gβ 〈u3ϑ〉 on the right
side. This term can be easily estimated by the following crude inequality

gβ〈u3ϑ〉 ≤ gβ〈|u3ϑ |〉 ≤ gβ〈u2
3〉〈ϑ2〉1/2 ≤ 2gβ[E(t)ET (t)]1/2 (4.16)

where ET (t) = 0.5〈ϑ2〉 is an integral measure of the intensity of temperature dis-
turbance (while 〈ϑ2〉 is often called the ‘temperature variance’). Moreover, the
heat-conduction Eq. (4.14c), together with the boundary conditions given above,
leads to the following balance equation for the temperature-disturbance intensity
ET (t)

dET (t)

dt
= −

〈

ϑui
∂T

∂xi

〉

− χ

〈
3∑

i=1

(
∂ϑ

∂x
i

)2
〉

= PT − χDT . (4.17)

Here the first term on the right-hand side is clearly less than or equal to
2γ [E(t)ET (t)]1/2 where γ = maxx∈v |∇T (x)| , while the following analog of the
inequality (4.6) can be proved for the factor DT in the second term

DT =
〈

3∑

i=1

(
∂ϑ

∂xi

)2
〉

≥
aT π

2

D2
〈ϑ2〉 = 2aT π2

D2
ET (t). (4.18)

In Eq. (4.18)aT = 3 ifV is a bounded region of diameter D, andaT = 1 for a horizontal
layer of maximal thickness D. Combining the balance Eqs. (4.15) and (4.17) with
the estimates of the terms of these two equations given above, we may obtain for the
derivative d[

√
E(t) + λ

√
ET (t)]/dt (where the dimensional factor λ has a positive

value) an inequality of the form

d[
√
E(t) + λ

√
ET (t)]

dt
≤ λ1

√
E(t) + λ2

√
ET (t) (4.19)

where expressions for the coefficients λ1 and λ2 include the dimensional constants
λ; γ = max |∇T| ; and the coefficients entering Eqs. (4.6), and (4.15–4.18). If
λ =

√
(a − Re2)gβv/2aT π2γχ = λ0

√
gβv/γχ , where Re = UmaxD/v, λ2

0 =
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(a − Re2)/2aT π2 is a dimensionless constant, and it is assumed that a>Re2,
then the inequality (4.19) takes an especially useful form. In this case λ1 =
−ξ [

√
(a − Re2)aT π/2 − √

Ra] = −ξ (λ0aT π
2 − √

Ra), λ2 = λλ1, where ξ =
λ0v/D2 if λ0(Pr)1/2 ≤ 1 and ξ = χ/λ0D

2 if λ0(Pr)1/2 > 1, and where Ra =
gβγD4/vχ and Pr = v/χ (cf. Joseph (1965)). It follows from this result that the
convective motion will be universally (in other words, unconditionally or globally)
stable to any disturbance of the velocity and/or temperature if

0 ≤ Ra <
aT π

2(a − Re2)

2
(4.20)

since under this condition, for the value of λ indicated above, we have
√
E(t) + λ

√
ET (t) ≤ [

√
E(0) + λ

√
ET (0)]

exp

{

−ξ [
√

aT π2(a − Re2)/2 − √
Ra]t

}

. (4.21)

The results (4.20–4.21) (obtained by Joseph(1965, 1966) in slightly different from)
are similar to the Serrin-Velte-Sorger results of 1959–1967, derived for constant-
density (non-convective) flows: they do not depend on any specific details of the
flow geometry or on the distributions of the primary velocity and temperature fields.
For the special case of a stationary horizontal fluid layer (for which aT = 1, a = 3.7π2,

and Re = 0) we obtain the result: Racr min > 1.85π4 ≈ 180. The last result can easily
be improved; in fact the inequality (4.7) is clearly unsatisfactory in the case of
stationary fluid where its left-hand side is equal to zero. If we simply omit the first
term on the right-hand side of (4.15) and then repeat all the arguments, we obtain
twice as good an estimate: Racr min > 360 (which is still much smaller than the value
Racr = 1,708 given by linear theory). A similar improvement can also be made in the
estimate (4.20) of the boundary of the universal stability region in the (Ra, Re)-plane
if one uses a different estimate of the first term on the right-hand side of Eq. (4.15)
(giving zero for fluid at rest) and another definition of Reynolds number (see Joseph
(1965)). Note however that in the case of primarily stationary fluid all the results
obtained in this way were much weaker than the older results of Sorokin (1953, 1954)
and several other workers who studied conditions for the appearance of convection
in fluids at rest.

Sorokin considered the stability problem for a stationary fluid in a given spatial
region V (he assumed it to be bounded but his arguments can be applied to many
unbounded regions too). Using Eqs. (4.14a–c) he proved that under very general con-
ditions (which are satisfied in almost all situations of practical interest) Racr min = Racr

where Racr is the critical Rayleigh number determined by the linear theory of hy-
drodynamic stability, while Racr min is the stability boundary given by the energy
method. (This means that for Ra<Racr min both E(t) andET (t) decay monotonically
with time).

Morcover, Sorokin also proved that the principle of exchange of stabilities is valid
here, i.e. that the eigenfrequency ω corresponding to the most unstable mode, if such
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a mode exists, is real (and that all other eigenfrequencies ωj are also real here).
(Remember, that for the Bénard problem, where V is an infinite horizontal layer,
the principle of exchange of stabilities was first proved by Pellew and Southwell
(1940); see Sect. 2.7). At first, these important papers by Sorokin did not attract
much attention, and some of his results were later independently rediscovered by a
number of authors (in particular, by Ukhovskii andYudovich (1963); Howard (1963);
Sani (1964), and Platzman (1965)). Then Joseph (1965, 1966) also independently
derived Sorokin’s results, and some of their generalizations, by a new method and
under more general conditions than those used in the previous publications. His
derivation was later described in the book by the same author (see Joseph (1976),
Chap. VIII) which played a very important part in the revival of interest in energy
methods. Therefore only Joseph’s approach will be outlined below.

Seeking the stability boundary in the (Ra, Re)-plane, Joseph investigated condi-
tions guaranteeing the decay with time of the quantity Eλ(t) = E(t) + λET (t) where,
as above, λ is a dimensional factor having positive value. According to Eqs. (4.15)
and (4.17), the right-hand side of the equation for dEλ(t)/dt includes three “produc-
tion terms”, P1, P2 and λPT, and two “dissipation terms”, −v D and −λχDT. The
production terms can take positive values and they then describe the growth of the
intensity of the velocity and temperature disturbances, caused by the interaction of
flow disturbances with the primary flow. As to the dissipation terms, they are al-
ways negative and represent the decay of disturbance velocity and temperature fields
caused by molecular viscosity and heat conductivity. Therefore, for decay of the
‘modified energy’ Eλ(t) of a disturbance with given velocity and temperature fields
{u(x),ϑ(x)}, the sum of the absolute values v D and λχ DT of the dissipation terms
must be greater than P1 + P2 + λPT.

Joseph made the balance Eqs. (4.15), (4.17) and the equation for dEλ(t)/dt
dimensionless, replacing the dimensional independent and dependent variables
xi , t ,Ui , ui , T ,ϑ ,E,ET , and the coefficient λ by x+

i = xi/L, t+ = tv/L2,U+
i =

Ui/U0, u+
i = uiL/v, T + = T/#0,ϑ+ = ϑ(χgβL3/v3#0)1/2,E+ = E/v2L,E+

T =
ET χgβ/v3#0, and λ+ = λ(#0/gβL) where L, U0 and θ0 are typical length, velocity
and temperature scales of the primary flow (these scales must be chosen in a reason-
able way for every specific problem). It is easy to verify that Eqs. (4.15) and (4.17)
then take the following forms

dE+(t+)

dt+
= − Re

〈

u+
j u+

i

∂U+
j

∂x+
i

〉

+ √
Ra〈u+

3 ϑ
+〉 −

〈
3∑

i,j=1

(
∂u+

i

∂x+
j

)2〉

, (4.15a)

and

Pr
dE+

T (t+)

dt+
= −√

Ra

〈

ϑ+u+
i

∂T +

∂x+
i

〉

−
〈

3∑

i=1

(
∂ϑ+

∂x+
i

)2
〉

(4.17a)

where Re = U0L/v, Ra = gβ#0L
3/vχ , Pr = v/χ , and angular brackets now de-

note integration, with respect to dimensionless coordinates x+
i , over the region V ′.
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Also, changing to dimensionless variables makes the quantityEλ(t) = E(t) + λET (t)
proportional toE+(t+)+λ+PT E

+
T (t+). In the rest of this section we will use only di-

mensionless variables, and for simplification of notation we will omit the superscript
‘plus’ signs. Hence, the symbolEλ(t) will now denote the sum E(t) + λ PrET (t), and
according to Eqs. (4.15a)and (4.17a) the balance equation for this quantity has the
form

∂Eλ(t)

∂t
= − Re

〈

uiuj
∂Uj

∂xi

〉

+ √
Ra

(

〈u3ϑ〉 − λ

〈

ϑui
∂T

∂xi

〉)

−
〈

3∑

i,j=1

(
∂ui
∂xj

)2

+ λ

3∑

i=1

(
∂ϑ

∂xi

)2
〉

= Re P1 + √
Ra(P2 + λPT ) − D − λDT . (4.22)

Equation (4.22) takes an especially simple form in the case of stationary fluid, where
Re = 0. Here the critical Rayleigh number of the energy theory, Racr min, can be
determined from the equation

Racr min =
[

maxλminu(x),ϑ(x)
D + λDT

P2 + λPT

]2

(4.23)

where the minimum is taken over all solenoidal vector fields u(x) and scalar fields
ϑ(x) satisfying the boundary conditions appropriate to the problem considered, and
the maximum over all nonnegative values of λ (thus, the value of λ is varied in the
search for the highest estimate of Racr min). It can be shown that in the case whereλ= 1
the Euler–Lagrange equations corresponding to the variational problem of finding
the minimum in the right-hand side of (4.23) can be reduced to the same eigenvalue
problem that appears in the linear stability theory applied to a given volume of
stationary fluid with given temperature field T (x). The critical Rayleigh number of
linear stability theory, Racr, is determined by the solution of this eigenvalue problem
for the case of zero frequency (i.e. the eigenvalue ω = 0) in exactly the same way
that Recr min is determined by the solution of the eigenvalue problem derived from
the Euler-Lagrange equations.This means that Recr min = Recr in this case, and that
the optimal value of λ in Eq. (4.23) is λ= 1 (since the value of Recr min clearly cannot
be greater than Recr). In particular, for the Bénard-Rayleigh problem of stability of a
horizontal layer of stationary fluid heated from below we find that Recr min ≈ 1,708
in the case of two rigid walls at constant temperatures, while Racr min ≈ 1,101 for
one rigid and one free boundary and Racr min ≈ 657 for the idealized case of two
free boundaries, if the values L = H (the distance between two walls) and #0 =ΔT
(the difference between lower-wall and upper-wall temperatures) are used in the
definition of the Rayleigh number (see Sect. 2.7).

In the more general case of a flow satisfying the Boussinesq equations and hav-
ing given velocity and temperature fields U(x) and T (x), the energy method can be
used to find the stability boundary in the (Re, Ra)-plane, determining the region
of (Re, Ra)-values that guarantes the decay of any initial disturbance regardless
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of its size. Such decay will clearly occur if, for at least one positive value of λ,
the sum of dissipation terms D + λDT for any initial disturbance {u(x), ϑ(x)} is
greater than the sum of production terms Re P1 + √

Ra(P1 + λ PT ). Hence the sta-
bility boundary in the (Re, Ra)-plane will now coincide with the boundary of the
largest region in this plane in which, for some positive value of λ, the ineaqual-
ity (D + λDT) ≥ (ReP1 + √

Ra(P2 + λPT )) is valid for any values of {u(x), ϑ(x)}
satisfying the boundary conditions of the problem considered.

Determination of the boundary curve in the (Re, Ra)-plane is a more difficult
problem than in the case of fluid at rest, when only a boundary point on the Ra-
axis must be found. Joseph (1966) proposed to assume at the beginning that that
Re/

√
Ra =μ is fixed. Then at fixed values of λ and μ the boundary value of Ra (and

hence also of Re =μ
√

Ra) may be found from the equation

Ra(λ,μ) =
[

minu(x),∂(x)
D + λDT

μP1 + P2 + λPT

]2

. (4.24)

It follows that, at a fixed value of μ, the optimal value of Ra (i.e., the value of
Ra(μ)cr min) is equal to maxλ > 0 Ra(λ, μ). Then (μ

√
Racr min(μ), Racr min (μ)) is

a point of the boundary curve in the (Re, Ra)-plane and the set of all such points
corresponding to nonnegative values of μ forms the whole of this curve.

As an example Joseph considered the case of a plane Couette flow heated from
below, i.e., of a Couette flow in a layer between rigid planes at z = 0 and z = H having
different temperatures T0 and T1 = T0 −Θ0 where Θ0 > 0. The determination of the
boundary curve in the (Re, Ra)-plane can be simplified here, since it can be proved
that the optimal value of λ is 1 (hence maxλ < 0 Ra(λ, μ) = Ra(1, μ) at any μ). (This
is connected with the fact that the temperature gradient ∇T is directed everywhere
along the negative z-axis, i.e., has the same direction as the acceleration due to gravity;
see Joseph (1976), Sect. 61, and Straughan (1992), pp. 60–61). Moreover, it can be
shown that the most-unstable disturbance {u(x), ϑ(x)} minimizing the functional on
the right-hand side of Eq. (4.24) has the form of streamwise rolls independent of the
horizontal coordinate x. This allows the search for the minimum in the right side of
(4.24) to be reduced to an eigenvalue problem for a system of ordinary differential
equations. It turns out that this system may be transformed, by simple replacement of
parameters, into a system equivalent to that appearing in the linear stability theory of
a stationary layer of fluid heated from below. Using the known results of this theory,
Joseph proved that any disturbance u(x), ϑ(x) will decay in a plane Couette flow
heated from below if the values (Re, Ra) satisfy the inequality 4Re2 + Ra< 1,708,
where Ra has the same meaning as above and Re =U0H1/v where U0 is the half-
difference of the two wall velocities and H1 = H/2 is the half-width of the channel
(this is the definition of Re for a plane Couette flow already used in Sects. 2.1, 3.3
and 3.4). This result shows again that for the case of fluid at rest (when Re = 0)
the energy method gives the estimate Racr min = 1,708, the same as the critical value
given by linear stability theory. At the same time, for the unstratified problem (when
Ra = 0) the estimate found (Recr min = √

1,708/2 ≈ 20.7) is much smaller, not only
smaller than the critical value Recr = ∞ given by the normal-mode method of linear
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stability theory but also smaller than the minimal values Re1 of Re at which the
instability of a plane Couette flow has been observed in the most accurate modern
experiments and numerical simulations. (Recall that according to results presented in
Sect. 2.1 of Chap. 2, Re1 lies in the range from 320 to 370. Note also the conclusion
by Hamilton et al. (1995) that turbulence cannot be sustained in a plane Couette
flow at Re ≤ 300, and the results of recent experiments by Bottin et al. (1998a, b)
and Bottin and Chaté (1998), and numerical simulations by Barkley and Tuckerman
(1998, 1999) according to which Re1 ≈ 325). It is, however, incorrect to say, as
it often is, that it follows that the energy method is exact in the case of the pure
convection problem but gives very poor results when applied to the non-convective
Couette flow. In fact the results show only that for the Bénard-Rayleigh problem
Racr min = Racr (which is an exception), while for a plane Couette flow Recr min is
much smaller than Recr, while the minimal value of Re at which instability is observed
is here greater than Recr min but smaller than Recr (this may be considered as being
normal).

The methods for determination of the stability boundaries by the energy method
and its modifications developed by Joseph (1965, 1966) can be applied to many other
fluid-dynamic problems. A number of such problems was considered in Joseph’s
book (1976). Thus, for example, stability was studied for flows of a liquid with
density depending on disturbed fields both of temperature, T (x) +ϑ (x, t), and of
concentration of some admixture (e.g., salinity), C(x) + c(x, t). The Boussinesq
approximation was assumed to be valid here too but now it leads to an equation
for u3 = w which includes a term proportional to c; therefore the diffusion equa-
tion must now be added to Eq. (4.14). In this case, Joseph replaced the function
Eλ(t) = E(t) + λET (t) by the functionEλ1 ,λ2

(t) = E(t)+λ1ET (t)+λ2EC(t), where
EC(t) = 〈c2

〉
. It was shown that if the liquid is stationary, while the temperature gra-

dient is directed downwards and the salinity gradient is directed upwards (‘heating
from below and salting from above’) the critical parameters obtained from the linear
and energy theories coincide, as in the case where only heating from below takes
place. However, if both gradients ∇T and ∇C are directed downwards (the case of
heating and salting from below) the two gradients produce opposite effects and here
quite new solutions can appear. Other applications of energy methods considered
in Joseph’s book include, in particular, the cases of Boussinesq fluids with internal
heat sources; convection in spherical layers, in porous media heated from below and
in some non-Newtonian fluids; and stability of magneto-hydrodynamic flows. For
more details relating to these and other applications of energy methods see, e.g., the
papers by Joseph and Shir (1966); Joseph and Carmi (1966); Shir and Joseph (1968);
Joseph (1970, 1988); Bhattacharyya and Jain (1971), and Ayyaswami (1971), and
the numerous publications on this subject appearing in the 1980s and early 1990s.
These newer publications include special monographs by Straughan (1982, 1992)
and Galdi and Rionero (1985), a collection of papers edited by Galdi and Straughan
(1988), an extensive survey paper by Galdi and Padula (1990) (these sources contain
several hundred references), and a great number of research papers only a small part
of which will be referred to below.
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In the more recent literature on the energy method in hydrodynamic stability,
most effort has been devoted to the extension of the classical Reynolds–Orr method
of nonlinear stability analysis. Remember that in some of the above-mentioned sta-
bility investigations conditions were considered for the decay, not of E(t) but of
some other positive functions Eλ(t) (or Eλ1,λ2 (t)). Thus, the stability criteria were
based, not on the kinetic energy of disturbance but on some other positive-definite
quadratic forms of disturbance variables. It was therefore only natural that later some
authors began the search for possible improvements of known results of the energy
method by replacing the energy functional E(t) by another integrated positive definite
quadratic form. Some of these methods of stability analysis were called weighted
energy methods while the name generalized energy methods was often applied to all
such methods. However, even more often they are called Lyapunov methods since
in fact they represent an application to fluid mechanics of the well-known direct
(or second) Lyapunov method of stability analysis. (This method forms the most
important part of the general theory of stability of motion developed by Lyapunov
(1892) in his doctoral dissertation2). The direct Lyapunov method later gained wide
popularity and was expounded in a great number of textbooks, special monographs,
and collections of papers (see, e.g., Zubov (1957); LaSalle and Lefschetz (1961);
Kazda (1962); Hahn (1963); Yoshizawa (1996), and Rouche et al. (1977)). In the
first half of the twentieth century this method was mostly used to study the stability
of dynamic systems having a finite number of degrees of freedom and described
by ordinary differential equations; later, however, some of its applications to sys-
tems described by partial differential equations were also considered, e.g., by Zubov
(1957); Movchan (1959); Knops and Wilkes (1966), and Lakshmikantham and Leela
(1969). In the 1960s the first applications of the Lyapunov method to fluid mechanics
appeared, quite independently of work based on the R-O Eq. (4.2). Later, Lyapunov’s
approach to stability of fluid motion underwent considerable development, and in
fact formed a new branch of hydrodynamic stability theory having many points of
contact, but nevertheless not merging, with work on generalizations of the classical
energy method of Reynolds and Orr.

4.1.3 Applications of the Direct Lyapunov Method and
Generalized Energy Functionals. Arnol’d’s Variational
Method

Lyapunov’s stability was mentioned in Sects. 3.21 and 3.23, when the papers by
Dikii (1960a, b) were considered. As was explained in Sect. 3.21 (see in particu-
lar footnote no. 1 there) Lyapunov’s stability presupposed that some norm ‖ • ‖

2 About 25 years later, in 1918, this brilliant Russian scientist, a member of the Russian Academy
of Sciences, died at the age of 61 from hunger and lack of appropriate medical help in the city of
Odessa enveloped in a civil war between bolsheviks and their opponents.
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was introduced in the phase space H of the dynamical system considered, mak-
ing H a linear normed space3. In problems on hydrodynamic stability, Lyapunov’s
stability of the ‘primary flow’ U0(t), 0 ≤ t<∞ (where U = U(x) is a collection of
hydrodynamic fields uniquely determining the flow), means that for any ε > 0 there
exists such a number δ(ε)> 0 that the inequality ‖U(0) −U0(0) ‖< δ(ε) implies that
|| U(t) −U0 (t) ||<ε for any nonnegative t. (Sometimes it is also additionally required
that ||U(t) −U0(t) || → 0 as t → ∞, either for any U(0) or under the condition that
‖U(0) − U0(0)‖< d for some given d> 0; if so then Lyapunov’s stability is called
asymptotic). The phase space H is here the functional space of all possible values
of U(x) (in the cases where the velocity field uniquely determines the flow, H is
the space of all solenoidal vector fields u(x) satisfying the appropriate boundary
conditions). The norm in such a space is usually given by the square root of the
integral, over the set of points x, of some non-degenerate positive-definite quadratic
form of componentsU1(x), U2(x), Un(x) of the vector function U(x). Then ‖U (x)‖2,
the square of the norm of U(x), is a function of the functional argument U(x).
Functions of functional arguments in mathematics are called functionals; therefore
‖U(x)‖2 = L[U(x)] is a functional in the space H. The Lyapunov condition for
stability (representing the main theorem of Lyapunov’s second method) in applica-
tion to stability of the primary flow U0(x, t) has the following form: If U(x, t) =
U0(x, t) + u (x, t) (so that u(x, t) is a disturbance of the flow U0(x, t)), then the flow
U0(x, t) will be stable with respect to the norm ‖ • ‖ if dL[u(x, t)]/dt’< 0 for any
u(x, t) ∈ H and any t> 0. The functional L[u(x, t)] satisfying the given conditions is
called the Lyapunov functional (in the case of dynamic systems with a finite number
of degrees of freedom the simpler name Lyapunov function is used). Some other
formulations of conditions characterizing Lyapunov’s functionals, and much addi-
tional information about the direct Lyapunov method of the study of stability, can
be found in the literature on this subject mentioned above. Note only that since the
definition of the norm ‖ • ‖, the existence of such a functional does not guarantee
the stability of the given flow with respect to norms different form ‖ • ‖; in fact, a
flow which is stable with respect to one norm can perfectly well be unstable with
respect to some other norm.(Some examples of this phenomenon will be considered
later in this subsection). Note also that, unfortunately, “there are no clear guidelines
of how to choose Lyapunov’s functionals; what is required is a little experience and a
lot of luck” (this remark is due to Payne (1975); see also Rionero (1988)). However,
Lyapunov’s method of stability analysis has nevertheless proved to be very useful in
many applications, and has been repeatedly applied to problems of hydrodynamic
stability.

One of the first applications of Lyapunov’s method to problems of hydrodynamic
stability was due to Dikii (1960a, b), who did not indicate this explicitly but in fact
investigated precisely the Lyapunov stability of the flows he considered. Since this
author used only linearized dynamic equations, his results were given in Chap. 3 of

3 The definition of such spaces and description of their main properties can be found, for example,
in the book by Kolmogorov and Fomin (1957).
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this book, the present Chapter being nominally on nonlinear methods. Dikii stud-
ied the stability of two-dimensional disturbances of plane-parallel inviscid flows;
therefore, here a scalar field of the stream function Ψ(x, z, t) =Ψ(z, t)eikx (or of the
vertical velocity w = ∂Ψ/∂z) of a disturbance could be used as the field of functions
U(x, t) −U0(x, t) = u(x, t). In Dikii’s paper (1960b) the flow of homogeneous fluid
between two solid walls was investigated and it was proved that under certain condi-
tions the values of |Ψ(x, z, t)| (where x and z are fixed, but t can take any nonnegative
value) are bounded by a constant decreasing to zero when the initial values of the
function Ψ, and of its spatial derivatives of the first and second orders, tend to zero.
It is clear that this means that the flow is stable according to Lyapunov, with respect
to a norm ‖Ψ(z, t)‖ given by the square root of the integral with respect to z of a
linear combination of |Ψ|2, |Ψ|2 and |Ψ”|2 where primes denote d/dz (the appropri-
ate norm is given by Eq. (2.75); see also Dikii (1976)). In the paper (1960a) the
flow of an inhomogeneous fluid with the density profile ρ(z) = ρ0exp(–az), where
0 ≤ z<∞, was studied; here the Lyapunov stability was considered for a norm given
by the square root of the integral with respect to z of a linear combination of |Ψ|2 and
|Ψ′|2 only. The Lyapunov stability of the flows considered was proved by Dikii for
the same conditions under which their asymptotic stability (i.e., asymptotic decay of
the function Ψ(x, z, t) as t → ∞) was independently proved in the papers by Case
(1960a, b) (see Chap. 3 for additional details).

Later Pritchard (1968) applied Lyapunov’s method to a study of the two most
famous problems of hydrodynamic stability—the Rayleigh-Bénard problem of con-
vection in a layer of stationary fluid heated from below, and the Taylor-Couette
problem of stability of flow between coaxial rotating cylinders. Like Dikii, he consid-
ered only linearized dynamic equations but took into account the effects of molecular
viscosity and thermal diffusivity neglected by Dikii. In Sect. 2.7 it was shown that,
in the case of the Rayleigh-Bénard problem, linearized equations for the disturbance
u(x, t), ϑ(x, t) can easily be transformed into a system of two equations with un-
knowns u3 = w and ϑ ; therefore here the space of pairs of scalar functions {w(x, t),
ϑ(x, t)}, periodic with respect to coordinates x1 = x and x2 = y and satisfying definite
boundary conditions at x3 = z = 0 and z = H, can be taken as the space H. (The bound-
ary conditions are naturally different for the cases of two rigid, two free, and one
rigid and one free surfaces considered by Pritchard; see the discussion of this topic
in Sect. 2.7). In the case of Taylor–Couette flow, only disturbances that were axisym-
metric (independent of φ) and periodic in the z-direction were studied in Pritchard’s
paper. Therefore, here H was the space of functions {u(r, z, t), v(r, z, t), w(r, z, t)}
satisfying the axisymmetric continuity equation r−1∂(ru)/∂r+∂w/∂z = 0, periodic
with respect to z and vanishing on the walls at r =R1 and r =R2. The Lyapunov
functional L = ‖ • ‖2 in H in the case of the Rayleigh–Bénard problem was cho-
sen to have the form L[w,ϑ] =‖(w,ϑ)‖2 = ∫

v′ [w2 + k−2(∂w/∂z)2 + λP rϑ2]dx,
where k = k3 is the wavenumber, Pr = ν/χ is the Prandtl number and λ is a
positive constant whose value can be varied in search of the strongest stability
criterion. In the case of the Talylor–Couette problem, Pritchard assumed that
L[u, v, w] = ‖(u, v, w‖2 = π

∫

v′
(u2 + λν2 + w2) rdrdz, i.e. the norm ‖(u, v, w)‖=
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[Eλ(t)]1/2 was used which was independently applied, slightly later, to the nonlinear
extension of the same problem by Joseph and Hung (1971). (Remember that these au-
thors also considered only disturbances which were axisymmetric and periodic with
respect to z). To find conditions guaranteeing the negativity of the derivative dL(t)/dt,
where L(t) = L[w(x, t), ϑ(x, t)) or alternatively L(t) = L[u(r, z, t), v (r, z, t), w (r, z, t)],
Pritchard derived a number of new integral inequalities. Using them he found that the
inequality dL/dt< 0 is valid for values of the dimensionless primary-flow parameters
Ra (the Rayleight number) or Ta (the Taylor number) smaller than some value of Rac

or Tac, depending on λ and on the wavenumber k = (k2
1 + k2

2)
1/2

or k = k3. The
maximum values, Racr = maxλ,k Rac and Tacr = maxλ,k Tac are then just the critical
values given by the version of the Lyapunov stability theory considered. Pritchard
found that these critical values of Ra and Ta (and also the critical wave numbers
kcr (corresponding to them) agreed quite well with the critical values given by the
normal-mode method of the linear stability theory. This clearly agrees with the earlier
finding that the linear stability theory and the energy method lead to the same value
of Racr in the case of the Rayleigh–Bénard problem, and also agrees with subsequent
results by Joseph and Hung (1971) relating to small disturbances in circular Couette
flow.

Dikii’s and Pritchard’s applications of the Lyapunov method produced no appre-
ciable repercussions. However the use of a related method by Arnol’d (alias Arnold)
(1965a, 1966a, b, c) attracted much more attention which led to a definite revival of
interest in the subject (see, e.g., the books by Arnol’d (1989a, Appendix 2); Marsden
and Ratiu (1994); Marchioro and Pulvirenti (1994), and Arnol’d and Khesin (1998)
and the references therein). Arnol’d considered two-dimensional disturbances in
steady planar flows of inviscid (‘ideal’) fluid, but in contrast to Dikii and Pritchard
he used in his studies the full nonlinear dynamic equations, not their linear approx-
imation. Here we will pay most attention to the simplest case of two-dimensional
disturbances having velocities u(x, t) = {u(x, z, t), w(x, z, t)} = {−∂Ψ/∂z, ∂Ψ/∂x}
in a plane-parallel channel flow with velocity profile U (z) = −dΨ0(z)/dz, and only
later will briefly describe the general results by Arnol’d relating to steady curvi-
linear plane fluid motions. Let us assume that all lengths are made dimensionless
with a characteristic length L0 and all velocities with a characteristic velocity U0;
then all quantities may be considered nondimensional (which means that we may
take arbitrary functions of them, and add together any two quantities). The functions
ψ(x, z, t), ψ0(z) and ψ(x, z, t) = ψ0(z)+ψ(x, z, t) are non-dimensional stream func-
tions of the disturbance, the undisturbed flow and the instantaneous disturbed flow,
respectively, so �ψ = ∂w/∂x − ∂u/∂z,�ψ0 = d2ψ0/dz2 and �ψ are the corre-
sponding vorticities. The nonlinear Euler equations of motion here reduce, as is well
known, to a single equation for the conservation of vorticity �ψ:

∂

∂t
�ψ − ∂ψ

∂z

∂�ψ

∂x
+ ∂ψ

∂x

∂�ψ

∂z
= 0. (4.25)

As usual, we will assume that disturbances are periodic in the coordinate x and that
the period can take any value. Since the total energy of an inviscid flow is conserved
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in time and the vorticity �Ψ is also conserved, it is clear that both the integrals

E = 1

2

∫ ∫

v′

(∇ψ)2dxdz and J� =
∫ ∫

v′

�(�ψ)dxdz

(where� is an arbitrary function of a single variable and V ′ is the rectangular region
in the (x, z)-plane with width and length equal to the width of the channel and the
length of disturbance period, respectively) are independent of time (i.e., are invariants
of the disturbed motion). (Their invariance may easily be deduced from Eq. (4.25)).
Following Arnol’d, let us consider the invariant functional G = E + Jφ of the stream
function *. It is easy to see that then the first variation of the functional G (i.e., the
main part of the increment δG = G[ψ0 + Ψ] − G[ψ0] for a small disturbance Ψ)
may be represented in the form

δG[ψ]|ψ=ψ0 =
∫ ∫

v′

[�′(�ψ0) − ψ0]�Ψdxdz (4.26)

where�′ is the derivative of the function�. Now let us assume that the velocity profile
U (z) = −dψ0(z)/dz has no inflection points. Then d2U (z)/dz2 = −d3ψ0(z)/dz3 �=
0 for all z, so that �ψ0 = d2ψ0/dz2 is a monotonic function of z. This means that
Δψ0 may be used as a new transverse coordinate instead of z. Hence, in particular,
the stream function ψ0 = ψ0(z) may also be considered as a function of Δψ0, i.e. it
satisfies the equation

ψ0 = φ(Δψ0) (4.27)

for some function φ. (Arnol’d showed that in fact Eq. (4.27) is also valid under
a number of other conditions; in particular, under Fjørtoft’s condition mentioned
below). If now � is so chosen that �′ =φ, then, according to (4.26) and (4.27),
δG[Ψ0] = 0, i.e., Ψ = Ψ0 will be the stationary value of the functional G[ψ]. It is
known that in the case of a function of a finite number of variables, the stationary
points most often encountered are the points of its local maxima and minima. Now let
Ψ=Ψ (t) describe some dynamic system in a finite-dimensional space, withΨ0 a local
extremal point of a time-invariant function G[Ψ(t)] andΨ0 a disturbance of the initial
value ψ(t) = ψ0. The values ofG[Ψ0 +Ψ(t)] corresponding to various disturbances
Ψ0 will clearly belong to the contour surfacesG[Ψ0+Ψ(t)] = G[Ψ0+Ψ0] = constant
of the function G(Ψ). At small values of the initial disturbanceΨ0 the contour surfaces
topologically have the appearance of the surfaces of small ellipsoids surrounding the
extremal point Ψ0. Therefore, if Ψ0 =Ψ (0) is small, then the values of Ψ (t) will
remain small at all values of t. This finite-dimensional analogy illustrates visually
the main idea of the theory of Arnol’d. To make these arguments rigorous, we must
now describe conditions guaranteeing thatΨ0 is an external point of G[Ψ], determine
the strict sense of the statement that Ψ=Ψ(x, z, t) is small and, finally, present a
strict proof of the assertion for the case of an infinite-dimensional space of functions
Ψ(x, z, t).
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The stationary point Ψ0 of the functional G[Ψ] will be a local extremum if, in
some inertial system of coordinates, the second variation δ2G[Ψ0] is either positive
or negative definite, i.e. has the same sign for all disturbances Ψ(x, z, t). It is easy to
see that in the case considered the second variation of G[Ψ0] has the form

δ2G[ψ]|ψ=ψ0 =
∫ ∫

v′

[{
U (z)

U ′′(z)

}

(�Ψ)2 + (∇Ψ)2

]

dxdz (4.28)

where U ′′(z) denotes the second derivative of U(z). It is clear that ifU ′′(z) �= 0 for all z
(i.e., if Rayleigh’s condition given in Sect. 2.82 is valid) then it is possible to choose
an inertial coordinate system such that U (z)/U ′′(z) will be positive everywhere,
and hence Ψ0 will correspond to a local minimum of the functional G[Ψ]. The
same conclusion will also be true if there exists a constant K such that [U (z) −
K]/U ′′(z) ≥ 0 for all z, i.e., if the more general condition of Fjørtoft (given in the
same section) is valid. The main stability theorem proved by Arnol’d states that the
positive-definiteness of the quadratic form in the integrand on the right-hand side of
Eq. (4.28) implies the Lyapunov stability of the flow with respect to the functional
L[Ψ(x, z, t)] on the right-hand side. (The proof of this statement can be found, e.g.,
in Monin andYaglom (1971, 1971), pp. 158–160 of Vol. 1 and p. 853 of Vol. 2, while
Arnol’d (1965a, 1966a, 1989a, App. 2) outlined the proof for a more general case
of arbitrary steady planar motions). Note also that in the above-mentioned cases the
ratio U (z)/U ′′(z) (or, respectively, [U (z) − K]/U ′′(z)] is bounded from above and
from below. Therefore in these cases the Lyapunov functional L[Ψ(x, z, t)] = L(t)
given by the right-hand side of Eq. (4.28) may be replaced by an equivalent but
simpler function of the form

L(t) = ||Ψ||2 =
∫ ∫

v′

[(∇Ψ)2 + (�Ψ)2]dxdz =
∫ ∫

v′

[u2 + (∇ × u)2]dxdz

(4.29)

representing the sum of integrated squares of velocity and of vorticity (i.e. kinetic
energy and enstrophy). Arnol’d’s stability theorem gives rigorous quantitative sense
to the qualitative assertion in the paragraph preceding Eq. (4.28), and shows that the
‘size’ of the disturbances considered must be measured by the norm given by Eq.
(4.29).

Let us now pass on to the general case of an arbitrary steady planar flow with the
velocity field U(x, z) = {U(x, z), W (x, z) = {−∂ψ0(x, z)/ ∂z, ∂ψ0 (x, z)/∂x}, where
x = {x, z} ∈D, D is an arbitrary (bounded or unbounded) two-dimensional domain
with smooth impermeable boundaries (if they exist). Using the arguments similar
to given above, Arnol’d (1966a, 1989a) (see also Marchioro and Pulvirenty (1994),
Sect. 3.2, and Arnold and Khesin (1998), Sect. II.4) showed that in this case if the
condition (4.27) is valid and there exist two constant c and C such that

0 < c ≤ ∇ψ0

∇�ψ0
≤ C < ∞, (4.30)
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then under sufficiently wide conditions the steady planar flow considered is stable in
the Lyapunov sense with respect to the norm (4.29). (The inequalitites (4.30) make
sense since for any steady flow in two dimensions the gradient vectors of the stream
function and of its Laplacian are collinear; in particular, ∇ψ0/∇�ψ0 = U (z)/U ′′(z)
in the case of a plane-parallel flow with velocity profile U(z)). The statement printed
in italics is the First Stability Theorem of Arnol’d. His second Stability Theorem is
relating to the case where the ratio ∇ψ0/∇�ψ0 takes negative values. Here condition
(4.30) must be replaced by the condition

0 < c ≤ − ∇ψ0

∇�ψ0
≤ C < ∞. (4.30a)

The Second Theorem states that if inequalities (4.30a) are valid, then under all the
other conditions guaranteeing the validity of the First Stability Theorem and one
rather general additional condition the two-dimensional steady flow considered will
be again stable in the Lyapunov sense with respect to a norm of the same type as the
norm (4.29).

Marchioro and Pulvirenti (1994) noted that Arnol’d’s condition (4.30) cannot be
fulfilled in domains D without boundary. However, these authors also showed that
the stability theorem is often valid for flows in such domains too, if the domain D and
the primary flow in it possess some symmetry properties (see Sect. 3.3 in their book).
Moreover, they showed that the inequality c> 0 can be replaced in the conditions of
the First Stability theorem by the weaker inequality c ≥ 0. Slight weakening of the
conditions included by Arnol’d in the formulation of his Second Stability Theorem
was indicated by Wolansky and Ghil (1996).

Arnol’d’s results have a direct relation to the important question of the admissi-
bility of linearization in the investigation of hydrodynamic stability. This question
concerns the extent to which the stability (or instability) of solutions of linearized
equations of fluid mechanics entails also the stability (or instability) of the corre-
sponding solutions of the full nonlinear equations of motion. Before answering this
question it is of course necessary to define exactly when the solution of the nonlinear
system is called ‘stable’. The most appropriate such definition is precisely that given
by Lyapunov, who himself bore in mind this use of it (in application to motions
described by systems of ordinary differential equations).

In the case of a finite-dimensional dynamic system described by the nonlinear vec-
tor equation dx(t)/dt = f(x), the admissibility of linearization means that a one-to-one
relationship exists between the stability in the sense of Lyapunov of a time-invariant
solution x0 of this equation and its linear stability (the condition for the latter be-
ing that none of the eigenvalues of the equation linearized in the neighborhood of
the point x0 shall have a positive imaginary part). For this case the existence of the
one-to-one relation was proved under sufficiently general conditions of Lyapunov
himself (indeed, the method of linearization is just Lyapunov’s first method of stabil-
ity analysis). However, in the case of dynamic systems in functional spaces described
by nonlinear partial differential equations the situation is more complicated.

Let us remember that Luyapunov stability of fluid motion depends on the chosen
norm in the functional space of fields of the flow quantities considered; therefore,
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there are in fact many different types of such stability. The proof of the admissibility
of linearization must indicate which type of Lyapunov stability of solutions of the
nonlinear system proves to be equivalent to the usual (‘normal-mode’) stability of
solutions of the linearized equations, i.e., to the absence of normal-mode frequencies
ω with positive imaginary parts. It easy to give simple arguments supporting the idea
that in cases where the flow is unstable according to the linear theory (i.e., where
there is an eigenvalue ω with �mω = ω(i) > 0), Lyapunov’s stability conditions is
usually also untrue. In fact, if the initial disturbance is chosen very small then it will
evidently be well described by linearized equations. Hence in the cases considered
a small initial disturbance may be chosen, such that for small t it grows proportional
to exp[ω(i)t], where ω(i) > 0. Then, as the disturbance becomes relatively large, the
linear approximation ceases to apply and the nonlinear terms changes the character
of evolution of the disturbance (usually diminishing at first the rate of its growth and
in many cases later even halting the growth entirely; see Sect. 4.21, below). If we
now decrease the size of the initial disturbance (keeping its form), we merely achieve
a longer time interval during which the linear theory is a suitable description of the
flow, the subsequent fate of the disturbance being the same. Thus the maximal values
achieved by the disturbance cannot be changed by diminishing its initial amplitude,
and therefore it seems very likely that the flow considered must be unstable in the
sense of Lyapunov. However, the rigorous proof of this assertion proved to be a far
from easy matter.

It is quite plausible that under sufficiently broad conditions the reverse implication
also holds—from the stability of a solution of linearized equations it follows that the
corresponding solution of the complete non-linear system of equations is stable in the
sense of Lyapunov. The assumption that linearization of equations of motion is pos-
sible for stability investigations has just this sense. In hydrodynamic stability theory
this assumption is usually taken on trust (see, e.g., Lin (1955), Sect. 1.1, or Drazin
and Reid (1981), Sect. 3; however, the book by Georgescu (1985) is an exception to
this rule), but in most cases it is not at all easy to prove this rigorously. (Moreover,
such a proof must clarify what disturbance norm provides Lyapunov stability of a
flow in the case where all normal modes of linearized equations are decaying—this
rather subtle question is also usually ignored in texts on hydrodynamic stability). The
work of Arnol’d discussed above gives just such a proof for some particular cases.
Remember, that Rayleigh’s and Fjørtoft’s conditions were introduced in Sect. 2.82 as
sufficient conditions for the absence of unstable normal modes of the corresponding
Rayleigh equation. Now we see that these conditions also guarantee the Lyapunov
stability with respect to the norm (4.29) for two-dimensional solutions of the corre-
sponding nonlinear equations. Arnol’d also showed that Fjørtoft’s condition (which
is weaker than Rayleigh’s) can be replaced in his theorem on Lyapunov stability
by some even weaker conditions which are valid, in particular, for velocity profiles
which do not satisfy the Fjørtoft condition but, according to Tollmien (1935), never-
theless guarantee stability for solutions of linearized equations (again see Sect. 2.82).
Thus, it was proved that, here again, linear stability implies Lyapunov instability for
solutions of nonlinear equations.
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Let us however emphasize that only two-dimensional disturbances of inviscid
plane fluid flows were considered in the above-mentioned papers by Arnol’d. In fact,
for three-dimensional disturbances of a flow (and three-dimensional flows), the rea-
soning presented above proved to be insufficient. Arnol’d (1965b) and Dikii (1965a)
found only a few partial results relating to these cases, which do not resolve the
question of interrelation between linear stability and nonlinear Lyapunov stability
of three-dimensional disturbances. Abarbanel and Holm (1987) also tried to apply
Arnol’d’s method to nonlinear stability analysis of three-dimensional inviscid flows
but they also found that the method does not work so successfully here as in the case
of flows in two dimensions. Since the Squire theorem of the linear stability theory,
given in Chap. 2, Sec. 2.8, cannot be generalized to the case of nonlinear stability
theory (where only some much weaker statements are valid; cf. Sect. II.5.D in the
book by Arnol’d and Khesin (1998)), the search for sufficiently general conditions of
instability with respect to three-dimensional finite-amplitude disturbances presents
a problem of considerable importance. Some arguments suggesting that the method
developed by Arnol’d for investigation of stability of planar flows with respect to
two-dimensional disturbances must be inadequate in the case of hydrodynamics in
three dimensions were briefly noted by Arnol’d in the early paper (1966c); later this
conclusion was explained more clearly by Arnol’d (1989a, App. 2); Rouchon (1991);
Sadun and Vishik (1993) and in Sect. II.5.G of Arnol’d and Khesin’s book (1998).
Note however that, as early as the late 1960s and early 1970s, it was discovered that
Arnol’d’s variational approach (presented in the general form in his paper (1966b),
which surprisingly linked up with some early ideas by Kelvin (1887)) can be success-
fully applied to studies of nonlinear Lyapunov stability for many types of disturbances
encountered in a number of inviscid flows of practical interest. Such methods were
first widely applied in geophysics; the works by Dikii (1965b, 1976); Blumen (1968,
1971); Dikii and Kurganskii (1971); Pierini and Salusti (1982); Benzi et al. (1982);
Holm et al. (1983); Grinfeld (1984); Abarbanel et al. (1986), and Kurganskii (1993)
are just typical examples. Somewhat later the same methods were used in many
studies of stability magnetohydrodynamic flows and plasma oscillations. These new
applications led, in particular, to the appearance of the excellent extensive survey by
Holm et al. (1985) of the modern state of nonlinear stability investigations by meth-
ods developed by Arnol’d, which contains more than 150 references. For further
examples of applications of this approach to the theory of hydrodynamic stability
see, e.g., the books by Marsden (1992) and Marsden and Ratiu (1994), and papers
by McIntyre and Shepherd (1987); Davidson (1998) and Vladimirov and Ilin (1998,
1999). Many other references to modern developments of the approach considered
above can be found in Chap. II of the book by Arnol’d and Khesin (1998); here we
will only mention the paper byVladimirov (1990) where the direct Lyapunov method
is applied to stability studies for some flows of viscous liquids affected by surface
tension.

The question of the admissibility of linearization is also quite important in stability
studies relating to steady flows of viscous fluids. In the case of viscous flows in
smooth bounded domains one part of the linearization principle states that if all
eigenfrequencies ωj of the linearized dynamic equations corresponding to a given
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flow have negative imaginary parts, then the flow is also stable in the sense of
Lyapunov (with respect to the norm (4.31), below). This was proved under sufficiently
general conditions by Prodi (1962) (see also the detailed exposition of his proof by
Georgescu (1985), Sect. 2.4.2, where a number of additional references relating to
this topic can be found). The Lyapunov norm ||•|| used by these authors is given by
the equation

||u(x)||2 =
∫

v

[
3∑

i=1

u2
i (x) +

3∑

i,j=1

{∂ui(x)/∂xj }2]dx. (4.31)

The rigorous proof of the other part of the linearization principle (also for viscous
flows in bounded domains) was briefly sketched in a note by Yudovich (1965) and
was later given in detail in his special monograph (see Yudovich (1984)). A more
elementary proof of admissibility of linearization for viscous flows in bounded do-
mains, under slightly less general conditions, was given by Sattinger (1970). A quite
different approach to the linearization principle was developed within the framework
of the modern bifurcation theory (this theory will be briefly discussed in Sect. 4.22
and will be also mentioned in some subsequent parts of this book). Bifurcation theory
allowed one to obtain some rather general conditions under which the solutions of the
linearized equations certainly approximate faithfully the phase-space dynamics of a
flow disposed in the vicinity of the steady primary flow. (The phase space has here the
same meaning as in Sect. 2.3). These conditions are given by the so-called Hartman-
Grobman theorem (see, e.g., Sect. 1.3 in Guckenheimer and Holmes (1993)), but
they are based on the use of some new concepts which cannot be considered here.

Yudovich’s monograph (1984) also contains a discussion of many other aspects of
the general linearization problem, requiring the introduction of a number of different
Lyapunov norms in functional spaces and the use of quite sophisticated mathematical
techniques. Yudovich showed, in particular, that different norms are often needed for
different purposes, and the answer to the question whether a flow is stable or unstable
in Lyapunov’s sense depends on the selection of the norm which is most appropriate
for the given purpose. To illustrate the possibility of paradoxical disturbance be-
havior, Yudovich considered the simple case of a two-dimensional disturbances of
an inviscid plane Couette flow. Here the velocity and vorticity of the disturbance
remain bounded, but the vorticity derivatives grow unboundedly with time. There-
fore in this case the vorticity ΔΨ at large times t is reminiscent of a continuous but
nowhere-differentiable Weierstrass function, and the flow is clearly unstable with
respect to any norm which includes the square of the vorticity derivative. In the
case of three-dimensional disturbances in the same flow, the velocity vector remains
bounded but the vorticity vector grows unboundedly (see also Sect. 3.21, where
related results were obtained for some other steady plane-parallel inviscid flows);
hence the flow considered is unstable with respect to any norm including the square
of the vorticity vector. However, there is no space for us to discuss the results in
Yudovich’s monograph in more detail. Let us only remember, in connection with the
last remarks, the results by Arnol’d (1972) presented in Sect. 3.21 (and expounded
in more detail in Sect. II.5 of Arnol’d and Khesin’s book (1998)), which show that in
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three-dimensional inviscid flows disturbances can sometimes have extremely para-
doxical asymptotic behavior, making the flow unstable with respect to rather simple
norms.

Let us now return to the remark made at the end of Sect. 4.12, that Joseph’s book
(1976) prompted the appearance of a number of works investigating the possibility
of improving the known energy-theory stability results by replacing the traditional
energy functional E(t) by some ‘generalized energy’ (i.e., by some new Lyapunov
functional L(t)). We postponed the discussion of this remark until now, since the
method used in the majority of these investigations is not in fact the traditional Lya-
punov method considered above in this subsection. To explain this it is necessary
to refer to particular examples. One of the first problems investigated in the above-
mentioned way was that of convection in a horizontal fluid layer of thickness H,
heated from below and rotating around a vertical axis with angular velocityΩ. Since
the Coriolis force is orthogonal to the velocity and hence does no work, rotation
does not change the energy-balance Eq. (4.2). Therefore the energy-method stability
results are identical in the cases of rotating and non-rotating convection. However,
the computations of the corresponding normal modes by linearized dynamic equa-
tions, carried out long ago by Chandrasekhar (1953, 1961), and the subsequent
experiments by Rossby (1969) and some other workers (see, e.g., the survey by
Bubnov and Golitsyn (1995)) both showed that the critical Rayleigh number Racr,
increases considerably with rotation rate (measured, e.g., by the so-called Taylor
number Ta =Ω2H4/v2) and also depends on the Prandtl number Pr. Thus, while in
the case of stationary layers of fluid the linear normal-mode theory and the energy
method give the same value of Racr, in the case of rotating layers, the values of Racr

given by the energy method prove to be considerably smaller than those predicted by
the linear stability theory or observed in experiments. Consequently, Joseph (1966)
noted that the stabilizing influence of rotation on the emergence of convection in a
fluid cannot be explained by the energy method of stability theory.

Later, however, some authors tried to replace Joseph’s ‘energy functional’
Eλ[u(x, t),ϑ(x, t)] = E(t) + λ PrET (t) = 0.5[〈u2〉 + λPr 〈ϑ〉2] by another
Lyapunov functional (‘generalized energy’) L[u(x, t),ϑ(x, t)] in the hope of ob-
taining a larger value of the energy stability boundary Racr = Racr (Ta) for rotating
flows. In one of the first such attempts Galdi and Straughan (1985a) (see also
the subsequent works by Mulone and Rionero (1989); Galdi and Padula (1990),
and Straughan (1992), Sect. 6.1) tried to use a Lyapunov functional of the fol-
lowing form: L[u(x, t),ϑ(x, t)] = 〈u2〉 + λ1 Pr 〈ϑ〉2 + λ2

〈
(ζ + λ3 Pr ∂ϑ/∂z)2

〉 +
λ4
〈
(∇u)2 + λ5 Pr (∇ϑ)2

〉
, where ζ = ∂v/∂x − ∂u/∂y is the vertical vorticity and

λi, i = 1, . . . ,5, are adjustable constants. Of course, the equation for dL[u(x, t),
ϑ(x, t)]/dt = dL(t)/dt will then also include terms which are cubic in the distur-
bance fields ui , i = 1, 2, 3, and ϑ.To deal with the resulting nonlinear problem, all the
above-mentioned authors used the approach by Joseph and Hung (1971), i.e., they
neglected the cubic terms at first and only later calculated corrections to their results
due to the nonlinearity of the system studied. Thus, the stability results obtained
in the first stage of these investigations were only conditional, i.e., guaranteeing
stability only for disturbances having very small norm ||(u,ϑ)|| = {L[u,ϑ]}1/2.
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Fig. 4.4 Bounds in the (Ta, Ra)-palne of four stability regions for a rotating layer of fluid with
Pr ≥ 1 heated from below and bounded by two free surfaces. (After Malkus and Worthing (1993))
L: Chandrashekhar’s neutral curve of the linear stability theory; S-the boundary of the maximal
region of conditional stability (i.e., of the limit as α → 0 of the regions of stability with respect to
disturbances with the nondimensionalized ‘initial amplitude’A0 satisfying the inequality A0 <α);
B: the boundary of the region of stability with respect to disturbances with A0 < 10−6; A: the
energy-theory stability boundary of the region of global monotonic stability

However, for disturbances with such a small norm that the cubic terms of the equa-
tion dL/dt = 0 can be neglected, it was found that the values of coefficients λI can
be chosen in such a way that the stability region in the (Ra, Ta)-plane (i.e., the re-
gion where dL/ (t)/dt< 0), turns out to be very close to the region determined by
the linear theory of hydrodynamic stability (see, for example, Fig. 4.4 below in
this section). This result is clearly analogous to the previously-mentioned results
of Joseph and Hung (1971) relating to the Taylor–Couette stability problem. Sim-
ilar results for the case of fluid layers heated from below (and also for some such
layers of constant temperature) which are rotating with horizontal angular velocity
�= {�x ,�y , 0} were obtained by Wahl (1994), who used the ordinary energy norm
but a special representation of divergence-free velocity field u(x, t). The same rep-
resentation of u(x, t) was also used by Wahl (1994) and Kagel and Wahl (1994) in
studies of Lyapunov stability (with respect to some particular Lyapunov functionals
L[u(x, t),ϑ(x, t)] including derivatives of fields u andϑ) of arbitrary steady solutions
of Boussinesq equations describing possible stationary disturbances in a horizontal
fluid layer heated from below (see also the related paper by Schmit and Wahl (1993)
where Lyapunov functionals of this type were used in detailed study of the onset of
convection in a stationary layer of fluid heated from below).

Another stability problem which has often been studied by the method of Lya-
punov is the magnetic Bénard problem of convection in a horizontal layer of a fluid
conductor in the presence of a homogeneous vertical magnetic field; see, e.g., Galdi
(1985); Rionero (1988); Rionero and Mulone (1988), and Galdi and Padula (1990).
Here the main results found were similar to those obtained in the cases of the Taylor-
Couette and rotational Bénard problems, but it was also shown that in this case the
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Lyapunov functional can be chosen so that, for some range of flow parameters, the
linear and Lyapunov nonlinear stability bounds coincide with each other. Note that in
earlier studies of stability of magnetohydrodynamic flows by the energy method, car-
ried out by Rionero (1967, 1968); Carmi and Lalas (1970); Bhattacharyya and Jain
(1971), and Joseph (1976, Addendum to Chap. IX), a linear combination of integrated
kinetic and magnetic energies was used as Lyapunov functional L, such that all cubic
terms cancelled in the equation for dL/dt. However, this condition was not fulfilled
in the cases of the more complicated Lyapunov functionals L used in publications
appearing in 1980s and 1990s. Therefore in this later work the stability boundaries
obtained were valid only under the condition that disturbances were small enough.
This relates to the general conditions guaranteeing the coincidence of the critical
parameters given by the linear and Lyapunov nonlinear stability theories, whose
discussion plays a very important part in the work of Galdi and Straughan (1985b);
Galdi and Padula (1990), and Straughan (1992). In fact, as a rule these conditions
use only the linear parts of the differential equations determining the time evolution
of flow disturbances, and hence presuppose the smallness of the latter—unless the
cubic terms cancel in the equation for dL/dt.

The above-mentioned stability results, derived by the Lyapunov direct method
employing Lyapunov’s functionals L where dL/dt contains cubic terms, concern con-
ditional stability only, and this clearly diminishes the practical usefulness of these
results. This was specially emphasized in the review by Malkus and Worthing (1993)
of the book by Straughan (1992). The reviewers considered the popular example of
convection in a rotating horizontal layer of fluid. They illustrated the importance of
amplitude restriction of results on conditional stability by supplementing curves L
and S, shown in Fig. 6.2 of the book by Straughan (1992) (and relating to the case of
a rotating layer of fluid with Pr ≥ 1 bounded by two free surfaces), by two additional
curves A and B (see Fig. 4.4). The straight line A represents Joseph’s (1966) energy-
theory stability boundary Racr ≈ 657, which is independent of Ta and Pr. Hence points
of region I in Fig. 4.4 correspond to flows stable with respect to disturbances of any
size. The curve L is the linear stability curve computed by Chandrasekhar (1961)
(and hence the region IV corresponds to instability with respect to arbitrarily small
disturbances and the region below curve L—to stability with respect to infinitise-
mal disturbances). S is the boundary of the maximal region of conditional stability
(corresponding to condition L(0) = 0) calculated by Galdi and Straughan (1985a)
starting from the form of the functional L[u(x, t), ϑ(x, t)] given above, with the
optimal values of coefficients λi . Therefore, flows corresponding to points between
curves L and S are linearly stable (i.e., exponentially-growing infinitesimal wave-like
disturbances do not exist in these flows) but nevertheless L[u(x, t),ϑ(x, t)] = L(t)
can grow here with time for disturbances with an arbitrarily small value of L(0). On
the other hand, in the case of flows represented by points below curve S, such growth
is impossible if L(0) is small enough. However, the meaning of the words “small
enough” was not explained in the book by Straughan. Trying to do this, Malkus and
Worthing used an equation in the paper by Galdi and Straughan (1985a) which deter-
mines the maximal value G(Ra, Ta, Pr) of the dimensionless initial ‘energy’ L(0) of
disturbances, which certainly do not destabilize a flow with given values of Ra, Ta,
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and Pr. This equation allowed them to compute the boundary B of the region of sta-
bility with respect to disturbances having initial ‘amplitude’ [L(0)]1/2 less than10−6

times the appropriately defined ‘unit amplitude’ (so that the region III corresponds to
flows unstable to at least one disturbance with initial dimensionless amplitude equal
to 10−6 but stable to all smaller disturbances). We see that this region is rather large;
therefore Malkus and Worthing were in doubt whether the curve S can be considered
as a real boundary for the ‘region of nonlinear stability’, giving their opinion that, in
almost all practical situations, even the curve B (bounding the region of stability to
disturbances with dimensionless amplitudes not exceeding 10−6) will be not useful
as such a boundary.

Above, some applications of the “generalized energy method” determining the
“conditional-energy bounds” were listed, and at the end we considered the review by
Malkus and Worthing (1993) which sharply criticizes the usefulness of some of the
results obtained by this method. (Note that this review also contains formulations of
several interesting unsolved problems which are worth investigating by traditional
and generalized energy methods). Let us now stress that the energy (and more general
Lyapunov’s methods) have already yielded some important new results concerning
stability of fluid flows. The classical Reynolds–Orr energy-balance Eq. (4.2) and its
generalization to the case of convective flows led to the discovery, for many cases, of
exact or almost exact minimal-critical values of dimensionless global characteristics
of laminar flows (e.g., of Recr min or Racr min) determining the boundary of the region
of ‘absolute’ (i.e., ‘unconditional’ or ‘global’) stability of a flow to disturbances of
any size. Such bounds, which have already been mentioned in Sect. 2.1, clearly have
considerable theoretical and practical value. Energy methods also showed that there
exist two quite different types of fluids flows. The first type consists of flows where
the region of the normal-mode stability with respect to infinitesimal disturbances
coincides with the region of energy stability with respect to disturbances of arbitrary
size, while for flows of the second type the latter of these two regions covers only a
small part of the first region. It is clear that the nonlinear development of disturbances
and transition to turbulence must have quite different forms in flows of these two
types. Moreover, Lyapunov’s generalized energy method led to the discovery of
a great number of explicit conditions for both nonlinear and linear flow stability,
often concerning flows of great practical importance; see in this connection the
survey by Holm et al. (1985) mentioned above, and the papers and books by Arnol’d
(1965a, b; 1966a, b, c; 1989a); McIntyre and Shepherd (1987); Marsden and Ratiu
(1994); Marchioro and Pulvirenti (1994); Arnol’d and Khesin (1998), and Davidson
(1998). As to results relating to conditional Lyapunov stability, they imply physically-
observable stability diagrams of the type shown in Fig. 4.3, where for given ‘energy’
Eλ the exact shape of the curve in the diagram can be determined from the equations
of generalized energy theory. The possible extension of the region of conditional
stability by means of replacement of the Reynolds–Orr energy functional E(t) by
some Lyapunov functional L(t) also clearly leads to extension of the range of Re
(or Ra, Ta, etc.) numbers covered by such a diagram. In particular cases where
the Lyapunov method yields the same critical numbers that follow from the linear
normal-mode theory, the diagram in Fig. 4.3 covers the whole range between the
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region of unconditional (global) stability with respect to arbitrarily large disturbances
and the region of absolute instability with respect to arbitrarily small (infinitesimal)
disturbances.

An important feature of the energy methods is their ability to determine the most-
unstable types of disturbance, which capture the energy of the primary flow most
efficiently and hence grow faster than all the others. In this connection Lumley (1971)
conjectured that some modifications of the classical energy method might also be
useful in investigations of developed turbulence. As an example, he tried to apply
such a method to the study of the near-wall region of a turbulent boundary layer.
Within this region he replaced the constant molecular viscosity v by an empirical
function vm(z) describing, with reasonable accuracy, the combined influence of the
molecular viscosity and small-scale turbulent fluctuations on the mean flow and
the accompanying large-scale structures. Then he appropriately modified the R–O
energy-balance Eq. (4.2) and with its help determined the most unstable longitudinal
(i.e., x-independent) disturbances. It was found that these disturbances agreed satis-
factorily with the longitudinal structures actually observed in the near-wall regions
of turbulent flows along flat plates. Later Poje and Lumley (1995) further developed
the same idea, suggesting the use of the energy-balance method to identify the large-
scale organized (‘coherent’) structures which, according to data accumulated during
the second half of the twentieth century, exist everywhere in turbulent flows and play
a rather important role in them. However, we cannot linger here on this subject which
clearly lies outside the content of the present chapter.

4.2 Landau’s Equation, its Generalizations and Consequences

4.2.1 The Landau Equation for the Amplitude of a Disturbance

The energy method of stability analysis deals with general (quite arbitrary) flow
disturbances; the highly-developed linear theory of hydrodynamic stability is not
used at all here. This theory suggests that in the case when the initial disturbance
is rather weak its most-unstable normal-mode component (or the least stable, if
unstable normal modes do not exist) will play the main part in the primary disturbance
development. Therefore the study of the development of a normal-mode disturbance
is important for understanding the behavior of disturbed flows, and such a study must
take into account the influence of the nonlinear terms of the equations of motion,
which clearly affect the disturbance evolution if the disturbance is not very small.
The results obtained will be of interest both in the case where Re<Recr, where
Recr is the critical Reynolds number4 defined from the linear stability theory (in
this case an investigation of the nonlinear normal-mode development can yield the

4 For simplicity, we shall speak only of Reynolds number, although in some cases the initiation of
instability will be determined by transition through a critical value of some other dimensionless
control parameter of the same type.
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critical Reynolds number for finite disturbances of fixed amplitude) and in the case
where Re>Recr (in this case the nonlinear results describe further evolution of weak
disturbances, which increase exponentially according to linear theory).

The great importance of nonlinear effects in the development of flow disturbances
was already fully appreciated by Reynolds in 1883, and some attempts to incorporate
these effects into theoretical analysis were also made very early (in particular, by
Noether (1921) and Heisenberg (1924)). However, the first really significant step
towards the creation of the nonlinear theory of hydrodynamic stability was taken
in a short note by Landau (1944) whose contents was described also in the books
by Landau and Lifshitz (1944), Sect. 24; (1958), Sect. 27; and (1987), Sect. 26
(in the last of these, the presentation was partially changed to reflect more recent
developments of the theory which will be considered later in this book). Landau’s
arguments were quite general and did not use any specific form of the equations of
motion.

Landau considered simply the development of a normal-mode disturbance in a
steady laminar flow. He was especially interested in the evolution of an unstable
(exponentially-growing) wave-like mode of very small initial amplitude (which may
be considered as being infinitesimal) at a slightly supercritical value of Re (i.e., only a
little larger than Recr). However his reasoning can be equally well applied to slowly-
decaying infinitesimal normal-mode disturbances at slightly subcritical Re<Recr;
hence we will consider both these cases here. To Landau, it was only important that
the velocity field of the mode considered could be represented in the form

u(x, t) = A(t)f(x), (4.32)

where f(x) is the eigenfunction of the corresponding eigenvalue problem while A(t)
is the complex disturbance amplitude, which can be represented in a form A(t) =
e−iωt = eγ t−iω1t for values of t at which the linear stability theory is valid. Here
ω1 = �e ω and γ = �mω so that γ > 0 for growing waves, γ < 0 for decaying waves
and γ → 0 as Re → Recr (and therefore |γ | � |ω1| for sufficiently small |Re −Recr|
if ω1 �= 0). The form of A(t) given above makes it clear that the real disturbance
amplitude |A(t)| satisfies the equation

d|A|2
dt

= 2γ |A|2. (4.33)

However, Eq. (4.33) is correct only within the framework of linear stability theory. If
Re>Recr and A(t) increases, there will inevitably come a point at which this theory
is no longer valid and must be replaced by a more complete one, which takes into
account those terms in the equations of motion that are nonlinear in the disturbances.
Then the right side of Eq. (4.33) must be considered as the first term of the expansion
of d|A|2/dt in a series of powers of A and A∗ (where as usual the asterisk denotes the
complex conjugate). In the case where Re<Recr, A(t) is a decreasing function and
here Eq. (4.33) is true for all t, but only in cases where the initial amplitude A(0) is
small enough. If, however, A(0) is not sufficiently small, then at small values of t
this equation represents only the first term of the expansion in powers of A and A∗.
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If |A(t)| is small, but not small enough for all the higher-order terms of the above-
mentioned expansion to be neglected, then it is necessary to take into account the
terms of the next order of the series, i.e. the third-order terms. However, it must also
be remembered that the motion (4.32) is accompanied by periodic oscillations in
the expression for A(t), rapid in comparison with the characteristic time 1/|γ | of an
appreciable change in the value of |A(t)|), and described by the factor e−iω1t , where
|ω1| � |γ |. These periodic oscillations do not interest us; hence to exclude them,
it is convenient to average the expression d|A|2/dt over a period of time that is large
in comparison with 2π/|ω1| (but small in comparison with 1/|γ |). Since third-order
terms in A and A∗ will inevitably contain a periodic factor, they will all disappear
during the averaging.5 In the case of the fourth-order terms, there will remain, after
averaging, only one term, which is proportional to A2A∗2 = |A|4. Thus, retaining
terms of no higher than fourth order, we will have an equation of the form

d|A|2
dt

= 2γ |A|2 − δ|A|4. (4.34)

Since the period of averaging is much less than 1/|γ | the terms |A|2 and |A|4 will be
practically unchanged by averaging, so that Eq. (4.34) may be considered as an exact
equation for the amplitude of the averaged disturbance. (In the case where ω1 = 0
the third-order terms also often disappear because of the symmetry properties of the
problems considered, and hence Eq. (4.34) is valid here too; certain examples of
this kind will be considered below). Equation (4.34) is called the Landau equation,
and its coefficient δ, which can be either positive or negative (and can also be zero,
but only in exceptional cases), is the Landau constant. Positive values of δ show
that nonlinear effects stabilize the disturbance considered, decreasing the growth
of its amplitude, while negativity of δ means that nonlinear effects destabilize the
disturbance.

Equation (4.34) can be also rewritten as the following linear equation in |A|−2

d|A|−2

dt
+ 2γ |A|−2 = δ, (4.35)

whose general solution is easily seen to be

|A(t)|2 = A2
0e

2γ t

(

1 − δ

2γ
A2

0

)

+ δ

2γ
A2

0e
2γ t

(4.36)

Where A0 = |A(0)| is the initial amplitude of the disturbance. From Eq. (4.36) it
follows that if δ > 0, if the initial disturbance is sufficiently small, and if γ > 0 (i.e.
Re>Recr and the evolution of an unstable mode is studied), the amplitude A(t) will

5 To be more exact, we must say that third-order terms do not fully disappear after averaging but
generate some terms of the fourth order which can be included in the fourth-order terms of the
expansion considered.
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Fig. 4.5 The dependence of
the disturbance amplitude
|A(t)| on time t in the case
where δ > 0 and Re>Recr

(and hence γ > 0) for
disturbances with the initial
amplitude A0 <Ae =
(2γ /δ)1/2 and A0 >Ae (but
A0 −Ae small) according to
Landau’s Eq. (4.34)

first increase exponentially (in accordance with the linear theory), but then the rate of
the increase slows, and as t →∞ the amplitude will tend to a finite ‘equilibrium value’
A(∞) =Ae = (2γ /δ)1/2 independent of A(0) (see the lower part of Fig. 4.5). Note now
that γ is a function of the Reynolds number which becomes zero at Re = Recr and
may be expanded as a series in power of Re −Recr (the latter fact may be deduced
from the small-disturbance theory) while δ �= 0 for Re = Recr. Thus γ ≈ b (Re −Recr)
at small enough values of |Re −Recr| where b is a positive constant. Consequently,
A(∞) = |A|max ∝ ( Re −Recr)1/2 for δ > 0 and small positive values of Re −Recr

(see Fig. 4.7a below). Hence A(t) remains small at all values of t if Re −Recr is
small enough (therefore, even the inclusion in Eq. (4.34) of higher-order terms, for
example one proportional to |A|6, will not qualitatively change the behavior of the
function A(t)). In the case where A0 >Ae = (2γ /δ)1/2 but is nevertheless small (this
is possible when Re −Recr is small) Eqs. (4.34) and (4.36) can again be used as a
reasonable first approximation; the corresponding behavior of A(t) is shown in the
upper part of Fig. 4.5. We see that here, at Re slightly exceeding Recr, any disturbance
containing the unstable component transfomrs the primary laminar flow into a new
laminar flow which is practically independent of the initial conditions. (In fact this
new flow can turn out to be unstable to some disturbances neglected in the fluid-
dynamic derivation of Landau’s equation considered below. However, here we will
not linger on this topic). If, however, δ > 0 but Re<Recr and hence γ < 0, then
Eq. (4.36) shows that the disturbance decays monotonically and in accord with the
linear theory (i.e., A(t) ∝ eγ t as t → ∞). Here evidently neither the last term on
the right side of Eq. (4.33), nor the terms of higher order omitted from this equation,
significantly affect the disturbance evolution.

Let us now consider briefly the case where δ < 0. If in this case γ < 0 (i.e.,
Re<Recr), then for A0 < (2γ /δ)1/2 the solution |A(t)| decays monotonically to
zero (see the lower part of Fig. 4.6); hence in this case too the inclusion of the
higher-order terms of the amplitude equation will not change the behavior of A(t)
qualitatively. If δ < 0, γ < 0, but A0 = (2γ /δ)1/2, then A(t) =A0 at any t> 0; how-
ever; for A0 > (2γ /δ)1/2 the function A(t) grows with t (see again Fig. 4.6) and here
the inclusion of higher-order terms in Eq. (4.34) becomes necessary at moderate
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Fig. 4.6 The dependence of
the amplitude A(t) on t in the
case where δ < 0 and
Re<Recr (i.e., γ < 0) for
disturbances with the initial
amplitude A0 <Ae =
(2γ /δ)1/2 and A0 >Ae

according to Landau’s
equation

positive values of t. The possible influence of such terms will be illustrated later by
a simple example; for now, we merely note that, according to the above argument,
if δ < 0 and Re<Recr then very small disturbances decay, but some disturbances
which are not small enough grow with time; this is the subcritical instability of
finite-amplitude disturbances. If now δ< 0 but γ > 0 (i.e., Re>Recr) then, for any
A0 > 0, solution (4.36) quickly becomes infinite; hence in this case the behavior of
the amplitude A(t) as t → ∞ cannot be determined from Eq. (4.34) for any initial
value A0. To obtain a sensible result we must take into account the next term of
expansion in the power of A and A∗ and to assume it to be negative. Let the next term
be −β|A|6 where β > 0. Then, neglecting all terms of higher than the sixth order we
obtain

d|A|2
dt

= 2γ |A|2 + |δ||A|4 − β|A|6, (4.37)

and hence

|A|2max = |δ|
2β

±
[ |δ|2

4β2
+ 2γ

β

]1/2

(4.37a)

where |A|2max is the value of |A|2 at which d|A|2/dt = 0 and γ ≈ b( Re −Recr). The
relation (4.37a) is shown in Fig. 4.7b, while Fig. 4.7a. corresponds to the case where
δ > 0. (The dotted lines in this figure correspond to amplitudes of unstable waves). In
Fig. 4.7b two values |A1|2max ≈ |δ|

β
+ 2b

|δ| ( Re −Recr) and |A2|2max ≈ 2b
|δ| (Recr − Re ),

given by Eq. (4.37a), are shown for the case where Re<Recr. (If Re>Recr, then only
the first of these is meaningful, while the second becomes negative and must therefore
be replaced by the value |A2|2max = 0 which also corresponds to a vanishing right-
hand side of Eq. (4.37)). Since d|A|2/dt < 0 for |A| > |A1|max and |A| < |A2|max,
while d|A|2/dt > 0 if |A2|max < |A| < |A1|max, we see that for δ < 0, β > 0 the pri-
mary flow is unconditionally stable only for Re<Re’cr (where Re′

cr ≈ Re −|δ|2/8bβ
is the value of Re at which two roots (4.37a) coincide). For Re′

cr x < Re < Recr

this flow is ‘conditionally stable’, i.e., stable with respect to small disturbances with
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Fig. 4.7 The dependence of
the equilibrium amplitude
|A(t)| =Ae, satisfying the
equation d|A(t)|/dt = 0, on the
Reynolds number Re in the
cases where either δ > 0 (a),
or δ < 0 but the amplitude
equation has the form (4.37)
with β > 0 (b) Recr the critical
Reynolds number; Re1 = Recr

the threshold of subcritical
instability. The solid and
dotted lines represent
amplitudes of stable and
unstable equilibrium
disturbances, respectively

a

b

A0 < |A2|max, but if A0 ≥ |A2|max then the disturbance amplitude grows rapidly to
the ‘equilibrium value’ |A1|max (this conclusion makes more precise the above state-
ments about the possibility of subcritical finite-amplitude instability when δ< 0).
For Re>Recr the primary flow is unstable to disturbances of any amplitude and
the normal-mode disturbance grows to the value corresponding to the point on the
solid line (of course, this is correct only if |Re – Recr| is small enough to justify the
expansion in powers of A and A∗ up to the approximation (4.37)).

The above results describe only a part of the contents of Landau’s paper (1944).
Landau, assuming that δ > 0, considered the development of flow structures with
further increase of Re beyond Recr. It was natural to assume that at some higher
value of the Reynolds number, Re2, cr >Recr, the oscillatory stable flow (with fre-
quency ω1) arising from the primary steady flow at Re = Recr may itself become
unstable to small disturbances, transforming it to a new stable oscillatory motion
which includes oscillations of two frequencies ω1 and ω2 and therefore has two de-
grees of freedom. (Steady laminar motion is fully determined by the general flow
conditions and hence has no degrees of freedom; in the case of oscillatory motion
with fixed frequency ω1 the phase θ1 can take any value and hence this motion has
one degree of freedom; while quasi-periodic oscillations with two periods 2π/ω1

and 2π/ω2 possess two degrees of freedom). This new motion in its turn becomes
unstable at Re = Re3, cr >Re2, cr generating a motion with three degrees of freedom,
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and so on. Several short series of such successive transformations of a steady flow
into an oscillatory one, and then into more complicated oscillations, were in fact
observed after 1944 in some particular flows when the corresponding value of Re (or
of another appropriate dimensionless control parameter) was increased step by step;
some of these series will be mentioned later in this chapter. However Landau also
assumed that, as Re increases, the intervals between consecutive critical Reynolds
numbers Ren, cr and Ren + 1, cr will become smaller and smaller, so that at large, but
not excessively large, values of Re – Recr the number of degrees of freedom of the
resulting motion will reach a very high value. According to Landau, the complicated
and disordered motion appearing in this way just represents the fully developed tur-
bulent flow. This Landau’s (or, as it is also often called reflecting the contribution
of Hopf (1948), Landau-Hopf’s) scenario of transition to turbulence seemed at first
to be physically quite convincing, and during many years it was considered by the
majority of experts as being correct in its main features even though it was often
stressed that its validity was not proved rigorously and that it cannot be universal;
see, e.g., Monin and Yaglom (1971), p. 165, or Drazin and Reid (1981), p. 370.
However later it was found that Landau’s theory of transition to turbulence is far less
satisfactory than was thought earlier and must be radically revised; this conclusion
was based on some amazing new developments which will be described later in this
book. These new results concern Landau’s ideas about the development of irregular
fluctuations at Re � Recr, but they do not diminish the importance of his equation for
the description and explanation of the initial stage of evolution of small disturbances
at values of Re close to Recr.

The coefficient γ of Landau’s Eq. (4.34) is equal to the imaginary part of the
eigenvalue ω=ω1 + iγ corresponding to the normal-mode disturbance considered
(originally Landau assumed that this disturbance was the one with the greatest imagi-
nary part of ω). So, to determine this coefficient one need merely solve the eigenvalue
problem of linear stability theory (in the case of a plane-parallel flow this is the fa-
mous Orr-Sommerfeld eigenvalue problem). Solutions of this eigenvalue problem
may nowadays be calculated rather easily. However Landau’s derivation of Eq. (4.33)
gave no instructions about possible methods for determination of the numerical value
of δ. It was clear from the outset that here the full nonlinear equations of motion must
be used, but at first it was not known how to do this. Three-dimensionality of the
Navier-Stokes equations complicates the problem considerably; therefore in the book
by Eckhaus (1965) (which was the first one on nonlinear stability theory) much at-
tention was given to simplified model problems in one-dimensional space (a related
model was considered also in Sect. 50 of Drazin and Reid’s book (1981)) and then
only two-dimensional disturbances of two-dimensional flows were studied. The first,
still imperfect, attempts to estimate the numerical value of Landau’s constant δ for
some particular flows with the help of the equations of motion were made by Meksyn
and Stuart (1951) and Stuart (1958). In the first of these papers much attention was
given to nonlinear effects leading to distortion of the primary velocity profile by
disturbances in a plane Poiseuille flow, while in the second paper an approximate
estimate of the value of δ for two-dimensional plane waves in a plane Poiseuille
flow, and axisymmetric wave-like disturbances in a circular Couette flow, was based
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on the assumption that the disturbance’s shape is preserved during its evolution. In
both papers it was assumed that the Reynolds number Re has a slightly supercriti-
cal value and that the disturbances studied are unstable according to linear stability
theory. (Note also that ω1 = �e ω differs from zero in the case of a plane Poiseuille
flow but is equal to zero in a circular Couette flow). Meksyn and Stuart (1951) used
the full Navier–Stokes system to compute the velocity distortion, and came to the
conclusion that δ can have either sign. However, Stuart (1958) found that, according
to the assumptions he made, the single Reynolds-Orr energy Eq. (4.2), which is
only a particular consequence of the N-S system, implies Landau’s Eq. (4.34) for
disturbance amplitude A = A (t) with a definite value of δ which is always positive.

Since some of the conclusions obtained by Meksyn and Stuart (1951) and by Stuart
(1958) contradicted each other, Stuart (1960) (see also his survey papers (1962a,
1971)) and Watson (1960a) developed more precise methods to compute Landau’s
constant for small two-dimensional normal-mode disturbances in a plane Poiseuille
flow. Stuart took into account that in the nonlinear development of a two-dimensional
disturbance with given wave number k (i.e., having at t = 0 an initial velocity field of
the form u(x, 0) = {u(z), 0, w(z)} eikx), higher harmonics (proportional to einkx, n = 2,
3,. . . ) will also be generated. Therefore, he represented the disturbance velocity field
u(x, t) for t> 0 in the form

u(x, t) = u0(z, t) + u1(z, t)eikx + u2(z, t)ei2kx + ... . (4.38)

Here un(z, t)einkx , n = 0, 1, 2,. . . , are two-dimensional solenoidal vectors (in gen-
eral complex; remember that the true velocity is equal to the real part of the given
expression) depending on t, and the term u0(z, t) describes the distortion of the
laminar Poiseuille-flow velocity profile by the disturbance. Further, it was assumed
that as t → 0, only the term on the right-hand side of Eq. (4.38) which is propor-
tional to eikx is conserved, while for very small t> 0, this term becomes the solution
u(x, t) = u1(z)ei(−ωt+kx) = u1(z)eik(x−ct) of the Orr-Sommerfeld equation describing
a growing or damped wave-like disturbance. Then, for slightly greater, but neverthe-
less small, positive t the first harmonic will be leading term on the right-hand side
and u1(z, t) may be written as

u1(z, t) = A(t)u1(z) + higher-order terms. (4.39)

Stuart (1960) substituted Eqs. (4.38) and (4.39) into the nonlinear Navier–Stokes
equations (which he replaced by the equivalent non-linear equation for the stream
function Ψ(x, z, t)] corresponding to the velocity field U + u(x, t), where U = {U(z),
0, 0} is the Poiseuille-flow velocity (instead of using only Eq. (4.2) as in his 1958
paper). Assuming now that |γ | = |�mω| is a small quantity (i.e., considering a
disturbance with small amplification or damping corresponding to a point in the (k,
Re)-plane close to the neutral-stability curve) and using expansion in powers of this
quantity, he obtained for the complex amplitude A(t) an approximate Landau-type
equation of the form

dA

dt
= −iωA− 1

2 l|A|2A (4.40)
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where ω is the same complex frequency as above and l = δ+ iδ′ is another complex
coefficient. (Later Fujimura (1989); Dušek et al. (1994), and Park (1994) reconsid-
ered the derivation of Eq. (4.40) from the Navier–Stokes equations and indicated
several sets of assumptions implying its validity, while Zhou (1991) indicated that
in some cases the computation of the second term on the right-hand side of (4.39)
is necessary for obtaining the satisfactory agreement with the experimental data).
Equation (4.40) is usually called either the complex Landau equation or the Stuat-
Landau equation (see e.g., Kuramoto (1984)) and l is the complex Landau constant.
Representing the complex amplitude A(t) as |A(t)| eiφ(t), it is easy to show that the
real part of Eq. (4.40) is equivalent to Landau’s Eq. (4.34) for |A|2 = AA∗, where
γ = �mω and δ = �el. On the other hand, the imaginary part of Eq. (4.40) can
be written as the following equation for the phase φ(t), supplementing Landau’s
equation:

dφ

dt
= −ω1 − 1

2δ
′|A|2 (4.34a)

where ω1 = �eω, δ′′ = �ml.
According to Stuart’s results, δ = δ1 + δ2 + δ3 where the three terms correspond

to three different physical processes affecting the nonlinear development of a wave-
like disturbance. He also noted that only the term δ1 (which is always positive) was
taken into account in his paper of 1958 (hence the conclusion of this paper that δ was
positive was an inevitable consequence of the assumptions made); and only terms δ1

and δ3 were considered (and imprecisely estimated) by Meksyn and Stuart (1951).
For all three terms Stuart obtained explicit expressions, which were however rather
cumbersome and contained the eigenvalues and eigenfunctions of the correspond-
ing Orr-Sommerfeld equation (and also of the adjoint equation) in a complicated
manner. These expressions clearly depend on k and Re; however, the numerical cal-
culation of them (and of their sum δ) seemed to a very difficult problem in the early
1960s.

In the paper by Watson (1960a) accompanying that by Stuart a more complete
Fourier representation of the disturbance velocity was used and the technique, tradi-
tional for the disturbance theory, of expansion into powers of the amplitude (instead
of the powers of γ = �mω considered by Stuart) was applied to the fluid-dynamic
equations describing disturbance development. (However, expansion in powers of
|γ | was also used here and hence |γ | was assumed to be small in Watson’s derivations
too). As a result, Watson obtained a new and more rigorous reformulation of Stuart’s
theory, leading to the generalized Landau equation of the form

d|A|2
dt

= |A|2
∞∑

m=0

am|A|2m (4.41)

for the squared amplitude |A|2. Here evidently a0 = 2γ , a1 = −δ, while expressions
for the coefficients am with m> 1 were found to be much more complex than for
the Landau coefficient δ. Another rigorous analytical method allowing the investi-
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gation of streamwise periodic solutions of nonlinear equation for two-dimensional
disturbances in a plane Poiseuille flow, which supplemented the expansion in powers
of the small quantity |γ | = |�mω| by expansion of all relevant functions of z in
terms of the eigenfunctions of the linear O-S equation, was developed by Eckhaus
(1965); it also led to confirmation of Stuart’s (1960) results. Note, however, that the
assumptions about the smallness of |γ | used by Stuart, Watson, and Eckhaus made
their theories inapplicable in principle to plane Couette and circular Poiseuille flows
(for example), where unstable normal modes do not exist and therefore |γ | cannot
be very small. Therefore Ellingsen et al. (1970) and Itoh (1977a, b), who wanted
to apply Stuart-Watson’s theory to just these two exceptional flows, were forced
to modify this theory to a form where only the smallness of the amplitude A was
assumed. It was found in these papers that in fact the smallness of the disturbance
amplitude is sufficient for the possibility of rigorous derivation of the Landau equation
from the Navier-Stokes equations. More detailed analysis of assumptions utilized
in the rigorous derivations of Eq. (4.41) was undertaken in particular by Herbert
(1983b) and Fujimura (1989, 1991, 1997) whose papers will be discussed later in this
subsection.

Stuart (1960) and Watson (1960a) investigated only the temporal nonlinear de-
velopment of a two-dimensional wave disturbance in a steady plane Poiseuille flow.
Two-dimensionality of the waves significantly simplified the theory, and could be
justified to a certain degree by the results of Watson (1960b) and Michael (1961)
mentioned in Chap. 2, they showed that, in the framework of the linear stability
theory, there always exists for any steady plane-parallel flow a range of supercritical
values of Re, Recr <Re<Re1, within which the most rapidly growing normal-mode
disturbance is necessarily two-dimensional. However, Benney and Lin (1960) (see
also Benney (1961, 1964)) indicated that when the nonlinear development is stud-
ied, interactions between two- and three-dimensional waves must be also of great
importance. In this context Stuart (1962b) (see also his surveys (1962a, 1971)) gen-
eralized his and Watson’s weakly-nonlinear disturbance theory of 1960 to the case of
the evolution in plane Poiseuille flow of a disturbance which is composed of a two-
dimensional and a three-dimensional plane wave with the same streamwise number
k1. Assuming that both disturbances are slowly growing or decaying, it is permissi-
ble, for relatively small values of t, to represent the velocity field of the disturbance
considered in the form

u(x, t) = A1(t)u1(z)eik1x + A2(t)u2(z)ei(k1x+k2y) + higher-order terms (4.42)

including two time-dependent amplitudes A1(t) and A2(t). Then, using the expan-
sion technique given in Stuart’s and Watson’s papers of 1960, Stuart obtained, for
both amplitudes A1 and A2, two generalized Landau-type equations differing from
(4.41) by the presence of their right-hand sides of the sums of composite terms
am,n|A1|2m|A2|2n. In the lower non-linear approximation the “amplitude equations”
for real amplitudes A1(t) and A2(t) (obtained when the complex exponential func-
tions in Eq. (4.42) are replaced by real trigonometric functions) had the following
form:
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dA1

dt
= γ1A1 − (δ1A

2
1 + β1A

2
2)A1,

dA2

dt
= γ2A2 − (β2A

2
1 + δ2A

2
2)A2, (4.43)

which, for A2 = 0 or A1 = 0, clearly yield an equation which is equivalent to Lan-
dau’s Eq. (4.34) for the amplitude of a single wave disturbance. The system (4.43),
under the condition that γ1/δ1, γ2/δ2 and the ratios of bilinear combinations of the
coefficients entering Eq. (4.44) below are positive, evidently has the following four
steady solutions:

(I) A1 = A2 = 0,

(II) A1 = 0, A2 = (γ2/δ2 )1/2 ,

(III) A1 = (γ1/δ1 )1/2 , A2 = 0,

(IV) A1 = (γ1δ2 − γ2β1)1/2 (δ1δ2 − β1β2)1/2 ,

A2 = (γ2δ1 − γ1β2)1/2 (δ1δ2 − β1β2)1/2 .

(4.44)

The stability of these solutions, which may be verified by known methods of stability
theory of nonlinear differential equations (or nonlinear oscillations), is of consider-
able interest, and it was only natural that Stuart considered this question, paying
special attention to cases where solution (IV), which represents an equilibrium state
consisting of a combination of two- and three-dimensional wave oscillations, is sta-
ble. Stuart’s two-mode weakly-nonlinear theory of 1962 was developed further by
Itoh (1980) who supplemented it by some numerical examples illustrated by graphs.

In all the above-mentioned papers devoted to rigorous derivation of amplitude
equations of the Landau type, only the nonlinear temporal development of wave-like
disturbances with fixed wave numbers was considered. However, it was explained
in Chap. 2 of this book that, in the case of steady flows with significant stream-
wise velocity U(z) (e.g. boundary layers along flat plates or plane Poiseuille flows),
the model of a streamwise developing disturbance of fixed real angular frequency
ω corresponds better to observations in real experiments on flow instability, and
therefore seems to be more appropriate. Taking this into account Watson (1962)
modified the theory developed in his paper (1960a) assuming that a two-dimensional
wave-like disturbance in a plane Poiseuille flow has fixed real frequency ω but com-
plex streamwise wave number k = k1 + ik2, determined from the Orr-Sommerfeld
eigenvalue problem with fixed real ω and unknown complex eigenvalue k. Then,
according to the weakly nonlinear stability theory, the leading term of the evolving
disturbance will have the form u(x, t) = A(x)u(z)eiωt , where u(z) is the eigenfunc-
tion of the spatial O-S eigenvalue problem and A(x) = eikx for very small values
of x. Then, representing the velocity field u(x,t) = u(x, z, t) (or the streamfunction
field Ψ(x, z, t)) for x> 0 as a Fourier series in powers of eiωt (instead of the spatial
Fourier series (4.38)) and applying appropriately-modified arguments from his paper
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(1960a), Watson obtained for the spatially evolving amplitude A(x) an equation of
the form

d|A|2
dx

= |A|2
∞∑

m=0

bm|A|2m (4.41a)

which is completely similar to Eq. (4.41) (and turns into the spatial version of Lan-
dau’s Eq. (4.34) when only the first two terms on the right-hand side are retained).
It is clear that the value of b0 = −2k2 = −2�mk can be now calculated by nu-
merical solution of the spatial O-S eigenvalue problem (which is somewhat more
complicated than the corresponding temporal problem but nevertheless accessible to
computation; see Sect. 2.92). However, the expression found by Watson for the co-
efficients bm with m> 0 turned out to be much more complex than the—also rather
complicated—expressions for the corresponding coefficients am; therefore in the
early 1960s their evaluation seemed to be impossible. But somewhat later Itoh (1974a,
b) showed that by that time the values of the ‘spatial Landau constant’ δs = –b1

might already have been calculated with satisfactory accuracy for some important
plane-parallel flows (see Figs. 4.11 and 4.17 below).

Note that Stuart (1960; a, 1962a,b) and Watson (1960a, 1962) used the fluid
dynamics equations only for rigorous derivation of amplitude equations, and did not
try to determine numerical values of the coefficients of the latter. Simultaneously,
Stuart stressed that the early estimates of the value of δ by Meksyn and Stuart (1951)
and Stuart (1958) are not trustworthy. Therefore it was natural to think that Stuart’s
and Watson’s papers would stimulate other authors to find, at last, some accurate
estimates of Landau’s constant and of other coefficients of amplitude equations. And
in fact papers devoted to such estimation began to appear soon after those mentioned
above. We will now pass on to results of this subsequent work.

4.2.2 Evaluation of Coefficients of Amplitude Equations
and Equilibrium Disturbances for Plane Poiseuille Flows

One of the first attempts to find a more or less reliable value for the Landau constant δ
was made by Davey (1962) for the case of the growth of axisymmetric Taylor vortices
in a Couette flow between rotating cylinders. Davey reformulated for this case all
the arguments of Stuart (1960) and found that Stuart’s equation δ= δ1 + δ2 + δ3,
where the three terms δi have the same physical meaning as in the case of plane
Poiseuille flow, also appears here. He also found that in this case the expressions for
these terms are again rather complicated but are nevertheless accessible to numerical
computation. So, he calculated the value of δ for three particular combinations of
the ratios μ=Ω2/�1 and η=R1/R2. The values found turned out to be positive in
all cases considered, for all vertical wave numbers k and Reynolds numbers Re, and
these values agreed satisfactorily with the then-available experimental data. However,
we will not linger here on these results of Davey, since nonlinear stability of circular
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Couette flow will be considered separately later in this book. So now we will turn
again to cases of plane-parallel (or nearly plane-parallel) primary flows.

Let us revert first of all to the model case of plane Poiseuille flow. Recall that
Stuart’s and Watson’s nonlinear-stability papers of 1960 were both devoted to just
this case, which was also considered rather early by Meksyn and Stuart (1951),
then by Stuart (1958), and later by Eckhaus (1965). This was only natural, since
plane Poiseuille flow is a classical example of steady, strictly plane-parallel, laminar
flow having a very simple velocity profile, and had been extensively investigated
within the framework of the linear theory of hydrodynamic stability. Thus, it was
not surprising that relatively accurate estimates of the values of the Landau constant
for disturbances in a plane Poiseuille flow were among the first applications of the
Stuart-Watson theory to appear.

The above-mentioned estimates were calculated independently and almost si-
multaneously by Reynolds and Potter (1967) and Pekeris and Shkoller (1967).
Reynolds and Potter used some extension and modification of the Stuart-Watson
approach where determination of the equilibrium disturbances, introduced in
application to another problem by Malkus and Veronis (1958), played a very im-
portant part, while Pekeris and Shkoller based their computations on the Eckhaus
eigenfunction-expansion method. In both papers the computations were carried out
for two-dimensional normal-mode disturbances corresponding to the unstable (or, if
Re<Recr, to the least stable) solution of the Orr-Sommerfeld eigenvalue problem
under the condition that |γ | = |�mω| is sufficiently small. However, Reynolds and
Potter also included in their paper some remarks relating to three-dimensional dis-
turbances, and presented some numerical results for the more general case of plane
Couette–Poiseuille flows (these results will be discussed in Sect. 4.23). For plane
Poiseuille flow Reynolds and Potter calculated values of δ at five different points
of the neutral stability curve in the (k, Re)-plane (including the critical point (kcr,
Recr)), and at two points in the neighborhood of the neutral curve, while Pekeris
and Shkoller evaluated the coefficient δ = δ(k, Re ) for an extensive region of the (k,
Re)-plane (using equations which are in fact reasonable only in the vicinity of the
neutral curve). The results of these two papers do not coincide numerically (one rea-
son being that they used different normalizations and somewhat different definitions
of the amplitude |A|, besides which some of the assumptions and approximations
taken for granted in the two papers were different), but both results have the same
general behavior and imply close agreement for ratios of the values δ= δ (k, Re) at
different points of the (k, Re)-plane.

In Fig. 4.8, results by Pekeris and Shkoller (agreeing, in general, with Reynolds
and Potter’s conclusions) are presented, including the neutral curve but without
numerical values for γ and δ. (As to the values of Re and k, it is here assumed, as
usually, that Re =UmaxH1/v and k is made dimensionless by multiplication by H1).
These results show, in particular, that at the critical point (the point of the neutral
curve farthest to the left), and at all points of the upper branch of the neutral curve, δ is
negative. Some unstable two-dimensional disturbances of finite amplitude with wave
number k must correspond to values of (k, Re) at points lying close to the neutral
curve in the region where δ< 0 and γ < 0; this means that at these values of (k, Re),
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Fig. 4.8 The regions of
positive and negative values
of the coefficients γ and δ in
the (k, Re)-plane for the case
of plane Poiseuille flow.
(After Pekeris and Shkoller
(1967))

subcritical finite-amplitude instabilities exist in plane Poiseuille flow. Therefore, in
the region where δ< 0, the neutral curve (which bounds the set of points (k, Re)
corresponding to unstable two-dimensional disturbances) shifts, in the case of finite
disturbances, from the neutral-stability curve of linear stability theory (which relates
to infinitesimal disturbances) and takes the shape shown in the schematic Fig. 4.9.
On the other hand, for points (k, Re) in the region where δ < 0, γ > 0 the negativity
of δ means that supercritical finite-amplitude equilibrium states are rather unlikely
to be observed here. Figure 4.8 shows also that δ > 0 on the main part of the lower
branch of the neutral curve. At the points (k, Re) close to this part the subcritical
finite-amplitude instability does not exist for disturbances with γ < 0; however, if

Fig. 4.9 Schematic form of the neutral-stability curve DBF for wave disturbances of plane Poiseuille
flow having a fixed finite amplitude A. (After Pekeris and Shkoller (1969b)) the curve ABC is the
neutral curve for infinitesimal disturbances where γ = 0, and the dotted curve represents points
where δ= 0
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Fig. 4.10 Deviations of the
neutral curves for wave dis-
turbances of plane Poiseuille
flow having finite amplitudes
(characterized by the value of
some dimensionless
‘amplitude parameter’ A∗)
from the neutral curve for
infinitesimal disturbances
(corresponding to A∗ = 0) in
the region where δ < 0,
computed by Pekeris and
Shkoller (1969b). The dotted
curve have the same meaning
as in Figs. 4.8 and 4.9

γ = 0 and δ > 0 for a small but not infinitesimal disturbance, then this disturbance
will decay according to Eq. (4.34). Thus, the neutral curve for finite disturbances
corresponding to points where δ > 0 must shift into the supercritical region where
γ > 0, and hence finite-amplitude equilibrium states must exist.6

Reynolds and Potter’s and Pekeris and Shkoller’s papers stimulated the appear-
ance of many subsequent papers on the nonlinear evolution of wave disturbances
in a plane Poiseuille flow. These later papers, only some of which will be referred
to below, include various amendments, modifications and revisions of results pre-
sented in the publications of 1967. In particular, Pekeris and Shkoller (1969a,b;
1971) computed some approximate solutions of the nonlinear initial-value problem
for the least-stable Tollmien–Schlichting (T–S) wave with given wave number k, i.e.,
for the two-dimensional disturbance having the initial stream function of the form
Ψ(x, z, 0) = Af1(z)eikx where f1(z) is the normalized first (least stable) O-S eigen-
function of the plane Poiseuille flow and A is a disturbance amplitude which is finite
(but small enough, since an expansion in powers of amplitude was used here). Using
the computed results Pekeris and Shkoller tried to estimate quantitatively the shifts
of the neutral curves for finite-amplitude disturbances of the form given above, for
various values of A (see Fig. 4.10, taken from their paper (1969b)), and to determine
the value of the finite-amplitude critical Reynolds number Recr(A) (which corre-
sponds to the point which is farthest to the left on the neutral curve for disturbances
of amplitude A). The same problem was studied by Georg and Hellums (1972) and
Georg et al. (1974) who considered another initial form of disturbance (i.e. they
did not use the traditional approach of considering the least-stable T–S wave) and
another method of numerical solution of the nonlinear initial-value problem (which
used neither the Eckhaus expansion into O-S eigenfunctions nor the expansion in
powers of the amplitude, and hence was applicable to disturbances of any initial size).

6 According to Eq. (4.34) and Fig. 4.8, the lower branch of the neutral curve in the case of finite
disturbances must shift upward (to points where γ ≈ δ|A|2/2). This very small shift is exaggerated
in Fig. 4.9 to simplify its representation in the figure but later it will be neglected.
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Fig. 4.11 The regions of positive and negative values of the coefficients γs and δs in the (ω,Re)-
plane for the case of plane Poiseuille flow. (After Itoh (1974a))
ABC: the curve γs(ω, Re) = 0 (the spatial neutral-stability curve of the linear stability theory
bounding the region where γs > 0); DBE: the curve δs(ω, Re) = 0 bounding the region where δs > 0

Georg et al. (whose estimates of the values of critical numbers Recr(A) were later
found by Orszag and Kells (1980) to be too high because of the use of a non-optimal
initial form of the disturbance) compared their results with those of several previous
papers (including those by Reynolds and Potter and Pekeris and Shkoller). They found
that the quantitative results of different authors sometimes do not agree adequately
well, but all of them demonstrate the same general tendency. One more method for
approximate determination of the neutral curve for two-dimensional finite-amplitude
wave disturbances in a plane Poiseuille flow was proposed by Struminskii and Sko-
belev (1980), who used for this purpose the generalized Landau equation of the form
(4.37). Later Luo (1994) reexamined the previously used methods of determination
of complex coefficients ω and l in the Stuart-Landau Eq. (4.40). He suggested some
improvements and showed that in the case of plane Poiseuille flow they lead to val-
ues of coefficients which agree well with those given by numerical simulation of
disturbance evolution in this flow.

Itoh (1974a) studied the development of a spatially-evolving two-dimensional
disturbance of frequency ω in a plane Poiseuille flow, using the theory by Wat-
son (1962) modified by accounting more accurately for distortion of the mean
flow by the disturbance. Using the modified version of Watson’s theory, he com-
puted approximate shapes of the curves γs(ω, Re ) = 0 and δs(ω, Re ) = 0 (where
γs = b0/2 and δs = −b1 are coefficients of the ‘spatial Landau equation’, and ω
is non-dimensionalized by multiplication by H1/Umax) on the (ω, Re)-plane. These
curves are shown in Fig. 4.11; they determine location of the regions of positive and
negative values of γs and δs in the (ω, Re)-plane and proved to be qualitatively similar
to Pekeris and Shkoller’s curves in Fig. 4.8 which correspond to temporally-evolving
disturbances in the same flow.
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Related computations were performed by Herbert (1976, 1977, 1978) (see also
his review (1983a)) who used a quite different method. This author followed the
approach initiated by Zahn et al. (1974) (and outlined in rudimentary form as far
back as Noether (1921) and Heisenberg (1924)), and studied approximate numeri-
cal solutions of the nonlinear initial-value problem for stable Tollmien-Schlichting
waves (i.e., those which are exponentially damped according to the linear stability
theory), which at small values of t are represented by the O-S eigensolutions. He
paid most attention to equilibrium solutions (i.e., to wave disturbances satisfying
the condition that d|A|2/dt = 0) at various values of k and Re. To find the value
of the stream function Ψ(x, z, t) corresponding to an evolving T–S wave, both Zahn
et al. and Herbert represented Ψ by a strongly truncated Fourier series of the form
(4.38), and then solved numerically a system of coupled nonlinear equations for the
corresponding Fourier coefficients, simplifying this system greatly for the case of
equilibrium solutions.

Herbert found numerous equilibrium two-dimensional disturbances in a plane
Poiseuille flow which are periodic in the streamwise direction and have finite ampli-
tudes. His results agree well with results of preceding numerical studies by Zahn et al.
(1974), and of subsequent more accurate computations by Orszag and Kells (1980);
Orszag and Patera (1980, 1981); Milinazzo and Saffman (1985); Ehrenstein and Koch
(1991); Balakumar (1997); Hewitt and Hall (1998), and some others (see also the
survey by Bayly et al. (1988)). Measuring the size of a two-dimensional wave distur-
bance by the ratio E of its kinetic energy (per unit length of the channel) to the energy
of primary Poiseuille flow (E is clearly a single-valued function of A and is propor-
tional to |A|2 with good accuracy), Herbert determined the shape of the neutral surface
(corresponding to the set of all two-dimensional equilibrium waves) in the three-
dimensional (E, k, Re)-space; this surface is shown schematically in Fig. 4.12. (See
also Ehrenstein and Koch (1991) and Sect. 2.8.3 in Godrèche and Manneville (1998)
where a slightly different presentation of this surface is given. Two intersections of
this surface with the plane Re = const. will be shown in Sect. 4.2.3 in Fig. 4.14a, b
where, however, Umax is replaced by Uave = 2Umax/3 in the definition of Re; some
of its other intersections with planes Re = const. and k = const. can be found in
Sect. 2.8.3 of Godrèche and Manneville (1998) and in the paper by Hewitt and Hall
(1998)). The intersection of the neutral surface with the plane E = 0 clearly coincides
with the Poiseuille-flow neutral curve of linear stability theory (shown, in particular,
in Figs. 2.22 and 4.8), while the intersections of this surface with the planes E = const.
(where also A = const.) coincide with the neutral-stability curves for finite-amplitude
disturbances with given value of E (or A; cf. Figs. 4.9 and 4.10). The projection of
the whole neutral surface in (E, k, Re)-space on the (k, Re)-plane is also indicated in
Fig. 4.12; this projection determines the region of the (k, Re)-plane corresponding to
unstable two-dimensional waves of any amplitude. This region is clearly much larger
than the region of unstable infinitesimal waves, which is bounded by the neutral curve
of linear theory. The projection of the leftmost point of the neutral surface in (E, k,
Re)-space on the (k, Re)-plane determines the lowest Reynolds number Re∗

cr at which
there exist also undamped two-dimensional waves of any amplitude, and the critical
wave number k∗

cr corresponding to the undamped wave at Re = Re∗
cr . Similarly,
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Fig. 4.12 Schematic shape of the nonlinear neutral surface in the three-dimensional (E, k, Re)-space
corresponding to the set of all two-dimensional equilibrium waves in plane Poiseuille flow. (After
Herbert (1977, 1978, 1983a))

the leftmost points of the neutral curves for waves with fixed energy E (and ampli-
tude A) determine the critical Reynolds numbers Recr(E) (or Recr(A)) for waves of
fixed energy (and amplitude) and their wave numbers kcr(E) (or kcr(A)). According to
Herbert’s approximate computations, Re∗

cr ≈ 2935 (as usual, channel half-thickness
and Poiseuille-flow maximum velocity are used here as length and velocity scales)
and to this corresponds the critical wave number k∗

cr ≈ 1.32. Later Herbert’s results
were confirmed also by Orszag and Kells (1980); Ehrenstein and Koch (1991), and
Balakumar (1997).

Note that the ‘nonlinear critical Reynolds number’ Re∗
cr is considerably smaller

than the ordinary (linear) critical Reynolds number Recr ≈ 5772 which relates to
infinitesimal wave disturbances. However Re∗

cr is much greater not only than the value
Recr min ≈ 50 which is given by the energy method and applies to disturbances of any
shape and size, but also much greater than the value Re1 ≈ 1,000 which, according
to data by many authors (e.g., by Davies and White (1928); Patel and Head (1969);
Kao and Park (1970); Nishioka and Asai (1985), and Alavyoon et al. (1986); see also
Sect. 2.1) is typical for transition to turbulence in laboratory experiments on plane
Poiseuille flow. During the 1980s and early 1990s a number of authors (in particular,
Orszag and Kells (1980); Orszag and Patera (1982, 1983); Saffman (1983); Herbert
(1983c, 1984, 1986); Soibelman and Meiron (1991); see also the surveys by Bayly
et al. (1988) and Herbert (1988)) suggested the idea that the difference between
values of Re∗

cr and of Re1 can be explained by secondary instability of stable two-
dimensional waves to small three-dimensional disturbances at values of Re smaller
than Re∗

cr . To verify this idea these (and some other) authors performed a number
of numerical simulations (i.e., solutions of the corresponding nonlinear initial-value
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problems for the N-S equations) of development, in a plane Poiseuille flow, of stable
two-dimensional waves of finite amplitude in the presence of small three-dimensional
disturbances with the same streamwise wave number. The results obtained showed
that three-dimensional disturbances often destabilize two-dimensional waves, and
cause rapid growth of two-mode disturbances at Reynolds numbers of the order of
700–1,000, much smaller than Re∗

cr (and close to Re1). (The simulations by Pugh
and Saffman (1988) and the subsequent study by Barkley (1990) showed that the
instability of two-dimensional equilibrium waves with respect to superimposed three-
dimensional disturbances has a more complex character than was assumed earlier.
Moreover, there were several attempts to explain the secondary instability of two-
dimensional waves by triad interactions of such a wave with two three-dimensional
ones, and these attempts also led to critical Reynolds number close to Re1; see,
e.g., Goldshtik et al. (1983, 1985); Craik (1985); Ehrenstein and Koch (1991), and
Ehrenstein (1994). And still later Reddy et al. (1998) considered some quite different
scenarios of the primary and secondary instabilities of a plane Poiseuille flow where
two-dimensional waves play no part at all. However, we will not consider all these
works in this section). The secondary instability of two-dimensional periodic waves
usually generates, not a new equilibrium cellular state but a very complicated three-
dimensional structure reminiscent developed turbulence; see, e.g., Saffman (1983);
Rozhdestvensky and Simakin (1984); Bayly et al. (1988), and Jiménez (1987, 1990).
In some of this work several successive transitions of Poiseuille flow to more and more
complex behavior were also simulated numerically (more details of this will be given
later).

Numerically-simulated equilibrium and developing wave disturbances in a
Poiseuille flow may in principle be used to get some information about the values
of Landau’s constant and other coefficients of the amplitude equations for one-mode
or composite two-mode waves. The estimates of δ implied by the results of Her-
bert’s and Orszag and Kell’s numerical simulations of two-dimensional equilibrium
waves in a plane Poiseuille flow proved not to contradict values found earlier by
Reynolds and Potter (1967); Pekeris and Shkoller (1967), and other authors by the
quite different methods initiated by Stuart, Watson, and Eckhaus.

Quite another approach was applied to study of development of two-dimensional
finite-amplitude waves in a plane Poiseuille flow by Andreichikov and Yudovich
(1972) and Chen and Joseph (1973). This approach was based on the general theory
of bifurcations, which is a special part of nonlinear science closely connected with
stability problems. The word bifurcation means here the appearance of a supple-
mentary solution of a given nonlinear ‘dynamic equation’ (or system of equations),
describing the evolution of a definite object, when some dynamic parameters vary.
The ‘dynamic equation’ (or equations) may be here algebraic, ordinary differential,
partial differential or any other type. Bifurcation theory deals with the most typical
features of the nonlinear evolution, namely, with the frequent occurrence of qual-
itative changes of the object’s behavior corresponding to small variation of some
dynamic parameters. Drazin and Reid (1981), p. 403, reasonably noted that this
theory arose from particular early work by Poincaré and Lyapunov on figures of
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equilibrium of rotating self-gravitating masses of fluid, but the sphere of its appli-
cations has broadened enormously. Therefore it is natural that in recent years this
theory attracted much attention, and gave rise to extensive and quite diverse liter-
ature. As typical examples we may mention here the books and survey papers by
Sattinger (1973); Marsden (1978); Mittleman and Weber (1980); Seydel (1988);
Arnol’d (1989b); Iooss and Joseph (1990); Baker (1991); Hale (1991); Iooss and
Adelmeyer (1992); Guckenheimer and Holmes (1993); Arnol’d et al. (1994), and
Field (1996).

An example of an instability-generated bifurcation in a fluid flow is given in
Fig. 4.7a, where the dependence on Reynolds number Re of the equilibrium ampli-
tudeAe = |A|max of a normal-mode disturbance in a primary steady flow is presented
for the case where δ > 0. Here Ae = 0 for Re<Recr; however, if Re>Recr (but
Re − Recr is small), then γ ∝ Re − Recr > 0, and the amplitude of a small dis-
turbance tends to the equilibrium value Ae = (2γ /δ)1/2 ∝ ( Re − Recr)1/2 (see the
upper part of Fig. 4.5). Thus, the flow consisting of the primary flow and a super-
imposed two-dimensional periodic wave of amplitude Ae bifurcates at Re = Recr

from the pure primary flow. Figure 4.7b corresponds to the case where δ < 0 and
shows another type of bifurcation: here, according to the figure the ‘secondary so-
lution’ which includes a finite-amplitude wave appears at Re = Re′

cr < Recr but
transition from the primary steady solution to this new solution can be caused only
by a wave disturbance with amplitude exceeding |A2|max. Let us now consider the
complex Landau amplitude A(t) which satisfies Eq. (4.40) and describes the time-
dependence of the leading term of the disturbance velocity u(x, t). As we know,
here A(t) = |A(t)| ei(−ωt+θ ), where |A(t)|2 satisfies the Landau Eq. (4.34) and the
constant θ depends on the initial disturbance u(x, 0). According to Fig. 4.7a, if δ > 0,
then for Re<Recr the complex amplitude A(t) for any initial value A(0) tends to
zero (i.e., to the origin of the complex-variable plane) as t → ∞. In other words,
for Re<Recr all trajectories A = A(t) in the complex-variable plane corresponding
to various solutions of the complex Landau Eq. (4.40) are attracted to a focus at the
origin. If, however, Re>Recr, then |A(t)| → Ae ∝ ( Re −Recr)1/2 as t → ∞ and
hence the trajectoryA(t) = |A(t)| ei(−ωt+θ ) is here attracted to the circle of radiusAe

in the complex-variable plane which makes up the limit cycle of the two-dimensional
dynamical system corresponding to dynamic Eq. (4.40) (i.e., to a system of two Eqs.
(4.34) and (4.34a) for real and imaginary parts of A(t)). This is just a specific case of
the so-called Hopf bifurcation7, where a periodic solution bifurcates from a steady

7 This term reflects the contribution by Hopf (1942) to this subject. However sometimes its use meets
objections since such bifurcations were in fact explicitly studied by A. A. Andronov (partially in
collaboration with A. A. Vitt) in the early 1930s and were described at length in the book by
Andronov and Khaikin (1937). It was also sometimes noted that the so-called ‘Hopf bifurcation’
first appeared in fact in the works of Poincaré; therefore, Marsden and McCracken (1976) wrote in
the preface to their book that apparently the term ‘Poincaré-Andronov-Hopf bifurcation’ would be
the most just. However, the short term ‘Hopf bifurcation’ is now universally accepted; so it will be
used in this book too.
Note in conclusion that the classical book by Andronov and Khaikin was in fact written by three
authors. Only in the late 1950’s it was permitted to S. E. Khaikin, the only one author who was then
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one when the latter becomes unstable. Hopf bifurcations form the most elementary
class of bifurcations, which are encountered very often in various applied fields (see,
e.g., the books by Marsden and McCracken (1976); Hassard (1981), and Moiola
and Chen (1996) specially devoted to such bifurcations); some more complicated
bifurcations will also be discussed later in this book.

Above, for the sake of simplicity, we discussed only bifurcations of solutions of
Landau’s amplitude equations (which are ordinary and not partial differential equa-
tions). In fact only ordinary differential equations were considered in the early works
on bifurcations by Poincaré, Andronov, Vitt, and Hopf. The general theory of periodic
flow bifurcations from a steady solution of Navier–Stokes equations was developed
independently by Yudovich (1971, 1972); Iooss (1972) and Joseph and Sattinger
(1972) (see also Chaps. 9 and 9A in the book by Marsden and McCracken (1976),
and references to early examples of such fluid-dynamic bifurcations in the book by
Drazin and Reid (1981), p. 407). The papers mentioned contain, in particular, defi-
nite conditions under which such bifurcation necessarily occur. Then Andreichikov
and Yudovich (1972) and Chen and Joseph (1973) showed that the results of the
above-mentioned papers lead to definite assertions about the uniqueness, stability
and properties of the two-dimensional periodic solutions which bifurcate from the
steady Poiseuille flow at points of the corresponding neutral-stability curve. These
assertions proved to be in good qualitative (and in satisfactory quantitative) agree-
ment with the conclusions about disturbance development obtained earlier by other
authors who used quite different, and often less rigorous, arguments based on the
Stuart–Watson theory and its modifications.

Let us briefly discuss now results of some further work concerning the nonlin-
ear evolution of normal-mode wave disturbances in plane Poiseuille flow. Recall
that approximate estimates of the numerical values for the Landau constant for two-
dimensional wave disturbances spatially evolving in a plane Poiseuille flow were
first given by Itoh (1974a). Early comparisons of the available theoretical estimates
with the experimental data by Nishioka et al. (1975), referring to development of
waves generated by a vibrating ribbon in a laboratory channel flow, seemed to sup-
port both the results by Itoh (1974a) and the conclusions of Herbert (1977). However,
subsequent more careful analysis detected some appreciable discrepancies between
theory and experimental data, apparently connected with three-dimensional effects
affecting measurements by Nishioka et al. and with some inaccuracies of Itoh’s cal-
culations; see, e.g., Zhou (1982); Herbert (1980, 1983a), and Sen and Venkateswarlu
(1983). Another method for calculation of Landau’s constant was proposed by Itoh
(1977a); as was indicated by Davey (1978) and Herbert (1983b), this method differs
from that of Reynolds and Potter (1967) only by rearrangement of the terms in some

alive, to publish the revised edition of the book as a book by Andronov et al. (1959) with a strange
remark in the Preface (which was repeated in the English translation of 1966 too) that ‘the name of
one of the authors was by an unfortunate mistake not noticed on the title page of the first edition’.
The ‘unfortunate mistake’ was due to the fact that A. A. Vitt, a young talented scientist, was arrested
in 1937 by Stalin’s notorious secret police (which chose its victims for reasons incomprehensible
to any normal mind) and died in prison the next year.
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infinite series, and is appropriate only for the case where A =Ae is the equilibrium
amplitude of a disturbance.

The accuracy of estimates of the value of Landau’s constant is clearly affected by
the absence of a unique, universally-accepted definition of the disturbance amplitude
A and by possible influence of further terms of Eqs. (4.41) and (4.41a) which were
neglected in most of the early papers. (The first attempts to estimate, for a plane
Poiseuille flow, the values of two coefficients am, m = 1 and 2, of Eq. (4.41) (in
other words, of the coefficients δ and β of Eq. (4.37)) and of the corresponding
complex coefficients λm, m = 1 and 2, of Eq. (4.41b) presented below were due
to Gertsenshtein and Shtemler (1997) and Shtemler (1978). These authors applied
the modified method of Reynolds and Potter (1967) to compute the values of the
coefficients a1, a2, and λ1, λ2 for several points (k, Re) of the plane-Poiseuille-flow
neutral curve and then, assuming that A =Ae, studied the influence of the terms with
m = 2 on the values of the equilibrium amplitudeAe and the shape and stability of the
equilibrium waves). Later it was stressed by Herbert (1980, 1983b) that many theories
leading to determination of the higher-order terms do not exclude equally-justified
alternative methods of computation, leading to changes in the values of these terms.
In the paper of 1980 Herbert developed a consistent method of perturbation expansion
for solution of the Navier-Stokes equations which included a unique definition of
the real amplitude A(t) and led to Eq. (4.41) with unique values of the Landau
constants am of all orders. Then he showed how the values of these constants can
be determined, and he calculated, for plane Poiseuille flow, the values of the first
seven constants am at the critical point (kcr, Recr) of the (k, Re)-plane and at one
subcritical point with Re<Recr. The results obtained showed that the coefficients
am increase rapidly with m. Therefore Eq. (4.41) is in fact useful only in the case of
a very small amplitude A. In Herbert’s paper (1983b) a survey and also a comparison
of various expansion methods based on different assumptions was presented, and
the ranges of applicability and shortcomings of these methods were discussed. In
particular he showed that the method of Watson (1960a) is exact only at points
of the neutral curve where a0 = 2γ = 0, while if γ �= 0, then Watson’s value of
δ differs from the value given by the more rigorous method of Herbert (1980) (see
Fujimura (1987) for a more detailed analysis of this matter). Later Crouch and Herbert
(1993) proposed a new general method for determination of the complex Landau
constants λm of all orders m ≥ 0 entering the equation for the complex disturbance
amplitude A

dA

dt
= A

∞∑

m=0

λm|A|2m (4.41b)

which is a simple generalization of both the Stuart-Landau Eq. (4.40) and the Watson-
Landau Eq. (4.41) (where am = 2�eλm). The same problem was also considered by
Sen and Venkateswarlu (1983) and Fujimura (1989, 1991, 1997) whose papers will
be discussed below.

Zhou (1982) developed an improved version of the classical Stuart-Watson method
of 1960, assuming that both the amplitude A(t) and the angular frequency ω1(t) of
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the unstable wave disturbance vary with time. He expanded the derivatives dA/dt
and dω1/dt in powers of a suitable small parameter ε (which represents the order of
magnitude of nonlinear corrections), and numerically computed the solutions of the
resulting system of coupled differential equations for the terms of ε-expansions up
to fourth order. In this way Zhou obtained a much more detailed representation of
the nonlinear development of subcritical (unstable) wave disturbances, for values of
Re from 1,000 up to 5,500 and several values of k. It was found that the accuracy of
the method decreases with increasing Re −Recr, but the experimental observations
by Nishioka et al. (1986) concerning the terminal equilibrium states of disturbances
at relatively small values of Re–Recr are represented more satisfactorily by the new
results than by the results presented in the preceding papers.

Weinstein (1981) applied Watson’s (1960a) method to calculate values of the Lan-
dau constants am = am (k, Re) up to m = 3 for the Poiseuille-flow wave disturbances
corresponding to small values of both |Re −Recr| and |k −kcr |. His main purpose was
to compare results following from his version of Watsons method with those given
by quite another method, the so-called method of multiple scales first applied to some
turbulent-flow calculations by Stewartson and Stuart (1971) (for other applications
of the method see, e.g., Cole (1968); Kevorkian and Cole (1981); Nayfeh (1981), or
Godrèche and Manneville (1998)). This method uses two different time scales (the
‘slow’ and ‘rapid’ ones) which allow the slow evolutionary processes to be isolated
from the rapid high-frequency oscillations. (In Landau’s original derivation of Eq.
(4.34) averaging over a time period intermediate between ‘slow’ and ‘rapid’ time
scales was used to the same end). Weinstein found that in the cases he considered
both methods lead to exactly the same results; however, no numerical data were
presented in this paper.

New calculations of the higher-order Landau coefficients for nonlinear wave
disturbances in a plane Poiseuille flow, corresponding to both subcritical and su-
percritical regions of the (k, Re)-plane, were carried out by Sen and Venkateswarlu
(1983) by both the Reynolds and Potter (1967) and the Watson (1960a) methods. It
was found that in the supercritical region the results of both methods are relatively
close (in the subcritical region the majority of the computations performed was based
on the use of the R-P method). The authors supplemented the results of Pekeris and
Shkoller shown in Fig. 4.8, by new lines separating the regions of positive and nega-
tive values for Landau’s constants a2 and a3 in the (k, Re)-plane (see Fig. 4.13, based
on their results). They also investigated the region of convergence of the Landau–
Watson series (4.41) (it was found that the radius of convergence is rather short here,
which agrees with the conclusions of Herbert (1980)) and indicated the summation
methods appropriate for computations in the cases of slow convergence (or slow
divergence) of this series. The equilibrium amplitudes and equilibrium velocity dis-
tributions were also determined for the subcritical region, and the values of a great
number of complex Landau coefficients λm = λm(k, Re ) were presented for some
particular cases. Some comparisons of the results obtained with experimental data
by Nishioka et al. (1975) were discussed in the paper and were found to be encour-
aging. Note however that Reynolds and Potter’s method and the original Watson
methods, considered by Sen and Venkateswarlu, are not of high precision, and many
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Fig. 4.13 Stability diagram showing the regions of positive and negative values of coefficients γ ,
δ, and the next two Landau’s constants a2 and a3 in the (k, Re)-plane for the case of plane Poiseuille
flow. (After Sen and Venkateswarlu (1983)) (1) curve where γ = 0 (neutral curve of the linear
stability theory, inside it γ > 0); (2) curve where δ= 0 (inside it δ > 0); (3) curve where a2 = 0
(inside it a2 > 0); (4) curve where a3 = 0 (inside it a3 < 0)

researchers even supposed that they are inapplicable at points (k, Re) which are far
from the neutral curve.

Fujimura (1989) compared two different methods of derivation of the general Lan-
dau Eq. (4.41b) for the complex disturbance amplitude A(t) from the Navier-Stokes
equations—his own modification of the amplitude-expansion method of Watson and
the above-mentioned method of multiple scales (which can be applied to derivation
of Eq. (4.41b) if a whole hierarchy of longer and longer time scales is introduced).
He began by stressing that the results obtained by both methods depend essentially
on the strict definition of the amplitude A(t). Then he showed that if this definition
is based on a special normalization condition for the fundamental mode, then in
the case of slight supercriticality the method of multiple scales gives results equiv-
alent to those which follow from the modified amplitude-expansion procedure (but
not from its original form proposed by Watson). Some results of computations by
both methods of the values of the first four complex Landau constants for slightly
supercritical wave disturbances in a plane Poiseuille flow are also presented in this
paper.

Later Fujimura (1991, 1997) studied one more method of derivation of the com-
plex Landau Eq. (4.41b) from the equations of fluid motion. Note that this equation
represents a crucial reduction of the infinite-dimensional dynamical system of flow
disturbances evolving in time, to a one-dimensional system fully determined by its
amplitude A(t). On the other hand, the modern development of the dynamical system
theory led to the appearance of a promising new method of the dimension reduction
(i.e., reduction of the numbers of degrees of freedom), called the method of center
manifold (see, e.g., the books by Carr (1981); Wiggins (1990); Manneville (1990),
and Guckenheimer and Holmes (1993)). The method is based on the concept of a
center manifold—a part S of the phase space R of all possible states of the consid-
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a

b

Fig. 4.14 Intersections of the nonlinear neutral surface in the three-dimensional (E, k, Re)-space
with the plane Re = 4,000 for Couette-Poiseuille flows with Â = 0, 0.12, 0.144, and 0.147 (a), and
with the plane Â = 6,000 for C-P flows with Â = 0, 0.2, and 0.218 (b). (After Balakumar (1997)).
Here Â = ÂB = UW/[ 4

3Umax + Uw], Re = UaveH1/v = [ 4
3Umax + Uw]H1/2v, and the increase of

� corresponds to s hrinking of the closed curves in the figure

ered system having some special properties. These properties imply, in particular,
that any phase trajectory (the curve in R describing time evolution of the system),
whose point at time t0 belongs to S will remain in S also at any t> t0, while a tra-
jectory which is outside of S at time t0 enters S, under rather general conditions, at
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some subsequent time moment. (For more information about specialized subspaces
of a phase space and their properties see, e.g., Kelley (1967) In the case of a fluid
flow the phase space R consists of all admissible values of the main fluid dynam-
ical fields; see Sect. 2.3). The center manifold reduction consists in projection of
the full phase space R, together with trajectories of a dynamical system lying in R,
into some center manifold S of smaller dimension than that of the space R. In the
extreme case when the dimension is reduced to one, the state of the nonlinear system
becomes fully determined by the amplitude A, and hence the evolution of the system
is described by the function A(t) which under a wide range of conditions satisfies
an equation of the Landau type. Note however that the center manifold (and thus
also the center manifold reduction) may not be unique (see, e.g., Guckenheimer and
Holmes (1993)). This nonuniqueness is analogous to the nonuniqueness of Landau’s
constants because of their dependence on the selected definition of the disturbance
amplitude.

Some examples of derivations of Landau’s amplitude equations for nonlinear sys-
tems with infinite dimensions by the method of center manifold may be found in Carr
(1981) and Carr and Muncaster (1983); a number of applications of this method to
fluid mechanical problems were considered by Guckenheimer and Knobloch (1983);
Iooss (1987); Laure and Demay (1988); Renardy (1989); Manneville (1990); Cheng
and Chang (1990, 1992, 1995); Chen et al. (1991), and Chossat and Iooss (1994),
among many others. Fujimura at first considered (in the paper of 1991) the most
common scheme of the center manifold reduction, applicable to infinite-dimensional
systems arising from the partial differential equations (exemplified by the Navier–
Stokes system). He applied the method to the classical example of the disturbance
development in plane Poiseuille flow, which was also investigated by the center
manifold method, in passing, by Renardy (1989) (whose paper was mainly de-
voted to more general problems). Renardy evaluated the Landau constant δ for a
plane Poiseuille flow by this method, and compared her results with those found by
Pekeris and Shkoller (1967) and Reynolds and Potter (1967). However, her com-
parisons had a serious deficiency, indicated by Fujimura (1991) who also showed
that her value of δ was identical with that implied by the original Watson’s method
and hence, according to Fujimara’s (1989) conclusion, was different from the value
given by the method of multiple scales. Moreover, he also noted that, when ap-
plied to derivation of higher-order Landau equations, Renardy’s reduction scheme
leads to values of the higher Landau constants differing even from those given by
Watson’s original method. Therefore, Fujimura (1991) carried out a new careful
evaluation of the complex Landau constants λm, with m = 0, 1, 2 and 3, for a plane
Poiseuille flow by the methods of center manifold and of multiple scales, com-
pared the results obtained by these two methods, and explained how the disturbance
amplitude must be defined to make the results of two methods equivalent to each
other.

In the paper of 1997 Fujimura applied, to the derivation of Landau’s Eq. (4.41b),
another center manifold reduction scheme (called by him “the reduction scheme of
the second category”), which starts with an infinite, or finite, system of ordinary
differential equations (in the cases where original equations are partial-differential,
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this system can be derived by means of a Galerkin projection or/and a normal-mode
expansion). Such reduction scheme was used, in particular, in the above-mentioned
papers by Guckenheimer and Knobloch, Cheng and Chang, and Chen et al. The main
objecjtive of Fujimura (1997) was to prove the equivalence of Landau’s equations, as
given by this reduction scheme, to those derived by the method of multiple scales. To
reduce the Navier–Stokes equations to a system of ordimary differential equations,
a double expansion of flow fields in Fourier series and in eigenfunctions of the
linear stability theory was used. Then the first and second Landau constants λ2 and
λ3 were evaluated by the second-category method of center manifold, for plane
Poiseuille flow and for two other simple fluid dynamical problems. Comparison
of the values obtained with those given by the method of multiple scales showed
that in all three cases the values of λ2 and λ3, computed by this version of the
method of center manifold, approach their values given by the method of multiple
scales as the truncation level of the eigenfunction expansion increases. Hence the
three papers by Fujimura (1989, 1991, 1997), taken together, show that Landau’s
Eq. (4.41b) given by two versions of the center manifold reduction scheme, the
method of multiple scales, and the modified Watson amplitude-expansion method
are equivalent to each other if the disturbance amplitude is defined in a consistent
way.

Stewartson and Stuart (1971) considered the propagation, in plane Poiseuille
flow, of a group of two-dimensional waves undergoing both spatial and temporal
development. In this case the disturbance amplitude A depends on both the time
and the streamwise coordinate, i.e., A = A (t, x). Therefore for small positive values
of Re − Recr, weakly nonlinear theory now leads to a nonlinear parabolic partial
differential equation for A (t, x), differing from the complex Landau Eq. (4.40) by an
additional term proportional to ∂2A/∂ξ 2, where ξ = x−cgt , cg being the streamwise
group velocity. (This equation is now usually called the Ginzburg–Landau equation
since it appeared in a quite different connection in the paper by Ginzburg and Landau
(1950) on the theory of superconductivity. We will meet some other equations of the
Ginzburg–Landau type in Sect. 4.24, parts (b) and (d)). To derive this equation,
Stewartson and Stuart used the above-mentioned multiple scale analysis. Results
similar to those by Stewartson and Stuart were found independently by DiPrima
et al. (1971) while Hocking and Stewartson (1972) studied some exact solutions of
the Ginzburg–Landau equations. Weinstein (1981) extended Stewartson and Stuart’s
theory, supplementing their amplitude equation by two more terms of higher order
in A (and in addition showed that this equation may also be obtained by Watson’s
(1960a) method). A theory of Stewartson and Stuart’s type, referring to groups
of three-dimensional waves in a plane Poiseuille flow, was developed by Davey
et al. (1974) but in this case it leads to a more complicated pair of coupled partial
differential equations for the disturbance amplitude and for some characteristic of
the pressure-gradient.
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4.2.3 Amplitude Equations and Equilibrium Disturbances
in Other Parallel and Nearly Parallel Wall Flows

4.2.3.1 Plane Couette-Poiseuille Flows

Passing to other parallel and nearly parallel fluid flows we will begin with the case
of strictly-parallel plane Couette-Poiseuille flows. The combined Couette-Poiseuille
(briefly C-P) flows are simpler in some respects than pure Couette flows, since unsta-
ble infinitesimal wave disturbances and a finite neutral-stability curve exist sin such
combined flows, if only in cases where the relative strength of the Couette compo-
nent is not too high, but they never exist in pure plane-Couette flows (see Sect. 2.91).
Therefore methods developed by Stuart, Watson, Eckhaus, Reyunolds and Potter, and
Pekeris and Shkoller, which are applicable only at (k, Re)-points close to the neutral
curve, can be applied at least to some C-P flows, but are always inapplicable in the
case of a Couette flow. Reynolds and Potter (1967), who were the first to investigate
weakly nonlinear stability of C-P flows, considered only those relative strengths of
the Couette component for which unstable infinitesimal disturbances exist. In these
cases, the neutral curve in the (k, Re)-plane can be determined, and on this curve the
critical point (kcr, Recr) can be found. Reynolds and Potter carried out nonlinear sta-
bility analysis only for neutrally-stable wave disturbances with γ = 0, corresponding
to critical points at various values of the relative strength of the Couette component.
In this analysis they used the same method they applied to disturbances in plane
Poiseuille flow. According to the results obtained, δ is negative at the critical point
(and hence finite-amplitude instabilities exist at subcritical values of (k, Re) close to
the critical point (kcr, Recr)) in all C–P flows where there are unstable infinitesimal
disturbances (and hence Recr is finite though it can be arbitrarily large). This result
makes it probable that some finite-amplitude disturbances are unstable in C-P flows,
even in cases where all infinitesimal disturbances are stable (and hence Recr = ∞).

Shtemler (1978) supplemented Reynolds and Potter’s computations by the esti-
mation of the next-order coefficients a2 and λ2 of the generalized real and complex
Landau Eqs. (4.41) and (4.41b) at the leftmost points (kcr, Recr) of the neutral curves
of C–P flows for a number of values of the relative strength of the Couette components
corresponding to flows having finite values of Recr. A more detailed investigation of
both linear and weakly-nonlinear stability of C–P flows was carried out by Cowley
and Smith (1985) and Balakumar (1997). Studying the linear stability Cowley and
Smith discovered that in a C-P flow the stability diagram of the linear theory can
have a more complex form than was supposed by Potter (1966), Hains (1967), and
Reynolds and Potter (1967). In these early papers it was assumed that if the stream-
wise wave number k is given, then at any values of Re and of the relative strength Â
of the Couette component either there exists one unstable two-dimensional normal
mode or there are no such modes at all. Therefore, the above-mentioned authors
thought that if the neutral curve in the (k, Re)-plane, which corresponds to the set of
all neutrally-stable waves, exists in a C-P flow (and for this the inequality Â < Âcr

must be valid where Âcr is some critical value of the relative strength Â), then this
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Fig. 4.15 Comparison of the nonlinear critical Reynolds numbers Re∗
cr (Â), where Â = ÂB, for C-P

flows with various values of Â with the ordinary (linear) critical Reynolds numbers Recr (Â) for
the same C–P flows. (After Balakumar (1997))

curve will have qualitatively the same form as the neutral-stability curve of a plane
Poiseuille flow. However Cowley and Smith found that in a C–P flow with a relative
strength of the Couette component that is sufficiently small (appreciably smaller
than Âcr), but non-vanishing, several neutral-stability curves (two or even three, if Â
takes very small values), corresponding to several unstable two-dimensional normal
modes can exists simultaneously. This means that in addition to the critical value
Âcr there also exist in C–P flows the critical values Â2,cr < Âcr and Â3,cr < Â2,cr

corresponding to the appearance of additional unstable modes (growing more slowly
than the most unstable mode appearing at Â = Âcr); these new critical numbers
clearly signify qualitative changes in the shape of the stability diagram. Balakumar
(1997), in his study of the linear stability of C–P flows, considered only the most
unstable modes; for them he computed, very accurately, first the value of Âcr then the
neutral curves in the (k, Re) and (c, Re) planes (where c =ω/k is the phase velocity
of a neutral wave) at a number of values of Â in the range 0 ≤ Â < Âcr, and finally
the shape of the functions Recr(Â) and kcr(Â) (the first of these functions is shown
in Fig. 4.15).

Note also that the relative strength Â of the Couette component was defined dif-
ferently by different authors, who also often used different forms of the C-P velocity
profile U(z) and different length and velocity scalesL0 andU0. So, Potter, Hains, and
Balakumar defined U(z) as the sum of a parabolic profile Up(z) of a Poiseuille flow
with maximal velocityUP(H/2) =Umax and a linear Couette’s profileUC(z) growing
from the value UC(0) = 0 up to the value UC(H) =Uw, while both Reynolds and
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Potter, and Cowley and Smith assumed that UC(0) = −UW/2 and UC(H ) = UW/2.
Potter (1966) and Hains (1967) used the channel thickness H as the scale L0,
while in the papers by Reynolds and Potter (1967), Cowley and Smith (1985),
and Balakumar (1997) L0 was taken as H1 ≡ H/2. Moreover, Hains assumed that
U0 = U (H/2) = UP (H/2) + UC(H/2), Potter that U0 = UP (H/2) = Umax, and
Reynolds and Potter, Cowley and Smith, and Balakumar thatU0 = Uave (whereUave,
the averaged C-P velocity U(z), clearly depends on the selected Couette-component
profile UC(z)). Thus, Hains (1967) measured the relative strength of the Couette
component by the value of ÂH = UW/U (H/2) = UW/[Umax + 1

2UW] (this mea-
sure was used also in Sect. 2.91 where it was denoted as A); while Potter (1966)
assumed that Â = ÂP = UW/Umax; and Reynolds and Potter (1967); Cowley and
Smith (1985), and Balakumar (1997) defined Â as UW/2Uave. Complying with this
definition and with the accepted form of the profile UC(z), Reynolds and Potter,
and Cowley and Smith used the measure Â = ÂRP = ÂCS = 3UW/4Umax, and
Balakumar the measure Â = ÂB = UW/[ 4

3Umax + UW]. It is easy to see that the

measures ÂH, ÂP, ÂRP = ÂCS and ÂB of the relative Couette-component strength
are in fact simple one-valued functions of each other so that the value of any of
them determines the values of all the others. Moreover, the seemingly different
critical values found by the above-mentioned authors, namely Âcr ≈ 0.55 (Hains;
see also Sect. 2.91 of this book), Âcr ≈ 0.7 (Potter), Âcr ≈ 0.528 (Reynolds and
Potter, and Cowley and Smith), and Âcr ≈ 0.3455 (Balakumar) only indicate that
ÂH,cr ≈ 0.55, ÂP,cr ≈ 0.7, ÂRP,cr = ÂCS,cr ≈ 0.528, and ÂB,cr ≈ 0.3455; one may
verify easily that these values agree rather satisfactorily with each other (only Hains’
estimate is overstated by about 7 %).

As to the weakly nonlinear stability of the C-P flows, Cowley and Smith showed,
in particular, that at all values of Â which are close enough, above or below, to
the critical value Âcr, δ(k, Re ) is negative for the least-stable two-dimensional wave
disturbances corresponding to some parts of the stable region of the (k, Re)-plane.
Therefore, equilibrium wave disturbances of small but finite amplitudes can exist in
a C-P flow with any such value of Â. (These results by Cowley and Smith also agree
with conclusions by Milinazzo and Saffman (1985) who independently found that a
family of two-dimensional equilibrium waves of finite amplitude exists in the C–P
flows). In the case of a subcritical C-P flow, where Â < Âcr, unstable disturbances
correspond to periodic solutions of the N–S equations bifurcating from the steady C–
P solutions at points of the neutral curve. However in the case of a supercritical flow
with Â > Âcr the neutral curve does not exist at all. Therefore it is clear that the usual
form of bifurcation theory, which requires the existence of a point of loss of stability
at which the bifurcation begins, cannot be applied here. (A similar conclusion was
also reached simultaneously by Milinazzo and Saffman). In this connection Cowley
and Smith recalled rather exotic bifurcations from infinity of solutions of nonlinear
equations which were considered by Rosenblat and Davis (1979) in their search of a
possible origin of finite-amplitude equilibrium flow disturbances, observed in flows
where stable infinitesimal disturbances do not exist. This recollection proved to be
quite appropriate: Cowley and Smith (1985) succeeded in showing that just such a
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‘bifurcation from infinity’occurs in the supercritical C–P flows with Â > Âcr (where
the ‘critical value’ may be considered as the infinite one, since one may assume

that (Â − Âcr)
−1

and not Â is the true stability parameter). Their results stimulated
subsequent studies by Cherhabili and Ehrenstein (1995, 1997) and Nagata (1997) of
some other types of bifurcations from infinity relating to finite-amplitude equilibrium
states in C–P flows. Results of the last-named authors and also of the paper by
Rosenblat and Davis (1979), where ‘bifurcations from infinity’ first appeared, will
be discussed later in this section.

Balakumar (1997) did not use bifurcation theory at all in his studies of the
nonlinear stability of C-P flows. He concentrated his attention on computations
of finite-amplitude equilibrium two-dimensional waves at different values of Â =
UW/2Uave = UW/[ 4

3 Umax +UW].His computations were based on application to C–
P flows of the method outlined in the early papers by Noether (1921) and Heisenberg
(1924), and then used by Zahn et al. (1974) and Herbert (1976, 1977, 1978) in their
investigations of nonlinear stability of plane Poiseuille flows (for more details see
Sect. 4.22 above). The main objective of Balakumar was to determine the evolution
with Â of the ‘nonlinear neutral surface’ in the three-dimensional (E, k, Re)-space
consisting of points corresponding to two-dimensional equilibrium waves (here E
and k have the same meaning as in Fig. 4.12 in Sect. 4.22, and Re =UaveH1/v). Some
of his results are presented in Figs. 4.14 and 4.15. Figure 4.14 shows the intersections
of the neutral surfaces in (E, k, Re)-spaces corresponding to C–P flows with several
values of Â with the planes Re = 4,000 and Re = 6,000. (For Â = 0 these intersec-
tions clearly coincide with those shown in Fig. 4.12, but the values of Re in Fig. 4.14
are equal to 2/3 of the values Re =UmaxH1/v used in Fig. 4.12). All the intersections
shown (whose boundaries represent the nonlinear ‘neutral curves in the (E, k)-plane’)
have similar shapes but they gradually shrink in size with increasingÂ and, as Balaku-
mar’s extensive computations showed, completely disappear at Â ≈ 0.1472 when
Re = 4,000 and at Â ≈ 0.2182 when Re = 6,000. However similar computations for
Re = 7,000 showed that at this high Reynolds number the ‘neutral curves in the (E,
k)-plane’ have the shape similar to that in Figs. 4.12 and 4.14 only for Â< 0.2, and
when Â increases further their shapes change very rapidly and begin to include a
second loop at low values of E and k.

Figure 4.15 shows the dependence on Â = UW/2Uave of the ‘nonlinear critical
Reynolds number’ Re∗

cr = Re∗
cr (Â) the lowest Reynolds number at which unsta-

ble two-dimensional waves of finite amplitude exist in the C–P flow with relative
strength Â of the Couette component. For comparison the same figure includes also
the computed values of a function Recr = Recr(Â) where Recr is the ordinary (linear)
Reynolds number indicating the lowest value of Re at which there exist infinites-
imal unstable two-dimensional waves (the computations of Recr are simpler than
those of Re∗

cr and allow more precise results to be obtained). We see that Re∗
cr (Â)

is always much smaller that Recr(Â), as it must be. The value of the linear criti-
cal Reynolds number Recr(Â) increases significantly as Â grows from zero (where
Recr ≈ 2 × 5772/3 = 3848) up to a value of about 0.1, then it remains almost
constant until Â ≈ 0.3, and later increases sharply to infinity as Â approaches the



4.2 Landau’s Equation, its Generalizations and Consequences 359

value of Âcr ≈ 0.3455. The value of the nonlinear critical Reynolds number Re∗
cr (Â)

increases as Â increases from zero (where Re∗
cr ≈ 2×2935/3 ≈ 1957) up to value of

about 0.2, then remains approximately constant until Â ≈ 0.58 and after this again
begins to increase with the relative strength Â of the Couette component. As to the
higher values of Â, Balakumar found no steady two-dimensional waves in any C-P
flow with Â ≥ 0.59. Then he remembered that earlier several authors (in particular,
Orszag and Kells (1980) and Milinazzo and Saffman (1985)) were unsuccessful in
their attempts to simulate two-dimensional finite-amplitude equilibrium waves in a
plane Couette flow, where Â = ∞, and they concluded that apparently such waves
cannot exist in this flow. Therefore he assumed that there exists the nonlinear critical
relative strength Â (close to 0.59) above which equilibrium two-dimensional wave
cannot exist in a C-P flow (and hence Re∗

cr (Â) = ∞). However, the real situation
is not so simple, since Cherhabili and Ehrenstein (1995, 1997) (whose work was
apparently unknown to Balakumar) found that even in a pure plane Couette flow (i.e.
at Â = ∞) two-dimensional finite-amplitude equilibrium states exist if Re exceeds
the critical value close to 1500, but these states are not of the form of traveling
nonlinear two-dimensional waves, as considered by Balakumar, but are stationary,
spatially localized (solitary-like) waves (more details of this will be presented be-
low). Therefore the question of the possible two-dimensional equilibrium states in
C-P flows with relatively high strength of the Couette component requires further
investigation.

4.2.3.2 Plane Couette and Circular Poiseuille Flows

Now we will turn to the cases of plane Couette and circular Poiseuille flows. It is
known that these flows are stable at any Re with respect to infinitesimal disturbances,
i.e. are similar in this respect to C-P flows with Â > Âcr. Rosenblat and Davis
(1979) noted that in plane Couette and circular Poiseuille flows there exist sets of
infinitesimal disturbances whose decay rates tend to zero as Re → ∞. Therefore,
they suggested that perhaps the value Re = ∞ may be regarded here as a bifurcation
point in the following sense: a branch of finite-amplitude solutions of the complete
nonlinear disturbance equations which, according to experimental data definitely
exists in these cases, may have the property that for Re→ ∞ these solutions tend to
coalesce with the primary (‘basic’) laminar solution of dynamic equations. Rosenblat
and Davis proposed to say in such cases that the corresponding finite-amplitude
solutions bifurcate from infinity. Then they showed that at least for some model
nonlinear differential equations containing a real parameter μ, having the property
that bifurcation of a steady solution cannot occur at any finite value of μ, such
‘bifurcation from infinity’ (i.e., at μ= ∞) can really occur.

Let us begin with the case of plane Couette flow (briefly PCF). Since all infinites-
imal wave disturbances are stable here (i.e., decay as t → ∞), those methods for
rigorous derivation of Landau’s equations and evaluation of their coefficients which
use the assumption that the disturbance studied corresponds to a point of the (k,
Re)-plane lying near the neutral-stability curve cannot be applied here. On the other
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hand, studies of the nonlinear stability of PCF are of particular interest, since only
nonlinear theory can explain the striking contradiction between the prediction of the
linear stability theory about the stability of PCF and the experimental data which
definitely show that, when Re is increasing gradually, PCF becomes unstable at
Reynolds numbers Re (based upon half the channel depth H1 and half-difference of
the wall velocities U1) in the range from 320 to 370, while with further increase of
Re it rapidly becomes turbulent (see Sect. 2.1, pp. 16–17, and the discussion of sta-
bility of Couette flow heated from below in Sect. 4.12). These arguments stimulated
a number of attempts to develop such nonlinear stability theory which can be applied
to PCFs.

Relatively crude attempts of this type undertaken by Kuwabara (1967) and Lessen
and Chiefetz (1975) will be briefly described later. However, we will first consider
the papers by Ellingsen et al. (1970) and Coffee (1977), and, related to their results,
the remarks about stability of PCF by Davey and Nguyen (1971); Itoh (1977a, b) and
Davey (1978), who paid most attention to the nonlinear stability of circular Poiseuille
flow in tubes. All these authors tried to apply, to computation of the development
of two-dimensional normal-mode finite-amplitude disturbances in the PCF, some
modifications of the Reynolds-Potter method which take into account that in the
case considered |γ | cannot be assumed to be small. Remember that in this method
the determination of threshold (‘equilibrium’) amplitudes Ae = Ae(k, Re ) of the
wave disturbances, having the property that dAe/dt = 0, plays the main part.

Ellingsen et al. (1970) showed that in the case of a PCF with a high enough value
of Re, a slightly modified Reynolds–Potter method yields Landau’s Eq. (4.34) for
the amplitude of the least damped two-dimensional wave with given wave number k
and also yields an equation for the coefficient δ allowing its numerical computation.
The computations showed that δ is negative over a large region of the (k, Re)-plane.
Therefore, subcritical instability is possible here and hence the PCF is unstable with
respect to finite-amplitude disturbances. Later Itoh (1977a) showed that the results
of Ellingsen et al. may also be obtained by another more rigorous method without
some of the simplifying assumptions of the latter authors.

Davey and Nguyen (1971) considered slightly different modifications of Reynolds
and Potter’s method. They applied this modification mainly to the study of nonlinear
stability of a tube Poiseuille flow at high values of Re, but also presented some results
of calculations for PCF, giving the dependence of the threshold disturbance energyEe
(corresponding to amplitude Ae) on k and Re. According to their results Ee( Re )3/2

practically depends only on k/( Re )1/2 in PCF with Re ≥ 500, and has a minimum
value at k/( Re )1/2 ≈ 0.13 (we recall that k is made dimensionless by multiplication
by H1). This means that in PCF two-dimensional waves with k ≈ 0.13( Re )1/2

are the most unstable. Later Davey (1978) found that the results of his paper with
Nguyen relating to disturbances in PCF are very close to those which follow from
the application to the same problem of another method of the same type proposed by
Itoh (1977b). More detailed calculations of the values ofAe(k, Re) andEe(k, Re) for
numerous values of the arguments (k, Re), also based on a version of the Reynolds–
Potter method, were made by Coffee (1977), whose results agree satisfactorily with
earlier estimates by Ellingsen et al. and Davey and Nguyen. Since γ < 0 for all
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Fig. 4.16 Approximate
location of the curve in the (k,
Re)-plane separating the
regions of positive and
negative values of δ for plane
Couette flow. (After Coffee
(1977)) according to Coffee’s
calculations, δ < 0 to the left
of the given curve but δ > 0 to
the right of it

wave disturbances in a PCF, finite values of Ee and Ae show that δ < 0, while for
δ > 0 the approximate theory based on Landau’s equation leads to the conclusion that
Ee = ∞, so that the flow is stable to disturbances of any size. Coffee’s calculation
implies that the region of the (k, Re)-plane where Ee = ∞ (and hence δ > 0) is
given approximately by the inequality Re ≤ 1.7k2; his graph of the curve dividing
the region where δ < 0 from that where δ > 0 is shown in Fig. 4.16 (here this curve
replaces the dotted curve in Fig. 4.8 showing the points where δ= 0 in the case of
plane Poiseuille flow). Negativity of both γ and δ at a point (k, Re) means that a
two-dimensional equilibrium wave with the wave number k can exist at this value
of Re. Recall, however, that Orszag and Kells (1980) and Milinazzo and Saffman
(1985) were unsuccessful in their attempts to stimulate two-dimensional equilibrium
waves in PCF at any Re while Cherhabili and Ehrenstein (1995) found that some,
quite specific, waves nevertheless exist in PCF, but only for Re close to 1,500 or
even higher (this circumstance was mentioned in part (a) of this section and will be
considered at greater length slightly later). Moreover, in Sect. 4.11 it was indicated
that it follows from the Reynolds-Orr energy-balance Eq. (4.2) that disturbances of
any shape and size must decay monotonically in a PCF if Re ≤ 20.7. These facts
show that the early modifications of the Reynolds-Potter method discussed above,
which had the object of making it applicable to linearly stable flows without a neutral
curve, are apparently inaccurate and deserve no credit.

Let us say now a few words about the papers by Kuwabara (1967) and Lessen and
Cheifetz (1975). Kuwabara’s theory was based on crude assumptions, introduced by
Meksyn and Stuart (1951), which do not require the smallness of the damping rate
|γ |. Moreover, he also used some supplementary hypotheses which seemed dubious
to some later authors (see, e.g., Lessen and Cheifetz (1975)). Kuwabara found that
his assumptions imply the existence of some equilibrium two-dimensional finite-
amplitude disturbances (and hence the positiveness of δ) in PCF if Re is high enough.
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According to his calculations, Re∗
cr ≈ 45, 000 in the case of PCF. Such a high value

of Re∗
cr clearly disagrees with the experimental data and makes one suspect that the

assumptions made are invalid.
A quite different ‘quasilinear’ theory, also strongly influenced by Meksyn and

Stuart’s arguments, was proposed by Lessen and Chiefetz (1975). They took into
account only the distortion of the mean motion by a disturbance. This distortion af-
fects the solutions of the Orr-Sommerfeld equation which determines the shapes of
infinitesimal normal-mode disturbances. A rather crude finite-difference integration
in time of the coupled equations for the distorted mean flow, and the least-stable dis-
turbance corresponding to it, suggested a slow convergence of the disturbed Couette
flow to some stable state.

Above, we mentioned some papers where the determination of the amplitudes for
possible equilibrium two-dimensional finite waves in a plane Couette flow (PCF)
played an important part. However, attempts to simulate such two-dimensional equi-
librium waves numerically were unsuccessful for a long time. In this connection
Orszag and Kells (1980); Patera and Orszag (1981a); Orszag and Patera (1981);
Milinazzo and Saffman (1985), and Balakumar (1997) especially stressed that two-
dimensional finite-amplitude equilibrium waves can be easily simulated in plane
Poiseuille flow and combined Couette–Poiseuille (C–P) flows with not-too-high rel-
ative strength Â of the Couette component, but apparently such waves do not exist
in plane Couette flow. (As was said above, Balakumar even tried to determine the
upper bound of Â-values at which such equilibrium waves exist in a C-P flow; see
Fig. 4.15 and explanations relating to it in the text at the end of Sect. 4.2.3.1).

Recall now that Andreichikov and Yudovich (1972) and Chen and Joseph (1973)
showed that finite-amplitude periodic waves in a plane Poiseuille flow bifurcate
from the steady laminar solutions of the Navier-Stokes equations at the points of the
neutral-stability curve, and Cowley and Smith (1985) found that bifurcations of the
same type occur in C-P flows with Â < Âcr. Since such a curve does not exist in
a PCF, bifurcations of this type are impossible here, and this fact was sometimes
used to explain the non-existence of finite-amplitude wave solutions of the equations
of motion in the case of pure Couette primary flow. However, when discussing the
problem of equilibrium waves in combined Couette-Poiseuille flows we mentioned
that in the ‘supercritical’ cases, where Â > Âcr so that a neutral curve does not
exist, such waves can be produced by a ‘bifurcation from infinity’. Hence it is
natural to think that such bifurcations can also lead to appearance of finite-amplitude
equilibrium wave solutions in the case of primary plane Couette flow.

Apparently the first attempt to find some finite-amplitude solutions of the equa-
tions for disturbances in PCF which correspond to a ‘bifurcation from infinity’ was
due to Nagata (1990). He applied such a bifurcation to find three-dimensional finite-
amplitude standing waves in PCF. In order to find some finite-amplitude disturbance
in PCF corresponding to ‘bifurcation from infinity’, one must first of all determine
a family of auxiliary flows which i) depend on some parameter � and tend to PCF
as � → �0, and ii) have the property that a neutral-stability curve corresponds to
an auxiliary flow with a certain value of the parameter �, and that at a point on the
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neutral curve some finite disturbance bifurcates from the solution of the N–S equa-
tions describing this auxiliary flow. Then it is often possible to extend the ‘composite
solution’ thus obtained (which includes the auxiliary flow and the finite disturbance
superimposed on it) varying the value of �. Assuming now that � → �0 one will
obtain the required finite-amplitude disturbance in PCF.

Nagata considered the family of primary flows between infinite concentric co-
rotating cylinders (i.e., having angular velocities,�1 and�2 of the same sign). Here
the steady solution (describing ‘circular Couette flow’) and solutions correspond-
ing to flows appearing after the most common first supercritical bifurcation (‘Taylor
vortex flows’) are well known, and the three-dimensional steady solutions which
bifurcate from the Taylor vortices as Re increases further have also been investigated
(in particular, by Nagata (1986, 1988)). Assuming that the dimensionless ‘Coriolis
parameter’ Co = (�1 +�2)(R2 − R1)2/v tends to zero (i.e., d =R2 −R1 → 0), Na-
gata (1990) found numerically a branch of three-dimensional finite-amplitude steady
solutions (‘standing waves’) in the limiting plane Couette flow which, according to
his computations, appear abruptly at a Reynolds number Re =U1H1/v around 125.

Nagata’s paper led to a strong revival of interest in finding new finite-amplitude
equilibrium disturbances in PCF arising from bifurcations from infinity. Nagata used
the family of ciruclar Couette flows as auxiliary flows satisfying the above-mentioned
conditions (i) and (ii), but shortly afterwards Clever and Busse (1992) considered,
instead of this, the family of plane Couette flows between lower and upper walls
at different temperatures. They began by considering the well-studied longitudinal
convective rolls in a layer of motionless fluid heated from below, then passed to the
wavy rolls that bifurcate from two-dimensional rolls when the latter become unstable,
and finally replaced the motionless fluid layer by a layer having a linear velocity
profile (the stability of convection rolls in such a flow was studied earlier by Clever
et al. (1977)). Assuming now that Ra → 0 (where Ra is the Rayleigh number) Clever
and Busse determined a family of finite-amplitude three-dimensional standing waves
(of the same type as those found by Nagata) relating to the limiting (non-buoyant)
case of PCF.At the same time Clever and Busse (see also Busse and Clever (1996a, b))
studied many interesting three-dimensional disturbances in a wide class of unstably-
stratified Couette flows which are of great interest in geophysical fluid dynamics.
And later Nagata (1996) considered disturbances in PCF in a conducting fluid, in
the presence of a transverse magnetic field (which destabilizes the fluid motion and
at large enough intensity makes the flow linearly unstable, i.e., a definite neutral-
stability curve appears here, with a finite value of Recr; see Kakutani (1964)). Using
such hydromagnetic auxiliary flows and then letting the intensity of the magnetic
field tend to zero, Nagata again found three-dimensional standing waves of finite
amplitude in PCF, as first found by him in 1990, and even succeeded in considerably
improving the accuracy of computation of their characteristics.

Cherhabili and Ehrenstein (1995) tried to apply the same method to find two-
dimensional equilibrium states in PCF. They began by considering the family of
two-dimensional equilibrium traveling waves of finite amplitude in plane Poiseuille
flow found by Herbert (1977, 1978). Then, adding a Couette component to the pri-
mary Poiseuille flow, they numerically extended the Poiseuille-flow wave solutions
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to the combined Couette-Poiseuille (C-P) flow and then also to the limiting case of
pure Couette flow. The limiting Couette-flow solutions unexpectedly proved to have
the form of spatially-localized two-dimensional standing waves which can exist at
Reynolds numbers (defined in terms of the channel half-thickness and half-difference
of wall velocities) exceeding the ‘critical value’of about 1,500. The authors suggested
that previous attempts to compute finite-amplitude two-dimensional waves in PCFs
failed because everybody looked for the usual traveling waves whereas only stand-
ing two-dimensional waves exist in PCF. Later Cherhabili and Ehrenstein (1997)
investigated stability of these two-dimensional equilibrium states with respect to
secondary two-dimensional and three-dimensional disturbances. The authors found
that the three-dimensional disturbances are the most destabilizing ones; they give rise
to some specific three-dimensional stationary equilibrium states (spanwise-periodic
but streamwise-localized, and thus differing from the three-dimensional states found
by Nagata and by Clever and Busse), bifurcating at points of the neutral-stability
surface corresponding to equilibrium two-dimensional waves of finite amplitude.
These new equilibrium states were found at values of Re close to 1,000.

In 1997 Nagat noted that none of the available experimental data relating
to disturbances in PCF confirmed the existence of time-independent two- and
three-dimensional waves of finite amplitude corresponding to the solutions found
numerically by Cherhabili and Ehrenstein (1995, 1997) and by Nagata himself (see
his papers (1990, 1996)). Therefore he returned to computations of various finite-
amplitude solutions of equations for disturbances in C–P flows, and of their limits
when the relative intensity of the Poiseuille component Q (which can be, e.g., set
equal to the ratio Umax/U(H) of the maximal velocity of the Poiseuille component
to the velocity of the upper wall) tends to zero. This time the main attention was
given to traveling-wave solutions (well known in plane Poiseuille flows). Nagata
(1997) showed that in C-P flows at not too high values of Q there exist two different
branches of finite-amplitude three-dimensional traveling-wave solutions. Only the
first of them was considered in Nagata’s paper (1990); as Q → 0 these solutions tend
to time-independent (‘standing’) three-dimensional waves discovered and studied in
his papers (1990, 1996) (and also found in PCF by Clever and Busse (1992)). How-
ever, there is also a second branch of three-dimensional traveling-wave disturbances
in C–P flows, which was unknown earlier. It was found now that this second branch
may also be located over a wide range of values for Q, and as Q → 0 it turns into two
branches of finite three-dimensional shape-preserving traveling waves. These waves
represent a new class of finite equilibrium wave disturbances which can appear in
PCF if its Reynolds number U1H1/v exceeds 150.

Clever and Busse (1997) (see also Busse and Clever (1996a) and the more gen-
eral earlier discussion of this matter by Busse (1991)) stressed that the steady
three-dimensional equilibrium disturbances found in PCF by Nagata (1990, 1996)
and by themselves (1992), which are also present in circular or stratified Couette
flows, correspond to tertiary solutions of the equations of motion, arising from
the solution describing a steady laminar flow after two subsequent bifurcations.
The two-dimensional steady waves found by Cherhabili and Ehrenstein (1995)
correspond to secondary solution, but the three-dimensional streamwise localized
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equilibrium states discovered by Cherhabili and Ehrenstein in 1997 (and also the
three-dimensional traveling waves found in 1997 by Nagata) again represent tertiary
solutions. Clever and Busse noted the large difference between the ‘critical Reynolds
number’ Re ≈ 125 corresponding to Nagata’s three-dimensional steady equilibrium
states (and also the ‘critical value’ Re ≈ 150 found by Nagata’s (1997) for three-
dimensional finite-amplitude traveling-wave solutions), and the values of Re in the
range from 1,000 to 1,500 which determine the thresholds above which Cherhabili
and Ehrenstein (1995, 1997) found the two- and three-dimensional streamwise-
localized steady equilibrium solutions of equations of motion. Nagata’s ‘critical
values’ are appreciably smaller than the results of experiments and numerical sim-
ulations for the lowest Reynolds numbers Recr at which some disturbances are not
decaying in a PCF but produce persistent turbulent spots there, and also much smaller
than the smallest values of Re at which the turbulence can be sustained in a PCF
(those values do not differ much from Recr). At the same time the ‘critical Reynolds
numbers’ found by Cherhabili and Ehrenstein are much greater than all observed
values of Recr.

These facts forced Clever and Busse (1997) to consider anew the data relating to
the tertiary steady three-dimensional states (having the form of wavy rolls similar
to those often observed in the case of convection) found by Nagata (1990, 1996)
and by themselves in 1992. They recalled that instability of these states had already
been proved by Clever and Busse (1992); Nagata (1993) and Busse and Clever
(1996a), and noted that because of this it was important to study the quaternary
solutions bifurcating from the tertiary ones. Then they found that some interesting
quaternary solutions bifurcate from the tertiary ones at Reynolds numbers not too
much exceeding the ‘critical Reynolds numbers’ at which steady tertiary solutions
start to exist. These quaternary solutions have the form of oscillatory way rolls,
basically differing from tertiary steady waves only by the time variation of their
amplitudes. The comparison of the solutions found with available experimental and
numerically simulated data relating to instabilities in PCFs is not an easy matter,
but the authors noted that some features of the quaternary solutions are similar to
those of the longitudinal vortices found in Couette-flow experiments by Dauchot
and Daviaud (1995) and Dauchot et al. (1996) and in Couette-flow simulations by
Bech et al. (1995) and Hamilton et al. (1995). (Results of more detailed experimental
investigations of the instabilities in PCFs by Bottin et al. (1997, 1998a, b) and Bottin
and Chaté (1998), and numerical simulations by Barkley and Tuckerman (1998,
1999) appeared only later. These papers showed very convincingly the leading role
of streamwise vortices in transition of PCFs to turbulence, and Bottin et al. (1998a),
noting some qualitative differences between the structures detected by the indicated
authors and the equilibrium solutions of Navier–Stokes equations found by Nagata,
Busse and Clever, and Cherhabili and Ehrenstein, nevertheless related these two
types of vortical formations with each other). The possible relation of sequences
of three bifurcations, each of which decreases flow symmetry and makes the flow
structure more complicated, to final transition to turbulence was also discussed in
the papers by Clever and Busse (1993) and Busse and Clever (1996a); moreover,
then Busse and Clever (1996b, 1998) considered also some tertiary and quaternary
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equilibrium states in plane Couette flows between differently heated horizontal walls.
However, at present there are not enough data to make the situation clear. Note
also that the numerical methods used for the study of solutions produced by several
subsequent bifurcations are very complex and their complexity increases greatly with
any loss of symmetry properties; therefore, the accuracy of the current computations
of higher-order states may not be very good.

Now we will pass to the case of circular Poiseuille flow (CPF) in tubes. It has been
already noted in Sect. 2.94 that, in many respects relating to stability, this flow is
similar to plane Couette flow but is much more complicated. Its greater complexity
is reflected, in particular, in the fact that the strict proof of the linear stability of
plane Couette flow was found as long ago as the 1970s, while for CPF such a proof
is unknown up to now although there is no doubt that this flow is linearly stable.
Greater complexity also explains why studies of the nonlinear stability of CPF are
appreciably less numerous than those relating to plane Couette flow and mostly deal
only with axisymmetric disturbances; moreover, the same complexity has led to
some contradictions between the results of different authors.

One of the first attempts to investigate the nonlinear stability of the CPF to ax-
isymmetric wave disturbances, and to estimate the value of the corresponding Landau
constant δ, was made by Davey and Nguyen (1971). They applied Reynolds and Pot-
ter’s (1967) method to this problem and found that δ takes negative values for a wide
range of wave numbers k and Reynolds numbers Re. This means that nonlinearity
destabilizes the flow. Hence the tube flow must be unstable to finite axisymmetric
disturbances, and evaluation of δ allows the determination of the equilibrium ampli-
tudes Ae =Ae (k, Re) and of the neutral-stability surface in the three-dimensional
(A, k, Re)-space. Itoh (1977b), who also considered only axisymmetric disturbances,
developed another method of stability analysis. His theory showed that the spatial
Landau constant δs is positive for all values of Re and of frequency ω considered by
him. (Itoh studied spatial, not temporal, development of disturbances; therefore in his
work the frequency ω replaced the wave number k, and δs replaced δ). Thus, accord-
ing to Itoh’s theory, nonlinear effects stabilize CPF and therefore finite-amplitude
instabilities and equilibrium disturbances cannot exist in this flow (at least to the ap-
proximation that neglects higher powers of amplitude A). The evident contradiction
between Davey and Nguyen’s and Itoh’s conclusions clearly cannot be due only to
the difference between temporal and spatial stability analysis, and in fact Itoh easily
showed that his results directly contradict those of Davey and Nguyen.

In this connection Davey (1978) reconsidered the derivations of the equations for
the Landau constant proposed in his 1971 paper with Nguyen and in Itoh’s paper
(1977b). He found that slightly different approximations were used in these papers
and this led to some difference in the final equations; however, according to Davey,
a special investigation was needed to determine which approximations are more ac-
curate. He noted also that in applications to plane Couette flow the two theories
imply almost identical results, and the difference is also relatively small for some
particular axisymmetric disturbances in CPF which were not considered by Itoh;
but in applications to disturbances in CPF which were actually studied in both pa-
pers, the results of the two theories prove to be contradictory. To clarify the situation,
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Patera and Orszag (1981b) applied direct numerical simulation to development of ax-
isymmetric disturbances in CPF, i.e. they solved the corresponding nonlinear (N-S)
initial-value problems numerically. They paid particular attention to those distur-
bances which were found to be undamped either by Davey and Nguyen (1971) or
by Davey (1978) (who mentioned some axisymmetric disturbances which tended to
equilibrium states according to both the theory proposed by Davey and Nguyen and
that of Itoh). Numerical simulation showed, however, that in fact all these distur-
bances (and also all the other axisymmetric disturbances considered by Patera and
Orszag) are damped. Therefore, Patera and Orszsag concluded that apparently all
axisymmetric disturbances decay in CPF and that the methods used by Davey and
Nguyen (1971) and Itoh (1977b) are probably both inapplicable to CPF. (Remember
however that the remark by Orszag and Patera (1980) about the nonexistence of two-
dimensional equilibrium waves in plane Couette flow was dismissed by Cherhabili
and Ehrenstein (1995)).

Another method for the study of nonlinear stability of CPF, applicable to small but
finite, and in general non-axisymmetric, disturbances in high-Reynolds-number tube
flow was proposed by Smith and Bodonyi (1982). Their theory further develops the
approach initiated independently by Benney and Bergeron (1969) and Davis (1969),
applied to two-dimensional disturbances in plane-parallel flows and then used in a
large number of subsequent papers (see, e.g., discussion of this topic in the book
by Drazin and Reid (1981), Sect. 52.5, and more recent survey papers by Maslowe
(1986) and Churilov and Shukhman (1995)). Benney and Bergeron, and Davis noted
that if Re � 1 andA � 1 (where A is the dimensionless amplitude of the disturbance),
then the linear stability theory (i.e., the linear Orr-Sommerfeld equation) is applicable
only when λ = A( Re )2/3 � 1. However, if λ� 1 or λ≈ 1, then some specific
nonlinear effects play an important part in the vicinity of the ‘critical layer’ where
the phase velocity c of a normal-mode disturbance coincides with the undisturbed
flow velocity U(z). Smith and Bodonyi considered the time evolution of a normal-
mode disturbance with velocity of the form u(x, t) = A exp [i{k(x− ct)+nφ}]F(r),
where all independent and dependent variables are non-dimensionalized by using the
maximal Poiseuille-flow velocity U0 and the tube radius R as units of velocity and
length, F(r) is an O(1) vector function (having all components of the order of one)
and A is a small amplitude factor which determines the order of magnitude of the
true amplitude (whose definition is not unique, though this topic was not considered
in the paper). For the sake of simplicity it was also assumed here that A = Re−2/3,
although it was noted that the majority of the conclusions obtained is also valid
in the case where 1 � A � Re−2/3. The authors looked for equilibrium (neutrally-
stable) solutions and hence the dimensionless phase velocity c (which varies with
k, n, and Re) was assumed to be real; moreover, they also accepted that 0< c< 1.
Careful analysis of the dynamic equations for the disturbance velocities showed that
here (exactly as in the problems studied by Benney and Bergeron (1969) and Davis
(1969)), the nonlinear terms prove to be quite important in the thin ‘nonlinear critical
layer’ (whose thickness is determined just by this condition) where U(z) ≈ c. It was
also found that neutrally-stable disturbances of the form considered here exist in
CPF for 0.284< c< 1 and n = 1 (and the shapes of these disturbances were also
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determined by Smith and Bodonyi); at the same time, arguments were presented
suggesting that no neutral solutions of this form exist for other values of c and n.
The existence of neutrally stable disturbances implies that the Landau constant δ is
negative, and hence unstable disturbances of finite amplitude can exist here. Thus,
Smith and Bodonyi proved that at large values of Re the CPF is unstable to some
small non-axisymmetric disturbances of finite amplitude.

Slightly later the nonlinear stability of the CPF was investigated by Sen et al.
(1985), who used in their work the same version of the equilibrium-amplitude method
of Reynolds and Potter (1967) that was applied by Sen and Venkateswarlu (1983)
to the problem of the stability of plane Poiseuille flow. Sen et al. disagreed with
the popular opinion that Reynolds and Potter’s method has an acceptable precision
only at points (k, Re) near the neutral curve (this opinion prompted Itoh (1977b) to
announce that the indicated method is inapplicable to CPF). Therefore they tried to
use it to study the stability of tube flow to both axisymmetric (with the azimuthal
wave number n = 0) and non-axisymmetric (with n = 1) least-stable central normal-
modes of disturbance (i.e., the modes with the disturbance energy concentrated
mainly near the tube axis; it was for this mode with n = 0 that the results by Davey
and Nguyen (1971) and by Itoh (1977) proved to be contradictory). As in all versions
of Reynolds and Potter’s method, it was assumed beforehand that there exists the
equilibrium state of the normal mode considered, with the time-independent finite
amplitude Ae (i.e., the existence of undamped finite-amplitude disturbances was
postulated). Then the disturbance stream function Ψ(x, r , t) if (n = 0) or velocity
and pressure u(x, r ,φ, t) and p(x, r ,φ, t) if (n = 1) where expanded in powers of
ei[nφ+k(x−ct)] (where n and k are the azimuthal and streamwise wave numbers and c
is the phase speed of the normal wave given by the linear stability theory) and the
terms of the series obtained were represented as the appropriate powers of ampli-
tude multiplied by the normalized disturbance functions. When such forms of the
flow fields were substituted into the equations of motion and the boundary condi-
tions, the solvability conditions for the equations for different terms of power series
allowed successive determination of the values of the complex Landau constants
λm(k, Re ),m = 1, 2, 3, ...., and then to evaluate the equilibrium amplitude Ae from
the real part (4.41) of Eq. (4.41b).

According to the numerical results of Sen et al. there is, for axisymmetric or
non-axisymmetric disturbances and at any Re, a definite range of wave numbers
k for which a finite equilibrium amplitude Ae exists, showing that there are some
undamped finite-amplitude disturbances. As Re→ ∞, Ae → 0 as Re−4/3, and hence
the velocities of the equilibrium disturbances tend to zero as Re−2/3. Some examples
of the radial velocity distributions for equilibrium disturbances, of the dependences
of amplitudes of velocity components on Re, and of the numerical values of about
ten Landau constants λm for some specific values of k and Re, and for n = 0 and 1,
are also presented in the paper. The authors stressed that their analysis had a number
of limitations (relating, e.g., to the ranges of k and n studied, and to the choice
of normal modes), and was based on very complicated calculations which used a
number of approximations; therefore, a check of these results by other methods,
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and their further extension, would definitely be worthwhile. However, apparently no
attempts to carry out such a check were undertaken up to now.

4.2.3.3 Nearly Plane-parallel Boundary-layer Flows

In the constant-pressure boundary-layer flow (BLF) on a flat plate a neutral-stability
curve, and unstable modes of infinitesimal disturbances, certainly exist; in this respect
the stability properties of the flow are simpler to investigate than those of the linearly-
stable plane Couette and circular Poiseuille flows. However in some other respects
BLF is more complex than the two flows mentioned above. First of all, BLF is not
strictly parallel; here the primary steady flow has non-zero vertical velocity W (x, z)
and the conventional thickness of BLF, d(x),8 is not constant but increases in the
streamwise direction Ox. Moreover, BLF extends to infinity in the vertical direction
Oz; therefore the Orr-Sommerfeld eigenvalue problem (corresponding to a simplified
plane-parallel flow model) now has a spectrum which includes both discrete and
continuous components. Infinite vertical extent of the flow also complicates the upper
boundary conditions for the BLF disturbances. It was explained in Chaps. 2 and 3
that in linear-stability studies of boundary layers the parallel-flow approximation is
usually used, i.e., the real BLF with the thickness d(x) is usually replaced by a definite
plane-parallel model (usually by the so-called parallel Blasius model of a flow in the
half-space 0 ≤ z<∞ with the velocity field of the form {U(z), 0, 0}, where U(z) is
the standard Blasius profile corresponding to some fixed boundary-layer thickness
d(x0) which does not depend on the x coordinate). Such a parallel-flow approximation
is often used in studies of the nonlinear stability of BLF too, but here it has a much
more narrow domain of applicability (therefore Stuart in his highly authoritative
review (1971) of nonlinear stability theory expressed doubt about the validity of the
approximation in this case). All these reasons complicate the determination of the
Landau equations for disturbance amplitudes in BLF.

Apparently the first investigation of the Landau equation for boundary-layer flow
was carried out by Itoh (1974b) (some of his results were previously announced
by Tani (1973)). Exactly as in his Poiseuille-flow paper (1974a), Itoh studied the
spatial development of disturbances, using a modification of Watson’s (1962) theory
combined with an extension of the Stuart–Watson approach of 1960. He took it for
granted that at large values of x and Re the streamwise variation of the flow condi-
tions is of minor importance, and hence the streamwise growth of the boundary-layer
thickness d(x) (and of Re(x) =U0d(x)/v where U0 = U(∞) is the free-stream veloc-
ity outside the boundary layer) may be taken into account rather crudely. Thus, he
introduced the contracted streamwise coordinate ξ = (x − x0)/ε, where x0 corre-
sponds to a point far from the leading edge of a plate at x = 0 and ε = d(x0)/x0 is

8 Since the letter δ is now used to denote the Landau constant, the boundary-layer thickness will be
denoted in this (and only in this) subsection as d = d(x). Similarly, the displacement thickness of
the BLF, which is the most widely used vertical length scale of this flow, will be denoted here as
d* = d* (x).
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Fig. 4.17 The regions of
positive and negative values
of the coefficients γs and δs in
the (ω, Re∗)-plane for the
constant-pressure boundary-
layer flow. (After Itoh
(1974b)) ABC: the curve
γs (ω, Re∗) = 0 (the spatial
neutral-stability curve of the
linear stability theory,
bounding the region where
γs > 0); DBE: the curve δs(ω,
Re∗) = 0 bounding the region
where δs > 0

a small parameter. Then he treated the flow in the neighborhood of the point x0 as
homogeneous with respect to the coordinate ζ , and neglected the terms in the equa-
tions of motion which are of order ε2 or higher. The assumption used (which is close
to the plane-parallel approximation) allowed Itoh to evaluate both coefficients of the
spatial Landau equation (corresponding to a two-dimensional wave-like disturbance
proportional to ei(kξ−ωt) where ω is real but k is complex) by a method similar to that
applied in his paper (1974a) to strictly plane-parallel Poiseuille flow. He thus deter-
mined the spatial neutral-stability curve γs(ω, Re∗) = 0 in the (ω, Re∗)-plane (where
Re∗ = d∗ U0/v; U0 and d∗—the displacement thickness of the BLF—will now be
used as velocity and length units in all considerations of the results relating to this
flow making in all physical quantities dimensionless). Then the curve δs(ω, Re∗) = 0
was also computed (recall that γs = b0/2) and δs = −b1 are coefficients of the ‘spatial
Landau equation’). The curves obtained are shown in Fig. 4.17; they are of the same
general shape as the curves for plane Poiseuille flow in Fig. 4.11, and again show that
the spatial Landau constant δs is negative along the upper branch of the neutral curve
but positive on the main part of the lower branch. Finally Itoh tried to compare his
theoretical results with the experimental data of Klebanoff et al. (1962), relating to
disturbances generated by a vibrating ribbon located not far from the leading edge of
a plate in a wind tunnel. However he found that his theory could explain the behavior
of real periodic disturbances only in the case of disturbances with rather small initial
amplitude.

Independetly of Itoh, Herbert (1975) also studied Landau’s equations for the BLF.
However, he considered not spatial but temporal development of two-dimensional
disturbances of given wave number k, i.e. he tried to evaluate coefficients of the
temporal Landau Eqs. (4.34) and (4.40) and the corresponding equilibrium ampli-
tudes Ae = (2γ /δ)1/2. The results obtained were then used to determine the curves
γ (k, Re∗) = 0 and δ (k, Re∗) = 0 in the (k, Re∗)-plane. Herbert’s computations were
based on an approximation of the same type as that introduced by Itoh (1974b) and
naturally led to quite similar results. Similar approximation was used also by Gert-
senshtein and Shtemler (1997), who applied it to computation of the real coefficients
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a1 and a2 and complex ceofficients λ1 and λ2 of Eqs. (4.41) and (4.41b) at the points
of the BLF neutral curve in (k, Re)-plane.

The results of Itoh (1974b) provoked Smith’s (1979b) distrust, since in his paper
(1979a) Smith found that nonparallelism of BLF appreciably affects the disturbance
development. Therefore Smith (1979b) proposed a quite different asymptotic theory
of the nonlinear evolution of two-dimensional disturbances in BLF. He considered
the case where Re is very high and the disturbance amplitude A is sufficiently small
and, using the results of his paper (1979a), derived new values of the coefficients
of the spatial Landau equation for the disturbance amplitude. This derivation will
not be considered here at length; note only that Smith’s computations, relating to
a nonparallel model of BLF, confirmed Itoh’s (1974b) conclusion that the spatial
Landau constant δs , corresponding to two-dimensional disturbances, takes positive
values near the main part of the lower branch of the BLF neutral curve. At the
same time Gajjar and Smith (1985), who used similar methods which also took into
account the flow nonparallelism, found that the influence of nonparallelism does not
change the conclusion, obtained for the parallel model of BLF, according to which δs
is negative near the upper branch of the BLF neutral curve. Let us remind the reader
in this respect that in Chap. 2 it was noted that direct numerical simulations by Fasel
and Konzelmann (1990) and Bertolotti et al. (1992) of the disturbance development
in BLF, and also the careful measurements of this development by Klingmann et al.
(1993), led to the conclusion that the actual effect of nonparallelism of the BLF is
apparently considerably smaller than was suggested in many previous theoretical
papers on this subject (which often contradicted each other). The comparison of the
results of Itoh (1974b); Herbert (1975); Smith (1979b), and Gajjar and Smith (1985)
with each other shows that this conclusion is at least qualitatively (when only the
signs of quantities are taken into account) applicable to values of Landau’s constants
of the BLF too. The same conclusion also follows from the results of a study by
Itoh (1984) of the values of Landau’s constants in the BLF, supplementing his earlier
investigation (1974b).

Trying to improve the simplified treatment of flow non-parallelism used in his
paper (1974b); Itoh (1984) referred to his paper (1977a) where a more accurate
approach to derivation of Landau’s equations for two-dimensional normal-mode
disturbances was suggested. He stressed that this approach is applicable only to
subcritical (i.e., linearly stable) disturbances, and therefore proposed a new modifi-
cation of the Stuart–Watson method, which leads to results similar to those found in
his paper (1977a); this modification made the results applicable to the cases where
supercritical (linearly unstable or neutral) disturbances are studied. Simultaneously,
he also developed a more accurate method for taking the slight flow nonparallelism
into account. Using these modifications he re-evaluated the neutral-stability curve in
the (k, Re∗)-plane for two-dimensional temporally-evolving infinitesimal wave dis-
turbances and computed a new the location of the maximum-growth-rate line of the
supercritical region in this plane, and also the values of Re∗

cr, kcr andωcr (he found that
Re∗

cr ≈ 519, kcr ≈ 0.30, andωcr ≈ 0.12). Then he computed the values of the com-
plex Landau coefficient l = δ+ iδ′ of Eq. (4.40) at the points of the neutral-stability
curve and of the maximum-growth-rate line of the supercritical region (consisting
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of the points (k, Re∗) where γ (k, Re∗) = maxk′ γ (k′, Re∗) and is positive). Compu-
tations of the values of l at points on the maximum-growth-rate line were carried
out by two different methods, the first of which used a version of the parallel-flow
approximation while the second took the flow nonparallelism into account more ac-
curately. The results given by both methods showed that the real Landau constant
δ takes positive values on the main part of the line considered, and that corrections
due to the more accurate accouinting for nonparallelism are inessential at points far
from the neutral-stability curve, but become significant at points near the ‘critical
point’ (kcr, Re∗

cr ) where this line intersects the neutral-stability curve. Therefore the
computations of the values of l on the neutral curve were now performed only by
the second (‘non-parallel’) method. The new computations led to negative values of
δ at all points of the upper branch of the neutral curve, and to positive values of δ
at almost all points of the lower branch (except only the ‘critical point’ and its small
surroundings, where δ takes slightly negative values). These results agree with Itoh’s
previous results shown in Fig. 4.17, and with the above-mentioned results of Herbert
(1975); Smith (1979b), and Gajjar and Smith (1985), showing also that the temporal
and spatial Landau constants γ (k, Re∗) and γs(k, Re∗) apparently usually have the
same signs.

Numerical values of l and δ= �el clearly depend on the definition of the com-
plex amplitude A. In the earlier discussions, the approach developed in the papers by
Stuart and Watson of 1960 was always used, and therefore it was assumed that A(t)
represents the numerical factor entering the leading term of the Fourier expansion of
the initially-infinitesimal normal-mode disturbance satisfying the Orr-Sommerfeld
equation (see, e.g., Eqs. (4.38) and (4.39)). However Itoh (1984) used in the begin-
ning of his paper another particular definition of the disturbance amplitude, based on
the distribution of the vertical velocity w(x, z, t). This definition is mathematically
convenient but it is difficult to measure the corresponding amplitude A in labora-
tory experiments and thus to compare the proposed theory with experimental data.
Therefore Itoh later repeated the computation, now using as A some typical value
of the streamwise disturbance velocity u at the height z = d∗/2. The new values of
l were approximately four times greater than the old ones, but the form of their de-
pendence on Re∗ proved to be practically the same. Itoh also computed the values of
the Landau constant l for three-dimensional disturbances of a special type, namely,
for some special wave packets composed of three-dimensional plane waves. In this
case the values of real and imaginary parts of l proved to be much smaller than the
values corresponding to two-dimensional waves.

Recall that when two coefficients of Landau’s equation (either temporal, or spatial)
are of the same sign, they determine the value of the amplitude Ae of the equilib-
rium disturbance (subcritical if γ < 0, δ < 0, and supercritical if γ > 0, δ > 0). In
the theories where some higher-order real Landau constants am, m ≥ 2, are also
taken into account, the equilibrium amplitude Ae can be determined as the smallest
positive root of the appropriately-truncated Eq. (4.41), if such root exists. On the
other hand according to Reynolds and Potter (1967), the existence of an equilibrium
disturbance can considerably simplify the derivation of the corresponding Landau’s
equation from the equations of motion. Sen and Vashist (1989) applied the method
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of Reynolds and Potter to derivation of the higher-order complex Landau equations
for two-dimensional normal-mode wave disturbances in the plane-parallel model of
the Blasius boundary layer. This derivation was carried out quite similarly to those
of Sen and Venkateswarlu (1983) and Sen et al. (1985) for two-dimensional wave
disturbances in plane and circular Poiseuille flows. Sen and Vashist again considered
the unstable (or the least stable) two-dimensional wave corresponding to given values
of k and Re =U0d/v (or Re∗ =U0d∗/v—they used both definitions of the Reynolds
number) and computed the values of the complex coefficients λm, m = 1, 2, . . . ,8,
for a number of values of Re and k. Then they determined the nonlinear neutral curve
in the (k, Re∗)-plane corresponding to their nonlinear model of the eighth order. It
was shown that the nonlinear effects decrease the value of Recr and increase the
values of kcr approaching the non-linear neutral curve to the experimental data then
available. However, at that time the authors had no accurate enough experimental
data for quatitative comparison with their theory, and they did not try to estimate the
influence of the non-parallelism of BLF, which they neglected in the computations.

Note now that in the case of a strictly parallel flow, equilibrium disturbances
can also be computed by direct numerical simulation (DNS), i.e., by numerical
solution of the corresponding N-S equations (see, e.g., Herbert’s work (1976, 1978,
1983a) relating to plane Poiseuille flow). However, in the case of BLF an additional
difficulty arises from the fact that the Blasius boundaryu layer is not an exact solution
of the N-S equations with standard boundary conditions. Moreover, the boundary-
layer thickness d = d(x) depends on x and hence the disturbance cannot be assumed
to be proportional to eikx

, with k = const. Therefore, to compute the equilibrium
two-dimensional wave-like disturbances in the BLF, Milinazzo and Saffman (1985)
supplemented the N–S equations by a fictitious counter-streamwise ‘force’ which
suppresses the boundary-layer growth and makes the two-dimensional flow with
velocity {U(z) 0, 0}, where U(z) is a standard Blasius profile, an exact solution
of the equations of motion considered. (The authors noted that the inclusion of
such a force is an ‘old well-known idea’ which apparently was due originally to L.
Prandtl). Later Fischer (1995) used the same modification of the equations of motion
for careful evaluation of the Landau constants δ(k, Re) and equilibrium amplitudes
Ae corresponding to a plane-paralle model of the Blasius BLF. On the other hand
Lifshits and Shtern (1986); Lifshits et al. (1989), and Koch (1992) also used the
plane-paralle approximation in their calculations of the BLF equilibrium solutions,
but modified, not the equations of motion but the boundary conditions. Note also
that local parallelism of the flat-plate boundary layer and streamwise periodicity of
the disturbances were simply assumed to be valid in the important studies of BLF
nonlinear stability of Laurien and Kleiser (1989) and Zang and Hussaini (1990).

Milinazzo and Saffman (1985) and Lifshits et al. (1989) considered some partic-
ular examples of equilibrium two-dimensional disturbances in BLF (Lifshits et al.
also presented some examples of special periodic-halving bifurcations). Lifshits and
Shtern (1986) and Koch (1992) tried to determine the neutral surface in the thre-
dimensional (E, k, Re)-space similar to that computed by Herbert (1978, 1983a)
for plane Poiseuille flow (see Fig. 4.12 above). However, in their computations of
equilibrium solutions Lifshits and Shtern (1986) used only the terms of orders zero



374 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

and one in the Fourier expansion of the disturbance stream function Ψ(x, z, t) similar
to (4.38), while Koch discovered in 1992 that in the case of BLF such severe trun-
cation of Fourier series leads to results which can even be qualitatively incorrect.
Therefore Koch also showed results of neutral-surface computations where the sec-
ond harmonic was included in truncated Fourier series forΨ(x, z, t), and additionally
presented graphs of several cross-sections of this surface by the planes Re = const.
and k = const. computed with the help of Fourier series truncated after the nth har-
monic, where n varied from 1 to 6. The results obtained gave much information about
the complicated shape of the neutral surface in the case of BLF and also allowed
an estimate of what truncation is sufficient for obtaining the necessary degree of
precision. Then Koch passed to the important problem of secondary instability of
two-dimensional equilibrium disturbances to small three-dimensional disturbances.
His results relating to this topic, and also the results of simultaneously-published
papers by Stewart and Smith (1992) and Smith and Bowles (1992), provide a very
valuable supplement to the survey of the same subject by Herbert (1988) and shed
additional light on the process of boundary-layer transition.

4.2.4 Amplitude Equations for Disturbances in Free Flows
in an Unbounded Space

4.2.4.1 Plane Mixing Layers and Jets

Now we will pass to consideration of parallel (or nearly parallel) free flows in the un-
bounded space –∞< z<∞ and begin with the case of a strictly plane-parallel plane
mixing layer between two parallel flows in contiguous half-spaces –∞< z< 0 and
0< z<∞, having constant but different velocities {−U0, 0, 0} and {U0, 0, 0} where
U0 is positive. In Sect. 2.93 it was mentioned that a very convenient and widely-used
analytic approximation to the mixing-layer profile is the hyperbolic-tangent profile:
U(z) =U0 tanh(z/H) where H characterizes the mixing-layer thickness. Therefore
we will also use this approximation.

In Sect. 2.93 it was explained that Recr = 0 for the hyperbolic-tangent mixing
layer, i.e. this flow is linearly unstable at any value of Re =U0H/v. The corresponding
neutral-stability curve in the (k, Re)-plane was shown in Fig. 2.35; it suggests that in
an inviscid fluid, where Re = ∞, this flow must be linearly unstable with respect to
two-dimensional wave-like disturbances if kH < 1. This is in fact so, as was proved
long ago by Tatsumi et al. (1964) (see also Sect. 31.10 in the book by Drazin and Reid
(1981)). Assuming that the influence of viscosity must be insignificant at large values
of Re, Schade (1964) tried to calculate the value of the Landau constant δ for the
neutral two-dimensional disturbances with kH = 1 in inviscid flow with a hyperbolic-
tangent velocity profile. He based his calculation on the method of Stuart (1960)
but supplemented it by some simplifying assumptions (in particular, he neglected
the mean-flow-distortion effect on δ). To overcome the difficulty arising from the
singularity of the inviscid Rayleigh Eq. (2.48) (see Sect. 2.82) at the ‘critical level’
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where U(z) = c, Schade introduced viscosity in some of his equations (but, as we will
see below, this was insufficient for obtaining the correct results). His calculation led
to the conclusion that δ > 0 (equal to 32/3π, ifU0 and H are taken as the velocity and
length units) at kH = 1, and hence small unstable disturbances in the mixing layer
with wave numbers slightly smaller than (H)−1 must tend to a finite equilibrium state
as t → ∞. This conclusion also agreed with the results of Stuart’s (1967) study of
equilibrium finite-amplitude disturbances in various inviscid laminar mixing layers
(including the hyperbolic-tangent one). Later Maslower (1977a), who used a method
quite similar to that of Schade (1962), computed, for a hyperbolic-tangent mixing
layer with finite value of Re, the values of δ corresponding to two-dimensional
disturbances with wave numbers k which are equal to or slightly smaller than the wave
number k0 of the neutrally-stable disturbance. His results for neutral disturbances
with k = k0 agreed with Schade’s result for the case where Re = ∞, and showed that
the value of δ is positive at any Re and decreases with decreasing Re. Simultaneously
Maslowe also noted at the end of his paper, that the effect of the mean-flow distortion,
which was neglected in his and Schade’s studies, apparently also affects the value of
δ but he did not elaborate on this remark.

Maslowe (1977a) apparently did not know at the time about the paper by Gotoh
(1968) who also calculated values of the Landau constant δ and of the equilibrium
amplitudeAe = (2γ /δ)1/2 for small finite disturbances in viscous mixing layers, with
very large but finite values of Re and with values of k near the neutral-stability curve.
Gotoh gave special consideration to the contribution of the ‘nonlinear critical layer’
(which also included the effect of the mean-flow distortion) and found that in the
case of a hyperbolic-tangent mixing layer, δ is positive at all the values of Re and k
he considered, and is given by equations

δ = 16.35( Re )1/3
[
1 + 0.25

(γ

k

)
Re
]

, if
γ

k
< ( Re )−1/3, (4.45)

and

δ = 0.5k4

γ 3
, if

γ

k
> ( Re )−1/3, (4.45a)

where δ, γ and k are non-dimensionalized in the usual way. (Note also that γ is
a smooth function of k, vanishing at the wave number k0 of the neutral distur-
bance; therefore, under the natural assumption that this function is differentiable
with nonzero first derivative, γ ∝ (k0 − k) near the neutral curve). These results
clearly disagree with Schade’s conclusion relating to Re = ∞. However, Michalke
(1972), who supported Gotoh’s criticism of the results of Schade (1964), asserted at
the same time that Gotoh’s results are also erroneous, since the value of δ must be in-
dependent of the value of γ . As will be indicated below, this conclusion by Michalke
was later found to be groundless; nonetheless, it was possibly one of the reasons why
Gotoh’s paper was totally forgotten for a number of years, while the incorrect result
by Schade was repeatedly reproduced, as a particular case of some more general re-
sults, in papers by Stuart (1967); Benney and Maslowe (1975); Maslower (1977a,b),
and Huerre (1977) (Fig. 4.18).
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Fig. 4.18 Comparison of the
values of λ1(Re) = −δ(Re)/2
for the neutral wave
disturbances in a
hyperbolic-tangent mixing
layer, computed by Fujimura,
with Gotoh’s asymptotic
equation λ1 = λG

1 =
−8.177Re1/3 for Re � 1
(After Fujimura (1988))

Huerre (1980) tried to develop a new theory of the nonlinear stability of small free-
shear-layer disturbances, based on the approach applied by Benney and Bergeron
(1969); Stewartson and Stuart (1971) and Benney and Maslower (1975) to studies
of the space-time development of wave packets with amplitude A = A (t, x) in high-
Reynolds-number parallel shear flows and leading to a nonlinear parabolic partial
differential equations of the Ginzburg–Landau type for the function A (t, x) (see the
last paragraph of Sect. 4.22 and the related paper by Huerre and Scott (1980)). In his
paper of 1980 Huerre came to the incorrect conclusion that in the hyperbolic-tangent
mixing layer Landau’s constant δ= δ (k, Re) is negative for wave numbers k near
the neutral curve, and hence no equilibrium finite-amplitude states can exist here for
waves which are slightly unstable according to linear theory. However later he found
an error in his paper of 1980, whose correction (presented in Huerre (1987)) led him
to the conclusion that δ is positive at all large enough values of Re and small values
of k0 −k, and is proportional to Re1/3 (with the same coefficient of 16.35 which
was earlier found by Gotoh) in cases when Re is sufficiently large and k = k0 (i.e.
γ = 0). The inaccuracy of Huerre’s paper (1980) was discovered independently by
Churilov and Shukhman (1987) who also solved the same problem more accurately
and obtained, under the condition that Re � 1 and (Re)−1 � γ � (Re)−1/3, the same
Eq. (4.45) for δ which was found by Gotoh (1968). (Apparently neither Churilov and
Shukhman, nor Huerre, knew in 1987 about Gotoh’s paper of 1968). Finally Fujimura
(1988) applied the general amplitude expansion proposed by Herbert (1983b) to the
computation of Landau’s constant δ for small, slightly-unstable, disturbances in
a hyperbolic-tangent mixing layer. He found that, for large enough values of Re,
numerical values of δ obtained in this way agree well with Gotoh’s asymptotic Eqs.
(4.45) and (4.45a), and computed also the Landau constants a2 and a3 of the next two
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Fig. 4.19 The dependence on
Re =U0D/v of the values of
γD2/v (a), ω1D2/v (b), and
δ’/δ (c) in the circular-
cylinder wake according to
measurements of the
development of controlled
wake oscillations at the point
x = {x, y, z} = {8D, 0, 4D}
behind the cylinder. (After
Schumm et al. (1994)).
Symbols O and � correspond
to two different methods of
wake-oscillation control

a

b

c

orders, showing in particular that a2 is negative (i.e., stabilizes the flow) in a wide
ragne of Re and k values. An example of Fujimura’s results is given in Fig. 4.19 where
computed values of λ1 = −δ/2 for neutral disturbances with k = k0 (i.e., with γ = 0)
and Reynolds numbers in the range 20 ≤ Re ≤ 50,000 are compared with Gotoh’s
asymptotic equation λG1 = −δG/2 = −8.177( Re )1/3, valid at Re � 1.9 Note also

9 Fujimura found numerically, and also proved analytically, that for neutral two-dimensional dis-
turbances for the difference δ−δG in fact tends to a constant�δ as Re → ∞. According to both his
computations and his analytical results �δ is close to 57.
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that still later, in their extensive survey of work on the influence of the critical layer
on nonlinear development of small disturbances in weakly supercritical shear flows,
Churilov and Shukhman (1995) also indicated that the old paper by Gotoh (1968) gave
correct results. Simultaneously they showed that the critical-layer contribution alone
often leads to very high values of the Landau constant δ, and sometimes produces
amplitude equations of a form quite different from that proposed by Landau in 1994.

Comparision between experimental data and the above theoretical estimates for
the values of Landau’s constant in a mixing layer (or similar estimates relating to
other parallel flows in unbounded space) is rather difficult. In fact the the theory con-
sidered above deals mainly with slowly-growing wave disturbances in such flows
corresponding to (k, Re)-points near the neutral curve, while in real life the most im-
portant role in instability phenomena is played here by modes which are maximally
(or almost maximally) amplified, and hence far from neutral. The rapidly-growing
most-unstable waves later generate subharmonic waves with half the frequency of
the dominant mode, and the interaction of the dominant mode with subharmonic
ones and with the mean flow cannot be described by the Landau-type theory (see,
e.g., the old survey of appropriate experimental data by Miksad (1972) and the more
recent paper by Monkewitz (1988a) containing many additional references). How-
ever, this does not mean thtat Landau’s theory is useless for quantitative description
of instability phenomena in free shear flows; see in this respect the discussion of
wake-flow instabilities below.

Plane jets in an unbounded space represent type of plane-parallel flows having
some similarities with the parallel mixing layers. It was mentioned in Sect. 2.93 that
the most widely-used model of the corresponding velocity profile U(z) is the so-called
Bickley jet profile U(z) =U0 sech2 (z/H), where –∞< z<∞ and H characterizes
the jet thickness (see Eq. (2.87), unlike the hyperbolic-tangent approximation for
the mixing layer this profile is an exact analytical solution of the boundary-layer
equations). The problem of nonlinear evolution of normal-mode disturbances in the
Bickley jet has attracted less attention than the same problem for the hyperbolic-
tangent mixing layer and we will not discuss it in detail. Note only that Gotoh
(1968), in parallel with his work on development of disturbances in the mixing layer,
considered the same problem for the case of Bickley’s jet and found that here again
equations of the form (4.45) and (4.45a) are valid. However, now the numerical
coefficients 16.35 and 0.25 in Eq. (4.45) must be replaced by coefficients 2.19 and
1.5., while the new value of the coefficient in Eq. (4.45a) was not indicated by Gotoh.
His results relating to the Bickley jet, unlike his results for the hyperbolic-tangent
mixing layer, have not yet been confirmed by other authors but one may conjecture
that they are valid too. Some remark about the instabilities of round jets will be made
at the very end of this section.

4.2.4.2 Wake Flows: the Case of a Circular-cylinder Wake

Let us now consider nearly plane-parallel wake flows with velocity profiles of the
type shown in Fig. 2.31c. In Chap. 2 it was indicated that the ‘Gaussian’ velocity
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profile (2.89) describes, accurately enough, the velocity distribution in the laminar
wake behind a thin flat plate parallel to the free stream. Some remarks about the
nonlinear instability of wakes behind flat plates will be made in the part (c) of this
section, but most attention will be paid here to the most important and most widely
studied plane wakes behind long cylindrical bluff bodies of constant cross-section, in
uniform flows with free-stream velocity U0. constant and normal to the body length.
As in Sect. 2.93 it will be assumed below that the axis Oy is parallel to the cylinder
axis (and defines the ‘spanwise’ direction), while the axis Ox is directed along the
direction of the oncoming uniform flow and the midpoint of the body is chosen as
the origin of coordinates.

Let us begin with the case of circular-cylinder wakes, while the wakes behind some
other spanwise homogeneous bodies will be briefly considered later. It is well known
that when Reynolds number Re =U0D/v is gradually increased the flow around a
circular cylinder of diameter D undergoes a whole series of remarkable transforma-
tions produced by a number of instability phenomena (see, e.g., Sects. 3.3 and 17.8
in the textbook by Tritton (1988), the survey by Coutanceau and Defaye (1991), the
nice old survey paper by Morkovin (1964), and-for more details-the recent book by
Zdravkovich (1997), vol. 1 of which (vol. 2 has not appeared at the time of writing)
is about 700 s long and contains a huge bibliography which, however, does not in-
tersect too much with that at the end of this chapter). In the present section devoted
to Landau’s equation, the first two transformations of the cylinder wake are the most
interesting. The first of them takes place at Re ≈ 4 (this Recr = Re0, cr corresponds
to the origin of linear instability of a laminar wake) and leads to a steady wake flow
of a new type characterized by the appearance of the recirculation zone just behind
the cylinder, the size of which slowly increased with Re and which consists of two
symmetrical stationary vortices attached to the rear of the cylinder (for more data
about this flow see, e.g., Coutanceau and Bouard (1977) or Zdravkovich (1997)).
The second transformation leads to the formation at some Re = Re1, cr above 40 of
the von Kármán (or, as it is also sometimes called, the Bénard-von Kármán) vortex
street10, consisting of a double row of opposing vortices, convected downstream
and producing wake oscillations (see, e.g., the excellent Photos 94–98 in the album
by Van Dyke (1982)). The appearance of the vortex street is due to the ‘shedding’
of vortices periodically torn away from the back of a cylinder with a frequency f
coinciding with the frequency of the wake oscillations. The next transition to a three-

10 These names mark the contributions by Kármán (1911) (and Kármán and Rubach (1912)) and by
Bénard (1908) to the investigation of this phenomenon. Note, however, that in fact the formation
and subsequent ‘shedding’ of vortices behind bluff bodies was observed and repeatedly sketched
by Leonardo da Vinci about the year 1,500 (one of his brilliant drawings opens Zdravkovich’s book
of 1997) and has been studied at least from the days of Strouhal (1878) who, in particular, first
measured the frequency f of arising wake oscillations.
Experimental data show that critical Reynolds number Re1,cr depends on the cylinder aspect ratio
L/D (where L is the length of the cylinder) and boundary conditions at the cylinder ends; usually this
number takes values between 40 and 50. It was however noted that under some special conditions
a short vortex street (which is not stable and is wholly located in a region near the cylinder) can be
excited at smaller values of Re between 22 and 40 (see, e.g., Plaschko et al. (1993)).



380 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

dimensional flow regime occurs usually at Re = Re2,cr ≈ 170–190; it will be briefly
considered at the end of the present part b of this subsection.

The Reynolds number Re1, cr (below it will often be simply denoted as Recr) is the
threshold value for the appearance of instability of the steady wake flow arising at
Re = Re0, cr, which leads to its transition to a new oscillating regime. Such a transition
clearly represents a Hopf bifurcation. The corresponding value of Recr was theoret-
ically evaluated by a number of researchers-in particular, by Zebib (1987); Jackson
(1987); Morzyński and Thiele (1991, 1992, 1993), and Noack and Eckelmann (1992,
1994a) whose results do not differ too muich from each other, from the available
experimental data, or from estimates of this number given by numerical simulations.
The methods used by by these authors were different from those described in Sects.
2.8 and 2.9, since here non-parallel stability analysis was used (i.e. the flow around
the cylinder was not assumed to be plane-parallel). However, as a rule this flow
was assumed to be two-dimensional (independent of the spanwise y coordinate) and
was given as the steady solution of the two-dimensional Navier-Stokes equations
satisfying the appropriate boundary conditions. The use of the two-dimensionality
assumption clearly means that here only the centrial part of the wake behind a long
cylinder with large enough value of L/D (where L is the cylinder length) is consid-
ered. As to the temporal development of the wake oscillations occurring at Re>Recr,
it was successfully described by Landau’s equations in a number of papers which
will be considered below. Note that in contrast to the above discussion of the cases
of plane mixing layers and jets, these papers concentrated, not on the mathemati-
cal evaluation of the Landau coefficients for some given primary velocity profiles
U(z), but on the investigations of the disturbance development in real wake flows.
Therefore below Landau’s equations will not be applied to the idealized neutral or
nearly-neutral normal modes, corresponding to points of the (k, Re)-plane neigh-
boring the neutral curve, but to the most-unstable disturbances, which suppress all
the others and play the dominant part in the observed disturbance development. This
implies, in particular, that the coefficients of these equations will now depend on Re
but not on k, since the value of Re uniquely determines the wave number of the most
unstable wave disturbance.

Apparently Mathis (1983) and Mathis et al. (1984) where among the first ex-
perimenters to show that the ‘shedding of vortices’ and formation of the vortex
street in a flow around a long circular cylinders represents a Hopf bifurcation which
can be described by Landau’s equation. Therefore the complex Landau Eq. (4.40).
(which, as mentioned above, is also often called the Stuart–Landau equation), having
the complex coefficients ω and l, was introduced here for the complex amplitude,
A(t) = |A(t)| eiφ(t), of the ‘vertical’(i.e. ‘transverse’or z-wise) velocity w (t) of wake
oscillations at a fixed point inside the wake (namely, at the point with coordinates
(5D, 0, 0)). The complex equation for A(t) was then replaced by two real equations
for the functions |A(t)| and φ(t) (both of which have been already given in Sect. 4.21):

d|A|2
dt

= 2γ |A|2 − δ|A|4, (4.34)
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dφ

dt
= −ω1 − 1

2δ
′|A|2 (4.34a)

where ω1 + iγ =ω, δ+ iδ′ = l.
Laser-Doppler-anemometer measurements by Mathis, and Mathis et al., of the

velocity w (t) in the wakes of a number of cylinders plaed in a wind-tunnel were
made at various values of Re and confirmed that γ ≈ b( Re −Recr) at small values
of Re–Recr where Recr ≈ 47 and b = const. ≈ v/5D2 if the aspect ratio L/D is large
enough. (At small values of L/D, Recr takes greater values—this observation by
Mathis et al. agreed with results of some preceding experiments and later it was
confirmed, in particular, by Lee and Budwig (1991) and Norberg (1994)). At the
same time the coefficients δ, δ’ and ω1, in contrast to γ , do not vanish at Re = Recr,
and their values at small values of Re – Recr may be approximated by two-term
relations:

δ ≈ δ0 + δ1( Re − Recr), δ′ ≈ δ′
0 + δ′

1( Re − Recr),

ω1 ≈ ω10 + ω11( Re − Recr),
(4.46)

where δ0, δ′
0 and ω10 are the values of these coefficients at Re = Recr, and δ1, δ ’1

and ω11 are their derivatives with respect to Re at this point. As has been already
repeatedly noted above, it follows from Eq. (4.34) that if δ > 0, then a Hopf bifurca-
tion of the disturbed flow occurs at Re = Recr and, at slightly supercritical conditions
(i.e., when Re>Recr but Re – Recr is small), a small initial disturbance tends to a
equilibrium state with the amplitude Ae = (2γ /δ)1/2 ≈ (2b/δ0)1/2 (Re – Recr)1/2. The
existence of equilibrium amplitude Ae in supercritical wake flows was confirmed by
the experimental data of Mathis et al. (and of many other authors); thus, the data
definitely show that δ > 0 in the case of the most unstable disturbance in the wake
behind a circular cylinder. The data show also that the relation Ae ∝ (Re – Recr)1/2,
which corresponds to the first term of the Taylor-series expansion of (2γ /δ1/2) in
powers of Re – Recr, is valid even when Re – Recr is not too small. Hence the
derivative δ1 is rather small in absolute value and may usually be neglected. (The
same conclusion follows from the validity of the relation (4.47), below, over a wide
range of Reynolds numbers). Moreover, measurements of the values of δ/δ′ at vari-
ous Reynolds numbers, which will be described below (see, in particular, Fig. 4.19c)
show that this quantity also is independent of Re over a considerably range of super-
critical Reynolds numbers. Hence the derivative δ′

1 may also be neglected, and both
coefficients δ and δ′ may be considered as being independent of Re.

Note that (1/2π )(dφ/dt) = f is just the local frequency of oscillations of the
wake amplitude A(t), while peak-to-peak value 2|A| of these oscillations is equal
to the double equilibrium 2Ae. Hence Eqs. (4.34) and (4.34a) (the first of which
determines the value of Ae) together with the equation γ = b( Re − Recr) imply the
equation

Ro = aRe − a1, (4.47)

Where Ro = fD2/v is the so-called Roshko number, a = −[(b(δ′/δ) − ω11]D2/

2πv, and a1 = {ω10 − [b(δ′/δ) − ω11]Recr}D2/2πv. The dimensionless quantity
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fD2/v was introduced by Roshko (1953, 1954), who also showed that over a wide
range of Reynolds numbers its dependence of Re =U0D/v is given by an equation
of the form (4.47) with constant coefficients a and a1. Therefore Eq. (4.47) is often
called the Roshko equations though in fact the same equation, written in the form

St = a − a1/Re, (4.47a)

where St = fD/U0 = Ro/Re is the so-called Strouhal numbers was employed
by Rayleigh (1915) (see also Rott (1992) and Williamson (1995, 1996a)). Thus,
the empirical ‘Ro-Re’ and ‘St-Re’ relations (4.47–4.47a) are fully compatible with
Landau’s equation.

The experimental data by Mathins et al. (1984), for cylinders with not too small
values of the aspect ratios L/D, agreed with Roshko’s eqution (4.47) with constant
coefficients a and a1 only in a limited range of Reynolds numbers from Re = Recr ≈
47 to Re≈ 90. When the value of Re was increased further, the character of the wake
oscillations changed discontinuously and then the values of a and a1 also changed.
Mathis et al. noted that abrupt changes of the regime of wake oscillations found
by them agree with earlier results of Tritton (1959, 1971) and Gaster (1971). Later
the nature of these changes, their dependence on the value of L/D and on the end
conditions at y = ± L/2, and possible methods for getting rid of the changes were
discussed by a number of authors; see, eg., Slaouti and Gerrard (1981); Lee and
Budwig (1991); Szepessy (1993), and the subsequent discussion of this topic after
Eq. (4.49) where additional references will be given.

More detailed experimental studies of disturbance behavior in wakes behind circu-
lar cylinders were later carried out both by the group with which Mathis collaborated
(see Provansal et al. (1987); Provansal (1988)) and by some other researchers (see,
e.g., Strykovski (1986), whose dissertation covered much the same ground as that
of Mathis (1983); Sreenivasan et al. (1987); Strykovski and Sreenivasan (1990);
Schumm (1991); Schumm et al. (1994); Park (1994), and the survey by Monkewitz
(1996)). These authors also based their studies on the Landau model and performed a
number of careful measurements which allowed them to determine, at some points of
the cylinder wake, the values of all coefficients of Landau’s Eqs. (4.34) and (4.34a) at
various values of Re. These determinations used methods of wake control allowing
the wake oscillations (always existing if Re>Recr) to be switched off (completely
or partially) and then switched on again very rapidly. Observing, at different values
of Re, the rate of growth with time of the amplitude |A(t)| of the disturbance velocity
from the initial small value to the final equilibrium value Ae, one may find the coef-
ficients γ and δ of Eq. (4.34) and their dependence on Re. In this way it was found
that δ is usually independent of Re, while γ satisfies the relation γ = b( Re − Recr)
where the values of Recr and b can also be determined from experimental data. More-
over, measurements of the frequency f of equilibrium wake oscillations at various
Reynolds number determined the dependence of Ro = fD2/v on Re, verified the
Roshko Eq. (4.47) and gave the values of coefficients a and a1. Using these values,
and also the values of δ, b and Recr given by the results of amplitude measurements,
one may also determine the values of bδ′/δ−ω11 and ω10. On the other hand, one
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may observe, at various values of Re, the increase with time of the frequency f of
wake oscillations from the moment of their switching on (when |A| = 0 and hence
f = –ω1/2π) to the final equilibrium conditions (when |A| =Ae). Such observations
make it possible to determine the dependence of ω1 on Re (and the values of coeffi-
cients ω10 and ω11) and to chek the value of Recr already found. When this is done,
the coefficients a and a1 may be computed a new, to compare their new values with
those implied by the experimental verification of the Rayleigh-Roshko laws (4.47)
and (4.47a).

The method of control used by Strykovski, and Sreenivasan et al. (and also by
Mathis, and Mathis et al). consisted of the quick reduction, perhaps to zero, of the
free-stream velocity, with a subsequent quick return to its initial value U0 (corre-
sponding to given Re>Recr). Schumm, Schumm et al., and Park, also employed
several other control methods such as bleeding of fluid from the rear part of the cylin-
der, wake heating, or forced vertical vibrations of a cylinder with a small amplitude
a0 � D. (All these operations at supercritical Re>Recr strongly suppress vortex
shedding; see, e.g., Monkewitz’s surveys (1993, 1996) and the papers on wake
control by Roussopoulos (1993); Schumm et al. (1994); Park et al. (1993, 1994);
Park (1994); Roussopoulos and Monkewitz (1996); Gunzburger and Lee (1996),
and Gillies (1998) containing many additional references). However, the above-
mentioned control methods are applicable only at supercritical Reynolds numbers
and can provide no information about the values of coefficients of Eqs. (4.34–4.34a)
at Re<Recr. To obtain such information Sreenivasan et al., Schumm et al., and
Park used some methods of ‘subcritical wake control’, i.e. of artificial forcing of the
vortex shedding and wake oscillations of the appropriate frequency at subcritical con-
ditions characterized by the given value of Re which is smaller than Recr. Applying
this forcing, and then switching it off rapidly and observing the subsequent damping
of oscillations, one may obtain data relating to values of the Landau coefficients at
subcrtical Reynolds numbers.

Sreenivasan et al. (1987) measured (by both hot-wire and laser-Doppler anemome-
ters) wake velocity fluctuations behind the central parts of three cylinders with aspect
ratios L/D = 60, 27 and 14 at several values of x/D and z/D and values of Re in the
range 35<Re< 100. They found (as Mathis et al. did earlier) that the characteristics
of wake oscillations vary (though not too much) with the cylinder aspect ratio, and
most attention was paid to the case where L/D = 60, in the hope that the results would
also be representative of greater values of L/D. It is natural to think that the com-
plex constant ω=ω1 + iγ is simply the most unstable eigenvalue (i.e., that having
the greatest imaginary part) of the Orr-Sommerfeld equation corresponding to the
plane-parallel model of the wake velocity profile. If so, then this constant is a global
stability characteristic which does not depend on the point in the wake at which
observation is carried out (see the closing paragraph in Sect. 2.93, and the supple-
mentary discussion of this topic at the beginning of the subsequent small-type text).
However, the constants δ and δ′ are apparently position-dependent and depend also
on the choice of the measured flow characteristic and the definition of the amplitude
A. (However Sreenivasan et al. found that the in the range 3< x/D< 7 the spatial
variations of these constants are small and may be neglected). As to the ratio δ′/δ, it
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affects the values of coefficients a and a1 of the Roshko equation and hence must be
independent of both the point of observation and the value of the Reynolds number.
According to measurements by Sreenivasan et al., Recr ≈ 46 in the wake behind a
circular cylinder with L/D> 60 and

γD2/v ≈ 0.20( Re − Recr), ω1D
2/v ≈ −34.3 − 0.7(R − Recr), (4.48a)

δD2/v ≈ 134, δ′D2/v = −404 (4.48b)

(so that Rocr = (−ω1D
2/2πv)cr ≈ 5.45, δ′/δ ≈ −2.90).Note that Sreenivasan et al.,

who did not know about the work of Mathis (1983) and Mathis et al. (1984), found
exactly the same dependence of γD2/v on Re – Recr as the latter authors and nearly the
same value of Recr. Results of more numerous and careful measurements by Schumm
(1991) and Schumm et al. (1994), who investigated wakes behind several circular
cylinders with L/D ≥ 50 and applied several different methods of wake control, prove
to be very close to that found by Sreenivasan et al.: according to Schumm et al.

Recr = 46.7 ± 0.3, γD2/v = [0.21 ± 0.005]( Re −Recr), (4.49a)

ω1D
2

v
= −[33.6 ± 0.3] − [0.64 ± 0.02)( Re −Recr),

δ′

δ
= −[2.90 ± 0.45]

(4.49b)

(see Fig. 4.19 where results of their measurements of coefficients of Eqs. (4.34) and
(4.34a) at different values of Re =U0D/v are shown). Close results were obtained
also by some other researchers; for example, Albarède and Monkewitz (1992) came
to the conclusion that δ′/δ= −3 ± 0.6, while numerical simulations of wake flows
by Dusék et al. (1994) led to the estimate δ′/δ ≈ −2.7, and according to laboratory
measurements by Albarède and Provansal (1995) δ′/δ= – 2.6 ± 0.7.

Sreenivasan et al. (1987) noted that the values of coefficients a and a1, implied by
their estimate of Recr and of the Landau coefficients (4.48), do not differ too much
from empirical values of a and a1 recommended by Roshko (1954), while Monkewitz
(1996) more methodically compared values of a and a1 given by estimates (4.49)
with values which agree best with empirical St-Re relations. Such a comparison
is not an easy matter, since the Strouhal number in a cylinder wake depends on a
number of factors. As was shown by Gerrard (1978) and Williamson (1989, 1995,
1996a), the empirical forms on the St-Re relation for the wakes behind circular
cylinders, collected over a period of more than one hundred years (beginning with
the frequency data of Strouhal (1878)), are very scattered. This scatter evidently
cannot be explained by errors of measurements since both Re and St numbers can be
easily measured with a high accuracy. (Oscillations of two-dimensional wakes have
the unique frequency f = f (Re) coinciding with the frequency of vortex shedding;
in the case of three-dimensional wakes, several discrete oscillation frequencies and
even the continuous frequency spectrum often exists, but at small and moderate
values of Re here too the unique dominant frequency f can be measured accurately
by means of numerical or instrumental spectral analysis). Therefore, the scatter must
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have another explanation. Recall now that, according to the above discussion of the
experimental data by Mathis et al. (1984), the values of a and a1, which correspond
to these data depend on both the cylinder aspect ratio L/D and the range of Reynolds
numbers considered, and this dependence was also found to be in agreement with
results of some earlier observations of wakes behind circular cylinders. Let us add
to this that more recent experimental and numerically-simulated data both show that
the character of the vortex street behind a cylinder strongly depends on the boundary
conditions at the cylinder’s ends, and that usually the ordinary ‘parallel shedding’ is
replaced at some Res >Recr by ‘oblique shedding’at some angle θ to the cylinder axis
(see the papers mentioned at the end of the first new paragraph after Eq. (4.47a), and
the papers by Williamson (1988a, 1989, 1995, 1996a); Norberg (1994); Persillon
and Braza (1998) and references therein). The data show also that the frequency
of wake oscillation f and the Roshko and Strouhal numbers Ro and St, which are
proportional to it, in the case of oblique shedding depend on the ‘shedding angle’ θ .
It is clear that such dependence must affect the Ro-Re and St-Re relations violating
their universality. Moreover, the data presented in the above-mentioned papers (and in
those by Williamson (1988b, 1996b, c); Coutanceau and Defaye (1991); Konig et al.
(1990, 1992, 1993); Hammache and Gharib (1993); Brede et al. (1994); Zhang et al.
(1995); Thompson et al. (1996); Henderson (1997), and Leweke and Williamson
(1998), among many others) show that at some greater value of Re the primary mode
of ‘oblique shedding’ is replaced by another three-dimensional mode, which in its
turn can be replaced by a more complicated flow regime in the range of still greater
Re numbers.

In the late 1980s and 1990s it was also proved that at moderate values of Re the
oblique shedding is always due to ‘end effects’ caused by finite length L of a cylinder
and that the shedding angle θ depends on the spanwise boundary condition at cylinder
ends which play a very important part even at large aspect ratios L/D> 100. This
dependence allows the value of θ to be changed by a proper modification of either
the cylinder end conditions (dependent on the method of supporting the cylinder)
or the flow near the cylinder ends. Therefore one may pass to the parallel regime
of vortex shedding by appropriate change of flow configuration near the cylinder
ends. In particular, it was found that the parallel regime may be caused by small
increase of the undisturbed velocityU0 =U0(y) near y = ± L/2, or by suction of small
amounts of fluid from just downstream of the ends of a cylinder, whereas without
any manipulation affecting boundary conditions, parallel shedding at relatively large
values of Re can be attained only at an aspect ratio wellover 1000 (see again the papers
referred above and also those by Eisenlohr and Eckelmann (1989); Hammache and
Gharib (1989, 1991); Albarède and Monkewitz (1992); Norberg (1994); Miller and
Williamson (1994); Monkewitz (1996), and Monkewitz et al. (1996)).

Since the changes of boundary conditions may often be achieved in laboratory
experiments by means of some simple mechanical devices, and can also be easily
incorporated in numerical simulations, a number of high-quality frequency deter-
minations was carried out during the last decade, in circular-cylinder wakes near
mid-span, under conditions guaranteeing the regime of ‘parallel vortex shedding’.
The results obtained in numerous experiments were collected by Williamson (1988a,
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Fig. 4.20 ‘Universal St-Re relation’ found by Williamson for the case of purely parallel vortex-
shedding regime of the wake behind a circular cylinder at moderate Reynolds numbers, and its
comparison with available experimental data. (After Williamson (1996a)). Various symbols repre-
sents experimental data by Williamson and his coworkers, various curves–the data of other authors;
WT : wind-tunnel data; XYTT : results obtained in a special water tank facility. The numbers after
the facilty marks indicated the cylinder aspect ratios L/D

1989, 1995, 1996a) in the form of ‘universal St-Re relation’ shown in Fig. 4.20. The
data in this figure include the measurements made both in wind tunnels and water-
tank facilities, by a number of different techniques, and covering the Re-range from
Recr ≈ 50 and to Re≈ 180. Very similar results were also found in numerical simula-
tions of the cylinder wake by Karniadakis and Triantafyllou (1989); Thompson et al.
(1996); Persillon and Braza (1998), and some others. Moreover, Prasad and Willaim-
son (1997) showed also that, by the appropriate adjustment of boundary conditions
at cylinder ends, one can make vortex shedding parallel also in the case of wakes
characterized by high Reynolds numbers much exceeding the values considered in
Fig. 4.20. However, in this case the parallel-shedding flow regime quickly becomes
three-dimensional and its St-Re relation is no longer universal (this matter will be
discussed at greater length at the end of this part of Sect. 4.24).

According to Williamson the empirical St-Re relation shown in Fig. 4.20 may
be best approximated by a three-term equation of the form St = a − a1/Re + a2Re
(where a = 0.1816, a1 = 3.3265, and a2 = 1.6 × 10−4). However, Monkewitz
(1996) found that two-term approximation (4.47a), with coefficients a = 0.199 and
a1 = 3.94, which corresponds to estimates (4.49), in indistinguishable at small and
moderate values of Re – Recr from approximation suggested by Williamson, and
only at Re≈ 100 this two-term equation leads to results which fall slightly below
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those giving by Williamson’s approximation. Thus, we must conclude tha the Lan-
dau model gives quite a good description of the data relating to wake oscillations
generated by ‘parallel shedding’ under the conditions of small and moderate (but
not great) supercriticality, and that the empirical estimates (4.49) give, with good
accuracy, the values of coefficients of the corresponding complex Landau equation.
In fact, it is quite surprising that Landau’s equation, with coefficients computed un-
der that conditions that Re – Recr is small, leads to results which agree so well with
experimental data for Re/Recr up to 1.5.

Note that time-amplified global oscillations of the entire near wake are intimately
connected with local absolute (in contrary to convective, see the closing part of
Sect. 2.93) instability of the wake flow. In fact, the wake flow is not strictly plane-
parallel, and hence its local velocity profile, and the Orr-Sommerfeld eigenvalues
depending on it, vary slowly with the streamwise coordinate x. Hence, the local
values of all coefficients of the complex Landau (i.e., Stuart-Landau) Eq. (4.40)
here on x (and this dependence becomes more significant with the increase of non-
parallelism of the flow). This means, in particular, that the local oscillation frequency
f = –ω1/2π slowly changes with increase of distance from the cylinder. However the
observation definitely show that the near wake, having a considerable streamwise
extent, usually oscillates as a whole with constant frequency f, somehow selected
from the collection of weakly varying local values. Such ‘oscillation as a whole’
characterizes the global instability mode, which occurs in the wake behind a solid
body only in the cases where a considerable regions of the absolute flow instability
exists near a body. Thus, one may say that the Bénard-von Kármán vortex street is
due to the absolute instability of the flow in the near wake. Just this circumstance
stimulated numerical investigations of wake regions of local absolute instability,
typified by the papers of Koch (1985); Huerre and Monkewitz (1985); Monkewitz
and Nguen (1987); Monkewitz (1988b, c); Yang and Zebib (1989); Hannemann
and Oertel (1989), and Delbende and Chomaz (1998). The complex amplitude of
global wake oscillations can depend on the spatial coordinates (on x and z in the case
of a two-dimensional vortex street, and on three coordinates in more complicated
cases) but its dependence on t in the case of a non-steady regime of global mode
development will satisfy Landau’s equation with the same coefficient ω=ω1 + iγ at
all points x. The data relating to the spatial distribution of the oscillation amplitudes
A(x, t) will be considered at greater length below, for more details and additional
references concerning the general properties of the global instability modes of nearly
plane-parallel flows see, e.g., the papers by Triantafyllou et al. (1987); Karniadakis
and Triantafyllou (1989); Huerre and Monkewitz (1990); Monkewitz (1990, 1996);
Chomaz et al. (1991); Monkewitz et al. (1993); Le Dizès (1994), and Le Dizès et al.
(1996).

As to the problem of ‘oblique shedding’, williamson (1988a, 1989, 1995, 1996a)
showed that, in the cases where the ‘shedding angle’ θ is fixed, the ‘universal St-Re
relation’ of Fig. 4.20, which corresponds to parallel shedding, is valid with good
accuracy for ‘modified Strouhal number’ Stm = St/cosθ . This Williamson’s ‘cosine
law’ of oblique vortex shedding was confirmed in a number of experimental pa-
pers (see, e.g., König et al. (1993); Miller and Williamson (1994), and Monkewitz
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et al. (1996)) but its theoretical explanation requires the use of some special ana-
lytical techniques. Since it was shown that ‘oblique shedding’ is strongly affected
by the ‘spanwise boundary conditions’ at y = ± L/2, the ‘cosine law’ can be derived
theoretically only from a model which takes into account the influence of the flow
configuration near the cylinder ends on the oscillations of the middle part of the
wake. This simplest way to achieve this is to introduce a y-dependent oscillation
amplitude A (y, t) and replace the complex Landau Eq. (4.40) by the more general
complex Ginzburg–Landau (G–L) equation for this amplitude, having the form

∂A

∂t
= −iωA+ μ

∂2A

∂y2
− 1

2
l|A|2A (4.50)

where ω, μ, and l are three complex coefficients and the second term on the right-
hand side describes the spanwise diffusion of oscillations. (For more information
about this equation see, e.g., the extensive survey by Cross and Hohenberg (1993)
containing a comprehensive bibliography, Chap. 5 of the book of Bohr et al. (1998),
the paper by van Saarloos (1995) and other papers in Cladis and Palffy-Muhoray
(1995) where a number of modifications, generalizations, and various applications of
Eq. (4.50) are collected. A typical example of the useful generalization of Eq. (4.50) is
provided by the ‘quintic G-L equation’ containing an additional term proportional to
|A|4 A; this equation was used, in particular, by Shtemler (1978) and Bottin and Lega
(1998), who applied it to stability studies relating to plane Poiseuille and Couette
flows, and by Iwasaki and Toh (1992), who based on this equation their model
description of turbulence structures at high Reynolds numbers). Equation. (4.50)
and some other related nonlinear model equations were applied to description of the
spanwise-varying cylinder wakes, in particular, by Albarède et al. (1990); Albarède
(1991); Noack et al. (1991); Park and Redekopp (1992); Albarède and Monkewitz
(1992); Triantafyllou (1992); Chiffaudel (1992); Albarède and Provansal (1995),
and Monkewitz et al. (1996). Models by Albarède and Monkewitz, Triantafyllou,
Monkewitz et al., and some others lead to results which explain the approximate
validity of the ‘cosine law’. However, this was not the primary purpose of introduction
of these models.

The point is that according to available experimental data of a number of authors
(e.g., of Williamson (1988a, 1989, 1992, 1995, 1996a, b); Ohle and Eckelmann
(1992); König et al. (1992, 1993); Brede et al. (1994), and Miller and Williamson
(1994)), wakes behnd circular cylinders at relatively low Reynolds numbers often
have rather complicated spanwise structure. It was found, in particular, that at mod-
erately subcritical values of Re spanwise cell structures frequently appear in such
wakes, i.e., several spanwise regions with constant shedding frequency are formed
which are separated by the so-called ‘nodes’ where the frequency changes discon-
tinuously and vortex dislocation is observed. In the cases of ‘perfectly symmetric’
boundary conditions at the two ends of the cylinder and at large values of Re (and
sometimes at relatively small Re but not too small values of x), symmetricalV-shaped
(downstream-pointing) ‘chevron’ structures are often observed, i.e., the vortices on
both sides of the cylidner midpiot have shedding angles of equal magnitude but op-
posite sign. The search for an explanation of these strange features of the observed
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wakes behind circular cylinders stimulated the introduction of the G–L model (4.50)
and its investigation by Albarède et al. (1990); Albarède and Monkewitz (1992);
Albarède and Provansal (1995), and Monkewitz et al. (1996) (see also Monkewitz’s
survey (1996)).

The G-L model can in principle describe the influence of the end conditions on
the angle of obliquie shedding and explain the experimental result that the oblique
shedding can be converted back into the parallel shedding by changing the flow
configuration near the cylinder ends. However, to derive even qualitative conclusions
from the G-L model, it is necessary first of all to determine the values of all the
coefficients of Eq. (4.50). Since the complex coefficients ω and l have the same
meaning here as in Eqs. (4.40) and (4.34–4.34a), it seems natural to make, as a first
approximation, the assumption that these two coefficients of Eq. (4.50) do not depend
on y, and have the same values as in the case of strictly parallel vortex shedding where
oscillations are spanwise homogeneous. This simplifying assumption was accepted
in the above-mentioned papers, where the empirical estimates of ω=ω1 + iγ and
l = δ+ iδ quite close to the above estimates (4.48) and (4.49) were used. However
the third coefficientμ=μr + iμ1 of Eq. (4.50) is a new one, and it can be determined
only from data of measurements relating to the dependence of cylinder wakes on the
spanwise end conditions.

Albarède and Monkewitz (1992) tried to use for this purpose the data for the
dependence of Recr on the aspect ratio L/D of the cylinder generating the wake. If
the oscillation amplitude A depends on y and satisfies Eq. (4.50), then the growth of
A from the initial infinitesimal value will be described, not by the linearized Landau
Eq. (4.32), but by the linearized G-L equation, which differs from Eq. (4.50) by the
absence of the cubic term on the right-hand side. Also the measured rate of amplitude
growth at Re>Recr must evidently be equal, in this case, to the rate of growth of
the most unstable spanwise-inhomogeneous mode. The normal modes are now given
by the eigenfunctions of the linearized Eq. (4.50), which depend on the boundary
conditions at y = ± L/2. However, it seemed natural to assume that, at large values
of L/D, the boundary conditions will not very essentially affect the rate of growth
of normal modes. Therefore Albarède and Monkewitz used the simplest boundary
conditions A (y, t) = 0 at y = ±L/2, hoping that their use could hardly lead to very
significant errors. The above arguments allow Recr to be determined approximately,
as the smallest value of Re at which the imaginary part of at least one eigenvalue of
the linearized G–L equation is not negative but equal to zero. Recr clearly depends
on the aspect ratio L/D and of μ (recall that ω and l are assumed known); hence
Recr = Recr (L/D, μ). Therefore, the measured values of Recr at various values of
L/D may be used for estimation of the value of μ.

Albarède and Monkewitz at first attempted to use the results of the measurements
by Mathis et al. of the values of Recr at a number of values of L/D but found that their
data were insufficiently accurate eand complete. Therefore they carried out additional
careful measurements of the values of Recr at various aspect ratios L/D and the results
led them to the conculsion that μr/v = 32 ± 6. To find the imaginary part μi of the
complex coefficientμ, two different methods were used byAlbarède and Monkewtiz,
both based on data for the angular frequencyω1 of the most unstable mode at different



390 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

values of Re and L/D. The two methods led to not-too-different results, and showed
that apparently (μi/μr ) = −0.3 ± 0.6. Later Albarède and Provansal (1995) arranged
a more careful determination of the values of the various coefficients of Eq. (4.50)
(first of all of μr ). They used somewhat modified boundary conditions, and carried
out more complete and accurate measurements of the dependence of characteristics
of steady cylinder wakes on Re and L/D. As a result they obtained the new estimate
μr/v = 10 ± 4 for Re< 100, which differs considerably from the preceding estimate
by Albarède and Monkewitz. (This great difference was apparently mainly due to the
change of boundary conditions, which were found to be more important than it was
assumed earlier). The value of μi was unimportant for the majority of applications
considered by Albarède and Provansal; in rare cases where it was needed they used
the estimate by Albarède and Monkewitz.

A quite different method of determining the values of μr and μi was used by
Monkewitz et al. (1996). Here, special experiments were arranged in which nonsym-
metric time-dependent boundary conditions were realized at the cylinder ends. The
coefficients of the G-L model were then determined from both the steady shedding
data (the only data used previously) and the data of measurements of the ‘spanwise
wave number shocks’, i.e. abrupt increases in shedding angle across the span of a
cylinder initiated by appropriate impulsive changes of ends conditions. The observed
gradual reduction of the shedding angle θ along the Oy axis was then compared with
predictions of the G-L model. Under the condition that the G-L model with coeffi-
cients independent of y is valid, this comparison allowed the values ofμr/v andμi/μr

to be determined with considerably greater accuracy than was achieved in the previ-
ous investigations. Monkewitz et al. published the results obtained for Re = 100, 120
and 140; the values of μi/μr proved to be practically independent of Re and close
to −1, while all values of μr/v were found to be fairly close to 20, growing slightly
with Re (from 18.7 at Re = 100 to 25.6 at Re = 140).

Albarède and Monkewitz (1992) found that their version of the G-L model de-
scribes, quite well, many phenomena observed in cylinder wakes in the laboratory.
The model led to correct dependence of Recr on L/D and showed, in full agree-
ment with the experimental data, that after the impulsive switching on of an external
stream of constant velocity, vortex shedding always starts as the parallel mode while
the regions of ‘oblique shedding’ develop from the cylinder ends and, in the case
of symmetric end conditions, lead to steady-state ‘chevron patterns’. The possi-
bility of forcing the transition from the ‘oblique’ to ‘parallel’ vortex shedding by
means of change of flow configuration at the cylinder ends can also be derived from
the G-L model considered. Moreover, the plan views (in the (x, y)-plane) of cylinder
wakes observed in flow visualizations agree well with results of model computations.
Albarède and Provansal (1995) showed that their improvements of the previous ver-
sion of the G-L model gives a theoretical explanation of a number of even more
subtle features of wake development. In addition to this, Monkewitz et al. (1996)
demonstrated that the samc G-L model satisfactorily describes many surprising non-
steady wake phenomena which can be produced in laboratory experiments where
non-symmetric, impulsive (i.e., time-dependent) spanwise boundary conditions are
realized. Note however the remark by Leweke and Williamson (1998) indicating that
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the explanation of the loss of stability of a two-dimensional cylinder wake at super-
critical values of Re proposed by Leweke and Provansal (1995), which was based on
the G-L model, disagrees with some known properties of the observed cylinder-wake
instability. On the other hand, while Landau’s Eqs. (4.34) and (4.40) were derived
from Navier–Stokes equations as long ago as the early 1960s by Stuart, Watson, and
Eckhaus (and then more thoroughly by Fujimura (1989) and Duśek et al. (1994)),
who used for this purpose definite asymptotic expansion procedures (see Sect. 4.21
above), apparently no rigorous derivation of this type has yet been given for the G-L
Eq. (4.50) (the references of the G-L equations at the end of Sect. 4.22 concerned
quite different flows and other equations of the Ginzburg-Landau type). Thus, the
problem of the strict derivation of this equation and the accurate determination of
conditions for its validity remains unsolved.

Equation (4.50) is the ‘transverse’Ginzburg-Landau equation, taking into account
the spanwise ‘diffusion’ of wake oscillations which often becomes apparent in labo-
ratory experiments and numerical simulations. As to the spatial development of these
oscillations, it was always neglected above, i.e., it was assumed that none of their
characteristics depends on the streamwise coordinate x. This assumption was based
mainly on the fact that, according to the available wake observations, the oscillation
frequency f is practically the same within a large spatial region, as it must be in the
case of a global instability mode. However visualisations of wake flows clearly show
that some local characteristics of the oscillations vary considerably when coordinates
of the observation point are changed. In particular, it will be explained below that
the local oscillation amplitude at the point (x, 0, 0) first gorws with the value of x
but then reaches a maximum and begins to decrease when x increases further. Recall
that when discussing the experiments by Sreenivasan et al. (1987) we noted (just
above Eq. (4.48)) that the assumption about complete streamwise homogeneity of
oscillations is just a convenient simplification, applicable only to regions of short
streamwise extent.

To take into account the possible dependence of wake oscillations on the stream-
wise coordinate x one must use some new analytical models differing from the
Landau and transverse Ginzburg-Landau models (4.40) and (4.50) by the presence
of terms describing the streamwise variability of the flow characteristics. One of
the simplest methods of accounting for the streamwise variability is to replace the
Stuart–Landau Eq. (4.40) by the ‘longitudinal’ Ginzburd-Landau equation for the
streamwise-dependent oscillation amplitude A(x, t). The simplest version of this
G-L equation includes, instead of the transverse-diffusion term of Eq. (4.50), a
streamwise-diffusion term proportional to ∂2A/∂x2. Then the streamwise advection
may be taken into account by the inclusion of the term U∂A/∂x on the left-hand side
of th G-L equation and/or by the replacement of the simple second derivative ∂2A/
∂x2 on the right-hand side by ∂2A/∂ξ 2, where ξ = x − Ut.As was indicated at the
end of Sect. 4.22, the longitudinal G-L equation has definite theoretical grounds, and
it has been repeatedly used in studies of the weakly nonlinear instability of plane-
parallel and nearly plane-parallel flows. Some attempts to apply the longitudinal
G-L equation to the study of plane wake flows were briefly considered by Park and
Redekopp (1992) (in the initial part of their paper), Le Dizès et al. (1993, 1996) and
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Hunt (1993). In additional, Park et al. (1993) used the longitudinal G-L equation
for the quantitative analysis of control methods for a two-dimensional x-dependent
global mode of circular-cylinder wake oscillations, and Xiao et al. (1998) briefly
outlined a new application of the longitudinal G-L model to development of control
methods regulating the value of the amplitude A (x, t).

A more complete two-dimensional Ginzburg–Landau equation for anoscillation
amplitude A = A (x, y, t) dependent on two spatial coordinates was applied to wake
flows by Park and Redekopp (1992) and Chiffaudel (1992), and Roussopoulos and
Monkewitz (1996). Park and Redekopp considered the G–L equation of the form

∂A

∂t
+ U

∂A

∂x
= −iωA+ μ1

∂2A
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∂2A

∂y2
− 1

2
l|A|2A, (4.51)

while Chiffaudel used a more complicated model equation which included also the
third- and fourth-order derivatives of the amplitude. (The fourth-order G-L equation,
containing amplitude derivatives up to the fourth order, was also studied by Raitt
and Riecke (1995); however, this model will not be considered in the present book).
Generally speaking all four coefficient ω, μ1, μ2 and l of Eq. (4.51) can be complex
and dependent on the two coordinates x and y (and the real advection velocity U can
also depend on x and y), but Park and Redekoppp restricted themselves to the model
where U = const., μ1, μ2 and l are complex constants while ω(x, y) = iγ (x, y) is
purely imaginary (i.e., γ is real) and has the form ω(x, y) = i[c0(y)− c1(y)x] where
c0 and c1 are real functions of one variable and c1(y) < 0 at any y. Analyzing solu-
tions of Eq. (4.51) in the region 0 ≤ x < ∞, −L/2 ≤ y ≤ L/2, under the boundary
conditions A(0, y, t) = 0,A(x, −L/2, t) = F1(x, t),A(x,L/2, t) = F2(y, t), and
choosing reasonable values of constants μ1, μ2 and l and functions c1, c2, F1 and
F2, the authors determined the (x, y)-region of the absolute instability of the wake
flow considered, and showed that many observed features of the spatial and temporal
development of circular-cylinder wake oscillations (e.g., the observed interrelation
of parallel and oblique sheddings and formation of ‘chevron patterns’) can be ex-
plained if one assumes that oscillation amplitude satisfies Eq. (4.51). Roussopoulos
and Monkewitz, who studied the feedback control of oblique vortex shedding for
Reynolds numbers close to Recr considered another model: they assumed that the
oscillation amplitude A1 (x, y, z, t) can be represented as a product A (x, y, t) B(z)
where A (x, y, t) satisfies the G-L Eq. (4.51) in which U = U (x) depends linearly on
x, ω=ω(x) is a complex function quadratic in x, and μ1, μ2 and l are complex con-
stants. Then the authors used the results of the stability theory for circular-cylinder
wakes and the data of wake oscillation measurements presented in Monkewitz’s pa-
per (1988b) to evaluate approximately all coefficients of Eq. (4.51). To apply the
G-L amplitude equation to description of wake-oscilltion control methods, Rous-
sopoulos and Monkewitz added to the right-hand side of Eq. (4.51) a function F(x,
y, t) representing the effect of the feedback control. Then solving numerically the
obtained equation under the appropriate initial and boundary conditions and varying
the values of F(x, y, t) they could calculate the influence of various control actions on
the wake oscillations and compare the calculation results with conclusion following
from their laboratory measurements of control effects.
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Another method of investigating the dependence of cylinder wake flows on stream-
wise coordinate x was used by Dušek et al. (1994) and Dušek (1996). Dušek et al.
systematically studied the interrelation between the coupled nonlinear equations for
the spatially-varying temporal Fourier components (corresponding to expansion of
the disturbance velocity u(x, t) in powers of eiω1t where ω1 is the oscillation fre-
quency) and the local Landau equations for oscillation amplitudes A of the dominant
harmonic at various points x. They found, in particular, that for validity of the Lan-
dau equation the shape of the unstable mode must vary much more slowly than its
amplitude. Then Dušek et al. considered the application of the results obtained to a
cylinder wake flow, and compared the conclusions implied by direct numerical simu-
lation of this flow, at Re slightly above the first Hopf bifurcation threshold Recr, with
predictions based on approximate amplitude equations. Later Dušek (1996) used the
results of the above-mentioend paper of 1994 to develop a numerical method for
computing the spatially-varying temporal Fourier coefficients of velocity compo-
nents in the cylinder wake. He evaluated the spatial structure of several terms of the
Fourier series (the zeroth term describing the distortion of the primary steady flow by
a disturbance, the first one which usually corresponds to the dominant harmonic, and
a few subsequent terms describing higher harmonics) at two different supercritical
values of Re, and showed that far downstream all harmonics behave like parallel trav-
eling waves. Dušek also found that global characteristics of the dominant wave (its
frequency, wavelength and phase velocity) agreed well with the experimental data
of Williamson (1989). However, he did not try to compare the results of his compu-
tations with more complete experimental data for the spatial structure of the cylinder
wake since very few such data were then available. Nevertheless, some experimental
and numerically-simulated data on the spatial structure of two-dimensional wakes
were obtained in the mid 1990s and these data, which will be considered below,
agree in general with numerical results by Dušek et al. (1994) and Dušek (1996).

Let us begin with the paper by Goujon-Durand et al. (1994) who investigated
the velocity oscillations at various spatial positions behind a spanwise homogeneous
bluff body placed in a water tunnel. (In this paper a cylinder with the trapezoidal
cross-section shown in Fig. 4.21a, and not a circular cylinder, was used for generation
of the wake, but the general features of wake oscillations are similar in this case to
those in a circular-cylinder wake). The authors measured the transverse flow velocity
w(x, t) at a number of points x and numerous Reynolds number Re =U0D/v (where D
is the ‘trapezoid thickness’ indicated in Fig. 4.21a) ranging from Recr ≈ 58 to 2Recr.
Instead of characterization the disturbance intensity by the value of the equilibrium
amplitude Ae of velocity oscillations at a fixed spatial point x, Goujon-Durand et al.
measured the peak to peak amplitudes A(x) at a number of points (x, 0, 0) and
then analyzed the values of the maximal amplitude Amax = maxx > 0A(x) and of the
distance from the body, xmax, at which the amplitudeAmax was observed. They found
that in the range of Reynolds numbers from Recr to about 1.6Recr, power laws of the
form Amax ∝ (Re – Recr) and xmax ∝ (Re – Recr)−1/2 are valid. In the same range
of Reynolds numbers the local oscillation amplitude A(x) satisfies the following
similarity law: A(x)/Amax = F(x/xmax) where F(ζ) is an universal function which does
not deped on Re.
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a b

Fig. 4.21 a Trapezoidal cross-section of the cylinder used in experiments by Goujon-Durand et al.
(1994) and Wesfreid et al. (1996). b Equilateral triangular cross-section of the cylinder used in
the numerical simulations of a cylinder wake by Zielinska and Wesfreid (1995) and Wesfreid et al.
(1996)

Simple similarity laws found by Goujon-Durand et al. for Amax, xmax and
A(x)/Amax had not yet received a theoretical explanation. Moreover, the relation
Amax ∝ (Re – Recr) seems strange, since it is known that the equilibrium amplitude
Ae at a fixed point x is proportional to (Re – Recr)1/2 over a considerable range of
positive values of Re – Recr. Therefore, Zielinska and Wesfreid (1995) tried to verify
these laws from the results of a numerical simulation of the purely two-dimensional
wake behind a cylinder with a cross-section in the form of an equilateral triangle with
the apex pointing upstream (see Fig. 4.21b). Their data were based on the analysis of
numerical solutions of the two-dimensional Navier-Stokes equations describinb the
flows in the (x, z)-plane around an impenetrable equilateral triangle; the solutions
were computed for various values of Re =U0D/v (where D is the length of triangle
sides, and U0 is the velocity of the uniform flow upstream of the body). The solu-
tions gave the values of vertical and horizontal velocity oscillations w(x, z, t) and u(x,
z, t) and of the mean-flow distortion (i.e., of the zeroth harmonic Δu(x, z, t) of the
streamwise disturbance velocity) at a number of the points (x, z) where x ran through
a set of positive values, while z took two values, z = 0 and z = 0.5D. (Note that the
oscillations w(x, z, t) and u(x, z1, t), where z can take arbitrary values but z1 �= 0,
mainly represent the contributions of the dominant first harmonic with frequencyω1,
while the main contribution to the value of the streamwise velocity u(x, 0, t) at the
symmetry axis z = 0 is due to the second harmonic with doubled frequency 2ω1; see,
e.g., Stuart (1960); Hannemann and Oertel (1989); Dušek et al. (1994) and Dušek
(1996)). Then the values of the peak-to-peak oscillation amplitudesAw, Au andA�u

of the two velocity components w and u, and of the mean flow distortion at the chosen
points, were computed for a number of Re values. The results showed that the flow
undergoes a Hopf bifurcation at Re = Recr ≈ 38, which can be described by Landau’s
Eq. (4.40) with a coefficient ω which depends only on Re (and represents a linear
function of Re – Recr at small values of |Re – Recr|) and a coefficient l depending
on x. The maximum values of Aw, max, Au, max and A�u, max of the three amplitudes
on the lines z = 0 and z = 0.5D and streamwise coordinates xw, max etc. of the points
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corresponding to these maximum amplitudes were also determined by Zielinska and
Wesfreid.

Zielinska and Wesfreid then showed that the normalized streamwise and trans-
verse velocity amplitudesAu(x)/Au, max andAw(x)/Aw, max (where both the local and
maximum amplitudes correspond to the wake oscillations at points with z = 0) are
represented in the case considered by two different universal functions Fu(x/xu, max)
and Fw(x/xw, max) of the normalized coordinate x/xmax. These conclusions clearly
agree with those of Goujon-Durand et al. (1994) for the transverse velocity oscilla-
tions in a slightly different but related wake flow. As to the distances xmax from the
bluff body to the points where the oscillation amplitudes take maximal values, it was
shown that the values of xw, max, corresponding to lines z = 0 and z = 0.5D, and of
xu, max, corresponding to the line z = 0.5D, are proportional to (Re – Recr)−1/2 in the
range of supercritical Reynolds numbers extending up to about 1.3Recr. This result
agrees with the similar conclusion found by Goujon-Durand et al. by analysis of the
experimental data. However, the values of xmax corresponding to oscillations of the
streamwise velocity u, and of the mean-flow distortion U0 − u on the symmetry axis
z = 0, which are unrelated to the dominant harmonic of the velocity field, depend
on Re – Recr in a more complicated manner which cannot be described by a simple
power law. Moreover, according to numerical simulations of Zielinska and Wesfreid,
the maximal oscillation amplitudes Aw, max at the axis z = 0 and Au, max at the line
z = 0.5D, which characterize the dominant first harmonic of the wake velocity, are
both proportional to (Re – Recr)1/2 (and not to (Re – Recr), as Goujon-Duran et al.
claimed) at Recr <Re< 1.3Recr.

Since some of the results found by Goujon-Durand et al. (1994) and by Zielinska
and Wesfreid (1995) contradicted to each other, it was decided to repeat the corre-
sponding measurements and the analysis of the numerically-simulated data, to extend
to span of the investigation and to improve its accuracy. Results of this new work
were presented in the paper by Wesfreid et al. (1996). The new experiments used
the same trapezoidal bluff body and water tunnel as before, but now a laser-Doppler
anemometer was used to scan the values of the streamwise velocity u(x, y,z, t) in the
central part of the wake (near y = 0 where no variations of the oscillation frequency
were fond) and the (x, z)-region extendind from x = 0.7D to x = 25D and from z = 0
to z = 2.8D. The time series of u(x, t) was fed to a spectrum analyzer to determine the
frequency and amplitude of the dominant harmonic of velocity oscillations. The mea-
surements covered the range of Reynolds numbers from 1.1Recr to 1.6Recr, where
this time it was found that Recr = 60.8. The numerical simulation repeated the previ-
ous computations of two-dimensional wake oscillations behind a triangular cylinder
with the cross-section shown in Fig. 4.21b. However, now the fluctuations u(x, z, t) of
the streamwise velocity was evaluated for the region 0.7D< x< 25D, 0< z< 2.75D
of the (x, z)-plane, and the range of Reynolds numbers was from Re = 1.016 Recr

to Re = 1.6Recr (where Recr = 36.2). The measured values of u(x, y, z, t) and cal-
culated values of u(x, z, t) were both used to find the amplitude A(x, z, Re) of the
u-velocity oscillations at various points (x, z) and various values of Re. Then the
maximal amplitudeAmax(Re) = maxx,zA(x, z, Re) was determined for various values
of Re and the Re-dependent point (xmax, zmax) was found where the amplitude Amax
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Fig. 4.22 Universal
representation of the
dependence of the normalized
amplitude A(x, z, Re)/Amax

(z, Re) of cylinder-wake
oscillations on the coordinate
x. (After Wesfreid et al.
(1996)) (a) Values of A(x, z,
Re)/Amax(z, Re)
corresponding to velocities
u(x, y, z, t) measured in the
wake behind a cylinder of
trapezoidal cross-section at
y ≈ 0 and z = zmax ≈ 0.7D;
(b) values of A(x, z,
Re)/Amax(z, Re)
corresponding to numerically
simulated velocities u(x, z, t)
in the two-dimensional wake
behind a triangular cylinder at
z = 0.5D< zmax. The various
symbols correspond to
different values of Re in the
ranges 1.21Recr ≤ Re ≤
1.59Recr (a) and
1.02Recr ≤ Re ≤ 1.31Recr (b)

a

b

is reached. The experimental and numerical results had the same general character
and both showed that, at given values of z and Re, the amplitude A(x, z, Re) increases
with x at small values of x, takes a maximal value Amax(z, Re) at some point xmax(z,
Re) and then begins to decrease as x increases further. The values of Amax(Re) and
Amax(z, Re) for z> 0 increase with Re in proportion to (Re – Recr)1/2 over a wide
range of Re values (this conclusion agrees with results of Zielinska and Wesfreid
(1995)), xmax(Re) ∝ (Re – Recr)−1/2 in the same range of Re values, but zmax(Re)
changes very little when Re is changing. Finally, according to both the experimental
and the numerical data, the normalized amplitude values A(x, z, Re)/Amax(z, Re) are
represented rather accurately by universal functions of x/xmax(z, Re), both for a fixed
arbitrary value of z and z = zmax where Amax(z, Re) =Amax(Re); see, e.g., Fig. 4.22.
This result clearly extends the conclusions found earlier by Goujon-Durand et al.
and Zielinska and Wesfreid.

Above we considered the wake flow behind a circular cylinder only in the re-
stricted range of Reynolds numbers from Recr ≈ 47 up to about 100–170 or even less
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(see, e.g., Figs. 4.19–4.20). This was quite natural, since we were interested in the
regime of wake oscillations which an be described by the simple Landau Eq. (4.40).
Generated by a Hopf bifurcation at Re = Recr, the two-dimensional regime of parallel
vortex shedding is often then transformed into a three-dimensional regime of oblique
shedding by the influence of spanwise end conditions, but, as indicated above, one
may prevent this transformation (and thus return to a two-dimensional wake regime)
by some modification of the flow conditions at the cylinder ends. However, as Re
increases, the wake flow inevitably acquires three-dimensional features. This cir-
cumstance was discovered rather early, in particular, by Roshko (1953, 1954); Hama
(1956) and Bloor (1964) and was later studied and described (often together with
descriptions of some subsequent wake bifurcations at still larger values of Re) in nu-
merous sources dealing with either experimental or numerically-simulated data (see,
e.g., Williamson (1988b, 1995, 1996a, b, c); König et al. (1990, 1993); Coutanceau
and Defaye (1991); Karniadakis and Triantafyllou (1992); Tomboulides et al. (1992);
Hammache and Gharib (1993); Roshko (1993); Norberg (1994); Mansy et al. (1994);
Brede et al. (1994, 1996); Willams et al. (1995); Zhang et al. (1995); Mittal and Bal-
achandar (1995a, b); Thompson et al. (1996); Wu et al. (1996a, 1966b); Zdravkovich
(1997); Henderson (1997); Persillon and Braza (1998), and Leweke and Williamson
(1998)). Results of different authors sometimes contradict each other in detail, but all
show that at some Re = Re2,cr, in the range 150<Re2,cr < 200, the regime of parallel
vortex shedding becomes unstable with respect to some spanwise-periodic modes of
disturbance, and transforms into a three-dimensional vortical regime. A number of
the cited papers also include information about the appearance, at a Reynolds number
of around 160 (clearly exceeding the threshold value for the primary instability of a
two-dimensional wake), of the second three-dimensional unstable mode, which has
smaller spanwise period and different symmetry properties. The existence of these
two unstable modes was pointed out by Williamson (1988b, 1989) and was later con-
firmed in the experiments of Mansy et al. (1994); Williams et al. (1995); Brede et al.
(1996); Wu et al. (1996a, b) and of some other researchers, and also in a number of
direct numerical simulations of circular-cylinder wakes (e.g., those by Karniadakis
and Triantafyllou (1992); Mittal and Balachandar (1995a, b); Zhang et al. (1995),
and Thompson et al. (1996)). At present these modes are suaully referred to as modes
A and B (see, e.g., the papers by Williamson (1996a, b, c); Henderson (1997) and
Leweke and Williamson (1998) where the symmetry properties of these modes and
the physical mechanisms of their instability are discussed in detail; in particular,
Henderson also considered the Landau constants corresponding to development of
theA and B modes). Both modesA and B oscillate with the same dominant frequency
coinciding with the frequency of vortex shedding (i.e., they are periodic in time with
period T equal to the shedding period). However, the simultaneous existence, at
large enough values of Re, of two unstable modes makes transitions between them
possible, producing discontinuities in the frequency of mode oscillations and the
appearance of oscillations of double period 2T (or having even period mT of higher
multiplicity); see, e.g., the general theory presented by Ioos and Joseph (1990) and
the specific examples of period doubling of wake oscillations found by Tomboulides
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et al. (1992); Karniadakis and Triantafyllou (1992); Mittal and Balachandar (1995a)
and Thompson et al. (1996).

The experimental and numerical-simulation data which illustrate wake transition
to three-dimensional regimes of vortex shedding are characterized by considerable
scatter in the observed values of the transition Reynolds number Re2,cr. According
to Roshko (1953, 1954) and Tritton (1959) Re2,cr = 150 (though in the later sur-
vey by Roshko (1993) the higher estimate Re2,cr = 180 was proposed), while Zhang
et al. (1995) found that Re2,cr = 160, Norberg (1994)–that Re2,cr = 165, Williamson
(1989)–that Re2,cr = 178 (but in the survey of 1995 the latter author gave the much
higher estimate Re2cr = 205, and in the survey (1996a) he came to the conclusion
that Re2,cr = 194 is the best estimate). In parallel, Williamson (1996a, b) stated
that the next transition, leading to the emergence of the mode B, takes place at
Re = Re3,cr in the range between 230 and 260. The scatter of experimental values
of Re2,cr and Re3,cr can be explained by the influence of free-stream turbulence, the
difference btween between parallel and oblique vortex shedding, and/or the influ-
ence of the variability of end conditions (see Williamson, 1996a). Less scattered
resutls are given by the careful theoretical investigations of the linear stability of
parallel-shedding flows by Noack et al. (1993); Noack and Eckelmann (1994a, b);
Barkley and Henderson (1996) and Henderson and Barkley (1996). These stability
papers prove that at Re = Re2,cr lying between 170 and 190 the two-dimensional
Kàrmàn street generated by paralle vortex shedding becomes unstable with respect
to small three-dimensional disturbances with a spanwise wavelength equal to a few
cylinder diameters. According to the most precise computations by Barkley and Hen-
derson, Re2,cr = 188.5 and the spanwise wavelength λy, cr = 2π /ky, cr of the mode A,
the three-dimensional disturbance losing stability at this Re, is close to 4D (the
authors suggested the even more precise estimate λy, cr = 3.96D). Barkley and Hen-
derson computed neutral-stability curves in the (λy, Re)-plane, corresponding to
neutrally-stable wave disturbances in a two-dimensional Kármán-street flow; these
curves are shown in Fig. 4.23. The upper curve in this figure bounds the region
of A-mode instability, while the lower curve represents the neutral-stability curve
for the mode B of three-dimensional disturbances which becomes unstable at round
Re = Re3,cr ≈ 260 and at this Re has the spanise wavelength λ2,y,cr ≈ D (more pre-
cisely Re3,cr ≈ 259, λ2,y,cr ≈ 0.82D). The results of Barkley and Henderson for mode
A agree, to high accuracy, with williamson’s (1996b, c) laboratory measurements. As
to the results of Barkley and Henderson for mode B, the validity of their comparison
with experimental data may raise some doubts, since these results were obtained by
application of the linear stability theory for two-dimensional wake flows to condi-
tions in which the two-dimensional wake is always unstable and where nonlinear
effects are inherent. Therefore the fact that the main features of the observed sec-
ond instability mode do not deviate much from those given by the application of
the linear stability theory to a two-dimensional primary flow may be considered as
somewhat surprising. However, the agreement of the linear theory developed for
the second unstable mode of three-dimensional disturbances in the two-dimensional
wake with the experimental data for mode B was confirmed by many authors, and it
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Fig. 4.23 The neutral-stability curves in the (λy, Re)-plane, where λy = 2π /ky is the spanwise
wavelength (and U0 and D are used as velocity and length units), which correspond to two types
of neutral three-dimensional wave disturbances in the two-dimensional circular-cylinder wake.
(After Barkley and Henderson (1996)). The upper shaded region corresponds to unstable A modes,
while points of the lower shaded region correspond to unstable B modes; Re2 ≡ Re2,cr ≈ 188.5,
Re′

2 ≡ Re3,cr ≈ 260

will be shown later that a similar situation occurs also in the study of wakes behind
a square cylinder and a sphere.

The final transition to fully turbulent wake flow apparently takes place after sev-
eral successive transformations, at higher and higher values of Re, into more and
more asymmetric flow regimes. Breaking of symmetry properties leads not only to
more complicated spatial patterns but also to increasingly complex dynamics, i.e.,
makes the flow more and more tangled (see, e.g., Crawford and Knobloch (1991);
Dangelmayr and Knobloch (1991), and Hirschberg and Knobloch (1996)). Some of
these further transformations possibly represent Hopf bifurcations which increase by
one the number of degrees of freedom of the considered flow and may be described
by modified Landau’s equations.

Experimental data relating to circular-cylinder wake oscillations at very high
Reynolds numbers showed quite early that here the standard definition of the Strouhal
number does not allow a universal form of the St-Re relation to be obtained. There-
fore Roshko (1961) concluded that at such values of Re the cylinder diameter D
cannot be used as an appropriate length scale entering the definition of St; instead,
he recommended using the wake thickness H as a length scale and changing the
definition of the velocity scale (let us recall in this respect that just H was used as the
length scale in the linear stability theory of wake flows considered Sect. 2.93). Later
Bearman (1967) and Griffin (1981), trying to obtain the universal form of the St-Re
relation, suggested some other choices of length and velocity scales to make the wake-
oscillation frequency f dimensionless. Still later Adachi et al. (1966) measured, in a
range 1.5 × 104 <Re< 107 of Reynolds numbers Re =U0D/v, the vortex-shedding
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frequencies f for eight rough circular cylinders of a fixed diameter D with surfaces
covered by homogeneous roughnesses with the heights h of roughness elements sat-
isfying the inequalitites 4.54 × 10−6 < h/D< 2.5 × 10−3. Then they calculated for
all round frequencies f four different dimensionless combinations St = fL/V (differ-
ing by the used length and velocity scales L and V ; the definitions of St proposed by
Roshko, Bearman and Griffin were included in their list) and analyzed the depen-
dence of the obtained values of St on h/D and Re. They found that at h/D< 5 × 10−4

the roughness of the cylinder does not affect the wake characteristics and that at
such values of h/D the St-Re relation has the most universal form when Bearman’s
definition of St is used (such St preserves practically the same value in the whole
studied range of Reynolds numbers).

4.2.4.3 Wakes Behind Non-Circular Cylinders and Rectangular Plates

Above, wakes behind circular cylinders were considered almost exclusively. The
only exceptations were brief remarks about the two-dimensional wakes behind two
particular non-circular cylinders: one which was studied in experiments by Goujon-
Durand et al. (1994) and Wesfreid et al. (1996) and the other which was numerically
simulated by Zielinska andWesfreid (1995) andWesfreid et al. (1996) (see Fig. 4.21a,
b). In the remarks it was stated that these wakes are similar in many respects to the
circular-cylinder wake and, exactly like the latter, undergo a Hopf bifurcation at
Re = Recr of the order of a few tens. Now these remarks will be supplemented by
brief considerations of some other results relating to wakes behind non-circular
cylindrical bodies.

Let us beign with the results of Jackson (1987), who calculated the points of on-
set of vortex shedding in flows past a whole collection of non-circular cylinders. He
considered only purely two-dimensional wakes (i.e., the wake flows were assumed
to be independent of spanwise coordinate y) and did not try to apply time-consuming
direct numerical simulation to this problem. Instead, Jackson used a modification
of the simple method of direct location of the Hopf-bifurcation points outlined by
Griewank and Reddien (1983) (who in their turn relied on some ideas presented
in the collection edited by Mittelmann and Weber (1980)). This method deals with
dynamical systems described by systems of ordinary differential equations, and em-
ploys some general properties of bifurcating solutions at the Hopf-bifurcation points
to compute the position of these points without solving the given equations and
computing their eigenvalues.

In the case of flow around a cylindrical body the equations of motion depend on the
parameter Re, and its threshold value above which the periodic solution exists is just
the critical value Recr = (U0D/v)cr, symbolizing the emergence of a Hopf bifurcation.
Jackson’s method allows this value Recr to be computed directly, together with the
coordinate iω1 of a point of the imaginary axis where, at Re = Recr, the spectrum
of the Navier–Stokes eigenvalues crosses this axis indicating the appearance of flow
instability. The value of ω1 determined the shedding frequency fcr = −ω1/2π and
the Strouhal and Roshko numbers Stcr = fcrD/U0 and Rocr = fcrD2/v = StcrRecr at
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Fig. 4.24 Cross-sections of
the non-linear cylinders for
which Jackson (1987)
determined the points of onset
of the vortex shedding from
the cylinder body. (a) ellipses
oriented along the flow; (b)
ellipses oriented at angles θ to
the flow; (c) flat plates with
normals at angles θ to the
flow; (d) isosceles triangles
with apexes directed upstream
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b
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Re = Recr. (HereU0 is the constant velocity of the oncoming flow and D is the cross-
stream ‘thickness’ of this body indicated in Fig. 4.24). Jackosn made calculations
for cylindrical bodies with the following cross-sections: (a) ellipses with a principal
axis of length D perpendicular to the flow and a principal axis of length cD along
the flow direction, where c varies from 10−4 to 2; (b) ellipses with the major axis
twice as long as the minor axis, oriented at various angles θ to the flow direction
where 0◦ ≤ θ ≤ 90◦; (c) straight segments of finite length at various orientations θ
to the flow where 0◦ ≤ θ ≤ 60◦ (here ‘cylindrical bodies’ turn into thin flat plates, at
θ = 0 such a plate does not differ in fact from ellipse (a) with c = 10−4); (d) isosceles
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a b

Fig. 4.25 Dependence of the critical Reynolds number Recr (a), and the critical Strouhal number
Stcr (b) on the parameter c for wakes behind elliptic cylinders with cross-sections shown in
Fig. 4.24(a). (After Jackson (1987))

triangles with base of lengh D perpendicular to the flow, the apex toward the flow and
the height h of length cD where 0 ≤ c ≤ 2 (see again Fig. 4.24). For all these bodies
the values of Recr and Stcr were computed, and their dependence on the parameters
c and θ was presented in the form of tables and graphs (as an example, Fig. 4.25
shows the graphs for elliptic cylinders (a)). It was noted that in the case of a circular
cylinder (corresponding to the shape (a) with c = 1) the results agree well with those
of the previous experiments and numerical simulations by various authors (cf. the
similar remark on p. 110 where some references to earlier papers were given). The
results relating to some other elliptic cylinders (shapes (a) with c �= 1) were later
verified by Morzyński and Thiele (1991, 1992) who used another numerical method
and obtained the results close to those by Jackson. (Direct numerical simulation of
flows past some elliptic cylinders were carried out, in particular, by Mittal (1994)
and Mittal and Balachandar (1995b, 1996); here the values of St were determined for
several supercritical values of Re sometimes also exceeding the threshold value Re2,cr

for wake transition to three-dimensionality). For the case of the equilateral triangular
cross-section Jackson found that Recr ≈ 35; this estimate proved to be slightly lower
than the estimate Recr ≈ 38 found for this case by Zielinska and Wesfreid (1995)
but it agreed somewhat better with the subsequent results by Wesfreid et al. (1996)
according to which Recr = 36.2.

Jackson determined values of Recr and Stcr making use of the nonlinear bifur-
cation theory, but these results relate to the linear stability theory and hence they
might as well have been discussed in Chap. 2. (However, in Chap. 2, as a rule, only
results obtained in the framework of the parallel-flow approximation were consid-
ered while Jackson’s and Morzyński and Thiele’s computations dealt with the two
dimensional but non-parallel model). Similar stability computations were performed
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Fig. 4.26 Cross-sections of the square cylinder at zero incidence (a); of the square cylinder at
nonzero incidence angle α (b); of the oblong cylinder (c); and of the rectangular cylinder (d)

by Kelkar and Patankar (1992) for the case of a flow around a square cylinder at
zero incidence (i.e., with a plane face perpendicular to the stream; see Fig. 4.26a).
These authors calculated the solutions of two-dimensional Navier–Stokes equations
describing laminar steady flows around a square cylinder having constant velocity
U = {U0, 0, 0} far from this cylinder and corresponding to several moderate val-
ues of Re =U0D/v. Then the onset of unsteadiness (i.e., the emergence of a Hopf
bifurcation) was determined by numerical solution of the linear stability problem
for the computed laminar flows. Thus, the values of Recr and Stcr, corresponding to
the beginning of vortex shedding, were found for the wake behind a square cylinder
placed normal to an uniform flow (in particular, it was found that Recr = 53). Values
of St = St(Re) computed by Kelkar and Patankar for values of Re close to Recr were
compared with the results of Okajima’s (1982) laboratory measurements of Strouhal
numbers of the square-cylinder wake, and it was found that the numerical simulation
leads to results which agree well with the experimental ones.
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Table 4.1 Critical values Recr and Rocr corresponding to the start of vortex shedding from a square
cylinder at incidence, versus incidence angle α. (After Sohankar et al. (1997, 1998))

α 0◦ 10◦ 20◦ 30◦ 45◦

Recr 51.2 51.0 48.7 44.0 42.0
Rocr 5.9 6.2 6.1 5.4 5.2

Later Sohankar et al. (1997, 1998) and Sohankar (1998) carried out the nu-
merical simulation of flows around square cylinders at variable incidence (with
0◦ ≤ α ≤ 45◦ where α is the angle of incidence shown in Fig. 4.26b) at a number
of values of Re and deduced the dependence on the angle α of Recr = (U0D/v)cr and
Rocr = (fD2/v)cr = StcrRecr (where D = (cosα + sinα) D1 is the cross-stream ‘thick-
ness’ of the cylinder and D1 is the length of the square side; see again Fig. 4.26b).
Found by them values of Recr and Rocr at α= 0◦ proved to be close enough to Kelkar
and Patankar’s results; they are presented in Table 4.1 together with the results for
other values of α.

The method used by Sohankar et al. to obtain these results will be described at
greaterlength a little later, but now we will return to some results of Schumm et al.
(1994) which were omitted in discussion of this paper earlier in this section. The
point is that the results relating to the vortex-shedding flow behind a circular cylin-
der (which were summarized in Eq. (4.49) and Fig. 4.19 above) were supplemented
by Schumm et al. by results of similar experimental studies of wakes behind some
non-circular cylinders. Namely, together with the case of a circular-cylinder wake,
Schumm et al. investigated also the vortex shedding from an oblong cylinder without
sharp corners, with the cross-section sketched in Fig. 4.26c (where D = 0.69 mm,
D1 = 1.68 mm), and two rectangular cylinders (thick plates parallel to the flow di-
rection) with cross-sections of the shape shown in Fig. 4.26d. The wake behind
a piezoceramic oblong cylinder with the same cross-section was first studied by
Berger (1964, 1967) (see also Berger and Wille (1972)) who paid most attention
to the influence of cylinder oscillations on the wake flow. Schumm et al. used the
same cylinder and measured the oscillations of the transverse (‘vertical’) velocity
w(x, y, z, t) at the point (x/D, y/D, z/D) = (10, 0, 1) of its wake at different values
of Re =U0D/v and different stages of oscillation development. These measurements
allowed the calculation, in exactly the same way as for a circular-cylinder wake,
of the values of Recr and of all the coefficients in the corresponding Landau Eqs.
(4.34) and (4.34a). It was found that here Recr ≈ 79.2; γD2/v ≈ 0.116 (Re – Recr);
ω1D2/v ≈ 58.1; δ′/δ≈ −1.85. Moreover, it was also shown that here the growth rate γ
and the oscillation frequency ω1 have the same values at all points (x/D, 0, z/D) with
z/D = 1 and 10 ≤ x/D ≤ 40. These facts confirm that at Re = Recr a Hopf bifurcation
occurs, leading to a global mode of oscillations satisfying the Landau equation (see
the final paragraph of Sect. 2.93 and the beginning of the small-type text above).

Similar, but less complete, experimental results were obtained by Schumm
et al. for the wake behind a rectangular plate with D = 4 mm, D1 = 60 mm, and
the spanwise length L = 200 mm. (The second rectangular plate used by the au-
thors was noticeably larger, and its wake was studied only at greater values of Re
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which will not be considered here). It was shown that in the case of the first plate
Recr = (U0D/v)cr ≈ 135, and γD2/v ≈ 0.083 (Re – Recr). The authors remarked that
the coefficient 0.083 in the latter equation proved to be close to the value obtained
by Hannenmann and Oertel (1989) for the numerically-simulated two-dimensional
wake behind the rectangular plate (values of D and D1 were especially chosen by
Schumm et al. so that the ratio D1/D had the same value 15 as in the numerical
simulation). However, the value of Recr in the numerically-simulated wake was con-
siderably smaller than the value found in the laboratory experiment. Schumm et al.
assumed that this discrepancy can be due to deviation of the experimentally-produced
wake from the idealized purely two-dimensional numerical model of Hannemann and
Oertel.

For the case of square cylinders at zero incidence (where D1 =D2 = D) more
detailed investigations of wakes at moderate Reynolds numbers were carried out
by Sohankar et al. (1995, 1997, 1998, 1999) and Robichaux et al. (1999) (some
parts of this work were also considered in detail in Robichaux’s (1997) and So-
hankar’s (1998) theses). These authors based their work mainly on the analysis of
DNS (‘direct numerical simulation’) data but Sohankar et al. also included in their
papers experimental results of Norberg (partially presented in his paper of 1989),
which were also compared with the data of Okajima (1982, 1995) and of a few other
experimenters. It has been already stated above that Sohankar et al. (1997, 1998)
used numerical simulations of flows around square cylinders at various angles of
incidence α to determine the dependence of the critical values Recr and Rocr on the
value of α (the results were presented in Table 4.1). Now a little more will be said
about this work. Referring to Schumm et al. (1994) and Park (1994); Sohankar et al.
stressed that the onset of flow oscillations, caused by a Hopf bifurcation, can be
described by the Stuart-Landau Eq. (4.40) for the complex disturbance amplitude
A(t) (or, what is the same, by two real Eqs. (4.34) and (4.34a) for th real amplitude
|A| and phase φ). Following Park (1994), they chose the amplitude of the lift force
on the cylinder to be the amplitude A(t) (recall that the wake oscillations produced
by vortex shedding are due to a global instability mode where the values of γ (Re)
and ω1(Re) do not depend on the choice of amplitude A). Then they investigated the
growth of |A(t)| with t at various values of Re and α (in the ranges 45<Re< 200,
0◦ ≤ α ≤ 45◦) and determined the growth rate γ (Re, α) (representable as b(α)[Re –
Recr(α)] at small and moderate values of Re – Recr) and the Landau constant δ(Re,
α). Values of γ (Re, α) were used to determine the function Recr(α) while values
Stcr(α) = −ω1,cr(α)D/2πU0 were found with the help of Eq. (4.34a).

Moreover, the wake-flow simulations and/or measurements at supercritical
Reynolds numbers Re>Recr allowed determination of the dependence of a number
of a physical characteristics of vortex shedding (the Roshko and Strouhal numbers
Ro and St are typical examples) on Re and α. In particular, it was shown by Sohankar
et al. (1997, 1998) (who based their conclusion on the unpublished experimental data
of Norberg, supplemented by some new DNS data) that at α= 0◦ (i.e., for square
cylinders with one plane side facing the flow) the dependence of the Roshko number
Ro = St × Re = fD2/v on Re =U0D/v at Recr <Re< 200 is described with reason-
able accuracy by the Roshko law (4.47) (which agrees well with the Stuart–Landau



406 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

Fig. 4.27 The dependence of
the Strouhal number St = fD/
U0 on the Reynolds number
Re =U0D/v for wakes behind
square cylinders at zero
incidence according to
various experimental and
numerically-simulated data.
(After Sohankar et al. (1997,
1999) and Robichaux et al.
(1999)) (a) Summary graph
by Sohankar et al. collecting
various experimental (Exp)
and numerically simulated
(relating to a two-dimensional
(2D) or a three-dimensional
(3D) wake model) data. The
solid line represents the
empirical law (4.52): St =
0.18-3.7/Re. (b) Numerically
simulated data (Robichaux
et al. 1999) corresponding to
a 3D wake model, and their
comparison with the
experimental data of
Williamson (1996b) for
circular-cylinder wake
oscillations

b
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Eq. (4.34) and (4.34a)). According to Sohankar et al. this law here as the form:

Ro = 0.18 Re −3.7 (4.52)

(and hence a = 0.18, a1 = 3.7 for wakes behind square cylinders at zero incidence).
This conclusion was repeated for the indicated range of Reynolds numbers in the
next paper by Sohankar et al. (1999); see Fig. 4.27a reproduced in the papers of
1997 and 1999. Then Robichaux et al. (1999) independently determined from their
two-dimensional DNS data the St-Re relation for the square-cylinder wake in the
range 70<Re< 230; their result is presented in Fig. 4.27b together with the similar
curve for the circular-cylinder wake (this curve is based on the results collected by
Williamson (1995, 1996a, b, c) and it extends only slightly the ‘universal St-Re
relation’ shown in Fig. 4.20). One can see that St-Re data in Fig. 4.27b relating
to square-cylinder wakes are much less scattered than those in Fig. 4.27a, where
data from a number of quite different sources (having different accuracy) sources
are collected, but on the whole data of Robichaux et al. for 70<Re< 200 do not
disagree greatly with the results presented in Fig. 4.27a and with Eq. (4.52).
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As to the comparison of St-Re relations for square—and circular-cylinder wakes,
Robichaux et al. noted that the considerably smaller values of St, and their non-
monotonic dependence on Re, in the case of a square cylinder may be explained by
the fact that such a cylinder is a much bluffer body than the circular one. The blunt
upstream face of the square cylinder, and its sharp edges, lead to flow separation
and the formatin of recirculation regions on the top and bottom faces. These features
lead to increase of the effective cross-stream thickness of the body. Therefore, the
flow upstream of the cylinder actually sees a body with the increased ‘effective
thickness’ D∗>D. Since St = fD/U0 contains the body thickness as a factor, the
use of an underestimated value of the effective thickness leads to an underestimate
of the prompted by physical arguments value of St and, since this underestimate
increases with the growth of Re, it can lead to non-physical decrease of St as Re
increases. Robichaux et al. introduced a plausible Re-dependent estimate of the
‘effective thickness’ D∗ of the square cylinder and showed that replacement of D by
D∗ in the expression for St implies an St-Re relation for a square cylinder which does
not differ much from the relation for a circular cylinder. It will be shown later that
similar reasoning can be used to explain the form of the measured St-Re relation for
wakes of flat plates parallel to the stream direction.

Let us stress, however, that the study of the St-Re relation for the square-cylinder
wake in a limited range of moderate Reynolds numbers was not the main purpose
of the papers by Sohankar et al. (1999) and Robichaux et al. (1999). Both groups of
authors took into account the available results of investigations of circular-cylinder
wakes, which showed that the simple two-dimensional wake transforms into a more
complicated three-dimensional form at Re = Re2,cr ≈ 190, while at still greater Re
the wake even contains two different three-dimensional modes, A and B, having
specific symmetry properties (see the end of part (b) of this section). Therefore,
they decided to check whether or not a similar transition to three-dimensionality
takes place in the square-cylinder wake. With that end in view, Sohankar et al.
collected and analyzed numerous results of measurements in air and water flows
and of two- and three-dimensional (2D and 3D) direct numerical simulations of
unsteady flows around a square cylinder at zaero incidence for a wide ragne of
Reynolds numbers, Re = 150 −1,000 (see Fig. 4.27a). Note that the analyzed data
included the experimental and 2D an 3D simulated results of the authors themselves
at Re = 150 −500; this range also extends well above the circular-cylinder critical
value of Re2,cr. The data in Fig. 4.27a show that Re = 200, which was the highest
value of Re inspected in the papers of 1987 and 1988, is close to the upper bound
of the Re-region where Eq. (4.52) is valid. At higher values of Re this equation is
clearly incorrect, and there the results of 3D numerical simulations agree much better
with the experimental data than the results of 2D simulations. (The incorrectness, at
large values of Re, of the results of 2D simulations of flows around cylindrical bodies
was also noted by Tamura et al. (1990)). The 3D numerical simulations performed
by Sohankar et al. also showed that the two-dimensional square-cylinder-wake flow
becomes unstable and undergoes transition to a three-dimensional form at some Re
between 150 and 200. It was also shown that three-dimensional wake flow includes
both the three-dimensional instability modes, A and B, which were observed in
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circular-cylinder wakes, and in a square-cylinder wake these modes have spatial
structures similar to those of circular-cylinder modes A and B. There are, however,
also some new features specific to square-cylinder wakes; e.g., at Re = 200 −300 in
such wakes some low-frequency lift force pulsations were detected, which apparently
do not exist in circular-cylinder wakes. At the same time the Strouhal numbers and
mean drag values given by 3D numerical simulations were found to be in satisfactory
agreement with experimental results (for St, the validity of this conclusion is seen in
Fig. 4.27a).

Robichaux et al. (1999) performed only 2D numerical simulations of the square-
cylinder wake and considered a restricted range of Reynolds numbers, 70 ≤ Re ≤ 300.
However, they then applied to the simulated two-dimensional models of wake flows
a three-dimensional linear theory of hydrodynamic stability of the same type as that
used by Barkley ad Henderson (1996) on a 2D model of the circular-cylinder wake.
That is, they investigated the stability of 2D wake flows to infinitesimal 3D dis-
turbances depending periodically on the spanwise coordinate y. This investigation
showed that at Re ≡ Re2,cr ≈ 160 (more precisely, at some Re in the range 162 ± 12)
the 2D square-cylinder wake becomes unstable to 3D disturbances with a spanwise
wavelength (non-dimensionalized by the side length D) λy, cr ≈ 5.22. The corre-
sponding three-dimensional unstable mode oscillates with a frequency equal to that
of the vortex shedding and has a spatial structure similar to that of mode A of the
circular-cylinder wake; therefore it was natural to call it mode A too. The second
3D unstable mode (‘mode B’), with the same frequency as the first one and a spatial
structure similar to that of mode B of the circular-cylinder wake, was also discovered
in the square-cylinder wake by stability analysis of Robichaux et al.; it becomes un-
stable at a slightly greater Reynolds number Re3,cr ≈ 190 (more precisely, 190 ± 14)
and has dimensionless spanwise wavelengthλ2,y, cr ≈ 1.2. Moreover, Robichaux et al.
found that in the square-cylinder wake there also exists a third mode of unstable 3D
disturbances (having specific spatial structure) which apparently does not exist in
the wake of a circular cylinder; this mode (which was called ‘the mode S’ by the
authors) becomes unstable at Re ≡ Re4,cr ≈ 200 (more precisely, 200 ± 5), which
differs very little from Re3,cr, and has dimensionless wave length λ3,y, cr = 2.8 inter-
mediate between λy, cr and λ2,y, cr. However, this new mode is subharmonic, with an
oscillation period twice the shedding period of the primary two-dimensional state
(and hence with half the shedding frequency). The discovery of modes A and B by
the linear stability analysis of Robichaux et al. confirmed the corresponding results
by Sohankar et al. found by a quite different method, specifically a fully-nonlinear
three-dimensional DNS, while the discovery of the subharmonic mode S by Ro-
bichaux et al. had something in common with the discovery by Sohankar et al. of
low-frequency oscillations of the DNS data. (The lack of complete coincidence of the
results of two groups seems only natural since the methods used were too different;
in particular, the 3D DNS results depend on the choice of the spanwise aspect ratio
L/D, which took values of only 6 and 10 in the simulations of Sohankar et al., while
the two-dimensional primary flow of the stability analysis correspond to L/D = ∞).

Let us now return to the elongated rectangular cylinders with D1/D = 15 used
in the wake studies of Hannemann and Oertel (1989) and Schumm et al. (1994).
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These cylinders represent some examples of rectangular plates of finite thickness
placed parallel to the flow direction. Other examples of such plates were considered
by Nakayama et al. (1993) who performed 2D numerical simulations of the wakes
behind plates, parallel to the flow, of thickness D with values of D1/D varying
from 3 to 10 for two Reynolds numbers U0D/v = 200 and 400. For both values of
Re it was found that the Strouhal number, St = fD/U0, varies when the value of
D1/D changes. More detailed numerical simulation of velocity oscillations in the
wake behind a rectangular plate of finite thickness were performed by Hammond
and Redekopp (1997) who used another idealized two-dimensional model of such
a wake. Namely, these authors assumed that the plate, of thickness D, is semi-
infinite (filling the volume −∞< x ≤ 0, −∞< y<∞, −D/2< z<D/2) and that
along opposite sides of this plate two independent plane-parallel streams are flowing
in the Ox direction, with the same (nominally Blasius) velocity profile corresponding
to given velocity U0 outside the boundary layer. (The authors also investigated the
case of an asymmetric wake where the limiting velocities U1 and U2 outside the
upper and lower boundary layers differ from each other; however, we will not linger
on the results of this case). Hammond and Redekopp studied the oscillations of the
streamwise and transverse (‘vertical’) velocity components u(x, z, t) and w(x, z, t)
at the point (x/D, z/D) = (1, 0.5) and found that at not too large positive values of
Re – Recr (where again Re =U0D/v) the amplitudes of both these oscillations satisfy,
with high accuracy, the same Landau Eqs. (4.34) and (4.34a) with the coefficients:
γD/U0 ≈ 0.0078(Re −Recr) where Recr ≈ 120 (this value is greater than that found
by Hannemann and Oertel and does not differ too much from experimental value of
Schumm et al)., ω1(Recr)D/U0 ≈ −0.61, and δ′/δ≈ −1.37. It was also verified that
the values of these coefficients were independent of position over a large region of
the (x, z)-plane. Thus we see that this numerical simulation also confirms the fact
that at Re = Recr a Hopf bifurcation occurs in the flow behind a rectangular plate,
and leads to the appearance of a global mode of oscillation with a complex amplitude
A(t) that satisfies the Landau Eq. (4.34–4.34a).

Plates of rectangular section, whose wakes were investigated by Hannemann and
Oertel (1989); Nakayama et al. (1993); Schumm et al. (1994) and Hammond and
Redekopp (1997), can be considered as models of an idealized infinitely thin flat
plate parallel to the flow direction. It was indicated in Sect. 2.93 and recalled again
on p. 108 of the present section that the laminar wake behind such a plate has the
‘Gaussian’ velocity profile of Eq. (2.89). The results of linear stability analysis were
presented in Fig. 2.34, and from these the values of Recr, kcr andω1,cr for the wake of
a thin flat plate can be evaluated. However, selection of the most appropriate length
and velocity scales is not a trivial matter in this case, since it is clear that the very
small ‘thickness’ of the plate cannot be used now as a reasonable length scale. In
Sect. 2.93 and Fig. 2.34 the half-width of the laminar wake was used as the length
scale H (the increase of the width with x was neglected) and the difference between
U0 and the velocity at the laminar wake center-line was chosen as the velocity scale,
but both these scales are irrelevant when wake behavior at supercritical Reynolds
numbers Re>Recr is considered. Therefore, when Eisenlohr and Eckelmann (1988)
investigated, in a wind tunnel, the wakes behind eight different thin plates with blunt
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Fig. 4.28 The dependence of the Strouhal number St = fD +/U0 on the Reynolds number
Re =U0D +/v, where D + = D + 2δ∗, in the case of wake oscillations behind thin plates of thickness
D. (After Eisenlohr and Eckelmann (1988)) the dotted line represents the empirical relation (4.52a):
St = 0.286 −39.2/Re. Different symbols (which are often superimposed on each other) correspond
to different plates

trailing edges (and having a thickness D varying from 1 to 8 mm, with spanwise
width L and streamwise length D1 in the ranges from 280 to 500 mm and from 200
to 800 mm, respectively), they utilized quite different scales for reduction of wake
characteristics to dimensionless form. Namely, they used the undisturbed velocity
U0 of the oncoming stream as the velocity scale while the sum D + = D + 2δ∗, where
δ∗ is the displacement thickness of the upper or lower boundary layer near the trailing
edge of the plate, was taken to be the length scale. (the length D + , which was first
introduced by Bauer (1961), evidently characterizes the real ‘height’ of a barrier
restraining the flow. This length is similar in many respects to the length scale D∗
used by Robichaux et al. (1999) for reduction of the great difference between the St-
Re relations for circular-cylinder and square-cylinder wakes; see Fig. 4.27b above
and explanations relating to it in the text). Eisenlohr and Eckelmann showed that
this definition of the length scale leads to a universal value of the critical Reynolds
number, Recr = (U0D +/v)cr ≈ 140, and to a universal form of the general flat-plate
Roshko law (4.47):

Ro = 0.286 Re −39.2 (4.52a)

(where Ro = fD + 2/v and f is the frequency of wake oscillations) which was found to
be valid with quite satisfactory accuracy for all the plates and all the considered (rather
large) values of Re (see Fig. 4.28). Since the boundary-layer thickness δ∗ grows with
the stream length D1 of the plate, one may try to use Eq. (4.52a) to explain of the
dependence of the values of StD = fD/U0 at fixed ReD =U0D/v on D1/D found by
Nakayama et al. (1993), but Nakayama et al. did not do this. However later Hammond
and Redekopp (1997) recalculated some of their results, in which the plate thickness
D had been used as the basic length scale, by including the displacement thickneses of
the two boundary layers in the length scale. They found that, with this normalization,
their numerically-simulated data led to dimensionless values of f which agreed quite
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satisfactorily (with a difference of about 4 %) with those observed by Eisenlohr and
Eckelmann (1988) at the same values of Re (calculated using the new length scale).
This agreement clearly provides additional validation of the results of both these
papers.

As was explained above, the law (4.47) (whose particular cases include (4.52) and
(4.52a)) is in fact a consequence of the Landauf-Stuart Eqs. (4.34–4.34a) and Eq.
(4.46) Since in the case of a flat-plate boundary layer δ∗ ∝ (U0)−1/2 (more precisely,
δ∗ ≈ 1.73(vL1/U0)1/2; see, e.g., Eq. (1.56) in the book by Monin andYaglom (1971)),
Eq. (4.52a) explains the old observation by Taneda (1958), who discovered that in
the wake behind a thin flat plate parallel to the flow the oscillation frequency f grows
with the flow velocity U0, not linearly (as in the case of a circular-cylinder wake
where the linear relation between f and U0, i.e. the constancy of St, was established,
for a wide range of Reynolds number, by Strouhal (1878) and Rayleigh (1894) and
at large values of Re follows from Eq. (4.47a)), but in proportion to (U0)3/2. In fact,
when the thickness D of a plate is much smaller than the boundary-layer thickness
δ∗, D + = D + 2δ∗ is practically proportional to (U0)−1/2 while Re =U0D +/v ∞
(U0)1/2. Then Eq. (4.52a) implies that f ∝ (U0)3/2 at large values of U0—this is just
the result found by Taneda (1958) which was confirmed by the data by Eisenlohr
and Eckelmann shown in Fig. 4.28. However, in flows around circular cylinders
δ∗ is much smaller than the cylinder diameter D; therefore here the boundary-layer
thickness may be neglected and hence f ∝ U0 approximately.

Computations of Hannemann and Oertel, Nakayama et al., and Hammond and Re-
dekopp, and also the measurements by Schumm et al. and Eisenlohr and Eckelmann,
concern two-dimensional flat-plate wakes only. However Meiburg and Lasheras
(1988) and Lasheras and Meiburg (1990) have demonstrated, both experimentally
and by numerical simulations, that two different three-dimensional vorticity modes
can be generated at moderate values of Re in the two-dimensional wake behind a
thin flat plate, by introducing spanwise-varying disturbances in the flow near the
trailing edge of the plate. The authors described the symmetry properties of these
two modes, which later proved to be practically coincident with the symmetries of
the modes A and B in circular-cylinder wakes, first discovered at approximately the
same time (in particular, by Williamson (1988b)), but investigated in detail only later.
According to Julien et al. (1997) both these modes can also occur in the undisturbed
flat-plate wake (apparently at greater values of Re). Therefore, one may surmise that
the evolution of the wake of a thin flat plate with increasing Re is similar to that of the
wake behind a circular cylinder. Let us recall in this respect that the same similarity
to circular-cylinder wakes was discovered by Sohankar et al. (1999) and Robichaux
et al. (1999) for wakes behind square cylinders facing the flow.

A thin flat plate parallel to the flow direction corresponds to the special case
of a rectangular cylinder with cross-section shown in Fig. 4.26d where D �D1

(and hence it is possible to consider the limiting case where D/D1 → 0). Another
interesting limiting case occurs when D �D1; it corresponds to flows around long
thin plates of finite width D placed in a uniform stream of velocity U0 but this
time normal to the stream direction. The two-dimensional vortex-shedding regime
of the wake behind such a plate was briefly considered by Jackson (1987) (the case
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Fig. 4.29 General view of the
cross-section of a rectangular
cylinder at angle of
incidence α

of the cross-section shown in Fig. 4.24c corresponding to θ = 0); according to this
computations the transition from a steady wake regime to an oscillating, vortex-
shedding, regime occurs here at Re = Recr ≈ 27.77 and the frequency of oscillations
arising at this Re corresponds to a Strouhal number Stcr ≈ 0.1237. More detailed
investigations of the normal-plate wake regime at higher values of Re were carried out
by many researchers; here we will mention only Roshko’s (1993) survey paper and the
short announcement, and rather long subsequent paper, by Najjan and Balachandar
(1996, 1998) devoted to discussion of the recent DNS results and also containing (in
the paper of 1998) an extensive list of references relating to this subject.

The cited papers on square-cylinder and flat-plate wakes represent only a few
examples of numerous studies of wakes behind square and non-square rectangular
cylinders, placed along the spanwise axis Oy, in a uniform stream at different angles
of attack α between 0 and 90◦ (see Fig. 4.29). Many characteristics of such wakes (in
particular, frequencies of wake oscillations, fluctuating velocities at various points,
and pressure, drag and lift forces) were measured by Okajima (1982); Okajima and
Sugitani (1984); Knisely (1990), and Norberg (1993), among others, while papers
by Davis and Moore (1982); Davis et al. (1984); Franke et al. (1990); Okajima
(1990, 1995); Okajima et al. (1992); Li and Humphrey (1995); Sohankar et al.
(1995, 1997, 1998, 1999), and some other authors concentrated mainly on analysis
of numerical-simulation data but often included supplementary experimental results
and cited many additional references. Below we will briefly consider only a small
part of the material presented in the above list of papers, which is itself very far from
being complete.

Franke et al. (1990) numerically simulated square-cylinder wakes at zero in-
cidence and 40 < Re < 300, and compared the resulting St-Re relation with the
experimental data of Okajima (1982) and the experimental and numerical data of
Davis and Moore (1982) and Davis et al. (1984). They found relatively large dis-
crepancies between the results, and came to the conclusion that there were apparently
some significant uncertainties in both experiments and simulations. Knisely (1990)
performed numerous measurements (both in a wind tunnel and a water channel) of
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characteristics of wakes behind square and non-square rectangular cylinders with
side ratios D2/D1 ranging from 0.04 to 1 and with angles of attack α from 0 to
90◦ (the data for α = 0 and 90◦ were naturally the most numerous) and supple-
mented his experimental results by an informative review of similar data from other
researchers. In particular, Knisely presented many graphs showing the dependence
of the Strouhal number St = fD/U0 (where f is the frequency of wake oscillations,
U0 is the free-stream velocity, and D = D1cos α+ D2sin α is the apparent thickness
of the rectangle seen from the front, as indicated in Fig. 4.29) on the angle of attack
α, for wakes of cylinders with various D2/D1 (but Re was often not held constant
in his experiments). Norberg (1993) measured, in a wind tunnel, the values of the
Strouhal numbers St and pressure forces for wakes behind rectangular cylinders of
high aspect ratio L/D1 > 50 (where L is the spanwise length of a cylinder) having
various side ratios D2/D1 (in the range from 1 to 5), and placed at various angles
of attact α in streams corresponding to various Reynolds numbers Re =U0D/v. The
values of St were first of all measured for the case where α= 0o is fixed but the
ratios D2/D1 and Reynolds numbers Re take various values. This allowed Norberg
to determine the dependence of the number St on D2/D1 at different values of Re,
and on Re (in the range 400 ≤ Re ≤ 3 × 104) at a number of values of D2/D1. Then
the values of St were measured at various values of all three parameters Re, D2/D1

and α and the dependence of St on α was graphically presented at a number of values
of Re andD2/D1. Li and Humphrey (1995) analyzed the numerically-simulated data
on the St-Re relation for wakes behind square cylinders at various orientations and
100<Re< 1,000.

The examples of rectangular-cylinder-wake studies presented here should give
a general idea of this extensive field of research, which is quite important in prac-
tice. The studies of the wakes behind non-circular and non-rectangular cylindrical
bodies are much less numerous than those for the cases of circular and rectangular
cylinders, and here only two typical examples of such studies will be mentioned.
Eibeck (1990) compared, for Re =U0D/v = 1.3 × 105, the data of circular-cylinder
wake measurements with results of similar measurements behind a cylinder with
the tapered cross-section having a circular (of diameter D) upstream part turning
smoothly into a triangular downstream part with a sharp angle at the apex (so that the
streamwise lengthD1 of the considered cylindrical body was almost 2.5 times greater
than its thickness D). He found that the vertical structures differed appreciably in
two compared wakes. Breier and Gatzmanga (1995) measured, in a wide range of
Reynolds numbers, the St-Re relations for wakes behind cylindrical bodies of rect-
angular, triangular, trapezoidal, and a more complicated combined cross-sections,
trying to determine in which case St is practically independent on Re in the most
wide range of Reynolds numbers. Their purpose was to find the cross-section guar-
anteeing that the wake-oscillation frequency is proportional to flow velocity U0 in a
wide ragne of velocities, and hence the velocity measurements can be replaced by
more simple frequency measurements. (The utilization of wake-frequency measure-
ments for determination of flow velocity was first suggested by Roshko (1953, 1954)
and later was practiced on a large scale; see, e.g., the discussion of this subject by
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Takamoto (1987)). Some recommendations relating to this matter are included in the
Breier and Ganzmanga’s paper.”

4.2.4.4 Wakes Behind Tapered Cylinders and Circular Rings

Now we will turn to wakes behind bluff bodies nonhomogeneous in the ‘spanwise’
direction (in contract to ‘spanwise homogeneous bodies’ considered above). We will
begin with the case of vortex shedding from linearly tapered cylinders of length
L with diameters D1 and D2 <D1 of two ends at the points with coordinates (0,
0, 0) and (0, L, 0) (if D2 = 0, the cylinder clearly becomes a cone). As in the cases
considered above, the axis Oy (directed along the cylinder or cone axis) is assumed
to be orthogonal to the stream direction Ox, but now circular cross-sections of a
cylinder have diameters diminishing linearly with y. The study of vortex shedding
from tapered cylinders was initiated by two papers by Gaster (1969, 1971) who
investigated the wakes behind such cylinders placed in a water tunnel at first (in the
paper of 1969) for the cases of the taper ratios RT = L/(D1 − D2) equal to 36 and
18 and then (in 1971) for the case of a more mildly tapered cylinder with RT = 120
(the wake behind a circular cylinder was also studied in the latter paper which has
been already referred to above in this connection). Later, further measurements of
vortex shedding from linearly tapered cylinders and cones, with different values of
RT (ranging from 13 to about 600) and φ= tan−1 [(D1 −D2)/2L] were obtained, in
particular, by Piccirillo (1990); Van Atta and Piccirillo (1990); Noack et al. (1991);
Papangelou (1991, 1992), and Piccirillo and Van Atta (1993), while Jespersen and
Levit (1991) carried out a numerical simulation of the flow past a tapered cylinder
with RT = 100.

In 1969 Gaster found that wake oscillations behind a tapered cylinder do not
have one dominant frequency f but are characterized by a combination of two quite
different main frequencies f1 and f2 � f1 (the frequency f2 modulates the high-
frequency wake oscillations and depends only on (U0)2/v but not on the body length
scales). In the second paper (1971) his measurements at RT = 120 showed that the
wake oscillations have a definite cellular nature, i.e. are composed of spanwise
cells with a constant dominant shedding frequency which changes from cell to cell.
Later such cells were discovered in all the wakes of tapered cylinders and cones
considered in the above-mentioned papers, whenever Remax =U0D1/v was not too
large. It was found that the cells often have clear boundaries and quite definite
dominant frequencies (see, e.g., a typical example shown in Fig. 4.30a). Recall that
cellular structure was also found by many authors in the wakes of circular cylinders,
but there the cells usually depended essentially on conditions at the cylinder ends,
while in the cases of tapered cylinders no influence of the end conditions on the cell
structure was found. (In this respect the cells behind tapered cylinders are similar to
cells of circular-cylinder wakes in shear flows with undisturbed velocity U0 =U0(z)
having a constant velocity gradient dU0/dz, studied, e.g., by Griffin (1985) and Woo
et al. (1989)).
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a
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Fig. 4.30 (a) The dependence of the measured dominant frequency f of wake oscillations at
points {x, 0, y} (where x ≈ 15 mm is fixed) behind the tapered cylinder on the spanwise coor-
dinate y. (After Papangelou (1991, 1992)). The cylinder with the end diameters D1 = 2.57 mm,
D2 = 1.55 mm and the length L = 202 mm was placed normal to the air flow of velocity U0 such
that Remax =U0D1/v = 123, (b) Values of the frequencies f (y) computed by the Ginzburg–Landau
model Eq. (4.50) with the appropriately chosen coefficients. (After Papangelou (1991, 1992))

The dependence of the cell lengths and frequencies on the values of the taper
ratio RT and of the maximal and mean Reynolds numbers Remax and Remean =
U0(D1 +D2)/2v was investigated carefully by Van Atta and Piccirillo (1990); Piccir-
illo and Van Atta (1993) and Papangelou (1991, 1992). It was found in particular that
the difference in shedding frequencies between adjacent spanwise cells is a constat,
coinciding with Gaster’s modulation frequency f2, and that the spanwise length of
a cell divided by the cylinder diameter at the cell midpoint Dcm multiplied by RT

is also constant if Recm =U0Dcm/v> 100. Piccirillo and Van Atta (1993) also found
that the dependence of the cell Strouhal number Stc = fcDcm/U0, where fc is the
frequency of cell oscillations, on the cell Reynolds number Rec =U0Dcm/v may be
approximated with reasonable accuracy by the Rayleigh-Roshko law (4.47a) with
constant coefficients a ≈ 0.195 and a1 ≈ 5.0.

The Roshko law is a consequence of the Landau Eq. (4.34) and (4.34a) but now Stc
and Rec vary with the spanwise coordinate y. Therefore an analytic model describing
wake oscillations behind tapered cylinders and cones must include the dependence
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on y in some way. The first, rather crude, model of this type was proposed by
Gaster (1969) who described the wake oscillations u(x, t) by a system of coupled
equations representing nonlinear van der Pol oscillators (with a coupling described
by a spanwise-diffusion term proportional to ∂2u/∂y 2) and corresponding to different
spanwise coordinates y. This model was later refined by Noack et al. (1991), who
applied their modification of Gaster’s model to describe the cellular structure of wakes
behind both untapered and tapered circular cylinders. However Papangelou (1992)
found that the model of Noack et al. successfully describes only the appearance of
spanwise cells, not their quantitative characteristics. Therefore he tried to utilize the
Landau–Ginzburg model (4.50) for this purpose. The estimates (4.48) of complex
coefficients ω=ω1 + iγ and l = δ+ iδ′ given by Sreenivasan et al. (1987) were used
in Papangelou’s model, together with their estimate Recr ≈ 46 of the critical Reynolds
number (but now the values of D and Re =U0D/v were dependent on y) while the
coefficient μwas assumed to be real and positive (contrary to the applications of Eq.
(4.50) to modeling of wakes behind non-tapered cylinders described above, whereμ
was always assumed to be complex). Solutions of the corresponding Eq. (4.50) with
various positive values of μ showed that this value may be chosen in such a way that
the solution will satisfactorily describe many (though not all) quantitative features
of the observed cell structure (see, e.g., Fig. 4.30b).

Tapered cylinders and cones with axes orthogonal to the stream direction represent
only one special class of spanwise-inhomogeneous bluff bodies. Now we will turn
to another class of such bodies, to whose wakes the G-L model (4.50) was also
applied with definite success. Recall first of all that this model, supplemented by
the appropriate boundary conditions at cylinder ends, allows a number of important
characteristics of wakes behind circular cylinders to be calculated with satisfactory
accuracy. However the experiments show that the flow regime of such a wake depends
very substantially on the details of flow conditions near the cylinder ends, and this
circumstance essentially complicates the determination of the boundary conditions
which are ‘appropriate’ for a given experiment. Therefore as a rule, calculations
based on the G-L model use some artificial boundary conditions selected by the
requirement to produce results consistent with the available data. Because of this,
Leweke et al. (1993a, b) and Leweke and Provansal (1994, 1995) applied the same
model to the case where a cylinder of finite length was curved into a torus (a circular
ring) so that no end conditions were needed.

Roshko (1953, 1954) was apparently one of the first researchers to study the
wake behind a circular (toroidal) ring placed perpendicular to a uniform stream of
velocity U0. He showed that for L/D ≥ 10 (where L is the ring outside diameter and
D is its cross-section diameter) and for a not-too-small value of Re =U0D/v, vortices
are shed from a ring in almost the same way as from a straight cylinder, and form
an annular vortex street. Later it was realized that frequency measurements in such
wakes can be successfully used for the flow-velocity determinations (see the remark
at the end of the previous part (c) relating to this matter) and this fact stimulated more
detailed experimental investigations of wakes behind rings by Takamoto and Izumi
(1981); Monson (1983); Takamoto (1987) and Bearman and Takamoto (1988) (in
the two latter papers, wakes behind circular rings of trapezoidal cross-section were
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studied in detail, and wakes of some rings with rectangular and triangular cross-
sections were also considered in passing), and finally by Leweke and his coworkers,
whose studies of 1994 and 1995 of wakes behind toroidal rings contain the most
interesting experimental data for the subject considered here. It was found in these
works that the vertical structure behind a ring of circular shape can have a number
of different forms: the wake can consist of an array of counter-rotating vortex rings
parallel to the central plane of the toroidal solid ring, or of counter-rotating inclined
vortex rings (i.e., shed at some angle θ with respect to the plane of symmetry of the
torus), or of a pair of counter-rotating helical vortices (i.e., any inclined vortex after
one ‘round’connects to the next one) with discrete helix steps of 2πn/k (where n is an
integer and k is a fixed streamwise wave number of wake oscillations), or of groups
of interwoven helical vortices, and so on. Thus, a number of different normal modes
can exist in the ring wakes. The number n (which can take either sign) also determines
the dependence of the phase � of the wake velocity oscillations on the ‘spanwise
coordinate’y =Lφ/2 (where φ is the angular coordinate of the cylindrical coordinate
system (x, r, φ) with the origin at the center of symmetry of the toroidal ring). Namely,
as y increases from y = 0 (at an arbitrary point of the ring) to y =πL =L1 (where
L1 is the length of the outer circle of the torus), the difference �(y) −�(0) changes
from zero to 2πn. If n = 0, the vortex rings are parallel to the torus midplane and
hence correspond to ‘parallel shedding’ with θ = 0, while the wake structures with
n �= 0 are produced by ‘oblique shedding’, with shedding angle θ �= 0 depending in
a definite way on n, D, L and k. Leweke and Provansal (1995) constructed graphs
representing the St-Re relations (where again St = fD/U0, Re =U0D/v and f is the
frequency of wake oscillations) for various values of n and showed that Williamson’s
‘cosine law’ of oblique shedding is valid here too, with high accuracy. (This means
that if St is the Strouhal number corresponding to oblique shedding at angle θ , the
Stm = St/cosθ practically coincides with the value of St corresponding to parallel
shedding, i.e. n = 0, at the same values of Re and L1/D). Generally speaking, the
values of St depend on three variables-the aspect ratio L1/D, n and Re, if n = 0 the
St-Re relation for the ring wake tends, asL1/D → ∞, to the straight-cylinder relation
shown in Fig. 4.20 (see Fig. 4.31).

The experiments also show that in the wake of a ring, every mode of wake os-
cillations is characterized by its own critical Reynolds number Recr, n, so that at
Re<Recr, n the nth-mode disturbances cannot exist at all (any such disturbance dies
down to zero whatever the initial amplitude). The Reynolds numbers Recr, n are
ring-wake equivalents of the critical Reynolds number Recr ≈ 46 characterizing the
beginning of the vortex shedding in the circular-cylinder wake, but now the tran-
sition Reynolds number depends on the number n of the emerging vertical mode,
and hence the whole family of integers n must be considered. Moreover, the nth
mode is itself stable only for a definite Reynolds-number range Recr,n < Re < Re∗

cr,n
while at Re > Re∗

cr,n this mode becomes unstable to small disturbances and therefore
transforms into a different, more complicated, vortical structure. (Reynolds number
Re∗

cr,n is the nth-mode ring-wake equivalent of the Reynolds number Re2,cr ≈ 190
characterizing the beginning of instability of the two-dimensional Bénard-Kármán
vortex street produced by parallel vortex shedding; now it also depends on the mode
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Fig. 4.31 Comparison of the St-Re curves for parallel vortex shedding (i.e., n = 0) from rings of
different aspect ratios L1/D with the curve for a straight cylinder: L1/D = 99.5 (- - -), 59.0 (- - - - -),
and 31.5 (- - � - -); straight cylinder (——) (After Leweke and Provansal (1995))

Fig. 4.32 Stability domains
Recr,n < Re < Re∗

cr,n of
periodic-vortex-shedding
modes with different values
of n for the wake of a ring
with aspect ratio L1/D = 59.0.
(After Leweke and Provansal
(1995)). The numbers
indicate the critical Reynolds
numbers Recr,n and Re∗

cr ,n

number n). The ‘stability regions’ Recr,n < Re < Re∗
cr,n corresponding to various

modes of ring-wake oscillations often overlap (see the typical Fig. 4.32 showing
some experimental data of Leweke and Provansal (1995)). Therefore for many val-
ues of Re several normal modes are stable simultaneously. Apparently the initial
conditions alone determine which mode will dominate the wake oscillations in such
cases. It was also shown that the vortical structure of the wake depends significantly
on the aspect ratio L1/D. In particular, for aspect ratios smaller than about 20, the
ring wake behaves similarly to the wake of a solid disk. On the other hand, for
20<L1/D< 100 the ring curvature plays relatively minor role, and locally the wake
has an appearance similar to that of the wake of a straight long cylinder. (However the
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minimal critical Reynolds number Recr = Recr,0 depends here on the body-curvature
parameter K = D/L1 and increases nearly linearly with K; see again the paper by
Leweke and Provansal (1995)). Referring to the similarity of the ring wake to that of
straight cylinder, Leweke et al. (1993a, b) applied the G-L Eq. (4.50) to the wake of
a ring, with the same numerical coefficients as were used successfully in the case of
the wake of a straight circular cylinder. However, later Leweke and Provansal (1994,
1995) carried out a direct experimental determination of some coefficients of Eq.
(4.50) for ring wakes.

Leweke and Provansal used the fact that the boundary conditions for the amplitude
A(y, t) of wake oscillations in the case of the wake of a ring have a very simple form:
here evidently 0 ≤ y ≤L1 and A(0, t) = A(L1, t) for any t ≥ 0. It follows from this
that the amplitude A(y, t) can be represented as a sum of Fourier components of a
formAn(y, t) =Bnexp{i[Ωnt +Qny]}, whre n takes integer values (only components
with |n| = 0, 1, 2 and 3 were in fact detected in their experiments),Qn = 2πn/L1, and
the real amplitudes Bn and angular frequencies �n can be determined from the G-L
Eq. (4.50). In particular, the real and imaginary parts of Eq. (4.50) imply that the
equilibrium values of amplitude Bn and angular frequencyΩn (which do not depend
on t) are given by the following expressions

Bn =
[

2(γ − μrQ
2
n)

δ

]1/2

, �n = −
(

ω1 + γ
δ′

δ

)

−
(

μi − μr
δ′

δ

)

Q2
n (4.53)

where, as usual, ω1 + iγ =ω, δ+ iδ′ = l, and μr + iμi =μ. (Equation (4.53) gener-
alized the known equations determining the equilibrium amplitude Ae and Strouhal
frequency f =�0/2π which follow from Landau’s Eqs. (4.34) and (4.34a) and corre-
spond to parallel shedding where μ=μr + iμI = 0). Leweke and Provansal used for
γ and δ′/δ the values γ = 0.2(v/D2) (Re – Recr) and δ′/δ= −3.0 which were obtained
earlier from data of circular-cylinder wake experiments; this means that the effect
of the ring curvature was neglected (relying on measurements by the authors which
show that this effect does not play an important part if D/L1 is small enough; see,
e.g., Fig. 4.31). However to find μr Leweke and Provansal used the equations

B2
0 = 0.4v

δD2
( Re − Recr),

B2
n

B2
0

= 1 − 4π2μr/v

0.2(L1/D)2( Re − Recr)
n2 (4.54)

which follows from the first Eq. (4.53) and the expression for γ given above. Eq.
(4.54) were verified by measurements of (B0)2 and (Bn/B0)2, where B0 and Bn are
the amplitudes of the zeroth and n th modes of the streamwise-velocity oscillations,
in the wake behind a ring of outer diameter L = 56.9 mm and cross-sectional diam-
eter D = 3.03 mm (so that the aspect raito πL/D =L1/D was 59.0). The oscillations
of the streamwise velocity u(x, t) wre measured at the point with coordinates (7D,
0, −2D) in a coordinate system with the origin at the ring center and the Ox axis
pointing in the downstream direction. Measured values of the squared normalized
amplitude (B0D/v)2 of the zeroth oscillation mode at various values of Re =U0D/v
are shown in Fig. 4.33; they confirm the proportionality of (B0)2 to Re – Recr over
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Fig. 4.33 Dependence of the normalized square of streamwise velocity fluctuations, (B0D/v)2, on
Re =U0D/v for the parallel shedding mode with n = 0 at the point {x, y, z} = {7D, 0, −2D} behind
a ring with aspect ratio L1/D = 59.0. (After Leweke and Provansal (1995))

a considerable range of Re, and allow the critical Reynolds number Recr and the
value of δ corresponding to streamwise-velocity oscillations at the measurement
point to be estimated with good accuracy. The measured values of (BnB0)2, where
n took the values 1, 2, and 3, proved to be more scattered than the values of (B0)2,
but on the whole they agreed with the second Eq. (4.54) and led to the conclusion
that μr/v ≈ 10 over a range of not-too-high values of Re – Recr. Above Re = 100,
however, μr/v begins to increase with Re. Moreover, the second Eq. (4.53) allows
μi − μr (δ′/δ) = μr [(μi/μr ) − (δ′/δ)] to be determined from measurements of
the difference of two angular frequencies �n −�m (or of two ordinary frequencies
fn −fm = (�n −�m)/2π ) corresponding to two different oscillation modes of the
ring wake. Leweke and Provansal (1994) measured the differences fn −fm for a
number of integer values of n and m and various values of Re, and deduced the de-
pendence of (μr/v)[(μi/μr )− (δ′/δ)] on Re over a wide range of Reynolds numbers.
The results were compared with estimates of (μr/v)[(μi/μr ) − (δ′/δ)] from mea-
surements of wake oscillations behind circular cylinders made by Williamson (1989)
and Monkewitz, Williamson and Miller (whose results were known in 1994 but were
published only in 1996). The comparison showed that the estimates derived from
data on wake oscillations behind straight cylinders and behind rings agree rather sat-
isfactorily with each other. Analyzing the data of both types Leweke and Provansal
recommended in 1994, for a wide range of not too high supercritical values of Re,
the estimate: (μi/μr ) − (δ′/δ) = 2.9 ± 0.8, but in 1995 they replaced this by two
separate estimates: μi/μr ≈ −0.65, δ′/δ ≈ 3.0. Then they showed that the G–L
Eq. (4.50) with the above values of coefficients describes, quite satisfactorily, the
general development of wakes behind rings placed normal to the flow and also many
observable features of such wakes. Let us recall, however, the remark by Leweke and
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Williamson (1998), which has been already mentioned at the end of the discussion
of the transverse Ginzburg-Landau Eq. (4.50). They commented that the application
by Leweke and Provansal (1995) of the G-L model for the determination of the in-
stability threshold for the wake flow implied a type of instability differing from that
observed in laboratory experiments or numerical simulations of wake flows.

4.2.4.5 Wakes Behind Spheres and Other Axisymmetric Bodies

Wakes behind circular rings placed normal to the flow represent a special example
of wakes behind axisymmetric bluff bodies. However in the above discussion of ring
wakes, we emphasized first of all their similarity to wakes behind straight circular
cylinders, paying only secondary attention to their axial symmetry. Now we will
consider some other axisymmetric wakes, concentrating mainly on the consequence
of axisymmetry.

Axisymmetry wakes appear behind any body of revolution submerged in an uni-
form stream directed along the body axis. Vortex shedding from the downstream parts
of such bodies, and global oscillations of the resulting wakes, have been observed
by many researchers. It was found that these features are related to the existence in
the wakes behind axisymmetric bodies, in the cases when the Reynolds number Re
is not too small, of zones of absolute instability with respect to non-axisymmetry
disturbances with azimuthal wave number n = 1 (see, e.g., Monkewitz (1988c)).
Since the sphere is a prototype axisymmetric body, the wakes behind spheres are
clearly the most significant axisymmetric wakes. Flows past spheres can be easily
produced in the laboratory and are encountered in some engineering devices and
natural phenomena; therefore sphere wakes began to attract attention very early and
were studied quite extensively. In Sect. 2.2 it was mentioned that the dependence of
the drag of a sphere submerged in a fluid flow on the Reynolds number Re was stud-
ied long ago by Eiffel (1912) and Prandtl (1914) (in fact there were also many other
early studies of sphere drag); all these studies inevitably included the consideration
of sphere wakes. The formation of vortices behind a sphere and vortex shedding
from spheres were described in the 1930s in particular by Winny (1932); Foch and
Chartier (1935), and Möller (1938), while later the vortical structures and quantitative
characteristics of sphere wakes were studied by Taneda (1956, 1978); Torobin and
Gauvin (1959); Magarvey and Bishop (1961a, b); Magarvey and MacLatchy (1965);
Goldburg and Florsheim (1966); Zikmundova (1970); List and Hand (1971); Calvert
(1972); Masliyah (1972); Achenbach (1972, 1974); Nakamura (1976); Pao and Kao
(1977); Perry and Lim (1978); Kim and Durbin (1988); Sakamoto and Haniu (1990,
1995); Berger et al. (1990); Bonneton and Chomaz (1992); Wu and Faeth (1993);
Provansal (1996); Provansal and Ormières (1998); Ormières et al. (1998); Ormières
and Provansal (1999), and many other experimenters. Nevertheless experimental data
for sphere wakes continue to be scattered and sometimes contradictory. The scatter
can be explained by a number of factors complicating the wake measurements, such
as the influence of the sphere supports, the effect of free-stream turbulence, and
the weakness and slowness of wake oscillations at values of Re near the instability
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threshold. The influence of support devices can be diminished or even annulled by
the use of spheres towed through, or freely falling or rising in, quiescent fluid but
here some other complications often emerge. However the general features of sphere
wakes are now known rather well, and many of them are quite similar to those of
wakes behind circular cylinders.

The available data show that in the case of uniform external stream the flow
around a sphere at low Reynolds numbers is steady, axisymmetric, and attached to
the whole sphere body. At some greater value of Re, flow separation occurs and an
axisymmetric, toroidal recirculation eddy, which is attached to the segmental area
on the downstream side of the sphere, appears. According to experiments by Taneda
(1956), the separation is first observed at Re = Re0,cr ≈ 24 (where Re =U0D/v is
based on the sphere diameter and free stream velocity). This estimate agrees with the
results of some relatively early theoretical investigations of flows around a sphere,
using either analytical or numerical approximations of the corresponding solutions
of the Navier-Stokes equations (see, e.g., the summary of a number of such studies
by Pruppacher et al. (1970) which implies that Re0,cr ≈ 20). There were also some
experimenters who obtained different estimates of Re0,cr (e.g., Nakamura (1976)
found that Re0,cr ≈ 10, and this estimate was also given by Wu and Faert (1993)
who, however, made no measurements at so small value of Re). On the other hand,
numerical simulations of flow past a sphere by Shirayama (1992), and the subsequent
more careful and explicit simulations by Tomboulides (1993) (see also Tomboulides
et al. (1993)) and Johnson (1996) (see also Johnson and Patel (1999)), which will be
discussed at greater length later, confirmed the old estimates of Re0,cr given by Taneda
and Pruppacher et al. (all of them show that Re0,cr ≈ 20). As Re increases further, the
flow remains axisymmetric and steady, but the downstream extent of the recirculating
wake zone, and the separation angle which determine the sphere segment adjoining
to this zoen, progressively increase. The increase with Re of the streamwise length
of the recirculating zone and of the separation angle were measured in Taneda’s and
Nakamura’s experiments and were also determined from the numerically-simulated
data by Pruppacher et al. (1970); Fornberg (1988); Shirayama (1992); Tomboulides
(1993); Magnaudet et al. (1995), and Johnson (1996) who found that the numerical
results agree quite well with each other and with the experimental ones (with the sole
exception of Taneda’s values of the length of recirculating zone at large values of Re,
which were obviously underestimated; see, e.g., Fig. 4.34 and the above-mentioned
papers by Shirayama, Tomboulides et al., and Johnson and Patel). The same is also
true for values of the drag coefficient of a sphere which were also computed by
Shirayama, Tombulides, and Johnson in a range of Reynolds numbers not too far
above the critical value Re0, cr; here again the computed values agree excellently with
values given by Ross and Willmarth (1971) who accurately measured the sphere drag
and compared their results to those of numerous previous drag studies. However, at
some Re = Re1,cr in the range between 100 and 350, the steady axisymmetric wake
flow becomes unstable, and this leads to an abrupt change of the wake structure.
At this value of Re a new wake regime emerges which, according to the results
of many recent studies, is non-axisymmetric and steady, while in some older work
it was found to be non-axisymmetric and oscillating (more will be said about this
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Fig. 4.34 Comparison of the dependence of the dimensionless streamwise length xrc/D of the
recirculation zone (measured on the wake axis) on Re given by Johnson and Patel’s computations
(the solid line with black dots) with results of Taneda’s experiments and of earlier computations by
Tomboulides, and Magnaudet et al. (After Johnson and Patel (1999))

below). The transition to an oscillating flow regime means that the periodic shedding
of vortices begins at this Re, and signifies a Hopf bifurcation which may be described
analytically by the complex Landau Eq. (4.40); while the replacement of one steady
flow by another is a regular (non-Hopfian) bifurcation whose description does not
require consideration of a complex amplitude equation.

In many cases, values of the critical Reynolds number Re1,cr (which for the sake
of simplicity will often be denoted below by Recr) given by different experimenters
disagree with each other. Recently Johnson and Patel (1999) stated that the ob-
served onsets of the oscillatory shedding regime of a sphere wake covers the range
290<Recr < 400; however, if all the results indicated below were taken into account,
then this range would be expanded to at least 130 ≤ Recr < 400. According to the
experiments of Möller (1938), who towed a sphere through water, 170<Recr < 200.
Later Taneda (1956) found that a weak oscillation with a long period appears in
the sphere wake at Re = Recr ≈ 130. A value of Recr close to this was also found
by Zikmundova (1970), who concluded from her observation of aluminum spheres
dropped through the solutions of glycerol and water that 130<Recr < 150. Taneda’s
value of Recr was accepted by some other authors (e.g., by Fornberg (1988)) but
almost all recent data show that Taneda’s and Zikmundova’s estimates of this value
were appreciably too low. (Note, however, that Provansal and his coworkers, whose
work will be discussed at the end of this paragraph, found in the late 1990s that at
Re ≈ 150 the sphere wake undergoes a bifurcation, but of a different type from that
found by Taneda and Zikmundova). Magarvey and MacLatchy (1965), who made
rather accurate observations of the wakes behind freely-falling solid spheres, found
that the recirculation zone becomes unstable, and the wake begins to oscillate, only
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at Re ≈ 300. The start of wake oscillations at Re ≈ 300 (accompanied by an abrupt
change of the vortical wake structures leading to the appearance of hairpin-shaped
vortex loops) was later detected also by Levi (1980) and Sakamoto and Haniu (1990).
Magarvey and Bishop (1961a, b) presented a number of photographs of wakes pro-
duced by liquid drops settling in a immiscible liquid; these photos show that the
wake became non-axisymmetric at Re ≈ 210 but lost its steadiness only at Re ≈ 270.
Goldburg and Florsheim (1966) also studied the wakes behind freely-falling solid
spheres at moderate values of Re, and found that the dependence of the Strouhal
numbers St = fD/U0 of wake oscillations on Reynolds number is described, with
good accuracy, by the Rayleigh–Roshko Eq. (4.47a) with a ≈ 0.387 and a1/a ≈ 270
over a considerable range of Re. As was shown above, Eq. (4.47a) follows from
Landaus equation for the complex amplitude of wake oscillations. These values of
coefficients a and a1 show that the oscillatory wake regime was observed at Re> 270,
but Goldburg and Florsheim also noted that in their experiments the wake lost its
axisymmetry at Re ≈ 210. Ross (1968) and Roos and Willmarth (1971) stated that
their observations of spheres towed through water showed that 215<Recr < 290.
According to Nakamura’s (1976) experiments with falling spheres, some change
in the nature of the wake occurs at Re = 190, but the change was not described in
detail and therefore Kim and Pearlstein (1990) interpreted it as a transition to non-
axisymmetric oscillating wake regime while Natarajan and Acrivos (1993) took it as
the loss only of the axisymmetry, but not the steadiness, of the wake flow. Shirayama
(1992) described some experiments according to which Recr ≈ 250, but he paid his
main attention to flow simulation for Re = 500. Then Wu and Faeth (1993) towed
a polished plastic ball through a rectangular bath filled with quiescent water and
glycerol mixture, visualized the flow near the towed sphere, and measured by laser
velocimeter the mean streamwise velocities and root-mean-square velocity fluctua-
tions at a number of points. Their measurements cover the range of Reynolds number
Re =U0D/v from 30 to 4,000, but for the topic discussed in this subsection the range
30 ≤ Re ≤ 400 represents the main interest. According to the results of these au-
thors, the recirculation region on the downstream side of the sphere was steady and
axisymmetric at Re< 200, steady but non-axisymmetric at 200<Re< 280, and un-
steady with vortex shedding at Re> 280. Still later the French researchers (Provansal
(1996); Provansal and Ormières (1998); Ormières et al. (1998) and Ormières and
Provansal (1999); see also beautiful photos presented by Leweke, et al. (1999)) used
flow visualization in a water channel to observe the flow behind a fixed sphere (held
by a thin upstream metallic pipe with three holes allowing to inject the dye into
the water), and laser-Doppler and hotwire anemometers to measure velocities in a
wind tunnel flow behind another sphere held inside the tunnel by four thin wires.
According to their data, the sphere wake is steady and axisymmetric at Re< 150,
while at Re ≈ 150 its axisymmetry breaks and for 150<Re< 180 the wake is non-
axisymmetric but remains steady and has the vortical structure including a single
linear vortical thread. At Re ≈ 180 this structure changes and becomes more com-
plicated (begins to include a pair of vortical threads) but at 180<Re< 280 the wake
continues to be steady and non-axisymmetric. However, if Re grows further, then
at Re = Recr ≈ 280 the sphere wake begins to oscillate with a frequency f which
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Fig. 4.35 Dependence of
Ro = fD2/v on Re =U0D/v in
the wake behind a sphere at
supercritical Reynolds
numbers Re ≥ Recr according
to measurements of Ormières
et al. (1998)

does not depend on the point of observation, and corresponds to a Roshko num-
ber Ro = fD2/v ≈ 38. Spectral analysis of streamwise velocity fluctuations was then
used to measure the values of Ro in the Reynolds-number range 280<Re< 340,
corresponding to the periodic vortex-shedding regime. Data by Ormièdes et al. (see
Fig. 4.35) show that in this range the Ro-Re relation can be approximated by the
linear Eq. (4.47), while according to the 1998 and 1999 papers by Provansal and
Ormières even higher precision can be reached if Eq. (4.47) will be replaced by
the three-term equation Ro = aRe −a1 + a2Re2 where a = 0.391, a1 = −48.2, and
a2 = −3.6 × 10−4 (recall that an equation of such form was earlier proposed by
Williamson for the Ro-Re relation in the supercritical circular-cylinder wake; see the
explanation relating to Fig. 4.20 in part (b) of this section).

The experimental results listed above (which clearly do not exhaust all the avail-
able results) must be supplemented by consideration of a few attempts to compute
the value of Recr by applying linear stability theory to the axisymmetric steady flow
around a sphere. The first such attempt was due to Kawaguti (1955), but his re-
sults (Re1,cr = 51, corresponding to instability of the steady sphere wake to unsteady
axisymmetric disturbances) contradicts all other available results of stability compu-
tations (and also of experiments or simulations), and must therefore be disregarded.
However the paper by Kim and Pearlstein (1990), whose results are apparently also
incorrect, signified a more serious attack on the problem. Modifying Fornberg’s
(1988) approach, the authors computed a new the axisymmetric solution of the
Navier–Stokes equations corresponding to the laminar flow past a sphere in a free
stream with constant velocity U0 = {U0, 0, 0}. Then they investigated, in the frame-
work fo the linear theory of hydrodynamic stability, the stability of this solution to
infinitesimal disturbances proportional to exp[i(nφ−ωt)], where φ is the angular
cylindrical coordinate, n = 0, 1, 2.., and possible values of ω are determined by the
eigenvalue problem of linear stability theory. (Hence, both axisymmetric (azimuthal
wave number n = 0) and non-axisymmetric (n �= 0) disturbances were considered by
the authors). The analysis showed that as Re =U0D/v increases the disturbance which
becomes unstable first of all has the azimuthal wave number n = 1. According to Kim
and Pearlstein’s computations, the instability of disturbances with n = 1 emerges at
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Re = Recr = 175.1 and leads to a non-axisymmetric oscillating flow regime. As to
disturbances with other values of n, the authors did not find instability for any of them
in the whole investigated range of Reynolds numbers. Let us recall from Sect. 2.94
that the linear-stability-theory results of Batchelor and Gill (1962) and some other
authors showed that the disturbances with n = 1 are the most unstable in a number
of other axisymmetric jet and wake flows, and that Monkewitz’s (1988c) results also
indicated the paramount role of disturbances with n = 1 in formation of the global
instability modes in axisymmetric spatially-developing flows.

Kim and Pearlstein compared their theoretical results with the results of previous
experimental work and concluded that the agreement of their theory with the experi-
mental data is more or less satisfactory. However later Natarajan and Acrivos (1993),
who solved the same stability problem by a more advanced numerical method leading
to different results, reconsidered Kim and Pearlstein’s conclusion. The new authors
applied to the computation of the solution of the equations of motion, describing
the steady axisymmetric flow past a sphere, the numerical procedures developed for
other purposes by Fornberg (1991) and Natarajan et al. (1993). This allowed them
to describe the flow more explicitly than was possible earlier. Then Natarajan and
Acrivos applied a new numerical method to solution of the linearized equations de-
scribing the evolution of small disturbances in the flow past a sphere. This method
confirmed the result of Kim and Pearlstein, according to which the disturbances
which become unstable at the smallest value of Re have the azimuthal wave number
n = 1 (and instability to disturbances with n �= 1 was again not found for any Re).
However, the new computations showed that the unstable disturbance with n = 1 first
appears at Reynolds number Re1,cr ≈ 210, greater than was found by Kim and Pearl-
stein, and the disturbance differs qualitatively from the unstable disturbance of Kim
and Pearlstein’s theory. Namely, according to Natarajan and Acrivos the disturbance
which becomes unstable at Re = Re1,cr is non-axisymmetric but also nonoscillatory,
i.e., it corresponds to a purely imaginary eigenvalueω= iγ with the imaginary part γ
(determining the growth rate of the disturbance) proportional to (Re – Re1,cr) which
is negative for Re<Re1,cr but positive for Re>Re1,cr (see Fig. 4.37b below). Hence
the critical Reynolds number Re1,cr signifies a regular bifurcation (not of the Hopf
type), the replacement of the axisymmetric steady flow by a new steady flow which
includes a non-axisymmetric velocity mode with azimuthal wave number n = 1. This
means that the transition of the axisymmetric wake regime to instability here pro-
ceeds through a steady state, corresponding to zero eigenvalue ω= 0, i.e., it is of
the same “exchange of stabilities” type which was encountered in this book when
the instabilities of the Taylor-Couette flow between two rotating cylinders and of an
immovable fluid layer heated from below were considered (see Sects. 2.6 and 2.7).

Natarajan and Acrivos computed, for the stability problem relating to small non-
axisymmetric disturbances with n = 1, not only the eigenvalue ω=ω0 with the
greatest imaginary part γ0 (reducing to zero at Re = Re1,cr) but also a number of
other complex eigenvalues ωj = −ω1,j + iγj , j = 1, 2,. . . . Some of these eigen-
values are represented in Fig. 4.36 which shows that besides the eigenvalue ω0

(which at Re = Re1,cr crosses the imaginary axis at the zero point), there is an-
other eigenvalue (which will be temporarily denoted as ω1) whose imaginary part
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Fig. 4.36 Values of complex eigenvalues iω= γ − iω1 corresponding to the eigenvalue problem of
the linear stability theory for non-axisymmetric disturbances with n = 1 in the steady axisymmetric
flow of velocity U0 past a sphere of diameter D. The eigenvalues are made dimensionless by using
U0 and D as velocity and length units and are presented for three values of Re =U0D/v. (After
Natarajan and Acrivos 1993)

also approaches zero (only slightly more slowly than that of ω0) as Re increases.
Accurate computations showed that the eigenvalue ω1 crosses the imaginary axis
at Re = Re2,cr ≈ 277.5. Figure 4.36 showed that ω1 has nonzero real part; accord-
ing to the computations, this eigenvalue crosses the imaginary axis at the point
where −�eω1 = ω1,1 ≈ 0.710U0/D. Thus, Natarajan and Acrivos found that the
axisymmetric steady sphere wake loses its axisymmetry (but not steadiness) and
acquires the azimuthal wave number n = 1at Re ≈ 210, and at Re ≈ 277.5 the sec-
ond unstable mode of disturbance, which is also non-axisymmetric with n = 1 but
is unsteady, appears in the flow. This could mean that at Re> 277.5 the flow pre-
serves the azimuthal wave number n = 1 but begins to oscillate with the frequency
f =ω1,1/2π ≈ 0.113U0/D. If so, then the wake transformation at Re = Re2,cr clearly
represents a Hopf bifurcation produced by the emergence of periodic shedding of
vortices from the sphere; the wake oscillations arising at this Re correspond to a
Strouhal number Stcr ≈ 0.113.

The cautious description (using the expression “could mean. . . ”) of the result
relating to Re2,cr is due to the fact that the theory only shows that at Re> 277.5 the
axisymmetric flow past a sphere becomes unstable with respect to non-axisymmetric
oscillatory disturbances. However, the theory also shows that at some lower value
of Re axisymmetric flow becomes unstable to infinitesimal disturbances of another
type. The situation here is quite similar to that in the case of the stability studies
for the circular-cylinder wake performed in 1996 by Barkley and Henderson, and
Henderson and Barkley. As was noted in part (b) of this section, the critical Reynolds
number Re3,cr ≈ 260 (and the whole lower stability curve in Fig. 4.23) found by these
authors was also obtained by application of the linear stability theory to an obviously-
unstable primary flow. It was explained, however, that the resulting value of Re3,cr

nevertheless agrees well with the experimental threshold for the appearance of the
second unstable mode B. A similar situation apparently occurs in the case of the
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square-cylinder wake (see the discussion of the paper by Robichaux et al. (1999) in
part (c) of this section). As will be indicated below, the value of Re2,cr determined
by Natarajan and Acrivos by means of linear stability analysis also agrees well with
the available experimental data.

Natarajan and Acrivos noted that the loss of axisymmetry of the sphere wake, at
a smaller value of Re than that at which the wake becomes unsteady, was observed
in experiments by Magarvey and Bishop (1961a, b) and Goldburg and Florsheim
(1966). Moreover, the values of the two critical Reynolds numbers, indicating the
thresholds of the two bifurcations, which were found by these authors, are quite close
to the values of Re1,cr and Re2,cr given by Natarajan and Acrivos’ stability calcula-
tions. The experimental results by Nakamura (1976) may also be considered as being
in good agreement with the calculated results, if one assumes that the bifurcation
observed by this author corresponds to the loss of wake axisymmetry but not steadi-
ness. Thus, Natarajan and Acrivos concluded that the available experimental data are
substantially more favorable to their results than to those of Kim and Pearlstein. Note
however that, during the preparation of the paper of 1993, Natarajan and Acrivos did
not know about the paper by Wu and Faeth (1993), which contains a very convincing
experimental confirmation of their theoretical results11. In fact, the latter authors
observed both bifurcations predicted by Natarajan and Acrivos and gave, quite inde-
pendently, the estimates Re1,cr ≈ 200 and Re2,cr ≈ 280 for the two critical Reynolds
numbers, which are very close to the values computed by Natarajan and Acrivos. The
later experimental results of Provansal and coworkers (Provansal (1996); Provansal
and Ormières (1998) Ormières et al. (1998) and Ormières and Provansal (1999)), and
the results of the sphere-wake observations by Johnson and Patel (1999), also show
that the sphere wake loses its axisymmetry at a smaller value of Re than its steadi-
ness and begins to oscillate only at Re ≈ 280. The results of Johnson and Patel in
fact agree in many other details with Natarajan and Acrivos’ theoretical predictions.
These new discoveries increase considerably the cogency of the statement made by
Natarajan and Acrivos, that the available experimental data agree much better with
their results than with Kim and Pearlstein’s stability computations.

Of course, Natarajan and Acrivos did not analyze all the available experimen-
tal data relating to sphere wakes which, as mentioned above, are rather scattered.
Moreover, they also did not look for a possible error in Kim and Pearlstein’s com-
plicated and tedious computations, which could explain the difference between the
conclusions of two papers devoted to the same problem. However, Natarajan and
Acrivos indicated one more very important confirmation of their results: namely,
they stressed that their results agree very well with the results of independent stabil-
ity computations for three-dimensional flows past a sphere, by a completely different
method, carried out by Tomboulides (1993) and Tomboulides et al. (1993) practically
simultaneously with Natarajan and Acrivos’ investigation.

11 Experimental results presented by Wu and Faeth (1993) are described at greater length in the
thesis by Wu (1994). In addition Wu’s thesis also contains descriptions of experimental studies
of wakes behind spheres placed in a uniform stream where considerable velocity disturbances are
presented; see in this respect also the papers by Wu and Faeth (1994, 1995).
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Tomboulides, and Tomboulides et al., did not use the linear theory of hydrody-
namic stability as in the papers discussed above but used a nonlinear approach based
on direct numerical simulation (i.e., on numerical solution of the full nonlinear equa-
tions of fluid dynamics). First of all, they numerically solved the nonlinear equations
describing the steady flow of a uniform stream with a constant velocity U0 = {U0,
0, 0} past a sphere of diameter D. The solutions found were axisymmetric, and the
results for the Reynolds-number dependence of the streamwise length of the recircu-
lation zone, the separation angle, and the sphere drag coefficient, discussed above,
were computed from just these solutions. After this, at Reynolds numbers 200, 220,
250, 270, 285, and 300 a non-axisymmetric velocity disturbance with the azimuthal
wave number n = 1 was added to initial conditions corresponding to the computed
axisymmetric solution of equations of motion. The disturbance had the total energy
equal to 10−8 of the energy of the axisymmetric flow and was randomly generated
in such a way that its initial energy was distributed over all the eigenmodes with
n = 1. Then the full equations of motion were solved numerically for the new initial
conditions and the energy of all modes with n = 1 was traced in time.

It was found that the energy of the initial non-axisymmetric disturbance decayed
in time, and the flow eventually returned to full axisymmetry, only at Re = 200. For
all other inspected values of Re the energy of the disturbance grew and asymptoted to
a finite constant value. This showed that 200<Re1,cr < 220. The observed dependen-
cies of the disturbance amplitudes A(t) on time (exemplified in Fig. 4.37a) allowed
easy detection of the regions of initial exponential decay or growth, yielding the
initial growth rate (positive or negative) γ = � mω (where ω is the corresponding
eigenvalue of the linear stability problem) of the least-stable mode with n = 1. Values
of γ obtained in this way are shown in Fig. 4.37b, together with the same quantity
computed by Natarajan and Acrivos from linear stability theory. One may see that the
agreement between the results of linear and nonlinear computations is remarkable.
Note also that the data shown in Fig. 4.37b agree well with the approximate equation
γ ≈ b (Re – Recr) which according to Landau’s theory must be valid at small values
of |Re – Recr|.

As to the exact value of Re1,cr, Natarajan and Acrivos found that Re1,cr = 210
while a thorough investigation of this question by Tomboulides led to the conclusion
that Re1,cr = 212; the difference between these two estimates is clearly negligible.
The above-mentioend experimental estimates by Magarvey and Bishop (1961a, b)
(Re1,cr ≈ 210) and Wu and Faeth (1993) (Re1,cr ≈ 200) of the threshold Reynolds
number signifying the transition to non-axisymmetric wake regime are also very
close to the corresponding results of Tomboulides, and Tomboulides et al. The re-
cent experiments of Provansal (1996); Provansal and Ormières (1998); Ormières
et al. (1998), and Ormières and Provansal (1999), confirmed that the sphere wake
loses its axial symmetry at a value of Re below the onset of wake oscillations, and im-
plied an estimate of the oscillation threshold Re2,cr which is very close to that found
by Natarajan and Acrivos and by Tomboulides. However this recent work led to re-
sults relating to the value of Re1,cr which deviate from the conclusions of Natarajan
and Acrivos’ linear and Tomboulides’ nonlinear stability theory. In fact, according
to Provansal and his coworkers there exist two different bifurcations, both leading



430 4 Stability to Finite Disturbances: Energy Method and Landau’s Equation

Fig. 4.37 a Dependence on
time (measured in
conventional units) of ln(uφ)
where uφ is the
non-dimensionalized
azimuthal disturbance
velocity at the point {x, r} =
{D, 0.2D} of the wake behind
a sphere at Re = 250. (After
Tomboulides 1993)
b The dependence of the
dimensionless growth rate
γD/U0 of the least stable
mode with n = 1 on Re in the
wake behind a sphere. (After
Tomboulides 1993 and
Tomboulides et al. 1993).
Circles: results following
from the linear stability
analysis of Natarajan and
Acrivos, filled circles: values
given by nonlinear direct
numerical simulation of
Tomboulides
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to the emergence of some non-axisymmetric steady flow regimes, which occur at
smaller Re than the value Re1,cr ≈ 210 at which the wake regime first becomes non-
axisymmetric according to Natarajan and Acrivos’ and Tomboulides’ computations.
However, only the second of the found by the French researchers non-axisymmetric
regimes conforms to the non-axisymmetric steady wake regime predicted by the
linear and nonlinear stability theories and the corresponding to it critical Reynolds
number Re ≈ 180 does not differ very much from the value Re1,cr implied by the
above-mentioend stability studies. As to the another non-axisymmetric sphere-wake
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regime detected by the French experimenters at 150<Re< 180, it apparently re-
quired further investigation. Without it this specific result (which may have been
affected by the influence of the sphere supports) can hardly outweigh the available
data supporting Natarajan and Acrivos’ and Tomboulides’ conclusions.

The linear-theory results of Natarajan and Acrivos determine only the character
of the initial evolution of a very small disturbance in the sphere-wake flow. However,
the results of Tomboulides’ nonlinear analysis lead to asymptotic values A∞ of the
disturbances as t → ∞ and hence to values of the Landau constants δ = 2γ /A2∞
(proved to be positive) at various Reynolds numbers and positions in the sphere wake.
(Note that Landau’s equation describing the emergence of sphere-wake oscillations
was considered by Ormières et al. (1998) and Ormières and Provansal (1999) who,
in particular, showed that the increase of the energy of the streamwise velocity fluc-
tuations with the Reynolds number Re is linear at small supercritical values of Re, as
it must be according to Landau’s theory). It was also found by Tomboulides that the
non-axisymmetric steady wake structure emerging at Re = Re1,cr preserves planar
symmetry with respect to some plane parallel to the flow direction. Such symme-
try, which is weaker than the axial symmetry but not incompatible with azimuthal
wave number n = 1, was also observed by Magarvey and Bishop (1961a) and Levi
(1980), and was later found in the numerically-simulated supercritical sphere wakes
computed by Shirayama (1992) and Johnson and Patel (1999). The time history of
velocity disturbances described by numerical solution of the nonlinear equations of
motion computed by Tomboulides show that the mode with n = 1 begins to oscillate
at some value of Re in the interval 270 ≤ Re ≤ 285. Recall that according to the linear
theory by Natarajan and Acrivos the transition to an oscillating wake regime takes
place at Re = Re2,cr = 277.5 while according to the experimental results by Magarvey
and Bishop Re2,cr ≈ 270, and both Wu and Faeth, and Provansal and his coworkers
(who used wake control to observe the time evolution of velocity disturbances at
subcritical and supercritical values of Re close to the critical value Re2,cr) found that
Re2,cr ≈ 280. We see that here again the conclusions of nonlinear numerical stability
analysis agree very well with results given by linear stability theory and by several
trustworthy experimental investigations. Let us also re-emphasize that the computa-
tions by Natarajan and Acrivos, and by Tomboulides, and experimental investigation
by Wu and Faeth were carried out practically simultaneously and independently from
each other. Therefore the remarkable coincidence of the results obtained indepen-
dently by three very different methods gives good reason to trust them. It is now
possible to support this conculsion by reference to results of a subsequent successful
numerical simulation of the flow past a sphere at a number of moderate Reynolds
numbers, combined with visual observation of the wake regimes at different values
of Re.

Let us mention at first a numerical simulation by Gebing (1994) of the flow of a
compressible fluid past a sphere at Reynolds numbers from 20 to 1,000 and a Mach
number of 0.4. This simulation also showed the existence of two subsequent transition
of the same type as those found for incompressible flows—a loss of axial symmetry
at Re ≈ 300 and the emergence of an oscillatorty wake regime at Re ≥ 400. However,
up to now compressible flows have not been considered at all in this book; therefore,
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the main attention will be given below to the results of accurate numerical simulations
of the incompressible flows past a sphere at 20 ≤ Re ≤ 300 performed by Johnson
(1996). He employed a numerical method differing from that of Tomboulides, and
presented the final version of his results in the paper by Johnson and Patel (1999),
where numerically simulated data were accompanied by results of dye-injection
observations of the wake flow behind a sphere towed through a water tank. Both the
simulations and visual observations showed that, at Reynolds numbers from 20 to
approximately 210, the wake flow is steady, axisymmetric, and does not undergo
any substantial topological transformations. As has been noted above, the length of
the recirculation zone, the separation angel, and the drag coefficient computed for
Re-values in this range coincided very well with many previous experimental and
numerical results. However, at a Reynolds number of 211 the calculated solution of
the equations of motion becomes non-axisymmetric, but preserves planar symmetry
with respect to some plane parallel to the flow direction, and remains steady.

Steady non-axisymmetric numerical solutions were found for all investigated
values of Re ≥ 211 up to Re = 270. However at Re = 280, which was the next higher
Reynolds number considered, the solution, obtained for the initial conditions leading
at Re = 270 to steady non-axisymmetric solution, was found to be oscillating with
a fixed frequency f. Hence, Johnson’s numerical simulations show that Re1,cr = 211
and 270<Re2,cr ≤ 280. These results agree excellently with those found in numerical
studies of Natarajan andAcrivos (1993); Tomboulides (1993), and Tomboulides et al.
(1993), and in experiments of Magarvey and Bishop (1961a, b) and Wu and Faeth
(1993) (and in the part relating to the onset of wake oscillations at Re = Re2,cr also
with experimental results of Provansal and his group). Wishing to understand (and
to explain) the physical mechanisms leading to the loss of wake axisymmetry at
Re = 211 and the transition to unsteady vortex-shedding regime at Re ≈ 275, Johnson
and Patel analyzed very thoroughly all the numerical and visualization data relating to
Re = 250 and Re = 300, and presented in their paper of 1999 an extensive collection
of graphs, photos, and model pictures illustrating the properties of the wake regimes
at these two Reynolds numbers.

The collected data gave reasons to associated the transition to a non-axisymmetric
steady regime at Re = Re1,cr = 211 with an azimuthal instability of the low-pressure
core of the toroidal vortex, emerging at Re = Re0,cr ≈ 20 and then growing with
Re, becoming more unstable with the decrease of the role of viscosity. Relying on
this general idea, Johnson and Patel proposed a physical mechanism describing the
transition process. This mechanism allowed them to interpret physically their visu-
alization results for Re = 250 and 300, and to explain the appearance at Re>Re1,cr

behind a sphere of two streamwise vortices extending downstream and forming two
parallel vortical threads. (These vertical threads were first observed in the liquid-drop
experiments by Magarvey and Bishop, whose results were later confirmed by visu-
alization experiments of Levi (1980), Provansal and his coworkers (who found the
two-thread regime for 180<Re< 280), and Johnson and Patel, and by numerically-
simulated data of Shirayama (1992), Tomboulides, and Johnson and Patel). The value
of St = fD/U0 at Re = 300 computed by Johnson was equal to 0.137, and coincided
almost exactly with the result St = 0.136 of Tomboulides’ computations and with the
value given by the experimental form of the Roshko law (4.47) given by Provansal
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and Ormièdes in their papers of 1998 and 1999. (The experimental values of St for
vortex shedding from a sphere found by Johnson and Patel were slightly higher than
the corresponding numerical results but they agree well with experimental values of
St found by Sakomoto and Haniu (1990, 1995) for nearby values of Re). The calcu-
lated drag coefficient at Re = 300 was also close enough to previous experimental
and numerical results.

A similar physical mechanism was also proposed for explanation of the transition
to unsteadiness at Re = Re2,cr ≈ 275. This mechanism explains not only the observa-
tions of Achenbach (1974); Perry and Lim (1978), and Sakamoto and Haniu (1990,
1995) of periodic shedding, at Re>Re2cr, of hairpin vortices of consistent orien-
tation, but also the shedding of previously-unrevealed oppositely-oriented hairpin
vortices which were seen in the new visualizations of the sphere wake and, accord-
ing to Johnson and Patel, may have a rather simple physical origin. However, space
limitations forbid more detailed discussion of this subject.

The results of Natarajan and Acrivos, Tomboulides (and Tomboulides et al)., and
Johnson (and Johnson and Patel) may be applied in principle to determination of
the coefficients γ and δ of the real Landau Eq. (4.34), describing the bifurcation at
Re = Re1,cr of the steady axisymmetric wake flow observed at smaller values of Re
(see, in particular, Fig. 4.37b where data relating to the coefficient γ = γ (Re) are
presented). The transition at Re = Re2,cr of a steady non-axisymmetric wake flow to a
non-axisymmetric oscillating vortex-shedding regime represents a Hopf bifurcation
and requires the use of a complex Landau Eq. (4.40) (or, what is the same, two real
Eqs. (4.34) and (4.34a)) for its theoretical interpretation. Coefficients γ and δ in both
cases can be estimated if some method of control of wake development is used, so that
the time history of the real amplitude of some appropriately chosen characteristics
of the wake flow can be observed from the initial instant of this development (cf.
the discussion of Eqs. (4.48) and (4.49) in part (b) of this section). This procedure
was applied to the study of the sphere wake at Re near Re2,cr by Ormières et al.
(1998); Provansal and Ormières (1998), and Ormières and Provansal (1999) who, in
particular, determined the values of γ (Re) (it was found that γD2/v ≈ 0.9(Re – Re2,cr)
at small values of Re – Re2,cr) and the coefficients of the Ro-Re relation corresponding
to the vortex-shedding regime of the sphere wake. As to the coefficients ω1 and δ’,
which are needed for the description of a Hopf bifurcation at Re = Re2,cr, the first
coincides with the real part of the corresponding complex eigenvalue (denoted by ω1

in the above discussion of the paper by Natarajan and Acrivos), while the second can
be easily determined from the values of γ , δ, and the frequency f of the observed
wake oscillations. The values of f were given for a number of values of Re by both
Tomboulides (1993) and Johnson (1996), who used their own numerical simulations
for this purpose, and by Provansal and his group who used spectral analysis of
measured velocity fluctuations in the wake; the results of all studies were practically
the same. Moreover, the French researchers also measured the dependence of the
energy of streamwise-velocity oscillations E (more exactly, of the normalized energy
E/Emax) on the streamwise coordinate x of the observation point in a sphere wake and
of Re, and the dependence on Re of the coordinate xmax at which the amplitude of the
velocity oscillations takes the greatest value. The results of these measurements were
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found to be similar in many respect to the results of Wesfreid et al. (1996) relating
to spatial variations of velocity oscillations in the wake of a circular cylinder.

Many details of the flow past a sphere at larger values of Re can be found, in partic-
ular, in the papers by Achenbach (1974); Pao and Kao (1977); Perry and Lim (1978);
Taneda (1978); Kim and Durbin (1978); Sakamoto and Haniu (1990, 1995); Shi-
rayama (1992); Bonneton and Chomaz (1992); Wu and Faeth (1993); Tomboulides
(1993), and Tomboulides et al. (1993). The values of the wake-oscillation frequency
f and of the Strouhal number St at many values of Re were determined, in particular,
by Achenbach (1974); Taneda (1978); Kim and Durbin (1988), and Sakomoto and
Haniu (1990, 1995); the last-named of them includes a general sketch of the shape
of the St-Re relation for a wide range of Re, both for a sphere in a constant-velocity
stream and in streams with various constant transverse velocity gradients. Note,
however, that at large enough values of Re wake oscillations often have the shape
of supperpositions of several harmonics of different frequencies. (For example, Shi-
rayama (1992) found that at Re = 500 two frequencies, corresponding to different
Strouhal numbers, are clearly seen in the spectrum of sphere-wake oscillations). With
further growth of Re the number of different spectral components of wake oscilla-
tions increases and the transition to turbulence leads to the appearance in the wake of
a continuous frequency spectrum. In the above-mentioned papers, many topological
transformations of the vorticity field of sphere wakes are described; however, these
high-Re wake transitions will not be considered in this chapter.

Let us now say a few words about the wakes behind some other axisymmetric
bodies. We will begin with the wakes behind flat circular disks perpendicular to a
uniform steady flow. Such wakes were studied in experiments by Schmiedel (1928)
(who considered spheres and round disks freely falling in a liquid), Marshall and
Stanton (1931); Fail et al. (1957) (here wakes behind circular plates were considered,
together with those behind some other plates perpendicular to the flow), Carmody
(1964); Willmarth et al. (1964); Calvert (1967a, b) (who also studied wakes behind
cones with axes parallel to the stream direction and flat disks non-orthogonal to the
stream); Roos (1968); Roos and Willmarth (1971); Fuchs et al. (1979); Takamoto
(1987); Bearman and Takamoto (1988); Berger et al. (1990); Lee and Bearman
(1992); Cannon et al. (1993); Provansal (1996) (who indicated that he had studied
wakes behind discs and cones parallel to the stream, together with the sphere wakes
discussed above, but mentioned only one specific result relating to cones), Miau
et al. (1997), and some other researchers. However, the results of this work are
much less definite than those relating to sphere wakes. The vortical structures in disk
wakes were investigated at various Reynolds numbers and by various experimental
methods, in particular, by Fuchs et al., Berger et al., Lee and Bearman, Cannon
et al., and Miau et al., but the results obtained are still very scattered. Apparently the
only attempt to calculate the stability characteristics of wakes behind circular disks
was due to Natarajan and Acrivos (1993), using the same method as in their study
of the stability of sphere wakes. They found that, as in the case of a sphere wake,
a steady axisymmetric disk wake loses its stability first of all to a nonoscillatory
non-axisymmetric disturbance with n = 1. According to their calculations, this loss
occurs at Re = Re1,cr = 116.5 (where Re is based on the disk diameter and free-stream
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velocity). However, the non-axisymmetric steady flow past a circular disk emerging
at this Re loses its stability at only slightly lager Reynolds number, Re2,cr = 125.6,
when a new oscillating non-axisymmetric wake regime (again with n = 1) appears
with a frequency of oscillation corresponding to Stcr ≈ 0.125. Natarajan and Acrivos
noted also that the results of experiments by Willmarth et al. (1964), who oserved the
behavior of freely falling circular disks, can be interpreted as a crude confirmation
of their theoretical results.

A number of observations of wake regimes behind axisymmetric bodies differing
from spheres and round disks can be also found in the literature, but only a few
quantitative conclusions can be obtained from the results. It was noted above that
Calvert (1967a) studied wakes behind cones with axes parallel to the flow direction,
apexes directed upstream, and various apex angles. Such wakes were investigated in
more detail by Goldburg and Florsheim (1966) who observed wakes behind freely
falling cones (with apexes directed downwards) together with wakes behind falling
cone-spheres (hemispheres attached to the base of cones). They showed that the
Rayleigh-Roshko law (4.47a) with constant coefficients a and a1 is valid for the
oscillation frequencies of these wakes (in particular, in the case of a cone with 20◦
apex angle, a ≈ 0.454 and a1/a ≈ 160; this means that periodic vortex shedding from
such a cone is observed for Re> 160). Provansal (1996) indicated that, according to
his experiments, Recr ≈ 185 determined the threshold of a periodic vortex-shedding
regime behind an upstream-pointing cone, but gave no further details. Zikmundova
(1970) (whose results relating to the value of Re1,cr for the sphere wake gave rise
to doubt) studied, together with the sphere wake, the wake behind a spheroid, and
also Masliyah (1972) observed both sphere wakes and wakes behind several oblate
spheroids. Hama and Peterson (1976); Hama et al. (1977), and Peterson and Hama
(1978) studied the wakes behind slender bodies of revolution, and found that here
instability appears at much greater Reynolds numbers (based on the body diameter)
than in the cases of bluff bodies (such as disks, spheres and cones). The number of
references to papers dealing with wakes behind various axisymmetric bodies can be
easily increased, but we will not linger on this subject here.

4.2.4.6 Axisymmetric Jet Flows

At the beginning of this section a short remark was made relating to the Landau
constant δ for the plane Bickley jet. Now, in conclusion of the present section we will
mention several papers dealing with amplitude equations for unstable disturbances
in axisymmetric jets issuing from a circular orifice into a space filled with a fluid at
rest. Let us recall that at the end of Sect. 2.93 it was indicated that if the fluid in a jet
does not differ from the fluid in the surrounding space, then only convectively (but
not absolutely) unstable disturbances can exist in jet flow, while in the case of a jet
which is heated (or for some other reason has appreciably smaller density than that
of the surrounding fluid) absolute instability can take place. It has been mentioned
several times in this section that the presence of regions of absolute instability is
necessary for the excitation of the global mode of self-sustained oscillations in a
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nearly-parallel fluid flow. Therefore the development of disturbances in non-heated
jets must inevitably differ from the same process observed in wakes or heated jets
above the Hopf-bifurcation threshold.

Danaila et al. (1997) applied direct numerical simulation to investigate the spatial
disturbance development in round (unheated) jets with some widely-used initial ve-
locity profiles from the list given by Michalke (1984) (see also Sect. 2.9.4 in Chap. 2)
and several initial Reynolds numbersU0D/v (whereU0 is the typical jet velocity at the
orifice and D is the orifice diameter). It was shown that at relatively small, slightly-
supercritical Reynolds numbers ‘helical modes’ with n = ± 1 are most unstable (i.e.
their amplitudes grow most quickly) while at highly-supercritical Reynolds numbers
the axisymmetric mode with n = 0 becomes the most amplified. At some stage of the
disturbance development in a slightly-supercritical round jet a Hopf-like bifurcation
was detected which however led to a quasiperiodic (and not purely periodic) final
state. In the subsequent paper by Danaila et al. (1998) the nonlinear disturbance
development of a Hopf bifurcation leading to the production of oscillating helical
modes with n = ± 1 was studied by analysing the corresponding amplitude equations.
Since here amplitudes of two modes, with n = 1 and n = −1, must be considered and
the higher harmonics (whose frequencies are multiples of the dominant frequency)
also play a definite role (cf. the discussion of papers by Dušek et al. (1994) and Dušek
(1996) in part (b) of this section), these amplitude equations are more complicated
than the simple Landau equation and may be considered as its generalizations (of
the same type as Stuart’s Eqs. (4.43) which were considered in Sect. 4.21).

Let us now pass to the case of heated round jets. At the end of Sect. 2.93, literature
was cited, in which it was proved that absolute instability can emerge under certain
conditions in heated jets, and some conditions making such emergence possible were
indicated. (Sect. 2.93 was devoted to plane free flows in an unbounded space but in
discussion of heated jets it was specially noted that the statements made are valid for
both plane and round jets). Some examples of experimental confirmation of results
relating to the absolute instability of heated jets with negligible buoyancy effects can
be found in papers by Monkewitz and Sohn (1988) and Sreenivasan et al. (1989)
referred to in Sect. 2.93; valuable supplementary data of the same type can be found
in papers by Monkewitz et al. (1989, 1990). In the case of a heated jet the regime
of jet oscillations depends on two dimensionless parameters: the Reynolds number
Re =U0D/v and the ratio ρ0/ρ∞ = S of the density of fluid issuing from the orifice
to the ambient density far from the jet. (Here we again assume that the influence of
buoyancy can be neglected in comparision with the influence of the inertia of moving
fluid. This assumption is usually true near the orifice; the case where buoyancy is
essential was considered by Krizhevsky et al. (1996) but will be not treated here).
The above-mentioned experiments show that over a wide range of Reynolds numbers
strong global oscillations of the ‘jet column’ arise automatically, if the value of the
parameter S lies below Scr ≈ 0.62. It follows from this that at such values of S a
Hopf bifurcation takes place, which corresponds to Landau’s equation with positive
Landau constant δ > 0. Just this situation will be considered below in line with the
presentation given by Raghu and Monkewitz (1991).
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Raghu and Monkewitz analyzed the experimental data for a jet of hot air issuing
from a round nozzle of diameter D = 15 mm into unheated still air (this arrangement
and experimental conditions were practically the same as used by Monkewitz et al.
(1990)). Since wake oscillations were observed only at S<Scr ≈ 0.62, it was possible
to suppress the oscillations by extending the length of the nozzle by another 15 mm
and then cooling the nozzle extension to reduce the air temperature, in this way
increasing the density ratio S above the critical value Scr. Thus, jet control could be
realized by regulating the jet temperature. By switching off the cooling system it
was possible to return S quickly to its initial low value S0 <Scr and hence to create
conditions promoting the excitation of jet oscillations. After this the researchers could
observe, at a selected point of the jet, the transient growth of the complex oscillations
amplitude A(t) = |A(t)|eiφ(t) from zero up to its equilibrium value corresponding to the
selected position of the observation point and the value S0 <Scr of the parameter S.
This transient growth is determined by the complex Landau (otherwise, Stuart–
Landau) Eqs. (4.34) and (4.34a); the observations described allow evaluation of all
four real coefficients γ , ω1, δ and δ" of these equations as in the papers by Mathis
et al. (1984); Provansal et al. (1987); Sreenivasan et al. (1987) and Schumm et al.
(1994) on cylinder-wake oscillations, described in part (b) of this section.

Let us replace the complex amplitude A(t) by the normalized amplitude
A(t)/Ae = R(t)eiϑ(t), where Ae = (2γ /δ)1/2 is the real equilibrium amplitude and
R(t) = |A(t)|/Ae is the real normalized amplitude which can vary in the range
0 ≤ R(t) ≤ 1 (it is assumed here that S<Scr and therefore γ > 0 and δ > 0). Then
Eqs. (4.34) and (4.34a) can be rewritten in the following form:

1

R

dR

dt
= γ (1 − R2), (4.55)

dφ

dt
= −ω1 − δ′γ

δ
R2. (4.55a)

Switching off the cooling system at first and then switching it on again, one could
measure, at a given point of observation, values of the real amplitude |A(t)| (gradually
growing from zero at t = 0 to its equilibrium valueAe at large t) together with the jet
oscillation frequency (1/2π )(dφ/dt) = f (t).Values of |A(t)| andAe determine R(t),
and in Fig. 4.38 the values of [dR/dt]/R and dϑ /dt measured by Raghu and Monke-
witz at the point with coordinates (x, r) = (1.3D, 0.5D) (where x is the streamwise
coordinate measured from the jet orifice and r is the radial cylindrical coordinate
indicating the distance from the jet axis) are presented in their dependence on the
value of R2

, varying from zero to one, for the case where S = 0.546. We see that
the experimental data agree well with the linear dependence of both presented in
Fig. 4.38 quantities on R2, predicted by Eqs. (4.55) and (4.55a), and allow evaluation
of all coefficients of these equations for the given observation point, value of S, and
flow conditions. (Recall that in the case of the global mode of wake oscillations, the
values of γ and ω1 do not depend on the observation points and that the results of
similar cylinder-wake observations presented in part (b) of this section showed that
the ratio δ′/δ is also practically constant over a large spatial region). Resutls of Raghu
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Fig. 4.38 Dependence of
[dR/dt]/R (o) and of dφ/dt
(�) on R2 at the point {x, r} =
{1.3D, 5D} of a heated
circular jet with S =
0.546<Scr . (After Raghu and
Monkewitz 1991)

and Monkewitz’s measurements at different values of the parameter S showed that
the global oscillations of the heated jet come to an end at S = Scr ≈ 0.62 (this value is
slightly less than the estimate Scr ≈ 0.63 found by Monkewitz et al. in 1990). More
precisely, Raghu and Monkewitz found that at their chosen point of observation the
critical value Scr and the coefficients of Landau’s Eqs. (4.55) and (4.55a) for the
heated jet take the following values:

Scr = 0.62 ± 0.01, γD/U0 = [1.15 ± 0.15](Scr − S), (4.56a)

ω1D/U0 = −[0.68 + 0.01] − [0.88 + 0.02](Scr − S), δ′/δ = −2.5 + 0.6.
(4.56b)

We see that the measurements of the transient growth of the jet oscillations confirm
the emergence of a Hopf bifurcation at a critical density ratio S = Scr, and yield
rather accurate estimates of the values of Scr and of coefficients of Landau’s Eqs.
(4.55–4.55a).

This example will conclude the present section of the book, devoted to various ap-
plications of the real and complex Landau equations (and in some cases also of more
general Ginzburg–Landau equations) to description of the nonlinear instabilities of
fluids flows.
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Chapter 5
Further Weakly-Nonlinear Approaches
to Laminar-Flow Stability: Blasius
Boundary-Layer Flow as a Paradigm

Landau’s equation and its generalizations considered in Sect. 4.2 represent a particu-
lar weakly-nonlinear approach to the study of flow stability, based on the assumption
that the disturbance amplitude A is small enough to justify the expansion of solu-
tions of fluid-dynamic equations in powers of A. However this approach has a severe
limitation: only the evolution of one isolated mode of disturbance is traced, while its
interaction with all other modes is only roughly characterized by the values of real
or complex Landau’s constants of various orders.

A comprehensive nonlinear theory of hydrodynamic stability must include a more
direct description of interdependencies between disturbance modes. The complexity
of the problem does not permit a universal analytical treatment. However, there is
a vast number of approximate methods applicable to one or another particular case.
Recall in this respect that some such approximate methods were briefly mentioned
in Sect. 4.2 when the papers by Benney and Lin (1960); Benney (1961, 1964);
Stuart (1962a, b); Itoh (1980), and Danaila et al. (1998) were cited. In these papers
the simultaneous development of two or more modes of disturbance was considered
and, therefore, instead of one Landau’s equation, more general systems of differential
equations for amplitudes of these modes were used (a typical example of such a
system is given by Eq. (4.43)). However, in Sect. 4.2 no details and/or applications
of these multimode analyses were presented.

In contrast to this, in the present chapter and the next some approximate methods
for the study of multimode weakly-nonlinear flow instabilities will be considered at
greater length, together with a number of applications of these stability theories to
development of disturbances in some steady laminar flows of great practical impor-
tance. However, since the amount of material relating to this subject accumulated
up to now is really enormous, a rather strict selection of topics has been necessary
here, and even then it has been impossible to include in the present chapter an ade-
quate description of results of weakly-nonlinear instability theory for a wide range
of laminar flows. At first, herefore, only results relating to one such flow will be
considered at full length, but this will allow us to shorten considerably the presen-
tation of analogous results for other flows. As to the choice of the primary example,
it was made easy by the quite exceptional place occupied in fluid mechanics by
the Blasius boundary layer growing on a flat plate aligned with a parallel flow with
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constant velocityU0 (and hence with zero pressure gradient). This model laminar flow
is quite a good approximation to many flows met in nature and in engineering facili-
ties, which makes it one of the most important laminar flows. Moreover, this flow has
a rather simple structure, and it has been carefully studied by a number of outstanding
scientists who obtained many interesting results about it, often directly relating to
weakly-nonlinear stability. Note also that these results show very convincingly that
in the case of the Blasius boundary layer the multimode type of instability plays an
especially important part, and in fact determines the development of disturbances
leading to transition of this flow to turbulence. Therefore it seems natural to devote the
present chapter entirely to the study of weakly-nonlinear multimode instability of the
Blasius boundary layer flow and only after this to consider some other laminar flows.

5.1 Resonance Mechanisms of Wave-Disturbance Growth;
Two-Wave and Three-Wave Resonances

In physics the term ‘resonance’ is most often used to describe the rapid growth of the
amplitude of a steady-state periodic oscillation of a physical system affected by an
external oscillating force, when the frequency of the force oscillations approaches
the fundamental frequency of the system considered (or one of these frequencies if
there are many of them). The same term was also met in Sect. 3.32 of this book where,
however, it had a slightly different meaning—there, the growth of flow disturbances
produced by the degeneracy of the system of eigenfrequencies of the linear stability
problem was called the ‘resonance growth’. It was explained in Sect. 3.32 why the
work ‘resonance’ is appropriate here—if there are two eigenfrequencies taking the
same value ω0 and both the corresponding flow oscillations are excited, then either
of them may be considered as a force affecting the other and producing resonance
growth of the oscillation amplitude. Since in Sect. 3.32 only the linear stability the-
ory, dealing with disturbances of very small amplitude, was considered, resonance
conditions were there formulated in terms of eigenvalues of linearized wave equa-
tions, and no attempts to evaluate the resonance growth of amplitudes were made.
However, a more general formulation states that the ‘resonance mechanism of dis-
turbance growth’ means that there are several modes of disturbance such that their
interactions efficiently excite some (or all) of them leading to rapid increase of the
corresponding amplitudes. According to this formulation, a resonance mechanism
includes reciprocal interactions among two or even more modes, and hence it can-
not be studied in the framework of the one-mode Landau weakly-nonlinear theory.
However, the general weakly-nonlinear approach, based on the assumption that ini-
tial amplitudes of all disturbances considered are small (but not infinitesimal) can be
used here too. This section will be devoted entirely to the weakly-nonlinear theory
of resonances and other intermode interactions appearing in fluid flows.

In Sect. 3.32 we considered only the particular two-wave resonances which
are due to the coincidence of the frequencies of two wave modes of infinitesimal
disturbance and lead to power-law growth of the amplitudes of these modes. It
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was explained there that such resonances are rather numerous, and can occur for
both two-dimensional (2D) and three-dimensional (3D) wave disturbances of steady
plane-parallel or axisymmetric-parallel flows. The use of the adjective ‘infinitesimal’
means that in Sect. 3.32 only linearized equations of motion were considered, and
hence all the resonances studied were of the elementary linear type. (The possible
importance of nonlinear resonance effects was mentioned only once in Chap. 3,
with reference to the paper by Benney and Gustavsson (1981) but was not discussed
there). At the end of Sect. 3.32 it was also stressed that the resonance growth rates of
amplitudes found in the papers discussed were always much smaller than the growth
rates of disturbances observed in laboratory experiments and numerical simulations.
This discrepancy clearly shows that there are some other growth mechanisms, more
efficient than the linear resonance mechanism.

Let us now consider a more complicated situation relating to the manifestation
of resonances in nonlinear physical systems (exemplified by a viscous fluid flow
consisting of a steady primary flow with a finite disturbance superimposed on it).
Note, first of all, that the nonlinear resonance is much more versatile than the linear
one. In the simplest case of a one-dimensional oscillation u(t) the quadratic term
(∝ u2) of the oscillation equation leads to the appearance, in addition to the harmonic
oscillation of fundamental angular frequencyω0, of the second harmonic proportional
to exp(2iω0t); therefore, the system may resonate here also if the external force has
a frequency close to 2ω0. Higher harmonics exp(kiω0t), k = 3, 4, . . . , also appear
in many nonlinear systems together with the primary oscillation. In general, the
response of a nonlinear system to a sinusoidal external disturbance may be highly
nontrivial and lead to exceedingly complicated behavior; see, e.g., Chirikov’s survey
(1979), Sects. 3 and 4, and the book by Rabinovich and Trubetskov (1989), Chap. 13.
In particular, the phase space of a nonlinear system, even a one-dimensional one,
can include a number of different resonance bands which can overlap, complicating
the situation considerably. However, this topic will not be considered in this book
where the main attention will be paid to other aspects of the nonlinear resonance.

The possibility of nonlinear resonance produced by the interaction of a primary
oscillation of frequency ω0 with an external force of double that frequency, 2ω0,
(or of frequency kω0, k > 2) means that in a nonlinear system the simultaneous
appearance of two oscillations with frequencies ω0 and kω0, where k is an integer,
may also sometimes produce rapid amplitude growth. From this one may deduce
that, for example, in a two-dimensional steady fluid flow the interaction of a pair of
two-dimensional Tollmien–Schlichting (T-S) waves of finite amplitude can lead to
resonance not only in the case considered in Sect. 3.32, where both waves have the
same frequency ω0 (i.e., ω0 is a degeneracy point of the corresponding eigenvalue
spectrum), but also in cases where these two T-S waves have frequencies ω0 and kω0

where k is an integer. A similar increase in the number of possible resonance effects is
produced by the nonlinearity of the equations of motion when three-dimensional (3D)
wave disturbances, instead of simple two-dimensional T-S waves, are considered.
(Such 3D resonances were also analyzed in Sect. 3.32, in the framework of the linear
stability theory). We see that in the case of wave disturbances of finite amplitude
there are many more possibilities for two-wave resonances than in the case of waves
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of infinitesimal amplitude. Moreover, since the product of harmonic oscillations of
frequencies ω1 and ω2 may be represented by a linear combination of two harmonic
oscillations of frequencies ω1 +ω2 andω1 −ω2, the interaction of two oscillations of
frequenciesω1 andω2 in a nonlinear system may cause a ‘resonance growth’of a third
oscillation of frequency ω1 +ω2 (or ω1 −ω2), if such an oscillation is also present.
In other words, the nonlinear resonance may be produced in a nonlinear system with
quadratic nonlinearities by a triad of small (but finite) harmonic oscillations with
frequencies ω1, ω2, and ω3 (which can be incommensurable with each other), such
that

ω1 + ω2 + ω3 = 0 (5.1)

for some choice of the signs of the frequencies considered (the sign of the frequency
of a sinusoidal oscillation may be equally correctly considered as being positive
or negative). Similarly, nonlinear resonances may also be produced by n-tuples
of harmonic disturbances, where n > 3, with frequencies ω1, ω2, . . . , ωn of any
signs whose sum is equal to zero. Note, however, that condition (5.1) and the other
frequency relations indicated above imply only the possibility of resonance but are
not sufficient for its occurrence. In practice the emergence of a resonance and the rate
of the corresponding resonance growth of amplitude depend on the general structure
of the nonlinear system considered, and on the numerical values of its characteristics.
Note also that in the cases of exponentially growing or decaying harmonic oscillations
the variables ω in Eq. (5.1) designate the real physical frequencies—as in the many
other relations dealing with exponentially growing or decaying oscillations which
we shall meet below. (Thus, for T-S waves corresponding to points of the (k, Re)-
plane away from the neutral curve, the symbol ω will as a rule designate the real
part, ω(r) = �eω, of the complex eigenvalue ω of the Orr–Sommerfeld eigenvalue
problem. As for the imaginary parts ω(i) = �eω, they determine exponential factors
exp(−ω(i)t) which will usually be included in the corresponding amplitudes A(t)).
Moreover, if one takes it that the frequencies are positive by definition, then the +
signs in Eq. (5.1) and the similar relations must, of course, be replaced by ± signs.

Above, only the case of a one-dimensional oscillation u(t) satisfying some non-
linear ordinary differential equation was considered (although wave disturbances de-
pending on spatial coordinates were sometimes mentioned as examples). Let us now
discuss the case of oscillations relating to fluid mechanics at slightly greater length.
Here the oscillating disturbances always have the form of vector fields b(x, t) =
{u(x, t), v(x, t), w(x, t), p(x, t)} (where u, v, w, and p are the three velocity compo-
nents and pressure) depending on time t and coordinates {x, y, z} = x and satisfying
the Navier-Stokes (N-S) partial differential equations. In such a case the study of res-
onance conditions and of possible types of resonance effect represents a complicated
problem, where it is difficult to expect that practically useful results can be found
for general disturbances. A very important particular class of disturbances, which
played the central part in Chaps. 2 and 3 of this book (and has already been mentioned
occasionally in the present section too), is the class of wave disturbances having the
form b(x, t) = A (t) Be i(kx − wt) (where B = {U, V, W, P} is a constant vector, and
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A(t) is the amplitude, which is slowly changing with t) or some other related wave
form. Therefore, it is natural to suppose that investigation of the nonlinear wave res-
onance must represent an important part of the nonlinear stability theory. The remark
above about ‘other related wave forms’ implied that in some cases it is convenient to
consider only one- or two-dimensional waves, where the three-dimensional ‘spatial
wave factor’ eikx is replaced by eikx or ei(k1x+k2y), and the vector B may depend on
spatial coordinates not entering the given exponents. (In the spatial formulation of the
problem of hydrodynamic stability the amplitude A is assumed to be dependent not
on t, but on the spatial coordinate or coordinates (most often, on the streamwise co-
ordinate x)). In some cases it is also reasonable to assume that A = A (x, t) is a slowly
varying function of both the time and spatial coordinates; see, e.g., the discussion of
the corresponding one-mode stability problems in Sect. 4.22 and 4.24(b) and of the
three-wave resonances of waves with amplitudes A(x, t) in Craik (1985), Chap. 5).
As to the four-dimensional vector b = {u, v, w, p}, in the case of a plane-parallel
flow of incompressible fluid it may often be replaced by the two-dimensional vector
w = {w, ζ} (where w is the vertical velocity and ζ = ζ3 is the vertical vorticity; see.,
e.g., Sect. 3.33), while in the case where only two-dimensional wave disturbances are
studied it is enough to consider only the scalar stream-function fieldψ =ψ (x, z, t) (a
similar change of arguments must then also be applied to the vector B). For the sake
of simplicity, we will first consider scalar waves of the form u(x, t) = A(t)Ue(kx−wt)

(or of the related one- and two-dimensional forms) representing one component of
the vector b(x, t) and only later will pass to more general vector waves. Let u(x, t) =
A(t)Uei(kx−wt) be a wave of small enough amplitude which satisfies some nonlinear
wave-propagation equation including a nonlinear quadratic term. A very important
particular case is that in which (k, ω) are the eigenvalues of the corresponding lin-
earized equation (i.e., where ω is the eigenfrequency of the eigenvalue problem
corresponding to a given value k of the wave vector or, if spatial disturbance de-
velopment in a plane-parallel flow is studied, the streamwise component k1 of the
vector k = {k1, k2} is the eigenvalue corresponding to given values of ω and of k2 or
k2/k1). In this case the nonlinear equation may be used for approximate evaluation
of the effect of nonlinearity on the evolution of an initially very small (practically
infinitesimal) wave disturbance. Quadratic nonlinearity entering the equation will
produce a term proportional to exp(2i(kx −ωt)), representing a wave with doubled
frequency and wave number. As a rule the values (2k, 2ω) will not be the eigenvalues
of the linearized problem; then the nonlinear equation for the amplitude A(t) will be
reducible to an equation of Landau’s type, as considered in Sect. 4.2. However, in
some exceptional cases both (k, ω) and (2k, 2ω) will be eigenvalues of a linearized
problem and here resonance may occur. In fact, in this case a very small wave propor-
tional to e2i (kx−wt) may be generated in the flow by background “noise” (including
turbulence and not only acoustic waves) of environmental origin, and then its interac-
tion with the square of the first wave disturbance produced by quadratic nonlinearity
of the wave equation will lead to resonant growth of a disturbance component with
double the frequency and wave number. Thus, in the case of finite disturbances a
two-wave resonance may be possible in a fluid flow if there is an eigenvalue (k, ω)
of the linearized equation of motion such that (2k, 2ω) is also an eigenvalue. (Of
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course, resonance may also be possible if (k, ω) and (lk, lω), where l is an integer
exceeding 2, are linear eigenvalues. However, this is a higher-order resonance, in
which growth terms are proportional to higher powers of small initial amplitudes,
and it will not be considered in this book).

The condition printed above in italics is valid only rather rarely. However, three-
wave resonances may also occur in fluid flows, and the conditions making such a
resonance possible can often be satisfied more easily than conditions for the two-
wave resonance. Suppose that (k1, ω1) and (k2, ω2) are both eigenvalues of the
linearized equation, determining the infinitesimal wave modes of a disturbance. Then
the waves with wave-vectors k1 and k2 and angular frequencies ω1 and ω2 may be
simultaneously excited and their interaction (described by the part of the nonlinear
term proportional to the product of two waves) will generate waves with wave vectors
and frequencies (k3, ω3) = (k1 + k2, ω1 +ω2) and (k4, ω4) = (k1– k2, ω1 –ω2). The
arguments, which were summarized above for the case of harmonic oscillations in a
nonlinear system (and which led to Eq. (5.1)) now show that in the case of waves of
small (but not infinitesimal) amplitudes satisfying a quadratically non-linear wave
equation, the three-wave nonlinear resonance may occur if, together with the waves
with wave number and frequency (k1, ω1) and (k2, ω2), a third wave is present which
has the same (x, t)-periodicity as one of the waves produced by nonlinear interaction
of the above-mentioned waves, i.e., If (k3, ω3) = (k1 + k2, ω1 +ω2) (or (k1 −k2,
ω1 −ω2)). Hence here the conditions making the resonance possible may be written
in the form

ω1 + ω2 + ω3 = 0, k1 + k2 + k3 = 0, (5.2)

where it is assumed that signs of the frequencies and wave vectors can be chosen
arbitrarily (if this assumption is not accepted, then Eq. (4.2) must be written in the
form

ω1 ± ω2 = ω3, k1 ± k2 = k3; (5.2a)

see, e.g., Phillips (1960, 1974a, b). Phillips assumed that the three waves considered
have small amplitudesAi(t), i = 1, 2, 3, of the same order of magnitude, and, substi-
tuting the sum of three waves into the nonlinear wave-propagation equation (whose
form depends upon the nature of the waves considered), he obtained, for the case of
three real (sinusoidal) steady waves satisfying the conditions

ω1 + ω2 = ω3, k1 + k2 = k3, (5.2b)

the following approximate equations determining, to the order of the squares of the
initial amplitudes, the rates of change of the three amplitudes:

dA1

dt
= C1A2A3

′,
dA2

dt
= C2A3A1,

dA3

dt
= C3A1A2, (5.3)

where C1, C2 and C3 are three interaction coefficients dependent on the particular
wave motion considered, and on the wavenumbers involved and their geometrical
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configuration. (For more details see the paper by Bretherton (1964), the book by
Craik (1985) specially devoted to wave interactions in fluid flows, and the papers
and books cited below in this section, many of which contain rigorous derivations
of these equations for a number of particular cases). Craik considered the complex
wave disturbances in a plane-parallel fluid flow where the amplitudesA1,A2 andA3,
and also the frequencies ω1, ω2 and ω3, may be complex (as they are, e.g., in the case
of unsteady T-S waves). Here the first condition (5.2b) takes the form �e(ω1 +ω2) =
�e ω3 (while the second does not change), and Eq. (5.3) take the form:

dA1

dt
= ω

(i)
1 A1 + C1A

∗
2A3,

dA2

dt
= ω

(i)
2 A2 + C2A

∗
1A3,

dA3

dt
= ω

(i)
3 A3 + C3A1A2, (5.4)

where ω(i)
n = �mωn, n = 1, 2, 3, and the asterisk denotes a complex conjugate. In

the case of a spatial formulation of the parallel-flow stability problem the frequen-
cies ω1, ω2 and ω3 take real values but the streamwise components, k11, k21 and
k31, of the vectors k1, k2 and k3 may be complex. Therefore in this case the first
condition (5.2b) remains unchanged, while the second condition must be replaced by
equation �e(k1 + k2) = �ek3 (where the symbol �e relates only to the streamwise
components of the wave vectors), and Eq. (5.4) must be written as

dA1

dx
= −k(i)

11A1 + B1A
∗
2A3,

dA2

dx
= −k(i)

21A2 + B2A
∗
1A3,

dA3

dx
= −k(i)

31A3 + B3A1A2, (5.4a)

where k(i)
n1

= � m kn1 , n = 1, 2, 3, and the Bn are new interaction coefficients. Note
also that, as in the case of complex frequencies, the superscript (r) in the symbols
for the real parts of streamwise wave vectors representing exponentially growing or
decaying waves will often be omitted, and the real parts will be denoted by symbol
k1 (or k, if the wave is two-dimensional).

Equations (5.4) and (5.4a) represent the nonlinear approximation of lowest order
in the weakly-nonlinear stability theory. In the approximation of the next order with
respect to wave amplitudes, additional third-order terms appear on the right-hand
sides of Eqs. (5.4) and (5.4a); see e.g. Eq. (5.11) below, and the papers by Usher and
Craik (1975) and Goncharov (1981), and the book by Craik (1985), Sects. 16.3 and
25–26. The quadratic terms of amplitude equations characterize only resonant modes,
while for the more usual nonresonant modes cubic terms follow the linear ones; see,
e.g., Landau-Stuart’s Eq. (4.40) and Stuart’s Eq. (4.43). Presence of quadratic terms
clearly means that for resonant modes nonlinearity begins to be important ‘sooner’
(i.e., at smaller amplitudes) than for nonresonant modes.

The computation of the interaction coefficients C1, C2 and C3 is a complicated
problem, for which a number of special methods (applicable to one or other particular
wave-interaction situation) have been developed (see e.g. the important early paper
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by Simmons (1969) and the discussion of this topic in Craik’s book). The problem
is significantly complicated by the fact that real physical media are very often dis-
persive. This means that the wavenumber k and the frequency ω of waves in the
medium cannot be chosen arbitrarily but must satisfy a definite dispersion relation

ω = D(k), (5.5)

where the function D(k) (one- or many-valued) may depend on physical parameters
affecting wave propagation and on the dimensionless characteristics of the corre-
sponding physical regime (e.g., on the Reynolds number: see e.g. Eq. (2.90) in
Chap. 2 and, for more details, Karpman’s monograph (1975)). Therefore in many
cases it is not easy to find triads of wave vectors ki and frequencies ωi satisfying
both Eq. (5.2b) (or a related equation differing by the signs of some terms and/or by
replacement of ωi by �eωi) and (5.5), since such triads (if they exist at all) repre-
sent only some rare exceptions. In particular, Phillips (1960, 1961) was one of the
first to look for three-wave resonances in fluid flows, in his study of inviscid gravity
waves in deep water (where k is a two-dimensional vector, and the dispersion rela-
tion has the form ω2 = g |k| where g is the acceleration due to gravity). He found
that here the condition (5.2b) cannot be fulfilled at all. (note that such a dispersion
relation evidently prevents two-wave resonance also). Hence Phillips was forced
to pass to four-wave resonances of quadruples of waves satisfying the conditions
k1 + k2 = k3 + k4, ω1 +ω2 =ω3 +ω4. He found that such quadruples of gravity
waves really exist, and hence the four-wave resonances may occur here and produce
unsteadiness of the gravity waves. Then he determined the corresponding amplitude
equations which, in the case of four-wave resonance contain, in the lowest-order
nontrivial approximation, terms of third order in wave amplitudes on the right-hand
sides; see also Craik (1985), Sects. 8 and 23. In some plasma and geophysical wave
problems the five-wave resonances produced by a coupled pair of resonant wave
triads having one member in common are also of importance, and are discussed in
Craik (1985), Sect. 16.2, while for examples of resonances of this type appearing in
fluid flows see, e.g., the small-type text in the final part of Sect. 5.3 of the present
book). Three-wave resonances may be important in many physical situations (the
case of gravity waves on a deep-water surface may be considered as an exception)
and therefore the literature devoted to study of such resonances is quite extensive.
In particular, it was found by McGoldrick (1965) that such resonances may occur
in the case of capillary-gravity waves and ripples on the water surface (which are
affected by both the gravity and the surface tension, and which have a dispersion
relation of the form ω2 = g|k| + γk|3/ρ, where γ is the coefficient of surface tension
and ρ is the density of water). In the case of gravity waves in a heavy liquid be-
neath a solid plate, the surface tension plays no role but here the waves are affected
by the elastic properties of the plate, and this leads to a dispersion relation which
again makes three-wave resonance possible; see e.g. Marchenko (1991, 1999). It was
also found that three-wave resonances may occur among effectively-inviscid internal
gravity waves in stratified flows with density depending on the vertical coordinate;
among various large-scale geophysical waves (e.g. those depending on Earth’s an-
gular velocity, such as Rossby waves in the troposphere and plasma waves in the
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ionosphere at much greater heights); and among many other types of interacting
nonlinear waves. Note also that the three-wave resonance may be realized in triads
of waves of different types (in particular, in triads consisting of two gravity waves
on the surface of a stratified liquid and one internal wave in the same liquid, or of
two short capillary-gravity waves and one longer purely-gravity wave unaffected by
surface tension). A number of theoretical and experimental studies of three-wave res-
onances in fluid flows may be found in papers by McGoldrick (1965, 1970a, b, 1972);
McGoldrick et al. (1966); Phillips (1966, 1967, 1974a, b, 1977, 1981); Longuet-
Higgins and Smith (1966); Longuet-Higgins and Gill (1967); Craik (1968); Nayfeh
(1971); Brekhovskikh et al. (1972); Loesch (1974); Ripa (1981); Banerjee and Kor-
pel (1982); Yuen and Lake (1982); Hogan (1984); Henderson and Hammack (1987);
Perlin et al. (1990); Christodoulides and Dias (1994); Trulsen and Mei (1996) and
many others (these publications and the book by Craik (1985) also contain many sup-
plementary references relating to this topic). Since nonlinear dispersive waves may
occur in quite different media and situations, the nonlinear wave-resonance theory
has many applications to problems outside classical fluid mechanics; in such cases the
theory has often been developed independently of studies of waves in ordinary fluids.
As typical examples of publications dealing with three-wave resonances relating to
waves of other origins, we may mention the papers by Jurkus and Robson (1960)
on nonlinear electronics, by Khokhlov (1961) on electromagnetic wave propagation
in dispersive conductors, and by Dimant (2000) on nonlinear interactions among
ionospheric waves; the books and papers by Armstrong et al. (1962); Bloembergen
(1965, 1968) and Akhmanov and Khokhlov (1972) on nonlinear optics, by Davidson
(1972); Weiland and Wilhelmsson (1977) and Turner and Boyd (1978) on plasma
waves; and the general survey by Kaup et al. (1979) (containing an extensive bibli-
ography and supplemented by Kaup’s paper (1981)). However, for present purposes
only waves in an incompressible Navier-Stokes fluid are of interest, and in this chapter
only the case of waves in plane-parallel and nearly plane-parallel fluid flows will be
investigated.

In almost all the papers and books cited above which deal with wave resonances
in fluid mechanics, waves in immovable fluids (where there is no basic flow) were
considered. In this case the total energy of any group of waves interacting with each
other must be conserved. (This means, in particular, that if the wave energy E ∝ |A|2

is always positive, the coefficients Ci, i = 1, 2, 3, of Eq. (5.3) cannot all have the
same sign. More complicated cases, in which the excitation of waves lowers the total
energy of the system so that the wave energy must be considered as negative, are
often encountered in plasma physics, and have also been considered in application
to fluid mechanics, e.g. by Cairns (1979); Craik and Adam (1979), and Craik (1985),
Sects. 2.3 and 14.3; however, they will not be discussed in this book). Energy
conservation implies that the growth of one wave may be achieved only as a result
of energy exchange between various waves, leading to energy redistribution and
the attenuation of some other wave (or waves). Such energy redistribution changes
the wave amplitudes (and also the wave shapes, which become distorted by the
growth of supplementary waves extracting energy from the primary one) producing
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unsteadiness and hence making the waves unstable. Developing unsteadiness of
waves is often of oscillatory type (in which the energy of one of the waves decreases
for a time because of transfer to other waves, but then begins to grow anew when
the energy transfer changes sign; see e.g. Fig. VII.3 in Phillips (1974b)). Such
unsteadiness clearly represents an interesting physical phenomenon which differs
strongly from the monotonic growth of disturbance amplitudes, which was studied
in previous chapters in connection with transition of laminar flows to turbulence.
If the viscosity of the fluid cannot be neglected, then the redistribution of energy
between interacting waves will be accompanied by their viscous decay, but here too
the growth of one wave amplitude must necessarily be accompanied by simultaneous
attenuation of others.

The difference between the wave instabilities observed in immovable fluids and
the flow instabilities studied in Chaps. 2–4 above is due first of all to the fact that in
these chapters only instabilities of steady laminar shear flows (most often of plane-
parallel flows with nonuniform velocity distributions U(z)) were considered. In such
flows the most important mechanism of disturbance growth is connected with the
transfer of energy from the primary flow to the disturbance (reverse energy transfer
is also possible in principle but it occurs much more rarely). This mechanism plays
the leading role in the majority of cases of transition to turbulence, and also in
all the flow instabilities studied in Chaps. 2–4 (see in this respect Sect. 4.1 on the
energetics of instability phenomena). Therefore it is natural to suppose that the same
mechanism may have an essential effect on the resonant growth of wave disturbances
in steady shear flows, and thus lead to some new interesting and important instability
phenomena.

Apparently Raetz (1959) (see also the discussion of this work by Stuart (1962a)
and in Raetz’s survey (1964)) was the first to suggest that three-wave nonlinear
resonances may play an essential part in the transition to turbulence of a laminar
boundary layer with, say, the Blasius velocity profile U(z). Shortly after this Benney
and Niell (1962) expressed doubts about the possibility of a nonlinear resonance
leading to a large growth of some wave amplitudes; however, later their doubt was
found to be groundless (and the importance of nonlinear resonance was then stressed,
in particular, by Benney and Gustavsson (1981)). As will be shown below, the main
idea of Raetz proved to be correct and very important; for this reason Raetz’s un-
published report of 1959 stimulated the appearance of a great number of papers
further developing this idea. This matter will be discussed at greater length in the
next section; first, however, the results of two relatively old (but quite typical) papers
relating to some special cases of nonlinear resonance of waves in shear flows will
be briefly considered, as illustrations of the general tendency of nonlinear-resonance
studies.

Kelly’s paper (1968) was devoted to the search for resonant interactions of waves in
two particular plane-parallel inviscid shear flows—in a Bickley jet, where U(z) =U0

sech2(z/H) in−∞ < z < ∞, and in a stably stratified plane mixing layer with the veloc-
ity profile U(z) =U0tanh(z/H)) and the density profile ρ(z) = ρ0exp(−βtanh3(z/H)).
In this paper only two-wave resonances, involving pairs of neutrally-stable two-
dimensional waves, were considered. For waves proportional to exp{i(kjx −ωjt)},
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j = 1, 2 (where kj and ωj are real and positive), nonlinear resonance is possible if
k2 = 2k1, ω2 = 2ω1; it was found that to identify waves satisfying these conditions,
the data collected by Drazin and Howard in their survey (1966) of stability of parallel
flows in inviscid fluids are very useful.

According to Drazin and Howard, a Bickley jet can support a pair of neutral
two-dimensional waves with the following wave numbers and frequencies: k1 = 1/H,
ω1 = (2/3)U0/H, and k2 = 2/H;ω2 = (4/3)U0/H (the stream-function vertical profiles
ψ1(z) and ψ2(z) of these waves were also given by Drazin and Howard). Thus, these
two waves may interact resonantly. As for the stratified mixing layer, Miles (1963)
showed that there can exist an infinite number of two-dimensional neutral modes
depending on the value of the overall Richardson number Ri∗ = gβH/(Uo)2 (which
characterizes the flow stability). Results given by Drazin and Howard show that at
Ri∗ = 4/3 the resonance conditions k2 = 2k1, ω2 = 2ω1 are satisfied for the first two
modes; while for Ri∗ > 4/3 other resonant cases may occur which also involve higher
modes (in particular, at Ri∗ = 10/3 a three-wave resonance may occur among the first
three modes). Kelly studied the interactions of these pairs of two-dimensional waves
in the Bickley jet and in the stratified mixing layer, and found that, at least in the
stably stratified mixing layer at Ri∗ = 4/3, two-wave resonance can occur, leading
to the rapid temporal growth of a wave disturbance with a fixed spatial periodicity.
This continuous growth shows that in this case the nonlinear interaction of the waves
with each other and with the primary flow leads to transfer of primary-flow energy
to the waves.

Slightly later Craik (1968) examined the possibility of resonant gravity-wave in-
teractions in a horizontal liquid layer with the linear velocity profile U(z) = −u1z,
0 ≥ z > −∞. (The condition that |U(z)| → ∞ as z → −∞ is not essential here,
because the gravity-wave motions involve only a thin upper layer of liquid). It was
indicated above that two-wave and three-wave resonant interactions cannot occur
among gravity waves in a liquid at rest, while such interactions among quadru-
ples of waves can occur here but cannot produce continuous growth of any of the
waves. Craik found that in a shear flow with a linear velocity profile, two-wave and
three-wave resonant interactions are also impossible among two-dimensional grav-
ity waves, but three-wave resonant interactions are now possible among two- and
three-dimensional gravity waves. He did not try to examine all possible resonant
triads of such gravity waves but limited himself to consideration of triads compris-
ing one two-dimensional wave proportional to exp(i(kx −ωt)), and two symmetric
oblique waves which are proportional to exp(i(k1x ± k2y −ω1t) and thus have incli-
nation angles θ1,2 = ± tan−1 (k2/k1), with the same absolute value but opposite signs.
The frequencies ω and ω1 and the wave numbers k, k1 and k2 were assumed to be
real, i.e., all the waves considered were neutrally stable. However, these frequencies
and wave vectors could not take arbitrary real values, but had to satisfy a definite
dispersion relation. Craik showed that, in a homogeneous shear flow with constant
shear u1, a gravity wave with frequency ω and wave vector k = (k1, k2) must satisfy
a dispersion relation of the form

ω2 − (k1u1/|k|)ω = g |k| , |k| = (k1
2 + k2

2
)1/2

. (5.6)
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Relation (5.6) allows us to examine conditions under which a triad of plane waves with
wave numbers and frequencies (k1, ω1), (k2, ω1) and (k3, ω), where k1 = (k1, k2),
k2 = (k1, −k2) and k3 = (k, 0), may satisfy conditions (5.2b). Sinceω(k1, k2) =ω(k1,
−k2) by virtue of Eq. (5.6), these conditions now take the very simple form:

k1 = k/2, ω1 = ω/2. (5.7)

Thus the values of k, k2 and ω must be chosen so that Eq. (5.6) will be valid for
the following two wavevector-frequency combinations: (i) (k, 0, ω) and (ii) (k/2, k2,
ω/2). Assuming, without loss of generality, that k and ω are positive, Craik showed
that such values of k, k2 and ω exist only under the condition that u1 is also positive
and large enough that

u1

(gk)1/2 ≥ [7 + (48)1/2]

[8 + (48)1/2]
1/2 ≈ 3.60. (5.8)

This means that three-wave resonant interactions, which are completely impossible
for gravity waves in a motionless liquid, may be possible for such waves in a homo-
geneous shear flow for wave triads of special form, but only in the cases where the
shear u1 is positive and large enough. Craik also showed that, under condition (5.8),
to every permissible value of u1/(gk)1/2 there correspond two permissible values of
k2 > 0 and of the angle θ = tan−1 (2k2/k). Moreover, here the two values of θ coincide
with each other, and are close to 74◦ when u1/(gk)1/2 takes its minimum permissible
value (close to 3.6), while when the value of u1/(gk)1/2 increases one of the two val-
ues of θ is continuously growing and the other is continuously decreasing, tending
to values 90◦ and 60◦ as u1/(gk)1/2 → ∞.

The subsequent part of Craik’s paper is devoted to a lengthy approximate evalua-
tion of the growth rates for triads of interacting plane waves satisfying the resonant
conditions (5.2b). Assuming that the viscosity v is very small and that the initial
complex amplitudes A1(0), A2(0) and A3(0) of the three surface gravity waves con-
sidered have small (but not infinitesimal) absolute values, Craik derived, under rather
general conditions, a system of equations for the functions A1(t), A2(t) and A3(t),
of the form (5.4). Here the first terms on the right-hand sides (which describe the
viscous decay of the waves) can usually be neglected, while for the leading terms of
the expressions for the coefficients Ci, i = 1, 2, 3, the following order-of-magnitude
estimates were obtained: C1 = O (ω2/kv), C2 = O (ω2/kv), but C3 = O (ωk). It is
remarkable that at small values of v (i.e. large Re) the coefficients C1 and C2, deter-
mining the growth rates of amplitudes of the two oblique waves, turn out to be much
greater than the coefficient C3. Hence here the oblique waves grow very rapidly,
while the amplitude of the two-dimensional wave changes much more slowly. This
shows that in this case a very strong resonant interaction of the three waves takes
place, and the oblique waves effectively extract energy from the primary flow while
the amplitude of the two-dimensional wave changes only a little. Of course, since
these estimates of the wave growth rates were based on the assumption that all the
amplitudes are small, the estimates are valid only during a restricted time interval.
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In conclusion Craik briefly considered also the resonant-interaction problem for
interfacial gravity waves in a two-layer flow where for z > 0 and z < 0 the liquid has
different densities ρ1 and ρ2 > ρ1 and the flow has constant but different velocity gra-
dients dU/dz = u1 and u2. He found that here the condition for three-wave resonance
can often be satisfied by much smaller values of the velocity gradients than those
given by Eq. (5.8). However we will not linger on this special problem in this book.

5.2 Resonance and Secondary-Instability Manifestation
in Boundary-Layer Development

The title of this chapter and the short introduction indicated that the chapter will
be devoted to weakly-nonlinear mechanisms of instability development in a steady
laminar boundary layer in zero pressure gradient (a “flat plate” boundary layer).
Consideration of this flow alone was justified by the prevalence and great practical
importance of boundary-layer flows in nature and in industry. It was also noted that
properties of the laminar flat-plate boundary-layer flow (often called the ‘the Blasius
flow’ since its velocity profile was computed by Blasius as long ago as 1908; cf.
Chap. 2) have been intensively studied by both theorists and experimenters during
many years. These studies led to many interesting results which, unfortunately, have
not solved all the problems relating to boundary-layer flow instability and transition
to turbulence, but nevertheless have considerably clarified the situation and had a
great effect on the whole weakly-nonlinear theory of hydrodynamic instability.

The main topics of the present chapter are the nonlinear resonance among three
wave-like disturbances with small amplitudes of the same order of magnitude appear-
ing in the boundary-layer flow, and the secondary instabilities of two-dimensional
waves of small but finite amplitudes with respect to wave disturbances of other types.
However, some other multimode weakly-nonlinear theories of hydrodynamic insta-
bility will also be briefly considered. Let us stress again that although enormous
amounts of research effort were devoted during the whole twentieth century to the
study of instability and transition to turbulence of flat-plate boundary layers, our
understanding of these processes is still far from being complete. This statement re-
peats the remark made more than thirty years ago by Tani (1969), which the work of
the intervening years has not disproved. One of the first puzzles relating to instabil-
ity was produced by the discovery, in the classical experiments on boundary-layers
stability by Schubauer and Klebanoff (1956) (see also Schubauer (1958)), Klebanoff
and Tidstrom (1959) and Klebanoff et al. (1962), of the fact that the development in a
boundary layer of an initially small two-dimensional disturbance always leads to the
appearance slightly later of some fast-growing, spanwise-periodic three-dimensional
structures. (This fact was later confirmed by many other authors; see, for example, the
papers by Tani (1967) and Komoda (1967), which preceded a great number of more
detailed experiments and numerical simulations, some of which will be discussed
below). The streamwise development of these structures was thoroughly studied by
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Klebanoff et al. (and then also by Tani, Komoda, and many others). All the above-
mentioned authors followed Schubauer and Skramstad (1947) in using a vibrating
ribbon to excite waves in the boundary layer. However Klebanoff et al., and then
Tani, Komoda, and some others, modified this technique by inserting spacers (typi-
cally small pieces of adhesive tape) at regular intervals beneath of the ribbon, thus
producing a weak spanwise periodicity of the disturbance. The spanwise wavelength
then depended on the distance between adjacent pieces of tape, and hence could be
varied; in the above-mentioned experiments it was always chosen to be equal to that
appearing in experiments without any spanwise forcing. Therefore here the usual 3D
periodicity was present at the start of the excited region.

The appearance of flow three-dimensionality evidently contradicted the known
results of linear stability theory (see, e.g., Sect. 2.81) according to which the most un-
stable small disturbances in any plane-parallel flow of viscous fluid have the form of
two-dimensional wave independent of the spanwise coordinate y. This contradiction
could evidently be explained only by some nonlinear effects which were neglected
in the linear theory. However, to find an explanation it was necessary to go beyond
the Landau approach where only the evolution of disturbance amplitude, but not the
change of its shape, was considered.

Benney and Lin (1960) and Benney (1961, 1964) were among the first who
attempted to explain theoretically the growth of three-dimensionalities in disturbed
plane-parallel flows. For this purpose they applied second-order weakly-nonlinear
theory (which preserves only terms of the first two orders in disturbance amplitudes)
to the simultaneous development, in a plane-parallel shear flow, of two rather small
disturbances: a two-dimensional (2D) wave proportional to exp(ikx − iωt) and a
three-dimensional (3D) wave proportional to exp(ikx − iω1t)cos(k1y) where ω and
ω1 are complex parameters having the same real parts, ω0 = �eω= �eω1. (In the
first two papers the case of a flow in an unbounded space with a hyperbolic-tangent
velocity profile was considered, while in the third paper the simplified model of
a plane-parallel boundary-layer flow having the piecewise-linear velocity profile
shown in Fig. 3.1a was used as the primary flow). Although the velocity profiles
studied differed from the real boundary-layer profile, some of the features of the
predicted wave developments recalled phenomena observed in the boundary-layer
stability experiments. However, the agreement with experimental data was only
qualitative and quite incomplete, and the subsequent attempt by Nakaya (1980) to
repeat the calculations using the Blasius boundary-layer velocity profile instead of
some simplified model of it did not lead to more satisfactory results. Moreover, Stuart
(1962a) noted that the assumption used in the above-mentioned papers, that 2D and
3D waves have the same (real) frequency, contradicted the available experimental
data, and Craik (1971) stressed that in these papers the spanwise wavelength was
chosen quite arbitrarily while experiments show that it has a definite preferred value.
(In fact, Klebanoff et al. and then also Anders and Blackwelder (1980) and some
other early experimenters found that this wavelength always takes the same value;
however later it was shown that this statements is incorrect). Antar and Collins
(1975) relaxed Benney and Lin’s, and Benney’s, assumptions and accepted that
Δω0 = �eω − �eω1 may differ from zero (and then used in their computations,
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relating to both Blasius and Falkner-Skan boundary-layer velocity profiles, values of
Δωgiven by numerical-simulation results). Then Nelson and Craik (1977) considered
another relaxation of Benney and Lin’s and Benney’s models, assuming thatΔω0 = 0
but accepting that the streamwise wave numbers of 2D and 3D waves may take
different values, while Herbert and Morkovin (1980) studied the superposition of
a 2D wave, with the wave vector k1 = (k1, 0), and a spanwise wave with wave
vector k2 = (0, k2). These generalizations of the previous models, which will not be
considered at length here, yielded a somewhat better (but not too good) agreement
with the experimental data available in the 1970s (see Craik’s paper (1980), especially
devoted to comparison of various theoretical models with the experimental data of
Klebanoff et al. (1962) and Kovasznay et al. (1962)).

Stuart (1962a, b) supplemented his criticism of the Benney and Lin model by
a sketch of a somewhat different approach to the study of development of three-
dimensionality in plane-parallel flows. Namely, he applied a weakly-nonlinear
analysis of Landau’s type to the time evolution of a pair of interacting small wave dis-
turbances (one 2D and the other 3D) having finite real amplitudes, arbitrary complex
frequencies ω1, ω2 and real wave vectors k1 = (k1, 0) and k2 = (k1, k2). Neglecting
terms of higher than third order with respect to wave amplitudes, Stuart showed
that here Landau’s Eq. (4.34) is replaced by the system (4.43) of two coupled non-
linear equations for the amplitudes A1(t) and A2(t) of the two waves. However he
did not try to compute the coefficients of these equations in preparation for solving
these equations for any particular plane-parallel flow. Instead, he confined himself
to a description of the equilibrium finite-amplitude solutions of these equations, and
discussion of the stability of the resulting equilibrium states (see Sect. 4.21 above).
Later Itoh (1980) carried out an approximate evaluation of the coefficients of Eq.
(4.43) for a plane Poiseuille flow with Re = HU0/v varying in the range from 4,000
to 8,000, which covers both subcritical and supercritical conditions (as usual, here
H and U0 are the half-distance between the walls and the maximum velocity of the
undisturbed flow). It was also assumed by Itoh that k1H = 1 while k2H takes a number
of values not exceeding 1. Moreover, the popular assumption that the contribution of
the least stable eigenmode of the linearized equations of motion must dominate the
eigenfunction expansions of both 2D and 3D nonlinear waves was also accepted and
used to simplify the computations. The coefficients of Eq. (4.43) were found to be
dependent on the phase difference of the two waves considered, but this dependence
could be eliminated by averaging the solutions over the period of ‘fast oscillations’
produced by the difference of the primary frequencies of 2D and 3D waves. Using
such averaging Itoh found some conditions for stability of a two-dimensional wave,
superimposed on a plane Poiseuille flow, to three-dimensional wave disturbances,
and he estimated the threshold value of the 2D-wave amplitude A1 above which
the three-dimensional waves are growing continuously. Using numerical values for
the coefficients in the equation, the equilibrium solutions (4.44) for Poiseuille flows
could be found and their stability characteristics determined. Even earlier, these sta-
bility characteristics were studied by Volodin and Zel’man (1977) for the simpler
case of two interacting two-dimensional T-S waves in the Blasius boundary-layer
flow at supercritical values of Re.
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Let us recall that in the 1960s, when Benney and Lin began to study the time
evolution of two-mode disturbances in plane-parallel flows, they assumed that the
streamwise wave numbers of a two-dimensional and a three-dimensional wave have
the same value of k. This assumption (which was later rejected by Nelson and Craik
(1977)) evidently excluded the possibility of including the 2D and 3D waves in a
resonant triad of wave disturbances. However, even before the appearance of these
studies, Raetz (1959) stated that according to his computations for the plane-parallel
model of a Blasius boundary layer, there exist some triads of three-dimensional
wave disturbances which satisfy the conditions (5.2b). These conditions imply that
the corresponding waves may interact resonantly, producing rapid growth of wave
amplitudes, and Raetz suggested that such resonant instability of wave triads may
play an important part in the transition of boundary layers to turbulence.

Raetz considered only neutral 3D waves, corresponding to real values of the
eigenfrequency ω. Because his report of 1959 did not contain a complete description
of the computations, Stuart, preparing his survey lecture (1962a), computed a new
one more resonant triad for a Blasius boundary layer at a supercritical value of Re
(this triad also consisted of three-dimensional neutrally-stable waves; according to
Raetz resonant triads do not exist among purely two-dimensional waves). However,
neither Raetz nor Stuart computed the corresponding growth rates (determined by
the values of the three coefficients Ci in Eq. (5.3)). This was, of course, a necessary
step; recall that in general conditions (5.2b) are necessary for the resonant character
of three-wave interactions, but do not guarantee that resonance will actually occur
in all cases where these conditions are valid.

A much more detailed study of resonant three-wave interactions in boundary-layer
flows was carried out by Craik (1971). He noted that Raetz’s and Stuart’s limitation
to neutrally-stable waves wrongly restricts the class of resonant wave triads to be
studied, since such triads can in principle also exist among both subcritical and su-
percritical waves. (In the case of non-neutral waves the real frequencies ωI must
of course be replaced, in the first condition (5.2b), by the real parts �eωi of the
corresponding complex eigenvalues ωi = ci /k1 of the Orr–Sommerfeld Eq. (2.41),
but no limitations are imposed by these conditions on their imaginary parts). How-
ever Craik did not consider the general case of arbitrary triads of three-dimensional
Tollmien–Schlichting (T-S) waves with any wave numbers k1, k2 and k3. As in
his paper of 1968 on gravity waves, discussed at the end of the previous subsec-
tion, he examined only special triads, comprising one 2D wave propagating in the
streamwise direction (proportional to exp(i(kx −ωt))) and two 3D waves proportional
to exp(i(k1x ± k2y −ω1t) (i.e., inclined at equal but opposite angles θ1,2 = ± tan−1

(k2/k1) to the flow direction). Hence he assumed that k1 = (k, 0), k2 = (k1, k2) and
k3 = (k1, −k2) and thus the resonance conditions (5.2b) took the very simple form
k1 = k/2, �eω1 = �eω/2 (cf. 5.7). The reason for giving much attention to such spe-
cial triads was connected with the fact that here the three waves have the same phase
velocity c = �eω/k = �eω1/k1 and hence there is only one critical layer, at the height
z0 where U(z0) = c. Since it is known that the most intensive interaction of a small
wave with the primary steady flow takes place in the vicinity of the critical layer (see,
e.g., the discussion of the role of a critical layer in nonlinear resonant interactions
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by Mankbadi (1990, 1991, 1994); Mankbadi et al. (1993), and Goldstein (1995)),
it is natural expect that in the case where three interacting waves have the same
critical layer these waves may extract energy from the primary flow in a particularly
powerful manner. This expectation was confirmed by Craik (1968) for the case of
gravity waves on the surface of a liquid shear layer; the results of his paper of 1971
(see below) also agreed with the stated expectation rather well (a small correction of
the conclusion that in this case the oblique-wave growth must take a maximal value
was discovered later, and will be discussed in Sect. 5.4: see, in particular, Figs. 5.13,
5.14 and 5.15 and the text relating to these figures).

In the case of T-S waves in a plane-parallel primary flow the search for possible
resonant triads may be facilitated considerably by the use of the Squire theorem pre-
sented in Sect. 2.81. According to this theorem ωj (k1, k2, Re) =ωj (|k|, 0, k1Re/|k|),
where ωj(k1, k2, Re) = cj(k1, k2, Re)/k1 is the jth eigenfrequency of the general O-S
Eq. (2.41) corresponding to the wave vector k = (k1, k2) and Reynolds number Re,
while |k| = (k1

2 + k2
2)1/2. Thus here we need only the eigenvalues ωj(k, 0, Re) of

the two-dimensional O-S Eq. (2.44) for various values of k and Re. One convenient
method for determination of such resonant triads in the case of a plane-parallel flow
with a given value of Re begins with the plotting of the curves �eω(k1, k2)/k1 ≡ cr(k1,
k2) = const. and �mω(k1, k2)/k1 ≡ ci(k1, k2) = const. (where c(k1, k2) is the eigen-
value of the O-S eigenvalue problem (2.41–2.42) with the greatest imaginary part) in
the (k1, k2)-plane (the Squire theorem is, of course very useful here). Then one may
select an arbitrary point (k, 0) on the k1-axis, plot a curve cr = const. passing through
this point, and then determine the two intersections (symmetric with respect to the
k2 axis) of the line k1 = k/2 with the plotted curve. These intersections determine the
values k2 and −k2 such that the oblique waves with wave vectors k2 = (k1, k2) and
k3 = (k1,−k2) together with the 2D wave with the wave number k1 = (k, 0) make up
a resonant triad. Therefore, for any wave number k, a resonant triad may normally be
found which consists of a 2D wave with wave vector k1 = (k, 0) and two symmetric
oblique waves with wave vectors k2 = (k/2, k2) and k3 = (k/2, −k2).

Craik (1971) applied this method to find a number of resonant triads for two-
dimensional Blasius boundary layers with various values of Re ≡ Re∗ =U0δ

∗/v.
(Here U0 is the free-stream velocity and δ∗ is the displacement thickness. Below,
these velocity and length scales will be used to make dimensionless all physical
parameters relating to the Blasius boundary layer; therefore, the symbol k will now
denote the dimensionless combination kδ∗, the symbol ω the combination ωδ∗/U0

and so on). Figure 5.1a shows one of Craik’s examples, for Re∗ = 882. Here two
resonant triads are denoted by dotted arrows; the first of them with k = 0.254 in-
cludes the linearly-most-unstable 2D wave as its first component while its second
and third components are linearly stable, and the second triad with k = 0.46 includes
the linearly-stable 2D wave but linearly-unstable oblique waves. Later F. Hendriks
(see his Appendix at the end of Usher and Craik’s paper (1975)) extended Craik’s
calculations to the six additional resonant triads (with 0.1 ≤ k ≤ 0.5) in the Blasius
boundary layer with Re∗ = 882; some comparisons of the results of Craik’s and Hen-
driks’ calculations with experimental data were made by Craik (1980). A number of
other examples of resonant triads of the same type in Blasius boundary layers with
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a

b

Fig. 5.1 Examples of calculated resonant wave triads in the Blasius boundary layers with Re∗ = 882
and Re∗ = 750. (a) Contours in the (k1, k2)-plane of phase-velocity values cr = Âec = Âe(ω/k1)
and values of ci = Ámc = Ám(ω/k1) (determining the growth, or decay, rate k1ci ) for temporally-
evolving T-S waves in a boundary layer with Re∗ = 882. Since cr (k1, k2) = cr (k1, –k2) and
ci (k1, k2) = ci (k1, –k2), contours for ci are shown only for k2 ≤ 0, and those for cr only for
k2 ≥ 0. Two resonant triads with wave vectors k1 = (k, 0), k2, 3 = (k/2, ±k2), satisfying the
condition cr (k, 0) = cr(k/2, ±k2), are shown by arrows. (after Craik (1971)). (b) Contours in the
(k1, k2)-plane of phase velocity cr = Âec = Âe(ω/k1) (the left diagram) and of ci = Ámc = Ám
(ω/k1) (the right one) for temporally evolving T-S waves in a boundary layer with Re∗ = 750. Two
examples of resonant triads are shown by arrows. (After Schmid and Henningson (2001))

various values of Re∗ and k may be found, in particular, in Volodin and Zel’man’s pa-
per (1978) and the book by Schmid and Henningson (2001).As an example, two triads
computed by Schmid and Henningson for Re∗ = 750 are presented in Fig. 5.1b; here
the first triad (where k ≈ 0.37) comprises three waves which have negative growth
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a b

Fig. 5.2 Temporal growth (or decay) rates k1ci = �mω for 2D and 3D components of resonant
triads of Craik’s type with various values of streamwise wavenumber k1 of 2D waves in Blasius
boundary layers with (a) Re∗ = 600, and (b) Re∗ = 1,000. (After Schmid and Henningson 2001)

rates close to zero according to linear stability theory, while all members of the sec-
ond triad (where k ≈ 0.18) are essentially stable (have appreciably negative rates of
growth). In Figs. 5.2a, b, also taken from Schmid and Henningson’s book, the linear
stability properties of all resonant triads of Craik’s type with k ≤ 0.5 are shown for
two Reynolds numbers, Re∗ = 600 and 1,000. One may see that for the lower value
of Re∗ there is a range of wavenumbers k where the 2D component of a resonant
triad is linearly unstable, while the 3D components are linearly stable at any k; on
the other hand, at Re∗ = 1,000 both 2D and 3D components may be simultaneously
unstable. Note, however, that for linearly-stable oblique T-S waves entering a reso-
nant triad, the rates of their resonant growth usually greatly exceed the rates of their
decay given by the linear theory of stability. Therefore the linear stability of such
waves in fact plays no part here.

An essential part of Craik’s paper of 1971 was devoted to approximate evaluation
of the coefficients C1, C2 and C3 of Eq. (5.4) for the amplitudes of three resonant
waves. It was based on the use of nonlinear equations for the velocity components
of a steady primary flow disturbed by three T-S waves of small amplitude. Craik’s
main attention was paid to asymptotic results for large values of kRe. He found that
if the critical layer is located far from flow boundaries, then, under rather general
conditions for fairly large (but finite) values of the Reynolds number, the magnitudes
of the coefficients are C1 = O(Re), C2 = O(Re), and C3 = O(1), for an arbitrary
velocity profile U(z) of the primary flow (here it is assumed that the 1st and 2nd
waves are the oblique ones while the 2D wave has number 3). This shows that, again,
the amplitudes of two oblique waves grow very fast at the expense of the energy of
the primary flow, while the amplitude of the two-dimensional wave changes much
more slowly.
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Since Craik’s results relating to the Blasius velocity profile U(z) and triads of
waves shown in Fig. 5.1a were found to be very complicated and cumbersome, he
also considered the simpler model of a piecewise linear velocity profile of the form

U (z) = bz, b > 0, for 0 ≤ z ≤ H ,U (z) = bH = U0 for z > H (5.9)

(shown in Fig. 3.1a in Chap. 3). For this profile, Craik was able to find explicit
asymptotic equations for the coefficients of Eq. (5.4) which showed at once that in
this case C1 = O(Re), C2 = O(Re) and C3 = O(1) at large values of Re =U0H/v.

Later Reutov (1990) examined resonant wave interactions in the model of a
boundary-layer flow with the velocity profile (5.9), assuming that v = 0 and hence
Re = ∞ (note that stability with respect to infinitesimal disturbances of such an in-
viscid flow was thoroughly investigated by Tietjens (1925), whose results were used
extensively by Craiks). Reutov’s idea was to show that results similar to those found
by Craik may be obtained more easily for the simpler case of an inviscid fluid. In an
inviscid flow with the velocity profile (5.9) the dispersion relation determining the
frequency ω of a three-dimensional wave proportional to exp(i(k1x + k2y −ωt) has
the form

ω = k1U0

[

1 − 1

2 |k|H (1 − exp(−2 |k|H )

]

, |k| = (k2
1 + k2

2

)1/2
. (5.10)

(Eq. (5.10) was also obtained by Tietjens (1925); it is, of course, much simpler than
the dispersion relations for viscous plane-parallel flows where the possible values of
ω at given k are given by the eigenvalues of the corresponding O-S problem (2.41–
2.42)). Like Craik, Reutov considered only those wave triads consisting of a two-
dimensional wave proportional to exp(i(kx −ωt)) and two oblique waves proportional
to exp(i(k1x ± k2y −ω1t). Conditions (5.2b) then take the form (5.7), and by virtue of
Eq. (5.10) these conditions will be valid here if, and only if, k/k1 = 2 and k2/k1 = √

3.
Hence here the possible resonant triads consist of a 2D wave with wave number k
(which can take any value) and two oblique waves with streamwise wave number
k/2 which are inclined at angles ± 60◦ to the primary-flow direction. Investigating
the nonlinear interaction between three plane waves of small amplitudes, Reutov
paid his main attention to the subject studied in his earlier paper (Reutov (1985)),
namely the most important contribution to this interaction, which is produced in the
vicinity of the critical layer where U(z) = c. He was able to show that at small positive
values of t, when it is sufficient to keep only the terms of first and second order in
the amplitudes, oblique waves grow exponentially while the amplitude of a two-
dimensional wave remains practically constant. Thus here also a strong nonlinear
resonance takes place, and leads to very effective transfer of energy from the inviscid
steady flow to a pair of oblique waves; the two-dimensional wave plays the role of a
catalyst, stimulating this process but preserving practically constant amplitude.

For the case of nonlinear development of resonant wave disturbances in viscous
plane-parallel (or nearly plane-parallel) fluid flows, Zel’man (1974) proposed to take
an average of the equations of motion over an ‘intermediate region’ which is much
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smaller than typical scales of change of the most important ‘slow variations’ of wave
amplitudes but much greater than the wave lengths and periods of unimportant rapid
oscillations, which considerably complicate the required solution. This method gen-
eralizes Landau’s approach (1944) considered at the beginning of Sect. 4.21, and also
has many features in common with the popular method of multiple scales, which
was mentioned several times in Chap. 4 and will be mentioned again later in this
chapter. This method of averaging has many applications to various physical prob-
lems relating to nonlinear oscillations and waves (see e.g. Chap. 11 of the book by
Rabinovich and Trubetskov (1989)). In particular, after 1974 this method was often
applied to fluid-dynamic equations, where it facilitated the evaluation of interaction
coefficients in the equations for amplitudes of resonant wave systems. One of the
first examples of its use was due to Volodin and Zel’man (1978) who applied this
method to the study of the spatial, rather than temporal, development of resonant
wave triads of Craik’s type in a Blasius boundary-layer flow. (For further applica-
tions of the method of averaging to development of disturbances in boundary layers
see Zel’man and Kakotkin (1985); Zel’man (1991) and Zel’man and Maslennikova
(1993a)). Volodin and Zel’man based their analysis on the numerical integration of
the averaged nonlinear equations for the vertical velocity w and the vertical vorticity
ζ = ζ3 of the disturbed flow (i.e. Eqs. (3.44) and (3.54) supplemented by nonlinear
terms). These equations are equivalent to the Navier-Stokes equations for velocity
components (since components u and v may be determined if w and ζ are known) but
the velocity-vorticity equations do not contain the pressure; therefore they are more
convenient and are used very frequently (see e.g. the review paper by Gatski (1991)).
The computational procedure used by the above authors allowed them to determine
the values of the interaction coefficients B1,2 and B3 in Eq. (5.4a), relating to wave
amplitudes Ai(x), i = 1, 2, 3, for a number of values of Re∗ in the range from 650
to 1,300, and of the non-dimensionalized wave number k1 = k/2 in the range from
0.19 to 0.5. Recall that in the case of a two-dimensional less-stable T-S wave with
k2 = 0, values of Re∗ and k uniquely determine the value of ω). By virtue of the 3D
Orr–Sommerfeld Eq. (2.41), if the values of Re∗ and ω are fixed then the value of
k1 determines the value of k2 for the most unstable wave and therefore also deter-
mines the inclination angles θ1,2 = ± tan−1 (k2/k1) of the oblique components of the
wave triad (for more details see Kachanov and Michalke (1994, 1995) and Kachanov
(1996)). Volodin and Zel’man found that in the spatial formulation of the stability
problem the ratio |B1,2|/|B3| also takes fairly large values, which increase appreciably
with increasing Re∗ (the coefficients B1 and B2 coincide here for reasons of symme-
try). They also applied the approximate method of Bouthier (1973) to incorporate
the effect of streamwise variation of the boundary-layer flow into the computation;
it was found that this effect does not invalidate the important conclusion formu-
lated above. This conclusion was later confirmed by the analytical investigations
of resonant-triad development in a streamwise-growing boundary layer by Smith
and Stewart (1987); Nayfeh (1987a, b) (who criticized some of the assumptions of
Smith and Stewart which were also called in question by the work of Mankbadi et al.
(1993) and Wu (1993, 1995); see also Healey’s (1995) critical discussion of various
approximations used in derivation of multimode amplitude equations) and the papers
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by Khokhlov (1993, 1994) (who used a slight modification of Smith and Stewart’s
assumptions), and Zel’man and Maslennikova (1984, 1993a) (some of whose results
will be discussed below).

Craik (1971) considered, at the end of his paper, several exact solutions of some
particular amplitude equations of the form (5.4) (for the simplest case of Eq. (5.3) with
constant coefficients Ci, exact solutions, represented in terms of elliptic functions,
were found independently by Jurkus and Robson (1960); Armstrong et al. (1962)
and Bretherton (1964)). Craik’s solutions also include examples where amplitudes of
some waves become infinite after a finite time. (These singularities apparently show
that the wave energy grows faster than exponentially; of course, the second-order
Eq. (5.4) cease to be valid in such cases before the predicted ‘infinite instability burst’
occurs). Later Craik and Adam (1978) and Craik (1978, 1985) also considered three-
wave resonances, for wave with amplitudes depending on both spatial coordinates and
time. In this case the left-hand sides of Eq. (5.3a) must be supplemented by the terms
(vi∇)Ai where vi is the appropriately-defined velocity of the ith wave. Wave systems
of such types are met in a number of diverse physical problems; therefore the exact
solutions of some of the corresponding amplitude equations found by Craik may have
many applications. However, this subject will not be discussed here at any length.

Craik (1971) found also that ‘direct computation’ of the interaction coefficients
Ci with the help of the Navier-Stokes equations was quite complicated and
labor-consuming. Therefore Usher and Craik (1974) tried to replace the ordinary
form of N-S equations in this computation by the variational formulation suggested
by Bateman and presented in the textbook by Dryden et al. (1956). This attempt
was stimulated by the fact that in the case of a similar problem for capillary-gravity
waves a variational analysis by Simmons (1969) proved to be much more simple
and elegant than the ‘direct evaluation’ of the interaction coefficients by McGoldrick
(1965) by means of Euler’s inviscid equations of motion. According to Usher
and Craik the viscous terms and the non-self-adjointness of the N-S equations
considerably complicate the derivation of an appropriate variational formulation
of these equations. Nevertheless, such a formulation can be found, and it indeed
allows computation of the interaction coefficients more simply than by Craik’s
method of 1971. However, the subsequent rapid increase in the power of digital
computers, combined with the development of improved numerical methods, soon
made applications of the variational method unnecessary.

A more complete, but still weakly-nonlinear, theory of resonant three-wave inter-
actions, which takes into consideration terms of third order in wave amplitudes, was
developed by Usher and Craik (1975). Recall that the Landau and Stuart-Landau
Eqs. (4.34) and (4.40) for the amplitude of a single mode, and Stuart’s Eq. (4.43)
for amplitudes of a pair of non-resonantly interacting modes, both include terms
of the third order (but second-order terms are absent). Hence the amplitude equa-
tions, which include terms up to the third order, generalize both the one-mode and
two-mode equations of Landau and Stuart, and Eq. (5.4) for the three-wave resonant
interactions. The third-order amplitude equations for three-wave resonant interac-
tions derived by Usher and Craik (and later by Weiland and Wilhelmsson (1977) and
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Goncharov (1981); see also Craik (1985), Sects. 16.3 and 25–26) have the form

dA1

dt
= ω

(i)
1 A1 + C1A

∗
2A3 + A1

(
c11|A1|2 + c12|A2|2 + c13|A3|2

)
,

dA2

dt
= ω

(i)
2 A2 + C2A

∗
1A3 + A2

(
c21|A1|2 + c22|A2|2 + c23|A3|2

)
,

dA3

dt
= ω

(i)
1 A3 + C3A1A2 + A3

(
c31|A1|2 + c32|A2|2 + c33|A3|2

)
.

(5.11)

(In the case of non-resonant three-wave interactions, third-order amplitude equations
have the same form but withC1 =C2 =C3 = 0; therefore, non-vanishing of the latter
coefficients shows that the wave interactions are resonant).

Compared with Eq. (5.4), the new equations include nine additional unknown
coefficients cij. Usher and Craik gave their main attention to the case of a resonant
triad of Craik’s type, consisting of two symmetric oblique waves and one plane 2D
wave. As in Craik (1971), they assumed that numbers 1 and 2 correspond to the
oblique waves while number 3 corresponds to the 2D wave; then the oblique-wave
symmetry implies that c11 = c22, c13 = c23, c12 = c21, and c31 = c32. Therefore, in
this case only five new coefficients need evaluation. Nonlinear N-S equations for
the velocity components lead to some lengthy expressions for these coefficients,
showing that at large values of Re all coefficients take large values (proportional to
some positive powers of Re). These asymptotic estimates force one to conclude that
at large values of Re the second-order Eq. (5.4) may be valid only for waves with
rather small amplitudes.

Craik (1975) studied equilibrium solutions of the third-order three-wave ampli-
tude Eq. (5.11) and the stability of these solutions. Recall that the third-order Landau
and Stuart-Landau Eqs. (4.34) and (4.40) imply that if Landau’s constant δ > 0, then
at small supercritical values of Re > Recr there is an equilibrium periodic solution of
Eq. (4.40) which separates from the steady primary flow by a Hopf bifurcation. On
the other hand, if δ < 0, then an equilibrium solution exists under slightly subcritical
conditions Re < Recr where a periodic wave of finite amplitude bifurcates from the
primary flow if its initial amplitude exceeds a small, but finite, critical value (pro-
portional to (Recr −Re)1/2). Craik used Eq. (5.11) for investigation of the stability of
equilibrium solutions of Eq. (4.40) with respect to pairs of symmetric oblique waves
of small amplitude, and for determination of conditions making possible a second
bifurcation, leading to the appearance in the flow of a resonant triad, consisting of
the same two-dimensional wave as that entering the primary equilibrium solution
together with symmetric oblique waves of finite amplitudes. These results of Craik
are relevant to the results by Herbert (1984a, 1985, 1986, 1987, 1988a, b) relating
to the secondary-instability mechanism of boundary layer instability which will be
considered slightly later in this subsection.

Let us now revert to discussion of Craik’s (1971) resonant triads consisting of
one two-dimensional T-S wave with the angular frequency ω and wave vector (k, 0)
and two fully symmetric oblique waves with the same frequency ω/2 and wave
vectors (k/2, ± k2). Following Craik we will assume that three waves of a triad
have small amplitudes of the same order of magnitude. Assume that the value of
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ω is determined by the conditions of the experiment and is therefore known. (This
condition is fulfilled, in particular, if the 2D plane wave is excited by some device
oscillating with a fixed frequency—e.g., by the vibrating ribbon used by Schubauer
and Skramstad (1947) and then by many others; or by an acoustic radiator used,
among others, by Morkovin and Paranjape (1971); Yan et al. (1988), and a number
of authors cited by Nishioka and Morkovin (1986); or by a heating element with
periodically varying temperature used, in particular, by Liepmann et al. (1982);
or by localized periodically-alternating blowing and suction of fluid considered by
Konzelmann et al. (1987)). Among the flow disturbances produced by a device
oscillating with frequency ω, a dominant role is played by the least-stable T-S wave
having this frequency; such a wave is always two-dimensional and its wavenumber
k can be uniquely determined from the two-dimensional O-S eigenvalue problem
(2.44), (2.42). If this wave is linearly unstable, then it will grow, and some time
later will excite a pair of oblique waves forming, with the primary T-S wave, Craik’s
resonant triad (or, maybe, a fast-growing triad close to this—such a possibility will
be discussed later).

In the case when Craik’s triad alone is excited (here, only this case will be con-
sidered) the spanwise wavenumbers ± k2 of the oblique waves with frequency ω/2
and streamwise wavenumber k/2 may be determined from the three-dimensional
O-S eigenvalue problem (2.41), (2.42). (A number of results relating to computation
of the 3D T-S waves by numerical solution of this eigenvalue problem (where k1,
and not ω, is considered as a complex eigenvalue), supplemented by comparison of
the results obtained with the available experimental and numerical-simulation data,
were presented by Kachanov and Michalke (1994, 1995) and briefly discussed by
Kachanov (1996)). Consider now another case, where the disturbances penetrate into
the boundary layer from an unsteady external stream generating background “noise”,
including an extensive collection of weak fluctuations. Then among the boundary-
layer waves produced by these fluctuations, the two-dimensional T-S wave with the
greatest linear growth rate will naturally dominate the initial stage of disturbed-flow
development. At a given value of Re, such a wave has definite values of ω and k
which may be determined with the help of Eqs. (2.44) and (2.42) (see Figs. 2.23 and
2.26); hence here also the values ofω and k may be considered as known. Knowledge
of ω and k (and hence also of ω/2 and k/2) again allows the spanwise wavenumbers
± k2 of the oblique components of the resonant triad to be determined uniquely, from
Eqs. (2.41) and (2.42). We see that in the framework of Craik’s model the spanwise
periodicity of the 3D structure may usually be determined uniquely.

However, the uniqueness of the value of k2 at given values of Re, ω and k is
contradicted by the data of Saric and Thomas (1984); Saric et al. (1984), and Kozlov
et al. (1984) who found that in their experiments (where a 2D wave was excited by a
vibrating ribbon) the observed value of k2 depended not only onω and k but also on the
initial amplitude of the excited 2D wave (for more details see part (b) of this section).
On the other hand, the exact symmetry of oblique waves entering Craik’s triad clearly
requires the initial real amplitudes |A(0)| and phases θ (0) (where |A(0)| eiθ (0) ≡ A(0)
is the initial complex amplitude) of two oblique waves to coincide with each other.
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This requirement appreciably restricts the Craik model of development of three-
dimensional disturbances in a boundary layer. These two circumstances led Herbert
(1983a, 1984a) and Saric and Thomas (1984) to doubt the universal applicability of
Craik’s model of resonant-triad generation of three-dimensionality in steady plane-
parallel (or nearly plane-parallel) shear flows and to attribute some of the observed
3D structures in such flows to the secondary-instability mechanism.

The suggestion that the discrepancy between Craik’s theory and experiment, and
the apparent restrictions of this theory, required it to be replaced by a more uni-
versal secondary-instability approach was not unanimously supported. In particular,
Zel’man and Maslennikova (1985, 1989, 1990, 1993a) (see also Maslennikova and
Zel’man (1985)) showed that exact symmetry of oblique waves (which implies that
the initial amplitudes of two oblique waves must take the same value), and exact
equality of the oblique-wave real frequency and streamwise wavenumber to half
those of the accompanying plane wave, are not necessary for the rapid resonant
growth of the two oblique waves entering the wave triad. They considered wave
triads where the frequencies and wave vectors of the plane wave and the two oblique
waves are {ω, k, 0} and {ω/2, k1 ≈ k/2, ± k2}, respectively, but with k/2 −k1 �= 0
(for given values of ω and k2 the values of k and k1 may be uniquely determined
with the help of the O-S Eqs. (2.44) and (2.41); therefore only the values of ω and k2

can be chosen arbitrarily). According to the results of Zel’man and Maslennikova’s
computations, if the initial amplitudes |A2(0)| and |A3(0)| of two oblique waves are
not equal and k1 does not coincide exactly with k/2, the growth of oblique-wave
amplitudes nevertheless remains much larger than the growth of the plane-wave am-
plitude. Moreover, the nonlinear interactions usually lead to rapid equalization of
amplitudes |A2(t)| and |A3(t)| and to recovery of oblique-wave symmetry, and after a
short time these two amplitudes become greater than the amplitude of the 2D wave.
Still later, fast-growing oblique waves start to influence the plane wave very strongly,
and cause its explosive growth, which is more rapid than the exponential growth of
the oblique waves.

The above formulation is the temporal one, but in fact Zel’man and Maslen-
nikova considered the spatial, not temporal, growth of boundary-layer waves, which
is more convenient for comparison with the experimental data. Therefore they used
amplitude equations of the form (5.4a), not (5.4), and determined the correspond-
ing interaction coefficients Bn, n = 1, 2, 3, by a method generalizing that used by
Volodin and Zel’man (1978) in the study of spatial development of strictly sym-
metric wave triads. A typical example of results more general than those found
in 1978 is shown in Fig. 5.3, taken from Zel’man and Maslennikova’s paper
(1993a). In this figure the dependence of wave amplitudes |Ai(x)|, i = 1, 2, 3, on
the streamwise coordinate x is replaced by their dependence on Reynolds number
Re+ = U0δ

+/v = (U0x/v)1/2 = (Rex)1/2, where δ+ = (vx/U0)1/2 ≈ 0.58δ∗ is a
new scale of the boundary-layer thickness which is often used instead of δ∗ (it was
used, in particular, in Chap. 2). Figure 5.3 corresponds to some definite values of the
dimensionless frequency F =ωv/U0

2 and spanwise wavenumber K2 = vk2/U0 (the
frequency F was already used in Chap. 2—see Figs. 2.26 and 2.27) and to the case
where initially |A1| � |A2| � |A3| (where |A1| is the plane-wave amplitude) and the
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Fig. 5.3 Calculated dependence of the wave amplitudes |Ai(x)|, i = 1, 2, 3, on Re = (U0x/v)1/2 ∝ x1/2

for the wave triad consisting of a plane wave 1 of frequencyω and wave vector k1 = (k, 0) and oblique
waves 2 and 3 of frequencyω/2 and wave vectors k2,3 = (k1, ±k2) in the case when initial amplitudes
|Ai,0| and phases φ1,0 (at Re = 525) satisfy the conditions: |A1,0| � |A2,0| � |A3,0|, φ1,0 =φ2,0 +φ3,0.
It was assumed here that F =ωv/U 2

0 = 115 × 10−6 and K2 = vk2/U0 = 0.18 × 10−3; the values of k
and k1 were then determined from the Orr-Sommerfeld Eq. (2.44) and (2.41) which showed that
k1 ≈ k/2. (After Zel’man and Maslennikova 1993a)

initial phases of the waves are matched. Logarithmic scaling of the amplitudes allows
us to see clearly the region of exponential growth of oblique-wave amplitudes and
the explosive growth of plane-wave amplitude at Re > Ren (for simplicity the usual
notation Re will be used to denote the particular Reynolds number Re+). Zel’man
and Maslennikova (1993a) also presented figures showing examples of the plane-
wave and oblique-wave amplitude-growth curves for (a) a fixed value of the initial
oblique-wave amplitudes |A2|(Re0) = |A3|(Re0) and three different initial plane-wave
amplitudes |A1| (Re0), (b) fixed values of both |A2| (Re0) = |A3| (Re0) and |A1|(Re0),
but with three different values of initial phase mismatch, and (c) a fixed value of |A1|
(Re0), and three different values of |A2|(Re0) = |A3|(Re0) (it was assumed here that
Re0 = 500, |A1|(Re0) > |A2|(Re0) = |A3|(Re0), and that in cases (a) and (c) there is no
phase mismatch). The figure corresponding to case (a) illustrated the existence of a
threshold value of |A1| below which the plane wave cannot excite the rapid growth of
three-dimensional oblique waves which in turn produces the later explosive growth
of the plane wave itself.

Zel’man and Maslennikova (1990, 1993a) stated that a more general and accurate
version of the three-wave-resonance theory described in their papers showed that the
three-wave resonance could be considered as the universal dominant mechanism of
the so-called subharmonic (S-type or, alternatively, N-type—the latter name will be
used consistently in Sects. 5.3 and 5.4) instability development in boundary layers
(for more detailed discussion of this type of instability development see Sect. 5.3).
However, this statement also was not universally accepted. Moreover, it did not
imply that the other possible mechanisms are worthless; the authors only insisted
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on the possibility of interpreting the subharmonic disturbance development in the
framework of the appropriately-modified three-wave-resonance theory in all cases.
However it will be shown below that the three-wave-resonance approach often leads
to results which are very close to those given, e.g., by the secondary-instability
theory, which presupposes that the wave modes have amplitudes of two different
orders of magnitude (see Fig. 5.16a). Note also that in some cases the secondary-
instability computation allows the derivation of the required results to be simplified
considerably. Moreover, the secondary-instability mechanism seems to be the most
appropriate one in the widely-studied cases where a primary plane wave of finite
amplitude is produced by a vibrating ribbon and later excites some secondary waves
which are initially very weak. In addition, this mechanism is important in itself since
it has many applications to problems unrelated to three-wave resonances. On the
other hand, Mankbadi (1990, 1991, 1993a, b); Mankbadi et al. (1993), and Wu
(1993, 1995) in their approximate evaluation of the resonant growth rates of two
symmetric oblique waves (with frequencies and streamwise wavenumbers which are
close, but not necessary equal, to half of those corresponding to the 2D wave of
the triad) used quite another method (based on the idea that the dominant part of
the nonlinear wave interactions is concentrated in the neighborhood of the critical
layer; see, e.g., Mankbadi (1990)). Apparently this new method could in some cases
replace both the resonant-triad and the secondary-instability methods, but its range
of applicability is not clear up to now (cf. Healey (1995); for more details see the end
of the present subsection, printed in small type). Note also that Jennings et al. (1995)
considered the most general resonant triads consisting of three oblique waves (recall
that just such triads were earlier discussed by Raetz (1959) and Stuart (1962a, b))
and showed that rapid growth of oblique-wave amplitudes is possible in this case
also. The paper by Jennings et al. supplemented Zel’man and Maslennikova’s results,
showing that the three-wave resonance mechanism of generation and development
of three-dimensional structures in boundary layers has a much wider domain of
applicability than was assumed in the 1970s; however, this does not exclude the
possibility that other mechanisms may also play important parts in some cases of
boundary layer transition to turbulence and are therefore worth studying.

Let us also stress that the available experimental data relating to evolution of
Blasius laminar boundary layers disturbed by a two-dimensional ‘primary wave’
(some of these data will be discussed in Sect. 5.3 below) definitely show that very
different three-dimensional structures may appear in the course of this evolution.
Therefore, it seems natural to suppose that there exist many different mechanisms
of generation of such structures. Having this in mind, and also recalling remarks
above relating to the secondary-instability mechanism of generation of flow three-
dimensionality, we will now pass to discussion of this mechanism.

The secondary-instability approach to development of flow instabilities is based
on a simple two-stage model. The first stage consists of the growth of some relatively
simple small disturbance in accordance with the linear hydrodynamic-stability the-
ory considered in Chap. 2. When this ‘primary disturbance’ becomes strong enough,
it becomes unstable with respect to some disturbances of a quite different form, and
then the second stage of disturbance development begins. Recall that in Sect. 4.22,
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the secondary instability of the two-dimensional equilibrium disturbances of a plane
Poiseuille flow was briefly discussed on p. 72, where also a number of references
touching upon this subject was presented, while on pp. 92–93 of the next subsec-
tion 4.23 even some tertiary and quaternary flow instabilities were mentioned, and a
few references relating to such instabilities were indicated. Now we will consider a
model where the superposition of some two-dimensional T-S wave of a finite ampli-
tude A on the Blasius boundary-layer flow is considered as the ‘primary flow’, whose
stability with respect to three-dimensional background (‘environmental’) waves of
small amplitudes must be investigated. (For the sake of simplicity all amplitudes
will now usually be assumed to be real and the possible effect of the ‘phase mis-
match’ will as a rule be ignored). Thus here the ‘primary flow’ has the velocity
V1(x, z, t) = V(z) +Av1(z)ei(kx−ωt) where V(z) = {U(z), 0, 0} (and U(z) is the Bla-
sius velocity profile at streamwise distance x, if the locally-plane-parallel model of
the boundary-layer flow is used), while v1(z) is the velocity profile of the selected
T-S wave, normalized in a reasonable way, and A is its amplitude. (Normalization of
the vector-function v1(z) = {u(z), v(z),w(z)} is necessary to give meaning to the am-
plitude A. In particular, if v1(z) is normalized by the condition that maxzu(z)/U0 = 1
where U0 is the free-stream velocity, then A measures the maximal streamwise ve-
locity of the T-S wave as a fraction of U0). Note also that the representation of V1

used here involves some other conventional approximations of the linear stability
theory, excluding local parallelism; in particular, the velocity-profile distortion by
disturbances is here neglected for both the steady Blasius boundary layer and the
periodic T-S wave within it (for more details see Herbert’ surveys (1988a, b). The
primary flow with velocity V1 is disturbed by a ‘secondary disturbance’ of velocity
v3(x, y, z, t), where |v3| � |V1|. The last condition makes it possible to apply linear
stability theory, i.e. to base the stability analysis on the N-S equations for the velocity
field V1(x, z, t) + v3(x, y, z, t) linearized with respect to the velocity and pressure (v3,
p3) of the disturbance. Thus, in contrast to the theory of three-wave resonance, where
the amplitudes of all three waves are assumed to be of the same order of smallness
and the equations of motion are expanded into subsequent powers of all amplitudes,
in the secondary-instability theory the amplitude A of the 2D wave is considered as
a fixed finite parameter and only the amplitude of the supplementary 3D disturbance
is assumed to be small.

The papers of the 1980s on secondary instability of steady shear flows cited in
Chap. 4 contain much material directly relating to the present topic (in fact this insta-
bility of laminar boundary layers was briefly discussed even earlier, by Görtler and
Witting (1958) and Maseev (1968a, b). In solving the secondary-instability problem
it is convenient to use, instead of a stationary frame, a frame moving in the Ox direc-
tion with the phase velocity c of the T-S wave having velocity Av1(z)ei(kx−ωt), i.e., to
replace x by the variable x′ = x −ct. In this frame the primary flow is independent of
time and periodic in x, i.e., here V1(x, z, t =V1(x′, z), where V1(x′, z) =V1(x′ +λ x,
z), λ x = 2π /k. Therefore, the frame transformation reduces the secondary-stability
problem to the study of the linear stability of a steady but streamwise-periodic,
locally-plane-parallel flow. Numerical investigation of this linear stability problem
for the plane-parallel model of a Blasius boundary-layer flow (and also for some other
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flows) was carried out, in particular, by Orszag and Patera (1983) who obtained some
interesting new results which were later confirmed by other authors. However, a much
more explicit study of the secondary instability of the primary flow considered here
was accomplished by Herbert (1983b, 1984a, 1985, 1986, 1987, 1988a, b) (see also
Herbert and Santos (1987); Herbert et al. (1987) and Crouch and Herbert (1993));
therefore we will mainly discuss the latter work.

Herbert used the fact that the linear stability analysis of steady periodic flow with
respect to a small three-dimensional disturbance may be reduced to study of a Floquet
system of linear differential equations with periodic coefficients. The main properties
of such systems may be found, e.g., in Coddington and Levinson’s textbook (1955);
various applications of Floquet theory to hydrodynamic stability were considered,
in particular, by Kelly (1967); Clever and Busse (1974); Davis (1976); Barkley
and Henderson (1996), and Schulze (1999) (see also Craik (1995) and references
therein). However, Floquet theory was primarily developed in relation to the study
of nonlinear periodic oscillations, and therefore in fluid mechanics it was most often
applied to investigations of stability of time-periodic primary flows. Since Herbert
considered, instead of this, the case of spatially periodic primary flow, it is reasonable
to present here some details of his method.

The normal-mode concept, which was widely applied in Chap. 2 to problems
relating to the linear stability theory for steady non-periodic flows, may now be used
in exactly the same form for description of the dependence of the disturbance on the
variables y and t. Here it leads to the representation of the disturbance velocity v3(x′,
y, z, t) in the form of a superposition of modes depending on parameters k2 and Ω
(and admitting separate study) of the form

v3(x ′, y, z, t) = ei(k2z−�t)v4(x ′, z). (5.12)

As in Sect. 2.5, the spanwise wave number k2 may be assumed real (by virtue of the
spanwise homogeneity of the primary flow), while (again exactly as in Chap. 2) the
parameter Ω is generally complex: Ω=Ωr + iΩi. (Note that here Ωr characterizes
the frequency shift of the 3D disturbance with respect to the frequency ω of the
primary T-S wave; modes withΩr = 0 travel with the primary flow of velocity V1(x,
z, t)). As to the dependence of v4(x′, z) on the streamwise coordinate x′, the Floquet
theory implies that it may be represented in the form

v4(x ′, z) = eγx
′
v5(x ′, z), (5.13)

where γ = γr + iγ i is a complex characteristic exponent of the problem and v5(x′, z)
is a periodic function of x ′ : v5(x ′ + λξ , z) = v5(x ′, z). The periodicity of v5(x′, z)
allows to it to be expanded in a Fourier series and thus to obtain the following general
form of the three-dimensional disturbance v3(x′, y, z, t):

v3(x ′, y, z, t) = eγx
′+i(k2y−�t)∑

ms

v̂m(z)eimkx
′
, −∞ < m < ∞, (5.14)

where wave numbers k and k2 are real, and constants γ and Ω are complex.
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The additional complex parameter γ leads to the appearance here of new possible
forms of disturbance. Note first of all that the values γ and γ + ink of this parameter,
where n is an integer of either sign, lead to the same collections of functions (5.14),
differing only in numbering of the Fourier coefficients. Therefore, it is possible to
assume that −k/2 < γι ≤ k/2. Moreover, it is also reasonable to subdivide the set of all
disturbances of the form (5.14) into three classes of more special disturbance modes:

a. Fundamental modes, γi = 0. Here

v3(x ′, y, z, t) = eγrx
′+i(k2y−�t)∑

m

v̂m(z)eimkx
′
, −∞ < m < ∞. (5.14a)

b. Subharmonic modes, γi = k/2. Here

v3(x ′, y, z, t) = eγrx
′+i(k2y−�t)∑

m

v̂m(z)eimk1x
′
,

k1 = k/2, m = 2n+ 1, −∞ < n < ∞, (5.14b)

c. Detuned modes, 0 < |γi| < k/2. Here, if 2γ i/k = ε, then 0 < ε < 1 and

v3(x ′, y, z, t) = eγrx
′+i(k2y−�t)∑

m

v̂m(z)ei(m+ε)k1x
′
,

k1 = k/2, m = 2n, −∞ < n < ∞. (5.14c)

The word ‘detuend’ simply implies a streamwise wave number somewhere between
the fundamental and the subharmonic modes. The terms corresponding to m = ± 1
are the dominant ones on the right side of Eq. (5.14a) describing the 3D funda-
mental modes. These terms show that the primary 2D mode having the streamwise
wavenumber k may excite resonant 3D waves with the same streamwise wavenum-
ber (in the temporal presentation of the theory it means that a 2D wave of frequency
ω may excite 3D waves of the same frequency). This process is associated with the
so-called primary resonance in a Floquet system. In Eq. (5.14b) the main terms are
also those with m = ± 1; they correspond to subharmonic 3D modes having stream-
wise wavenumber k1 = k/2 (or, in temporal presentation to subharmonic modes of
frequencyω/2). The resonant excitation in a Floquet system of 3D waves with stream-
wise wavenumber (or frequency) equal to half of the corresponding characteristic of
the primary 2D wave represents a phenomenon which is often called the principal
parametric resonance (the adjective ‘parametric’ is used because in many real phys-
ical systems the primary oscillation of frequency ω represents oscillatory variations
of some physical parameter affecting the system). Real detuned modes must include
on the right-hand side of Eq. (5.14c) two complex-conjugate summands with oppo-
site detuning parameters ± ε . Herbert (in (1988a, b) and some other papers) called
real detuned modes the combination modes; and said that they participate in the
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combination resonances (see Santos and Herbert (1986); Herbert and Santos (1987)
and Herbert et al. (1987); cf. also the surveys by Nayfeh (1987a, b).

As will be shown later, all the above-mentioned types of secondary-instability
resonances can participate in the development of fluid-flow instability. How-
ever here only the evident similarity of the principal parametric resonance to
Craik’s three-wave resonance will be emphasized. This similarity makes the
principal parametric resonance especially interesting for the analysis of boundary-
layer instabilities. Note in this respect that resonances of such type occur also
in many other physical systems. Apparently the first description of such phe-
nomenon in scientific literature is due to Faraday (1831), who discovered that
when a vessel containing liquid is made to vibrate vertically, some vibrations
of the free surface of the liquid have a frequency equal to only half of that
of the vessel. This seemingly unusual Faraday resonance (or Faraday waves,
Faraday instability) attracted much attention and was later studied by many au-
thors both theoretically and experimentally (in particular, Rayleigh (1883a, b)
participated in both kinds of studies). Nevertheless, a satisfactory theory of this
resonance was developed only in the second half of the twentieth century and its
study is not yet complete; see, e.g., the papers by Benjamin and Ursell (1954); Miles
(1984, 1993); Guthart and Wu (1994); Friedel et al. (1995); Wright et al. (2000), and
the survey by Miles and Henderson (1990) containing many supplementary refer-
ences (cf. also the paper by Schulze (1999) indicating some conditions under which
the principal parametric resonance cannot occur).

Let us now return to a description of Herbert’s work. The imaginary part Ωr

of the parameter Ω determines the time growth of the 3D-disturbance amplitude,
which is proportional to exp(Ωit). However, this is correct only for amplitudes at
fixed points of the frame of reference moving with velocity c, while amplitudes at
fixed points x of the stationary frame will be proportional to |exp(−iΩt +γ (x −ct))| =
exp(γ1 x)exp((Ωi −γrc)t). Models of purely temporal growth of disturbances (which
were the main objects of investigation in all early theoretical studies and continue
to be widely studied; see, e.g., Sect. 2.92) correspond to the assumption that γr = 0,
while purely spatial growth in the laboratory frame corresponds to the condition
Wi = γrc.

Substitution of the above expressions for the disturbance modes (5.14a, b and c)
(assumed to be real) into linearized N-S equations for the velocity disturbances leads
to infinite systems of coupled linear differential equations for the functions v̂m(z).
A numerical solution may be obtained if the Fourier series are truncated, making
the infinite systems finite. Numerical studies by Herbert (1984a, b; 1985, 1986,
1988b); Herbert and Santos (1987); Herbert et al. (1987), and Crouch and Herbert
(1993) (see also Herbert’s survey (1988a)) showed that reasonable accuracy may be
achieved even when truncation is very severe—in the case of subharmonic modes it
is often enough to preserve only the terms with m = −1 and m = 1, while for funda-
mental modes the truncation of all terms with |m| > 1 (i.e., inclusion in the analysis
only the terms with m = −1, 0 and 1) gives satisfactory accuracy in many cases.
(This conclusion, which confirms the above statements about the dominant terms of
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Eqs. (5.14a, b), also agrees with the results of subsequent numerical investigations
of secondary instability of a Blasius boundary-layer by Wang and Zhao (1992) and
Ustinov (1994)). The resulting systems depend on the boundary-layer and primary-
wave velocity profiles U(z) and v1(z) and include parameters A, k, ω, k2, γr, γi, Ωr,
Ωi, characterizing the primary T-S wave, and 3D disturbances interacting with this
wave. (Strictly speaking, ω takes a complex value if the primary T-S wave is not neu-
tral, while if spatial, and not temporal, development of disturbances is considered,
then ω is real but k is complex. However, we will follow Herbert and assume that the
T-S wave varies slowly in comparison with the 3D disturbance; hence the T-S ampli-
tude A may be assumed to be locally constant and both parameters ω and k will be
real. More general models where k or ω may be complex were considered by Wang
and Zhao (1992) but will not be discussed here). Parameters A, k and ω characterize
the primary T-S wave and may be assumed to be known; as to the other parameters
mentioned, the majority can take any values, which may be chosen on the basis of
available data or physical arguments. This, however, is not true for all parameters,
since, as in the case of the Orr–Sommerfeld equation, the systems of equations for
functions v̂m(z) with appropriate boundary conditions define eigenvalue problems—
their solutions exist only for special values of some of the parameters (‘eigenvalues’,
which depend on the chosen values of the other parameters). And, exactly as in the
case of the O-S equation (where the eigenvalues are the real and imaginary parts
of ω or, if a spatial formulation of the stability problem is used, of k), only two
of the above real parameters must be treated here as eigenvalues determined by the
requirement of solubility of the system. Note also that in the case of the spanwise
wavenumber k2 it is natural to suppose that the value to which the highest growth rate
of the wave amplitude corresponds should be just the wavenumber that is most likely
to appear in experiments. This assumption (which is entirely similar to that used in
the linear stability theory for determination of the value of k in the O-S Eq. (2.44))
provides a criterion for determination of the preferred spanwise periodicity. Some
of the results obtained in this way will be considered, together with the appropriate
experimental and numerically-simulated data, in the next part of this subsection. It
will be also shown there that numerical solutions of the amplitude equations for res-
onant waves in a boundary layer, and for the disturbance modes (5.14a, b and c) of its
secondary instability, allows many observable characteristics of the boundary-layer
instability to be determined, yielding information about the most appropriate insta-
bility models and values of the corresponding parameters. As will be seen, in spite of
the essential differences between resonance and secondary-instability mechanisms,
the quantitative consequences of the two theories sometimes (though not always)
lead to results which are very close to each other. Note in this respect that both
theories were independently proposed at a time when almost no reliable data existed
for comparison with theoretical predictions. In the case of the secondary-instability
theory the early (and nowadays rarely cited) papers by Görtler and Witting (1958)
and Maseev (1968a, b) are worth mentioning in this respect. It is curious to note
that both the German authors and the Russian one (in the first of his two papers)
independently chose practically the same title, which was later used also by Herbert
(1988a). Herbert noted in this paper that Maseev’s papers (the first being published in
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Fig. 5.4 Threshold amplitude
A of the plane T-S wave with
streamwise wavenumber k1 in
a Blasius boundary layer
for the onset of three-
dimensionality with spanwise
wavenumber k2. (After
Maseev 1968b) curve (1):
Re∗ = 1203, k1 = 0.43; curve
(2): Re∗ = 519, k1 = 0.27. All
the quantities are
non-dimensionalized by
scales δ∗ and U0

Russian in a small-circulation collection of papers written by lecturers from a
Moscow engineering college, while the second was translated into English but is
very short and not entirely clear) apparently contained some new, nontrivial correct
ideas about the role of the secondary instability in boundary-layer transition to turbu-
lence (in fact, these ideas had something in common with the contents of the earlier
paper by Görtler and Witting). In particular, Maseev gave, without explicit proof,
some reasonable estimates of the threshold amplitudes of the 2D wave needed for
the generation of three-dimensionality with a given spanwise wavenumber k2 (see
Fig. 5.4) (the estimates are compatible with the data of Klebanoff et al. (1962)). A
similar schematic graph was given by Görtler and Witting who did not indicate scales
but stated that their graph agrees with the experimental data of Schubauer (1958).

Let us now say a few words about the papers of Mankbadi (1990, 1991, 1993a)
and some related work. In the 1990 and 1991 papers Mankbadi considered fully-
resonant triads, where all waves have small amplitudes and the same phase velocity c.
For these conditions he analyzed the role of the critical layer, where U(z) = c, in
triad development. He found that the main contribution to the growth rates of wave
amplitudes is due to wave interactions in the neighborhood of the critical layer, and
at large values of Re this neighborhood is the only flow region where nonlinearity
strongly affects the wave dynamics. Mankbadi (1993a) considered a more general
triad, in which frequencies and streamwise wave numbers of oblique waves were
close, but not necessarily equal, to half those of the 2D wave. According to Mankbadi,
in this case too the oblique- and plane-wave growth rates Go and Gp at large values
of Re are determined with high accuracy by the contributions of the neighborhood
of the critical layers (which in this case are clearly close to each other for all three
waves). Based on this, Mankbadi carried out an asymptotic evaluation of the growth
rates, and found that if the initial amplitude of the plane wave is much greater than the
oblique-wave amplitudes and Re is large enough, then Go �Gp and oblique waves
with quite different spanwise wavenumbers k2 can grow rapidly, extracting energy
very efficiently from the undisturbed flow (i.e. a three-wave resonance of some sort
takes place for a wide range of k2-values, and the plane wave then plays the role of a
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catalyst stimulating growth of oblique waves). The positive growth rates Go depend
on the plane-wave amplitude and the values of Re∗ and k2; hence k2, pr = k2, pr (A,
Re∗) where k2, pr is the preferred value of k2 corresponding to the maximal value of
Go. Dependencies of Go on A, Re∗ and k2, and of k2, pr on A and Re∗, computed by
Mankbadi were in good agreement with the available experimental and numerical
data (see Figs. 5.15a, b in Sect. 5.4). This agreement clearly increases confidence
in Mankbadi’s results but since the problems solved by him are quite involved, a
supplementary check of all his arguments remains desirable.

A more complicated asymptotic theory of the spatial development of resonant
triads in a Blasius boundary layer at large values of Re was developed by Mankbadi
et al. (1993). Here the wave triads considered included one plane wave and a pair
of symmetric oblique waves, having frequencies ω and ω/2 and streamwise wave
numbers k and k1 ≈ k/2, respectively. (Such triads were also analyzed, by a quite dif-
ferent method, by Zel’man and Maslennikova (1993a); the interest of theoreticians
in them was stimulated by papers by Corke and Mangano (1988, 1989) describ-
ing experimental investigations of development of such wave triads in a boundary
layer). Since the value of k1 could vary, the spanwise wavenumbers ± k2 and the
inclination angles θ1, 2 = ± tan−1(k2/k1) could also take different values. Mankbadi
et al. estimated the wave growth rates of Go and Gp by a somewhat refined method
of critical-layer analysis which took into account the nonlinear critical-layer effects
which lead to the appearance, in the amplitude equations, of nonlinear integral terms
which account for the influence of the upstream wave history. Their main attention
was paid to the case where the plane wave is linearly unstable while the oblique
waves are linearly stable (i.e., decaying according to the linear stability theory),
and where amplitudes of all three waves are small but the initial amplitudes of the
oblique waves are much smaller than that of the plane wave. It was shown that at
first the plane wave causes fast growth of oblique waves, while the plane wave itself
continues growing for some time at a rate close to that given by the linear stability
theory (this growth rate is much smaller than the simultaneous growth rates of the
oblique waves). Later, when amplitudes of the oblique waves become considerably
greater than the plane-wave amplitude, nonlinearity begins to affect the evolution of
the plane wave as well. At this stage the self-interaction of oblique waves becomes
important and considerably changes the law of their growth, leading to oscillations
of their growth rates, at first around their earlier high growth rate and then around
the zero growth rate corresponding to the final saturation stage. These conclusions
agree with some experimental results by Corke and Mangano (1988, 1989) (for more
information about their work see Sect. 5.3) but in general there are not enough data
to confirm the results; moreover, it was noted by Healey (1995) that the assumptions
used by Mankbadi et al. may be valid only at unrealistically large Reynolds num-
bers. Some results supplementing those discussed here were presented, in particular,
by Goldstein (1994, 1995) and Wu (1995) but we have no space to discuss them
here.
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5.3 K and N Regimes of Instability Development in Boundary
Layers; Experimental Studies of the N Regime

Experimental data which could be compared with the weakly-nonlinear theories con-
sidered above appeared only relatively recently. Therefore, it is no wonder that for
some time these theories did not attract much attention. Recall that at the beginning
of Sect. 5.2 the classical papers of Schubauer and Klebanoff (1956); Klebanoff and
Tidstrom (1959) and Klebanoff et al. (1962) were cited as the primary source of
experimental information about the nonlinear development of 3D wave disturbances
in boundary-layer flows. In particular, the last-named has for many years been re-
ferred to very frequently by experts in the flow-stability theory. However, it has
already been mentioned that the experimental data contained in these papers agreed
only qualitatively with the early theoretical models by Benney and Lin (1960) and
Benney (1961, 1964) of the two-mode disturbance development. The point is that in
these theoretical papers it was assumed that two-dimensional and three-dimensional
modes have the same frequency, while according to the results of Klebanoff and his
co-authors this is not the case. However, these results disagree even more strongly
with Craik’s model of a resonant-triad interaction, where the frequency ω1 of the
two three-dimensional waves is taken equal to one-half of the frequency ω of the
two-dimensional wave. Klebanoff and his co-workers studied the development of
disturbances produced by a vibrating ribbon in a flat-plate boundary layer and found
three-dimensional flow oscillations, but their frequencyω1 differed only slightly from
the fundamental frequencyω0 of ribbon oscillations and of the 2D wave produced by
it. These 3D oscillations appeared at relatively small values of x (i.e., soon after the
origin of the 2D wave) and later, at larger values of x, these regular oscillations were
transformed into irregular bursts of high-frequency fluctuations (so-called ‘spikes’;
see Fig. 5.22) which preceded the formation of turbulent spots and final transition
to turbulence (cf. the short description of boundary-layer instability in Sect. 2.1; for
more detailed characterization of the boundary-layer instability considered here see
Sect. 5.5). However, no subharmonic waves with half the fundamental frequency
were found in these experiments.

It is now clear that these experimental results did not prove the incorrectness
of Craik’s model but only showed that the nonlinear development of boundary-
layer disturbances observed by Klebanoff et al. was not due to Craik’s resonance
mechanism. Note in this respect that Morkovin and Reshotko (1990) reasonably
remarked that even in the cases of similar flow geometries and initial velocity fields
there is no universality in the instability and transition process; because of the wide
variety of external-flow disturbances feeding this process, and the large number of
permissible nonlinear developments of them there is a very wide range of possible
behavior. This remark (which was also made in a less definite form by Herbert and
Morkovin (1980) and was often repeated by later authors; Shaikh and Gaster’s paper
(1994) is just a typical example) describes excellently the conclusion following from
numerous experimental results collected during the whole twentieth century. So it
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may also quite convincingly explain the reason for the deviation of Klebanoff’s
experimental results from the predictions of Craik’s theory.

For a number of years after Craik’s theory of 1971, no subharmonic distur-
bances of frequencyω0/2 were observed in boundary layers where a two-dimensional
‘fundamental wave’ of frequency ω0 was generated by some means (although two-
dimensional subharmonics of the ‘fundamental frequency’ω0 were repeatedly found
in mixing layers with antisymmetric velocity profiles, e.g., by Sato (1959); Browand
(1966) and Miksad (1972), and also in plane and circular jets—see, e.g., Wehrmann
and Wille (1958)). Therefore, it was usually assumed during these years that Craik’s
theory was inapplicable to real boundary-layer instabilities. Apparently the first work
in which it was shown that subharmonic waves of frequency ω1 =ω0/2 do indeed
sometimes appear in a constant-pressure boundary layer perturbed by a ribbon vi-
brating with the frequency ω0 (corresponding, at a given value of Re, to a 2D wave
unstable according to the linear stability theory) was that of Kachanov et al. (1977) in
Novosibirsk, Russia. These authors made hot-wire anemometer measurements of the
streamwise velocity fluctuations u(x, y, z, t) (the deviations of instantaneous stream-
wise velocities from the undisturbed velocity U(z)) in a ribbon-excited boundary
layer. Then they determined normalized amplitudes A = u′/U0 of these fluctuations
(where, as above, u′ is the appropriately defined1 real amplitude of u-fluctuations
and U0 is the free-stream velocity; note that in the experiments of Kachanov et al.
the initial values of A were much smaller than in the experiments of Klebanoff et al.).
Kachanov et al. measured the frequency spectra Pu(f ) (where f =ω/2π is the fre-
quency measured in Hz) of the streamwise-velocity fluctuations u(t) (describing the
spectral composition of these fluctuations) at various points (x, y, z). They found
that, together with the main spectral peak at the frequency f0 of the ribbon oscilla-
tions and higher harmonics of frequencies 2f0 and 3f0 (which are typical for any
nonlinear wave development and were seen almost everywhere in the flow), velocity
fluctuations with frequencies much below f0 were also observed at large enough
values of x. Moreover, at such values of x subharmonic fluctuations of frequency
f1 = f0/2 were also detected at all points of observation (as a typical example see
Fig. 5.5a, where peaks at frequencies 2f0 and 3f0/2 are produced by nonlinear in-
teractions of the primary wave of frequency f0 with itself and with the subharmonic
of frequency f0/2, and where peaks at 3f0 and 5f0/2 are due to interactions of the
same primary wave and its subharmonic with the second harmonic). Another exam-
ple of the same type is shown in Fig. 5.5b, taken from the paper by Kachanov and
Levchenko (1984); here a relatively wide low-frequency range of amplitude fluctu-
ations with a peak at f = f0/2 is seen at both values of x and f0. The appearance of
subharmonic fluctuations in the experiments by Kachanov et al. (1977) coincided
with the onset of three-dimensionality, producing appreciable spanwise variations
of flow characteristics. These results strongly suggested to the authors that Craik’s
three-wave resonance took place at the corresponding values of x.

1 It is often convenient to define the fluctuation amplitude as the root-mean-square value (i.e., as
the square root of the temporal mean value of squared fluctuations). This definition is widely used,
in particular, in studies of turbulent flows.
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a

Fig. 5.5 Examples of the amplitude spectra Pu(f ) of streamwise-velocity fluctuations u(t) in a
laboratory flat-plate boundary layer disturbed by a ribbon vibrating with frequency f0. (a) Typi-
cal form of spectrum Pu(f ) measured by Kachanov et al. (1977). (After Kachanov 1994a) peaks
denoted as f1, f1/2, 3f 1/2, 2f 1, 5f 1/2 and 3f 1 correspond to frequencies f0, f0/2, 3f 0/2, 2f 0,
5f 0/2 and 3f 0. (b) Spectra Pu(f ) measured inside a boundary layer at two values of frequency
f0 and coordinate x (measured from plate leading edge) but fixed values of y and z: (1) f0 =
96.4 Hz (F0 = 2πf0v/U 2

0 = 109 × 10−6), x = 600 mm (Re = (U0x/v)1/2 = 608); (2) f0 = 111.4 Hz
(F0 = 124 × 10−6), x = 640 mm (Re = 633). (After Kachanov and Levchenko 1984)

The results found by Kachanov et al. in 1977 were later confirmed, supplemented
by many details, and expounded in research papers and surveys both by members
of the Novosibirsk group (see, e.g., Kachanov et al. (1978, 1980, 1982); Kachanov
and Levchenko (1982, 1984); Kachanov (1987, 1994a, b); Boiko et al. (1999)), and
by other scientists, partially in collaboration with those from this group (see, e.g.,
Thomas and Saric (1981); Saric et al. (1981); Saric and Thomas (1984); Santos and
Herbert (1986); Thomas (1987);Yan et al. (1988); Corke and Mangano (1988, 1989);
Corke (1989, 1990, 1995); Saric et al. (1984); Kozlov et al. (1984), and Bake et al.
(1996, 2000)). It was also noted by Saric and Thomas (1984) and Herbert (1988a)
that some related results (which will be described later) had been observed in early
flow-visualization studies by Knapp and Roache (1968) which did not attract much
attention at the time.

Comparison of the results of the above-mentioned papers with those found by Kle-
banoff and his co-workers clearly shows that there exist at least two different routes of
boundary-layer transition to turbulence. The first of these transition regimes, whose
study was initiated by Klebanoff’s work, usually corresponds to relatively large ini-
tial amplitude of a two-dimensional wave disturbance (with values of u′/U0 of the
order of 1 % or more, where u′ is the amplitude of streamwise-velocity fluctuations
at the distance from the wall where this amplitude is a maximum). Herbert and
Morkovin (1980) proposed to call this regime the K-Regime (for Klebanoff); their
proposition was widely accepted and will be used in this book too. As was indicated
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b

Fig. 5.5 (Continued)

earlier, the K-regime includes the formation of three-dimensional structures leading
to appearance of bursts of high-frequency fluctuations which are later transformed
into separate turbulent spots; these spots multiply and grow with time, then start
merging with each other, and finally occupy the whole boundary layer. Only the first
stage of this regime was studied by Klebanoff et al. (1962) and only this regime was
briefly considered in Sect. 2.1. The second regime, discovered in experiments of the
Novosibirsk group, is often called the N-Regime (see, e.g., Kachanov’s survey papers
(1987, 1994a, b), and below we will normally use this name); other names found
in the literature are Subharmonic Regime and S-Regime (the latter two names stress
the importance here of the subharmonic resonance). The N-regime of disturbance
development does not lead to the appearance of ‘turbulent spots’ (localized regions
of very strong fluctuations), and usually occurs only under some special initial con-
ditions (in particular, at initial values of u′/U0 appreciably smaller than 1 %) and is
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rarely realized in natural and engineering flows (therefore, it was not mentioned in
Sect. 2.1). In particular, the emergence of the N-regime requires that the boundary
layer contains a two-dimensional T-S wave with rather small initial amplitude u′/U0

(but not smaller than about 0.3 %; this last condition was first mentioned in qualita-
tive form by Görtler and Witting (1958), was independently presented, together with
the quantitative (but numerically incorrect) Fig. 5.4 by Maseev (1968a, b) and later
was proved by different theoretical methods by Orszag and Patera (1983); Herbert
(1984a, 1985, 1988a) and Zel’man and Maslennikova (1984, 1993a)). According to
many authors, the N-regime may begin either with a nonlinear wave resonance of
Craik’s type or with a secondary-instability phenomenon. Saric and Thomas (1984),
who found that the spanwise periodicity and the character of the observed nonlinear
wave development can depend on the initial value of u′/U0, even recommended dis-
tinguishing these two origins of boundary-layer three-dimensionality by introducing
the attributes ‘C-type’(for Craik) and ‘H-type’(for Herbert) (the data motivating their
proposal will be considered later). However, later it was shown that the nonlinear
resonance may have many different forms, and often it cannot easily be distinguished
from the secondary-instability development of flow disturbances.

Before detailed consideration (in this and the next section) of the results relating to
the N-regime of disturbance development in a boundary layer and then (in Sect. 5.5)
of the main features of the K-regime, it is worth making some general remarks
about this subject. Note that both the regimes were discovered in experiments where
a ribbon vibrating with a constant angular frequency ω was used to generate the
primary disturbance. Hence, we consider here only the so-called ‘normal transition
scenarios’, which begin with the emergence in the flow of a linearly-unstable (or
linearly-stable but transiently growing) Tollmien–Schlichting wave. However, it was
noted in Chap. 2 (Sect. 2.9.2) that, both in laboratory experiments and in real life,
external-stream disturbances can be large enough for ‘by-pass transition’ to occur,
with no observable small-amplitude T-S waves at the beginning of the process as in
‘normal transition’.

In fact, the N-regime of disturbance development can really occur only in cases of
rather low levels of external disturbances (of background or environmental origin).
In such cases it is often even unimportant whether only one periodic T-S wave or a
more complicated disturbance appears first. It will be explained below that even in
the case of a single primary plane wave the N-regime development quickly leads to a
disturbance spectrum of rather complicated form. The K-regime corresponds to the
cases of boundary layers with a higher level of external disturbances; here also the
primary disturbance may not necessarily have the form of a single T-S wave. Usually
the K-regime leads to the scenario of transition to turbulence through the stage of
‘turbulent spots’ (see Sect. 2.1); therefore, the final stages of the K-regime may also
be realized in ‘by-pass transition’. Note also that when the N-regime of boundary-
layer evolution develops without further disturbance for a long enough time, it may
gradually acquire some features of the K-regime; see in this respect the discussion
of papers by Bake et al. (1996, 2000) at the end of this section and in Sect. 5.5.
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Fig. 5.6 Dependence of the
dimensionless amplitudes
A = u′/U0 of the primary
plane wave (1) and
subharmonic oblique waves
(2) on the coordinate x (and
Re = (U0x/v)1/2) at
y = −2.5 mm, z/δ = 0.26
(where δ is the
boundary-layer thickness),
according to measurements
by Kachanov and Levchenko
(1984)

Let us now consider at greater length the data relating to the first stage of the N-
regime. Kachanov et al. (1977) in their experiments showed only that an appreciable
subharmonic component of velocity fluctuations with frequency f1 = f0/2 appeared
simultaneously with the onset of flow three-dimensionality. This observation gave
reason to suggest that Craik’s three-wave resonance may have been present but, of
course, it could not be considered as a proof of such resonance. Therefore a much
more detailed study of the instability phenomenon observed in 1977 was carried out
by Kachanov and Levchenko (1982, 1984). Here frequency spectra of streamwise
velocity fluctuations in the constant-pressure boundary layer (identical to that stud-
ied by Kachanov et al. (1977)) where measured at a number of distances x from
the plate leading edge and heights z above the plate (one of the results obtained is
shown in Fig. 5.5b). Then narrow-band frequency filters were used to isolate (a) the
‘primary wave’ of velocity fluctuations produced by ribbon vibrations of frequency
f0, and (b) the subharmonic waves of half that frequency. The phase φ and stream-
wise wavenumbers k1 of the primary and subharmonic waves were measured, and
it was shown that the phase synchronism required for resonance (usually reducing
to the condition φ1,0 =φ2,0 +φ3,0, where φi,0 is the initial phase of the ith wave,
and i = 1 for the primary wave) actually occurred, and that the resonance condition
k1 = k/2 of Eq. (5.7) was satisfied with high accuracy. It was also found that the
amplitude of the subharmonic wave of frequency f0/2 grew rapidly with x (from
the viewpoint of a fluid element, with time t measured from the moment of wave
excitation by the vibrating ribbon) over a considerable range of x, while the ampli-
tude of the primary wave changed only a little in this range (see Fig. 5.6, and also
Fig. 5.3 which shows subsequent calculated results relating to more general initial
conditions). All this supports very convincingly the suggestion by Kachanov et al.
(1977) that the three-wave resonance predicted by Craik was really observed in their
experiments.

Kachanov and Levchenko also measured the spanwise distributions of the ampli-
tude and phase for both the primary wave and the subharmonics; one typical result
of such measurements is shown in Fig. 5.7. These measurements confirmed that



5.3 K and N Regimes of Instability Development in Boundary Layers . . . 505

Fig. 5.7 Measured dependence of phases φ1 and φ1/2, and amplitudes A1 and A1/2, of the primary
plane wave (1) and subharmonic waves (2) on the spanwise coordinate y. (After Kachanov and
Levchenko 1984)

the primary wave is two-dimensional, while the subharmonic of frequency f0/2 is
three-dimensional and the dependence of its amplitude on y is close to that of the
function Bcos(k2y) (corresponding to a pair of symmetric oblique waves with span-
wise wavenumbers ± k2), where B depends on x and z (and also on the frequency
f0 of the primary wave). Experimental data of the type presented in Fig. 5.7 were
used by Kachanov and Levchenko to determine the spanwise wavenumber k2 and
the angles θ1,2 = ± tan−1 (k2/k1) between the propagation directions of the plane 2D
wave and of the two subharmonic oblique waves. According to the results obtained,
|θ1,2| ≈ 63 −64◦ in the main part of the region where strong three-wave resonance
was observed. These values differ from the theoretical estimate |θ1,2| ≈ 50◦ obtained
by Volodin and Zel’man in 1978 (when there were no experimental data to compare
with predictions) for a version of Craik’s three-wave-resonance model of disturbance
development. However, Kachanov and Levchenko did not pay too much attention
to this discrepancy, which did not shake their confidence in the discovery of Craik’s
resonant structure. Subsequent theoretical studies, which will be considered later,
showed that Kachanov and Levchenko were right, since Volodin and Zel’man’s
estimate of the angle |θ1,2| was based on an oversimplification of the problem.

Kachanov and Levchenko’s data also included the measured values of vertical
(z-wise, normal-to-wall) profiles of the real amplitude |A| and the phase φ (where
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|A|eiφ= A is the complex amplitude2) for both the primary 2D wave and its subhar-
monics of half the primary frequency. The profile measurements were made in the
flow region where strong resonant interactions take place among waves of these
two types. Results obtained for amplitude A(z) and phase φ(z) of the primary-wave
streamwise velocity fluctuations u(x, z, t) = A(z)exp(i{kx −ωt +φ(z)}) were found
to be very close to the corresponding conclusions of linear stability theory relating
to the two-dimensional T-S wave considered. As to the measured vertical profile of
subharmonic-wave real amplitude A, its accuracy was also confirmed by Corke and
Mangano’s (1989) measurements, which will be considered slightly later. It will be
also noted later in this section that, according to the experimental results of Corke
and Mangano (1989) and Corke (1995), the vertical profile of subharmonic-wave
amplitude found by Kachanov and Levchenko is close to the profiles corresponding
to subharmonic waves entering more general resonant triads, which satisfy the res-
onant conditions (5.7) not exactly but only approximately. Moreover, in his survey
Kachanov (1994a) compared vertical profiles of the subharmonic-wave amplitude
and phase presented in Kachanov and Levchenko (1982, 1984) with some theoretical
and numerically-simulated estimates of these profiles, and showed that their experi-
mental data agree excellently with these estimates (for more details see Figs. 5.16a,
b and the text in Sect. 5.5 relating to these figures, including that in small type).

Continuing the consideration of experimental data relating to the N-regime of
nonlinear disturbance development in boundary-layer flow, we note the visualization
studies of boundary-layer instabilities carried out in the early 1980s by Saric and his
co-authors (who in fact began with independent repetition of the early observations
by Knapp and Roache (1968)). These studies showed that three-dimensional vortical
structures, which appear in the Blasius boundary layer in the course of nonlinear
development of an initially two-dimensional Tollmien–Schlichting wave, differ con-
siderably in the cases of the K-regime and the N-regime of laminar-flow breakdown.
In both cases nonlinear effects produce some regular process of distortion of the
primary 2D wave into three-dimensional vortices reminiscent of the Greet letter �,
with tips directed downstream (so-called ‘�-vortices’). In the case of the K-regime,
these vortices form an ordered vortical structure of peak-valley splitting in which the
successive peaks are spatially in phase and follow regularly behind one another (see
a typical flow-visualization picture in Fig. 5.8a). On the other hand, in the case of the
N-regime the structure consists of spanwise rows of �-vortices, where successive
rows are out of phase and the peaks of one row are aligned with the valleys in the
next row (see Fig. 5.8b). Just such a ‘staggered vortical structure’ was first observed
in visualizations of disturbed boundary-layer flow by Knapp and Roache (1968); this
structure clearly corresponds to twice the streamwise wave length (i.e., half the wave
number) of the ordered K-regime structures in Fig. 5.8a. Later, structures of both
types were independently found and described by Thomas and Saric (1981) and Saric
et al. (1981) who applied to boundary-layer flows the technique of air-flow visualiza-
tion by smoke developed by Corke et al. (1977). More detailed analysis of the data

2 Below, in cases where complex amplitude is not considered, the real amplitude |A| will usually be
denoted simple as A.
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Fig. 5.8 a Regular system of
�-vortices typical of the
K-regime of disturbance
development in a boundary
layer. b Staggered system of
�-vortices typical of the
N-regime of disturbance
development. The figures
show the flow streaklines
appearing when the disturbed
flow is visualized by a
spanwise smoke wire. (After
Herbert et al. 1987)

of Saric and his co-workers was presented by Saric and Thomas (1984); Saric et al.
(1984); Kozlov et al. (1984); Craik (1985); Thomas (1987); Herbert et al. (1987);
Herbert (1988a, b), and Nayfeh (1987a, b); in these publications numerous flow-
visualization pictures were presented (Figs. 5.8a, b represent just one such example).
The first high-quality pictures were published by Saric and Thomas (1984), who used
flow visualization to observe the nonlinear wave development in a zero-pressure-
gradient boundary layer disturbed by a vibrating ribbon, at different values of the
disturbance level u′/U0 (where, as above, u′, observed not far from the ribbon, is the
maximum with respect to z of the amplitude of the streamwise-velocity oscillations
in the excited plane T-S wave, and U0 is the free-stream velocity). At u′/U0 = 0.7 %,
Saric and Thomas found the usual K-type nonlinear development which was earlier
observed by Schubauer, Klebanoff and his co-authors, and a number of other ex-
perimenters. However, for u′/U0 < 0.5 % the character of the picture changed, and
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instead of an ordered peak-valley vortical structure corresponding to that in Fig. 5.8a
a staggered structure of the type shown in Fig. 5.8b was observed. Moreover, Saric
and Thomas also found that some important details of the staggered structure de-
pended critically on the initial value of u′/U0. At u′/U0 = 0.3 % they obtained a
picture which agreed excellently with Craik’s fully-resonant triad: here the angular
frequency of the 3D oblique waves was equal to ω/2, with high precision, and the
streamwise wavenumber of these waves was practically equal to k/2, where k is
the wavenumber of the two-dimensional T-S wave excited by the vibrating ribbon.
At the same time, the spanwise wavenumber k2 of oblique 3D waves found at this
value of u′/U0 agreed well with the value given by the general O-S Eq. (2.41) for a
three-dimensional T-S wave with angular frequency ω/2 (the angular frequency of
ribbon oscillations is now denoted by ω) and streamwise wavenumber k/2, while the
vertical profile of the 3D-wave amplitude u3

′(z) measured by a hot-wire anemometer
agreed with amplitude calculations based on Craik’s (1971) resonant-triad theory.
However, at a slightly higher disturbance level, u′/U0 = 0.4 %, the value of k2 given
by flow-visualization data was more than twice as large as that corresponding to a
three-dimensional T-S wave with frequency ω/2 and streamwise wavenumber k/2.
The results of Saric et al. (1984) also showed that spanwise periodicity of the 3D
structures depended very significantly on the disturbance level. These results, which
have already been mentioned in part (a) of this subsection, clearly showed that the
observed vortical structure could not always be due to the simple Craik mechanism
of three-wave resonance, which has the same form at any value of the 2D-wave
amplitude.

Important subsequent experimental studies of the N-regime of wave development
in Blasius boundary-layer flow were carried out by Corke and Mangano (1988, 1989);
Corke (1989, 1990, 1995), and Bake et al. (1996, 2000). These authors produced
controlled wave disturbances in a boundary layer by means other than the old but
still-popular vibrating ribbon. In particular, Corke and his group used the method
proposed by Liepmann et al. (1982) and then refined by Robey (1987). Instead
of the usual vibrating ribbon, Liepmann et al. used a heating wire, placed in the
initial part of a water boundary layer and excited electrically to give a temperature
varying periodically with given frequency f =ω/2π . They used a single wire which
was stretched spanwise from wall to wall of the test rig; since wire-temperature
variations generate local changes of flow viscosity (and local buoyancy forces), the
spanwise heating wire excites a 2D wave of frequency f in the flow. Robey noted that
this technique lends itself to 3D forcing since the heater geometry can be prescribed
arbitrarily. He used a heater array consisting of 32 rectangular surface elements
separated by narrow gaps. In Robey’s experiments, individual elements were aligned
in a single spanwise row, but by varying the distribution of the phase and/or amplitude
of the temperature fluctuations across the span of the array he could produce many
different 3D disturbances. In the experiments of Corke’s group, this method was
applied to the air boundary layer in a wind tunnel where a single heating wire, whose
temperature fluctuated with frequency f, was supplemented by a spanwise array,
at a fixed x-location close to that of the first wire, of individual heating segments
of fixed spanwise length s, again separated by narrow gaps. The temperature of the
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heating segments oscillated with a fixed frequency (most often with the subharmonic
frequency f1 = f /2); moreover, these authors also introduced a definite phase shift
φ between temperature variations at any two adjacent segments. This arrangement
generated time-periodic and spanwise-periodic variations of flow velocity which
excited a pair of symmetric oblique waves. These waves propagated streamwise,
and their spanwise wavenumbers ± k2 and inclination angles θ = ± tan−1 (k2/k1)
depended on f, φ and s and hence could be changed by changing values of some
of these parameters. (Usually the values of k2 and θ were adjusted by changing
the phase shift φ). The amplitudes of the plane and oblique waves depended on
the amplitudes of heating-wire and heating-array temperature oscillations; hence
both wave amplitudes could be arbitrarily varied. Thus, the heating method had an
important advantage over the vibrating ribbon, since here all the important parameters
of both the 2D plane and 3D oblique waves could be prescribed by experimenters.
Results were recorded by smoke-flow visualization and by hot-wire measurements
of all three velocity components.

Recall that at the beginning of this subsection and the preceding one, it was noted
that Klebanoff et al. (1962) also artificially generated spanwise periodicity of the
boundary-layer disturbances, but the purpose of this procedure was then quite dif-
ferent. In the old work of 1962 and in all repetitions of it by other authors, spanwise
forcing was used only to shorten the time needed for the natural appearance of span-
wise variations of the nominal 2D disturbance. Therefore, the experiments by Corke’s
group, where the amplitudes, frequencies, streamwise and spanwise wavelengths of
all waves of a triad, and also the degree of phase synchronism between plane and
oblique waves could be prescribed beforehand by the investigators, were much more
informative than those of Klebanoff et al. and their successors.

Corke and Mangano (1988, 1989) began their experiments with boundary-layer
observations in the absence of any heating-wire forcing. They found that then the
boundary-layer velocity profile preserved the Blasius shape down the whole length
of the wind-tunnel test section, and among the observed weak disturbances induced
by background noise the least–stable T-S wave played the dominant part. Then the
authors switched on the wall-to-wall heating wire, using two different temperature-
oscillation frequencies f corresponding to values F × 106 = 88 and F × 106 = 79 of
the dimensionless frequency F = 2πf v/U 2

0 = ωv/U 2
0 (used in Figs. 2.26, 2.27,

in Sect. 2.92 and also in Fig. 5.3). At the position of the heating elements exciting
the waves, both frequencies corresponded to linearly-unstable T-S waves (in these
experiments x1 = 45 cm and Re+ = (U0x1/v)1/2 = 430 at the position of the heating
wire, where x1 is measured from the beginning of the test section upon whose wall the
boundary layer was developed). At larger values of x1 (where Re increased because of
boundary-layer growth) these T-S waves became stable to infinitesimal disturbances.
The hot-wire measurements showed that, even for a very small initial amplitude of
the wave excited by the heating wire (much smaller than the initial wave amplitudes
used in all studies of the K-regime of boundary-layer breakdown), the T-S wave
corresponding to the frequency F of the excitation was easily detected against the
background of much weaker external noise. Moreover, the initial exponential growth
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and later decay of this T-S wave, predicted by the linear stability theory, was also
found in the experiments of Corke and Mangano. This agreement with the linear
theory showed that the locally-plane-parallel approximation used in the theory was
sufficiently accurate. However, conclusions based on the linear stability theory were
in fact unimportant here, since the linear-theory rates of wave growth and decay were
negligibly small in comparison with the rates of change due to nonlinear interactions,
which were the main object of the study.

As to the experiments where both 2D and 3D waves were artificially excited, Corke
and Mangano considered only cases where f1 = f /2, and restricted themselves to the
study of three special cases. In two of these cases the dimensionless frequency took
the value F × 106 = 79 (and henceF1 × 106 = 2π fv/U0

2 × 106 = 39.5) and the phase
shift φ took either the value corresponding to oblique-wave inclination angles θ1,2 =
± 45◦, or a value such that θ1,2 = ± 59◦ (cases 1 and 2, respectively), while in the
third case the values were F × 106 = 88, F1 × 106 = 44 and θ1,2 = ± 61◦. In all three
cases flow visualization showed a ‘staggered vortical structure’ of the type presented
in Fig. 5.8b. For case 3 the spanwise distributions of the amplitude A = u′

max/U0

(where as before u′
max is the value of u at the height z where it is a maximum) and the

phase φ of the primary 2D wave of frequency F = 79 × 10−6, and of the sum of 3D
oblique waves with half this frequency, are shown in Fig. 5.9. (These distributions
were determined from hot-wire measurements at points with different values of y,
fixed x = 150 cm (measured from the location of the array of heaters) and a value of z
corresponding to the critical layer where the mean velocity U(z) is equal to the phase
velocity c of the 2D wave). Figure 5.9 confirms that the amplitude and phase of the
primary wave have uniform spanwise distributions, as must be the case for a plane
wave, while for subharmonic oscillations of half the frequency these distributions are
consistent with the sum of two symmetric oblique waves with spanwise wavenumbers
± k2. Similar results were obtained by Corke and Mangano for two other cases; cf.
also Fig. 5.7 showing the results of Kachanov and Levchenko (1984).

The measurements of the streamwise velocity fluctuations u at a number of points
on the centerline (y = 0), with different values of the coordinates x and z correspond-
ing to the maximum amplitude of these fluctuations, allowed Corke and Mangano
to determine the downstream development of the streamwise-velocity amplitude
u′

max of both the plane wave (having frequency F) and the subharmonic oblique
waves (with frequency F1 = F/2); see Fig. 5.10. Figure 5.10a shows that the rates
G = dA/Adx of the downstream growth of the oblique-wave amplitude A differ in
the three cases considered, but in all of them these rates considerably exceed those
given by the linear stability theory, over a wide range of x-values (i.e., of times t
measured from the moment of wave excitation). Corke and Mangano showed also
that the rates G = G(x) in all three cases change strongly with x—at first increasing
with x to some maximal value Gmax (different in the three cases and also occurring
at different values of x) and then decreasing with x. On the other hand, Fig. 5.10b
shows that the amplitude of the 2D plane wave changes much more slowly. Recall
that Fig. 5.6 showed similar behavior of the amplitudes of 2D and 3D waves; how-
ever, it represented the results of Kachanov and Levchenko’s experiments where only
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a

b

Fig. 5.9 Spanwise distributions of phases φ (a) and maximum (with respect to z) amplitudes A (b)
for the primary plane wave of frequency f (0) and subharmonic oblique waves of frequency f /2 (0)
for case 3 of Corke and Mangano’s measurements. (After Corke and Mangano 1989)

the 2D wave was artificially excited, while oblique 3D waves were mainly due to
background noise. Hence it was natural to suppose that the observed 3D waves are
just those with the highest rate of growth in the presence of the excited plane wave.
Therefore, it was assumed that the excited 3D waves, together which, according to
Craik’s theory, extracts energy from the undisturbed flow in the most powerful way.
As to Fig. 5.10, here all three waves of the triads were artificially excited and their
frequencies, wave vectors and amplitudes could be chosen by the experimenters;
therefore, it was not clear beforehand whether they would or would not satisfy
Eq. (5.7) representing Craik’s conditions of strict resonance.

Since the frequencies F=ωv/U 2
0 and F1 = ω1v/U 2

0 were chosen so that F1 = F/2,
the second condition (5.7) was valid in all three cases studied by Corke and Mangano.
However, the first condition, which concerns the wavenumbers and guarantees that
the primary 2D wave and subharmonic 3D waves have exactly the same phase veloc-
ity, was not automatically satisfied in their experiments. Under the conditions of these
experiments k could be determined with the help of the O-S Eq. (2.44) as the stream-
wise wave number of the leasT-Stable plane T-S wave in the Blasius boundary layer
having the given frequency ω =FU2

0/v, and the agreement with directly-measured
values of k was usually rather close. The experimental data also allowed the value
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a

b

Fig. 5.10 Streamwise development of maximum amplitudes of streamwise velocity fluctuations
for (a) subharmonic waves of frequency f /2, and (b) primary waves of frequency f in cases 1, 2,
and 3. (After Corke and Mangano 1989)

of k to be deduced directly. The authors used both methods and found that usually
they led to very similar values of k.

Values of ω and k determine the phase velocity c =ω/k of the primary T-S wave.
As to the phase velocity c1 of the 3D oblique waves, knowledge of k2/k1 = tan θ (or
of the value of k2 which could be determined from Fig. 5.9 and similar figures for
the two other cases studied) allowed k1 to be computed from the three-dimensional
O-S Eq. (2.41) (This equation has the same form as the 2D Eq. (2.44) and satisfies
the same boundary conditions (2.42), but it determines only the vertical profile of the
vertical velocity amplitudeW (z). For discussion of the computations of the horizontal
velocity components see the papers by Kachanov and Michalke (1994) and Kachanov
(1996), and also the earlier papers by Chen and Bradshaw (1984) and Tang and Chen
(1985) demonstrating the use of 2D linear stability computations for determination



5.3 K and N Regimes of Instability Development in Boundary Layers . . . 513

of eigenvalues and eigenfunctions of the 3D liner stability problem). Calculations of
k1 with the help of the O-S equations led to values of c1 = k1/ω1 according to which
the condition c = c1 was satisfied with high accuracy in Corke and Mangano’s case 1,
while in cases 2 and 3 it was not satisfied, although the differences between the two
phase velocities were not large. Values of c1 determined from the experimental data
led to much closer agreement with Craik’s resonant conditions, in all three cases,
than did the values computed from the linear O-S equations. Corke and Mangano
therefore concluded that in the presence of the primary 2D mode the 3D subharmonic
modes reach phase-velocity synchronization with the primary mode in the course of
their development, whatever the initial conditions, and noted that this conclusion
agrees with Herbert’s secondary-instability theory but disagrees with Craik’s theory
of fully-resonant triads. This topic will not be further discussed here; note only that,
according to Fig. 5.10, considerable growth of 3D waves was observed in all three
cases studied (but was different in different cases). Because of this one may suppose
that a subharmonic resonance of some form occurred in all these cases.

Corke and Mangano carried out a more detailed investigation of their wave triads,
and found that all properties observed in their experiments agreed well with the
predictions by Herbert (1983b, 1988a) and Herbert et al. (1987) (and also with
subsequent results of Crouch and Herbert (1993)) relating to evolution of secondary-
instability waves in boundary layers (see in this respect Fig. 5.15a in Sect. 5.4, which
is taken from Corke and Mangano’s paper). However, as was noted above, some of
the properties observed in cases 2 and 3 were found to be inconsistent with those
of fully-resonant triads. Therefore Corke and Mangano concluded that the C-type
and H-type of nonlinear development of subharmonic waves in the N-regime of
boundary-layer instability growth may be distinguished in practical situations, and
that in their experiments case 1 corresponded to C-type development, while cases
2 and 3 corresponded to H-type development, while cases 2 and 3 corresponded to
H-type development. Note, however, that later Zel’man and Maslennikova (1993a)
generalized Craik’s concept of the fully-resonant triad and stated that their version of
the three-wave-resonance theory admitted deviations of wave characteristics from the
strict-resonance conditions (5.2b) and led to results which also agreed very well with
Corke and Mangano’s data. Furthermore, Fig. 5.15b shows that the method proposed
by Mankbadi (1991, 1993a) for approximate evaluation of the growth rates of oblique
waves entering symmetric wave triads gives results which agree excellently with the
experimental data of Corke and Mangano in all three cases studied.

A more thorough analysis of Corke and Mangano’s data, supplemented by re-
sults of a few additional experiments of the same type, was carried out by Corke
(1987, 1989, 1990, 1995). In his papers the main attention was paid to the spec-
tra of the velocity fluctuations and the explanation of their origin. In this respect
Corke investigated the spatial development of various harmonics generated by non-
linear interactions of 2D and 3D waves with themselves and with each other, and by
higher-order interactions of these ‘harmonics of the lowest order’ among themselves
and with the primary 2D and 3D waves. In the 1990 and 1995 papers the effect of
‘mode detuning’ (noncoincidence of the frequency f1 of an artificially-excited 3D-
wave with the ‘resonant frequency’ f /2) was specially studied. Corke (1995) used the
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same combination of heating elements as Corke and Mangano (which allowed the
frequencies of 2D and 3D waves to be set to any values) to excite a pair of symmet-
ric oblique waves with dimensionless frequency F1 × 106 = 39.5 (corresponding to
f1 = 16 Hz) and θ1,2 = ± tan−1 (k2/k1) = ± 59◦ together with a 2D (plane) T-S wave
whose dimensionless frequency F took different values in the five successive experi-
ments. The values of F × 106 used were: 79 (this is the ‘tuned case’ where F1 = F/2)
and 81, 84, 86 and 88 (they correspond to frequencies f = 32, 32.8, 33.5, 34.75
and 36 Hz). In all Corke’s wave triads the streamwise wavenumbers k and k1 of the
2D and 3D primary waves satisfied the ‘wavelength resonance condition’ k1 = k/2
with high accuracy, but the ‘frequency resonance condition’ ω1 =ω/2 was satis-
fied only in the ‘tuned case’. Measurements of the spectra of streamwise-velocity
fluctuations downstream of the heating elements showed, in all cases, numerous
‘higher-order waves’, produced by nonlinear interactions among existing waves and
having frequencies and wave vectors equal to differences or sums of those of the
pre-existing waves. Recall that in the case of simple fully-resonant triads quite sim-
ilar ‘oscillations and waves of higher orders’ were observed by Kachanov et al.
(1977) and Kachanov and Levchenko (1982, 1984) and some of them are shown in
Fig. 5.5a.

Corke’s results corresponding to the ‘tuned case’, where f = 2f1 = 32 Hz, agreed
excellently with those found by Corke and Mangano (1989), while among the
‘detuned cases’ (where f �= 2f 1) only some representative results for the ‘most-
detuned’ case where F × 106 = 88 (i.e., f = 36 Hz) were described at length in
his paper of 1995. In this ‘most-detuned’ case the artificially-excited 2D wave
with frequency f = 36 Hz and wave number k, together with 3D oblique waves
with frequency f1 = 16 Hz and wave vectors (k/2, ± k2), generated a number of
supplementary 3D wave harmonics with ‘combined’ frequencies and wave num-
bers (in particular, with frequencies 20 = 36 −16, 4 = 20 −16, 32 = 16 + 16, and
24 = 20 + 4 Hz). Among these ‘higher-order harmonics’, the lowest order had 3D
waves with frequency f2 = 20 Hz = f1 +Δ f,Δ f = 4 Hz, and wave vectors k = (k/2,
± k2) produced by nonlinear interactions of primary 2D and 3D waves. These waves
are especially interesting since, together with the original 2D and 3D waves, they
form a ‘five-wave resonant system’ consisting of two ‘detuned resonant triads’ with
frequency-wavevector combinations (f, k, 0), (f1, k/2, k2), (f1 +Δ f, k/2, −k2), and
(f, k, 0), (f1, k/2, −k2), (f1 +Δ f, k/2, k2) (cf. the related ‘tuned five-wave reso-
nances’ mentioned in Sect. 5.1. and considered by Craik (1985), Sect. 16.2). The
corresponding ‘detuned resonances’explain well the rapid growth observed by Corke
(which began immediately after the appearance of the wave of frequency 20 Hz) of
both the primary 3D wave of frequency 16 Hz and 3D harmonics of frequency 20 Hz
(see Fig. 5.11). Note that in the early stages of disturbance development the ‘harmon-
ics’ had smaller amplitude than the primary 3D wave; this was, of course, natural
since ‘harmonics’ did not exist at the very beginning and had to be generated by
interaction of the primary 2D and 3D waves. However, after their appearance the
harmonics began to grow faster than the primary 3D wave, and some time later their
amplitudes overtook that of the slowly-growing 2D wave. This situation is entirely
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Fig. 5.11 Streamwise development of maximum amplitudes of an artificially- excited plane wave
of frequency 36 Hz and an oblique wave of frequency 16 Hz, together with development of the 3D
wave of frequency 20 Hz produced by their nonlinear interaction. (After Corke 1995)

similar to that predicted by Zel’man and Maslennikova for the modified cases of
Craik’s fully-resonant triad, where two oblique waves have initially different am-
plitudes (see Fig. 5.3 above). Using the data of some preliminary experiments of
Corke’s group, Mankbadi (1993b) proposed some approximate equations describing
the dependence of the amplitudes of the 2D wave, and of two pairs of symmet-
ric oblique waves entering ‘a pair of detuned resonant triads’, on Re (i.e. on the
streamwise coordinate x determining the value of Re). The equation given for two
oblique-wave amplitudes included cubic terms (more general than those in Eq. (5.11)
for the ‘fully-resonant case’) which allowed the saturation of the oblique wave to
be determined. Mankbadi’s amplitude equations were simplified by Corke (1995),
who presented them in the form of three equations for the three amplitudes; these
equations contained eleven constant coefficients requiring special determination. In
this context Corke also discussed some data from his amplitude measurements which
will not be considered here.

According to Corke, both oblique waves (with frequencies 16 and 20 Hz) of the
‘detuned triad’ had practically the same phase velocity (and hence the same ‘critical
layer’). They also had the same normalized vertical amplitude profile |A(z/δ∗)|/Amax,
which did not differ much from the amplitude profile of the oblique components
of Craik’s ‘tuned’ resonant triad with f1 = f /2, k1 = k/2, which was measured both
by Kachanov and Levchenko (1982, 1984) and by Corke and Mangano (1989) (the
results found by these two groups were rather close to each other; they are shown
in Fig. 5.16a and will be discussed below. At the same time, Corke and Mangano’s
results showed that in their cases 2 and 3, where k1 took values close, but not
equal, to k/2, the normalized profiles of subharmonic-wave amplitudes did not differ
much from those observed in the ‘fully-resonant’ case 1). On the other hand, the
amplitude profile of the ‘higher-order harmonic’with low frequency f = 4 Hz differed
considerably from that in Fig. 5.16a, while as a rule the mean value of the amplitude
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Fig. 5.12 Streamwise
development of a number of
waves produced by nonlinear
interactions of waves from an
artificially-excited ‘detuned
resonance triad’. (After Corke
1995)

|A(z)| of this (and other) higher-order harmonic components of velocity fluctuations
grew significantly as x increased.

Corke also showed that in the course of disturbance development new wave
components were repeatedly generated by numerous nonlinear interactions among
existing components. Thus, the detuned-triad resonance studied in his paper led to
the appearance of a borad range of streamwise-growing discrete modes at intervals
equal to the lowest difference frequency (equal to 4 Hz in the case considered here).
An example of Corke’s observations of the downstream growth of a number of such
higher-order harmonic components is shown in Fig. 5.12. Let us recall that Figs. 5.5a,
b show that frequency spectra of the nonlinearly-developing disturbances in a Bla-
sius boundary layer perturbed by a vibrating ribbon are in fact very far from the
pair of discrete lines at frequencies ω0 and ω0/2 corresponding to a resonance triad
of Craik’s type. And detuned resonances generated by background noise, with low
detuning Δ f, may be one of the mechanisms producing the rapid growth of energy
of low-frequency fluctuations and thus leading to formation of spectra of the type
presented in Fig. 5.5a, b.

Another method of controlled wave excitation, proposed by Gaponenko and
Kachanov (1994), was used by Bake et al. (1996) and Bake et al. (2000). These
authors carried out their experiments in a wind tunnel at the Technical University
of Berlin, having an axisymmetric test section with a diameter of 441 mm and a
total length of 6,000 mm. The boundary layer studied developed on the wall of the
test section. At a free-stream velocity U = 7.2 m/s the boundary-layer thickness δ at
the position of excitation was close to 6 mm (with δ∗ ≈ 2 mm), and the undisturbed
normalized velocity profile U(z/δ∗)/U0 had practically the same Blasius form (which
corresponds to flat-plate boundary layers) at all streamwise and spanwise measure-
ment positions. The wave disturbances were introduced into the boundary layer by
a ‘slit generator’ consisting of a long narrow slit (with 0.5 mm width, 5 mm depth
and 260 mm length in spanwise—i.e. circumferential—direction) cut into the inner
wall, and a set of 32 small tubes (with a spanwise spacing of 8 mm) placed under the
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slit and connected to three loudspeakers. The loudspeakers were fed by three differ-
ent time-periodic signals which combined with each other inside the slit generator
forming, near the outlet of the slit, a field of flow fluctuations corresponding to a 2D
or 3D disturbance of any type of interest to the investigators.

Bake et al. used the primary frequency f = 62.5 Hz (corresponding to F =
2π fv/U 2

0 = 115.5 × 10−6 and to subharmonic frequencies f1 = f /2 = 31.25 Hz and
F1 = 57.8 × 10−6) and studied four cases of excited wave disturbances:

1. The primary 2D wave of frequency f and large amplitude A is excited simulta-
neously with a pair of oblique subharmonics of frequency f1 and low amplitude
A1 � A. The spanwise wavenumbers of the oblique waves ± k2 were determined
by the spanwise spacing of the tubes feeding the slit generator, but the phases of
primary and subharmonic waves could be prescribed by the experimenters and
were chosen to be close to values which, according to previous data, are most
favorable for the subharmonic resonance.

2. Only the pair of subharmonic waves with the same characteristics as in case I was
excited.

3. Only the primary wave (the same as in the case I) was excited.
4. The same three waves as in case I were excited, but the phase shift between the

fundamental and subharmonic waves was selected to be least favorable for the
subharmonic resonance.

In cases II-IV no indication of resonance was found; therefore only results for case
I will be discussed below. Results relating to the initial stage of the disturbance
development (for Δ x = x −xs < 250 mm, where xs is the streamwise length of the
disturbance source) as a rule agreed well with those of the previous investigations. It
was found that at the chosen values of f, k2, A,A1 and the phase shift between primary
and subharmonic waves, the resonance conditions (5.7), guaranteeing the equality of
phase velocities of three waves, were satisfied with good accuracy. Hence it was only
natural that forΔ x < 250 mm the results of Bake et al. for spanwise distributions of the
amplitudes and phases of the primary and subharmonic waves, for the normalized
vertical profiles of the same amplitudes and phases, and for the ‘growth curves’
representing the dependence of the amplitudes of three waves on the streamwise
coordinate x, did not differ much from the values of the same characteristics found
for fully-resonant wave triads, e.g., by Kachanov and Levchenko (1984); Saric et al.
(1984); Kozlov et al. (1984); Thomas (1987), and Corke and Mangano (1989), who
mostly also restricted themselves to not-too-large values of Δ x (some results from
these papers are shown in Figs. 5.6, 5.7, 5.9, and in Figs. 5.16 and 5.17 to be discussed
in Sect. 5.4).

Note, however, that the wind tunnel used by Bake et al. had a very long test section
and the region Δ x < 250 mm is only a small part of it. In fact, the main purpose of
the investigators was to study the N-regime of wave-disturbance developments over
a downstream range much greater than any explored previously. They found that at
large values of x the wave development which began as the N-regime unexpectedly
acquired some features which were previously considered as typical only for the
K-regime. However, these results can be discussed only with those relating to the
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K-regime of disturbance development, and this discussion must be postponed until
Sect. 5.5.

5.4 Comparison of Theoretical Predictions for the N-Regime
with Experimental and Numerical Data

Let us begin this section with a discussion of the remark made in Sect. 5.3 that the
discrepancy between Kachanov and Levchenko’s (1982, 1984) experimental value
of the inclination angle θ = |θ1,2| of observed subharmonic oblique components of a
resonant wave triad, and the theoretical estimate of this angle byVolodin and Zel’man
(1978), may be explained by some defects of Volodin and Zel’man’s theory. The first
hint indicating that, contrary to the conclusion of this theory, the value of the angle
θ = |θ1,2| is apparently not universal but depends on the value of the plane-wave
amplitude A1 was given by Zel’man and Maslennikova (1984). In subsequent more
explicit studies (1989, 1990, 1993a) thse authors proved that there is a direct link
between the values of θ andA1. This proof confirmed the experimental results of Saric
and Thomas (1984) and Saric et al. (1984), which have already been mentioned in
Sect. 5.3 and will be considered at greater length slightly later. Moreover, the proof
clearly implies that the unique value of θ given by Volodin and Zel’man in 1978
cannot be universal.

The point is that in 1978 Volodin and Zel’man followed Craik’s paper of 1971 and
considered only ‘fully-resonant triads’ consisting of one plane and two symmetric
oblique T-S wave exactly satisfying Eq. (5.7), where k and k1 are real parts of
streamwise wave-numbers of plane and oblique waves, andω andω1 are the real parts
of the corresponding frequencies. (For the sake of brevity, the words ‘real parts’ are
applied here to both wavenumbers and frequencies. Of course, in the overwhelming
majority of actual stability problems only one of these two wave characteristics takes
complex values). Later Zel’man and Maslennikova (1989, 1990, 1993a) generalized
Craik’s model admitting, in particular, that two oblique waves may not be strictly
symmetric (e.g., the amplitudes of these waves may differ from each other) while
the two Eq. (5.7) may be valid not exactly but only approximately. According to the
results of these papers (some of which have already been mentioned in Sect. 5.2)
in the cases of these more general wave triads rapid resonant growth of the oblique
waves also occurs quite often; see, e.g., Fig. 5.3 taken from the paper (1993a) and also
Figs. 5.10 and 5.11 showing some experimental data confirming this conclusion. Now
we will continue the discussion of the corresponding theoretical and experimental
results.

Figure 5.3 is only one example illustrating the general results given by Zel’man and
Maslennikova (1993a). According to these results, if the value of Re+ =U0δ

+ /v =
(U0x/v)1/2 (or of Re∗ =U0δ

∗/ v ≈ 1.73 Re+ ) is given, then under rather general
conditions there exists, for a given plane T-S wave of frequency ω, streamwise
wavenumber k, and amplitude A1, a large set of pairs of oblique 3D-waves of fre-
quency ω1 ≈ ω/2 inclined at angles ± θ to the undisturbed-flow direction; together



5.4 Comparison of Theoretical Predictions for the N-Regime . . . 519

with the primary plane wave these form ‘resonant triads’. (These triads, as a rule,
do not satisfy Eq. (5.7) exactly, but nevertheless they are ‘resonant’ since the corre-
sponding amplitude equations include resonant quadratic terms. Therefore, here the
growth rates Go = dA2,3/A2,3dx of the oblique-wave amplitudes A2 =A3 strongly
exceed the growth rate Gp of the plane-wave amplitude, which remains close to
that given by linear stability theory). For a number of such generalized resonant
triads Zel’man and Maslennikova computed the interaction coefficients B1, B2 and
B3 of Eq. (5.4a) by a method similar to that used by Volodin and Zel’man (1978);
a few results of these computations are shown in Fig. 5.3. In the cases where two
oblique waves entering the triads had the same amplitude, the same frequency ω/2
and matched phases, these waves had variable streamwise wavenumbers k1 ≈ k/2
and values of spanwise wavenumbers ± k2 filling a rather wide range. For the exis-
tence of a collection of pairs of oblique waves resonantly excited by a given plane
wave, it is only necessary that Re (according to any suitable definition) be high
enough and that A1 be not too small. Note in this respect that the existence of
the threshold value Atr of A1, below which no growing 3D waves can be excited,
was predicted quite early by Görtler and Witting (1958) and Maseev (1968a, b),
and that Maseev’s Fig. 5.4 implies also that at any A >Atr there is a finite range of
k2 values corresponding to 3D waves growing in the presence of the given plane
wave.

The ranges of admissible values of k2 and k2/k1, corresponding to positive growth
rates G0, and also the preferred values of k2 and k2/k1, (k2)pr and (k2/k1)pr, (corre-
sponding to the greatest value of G0), depend on A1, ω and Re, while the value of
G0 itself depends onA1, ω, Re and k2/k1. (Note that for given values of Re, ω/2, and
k2, the streamwise wavenumber k1 of the corresponding most-unstble oblique wave
may be determined uniquely with the help of the O-S Eq. (2.41). However, the strict
equality k1 = k/2 will be valid here only for one special value of k2). Figure 5.13,
which is based on the results of Zel’man and Maslennikova’s computations, shows a
typical example of the dependence of G0 (non-dimensionalized with δ + as the unit
of length) onK2 = k2v/U0 (and also on k2/k1 = tan θ ) for some definite values of the
dimensionless parameters Re+ =U0δ

+ /v and F1 =ω1v/U 2
0 and a number of values

of the amplitude A1 (measured as fractions of U0). This figure shows that here the
preferred value of k2/k1, which must be met often in real boundary-layer flows, is
not constant but grows with the value ofA1. According to the results of Zel’man and
Maslennikova (1993a) (only partially represented in Fig. 5.13) the value of (k2/k1)pr

depends very little on Re+ and F1, while at values of A1 only slightly above the
threshold value (which makes possible the resonant growth of some oblique waves),
(k2/k1)pr ≈ 1 (and |Δ k| = |k1 −k/2| is very small, i.e., the resonant triad are here close
to Craik’s conditions of perfect resonance).With an increase of the amplitudeA1, the
range of values of k2/k1 corresponding to resonance conditions where G0 > 0 also
increases, the value of (k2/k1)pr grows and approaches 2 and |Δ k| also grows (but,
nevertheless, |Δ k|/k remains relatively small). Hence, contrary to the expectation of
Craik (1971), among the triads including one 2D and two symmetric 3D waves the
growth rate of 3D waves usually attains its greatest value for a triad satisfying only
approximately, but not exactly, the resonance conditions (5.2b).
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Fig. 5.13 Dependence of K2 = k2v/U0, and on k2/k1, of the amplification rate G0 = dA(x)/Adx of
the oblique-wave amplitude A ≡A2 =A3 of a resonant-wave triad, for different values of the plane-
wave amplitudeA1 (for F1 ≡ω1v/U0

2 = 115 × 10−6 and Re+ = (U0x/v)1/2 = 640). All dimensional
quantities are non-dimensionalized by scales δ+ = (vx/U0)1/2 andU0. Curves 1, 2, . . . , 6 correspond
to A1 = 0.14, 0.21, 0.28, 0.40, 0.53, 0.72 %, and the dotted line shows the dependence of the
optimal values (k2/k1)pr and (K2)pr on A1. (After Zel’man and Maslennikova 1993a and Kachanov
1994a)

Recall that Kachanov and Levchenko (1982, 1984) stressed that in their ex-
periments the symmetric wave triads appearing in the flow (and hence apparently
corresponding to the most rapid growth of oblique waves) were those exactly sat-
isfying Eq. (5.7). However, this statement apparently shows only that in these
experiments |Δ k|/k was so small that it was difficult to distinguish from zero.
As to the results of Corke and Mangano (1989) shown in Fig. 5.10, according to
which three wave triads with different values of the oblique-wave angle θ = tan
(k2/k1) also have different rates of oblique-wave growth, they clearly conform to
the results just discussed. Having this in mind, Zel’man and Maslennikova (1993a)
compared the growth rates G0 measured by Corke and Mangano for three pairs
of excited oblique waves with the results of their own computations. This com-
parison showed that the experimental values of G0 found by Corke and Mangano
for three different values of k2/k1 (corresponding to two values of F1 relatively
close to each other, and to known values of Re and A1 which differed very lit-
tle in the three cases) agree very well with the computed values of G0. As will be
shown below in Figs. 5.15a, b, the closeness of the oblique-wave amplifications mea-
sured by Corke and Mangano to theoretical estimates was also confirmed by Corke
and Mangano themselves, using a quite different theoretical model, and then by
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Fig. 5.14 Dependence on the plane-wave amplitude A1 of the value of (k2/k1)pr corresponding
to the most-amplified oblique subharmonics of a plane wave. Numbered symbols correspond to
laboratory observations: (1) Kachanov and Levchenko (1982, 1984); (2, 3) Saric et al. (1984); (4)
Saric and Thomas (1984). (After Zel’man and Maslennikova 1993a; Kachanov 1994a)

Mankbadi (1993a) who made comparisons with results of computations based on
the use of one more theoretical model. The good agreement found by the above-
mentioned authors between one set of experimental data and the results of three
different theories apparently shows that these three theories in fact differ much less
than appears at first sight.

Let us now pass to Fig. 5.14 which is also based on results by Zel’man and
Maslennikova (1993a). This figure shows values of k2/k1 observed in some recent
experiments where A1 took different values. It is natural to believe that the values of
k2/k1 observed in experiments are just those which correspond to maximal growth
rates of oblique waves (recall that a similar assumption has been widely used in com-
parisons of the results from linear stability theory with experimental data). Therefore
in Fig. 5.14 the values of k2/k1 observed in experiments are compared with theoreti-
cal estimates of (k2/k1)pr. Two types of these theoretical estimates are shown in the
figure: the simplest ones derived for the plane-parallel model of Blasius boundary
layer, and the improved estimates based on the theory of Zel’man and Kakotkin
(1982) which took into account the non-parallelism of the boundary layer. As can
be seen, the latter estimates agree excellently with the available data, confirming the
idea that the values of k2/k1 observed in experiments where only a plane wave is
artificially excited are very close to (k2/k1)pr.

Similar results were obtained by Herbert (1983b, 1984a, 1988a, b) (and by Herbert
and Bertolotti (1985)) in studies of the secondary-instability mechanism of generation
of three-dimensional structures in a boundary layer by means of a principal parametric
resonance of oblique waves (see Eq. (5.14b) and the text relating to it). In these studies
it was also found that at a given value of Re (Herbert used the Reynolds number Re+)
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and for a given plane T-S wave of frequency ω and not-too-small amplitude A1,
there is usually a wide range of values of k2 (and hence of k2/k1) corresponding to
pairs of fast-growing 3D waves of frequency ω/2. This range widens, and the growth
rates G0 increase, with an increase of A1 above some rather small threshold value,
while the preferred values, (k2)pr and (k2/k1)pr, of k2 and k2/k1 corresponding to the
greatest possible value of G0 increase monotonically (but relatively slowly) with
an increase of the amplitude A1 or of the Reynolds number Re∗. Herbert’s results
also agree entirely satisfactorily with some experimental and numerical-simulation
data (see e.g. Fig. 5.15a, c). Mankbadi (1993a) also tried to estimate theoretically
the growth characteristics of the oblique components of a resonant triad at different
values of parametersA1, Re∗, and k2 (Note that |θ1,2| = tan−1 (k2/k1) may of course be
used instead of k2). He applied for this purpose his ‘nonlinear-critical-layer method’,
which was briefly discussed at the end of Sect. 5.2. Like the other authors mentioned
above, Mankbadi found that at given not-too-small values of A and Re∗, positive
values of the oblique-wave growth rate G0 occur over a wide range of values of k2

and this range widens (and the maximum value ofG0 increases) whenA1 and/or Re∗
increase. His quantitative results agreed quite satisfactorily with the experimental
data of both Kachanov and Levchenko (1984) and Corke and Mangano (1989), and
with the results of Spalart and Yang’s (1987) numerical simulation of disturbance
development in Blasius boundary-layer flow disturbed by a vibrating ribbon (see,
in particular, Figs. 5.15b, c). Thus, three different methods of computation of the
resonant-triad development in the boundary layer led to results which are close to
each other and agree satisfactorily with both experimental and numerical-simulation
data. At the same time, all the above-mentioned results clearly contradict the early
conclusion of Volodin and Zel’man (1978) based on their use of the original model of
Craik (1971).

Let us now pass to comparison of the measurements by Kachanov and Levchenko
(1984), of the vertical profiles of thes amplitudeA1/2(z) and phase φ1/2(z) of the sub-
harmonic oblique waves entering the resonant triad, with the available theoretical
results. (Now notations A1/2 and φ1/2 are used instead of the notations A2, A3, A2,3,
and φ2, φ3 used above). It was mentioned above that Kachanov (1994a) compared
these profiles with several theoretical and numerically-simulated estimates. The first
theory used by him for this purpose was the well-known three-wave-resonance theory.
However, the initial form of this theory proposed by Craik (1971) was too crude to
give sufficiently accurate values of the subharmonic-wave amplitude A1/2(z); there-
fore the refinements of Craik’s theory by Zel’man and Maslennikova (1989, 1990,
1993a), briefly described above, were used by Kachanov to determine curve 3 in
Fig. 5.16a. Moreover, Kachanov also considered the results of Herbert’s (1984a)
theory of secondary instability of the primary plane wave, which relate to computa-
tion of profiles ofA1/2; these results led to curve 1 in the same figure. Finally, we can
also use the results of numerical solutions of the Navier-Stokes equations describing
the downstream propagation of a wave triad in the boundary-layer—such a solution
was computed, in particular, by Fasel et al. (1987) and led to the results presented as
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Fig. 5.15 Comparison of the
maximum values Gmax of the
oblique-wave amplification
rate, from Corke and
Mangano’s (1989)
experiments and Spalart and
Yang’s (1987) numerical
simulation, with some
theoretical estimates of the
dependence of Gmax on k2/k1.
a Comparison of Corke and
Mangano’s values of Gmaxδ

∗
(filled symbols) with
corresponding results of the
secondary-instability theory
of Herbert (1983b, 1988a);
Herbert and Bertolotti (1985).
(After Corke and Mangano
1989). b Comparison of
Corke and Mangano’s data
(with a special normalization)
with a theoretical estimate of
the dependence of Gmax on
k2/k1 given by Mankbadi’s
theory of critical-layer
nonlinearity. (After Mankbadi
1993a). c Comparison of
Mankbadi’s estimate of
dependence of Gmax on k2/k1

with the corresponding
theoretical estimate by
Herbert (1988a) and results of
numerical simulation by
Spalart and Yang (1987) of a
boundary layer disturbed by a
vibrating ribbon; for
F ≡ωv/U0

2 =
58.8 × 10−5 and initial
conditions A1(0) = 1.4 % and
Re+(0) = 950. (After
Mankbadi 1993a)

a

b

c
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Fig. 5.16 Measured (symbols) and calculated (curves) vertical profiles of the amplitudeA1/2(z) (left)
and the phase φ1/2(z) (right) of the subharmonic 3D wave of frequency ω/2 resonantly amplified in
the N-regime of instability development in a Blasius boundary layer. Experimental data by Kachanov
and Levchenko (1982). Calculations: (1), secondary-instability theory of Herbert (1984a); (2),
numerical simulation of Fasel et al. (1987); (3), resonant-triad theory of Zel’man and Maslennikova
(1989, 1990, 1993a). (After Kachanov (1994a)

curves 2 in Figs. 5.16a, b.3 One may see that, once more, two different theoretical
approaches and the numerical simulation all give results which agree very well with
the experimental data and with each other.

Herbert (1984a, 1986); Herbert and Santos (1987); Herbert et al. (1987); Crouch
and Herbert (1993); Zel’man and Maslennikova (1993a), and Kachanov (1994a)
showed also that the results of measurements by Kachanov and Levchenko (1982,
1984); Saric et al. (1984), and Corke and Mangano (1989) for the dependence of
the primary-wave and subharmonic-wave amplitudes A on x (or on Re ∝ x1/2),
which are presented, in particular, in Figs. 5.6 and 5.10, agree excellently with
the results of available computations of the spatial amplitude growth. The accuracy
achieved was found to be practically the same for computations based on Herbert’s
secondary-instability analysis and on the three-wave-resonance theory of Zel’man
and Maslennikova. The same, if not better, accuracy was found in comparisons
with numerical solutions by Fasel et al. of the initial-value problem for Navier-
Stokes equations, describing development of a three-wave disturbance in the Blasius
boundary layer. Some results confirming the statements made here are collected in
Figs. 5.17a–c. Let us also note that Mankbadi (1991, 1993a) compared amplitude-

3 Some other attempts at numerical simulation of the N-regime of boundary layer instability devel-
opments were carried out by Spalart and Yang (1987) and Laurien and Kleiser (1989) (one result of
the former authors is shown in Fig. 5.15c). However, in both these papers the less-accurate tempo-
ral, and not spatial, simulation was performed (see the small-type text below for discussion of the
difference between these two approaches and the remarks about this topic in the next footnote 4) and
the results found were less complete than those of Fasel et al. Therefore, except for Fig. 5.15b, these
results will not be considered here. On the other hand, Rist and Fasel (1995) improved somewhat
on the numerical method of Fasel et al.; however, as to the results relating to N-regime, the paper of
1995 contains only the indication that here “the quantitative agreement between numerical results
and experiments was at least as good or even better than that achieved by Fasel et al. (1987)”.
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a

b c

Fig. 5.17 a Resonant streamwise amplifications of the plane wave amplitude A1(x) (results 1, 2,
3) and of the amplitude A1/2(x) of the two subharmonic waves of twice smaller frequency (results
4, 5, 6) during the initial stage of the N-regime of instability development. Experimental data
(points 1 and 4) by Kachanov and Levchenko (1982); calculations (curves); 2 and 5—Herbert’s
(1984a) theory; 3 and 6—numerical simulations by Fasel et al. (1987). b and c the same resonant
amplifications at later stages of the N-regime when values ofA1/2(x) (2, 2′ and 5) overtake those of
A1(x) (1, 1′, 3 and 4); Re = (xU0/v)1/2 ∝ x1/2. b: experimental data (points 1′ and 2′) by Saric et al.
(1984), calculated curves 1 and 2—theory by Maslennikova and Zel’man (1985) and Zel’man and
Maslennikova (1993a); dotted curve 3—theory taking non-parallelism into account. c experimental
data (points 4 and 5) by Corke and Mangano (1989); theoretical calculations (curves) by Crouch
and Herbert (1993). (All figures after Kachanov 1994a)

growth data for the primary and subharmonic waves in a boundary layer, found in
experiments by Kachanov and Levchenko (1984) and Corke and Mangano (1989),
with results of his theoretical calculations by the nonlinear-critical-layer method and
with the appropriate numerical-simulation results; his comparison showed yet again
that there is good agreement between the available experimental, theoretical and
numerical data (see Figs. 5.15b, c).



526 5 Further Weakly-Nonlinear Approaches to Laminar-Flow Stability . . .

Figures 5.13–5.17 require some comments. Let us note first of all that the
numerical-simulation data presented in Fig. 5.15c were obtained by numerical sim-
ulation of temporal (and not spatial) disturbance development. This means that the
authors assumed that the disturbance studied was streamwise-periodic, and then used
the N-S equations for computation of its evolution in time. This assumption presup-
posed that the parallel-flow approximation was used, but this corresponds to the
real experimental conditions somewhat more poorly than the spatial-growth approx-
imation, where the disturbance is assumed to be time-periodic (with a prescribed
frequency) while its dependence on coordinate x has to be computed with the help
of the N-S equations (cf. a similar comparison of temporal and spatial solutions of
the Orr-Sommerfeld eigenvalue problem in Chap. 2). Moreover, the influence of
boundary-layer growth can be, at best, only crudely taken into account in the frame-
work of the temporal approach4, while in the case of a spatial numerical simulation
the dependence of the primary flow on x offers no difficultly. However, for tem-
poral simulations much less computer resources (memory and computation time)
are needed and the determination of the appropriate outflow boundary conditions at
the downstream end of the computation domain is much easier than in the case of
spatial simulation; therefore it is not surprising that the temporal approach to flow
simulations has been very popular. In addition to Spalart and Yang (1987), temporal
numerical simulations of boundary-layer instability development have been carried
out by Wray and Hussaini (1984); Zang and Hussaini (1985, 1987, 1990); Laurien
and Kleiser (1989); Zang (1992), and some others (see also the description of some
related numerical-simulation results in Sect. 5.5). In particular, Zang (1992) showed
that results of temporal numerical simulation agree well with the data of Corke (1990)
relating to the effect of mode detuning on wave triad development in boundary layers.
However Fasel et al. (1987), whose data are shown in Figs. 5.16 and 5.17, carried out
a spatial numerical simulation of boundary-layer instability, and the spatial approach
was also discussed and used by Murdock (1986); Fasel (1990); Fasel and Konzelmann
(1990); Konzelmann (1990); Rist (1990, 1996); Kleiser and Zang (1991); Kloker
(1993); Rai and Moin (1993) (who studied the case of a compressible boundary layer
with a high level of external disturbances); Joslin et al. (1993); Reed (1994); Rist

4 The simplest way of doing this is based on the supplementation of the N-S equations by an artificial
‘force term’ guaranteeing the existence of a solution describing the plane-parallel Blasius boundary
layer with time-dependent thickness δ(t), growing at a rate equal to that registered by an observer
who moves streamwise with a reasonably chosen velocity. According to Gaster’s (1962) arguments,
the group velocity cg of a packet of T-S waves (which depends only weakly on the vertical coordinate
z) may be chosen as such a ‘reasonable velocity’. Then the corresponding time-dependent plane-
parallel boundary layer may be considered as a temporal model of the real streamwise-growing
boundary layer (cf. a remark in Chap. 4, about a similar method of numerical simulation of the
steady plane-parallel model of a Blasius boundary layer). This method of approximate allowance,
in temporal numerical simulations, for the spatial (streamwise) growth of a boundary layer was
used, in particular, by Spalart and Yang (1987) and later gained great popularity.
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and Fasel (1995), and Rist and Kachanov (1995), while the corresponding outflow
boundary conditions were discussed by Kloker et al. (1993).

Now let us pass to other subjects. In some of the above-mentioned papers by
Herbert it was indicated that the secondary instability of a plane T-S wave in a lami-
nar boundary-layer flow may manifest itself in plane-wave instability with respect to
some 3D Squire (Sq) waves, which satisfy Eq. (2.46) of Chap. 2 and the conditions in-
dicated there. (Recall that all Sq waves are rapidly damped and hence decay as t →∞;
however, as pointed out in Chap. 3, these waves may nevertheless make a large con-
tribution to the transient growth of very small disturbances). The instability with
respect to Sq, and not T-S, wave disturbances was first considered by Herbert (in
short, H) in his studies (1983a, 1984b) of the secondary instability of a plane T-S
wave in a plane Poiseuille flow, where the midplane symmetry of the undisturbed
velocity profile greatly reduces the possibility of plane-wave secondary instability
with respect to oblique T-S waves (more will be said about this in the next chapter of
this book; cf. also Wu (1996)). Based on his experience of plane-channel secondary
instability, H stated in the papers (1983b, 1984a, 1988a) on the secondary instability
of the Blasius boundary-layer flow that here the instability with respect to 3D Squire
waves may also occur, in principle.

Later Zel’man and Maslennikova (in short, Z-M) in the paper (1993a) criticized
Herbert’s conclusion, stating that for the triad comprising a plane T-S wave and a
pair of Sq waves with half the streamwise wavenumber, the resonance frequency
condition (5.7) is strongly violated. According to Z-M, this shows that resonance
among one T-S plane and two 3D subcritical Sq waves is impossible; thus, a T-S
mode cannot stimulate fast growth of some Sq modes. Furthermode Z-M indicated
that the form of the vertical profile of the subharmonic-wave amplitude computed
by Herbert (1984a) (see Fig. 5.16a) clearly showed that here the subharmonic wave
was represented by a three-dimensional T-S wave and not by a Sq wave which has
a quite different amplitude profile. Therefore, Zel’man and Maslennikova (1993a)
considered only amplitude equations of the forms (5.4) and (5.4a) corresponding
to wave triads comprising three T-S waves. According to their results, numerical
solutions of such equations agreed well with all available data for the initial stage
of the N-regime of boundary layer development. In particular, the results of their
computations agreed very well with the data of Kachanov and Levchenko (1982,
1984) for the profile of the subharmonic-wave amplitude (see again Fig. 5.16a) and
of Saric et al. (1984) relating to the streamwise-growth curves for amplitudes of
primary and subharmonic waves (see Fig. 5.17a).

However, Herbert (1983b, 1984a, 1988a) did not assert that the excitation by a
plane T-S wave of two Sq waves really plays an important part in the development of
three-dimensional structures in the Blasius boundary-layer flow; he only indicated
that this mechanism must also be considered. In fact, results presented in his papers
(1984a, 1988a) clearly show that interactions among triads of T-S waves play the
dominant part in the development of three-dimensionality in boundary layers.5 On

5 However, the Squire waves also possibly made some contribution to the secondary disturbances
computed by Herbert and his co-authors (such a possibility was explicitly mentioned by Crouch
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the other hand, the assertion by Zel’man and Maslennikova (1993a) about the im-
possibility of strong excitation in a boundary-layer flow of oblique Sq waves by a
plane T-S wave was not correct. The point is that, even earlier, Nayfeh (1985) proved
that a strong interaction of a T-S wave with a pair of Sq waves is quite possible in
the Blasius boundary layer. Slightly later, and independently, this results was con-
firmed by Zang and Hussaini (1990). These authors computed several solutions of
N-S equations describing the downstream propagation, in a plane-parallel flow with
Blasius velocity profile, of wave triads consisting of a linearly-unstable plane T-S
wave and a pair of symmetric 3D Sq waves with half the streamwise wavenumber.
Growth curves for amplitudes of one plane T-S and two oblique Sq waves determined
by Zang and Hussaini had the same form as the growth curves in Figs. 5.17a–c, and
thus clearly showed that a plane T-S wave may stimulate rapid growth of two symmet-
ric Sq modes. The computations by Zang and Hussaini also showed that a resonance
triad consisting of one T-S and two Sq waves produces in a boundary layer a vortical
structure, which depends on the value of the plane-wave amplitude in exactly in the
same way as was found in the experiments of Saric and Thomas (1984). However,
Zang and Hussaini did not try to compare their results quantitatively with any ex-
perimental data relating to the N-regime of boundary-layer instability development.
Therefore, their work cannot be used for a reliable determination of the physical
mechanism which produced the N-regime of boundary-layer development observed
in this or that specific experiment.

To identify this mechanism, it is necessary to use the results of comparisons of
specific experimental data with the predictions of various theoretical models. Let us
consider from this point of view the results shown in Figs. 5.13–5.17. All these figures
illustrate the excellent agreement of the experimental results with the calculations.
Among the theoretical models considered, those developed by Z-M were most often
used to produce these figures. These models generalize Craik’s model of a resonant
triad comprising three T-S waves (one plane and two oblique, but the strict symmetry
of the oblique waves and precise fulfillment of the resonance conditions are not now
required). Excellent agreement of the model predictions with the observed data allows
one to conclude that the general three-wave-resonance model describes one of the
instability mechanisms which can produce the N-regime of disturbance development
in boundary-layer flows. In other words, the Craik-type resonance among three T-S
waves satisfying, exactly or approximately, the resonance conditions (5.7) may quite
satisfactorily explain the observed features of the N-regime.

On the other hand, the good agreement of Herbert’s (1984a) and Crouch and
Herbert’s (1993) computational results with experimental data, demonstrated by
Figs. 5.15a, 5.16a and 5.17a, c show that secondary instability of a primary plane
T-S wave with respect to a pair of symmetric oblique T-S (not Sq—Fig. 5.16a proves

and Herbert (1993) in their study of nonlinear development of secondary disturbances in boundary
layers). It is also possible that some small Squire-wave contribution was present even in some of the
computational results of Zel’man and Maslennikova; as was pointed out by E. Reshotko (personal
communication) Squire waves sometimes appear quite unexpectedly in numerical solutions of the
Navier-Stokes equations.
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this quite definitely) waves may also be a mechanism leading to the development of
3D structures in boundary layers, as observed by several groups of experimenters. The
fact that both the three-wave-resonance theory and the secondary-instability theory
lead to results which equally well describe the available experimental data does not
seem surprising. The point is that both theories relate to practically the same situation
of downstream propagation of a triad of T-S waves approximately satisfying the
resonance conditions. The only difference is that in the secondary-instability theory
the amplitudes A1 and A2 of the two oblique waves are assumed to be much smaller
than the plane-wave amplitude A0, while in the three-wave-resonance theory these
three amplitudes are assumed to be of the same order of magnitude (but both theories
are restricted to cases in which all three waves have sufficiently-small amplitudes).
In such situations it seems natural to suppose that there must be an intermediate
range of ratios A1/A0 and A2/A0 within which both theories will be applicable. In
principle, the secondary-instability theory must be considered as the more justified
in cases where the plane T-S wave has already been growing for some time, so that
its amplitude has reached a finite value, while oblique T-S waves have only recently
been produced and therefore have very small amplitude; the opposite opinion seems
natural in cases where all three waves have already been growing for some time
and have more nearly equal amplitudes. However, it is known that in the physical
sciences approximate equations very often turn out to be applicable over a wider
range of conditions than those under which they were derived. So it is quite possible
that the close agreement between the results of the secondary-instability and three-
wave-resonance theories over a wide range of amplitude conditions is just one more
illustration of this fact.

The numerical-simulation results shown in Figs. 5.16–5.17 also support the above
statement that the N-regime of boundary-layer instability development is due to
strong interaction among triads of T-S waves. Let us begin with Figs. 5.16a and 5.17a,
which show excellent agreement between the results of the numerical simulation of
Fasel et al. (1987), the experimental data of Kachanov and Levchenko (1982, 1984)
and the theoretical work of H (1984a) and of Zel’man and Maslennikova (1990,
1993a). Recall again that the theory of Z-M is based on the assumption that the main
features of the N-regime of boundary-layer development are due to the appearance
in the flow of a resonant triad, comprising one plane T-S wave of relatively small
amplitude and two symmetric oblique T-S waves of approximately half the frequency.
Therefore, Fig. 5.16a apparently implies that both the numerical results of Fasel
et al. and the theory of H also relate to situations where resonant triads including
three T-S waves play the dominant role. In the case of the simulation data, this
assumption also agreed well with the description of the computations. In fact, Fasel
et al. considered the model of a laminar plane-parallel boundary-layer flow disturbed
by vertical (normal to the wall) velocity oscillations produced by periodic blowing
and suction of fluid through a narrow strip in the upstream part of the plate (see also
the description of this disturbance model by Konzelmann et al. (1987), which may
be compared to the description of five different models of this type by Berlin et al.
(1999)). The vertical velocity fluctuations were represented in the simulation of Fasel
et al. by the sum of a spanwise-independent component proportional to sin(ω0t), and a
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spanwise-periodic component proportional to sin(ω1t) cos (k2y). It was assumed here
that ω1 =ω0/2 while the values of ω0, k2 and the amplitudes of the two components
of the disturbance could be varied. It is natural to expect that such disturbances will
generate a plane T-S wave of frequency ω0 and a pair of oblique T-S waves having
frequency ω0/2 and opposite spanwise wavenumbers ± k2; moreover, the amplitude
of the plane wave could be chosen within the amplitude range corresponding to the
N-regime. However, it seems highly improbable that vertical velocity oscillations
produced by blowing and suction of fluid could generate Squire waves, which have
zero vertical velocity.

Note in conclusion that Ustinov (1994) also tried to compare some results that
follow from three different theoretical models of the nonlinear development in a
boundary-layer flow of resonant triads comprising three T-S waves. The models he
considered were Craik’s three-wave model leading to amplitude equation of the form
(5.4), a DNS model based on numerical solutions of the N-S equations describing
the downstream propagation of resonant T-S-wave triads (here the approximations
applied by Ustinov (1993) to computations of a plane-channel flow were used), and
Herbert’s secondary-instability model (where Ustinov did not suppose that Sq waves
would play any role). According to computations for the cases whereA0 �A1 =A2

(here A0, A1 and A2 have the same meaning as above) Herbert’s theory lead to
results which agree very well with numerical solutions of N-S equations, while
Craik’s approach leads, if the initial amplitude of the 2D wave is not small enough,
to results differing considerably from those of the other two models. These results
apparently show that the question of the accuracy of different theories of the N-
regime of boundary-layer instability development cannot be considered to have been
fully answered at present.

Most of the results considered above in this section, and almost all the figures
(Figs. 5.5a, b and 5.12 being exceptions), are related to the study of development in a
boundary layer of plane and oblique Tollmien–Schlichting waves entering a resonant
(but not necessary fully-resonant) wave triad. As to Figs. 5.5a, b and 5.12, they clearly
show that a disturbed boundary layer usually includes not just one resonant wave
triad but a great variety of disturbances of different types. Moreover, if the nonlinear
development of disturbances is studied as the initial stage of laminar-flow transition
to turbulence, then one has no right to consider only isolated wave triads, since
such flow conditions are very far from real pre-transition situations. Therefore it is
reasonable to mention here some other scenarios of disturbance development in a
boundary layer which may also play a significant role in transition processes. Note,
however, that there are many different scenarios which may be realized under one
or another combination of flow conditions. Below, only a few typical examples of
such scenarios will be briefly considered; some other examples (which are far from
exhausting all the possibilities) will be considered in Sect. 5.6.

Let us first cite the study by Zel’man and Smorodsky (1990) of the influence of
resonant interactions on the downstream propagation in a boundary layer of a narrow
packet of three-dimensional T-S waves. However, this work will not be discussed
here, since propagation of wave packets will be separately considered in Sect. 5.6,
and for now attention will be paid only to disturbances consisting of a finite number
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Fig. 5.18 Downstream-
growth curves for amplitudes
of five-wave disturbance
system in a Blasius boundary
layer. The system includes the
plane wave 1 of frequency ω
and wave vector {k, 0} and
oblique-wave pairs 2-3 and
4-5 with frequency-wave
vector values {ω/2, k1, ± k2}
and {ω/2, k1

∗, ± k2
∗} where

F =ωv/U0
2 = 230 × 10−6,

K2 = k2v/U0 = 0.171 × 10−3,
K2

∗ = k2
∗v/U0 =

0.15 × 10−3; Re = (U0x/v)1/2.
(After Zel’man and
Maslennikova 1993a)

of individual T-S waves. Recall in this respect that in Corke’s (1990, 1995) exper-
iments the development of a artificially-produced resonant triad was accompanied
by the appearance of a great number of secondary waves. (In fact, many such waves
were observed by Kachanov and Levchenko (1984) as well; see also Kachanov
(1994a)). According to Corke, superposition of primary and secondary waves often
included, in particular, the ‘five-wave resonant systems’ consisting of two ‘resonant
triads’ (maybe of a detuned type) which both include the same primary 2D wave.
Zel’man and Maslennikova (1993a) independently computed the time evolution of
a ‘five-wave resonant system’ comprising a primary plane wave with frequency ω
and wavenumber k, and two pairs of nonsymmetric oblique waves (i.e. having dif-
ferent initial amplitudes) with frequency-wavevector combinations {ω/2, k1, ± k2}
and {ω/2, k1

∗, ± k2
∗}. (In the above combinations, k2 and k2

∗ are arbitrarily chosen
parameters while k1 and k1

∗ may then be computed with the help of the 3D O-S
equation). Accurate determination of all interaction coefficients entering the five
amplitude equations corresponding to this system, and subsequent numerical inte-
gration of these equations, allowed Z-M to determine the streamwise development
of all five waves for different initial conditions and different values of the parameters
Re, ω, k2 and k2

∗ affecting disturbance development. Figure 5.18 shows a typical
example of their results (the dependence of wave amplitudes on x is replaced here
by their dependence on Re+ = (U0x/v)1/2). One may see that, as in the results for
one strictly-resonant wave triad shown in Fig. 5.3, the amplitudes of the four subhar-
monic 3D waves grow rapidly with x; moreover, their amplitudes quickly become
almost equal and their growth curves cross the 2D-wave growth curve together.

Similar results were obtained by Zel’man and Maslennikova (1993b) for wave
systems comprising more than five individual waves. Such systems may be used for
modeling, by discrete wave combinations, the process of filling-in of low frequencies
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of the velocity-fluctuation spectra in a disturbed boundary layer (this process leads
to the formation of the low-frequency band clearly seen in Figs. 5.5a, b). Moreover,
results for many-wave systems are needed to describe Corke’s (1995) observations of
a great number of secondary, tertiary and quaternary 3D waves in a boundary-layer
flow. Z-M began attempts to explain, by the weakly-nonlinear instability theory, the
process of spectrum filling peculiar to the N-regime in their (1990, 1992) papers, and
the work was continued in the (1993b) paper. They considered the case of a laminar
boundary layer which is disturbed at time t = 0 by a plane, linearly-unstable T-S wave
having frequency ω0, wave vector k0 = (k, 0), and very small amplitude. This wave
will begin to grow in accordance with the results of linear stability theory. When the
wave amplitude becomes large enough, interaction with the permanently-existing
background noise will start, resulting in the extraction from the noise of two fast-
growing secondary oblique T-S waves with frequency ω1 ≈ ω0/2 and wave vectors
k1 = (k1, k2) and k2 = (k1, −k2), where k1 ≈ k/2 (recall that Z-M considered only
T-S, but not Sq, waves). During this stage of disturbance development the primary
plane wave will continue to grow at a rate close to that given by the linear stability
theory (which is much smaller than the growth rate of oblique waves). When the
amplitudes of all three waves become approximately equal, the oblique waves will
strongly affect the plane wave, leading to its explosive growth (cf. Fig. 5.3 where the
evolution of one non-symmetrical resonant triad is shown). However, even before
the beginning of the explosive growth of the primary 2D wave, but at some value of
x where the oblique waves of the first order are already rather large, the evolved first-
order waves will begin to excite two new pairs of symmetric oblique waves (again at
the expense of the energy of the background fluctuations) having frequencyω2 ≈ωo/4
and wave vectors k3 = (k1

′, k2
′), k4 = (k1

′, −k2
′), k5 = (k1

′′, k2
′′), k6 = (k1

′′, −k2
′),

where k1
′ ≈ k1

′′ ≈ k1/2. These two pairs of the 3D waves of the second order will
form, together with two oblique waves of the first order, two new resonant triads.
Then the same process may be repeated with respect to waves of frequency ω2 and
so on. As a result of cascade transfer of the energy to 3D waves of lower and lower
frequency will take place, filling the low-frequency part of the spectrum (of course,
direct nonlinear interactions between all the generated waves will also contribute
substantially to the filling of this spectral range).

For the locally plane-parallel model of a Blasius boundary layer Zel’man and
Maslennikova (1993b) studied quantitatively the first two steps of the cascade process
of spectrum filling. To do this, they determined a system of 7 differential equations
for the amplitudesAi, i = 0, 1, . . . , 6, of 7 interacting waves: amplitudeA0 of the pri-
mary plane wave, amplitudesA1,A2 of two secondary oblique waves, and amplitudes
A3, . . . , A6 of the four tertiary 3D waves. One typical example of the
computed dependencies of the amplitudes of these seven waves on Re∗ =
U0δ

∗/v ≈ 1.73(U0x/v)1/2 ∝ x1/2 is shown in Fig. 5.19. Here it has been assumed for
simplicity that ω1 =ω0/2 and ω2 =ω0/4, while the initial amplitudes A1, . . . , A6 of
the six oblique secondary and tertiary waves (normalized by division by the free-
stream velocity U0) were taken to be equal to 10−5 (this value represented, in the
model considered, the relative intensity of background noise with a flat frequency
spectrum, but it was found that the results were almost the same for a wide range of
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Fig. 5.19 Amplification
curves for seven-wave system
including the primary plane
wave 0 with frequency-wave
vector (f-w) combination {ω0,
k, 0}, a pair of secondary
oblique waves 1–2 with f-w
combination {ω0/2, k1, ± k2}
and two pairs of tertiary
oblique waves 3–4 and 5–6
with f-w combinations {ω0/4,
k1

′, ± k2
′} and {ω0/4, k1

′′±
k2

′′}. Here F0 =ω0v/U0
2 =

122 × 10−6, k2/k1 = 2,
k2

′/k1
′=2.8, k2

′′/k1
′′ = 3.44,

Re∗ = (U0δ
∗/v)1/2. (After

Zel’man and Maslennikova
1993b)

these values) and the initial value of A0 was chosen to be much greater than 10−5.
The computations were carried out for a number of values of ω0, k2

′/k1
′ and k2

′′/k1
′′

while k2/k1 was chosen to be equal to 2 which, according to Zel’man and Maslen-
nikova (1990), is the value corresponding to maximal growth-rate of the amplitudes
A1 =A2. Figure 5.19 shows the results for a specific value of ω0 and for values of
k2

′/k1
′ and k2

′′/k1
′′ which lead to the fastest growth of the amplitudes A3 =A4 and

A5 =A6 of the tertiary waves. The figure shows that subharmonic waves of frequency
ω0/2 begin to grow from the moment of their appearance (corresponding, in the case
considered here, to the value of x for which Re∗ = 850), while the primary-wave am-
plitude is almost unchanged at first (cf. similar results in Figs. 5.3, 5.6 and 5.10, where
the results for resonant triads including only waves of frequencies ω0 and ω0/2 were
presented). As to the amplitudes of the tertiary subharmonics of frequencyω0/4, they
even diminish slightly at first. However, beginning from a value of x corresponding
to Re∗ = 1,050, whenA1 =A2 reaches some threshold level, the amplitudesA3 =A4

and A5 =A6 also begin to grow rapidly (all amplitudes A1,. . . , A6 are then growing
approximately as exponential functions of the streamwise coordinate x and thus also
of the time t) while the amplitude A0 continues to change very slowly. Only later,
where Re∗ reaches a value ReN ∗ ≈ 1,200, the amplitude of the primary plane wave
begins to grow very rapidly (faster than exponentially) while all the subharmonics
continue to grow exponentially with time. Z-M assumed that Re∗

N must be close to
the empirical value of the Reynolds number, Retr, characterizing the transition of the
boundary layer to turbulence, and they derived from this assumption some results
relating to transition prediction; however in this chapter the later stages of transition
to turbulence will not be discussed.

Zel’man and Maslennikova (1993b) also considered the amplitude equations for
cases where a number of detuned (i.e., having frequency-ratios differing from the
simple values 2 and 4 considered above) two- and three-dimensional waves of various
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amplitudes were introduced into the boundary-layer flow at some initial value of
the coordinate x. In particular, they studied the case where the 2D T-S wave and
two pairs of 3D waves, with frequencies and wave vectors of the form (ω0, k0,
0), (ω1, k1, ± k2) and (ω0 −ω1, k1

′, ± k2
′), were simultaneously introduced into a

boundary layer flow, and investigated the dependence of the characteristics of the
corresponding instability developments on the ‘detuning parameter’1–2ω1/ω0. They
also considered the development of a complicated wave system, comprising two 2D
and ten 3D detuned waves close to those actually observed by Corke (1990). In this
case they found many coincidences between the wave behavior given by their theory
and that observed in the laboratory experiment. Some other results of Z-M allowed
them to interpret, in a natural way, some observations by Yan et al. (1988) who also
observed the cascade process of filling in the velocity-fluctuation spectrum in the
course of instability development in a boundary layer. The methods used by Z-M
can in principle be applied also to interpretation of Corke’s (1995) results presented in
Fig. 5.12, but the corresponding computations are rather complicated and apparently
have not yet been carried out. Nevertheless, the results discussed above definitely
show that the multimode weakly-nonlinear stability theory may be very useful for the
quantitative theoretical description of many phenomena observed during the initial
stage of transition of the boundary-layer flow from laminar to turbulent flow regime.

Let us now consider the investigation by Nayfeh and Bozatli (1979a) of the
possibility that a primary plane T-S wave of frequency and wavenumer (ω, k) in
a Blasius boundary layer can excite, by means of the principal parametric reso-
nance of secondary-instability theory, a plane, 2D T-S wave with frequency and
wavenumber close to half those of the primary wave. Recall that at the beginning
of Sect. 5.1 it was indicated that nonlinear resonance may occur among two waves
with frequency-wavenumber combinations (2ω, 2k) and (ω, k); therefore, in prin-
ciple, such resonance in a Blasius boundary layer seems to be probable. Moreover,
since the two 2D waves considered will have critical layers which are close to each
other, it seems natural to expect that their nonlinear interaction will be rather power-
ful. Nayfeh and Bozatli analyzed the spatial development of disturbances, i.e., they
considered the primary wave with real frequency ω and with wavenumber k which
may be complex, and assumed that the 2D wave excited by the primary wave has
the frequency-wavenumber combination (ω/2, k1) where k1 may also be complex
but is such that �e(k/2 −k1) =Δ k1 is a small detuning parameter. (Frequencies and
wavenumbers are assumed here to be made dimensionless by using the displacement
thickness δ∗ and free-stream velocity U0 as length and velocity scales). To compute
the interaction between the primary and secondary waves the authors used the method
of multiple scales (see the book by Nayfeh (1981) for a description of this method
and a number of its applications). The computations were performed for three val-
ues of the dimensionless frequency F × 106 =ωv/U 2

0 , namely 60, 52 and 40, and a
wide range of Reynolds numbers. However, the results were rather disappointing:
they showed that to trigger the parametric instability in a Blasius boundary layer and
achieve rapid growth of the secondary 2D wave, the amplitude (peak value) of the
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primary plane wave must exceed a critical value close to 29 % of the free-stream ve-
locity U0. Since it is known that in a boundary layer secondary instabilities of many
other types become significant at considerably smaller amplitudes of the primary
wave, it became clear that this instability mechanism cannot play a significant role.

Later Healey (1994, 1995, 1996) turned anew to the study of a possible two-wave
resonance between a pair of two-dimensional waves in a Blasius boundary layer with
frequency-wavenumber combinations (ω, k) and (ω1, k1), where ω1 and k1 have real
parts twice as large as those of ω and k. (Note that the subscript 1 now refers to the
wave with larger frequency and wavenumber). Healey somewhat changed Nayfeh
and Bozatli’s problem formulation by admitting that both parameters ω and k (and
naturally ω1 and k1 too) may take complex values. Recall that Nayfeh and Bozatli
assumed thatω andω1 are real,ω1 = 2ω, while k and k1 are complex and such that the
real part of k1 is close to twice the real part of k. The assumptions used allowed Nayfeh
and Bozatli to choose values of ω and Re almost arbitrarily; moreover, they spoke
only about closeness of the real parts of k1 and 2k, since in 1979 it was believed that
at real values of ω and ω1 = 2ω the condition �ek1 = 2�ek could not be satisfied
exactly. As will be explained below, it was found recently that this assumption is
incorrect, but this discovery does not invalidate Nayfeh and Bozatli’s reasoning.

Nayfeh and Bozatli used the traditional spatial formulation of the stability problem
inspired by the experiments of Schubauer and Skramstad (1947), and many of their
followers, where a plane wave of fixed frequency was artificially produced in the
initial part of a laminar boundary layer, and the subsequent development of this wave
and any further instability phenomena generated by it were studied. The admittance
by Healey of complex values for both the frequency and the wavenumber clearly
expanded considerably the class of plane waves considered, and simultaneously
forced Healey to change the resonance conditions, giving them the form of two
equalities: �eω1 = 2�eω and �ek1 = 2�ek. Augmenting the set of waves considered
of course meant that a new physical situation, which led to a new stability problem,
was being studied. Healey’s problem formulation corresponded to the case where
the primary plane wave had an amplitude which was not constant but was modulated
as A(t) =A0exp(−ω(i)t). To illustrate the importance of the instability phenomena
produced by such a wave, Healey referred to the remark by Gaster (1980) who pointed
out that the amplitude threshold above which a flow disturbance leads to boundary-
layer breakdown and transition to turbulence is often several times lower in the case
of a modulated wave-packet disturbance than in the case of a disturbance having
the form of a sinusoidal plane wave. Healey also noted the results of subsequent
experiments by Shaikh and Gaster (1994) on randomly-modulated wavetrains, which
again showed that modulation enhances the nonlinear effects of a disturbance. These
facts stimulated Healey’s study of the instability of a boundary layer disturbed by an
amplitude-modulated wave.

Healey (1994) investigated whether there exist complex eigenvalues k = k(r) + ik(i)

and k1 = k
(r)
1 + ik(i)

1 of two O-S eigenvalue problems (2.44), (2.42) (where c =ω/k
and U(z) is the Blasius velocity profile) with complex parametersω=ω(r) + iω(i) and
ω=ω1 =ω

(r)
1 + iω(i)

1 respectively, satisfying the condition ω(r)
1 = 2ω(r), which are
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such that k(r)
1 = 2k(r). Performing some complicated computations, Healey showed

that such pairs (ω, k) and (ω1, k1) exist at all high enough values of Re, and that it
is also possible to find more special pairs (ω, k) and (ω1, k1) of complex frequency-
wavenumber combinations where not only ω(r)

1 = 2ω(r) and k(r)
1 = 2k(r) but even

ω1 = 2ω and k1 = 2k. In particular, Healey found that at Re∗ = 2,100 the latter equal-
ities are valid if ω= 0.04318 −0.01819i and k = 0.1433 − 0.0600i (here as usual δ*
and U0 are used as length and velocity units). In Healey’s (1995, 1996) papers many
results supplementing those given by Healey (1994) are presented. In particular, in
the paper (1995) he analyzes the dependence on Reynolds number of the location
in the complex plane of the resonant pairs (ω, k) and (2ω, 2k), and also shows that
if the condition k1 = 2k is replaced by the less restrictive condition k(r)

1 = 2k(r), then
it is possible to satisfy the condition, together with the condition ω1 = 2ω, by a
combination of real ω and complex k and k1. (For example, at Re∗ = 2,000 these
conditions are satisfied for ω= 0.0817, k = 0.256 − 0.0101i, ω1 = 2ω= 0.1634,
k1 = 0.512 + 0.225i). However, the results relating to resonant wave pairs with a
real value of ω (i.e., corresponding to the traditional problem of spatial wave devel-
opment) do not completely undermine the early belief that such pairs do not exist in
practice. The point is that in the wave pairs found by Healey one of the two frequency-
wavenumber combinations considered necessarily belongs to the higher-order
O-S eigenvalues describing rapidly-damped higher modes, which earlier were never
taken into account. Nor do the new results contradict those of Nayfeh and Bozatli
(1979a), since Healey showed only that there exist pairs of waves for which reso-
nance interaction is in principle possible, but said nothing about the efficiency of this
interaction. At the same time it seems physically doubtful that interactions including
higher-order modes may really play an essential part in boundary-layer instability
development.

Healey also considered the equations for the complex amplitudesA1(x) andA2(x)
of two two-dimensional waves, with complex values of ω and k satisfying the con-
ditions given above for resonance interaction to be possible. According to his results
these equations, accurate to the order of the quadratic nonlinearities, have the form

dA1

dx
= −k(i)A1 + b1A

∗
1A2,

dA2

dx
= −k(i)

10A2 + b2A
2
1 (5.15)

where b1 and b2 are the interaction coefficients corresponding to the situation con-
sidered. (Here again nonvanishing of these coefficients shows that the interaction is
a resonant one). For details of the derivation of Eq. (5.15) and evaluation of their
coefficients see Healey (1995), where a small wavenumber detuning of two waves
is also allowed (cf. also Dangelmayr (1986)). Some of the results implied by these
equations were verified by Healey in some specially-arranged wind-tunnel experi-
ments where development of modulated waves, and also the influence of the phase
difference between two waves (which according to Eq. (5.15) must be rather sig-
nificant) were measured. The experimental data confirmed, to sufficient accuracy,
the theoretical results (including, in particular, the detection of resonances under
just the conditions indicated by the theory). However, the full clarification of the
role of modulated waves in real boundary-layer breakdown and transition processes
evidently requires much further work.
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Let us now continue the description of the work by Nayfeh and Bozatli. In their
papers (1979b, 1980) these authors used the method of multiple scales to study
the nonlinear interactions between two 2D T-S waves of different frequencies and
wavenumbers, and also between three such waves of frequencies ω1, ω2 >ω1, and
ω2 − ω1. They found that a 2D wave of moderate amplitude has little influence on
its subharmonic: that is, a plane wave of frequency ω and moderate amplitude can-
not generate a fast-growing wave of frequency ω/2 (this result clearly confirms the
conclusion of the paper 1979a). However, a plane wave has a strong influence on
its second harmonic, so a moderate-amplitude wave of frequency ω may generate a
secondary wave of frequency 2ω. Moreover, waves of frequencies ω1 and ω2 have
a strong influence on a wave of frequency ω2 − ω1, often making it unstable (i.e.,
growing in time). Many of Nayfeh and Bozatli’s results were verified in experiments
by Saric and Reynolds (1980) in which a vibrating ribbon in a boundary layer was
used to excite either one plane wave of fixed frequency ω1 or two plane waves of fre-
quenciesω1 andω2. (This experiment was stimulated by the similar one by Kachanov
et al. (1980) where oscillations of two frequencies were introduced in a boundary
layer by two separate ribbons). In particular, the experiments showed that a primary
plane wave of frequency ω1 may generate a plane wave of frequency 2ω1 with an
amplitude approximately twice that of the primary wave, but no cases of generation
of subharmonic waves with frequency ω1/2 were detected. When waves of two fre-
quencies ω1 and ω2 were introduced into the flow, secondary waves of frequencies
ω1 − ω2 (and also 2ω1 − ω2) were detected, but the streamwise development of their
amplitudes did not follow the predictions of Nayfeh and Bozatli. The experimen-
tal data agreed satisfactorily with some of Nayfeh and Bozatli’s theoretical results
but strongly disagreed with others; hence revision of the theory seems necessary.
However, this subject will not be discussed further here, since all the instabilities
considered in Nayfeh and Bozatli’s paper led to much smaller growth rates than
those corresponding to the three-wave resonances, and therefore these instabilities
can hardly play an important part in transition of a boundary layer to turbulence.

Still later, Nayfeh (1985) showed that if a two-dimensional primary T-S wave in
a Blasius boundary layer is disturbed by a single secondary T-S wave which has a
frequency and streamwise wavenumber equal to half of those of the primary wave but
is three-dimensional, with spanwise wavenumber k2 larger than some small critical
value, then the principal parametric resonance become very effective and leads to fast
growth of the secondary wave. This results clearly agrees well with those considered
earlier in this subsection.

The secondary-instability problem considered by Nayfeh (1985) (and also those
studied by Herbert 1983b, 1984a; Herbert et al. 1987; Bertolotti 1985) deals with
the principal parametric resonance in a boundary-layer flow, which leads to the
appearance of subharmonic 3D waves and of the staggered vertical structure shown
in Fig. 5.8b. Recall now that in the K-regime of the evolution of a disturbed boundary
layer observed by Klebanoff and his co-authors an ordered, and not staggered,
vortical structure was observed. Trying to simulate this regime, Nayfeh and Bozatli
(1979c) (see also Nayfeh 1987a, b) introduced a four-wave instability model. In the
Nayfeh-Bozatli (N–B) model four different O-S waves interact with each other in
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a boundary-layer flow: they are the primary plane wave with frequency and wave
vector (ω, k, 0); its second harmonic, a plane wave of frequency 2ω and wave
vector (k1 ≈ 2k, 0); and two oblique waves with frequency and wave vectors (ω,
k, ± k2). The downstream propagation of the N–B wave system was analyzed by
Zel’man and Maslennikova (1984, 1989, 1993a), who determined the values of all
interaction coefficients of the corresponding system of four amplitude equations, and
performed numerical integration of this system for a number of initial conditions.
Here, in fact, two different resonances are simultaneously realized—resonant
growth of the second harmonic stimulated by the first one, and fast growth of
two oblique waves, produced by Craik’s three-wave resonance interaction of the
amplified second harmonic with a pair of oblique waves of half the frequency.
The spatial development of the four-wave system leads to generation of an ordered
system of vortices, sketched in Fig. 5.8a and typical of the K-regime of instability
development. Since in this section we are discussing only the N-regime, and not the
K-regime, the N–B model will not be considered here in any detail (but it will be
mentioned in the next Section, Sect. 5.5, devoted to study of the K-regime).

5.5 Weakly-Nonlinear Instabilities in the K-Regime
of Boundary-Layer Development

The K-regime of the boundary-layer instability development was discovered and
explored in the late 1950s and early 1960s by Klebanoff and his co-authors. In this
book, these results were very briefly considered in Sect. 2.1 (where even the name
‘K-regime’, which marks Klebanoff’s contribution, was not mentioned) and, in a
little more detail, were presented in the beginning of Sect. 5.2 with a brief mention in
the beginning of Sect. 5.3. Below some recent studies of this regime will be described
at greater length; therefore, it is appropriate to make here some additional remarks
about its main features.

In Sect. 5.2 it was indicated that Klebanoff et al. (1962) studied the downstream
evolution of the three-dimensional structures which, according to the results of a
number of earlier investigations, regularly appear in a laminar boundary layer at
some distance downstream of a vibrating ribbon exciting a linearly-unstable two-
dimensional T-S wave. Since Klebanoff et al. were interested first of all in the spatial
development of these 3D structures, they artificially generated a weak spanwise peri-
odicity of the amplitude of the ribbon vibrations (with the same spanwise wavelength
λy which was earlier observed in boundary layers excited by ribbon vibrations with
y-independent amplitude). Then the amplitude of the y-periodicity of the streamwise
disturbance velocity was measured at different values of the streamwise coordinate
x. The results (some of which are shown in Fig. 5.20) showed that the spanwise
modulation of the disturbance velocity grows rapidly with x, producing a specific
peak-valley wave structure with a constant ‘fundamental spanwise wavelength’ λy .
As was indicated in Sect. 5.3, it was later found by other authors that this structure
consists of a strictly ordered collection of streamwise ‘�-vortices’, and that two
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Fig. 5.20 Downstream
growth of spanwise
modulation of the amplitude
u′ of streamwise disturbance
velocity in a boundary layer
disturbed by vibrating ribbon.
o – data for x = 7.6 cm; – for
x = 15.2 cm; × – for
x = 19 cm, where x is
measured from the trailing
edge of the ribbon;
1 – modulation ‘peaks’,
2 – ‘valleys’. (After
Klebanoff et al. 1962)

Fig. 5.21 Typical single and
double spikes in a boundary
layer flow (after Klebanoff
et al. 1962). 1 – 1st spike; 2 –
2nd spike; T – fundamental
period of spike repetitions

quite different orderings of vortices are realized in the cases of large and small am-
plitudes of the initial two-dimensional T-S wave (see Figs. 5.8a, b and the related
text). Klebanoff et al. considered only the case of relatively large initial T-S waves,
and therefore they dealt only with a regularly-ordered vortical structure of the type
shown in Fig. 5.8a (but they did not use flow visualization and therefore could not
observe the ordering of the vortices). However, their hot-wire measurements showed
that, in the case of large T-S wave amplitude, short-duration bursts of high-frequency
velocity oscillations regularly appear at spanwise maxima of the velocity distribution
(and are then repeated in each period of the primary T-S wave). These high-frequency
bursts were called “spikes” by Klebanoff et al. since some spikes are seen in the traces
of disturbance velocity against time (see Fig. 5.21).

In the course of their downstream evolution, the spike structures are doubled (see
Fig. 5.21 again), then tripled and so on. Klebanoff et al. associated the spikes with the
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formation of a family of small hairpin-shaped vortices, produced by the inflectional
instability of high-shear layers formed around the large-scale vortical structures.
The ‘legs’ of hairpin vortices may be gradually converging in the course of their
evolution; this process may explain, in particular, the formation of ‘ring vortices’
which are also sometimes observed in the later stages of the K-regime. According to
Klebanoff et al. a breakdown of medium-size vortices into smaller and still smaller
vortical structures leads at first to the appearance of spikes and then to transformation
of spikes into wholly irregular “turbulent spots” which are the precursors of the final
transition to turbulence. Because of the connection with irregular turbulent spots
the spikes were long regarded as irregular (“random”) embryos of the future spots.
Moreover, in accordance with the point of view of Klebanoff et al., it was long
assumed that spikes arise from inflections of the disturbed Blasius velocity profile,
local in time and space. In fact, it can be shown that near the inflection points produced
by a low-frequency disturbance, a strong instability to high-frequency oscillatory
disturbance must develop (this statement was due to Betchov (1960), and its support
by Klebanoff et al. (1962) made it quite popular afterwards; see, e.g., numerous
references to subsequent studies of the ‘local high-frequency secondary instability’
(briefly, LHSI) in reviews by Nayfeh (1987a) and Kachanov (1991a, 1994a) and the
paper by Kachanov et al. (1993)). However, as will be explained later in this section,
in the late 1980s and early 1990s it was discovered that spikes apparently have
quite another origin; they are not ‘wholly irregular’, and their transformation into
“turbulent spots” does not occura to once but only after some specific intermediate
stages. Moreover, some more recent results of experiments and numerical simulations
give the impression that the origin of ring vortices may differ from that sketched
above; this topic will also be discussed later in the present section.

Among the first experimental results relating to the K-regime were those of Nish-
ioka et al. (1980); Nishioka and Asai (1985a, b) and Asai and Nishioka (1989) who
performed detailed measurements of the instability development in a plane-channel
flow. This flow is usually modeled as plane Poiseuille flow, but it has many fea-
tures similar to those of Blasius boundary-layer flow. In particular, Nishioka and
his coworkers found that a strictly ordered collection of streamwise ‘�-vortices’
followed by ‘spikes’ may be observed in plane-channel flow too, while in similar
experiments by Kozlov and Ramazanov (1981, 1983, 1984a, b) and Ramazanov
(1985) it was shown that plane-channel flow may also undergo K- and N-regimes
of instability development. Nisshioka et al., studying the K-regime of disturbance
growth in a channel flow, obtained the first experimental corroboration of the fact
that LHSI may really take place during the K-regime of the channel-flow develop-
ment. However channel-flow instabilities will be considered at length in the next
chapter, Chap. 66; so now we will pass to the original research and survey papers by
Kachanov et al. (1984, 1985, 1989); Borodulin and Kachanov (1988, 1989, 1994,
1995); Kachanov (1987, 1990, 1991a, 1994a, b); Dryganets et al. (1990); Bake et al.
(1996, 2000); Lee (1998, 2000) and Lee et al. (2000) (see also the recent books
by Boiko et al. 1999; Schmid and Henningson 2001) where many results of recent
experimental studies of the K-regime in boundary layers are presented.

6 Editors addendum: before he died, Prof. Akiva Yaglom was working on Chapter 6.
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The experiments described and discussed in the above-mentioned papers and
books were often (but not always) based on the technique which was first used much
earlier by Klebanoff et al. (1962). Here again the laminar boundary layer on a flat plate
placed in a wind tunnel was disturbed by a spanwise-oriented vibrating ribbon, and
simultaneously a weak spanwise nonhomogeneity of the resulting disturbance was
artificially produced by an array of identical pieces of tape placed beneath the ribbon.
However, in contrast to the earlier experiments by Kachanov et al. (1977, 1978,
1980), in all the experiments considered here the amplitude of ribbon fluctuations
was chosen to be so great that it guaranteed the realization of the K (and not N) regime
of disturbance development. Moreover, the authors tried to make the experimental
conditions as close as possible to those of the experiment by Klebanoff et al. (1962).
But the new experiments differed from the early studies of Klebanoff’s group by
more sophisticated measurement techniques and by more careful investigation of the
frequency (and spanwise-wavenumber) composition of the velocity fluctuations at
various points x = (x, y, z) of the boundary layer.

Passing to the consideration of these more recent experimental studies of
boundary-layer instability development, one must note first of all the results of Boro-
dulin and Kachanov (1988). These authors showed that LHSI does in fact occur in
boundary layers but leads to some special nonlinear effects, which must be distin-
guished from the production of spikes. The point is that spikes usually appear at
considerably greater ‘height’ (distance from the wall) than the velocity-profile in-
flection (which is expected to be the site of any quasi-inviscid instabilities) and have
amplitudes exceeding those of LHSI-produced formations. Borodulin and Kachanov
(1988) (see also the subsequent discussion of their results in the surveys by Kachanov
1990, 1991a, 1994a, b; Borodulin and Kachanov 1994, 1995 and the theoretical pa-
pers by Zel’man and Smorodsky 1991a, b; Kachanov et al. 1993) often observed
both types of nonlinear formations at the same values of coordinates x and y but
quite different values of the vertical coordinate z. The lower formations were always
observed just at the heights of velocity-profile inflections, and the measurements
agreed very well with theories of local high-frequency secondary instability (see e.g.
the discussion of this matter in Kachanov et al. 1993 and the papers cited there by
Smith, and by Smith and co-authors on this subject). However the spikes (whose im-
portance for boundary-layer instability development was demonstrated quite early
Klebanoff et al. 1962) certainly have an origin unrelated to LHSI.

Spectral analysis of velocity fluctuations performed by Kachanov and his co-
authors showed that in the K-regime of boundary layer development numerous higher
harmonics of the primary 2D wave, with frequencies ωn = nω, n = 2, 3, . . . , and
values of n up to several tens, always exist in the flow together with the oscillations of
frequencyω1 =ω equal to that of the ribbon vibrations and of the primary plane wave
produced by them. Thus, an amplitude of the primary wave larger than that leading
to the N-regime leads to an intensity of high-harmonic generation much greater than
in the N-regime. Klebanoff et al. did not observe so many higher harmonics of
2D velocity oscillations and did not pay much attention to them, but according to
Kachanov et al. (1984, 1985, 1989) these harmonics are highly important in the K-
regime. Therefore, the latter authors concluded that Klebanoff et al. underestimated
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Fig. 5.22 Amplification of
total intensity of streamwise
disturbance velocity u(x, t)
and amplitudes of its
harmonics with frequencies
ω1, ω2, . . . , ω6 (symbols and
curves 1, 2, . . . , 6;
ω1—fundamental frequency
of primary T-S wave, ωn =
nω1) observed at y
corresponding to peak
position of spanwise
modulation, fixed value of z
and variable x-coordinate.
Streamwise intervals 1s, 2s,
3s—places of formation of
the 1st, 2nd and 3rd spike.
(After Kachanov et al. 1984;
Kachanov 1994a)

the role of higher harmonics of the primary wave. However, Rist and Fasel (1995),
who performed careful numerical simulation of the K-regime of boundary-layer
instability development as observed by Kachanov et al. (using in this simulation the
same model of disturbance generator as that used by Fasel et al. (1987), whose work
was discussed in Sect. 5.4), disagreed with the above-mentioned conclusion. Rist and
Fasel indicated that although Kachanov et al. tried to repeat experiment by Klebanoff
et al. very accurately, there were nevertheless some small differences in experimental
conditions. These differences led, in particular, to a considerable greater initial value
(measured just downstream of the vibrating ribbon) of the ratioA1/A0 of the 3D-wave
amplitude to that of the primary 2D wave in the experiments of Kachanov et al. than
in the similar experiments of Klebanoff et al. This explains why fewer higher 2D
harmonics were significantly excited in the experiments of Klebanoff’s group, and
there these harmonics really were of somewhat smaller importance. However, almost
all the experimental results of Kachanov et al. (1984, 1985) were confirmed, with
high accuracy, by Rist and Fasel’s numerical-simulation data (see also the papers by
Rist and Kachanov (1995) and Rist (1996), where some supplementary numerical
data are presented).

Kachanov et al. measured downstream-growth curves for the amplitudes of var-
ious higher harmonics of the primary oscillation, and found that these amplitudes
begin to grow rapidly at approximately the same value of x at which the primary-
plane-wave amplitude begins to grow faster than predicted by linear stability theory.
The streamwise growth of amplitudes of the primary wave and its higher harmonics
is arrested (and is sometimes replaced by a decrease) just in the region where spikes
appear (see Fig. 5.22 where data for the spatial growth of the first 6 harmonics are
presented together with data relating to growth of the total disturbance intensity;
amplification curves for 17 harmonics may be found in Borodulin and Kachanov
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Fig. 5.23 Vertical (left) spanwise (right) profiles of the amplitudesAi = (bottom) and phasesφi (top)
of streamwise-velocity harmonics with frequenciesω1, ω2, . . . , ω10 at the stage of developed spikes
(curves 1, 2, . . . , 10). (After Borodulin and Kachanov 1992; Kachanov 1994a). Mean-velocity
profile is added to vertical amplitude profiles to show the boundary-layer thickness

1988; Kachanov 1994a). According to Kachanov et al., the spike, i.e. the short-
term highly-localized outbreak of high-frequency oscillations, is produced, not by
a sudden rapid increase of intensity of all higher harmonics, but by phase synchro-
nization, in a small range of y and z, of all harmonics shown in Fig. 5.23, leading to
strong amplification of the observed oscillations. (As indicated above, the spanwise
coordinate y of a spike was found in all cases to be close to a peak position of the
spanwise wave shown in Fig. 5.20). Therefore, the new theory considered spikes not
as random formations but as regular structures, naturally produced by deterministic
evolution of the Fourier composition of the upstream flow disturbances. The exper-
imental data shown in Figs. 5.22 and 5.23 were later confirmed by observations of
the Novosibirsk group, and also agree very well with the results of thorough direct
numerical simulations of the K-regime by Kloker (1993); Rist and Fasel (1995) and
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Rist (1996) (see also the paper by Rist and Kachanov 1995 where new numerical-
simulation results were compared with the new measurements from Novosibirsk).7

The regular character of spike structures was also confirmed in careful experiments
(which will be discussed in Sect. 5.52) by Breuer et al. (1997) devoted to study of
development of some localized disturbances in a boundary layer; see also the survey
paper by Bowles (2000). Thus, the data presented in Figs. 5.22 and 5.23, and the new
explanation of the origin of spikes following from them, may now be considered as
reliable.

Using the data of the Novosibirsk experiments (of which Figs. 5.22 and 5.23
represent only a small part), Kachanov (1987) (see also his papers 1990, 1991a,
1994a, b) proposed a wave-resonance theory of the K-regime of boundary-layer
instability development. This theory assumes that K-regime leads to the emergence of
a cascade of successive four-wave resonances, generalizing the four-wave resonance
studied by Nayfeh and Bozatli (briefly, N–B) in the paper (1979c). Recall that N-B
resonance includes 2D and 3D waves with frequency-wavevector combinations (2ω,
k, 0), (ω, k′, 0), and (ω, k′′, ± k2), where k ≈ 2k′, k′′ ≈ k′, and k2 = k0 corresponds
to the spanwise periodicity of 3D disturbances observed in experiments by various
authors (i.e., to the fundamental wavelength λ y of spanwise waves seen in Fig. 5.20).
It was also noted in Sect. 5.4 that this resonance generates the vortical system typical
of the K-regime of boundary-layer development. According to Kachanov, there is
a cascade of resonances leading to the rapid growth of 3D structures in the K-
regime comprising resonances among quadruples of waves with frequencies and
spanwise wavenumbers (n1ω, 0), (nω, 0) and (nω, ± mk0). Here n1, n and m are
integers, n1 = 1, 2, 3, . . . , n ≈ n1/2, mk0 ≈ k2, where k2 is the spanwise wavenumber
corresponding to spanwise periodicity of small-scale disturbances while k0 is the
‘primary’ (or ‘fundamental’) spanwise wavenumber mentioned above, describing
the spanwise waves which appear in experiments, either naturally or as the result of
artificial disturbances such as pieces of tape under a vibrating ribbon.

These wave quadruples may be produced by nonlinear interactions of waves of the
same type but with smaller values of n1, n and m. The ensuing interactions among the
quadruples may be resonant and similar to those taking place in the case of an N-B
quadruple where n1 = 2 and n = m = 1. Kachanov (1987) showed that the above-
mentioned cascade of resonances may lead to the appearance of spikes at the locations
where they were actually observed in experimental studies of the K-regime. Slightly
later, a numbers of waves which may participate in ‘Kachanov’s resonances’ were
identified in observations of the K-regime by Borodulin and Kachanov (1989, 1994)
(see also Kachanov et al. 1989; Kachanov 1990, 1991a, 1994a, b). Borodulin and

7 In Sect. 5.4, attempts by Wray and Hussaini (1984); Zang and Hussaini (1985, 1987, 1990).
Murdock (1986); Laurien and Kleiser (1989); Kleiser and Zang (1991); Zang (1992) and some
others to simulate numerically the boundary-layer instability development were mentioned. These
papers contain a number of results relating to the K-regime of such development and almost all of
them agree satisfactorily with available experimental data. However, these results are less accurate
and less complete than those by Rist and Fasel (1995) and Rist and Kachanov (1995); therefore
results of the earlier numerical simulations of the K-regime will not be considered in this book.
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Fig. 5.24 Streamwise development of values of amplitudes An,m of (n, m)-Fourier components of
velocity u(x, t) at the heights z where these amplitude take maximal values (after Rist and Fasel 1995)
(n, m)-Fourier component corresponds to frequency ωn = nω1 and spanwise wavenumber k2,m =
mk0 (where ω1 – fundamental frequency of primary waves, k0 – wavenumber of the fundamental
spanwise periodicity (0, 1) shown in Fig. 5.21). Symbols (0, 0) and (1, 0) correspond to amplitudes
of the ‘mean flow correction’ and ‘primary 2D wave’

Kachanov found that for some Kachanov’s wave quadruples, the phase velocities of
the four waves were quite close to each other, making strong four-wave interaction
quite probable. They also stated that at n = 1 and 2 the most rapid growth of the
oblique waves present in these quadruples is reached for m ≈ 4 to 7. Kachanov’s
cascade of resonances clearly fills the high-frequency and high-wavenumber parts of
the frequency and spanwise-wavenumber spectra (these parts correspond to small-
scale oscillations of ‘spike type’) but it does not generate ‘genuine subharmonics’
corresponding to large-scale oscillations.

Kachanov’s wave-resonance theory did not seriously contradict the numerical-
simulation results of Rist and Fasel (1995) who found that the higher spanwise
harmonics of the primary 2D wave, which correspond to the 3D (nω1, ± mk0)-
modes with n = 1, m = 1, 2, . . . , 8, appear in the flow successively and then begin
to grow rapidly with downstream distance x, while their initial growth rates increase
with m, reaching a maximum for m = 7 and 8 (see Fig. 5.24; supplementary data
may be found in Rist (1996), where similar growth curves are also given for some
(n, m)-modes where n = 0 or 2). This figure shows that all the modes considered
reach approximately the same saturation level at x = 420 mm, which is close to the
position where spikes first appear. However, a more thorough treatment of the results
of a subsequent, more refined numerical simulation of the same type carried out by
Rist led to a conclusion differing from that formulated above. New numerical results,
presented in Rist and Kachanov (1995) and Rist (1996), give a clearer picture of the
flow than that derived from previous experiments and simulations. As pointed out
in these papers, the new results showed large amplification rates of spanwise modes
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Fig. 5.25 Two examples of �-vortices appearing at two time instants in the numerical simulation
of instability development in a flat-plate boundary layer by Rist and Fasel. The three-dimensional
�-shaped structures are bounded by surfaces |ηx| = constant, where ηx is the x-component of vor-
ticity; and λy is the primary spanwise wavelength clearly seen in Fig. 5.20. (After Rist and Fasel
1995)

with high values of m (cf. also the related earlier results by Zang 1992), which
cannot be explained by the resonances considered by Kachanov (1987). According
to the papers of 1995 and 1996, the modes corresponding to m = 2, 3, . . . , 8, are
apparently just higher harmonics of the (1, 1)-mode produced by non-resonant non-
linear interactions. If so, then their amplification with x must be of the same origin
as the amplification of higher temporal harmonics of the primary T-S mode and of
other products of non-resonant two-wave interactions (cf. the amplification curves in
Fig. 5.12). It is clear, however, that a final solution of the numerous problems relating
to the origin and subsequent evolution of higher 2D and 3D instability modes in the
K-regime of boundary-layer development requires much additional work.

Note in conclusion that Rist and Fasel (1995); Rist and Kachanov (1995), and Rist
(1996) also used numerical-simulation results for the preliminary investigation of var-
ious 3D vortical structures appearing in the K-regime, and compared the computed
structures with experimental data. Particular attention was paid here to the study
of the �-shaped structures (‘�-eddies’) observed in numerous flow-visualization
experiments (see, e.g., the visualization pictures in Fig. 5.8a; two examples of �-
structure given by numerical-simulation results are shown in Fig. 5.25). Rist and
Kachanov also noted that, according to the new simulation data, at a late stage of
flow development (which corresponds to the appearance and subsequent multiplica-
tion of spikes) ring-like vortices connected to spikes emerge, pinching off from the
downstream ‘legs’ of the pre-existing �-vortices. (This mechanism of generation
of ring vortices clearly differs from the previous suggestions discussed earlier in
this Section). The numerical results showed the appearance of ‘spikes’ at the same
points, and with the same amplitudes and durations, as those which were observed
in wind-tunnel experiments; one such example is shown in Fig. 5.26.

Recall now that when the results of Bake et al. (1996, 2000) relating to the N-
regime of boundary-layer instability development were briefly reviewed at the end
of Sect. 5.3, it was promised that similarities between some features of the N- and
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a b

Fig. 5.26 Comparison of the ‘spike signal’ in (u′, t, y)-space (where u′ is the streamwise disturbance
velocity as a fraction of U0) appearing in the numerical simulation of boundary-layer instability
development by Rist and Kloker at x = 500 mm, z = 8 mm (a) with the ‘spike signal’observed at the
same values of x and z in the corresponding laboratory experimental of Kachanov and Borodulin
(b). (After Rist and Kachanov 1995)

K-regimes found by these authors would be described in Sect. 5.5 It was noted in
Sect. 5.3 that the wind tunnel used by Bake et al. had a very long test section and only
the results relating to the initial part of it agreed well with experimental data from
previous investigations of the N-regime. (It was said in Sect. 5.3 that such agreement
was observed for Δ x < 250 mm, where Δ x is the streamwise distance between the
point of measurements and the disturbance generator. In fact the first deviations from
the ordinary N-regime were observed by the authors as early at Δ x = 220 mm, but
they were weak enough to be ignored for the purposes of Sect. 5.3). The main study of
the structure of developed disturbances far from the disturbance generator was made
by Bake et al. at Δ x = 380 mm and here the behavior was quite different from that
observed earlier in the N-regime; in fact, the measurements represented some mix-
ture of features typical of the N- and K-regimes. At Δ x = 380 mm strong spanwise
modulation of streamwise disturbance velocity, of the type shown in Fig. 5.20, was
clearly seen (faint signs of such modulation were present atΔ x = 220 mm) and, what
is especially important, Klebanoff ‘spikes’ very similar to those observed repeatedly
in the K-regime were also present. The spikes had the same shape as in the case of the
K-regime, and again they appeared in the outer part of the boundary layer at spanwise
peaks of disturbance velocity and could be doubled and tripled. However, in contrast
to the K-regime, they now appeared periodically in time with the subharmonic period
T1 = 2π /ω1/2 = 4π /ω1 and not with the primary-wave period T = 2π /ω1 (where ω1

is the ‘fundamental frequency’ of the primary 2D wave). Moreover, the vortical
structure generated by the developing disturbances again consisted of �-vortices,
but they were now positioned in space in the staggered order shown in Fig. 5.8b, and
not regularly as in Fig. 5.8a. However, in spite of these differences, the subsequent
development of spikes and vortices was very similar to that observed in late stages
of K-regime development. Therefore, there is reason to assume that prolonged N-
regime development may lead to transition of a boundary layer to turbulence by the
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Fig. 5.27 a Dependence of the dimensionless height zs/δ (where δ is the boundary-layer thickness)
of the center of a spike on the streamwise coordinate x b Dependence on x of the streamwise velocity
cs of a spike. (After Borodulin and Kachanov 1994)

same process that takes place at large amplitudes of the primary wave leading to the
K-regime of boundary-layer development.

Let us now consider briefly the results relating to the long-time evolution of
spikes appearing in the K-regime of instability development. This topic differs from
the subjects considered above, since spikes have some features which invalidate stan-
dard methods of weakly-nonlinear stability theory. Observations by Kachanov et al.
(1984, 1985, 1989); Borodulin and Kachanov (1988, 1989, 1994, 1995) and some
others showed that spikes include a great number of phase-synchronized 2D and 3D
modes strongly interacting with each other (cf. Figs. 5.22–5.24). Therefore, ordinary
systems of equations for mode amplitudes are of little use in this case. Recall now
that spikes are localized in small spatial domains (spanwise localization is especially
strong; see e.g. Fig. 5.23). Observations also showed that a newly-formed spike
at first moves away from the wall but on reaching the upper part of the boundary
layer it moves downstream at practically constant z, and with practically constant
velocity close to that of the external stream (see Fig. 5.27a, b and their discussion by
Kachanov et al. (1993), accompanied by some supplementary data; similar results
were obtained by Acarlar and Smith (1987) for evolution in a boundary layer of
“harpin vortices”, which are similar to spikes in many respects). During its down-
stream travel a spike preserves its shape (and also its spatial size and temporal extent),
i.e. it does not disperse as do, for example, the ordinary wave packets in which indi-
vidual waves have different phase velocities determined by the dispersion law (5.5).
Not only the spatial form but also the spectral composition and the amplitude of a
spike are in the main preserved during its convection downstream. This circumstance
was first stressed by Borodulin and Kachanov (1988) and was confirmed by their
subsequent experimental studies; see also Kachanov’s surveys (1991a, 1994a). It
allows spikes, once fully-formed, to be considered as coherent structures, i.e. flow
formations with a definite degree of ordering which is preserved during long time
intervals. The term ‘coherent structure’ appeared in fluid mechanics only in the sec-
ond half of the twentieth century and was not at once universally recognized (for
example, it was not used at all by Monin andYaglom 1971, 1975), but now it is clear
that such structures play a very important part in the mechanics of turbulence (see,
e.g., the book by Holmes et al. 1996). Note, however, that coherent structures of
many different types are met in fluid mechanics, especially in fully-turbulent flows,
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and spikes represent a very special type of such structures. Spikes appear in laminar
flows at a relatively late stage of instability development; they are strongly localized,
mobile, and have definite boundaries, and thus may be associated with the notion of
solitons.

The term ‘soliton’was apparently first introduced by Zabusky and Kruskal in their
paper (1965) devoted to plasma waves, but in fact it has a long history, being directly
connected with the observation by J. Scott Russell in 1834 of a strange solitary wave
in the Edinburgh to Glasgow canal. The wave was produced by a suddenly stopped
boat and had the form of a rounded well-defined heap of water elevated above the
mean level and for a long time rapidly moving forward (i.e., in the direction of boat
motion before the stop) without any change of form or speed—Russell pursued it
on a horse for more than a mile. This observation stimulated subsequent attempts
by Russell to generate such waves in the laboratory, and led to publication in 1844
of his report to the British Association for the Advancement of Science devoted to
this subject. Russell’s solitary wave attracted considerable attention, but only in the
second half of the twentieth century was it discovered that it represents a particular
case of a wide class of flow phenomena which are met in many parts of quite different
physical sciences, and have numerous important applications. At present soliton
studies form a special science to which an enormous and very diverse literature has
been devoted (here it will be enough to name only the relatively small introductory
books by Lamb 1980; Drazin 1983; Drazin and Johnson 1989). Up to now there is no
universally recognized strict definition of the soliton; to follow Drazin’s books one
may say that this word means usually a solution of a nonlinear equation or system
of equations which describes a wave or collection of waves of a conservative form
which is spatially localized, mobile, and may strongly interact with other objects of
the same type, retaining its identity after the interaction.

Kachanov and his group stressed the similarity of spikes to solitons mainly on the
basis of their localization and conservation of form. However, the relation of spikes
to coherent structures was also emphasized by this group; therefore Kachanov sug-
gested applying to spikes the new name ‘CS-solitons’ (CS for ‘coherent structure’).
This name indicates the special place of spikes in both collections—of coherent
structures and of solitons. As indicated above, solitons usually represent some spe-
cial solutions of a definite nonlinear equation or equations (in particular, the strict
theory of Russell’s ‘solitary waves’ emerged when Korteweg and de Vries (1895)
discovered the nonlinear equation for surface waves in a liquid of finite depth and
proved that this equation has solitary-wave solutions). Therefore, the identifica-
tions of spikes with a special kind of soliton seemed incomplete without a nonlinear
equation to describe them.

The first attempts to develop an analytical theory of the soliton-like formations in
flat-plate boundary layers were made independently by Zhuk and Ryzhov (1982) and
Smith and Burggraf (1985). In both papers by boundary-layer disturbances consid-
ered were those which, in the case of small enough amplitude and large streamwise
length scale, may be described with good accuracy by the so-called Benjamin-Ono
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(briefly, B-O) equation, a nonlinear integro-differential equation of the form

∂A

∂t
+ A

∂A

∂x
= 1

π

∞∫

−∞

∂2A/∂ξ 2

ξ − x
dξ + ϕ(t , x) (5.16)

where A = A (x, t) is the unknown amplitude of the disturbance (replaced in the
integrand by A(ζ , t)), the integral, if divergent, is understood as the Cauchy principal
value, whileμ(t, x) is the ‘source term’, which may be absent in some cases but in oth-
ers may have different origins and forms. Equation (5.16) (without the source term)
was derived by Benjamin (1967) and Ono (1975) (and used by Davis and Acrivos
19678) to describe the variation of amplitude of two-dimensional long internal waves
of small amplitude in stratified fluid of great depth, and it was shown by Benjamin
and by Ono that this equation has soliton solutions of the same form as those known
for the Korteweg-de Vries equation. Later it was discovered that the same equation
may also be applied to many other nonlinear waves of large streamwise lengthscale
and small amplitude in steady shear flows bounded by a wall (the above-mentioned
papers by Zhuk and Ryzhov, and Smith and Burggraf and also those by Goncharov
1984; Romanova 1984; Demekhin and Shkadov 1986; Benjamin 1992; Matsuno
1996 are just typical examples). However in these papers neither the K-regime of
boundary-layer transition nor the spikes were considered explicitly.

Application of the B-O equation to the development of strongly nonlinear distur-
bances in a boundary-layer flow was studied, in particular, by Rothmayer and Smith
(1987). However here only a rather special one-parameter family of soliton solutions
of the B-O equation was considered, and these solutions proved to be inappropri-
ate to describe the spikes observed in the K-regime. Then Zhuk and Popov (1989)
found some new soliton solutions of Eq. (5.16) (with non-zero ‘source term’), while
Ryzhov (1990) investigated a more general three-parameter family of soliton solu-
tions of the homogeneous B-O equation (some important features of this solution
are shown in Fig. 5.28). Ryzhov’s investigation was continued by Kachanov et al.
(1993); Ryzhov (1994), and Bogdanova-Ryzhova and Ryzhov (1995) who applied
this and some related soliton solutions to a description of real fluid-mechanics insta-
bilities (see also Kachanov’s survey papers (1991a, 1994a) and an interesting survey
by Ryzhov and Bogdanova-Ryzhova (1998) containing a long list of references).
In particular, Bogdanova-Ryzhova and Ryzhov (1990) studied the soliton solutions
of the inhomogeneous B-O equation describing the evolution of disturbances in a
boundary layer on a rough wall (where the effect of roughness elements may be de-
scribed by a definite form of the source term ϕ(t, x)). These authors also cited some
papers in which the same equation was applied to development of atmospheric and
oceanic waves affected by a mountain ridge or by large bottom irregularities, which
also generated source terms, of a form different from that applying to the rough wall.
(for more details see Ryzhov and Bogdanova-Ryzhova’s survey 1998). A detailed

8 Therefore instead of the name ‘Benjamin-Ono (or B-O) equation’ the name ‘Benjamin-Davis-
Acrivos (or BDA) equation’ or ‘Davis-Acrivos-Benjamin-Ono (or DABO) equation’ is sometimes
used.
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Fig. 5.28 Schematic form of a family of Ryzhov’s three-parameter soliton solutions of the
Benjamin-Ono Eq. (5.16) corresponding to various values of the amplitude parameter � and fixed
values of the other two parameters (determining scales of the dependence of A on t and x). Here
A0 = T −1

∫ T
0 A(t)dt is the mean amplitude, A−, A+ and τ0 are some numerical parameters, and T

is the fundamental spike period. (After Kachanov et al. 1993)

Fig. 5.29 Experimental (points) and theoretical (curves) dependencies of the soliton form char-
acteristics A−, A+ and τ0 on the soliton magnitude Am = (A+ + A−)/2. Theoretical correspond to
the solution of the B-O equation shown in Fig. 5.28, with appropriately chosen parameter values;
points—data of Borodulin and Kachanov (1988). (After Kachanov et al. 1993)

study of the solutions of the inhomogeneous B-O equation and their application to
water-wave problems was also carried out by Matsuno (1996), whose paper contains
many supplementary references relating to this topic.

Further, Ryzhov (1990) and Kachanov et al. (1993) showed that the determining
parameters of Ryzhov’s family of soliton solutions may be chosen so that the general
form of these solutions, and a number of their numerical characteristics, are very
close to those found by Kachanov (1991b); Borodulin and Kachanov (1988, 1994,
1995) and in some other experiments on Klebanoff’s spikes in the early stage of their
downstream evolution (see, e.g., Fig. 5.29). These results may be considered as the
confirmation of the soliton nature of spikes. The deviations in Fig. 5.29 of the exper-
imental results for far-downstream points of observation from the theoretical curves
may be explained by the fact that B-O equation deals only with two-dimensional
disturbances; therefore it represents a two-dimensional spike model which is inap-
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plicable to the later, essentially three-dimensional, stages of spike evolution. Many
details of these later stages of spike development were discussed by Kachanov et al.
(1993) and studied experimentally by Borodulin and Kachanov (1995). Detailed anal-
ysis of the nonlinear evolution in boundary layers of two-dimensional T-S waves,
which, in particular, described some of the limitations of applying the B-O equation
to this problem, was performed by Moston et al. (2000). A generalization of the
B-O equation to the case of three-dimensional near-wall disturbances was proposed
by Shrira (1989) in connection with the study of 3D waves in the upper layer of
the ocean. Later Abramyan et al. (1992) proved that Shrira’s equation has three-
dimensional soliton solutions which may possibly be used to describe spikes in the
three-dimensional stage of their evolution.

It has already been mentioned that the time evolution of spikes leads finally to their
transformation into ‘turbulent spots’. Such spots (one of which is shown in Fig. 2.2)
represent the spatial regions where the flow becomes truly turbulent, i.e. it becomes
irregular, is accompanied by random (‘stochastic’) fluctuations, and therefore cannot
be studied mathematically without the use of probability-theory concepts. Recall that
it was long assumed that ‘stochastization’/randomization of the boundary-layer flow
takes place when spikes (considered as irregular formations) first appear. However it
was found later that spikes themselves are regular structures which may be described
by deterministic equations of motion, while random velocity fluctuations emerge
only at the later stages of spike development. The process of gradual development
of the ‘flow randomness’ associated with spikes in an initially laminar boundary
layer disturbed by a two-dimensional T-S wave was studied experimentally by Dry-
ganets et al. (1990) whose results were discussed by Kachanov (1994a); see also
the descriptions of experiments by Breuer et al. (1997) in Sect. 5.62. An analytical
model of the gradual randomization of a spike and subsequent formation of a spot
was briefly outlined by Smith in Kachanov et al. (1993) and then developed further
by Smith (1995). Bogdanova-Ryzhova and Ryzhov (1995) considered the model of
randomization of a soliton by a wall hump and then returned to the problem of the
possible connection between solitons and the onset of random flow disturbances in
Ryzhov and Bogdanova-Ryzhova (1998). Note in this respect that many different
mechanisms may be responsible for the appearance of random fluctuations in real
boundary-layer flows; a definite part may be played also by ‘local high-frequency
secondary instability’ (LHSI: discussed above) of a flow disturbed by a T-S wave,
and by penetration into this flow of background (environmental) disturbances in the
form of random 2D and 3D T-S waves or wave packets, corresponding to the continu-
ous part of the spectrum of the boundary-layer Orr-Sommerfeld eigenvalue problem.
However a detailed analysis of the appearance of randomness in a laminar bound-
ary flow lies outside of the contents of this chapter on weakly-nonlinear stability
theory.

Note in conclusion that recent experimental studies of the K-regime of boundary-
layer instability development by Lee (see Lee 1998, 2000; Lee et al. 2000 and
references therein) lead to some results differing from those considered above. Lee
studied disturbance development in the boundary layer on a flat plate mounted in the
low-turbulence water channel at Beijing (Peking) University. In these experiments a
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wave disturbance was excited in the flow by periodic pumping of water in and out
of the boundary layer through a narrow spanwise slit near the leading edge of the
plate. Then the disturbance development was recorded by hot-wire measurements at
a number of downstream positions and by numerous photographs of the evolution of
flow structures visualized by hydrogen bubbles. Lee used the name ‘CS-solitons’ to
denote some new flow structures, which occupy the whole thickness of the boundary
layer but have quite different forms in the near-wall region (where long streaks occur
at the ‘peak positions’ of the spanwise velocity modulation), in the middle part of
the boundary layer, and in its upper part (where Kachanov’s ‘CS-solitons’ travelled
most of the time). According to Lee, the upper part of CS-solitons is produced by
short chains of ringlike vortices appearing periodically (with the same frequency as
the primary T-S wave) at the tips of �-vortices whose breakdown generates spikes.
Lee’s CS-solitons differ from Kachanov’s, but both these formations are strongly
localized spanwise and preserve their main features up to final breakdown (leading
to the appearance of turbulent spots). Lee noted that some of his results are similar to
those observed by Hama and Nutant (1963); as to the disagreement of some of Lee’s
conclusions with those of Kachanov, they were partly resolved in their joint work
(see, e.g. Lee et al. (2000) and references in Lee (2000)). Nevertheless, at present
it seems that Lee’s results require further careful investigation, and that his claim of
the possible finding of the ‘universal transition scenario’ is questionable. However,
since ‘transition scenarios’ are only indirectly connected with the main content of
the present chapter, Lee’s results will not be further considered here.

5.6 Some Other Scenarios of Instability Development
in Boundary Layers

The N- and K-regimes of boundary-layer instability development considered in
the previous section of this chapter have a very important common feature—in
both of them the instability process starts with the appearance in the flow of a
linearly-unstable two-dimensional Tollmien-Schlichting wave. (This T-S wave is
often identified with that solution of the O-S eigenvalue problem (2.42), (2.44) cor-
responding to the eigenvalue ω, or k, which has the maximal imaginary part. Such
identification is then justified by the assumption that any disturbance to excite a T-S
wave may enter the boundary layer from the disturbed free-stream flow, and hence
the most-unstable T-S wave must play the dominant role in boundary-layer evolu-
tion). The simplest case, the instability regime initiated by a sole plane T-S wave,
was investigated in the famous experiments by Schubauer and Skramstad (1947)
and in numerous subsequent similar boundary-layer stability studies (including all
the experimental studies of the N- and K-regimes considered above) which used a
vibrating ribbon (or some other periodically-oscillating device) for the excitation in
the flow of a weak 2D wave of fixed frequency ω. Recall however the remark made
in Sect. 2.92 (p. 118) that, in the majority of boundary-layer transitions to turbulence
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met in wind- and water-tunnel experiments and in real life, the appearance in the
flow of an isolated linearly-unstable T-S wave of small amplitude growing in accor-
dance with the laws of linear stability theory, is not observed at all, i.e. this stage
of instability development is by-passed. Therefore, the scenarios of the boundary-
layer instability development which begin with the appearance in the flow of the
most-unstable plane T-S wave of small amplitude are inapplicable to the majority
of real-life boundary-layer-transition phenomena. Note that the term by-pass tran-
sition is often used in engineering practice to describe response to such high levels
of free-stream turbulence that transition starts at Reynolds numbers far below the
critical value predicted by linear instability theory, so that no stage of the route to
randomness discussed above, nor the even the behavior of the simple finite-amplitude
subcritical modes discussed in Sects. 5.3 and 5.4 have any relevance.

In this book no attempts will be made to consider all scenarios of boundary-layer
instability development and transition to turbulence met in practice. However, at least
some of the regimes of instability development differing from the N and K regimes
considered above must, clearly, be discussed here.

5.6.1 Oblique and Streak-Breakdown Transition Scenarios

Let us begin with a remark about the paper by Goldstein and Choi (1989). These
authors considered the case of a plane-parallel shear layer (“mixing layer”) between
two parallel streams with uniform velocities U1 and U2 �=U1. Then they studied the
evolution in this flow of a pair of linearly-unstable symmetric oblique waves of the
same amplitude A and frequencyω, with two-dimensional wave vectors k1 = (k1, k2)
and k2 = (k1, −k2). The waves were assumed to be harmonic in time (i.e., ω is real)
but streamwise-growing (k1 is complex while k2 is real). It was found that the two
waves interact strongly with each other and, as in the case of Craik’s resonant triads
satisfying conditions (5.7), strong nonlinear wave interaction is concentrated in the
neighborhood of the common critical layer of these two waves. Using known methods
of approximate asymptotic analysis of the critical-layer contribution to nonlinear
wave interactions (see, e.g., the review by Maslowe (1986) and the subsequent related
paper by Goldstein (1995)), Goldstein and Choi derived an equation for the amplitude
A = A(x). This equation proved to be integro-differential and cubically nonlinear and
implied rapid streamwise growth of A. A similar method was applied by Wu et al.
(1993) to the study of disturbance development in a near-wall fluid layer above a
horizontal plate oscillating sinusoidally in the x-direction; here again the nonlinear
interaction between a pair of symmetric oblique waves leads to rapid growth of
flow disturbances. (Note that later Wu and Stewart (1995) showed that rapid growth
of three-dimensional disturbances in a plane shear layer may also be produced by
the interaction between another pair of T-S waves having the same critical layer—
namely, one two-dimensional T-S wave and one oblique wave having the same phase
velocity. However this instability mechanism will not be considered in this chapter).
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The development in a plane-channel flow (plane Poiseuille flow) of disturbances
initiated by the appearance of a pair of oblique waves having amplitude A, frequency
ω and wave vectors k1 = (k1, k2) and k2 = (k1, −k2) was apparently first studied by
Lu and Henningson (1990) and Schmid and Henningson (1992a, b) who performed
temporally-developing direct numerical simulations of this development. The authors
considered the oblique-wave development in a steady laminar flow as the first step en
route to transition of this flow to turbulence, an alternative to the N- and K-routes. To
describe this new route the term oblique transition was used by these authors, while
in the book by Schmid and Henningson (2001) the name O-type transition was also
used. As to the boundary-layer flows, the development of a pair of oblique waves
was first considered as a possible transition mechanism in the case of compressible
flow; see, e.g., Thumm et al. (1989, 1990); Chang and Malik (1992, 1994); Fasel
et al. (1993), and Sandham et al. (1994). (Special interest in the compressible case
was stimulated by the fact that Squire’s theorem of Sect. 2.81 is not valid here and, in
contrast to incompressible boundary layers, the most-unstable wave in compressible
shear layers is usually an oblique one; see, e.g., Reshotko (1976)). However, since in
this book compressible flows are not considered, these papers will not be discussed
here.

A spatially-developing numerical simulation of the oblique transition in the in-
compressible Blasius boundary layer was apparently first carried out by Joslin et al.
(1993) who solved the exact Navier-Stokes equations together with the approximate
‘parabolic stability equations’ (see Sect. 2.92, p. 117), and by Berlin et al. (1994)
whose numerical simulation covered a greater number of flow-development stages
than that of Joslin et al. The paper by Berlin et al. (1994) contains the first outline of
Berlin’s extensive numerical study of development of oblique waves in a boundary-
layer flow, while the final results of this study were summarized in Berlin’s doctoral
thesis (1998) and in the paper by Berlin et al. (1999). The experimental part of
the work, which was also included in the latter paper, was based on results from
the doctoral dissertation of Wiegel (1996). One more recent doctoral dissertation
devoted to experimental study of oblique transitions in plane Poiseuille and Bla-
sius boundary-layer flows was presented by Elofsson (1998b); his results relating
to boundary-layer instability are given also in Elofsson (1998a) and Elofsson and
Alfredsson (2000). Then Schmid and Henningson (2001) presented results of some-
what different temporally-developing numerical simulations of the plane-Poiseuille
and boundary-layer oblique transitions; these results will be considered a little later.

Numerical simulations of the ‘oblique-transition regime’ (or the ‘oblique-
transition scenario’ as this regime is often called) may be realized by solving the
N-S equations for the disturbance velocity in a given laminar flow under the con-
dition that at some x = x0 > 0 there is a ‘disturbance generator’ which generates a
pair of symmetric oblique waves propagating streamwise. This means that here the
oblique waves are included in the ‘inflow boundary condition’stating that the ‘inflow
velocity’ at x = x0 is represented by the Blasius velocity profile plus velocity profiles
of two symmetric oblique waves. In the case of spatial simulation the frequency ω,
spanwise wavenumbers ± k2, amplitude A and phase φ of oblique waves are real
constants which may be chosen arbitrarily. If the plane-parallel model of a bound-
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ary layer is used, then the streamwise wavenumber k = k1 may be determined as
the complex eigenvalue, having the smallest imaginary part, of the corresponding
Orr-Sommerfeld Eq. (2.41) with given values of ω and k2, and c =ω/k1. In the more
general case where a locally-plane-parallel approximation is used, k1 is a slowly-
changing complex function of x which is given by the eigenvalue, with the smallest
imaginary part, of the local Orr–Sommerfeld Eq. (2.41) (corresponding to the Blasius
velocity profile U(z) = U(z, x) at the streamwise coordinate x). In temporal simula-
tions the wavenumbers k1 and k2, amplitude A and phase φ are real and may take
arbitrary values; while the frequency ω is the complex eigenvalue of the correspond-
ing O-S equation, with given values of k1 and k2, that has the greatest imaginary
part. In experimental studies of oblique transition the ‘disturbance generator’ must
be realized, of course, as some device exciting the oblique waves with prescribed
values of ω, A and k2. In the boundary-layer experiments by Wiegel (1996); Elof-
sson (1998a, b) and Elofsson and Alfredsson (2000) this device was similar to the
‘wave generator’ proposed by Gaponenko and Kachanov (1994) and then applied by
Bake et al. (1996, 2000), while in the channel-flow experiments of Elofsson and Al-
fredsson (1995, 1998) (see also Elofsson (1998b)) the oblique waves were produced
by a pair of ‘oblique ribbons’ vibrating with the frequency ω and amplitude A and
placed at equal and opposite angles to the mean-flow direction. This latter method
of oblique wave generation was also used by Elofsson and Lundbladh (1994) who,
simultaneously with their experiments, carried out a numerical simulation of this
transition where as ‘disturbance generator’ a pair of vibrating oblique ribbons was
simulated.

The early temporally-developing direct numerical simulations of the disturbance
development in a plane-channel flow disturbed by a pair of small (but not infinites-
imal) symmetric oblique waves performed by Schmid and Henningson (1992a, b)
showed that strong nonlinear interaction between two waves arises almost at once,
and produces a rapid growth of the disturbance energy and the appearance of a num-
ber of new disturbance structures, essentially accelerating transition to turbulence.
Subsequent more complete spatial numerical simulations by Berlin et al. (1994,
1999) (see also Henningson et al. (1995)), and temporal numerical simulations by
Schmid and Henningson (2001), of the analogous development of a Blasius boundary
layer disturbed by a pair of oblique waves, revealed many important features of the
process, and substantiate Schmid and Henningson’s idea of the possible importance
of the oblique-wave mechanism in laminar-turbulent transition.

In papers by Berlin et al. it was again shown that a strong nonlinear interaction
of a pair of symmetric oblique waves develops much more rapidly than in the case
of a single 2D Tollmien–Schlichting wave initiating the nonlinear N- and K-routes
to transition. This circumstance can be explained by the fact that both the N- and
K-routes begin with the exponential growth of an unstable T-S wave according to
linear stability theory, and only when the amplitude of this T-S wave becomes large
enough does the nonlinear resonant-triad interaction begin to play an essential part.
However, the linear-theory prediction of the growth rate of a wave corresponding
to eigenfunctions of the Orr–Sommerfeld equation is very small in comparison, not
only with the growth of wave disturbances produced by their nonlinear interactions
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Fig. 5.30 The dependence on t of the growth curves G(t) = E(t)/E(0) for the energy E of plane-
wave disturbances with k1 = 1 (all physical quantities are non-dimensionalized by scales H1 =
H/2 and U0 = U(H/2)) in a plane Poiseuille flow between walls at z = 0 and z = H. The curves
labelled ‘Unstable’ and “Stable” correspond to the ‘optimal’ 2D wave having the greatest transient
growth in linearly-unstable Poiseuille flow with Re =U0H1/v = 8,000 and linearly-stable flow with
Re = 5,000, respectively, while the ‘Modal’ curve shows the growth of the unstable solution of the
Orr–Sommerfeld eigenvalue problem with k1 = 1 and Re = 8,000. (After Reddy and Henningson
1993)

but even with the non-modal transient disturbance growth due to non-normality of the
linearized Navier-Stokes equations (see in this respect Chap. 3, where the meaning of
‘non-normality’was explained, and also the expressive Fig. 5.30 taken from the paper
by Reddy and Henningson (1993)). Recall that in order to eliminate the stage of very
slow growth of disturbances following linear-theory laws, Klebanoff et al. (1962)
and many of their followers artificially excited three-dimensional disturbances in
the vicinity of a spanwise vibrating ribbon. This was necessary since otherwise the
test section of a low-turbulence wind tunnel would usually be too short for the most
interesting stages of flow development to be reached.

Berlin et al. (1994) carried out a spatial numerical simulation of a Blasius
boundary-layer flow with a pair of oblique waves in it, and used the simulation
results to study the appearance and subsequent growth of a number of new wave
structures produced by nonlinear interactions between the primary oblique waves.
The inflow conditions specified at x = x0 corresponded to a Blasius boundary layer
with Re* =U0δ*/v = 400 (where U0 is the free-stream velocity and δ∗ is the dis-
placement thickness at the inflow; recall that at such a low Re* unstable T-S waves
do not exist in a boundary-layer flow) plus a pair of oblique waves with frequency
ω0 = 0.08 (this and all other quantitative characteristics of this simulation discussed
below are non-dimensionalized by the scales U0 and δ*), spanwise wavenumber
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a

b

Fig. 5.31 The dependence of the energies E of a number of (n, m)-Fourier components (i.e. waves
with frequencies and spanwise wavenumbers (nω0, mk2,0)) on x in a Blasius boundary layer with a
pair of oblique waves with frequencies and spanwise wavenumbers (ω0, ±k2,0). a Dependence of E
on (x −x0)/δ∗ in the case when the initial energy of the (1, 1)-mode is equal to 1 (after Berlin et al.
1994). (b) Dependence of E (measured in some conventional units) on x (in mm). The position
x = x0 of the ‘wave generator’ is here close to 186 mm. (After Berlin et al. 1999)

k2,0 = 0.192 (the value of k1 was then determined from the O-S eigenvalue problem)
and amplitude A = 0.01. A more extensive and careful numerical simulation of the
same type (where five different models of inflowing oblique waves were considered)
was carried out by Berlin et al. (1999). Here somewhat different values of Re*, ω0,
k2,0 and A, and of the range of x-values studied, were chosen to achieve a satisfactory
match with the conditions of Wiegel’s experiments. In Fig. 5.31a, b results from the
two papers by Berlin et al. are presented, showing the dependence on (x −x0)/δ*
(in Fig. 5.31a) or on x in mm (in Fig. 5.31b) of the energies E of a number of
(n, m)-Fourier components with frequencies and spanwise wavenumbers (ω, k2) =
(nω0, mk2,0). (The numbers n and m may be always assumed to be nonnegative since
the symmetry of the (ω, k2) and (ω, −k2) modes means that modes with negative
values of k2 need not be considered explicitly). In Fig. 5.31a the energies are divided
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by the inflow energy of the primary (1, 1) mode, and hence here E(0) = 1 for the (1,
1) mode and is zero for all other modes; in Fig. 5.31b energies E are measured in
some conventional dimensional units, and the coordinate x0 of the ‘wave generator’
was here close to 186 mm.

It is easy to see that the quantitative results of the 1994 and 1999 simulations
do not coincide; the differences are apparently due to the use of different numerical
methods, models of inflowing waves, and outflow conditions (Fig. 5.31a clearly
corresponds to conditions annihilating waves at the outflow end of the computational
domain). Qualitatively however, the two collections of results are sufficiently close
to each other. Both simulations show that the energy of the primary oblique waves
does not change much with the streamwise coordinate x (in Fig. 5.31a it grows
slightly at first and then remains almost constant, while in Fig. 5.31b it begins to
decrease slowly immediately after the peak at the wave-generation point, but in both
cases the energy changes for this mode are small in comparison with those for the
other modes). Figure 5.31a shows the generation of a rather energetic (0, 0) mode
describing the distortion of the mean velocity profile by nonlinear waves, but this
effect does not appear in Fig. 5.31b. However, according to both figures the most
important feature of the oblique-wave interaction is the rapid growth of the (0, 2)
mode, greatly exceeding the growth of all other modes and quickly making this mode
the most important disturbance structure. The (0, 2) mode does not oscillate and has
half the spanwise wavelength of the primary oblique waves oscillating with frequency
ω0. Thorough analysis of the results of the numerical simulations by Berlin et al.
(1999) and the flow visualizations performed by Wiegel (1996); Elofsson (1998a, b)
and Elofsson and Alfredsson (2000) showed that in the case of oblique transition
the (0, 2) mode represents a periodic array of pairs of counter-rotating streamwise
vortices with spanwise wavelength half that of the primary oblique waves.

Recall now that, according to results presented in Chap. 3,9 arrays of streamwise
vortices are just the structures which are subjected to the greatest transient growth
produced by the so-called lift-up effect studied, in particular, by Landahl (1975, 1980,
1990) and discussed in Sects. 3.22, 3.32 and 3.33. Therefore, after the generation
of the (0, 2) mode by the direct nonlinear interaction between primary modes (1, 1)
and (1, −1) its subsequent growth is due to two different factors: the quadratically-
nonlinear interactions among existing oblique waves and the linear lift-up effect.
The combined action of two growth mechanisms explains naturally the excess of
the growth rate of the (0, 2) mode over those of the (2, 0) and (2. 2) modes, which
are also produced by direct nonlinear interactions of primary waves. As indicated by
Landahl, the lift-up effect leads to the transformation of the streamwise vortices into
a spanwise-periodic collection of horizontal streaks of fluid with alternating low and
high streamwise velocity. Such streaky structures are in fact clearly seen in flow-

9 Note that the results of Butler and Farrell (1992) presented in Chap. 3 were obtained for a simplified,
strictly plane-parallel model of the Blasius boundary layer. The optimally-growing disturbance
structures for the more accurate model of a streamwise-thickening boundary layer were studied by
Andersson et al. (1999) and Luchini (2000) but will not be considered here.
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visualization photos of boundary-layer flows by Wiegel, Elofsson and Elofsson and
Alfredsson, and on contour plots of disturbance velocity and vorticity determined
from the data given either by appropriate numerical simulations or by detailed hot-
wire-anemometer measurements (see, e.g., Berlin et al. (1994, 1999); Berlin (1998);
Elofsson (1998a, b) and Elofsson and Alfredsson (2000)).

In a range of x-values where distinct horizontal streaks are seen, the streak ampli-
tudeAs at a fixed value of x depends on the amplitude A of the primary oblique waves
and, for not-too-large values of A, it is proportional to A2 as it must be in the case
of streak generation by quadratic interaction of two oblique waves. With increasing
x, the amplitude As grows approximately linearly at first and then saturates but, if
the primary forcing amplitude A is too low, then after the initial growth As begins
to decrease and the streaks gradually disappear (these facts were first discovered by
Joslin et al. (1993) and then confirmed in other papers mentioned above). Accord-
ing to results of both the numerical simulations and the experiments, if A is not too
low then streaks of saturated large amplitude As become unstable with respect to
high-frequency oscillations, and this instability leads at first to oscillations of streaks
and then to their breakdown and transformation into collections of irregular small-
scale vortices forming the turbulent flow regime. Such a scenario of transition to
turbulence was studied for both plane-channel and boundary-layer flows, in partic-
ular, by Henningson et al. (1995); Schmid et al. (1996); Alfredsson and Matsubara
(1996); Reddy et al. (1998); Berlin et al. (1999); Brandt et al. (2000), and Elofsson
and Alfredsson (2000); see also Schmid and Henningson’s book (2001). Most of
these studies were based on the analysis of numerical-simulation data (which Brandt
et al. supplemented by some stability-theory computations), but Alfredsson and Mat-
subara, and also Elofsson and Alfredsson, made direct experimental studies of the
streak-breakdown process in flat-plate boundary layers. However, in this chapter the
transition to turbulence is not discussed; therefore here only a few remarks about this
transition scenario will be given.

Let us begin with a short consideration of the results of numerical simulations
of oblique transition in a boundary-layer flow, carried out by Henningson, Schmid
and their coworkers and described in the papers by Henningson et al. (1995) and
Schmid et al. (1996), and in the book by Schmid and Henningson (2001). (These pa-
pers and the book contain also results of similar simulation of the oblique transition
in a plane Poiseuille flow which will be briefly discussed in the next chapter). As
was indicated earlier in this Section, Schmid and Henningson performed temporal,
not spatial, numerical simulations which differed in some respects from the earlier
spatial simulations by Berlin et al. (1994, 1999). In their temporal simulations the
authors used the same model of a strictly plane-parallel Blasius boundary layer, with
thickness δ(t) growing with time, that was used by Spalart and Yang (1987) and was
briefly described in footnote 4. As to the above-mentioned difference from the ap-
proach by Berlin et al., it is connected with the inclusion of weak random background
disturbances (supplementing a pair of oblique waves of much greater amplitude) in
the numerical model of disturbed boundary-layer flow used by Schmid and Hen-
ningson. To model an oblique boundary-layer transition these authors disturbed the
Blasius boundary layer, not only by a pair of primary symmetric oblique waves of
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Fig. 5.32 Computed
energy-growth curves for a
number of (n, m)-waves with
streamwise and spanwise
wavenumbers (nk1,0, mk2,0) in
a boundary layer disturbed by
‘primary oblique waves’ with
wavenumbers (k1,0, ± k2,0)
and ‘weak noise’ consisting
of supplementary
small-amplitude (n, m)-waves
with n = 0, 1, 2, and m = 0, 1,
2. (After Schmid and
Henningson 2001)

finite amplitude with wave vectors (k1, ± k2), but also by random ‘noise waves’ of
much smaller amplitudes having the following ‘neighboring multiple wave vectors’;
(0,0) (random ‘mean-velocity correction’), (k1, 0), (2k1, 0), (0, ± k2), (2k1, ± k2),
(0, ± 2k2), (k1, ± 2k2), and (2k1, ± 2k2). Hence, contrary to the previous numerical
models where all ‘higher modes’ were produced entirely by nonlinear interactions of
the two primary oblique waves among themselves and with their higher harmonics,
here weak random higher modes were assumed to exist right from the start, and could
grow by extracting energy from the much more energetic primary waves. In Fig. 5.32
an example, computed by Schmid and Henningson, of dependencies on the time t
of the energies E of the primary mode (1, 1) and of three selected ‘higher modes’
is shown. (Here t and E are measured in some conventional units, and the numbers
in parentheses indicate the ratios (K1/k1, K2/k2) of the streamwise and spanwise
wavenumbers of the mode to those of primary waves). The modes represented in
Fig. 5.32 are not the same as in Figs. 5.31a, b (where moreover spatial, and not
temporal, wave amplification was simulated), but nevertheless the qualitative results
of the initial part of Fig. 5.32 (say, until t ≈ 500) are reminiscent of those given in
Figs. 5.31a, b. However, at larger values of t the horizontal-streak array (generated
by streamwise vortices which are also (0, 2)-mode structures) becomes unstable
with respect to local high-frequency fluctuations, begins to oscillate in disorderly
fashion, and then breaks down. As a result, the flow becomes turbulent, containing
a large collection of various finite-amplitude structures. (This process is partially
reflected in the right-hand part of Fig. 5.32; cf. also Waleffe (1995) and Hamilton
et al. (1995) where the streak breakdown and the following stages of disturbance
development were also considered; it was shown that, at Re > Rcr, streak breakdown
leads to regeneration of roll structures and may be a part of a self-sustaining process
forming a steady near-wall turbulent regime). The numerical results presented in
Figs. 5.31a, b and 5.32 may be supplemented by figures in Elofsson and Alfredsson
(2000) showing the dependence on x of the amplitudes of various (n, m) modes in
Blasius boundary-layer flow; however we will not discuss the latter results here.
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Note that the N- and K-regimes of disturbance development in a boundary layer
both begin with the growth of a primary linearly-unstable two-dimensional Tollmien-
Schlichting wave. Then this wave stimulates the appearance in the flow of some
three-dimensional T-S waves (different in the two regimes) forming, together with the
primary wave, an unstable wave system (this instability is clearly the secondary one).
Thus, both regimes may be interpreted as initial stages of the TS-wave-secondary-
instability transition scenario; as explained earlier, whether the N-regime or the K-
regime will be realized depends only on the primary-wave amplitude. Quite another
route to boundary-layer transition is represented by the oblique-transition scenario
(or ‘O-regime’) considered above, where the first stage consists of the development
in the flow of a pair of symmetric oblique T-S waves. In parallel with these two
scenarios Schmid et al. (1996); Reddy et al. (1998) and Schmid and Henningson
(2001) considered also a third streak-breakdown transition scenario which does not
include the stage of growing T-S waves (i.e., represents some particular type of
the by-pass transitions considered by Morkovin (1969); cf. Chap. 2). This third
scenario has many features in common with the oblique-transition scenario but it
completely disregards the first stage of the latter regime, connected with TS-wave
development, and begins with a collection of streamwise vortices which is a (0, 2)-
mode structure, while in the oblique transitions (0, 2)-structures are produced by
nonlinear development of a pair of symmetric oblique waves.

At the very beginning of this subsection it was noted that if one assumes that any
T-S wave may penetrate the boundary-layer from the disturbed free-stream flow, then
it seems natural to suppose that the most unstable of such waves must dominate the
initial stage of the development of flow instability. However, if the free-stream flow is
so disturbed that all possible T-S waves are present there and can penetrate the near-
wall flow region, then similar penetration must also be possible for many non-modal
disturbances (i.e. those differing from T-S waves) existing in the boundary-layer
environment. It seems equally natural to assume that the initial stage of boundary-
layer instability development will be dominated, not by the most-unstable T-S wave
but by the optimally-growing disturbance of non-modal type which, during the initial
stage of disturbance development, grows much faster than any T-S wave (again see
Fig. 5.30). As explained in Chap. 3, if the transient, rather than the asymptotic
disturbance growth (as t → ∞), is considered and the disturbances are assumed
to be so small that their development may be described by linear instability theory,
then the optimally-growing disturbance will be non-modal, and in the case of a
boundary-layer flow will have the form of a spanwise-periodic array of streamwise
vortices. Therefore, it seems reasonable to suppose that a disturbance development
starting with the appearance in the boundary layer of streamwise vortices of small
amplitude may also be a quite important mechanism of real boundary-layer transition
to turbulence. Exactly this mechanism was called the ‘streak-breakdown transition
scenario’ in the papers mentioned in the previous paragraph.

Is it possible to estimate quantitatively, if only roughly, the relative likelihood of
various transition regimes for different flows met in practice? It is clear that for this
it is necessary, first of all, to estimate somehow the probabilities of the appearance
of disturbances of various types, with various amplitudes, frequencies and wave
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vectors. However, such an estimate is impossible without detailed knowledge of
the qualitative and quantitative characteristics of free-stream turbulence and other
environmental ‘noise’ while in practice these characteristics can seldom be deter-
mined with satisfactory accuracy. Thus, the problem of likelihood estimation cannot
have a general solution and may be solved, even partially, only in some exceptional
cases. Hence it is only natural that Schmid et al. (1996); Reddy et al. (1998), and
Schmid and Henningson (2001) did not try to study the problem in its general form
but considered only two special subproblems, having definite relevance to a rough
assessment of the likelihoods of different routes to transition.

It has already been indicated earlier in this section that a pair of symmetric oblique
waves may lead to ‘oblique transition’ of the boundary-layer flow only if the initial
amplitude A of these waves is not too small. Otherwise the waves will at best only
begin to grow and later they (and also the streamwise vortices, if they were generated
by primary waves) will begin to decay and finally disappear. This means that there
exists some threshold amplitude Atr of the oblique waves, oblique transition being
possible only if A >Atr . (Of course, the threshold amplitude may take different values
for oblique waves with different values of (k1, k2) or (ω, k2); below, the symbol Atr

will always be applied to ‘optimal waves’ corresponding to the greatest threshold
amplitude). Recall now that in Sect. 5.2 it was indicated that a threshold amplitude
exists also in the case of resonant-triad interactions: at too small an amplitude of the
primary plane T-S wave, resonant growth of the oblique wave becomes impossible. In
Sect. 5.2 only the stage of resonant growth of oblique waves was considered; it is clear,
however, that for the full realization of the TS-wave-secondary-instability transition
scenario the initial amplitude A of the linearly unstable plane T-S wave must exceed
a definite threshold value Atr , which is apparently greater than the threshold value
determining the possibility of a transient growth of oblique-wave amplitude. Finally,
a definite threshold valueAtr of the initial amplitude of the streamwise vortices must
also exist, and determine whether or not an array of such vortices can be transformed
into a periodic array of streamwise streaks and then disintegrate into a collection
of disordered (‘turbulent’) vortical structures. Hence, for all transition scenarios
considered above, there exists an initial threshold amplitudeAtr determining whether
the corresponding initial (oblique) disturbances may or may not lead to transition.
The value of Atr does not determine the likelihood of this transition scenario but it
is clear that a decrease in this value increases the chances that the scenario will be
realized in practice. Therefore the evaluations of amplitudes Atr may be quite useful
for the assessment of the likelihood of various transition regimes.

Another problem, also having relation to attempts to determine which of the
scenarios is the most likely, is the problem of estimation of the ‘transition time’T0 (or
streamwise distance) which is necessary for completion of the transition to turbulence
(if it may be achieved) by the route considered. The point is that if the time T0 is large,
then there is a real chance that during this time some extraneous disturbances will
begin to interfere with the normal flow development and will disrupt the transition
process. Hence, an increase in T0 diminishes the likelihood of the scenario.

For the case of a Blasius boundary-layer flow, an approximate estimate of the
values of Atr and T0 corresponding to the three transition scenarios listed above was
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made by Schmid et al. (1996) (see also Schmid and Henningson’s book (2001)).
This estimate was based on the results of the temporal numerical simulations of
the three transition scenarios described above, performed by the same authors. All
the simulations were of the same type as the simulation of the oblique transition
which was briefly described above, and led to the results shown in Fig. 5.32 (here
too the boundary layer was assumed to be plane parallel with thickness δ(t) growing
with time, and the initial disturbances included ‘random noise’ whose energy was
about 1 % of the energy of the primary disturbance). The primary disturbances—
a plane T-S wave, or a pair of symmetric oblique waves, or a spanwise-periodic
array of streamwise vortices—were always chosen to be close to the optimal ones
(those which grow most rapidly with time), but the initial amplitudes A of these
disturbances were varied, and, in all cases in which transition to turbulence was found
to be possible, the simulations were continued up to transition. These computations
yielded, for the three scenarios, the dependence of T0 on the value of the initial
amplitude A, and thence the value of Atr, being the greatest value of A at which the
transition could not be reached (corresponding to T0 = ∞). Figure 5.33 shows results
obtained by Schmid et al. for the Blasius boundary layer with the initial Reynolds
number Re* = 500. Here the initial amplitude A is replaced by the initial energy
of the primary disturbance E = 1

2V

∫

W

(u2 + v2 + w2)dx, where W is the periodic

box domain of the computations, V is its volume, and E and the other dimensional
quantities are non-dimensionalized using δ* and U0 as length and velocity scales. It
is seen that the threshold energy Etr takes its lowest value for the oblique transition,
and the highest for the streak-breakdown regime which begins with the appearance of
an array of streamwise vortices. The TS-wave-secondary-instability regime (which
may be either of N- or of K-type) takes an intermediate place, but at high values of
the initial energy E it develops more slowly (leading to a greater value of T0) than
the streak-breakdown regime, and this increases the competitiveness of the latter
regime.

5.6.2 Linear and Nonlinear Development of Localized
Disturbances

The three transition scenarios considered above all begin with the appearance of some
spatially-unbounded disturbance in a laminar Blasius boundary layer. However, it
was noted in Chap. 3, that real disturbances appearing in various natural, engineering
and laboratory flows are as a rule initially localized in some finite fluid volume. In
this respect several papers which were cited in Chap. 3 were devoted to studies of
the temporal evolution of localized disturbances in wall-bounded shear flows. Most
of these papers dealt with inviscid flows, which are not considered in this chapter
(an important exception is the paper by Henningson et al. (1993), some results
of which will be discussed below). Moreover, in Chap. 3 only results relating to
initial disturbances of very small amplitudes, whose evolution may be described by
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Fig. 5.33 Dependence of the transition time T0 on the disturbance initial energy E0 (which is
proportional toA0

2) for three transition scenarios: (i) ‘oblique transition’(labelled ‘oblique waves’),
(ii) T-S-wave-secondary-instability scenario’ (K-regime, labelled ‘T-S waves’) and (iii) ‘streak-
breakdown scenario’ (labelled ‘vortices’ since streaks are produced by streamwise vortices which
are (0, 2)-structures). The results are for a temporally-growing Blasius boundary layer with initial
Re∗ = 500. (After Schmid et al. 1996)

linearized Navier-Stokes equations, were studied. On the other hand, Gaster and
Grant (1975) and Breuer and Haritonidis (1990) (these papers were considered in
Chap. 3), who tried to describe the results of their wind-tunnel observations of the
evolution of localized disturbances in a boundary-layer flow in the framework of
linear stability theory, both found that the deductions from this theory agree with
observations only during some initial time interval and become invalid at later times.
Hence it is clear that the linear theory is insufficient for a satisfactory description of
the development of localized disturbances.

As well as the above-mentioned work by Gaster and Grant, and by Breuer and
Haritonidis, other attempts to study evolution of artificially produced localized dis-
turbances in laboratory flat-plate boundary layers have been made; the papers by
Gaster (1984, 1990); Tso et al. (1990); Cohen et al. (1991) and Breuer et al. (1997)
are just typical examples of such work. Gaster, and Tso et al. paid their main atten-
tion to a late stage of the disturbance evolution directly connected with formation
of turbulent spots and transition to turbulence; since this chapter is devoted mainly
to the weakly-nonlinear effects mentioned above, their papers will be mentioned
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only occasionally below. The results of Cohen et al. and Breuer et al. will be de-
scribed below at greater length; first, however, data of quite a different origin will be
considered.

The purely theoretical results available at present cannot satisfactorily describe
the weakly-nonlinear stage of localized-disturbance development, but results of nu-
merical simulations are more informative. Apparently one of the first attempts to
apply nonlinear numerical simulation (i.e., the numerical solution of the appropriate
initial-value problem for the nonlinear Navier-Stokes equations) to the study of the
evolution of a localized disturbance in a boundary-layer flow was made by Breuer
(1988). His numerical-simulation results were then carefully analyzed by Breuer
and Landahl (1990). The numerical solution of the nonlinear initial-value problem
considered in Breuer’s dissertation (1988), and his paper with Landahl, related to
the evolution in the Blasius flow (assumed to be plane-parallel but with thickness
δ(t) growing with time) of a localized disturbance initially having the form shown
schematically in Chap. 3, Fig. 3.2; see also Eqs. (5.19), (5.22) and Fig. 5.38a. (As
noted in Chap. 3, the same model of the initial disturbance was used in stability
computations by Russell and Landahl (1984); Henningson (1988); Breuer and Hari-
tonidis (1990) and Henningson et al. (1993); later it was also accepted as one of the
three initial conditions considered by Bech et al. (1998)). Breuer and Landahl’s pa-
per represented a continuation of the work of Breuer and Haritonidis (1990), where
the same initial-value problem was solved for the inviscid linearized N-S equations;
some of the results obtained there were shown in Fig. 3.3. These results agreed
satisfactorily with Breuer and Haritonidis’ wind-tunnel data (relating to a flat-plate
boundary layer where localized disturbances of a shape close to that shown in Fig. 3.2
were artificially produced) but only for small and moderate values of dimensionless
time τ = tU0/δ*. However, for larger values of τ the numerical results of Breuer and
Landahl agreed better with the available experimental data than those of Breuer and
Haritonidis.

Breuer and Landahl (1990) (and also Landahl et al. 1987) stressed that both
Breuer’s computational results and the experimental data of Breuer and Haritonidis
showed that the disturbance evolving from a strongly-localized initial disturbance
in a boundary layer consists of two very different parts. Recall that in Chap. 3, it
was pointed out that in the case of small disturbances in a plane-parallel steady in-
viscid flow, the general solution of the corresponding linear initial value problem
includes terms of two different types. (In Chap. 3 this result was attributed to Gus-
tavsson (1978), but in fact it was already mentioned by Case (1960) for the case of
two-dimensional disturbances). The first type is formed by the so-called ‘convective
components’ (the adjective ‘convective’ is sometimes replaced here by ‘transient’);
these components are convected streamwise with the local flow velocity U(z) and
they often undergo considerable transient growth followed by a rapid decline. (In
connection with the phenomenon of ‘transient growth’, much attention was paid in
Chap. 3 to these components). The disturbance components of the second type are
‘dispersive waves’, i.e., waves with phase velocities depending on their frequencies
and wave numbers. In Chap. 3 it was stressed that in the case of an ‘ideal’ (inviscid)
fluid the phase velocities c of the wave component do not coincide with the discrete
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eigenvalues of Rayleigh’s eigenvalue problem. However, in the case of fluids with
non-zero viscosity the phase velocities of the ‘dispersive waves’ are just the eigen-
values of the Orr-Sommerfeld eigenvalue problem and the ‘dispersive component’
of any evolving disturbance is represented by some collection of T-S waves.

The discussion of the ‘convective’ (i.e. ‘transient’) and ‘dispersive’ flow distur-
bances in Chap. 3 related only to inviscid fluids and to very small (regarded as
‘infinitesimal’) disturbances. However, the closing sentence of the last paragraph
implies that the same notions may also be applied to disturbances in viscous flows.
(Recall that small transiently-growing disturbances in viscous fluid flows were in
fact considered at length in Sect. 3.3). Also, the results of the above-mentioned pa-
pers by Breuer, Landahl, and Haritonidis (and the experimental results of Tso et al.)
confirmed that the division of the set of all disturbances in steady plane-parallel (or
nearly plane-parallel) flows into ‘convective’ and ‘dispersive’ parts is fully appro-
priate in the case of finite-amplitude disturbances in viscous flows, where the two
types can often be easily distinguished. These results also showed that convective
disturbances are really transient ones—they grow considerably during a short initial
time (or streamwise) intervals but then begin to decay rapidly and as a rule entirely
disappear shortly afterwards. Therefore, in studying the long-time evolution of local-
ized disturbances leading to transition to turbulence, it is reasonable to pay attention
mainly to dispersive wave disturbances.

One of the results found by Breuer and Landahl is shown in Fig. 5.34; it is
similar in many respects (although not identical) to that presented in Fig. 3.3b. Note,
in particular, that both figures show the appearance of a strong tilted shear layer
between low-speed and high-speed regions produced by the lift-up effect; this result
was confirmed later by numerical simulations, both linear and nonlinear, of the
development of a localized disturbance in plane Poiseuille and boundary-layer flows
by Henningson et al. (1993) (one of the linear results of these authors was shown in
Fig. 3.17). However, the linear and nonlinear instability of the boundary layer to two-
dimensional waves (k2 = 0) with high values of k1, found by Breuer and Landahl,
strongly contradicted the results of Henningson et al. but, as the latter authors showed,
this was due to the insufficient resolution of Breuer and Landahl’s computations
in the wall-normal direction. However, many other results of these two groups of
authors agree quite well with each other (and were confirmed also by the results of
careful experiments by Cohen et al. (1991) and Breuer et al. (1997) which will be
discussed later). Breuer and Landahl found that nonlinear effects strongly influence
the temporal evolution of disturbance structures and the behavior of disturbances
at large values of dimensionless time τ . Two-dimensional spatial spectra of the
normal-to-wall disturbance velocity w(x, y, z, t) at z/δ* = 1.05, computed by them
for a number of values of τ ; show that at τ = 43 the spectrum contours have smooth
oval shapes and there is a unique spectral peak at the common center of these ovals.
This simple spectral shape is close to that corresponding to the initial conditions in
Fig. 3.2. However at larger values of τ the shape becomes much more complicated,
and a number of new spectral peaks emerge at points (k1δ

∗, k2δ
∗) corresponding to
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Fig. 5.34 Computed contours in the (x, z)-plane of the streamwise disturbance velocity u(x, y, z, t)
at y = 0 and several values of t, for a localized disturbance of finite amplitude with given value at
t = 0. Solid and dotted lines represent positive and negative velocity values; contour spacing is 2 %
of U0. (After Breuer and Landahl 1990)

larger values of spanwise wavenumber k2. In particular, at τ = 136 peaks were found
at (k1δ

∗, k2δ
∗) ≈ (0, 0.7), (0.1, 1.3), (0.2, 2.0), and this recalls the series of har-

monics of increasing order produced by nonlinear interactions. Henningson et al.
showed analytically that, after the appearance of the peaks of the energy distribution
at wave vectors (± k1, ± k2), the nonlinear interactions give rise to new peaks at
(± 2k1, 0) and (0, ± 2k2) (the latter will be the most rapidly growing), and also at
( ± k1, ± 3k2), (0, ± 4k2), etc., corresponding to propagation of energy to higher
spanwise wavenumbers. Moreover, both groups of investigators found that solutions
of the nonlinear initial-value problem imply the generation, at later stages of the
instability-development process, of a system of long spanwise-alternating streaks
of high- and low-speed fluid (see for example Fig. 5.35 by Hennington et al.; sim-
ilar figures were also presented by Breuer and Landahl, and Bech et al.). These
streaks then form streamwise-elongated vortical structures, recalling the streamwise
�-vortices observed in other regimes of boundary-layer transition, and still later pro-
duce turbulent spots which are the precursors of full transition to turbulence (these
stages of instability development were more explicitly described by Cohen et al. and
Breuer et al.). Therefore, the results support Morkovin’s idea of the ordinariness of
so-called ‘by-pass boundary-layer transitions’ whose late stages do not differ much
from those for transitions initiated by primary T-S waves. Moreover, they allow the
localized-disturbance scenario of boundary-layer transition to be added to the other
three transition scenarios considered above.
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Fig. 5.35 Contours in the horizontal (x, y)-plane of the vertical velocity w(x, y, z, t) at z = 0.99,
t = 117 (all quantities are non-dimensionalized by scales δ∗ andU0). Solid and dotted lines represent
positive and negative velocity values; controur spacing is 0.001. (After Henningson et al. 1993)

The nonlinear interactions play an important part in the temporal evolution of high-
and moderate-amplitude wave packets consisting of a collection of two- and three-
dimensional T-S waves. Let us recall that in Sect. 3.31 it was mentioned that such
wave packets were used by a number of researchers as natural models of localized
disturbances in a boundary layer. In particular, Gaster (1975) used a wave-packet
model to describe quantitatively the results of Gaster and Grant’s (1975) experiments
on the development of a localized disturbance, produced by a short acoustic pulse,
in the boundary layer on a flat plate. The streamwise evolution of such disturbances
was investigated by hot-wire measurements of the streamwise disturbance velocity
u at z = 3.2δ* (i.e., slightly above the boundary layer) with various values of x and y.
As stated in Sect. 3.31, Gaster modeled this evolution by representing the values of
the streamwise-velocity disturbances u(x, y, z, t) at positive values of x in the form:

u(x, y, z, t) =
∞∫

−∞

∞∫

−∞
u(k2,ω; z) exp [i{k1(k2,ω)x + k2y − ωt}]dk2dω (5.17)

(this equation appeared in Sect. 3.31 as Eq. (3.52)). Here u(k2, ω; z) is the Fourier
transform, with respect to y and t, of the initial value of the streamwise velocity
disturbance at x = 0 and a fixed value of z, and k1(k2, ω) is the complex eigen-
value with the smallest imaginary part appearing in the spatial 3D Orr-Sommerfeld
eigenvalue problem (2.41), (2.42) (corresponding to given values of k2 and ω).10

10 In both papers it was assumed that the boundary layer is plane-parallel but in the treatment of
data relating to a given value of x, values of δ* and Re* corresponding to this x were used. (A more
precise analysis of some data of Cohen et al., which took into account the streamwise growth of the
boundary layer, was developed by Cohen (1994).) Measurements by Cohen et al. and Breuer et al.
showed that in their studies the pressure gradient in the boundary layer was slightly negative, and
therefore the function U(z) was slightly closer to a Falkner-Skan profile for β ≈ 0.01 (see Chap. 2,
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Gaster and Grant dealt with the supercritical (Re > Recr) boundary layer to which a
small disturbance was introduced at x = 0. Hence there existed that plane wave which
grows most rapidly with x, having frequencyω =ω0 and the streamwise wavenumber
k1 = k1(0,ω) given by the O-S eigenvalue with numerically-greatest negative imagi-
nary part. Moreover, the waves with (k2, ω)-values close to (0, ω0) and k1 = k1(k2, ω)
are also spatially growing in this case, and their rate of growth is only slightly smaller
than that of the most unstable wave. There is also a larger region of the (k2, ω)-plane
which corresponds to the collection of all spatially-growing waves. Gaster described
the evolution of the localized disturbance by an approximate numerical value of the
integral in Eq. (5.17) in which only spatially-growing waves were taken into account.
Thus, the approximate solution of the initial-value problem he considered has the
form of a superposition of spatially-growing two- and three-dimensional T-S waves
each of which is the least stable of the waves with the same values of k2 and ω and,
being governed by linear stability theory, does not interact with the other waves.

In Gaster and Grant’s experiments the amplitude of a wave packet took rather
low values and they found that in this case the theoretical model (5.17) led to results
which agreed well with their observations at the majority of the measuring stations.
However, they noted that the data obtained at the largest value of x disagreed with the
predictions of Eq. (5.17). The authors explained this discrepancy by the influence
of nonlinear effects at large x. This explanation is evidently confirmed by the re-
sults presented above, relating to transition scenarios starting with the growth of T-S
waves. In fact, these results show that even when there is only one such wave whose
amplitude exceeds a relatively small threshold value, it necessarily begins to interact
at once with the background disturbances (“noise”) that always exist in practice.
Moreover, in the case of a group of growing T-S waves, their nonlinear interactions
must necessarily become apparent after quite a short period of independent devel-
opment. Therefore model (5.17) of wave-packet development can represent only an
approximation applicable to packets of small initial amplitude during some limited
initial period of time.

Cohen et al. (1991) and Breuer et al. (1997) repeated the experiments by Gaster
and Grant (1975) using a low-turbulence wind tunnel with a test section about 6 m
long. Cohen et al. made hot-wire measurements of the mean-velocity profile U(z)
(depending only on the local value of δ*) and of the three disturbance-velocity
components u, v and w at a great number of points x = (x, y, z) inside the boundary
layer, while Breuer et al. measured only the streamwise disturbance velocity u but
with a rake of hot-wire probes to make simultaneous measurements of u at eight
values of z. The long wind-tunnel test section made possible the observation of
boundary-layer development over a large range of x. Moreover, the disturbance
generator (which produced short sinusoidal air pulses of acoustic origin) allowed
the amplitude A of the initial localized disturbance to be varied easily. The Reynolds
number Re* =Uoδ*/v at the location of this generator was close to 1,000 (well above
the critical value) in these experiments.

p. 119) than to the Blasius profile corresponding to β = 0. However, the Blasius approximation was
found to be accurate enough to be usable in the analysis of the experimental data.
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Cohen et al. and, later, Breuer et al. found that at small enough values of A three
different stages of streamwise development of wave packets may be observed. The
first stage (called the linear stage by these authors) corresponded very well to Gaster
and Grant’s observations; here Gaster’s Eq. (5.17) (based on the linear stability
theory) described the disturbance evolution with high accuracy. Spectral analysis of
the velocity fluctuations showed that during this stage the disturbance included both
two- and three- dimensional T-S waves corresponding to ranges of dimensionless
frequencies ω =2 π fδ∗/U0 (where f is the dimensional frequency measured in Hz)
and spanwise wavenumbersK2 = k2δ* centered around the valuesω =ω0 andK2 = 0
corresponding to the most rapidly growing T-S wave (which is two-dimensional, i.e.
with K2 = 0, by virtue of Squire’s theorem—see Chap. 2). (Symbols ω, K2 and
K1 (= k1δ*) will now denote dimensionless frequencies and wavenumbers). One
example of the (K2, ω)-spectrum found in the linear stage of localized-disturbance
development is shown in Fig. 5.36a. In full accordance with Gaster’s model (5.17),
during the linear stage the values of K1 =K1(K2, ω) could be determined for all
waves considered by means of the O-S equation, as those corresponding to the
most-unstable wave with given values of ω and K2. It was also found that as the
wave packet moved downstream all wave components evolved according to the O-S
equations (and hence independently from each other). Therefore, in the linear stage
of disturbance development the most rapidly growing T-S wave, and a group of T-S
waves with frequency and wave number close to the most rapidly growing wave (and
hence with values ofK2 andω close toK2 = 0 andω=ω0 corresponding to the most
unstable T-S wave), gained energy most effectively. As a result, a relatively narrow
band of two- and three-dimensional T-S waves centered at the most-amplified wave
quickly began to play the dominant role in the evolution of the wave packet. In the
initial series of experiments by Cohen et al. the first (linear) stage was observed from
x = 160 cm to x = 220 cm (the disturbance generator being placed at x = x0 = 81 cm
from the plate leading edge). The amplitude A of the wave packet was close to 0.3 %
of U0 at x = 160 cm and grew to 0.46 % of U0 at x = 220 cm (i.e., during the linear
stage it continued to be quite small).

At x = 220 cm the second stage of wave-packet development began. Here, in
addition to the spectral peak at (0, ω0) two additional spectral peaks of the two-
dimensional (K2, ω)-spectrum appeared at the points (K2,1, ω1) and (−K2,1, ω1)
which corresponded to a definite pair of symmetric oblique waves (see Fig. 5.36b).
Cohen et al. discovered that the peak frequency ω1 was equal to ω0/2, i.e. half the
frequency of the most-amplified 2D wave. (This fact agrees with Gaster’s 1990 dis-
covery of spectral peaks at frequencies ω/2 and 3ω/2 (the latter was clearly due
to secondary nonlinear interactions) in the wave packet produced in the bound-
ary layer on a flat plate by a sinusoidal acoustic signal of frequency ω). Cohen
et al. also found that to the peak frequency ω1 and spanwise wavenumber K2,1 there
corresponded the T-S wave with complex streamwise wavenumber K1 =K1(K2,1,
ω1) having the real part �eK1(K2,1, ω1) close to half the real part �eK1(0, ω0)
of the complex streamwise wavenumber K1(0, ω0) of the most unstable 2D wave.
Hence the two new spectral peaks appearing in the second stage of the localized-
disturbance development together with the existing spectral peak at the point
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Fig. 5.36 Overall view of the dependence of velocity u(x, y, z, t) on y and τ = (t−T0)U0/(x−x0)
(left-hand column) and of the dependence of the corresponding wavenumber-frequency spectra on
ω and k2 (right-hand column) at z/δ∗ = 0.5 and four different values of x (data for separate x-values
are noted by marks (a), (b), (c) and (d)). Solid and dotted lines show positive and negative values,
respectively. (After Breuer et al. 1997)

(0, ω0) corresponded to a Craik’s resonant triad of T-S waves. To the spectral re-
gions surrounding two peaks at points (K2,1, ω1) and (−K2,1, ω1) there corresponded
two symmetric bands of subharmonic oblique waves with frequencies close to ω0/2,
recalling the band of subharmonic oblique waves appearing during the N-regime of
instability development initiated by the primary unstable plane T-S wave (this band
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is clearly seen in Figs. 5.5a, b). During the second stage of wave-packet development
the two bands of subharmonic oblique waves gained energy very effectively, so that
the oblique waves experienced rapid growth, exceeding considerably the growth of
waves corresponding to the primary peak centered at the point (0, ω0). Cohen et al.
suggested that this gain was due to a number of three-wave resonances. They also
found that the primary band of waves, with frequencies close to ω0 and small values
of |K2|, began to lose its energy somewhere in the initial part of the second stage
(where the growth of its waves turns into decay) and disappeared entirely in the third
stage (see Figs. 5.36c, d). and Breuer et al. (1997) called the second stage of the
wave-packet development the subharmonic stage. In the first series of experiments
considered above, published in 1991, this stage was observed between x = 220 and
x = 300 cm, and within this range the amplitude A of the wave packet increased from
0.46 % ofU0 to 5.2 % ofU0 (this growth evidently considerably exceeds that observed
in the first stage). Cohen et al. (1991) found that in this stage the weakly-nonlinear
stability theory, which disregards the higher-order terms of the amplitude-power ex-
pansions, may be applied to computation of disturbance development.(The attempt
by Zel’man and Smorodsky (1990) to describe a wave-packet evolution by a system
of amplitude equations relates to just this stage).

The third and final stage of wave-packet development is strongly nonlinear. Here a
number of new spectral peaks, representing sums and differences of spectral charac-
teristics of primary and secondary waves and due to the nonlinear interactions of the
latter, appear in the disturbance spectra. In particular, the (0, 0)-mode corresponding
to velocity-profile distortion also emerges from such interactions, and may lead to
the appearance of local profile inflections, producing quasi-inviscid flow instabilities
and high-frequency small-amplitude velocity oscillations. These oscillations have
random phases and may later contribute to the formation of turbulent spots, indi-
cating the imminence of transition to turbulence (see, however, the closing part of
Sect. 5.5 where the appearance of turbulent spots is connected with the evolution
of Klebanoff’s spikes, which have an origin other than inflection-generated oscil-
lations). In the series of experiments by Cohen et al. considered above, the third
stage was observed between x = 320 and x = 350 cm and was accompanied by rapid
growth of disturbance energy leading at x = 350 cm to a very high value of amplitude
A, close to 27 % ofU0. To study the second and third stages of the wave-packet devel-
opment, Cohen et al. performed a number of experiments with larger initial values of
A to shift these stages upstream and thus make observations easier. A more detailed
experimental study of the late stage of wave-packet development was carried out by
Breuer et al. (1997), while Cohen (1994) published some theoretical considerations
relating to the initial stage of wave-packet development, and compared his theoretical
results with the experimental data of Cohen et al. (1991).

The theoretical results of Cohen (1994) were based on an improved linear model
of the evolution of waves in a laminar boundary-layer flow. This model took into
account the nonparallelism of the flow (i.e. the weak dependence of δ* on x) by an
approximate method developed by Saric and Nayfeh (1975) and Nayfeh and Padhye
(1979). Cohen extended Gaster’s (1975) model to the case of a slightly nonparallel
boundary layer and then calculated anew the time evolution of amplitudes for a
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large number of two- and three-dimensional T-S components of the wave packet
studied by Cohen et al. (1991). Data obtained in the latter work for the evolution of
amplitudes of individual waves were then compared with the evolution predicted by
the extended linear stability theory. Cohen found that the results of the linear stability
theory relating to the most rapidly growing two-dimensional T-S wave of frequency
ω0 or to any T-S waves with values of (K2, ω) close to (0, ω0) and high rates of the
‘linear’ spatial growth, agreed very well with the experimental data within the whole
first stage of wave-packet development and a considerable part of the second stage.
However, the subharmonic oblique modes with frequencies close to ω0/2 begin to
grow much faster than predicted by linear stability theory, before the end of the
first stage of wave-packet development (this was not observed in experiments since
at corresponding values of x the subharmonic modes were still rather weak). Thus
Cohen (1994) concluded that in the case of wave propagation in a laminar boundary
layer, nonlinear effects often become significant at appreciably smaller values of x
(measured from the leading edge of the plate) than was assumed earlier, and these
effects make the linear stability theory inapplicable to subharmonic wave modes for
all but rather small values of x.

The measurements carried out by Breuer et al. (1997) were confined to the stream-
wise velocity components U(z) and u(x, y, z, t) but they were made in a very dense
grid of spatial points and times, and provided the authors with a vast amount of
numerical data. (In particular, a great number of repeated observations yielded large
ensembles of data, guaranteeing the accuracy of statistical characteristics). The re-
sults found by Breuer et al. supported, and made more precise, the conclusions
of the paper by Cohen et al. As an example of the new results, Fig. 5.36 shows the
constant-velocity contours in the (τ , y)-plane and the corresponding two-dimensional
(K2, ω)-spectra for velocities u(x,y, z,t) at z/δ* = 0.5 and for four values of x relating
to the first, second, and third (two x-values) stages of wave-packet development.11

Here τ = (t −T0)U0/(x −x0) is non-dimensionalized time, t is dimensional time of
the measurement (counted from the moment of air-pulse ejection by disturbance
generator), x is the x-coordinate of the measurements counted from the leading edge
of the plate, x0 = 81 cm is the x-coordinate of the disturbance generator, while T0 is
the delay time, proportional to (x −x0)/U0 with a proportionality coefficient chosen
to make the origin of the time τ close enough to the time when the leading edge of
the wave packet reaches the measurement coordinate x.

The two upper diagrams in Fig. 5.36, labeled as Fig. 5.36a, are for x = 170 cm,
within the first (linear) stage of disturbance development (the wave-packet amplitude
A was here close to 0.6 % of U0). At this value of x the u-velocity contours had the
form of smooth swept-back crescents, which was also the form of the wave-packet
observed by Gaster and Grant at points far from the disturbance generator (closer
to the generator, Gaster and Grant’s wave packet had an oval shape). The (K2,

11 The measurements by Breuer et al. discussed here related to waves excited by an acoustic pulse
with a different amplitude from that used in the experiments by Cohen et al. (1991). Therefore the
streamwise locations of the three stages of wave-packet development mentioned in our discussion
of the results of Cohen et al. are not the same as those in the series of experiments considered here.
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ω)-spectrum shows that, at this x, most of the wave-packet energy is concentrated
in the band of 2D modes (and ‘almost 2D’ modes with |K2| � 1), centered at the
mode with (K2,ω) = (0,0.09) which is just the most-unstable T-S wave at the Re*
corresponding to x = 170 cm. There are also two much smaller spectral peaks at
points (K2, ω) ≈ (± 0.25, 0.085), which apparently represent weak ‘oblique-wave
contributions’ to the disturbance energy at x-values corresponding to the first stage
of wave-packet development, as noted by Cohen et al. (1991).

At x = 250 cm, in the second (subharmonic) stage of disturbance development,
the nonlinear effects were much more influential and this is clearly seen in Fig. 5.36b.
In particular, two ‘side spectral peaks’appeared here, at the frequency ω1 ≈ω0/2 and
spanwise wavenumbers ±K2,1 ≈ ± 0.25. These peaks acquired their energy from
preexisting ‘background noise’ and the values of ω1 and K2,1 implies that 3D waves
corresponding to them have a phase velocity close to that of the most-unstable 2D
wave. This means that these 3D waves, together with the most-unstable 2D wave,
form a resonant triad (but not necessarily of Craik’s ‘fully-resonant’ type where
Eq. (5.7) are exactly valid). Thus the growth of subharmonic modes corresponding
to the side peaks and to spectral regions adjacent to them may be due to three-
wave resonance or to secondary instability of the primary waves to subharmonic
disturbances—cf. the discussion of the N-regime of boundary-layer development in
Sects. 5.3 and 5.4. The velocity contours at x = 250 cm show that some streamwise
elongated structures appeared, with some similarity to streamwise �-vortices. Note
also the appearance of a group of waves, apparently produced by nonlinear wave
interactions, with (K2, ω)-values belonging to the ‘low-K2, low-ω’ spectral region
near the mean-flow distortion mode with (K2, ω) = (0, 0).

The two lower pairs of diagrams in Fig. 5.36 (Figs. 5.36c and d) correspond to
streamwise coordinates x = 270 cm and x = 280 cm, in the third, strongly-nonlinear
stage of wave-packet development. The corresponding velocity contours show the
formation at x = 270 cm of a system of elongated structures including spanwise-
alternating streaks of fluid having alternately higher and lower streamwise velocity
than the mean U(z). At x = 280 cm this system is more compact and gives the im-
pression of approaching the ‘turbulent spot’ stage (other experimental results given
in the paper by Breuer et al. (1997) allowed the authors to suggest that the forma-
tion of turbulent spots actually began near x = 282.5 cm). The velocity spectrum
at x = 270 cm shows that the primary band of waves centered at the most-unstable
(0, ω0)-wave has practically disappeared here, but the subharmonic bands with fre-
quencies close to ω0/2 became considerably more pronounced. The spectral peak
at the coordinate origin, and the adjacent region of ‘low-K2, low-ω’ points corre-
sponding to mean-flow distortions and nearly-2D low-frequency waves, also grew
considerably in comparison to those at x = 250 cm. In addition two small spectral
bands appeared near the peaks at points (± 2K2,1, 0), produced by nonlinear interac-
tions of (±K2,1,ω1) and (0,ω0) = (0, 2ω1) modes. At x = 280 cm the primary spectral
band adjacent to the point (0, ω0) completely disappeared, and bands around the sub-
harmonic peaks at (±K2,1,ω1) became less energetic than at x = 270 cm, while bands
near points (0,0) and (± 2K2,1, 0) became much more pronounced and other peaks
appeared near the points (± 3K2,1, ω1). (According to Breuer et al., diagrams more
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detailed than Fig. 5.36d show additional spectral peaks at x = 280 cm, at points (0,
ω1), (0, 3ω1), and near the points (3K2,1, 2ω1) and (3K2,1, 3ω1)). These results clearly
agree with observations by Breuer and Landahl (1990) and Henningson et al. (1993)
of the ‘propagation of the disturbance energy along the K2-axis’.

Further results of Breuer et al. (1997) describe in more detail the spatial and spec-
tral structures accompanying the wave-packet development. In Fig. 5.37, contours
in the (ω, z)-plane of the frequency spectra P(ω; x) = P(ω; x, y, z) of velocity os-
cillations u(x, t) at points x = (x, y, z) are shown for y/δ* = 4.7 and four values of
x corresponding to the different development stages. These contours again illustrate
that at x = 170 cm (i.e., in the linear stage) the disturbance energy is concentrated
near the frequency ω0 = 0.09 corresponding to the most-unstable T-S wave, and that
near x = 250 cm (in the subharmonic stage) an additional band of oscillations, with
frequencies close to ω0/2 = 0.045, appears. These figures also show vertical profiles
of different spectral components, which agree well with the results of linear stability
theory at x = 170 cm, while by x = 250 cm they have become more complicated.
However the data for x = 270 and 280 cm, relating to the strongly-nonlinear third
stage, show rather energetic high-frequency components of u-fluctuations which are
absent from Fig. 5.36. The reason for this discrepancy is apparently that Fig. 5.36
shows spectra of the ensemble-averaged velocity fields, and if the high-frequency os-
cillations have random phases they will be canceled by ensemble averaging. However,
spectral contours in Fig. 5.37 were obtained from spectra computed for individual
observations by subsequent ensemble averaging. It is clear that here the contribu-
tions to various individual spectra from oscillations with the same frequency but
different phases will be added to each other in the sum of individual spectra, and will
be represented by the ensemble-averaged contributions in the averaged spectra of
Fig. 5.37. Therefore, the high-frequency velocity oscillations shown in Figs. 5.37c,
d (but absent from Figs. 5.36c, d) must be real. They may be connected, e.g., with
local velocity-profile inflections due to distortions of the local mean-velocity profiles
by strongly-amplified disturbances; such local profile inflections were also observed
by Breuer et al.

The appearance of high-frequency velocity fluctuations with random phases
clearly means that the flow has acquired disorderly features typical of turbulence.
Hence the observations summarized in Figs. 5.37a–d have a direct bearing on studies
of the onset of randomness in boundary-layer flows. Note that Breuer et al. also con-
sistently observed, during the late stages of instability development, the appearance
of ‘spike disturbances’ of the same type as found by Klebanoff et al. (1962), and
later by many others, in boundary layers excited by a vibrating ribbon. Therefore,
the experiments of Breuer et al. proved very convincingly that spikes are a rather
general phenomenon, unrelated to any special mechanism of disturbance generation.
Moreover, since the authors repeated their observations many times, collecting an
ensemble of observations under identical conditions, they were able to show that
spikes are quite repeatable—they regularly appear at practically the same points
and preserve the same main features in all repetitions. Hence the observations by
Breuer et al. confirmed the earlier statement of Borodulin and Kachanov about the
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Fig. 5.37 Contours in the
(ω, z)-plane of averaged
frequency spectra Pz(ω) of
streamwise velocity
fluctuations u(x, y, z, t) at
y/δ∗ = 4.7, for four different
values of x. Spectra Pz(ω)
were computed for a number
of independently-observed
velocity fields and then were
averaged over the ensemble
of made observations. (After
Breuer et al. 1997)

a

b

c

d



578 5 Further Weakly-Nonlinear Approaches to Laminar-Flow Stability . . .

regular, non-random nature of spikes. On the other hand, LHSI-produced small-
amplitude high-frequency oscillations have random phases and amplitudes, and thus
these disturbances may generate the early flow randomness.

The final part of the paper of Breuer et al. is devoted entirely to discussion of the
late-stage transformations of the wave-packet studied. These transformations lead at
first to the appearance of ‘turbulent spots’(as noted above, the authors found that their
formation begins near x = 282.5 cm; recall that it is connected also with the latest
stages of spike development discussed at the end of Sect. 5.5) and then to the onset of
the laminar-flow breakdown to a chaotic (‘turbulent’) state. (Quite another approach
to the study of these transformations was sketched byWaleffe (1995) in the paper cited
above; see also the recent survey by Bowles (2000)). Additional information about
the ‘breakdown-stage’ of wave-packet development is contained in Gaster’s (1990)
description of the results of his experiments; less detailed observations relating to
this stage were described by Tso et al. (1990). However, this final stage of instability
development is beyond the scope of the present chapter.

In the above discussion of the (temporal or spatial) development of localized
disturbances in a laminar boundary layer it was usually assumed that the initial
disturbance had a form close to that sketched in Fig. 3.2 of Chap. 3. This rather special
assumption was accepted here, since it was widely used in numerical simulations of
this development performed by various researchers. Therefore, even in the analysis
of experiments where the initial disturbance was produced by some ‘disturbance
generator’ and clearly did not coincide with that in Fig. 3.2, the data were often
compared with numerical results for this special initial form of disturbance.

One of the purposes of the recent numerical-simulation work by Bech et al. (1998)
was just the verification of the influence of the initial form of a localized disturbance
on its subsequent development. The authors also made an attempt to verify the ac-
curacy of the approximate method of temporal numerical simulation of disturbance
development, used in this and almost all previous simulation studies. Finally, appar-
ently the main object pursued by the authors was the determination of the influence
of non-zero pressure gradient dp/dx on the development of localized disturbances in
a laminar boundary layer.

To determine the influence of the initial form of a disturbance, Bech et al. chose
three different forms and solved the corresponding initial-value problems numeri-
cally for the full Navier-Stokes equations. All chosen forms of the initial velocity
field u(x) = {u(x), v(x), w(x)}, where x = (x, y, z), corresponded to ‘localized distur-
bances’, with values of u(x) differing noticeably from zero only in a bounded region
surrounding the coordinate origin. Moreover, all these disturbance forms could be
represented in terms of a scalar streamfunction ψ(x, y, z) which for the three cases
considered had the forms:

ψ = Axyz3 exp
(− [x2 + y2 + z2

])
, (5.18)

ψ = Axz3 exp
(− [x2 + y2 + z2

])
, (5.19)
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and

ψ = 0.5Ar2sz3 exp
(− [r2 + z2

])
, r2 = x2 + y2. (5.20)

Here the coordinates x, y, z are assumed to be non-dimensionalized by length scales
lx, ly and lz (which Bech et al. defined separately for the three models), A is a
disturbance amplitude, small in comparison with the free-stream velocity U0, and
the velocity fields {u, v, w} in the three cases are expressed in terms of the function
ψ by the following three different equations:

{u, v, w} =
{

0, −∂ψ
∂z

,
∂ψ

∂y

}

, (5.21)

{u, v, w} =
{
∂ψ

∂z
, 0, −∂ψ

∂x

}

, (5.22)

and

{u, v, w} =
{

−
(
∂ψ

∂z

)

xr−2, −
(
δψ

∂z

)

yr−2,

(
δψ

δr

)

r−1

}

. (5.23)

The simulations were carried out with Re* = 950 at x = 0, and all the lengths,
velocities and times relating to process of disturbance development were made
dimensionless by the length δ* at x = 0 and the free-stream velocity U0.

The first model of Eqs. (5.18) and (5.21) just corresponds to the form sketched in
Fig. 3.2 of Chap. 3; the equations given here for the initial velocity field agree exactly
with those used by Henningson et al. (1993), and are almost identical to those used by
Breuer and Haritonidis (1990) and Breuer and Landahl (1990). (Recall the remark
in Chap. 3, that in this model disturbance the initial streamwise velocity u(x) is
everywhere equal to zero, but it undergoes rapid transient growth and soon becomes
greater than the other two velocity components). A schematic form of the initial
vertical-velocity contours for this model is shown in Fig. 5.38a. In the second model
(5.19), (5.22) the initial spanwise velocity v(x) is equal to zero; this model describes
a wave packet where the energy is mainly concentrated in plane 2D waves. The initial
velocity contours for this model are shown in Fig. 5.38b. The third model (5.20),
(5.23) has already been used in numerical simulations by Henningson et al. (1993);
here it is assumed that lx = ly and hence the initial disturbance is axisymmetric with
respect to the vertical z-axis (see Fig. 5.38c).

The numerical simulations of the disturbance development in a boundary layer
presented in the main part of the paper by Bech et al. were temporal ones, i.e.,
they were based on the assumption that the flow is plane-parallel and the spatial
Fourier-components of disturbance velocities evolve in time. (As is now usual, the
parallel-flow assumption was supplemented by the assumption that the boundary-
layer thickness δ is not constant but grows with time; cf. footnote 4). To verify
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a b c

Fig. 5.38 Contours in the (x, y)-plane of the initial vertical velocity w(x, y, z) at z/δ∗ = 1.5 for three
selected models of the initial velocity field. The marks (a), (b) and (c) correspond to the first, second
and third models. (After Bech et al. 1998)

the accuracy of the somewhat simplified temporal approach, one of the temporal
simulations was repeated, using a spatial approximation which assumes that the
flow is steady but may be nonparallel, and that disturbances are time-periodic and
spatially evolving. The latter approximation is evidently more accurate than the
temporal one but it is also more complicated and more expensive in computer time.
Comparison of the results of the two simulations revealed some small inaccuracies of
the temporal-simulation results, but also showed that these inaccuracies appear only
at rather late stages of wave-packet development, while the overwhelming majority
of predictions of the temporal simulations agreed quite satisfactorily, qualitatively
and quantitatively, with those of the approximate spatial simulation. Thus, it was
concluded that the results of temporal simulations were sufficiently reliable to be
investigated in detail.

At the beginning of the paper of Bech et al. some simpler small-amplitude results
were considered. Here the authors analyzed numerical solutions of the linear initial-
value problem (corresponding to linearized N-S equations) for three chosen forms
of the initial velocity field, where the streamfunction amplitude A was chosen to
make the maximum |w0| of the initial vertical velocity equal to 10−5U0. (Solutions
were computed for two values of the pressure gradient, but for now only the case
of a Blasius boundary layer, with dp/dx = 0, will be discussed). ‘Linear’ (given by
the linear stability theory) temporal growths of the disturbance energy and of the
maximal values of streamwise and vertical velocities were computed for various
values of the time t. It was found that results for the three initial conditions described
differ considerably from each other, as must be the case since both the partition of the
developing disturbance into convective and dispersive components, and also the T-S-
wave composition of the dispersive component, were different in the three cases. Then
the flow patterns arising from the three chosen initial conditions were reconstructed,
for the later stages of the ‘linear development’, from simulation results. Figures
5.39a–f show velocity contours of u and w for the dimensionless time t = 300. Figures
5.39a and c show that in cases 1 and 3 (corresponding to initial streamfunctions
(5.18) and (5.20)) the elongated streaky structures, composed of alternating streaks
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Fig. 5.39 a–c Contours in the (x, z)-plane of the velocity u(x, y, z, t) at y = 0 and t = 300 for three
selected models of the initial velocity field. Labels (a), (b) and (c) have the same meaning as in
Fig. 5.38. d–f Contours in the (x, y)-plane of the vertical velocity w(x, y, z, t) at z = 1 and t = 300
for three selected models of the initial velocity field. The labels (d), (e) and (f) correspond to the
first, second and third models. The results represent computations at Re∗ = 950 and such amplitude
A that maxx|w(x, 0)| = 10−5. All quantities are made dimensionless by scales δ∗ and U0

of low and high streamwise velocities, emerged in the flow before t = 300. It seems
evident that these streaky structures were produced here by the transiently-growing
part of the disturbance, subjected to Landahl’s (1980) mechanism of streamwise
elongation. This mechanism affects only the velocity u; therefore the contours of
vertical velocity w in Figs. 5.39d–f, which again are quite similar to each other in cases
1 and 3 but have somewhat different forms in case 2, represent typical wave-packet
structures corresponding to the dispersive part of the developing disturbance. Recall
that in case 2 (initial streamfunction (5.19)) the initial disturbance had vanishing
spanwise velocity and contained no (0, k2)-modes, so that the generation of spanwise
inhomogeneity played an important part in the formation of streaky structures. For
this reason the initial disturbance (5.19), (5.22) produced no streaky structures by
t = 300 and Fig. 5.39b is quite different from Figs. 5.39a and c.

Bech et al. also analyzed the appearance of weakly-nonlinear effects on distur-
bance development. They first of all supplemented the computations with initial
amplitude A corresponding to the condition |w0|/U0 = 10−5 with computations for
larger values of A, corresponding to |w0|/Uo = 5 × 10−5 and 10−4. Then the authors
studied the expansions of their solutions in powers of the amplitude A, and extracted
from these expansions the linear terms (describing the results of the linear stability
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theory) and the weakly-nonlinear quadratic (proportional to A2) and cubic (propor-
tional to A3) terms. This procedure allowed them to isolate contributions of some
nonlinear interactions to the developed disturbances; in particular, the component
corresponding to wave vector (0, 2k2,0) (and marking the beginning of the energy
transport to higher spanwise wavenumbers) was detected in the quadratic part of the
disturbance, accompanied by the most energetic T-S wave of the linear theory, with
wave vector k = (k1,0, k2,0).

To study strongly-nonlinear effects on wave-packet propagation, the authors fur-
ther extended the range of values of the initial disturbance amplitude, and in addition
to the above-mentioned values they carried out numerical simulations for cases where
|w0|/U0 = 10−3, 5 × 10−3, and 10−2. A preliminary study of numerical-simulation re-
sults for disturbances with |w0|/Uo = 5 × 10−3 showed that in the case of the third
model (Eqs. (5.20), (5. 20a)) strongly nonlinear effects develop more slowly than in
the cases of the other two models of the initial disturbance. Therefore, it was found
that for complete analysis of the nonlinear development of the disturbance (5.20),
(5.23), the range of investigated values of t should be considerably extended. For
this reason the authors decided to study strongly nonlinear effects only for the first
and second models of the initial disturbance.

For these two models, the authors were able to cover, in their numerical simula-
tions, all the stages of nonlinear development of a localized disturbance in the Blasius
boundary layer found in the experimental and numerical-simulation studies of earlier
authors. In particular, the subharmonic disturbance growth produced by secondary
subharmonic instability of primary waves was detected in data relating to case 2,
with the initial conditions (5.19), (5.22), and appeared here much earlier than in the
experiments of Cohen et al. (1991) with a considerably smaller initial disturbance
amplitude. Also in case 2, when the subharmonic growth of oblique waves began,
the generation of the streaky structures, absent from Fig. 5.39b, also began and took
practically the same form as in the case of the other two initial conditions and in the
experiments by Cohen et al. (1991) and Breuer et al. (1997). This means, in partic-
ular, that exactly as in the experiments, nonlinear effects led to cascade transfer of
energy to higher spanwise wavenumbers. The numerical simulations of Bech et al.
also show that the streaky structures sometimes reach breakdown only with a very
high amplitude of disturbance velocity—e.g., in the case of the initial conditions
(5.18), (5.21) with |w0| = 5 × 10−3 the streaks continue to exist at an amplitude of
streamwise-velocity oscillations close to 30 % ofU0. This demonstration of the high
value of velocity amplitude needed for breakdown of streaky structures agrees, in
particular, with results by Reddy et al. (1998) relating to streaks in a plane-channel
flow. Nevertheless, breakdown of the streaky structures, and emergence of the
disorderly high-frequency fluctuations accompanied by rapid increase of the distur-
bance kinetic energy and of the maximal values of velocity fluctuations12, were also

12 Note that the growth of the disturbance kinetic energy does not necessary imply the growth of
disturbance velocities. For example, in the case of transient growth of localized disturbances in
plane shear flows studied by Landahl (1980), the growth of disturbance energy due to the “lift-up
effect” described by him is due to elongation of the disturbance increasing its volume, and not to
the growth of velocities of individual fluid particles.
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detected in the numerical simulations for both the high-amplitude initial conditions,
if the value of |w0| (and hence also of A) was large enough. Bech et al.’s large-
amplitude simulations of disturbance development also revealed many other details
of streaky-structure breakdown, transition to the unordered flow regime, and the ac-
companying flow phenomena. However, again these results are outside the scope of
this chapter.

As noted above, a considerable part of the paper by Bech et al. is devoted to
the study of the development of localized disturbances in boundary layer with an
adverse pressure gradient dp/dx > 0 decelerating the fluid motion. Boundary layers
with non-zero pressure gradients are met very often in practical applications of fluid
mechanics, and have therefore attracted much attention by investigators. Therefore,
it is only natural that the nonlinear instability of pressure-gradient boundary lay-
ers is considered in a great number of publications; the papers and dissertations by
Bertolotti (1985); Herbert and Bertolotti (1985); Wubben et al. (1990); Goldstein and
Lee (1992); Kloker (1993); Zel’man and Maslennikova (1993a); Kosorygin (1994);
Kloker and Fasel (1995); van Hest (1996); van Hest et al. (1996); Corke and Gruber
(1996); Liu (1997); Liu and Maslowe (1999); and Borodulin et al. (2000) repre-
sent only a small part of this work. Bech et al. were interested in boundary layers
with adverse pressure gradient since here, at a not-too-small absolute value of the
Falkner-Skan parameter β (see Chap. 2) the profile U(z) has a pronounced inflection
point where U ′′(z) = 0, and is inviscidly unstable with respect to small-amplitude
disturbances according to the classical results of Rayleigh (see Chap. 2). This in-
creased linear instability of a laminar boundary layer in adverse pressure gradient
(in comparison to the case of a boundary-layer with zero pressure gradient) must
also strongly influence the nonlinear instability effects and produce some additional
phenomena worth special study. Bech et al., who performed simulations for β = 0
(i.e. dp/dx = 0) and β = −0.155, in fact detected a number of interesting differences
between disturbance developments in these two flows. However, volume limitations
give no possibility for discussion in this book of results for boundary layers with
non-zero pressure gradients.
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