
Nested Partitions Method,
Theory and Applications

Recent titles in the INTERNATIONAL SERIES IN OPERATIONS
RESEARCH & MANAGEMENT SCIENCE

Frederick S. Hillier, Series Editor, Stanford University

Gass & Assad/ AN ANNOTATED TIMELINE OF OPERATIONS RESEARCH: An Informal History
Greenberg/ TUTORIALS ON EMERGING METHODOLOGIES AND APPLICATIONS IN

OPERATIONS RESEARCH
Weber/ UNCERTAINTY IN THE ELECTRIC POWER INDUSTRY: Methods and Models for Decision

Support
Figueira, Greco & Ehrgott/ MULTIPLE CRITERIA DECISION ANALYSIS: State of the Art Surveys
Reveliotis/ REAL-TIME MANAGEMENT OF RESOURCE ALLOCATIONS SYSTEMS: A Discrete

Event Systems Approach
Kall & Mayer/ STOCHASTIC LINEAR PROGRAMMING: Models, Theory, and Computation
Sethi, Yan & Zhang/ INVENTORY AND SUPPLY CHAIN MANAGEMENT WITH FORECAST

UPDATES
Cox/ QUANTITATIVE HEALTH RISK ANALYSIS METHODS: Modeling the Human Health Impacts

of Antibiotics Used in Food Animals
Ching & Ng/MARKOV CHAINS: Models, Algorithms and Applications
Li & Sun/ NONLINEAR INTEGER PROGRAMMING
Kaliszewski/ SOFT COMPUTING FOR COMPLEX MULTIPLE CRITERIA DECISION MAKING
Bouyssou et al/ EVALUATION AND DECISION MODELS WITH MULTIPLE CRITERIA: Stepping

stones for the analyst
Blecker & Friedrich/ MASS CUSTOMIZATION: Challenges and Solutions
Appa, Pitsoulis & Williams/ HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION
Herrmann/ HANDBOOK OF PRODUCTION SCHEDULING
Axsäter/ INVENTORY CONTROL, 2nd Ed.
Hall/ PATIENT FLOW: Reducing Delay in Healthcare Delivery
Józefowska & Wȩglarz/ PERSPECTIVES IN MODERN PROJECT SCHEDULING
Tian & Zhang/ VACATION QUEUEING MODELS: Theory and Applications
Yan, Yin & Zhang/ STOCHASTIC PROCESSES, OPTIMIZATION, AND CONTROL THEORY

APPLICATIONS IN FINANCIAL ENGINEERING, QUEUEING NETWORKS,
AND MANUFACTURING SYSTEMS

Saaty & Vargas/ DECISION MAKING WITH THE ANALYTIC NETWORK PROCESS: Economic,
Political, Social & Technological Applications w. Benefits, Opportunities, Costs & Risks

Yu/ TECHNOLOGY PORTFOLIO PLANNING AND MANAGEMENT: Practical Concepts and Tools
Kandiller/ PRINCIPLES OF MATHEMATICS IN OPERATIONS RESEARCH
Lee & Lee/ BUILDING SUPPLY CHAIN EXCELLENCE IN EMERGING ECONOMIES
Weintraub/ MANAGEMENT OF NATURAL RESOURCES: A Handbook of Operations Research

Models, Algorithms, and Implementations
Hooker/ INTEGRATED METHODS FOR OPTIMIZATION
Dawande et al/ THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS
Friesz/ NETWORK SCIENCE, NONLINEAR SCIENCE AND DYNAMIC GAME THEORY APPLIED

TO THE STUDY OF INFRASTRUCTURE SYSTEMS
Cai, Sha & Wong/ TIME-VARYING NETWORK OPTIMIZATION
Mamon & Elliott/ HIDDEN MARKOV MODELS IN FINANCE
del Castillo/ PROCESS OPTIMIZATION: A Statistical Approach
Józefowska/JUST-IN-TIME SCHEDULING: Models & Algorithms for Computer & Manufacturing

Systems
Yu, Wang & Lai/ FOREIGN-EXCHANGE-RATE FORECASTING WITH ARTIFICIAL NEURAL

NETWORKS
Beyer et al/ MARKOVIAN DEMAND INVENTORY MODELS

∗A list of the early publications in the series is at the end of the book∗

Nested Partitions Method,
Theory and Applications

Leyuan Shi
University of Wisconsin-Madison, WI, USA

Sigurdur Ólafsson
Iowa State University, IA, USA

123

Leyuan Shi Sigurdur Ólafsson
University of Wisconsin-Madison Iowa State University
WI, USA IA, USA
leyuan@engr.wisc.edu olafsson@iastate.edu

ISBN: 978-0-387-71908-5 e-ISBN: 978-0-387-71909-2

Library of Congress Control Number: 2008934910

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

springer.com

To my parents Dangping Shi and Wanrong Shen
LS

To ömmu Lilju, mömmu, and Jenny
SÓ

Contents

1 Introduction . 1
1.1 Large-Scale Optimization . 1

1.1.1 Exact Solution Methods . 2
1.1.2 Heuristic Solution Methods . 3

1.2 The NP method . 4
1.3 Application Examples . 6

1.3.1 Resource-Constrained Project Scheduling 6
1.3.2 Feature Selection . 9
1.3.3 Radiation Treatment Planning . 10

1.4 About the Book . 12

Part I Methodology

2 The Nested Partitions Method . 19
2.1 Nested Partitions Framework . 19
2.2 Partitioning . 23

2.2.1 A Generic Partitioning Method . 23
2.2.2 Intelligent Partitioning for TSP . 25
2.2.3 Intelligent Partitioning for Feature Selection 26
2.2.4 General Intelligent Partitioning . 29

2.3 Randomly Generating Feasible Solutions 30
2.3.1 Biased Random Sampling . 30
2.3.2 Incorporating Heuristics in Generating Solutions 32
2.3.3 Determining the Total Sampling Effort 33

2.4 Backtracking and Initialization . 33
2.5 Promising Index . 35
2.6 Convergence Analysis . 37

2.6.1 Finite Time Convergence for COPs 37
2.6.2 Time until Convergence . 40

2.7 Continuous Optimization Problems . 45

viii Contents

3 Noisy Objective Functions . 47
3.1 Convergence Analysis . 48

3.1.1 Basic Properties . 48
3.1.2 Global Convergence . 51

3.2 Selecting the Correct Move . 57
3.2.1 Ordinal Optimization . 57
3.2.2 Ranking and Selection . 59

3.3 Time Until Convergence . 63

4 Mathematical Programming in the NP Framework 69
4.1 Mathematical Programming . 70

4.1.1 Relaxations . 70
4.1.2 Column Generation . 72

4.2 NP and Mathematical Programming . 73
4.2.1 Branch-and-Bound . 73
4.2.2 Dynamic Programming . 74

4.3 Intelligent Partitioning . 76
4.4 Generating Feasible Solutions . 79
4.5 Promising Index . 81
4.6 Non-linear Programming . 81

5 Hybrid Nested Partitions Algorithm . 85
5.1 Greedy Heuristics in the NP Framework . 85

5.1.1 Generating Good Feasible Solutions 86
5.1.2 Intelligent Partitioning . 91

5.2 Random Search in the NP Framework . 92
5.2.1 NP with Genetic Algorithm. 93
5.2.2 NP with Tabu Search . 97
5.2.3 NP with Ant Colony Optimization 99

5.3 Domain Knowledge in the NP Framework 102

Part II Applications

6 Flexible Resource Scheduling . 107
6.1 The PMSFR Problem . 108
6.2 Reformulation of the PMSFR Problem . 110
6.3 NP Algorithm for the PMSFR Problem . 113

6.3.1 Partitioning . 113
6.3.2 Generating Feasible Solutions . 117

6.4 Numerical Example . 120
6.5 Conclusions . 123

7 Feature Selection . 125
7.1 NP Method for Feature Selection . 127

Contents ix

7.1.1 Intelligent Partitioning . 127
7.1.2 Generating Feasible Solutions . 128

7.2 NP-Wrapper and NP-Filter Algorithm . 130
7.2.1 NP Filter Algorithm . 130
7.2.2 NP Wrapper Example . 131

7.3 Numerical Comparison with Other Methods 136
7.3.1 Value of Feature Selection . 136
7.3.2 Comparison with Simple Entropy Filter 137
7.3.3 The Importance of Intelligent Partitioning 139
7.3.4 Scalability of NP Filter . 142

7.4 Improving Efficiency through Instance Sampling 147
7.5 Adaptive NP-Filter . 149
7.6 Conclusions . 154

8 Supply Chain Network Design . 157
8.1 Multicommodity Capacitated Facility Location 158

8.1.1 Background . 158
8.1.2 Problem Formulation . 158
8.1.3 Mathematical Programming Solutions 161

8.2 Hybrid NP/CPLEX for MCFLP. 162
8.2.1 Partitioning . 164
8.2.2 Generating Feasible Solutions . 166
8.2.3 Hybrid NP/CPLEX Algorithm . 166

8.3 Experimental Results . 168
8.4 Conclusions . 170

9 Beam Angle Selection . 173
9.1 Introduction . 173

9.1.1 Intensity-Modulated Radiation Therapy 174
9.1.2 Beam Angle Selection . 175

9.2 NP for Beam Angle Selection . 176
9.2.1 Partitioning . 177
9.2.2 Generating Feasible Solutions . 181
9.2.3 Defining the Promising Index . 182

9.3 Computational Results . 182
9.3.1 Using LP To Evaluate NP Solutions 183
9.3.2 Using Condor for Parallel Sample Evaluation 187
9.3.3 Using Pinnacle To Evaluate NP Samples 189

9.4 Conclusions . 191

10 Local Pickup and Delivery Problem . 193
10.1 Introduction . 193
10.2 LPDP Formulation . 195
10.3 NP Method for LPDP . 197

10.3.1 Intelligent Partitioning . 197

x Contents

10.3.2 Generating Feasible Solutions . 199
10.4 Numerical Results . 201

10.4.1 Test Instances . 202
10.4.2 Algorithm Setting . 202
10.4.3 Test Results . 204

10.5 Conclusions . 206

11 Extended Job Shop Scheduling . 207
11.1 Introduction . 207
11.2 Extended Job Shop Formulation . 208

11.2.1 Bill-of-Materials Constraints . 209
11.2.2 Work Shifts Constraints . 210
11.2.3 Dispatching Rules (DR) . 211

11.3 NP Method for Extended Job Shop Scheduling 212
11.3.1 Partitioning . 212
11.3.2 Generating Feasible Sample Solutions 213
11.3.3 Estimating the Promising Index and Backtracking 217
11.3.4 DR-Guided Nested Partitions (NP-DR) 218

11.4 Computational Results . 219
11.4.1 Effectiveness of Weighted Sampling 221
11.4.2 α Sensitivity . 222
11.4.3 β Sensitivity . 223

11.5 Conclusions . 224

12 Resource Allocation under Uncertainty . 227
12.1 Introduction . 227
12.2 Optimal Computing Budget Allocation . 227
12.3 Stochastic Resource Allocation Problems 228
12.4 NP Method for Resource Allocation . 230

12.4.1 Calculating the Promising Index through Ordinal
Optimization . 231

12.4.2 The OCBA Technique . 234
12.4.3 The NP Hybrid Algorithm. 236
12.4.4 Implementation . 238

12.5 Numerical Results . 242
12.5.1 A Reduced Problem . 242
12.5.2 The Original Resource Allocation Problem 244
12.5.3 A More Complex and Less Structured Problem. 245

12.6 Conclusions . 246

References . 247

Index . 255

Part I

Methodology

1

Introduction

The subject of this book is the nested partitions method (NP), a relatively new
optimization method that has been found to be very effective solving discrete
optimization problems. Such discrete problems are common in many practical
applications and the NP method is thus useful in diverse application areas.
It can be applied to both operational and planning problems and has been
demonstrated to effectively solve complex problems in both manufacturing
and service industries. To illustrate its broad applicability and effectiveness,
in this book we will show how the NP method has been successful in solving
complex problems in planning and scheduling, logistics and transportation,
supply chain design, data mining, and health care. All of these diverse appli-
cations have one characteristic in common: they all lead to complex large-scale
discrete optimization problems that are intractable using traditional optimiza-
tion methods.

1.1 Large-Scale Optimization

In developing the NP method we will consider optimization problems that can
be stated mathematically in the following generic form:

min
x∈X

f(x), (1.1)

where the solution space or feasible region X is either a discrete or bounded
set of feasible solutions. We denote a solution to this problem x∗ and the
objective function value f∗ = f (x∗).

For most of the applications considered in this book the feasible region
X is finite but its size grows exponentially in the input parameters of the
problem. In many cases X also has complicated constraints that are difficult
to satisfy. The objective function f :X → R is usually a complex non-linear
function. Sometimes it may have no analytic expression and must be evalu-
ated through a model, such as a simulation model, a data mining model, or

2 1 Introduction

other application-dependent models. One advantage of the NP method is that
it is effective for optimization when f is known analytically (deterministic op-
timization), when it is noisy (stochastic optimization), or even when it must
be evaluated using an external process.

1.1.1 Exact Solution Methods

The need to solve discrete optimization problems has long been established
and has been the subject of intense research (Nemhauser and Wolsey 1988,
Schrijver 2005). Such problems are usually formulated as either combinato-
rial optimization problems (COP) where the feasible region is finite, integer
programming (IP) problems where both the constraints and objective func-
tion are linear, or mixed integer programming (MIP) problems where some
of the variables are discrete and some are continuous. Discrete optimization
problems can be addressed using one of three approaches: exact methods, ap-
proximation algorithms, or heuristics. Exact methods guarantee the optimal
solutions, while approximation algorithms guarantee a solution within a cer-
tain distance from the optimum, and heuristics simply seek good solutions
without making a performance guarantee.

Exact solution methods are grounded in mathematical programming the-
ory. Such methods have been studied for decades and the last twenty years
have seen significant breakthroughs in the ability to solve large-scale discrete
problems using mathematical programming. These methods have in recent
years been used to solve very large practical problems (Atamturk and Savels-
bergh 2005), but from our perspective they require significant structure. For
example, the objective function and constraints are typically assumed lin-
ear and even then additional structure is usually required for mathemati-
cal programming methods to be effective. However, when such structure is
present and appropriately assumed, mathematical programming methods are
often not only effective but also very efficient. The two primary classes of
methods that can be used to solve discrete problems are branching meth-
ods such as the classic branch-and-bound (Balas and Toth 1995, Beale 1979)
and the more recent branch-and-cut (Balas et al. 1996, Caprara and Fishetti
1997, Martin 2001, Padberg 2005), and decomposition methods such as La-
grangian relaxation (LR) (Beasley 1993, Frangioni 2005) and Dantzig-Wolfe
(DW) decomposition (Villeneuve et al. 2005, Vanderbeck and Savelsbergh
2006).

Branching methods divide the solution space into partitions called branches
and focus the computational effort on obtaining tight lower bounds f ≤ f∗

for each branch. They then use these bounds to eliminate branches where
the lower bound is worse than some known feasible solution x0 ∈ X, that is,
f

(
x0

)
< f . In this manner all the feasible solutions can often be accounted for

by considering relatively few branches. This does, however, rely on the ability
to obtain tight lower bounds. These bounds can be found by solving simple
relaxations, such as linear programming relaxation of an MIP, or improved by

1.1 Large-Scale Optimization 3

generating inequalities that cut off non-feasible solutions (branch-and-cut).
Although branching methods have been applied successfully for many prob-
lems, it may be very difficult or impossible to find sufficiently good bounds
for complex problems.

Decomposition methods solve the problem by either eliminating con-
straints (e.g., Lagrangian relaxation) or variables (e.g., Dantzig-Wolfe decom-
position). Branching and decomposition can also be combined, as is done for
example by the branch-and-price algorithm or by using LR to find tighter
bounds in branch-and-bound. Unfortunately exact solution methods cannot
usually be applied effectively to large-scale optimization unless the structure
of the problem is relatively simple, such as when the objective function and
all of the constraints are linear.

Approximation algorithms are often based on similar mathematical pro-
gramming principles as the exact algorithms. For example, say that a relaxed
problem has been solved for a lower bound f and a feasible solution x0 ∈ X has
been found. Then it can be said that x0 is an ε-approximation if f

(
x0

)
−f ≤ ε.

1.1.2 Heuristic Solution Methods

When exact methods cannot find the optimal solution (or even a sufficiently
good approximation) in a reasonable amount of time, heuristics must be relied
on to find good solutions (Reeves, 1993; Smith, 1996). While heuristics do not
guarantee the performance they have the advantage that they do not make
restrictive assumptions about the structure of the problem and are therefore
applicable to a wider range of applications. They can often quickly generate
very good solutions, which is critical when the time to solve the problem is
limited.

From an optimization theory point of view there is a significant philosoph-
ical shift when applying heuristics rather than exact methods. To guarantee
performance, most exact methods focus the majority of the computational ef-
fort on obtaining tight lower bounds. When these bounds become sufficiently
tight, a feasible solution is generated that, due to the bounds, is then shown
to be optimal. However, only a small fraction of the computational effort is
devoted to generating feasible solutions. Heuristics, on the other hand, devote
most or all of the computational effort to generating a sequence x0, x1, ..., xk

of feasible solutions. Continuing with the bounding perspective of exact meth-
ods, this does of course now provide an upper bound

f̄ = min
i

f
(
xi

)
≥ f∗

on the performance.
The simplest type of a heuristic is a greedy local search, where in each it-

eration a move is made that improves performance, that is, f
(
x0

)
> f

(
x1

)
>

... > f
(
xk

)
≥ f∗. A move is defined as some small change to the current solu-

tion and is application-dependent. A greedy search is typically very fast and

4 1 Introduction

terminates when no further improvement is possible. However, for all but the
simplest problems there are multiple local optima and the gap f

(
xk

)
− f∗ is

usually unsatisfactorily large because the greedy search becomes stuck at the
first local optimum that is encountered. This has led to the development of
many randomized heuristics and metaheuristics (Gendreau and Potvin 2005,
Glover and Kochenberger 2003, Lovsz, 1996).

A random search adds an element that enables a greedy local search to
escape from local optima. For example, simulated annealing allows a move to
an inferior solution with a probability that depends on the gap between the
performance of the current solution and the inferior solution, and a parameter
called the temperature (Kirkpatrick et al. 1983, Eglese 1990, Fleischer 1995).
For a candidate new solution, if the difference in performance is small and
the temperature is high then it is likely that the candidate is accepted and
becomes the new solution in the sequence. Vice versa, if the difference is large
and the temperature is low, it is unlikely that this candidate will be accepted.
The algorithm terminates by systematically decreasing the temperature pa-
rameter, which eventually results in a local optimum that cannot be escaped.
Given certain conditions, it can be assured that this final local optimum is
also a global optimum and convergence is asymptotically guaranteed. Many
other heuristics have been suggested and found useful, including genetic algo-
rithms and other evolutionary methods (Goldberg 1989, Leipins and Hillard
1989, Muhlenbien 1997), tabu search (Glover 1989, Glover 1990, Glover and
Laguna, 1997), scatter search (Glover 1997, Glover, Laguna and Marti 2003),
variable neighborhood search (Hansen and Mladenovic 1997), and ant-colony
optimization (Dorigo and Stutzle, 2004). In the next section we place the NP
method in the context of such metaheuristics.

1.2 The NP method

The NP method is best viewed as a metaheuristic framework and it has sim-
ilarities to branching methods in that like branch-and-bound it creates par-
titions of the feasible region. However, it also has some unique features that
make it well-suited for very difficult large-scale optimization problems.

Metaheuristics have emerged as the most widely used approach for solv-
ing difficult large-scale combinatorial optimization problems. A metaheuristic
provides a framework for guiding application-specific heuristics, such as a
greedy local search, by restricting which solution or set of solutions should
or can be visited next. For example, the tabu search metaheuristic disal-
lows certain moves that might otherwise be appealing by making the reverse
of recent moves tabu or forbidden. At the same time it always forces the
search to take the best non-tabu move, which enables the search to escape
local optima. Similar to tabu search, most metaheuristics guide the search
from solution to solution or possibly from one set of solutions to another set
of solutions. In contrast, the NP method guides the search by determining

1.2 The NP method 5

where to concentrate the search effort. Any optimization method, such as an
application-specific local search, general purpose heuristic, or a mathematical
programming method, can then be integrated within this framework.

Metaheuristics and other heuristic search methods have been developed
largely in isolation from the recent advances in the use of mathematical pro-
gramming methods for solving large-scale discrete problems. It is a very im-
portant and novel characteristic of the NP method that it provides a natural
metaheuristic framework for combining the use of heuristics and mathematical
programming and for taking advantage of their complimentary nature. Indeed,
as far as we know, the NP method is the first systematic search method that
enables users to simultaneously realize the full benefits of incorporating lower
bounds through various mathematical programming methods and using any
domain knowledge or heuristic search method for generating good feasible so-
lutions. It is this flexibility that makes the NP method so effective for practical
problems.

To concentrate the search effort the NP method employs a decomposition
approach similar to that of branch-and-bound. Specifically, in each step the
method partitions the space of feasible solutions into the most promising re-
gion and the complimentary region, namely the set of solutions not contained
in the most promising region. The most promising region is then further parti-
tioned into subregions. The partitioning can be done exactly as branching for
a branch-and-bound algorithm would be, but instead of focusing on obtaining
lower bounds and comparing those bounds to a single primal feasible solution,
the NP method focuses on generating primal feasible solutions from each of
the subregions and the complimentary region. This results in an upper bound
on the performance of each of these regions. The region with the best feasible
solution is judged the most promising and the search focused accordingly. A
best upper bound does not guarantee that the corresponding subset contains
the optimal solution, but since the NP method also finds primal feasible solu-
tions for the complimentary region, it is able to recover from incorrect moves.
Specifically, if the best solution is found in one of the subregion,s this becomes
the new most promising region, whereas if it is in the complimentary region
the NP method backtracks. This focus on generating primal feasible solutions
and the global perspective it achieves through backtracking are distinguishing
features of the NP method that set it apart from similar branching methods.

Unlike exact optimization methods such as branch-and-bound, the NP
method does not guarantee that the correct region is selected in each move of
the algorithm. Incorrect moves can be corrected through backtracking, but for
the method to be both effective and efficient, the correct move must be made
frequently. How this is accomplished depends on how the feasible solutions
are generated.

In what we will refer to as the pure NP method, feasible solutions are
generated using simple uniform random sampling. To increase the probabil-
ity of making the correct move, the number of samples should be increased.
We will later see how statistical selection methods can be used to prescribe

6 1 Introduction

a sufficient amount of sampling in order to assure that the correct region
is selected with a given probability. A purely uniform random sampling is
rarely efficient, however, and the strength of the NP method is that it can
incorporate application-specific methods for generating feasible solutions. In
particular, for practical applications domain knowledge can often be utilized
to very effectively generate good feasible solutions. We call such implementa-
tions knowledge-based NP methods. We will also see examples of what we refer
to as hybrid NP methods where feasible solutions are generated using either
general heuristic methods such as greedy local search, genetic algorithms or
tabu search, or mathematical programming methods. If done effectively, in-
corporating such methods into the NP framework makes it more likely that
the correct move is made and hence makes the NP method more efficient. In-
deed, we will see that such hybrid and knowledge-based implementations are
often an order of magnitude more efficient than uniform random sampling.

In addition to the method for generating feasible solutions, the probability
of making the correct move depends heavily on the partitioning approach. The
implementation of a generic method for partitioning is usually straightforward
but by taking advantage of special structure and incorporating this into intel-
ligent partitioning, the efficiency of the NP method may be improved by an
order of magnitude. The strength of the NP method lies indeed in this flexi-
bility. Special structure, local search, any heuristic search, and mathematical
programming can all be incorporated into the NP framework to develop opti-
mization algorithms that are more effective in solving large-scale optimization
problems than when these methods are used alone.

1.3 Application Examples

In this section we introduce three application examples that illustrate the
type of optimization problems for which the NP method is particularly ef-
fective. For each application the optimization problem has a complicating
aspect that makes it difficult for traditional optimization methods. For the
first of these problems, resource-constrained project scheduling, the primary
difficulty lies in a set of complicating constraints. For the second problem,
the feature selection problem, the difficulty lies in a complex objective func-
tion. The third problem, radiation treatment planning, has constraints that
are difficult to satisfy as well as a complex objective function that cannot be
evaluated through an analytical expression. Each of the three problems can
be effectively solved by the NP method by incorporating our understanding
of the application into the framework.

1.3.1 Resource-Constrained Project Scheduling

Planning and scheduling problems arise as critical challenges in many
manufacturing and service applications. One such problem is the

1.3 Application Examples 7

resource-constrained project scheduling problem that can be described as fol-
lows (Herroelen and Demeulemeester 1994). A project consists of a set of
tasks to be performed and given precedence requirements between some of
the tasks. The project scheduling problem involves finding the starting time
of each task so that the overall completion time of the project is minimized.
It is well known that this problem can be solved efficiently using what is
called the critical path method that uses forward recursion to find the earliest
possible completion time for each task (Pinedo 2000). The completion time
of the last task defines the makespan or the completion time of the entire
project.

Now assume that one or more resource is required to complete each task.
The resources are limited so if a set of tasks requires more than the available
resources they cannot be performed concurrently. The problem now becomes
NP-hard and cannot be solved efficiently to optimality using any traditional
methods. To state the problem we need the following notation:

V = Set of all tasks
E = Set of precedence constraints
pi = Processing time of task i ∈ V

R = Set of resources
Rk = Available resources of type k ∈ R.

rik = Resources of type k required by task i.

The decision variables are the starting times for each task,

xi = Starting time of task i ∈ V (1.2)

Finally, for notational convenience we define the set of tasks processed at time
t as

V (t) = {i : xi ≤ t ≤ xi + pi} .

With this notation, we now formulate the resource-constrained project schedul-
ing problem mathematically as follows:

min max
i∈V

xi + pi (1.3)

xi + pi ≤ xj , ∀(i, j) ∈ E (1.4)
∑

i∈V (t)

rik ≤ Rk, ∀k ∈ R, t ∈ Z1
+ (1.5)

xi ∈ Z1
+

Here the precedence constraints (1.4) are easy, whereas the resource con-
straints (1.5) are hard. By this we mean that if the constraints (1.5) are
dropped then the problem becomes easy to solve. Such problems, where
complicating constraints transform the problem from easy to very hard, are

8 1 Introduction

common in large-scale optimization. Indeed the classic job shop scheduling
problem can be viewed as a special case of the resource constrained project
scheduling problem where the machines are the resources. Without the ma-
chine availability constraints the job shop scheduling problem reduces to a sim-
ple project scheduling problem. Other well-known combinatorial optimization
problems have similar properties. For example, without the subset elimina-
tion constraints the classic traveling salesman problem reduces to a simple
assignment problem that can be efficiently solved.

The flexibility of the NP method allows us to effectively address such
problems by taking advantage of special structure when generating feasible
solutions. It is important to note that it is very easy to use sampling to gener-
ate feasible solutions that satisfy very complicated constraints, which are very
difficult to handle using traditional methods such as mathematical program-
ming. Therefore, when faced with a problem with complicating constraints
we want to use random sampling to generate partial feasible solutions that
resolve the difficult part of the problem and then complete the solution using
the appropriate efficient optimization method.

For example, when generating a feasible solution for the resource con-
strained project scheduling problem, the resource allocation should be gener-
ated using random sampling and the solution can then be completed by ap-
plying the critical path method to determine the starting times for each task.
This requires reformulating the problem so that the resource and precedence
constraints can be separated. Such a reformulation is rather easily achieved
by noting that the resource constraints can be resolved by determining a se-
quence between the tasks that require the same resource(s) at the the same
time. Once this sequence is determined then the sequence can be added as a
set of precedence constraints, which are easy to deal with, and the remaining
solution can be generated using the critical path method. Feasible solutions
can therefore be generated in the NP method by first randomly sampling
a sequence to resolve resource conflicts and then applying the critical path
method. Both procedures are very fast, so complete sample solutions can be
generated rapidly.

We also note that constraints that are difficult for optimization methods
such as mathematical programming are sometime very easily addressed in
practice by incorporating domain knowledge. For example, a domain expert
may easily be able to specify priorities among tasks requiring the same re-
source(s) in the resource-constrained project scheduling problem. The domain
expert can therefore, perhaps with some assistance from an interactive deci-
sion support system, specify some priority rules to convert a very complex
problem into an easily solved problem. The NP method can effectively in-
corporate such domain knowledge into the optimization framework by using
the priority rules when generating feasible solutions. This is particularly ef-
fective because the domain expert would not need to specify priority rules
to resolve all resource conflicts. Rather, any available priority rule or other
domain knowledge can be incorporated to guide the sampling.

1.3 Application Examples 9

The same structure can be used to partition intelligently. Instead of parti-
tioning directly using the decision variables (1.2), we note that it is sufficient
to partition to resolve the resource conflicts. Once those are resolved then the
problem is solved. This approach is applicable to any problem that can be
decomposed in a similar manner.

We will revisit the resource-constrained project scheduling problem in both
Chapter 4 and Chapter 5, where we discuss further how to incorporate mathe-
matical programming techniques and domain knowledge, respectively, to solve
this problem more efficiently.

1.3.2 Feature Selection

Knowledge discovery and data mining is a relatively new field that has ex-
perienced rapid growth due to its ability to extract meaningful knowledge
from very large databases. One of the problems that must usually be solved
as part of practical data mining projects is the feature selection problem (Liu
and Motoda 1998), which involves selecting a good subset of variables to be
used by subsequent inductive data mining algorithms. The problem of select-
ing the best subset of variables is well known in the statistical literature as
well as in machine learning. The recent explosion of interest in data mining
for addressing various business problems has led to a renewed interest in this
problem. From an optimization point of view, feature selection can clearly be
formulated as a binary combinatorial optimization problem where the deci-
sion variables determine whether a feature (variable) is included or excluded.
The solution space can therefore be stated very simply as all permutations of
a binary vector of length n, where n is the number of variables. The size of
this feasible region is 2n so it experiences exponential growth, but typically
there are no additional constraints to complicate its structure.

On the other hand, there is no consensus objective function that measures
the quality of a feature or a set of features. Tens of alternatives have been
proposed in the literature, including functions that measure the quality of
individual features as well as those that measure the quality of a set of fea-
tures. However, no single measure is satisfactory in all cases and the ultimate
measure is therefore: does it work? In other words, when the selected features
are used for learning, does this result in a good model being induced? The
most effective feature selection approach in terms of solution quality is there-
fore the wrapper approach, where the quality of a set of features is evaluated
by applying a learning algorithm to the set and evaluating its performance.
Specifically, an inductive learning algorithm, such as decision tree induction,
support vector machines or neural networks, are applied to a training data
set containing only the selected features. The performance of the induced
model is evaluated and this performance is used to measure the quality of
the feature subset. This objective function is not only non-linear, but since a
new model must be induced for every feature subset it is very expensive to
evaluate.

10 1 Introduction

Mathematically, the feature selection problem can be stated as follows:

min
x∈{0,1}n

f(x), (1.6)

that is, X = {0, 1}n. Feature selection is therefore a very difficult combinato-
rial optimization problem not because of the complexity of the feasible region
(although it does grow exponentially), but due to the great complexity of an
objective function that is very expensive to evaluate. However, this is also an
example where application-specific heuristics can be effectively exploited by
the NP method.

As previously stated, significant research has been devoted to methods for
measuring the quality of features. This includes information-theoretic meth-
ods such as using Shannon’s entropy to measure the amount of information
contained in each feature: the more information the more valuable the fea-
ture. The entropy is measured individually for each feature and can thus be
used as a very fast local search or a greedy heuristic, where the features with
the highest information gain are added one at a time. While such a purely
entropy-based feature selection will rarely lead to satisfactory results, the NP
method can exploit this by using the entropy measure to define an intelligent
partitioning that is an order of magnitude more efficient than an average ar-
bitrary partitioning. It can also be used to generate feasible solutions from
each region using a sampling strategy that is biased towards including features
with high information. A very fast greedy heuristic can thus greatly increase
the efficiency of the NP method while resulting in much higher-quality solu-
tions that the greedy heuristic is not able to achieve on its own. This feature
selection problem is explored further in Chapter 7.

1.3.3 Radiation Treatment Planning

Health care delivery is an area of immense importance where optimization
techniques have been used increasingly in recent years. Radiation treatment
planning is an important example of this and Intensity-Modulated Radiation
Therapy (IMRT) is a recently developed complex technology for such treat-
ment (Lee, Fox and Crocker 2003). It employs a multileaf collimator to shape
the beam and to control, or modulate, the amount of radiation that is deliv-
ered from each of the delivery directions (relative to the patient). The planning
of the IMRT is very important because it needs to achieve the treatment goal
while incurring the minimum possible damage to other organs. Because of
its complexity the treatment planning problem is generally divided into sev-
eral subproblems. The first of these is termed the beam angle selection (BAS)
problem (Djajaputra et al. 2003, D’Souza, Meyer and Shi 2004). In essence,
beam angle selection requires the determination of roughly 4-9 angles from
360 possible angles subject to various spacing and opposition constraints.

Designing an optimal IMRT plan requires the selection of beam orien-
tations from which radiation is delivered to the patient. These orientations,

1.3 Application Examples 11

called beam angles, are currently manually selected by a clinician based on
his/her judgment. The planning process proceeds as follows: a dosimetrist
selects a collection of angles and waits ten to thirty minutes while a dose pat-
tern is calculated. The resulting treatment is likely to be unacceptable, so the
angles and dose constraints are adjusted, and the process repeats. Finding a
suitable collection of angles often takes several hours. The goal of using op-
timization methods to identify quality angles is to provide a better decision
support system to replace the tedious repetitive process just described. An
integer programming model of the problem contains a large number of binary
variables and the objective value of a feasible point is evaluated by solving
a large, continuous optimization problem. For example, in selecting 5 to 10
angles, there are between 4.910 and 8.9 × 1019 subsets of 0, 1, 2, ..., 359.

The BAS problem is complicated by both an objective function with no
analytical expression and by constraints that are hard to satisfy. In the end
an IMRT plan is either acceptable or not and the considerations for deter-
mining acceptability are too complex for a simple analytical model. Thus, the
acceptability and hence the objective function value for each plan must be
evaluated by a qualified physician. This makes evaluating the objective not
only expensive in terms of time and effort, but also introduces noise into the
objective function because two physicians may not agree on the acceptability
of a particular plan. The constraints of the BAS problem are also compli-
cated since each beam angle will result in radiation of organs that are not
the target of the treatment. There are therefore two types of constraints: the
target should receive at least a minimum radiation and other organs should
receive no more than some maximum radiation. Since these bounds need to
be specified tightly the constraints are hard to satisfy.

The BAS problem illustrates how mathematical programming can be ef-
fectively incorporated into the NP framework. Since the evaluation of even
a single IMRT plan must be done by an expert and is thus both time con-
suming and expensive, it is imperative to impose a good structure on the
search space that reduces the number of feasible solutions that need to be
generated. This can be accomplished by means of an intelligent partition-
ing and we do this by computing the optimal solution of an integer program
with a much simplified objective function. The output of the IP then serves
to define an intelligent partitioning . For example, suppose a good angle set
(50◦, 80◦, 110◦, 250◦, 280◦, 310◦, 350◦) is found by solving the IP. We can then
partition on the first angle in the set, which is 50◦ in this example. Then
one sub-region includes angle 50◦, the other excludes 50◦. This partitioning
has been found to be very effective and this problem is explored further in
Chapter 9.

These three application examples illustrate the broad usefulness of the NP
method in both manufacturing and service industries, and how it can take ad-
vantage of special structure and application-specific heuristics to improve the
efficiency of the search. In Part II of the book we will consider numerous
applications in much more detail and show how domain knowledge, greedy

12 1 Introduction

heuristics, generic heuristics, and mathematical programming can all be in-
corporated into the NP framework to efficiently solve very complex problems
that arise in a wide range of applications.

1.4 About the Book

This book is divided into two parts. Part I develops the general theory and
implementation framework for the NP method, while Part II provides a de-
tailed look at several application areas and how the NP method is effectively
applied in these areas. Readers who are primarily interested in applications
may want to focus on Part II but should first familiarize themselves with
the first five sections of Chapter 2, which develop the foundation for the NP
method and its implementation. In the remainder of this section we provide
a brief overview of each chapter.

The groundwork for the NP method is laid in Chapter 2. Section 2.1 shows
a generic implementation of the algorithm and each step is then explored in
more detail in the next four sections. Section 2.2 looks at how partitioning is
used to impose structure on difficult problems and how intelligent partition-
ing improves the efficiency of the NP method. Section 2.3 discusses how to
effectively generate feasible solutions that are used to guide the search in the
NP method. Both generic and application-specific approaches are explored
and it is demonstrated that by incorporating domain knowledge, it is possible
to greatly improve the efficiency of the method. Two additional implementa-
tion issues are addressed in Section 2.4: backtracking and initialization of the
algorithm. Specifically, the section discusses how backtracking assures global
convergence by providing a mechanism to recover from incorrect moves, and
how the initial search can be sped up by incorporating domain knowledge and
application-specific heuristics. The final section discussing implementation of
the NP method is Section 2.5, which presents alternatives for specifying a
promising index. Finally, Section 2.6 proves finite time convergence of the
NP method and analyzes the behavior of the algorithm. This section can be
skipped for those readers primarily interested in applications.

Chapter 3 focuses on the special case where the objective function is not
known analytically but must be estimated and is hence noisy. This introduces
additional challenges but the NP method can still be applied effectively. This
chapter discusses what makes the NP method effective for problems with
noisy performance, provides a convergence analysis, and suggests how the NP
method is best implemented for such problems. This chapter can be skipped
unless the reader is interested in problems with such noisy performance since
only Chapter 7, Chapter 9, and Chapter 12 will make use of the results pre-
sented in this chapter.

Mathematical programming methods have been shown to effectively solve
numerous large-scale problems, and in Chapter 4 we show how such methods
can be effectively incorporated into the NP framework to improve its efficiency.

1.4 About the Book 13

In this chapter we start by exploring the connections between the NP method
and two traditional mathematical programming methods: branch-and-bound
and dynamic programming. We then show that even for problems that are
too large or complex for exact methods to be efficient, it is often possible
to incorporate such methods into the NP framework by using mathematical
programming to solve a relaxed or partial problem and then incorporate the
solution into the NP method to improve its efficiency. This can be done by
using the solution to either define a more effective partitioning or to help
generate better feasible solutions. Thus, the NP method and mathematical
programming are found to be highly complementary.

Similar to mathematical programming in Chapter 4, in Chapter 5 we
demonstrate how various random search methods, metaheuristics, and local
search can be incorporated into the NP framework. To illustrate how to in-
corporate other metaheuristics into the NP framework, we present three well-
known metaheuristics: genetic algorithms, tabu search, and ant colony opti-
mization. Each of these can be thought of as an improving search heuristic in
that it constructs a sequence of feasible solutions, although each has a mech-
anism that allows an escape from a local optimum so that the sequence is not
necessarily always improving. Hence, it is natural to incorporate these heuris-
tics into the NP framework by using them to generate high-quality feasible
solutions from each region that is being considered. Any local search heuris-
tic can in a similar way be used to generate feasible solutions within the NP
framework. But we will see how local heuristics may also be used to define
an improved partitioning and heuristics can therefore be used to improve the
efficiency of the NP method through both partitioning and generating feasible
solutions.

The application section of the book consists of seven independent chapters
illustrating how the NP method can be used to solve problems that arise in
a broad range of application areas. Leading off, Chapter 6 looks at a very
complex production scheduling problem that arises where there are flexible
resources that must be scheduled simultaneously to the jobs that are to be
completed, namely the Parallel-Machine Flexible-Resource Scheduling (PM-
FRS) problem. The chapter shows how the NP method can be implemented
for the PMFRS problem and how the problem can be reformulated so that
the NP method may take advantage of the special structure of the problem
in both the partitioning and the generation of good feasible solutions. To
that end, a new random sampling algorithm that biases the sampling towards
good schedules and a simple resource allocation improvement heuristic are
developed. The numerical results indicate that high-quality schedules may be
obtained using the NP method and it is shown that it is particularly useful
for large-scale problems.

With the proliferation of massive data gathering and storage, data mining
for extracting meaningful information from the resulting databases has be-
come increasingly important. Chapter 7 looks at a problem that arises
frequently in practical data mining projects, namely the feature selection

14 1 Introduction

problem briefly introduced above. The chapter shows that the NP method
can be effective in obtaining high-quality feature subsets with reasonable time
and that by using intelligent partitioning the efficiency of the algorithm can
be improved by an order of magnitude. Taking advantage of the fact that
the NP method is effective even if the objective function is noisy, this chap-
ter also develops an adaptive version of the NP algorithm that uses only a
sample of instances in each iteration and is consequently capable of scaling to
large databases. This is possible because of the backtracking aspect of the NP
method that allows the algorithm to recover from incorrect moves made due
to decisions being made based on a relatively small fraction of all instances.
The numerical results indicate that the NP method requires using only a small
fraction of instances in each step to obtain good solutions and this fraction
tends to decrease as the problem size increases, making it very scalable to
large-scale feature selection problems.

An important problem for many organizations today is the design of their
supply chain network. Chapter 8 considers how to apply the NP method to
difficult optimization problems that arise in this context. The computational
results reported in the chapter demonstrate that the NP method is capable of
efficiently producing very high-quality solutions to distribution system design
problems. In particular, the NP method is very effective for large-scale prob-
lems, and for such problems it is demonstrated to be significantly faster and
generates better feasible solutions than either general-purpose combinatorial
optimizers (such the branch-and-cut solver within CPLEX) or specialized ap-
proaches such as those based on Lagrangian relaxation. The results reported
in this chapter also illustrate that the NP framework can effectively combine
problem-specific heuristics with mixed integer programming (MIP) tools.

Many important problems that arise in health care delivery have recently
been increasingly addressed using analytical techniques, and this includes the
planning of radiation treatments. One of the problems that arises when plan-
ning such treatments is the beam angle selection (BAS) problem briefly in-
troduced above, and Chapter 9 treats this problem in more detail. In this
chapter we demonstrate that the NP method provides an effective framework
for obtaining high-quality solutions to the BAS problem. Furthermore, rela-
tive to good quality beam angle sets constructed via expert clinical judgement
and other approaches the beam sets generated via NP showed significant im-
provement in performance as measured by reduction in radiation delivered to
non-cancerous organs-at-risk near the tumors. Thus, in addition to providing
a method for automating beam angle selection, the NP method yields higher
quality beam sets that significantly reduce radiation damage to critical organs.

Chapter 10 deals with a problem in another important area, namely trans-
portation and logistics. In particular, the chapter provides a mixed integer
programming (MIP) formulation of the local pickup and delivery problem
(LPDP) and shows how a hybrid NP that utilizes the lower bounds of the
MP can solve very difficult instances of this problem. This implementa-
tion illustrates how even when mathematical programming techniques cannot

1.4 About the Book 15

effectively solve a given problem due to its size and complexity, they can be
incorporated into the NP framework through both partitioning and a lower
bound biased sampling approach to significantly improve the efficiency of the
NP method. The numerical results reported in this chapter demonstrate that
the hybrid NP algorithm is more effective than a standard mathematical pro-
gramming approach, in particular for large-scale problems.

Chapter 11 deals with a complex extension of the classic job shop schedul-
ing problem, where bill-of-material and work-shift constraints are also ac-
counted for in the the formulation. This problem is motivated by observations
of real job shop systems, and this chapter illustrates how the NP method can
effectively handle realistic problems with very complex constraints. The NP
algorithm developed for this problem utilizes intelligent partitioning to im-
pose structure on the search space, and uses an innovative sampling strategy
to generate high-quality solutions subject to complex constraints. Numerical
results using real industry data are reported.

The final chapter considers problems where uncertainty plays a key role.
Specifically, the design of discrete event systems gives rise to many resource
allocation problems, and in Chapter 12 we discuss two such examples, namely
buffer allocation in communication networks and resource allocation in manu-
facturing systems. In both cases the objective function is stochastic. We show
how metaheuristics such as tabu search can be integrated into the NP frame-
work and how the hybrid method can be used to effectively deal with such
uncertainty.

2

The Nested Partitions Method

This chapter lays the groundwork for subsequent chapters as we introduce
basic characteristics of the nested partitions (NP) optimization framework for
solving large-scale optimization problems. This method systematically parti-
tions the feasible region into subregions and moves from one region to another
based on information obtained by randomly generating feasible sample solu-
tions from each of the current regions. The method keeps track of which part
of the feasible region is the most promising in each iteration and the number
of feasible solutions generated, and thus the computational effort is always
concentrated in this most promising region. The NP method is therefore par-
ticularly efficient for problems where the feasible region can be partitioned
such that good solutions tend to be clustered together and the correspond-
ing regions are thus natural candidates for concentrating the computation
effort. In this chapter we discuss how to effectively partition to achieve such
a structure, how to randomly generate feasible solutions, how to recover from
incorrect moves through backtracking, and show that for any combinatorial
optimization problem the NP method finds the optimal solution in finite time.

2.1 Nested Partitions Framework

Consider a combinatorial optimization problem (COP) or a mixed integer pro-
gram (MIP) where there may exist many locally optimal solutions. The set of
feasible solutions, called the feasible region, is denoted X and a linear or non-
linear objective function f : X → R is defined on this set. In mathematical
notation we are interested in finding a feasible solution x∗ ∈ X that globally
minimizes the objective function, that is, solving the following problem:

min
x∈X

f(x). (2.1)

The value of the objective function is denoted f∗, so

f∗ = f (x∗) ≤ f(x),∀x ∈ X.

20 2 The Nested Partitions Method

When (2.1) is a COP then X is finite and the problem is mathematically
trivial in the sense that all we need to do is to enumerate all the solutions in
X and determine which has the best performance value. In practice, this is
not possible due to the large number of feasible solutions. Some problems have
a special structure that can be exploited to find the optimal solution without
checking all the alternatives. For example, when f is linear and X is defined
by linear constraints, that is, X =

{
x ∈ Zn

+ : Ax ≤ b
}

then (2.1) is an integer
program (IP) and exact optimization methods can often be used to solve at
least small to moderately large problems. However, many real problems are
either not sufficiently structured or too large for this to be possible. Such
complex large-scale optimization problems are the subject of this book.

In each iteration of the NP algorithm we assume that there is a region
(subset) of X that is considered the most promising. We partition this most
promising region into some fixed number of M subregions and aggregate the
entire complimentary region into one region, that is, all the feasible solutions
that are not in the most promising region. At each iteration, we therefore
consider M + 1 subsets that are a partition of the feasible region X, namely
they are disjoint and their union is equal to X. Each of these M + 1 regions
is sampled using some random sampling scheme to generate feasible solutions
that belong to that region. The performance function values of the randomly
generated samples are used to calculate the promising index for each region.
This index determines which region is the most promising region in the next
iteration. If one of the subregions is found to be best, this region becomes the
most promising region. If the complimentary region is found to be best the
region that was the most promising region in the previous iteration becomes
the most promising region again, that is, the algorithm backtracks to a previous
solution. The new most promising region is then partitioned and sampled in
the same fashion.

Unless there is prior domain knowledge that can be utilized, the algorithm
initializes by assuming that all parts of the feasible region are equally promis-
ing, that is, the entire feasible region X is the most promising region. Since
the complementary region is empty, it is sufficient to sample from the M sub-
regions in the first iteration, or in any iteration where X is considered the
most promising region. It is also clear that when X is finite eventually there
will be regions that contain only a single solution. We call such singleton re-
gions regions of maximum depth, and more generally, talk about the depth of
any region. This is defined iteratively in the obvious manner, with X having
depth 0, the depth of the subregions of X being one, and so forth. Then the
problem is infinite, e.g. when solving a MIP, we define the maximum depth
to correspond to the smallest desired sets.

Assume that a method for partitioning has been fixed. This means that
the number of subregions has been decided, as has what rule is followed in
partitioning any given region into subsets. If necessary, a maximum depth d∗

has been specified. We call a subset that is constructed using this fixed parti-
tioning method a valid region. If a valid region σ is formed by partitioning a

2.1 Nested Partitions Framework 21

σ0

σ1 σ2

σ4σ3

σ5 σ6 σ7

σ9 σ10

σ8 σ12 σ13 σ14σ11

Fig. 2.1. Example of partitioning for the NP method.

valid region η, then σ is called a subregion of region η. The following examples
illustrate how partitioning can be done for some simple problems.

Example 2.1. Consider a feasible region that consists of 8 points σ0 =
X = {1, 2, 3, 4, 5, 6, 7, 8} and in each iteration partition the current most
promising region into two disjoint sets (see Figure 2.1). At the first itera-
tion, σ1 = {1, 2, 3, 4} and σ2 = {5, 6, 7, 8} are sampled. Assume that the
promising index (the sampling result) in σ1 is better than in σ2; select σ1 as
the most promising region and further partition σ1 to obtain σ3 = {1, 2} and
σ4 = {3, 4}. At the second iteration, σ3, σ4, and their complimentary region,
σ2, are sampled. If the promising index of σ3 (or σ4) is the best, then select
σ3 to be the most promising region and partition σ3 further into another two
subregions σ5 = {1} and σ6 = {2} (or select σ4 to be the most promising
region and partition σ4 into another two subregions σ7 = {3} and σ8 = {4}).
If the promising index of σ2 is the best, then select σ0 as the most promising
region. Now assume that σ3 is the most promising region, at the third itera-
tion, σ5, σ6, and their complimentary region (σ0 \ (σ5 ∪ σ6)) are sampled. If
the promising index of σ5 (or σ6) is the best, then select σ5 (or σ6) as the most
promising region. If the promising index of the complimentary region is the
best, then select σ1 as the most promising region. As the algorithm evolves,
a sequence of most promising regions {σ(k)} will be generated. Here σ(k) is
the most promising region in the kth iteration.

Example 2.2. Assume the same feasible region and partitioning as in
Example 2.1 (see Figure 2.1). The following sequences are two of the pos-
sible sequences of the most promising regions:

σ0 → σ1 → σ4 → σ1 → σ3 → σ6,

σ0 → σ1 → σ0 → σ2 → σ9 → σ12.

Now consider this sequence,

σ0 → σ1 → σ4 → σ3.

This is not a possible sequence since the algorithm cannot move directly from
σ4 to σ3.

22 2 The Nested Partitions Method

As can be seen from these examples, one of the key elements of the NP
method is to shift the focus from specific points in the feasible region X to
a space of subsets of X, namely the space of all valid regions. We denote
this space Σ. Therefore, in addition to the objective function that is defined
on X, we need to have a set performance function defined on Σ, the valid
subregions of X. We can then use this set function to select the most promising
region. We note that this shift of focus is similar to that employed by any
branching procedure, such as branch-and-bound or branch-and-cut. However,
such branching algorithms focus the computational effort on obtaining a lower
bound for each subset, whereas the NP method defines the promising index
in terms of feasible solutions that are generated using a random sampling
procedure.

To complete the notation, we let σ(k) denote the most promising region
in the kth iteration, and let d(k) denote the depth of σ(k). With all the nec-
essary notation in hand, the algorithm is described below. The special cases
of being at minimum or maximum depth are considered separately, but first
the general case of iteration k is discussed where 0 < d(k) < d∗ and d∗ is
the maximum depth. We refer to this algorithm as the Pure NP Algorithm to
distinguish it from hybrid algorithms that will be introduced later in this book.

Algorithm Pure NP

1. Partitioning. Partition the most promising region σ(k) into M subre-
gions σ1(k), ..., σM (k), and aggregate the complimentary region X \ σ(k)
into one region σM+1(k).

2. Random sampling. Randomly generate Nj sample solutions from each
of the regions σj(k), j = 1, 2, ...,M + 1:

xj
1, x

j
2, ..., x

j
Nj

, j = 1, 2, ...,M + 1.

Calculate the corresponding performance values:

f(xj
1), f(xj

2), ..., f(xj
Nj

), j = 1, 2, ...,M + 1.

3. Calculate promising index. For each region σj , j = 1, 2, ...,M + 1,
calculate the promising index as the best performance value within the
region:

I(σj) = min
i=1,2,...,Nj

f(xj
i), j = 1, 2, ...,M + 1. (2.2)

4. Move. Calculate the index of the region with the best performance value.

ĵk ∈ arg min
j=1,...,M+1

I(σj), j = 1, 2, ...,M + 1. (2.3)

If more than one region is equally promising, the tie can be broken arbi-
trarily. If this index corresponds to a region that is a subregion of σ(k),
that is ĵk ≤ M , then let this be the most promising region in the next
iteration

2.2 Partitioning 23

σ(k + 1) = σĵk
(k) (2.4)

Otherwise, if the index corresponds to the complimentary region, that is
ĵk = M + 1, backtrack to the previous most promising region:

σ(k + 1) = σ(k − 1). (2.5)

For the special case of d(k) = 0 (that is, σ(k) = X), the steps are identical
except that there is no complimentary region. The algorithm thus generates
feasible sample solutions from the subregions and in the next iteration moves
to the subregion with the best promising index. For the special case of d(k) =
d∗ there are no subregions. The algorithm therefore generates feasible sample
solutions from the complimentary region and either backtracks or stays in the
current most promising region.

It is apparent that this basic implementation of the NP method is very
simple. It is indeed this simplicity that gives it the flexibility to effectively in-
corporate application-specific structure and methods while providing a frame-
work that guides the search and enables meaningful convergence analysis. In
the next four sections we discuss the implementation of each step in more
detail.

2.2 Partitioning

The partitioning is of paramount importance to the efficiency of the NP
method because the selected partition imposes a structure on the feasible
region. When the partitioning is done in such a way that good solutions are
clustered together, then those subsets tend to be selected by the algorithm
with relatively little effort. On the other end of the spectrum, if the optimal
solution is surrounded by solutions of poor quality it is unlikely that the al-
gorithm will move quickly towards those subsets. For some problems a simple
partition may automatically achieve clustering of good solutions but for most
practical applications more effort is needed. We will see how it is possible to
partition effectively by focusing on the most difficult decisions and how both
heuristics and mathematical programming can be applied to find partitions
that improve the efficiency of the algorithm. We refer to such partitions as
intelligent partitioning in order to distinguish it from generic partitioning
that partitions the feasible region without considering domain knowledge, the
objective function, or other special structure.

2.2.1 A Generic Partitioning Method

We illustrate a generic partitioning through the traveling salesman problem
(TSP). This classic COP can be described as follows: Imagine a traveling sales-
man who must visit a set of cities. The objective is to minimize the distance
traveled, while the constraints assure that each city is visited exactly once

24 2 The Nested Partitions Method

(assignment constraints) and that the selected sequence of cities forms a con-
nected tour (subset elimination constraints). Without the subset elimination
constraints the TSP reduces to a simple assignment problem, whereas with
these constraints it is a NP-hard problem, which implies that it is unlikely
that a polynomial time algorithm exists for its solution.

Assume that there are n + 1 cities. For a generic partitioning method,
arbitrarily choose city 0 as the starting point and label the other cities as
1, 2, 3,, n. The feasible region becomes all permutations of {1, 2, 3,, n−1},

X =
{
x ∈ Zn

+ : 1 ≤ xi ≤ n, xi �= xj if i �= j
}

.

First, partition the feasible region into n regions by fixing the first city on
the tour to be one of 1, 2, ..., n. Partition each such subregion further into
n − 1 regions by fixing the second city as any of the remaining n − 1 cities
on the tour. This procedure can be repeated until all the cities on the tour
are fixed and the maximum depth is reached. In this way the subregions at
maximum depth contain only a single solution (tour). Figure 2.2(a) illustrates
this approach.

Clearly there are many such partitions. For example, when choosing city
0 as the starting point, instead of fixing the first city on the tour, fix any ith
city on the tour to be one of cities 1, 2, ..., n (see Figure 2.2(b)). This partition
provides a completely different set of subregions, that is, the set Σ of valid
regions will be different than before.

This is a generic partition because it does not take advantage of any spe-
cial structure of the TSP and also does not take the objective function into
account. It simply partitions the feasible region without considering the per-
formance of the solutions in each region of the partition. It is intuitively
appealing that a more efficient implementation of the NP method could be
achieved if the objective function was considered in the partitioning to assure
that good solutions are clustered together.

000

x x x xx x

xxxxx x21 n

000 222 xxx1 n3 0

0 0

00

0 0

0 x

xxx

xx 21

222

xxx n

n31

(b)(a)

Fig. 2.2. Two generic partitions.

2.2 Partitioning 25

2.2.2 Intelligent Partitioning for TSP

The generic partitioning does not consider the objective function when par-
titioning the feasible region. This may lead to difficulties in distinguishing
between regions and consequently the algorithm may not efficiently locate
where to concentrate the computational effort. If the NP method is applied
using the above partitioning, it may backtrack frequently and not settle down
in a particular region. On the other hand, the NP method is likely to perform
more efficiently if good solutions tend to be clustered together for a given
partitioning. To impose such structure, consider the following partitioning
scheme through a simple example.

Example 2.3. Assume n = 5 cities are defined by the undirected graph in
Figure 2.3. As an initialization procedure store the edges in an adjacency
list and sort each of the linked lists that are connected to the cities (see the
following table). For example, in the following adjacency list, the first row
provides a linked list for city A, that is E is the city closest to A, C is the city
second closest to A, B is the city next closest to A, and D is the city farthest
from A.

City Closest two Next two
A → E → C → B → D
B → C → A → D → E
C → A → B → D → E
D → C → E → A → B
E → A → C → B → D

This adjacency list becomes the basis of the intelligent partitioning. The
entire region is all paths that start with the city A (chosen arbitrarily). If in
each iteration the solution space is partitioned into M = 2 subregions then

A

E

C

B

D

4

5 2

4

2
4

3

2

2

1

Fig. 2.3. An example TSP problem.

26 2 The Nested Partitions Method

A-C-A
A-C-B
A-E-A
A-E-C

A-C-D
A-C-E
A-E-B
A-E-D

A-C-D-C
A-C-D-E
A-C-E-A
A-C-E-C
A-E-B-A
A-E-B-C
A-E-D-C
A-E-D-E

A-C-D-A
A-C-D-B
A-C-E-B
A-C-E-D
A-E-B-D
A-E-B-E
A-E-D-A
A-E-D-B

A-B
A-D

A-B-A
A-B-C
A-D-C
A-D-E

A-B-D
A-B-E
A-D-A
A-D-B

Promising
Region

A-E
A-C

A-E
A-C

A-C-B

A-E-C

A-C-D
A-C-E
A-E-B
A-E-D

A-C-D-E

A-E-D-C
A-E-B-C

A-C-D-B

A-C-E-B
A-C-E-D
A-E-B-D

A-E-D-B

A-B-C
A-D-C
A-D-E

A-B-D
A-B-E

A-D-B

A-B
A-D

A A

(a) (b)

Fig. 2.4. Intelligent partitioning for the TSP.

the first subregion consists of all the paths that start with either (A,E) or
(A,C) as the first edge. The second subregion consists of all the paths that
start with (A,B) or (A,D) as the first edge.

Now assume that the first subregion is chosen as the most promising region
(see Figure 2.4). Then the first subregion of that region is the one consisting
of all paths that start with (A,E,A),(A,E,C),(A,C,A) or (A,C,B). The second
region can be read from the adjacency list in a similar manner. Notice that
one of these conditions creates an infeasible solution so there is no guarantee
that all paths in a subregion will be feasible. It is, however, easy to check for
feasibility during the sampling stage, and in fact this must always be done.

2.2.3 Intelligent Partitioning for Feature Selection

The previous section describes intelligent partitioning for the TSP that uses
the objective function directly. We now illustrate a different approach for the
feature selection problem introduced in Chapter 1.

Let A = {a1, a2, ..., an} denote the set of all features (variables). Recall
that in a data mining project, the feature selection problem determines which
elements of A are selected to be used by a subsequent inductive learning
algorithm. In other words, the decision variables are

2.2 Partitioning 27

xi =
{

1 if the ith feature ai ∈ A is included,
0 otherwise.

Thus, given a current set σ(k) of potential feature subsets, partition the set
into two disjoint subsets

σ1(k) = {A ∈ σ(k) : a ∈ A} , (2.6)
σ2(k) = {A ∈ σ(k) : a �∈ A} . (2.7)

Hence, a partition is defined by a sequence of features a1, a2, . . . , an, which
determines the order in which the features are either included or excluded
(see Figure 2.5). According to the goals of a good partition, the order of the
features should be selected such that the features that best separate good
feature subsets from poor sets are selected first. In other words, if there is
a feature that must be included in any high-quality feature subset, or, vice
versa, a feature that should not be included, it is advantageous to select this
feature early. This calls for a reordering of the features in order to impose
the best possible structure. There are a number of strategies that have been
developed to measure the importance of features in classification (Shih 1999),
including the information gain that is obtained by knowing the value of each
of the features, and this is the method that we utilize here.

Recall that the eventual goal of the feature selection is to determine a
set of features in a training data set T such that when an inductive learning
algorithm is applied to this training set, a high quality model results. Now
suppose a training set T of m instances contains sij(a) instances where feature
a is set to its jth value and the instance is classified as the ith class. The total
number of instances where a is set to the jth value is then Sj(a) =

∑c
i=1 sij(a),

All
subsets

Feature a1
not included

Feature a1
included

Feature a2
not included

Feature a2
included

Feature a3
not included

Feature a3
included

Fig. 2.5. Partitioning for the feature selection problem.

28 2 The Nested Partitions Method

where c is the total number of classes. For this training set, the expected
information that is needed to classify a given instance is given by

I(T) = −
c∑

i=1

pi log2(pi), (2.8)

where pi =
∑

j
sij(a)

m is the fraction of instances that belong to the ith class.
The information gain of a feature is the expected amount by which (2.8) is
reduced if the value of the feature is known. It is calculated based on the
entropy of the feature

E(a) =
v∑

j=1

qj(a)Ij(a) (2.9)

where v is the number of distinct values that feature a can take, and qj = Sj(a)
m ,

the relative frequency of the jth value in the training set, is the weight when
a is set to its jth value

Ij(a) = −
c∑

i=1

pij log2(pij), (2.10)

where pij = sij(a)
Sj(a) is the proportion of instances with jth value of feature a

that belong to the ith class. Then the information gain of feature a is (Quinlan
1986)

Gain(T, a) = I(T) − E(a), (2.11)

that is, the expected reduction in entropy that would occur if we knew the
value of feature a. Note that the feature with the highest information gain
has the lowest entropy value.

The maximum information gain, or equivalently the minimum entropy,
determines a ranking of the features. Thus, we select

a[1] = arg min
a∈A

E(a),

a[2] = arg min
a∈A\{a[1]}

E(a),

...
a[n] = arg min

a∈A\{a[1],...,a[n−1]}
E(a).

This new feature order a[1], a[2], . . . , a[n] defines a partition for the NP method
that we call the entropy partition and is an intelligent partitioning for the
feature selection problem. We note that we chose to consider entropy to define
the partition due to past success of using this measure for feature selection.

2.2 Partitioning 29

However, any other method for evaluating the value of individual features
could be used in a similar manner.

We will revisit this example in Chapter 7 and show how this intelligent
partitioning can achieve an order of magnitude improvement in the efficiency
of the NP method.

2.2.4 General Intelligent Partitioning

Intelligent partitioning methods will in general be application-dependent, but
it may be possible to devise some general intelligent partitioning methods that
perform well for a large class of problems. One such method would be based
on generalizing the ideas from the last section.

To develop a general intelligent partitioning scheme, we use the diver-
sity idea introduced above, which originates in information theory and is well
known in areas such as machine learning and data mining. For this purpose
a solution needs to be classified as being the same from the point of view of
performance. A natural way to think about this is to say that two solutions
are the same if there is little difference in their objective function values. Thus,
a valid subregion where there are many solutions with significantly different
objective function values is considered diverse, and vice versa. Diverse subre-
gions are undesirable as they make it difficult to determine which subregion
should be selected in the next move.

To use traditional diversity measures, classify each solution into one cat-
egory. First specify a small value ε > 0 such that two solutions x1, x2 ∈ X
can be defined as having similar performance if |f(x1) − f(x2)| < ε. Then
construct categories such that all solutions in each category are similar in this
sense, and for any two categories there is at least one solution in each such
that both are dissimilar.

The following scheme can now be used to construct an intelligent
partitioning:

1. Use random sampling to generate a set of M0 sample solutions.
2. Evaluate the performance f(x) of each one of these sample solutions, and

record the average standard error s̄2.
3. Construct g(s̄2) intervals or categories for the sample solutions.
4. Let Sl be the frequency of the lth category in the sample set, and ql = Sl

M0
be the relative frequency.

5. Let i = 1.
6. Fix xi = xij , j = 1, 2, ...,m(xi).
7. Calculate the proportion pl of solutions that falls within each category,

and use this to calculate the corresponding entropy value:

E(i) =
g(s̄2)∑

l=1

ql(i) · Il(i) (2.12)

30 2 The Nested Partitions Method

where

Il(i) = −
g(s̄2)∑

l=1

pij log2(pij), (2.13)

where pij is the proportion of samples with xi = xij .
8. If i = n, stop; otherwise let i = i + 1 and go back to step 6.

A high entropy value indicates high diversity, so it is desirable to partition by
fixing the lowest entropy dimensions first. Thus, order the dimensions accord-
ing to their entropy values

E(x[1]) ≤ E(x[2]) ≤ ... ≤ E(x[n]), (2.14)

and let this order determine the intelligent partition.
Note that we would apply this procedure before starting the actual NP

method. Significant computational overhead may be incurred when determin-
ing an intelligent partition in this manner, but for difficult applications it
is often worthwhile to expend such computational effort developing intelli-
gent partitioning. This imposes useful structure that can thus improve the
efficiency of the NP method itself, which often vastly outweighs the initial
computational overhead.

2.3 Randomly Generating Feasible Solutions

In addition to using domain understanding to devise partitioning that imposes
a structure on the feasible region, the other major factor in determining the
efficiency of the NP method is the method employed for generating feasible
solutions from each region. The Pure NP Algorithm prescribes that this should
be done randomly but there is a great deal of flexibility both in how those
random samples should be generated and in how many random samples should
be obtained.

The goal should be for the algorithm to frequently make the correct move,
that is, either to move to a subregion containing a global optimum or to back-
track if the current most promising region does not contain a global optimum.
In the theoretical ideal, the correct move will always be made if the best fea-
sible solution is generated in each region. This is of course not possible except
for trivial problems, but in practice the chance of making the correct move can
be enhanced by (i) biasing the sampling distribution so that good solutions
are more likely to be selected, (ii) incorporating heuristic methods to seek out
good solutions, and (iii) obtaining a sufficiently large sample. We will now
explore each of these issues.

2.3.1 Biased Random Sampling

We illustrate some simple random sampling methods for generating feasible
solutions to the TSP. Assume that the generic partitioning (Figure 2.2) is used

2.3 Randomly Generating Feasible Solutions 31

and the current most promising region is of depth k. This means that the first k
edges in the TSP tour have been fixed. Generating a sample solution from this
region entails determining the n−k remaining edges. One approach would be
simply to select the edges consecutively, such that each feasible edge has equal
probability of being selected (uniform sampling). However, this approach may
not give good results in practice. The reason is the same as for why a generic
partitioning may be inefficient, that is, uniform sampling considers only the
solution space itself.

To incorporate the objective function into the sampling, consider the fol-
lowing biased sampling schemes. At each iteration, weights (wji−1,jl

) are calcu-
lated and assigned to each of the remaining cities that need to be determined.
The weight is inversely proportional to the cost of the edge from city jl to the
city ji−1. Specifically we can select the weights as

wji−1,jl
=

(
cji−1,jl

)−1

∑n
h=i

(
cji−1,jh

)−1 ,

where the weights have been normalized so that the sum is one. The next
edge can now be selected by uniformly generating a number u between zero
and one and comparing this number with the weights, that is, if

i∗∑

m=i

wji−1,jm
≤ u <

i∗+1∑

m=i

wji−1,jm

then city i∗ is selected and (ji−1, ji∗) becomes the next edge.
This is a randomized procedure for generating feasible sample solutions.

Each edge has a positive probability of being selected next and thus for every
region, all of the feasible tours in the region have a positive probability of
being generated using this procedure. However, this probability is no longer
uniform. The probability has been biased so that low-cost edges are selected
with higher probability and tours with many low-cost edges are therefore gen-
erated with higher probability. In our computational experience such biased
sampling approaches will tend to significantly improve the efficiency of the
NP method.

It is important to note that sampling is very flexible when dealing with
very hard constraints. Say for example that the TSP has some additional
constraints such as time windows or restrictions on the order in which the
cities must be visited. Such constraints can be very difficult to deal with using
mathematical programming techniques, but only a minor modification of the
sampling procedure would be needed to assure that only feasible solutions
are generated. Thus, the use of sampling makes the NP method extremely
effective when dealing with complex constraints. As noted in Section 1.3.1
of Chapter 1, many problems that arise in complex applications have both
easy and complex constraints and using the NP method, it is possible to use
sampling to deal with the complex constraints, while using exact methods to
deal with the easy constraints.

32 2 The Nested Partitions Method

2.3.2 Incorporating Heuristics in Generating Solutions

In addition to biasing the sampling distribution, it may be possible to quickly
generate good feasible solutions by applying a (randomized) heuristic search.
This can be done for example with a simple local search such as in the following
algorithm that generates N feasible solutions.

Local Search Sampling

1. Obtain one random sample using either uniform or weighted sampling.
2. Obtain Nj −1 more samples by making small perturbations of the sample

generated in the first step.

To illustrate this approach consider how the local search sampling can be
applied to the TSP. The second step could for example involve randomly
selecting two edges and connecting the first vertex of the first edge to the first
vertex of the second edge, and connecting the second vertex of the first edge
to the second vertex of the second edge. This technique is similar to a 2-opt
exchange but does not consider whether the performance is improved by this
exchange. Other more complicated variants, with more than two edges selected
at random, are easily obtained in a similar fashion. Step 2 is further illustrated
in Figure 2.6. A sample obtained in step 1 is shown with the combination of
solid and dotted lines. Then in step 2, select the edges (C,E) and (D,A) at
random and replace them with the edges (C,D) and (E,A). The new edges are
shown as dashed lines in Figure 2.6. Clearly this procedure provides us with
a new sample solution with relatively little effort.

Instead of using an application-specific heuristic such as the one above, any
other heuristic could be incorporated in the same manner. For example, we can
incorporate the genetic algorithm (GA) cross-over operator into the sampling
as follows for the TSP problem above. Start by randomly generating two
sample solutions, say, (A,E,C,D,B) and (E,A,C,B,D), called the parents.
Select a cross-over point, say after the second city on the tour, and generate
two new solutions called the children, namely (A,E,C,B,D), where the first
two elements come from the first parent and the other three from the second,
and (E,A,C,D,B), where the first two elements come from the second parent

E

A

B

C

D

4

2

2
21

4

3

Edges included in the new path.

Edges included in the old path.

Fig. 2.6. The second step in the two-step sampling scheme.

2.4 Backtracking and Initialization 33

and the other three from the first. Of course the cross-over operator can be
applied more than once and the other main GA operator of mutation can
similarly be incorporated into the NP framework. Thus, an entire GA search
can easily be used to generate high-quality feasible solutions from each region
and the same is true for any other heuristic that is thought to perform well
for a particular application.

We refer to implementations of the NP method that incorporate other
general-purpose heuristics, such as a genetic algorithm, as hybrid NP methods.
Such hybrids, including a detailed NP/GA hybrid will be explored further in
Chapter 5 and numerous specific application examples are also presented in
Part II of the book.

2.3.3 Determining the Total Sampling Effort

As might be expected, incorporating special structure and heuristics to gen-
erate feasible solutions results in finding better solutions. This in turn leads
to the NP algorithm selecting the correct move more frequently and thus im-
proves the efficiency of the search. The question still remains as to how many
sample solutions are needed to make the correct choice with a sufficiently large
probability.

In Chapter 3 we will show that it is possible to connect the minimum re-
quired probability of making a correct move to the desired probability that the
optimal solution is eventually found. The number of feasible sample solutions
required to assure this minimum probability depends on the variance of the
performance of the generated solutions. In the extreme case, if the procedure
that is used to generate feasible solutions always results in a solution that has
the same performance then there is no advantage to generating more than
one solution. Vice versa, if the procedure leads to solutions that have greatly
variable performance then it may be necessary to generate many solutions to
obtain a sufficiently good estimate of the overall performance of the region.

This observation motivates the following two-stage sampling approach. In
the first stage, generate a small number of feasible solutions using uniform
sampling, weighted sampling, local search sampling, or any other appropriate
method for generating sample solutions. Calculate the variance of the per-
formance of these solutions and then apply statistical selection techniques to
determine how many total samples are needed to achieve the desired results.
This procedure will be made more precise in Chapter 3 where we address this
issue in detail (see Section 3.2).

2.4 Backtracking and Initialization

Another critical aspect of the NP method is the global perspective it achieves
by generating solutions from the complimentary region and backtracking if
necessary. Specifically, if the best feasible solution is found in the complimen-
tary region, this is an indication that the incorrect move was made when σ(k)

34 2 The Nested Partitions Method

was selected as the most promising region so the NP algorithm backtracks by
setting σ(k + 1) = σ(k − 1).

Backtracking is usually very easy to implement since some type of trunca-
tion is usually sufficient and we do not need to keep track of the previous most
promising region. Say for example in a five-city TSP problem that the current
most promising region is defined by the sequence of cities B ← D ← C with
the remaining cities undecided. Thus, the current most promising region can
be written as

σ(k) = {(B,D,C, x4, x5) : x4, x5 ∈ {A,E}, x4 �= x5} .

If backtracking is indicated, then the next most promising region becomes

σ(k + 1) = {(B,D, x3, x4, x5) : xi ∈ {A,C,E}, xi �= xj if i �= j} .

Thus, backtracking is simply achieved by truncating the sequence that defines
the current most promising region. Similar methods can be used for most other
problems, making backtracking possible with very little or no overhead.

Unless otherwise noted we will always assume that backtracking is done
as above, that is, σ(k + 1) = σ(k − 1). However, it is clear that it is possible
to backtrack in larger step, for example by truncating two or three cities
from the sequence that defines the current most promising region in the TSP
application. The advantage is that this would enable the algorithm to reverse a
sequence of incorrect moves more easily. On other hand it reverses several NP
moves based on the results from one iteration and if the backtracking turns out
to be incorrect, it would take several moves to get back to the previous point.
For this reason we do not advocate this approach but rather that the focus be
directed towards making each move correctly with high probability. As noted
above, this can be done by developing intelligent partitioning and using biased
sampling and heuristics to generate high-quality feasible solutions. In other
words, by incorporating domain knowledge and special structure, incorrect
moves become infrequent and it is thus always sufficient to simply backtrack
one step to the previous most promising region.

As we will see in the next section it is backtracking that assures that
the NP method converges to the globally optimal solution and does not be-
come stuck at a local optimum. However, in practice excessive backtracking
indicates an inefficient implementation of the NP method. If backtracking is
correctly called for this implies that at least one incorrect move was previously
made. Thus, by monitoring the amount of backtracking, it is possible to design
adaptive NP algorithms. If excessive backtracking is observed, this indicates
that more effort is needed to evaluate regions before a choice is made. More
or higher-quality feasible solutions should thus be generated before a choice
is made, which can be achieved with uniform random sampling, local search
sampling, or any other appropriate method. In Chapter 7 we will develop such
an adaptive NP algorithm in detail.

Finally, we note that although we will generally assume that the initial
state of the search is to let the entire feasible region be the most promising,

2.5 Promising Index 35

that is, σ(0) = X, this need not be the case. For example, if time is very limited
and it is important to generate good solutions very quickly (and then possibly
continue to generate better solutions), it may be worthwhile to initialize the
search and set σ(0) = η, where η ∈ Σ \ {X} is a partial solution determined
using a heuristic or domain knowledge.

2.5 Promising Index

The final aspect of the NP method is the promising index that is used to
select the next most promising region. This promising index should be based
on the sample information obtained by generating feasible sample solutions
from each region, but other information could also be incorporated.

Unless otherwise noted we will assume that the promising index for a
valid region σ ∈ Σ is based only on the set of feasible solutions Dσ that are
generated from this region, and as in (2.2) it is taken to be

I(σ) = min
x∈Dσ

f(x). (2.15)

Other promising indices may also be useful. For example, instead of basing
the promising index only on an extreme point, the promising index could be
defined as the average sample performance

I(σ) =
1

|Dσ|
∑

x∈Dσ

f(x). (2.16)

It may also be helpful to incorporate more advanced mechanisms, such as
mathematical programming bounds or the output of a metamodel, into the
promising index. Say for example that it is easy to solve a relaxation of the
problem (2.1) using mathematical programming methods and hence obtain a
lower bound f(σ) on the objective function. This lower bound can be combined
with the upper bound minx∈Dσ

f(x) into a single promising index

I(σ) = α1 · f(σ) + α2 · min
x∈Dσ

f(x), (2.17)

where α1, α2 ∈ R are the weights given to the lower bound and upper bound,
respectively. The lower bound could be obtained using any appropriate stan-
dard mathematical programming method, such as linear programming (LP)
relaxation, Lagrangian relaxation, or a application-specific COP relaxation,
such as relaxing the subset elimination constraints for a TSP.

However, for large-scale complex discrete problems where the NP method
is the most useful, it is often not possible to obtain useful lower bounds. In
such cases, a probabilistic bound may be useful, which may be obtained as
follows: The process by which feasible solutions are generated from each region
attempts to estimate the extreme point of the region. This may or may not
include a heuristic search. Let x∗(σ) denote the true extreme point (minimum)

36 2 The Nested Partitions Method

of a valid region σ ∈ Σ. Then the extreme performance f̂∗(σ) = f (x∗(σ)) is
estimated as

f̂∗(σ) = min
x∈Dσ

f(x), (2.18)

where the set of feasible solutions Dσ could be based on pure random sam-
pling, applying a local search heuristic to an initial random sample, or ap-
plying a population-based heuristic such as a genetic algorithm to a random
initial population. Now assume that we generate several such sets D1

σ, ...,Dn
σ

and calculate the corresponding extreme value estimates f̂∗
1 (σ), ..., f̂∗

n(σ). It is
then possible to construct an overall estimate

f̂∗
min = min

i
min
x∈Di

σ

f(x) (2.19)

and a 1− α confidence interval
[
l(D1

σ, ...,Dn
σ), u(D1

σ, ...,Dn
σ)

]
for the extreme

value, that is,

P
[
f∗(σ) ∈

[
l(D1

σ, ...,Dn
σ), u(D1

σ, ...,Dn
σ)

]]
= 1 − α.

The left end of the confidence interval may thus be viewed as a probabilistic
lower bound for the performance (extreme point) of the region

f̂(σ) = l(D1
σ, ...,Dn

σ). (2.20)

This can then be incorporated into the promising index similar to the exact
bound above, namely,

I(σ) = α1 · f̂(σ) + α2 · f̂∗
min. (2.21)

The estimation of the confidence interval is typically based on the assumption
that the extreme values follow a Weibull distribution.

In addition to the exact or probabilistic lower bounds, many other con-
siderations could be incorporated into the promising index. For example cost
penalties obtained from other regions or the variability of performance within
the region could be added. The latter would be of particular interest if we want
to obtain not only good solutions but also robust solutions, that is, solutions
that are such that small changes in the solution will not greatly change the
performance. In general, any domain knowledge or application-appropriate
technique can in a similar manner be incorporated into the promising index
and used to guide the search more efficiently.

Finally, if rather than only considering the best sample point, we wish to
take advantage of all of the sample points, as in the average promising index
in equation (2.16), those can often be incorporated into a metamodel, such
as a response surface or a neural network, that predicts the optimal solution
based on the sample points. Thus, the promising index becomes:

I(σ) = min
x∈σ

MDσ
(x), (2.22)

where MDσ
is a metamodel trained on the sample points Dσ, for example a

neural network.

2.6 Convergence Analysis 37

2.6 Convergence Analysis

In this section we analyze the convergence of the NP algorithm. The first
main convergence result is that the NP algorithm converges to an optimal
solution of any COP in finite time. The proof is based on a Markov chain
analysis that utilizes the fact that the sequence of most promising regions
is an absorbing Markov chain and the set of optimal solutions corresponds
exactly to the absorbing states. Since the state space of the Markov chain is
finite it is absorbed in finite time. With some additional assumptions, this
result can be generalized to apply to problems with infinite countable feasible
regions (such as IPs) and even continuous feasible regions (such as MIPs).

The second main result is that the time until convergence can be bounded
in terms of the size of the problem and the probability of making the cor-
rect move. This result will show that the expected number of iterations grows
slowly in terms of the problem size, which explains why the NP algorithm is
effective for large-scale optimization. On the other hand, as the probability
of making the correct move decreases, the expected number of iterations in-
creases exponentially. This underscores the need to increase this probability
by incorporating special structure in both the partitioning and the method
used for generating feasible solutions.

2.6.1 Finite Time Convergence for COPs

In this section we assume that the NP algorithm is applied to a combinato-
rial optimization problem (COP). We start by formally stating the Markov
property.

Proposition 2.1. Assume that the partitioning of the feasible region is fixed
and Σ is the set of all valid regions. The stochastic process {σ(k)}∞k=1, defined
by the most promising region in each iteration of the pure NP algorithm, is a
homogeneous Markov chain with Σ as state space.

Proof: The partitioning defines the state space Σ of all valid regions. The NP
algorithm moves from one state (valid region) to another based on the solu-
tions generated from each state. Since the method for generating solutions is
randomized the sequence {σ(k)}∞k=1 of valid regions is a stochastic process.
Since it does not depend on the iteration the stochastic process is homoge-
neous. Finally, since only solutions generated in the current iteration are used
to determine where to move next, {σ(k)}∞k=1 has the memoryless property
and is a homogeneous Markov chain.

We next show that the optimal solution(s) are absorbing states.

Proposition 2.2. Assume that the partitioning of the feasible region is fixed
and Σ is the set of all valid regions. A state η ∈ Σ is an absorbing state for
the Markov chain {σ(k)}∞k=1 if and only if d(η) = d∗ and η = {x∗}, where x∗

38 2 The Nested Partitions Method

is a global minimizer of the original problem, that is, it solves equation (2.1)
above.

Proof: We will start with the “if” part. Assume ζ = σ(k) = {x̂} where f(x̂) ≤
f(x), ∀x ∈ X, then the transition probability of staying in ζ is given by

Pζ ζ = P [f̂min(ζ) ≤ f̂min(X \ ζ)]

= P [f(x̂) ≤ f̂min(X \ ζ)] = 1.

The fact that the NP algorithm breaks ties at maximum depth by favoring
the current region is used. This proves that ζ is an absorbing state. Now its
converse is proved. It is clear that a state that is an absorbing state is always
of maximum depth since the transition probability of staying in such state is
zero. It can therefore be assumed that η ∈ Σ such that d(η) = d∗. In this
case η has only one point, say η = {x̃}. If there exists a better point in the
complimentary region, say x∗ ∈ X \ η such that f(x∗) < f(x̃), then one gets
the following transition probabilities.

Pη X\η = P [f̂min(X \ η) < f̂min(η)]

= P [f̂min(X \ η) < f(x̃)]
≥ P [Point x∗ is picked at random from the set X \ η] > 0.

This shows that η is not an absorbing state, and completes the proof.
The following theorem is now immediate.

Theorem 2.3. The NP algorithm converges almost surely to a global mini-
mum of the optimization problem given by equation (2.1) above. In mathemat-
ical notation, the following equation holds:

lim
k→∞

σ(k) = {x∗} a.s. (2.23)

where
x∗ ∈ argmin

x∈Θ
f(θ).

Proof: Follows directly from the regions containing a global optimizer being
the only absorbing states, and all other states being transient and leading to
an absorbing state.

It is evident that the transition probabilities of the Markov chain depend
on the partitioning and the manner by which feasible solutions are generated.
This in turn will determine how fast the Markov chain converges to the ab-
sorbing state and thus determine the performance of the NP algorithm. It
is therefore clearly of great practical importance to develop intelligent par-
titioning for specific problem structures of interest. The following examples
illustrate how to calculate the transition probabilities and how they are de-
pendent on the partitioning.

2.6 Convergence Analysis 39

Example 2.4 Consider again the example introduced in Example 2.1. Recall
that σ0 = {1, 2, 3, 4, 5, 6, 7, 8} and 14 other valid regions are defined by par-
titioning each region into 2 subregions (Mmax = 2). This partitioning can be
represented by the Markov chain in Figure 2.7, which also shows the transition
probabilities given the function values described below.

Further assume that in each iteration, we uniformly generate one point
in each region at random (Nmax = 1), and that the relative ranking of the
function values is given as follows:

f1 < f5 < f6 < f7 < f8 < f3 < f2 < f4.

To simplify the notation we define fi = f(σi), i = 1, 2, .., 8. Now the transition
probabilities can be easily calculated. See for example, that if the current
region is σ0, then look at regions σ1 = {1, 2, 3, 4}, and σ2 = {5, 6, 7, 8}, and
the only way σ1 can be found to be better is if point 1 is picked up at random.
Since it is assumed that points are selected uniformly, the probability of this
is 1

4 . Therefore we get Pσ0 σ1 = 1
4 and it follows that since Pσ0 σ2 = 1−Pσ0 σ1 ,

one gets Pσ0 σ2 = 3
4 .

Now assume that the current region is σ1 and look at the regions σ3 =
{1, 2}, σ4 = {3, 4} and X \ σ1 = {5, 6, 7, 8}. It is clear that no matter which
point is selected from σ4, one will always generate a better point from X \σ1.
We can therefore conclude that Pσ1 σ4 = 0.

Now σ3 can only be considered best if solution 1 is randomly selected from
that region. Thus Pσ1 σ3 = 1

2 . Since there are only three regions that have
positive transition probability, the third is now also determined as Pσ1 σ0 = 1

2 .
In a similar manner we can for example get Pσ3 σ5 = 1 and Pσ5 σ5 = 1.

This shows σ5 is an absorbing state, which is in agreement with it being
the global optimum. The remaining transition probabilities are calculated the

σ0

σ1 σ2

σ4σ3

σ5 σ7

σ9 σ10

σ8 σ12 σ13 σ14σ11σ6

1

1 1/7 2/7 0 6/7 5/7 4/7 3/7

4/7
3/7

1/2

1/4

1/6

2/7

1/7

5/6
0 1/2 0

03/4

10
5/70

6/70

0

1/4

1/2

1/2

0

1/6

5/6

3/4

Fig. 2.7. Transition probabilities for the Markov chain.

40 2 The Nested Partitions Method

same way, and they are shown in Figure 2.7. It is immediate from the figure
that there are no other absorbing states.

In the next example the transition probabilities are calculated for the same
problem, but with a different partitioning .

Example 2.5 Now assume the same problem as in the preceding example,
except that in each iteration we partition into 4 subregions (Mmax = 4).
Then get the following regions: σ0 = {1, 2, 3, 4, 5, 6, 7, 8}, σ1 = {1, 2}, σ2 =
{3, 4}, σ3 = {5, 6}, σ4 = {7, 8}, σ5 = {1}, σ6 = {2} and so forth. It is
immediately clear that Pσ0,σ1 = 1

2 and Pσ1,σ5 = 1.
It can be concluded that there is a 50% probability of getting to the global

optimum in only two iterations. This is clearly much better than with the
previous partition, and illustrates that how one partitions the feasible region
will in general affect how fast the algorithm converges. It should be noted
however, that in this second example, 4-5 function evaluations are done in
each step that is not at maximum depth, but in the first example, only 2-3
function evaluations were done in each step.

The last two examples clearly illustrate how the partitioning influences
the transition probabilities and thus the speed of convergence. It is also clear
that the transition probabilities depend on the number of points sampled from
each region in each iteration.

Example 2.6. Alternatively, it is possible to still partition into two subregions
for each region, but to do it in a different manner. Say for example that we
let η1 = {1, 5, 6, 7}, η2 = {2, 3, 4, 8}, η3 = {1, 5}, η4 = {6, 7}, η5 = {1}
and so forth. Then Pη0,η1 = 1, Pη1,η3 = 1 and Pη3,η5 = 1. Hence the NP
method converges to the global optimum in three iterations with probability
one. Such optimal partitioning always exists but would normally require too
much computational effort. On the other hand, it shows how the NP method
is heavily dependent on the partitioning and provides motivation for finding
intelligent partitioning strategies.

It should be noted that the analysis in this section is identical for integer
programming (IP) problems and other problems that may have countable
infinite feasible regions, except that the Markov chain now has an infinite
state space.

2.6.2 Time until Convergence

It has been established that the Markov chain of most promising regions will
eventually be absorbed at a global optimum. Although such convergence re-
sults are important, it is of high interest to establish bounds on how many
iterations, and consequently how many function evaluations, are required be-
fore the global optimum is found. In this section such bonds are established
for the expected number of iterations until absorption. It is assumed that Σ

2.6 Convergence Analysis 41

is finite, which is the case for all COPs and for MIPs if the partitioning is
defined appropriately. To simplify the analysis, it is assumed that the global
optimum is unique.

Let Y denote the number of iterations until the Markov chain is absorbed
and let Yη denote the number of iterations spent in state η ∈ Σ. Since the
global optimum is unique, the Markov chain first spends a certain number of
iterations in the transient states and when it first hits the unique absorbing
state, it never visits any other states. Hence it is sufficient to find the expected
number of visits to each of the transient states. Define Tη to be the hitting
time of state η ∈ Σ, i.e., the first time that the Markov chain visits the state.
Also let E denote an arbitrary event and let η ∈ Σ be a valid region. We let
Pη[E] denote the probability of event E given that the chain starts in state
η ∈ Σ.

It will be convenient to consider the state space Σ as consisting of three
disjoint subsets as follows: Let σ∗ be the region corresponding to the unique
global optimum. Define Σ1 = {η ∈ Σ\{σ∗} | σ∗ ⊆ η} and Σ2 = {η ∈ Σ | σ∗ �⊆
η}. Then Σ = {σ∗} ∪ Σ1 ∪ Σ2 and these three sets are disjoint. Using this
notation, we can now state the following result, which relates the expected
time to the hitting probabilities.

Theorem 2.4. The expected number of iterations until the NP Markov chain
is absorbed is given by

E[Y] = 1 +
∑

η∈Σ1

1
Pη[Tσ∗ < Tη]

+
∑

η∈Σ2

PX [Tη < min{TX , Tσ∗}]
Pη[TX < Tη] · PX [Tσ∗ < min{TX , Tη}]

.

(2.24)

Proof: The number of iterations until the Markov chain is absorbed by the
global optimum is equal to the number of visits to all the transient states plus
one transition into the absorbing state, i.e., Y = 1 +

∑
η∈Σ1

Yη +
∑

η∈Σ2
Yη.

Hence, since Σ is finite and

E[Y] = 1 +
∑

η∈Σ1

E[Yη] +
∑

η∈Σ2

E[Yη]. (2.25)

We therefore need to show that

E[Yη] =

{
1

Pη[Tσ∗<Tη] , η ∈ Σ1

PX [Tη<min{TX ,Tσ∗}]
Pη [TX<Tη]·PX [Tσ∗<min{TX ,Tη}] , η ∈ Σ2.

(2.26)

It is known from Markov chain theory that the expected number of visits
to transient states is given by the following equation (see Theorem 1 in Hoel,
Port and Stone 1972).

E[Yη] =
PX [Tη < ∞]

1 − Pη[Tη < ∞]
. (2.27)

42 2 The Nested Partitions Method

It is also well known that each transient state is visited finitely many times
(Hoel, Port and Stone 1972, p. 19) and since Σ is finite, this implies that the
hitting time of the absorbing state is finite.

Now first consider the case where η ∈ Σ1. For such states, in order to
move from the entire feasible region to the global optimum, the Markov chain
must first visit η at least once. Hence, since the absorbing time is finite, the
hitting time of η must also be finite, i.e., PX [Tη < ∞] = 1. Now if the starting
point is η ∈ Σ1 then one of two events occurs. Either the Markov chain visits
the absorbing state before it visits η and thus never visits η again, or it visits
η before it visits the absorbing state. Hence Pη[Tη < ∞] = Pη[Tσ∗ > Tη] or
equivalently, 1 − Pη[Tη < ∞] = Pη[Tσ∗ < Tη]. This proves the first half of
equation (2.26).

Assume that η ∈ Σ2. By definition of Σ2, σ∗ �⊆ η so η �= X. Therefore, if
the chain starts in state η ∈ Σ2 then Tη �= TX and one of two events occurs:
Tη < TX or TX < Tη. Hence the probability of finite hitting time can be
decomposed as follows:

Pη[Tη < ∞] = Pη[Tη < TX] + Pη[TX < Tη] · PX [Tη < ∞]
= 1 − Pη[TX < Tη] + Pη[TX < Tη] · PX [Tη < ∞],

so
1 − Pη[Tη < ∞] = Pη[TX < Tη] (1 − PX [Tη < ∞]) . (2.28)

If the chain starts in state X then one of three events occurs, Tη <
min{TX , Tσ∗}, TX < min{Tη, Tσ∗} or Tσ∗ < min{TX , Tη}. Since Pσ∗(Tη <
∞) = 0, we have

PX [Tη < ∞]=PX [Tη < min{TX , Tσ∗}]+PX [TX < min{Tη, Tσ∗}]·PX [Tη < ∞].

This can be rewritten as

PX [Tη < ∞] =
PX [Tη < min{TX , Tσ∗}]

1 − PX [TX < min{Tη, Tσ∗}]

=
PX [Tη < min{TX , Tσ∗}]

PX [Tη < min{TX , Tσ∗}] + PX [Tσ∗ < min{TX , Tη}]
.(2.29)

Now we can substitute equation (2.29) into equation (2.28) to obtain

1 − Pη[Tη < ∞] =
Pη[TX < Tη] · PX [Tσ∗ < min{TX , Tη}]

PX [Tη < min{TX , Tσ∗}] + PX [Tσ∗ < min{TX , Tη}]
.

Finally we obtain

E[Yη] =
PX [Tη < ∞]

1 − Pη[Tη < ∞]
=

PX [Tη < min{TX , Tσ∗}]
Pη[TX < Tη] · PX [Tσ∗ < min{TX , Tη}]

.

This completes the proof.

2.6 Convergence Analysis 43

The expected number of iterations (2.24) depends on both the partitioning
and the manner by which feasible sample solutions are generated, as well
as the structure of the problem itself. Calculating this expectation exactly
is therefore complicated. However, with some additional assumptions it is
possible to find useful bounds on the expected number of iterations.

Assume that P ∗ is a lower bound on the probability of selecting the correct
region. We refer to the probability P ∗ as the minimum success probability.
The next theorem provides an upper bound for the expected time until the
NP algorithm converges in terms of P ∗ and the size of the feasible region as
measured by d∗.

Theorem 2.5. Assume that P ∗ > 0.5. The expected number of iterations until
the NP Markov chain is absorbed is bounded by

E [Y] ≤ d∗

2P ∗ − 1
. (2.30)

Proof: By definition of P ∗ the Markov chain {σ(k)} has a minimum success
probability of P ∗ given its current state σ(k) ∈ Σ, that is, with probability
of at least P ∗, σ(k + 1) will be closer to σ∗ than σ(k) in terms of the number
of transitions required to move between the regions. Now imagine a Markov
chain that is identical to {σ(k)} except that this success probability is even
and equal to P ∗ for every state σ ∈ Σ. Now note that since the success prob-
ability is constant, the exact state is not of any consequence, but rather the
number of transitions it takes to move from the current state σ(k) to the
optimum. The maximum such distance is 2d∗, and we can therefore, with-
out losing any information, reduce the state space to S = {0, 1, 2,, 2d∗}.
With this representation the entire feasible region X corresponds to state d∗,
and we can let the global optimum correspond to state zero. Given a state
x ∈ S the probability of moving to x − 1 is fixed and equal to P ∗, and the
probability of moving to x + 1 is equal to 1 − P ∗, independent of the state.
Therefore, the new Markov chain is a simple random walk. Furthermore, it is
clear that E [Y] ≤ E [Y ′], where Y ′ is the first time the random walk visits σ∗

if it starts in state d∗, which corresponds to X (the starting state of the NP
Algorithm).

Hence, if we calculate the expected hitting time for the random walk this
automatically gives us an upper bound for the original Markov chain. Fur-
thermore, since we are only interested in the first time the global optimum is
encountered, we can assume 0 is an absorbing barrier and look at the time of
absorption. Note also that 2d∗ is a reflective barrier. Then it is known that the
expected time T of absorption when starting in state u is (Weesakul, 1961)

Eu[T] =
u

2P ∗ − 1
+

(1 − P ∗)2d∗+1

(P ∗)2d∗(2P ∗ − 1)2

(
1 −

(
P ∗

1 − P ∗

)u)
. (2.31)

Thus, for u = d∗, that is, when the algorithm starts in state σ(0) = X, we
have

44 2 The Nested Partitions Method

Ed∗ [T] =
d∗

2P ∗ − 1
+

(1 − P ∗)2d∗+1

(P ∗)2d∗(2P ∗ − 1)2

(

1 −
(

P ∗

1 − P ∗

)d∗)

≡ C1. (2.32)

Now since P ∗ > 0.5, P∗

1−P∗ > 1, so

(

1 −
(

P ∗

1 − P ∗

)d∗)

< 0,

and hence
(1 − P ∗)2d∗+1

(P ∗)2d∗(2P ∗ − 1)2

(

1 −
(

P ∗

1 − P ∗

)d∗)

< 0.

Therefore,

E[Y] ≤ Ed∗ [T] ≤ d∗

2P ∗ − 1
,

which proves the theorem.

Note that (2.30) grows only linearly in d∗. Furthermore, as for any other
tree, the depth d∗ of the partitioning tree is a logarithmic function of the
input parameter(s). In other words, assume for simplicity that there is a single
input parameter n. Then (2.30) provides a bound on the expected number of
iterations that is O(log n). This shows that the expected number of iterations
required by the NP algorithm grows very slowly in the size of the problem,
which partially explains why the NP algorithm is very effective for solving
large-scale optimization problems.

On the other hand, the bounds (2.30) grow exponentially as P ∗ → 1
2 . This

is further illustrated in Table 2.1, which shows the bounds for several problem
sizes (d∗) and values for the minimum success probability (P ∗). Clearly the

Table 2.1. Bounds on the expected time until convergence.

Maximum Depth (d∗)

Success Prob. 2 5 10 20 30

55% 20 50 100 200 300
60% 10 25 50 100 150
65% 7 17 33 67 100
70% 5 13 25 50 75
75% 4 10 20 40 60
80% 3 8 17 33 50
85% 3 7 14 29 43
90% 3 6 13 25 38
95% 2 6 11 22 33

2.7 Continuous Optimization Problems 45

number of expected iterations increases rapidly as the success probability
decreases.

These results underscore the previously made statement that the efficiency
of the NP algorithm depends on making the correct move frequently. This
success probability depends in turn on both the partitioning and the method
for generating feasible solutions. For any practical application it is therefore
important to increase the success probability by developing intelligent parti-
tioning methods, incorporating special structure into weighted sampling, and
applying randomized heuristics to generate high-quality feasible solutions.

2.7 Continuous Optimization Problems

Although the main focus of this book is on discrete optimization problems,
it should be noted that the NP method could be applied to continuous op-
timization problems and Mixed Integer Programs (MIP) where the feasible
region is uncountable but bounded, similar analysis can also be done but some
additional conditions are required.

We now turn our attention to the case where X is not countable, but
a bounded subset of Rn. If X is not convex and f is neither differentiable
nor convex, then conventional mathematical programming techniques usually
cannot guarantee convergence to a global optimum. Many global optimiza-
tion methods have been suggested for this difficult problem and we refer the
reader to Horst and Pardalos (1995), and Törn and Žilinskas (1989) for a re-
view. However, the NP method also provides an attractive alternative for the
problem and hence it is worthwhile to consider how it may be applied.

It is not difficult to verify that the NP method generates a Markov chain
when applied to the optimization problem with uncountable but bounded
feasible region. It is also easy to see that the only states containing a global
optimum can be absorbing states. However, some additional conditions are
needed to prove that all such states will be absorbing.

Since X is not countable, we can partition the solution space such that the
regions at maximum depth are arbitrarily small. In this case the maximum
depth is determined by the desired accuracy. On the other hand, by selecting
an appropriate promising index, global convergence can be assured for this
problem.

Let H : X ×Σ → X denote a local search heuristic that is constrained to
stay within a certain valid region. For example, for any σ ∈ Σ, if x ∈ σ, then
the outcome of H(x, σ) is a point, x̃, in X that the local search converges
to with x as the starting point. Here, x̃ is constrained in σ. If x �∈ σ, we
can define H(x, σ) = x. With respect to H, each local minimum has a region
of attraction that is defined as follows: For a point x̃ ∈ Rn the region of
attraction is the set A(x̃) ⊆ Rn such that for any x ∈ A(x̃), H(x,X) = x̃. We
can now define a promising index as

46 2 The Nested Partitions Method

I(σ) = min
x∈σ

f (H(x, σ)) . (2.33)

We refer to this promising index as the descent promising index. Given a
sample of N points Dσ = {xk}N

k=1 from a region σ. The descent promising
index can be estimated using

Î(σ) = min {f(H (x1, σ)) , ..., f(H (xN , σ))} . (2.34)

Notice that for the descent promising index it is often reasonable to use a
small sample size, since many of the sample points are likely to converge to
the same point.

We finally note that when applying the NP method to continuous opti-
mization, we implicitly assume that X can be partitioned and sampled.

Similar to above, we can verify that the NP method generates a Markov
chain when applied to the optimization problem with uncountable but
bounded feasible region. We then prove that the states corresponding to a
global optimum are the only absorbing states. This establishes global conver-
gence. For simplicity we assume here that the global optimum is unique.

The essential condition for global convergence is that the maximum depth
regions are small enough. To make this rigorous, define a function, φ : X → R,
which measures the distance between a point x̃ ∈ Rn and the compliment of
its region of attraction,

φ(x̃) = inf
x∈X\A(x̃)

||x − x̃||, (2.35)

where || · || is the Euclidean norm.

Theorem 2.6. Assume the NP method is applied to a problem defined on a
bounded subset X of Rn using the descent promising index defined by equation
(2.33). Choose the maximum depth d∗ such that it satisfies

φ(x∗) > max
x1,x2∈η

||x1 − x2|| (2.36)

for all η ∈ Σ0. Let σopt be the maximum depth region that contains the opti-
mum solution x∗, then σopt is an absorbing state and the NP method converges
to the global optimum in finite time with probability one.

Proof: Let x ∈ σopt. Due to the condition (2.36) and the definition of the φ,
we have that H(x, σopt) = θopt. Hence, the estimate of the promising index is
Î(σopt) = f(x∗) regardless of which sample points are selected. It follows that
Î(σopt) < Î(η) for all other valid regions η ∈ Σ and hence σopt is an absorbing
state. It is straightforward to see that no other states can be absorbing.

3

Noisy Objective Functions

In this chapter we develop the theory of the NP method for problems where
the objective function is noisy, for example when it can only be evaluated as a
realization of some random variable. This complicates the objective function
and occurs in numerous contexts where a simple analytical model cannot
be specified for the system being optimized. For example, the system may
be modeled by a discrete event simulation model and the objective function
can then only be estimated as the output of the simulation model. The data
mining and radiation treatment problems introduced in Chapter 1 provide two
more examples. In the data mining model it may be necessary to evaluate the
performance with only a fraction of the data since the amount of data is often
too large to work with all at once. This introduces noise into the performance.
For the radiation treatment problem the objective is evaluated by outside
experts. Different experts may evaluate the same radiation treatment plan
differently and the same expert may even have different evaluations at different
times. Again, the objective function therefore becomes noisy.

Problems with noisy objective functions add some special considerations
from both practical and theoretical points of view. However, some implemen-
tation aspects remain unchanged and most importantly the partitioning is
not affected by noise in the objective function. Even if when we use an intel-
ligent partitioning that incorporates the objective function in some manner,
estimates can be used directly instead of exact values and the implementation
is essentially unchanged. All changes in the implementation and analysis of
the NP algorithm thus deal with how the algorithm moves on the fixed state
space.

First, from a practical implementation point of view there is now addi-
tional noise introduced into the decision of determining which region should
become the most promising region in the next iteration. Everything else being
equal, this can be expected to reduce the probability that the correct region
is selected. The question of determining how much computational effort is
needed to make the correct selection is therefore more pertinent than ever.
Furthermore, the noise is often controllable to some extent by using more

48 3 Noisy Objective Functions

computation effort. For example, if the noise is due to the evaluation being
based on a simulation model then increasing the simulation run length or
number of runs will decrease the noise. A practical question thus becomes
how much effort should be devoted to evaluating the performance.

From a more theoretical point of view it is now clear that the NP method
no longer generates an absorbing Markov chain, which was the basis for finite
time convergence of the deterministic NP method. The reason for this is that
even though a singleton region corresponding to a global optimum is visited it
is now possible that due to the noise the NP method will leave this singleton.
It is thus necessary to revisit the convergence of the NP method and it is
unlikely that finite time convergence could ever be assured for a problem with
noisy performance.

In this chapter we first establish some basic properties and asymptotic
convergence of the NP method for noisy performance. We then discuss some
important implementation issues regarding how to generate sample solutions
such that the correct selection of the next most promising region is assured
with a sufficient probability. Finally, we discuss the finite time behavior of the
method.

3.1 Convergence Analysis

Since the NP method uses the set performance function I:Σ → R to guide
its movements we shift our focus to finding an element σ∗ ∈ S, where

S = arg min
σ∈Σ0

I(σ). (3.1)

Given certain assumptions,we show that the NP method identifies an element
in S, that is, an optimal solution for the problem (3.1) above. This, however,
is equivalent to solving the original problem since the original performance
function f :X → R and the set performance function I:Σ → R agree on
singletons.

3.1.1 Basic Properties

We start by showing that the NP method generates an ergodic Markov chain.
Furthermore, we show that the estimate of the best singleton region con-
verges with probability one to a maximizer of the stationary distribution of
the Markov chain. The stationary distribution can thus be used as a basis for
inference. For any σ, η ∈ Σ, we use P (σ, η) to denote the transition probability
of the Markov chain moving from state σ to state η, and Pn(σ, η) to denote
the n-step transition probability. We also let P[A] denote the probability of
any event A.

Since in the kth iteration, the next most promising region σ(k + 1) only
depends on the current most promising region σ(k), and the sampling infor-
mation obtained in the kth iteration, the sequence of most promising regions

3.1 Convergence Analysis 49

{σ(k)}∞k=1 is a Markov chain with state space Σ. We refer to this Markov
chain as the NP Markov chain.

In the analysis below we let Σ0 ⊂ Σ denote all of the maximum depth
(singleton) regions. We also let H(σ) denote the set of subregions of a valid
region σ ∈ Σ \ Σ0, and b(σ) denote the parent region of each valid region
σ ∈ Σ \ {X}.

In each iteration the NP method selects the next most promising region
based on which one has the best estimated promising index. Therefore, the
transition probabilities may be written in terms of the estimated promising
index. We need to consider three cases:

1. If σ = X, then the NP algorithm moves to one of the subregions in the
next iteration and the set of subregions that have the best estimated
performance is given by

B1 =
{

ξ ∈ H(σ)|Î(ξ) ≤ Î(η),∀η ∈ H(σ)
}

. (3.2)

The transition probabilities are given by

P (σ, ξ) =
|H(σ)|∑

i=1

P [ξ ∈ B1 : |B1| = i] · P[|B1| = i]
i

(3.3)

for ξ ∈ H(σ) and P (σ, ξ) = 0 for ξ �∈ H(σ). Note that this equation
assumes that ties are broken in a uniform manner.

2. If σ ∈ Σ \ ({X} ∪ Σ0), then the NP algorithm either moves to a subregion
or backtracks in the next iteration and the set of regions that have the
best estimated performance is given by

B2 =
{

ξ ∈ H(σ) ∪ {X \ σ}|Î(ξ) ≤ Î(η),∀η ∈ H(σ) ∪ {X \ σ}
}

. (3.4)

The transition probabilities are thus given by

P (σ, ξ) =
|H(σ)|+1∑

i=1

P [ξ ∈ B2 : |B2| = i] · P[|B2| = i]
i

(3.5)

for ξ ∈ H(σ) ∪ {X \ σ} and P (σ, ξ) = 0 for ξ �∈ H(σ) ∪ {X \ σ}.
3. If σ ∈ Σ0, then the NP algorithm either stays in the current most promis-

ing region or backtracks in the next iteration, and the transition proba-
bilities are given by

P (σ, ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

P
[
Î(X \ σ) < Î(σ)

]
+

P[Î(X\σ)=Î(σ)]
2 , ξ = b(σ)

P
[
Î(X \ σ) > Î(σ)

]
+

P[Î(X\σ)=Î(σ)]
2 , ξ = σ

0, otherwise.

(3.6)

50 3 Noisy Objective Functions

Equations (3.2) - (3.6) completely define the transition probabilities for the
NP algorithm.

We will show that the NP Markov chain has a unique stationary distribu-
tion, but first we exclude certain trivial cases from the analysis. In particular
we assume that there is no region σ ∈ Σ \ {X} such that despite noisy es-
timates, every point in σ has, with probability one, better estimated perfor-
mance than all of the points outside of σ, that is in X \ σ. Formally we state
the assumption as follows:

Assumption 3.1 For all σ ∈ Σ \ {X}, P (σ, b(σ)) > 0.

We note that this assumption implies that for any η ∈ Σ, P d(η)(η,X) > 0.
Also, since the random sampling scheme assumes that each point in the sample
region is sampled with positive probability, Assumption 1 is equivalent to
assuming that for all valid regions σ ∈ Σ there exists at least one pair of points
x1 ∈ σ and x2 ∈ X\σ such that P[f̂(x1) > f̂(x2)] > 0. This observation shows
that the assumption imposes no loss of generality. Indeed, if it does not hold,
then we can let σ0 be the smallest region for which it is not satisfied. Then it
is straightforward to verify that σ0 is closed, all the other states are transient,
and the Markov chain eventually enters σ0 and never leaves. Thus, σ0 contains
all the interesting solutions, since, with probability one, all the points in σ0

have better performance than all points outside σ0. If σ0 is a singleton it is
an absorbing state which the NP method converges to in finite time, and no
further analysis is necessary. If σ0 is not a singleton the analysis below can be
applied by replacing X with σ0 as the feasible region. This assumption thus
imposes no loss of generality.

Proposition 3.1. If Assumption 3.1 holds, then the NP Markov chain has a
unique stationary distribution {π(σ)}σ∈Σ.

Proof: Let ΣP denote the set of positive recurrent states of the Markov chain.
Since Σ is finite ΣP �= ∅, which implies that the NP Markov chain has at
least one stationary distribution. To show that it is also unique, we must
show that ΣP is irreducible. We first show that X ∈ ΣP . Let σ ∈ ΣP . Then
by Assumption 3.1 there exists some k such that P k(σ,X) > 0 and since σ is
positive recurrent X is also positive recurrent. Now to prove irreducibility let
σ, η ∈ ΣP . Again by Assumption 3.1 there exists some k1 and k2 such that
P k1(σ,X) > 0 and P k2(η,X) > 0. Furthermore, since η ∈ ΣP is recurrent
and P k2(η,X) > 0 then there exists some k3 such that P k3(X, η) > 0. Hence
P k1+k3(σ, η) > 0. This holds for any σ, η ∈ ΣP , so ΣP is irreducible, and thus
the Markov chain has a unique stationary distribution {π(σ)}σ∈Σ .

We note that since a unique stationary distribution exists, the average
number of visits to each state converges to this distribution with probability
one (w.p.1), that is,

lim
k→∞

Nk(σ)
k

= π(σ), ∀σ ∈ Σ w.p.1. (3.7)

3.1 Convergence Analysis 51

Furthermore, as P (σ, σ) > 0 for some σ ∈ Σ0, the chain is aperiodic and
hence the k-step transition probabilities converge pointwise to the stationary
distribution, limk→∞ P k(X,σ) = π(σ) w.p.1, ∀σ ∈ Σ. The next step in es-
tablishing the convergence of the NP method is to use (3.7) to show that the
estimate of the best solution converges to a maximum stationary probability
of the NP Markov chain and hence that the stationary distribution can be
used for inference.

Theorem 3.2. Assume that Assumption 3.1 holds. The estimate of the best
region σ̂∗(k) converges to a maximum of the stationary distribution of the NP
Markov chain, that is,

lim
k→∞

σ̂∗(k) ∈ arg max
σ∈Σ0

π(σ), w.p.1. (3.8)

Proof: Let k0 = mink≥1 {k|σ(k) ∈ Σ0} be the first time the NP method reaches
maximum depth. If σ∗ ∈ S is a global optimum, then there is a positive
probability that σ∗ is sampled for d(σ∗) consecutive iterations, which together
with X ∈ ΣP implies that P d(σ∗)(X,σ∗) > 0, i.e., σ∗ ∈ ΣP . Thus there is
at least one positive recurrent state in Σ0 and consequently k0 < ∞ almost
surely.

Now combine this with the known fact that equation (3.7) holds and
let A be such a set that P[A] = 1 and for all ω ∈ A, k0(ω) < ∞ and
limk→∞

Nk(σ,ω)
k = π(σ). Let ω ∈ A be a fixed sample point. Since Σ0 is

finite there exists a finite constant Kω ≥ k0(ω) such that for all k ≥ Kω,

arg max
σ∈Σ0

Nk(σ) ⊆ arg max
σ∈Σ0

π(σ).

Now by definition σ̂∗(k, ω) ∈ arg maxσ∈Σ0 Nk(σ, ω) for all k ≥ k0, so
σ̂∗(k, ω) ∈ arg maxσ∈Σ0 π(σ) for all k ≥ Kω. This completes the proof.

To prove asymptotic global convergence we need to show that the singleton
maximizer of the stationary distribution can be used as an estimate of the
global optimum. As will be explained shortly this may not hold without some
conditions that can be satisfied by an effective means of partitioning and
generating feasible solutions.

3.1.2 Global Convergence

We now show that given certain regularity conditions, the observation that the
NP method converges to a maximizer of the stationary distribution implies
that it converges to a global optimum. In particular, by showing that the
maximum depth region with the largest stationary probability is also a global
optimum, it follows that the NP method converges to the global optimum.

Without assumptions about the problem structure this does not necessar-
ily hold. For example, assume that σ∗ is a unique global optimum, but that
there exists a set η ∈ Σ such that σ∗ ⊆ η and J(x) > J(φ) for all x ∈ η \ σ∗,

52 3 Noisy Objective Functions

φ ∈ X \ η. Then we expect the transition probability P d(η)(X, η) into η to
be small, which implies that P d(σ∗)(X, σ∗) into σ∗ is also likely to be small.
This indicates that π(σ∗) may be quite small. Therefore, if the performance
measure changes drastically from the global optimum to points that are close
in the partitioning metric, the NP method is not guaranteed to find the global
optimum. Consequently, we must exclude such problem structures. We start
with a definition.

Definition 3.3. Let σ and η be any valid regions. Then there exists some
sequence of regions σ = ξ0, ξ1, ..., ξn = η along which the Markov chain can
move to get from state σ to state η. We call the shortest such sequence the
shortest path from σ to η. We also define κ(σ, η) to be the length of the shortest
path.

Note that the shortest path is unique and can be found by moving directly
from σ to the smallest valid region containing both σ and η, and then by
proceeding directly from this region to η. The following condition on tran-
sition probabilities along shortest paths connecting the global optimum to
other maximum depth regions turns out to be a sufficient condition for global
convergence. The interpretation of this assumption is discussed further at the
end of the section.

Assumption 3.2 The set

S0 =
{

ξ ∈ Σ0 : Pκ(η,ξ)(η, ξ) ≥ Pκ(ξ,η)(ξ, η),∀η ∈ Σ0

}
(3.9)

satisfies S0 ⊆ S, that is, it is a subset of the set of global optimizers.

The regularity condition in equation (3.9), needed for global convergence of
both the NP I and NP II algorithms, guarantees that the transition probability
from any part of the feasible region to the global optimum is at least as large
as going from the global optimum back to that region. This ensures that the
points close to the global optimum are sufficiently good. We now use this
assumption to prove global convergence of the NP I algorithm.

Theorem 3.4. Assume that the NP I algorithm is applied and Assumptions
3.1-3.2 hold. Then

arg max
σ∈Σ0

π(σ) ⊆ S, (3.10)

and consequently the NP I algorithm converges with probability one to a global
optimum.

Proof: Let η1, η2 be any regions of maximum depth. Let ξ0, ξ1, ..., ξn−1, ξn be
the shortest path from η1 to η2, where n = κ(η1, η2). It is also clear from the
Kolmogorov criterion (Wolff 1989) that the NP I Markov chain is reversible,
and we get

P (ξi, ξi+1)π(ξi) = P (ξi+1, ξi)π(ξi+1), i = 0, 1, 2, ..., n − 1.

3.1 Convergence Analysis 53

We can rewrite this as

π(ξi) =
P (ξi+1, ξi)
P (ξi, ξi+1)

π(ξi+1), i = 0, 1, 2, ..., n − 1.

By using this equation iteratively and using ξ0 = η1 and ξn = η2 we can
rewrite this as

π(η1) =
P (ξn, ξn−1)...P (ξ2, ξ1)P (ξ1, ξ0)
P (ξ0, ξ1)P (ξ1, ξ2)...P (ξn−1, ξn)

π(η2). (3.11)

Furthermore, since ξ0, ξ1, ..., ξn−1, ξn is the shortest path from ξ0 to ξn then
we also have that

Pn(η1, η2) = Pn(ξ0, ξn) = P (ξ0, ξ1)P (ξ1, ξ2)...P (ξn−1, ξn),

and
Pn(η2, η1) = Pn(ξn, ξ0) = P (ξn, ξn−1)...P (ξ2, ξ1)P (ξ1, ξ0).

We can therefore rewrite equation (3.11) as

π(η1) =
Pn(η2, η1)
Pn(η1, η2)

π(η2) =
Pκ(η2,η1)(η2, η1)
Pκ(η1,η2)(η1, η2)

π(η2). (3.12)

Now if η2 ∈ arg maxσ∈Σ0 π(σ) then by definition π(η1) ≤ π(η2) so by equation
(3.12) we have P κ(η2,η1)(η2,η1)

P κ(η1,η2)(η1,η2)
≤ 1, that is, Pκ(η1,η2)(η1, η2) ≥ Pκ(η2,η1)(η2, η1).

Since η1 can be chosen arbitrarily, Assumption 4.6 now implies that η2 ∈ S0 ⊆
S, which proves the theorem.

Similarly, the following theorem establishes global convergence for the NP II
algorithm.

Theorem 3.5. Assume that the NP II algorithm is applied and Assumptions
3.1-3.2 hold. Then

arg max
σ∈Σ0

π(σ) ⊆ S, (3.13)

and consequently the NP II algorithm converges with probability one to a global
optimum.

Proof: We start by looking at a state η ∈ Σ \ (Σ0 ∪ X). Since the chain
leaves this state with probability one, and the state can only be entered by
transitions from state s(η), the balance equations are given by

π(η) = P (s(η), η)π(s(η)).

These equations can be solved iteratively to obtain

π(η) = P d(η)(X, η)π(X). (3.14)

54 3 Noisy Objective Functions

Now assume σ ∈ Σ0. The balance equations are given by

π(σ)P (σ,X) = π(s(σ))P (s(σ), σ).

Rewrite and use equation (3.14) above to get

π(σ) =
P (s(σ), σ))

P (σ,X)
π(s(σ))

=
P (s(σ), σ))

P (σ,X)
P d(s(σ))(X, s(σ))π(X)

=
P d(σ)(X,σ)

P (σ,X)
π(X). (3.15)

Now take another η ∈ Σ0, then

π(σ) =
P d(σ)(X,σ)

P (σ,X)
π(X)

=
P d(σ)(X,σ)

P (σ,X)
P (η,X)

P d(η)(X, η)
π(η)

=
P d(σ)+1(η, σ)
P d(η)+1(σ, η)

π(η)

=
Pκ(η,σ)(η, σ)
Pκ(σ,η)(σ, η)

π(η).

The remainder of the proof follows the last paragraph of Theorem 3.4 above
and is omitted.

We note that a sufficient condition for (3.9) to be satisfied is that in each iter-
ation, the probability of making the ‘correct’ decision is at least one half, and
that the condition (3.9) depends on the partitioning, sampling, and method of
estimation. This condition needed for global convergence is in general difficult
to verify, but to gain some insights the remainder of this section is devoted to
obtaining conditions on the partitioning , sampling, and estimation elements
that are sufficient for convergence. These conditions are considerably stronger
than (3.9) but are somewhat more intuitive. For simplicity we assume that
there is a unique global optimum σ∗ ∈ S. We start with a definition.

Definition 3.6. Let Σg = {σ ∈ Σ : σ∗ ⊆ σ} denote all the regions containing
the unique global optimum σ∗ and Σb = Σ \Σg denote the remaining regions.
Define a function Y : Σg × Σb → R by

Y (σg, σb) = J
(
x[1]

σb

)
− J

(
x[1]

σg

)
, (3.16)

where x
[1]
σ denotes the random sample point from σ ∈ Σ that has the estimated

best performance and is generated in Step 2 of the NP algorithm. Furthermore,
let

3.1 Convergence Analysis 55

Ŷ (σg, σb) = L
(
x[1]

σb

)
− L

(
x[1]

σg

)
(3.17)

denote the corresponding simulation estimate.

We note that for each σ ∈ Σ, x
[1]
σ ∈ σ is a random variable that is defined by

the sampling strategy, and that

L
(
x[1]

σ

)
= Î (σ) . (3.18)

Also note that for any σg ∈ Σg, σb ∈ Σb, the random variable Y (σg, σb) is
defined by the partitioning and sampling strategies, whereas if we condition
the random variable Ŷ (σg, σb) on the value of Y (σg, σb), its outcome depends
only on the estimated sample performance, that is, on the randomness inherent
in the simulation estimate. We now obtain the following theorem for the NP
I algorithm:

Theorem 3.7. Assume that σ∗ is unique and

P
[
Ŷ (σg, σb) > 0|Y (σg, σb) = y

]
>

y

2E[Y (σg, σb)]
(3.19)

for all minx∈σb
J(x)−maxx∈σg

J(x) ≤ y ≤ maxx∈σb
J(x)−minx∈σg

J(x), σg ∈
Σg, and σb ∈ Σb. Then the NP I algorithm converges to a global optimum.

Proof: First note that the assumption of this theorem can be satisfied only if

y

2E[Y (σg, σb)]
< 1,

where we have y ≤ maxx∈σb
J(x) − minx∈σg

J(x). Thus, we must have

E[Y (σg, σb)] >
1
2

(
max
x∈σb

J(x) − min
x∈σg

J(x)
)

=
1
2

(
max
x∈σb

J(x) − J(xopt)
)

,

(3.20)
and thus E[Y (σg, σb)] > 0. Now let σg ∈ Σg, σb ∈ Σb, let FY ≡ FY (σg,σb)

denote the distribution function of Y (σg, σb), and condition on the value of
Y (σg, σb):

P
[
Ŷ (σg, σb) > 0

]
=

∫

R

P
[
Ŷ (σg, σb) > 0|Y (σg, σb) = y

]
dFY (y)

>

∫

R

y

2E[Y (σg, σb)]
dFY (y)

=
1

2E[Y (σg, σb)]

∫

R

ydFY (y)

=
1
2
.

Now since by definition Ŷ (σg, σb) = L
(
x

[1]
σb

)
− L

(
x

[1]
σg

)
, this implies that

56 3 Noisy Objective Functions

P
[
L

(
x[1]

σb

)
> L

(
x[1]

σg

)]
>

1
2
,

that is, by equation (3.18) we have P
[
Î(σb) > Î(σg)

]
> 1

2 , which implies

P
[
Î(σb) > Î(σg)

]
> P

[
Î(σb) ≤ Î(σg)

]
. (3.21)

As before, let σ∗ denote the unique global optimum. Let η ∈ Σ0, and let
ξ0, ξ1, ..., ξn−1, ξn be the shortest path from σ∗ to η, where n = κ(σ∗, η). Take
any i such that 1 ≤ i ≤ n − 1. We need to consider three cases here:

1. If σ∗ ∈ ξi−1 and σ∗ ∈ ξi+1 then ξi−1 ∈ Σg and X \ ξi ∈ Σb. We also
note that according to Definition 6, ξi+1 = b(ξi) and ξi−1 ∈ H(ξi). Thus,
according to equation (3.5) and the inequality (3.21) derived above:

P (ξi, ξi−1) =

|H(ξi)|+1∑

i=1

P[ξi−1 ∈ B2 : |B2| = i] · P[|B2| = i]/i

=

|H(ξi)|+1∑

i=1

P[Î(ξi−1) ≤ Î(η), ∀η ∈ H(ξi) : |B2| = i] · P[|B2| = i]/i

>

|H(ξi)|+1∑

i=1

P[Î(X \ ξi) ≤ Î(η), ∀η ∈ H(ξi) : |B2| = i] · P[|B2| = i]/i

=

|H(ξi)|+1∑

i=1

P[ξi+1 ∈ B2 : |B2| = i] · P[|B2| = i]/i

= P (ξi, ξi+1).

2. If σ∗ ∈ ξi−1 and σ∗ �∈ ξi+1 then ξi−1 ∈ Σg and ξi+1 ∈ Σb. Furthermore,
ξi = b(ξi−1) = b(ξi=1). Similarly to the first case we can use (3.5), or (3.3) if
ξi = X, to show that P (ξi, ξi−1) > P (ξi, ξi+1).

3. If σ∗ �∈ ξi−1 and σ∗ �∈ ξi+1 then X \ ξi−1 ∈ Σg and ξi+1 ∈ Σb. Furthermore,
ξi−1 = b(ξi) and ξi+1 ∈ H(ξi). Again, equation (3.5) can be used to show that
P (ξi, ξi−1) > P (ξi, ξi+1).

Thus, we have that P (ξi, ξi−1) > P (ξi, ξi+1) , and since this holds for any i
then it is clear that

P (ξn−1, ξn−2) · . . . · P (ξ1, ξ0) > P (ξ1, ξ2) · . . . · P (ξn−1, ξn) . (3.22)

Now we note that using a similar argument as above and noting that ξn,X \
ξ0 ∈ Σb, whereas ξ0,X \ ξn ∈ Σg, equations (3.21) and (3.6) imply that
P (ξn, ξn−1) > P (ξ0, ξ1), and putting this together with (3.22) we have

Pκ(η,σ∗)(η, σ∗) > Pκ(σ∗,η)(σ∗, η). (3.23)

Now finally, to verify that equation (3.9) of Assumption 2 holds, let ξ ∈ S0.
Then by definition Pκ(η,ξ)(η, ξ) ≥ Pκ(ξ,η)(ξ, η),∀η ∈ Σ0. If ξ �= σ∗ then we can

3.2 Selecting the Correct Move 57

select η = σ∗ and obtain Pκ(σ∗,ξ)(σ∗, ξ) ≥ Pκ(ξ,σ∗)(ξ, σ∗), which contradicts
equation (3.23) above. Thus, we must have ξ = σ∗, which implies that S0 = S
so Assumption 23.2is satisfied and global convergence follows by Theorem 3.4
above.

The assumption of Theorem 3.7 illustrates sufficient global convergence
conditions on the partitioning and sampling on the one hand, and the estima-
tion on the other. In particular, E[Y (σg, σb)] depends only on the partitioning
and sampling and the inequality (3.20), which is implicit in the assumption,
can be satisfied by partitioning such that there is a certain amount of sep-
aration, or partial non-overlap, between the good and bad sets, and then
by using enough sample points. On the other hand, given a fixed value of
E[Y (σg, σb)], the inequality (3.19) depends on the sample performance being
sufficiently accurate and its ability to be satisfied by increasing the simulation
time. However, verifying how much sample effort is ‘enough’ and when the
accuracy of the sample performance is ‘sufficient’ may still be fairly difficult.

3.2 Selecting the Correct Move

As we noted in the introduction the main implementation issue due to the
noisy performance is the fact that it now becomes more difficult to select which
region should become the next most promising region, that is, to make the
correct move on the state space fixed by the partitioning. The reason for this
is that the performance of each region is now not only measured based on a
randomly generated sample of solutions from the region, but the performance
of each of these generated solutions is not accurately known.

A key observation in understanding how the NP method is still effective
in the presence of noise is that for the method to proceed effectively, it is not
necessary to obtain accurate performance estimates for each of the generated
solutions - it suffices for this estimate to be good enough so that the correct
region is selected. The essential issue is therefore the preservation of rank,
which is sometimes referred to as ordinal optimization. We start by briefly
discussing this area before continuing with methods for rigorously determining
how much effort is needed in each region to preserve rank.

3.2.1 Ordinal Optimization

We start by defining the states (subsets of solutions) that should be selected
by the NP method as it moves through the state space Σ of all valid regions.

Definition 3.8. We let Σg ⊂ Σ denote all the subregions that contain the
global optimum, that is, σ ∈ Σg if and only if x∗ ∈ σ. We refer to these
subregions as the good subregions.

58 3 Noisy Objective Functions

Now recall that given a valid region σ ∈ Σ and a set of sample solutions
Dσ ⊆ σ that have been generated from the region, the performance of the
region is estimated using the best performance among the sample solutions:

Î(σ) = min
x∈Dσ

f̂(x), (3.24)

where f̂(x) is the estimated performance of x ∈ Dσ. Unfortunately an accurate
estimate of the performance is often computationally expensive. For example,
a long simulation run must be made in the case of a simulation optimization
problem, or a large number of data points must be used in the case of a data
mining problem. Convergence to the true performance is also often slow. For
example, if the performance is estimated using simulation, it is well known
that the estimate f̂(x) converges to f(x) at a rate that is at the most O(1√

t
)

in the simulation time t.
This is where it is helpful in practice that the NP method only needs to

preserve rank, that is, it focuses on the ordinal rather than the cardinal values
of the performance. In our notation, if it is desirable to move into a good region
σg ∈ Σg and this is being compared to another region σb ∈ Σ \ Σg, then it is
sufficient that

Î(σg) < Î(σb), (3.25)

that is, if the rank is preserved then the correct valid region will be selected.
The advantage of this sufficing is that results from ordinal optimization show
that the estimated rank of a random variable may converge to its true rank
at an exponential rate even if the cardinal values converge at a much slower
rate. The implication is that it is not necessary to accurately estimate f(x)
to obtain a sufficiently good estimate of the promising index.

The paradigm of ordinal optimization is based on two basic ideas (Ho,
Sreenivas and Vakili, 1992; Ho, 1994; Dai, 1996; Lee, Lau and Ho, 1999). The
first is that estimates of ordinal values may converge at an exponential rate
even though the estimated cardinal values do not. As illustrated above, the
NP method is always ordinal in this sense and we will see that this observation
is therefore beneficial for any implementation of the algorithm. The second
idea is that relaxing the goal of finding the optimal solution to finding a
‘good enough’ solution may also result in an exponential convergence rate.
Adopting this perspective, there is a set G ⊆ X of feasible solutions that are
of sufficient quality. These solutions are such that if X ∈ G then f(x) ≤ f(y)
for all x ∈ G, y �∈ G, that is, these are the g = |G| solutions that have the
desired performance. To select a x ∈ G maintain a set S(k) of the g best
designs found by the kth iteration. The goal is to have at least one common
element in the sets G and S(k). This may be considered goal softening from the
original formulation requiring the global optimum. To see that this softened
goal is rapidly achieved consider the probability of misalignment Q(k) = 1 −
P

[
|G ∩ S(k)| ≥ 1

]
. This is the probability that there is no good design in the

set S(k). It is shown that, given certain mild conditions, this misalignment

3.2 Selecting the Correct Move 59

probability converges to zero at an exponential rate if the feasible region is
sampled uniformly.

3.2.2 Ranking and Selection

We now consider how the ideas of ordinal optimization, namely goal softening
and ordinal comparison, can be used to guide an efficient implementation of
the NP method for solving problems with noisy performance. As the method
selects a new most promising region in each iteration, this selection can be con-
sidered a success if the selected region contains the true global optimum. We
explored in Chapter 2 how the efficiency of the method depends on the ability
to make this selection correctly with a high probability, and since the selection
is more difficult with noisy performance it would be of practical interest if a
minimum probability of success could be guaranteed in each iteration.

As previously noted, when applying the NP method to a problem with
noisy performance there are two sources of randomness that complicate the
selection of the correct subregion. First, there is a sampling error due to a
relatively small sample of feasible solutions being used to estimate the perfor-
mance of an often large set. Second, there is noise in the performance estimate
of each of those samples. It is important to observe that the former of these
elements implies that the variation within a subregion depends on the size of
the region among other factors. As an extreme case consider a singleton region
that is being compared to the entire complimentary region. (That is, a region
containing only one solution being compared to a region containing all of the
other solutions.) Clearly the first source of randomness has been completely
eliminated in the singleton region, whereas it may account for almost all of
the randomness in the complimentary region. This implies that to make bet-
ter use of the computational effort the number of sample solutions generated
from each region should be variable and dependent on the variation within
the region.

Two-Stage Sampling

The above discussions identify two potential shortcomings of the pure NP
method: the success probability in each iteration is not guaranteed and there
may be considerable waste involved in how the sample solutions are generated.
We now show how this can be addressed by incorporating a statistical selection
method into the NP framework in order to compare the subregions (Kim and
Nelson, 2006). In particular, we will show how to use the classic Rinott’s
two-stage ranking and selection procedure for selecting the best subregion.

To state this approach rigorously let Dij(k) be the ith set of sample points
selected from the region σj(k) using a uniform random sampling procedure
to generate feasible solutions from each region, i ≥ 1, j = 1, 2, ...,M + 1 in
the kth iteration. As before, let N = |Dij(k)| denote the number of sample
solutions generated and assume that it is constant. As usual let x ∈ Dij(k)

60 3 Noisy Objective Functions

denote a point in that set and let f̂(x) be an estimate of the performance of
this solution. Then in the kth iteration,

Ŷij(k) = min
x∈Dij(k)

f(x)

is an estimate of the performance of the region σj , which can also be referred
to as the ith system performance for the jth system, i ≥ 1, j = 1, 2, ...,M +1.
The two-stage ranking and selection procedure first obtains n0 such system
estimates, and then uses that information to determine the total number Nj

of system estimates needed from the jth system, that is, subregion σj(k).
More precisely, the Two-Stage NP (TSNP) procedure is as follows:

Algorithm TSNP

Partitioning
Step 1. Given a current most promising region σ(k), partition σ(k) into

M subregions σ1(k), ..., σM (k) and aggregate the complimentary
region X \ σ(k) into one region σM+1(k).

Stage I Sampling
Step 2. Let i = 1.
Step 3. Use uniform sampling to obtain a set Dij(k) of N sample points

from region j = 1, 2, ...,M + 1.
Step 4. Use discrete event simulation of the system to obtain a sample per-

formance f̂(x) for every x ∈ Dij(k) and estimate the performance
of the region as

Ŷij(k) = min
x∈Dij(k)

f̂(x), (3.26)

j = 1, 2, ...,M + 1.
Step 5. If i = n0 continue to Step 6. Otherwise let i = i + 1 and go back

to Step 3.
Stage II Sampling

Step 6. Calculate the first-stage sample means and variance

Ȳ
(1)
j (k) =

1
n0

n0∑

i=1

Ŷij(k), (3.27)

and

S2
j (k) =

1
n0 − 1

n0∑

i=1

[
Ŷij(k) − Ȳ

(1)
j (k)

]2

, (3.28)

for j = 1, 2, ...,M + 1.
Step 7. Compute the total sample size

Nj

(
n0,M, P ∗, Ȳ

(1)
j (k), S2

j (k)
)

(3.29)

using the desired ranking-and-selection procedures (see below).

3.2 Selecting the Correct Move 61

Step 8. Obtain (
n0,M, P ∗, X̄

(1)
j (k), S2

j (k)
)
− n0

more estimates of the subregion performance as in Step 2 - Step 5
above, that is (Nj(k) − n0) · N more sample points.

Estimating promising index Values
Step 9. Let the overall sample mean be the promising index for each re-

gion,

Î (σj(k)) = Ȳj(k) =
1

Nj(k)

Nj(k)∑

i=1

Ŷij(k), (3.30)

j = 1, 2, ...,M + 1.
Determining the Next Move
Step 10. Calculate the next most promising region σ(k + 1) as in the Pure

NP Algorithm.
Step 11. Update the counters {Nk(σ)}σ∈Σ and σ̂∗(k + 1) as in Step 5 of

Algorithm NP.
Step 12. If the stopping rule is not satisfied let k = k + 1 and go back to

Step 1.

Note that for n0 = 1, with Steps 6-8 omitted, and Î(σi(k)) = Ŷ1i replacing
equation (3.30), this new algorithm reduces to the pure NP algorithm. On the
other hand, by selecting M = |X|, the algorithm reduces to a pure two-stage
ranking-and-selection procedure.

Other Statistical Selection Procedures

Any statistical selection procedure that guarantees correct selection within
an indifference zone with a given probability can be incorporated into the NP
framework and the TSNP algorithm as shown above. Numerous such methods
have been proposed in the literature and from an implementation standpoint
the only difference is how the total sample size (3.29) is obtained.

The best-known classical methods for ranking and selection is proba-
bly Rinott’s procedure. Given the indifference zone δ and a constant h =
h(n0,M, P ∗) that can be obtained by solving an integral numerically, the
amount of sample effort is determined as

Nj

(
n0,M, P ∗, X̄

(1)
j (k), S2

j (k)
)

= max

{

n0,

⌈
h2S2

j (k)
ε

⌉}

. (3.31)

We refer to the TSNP algorithm using (3.31) for equation (3.29) as the
NP/Rinott algorithm.

As a statistical selection procedure the Rinott approach has some well-
documented limitations. From the perspective of TSNP, the following are the
primary issues:

62 3 Noisy Objective Functions

• The systems compared are assumed to be independent, that is, for NP/
Rinott samples must be obtained independently for each region in both
Step 3 and Step 8 of the algorithm.

• The Rinott procedure is based on the assumption of least-favorable con-
figuration between the systems. This is not likely in practice and makes
the procedure quite conservative in the sense that (3.31) tends to prescribe
more sample effort than is really needed to assure the probability of correct
selection.

• Finally, note that (3.31) does not depend on the mean performance, only
the estimated variance. Thus, large amounts of sample efforts may be
prescribed to regions where the mean indicates very poor performance.

The remainder of this section discusses two methods that can be used to
alleviate these three issues.

One relatively simple way in which some of the shortcomings of the Rinott
procedure can be addressed is to add filtering or subset selection. According
to this approach first calculate the quantity

Wij = t

(
S2

i + S2
j

n0

)1/2

(3.32)

for all i �= j, and then use

Nj

(
n0,M, P ∗, X̄

(1)
j (k), S2

j (k)
)

=

{
max

{
n0,

⌈
h2S2

j (k)

ε

⌉}
if X̄i ≤ X̄j + (Wij − ε)+ ,∀i �= j,

n0, otherwise.
(3.33)

The TSNP algorithm is referred as the NP/Subset/Rinott algorithm by using
(3.33) for equation (3.29).

When comparing simulated systems it is well known that it is beneficial to
use common random numbers and thus make the systems dependent. Hence it
is of interest to consider statistical selection methods that allow for correlated
systems. One such method is proposed by Matejcik and Nelson (1995) and
this can also be incorporated into the NP framework. Here the total sample
size is calculated according to

Nj

(
n0,M, P ∗, Ȳ

(1)
j (k), S2

)
= max

{

n0,

⌈ (
gS

ε

)2
⌉

, (3.34)

where the variance estimate must now account for possible interaction, that
is, equation (3.28) is replaced with

S2 =
2
∑M+1

j=1

∑n0
i=1

(
Ŷij − Ȳi. − Ȳ.j + Ȳ..

)2

(M)(n0 − 1)
. (3.35)

3.3 Time Until Convergence 63

Furthermore, g = Tα
M,(M)(n0−1),0.5 is an equicoordinate critical point of the

equicorrelated multivariate central t- distribution. This constant can be found
in Hochberg and Tamhane (1987), Appendix 3, Table; Bechhofer(1995); or by
using the FORTRAN program AS251 of Dunnet (1989).

3.3 Time Until Convergence

It was shown in the last chapter that the TSNP algorithm converges asymp-
totically. In this section we consider how quickly it converges. By Definition
3.1, for the algorithm to correctly consider the optimum σ∗ as the best solu-
tion, this state must be visited at least once. Hence it is of interest to look at
the expected time until the algorithm visits this state for the first time. We
would like this to be as short as possible, and the next theorem provides an
upper bound for this expected time.

As stated earlier both Algorithm NP and Algorithm TSNP generate a
Markov chain and the stationary distribution of this chain can be used for
inference about the convergence of the algorithm. To state this precisely, we
need the following technical assumption, which can be made without loss of
generality.

Assumption 3.3 Assume that ∀η ∈ Σ,∃X ∈ η, ξ ∈ X \ η, such that
P [L(X) < L(ξ)] < 1.

With this assumption the following proposition follows:

Proposition 3.9. If Assumption 3.3 holds then Algorithm TSNP generates
an irreducible recurrent Markov chain such that its unique stationary distri-
bution π satisfies

lim
k→∞

π
(
σ̂∗(k)

)
> π(η), ∀η ∈ Σ0 \ {σ∗} , w.p.1. (3.36)

In other words, the algorithm converges to a maximum of the stationary dis-
tribution over all singleton regions.

Proof: The proof of this proposition is similar to that to Theorem 3.2,
which holds for a slightly more general situation. Recall that it is clear
that {σ(k)}∞k=0 is a Markov chain, and that it is irreducible by Assump-
tion 3.3. Since Σ is finite, the Markov chain is positive recurrent with a
unique stationary distribution. Furthermore, it is well known (see e.g. Ross
1996) that limk→∞

Nk(η)
k = π(η), which implies that, in the limit, the

most frequently visited region maximizes the stationary distribution. Since
σ̂∗(k) = arg maxσ∈Σ0 Nk(σ) the proposition follows.

To state the main convergence theorem we need the usual assumption of rank-
ing and selection methods (Bechhofer, Santner and Goldsman 1995), namely
that the observations are normally distributed.

64 3 Noisy Objective Functions

Assumption 3.4 Assume that Xij ∼ N (μj , ν
2
j), is normally distributed with

mean μj and variance ν2
j for all j ∈ {1, 2, ...,M +1}, and i ∈ {1, 2, ..., Nj(k)},

k ≥ 1.

In practice this is not likely to hold exactly, but our procedure, as with
ranking-and-selection procedures in general, may be robust with respect to
deviations from this assumption. In addition to the normality assumption, we
need to be able to distinguish between the optimum and other solutions.

Assumption 3.5 Assume that the indifference zone ε satisfies

ε ≤ min
X∈X\Xopt

f(X) − f(Xopt).

In practice f(X)− f(Xopt) is unknown and we simply select ε based on what
performance difference we are indifferent about.

Theorem 3.10. Let Assumption 3.3 - 3.5 hold and assume that P ∗ > 0.5.
Let T1 denote the first time Algorithm TSNP visits the optimal solution. Then

E [T1] ≤
d∗

2P ∗ − 1
. (3.37)

Proof: Recall that the Markov chain {σ(k)}∞k=1 has a minimum success prob-
ability of P ∗ given its current state σ(k) ∈ Σ, that is, with probability of
at least P ∗, σ(k + 1) will be closer to σ∗ than σ(k) in terms of the number
of transitions required to move between the regions. Now imagine a Markov
chain that is identical to {σ(k)} except that this success probability is even
and equal to P ∗ for every state σ ∈ Σ. Now note that since the success prob-
ability is constant, the exact state is not of any consequence, but rather the
number of transitions it takes to move from the current state σ(k) to the
optimum. The maximum such distance is 2d∗, and we can therefore, without
losing any information, reduce the state space to S = {0, 1, 2,, 2d∗}. With
this representation the entire feasible region X corresponds to state d∗, and
we can let the global optimum correspond to state zero. Given a state x ∈ S
the probability of moving to x− 1 is fixed and equal to P ∗, and the probabil-
ity of moving to x + 1 is equal to 1 − P ∗, regardless of the state. Therefore,
the new Markov chain is a simple random walk. Furthermore, it is clear that
E [T1] ≤ E [T ′

1], where T ′
1 is the first time the random walk visits σ∗ if it starts

in state d∗, which corresponds to X, the starting state of Algorithm TSNP.
Hence, if we calculate the expected hitting time for the random walk this

automatically gives us an upper bound for the original Markov chain. Further-
more, since we are only interested in the time the global optimum is found
for the first time, we can assume 0 is an absorbing barrier and look at the
time of absorption. Note also that 2d∗ is a reflective barrier. Then it is known
that the expected time T of absorption when starting in state u is (Weesakul,
1961)

3.3 Time Until Convergence 65

Eu[T] =
u

2P ∗ − 1
+

(1 − P ∗)2d∗+1

(P ∗)2d∗(2P ∗ − 1)2

(
1 −

(
P ∗

1 − P ∗

)u)
. (3.38)

Thus, for u = d∗, that is, when the algorithm starts in state σ(0) = X, we
have

Ed∗ [T] =
d∗

2P ∗ − 1
+

(1 − P ∗)2d∗+1

(P ∗)2d∗(2P ∗ − 1)2

(

1 −
(

P ∗

1 − P ∗

)d∗)

≡ C1. (3.39)

Now since P∗ > 0.5 then P∗

1−P∗ > 1 so

(

1 −
(

P ∗

1 − P ∗

)d∗)

< 0,

and hence
(1 − P ∗)2d∗+1

(P ∗)2d∗(2P ∗ − 1)2

(

1 −
(

P ∗

1 − P ∗

)d∗)

< 0.

Therefore,

E[T1] ≤ Ed∗ [T] ≤ d∗

2P ∗ − 1
,

which proves the theorem.

From the proof above it is clear that a tighter bound on E[T1] can be
obtained by using C1 as defined by equation (6.12) above. However, unless
both P ∗ is very close to 0.5 and d∗ is small, then the difference in the two
bounds will be negligible. Since the value of P ∗ is given as an input parameter,
a selection of, say, P ∗ ≥ 0.51 will always ensure an adequate bound and there
is therefore little practical benefit from using the tighter bound. In addition to
the first time the optimum is found, the time that elapses until the optimum
is visited again is also of interest.

Theorem 3.11. Let Assumptions 1-3 hold and assume that P ∗ > 0.5. Let T2

denote the time between the first and second time Algorithm TSNP visits the
optimal solution. Then

E [T2] ≤
1 − P ∗(1 − 2P ∗)

2P ∗ − 1
. (3.40)

Proof: As before let T denote the absorption time of the random walk with a
reflective and absorbing barrier defined by a constant success probability P ∗.
Since in the first transition after visiting σ∗ the Markov chain either stays at
σ∗, or moves to s(σ∗), it is clear that

E[T2] ≤ P ∗ · 1 + (1 − P ∗)E1[T].

66 3 Noisy Objective Functions

Table 3.1. Expected first hitting time of the optimum.

Maximum Depth (d∗)

Success Prob. 2 5 10 20 30

55% 20 50 100 200 300
60% 10 25 50 100 150
65% 7 17 33 67 100
70% 5 13 25 50 75
75% 4 10 20 40 60
80% 3 8 17 33 50
85% 3 7 14 29 43
90% 3 6 13 25 38
95% 2 6 11 22 33

Letting u = 1 in equation (3.38) gives

E1[T] =
1

2P ∗ − 1
+

(1 − P ∗)2d∗+1

(P ∗)2d∗(2P ∗ − 1)2

(

1 −
(

P ∗

1 − P ∗

)1
)

≤ 1
2P ∗ − 1

,

so
E[T2] ≤ P ∗ +

1
2P ∗ − 1

,

which proves the theorem.

Similarly as with the bounds on E[T1] the bounds on T1 can be tightened
by using

C2 ≡ P ∗ + (1 − P ∗) ·
(

1
2P ∗ − 1

+
(1 − P ∗)2d∗+1

(P ∗)2d∗(2P ∗ − 1)2

(

1 −
(

P ∗

1 − P ∗

)1
))

.

(3.41)

However, as before, unless both P ∗ is very close to 0.5 and d∗ is small the
difference will be very small and there is therefore no practical benefit from
using the more complicated but tighter bound.

Now lets consider whether an optimal selection probability P ∗(n0,M)
and can be found. It is clear that as P ∗(n0,M) increases, E[T1], that is,
the expected time until the global optimum is encountered, decreases. This
occurs, however, at a decreasing rate. On the other hand, as P ∗(n0,M) in-
creases, h(n0,M, P ∗) also increases and this occurs at an increasing rate.
Therefore, an optimal probability is somewhere between the extreme values
of P ∗(n0,M) = 0.5 and P ∗(n0,M) = 1. However, since the second-stage sam-
ple size depends on the sample variance from the first stage sampling and the

3.3 Time Until Convergence 67

indifference zone, both of which are problem dependent and unknown, the
same holds for the optimal value of P ∗(n0,M). It is therefore not possible to
give an a priori prescription for the optimal probability. Nonetheless, more
useful information can be extracted from our random walk analysis.

Another quantity of interest when applying the Algorithm TSNP is the
probability of the first maximum depth region visited being the one corre-
sponding to the global optimum. If this probability is sufficiently high then
a reasonable stopping rule would be to stop whenever maximum depth is
reached. We can again use a random walk analysis, this time for a simple
random walk with two absorbing barriers, to calculate this probability.

Theorem 3.12. Let Assumption 3.3-3.5 hold and assume that P ∗ > 0.5. Let
σ̂ denote the first maximum depth region visited. Then

ψ ≡ P
[
σ̂ = σ∗

opt

]
=

(P ∗)d∗

(1 − P ∗)d∗ + (P ∗)d∗ . (3.42)

Proof: Since the success probability is constant we can again consider the
random walk with state space S = {0, 1, ..., 2d∗} defined in the proof of The-
orem 3 above. Here the only question is thus whether state 0 or 2d∗ will be
visited first; that is, the probability that the first maximum depth visited con-
tains the global optimum is equal to the probability that the random walk
visits state 0 before it visits state 2d∗. This probability is thus equal to the
absorption probability at zero for a simple random walk with two absorbing
barriers, which can for example be found on p. 32 in Cox and Miller (1965)
for a random walk {Xn} with upward probability p = P [Xn+1 = Xn + 1] and
downward probability q = P [Xn+1 = Xn − 1], and absorbing barriers at a
and −b:

P [XN = −b] =

{
qb pa−qa

pa+b−qa+b p �= q,
a

a+b p = q,

where N is the absorption time. Here we have q = P ∗ > 0.5 and p = 1− q so
q �= p, and a = b = d∗. Thus, the expression simplifies to equation (3.42) of
the theorem. We now obtain the following stopping rule:

Stop if d(σ(k)) = d∗, and report the final solution σ(k) with the probability

P
[
σ̂ = σ∗

opt

]
=

(P ∗)d∗

(1 − P ∗)d∗ + (P ∗)d∗

that the performance of this solution is within indifference zone ε of the op-
timal performance.
Otherwise let k = k + 1 and go back to Step 1.

68 3 Noisy Objective Functions

Note that this stopping rule assumes that P ∗ > 1
2 , which is a necessary

condition for convergence. We also note that it is possible to use the same
random walk analysis to calculate how many iterations are to be expected
before the stopping criterion developed above is satisfied, that is, the expected
time until maximum depth is reached for the first time.

We conclude this section with a few comments on the practical implications
of the algorithm. We made the assumption that the indifference zone ε is
selected such that it differentiates between the best and second-best solution
(see Assumption 4.3). In practice this is not likely to be true, in which case the
algorithm would not be assured to converge to the optimal solution, but rather
to one of the solutions within the indifference zone of the optimal performance.
This, of course, is consistent with our understanding of what an indifference
zone should be. Along with ε, we can now also choose a target probability
ψ by which we wish to correctly terminate. Furthermore, we can select d∗

so that we terminate the search at a set of a desired size. That is, instead of
terminating at a singleton we might select a smaller d∗ value that implies that
we terminate at a set that reduces the feasible region by an arbitrary amount.
For example, we can choose d∗ such that the TSNP algorithm reduces the
search to a set of 30-50 solutions, which could then be followed up with a pure
ranking-and-selection procedure for determining the best solution. Thus, we
can a priori set reasonable or satisfactory goals in terms of ε, d∗, and ψ, and
then terminate the search the first time maximum depth is reached. Thus,
before starting the algorithm we go through the following initialization steps:

Initialization

1. Determine the size of the desired final set and calculate the corresponding
d∗ value.

2. Determine a desired indifference zone ε > 0 and probability ψ of correct
selection.

3. Calculate P ∗ according to equation (3.42).

As the type of problems addressed in this book are extremely difficult to
solve and an optimal solution is typically an unrealistic goal, this type of goal
softening is of considerable importance.

4

Mathematical Programming in the NP
Framework

Mathematical programming methods have been effectively used to solve a
wider range of problems that contain sufficient structure to guide the search.
In this chapter we are primarily interested in problems that can be stated
as mixed integer programs (MIP). For such problems there may be one set of
discrete variables and one set of continues variables and the objective function
and constraints are both linear. A general MIP can be stated mathematically
as follows:

zMIP = min
x,y∈X

c1x + c2y, (4.1)

where X =
{
x ∈ Zn

+, y ∈ Rn : A1x + A2y ≤ b
}

and we use zMIP to denote any
linear objective function, that is, zMIP = f(x) = cx. While some large-scale
MIPs can be solved efficiently using exact mathematical programming meth-
ods (Atamturk and Savelsbergh, 2005), complex applications often give rise to
MIPs where exact solutions can only be found for relatively small problems.
As before, we are interested in complex large-scale problems where traditional
exact methods are not effective and the NP method has been proven to be
very useful. However, even in such cases it may be possible to take advantage
of exact mathematical programming methods by incorporating them into the
NP framework. The NP method therefore provides a framework for com-
bining the complimentary benefits of two optimization approaches that have
traditionally been studied separately, namely mathematical programming and
metaheuristics.

In this chapter we discuss how in the NP method mathematical program-
ming methods can be utilized to find intelligent partitioning, generate good
feasible sample solutions, and define an improved promising index. We will
restrict our attention primarily to problems that can be formulated as MIPs.
The difficulty of these problems hence arises from the large-scale nature of the
problems and the fact that at least some of the decision variables are discrete.
We do this to highlight the connection and synergy between the NP method
and traditional mathematical programming methods for MIPs. However, the
application of the NP method is certainly not limited to problems with linear

70 4 Mathematical Programming in the NP Framework

objective functions and constraints and in the final section of the chapter we
briefly discuss extending the results of this chapter to non-linear problems.
Before addressing how to incorporate mathematical programming into the NP
method we need to briefly review some relevant mathematical programming
concepts. For more information the reader can consult Nemhauser and Wolsey
(1988), Wolsey (1998), and Aardal, Nembauser and Weismantel (2005).

4.1 Mathematical Programming

As was briefly reviewed in Chapter 1, there are the two primary classes of
mathematical programming methods that can be used to solve discrete prob-
lems: branching methods and decomposition methods. We have already re-
viewed how for minimization problems branching methods focus on obtaining
tight lower bounds z ≤ z∗ for each branch and then use these bounds to
eliminate branches where the lower bound is worse than some known feasible
solution x0 ∈ X, that is, cx0 < z. Such branching can be done in the same
way as partitioning in the NP method, but the NP method shifts the primary
computational effort to generating feasible solution (upper bounds), which is
often much more effective for complex problems.

In the following sections we briefly review two mathematical programming
concepts: relaxations and column generation. These are chosen solely because
they will be used in later sections as illustrative examples for how to incorpo-
rate mathematical programming into the NP framework. Since a comprehen-
sive treatment of mathematical programming for discrete problems is outside
the scope of this book many other important methods are not mentioned.

4.1.1 Relaxations

Relaxations play a key role in the use of mathematical programming for solv-
ing discrete optimization problems. The idea of a relaxation is to modify the
constraints or the objective function in some way that makes the problem
easier to solve and assures that the optimal solution to the relaxed problem
is a lower bound on the original problem. Formally, we say that a problem

zRP = min
x,y

{
g(x, y) : x, y ∈ X(R)

}
(4.2)

is a relaxation of (4.1) if the following two conditions hold:

X =
{
x ∈ Zn

+, y ∈ Rn : A1x + A2y ≤ b
}
⊆ X(R), (4.3)

g(x, y) ≤ c1x + c2y,∀x, y ∈ X. (4.4)

Thus, the feasible region X for the original is contained in the feasible region
X(R) of the relaxed problem, and the objective function g(x, y) of the relaxed
problem is dominated by the objective function c1x + c2y of the original.

4.1 Mathematical Programming 71

It follows that zRP ≤ zMIP , that is, the solution to the relaxed problem
provides a bound on the original problem. However, the solution to the relaxed
problem (4.2) is in general not feasible for the original problem (4.1) so solving
relaxations does usually not generate feasible solutions.

Relaxations can be either based on generally applicable methods or on
problem-specific methods. A simple general relaxation method for a MIP as
defined by equation (4.1) is the linear programming (LP) relaxation:

zLP = min
x,y

c1x + c2y

A1x + A2y ≤ b

x ∈ Rn
+ (4.5)

y ∈ Rn.

The only difference is (4.5) where x is now allowed to take any continuous
value. With this relaxation, the problem becomes a linear program (LP) and
methods exist to solve large-scale LPs very quickly. The LP relaxation is
threfore much easier to solve than the original problem, and solving it provides
a lower bound on the original MIP.

In previous chapters we have noted that it is common for practical prob-
lems to have one set of constraints that is hard and another that is easy. This
is for example true for the TSP introduced in Chapter 2, where the assignment
constraints are easy but the subtour elimination constraints are hard, and for
the resource-constrained project scheduling problem of Chapter 1, where the
precedence constraints are easy but the resource constraints are hard. We now
consider relaxations for such problems. For notational simplicity, assume that
we have a pure integer program (IP) with two sets of constraints.

zIP = min
x

cx

A1x ≤ b1 (4.6)
A2x ≤ b2 (4.7)
x ∈ Zn

+

The problem is complicated by one set of constraints, namely equation (4.7).
A very simple relaxation would simply drop these constraints. For the TSP
this would result in an easy to solve assignment problem and for resource-
constrained project scheduling this would result in a project scheduling prob-
lem that can be solved quickly using the critical path method. Thus, lower
bounds are easily obtained but such a relaxation is typically not very useful
since the resulting bound is not very tight.

A more useful relaxation for problems with complicating constraints is
the Lagrangian relaxation (LR) where the hard constraints are added to the
objective function as shown in the following program.

zLR(λ) = min
x

cx + λ
(
b2 − A2x

)
(4.8)

72 4 Mathematical Programming in the NP Framework

A1x ≤ b1

x ∈ Zn
+

for some λ ≥ 0. This is easily seen to be a relaxation since the original feasible
region is clearly a subset of the new feasible region and for any λ ≥ 0, zLR(λ) ≤
zIP . Importantly, the LR problem is easy to solve since the complicating
constraints are no longer present. Furthermore, it often results in a fairly
tight and hence useful bound.

The quality of the LR bounds, that is, the gap zIP − zLR(λ), clearly
depends on the choice of λ, which is called the Lagrangian multiplier. The
Lagrangian dual (LD)

zLD = max
λ

zLR(λ) (4.9)

gives the tightest possible bounds for all Lagrangian relaxation problems. The
Lagrangian dual can be seen to be a piece-wise linear optimization problem
and it is traditionally solved using a subgradient algorithm, although other
more efficient methods have been developed more recently (Frangioni, 2005).

We finally note that the quality of the LD bound can be seen to be at
least as good as the LP relaxation bound, that is, for any (4.1) it is true that
(Nemhauser and Wolsey, 1988)

zLP ≤ zLD ≤ zIP . (4.10)

However, the LD bound usually requires more computational effort.
There are numerous other relaxation methods and by definition they all

provide a lower bound on the performance of the original problem (4.1). As
we will see later in this chapter, by incorporating it into the NP method such
a lower bound can be used to compliment the upper bound found by heuris-
tically generating feasible sample solutions. The NP method hence naturally
combines mathematical programming and heuristics in a single framework.

4.1.2 Column Generation

Lagrangian relaxation can be thought of as a decomposition method with re-
spect to the rows (constraints) since it moves one or more rows into the objec-
tive function. The dual of decomposing with respect to rows is decomposition
with respect to the columns (variables). One such method is the Dantzig-Wolfe
(DW) reformulation (Vanderbeck and Savelsbergh, 2006). In fact, the DW re-
formulation can be seen to be the dual problem of the Lagrangian dual so
in this case the duality between decomposing rows (constraint) and columns
(variables) exists in a precise sense.

The usefulness of the DW decomposition for solving integer problem is
that it divides the optimization problem into two parts: a master problem
and subproblem(s). It is possible to reformulate any problem (4.1) as an ap-
propriate master problem, but instead of solving the master problem directly,

4.2 NP and Mathematical Programming 73

we usually solve what is called the restricted master problem (RMP). The only
difference between the master problem and the RMP is that the RMP uses
a (small) subset of the variables, which in this context are usually referred
to as columns. Unless all of the columns (variables) that are not included in
this subset are zero in an optimal solution solving the RMP does not yield
an optimal solution to the original problem. The next step is therefore to
solve subproblem(s) to determine if any of the remaining columns should be
added. Specifically, the objective function of the subproblems is the reduced
cost corresponding to a set of columns, and if there are negative reduced costs
then the corresponding columns should be added and a new RMP solved. This
iteration between the RMP and the subproblem(s) is repeated until there are
no negative reduced costs, which indicates that the optimal solution has been
found.

The DW decomposition approach of repeatedly solving a RMP and cor-
responding subproblem(s) starts with a small set of columns (variables) and
iteratively generates additional columns until the optimal solution is found.
In many large-scale problems this only requires explicitly considering a small
fraction of all of the variables. Such a column generation approach is therefore
particularly useful when there is huge number of variables that grows expo-
nentially in the input parameters (Villeneuve et al., 2005). This is indeed the
case for many of the kind of large-scale discrete optimization problems that
we study in this book.

4.2 NP and Mathematical Programming

In Section 2 we presented the NP method as a metaheuristic, which is a natural
interpretation due to its focus on generating feasible solutions. However, it is
also closely related to certain mathematical programming methods. In this
section we discuss its connections, similarities and uniqueness as it relates to
two such methods: branch-and-bound and dynamic programming.

4.2.1 Branch-and-Bound

Recall that there are two main categories of methods used to solve discrete
problems: branching methods and decomposition methods. In the previous
section we discussed decomposition methods with respect to both the con-
straints (relaxations) and variables (DW decomposition) and we will see later
how those can be incorporated into the NP framework. The result are hy-
brid algorithms that are more effective and efficient than the mathematical
programming methods alone. In this section we develop further the previ-
ously made observation concerning similarities between the NP method and
branching methods.

As previously stated, branching methods solve discrete optimization prob-
lems by dividing the feasible region into partitions called branches and then

74 4 Mathematical Programming in the NP Framework

obtain lower bounds z ≤ z∗ on the performance of each branch. If for a partic-
ular branch the bound is such that it proves that all solutions in that branch
are no better than some known feasible solution x0 ∈ X, that is, cx0 < z,
then this branch can be eliminated or fathomed. Branches that cannot be
fathomed are branched further until eventually all of the feasible solutions are
accounted for. The computational effort of branching methods usually focuses
on obtaining tight lower bounds.

Branching in branch-and-bound and partitioning in the NP-method both
generate partitions of the feasible region, that is, disjoint subsets covering the
entire space. There is therefore a one-to-one correspondence between these
aspects of the methods and they therefore impose the same type of structure
on the feasible region. On the other hand, the manner in which the feasible
region is searched given this structure is quite different.

Branch-and-bound and its many variants focus the computational effort on
finding good lower bounds (Balas and Toth, 1995; Beale, 1979). For example,
the branch-and-cut algorithm combines branch-and-bound with the genera-
tion of cutting planes that improve the formulation (Caprara and Fishetti,
1997; Martin, 2001; Padberg, 2005). The generation of cutting planes at each
node is computationally expensive, but the improved formulation results in
better relaxations and hence tighter bounds. On the contrary, the NP method
focuses the computational effort on generating feasible solutions, which can
be viewed as upper bounds, and uses these feasible solutions to calculate the
promising index of the region. The promising index is very flexible and as
discussed in Chapter 2 can both use the sampling information directly and
incorporate exact or probabilistic lower bounds. The focus on sampling and
the ability to incorporate a variety of domain knowledge and heuristics makes
the NP method more applicable for large-scale problems and for problems
that are too complex for the development of tight lower bounds.

4.2.2 Dynamic Programming

Dynamic programming is an often efficient exact approach for solving a class
of discrete optimization problems that can be formulated in the following
manner (Bertsekas, 2000).

z = min
x1,...,xT

T∑

t=1

gt (st−1, xt) , (4.11)

st = φt (st−1, xt) , t = 1, ..., T − 1.

and s0 is given. The variable st is called the state at time t = 1, ..., T ; and
each t is referred to as the time period or stage. The particular definition of
the states and time stages depend on the application.

Following a standard DP approach, we will develop a recursive relationship
to solve this problem. To that end, define

4.2 NP and Mathematical Programming 75

zk (sk−1) = min
x1,...,xT

T∑

t=k

gt (st−1, xt) , (4.12)

st = φt (st−1, xt) , t = k, ..., T − 1.

Note that z = z1(s0), so by solving (4.12) for k = 1 we solve the original
problem (4.11) above.

It is not difficult to see that z1(s0) can be obtained recursively. A simple
rewriting yields what is usually referred to as the principle of optimality, that
is, in each state a necessary condition for optimality is that the remaining
decision are optimal with respect to this state:

zk (sk−1) = min
xk

{gk (sk−1, xk) + zk+1(sk)} . (4.13)

This recursion shows that the decisions can be decoupled according to the
stage and optimizing at any stage is a single variable problem. We can then
sequentially optimize at each stage using backwards recursion, that is, starting
with zT (sT−1) we solve T one variable problems in order to eventually obtain
z1(s0), which solves the original.

zT (sT−1) = min
xT

{gT (sT−1, xT)}

zT−1(sT−2) = min
xT−1

{gT−1 (sT−2, xT−1) + zT (sT−1)}

...
...

z1(s0) = min
x1

{g1 (s0, x1) + z2(s1)} .

The decoupling of the decision variables and the decomposition of a T variable
optimization problem into T single-variable optimization problems is very
useful, but it requires that the problem can be reformulated on the form
(4.11) above.

The NP method can be thought of in terms of dynamic programming by
identifying each stage with a level in the partitioning tree, that is,

sk =
(
x0

1, ..., x
0
k

)
, (4.14)

where at level d in the partitioning tree, the selected subregion is defined by

σ =
{
x ∈ X : xi = x0

i , i = 1, ..., d
}

.

Thus, similar to dynamic programming the NP method can be viewed as
fixing one variable at a time. It does however not require that the problem
can be reformulated as (4.11). Furthermore, rather than optimally solving the
(one-variable) problem at each stage, the NP method solves it heuristically
by generating high-quality feasible sample solutions. In other words, instead
of equation (4.13), in each step of the NP method we solve a problem of the
form

76 4 Mathematical Programming in the NP Framework

min
xk

g (sk−1, xk, xk+1, ..., xT) , (4.15)

where the state sk−1 is fixed by the partitioning , each possible value of xk is
corresponds to one of the subregion, and the values of the remaining variables
xk+1, ..., xT are randomly generated.

It is also interesting to consider how the NP method can be applied to
problems that can be formulated as (4.11) above. In this case fixing vari-
ables by the partitioning also fixes the contribution of these variables to the
objective function, and since every value of xk is considered the objective
function contribution gk (sk−1, xk) can be calculated. The contribution from
the remaining variables xk+1, ..., xT is unknown but can be estimated based
on sample values calculated by randomly assigning values to these remaining
variables. Thus, at each step we solve a problem that is closely related to
(4.13), namely,

zk (sk−1) = max
xk

{gk (sk−1, xk) + z̃k+1(sk)} . (4.16)

Here the exact solution zk+1(sk) is replaced by a heuristic solution z̃k+1(sk)
that is obtained by randomly generating solutions from the region

σj(k − 1) =
{

x ∈ X : xi = x0
i , i = 1, ..., k − 1, xk = x

[j]
k

}
,

where x
[j]
k is the jth value of variable xk and defines the jth subregion of

region σ(k − 1).
We conclude from this section that the NP method does have certain sim-

ilarities to well known exact optimization methods. However, the flexibility of
the NP method in incorporating domain knowledge and fast heuristics to gen-
erate solution, as well as its use of sampling to deal with difficult constraints,
make it better suited for most large-scale complex problems.

In the next three sections we will see how various mathematical program-
ming methods can also be incorporated into all phases of the NP method to
improve its efficiency. Specifically, we will show how to use mathematical pro-
gramming for intelligent partitioning, faster generation of high-quality feasible
solutions, and to improve the promising index.

4.3 Intelligent Partitioning

In Chapter 2 we discussed how partitioning places a structure on the search
space and is hence very important for the efficiency of the search. Intelligent
partitioning uses our understanding of the problem to impose a structure
that tends to cluster together good solutions. Unfortunately, such intelligent
partitioning is certainly not apparent or trivially obtained in most problems
that arise in complex applications.

4.3 Intelligent Partitioning 77

Solving a relaxation may result in sufficient information to construct an
intelligent partitioning. Say for example that we are solving a binary integer
program (BIP), defined by

zBIP = min
x

cx (4.17)

Ax ≤ b

x ∈ {0, 1},

that is, X = {x ∈ {0, 1} : Ax ≤ b}. The LP relaxation of BIP is

zLP = min
x

cx

Ax ≤ b

x ∈ [0, 1].

This is an easy LP, which can be solved to obtain some optimal solution
xLP

1 , xLP
2 ,..., xLP

n . In general xLP
i �∈ {0, 1} but the value can be taken as an

indication of its importance. For example, if xi = 0.95 then it is intuitive that
most of the good feasible solutions correspond to xi = 1 and most of the poor
feasible solutions correspond to xi = 0. On the other hand, if xi = 0.5 no
such inference can be made. One possible intelligent partitioning for the BIP
is therefore to order the variables according to the absolute deviation from
one half, that is,

∣
∣
∣
∣
1
2
− x[1]

∣
∣
∣
∣ ≥

∣
∣
∣
∣
1
2
− x[2]

∣
∣
∣
∣ ... ≥

∣
∣
∣
∣
1
2
− x[n]

∣
∣
∣
∣ (4.18)

and start by partitioning σ(0) = X into two subregions

σ1(0) =
{
x ∈ {0, 1} : x[1] = 0, Ax ≤ b

}
,

σ2(0) =
{
x ∈ {0, 1} : x[1] = 1, Ax ≤ b

}
.

We then continue to partition by fixing the remaining variables in the order
(4.18) obtained by solving the LP relaxation. It is important to note that
such intelligent partitioning is only a heuristic. Is is possible that even though
xi = 0.95 in the relaxed solution that xi = 0 in the optimal solution. How-
ever, our empirical experience indicates that using such intuitive heuristics for
intelligent partitioning is very effective in practice.

Similar to the LP relaxation for the BIP, solving any relaxation will reveal
some information about what values are desirable for each variable. This can
be utilized for developing an intelligent partitioning but the exact approach
will in general depend on the specifics of the application.

We now illustrate the above ideas through a difficult to solve application
example, namely the resource-constrained project scheduling problem intro-
duced in Chapter 1. Recall that a project consists of a set of tasks to be
performed and a given precedence requirements between some of the tasks.

78 4 Mathematical Programming in the NP Framework

The project scheduling problem without resource constraints involves finding
the starting time of each task so that the overall completion time of the project
is minimized. It is well-known that this problem can be solved efficiently using
what is called the critical path method that uses forward recursion to find the
earliest possible completion time for each task (Pinedo, 2000). The completion
time of the last task defines the makespan or the completion time of the entire
project.

Now assume that one or more resource is required to complete each task.
The resources are limited so if a set of tasks requires more than the available
resources they cannot be performed concurrently. The problem now becomes
NP-hard and cannot be solved efficiently to optimality using any traditional
methods. Using the notation from Chapter 1, the decision variables are the
starting times for each task,

xi = Starting time of task i ∈ V, (4.19)

where V is the set of tasks. We also define the set of tasks processed at time
t as

V (t) = {i : xi ≤ t ≤ xi + pi} ,

where pi is the processing time of task i ∈ V . As previously shown in Chapter
1, the resource-constrained project scheduling problem may be formulated
mathematically as follows:

min max
i∈V

xi + pi (4.20)

xi + pi ≤ xj , ∀(i, j) ∈ E (4.21)
∑

i∈V (t)

rik ≤ Rk, ∀k ∈ R, t ∈ Z1
+ (4.22)

xi ∈ Z1
+

Here E is the set of all precedence constraints, R is the set of resources, Rk

is the available resources of type k ∈ R, and rik is the amount of resources of
type k required by task i ∈ V .

It is well known that as noted above the precedence constraints (4.21)
are easy, whereas the resource constraints (4.22) are hard. By this we mean
that if the constraints (4.22) are dropped then the problem becomes easy to
solve using the critical path method. This would hence be an easy to solve
relaxation, but unfortunately it is not very useful since it is unlikely to result
in useful bounds.

Instead of dropping the difficult resource constraints (4.22), an alterna-
tive is to incorporate mathematical programming into the NP framework by
considering the continuous relaxation:

min max
i∈V

xi + pi (4.23)

xi + pi ≤ xj , ∀(i, j) ∈ E (4.24)

4.4 Generating Feasible Solutions 79

∑

i∈V (t)

rik ≤ Rk, ∀k ∈ R, t ∈ Z1
+ (4.25)

xi ∈ R1
+

The same structure can be used to partition intelligently. Instead of parti-
tioning directly using the decision variables (4.19), we note that it is sufficient
to partition to resolve the resource conflicts. Once those are resolved then the
problem is solved. This approach is applicable to any problem that can be
decomposed in a similar manner.

4.4 Generating Feasible Solutions

At first glance it may seem that mathematical programming methods would
not be very useful for generating feasible solutions within the NP method.
The focus of such methods for discrete problems is the generation of lower
bounds that rarely correspond to feasible solutions. However, it turns out that
mathematical programming methods can indeed be very useful for generating
feasible solutions and incorporating them for this purpose can significantly
improve the efficiency of the NP method.

In this chapter we present two distinct ways in which mathematical pro-
gramming can be used to generate feasible solutions. First, similar to the
intelligent partitioning discussed above, the solution to a relaxation of the
original problem (4.1) can be used to bias the sampling. The basic idea is
for solutions that are similar to the optimal solutions for the relaxed problem
to be sampled with higher probability. To illustrate, we consider again the
generic BIP discussed above, namely,

zBIP = min
x

cx

Ax ≤ b

x ∈ {0, 1},

The LP relaxation can be solved to obtain some optimal solution xLP
1 , xLP

2 ,...,
xLP

n and we can then bias the sampling distribution according to these values.
For example, for any xi we can take the sampling distribution to be

P [xi = 1] = xLP
i , (4.26)

P [xi = 0] = 1 − xLP
i . (4.27)

Thus, if a particular variable xi is close to one in the LP relaxation solution
then it is one with high probability in the sample solution, and vice versa.

The second approach to incorporating mathematical programming into
the generation of feasible solutions applies when the problem (4.1) can be
decomposed into two parts, one that is easy from a mathematical program-
ming perspective and one that is hard. For such problem it is impossible in

80 4 Mathematical Programming in the NP Framework

practice to use mathematical programming to solve the entire problem, but
when solving the problem using the NP method we can take advantage of the
fact that mathematical programming can effectively solve a partial problem.
Specifically, we can use sampling to generate partial solutions that fix the
hard part of the problem and then complete the solution by solving a math-
ematical program. Since the mathematical programming output is optimal
given the partial sample solution, this process can be expected to result in
higher quality feasible solutions than if the entire solution was obtained using
sampling. On the other hand, the process of generating a sample solution is
still fast since the difficult part of the problem is handled using sampling. This
first part can incorporate any biased sampling approach or heuristics, and the
combined procedure for generating feasible solutions is therefore a prime ex-
ample of how mathematical programming and heuristics search compliment
each other when both incorporated into the NP framework.

We now return to the resource-constrained project scheduling problem
used in the previous section. We know that the precedence constraints (1.4)
are easy, whereas the resource constraints (1.5) are hard. By this we mean that
if the constraints (1.5) are dropped then the problem becomes easy to solve.
As noted before, such problems, where complicating constraints transform the
problem from easy to very hard, are common in large-scale optimization.

The flexibility of the NP method allows us to address such problems ef-
fectively by taking advantage of special structure when generating feasible
solutions. It is important to note that it is very easy to use sampling to gener-
ate feasible solutions that satisfy very complicated constraints, which are very
difficult to handle using traditional methods such as mathematical program-
ming. Therefore, when faced with a problem with complicating constraints
we want to use random sampling to generate partial feasible solutions that
resolve the difficult part of the problem and then completed the solution using
the appropriate efficient optimization method.

For example, when generating a feasible solution for the resource-constrained
project scheduling problem, the resource allocation should be generated using
random sampling and the solution can then be completed by applying the crit-
ical path method to determine the starting times for each task. This requires
reformulating the problem so that the resource and precedence constraints
can be separated, but such a reformulation is rather easily achieved by noting
that the resource constraints can be resolved by determining a sequence be-
tween the tasks that require the same resource(s) at the the same time. Once
this sequence is determined then the sequence can be added as easy to solve
precedence constraints and the remaining solution generated using the critical
path method. Feasible solutions can therefore be generated in the NP method
by first randomly sampling a sequence to resolve resource conflicts and then
applying the critical path method. Both procedures are very fast so complete
sample solutions can be generated rapidly.

We also note that constraints that are difficult for optimization methods
such as mathematical programming are sometime very easily addressed in

4.6 Non-linear Programming 81

practice by incorporating domain knowledge. For example, a domain expert
may easily be able to specify priorities among tasks requiring the same re-
source(s) in the resource-constrained project scheduling problem. The domain
expert can therefore specify some priority rules to convert a very complex
problem into an easy one. The NP method can effectively incorporate such
domain knowledge into the optimization framework by using the priority rules
when generating feasible solutions. This is particularly effective because the
domain expert would not need to specify priority rules to resolve all resource
conflicts. Rather, any available priority rule or other domain knowledge can
be incorporated to guide the sampling.

4.5 Promising Index

We recall from Chapter 2 that while the basic method for defining the promis-
ing index of a valid region σ ∈ Σ is based on the set of feasible solutions Dσ

that are generated from this region it is possible to incorporate other infor-
mation about this region. For example, assume that we are solving a general
IP and we have a lower bound z(σ) on the objective function for σ ∈ Σ. Then
this local lower bound can be combined with the upper bound minx∈Dσ

cx into
a single promising index

I(σ) = α1 · z(σ) + α2 · min
x∈Dσ

cx, (4.28)

where α1, α2 ∈ R are the weights given to the lower bound and upper bound,
respectively. This lower bound can be obtained using any of the techniques
discussed in this chapter, such as by solving a LP relaxation, solving the La-
grangian dual, or through an application-specific COP relaxation. Since the
promising index now contains more information it may be expected that the
correct move is selected more frequently, hence improving the overall efficiency
of the NP method.

4.6 Non-linear Programming

In this chapter we have studied optimization programs on the form usually
assumed by integer programming, namely,

zIP = min
x∈X

cx,

where X =
{
x ∈ Zn

+ : Ax ≤ b
}
. The NP method, however, does not require

linearity in either the objective function or the constraints and the ideas pre-
sented in this chapter can all be readily extended to non-linear programming
problems (NLP). In this section we illustrate how the NP method deals with
non-linearity in both the objective function and the constraints.

82 4 Mathematical Programming in the NP Framework

Suppose that we have a general non-linear optimization problem with in-
teger decision variables, that is,

min
x∈X

f(x), (4.29)

where X =
{
x ∈ Zn

+ : g(x) ≤ b
}
. This is in general a very hard problem.

Standard integer programming methods are unlikely to be effective or even
applicable due to the non-linearity. Standard non-linear programming meth-
ods require a differential objective function. Therefore, the discrete nature of
the feasible region makes such methods not directly applicable. On the other
hand, since all that is required to apply the NP method is the ability to parti-
tion and randomly generate feasible solutions, it can be applied to (4.29) just
as it can for (4.1).

While the pure NP method is always applicable for (4.29), its efficiency
may often be greatly improved by exploiting special structure. As an extreme
case, say for example that the objective function is of the special form

f(x) = cx1 + f ′ (x2) , (4.30)

where x = (x1, x2) and the feasible region is part linear, that is,

X =
{
x1 ∈ Zn1

+ , x2 ∈ Zn2
+ : Ax1 ≤ b1, g

′ (x2) ≤ b2

}
.

In other words, the objective function and constraints are only non-linear
through some of the decision variables. In this case the problem becomes
considerably easier once the variables x2 have been fixed to some value x0

2,
namely it would reduce to the integer program

z = min cx1 + c0

Ax1 ≤ b1

x1 ∈ Zn1
+

where c0 = f ′ (x0
2

)
is a constant. In many cases it may be possible to solve

this reduced problem efficiently using standard integer programming tech-
niques. The NP method can take advantage of this by partitioning on the
difficult variables x2, and quickly generating high-quality feasible solutions in
two phases: use random sampling to determine the values of the difficult vari-
ables x2 and then completing the solution by solving for x1 using standard
integer programming methods.

The fact that the NP method does not require linearity in either the ob-
jective function or the constraints is very significant. While most, if not all,
combinatorial optimization problems can be formulated as MIPs, such linear
formulations typically require a large number of variables and/or constraints.
In formulating many real problems there is thus often a trade-off between
a large formulation where traditional MIP solution methods are applicable

4.6 Non-linear Programming 83

and smaller formulations where such methods are not applicable due to non-
linearities. When using the NP method it is possible to simultaneously take
advantage of the smaller non-linear formulations and MIP methods by incor-
porating the MIP solution methods to address the linear part of the problem
and using sampling to address the non-linear part of the problem. In the ap-
plication part of the book we will see several occasions where it is beneficial
to reformulate linear MIPs as non-linear programs when applying the NP
method.

We have seen in this chapter that the NP method has certain connections
to standard mathematical programming techniques such as branch and bound
and dynamic programming. However, the NP method is primarily useful for
problems that are either too large or too complex for mathematical program-
ming to be effective. But even for such problems mathematical programming
methods can often be used to solve either a relaxed problem or a subproblem
of the original and these solutions can be effectively incorporated into the NP
framework in numerous ways. For example, we have seen that this can be done
by letting the mathematical programming solution define an intelligent par-
titioning . It can also be used for generating better feasible solutions, either
by biasing the sampling distribution or by using a hybrid technique where
the difficult decisions are first determined using sampling and the remaining
solution is generating by solving a mathematical program. Finally, the math-
ematical programming solution can also be incorporated into the promising
index.

5

Hybrid Nested Partitions Algorithm

The inherent flexibility of the NP method allows us to incorporate any other
heuristic for generating good feasible solutions, resulting in what we call hybrid
Nested Partitions algorithms. In this chapter we will show how to do this for
several of the most popular and effective heuristic search methods, namely
genetic algorithms, tabu search, and ant colony optimization, as well as for
greedy heuristics.

The basic idea behind effective NP hybrids is to note that in order for
the NP method to make a correct move, that is, move either to a subregion
containing the global optimum or backtrack, high-quality feasible solutions
must be generated from each region being considered. Furthermore, while
the NP method very effectively guides the search effort globally, many other
heuristics have been shown to be effective in generating an improving sequence
of feasible solutions. By incorporating any such algorithm to generate feasible
solutions the effectiveness and efficiency of the NP method could be improved.
Furthermore, our empirical experience clearly shows that the resulting hybrids
are more effective than either the pure NP or the other pure heuristic on their
own.

5.1 Greedy Heuristics in the NP Framework

The simplest heuristics in terms of implementation are greedy heuristics. We
distinguish between two type of greedy heuristics: construction heuristics and
improvement heuristics. Construction heuristics build up a single feasible solu-
tion by determining the values of the decision variables one-by-one. Improve-
ment heuristics, on the other hand, start with a feasible solution and then
attempt to improve it by making some relatively small modification to the so-
lution. An improvement heuristic thus generates a sequence of monotonously
improving solutions and terminates when no further improvements are possi-
ble, that is, a local optimum has been reached.

86 5 Hybrid NP Algorithms

In this section we present two ways in which greedy heuristics can be
incorporated into the NP framework to improve its efficiency. First, we discuss
the use of greedy heuristics for generating feasible solutions, and second, we
demonstrate the use of greedy construction heuristics for defining intelligent
partitioning.

5.1.1 Generating Good Feasible Solutions

As before let xi, i = 1, 2, ..., n denote the decision variables. A greedy con-
struction heuristic fixes the values of the variables one at a time, xi = x0

i by
using a single variable objective function gi (xi), which is believed to correlate
in some way with the original objective function defined for x = (x1, ..., xn).
We can therefore think of a construction heuristic as solving n single variable
problems

min
xi

gi (xi) . (5.1)

The solution of these n problems will of course not correspond to the optimal
solution except for trivial problems.

There are two natural ways of taking advantage of any such construction
heuristic within the NP framework: to bias the sampling distribution and to
define an intelligent partitioning . The latter issue of intelligent partitioning
will be discussed in Section 5.1.2, but first we consider how to use construction
heuristics to bias a sampling distribution for randomly generating high-quality
solutions. Assume for simplicity, but without loss of generality, that the per-
formance function is non-negative, that is, gi(x) ≥ 0, ∀x. Then we can define
a probability distribution

P
[
xi = x0

i

]
=

gi (xmax
i) − gi

(
x0

i

)

gi (xmax
i)

(5.2)

where
xmax

i = argmaxxi
gi (xi) .

According to this distribution, good values of each variable will be sampled
with higher probability than values that are believed to be poorer. Thus, while
any solution still has a change of being selection, the probability is biased so
that the overall quality of the sample solutions used by the NP algorithm can
be expected to improve. This will in turn make it more likely that the correct
solution is selected in each step of the algorithm.

We now turn our attention to heuristics that we call greedy search heuris-
tics or improvement heuristics, that transform a feasible solution x0 into an-
other better solution x̃ through a series of improvement moves from one solu-
tion to another similar solution. Specifically, for any point x ∈ X the greedy
search defines a neighborhood N (x) ⊂ X of x, which is comprised of solu-
tions that are similar to x in some sense. In each iteration of the greedy search,

5.1 Greedy Heuristics in the NP Framework 87

a solution is selected from the neighborhood so that this new solution is better
than the previous solution.

Specifically, assume xk is the current solution (in the kth iteration of the
search. The greedy search then selects xk+1 ∈ N (xk) such that f

(
xk+1

)
≤

f
(
xk

)
, that is, the new solution is an improvement. If no such solution exists

the greedy search terminates and the current solution is a local optimum given
the neighborhood structure.

A greedy local search is typically very fast but obviously suffers from the
limitation that it terminates at the first local optimum it encounters. However,
when incorporated into the NP framework to generate good feasible solutions
the benefits of fast greedy search and global convergence of the NP framework
are combined into what usually turns out to be a more efficient NP method.
This is illustrated in the following example.

Product Design Problem

We will demonstrate the use of greedy local search in the NP method for the
product design problem. Such optimization problems occur when designing
new products to satisfy the preferences of expected customers. These prob-
lems may be divided into single product design problems where the objective
is to design the attributes of a single product (Kohli and Krishnamurti 1989,
Balakrishnan and Jacob 1996), and product line design where multiple prod-
ucts are offered simultaneously (Green and Krieger 1985, Kohli and Sukumar
1990, Dobson and Kalish 1993, Nair et al. 1995). Here we focus on the single
product design problem that involves determining the levels of the attributes
of a new or redesigned product in such a way that it maximizes a given ob-
jective function. We assume that the preferences of individual customers, or
market segment, have been elicited for each level of every attribute (Zufryden
1977, Green et al. 1981, Green and Srinivasan 1990). Furthermore, we assume
that all product designs found by combining different levels of each attribute
are technologically and economically feasible, and that a customer will choose
the offered product if its utility is higher than that of a competing status quo
product, which may be different for each customer. This problem is usually
referred to as the share-of-choices problem.

The share-of-choices problem is very difficult to solve, especially as the
product complexity increases and more attributes are introduced. In fact, it
belongs to the class of NP-hard problems (Kohli and Krishnamurti 1989),
so the exact mathematical programming methods such as branch-and-bound
(see Section 4.1) are not likely to be successful for realistically sized problems.
On the other hand, the NP method is clearly applicable.

We assume that a product has K attributes, each of which can be set to
one of Lk levels, k = 1, ...,K. To formulate the share-of-choices problem we
define the decision variables as x = {xkl}, where for each l ∈ {1, 2, . . . , Lk},
k ∈ {1, 2, . . . ,K}, xkl = 1, if attribute k is set to level l. Otherwise xkl = 0.
The objective is to maximize the market share and a customer i will purchase

88 5 Hybrid NP Algorithms

the offered product if and only if this customers total utility, TUi(x), for
this product is greater than the total utility qi of this customers status quo
product, 1 ≤ i ≤ M . The total utility the ith customer obtains from the
product is

TUi(x) =
K∑

k=1

Lk∑

l=1

uikl · xkl,

where uikl is the utility the ith customer derives if attribute k is set to level
l, i = 1, ..., N . These utilities can be represented as parts-worth matrices for
each attribute k:

U(k) =

⎡

⎢
⎣

u1k1 . . . u1kL1

...
. . .

...
uNk1 . . . uNkLN

⎤

⎥
⎦ ,

where N is the total number of customers. Each customer purchases the of-
fered product if and only if TUi(x) > qi, so the performance function for the
ith customer can be written as

fi(x) =
max {0, TUi(x) − qi}

TUi(x) − qi
, (5.3)

when TUi(x) �= qi and fi(x) = 0 when TUi(x) = qi. This performance function
assigns one to all the customers that purchase the offered product and zero to
all other customers. Now the share-of-choices problem may be stated as the
following mathematical programming problem,

max
x

f(x) =
M∑

i=1

fi(x), (5.4)

subject to
Lk∑

l=1

xkl = 1, k = 1, 2, ...,K (5.5)

xkl ∈ {0, 1}, ∀k, l. (5.6)

In the above notation, a product profile x is a string of length
∑K

k=1 Lk,
that consists only of zeros and ones. However, since there are only K ones,
indicating which level is chosen for each attribute, and the reminder of the
string is zeros, we can represent a product profile more compactly as a string
of length K, denoted x = [l1 l2 . . . lK]. Each element of this vector represents
one attribute, and the value of the element indicates which level is chosen.
For example, attribute k is set to level lk, where 1 ≤ k ≤ K. This simplifies
the notation.

5.1 Greedy Heuristics in the NP Framework 89

NP for Product Design

To illustrate the NP method for product design, consider a small problem with
K = 3 attributes, L1 = 3, and L2 = L3 = 2. For some N = 3 individuals, let
the part-worths data matrices be as follows:

U(1) =

⎡

⎣
1 1 3
1 4 1
2 2 0

⎤

⎦ , U(2) =

⎡

⎣
3 0
1 2
2 2

⎤

⎦ , U(3) =

⎡

⎣
1 1
1 4
3 1

⎤

⎦ .

Suppose the status-quo is represented by the values of level 1 for each at-
tribute. Then subtracting the first column from each column of gives the
relative parts-worth data matrices:

Ũ(1) =

⎡

⎣
0 0 2
0 3 0
0 0 −2

⎤

⎦ , Ũ(2) =

⎡

⎣
0 −3
0 1
0 0

⎤

⎦ , Ũ(3) =

⎡

⎣
0 0
0 3
0 −2

⎤

⎦ .

This allows us to calculate the performance of each design, that is, the ex-
pected number of customers selecting the product, according to equation
(5.3) above. In this chapter we refer to this product design problem as the
3-Attribute example.

This example has 22 valid regions. The region containing all product pro-
files X ∈ Σ has three subregions σ1, σ2, and σ3; and each of these subregions
has two subregions of its own. The maximum depth is d∗ = 3 and there are
12 regions of maximum depth, that is |Σ0| = 12. Notice that these singleton
regions define a complete product profile, whereas every region η ∈ Σ such
that 0 < d(η) < d∗ defines a partial product profile. Also note that the maxi-
mum depth will always be equal to the number of attributes. The best feasible
solution value is initialized as f0 = 0.

The pure NP algorithm starts from the initial most promising region, X,
and must determine which of its three subregions:

σ1 = {[l1 l2 l3] : l1 = 1, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 2},
σ2 = {[l1 l2 l3] : l1 = 2, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 2},
σ3 = {[l1 l2 l3] : l1 = 3, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 2},

will become the most promising region in the next iteration. To determine this
region, each of these subregions is sampled by selecting the values of l2 and
l3. This involves two step sampling. In the first step we generate a uniform
random variable u ∈ (0, 1). If u < 1

2 then we set l2 = 1, and if 1
2 ≤ u < 1

then we set l2 = 2. In the second step we generate another uniform random
variable v ∈ (0, 1). If v < 1

2 then we set l3 = 1, if 1
2 ≤ v < 1 then we set

l3 = 2. For example, when we sample in σ1, if u < 1
2 in the first step and

1
2 ≤ v < 1 in the second step, then the sample product profile generated
is x1 =

[
l11 l12 l13

]
= [1 1 2]. This procedure is identical for each of the three

90 5 Hybrid NP Algorithms

regions. Suppose the other two samples from σ2 and σ3 are x2 =
[
l21 l22 l23

]
=

[2 1 1] and x3 =
[
l31 l32 l33

]
= [3 2 2], respectively.

After we obtain one sample product profile from each region currently
under consideration, the next step is to estimate the promising index of each
region using the sample product profiles. Usually the number of samples in
each region should be larger than one. However, for ease of exposition, in
this example we use single sample in each region and its objective value as
estimated promising index: Î(σ1) = f(x1) = f([1 1 2]) = 1, Î(σ2) = f(x2) =
f([2 1 1]) = 1, Î(σ3) = f(x3) = f([3 2 2]) = 1. By breaking the tie arbitrarily
the algorithm moves to region σ1 = {[l1 l2 l3] : l1 = 1, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 2}
and we update the best solution value to f0 = 1.

As σ1 is now the most promising region, the algorithm then samples the
subregions

σ11 = {[l1 l2 l3] : l1 = 1, l2 = 1, 1 ≤ l3 ≤ 2}
σ12 = {[l1 l2 l3] : l1 = 1, l2 = 2, 1 ≤ l3 ≤ 2}

as well as the complimentary region X\σ1. Suppose the complimentary region
X \ σ1 has the best estimated promising index, the algorithm backtracks to a
larger region. Recall that the algorithm backtracks to a region containing the
best product profile found in this iteration and with depth of �d∗

2 �+ 1, where
�x� denotes the largest integer smaller than or equal to x, for any x ∈ R.
Therefore, the most promising region will be set to σ31, and the best solution
f0 = 2 is updated. It can be shown by enumeration that 2 customers is the
optimal solution for this data set. The algorithm will continue in this manner
until some predefined stopping criteria is met.

Comparison of Hybrid and Non-Hybrid Methods

Greedy search heuristic have previously been proposed for the share-of choices
problem (Kohli and Krishnamurti 1989). In this section we define a greedy
search (GS) heuristic as follows: For each attribute k, the overall relative
utilities for all the customers is calculated, that is

ukl =
M∑

i=1

uikl − uikl̃k
,

where l̃k is the level of the kth attribute for the status-quo product. The GS
heuristic then selects the level l∗k for the kth attribute that maximizes the
relative utilities. Thus the level of each attribute is determined independently
of all other attributes.

We now compare the effectiveness of the pure NP method with uniform
random sampling used to generate feasible solution and the pure greedy search
for the product design problem to the hybrid NP/GS algorithm of using greedy

5.1 Greedy Heuristics in the NP Framework 91

Table 5.1. Comparison of pure NP, greedy search, and hybrid NP/GS.

Problem GS NP-Pure NP/GS
K L

5 5 219 238 238
6 6 237 239 239
7 7 225 239 241
8 8 228 236 239
9 9 223 240 244
10 10 241 241 248
20 20 237 248 256

search for generating higher quality solutions from each region in the NP
method. The results are reported in Table 5.1.

From these results we see that the pure NP method consistently finds
better solutions than the greedy search algorithm. Of course this should be
expected since the greedy search is also much faster and simply terminates at
the first local optimum. The more interesting comparison is between the pure
NP method and the hybrid NP/GS method that incorporates greedy search
into the solution generation. For the two smallest problems the solution quality
is the same but for each of the other problems the hybrid algorithm finds better
solutions. Furthermore, the gap between the solution quality increases with
the size of the problem. These results therefore indicate that the hybrid NP
algorithm performs best for large-scale problems. As we will see throughout
this chapter and the remainder of the book, this is a consistent observation
for different applications and different NP hybrids. When compared to other
methods, hybrid NP algorithms perform relatively best when applied to solve
large-scale complex problems.

In the application part of this book we will see numerous other examples
of how to effectively incorporate greedy local search into the NP method
to improve its efficiency, but next we consider how to incorporate greedy
heuristics into the partitioning.

5.1.2 Intelligent Partitioning

Many construction heuristics use an ordering of the importance of the vari-
ables to construct a good solution. This is for example true of the classic
shifted-bottleneck heuristic for job-shop scheduling (Pinedo, 2000). The job-
shop scheduling problem involves scheduling a set of jobs on a set of machines.
Each job must be processed on a given subset of machines in a given order.
There are therefore two sets of constraints: (a) precedence constraints that
assure that each job follows the correct route through the job shop, and (b)
machine constraints that assure that each machine only processes one job
at a time. The shifted-bottleneck heuristic orders the machines according to
their importance and first sequences all of the jobs that must be processed on

92 5 Hybrid NP Algorithms

the most important (bottleneck) machine, then sequences all the jobs on the
second most important machine, and so forth.

The same principle used by the shifted-bottleneck heuristic can be used to
impose a structure on the search space when partitioning in the NP method.
When solving the job-shop scheduling problem the variables corresponding to
the bottleneck machine should therefore be partitioned on first, and so forth.
In general, when partitioning for any problem the most important variables
should be used at the top of the partitioning tree. For a given application, any
available heuristic that measures the importance of variables can be applied
for this purpose and in many applications there are multiple ways of measur-
ing the importance of variables. Finally, we note that a similar principle for
branching variable selection is well-known to perform well when applying the
branch-and-bound algorithm for obtaining exact solutions (Nemhauser and
Wolsey 1988).

We will revisit the issue of using heuristics for intelligent partitioning in
Chapter 7, where we show that by using very simple construction heuristics
the speed of the NP algorithm can be improved by an order of magnitude.

5.2 Random Search in the NP Framework

The greedy heuristics discussed in the previous section are typically very fast
but limited in that they only explore a small portion of the feasible region
before terminating at a local optimum. The solution quality for problems
with complex structure is therefore often not satisfactory. On the other end
of the spectrum are the exact mathematical programming methods discussed
in Chapter 4. These methods guarantee an optimal solution but the solu-
tion time is usually too long in practice. For problems where greedy search
heuristics result in unsatisfactory solutions and mathematical programming
methods are too time consuming, random search methods and metaheuristics
have been found to be very effective in practice (Gendreau and Potvin 2005,
Glover and Kochenberger 2003, Lovsz 1996). Such methods usually use one
or more local (greedy) improvement moves at their core but use randomiza-
tion to escape local optima and explore a larger part of the feasible region.
The search therefore generates a sequence of feasible solutions that are heuris-
tically believed to be good but are not necessarily monotonously improving
as for greedy search.

Similar to the greedy search discussed above, any random search heuristic
can be incorporated into the NP method by using it to generate feasible solu-
tions from the regions under consideration. Such a process may be expected to
generate higher quality solutions than pure random sampling, which in turn
often increases the probability that the correct region is found to be best and
the NP method moves in the correct direction.

There are two basic approaches to utilizing random search methods for
generating good feasible solutions in the NP method, depending on if the

5.2 Random Search in the NP Framework 93

random search is point-to-point or population-based. Point-to-point random
search methods start from a single solution xi and explore what is usually
referred to as a neighborhood N

(
xi

)
⊂ X of this solution, namely some

small set of solutions that are similar according to some distance measure.
The method then selects a candidate xc ∈ N

(
xi

)
from the neighborhood

and either accepts it (and xi+1 = xc) or rejects it (and sets xi+1 = xi). The
process is then repeated using the new solution xi+1. As mentioned in Chapter
2 above, a natural way to take advantage of any point-to-point random search
method within the NP method is to start with a random set D ⊂ X of
sample points, and then use each solution x ∈ D as the starting point x0

of a random search. Thus, the entire randomly generated set is transformed
through the local search into a new set of solutions with better performance.
This is repeated for each subregion and the complimentary region, and these
new sets of solutions can then be used as the basis for selecting a new promising
region. It is intuitively appealing that it is more likely that the correct move
is made on the basis of the improved solution sets than the original randomly
generated solution sets. This is supported by our empirical experience reported
in subsequent chapters.

An even more natural match is achieved through NP hybrids that utilize
population based random search methods. Such methods start with a set
of solutions D ⊂ X or a population, which just as in the NP method is
typically randomly generated. This set is then improved through a series of
operations. Similar to above, we can therefore randomly generate an initial
population from each region being considered, apply the search method to
each population, and then use the final population from each region to choose
the next most-promising region. As before, this may be expected to increase
the probability of correct selection and this is indeed also supported by our
empirical experience.

In the next three subsection we present three examples to illustrate how
random search methods can be incorporated into the NP method for very
effective hybrid NP algorithms.

5.2.1 NP with Genetic Algorithm

We first consider the popular genetic algorithms and how they can be incor-
porated into the NP framework for a hybrid NP algorithm. To illustrate the
effectiveness of this hybrid approach we use it solve a complex combinato-
rial optimization problem, namely the product design problem introduced in
Section 5.1 above.

Genetic Algorithm

One of the most popular class of random search methods is the genetic algo-
rithm (GA) and other evolutionary search algorithms (Goldberg 1989, Leipins
and Hillard 1989, Muhlenbien 1997). The GA is a population based random

94 5 Hybrid NP Algorithms

search method based on the concept of natural selection. It starts from an
initial population and then uses a mixture of reproduction, crossover, and
mutation to create new, and hopefully better, populations. The GA usually
works with an encoded feasible region, where each feasible point is represented
as a string, which is commonly referred to as a chromosome. Each chromo-
some consists of a number of smaller strings called genes. The reproduction
involves selecting the best, or fittest, chromosomes from the current popula-
tion, the crossover involves generating new chromosomes from this selection,
and finally mutation is used to increase variety by making small changes to
the genes of a given chromosome.

The genetic algorithm can be though of as an improvement heuristic, that
is, it starts out with a set of solutions called the initial population and improves
these solutions iteratively, with the goal of improving the population in each
iteration. As for other such population-based improvement heuristics, GA can
be incorporated into the NP algorithm as follows: Starting with the sample
solution sets from each region as initial population, the GA search may be
used to improve this population, that is, generate better feasible solutions,
and the promising index for each region can then be estimated from the final
population of solutions rather than the initial population.

Hybrid NP/GA Algorithm

More precisely, the following procedure is employed in a Hybrid NP/GA al-
gorithm. Suppose a region σ ∈ Σ is among those currently being considered.
Once an initial population D0 has been obtained from the region then the GA
search proceeds as follows: First the N

2 best (fittest) solutions are selected for
reproduction from the population. These solutions will also survive intact in
the next population. Secondly, pairs of solutions are selected randomly from
the reproduced solutions. Each variable, that is not fixed in σ, of the selected
pair has a given probability of participating in a crossover, that is, being
swapped with the corresponding variable of the other solution. Finally, each
solution may be selected with a given probability as a candidate for mutation.
If a solution is mutated a variable from that solution is selected at random
and assigned a random level. As before, only variables that are not fixed in σ
may be selected to be mutated.

The hybrid procedure described above can be implemented in the follow-
ing algorithm.

Algorithm Hybrid NP/GA

Step 0 Initialization. Set k = 0 and σ(k) = X.
Step 1 Partitioning. If d(σ(k)) �= d∗, that is, σ(k) �∈ Σ0, partition the

fittest region, σ(k), into Mσ(k) subregions σ1(k), ..., σMσ(k)(k). If
d(σ(k)) = d∗ then let Mσ(k) = 1 and σ1(k) = σ(k).

5.2 Random Search in the NP Framework 95

If d(σ(k)) �= 0, that is, σ(k) �= Θ, aggregate the complimentary
region Θ \ σ(k) into one region σMσ(k)+1(k).

Step 2 Initial Population. If d(σ(k)) �= d∗ use a randomized method to
obtain an initial population of Nj strings from each of the regions
σj(k), j = 1, 2, ...,Mσ(k) + 1,

POP j
I =

[
xj1

I , xj2
I , ..., x

jNj

I

]
, j = 1, 2, ...,Mσ(k) + 1. (5.7)

If d(σ(k)) = d∗ then obtain a population POP j
I0

of Nj −M strings
as above and let the initial population be POP j

I = POP j
I0
∪POP0,

where POP0 is the diverse high quality population found in the
first iteration (see Step 6). Note that we implicitly assume that
Nj > M .

Step 3 GA Search. Apply the GA to each initial population POP j
I in-

dividually, obtaining a final population for each region σj(k), j =
1, 2, ...,Mσ(k) + 1,

POP j
F =

[
xj1

F , xj2
F , ..., x

jNj

F

]
, j = 1, 2, ...,Mσ(k) + 1. (5.8)

The number of steps in the GA search can be determined by the
progress of the search. As opposed to a pure GA algorithm, there is
no need to exhaust the search, but rather the GA search should be
terminated when it is no longer making significant improvements.
If k = 0 then go to Step 6, otherwise go to Step 4.

Step 4 Overall Fitness. Estimate the overall fitness of the region as
the performance of the fittest chromosome in the final population.
That is, the overall fitness of each region is estimated by

F̂ (σj) = max
i∈{1,2,...,Nj}

f(xji
F), j = 1, 2, ...,Mσ(k) + 1. (5.9)

Step 5 Update Fittest Region. Calculate the index of the region with
the best overall fitness,

ĵk ∈ arg max
j∈{1,2,..,Mσ(k)+1}

F̂ (σj). (5.10)

If more than one region is equally fit, the tie can be broken arbi-
trarily, except at maximum depth where ties are broken by staying
in the current fittest region. If this index corresponds to a region
that is a subregion of σ(k), then let this be the fittest region in
the next iteration. That is σ(k + 1) = σĵk

(k) if ĵk ≤ Mσ(k).
If the index corresponds to the complimentary region, backtrack to
a region η ∈ Σ that is defined by containing the fittest chromosome
in the complimentary region and being of depth Δ less than the
current most promising region. Note that this fittest chromosome

96 5 Hybrid NP Algorithms

xfit is known as the argument where the minimum (5.9) is realized
for j = Mσ(k) + 1. In other words, σ(k + 1) = η where

d(η) = d(σ(k)) − Δ, (5.11)

and
xfit ∈ η. (5.12)

This uniquely defines the next most promising region.
Let k = k + 1. Go back to Step 1.

Step 6 Initial Diverse Population. Let xj

îj
be the fittest chromosome

from the jth region

îj = arg max
i∈{1,2,...,Nj}

xji
F , (5.13)

for j = 1, 2, ...,M . Let POP0 be the set of the fittest chromosome
from each region

POP0 =
[
x1î1

F , ..., xMîM

F

]
. (5.14)

Go back to Step 4.

In the next section the performance of this hybrid NP/GA algorithm will be
compared to the corresponding non-hybrid algorithms.

Comparison of Hybrid and Non-Hybrid Methods

We demonstrate the effectiveness of using GA to generate feasible solutions
within the NP algorithm through numerical results for the product design
problem. These numerical results are for seven different problems. Five small
to moderately sized problems and two large problems. Due to the size of most
of these problems it is not possible to solve them exactly within reasonable
amount of time and the true optimum is therefore unknown. All the problems
have N = 400 customers and for simplicity we let all the attributes have
the same number of levels, that is, Lk = L for all k = 1, 2, ..,K. The part-
worths preferences for each level of each attribute and the status quo prices
are generated uniformly for each customer. The details on how the simulated
data sets is generated can be found in Nair, Thakur, and Wen (1995). All
of the NP algorithms use N = 20 sample points from each region and our
numerical experience indicates that the performance of the algorithms is fairly
insensitive to this number.

For the hybrid NP/GA algorithm a total of ten GA search steps were used
in each region. Both the NP/GA and the pure GA had a 20% mutation rate.
The performance of each algorithm after a fixed CPU time is given in Table 5.2
for ten replications of each algorithm. These results indicate that it is beneficial
to incorporate the GA heuristic into the NP framework. The resulting hybrid
algorithm performs no worse than the pure counterpart heuristics in all cases
and for large problems there is a substantial improvement.

5.2 Random Search in the NP Framework 97

Table 5.2. Performance of Hybrid NP/GA for product design problem.

Problem GA NP NP/GA
K L

5 5 238 238 238
6 6 239 239 239
7 7 241 239 241
8 8 240 236 240
9 9 245 240 247
10 10 250 241 252
20 20 261 248 266

5.2.2 NP with Tabu Search

Another widely used random search method is the tabu search metaheuris-
tic. In this section we illustrate how to incorporate tabu search into the NP
method.

Tabu Search

Tabu search was introduced by Glover (1989, 1990) to solve combinatorial
optimization problems and it has been used effectively for may practical prob-
lems. It is a point-to-point method and the main idea is to make certain moves
or solutions tabu, that is they cannot be visited as long as they are on the
tabu list. The tabu list is dynamic and after each move the latest solution or
the move that resulted in this solution is added to the list and the oldest solu-
tion or move is removed from the list. Another defining characteristic of tabu
search is that the search always selects the best non-tabu solution from the
neighborhood of the current solution, even if it is worse than the current so-
lution. This allows the search to escape local optima and the tabu list ensures
that the search does not revert back. Tabu search numerous other elements,
such as long-term memory that restarts the search, with a news tabu search,
at previously found high-quality solutions, and a comprehensive treatment of
this methodology can be found in Glover and Laguna (1997).

Hybrid NP/Tabu Algorithm

Similar to the hybrid NP/GA algorithm above, tabu search can be incorpo-
rated into the NP framework by using tabu search to generate feasible sam-
ple solutions from each promising region. The results in the following hybrid
NP/Tabu algorithm.

98 5 Hybrid NP Algorithms

Algorithm Hybrid NP/Tabu

1. Partitioning. Partition the most promising region σ(k), into M subre-
gions σ1(k), ..., σM (k), and aggregate the complimentary region X \ σ(k)
into one region σM+1(k).

2. Random Sampling. For each region σj(k), generate Nj feasible sample
solutions by repeating the following tabu search procedure Nj times, j =
1, 2, ...,M + 1.
a) Randomly generate a starting point x0

j . Initialize n = 0, the current
solution xn and the best solution found so far xbest are initialized to
the random starting point, that is, xbest = xn = x0

j . The tabu list
L(n) is initialized as empty, that is, L(n) = ∅.

b) Given a neighborhood N (xn) around the current feasible solution,
search all feasible neighborhood solutions to find the best non-tabu
solution x̃nontabu and tabu solution x̃tabu and their respective objective
function values f(x̃nontabu) and f(x̃tabu).

c) We have the following three cases:
i. If f(xbest) ≥ max

{
f(x̃nontabu), f(x̃tabu)

}
let

xn+1 = xx̃nontabu, (5.15)

and the move x̃nontabu → xn is added to the tabu list

L(n + 1) = L(n) ∪
{
x̃nontabu → xn

}
. (5.16)

ii. If f(x̃nontabu) ≥ max
{
f(xbest), f(x̃tabu)

}
, let

xn+1 = x̃nontabu, (5.17)

and xbest = xn+1, f best = f(xn+1). The move x̃nontabu → xn is
added to the tabu list

L(n + 1) = L(n) ∪
{
x̃nontabu → xn

}
. (5.18)

iii. If f(x̃tabu) > max
{
f(xbest), f(x̃nontabu)

}
, then let

xn+1 = x̃tabu, (5.19)

xbest = xn+1, f best = f(xn+1), and the move x̃tabu → xn is added
to the tabu list

L(n + 1) = L(n) ∪
{
x̃tabu → xn

}
. (5.20)

If the list length exceeds its maximum, remove the oldest move from
the tabu list.

d) If stopping criterion is satisfied, return xbest as the next feasible sam-
ple solution generated. Otherwise, let n = n + 1, return to Step b.

5.2 Random Search in the NP Framework 99

After repeating this tabu search process Nj times for each region σj(k),
there are Nj sample solutions from each of the regions σj(k), j =
1, 2, ...,M + 1:

xj
1, x

j
2, ..., x

j
Nj

, j = 1, 2, ...,M + 1.

Calculate the corresponding performance values:

f(xj
1), f(xj

2), ..., f(xj
Nj

), j = 1, 2, ...,M + 1.

3. Calculate promising index. For each region σj , j = 1, 2, ...,M + 1,
calculate the promising index as the best performance value within the
region:

I(σj) = min
i=1,2,...,Nj

f(xj
i), j = 1, 2, ...,M + 1. (5.21)

4. Move. Calculate the index of the region with the best performance value.

ĵk ∈ arg min
j=1,...,M+1

I(σj), j = 1, 2, ...,M + 1. (5.22)

If more than one region is equally promising, the tie can be broken arbi-
trarily. If this index corresponds to a region that is a subregion of σ(k),
that is ĵk ≤ M , then let this be the most promising region in the next
iteration

σ(k + 1) = σĵk
(k) (5.23)

Otherwise, if the index corresponds to the complimentary region, that is
ĵk = M + 1, backtrack to the previous most promising region:

σ(k + 1) = σ(k − 1). (5.24)

The above hybrid NP/Tabu algorithm will be implemented for a buffer al-
location problem in Chapter 12, and the numerical results reported in that
chapter will illustrate its effectiveness.

5.2.3 NP with Ant Colony Optimization

As a final illustration of incorporating a metaheuristic into the NP framework,
we consider ant colony optimization (ACO). Specifically, we show how to
develop a hybrid NP/ACO algorithm to solve the traveling salesman problem
(TSP) introduced in Chapter 2 above.

Ant Colony Optimization

Ant colony optimization algorithms imitate the natural behavior of ants in
finding the shortest distance between their nests and food sources. Ants ex-
change information about good routes through a chemical substance called
pheromone that accumulates for short routes and evaporate for long routes.

100 5 Hybrid NP Algorithms

Thus, to imitate this behavior, an algorithm can be defined that identifies
what solutions should be visited based on some pheromone values τ , which
are updated according to solution quality, and an evaporation rate ρ < 0.

The first ACO algorithm is the ant system (AS) of Dorigo (1996) that did
not show good results with respect to solving large TSPs. Numerous modifi-
cations to the original AS have been introduced to improve the quality of the
solution such as having local and global updating of the pheromone matrix as
in the ant colony system (ACS) of Dorigo and Gambardella (1997) or allowing
certain ants only to update the pheromone matrix. The Max-Min Ant System
(MMAS) modifies the AS by keeping the pheromone values within a range
[τmax, τmin] to ensure that there is an upper bound to the probability that a
certain edge is selected (Stűtzle and Hoos 2000).

Hybrid NP/ACO Algorithms

Ant colony optimization can be incorporated in the NP framework in a very
similar manner to genetic algorithms and tabu search, namely by using ants
to generate higher quality feasible solutions from each region.

We illustrate such a hybrid NP/ACO algorithm for solving the TSP. Re-
call from Chapter 2 that for the TSP there is a set of cities, and a tour must
be determined that visits each city exactly once and starts and ends with the
same city. The objective is to minimize the length of the tour. Partitioning for
the TSP is discussed in detail in Section 2.2 and here we focus only on how
to better generate feasible solutions from each region. Specifically, to the fol-
lowing hybrid NP/ACO algorithm, which is based on the work of Al-Shihabi
(2004), uses ants to generate high-quality feasible solutions.

Algorithm Hybrid NP/ACO

1. Partitioning. Let L(k) denote the list of cities that have already been
fixed by the partitioning, that is, L(k) = {x̃1, ..., x̃l}, where x̃i denotes the
city fixed as the ith city. Thus, the most promising region is

σ(k) = {x ∈ X|xi = x̃i, i = 1, ..., l} .

Partition σ(k) into M subregions σ1(k), ..., σM (k), where

σj(k) =
{

x ∈ X|xi = x̃i, i = 1, ..., l, xl+1 = x̃
(j)
i

}
.

Aggregate the complimentary region X \ σ(k) into one region σM+1(k).
2. Random Sampling. A two part process is used to generate random sam-

ple solutions. First, ants are use to find certain high-quality solutions, and
then those solutions are perturbed to generate further feasible solutions.
First, to generate sample solutions using ants, each ant has a list

L(j)(k) = L(k) ∪ {x̃(j)
i }

5.2 Random Search in the NP Framework 101

of cities already visited, and then when at city x
(j)
i , the and chooses to

visit City h next with probability

p
x
(j)
i

h
=

τα

x
(j)
i

h
· ηβ

x
(j)
i

h
∑

l∈L(j)(k) τα

x
(j)
i

h
· ηβ

x
(j)
i

h

. (5.25)

The pheromone matrix {τij} is updated according to

τij = ρτij +
1

Lsa
· (edge(i, j) ∈) (5.26)

After a number of solutions has been generated using this probability,
further solutions are generated by perturbing the existing solutions.
The end result is Nj randomly generated sample solutions from each of
the regions σj(k), j = 1, 2, ...,M + 1:

xj
1, x

j
2, ..., x

j
Nj

, j = 1, 2, ...,M + 1,

with performance values

f(xj
1), f(xj

2), ..., f(xj
Nj

), j = 1, 2, ...,M + 1.

3. Calculate promising index. For each region σj , j = 1, 2, ...,M + 1,
calculate the promising index as the best performance value within the
region:

I(σj) = min
i=1,2,...,Nj

f(xj
i), j = 1, 2, ...,M + 1. (5.27)

4. Move. Calculate the index of the region with the best performance value.

ĵk ∈ arg min
j=1,...,M+1

I(σj), j = 1, 2, ...,M + 1. (5.28)

If more than one region is equally promising, the tie can be broken arbi-
trarily. If this index corresponds to a region that is a subregion of σ(k),
that is ĵk ≤ M , then let this be the most promising region in the next
iteration

σ(k + 1) = σĵk
(k) (5.29)

Otherwise, if the index corresponds to the complimentary region, that is
ĵk = M + 1, backtrack to the previous most promising region:

σ(k + 1) = σ(k − 1). (5.30)

In the next section we evaluate the performance of this hybrid algorithm.

102 5 Hybrid NP Algorithms

Evaluation of the Hybrid NP/ACO Algorithm

The hybrid NP/ACO algorithm described above is implemented by Al-Shihabi
(2004) and tested on several hard TSP instances. The results of each instance
are generated by running the algorithm 15 times using different random seeds.
The parameters of the algorithm are set as follows: ρ = 0.98, α = 1.0, β = 2.0,
and pbest = 0.05.

The results are reported in Table 5.3, which reports the known optimum
(column 2), the best, worst, and average solution found over the 15 replica-
tions of the NP/ACO hybrid (columns 3-5), and the average solution time
(column 6). These numerical results indicate that the hybrid NP/ACO al-
gorithm is capable of finding the global optimum solution for a number of
instances and good quality results are obtained on the average for all of the
TSP instances.

Table 5.3. Performance of Hybrid NP/ACO for TSP instances (see Table 1 in
Al-Shihabi (2004).

NP/ACO Solution
Problem Optimum Best Worst Average CPU Time

eil51 426 426 432 428 16
berlin52 7542 7542 7762 7639 19
eil75 538 538 544 541 50
eil101 629 636 648 643 215
krob150 26130 26257 28826 26527 1547
d198 15780 15953 16129 16001 2538

5.3 Domain Knowledge in the NP Framework

In the previous two sections we have illustrated how to incorporate both gen-
eral purpose metaheuristics and problem-specific local search methods into
the NP framework to improve both the partitioning and the generation of
feasible solutions. The third approach to improve the efficiency and effective-
ness of the NP method is to incorporate expert domain knowledge in a similar
manner, resulting in a knowledge-based NP algorithm.

For many complex, large-scale optimization problem in real systems there
is great deal of functional expertise that if appropriately utilized could greatly
improve the efficiency of the optimization. Many traditional methods cannot
take advantage of such domain knowledge effectively, but the flexibility of
the NP method allows for incorporating any such knowledge into either the
partitioning or the generation of feasible solutions, leading to a knowledge-
based NP implementation. The exact manner in which this is incorporated is
application-specific, but here we outline some general strategies.

5.3 Domain Knowledge in the NP Framework 103

In many real problems it is known which variables are the most important
in terms of their impact on the overall performance of the system. For example,
in a scheduling problem there may be one or more known bottleneck(s) such
that the schedule at the bottleneck(s) will largely determine the performance
of the whole system. Such information can be utilized in the NP method
by using it to define an intelligent partitioning. The overall goal of a good
partitioning is to group together good solutions in the same region and poor
solutions in other regions. This implies that the most important variables, in
terms of their impact on the objective function, should be determined first.
For example, variables corresponding to bottlenecks should be fixed at the
top of the partitioning tree.

Another example of incorporation of domain knowledge is when partial so-
lution can be obtained without applying an optimization algorithm. Consider
for example the resource-constrained project scheduling problem introduced
in section 1.3. The difficulty of this problem lies in the resource constraints,
that is, each resource can only be used by one job or task at a time. However,
in practice there may be a clear priority between some of the jobs. If an ex-
pert can specify such priorities, that is, generate a partial solution, then the
generation of the remaining solution is much easier. The more priorities that
can be specified using domain knowledge the easier the optimization problem
becomes.

While some general guidelines and principles can be established for in-
corporating domain knowledge into the NP method, the details are always
application-specific. A detailed example of how to accomplish this is given in
Chapter 11, where we develop a knowledge-based NP algorithm for a pro-
cess planning problem. The numerical results reported in that chapter show
that incorporating domain knowledge results in significant improvements in
algorithm efficiency and effectiveness.

Part II

Applications

6

Flexible Resource Scheduling

This chapter illustrates how to take advantage of the flexibility in how complex
problems can be formulated when solved using the NP method. Specifically,
we consider a scheduling problem that is initially formulated as a binary inte-
ger program, which is consistent with the use of integer programming methods
for solving the problem. Since the NP method only requires the ability to ef-
fectively partition and use random sampling to generate feasible solution, this
allows for more flexible formulation of the problem. A reformulation of the
problem can thus be obtained that reduces the feasible region by limiting it
to all active schedules, and lends itself to a natural method of partitioning
that enables imposing a structure on the feasible region. As noted in Section
2.2, such intelligent partitioning can greatly improve the efficiency of the NP
method. Finally, this chapter also illustrates how both biased random sam-
pling and greedy local search can be used to improve the generation of feasible
solutions (see Section 2.3 and Section 5.1).

The application we consider is a scheduling problem that arises in many
production systems. Production scheduling is often performed along several
dimensions, including assigning jobs to manufacturing cells, sequencing the
jobs within each cell, and allocating resources to the cells. Sometimes two or
more of these scheduling decisions must be made simultaneously. An exam-
ple of this could be an assembly system where several product families are
assembled. If requirements vary drastically from one family to another, each
cell may be uniquely configured to produce specific families and each family
must therefore be processed in a given cell. On the other hand, workers may
be cross-trained and could be dynamically assigned to any of the cells. The
scheduling problem is therefore to simultaneously sequence the jobs within
each cell, determine how many workers should be assigned to each cell at any
given time, and find a starting time for each job.

Scheduling for parallel manufacturing systems has traditionally focused on
two main issues: assigning jobs to machines and sequencing the jobs that are
assigned to the same machine (Cheng and Sin 1990, Pinedo 1995). A few stud-
ies have focused on scheduling, either, job assignment or sequencing, when the

108 6 Flexible Resource Scheduling

speed of the machines is variable, such as is the case for many tooling machines
(Adiri and Yehudai 1987, Trick 1994, Karabati and Kouvelis, 1997). On the
other hand, in cellular manufacturing systems the processing speed may de-
pend on some flexible resource, such as skilled labor, that is competed for
by the cells. The problem of simultaneously allocating these flexible resources
to the cells and scheduling the jobs within each cell has received relatively
little attention, and these two problems have traditionally been considered
separately. For example, Frenk et al. (1994) and Boxma et al. (1990) consider
resource allocation in manufacturing systems, whereas So (1990) considers the
problem of finding a feasible schedule for each machine in a parallel manufac-
turing system. Simultaneous job scheduling and resource allocation was first
discussed by Daniels and Mazzola (1994). The two problems can be seen to be
intimately related and considering them simultaneously may produce signifi-
cant benefits (Karabati et al. 1995, Daniels et al. 1996). In related work, joint
sequencing and resource allocation decisions have also been investigated for
single machine shop scheduling (Vickson 1980, Van Wassenhove and Baker
1982, Daniels and Sarin 1989). However, in this context the resources are
necessarily non-renewable and there is no competition for resources across
manufacturing cells.

6.1 The PMSFR Problem

A cellular manufacturing system has a set of jobs, indexed by i ∈ N =
{1, 2, ..., n}, to be processed in one of m manufacturing cells, indexed by j ∈
M = {1, 2, ...,m}. There is a fixed amount R of renewable resources that
are flexible. The set Nj of jobs processed in cell j ∈ M is fixed, but the
sequence of jobs within a cell, and the amount of flexible resources used in
each cell at any time can be varied. The objective is to minimize the makespan
Cmax = maxi∈N Ci, where Ci is the completion time of job i ∈ N . This
objective is often of interest for parallel systems, in particular since schedules
with low makespan tend to balance the load between cells (Pinedo, 1995).

The optimization problem can be seen to be threefold. First, a dynamic
resource allocation must be determined. Second, a sequence in which jobs
should be processed within each cell must be determined, and third, a starting
time for each job must be found. This scheduling problem has previously been
discussed in Daniels et al. (1996) where it is termed the Parallel-Machine
Flexible-Resource Scheduling (PMFRS) problem. The decision variables are
defined as

yih =
{

1 if job i precedes job h, where i, h ∈ Nj , j ∈ M,
0 otherwise.

xirt =
{

1 if job i completes processing with r resources at time t,
0 otherwise.

6.1 The PMSFR Problem 109

We let p̂ir denote the service time of job i ∈ N when r ≤ R resources are
allocated to the ith job and pi denote the actual service time of a job i ∈
N . We also let T be an upper bound on the makespan, for example T =
maxj∈M

∑
i∈Nj

p̂i1. In terms of the decision variables x = {xirt} and y =
{yih}, the PMFRS optimization problem can be formulated as the following
binary integer programming (BIP) problem.

min
x,y

C (6.1)

s.t.
R∑

r=1

p̂ir

T∑

t=1

xirt = pi, i ∈ N , (6.2)

T∑

t=1

t

(
R∑

r=1

xirt

)

= Ci, i ∈ N , (6.3)

R∑

r=1

T∑

t=1

xirt = 1, i ∈ N , (6.4)

Ci ≤ C, i ∈ N , (6.5)

Ch − Ci + T (1 − yih) ≥ ph, i ∈ Nj , h ∈ Nj \ {i}, j ∈ M, (6.6)

yih + yhi = 1, i ∈ Nj , h ∈ Nj \ {1, 2, ..., i}, j ∈ M, (6.7)

∑

i∈N

R∑

r=1

t+p̂ir−1∑

l=t

r · xirl ≤ R, t ∈ {1, 2, ..., T}, (6.8)

yih, xirt ∈ {0, 1}, 1 ≤ r ≤ R, i ∈ Nj , h ∈ Nj \ {i}, j ∈ M, t ∈ {1, 2, ..., T},
(6.9)

Ci ≥ 0, i ∈ N . (6.10)

Daniels et al. (1996) have shown how this problem can be solved using a
branch-and-bound algorithm and have developed a heuristic that is based
on its static equivalent. They show that the problem is NP-hard, and solve
it exactly using the branch-and-bound method for relatively small problem
instances, and for larger problems using the heuristic. This heuristic is based
on the static equivalent of the PMFRS problem, where the resources are not
flexible and stay in the same cell for the entire time horizon. It is readily
seen that for the static problem the sequence of jobs does not matter and
the problem reduces to a simple resource allocation problem. This problem
can be solved efficiently to optimality (Daniels et al., 1996), and is therefore
a convenient benchmark for evaluating the performance of algorithms for the
PMFRS problem, as well as for evaluating the benefits of flexible resources.

110 6 Flexible Resource Scheduling

6.2 Reformulation of the PMSFR Problem

We define a vector r = {ri}i∈N to denote the resources allocated to each job
and a vector t = {ti}i∈N to denote the starting time of each job. Specifying
these two vectors completely determines a schedule x = (R, T). In addition
to being integer valued we assume the following constraints on R ∈ Nn and
T ∈ Nn. At any time no more than R resources are allocated to the jobs
currently being processed. Furthermore, for each job i ∈ N , changing the
starting time ti to ti − 1 violates the resource restrictions. This means that
each job is scheduled as early as possible without interfering with any other
jobs. Schedules with this property are often referred to as active schedules
(Pinedo, 2000). Lastly, only one job is processed at a time in each cell.

This reformulated PMFRS optimization problem can be stated mathemat-
ically as follows:

min
x=(R,T)

Cmax, (6.11)

s.t.
n∑

i=1

ri · χ{ti,...,ti+p̂iri
}(t) ≤ R, t = 1, 2, ..., T, (6.12)

n∑

i=1

ri · χ{ti,...,ti+p̂iri
}(t̃i − 1) > R − rĩ, ĩ ∈ N , (6.13)

∑

i∈Nj

χ{ti,...,ti+p̂iri
}(t) ≤ 1, t = 1, 2, ..., T, j ∈ M, (6.14)

ti ≤ Cmax, i ∈ N , (6.15)

r, t ∈ Nn. (6.16)

Here χA(·) is the indicator function, χA(t) = 1 if t ∈ A and χA(t) = 0 if
t �∈ A. The constraint (6.12) ensures that the available amount of resources
is not exceeded. The constraint (6.13) ensures that all schedules are active.
Constraint (6.14) ensures that only one job in each cell is scheduled at the
same time, and constraint (6.15) defines the makespan Cmax, that is, the
completion time of the last job. The feasible region is given by

X = {(r, t) ∈ Nn × Nn | equations (6.12)-(6.14) hold},

and a schedule may be written as {(r1, t1), (r2, t2), ..., (rn, tn)}.
As an illustration, consider the simple example shown in Figure 6.1. This

system has m = 2 manufacturing cells, n = 3 jobs, and R = 2 flexible re-
sources. The schedule in Figure 6.1(a) is feasible. It allocates all of the flexible
resources to each job while being processed and the two cells are therefore
never in operation simultaneously. The schedule in Figure 6.1(b) divides the
resource between the second job in the first cell and the job in the second cell.
These jobs are therefore processed in parallel after the first job is completed.

6.2 Reformulation of the PMSFR Problem 111

(a) (b) (c)

(2)

(2)

(2)Cell 1

Cell 2

(2) (1)

(1)

Cell 1

Cell 2 (1)

(1)(2)Cell 1

Cell 2

Fig. 6.1. Possible schedules. Shaded areas indicate jobs. Number of resources is
given in brackets

This schedule is also feasible. The schedule in Figure 6.1(c) is infeasible. This
is because starting the second job of the first cell earlier would not violate the
resource constraint, so this schedule violates constraint (6.13). We note that
this schedule would be feasible according to the original formulation but that
nothing is lost by making such schedules infeasible.

As illustrated in the above example the new formulation of the PMFRS
reduces the feasible region. However, the optimal schedule(s) are retained as
is established in the next theorem.

Theorem 6.1. For any feasible solution to equations (6.13)-(6.16) there is
a corresponding solution to equations (6.2)-(6.10) that has exactly the same
makespan. Conversely, for any feasible solution to equations (6.2)-(6.10) there
is a corresponding solution to equations (6.13)-(6.16) that has makespan that
is less than or equal to the makespan of the first solution.

Proof: (a) First assume that a schedule (r, t) satisfies equations (6.13)-(6.16).
Define the equivalent decision variables

yih =
{

1 ti < th, i, h ∈ N ,
0 otherwise.

xirt =
{

1 r = ri, t = ti + p̂iri
, i ∈ N ,

0 otherwise.

First we must show that these decision variables are feasible for the original
formulation, that is, that they satisfy the constraints (6.2) - (6.10). Note that
for all i ∈ N

R∑

r=1

p̂ik

T∑

t=1

xirt =
R∑

r=1

p̂ikχ{ri}(r) = p̂iri
= pi.

Therefore equation (6.2) holds. Similarly, for all i ∈ N
T∑

t=1

t

(
R∑

r=1

xirt

)

=
T∑

t=1

tχ{ti+p̂iri
}(t) = ti + p̂iri

= Ci.

The constraints (6.4) and (6.5) hold trivially. Now let j ∈ M, i ∈ N , and
h ∈ N \{i}. If yih = 0 then equation (6.6) is trivially satisfied. If yih = 1 then
ti < th by definition and

112 6 Flexible Resource Scheduling

Ch − Ci + T (1 − yih) = Ch − Ci = th + p̂hrh
− ti + p̂iri

≥ p̂hrh
− p̂iri

= ph − pi ≥ ph,

so the constraint (6.6) holds. Now for any cell j ∈ M and jobs in that cell
i ∈ N and h ∈ N \ {i}, then by equation (6.14), either ti < th or ti > th.
Hence either yih = 1 and yhi = 0, or yih = 0 and yhi = 1. Consequently
yih + yhi = 1 and equation (6.7) holds. Now for any t ∈ {1, 2, ..., T}

∑

i∈N

R∑

r=1

t+p̂ir−1∑

l=t

r · xirl =
∑

i∈N

t+p̂ir−1∑

l=t

R∑

r=1

r · xirl

=
∑

i∈N

t+p̂ir−1∑

l=t

riχ{ti+p̂iri
}(l)

=
∑

i∈N
ri

t+p̂ir−1∑

l=t

χ{ti+p̂iri
}(l)

=
∑

i∈N
ri · χ{ti,...,ti+p̂iri

}(t)

≤ R.

This shows that constraint (6.8) holds. Equations (6.9) and (6.10) hold triv-
ially. The feasibility of the solution has now been established. The fact that
(x, y) and (r, t) have the same makespan is trivial.

(b) Now assume that we start with a feasible solution (x, y) to the original
problem. A feasible schedule (r, t) that has a makespan less than or equal to
the makespan corresponding to (x, y) can be constructed as follows: Let the
resource vector be defined as

ri =
T∑

t=1

R∑

r=1

r · xirt, i ∈ N . (6.17)

Then the starting times can be obtained iteratively. Step 0. Let j = 1 and
NS = ∅. Step 1. Let NU

j = Nj and t0 = 1. Step 2. Select i ∈ {h ∈ NU
j :

yhg = 1, ∀g ∈ NU
j \ {h}}. Step 3. Let

ti = min

{

t ≥ t0 : R −
∑

h∈NS

rh · χ{th,th+1,...,th+p̂hrh
}(u) ≥ ri, u = t, ..., t + p̂iri

}

.

Let t0 = ti + p̂iri
+ 1. Step 4. Let NU

j = NU
j \ {i} and NS = NS ∪ {i}.

If NU
j �= ∅ then go back to Step 2. Otherwise continue to Step 5. Step 5. If

j < m, let j = j + 1 and go back to Step 1. Otherwise stop. It is clear that
this construction maintains feasibility, that is, (r, t) satisfies equations (6.12)-
(6.16). Therefore, all that remains is to show that the makespan corresponding

6.3 NP Algorithm for the PMSFR Problem 113

to (r, t) is less than or equal to the makespan corresponding to the solution
(x, y) of the original problem, that is,

max
j∈M

max
h∈Nj

{
R∑

r=1

T∑

t=1

t · xhrt

}

≥ max
j∈M

max
h∈Nj

{th + p̂hrh
} . (6.18)

We will prove this by contradiction. Assume that equation (6.18) does not
hold. Then there exists at least one cell j′ ∈ M such that

max
h∈Nj′

{
R∑

r=1

T∑

t=1

t · xhrt

}

< max
h∈Nj′

{th + p̂hrh
} .

Furthermore, since the construction algorithm preserves the original sequenc-
ing, these maxima are realized for the same job i′ ∈ Nj′

R∑

r=1

T∑

t=1

t · xi′rt < ti′ + p̂i′ri′ .

However, since (x, y) is feasible then t∗i′ =
∑R

r=1

∑T
t=1 t · xi′rt − p̂i′ri′ is a

feasible starting time for job i′ ∈ Nj′ and t∗i′ < ti′ . This violates constraint
(6.13) and is therefore a contradiction.

This theorem shows that the optimal solution to the PMFRS problem is an
active schedule, so all the optimal schedules are contained in the reduced
feasible region defined by equations (6.11) - (6.16) above.

6.3 NP Algorithm for the PMSFR Problem

We now describe how the NP method can be implemented for the reformulated
PMFRS problem defined by equations (6.11) - (6.16) above. This implemen-
tation takes advantage of the special structure of the PMFRS problem both in
defining an intelligent partitioning and in generating good feasible solutions
from each region.

6.3.1 Partitioning

First we address the partitioning. The basic idea is to completely schedule one
job at each level of the partitioning tree so that a region of depth d is defined
by d jobs being scheduled, or fixed, and by the remaining n−d jobs being free.
By equation (6.13) each job is scheduled as early as possible given all other
jobs being fixed. Accordingly, we adopt the rule of scheduling each job as early
as possible given all the jobs that have already been fixed. Therefore, selecting
a job to be fixed early gives the job certain priority. In other words, jobs that

114 6 Flexible Resource Scheduling

are assigned resources and starting time at low depth tend to be scheduled
earlier than jobs that are fixed at greater depth. This imposes a structure on
the feasible region and allows for special structure to be incorporated into the
manner in which good solutions are generated.

Recall that a schedule can be represented as

(r, t) = {(r1, t1), (r2, t2), ..., (rn, tn)} ,

and the partitioning fixes one of these pairs (rid
, tid

) to a given value at depth d
in the partitioning tree, d = 1, 2, ..., n. The depth one subregions are therefore
defined by the following R · n sets:

{ (r, 1), (·, ·), ..., (·, ·) }, r ∈ {1, 2, ..., R},
{ (·, ·), (r, 1), ..., (·, ·) }, r ∈ {1, 2, ..., R},

: :
{ (·, ·), (·, ·), ..., (r, 1) }, r ∈ {1, 2, ..., R}.

The depth-two regions are similarly defined by fixing two elements and so
forth.

Given a region σ ∈ Σ that determines d(σ) of these pairs, we let r(σ)
denote the levels of resources and t(σ) the starting times for the d(σ) jobs
that have already been scheduled. To describe the partitioning procedure in
detail it is convenient to establish additional notation. We let NU

j (σ) denote
the set of unscheduled jobs in cell j ∈ M and NU (σ) = ∪j∈MNU

j (σ) denote
all the unscheduled jobs. We let t0j (σ) denote the first possible starting time
in cell j,

t0j (σ) = max
i∈Nj\NU

j
(σ)

{
ti(σ) + p̂iri(σ) + 1

}
.

Finally, we let the vector rA(σ) = {rA
t (σ)}t=1,2,...,T denote the available re-

sources, i.e., the resources that have not been allocated, at any given time. In
terms of (r, t) it can be written as

rA
t (σ) = R −

n∑

i=1

ri(σ) · χ{ti,...,ti+p̂iri(σ)}(t).

We can now describe the partitioning as follows: Assume we want to partition
a region σ(k) ∈ Σ. We let each subregion correspond to scheduling one of
the jobs in NU (σ(k)) next with a given amount of resources. Each subregion
is otherwise identical to σ(k). Assume that job i ∈ NU

j (σ(k)) determines a
subregion σl(k) with r ∈ {1, 2, ..., R} resources allocated to this job. Then
calculate its starting time as the earliest feasible starting time

ti(σl(k)) = arg min
t≥t0

j
(σ(k))

{rA
t (σ(k)) ≥ r}. (6.19)

Generate a processing time pi = p̂ir for the job, and update the earliest fea-
sible starting time in the cell for the subregion t0j (σl(k)) = ti(σl(k)) + pi + 1.

6.3 NP Algorithm for the PMSFR Problem 115

The earliest feasible starting time for all other cells is the same for σl(k) as
σ(k). Finally, reduce the amount of available resources for the time job i is
being processed, that is, let rA

t (σl(k)) = rA
t (σl(k)) − r for all t such that

ti(σl(k)) ≤ t ≤ ti(σl(k)) + pi. This completely defines the subregion.

Figure 6.2 partially illustrates the partitioning tree for the simple sample
problem discussed above. Recall that this example has n = 3 jobs to be
processed on one of m = 2 cells which have R = 2 flexible resources at their
disposal. At depth one there are

R ·
∑

j∈M
|NU

j | = 2 · (2 + 1) = 6

subregions, two of which are shown in Figure 6.2. We assume that the jobs
to be processed in cell one are labelled as jobs one and two, and that the job
in cell two is labelled as job three. We assume that all the jobs are identical
with a processing time of one time unit if they have two resources, and two
time units if they have only one resource. The six depth-one subregions can
therefore be represented as

(2)

Cell 1

Cell 2

(2) (2) (2)(2)

(2)

(2)

(1)

(1)

(2)

(2)

(2)

(2)

(2) (1)

Cell 1

Cell 2

Cell 2

Cell 1

(1)

Fig. 6.2. Part of a partitioning tree.

116 6 Flexible Resource Scheduling

σ1(0) = {(1, 1), (·, ·), (·, ·)} , σ2(0) = {(2, 1), (·, ·), (·, ·)} ,
σ3(0) = {(·, ·), (1, 1), (·, ·)} , σ4(0) = {(·, ·), (2, 1), (·, ·)} ,
σ5(0) = {(·, ·), (·, ·), (1, 1)} , σ6(0) = {(·, ·), (·, ·), (2, 1)} .

Now if in the next iteration σ(1) = σ1(0) = {(2, 1), (·, ·), (·, ·)} then there are
four subregions

σ1(1) = {(2, 1), (·, ·), (1, 2)} , σ2(1) = {(2, 1), (·, ·), (2, 2)} ,
σ3(1) = {(2, 1), (1, 2), (·, ·)} , σ4(1) = {(2, 1), (2, 2), (·, ·)} .

Now if, as is illustrated in Figure 6.2, the next most promising region is σ(2) =
{(2, 1), (·, ·), (2, 2)} then there are only two subregions

σ1(2) = {(2, 1), (1, 3), (2, 2)} , σ2(2) = {(2, 1), (2, 3), (2, 2)} .

These subregions are now singletons and completely define a feasible schedule.

The next proposition establishes that this is in fact a valid method of
partitioning.

Theorem 6.2. Every feasible schedule, i.e. point in X, corresponds to a max-
imum depth region obtained by applying the above partitioning procedure. Con-
versely, every maximum depth region corresponds to a point in X.

Proof: Let x ∈ X and write x = (r, t). We need to identify a maximum depth
region that corresponds to this point. The partitioning procedure sequentially
selects the jobs and schedules them at the first feasible point. Hence, given
x, we need to construct a sequence of jobs i1, i2, ..., in with the following
property. Assume that job il is given resources ril

, l = 1, 2, ..., n. If jobs
i1, .., il have already been scheduled, then the earliest feasible time for job
il+1 to start is til+1 , l = 1, 2, ..., n − 1. We can generate this sequence as
follows: Initialize by setting the list of scheduled jobs to be empty, Ns = ∅.
In the first iteration, select a job that has the first possible starting time, i.e.
select i1 ∈ arg mini∈N\Ns

ti, and let Ns = Ns ∪ {i1}. If more than one are
started at the same time, one may be selected arbitrarily. Now simply repeat
the process, i.e. select a job i2 ∈ arg mini∈N\Ns

ti. This is repeated until there
are no more jobs. We use induction to see that this sequence has the right
properties. First consider job i1. The earliest feasible starting time is t = 0.
But since x is a feasible point, we must also have ti1 = 0 because otherwise
ti > 0 for all i ∈ N and constraint (6.13) is violated. Now assume that the
jobs i1, ..., il−1 have the right property and consider the job il. Let til

be the
first feasible time given that the jobs i1, ..., il−1 have already been scheduled.
If til

< til
then x violates the constraint (6.13) and is infeasible. This is hence

a contradiction. If til
> til

then the constraint (6.12) is violated and again x
is infeasible. Hence til

= til
. This holds for any l ∈ {2, 3, ..., n}, so the entire

sequence has the desired property.

6.3 NP Algorithm for the PMSFR Problem 117

Conversely, since the partitioning procedure never exceeds the available
resources and each job is scheduled as soon as the resources allow, then every
maximum depth region corresponds to a feasible schedule.

We have now established a valid partitioning procedure. The next step is
to develop an efficient procedure to randomly sample a region.

6.3.2 Generating Feasible Solutions

Recall that the only constraint on how feasible solutions should be generated
from each region is that each schedule should have a positive probability of
being selected. When a region σ ∈ Σ is sampled then d(σ) jobs have al-
ready been assigned a fixed amount of resources and a starting time. For
each of the n − d(σ) jobs that have not been fixed the sampling procedure
involves selecting cells, jobs, and resources. Sampling can always be done in
a generic fashion, for example uniformly, but in practice it may be better to
attempt to bias the sampling distribution towards good solutions (see Sec-
tion 2.3.1). Since jobs selected to be fixed early tend to be scheduled earlier,
and it is desirable to balance the workload, it is intuitive that higher pri-
ory should be given to selecting jobs in cells that have much work waiting.
Also, there is an intuitive appeal to selecting with high probability resource
levels that enable immediate scheduling of a job. This motivates the versa-
tile sampling algorithm given below. The intuition behind this algorithm is
that since the objective is to minimize the makespan it may be best to finish
quickly as much work as possible in the cells that have the most work waiting.
Thus, priority is given to the most heavily-loaded cells and long jobs in those
cells.

Assume that a region σ ∈ Σ is being sampled. Then the starting time and
number of allocated resources have already been determined for the first d(σ)
jobs. The sampling algorithm fixes the remaining n−d(σ) jobs iteratively and
generates a single sample schedule (r̂, t̂).

Sampling Algorithm

Step 0. Initialize NU
j = NU

j (σ), j ∈ M.

Repeat until NU
j = ∅ for all j ∈ M.

Step 1. Determine the cell Ĵ from which the next job is selected. Higher
priority is given to cells that have much work waiting to be pro-
cessed, so Ĵ is a random variable with

118 6 Flexible Resource Scheduling

P
[
Ĵ = j

]
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β1 ·

∑

i∈NU
j

p̂i1

∑

k∈M

∑

i∈NU
k

p̂i1
+ 1−β1∑

k∈M

χNU
k

�=∅(k)
, NU

j �= ∅,

0 otherwise.
(6.20)

Here β1 is a constant to be determined.
Step 2. Given an outcome ĵ ∈ M select a job Î within this cell. Higher

priority is given to long jobs, so Î is a random variable with

P
[
Î = i

]
=

⎧
⎪⎨

⎪⎩

β2 · p̂i1∑

k∈NU

ĵ

p̂k1
+ (1 − β2) · 1

|NU

ĵ
| , i ∈ NU

ĵ
,

0 otherwise.

(6.21)

Here β2 is a constant to be determined.
Step 3. Given a selected job î ∈ N select the number of resources r̂ given

to this job. Higher priority is given to resource levels that allow
for immediate scheduling, that is, resource levels that are less than
or equal to rA

t0
ĵ

, the available resources at the the earliest feasible

time t0
ĵ

in the cell ĵ ∈ M. Then r̂ is a random variable with

P [r̂î = r] =

⎧
⎪⎨

⎪⎩

β3 · β4
rA

t0
ĵ

+ (1 − β3) · 1
R , r ≤ rA

t0
ĵ

,

β3 · 1−β4
R−rA

t0
ĵ

+ (1 − β3) · 1
R , r > rA

t0
ĵ

.
(6.22)

Here β3 and β4 are constants to be determined. A weight β4 is
given to jobs that can be scheduled immediately and as before
this biased sampling is weighted with uniform sampling.

Step 4. Schedule job î ∈ Nĵ using r̂ resources at the first feasible time T̂î.

Step 5. If NU
j = ∅ for all j ∈ M then stop. Otherwise go back to Step 1.

If β1 = β2 = β3 = 0 then this is a uniform sampling procedure. If these
constants are positive, priority is given to cells that have many jobs waiting,
long jobs, and resource allocations that enable immediate scheduling of the
selected job. In particular, we refer to β1 = β2 = β3 = 1 as weighted sampling.
If β3 > 0 then β4 determines how much priority is given to resource levels that
allow for immediate scheduling of the selected job.

The biased sampling procedure generates higher-quality solutions from
each region, but this can be improved further by incorporating a heuristic
search into the generation procedure (see Section 2.3.2 and Section 5.1). We let
D(σ) denote the set of schedules sampled from region σ ∈ Σ. If we have at our
disposal a heuristic Hσ : X → X that transforms an initial schedule x0 ∈ σ
into an improved schedule x1 ∈ σ, this can be incorporated into the solution
generation. Thus, the new set

{
Hσ(x0) : x0 ∈ D(σ)

}
is used as the basis for

6.3 NP Algorithm for the PMSFR Problem 119

selecting the next most promising region. The improvement heuristic can, for
example, be the efficient heuristic proposed in Daniels et al. (1996). How-
ever, the efficiency of the NP algorithm also depends on the random sampling
algorithm, the structure imposed by the partitioning , and repeated use of
the improvement heuristic. It may therefore be preferable to have a simpler
heuristic that can be repeatedly called with relatively little computational
cost. For example, we can seek simple changes to improve the resource allo-
cation. Such improvements should be made by allocating more resources to
critical jobs, that is, jobs which are such that a delay in their starting time
causes an increase in the makespan of the cell. This is the basic idea behind
the improvement algorithm below.

Assume that a sample point {(ri1 , ti1), ..., (rin
, tin

)} has been generated
from σ ∈ Σ using the random sampling procedure. Let J denote the set of
jobs that have been modified.

Improvement Algorithm

Step 0. Initialize J = ∅.

Repeat until NU
j (σ) \ J = ∅ for all j ∈ M.

Step 1. Select a cell ĵ ∈ M such that NU
ĵ

(σ) \ J �= ∅.
Step 2. For each i ∈ NU

ĵ
(σ) let x̃i = {(ri1 , ti1), ..., (ri, ti + 1), ..., (rin

, tin
)} ,

and calculate the set of critical jobs

C =
{

i ∈ NU
ĵ

(σ) : Cĵ(x̃i) − Cĵ(x) > 0
}

. (6.23)

If C = ∅ let J = J∪NU
ĵ

(σ) and go back to Step 1 above. Otherwise

select a job î ∈ C, let J = J ∪ {̂i}, and continue to Step 3 below.
Step 3. If there are additional resources available during the time at

which job î is being processed, that is, if R̃ = R −
∑n

i=1 ri ·
χ{ti,...,ti+p̂iri

}(ti) > 0, then there is a possibility of improve-
ment. If such a possibility exists continue to Step 4. Otherwise,
if C ∩ (N \ J) �= ∅, go back to Step 2. Otherwise go back to
Step 1.

Step 4. If increasing the resources to job ĩ decreases the makespan of the
cell then give it all available extra resources. That is, consider

x̃ =
{

(ri1 , ti1), ..., (rĩ + R̃, t̃i), ..., (rin
, tin

)
}

,

and if Cj(x̃) < Cj(x) then let x = x̃.
Step 5. If C ∩ (N \ J) �= ∅, go to Step 2. Otherwise go to Step 1.

For this to be a valid heuristic to use to generate feasible solutions we must
check that when it is applied to a schedule in a given region σ ∈ Σ then the

120 6 Flexible Resource Scheduling

improved schedule is also in the region, and in particular that it agrees with
the original performance measure on singleton regions.

Theorem 6.3. Let Hσ : X → X denote the improvement algorithm described
above.
(a) For all σ ∈ Σ,

Hσ(σ) ⊆ σ. (6.24)

In particular if σ = {x} is a singleton region then Hσ(x) = x.
(b) For any x ∈ X such that Hσ(x) �= x,

C (Hσ(x)) ≤ C(x). (6.25)

Proof: (a) Equation (6.24) follows directly from the observation that when
applied to a region σ ∈ Σ the improvement algorithm only makes changes to
the jobs in NU (σ). Thus, when σ = {x} is a singleton region then Hσ(x) = x.
(b) Equation (6.25) holds because by Step 4 of the algorithm, changes in the
schedule are only made if it decreases the makespan.

6.4 Numerical Example

We now illustrate the NP method for the reformulated PMFRS problem with
a few numerical examples. The implementation of the NP algorithm is as fol-
lows: The sampling algorithm is chosen to be uniform (β1 = β2 = β3 = 0)
in the subregions, and weighted (β1 = β2 = β3 = 1) in the complimentary
region with weight β4 = 1

2 . One sample schedule is constructed in each sub-
region, and ten in the complimentary region. This increased computational
effort in the complimentary region helps enable the algorithm to backtrack
when needed. In all regions the promising index is estimated by applying the
improvement heuristic to the sample schedule(s). The processing times are
generated in the following manner. For a job i ∈ N , we let p̂i1 be generated
from a uniform random variable U(10, 50), and the remaining processing times
calculated according to

p̂ir =
(

1 − α

(
1 − 1

k

))
p̂i1,

where α is a constant that determines the speedup achieved when additional
resources are available.

We start by considering how many iterations of the algorithm are required
for obtaining near-optimal schedules. To that end we look at a problem with
settings n ∈ {10, 20}, R = 4, m ∈ {3, 4, 5}, and α ∈ {0.2, 0.5, 0.8}, for 100,
500, and 1000 iterations. The algorithm is repeated 100 times for each set-
ting, so the averages are based on 100 independent replications. The results
can be found in Table 6.1, which shows both the average and best makespan

6.4 Numerical Example 121

Table 6.1. Performance of the NP algorithm for a variable number of iterations.

Problem Settings 100 Iterations 500 Iterations 1000 Iterations
n R α m Average Best Average Best Average Best

10 4 0.2 3 101.8 99 100.8 98 100.6 98
4 86.3 84 86.0 82 86.3 84
5 79.2 75 78.2 75 77.5 74

0.5 3 92.9 87 91.3 87 91.4 88
4 81.2 76 80.4 76 80.1 76
5 76.4 70 75.6 70 74.9 70

0.8 3 79.7 75 78.4 75 77.8 74
4 74.1 71 72.9 71 72.5 70
5 72.0 69 71.1 69 70.9 68

20 4 0.2 3 193.0 184 193.0 186 191.3 181
4 172.3 161 170.6 162 170.9 158
5 162.0 137 160.7 133 159.9 154

0.5 3 179.9 167 178.7 169 178.9 166
4 163.1 148 162.6 155 161.1 152
5 154.9 148 153.3 145 152.7 137

0.8 3 160.3 147 159.6 149 158.9 152
4 150.5 146 149.1 143 149.1 145
5 144.1 138 142.9 138 142.6 138

found for these settings. From the data we see that substantial improve-
ments in the average makespan are obtained by increasing the number of
iterations from 100 to 500, but beyond that relatively little improvements
are made for these examples. Furthermore, we note that for several settings
the best makespan across all the replications is found when only 100 itera-
tions are used, indicating that instead of using very long runs of the algo-
rithm it may be more beneficial to use independent replications. Hence for
the following numerical experiments we choose to use a moderate number of
500 iterations.

Since optimal schedules for the PMFRS problem cannot be found effi-
ciently and the problems here are too large for complete enumeration, we
evaluate the quality of schedules found by the NP algorithm by comparing
the makespan of those schedules with the makespan of the optimal schedules
for the static problem. Recall that for this problem only the resource alloca-
tion is of consequence, and an optimal schedule can be obtained efficiently.
Since the makespan of the schedules obtained by the NP algorithm are also
upper bounds for the optimal makespan of the PMFRS problem, this compar-
ison also provides a lower bound on the performance improvement that may
be achieved by making static resources flexible.

We run the NP method using the above settings for problems with
n ∈ {10, 15} jobs, m ∈ {3, 4, 5} cells, R ∈ {4, 5, 6} flexible resources, and
a speedup factor of α ∈ {0.2, 0.5, 0.8}. For each of these settings we use

122 6 Flexible Resource Scheduling

Table 6.2. Performance of the NP algorithm for n = 10 after 500 iterations.

Problem Settings Makespan Found by NP Static Problem Average
n R α m Average Min S.E. Makespan % Over CPU Time

10 4 0.2 3 100.8 98 1.8 100 2.0% 22.6
4 86.0 82 2.6 91 11.0% 16.5
5 78.2 75 7.0 † 19.2

0.5 3 91.3 87 2.7 100 14.9% 22.5
4 80.4 76 6.2 91 19.7% 21.3
5 75.6 70 6.0 † 23.6

0.8 3 78.4 75 3.3 100 33.3% 12.4
4 72.9 71 3.6 91 28.2% 10.8
5 71.1 69 1.9 † 15.6

5 0.2 3 98.6 96 1.8 99 3.1% 14.0
4 82.1 79 5.4 80 1.3% 35.3
5 74.5 70 3.9 79 12.9% 23.9

0.5 3 84.9 80 5.2 84 5.0% 24.1
4 72.9 68 7.9 71 4.4% 21.1
5 68.7 65 5.3 79 21.5% 15.0

0.8 3 68.6 64 3.1 67 4.7% 15.9
4 63.4 61 1.7 71 16.4% 17.8
5 61.3 59 3.0 79 33.9% 25.0

6 0.2 3 96.5 95 1.1 96 1.1% 32.2
4 79.4 77 4.0 77 0.0% 18.8
5 71.7 67 4.2 70 4.5% 20.3

0.5 3 79.6 74 4.3 75 1.4% 12.7
4 67.6 64 5.4 68 6.3% 22.2
5 63.1 58 6.2 63 8.6% 25.2

0.8 3 61.7 58 2.9 60 3.4% 34.4
4 57.3 52 2.7 63 21.2% 18.2
5 53.6 49 3.0 63 28.6% 23.5

† Problem setting infeasible for static problem.

100 replications. The results are reported in Table 6.2 - Table 6.3, which
show the average and best makespan across the replications, as well as the
standard error. The average CPU time in seconds is also reported. Since a
fixed number of iterations is used, this does not vary much from one setting
to another. Finally, as stated above, we report the makespan of the optimal
static schedule for comparison, as well as the percentage improvement of the
best PMFRS schedule found by the NP algorithm. The schedules found by the
NP algorithm tend to have much better performance than the static sched-
ules, which indicates that considerable performance benefits may be obtained
through the use of flexible resources. As is to be expected, the performance
improvements increase with the speedup factor. Furthermore, the performance
improvements also increase with the number of cells (m), indicating that flex-

6.5 Conclusions 123

Table 6.3. Performance of the NP algorithm for n = 15 after 500 iterations.

Problem Settings Makespan Found by NP Static Problem Average
n R α m Average Min S.E. Makespan % Over CPU Time

15 4 0.2 3 148.6 139 12.7 139 0.0% 23.7
4 130.0 125 27.3 131 4.8% 35.8
5 123.7 109 60.6 † 21.8

0.5 3 137.4 127 15.4 127 0.0% 28.5
4 124.7 115 18.6 131 13.9% 33.3
5 118.6 109 29.4 † 54.8

0.8 3 122.7 114 7.1 127 11.4% 33.3
4 115.6 110 6.9 131 19.1% 20.8
5 111.6 107 9.8 † 26.8

5 0.2 3 143.2 134 10.8 134 0.0% 25.8
4 123.4 115 10.8 115 0.0% 32.0
5 111.5 101 49.0 106 5.0% 44.5

0.5 3 126.7 117 18.5 126 7.7% 31.7
4 114.1 103 20.3 114 10.7% 23.2
5 105.0 100 19.2 106 6.0% 44.4

0.8 3 108.0 102 6.8 126 23.5% 41.9
4 101.6 96 7.2 114 18.8% 31.6
5 96.4 89 6.8 106 19.1% 20.8

6 0.2 3 139.8 132 11.7 131 1.1% 32.7
4 119.8 112 12.8 114 1.8% 39.2
5 104.6 98 21.5 101 4.5% 46.6

0.5 3 120.8 108 17.9 116 7.4% 22.8
4 107.9 98 17.7 101 3.1% 32.3
5 98.2 90 14.3 101 12.2% 61.9

0.8 3 98.0 91 6.0 93 3.3% 54.4
4 91.1 86 5.8 101 17.4% 25.0
5 86.5 81 7.0 101 24.7% 49.0

† Problem setting infeasible for static problem.

ible resources are most beneficial for systems where the speedup factor is large
and there is a large number of parallel cells.

6.5 Conclusions

In this chapter we have shown how the NP method can effectively address
the problem of simultaneously obtaining a resource allocation and sequenc-
ing jobs in a cellular manufacturing system with parallel cells and flexi-
ble resources. Specifically, we solved the Parallel-Machine Flexible-Resource
Scheduling (PMFRS) problem.

The key to an efficient implementation of the NP method was to refor-
mulate the PMFRS such that a high quality partitioning could be obtained.

124 6 Flexible Resource Scheduling

This illustrated the flexibility of the NP method in terms of how problems
can be formulated. At the same time, in order to generate high-quality sam-
ple solutions, we developed a new sampling algorithm that biases the sam-
pling towards good schedules, and a simple resource allocation improvemen
heuristic.

7

Feature Selection

In this chapter we present an implementation of the NP method for selecting
which variables should be used by a learning algorithm. This implementation
will illustrate several important aspects of the NP method. In particular, we
quantify the value of developing a good method of partitioning, or what we call
an intelligent partitioning method. We also show how the method can deal
effectively with complex objective functions that have no closed form, and
how it remains effective even if significant noise is present in the evaluation
of the objective function. Finally, we explore what can be inferred from the
amount of backtracking done by the algorithm, and how that information
can be used to design an adaptive NP method. However, before considering
these implementation issues, it is necessary to provide some background to
the problem.

Many databases are massive and contain a wealth of important data that
traditional business practices fall short in transforming into relevant knowl-
edge. This has led to an increased industry and academic interest in knowledge
discovery in databases, an emerging field of growing importance. The process
of discovering useful information in large databases consists of numerous steps,
which may include integration of data from numerous databases, manipula-
tion of the data to account for missing and incorrect data, and induction of
a model with a learning algorithm. The model is then used to identify and
implement actions to take within the enterprizes. Traditionally, data min-
ing draws heavily on both statistics and artificial intelligence, but numerous
problems in data mining and knowledge discovery can also be formulated as
optimization problems (Basu 1998, Bradley et al. 1999, Ólafsson et al., 2006).

All data mining starts with a set of data called the training set, which con-
sists of instances describing the observed values of certain variables referred to
as features. These instances are then used to learn a given target concept and
depending upon the nature of this concept, different learning algorithms are
applied. One of the most common is classification, where a learning algorithm
is used to induce a model that classifies any new instances into one of two or
more given categories. The primary objective is usually for the classification

126 7 Feature Selection

to be as accurate as possible, but accurate models are not necessarily useful
or interesting and other measures such as simplicity and novelty are also im-
portant. In addition to classification, other common concepts to be learned
include association rules, numerical prediction models, and natural clusters
of the instances. Here we focus on data mining for classification where the
data are nominal; that is, each feature can take only finitely many values. If
the data are not nominal, we assume that one of the standard discretization
techniques is applied as a preprocessing step (e.g. Fayyad and Irani 1993).

Apart from inductive learning, an important problem in knowledge discov-
ery is analyzing the relevance of the features, usually called feature or attribute
subset selection. This feature selection problem was introduced in Chapter 1
and here we explore its solution further. Feature selection involves a process
for determining which features are relevant in that they predict or explain the
data, and conversely, which features are redundant or provide little informa-
tion (Liu and Motoda 1998). Such feature selection is commonly used as a
preliminary step preceding a learning algorithm and has numerous benefits.
By eliminating many of the features it becomes easier to train other learning
methods, that is, computational time is reduced. Also, the resulting model
may be simpler, which often makes it easier to interpret and thus more useful
in practice. It is also often the case that simple models are found to generalize
better when applied for prediction (Liu and Motoda 1998). Thus, a model em-
ploying fewer features is likely to score higher on many interest measures and
may even score higher in accuracy. Finally, discovering which features should
be kept, that is, identifying features that are relevant to the decision making,
often provides valuable structural information and is therefore important in
its own right.

The literature on feature selection is extensive within the machine-learning
and knowledge-discovery communities. Some of the methods applied to this
problem in the past include genetic algorithms (Yang and Honavar 1998), vari-
ous sequential search algorithms (see, e.g., Aha and Bankert 1996, Caruna and
Freitag 1994), correlation-based algorithms (Hall 2000), evolutionary search
(Kim et al. 2000), rough sets theory (Modrzejewski 1993), randomized search
(Skalak 1994) and branch-and-bound (Naranda and Fukunaga 1977).

Feature-selection methods are typically classified as either filtering meth-
ods, which produce a ranking of all features before the learning algorithm is
applied, or wrapper methods, which use the learning algorithm to evaluate
subsets of features. As a general rule, filtering methods are faster, whereas
wrapper methods usually produce subsets that result in more accurate mod-
els. Another way to classify the various methods is according to whether they
evaluate one feature at a time and either include or eliminate this feature,
or whether an entire subset of features is evaluated together. We note that
wrapper methods always fall into the latter category.

The feature-selection problem is generally difficult to solve. The number
of possible feature subsets is 2n, where n is the number of features, and eval-
uating every possible subset is therefore prohibitively expensive unless n is

7.1 NP Method for Feature Selection 127

very small. Furthermore, in general there is no structure present that allows
for an efficient search through this large space, and a heuristic approach that
sacrifices optimality for efficiency is typically applied in practice. Thus, most
existing methods do not guarantee that the set of selected features is optimal
in any sense. A notable exception is recent work that applies mathematical
programming to feature selection (Bradley et al. 1998). Nonetheless, many of
the methods mentioned above have proven themselves valuable in practice,
but not being able to make rigorous statements about the set of selected fea-
tures without resorting to computationally expensive or otherwise restrictive
methods is an apparent shortcoming of the current state of the art.

7.1 NP Method for Feature Selection

The feature selection problem is a large-scale discrete optimization problem
and it is clear that the NP method is applicable. The primary difficulty in
solving this problem is that there is no simple method for defining an objec-
tive function, and the quality of the solution (feature subset) is often measured
by its eventual performance when used with a learning algorithm. Thus, the
objective function becomes the estimated performance of a complex learn-
ing algorithm. Since the NP method can deal effectively with such complex
objective functions, it becomes an attractive method for solving this prob-
lem. As for other problems, the key to an efficient implementation of the NP
method for feature selection is to devise intelligent partitioning (see Section
2.2) and good methods of randomly generating high quality feasible solutions
(see Section 2.3). These two issues are addressed in the next two subsections.

7.1.1 Intelligent Partitioning

The feature selection problem was used as an example in Section 2.2.3, where
we showed how to develop an intelligent partitioning method for this problem.
We recall that we defined the decision variables to determine whether a feature
is included in the set of selected feature, that is,

xi =
{

1 if the ith feature is included,
0 otherwise.

Thus, given a current set A(k) of potential feature subsets, partition the set
into two disjoint subsets

A1(k) = {A ∈ A(k) : a ∈ A} , (7.1)
A2(k) = {A ∈ A(k) : a �∈ A} . (7.2)

Hence, a partition is defined by a sequence of features a1, a2, . . . , an, which
determines the order in which the features are either included or excluded
(see Figure 2.5).

128 7 Feature Selection

Also recall that for a good partitioning, it is advantageous to start by
partitioning on the most important features first, and the information gain
Gain(T, a) of a feature a relative to a training data set T , as defined by
equation (2.11), can be used to measure the importance of features. Intuitively,
this is the expected reduction in entropy E(a), as defined by equation (2.9),
that would occur if we knew the value of feature a. Note that the feature with
the highest information gain has the lowest entropy value.

Thus, we obtain the entropy partition where the maximum information
gain, or equivalently the minimum entropy, determines the order in which the
features are used:

a1 = arg min
a∈A(ALL)

E(a),

a2 = arg min
a∈A(ALL)\{a1}

E(a),

...
an = arg min

a∈A(ALL)\{a1,...,an−1}
E(a),

where A(ALL) denotes the set of all features.

7.1.2 Generating Feasible Solutions

In addition to an intelligent partitioning that imposes good structure on the
search space, the other critical component of an efficient and effective NP
implementation is being able to effectively generate high-quality feasible solu-
tions from each region (see Section 2.3). Just as the information gain (entropy)
measure can be used to impose structure on the feasible region, it can also be
used to bias the sampling distribution when generating feasible solutions.

Generating feasible samples can as before either be done generically using
uniform sampling or by incorporating an structure that assigns different prob-
ability to different feature subsets. The latter may be expected to improve the
quality of the samples and hence increase the probability that the correct re-
gion is identified in each iteration. This is our focus here. The aim isto select
good feature subsets with higher probability and thus more quickly obtain a
good estimate of the quality of each region. The idea of information gain can
again be used. As features with high information gain are believed to be more
useful, it is intuitively appealing to select those features with higher proba-
bility than features with low information gain. We thus propose the following
approach for determining whether a feature should be included in a sample.
Assume that we are at the kth iteration and, as before, let a1, a2, . . . , an de-
note the selected sequence of features. We let d(k) denote the position or depth
of A(k) in the partition tree of the current most promising region. Recall that
this implies that the first d(k) features have been fixed as either included
or excluded in the current set of features. We then sample according to the
following probabilities:

7.1 NP Method for Feature Selection 129

Prob[Select feature ai] =
Gain(T, ai)

K max
h∈{d(k)+1,...,n}

Gain(T, ah)
, (7.3)

for i = d(k) + 1, d(k) + 2, . . . , n. Here Gain(T, a) is the information gain of
each feature calculated according to (2.11), and K > 1 is a scaling constant.
Note that all or none of the features can be included in the sample, and the
higher the information gain, the more likely it is that a feature will be included
in a sample feature set. Furthermore, by selecting K > 1 there is a positive
probability of selecting feature subsets that do not include the feature with
the highest information gain, and the expected number of features included
is inversely proportional to the value of K.

Finally, once sample feature subsets have been obtained, these subsets
must be evaluated. As discussed in the introduction, how this is done defines
whether the algorithm is a filter or a wrapper approach. An important prop-
erty of the NP framework is that it can be implemented according to either
approach, and we thus consider two alternatives:

• (NP wrapper) We can use the learning algorithm itself to measure the
performance of a set, i.e., the set-performance function becomes

f(A) = Accuracy(A), (7.4)

where the accuracy depends on which learning algorithm is applied. This
is the wrapper approach and we refer to the NP algorithm that uses (7.4)
as the NP wrapper.

• (NP filter) We can also use the correlation among features to measure the
performance of each feature set. The basic idea here is that good feature
sets should correlate highly with the class feature, but have low correlation
with each other. We can thus use the following performance function (Hall
2000):

f(A) =
kρ̄ca√

k + k(k − 1)ρ̄aa

, (7.5)

where k is the number of features in the set A, ρ̄ca is the average correlation
between the features in this set and the classification feature, and ρ̄aa is
the average correlation between features in the set A. We note that this is
a filter approach and hence we refer to it as the NP filter.

We note that any learning algorithm can be used with a NP wrapper, and
methods other than the correlation measure (7.5) that similarly evaluate fea-
ture subsets can be used for different variants of the NP filter.

130 7 Feature Selection

7.2 NP-Wrapper and NP-Filter Algorithm

7.2.1 NP Filter Algorithm

With all of the components of NP for feature selection in place, we can state
the proposed feature-selection algorithms completely. The following algorithm
can be used to implement the filter approach. Note that it uses a fixed number
n0 of samples to evaluate each region, starts with the set A of all possible
feature subsets as the most promising region, and terminates when the depth
of the most promising region has reached a maximum, i.e., it is a singleton.
We also let A∗ be the best feature subset found and f∗ be the corresponding
performance value, which is calculated according to (7.5).

Algorithm NP Filter

Step 0. Select the constant K > 1 for scaling the sampling distribution,
and select n0, the number of sample points. Evaluate the entropy
value of each feature and let a1, a2, ..., an be the corresponding
order of features:

a1 = arg min
a∈A(ALL)

E(a),

a2 = arg min
a∈A(ALL)\{a1}

E(a),

...
an = arg min

a∈A(ALL)\{a1,...,an−1}
E(a).

Set A(0) = A, k = 0, and d(0) = 0. Let A∗ = {} and set f∗ = ∞.
Step 1. Partition A(k) into two subregions and aggregate what remains

into one complimentary region:

A1(k) = {A ∈ A(k) : ad(k) ∈ A},
A2(k) = {A ∈ A(k) : ad(k) �∈ A},
A3(k) = A \ A(k).

Step 2. From each of the three regions, independently obtain n0 sample
sets Aj

1, A
j
2, ..., A

j
n0

, j = 1, 2, 3, according the the distribution

Prob[Select feature ai] =
Gain(T, ai)

K max
h∈{d(k)+1,...,n}

Gain(T, ah)
,

for i = d(k) + 1, d(k) + 2, . . . , n. Here Gain(T, a) is calculated
according to (2.11).

7.2 NP-Wrapper and NP-Filter Algorithm 131

Step 3. Obtain the best sample set from each region

Aj
best = arg min

l=1,2,...,n0
f

(
Aj

l

)
,

and f(·) is defined according to (7.5).
Step 4. Select the next most-promising region based on the sample results

(a) If f(A1
best) < min{f(A2

best), f(A3
best)}, let A(k + 1) = A1(k)

and d(k + 1) = d(k) + 1.
If f(A1

best) < f∗, let f∗ = f(A1
best) and A∗ = A1

best.
(b) If f(A2

best) < min{f(A1
best), f(A3

best)}, let A(k + 1) = A2(k)
and d(k + 1) = d(k) + 1.
If f(A2

best) < f∗, let f∗ = f(A2
best) and A∗ = A2

best.
(c) Otherwise, let A(k + 1) = s(Ak) where s(A(k)) is the super-

region of A(k), and d(k + 1) = d(k) − 1.
If f(A3

best) < f∗, let f∗ = f(A3
best) and A∗ = A3

best.
Step 5. If d(k + 1) = n, stop and return A∗ as the best subset. Otherwise,

let k = k + 1 and go back to Step 1.

Note that the algorithm requires that the user to select a value of the scaling
constant K for the probability distribution. No absolute rule can be given
for the selection of K but normally one would want to select it large enough
so that there is a significant probability that the highest-information-gain
feature is not selected in every random set, and that there is a sufficiently
high probability of selecting other features. For example, if we let K = 1.25
then the probability of selecting the feature with the highest information gain
is 80% for each subset generated.

Except for slight modifications to Step 3, the NP wrapper is implemented
in an identical fashion. We therefore do not present that implementation in
detail, but rather illustrate this algorithm via an example.

7.2.2 NP Wrapper Example

To illustrate the mechanism of the new algorithm we apply the NP wrapper
using naive Bayes as a learning algorithm to the simple weather-classification
problem illustrated in Table 7.1. Here there are four features (Outlook, Tem-
perature, Humidity, and Windy) that can be used to predict a class feature
that can take two values: play or no play. To determine the order in which
features are selected for partitioning, we calculate the entropy of each feature
according to (2.9):

E(Outlook) = 0.693,

E(Temperature) = 0.911,

E(Humidity) = 0.788,

E(Windy) = 0.892.

132 7 Feature Selection

Table 7.1. Data for simple weather example.

Outlook Temperature Humidity Windy Class

sunny hot high false no play
sunny hot high true no play

overcast hot high false play
rain mild high false play
rain cool normal false play
rain cool normal true no play

overcast cool normal true play
sunny mild high false no play
sunny cool normal false play
rain mild normal false play

sunny mild normal true play
overcast mild high true play
overcast hot normal false play

rain mild high true no play

The expected information of the training set T is I(T) = 0.94, so Outlook has
the highest information gain Gain(T,Outlook) = 0.247, followed by Humidity
with Gain(T,Humidity) = 0.152 and Windy with Gain(T,Windy) = 0.048,
and finally Temperature has the smallest information gain

Gain(T, Temperature) = 0.029.

The resulting partitioning tree is shown in Figure 7.1, which also shows the
final feature set for each maximum-depth region, and the corresponding accu-
racy value when naive Bayes is used as a learning algorithm. As this problem
is quite small we have chosen the maximum depth equal to the total number
of features. The accuracy values in Figure 7.1, as well as those used by the
NP wrapper, are calculated using ten-fold cross-validation.

First note that intelligent partitioning indeed imposes a useful structure
on the space of feature subsets, which can be exploited by the NP search.
As discussed in Section 2.2 we can measure this in two ways: using the vari-
ability of the accuracy or the percentage overlap between the set containing
the global optimum and other sets. In particular, note that feature subsets
with similar accuracy tend to be grouped together and the sample estimates
of the best accuracy in each region will therefore have low variability. An ex-
treme case is the set defined by all feature subsets containing Outlook but not
containing Humidity, where every feature subset has the same accuracy and
hence the variability is zero. Similarly, the overlap is small and, in the extreme
case, the set containing Outlook and Humidity, which includes the optimum,
has no overlap with other subsets. Due to this imposed structure it can be
expected that the random search quickly moves toward the optimal feature
subset {Outlook,Humidity}.

7.2 NP-Wrapper and NP-Filter Algorithm 133

Include
Temperature

Outlook
Humidity
Windy
Temperature

Outlook
Humidity
Windy

Outlook
Windy
Temperature

Outlook
Humidity

Outlook
Windy

Outlook
Humidity
Temperature

64%

Include
Windy

Do Not Include
Temperature 71%

Include
Temperature 64%

Include
Humidity

Do Not Include
Windy

Do Not Include
Temperature 79%

Include
Temperature 57%

Include
Windy

Do Not Include
Temperature 57%

Include
Temperature

Outlook
Temperature 57%

Include
Outlook

Do Not Include
Humidity

Do Not Include
Windy

Do Not Include
Temperature

Outlook 57%

Humidity
Windy
Temperature

50%

Include
Windy

Do Not Include
Temperature

Humidity
Windy 57%

Include
Temperature

Include
Temperature

Include
Temperature

Include
Temperature

Humidity
Temperature 50%

Include
Humidity

Do Not Include
Windy

Do Not Include
Temperature

Do Not Include
Temperature

Do Not Include
Temperature

Humidity 50%

Windy
Temperature 36%

Incl
Windy

Windy 50%

Temperature 50%

Do Not Include
Outlook

Do Not Include
Humidity

Do Not Include
Windy

- 0%

Fig. 7.1. Partitioning tree for weather example.

134 7 Feature Selection

We now illustrate a few iterations of the algorithm. We initialize the algo-
rithm by setting A(0) = A, and then partition and sample as follows: The most
promising region A(0) is partitioned into two subsets depending on whether
we include or exclude the feature with the highest information gain, namely
Outlook:

A1(0) = {A ∈ A(0) : Outlook ∈ A} ,

A2(0) = {A ∈ A(0) : Outlook �∈ A} .

Next we obtain samples from each of those regions, according to the distri-
bution (7.3) with K = 1.2, which takes the information gain into account.
For example, the probabilities that each of the three remaining features is
included in a sample from A1(0) are given as

Prob[Sample includes Temperature] =
0.029

1.2 · 0.152
= 0.16

Prob[Sample includes Humidity] =
0.152

1.2 · 0.152
= 0.83

Prob[Sample includes Windy] =
0.048

1.2 · 0.152
= 0.26.

Thus, for each sample obtained, it has the following distribution

Prob[Select {Outlook, Temperature}] = 0.16 · (1 − 0.83) · (1 − 0.26)
= 0.02

Prob[Select {Outlook,Humidity}] = (1 − 0.16) · 0.83 · (1 − 0.26)
= 0.52

Prob[Select {Outlook, Temperature,Humidity}] = 0.16 · 0.83 · (1 − 0.26)
= 0.10
...

Thus, each of the eight feature subsets has a positive probability of being
randomly selected, but the probability depends on the perceived information
gain of the features in the set.

Say that we select one sample from each region, {Outlook,Windy,
Temperature} from A1(0) and {Humidity,Windy} from A2(0). Since

f({Outlook,Windy, Temperature}) = 57 = f({Humidity,Windy}),

a tie must be broken. Given the goals of feature selection, we adopt the rule of
breaking ties by favoring the smaller set, i.e., {Humidity,Windy}, so in the
next iteration A(1) = A2(0) and this new most-promising region is partitioned
into two subregions, and what remains is aggregated into one set:

A1(1) = {A ∈ A : Outlook �∈ A,Humidity ∈ A} ,

A2(1) = {A ∈ A : Outlook �∈ A,Humidity �∈ A} ,

A3(1) = A \ A(1).

7.2 NP-Wrapper and NP-Filter Algorithm 135

A quick glance at Figure 7.1 reveals that this move takes the search away
from the optimal solution, but by maintaining the complimentary region
A3(1) the algorithm is able to recover. Thus, we obtain one sample from
each region, say, {Humidity,Windy} from A1(1), {Windy} from A2(1), and
{Outlook,Humidity} from A3(1). As the sample from A3(1) has the best
accuracy, the algorithm backtracks and sets A(2) = A.

We are now back where we started and this time we are likely to select
different samples, say {Outlook,Humidity, Temperature} from A1(2) and
{Humidity,Windy} from A2(2). This time around,

f({Outlook,Humidity, Temperature}) = 64 > 57 = f({Humidity,Windy}),

and the first subset is selected as the most-promising region, i.e., A(3) =
A1(2). It is partitioned into two subregions, and what remains is aggregated
as before:

A1(3) = {A ∈ A : Outlook ∈ A,Humidity ∈ A} ,

A2(3) = {A ∈ A : Outlook ∈ A,Humidity �∈ A} ,

A3(3) = A \ A(3).

Now note that, regardless of which samples are selected from these three
regions, the sample from A1(3) will have the highest accuracy, so A(4) =
A1(3). The new most-promising region is partitioned into two subregions and
what remains is aggregated into one set:

A1(4) = {{Outlook,Humidity,Windy, Temperature},
{Outlook,Humidity,Windy}} ,

A2(4) = {{Outlook,Humidity, Temperature}, {Outlook,Humidity}} ,

A3(4) = A \ A(4).

Depending on the sampling, either A1(4) or A2(4) may be selected, but since
there is no overlap between A3(4) and the “good” region A2(4), backtracking
will not be warranted by the sampling.

From these first four iterations it is clear that the sequence of most promis-
ing regions moves towards the optimum with high probability and has the
potential to recover from wrong moves via backtracking. As the algorithm
progresses, the sampling, and thus the computational effort, is concentrated
where good feature subsets are likely to be found. Once the maximum depth
is reached, that is, the current most promising region is a singleton, the algo-
rithm stops. Although simple, this example thus illustrates many key aspects
of the NP method, including how it converges, how the computational ef-
fort is focused in most promising regions, the value of backtracking, and the
paramount importance of an intelligent partitioning strategy.

136 7 Feature Selection

7.3 Numerical Comparison with Other Methods

In this section we present numerical results for tests of the NP wrapper and
NP filter when used to precede two classification algorithms, namely the naive
Bayes algorithm and the C4.5 decision tree induction algorithm. The code was
written in Java using the Weka machine learning software (Witten et al. 1999)
for implementation of the learning algorithms themselves. We use five data
sets from the UCI repository of machine learning databases (Blake and Merz
1998). The characteristics of these sets are shown in Table 7.2, from which
we note that the sizes range from 148 to 3196 instances and from nine to 69
features. As both the NP filter and NP wrapper are randomized algorithms,
we ran five replications for each experiment and report both the average and
the standard error. All accuracy estimates are obtained using ten-fold cross-
validation, and the averages reported therefore average five cross-validation
estimates.

7.3.1 Value of Feature Selection

Our first set of experiments addresses the effectiveness of feature selection
using the NP filter and NP wrapper for the selected data sets. As noted
before, both naive Bayes and C4.5 are used to induce classification models
with the selected features. We measure the effectiveness along two dimensions.
First, we consider the accuracy of the models induced after feature selection
compared to the corresponding models without feature selection, and second,
we consider how many features are eliminated, i.e., how much smaller the
models become when feature selection is employed.

The results for the naive Bayes classification method are shown in Table 7.3
for no feature selection (NFS), the NP filter (NPF), and the NP wrapper
(NPW). Improvements that a t-test with four degrees of freedom finds to be
statistically significant at the 90% level are marked with an asterisk. Looking
first at the accuracy, we note that it actually improves or is no worse when we
use feature selection, and the models where classification is preceded by an
NP wrapper have the highest accuracy. All but one of the NPW models show
a statistically significant improvement. Table 7.3 demonstrates the reduction
in the number of features. For example, when the NP filter is used, the 69

Table 7.2. Characteristics of the tested data sets.

Data Set Instances Features

lymph 148 18
vote 435 16
audiology 226 69
cancer 286 9
kr-vs-kp 3196 36

7.3 Numerical Comparison with Other Methods 137

Table 7.3. Accuracy of Naive Bayes with and without feature selection.

NFS NPF NPW
Data Set Accuracy Size Accuracy Size Accuracy Size

lymph 85.1 18 85.4±1.0 10.6±2.1 86.2±0.8 9.2±0.8
vote 90.1 16 93.2±0.7∗ 6.8±1.1 95.8±0.4∗ 3.0±1.4
audiology 71.2 69 71.2±1.5 27.4±3.2 75.0±2.3∗ 23.0±3.9
breast-cancer 73.4 9 73.8±0.4 5.8±0.8 75.7±0.2∗ 3.6±0.9
kr-vs-kp 88.0 36 90.8±2.1 11.6±1.5 94.4±0.3∗ 14.2±3.8
∗ Statistically significant improvement over NFS.

Table 7.4. Accuracy of C4.5 with and without feature selection.

NFS NPF NPW
Data Set Accuracy Size Accuracy Size Accuracy Size

lymph 78.4 18 78.1±1.4 9.6±1.8 82.2±0.4∗ 7.6±1.7
vote 96.5 16 95.7±0.2 6.0±2.0 96.6±0.6 3.8±1.6
audiology 77.4 69 75.0±1.6 25.0±4.3 79.9±1.1∗ 14.0±2.7
cancer 75.5 9 73.7±0.2 5.2±0.5 76.2±0.6 2.4±0.9
kr-vs-kp 99.1 36 94.0±1.1 11.6±1.3 96.5±0.9 17.0±2.7
∗ Statistically significant improvement over NFS.

features of the “audiology” data set are reduced to an average of 27.4 features,
and when the NP wrapper is used they are reduced to an average of 23.0
features. This is a significant simplification of the models. We note that the
NP wrapper performs better on both the accuracy and simplicity measures.

We repeat the same experiments for the C4.5 decision-tree-induction algo-
rithm, with the results reported in Table 7.4 according to the same format as
before. Here the accuracy of the model is actually degraded somewhat when
the NP filter is used, but using the NP wrapper still results in higher-accuracy
models than when using all of the features for all but one of the data sets,
although this is statistically significant at the 90% level for only two of the five
models. Thus, there is relatively little accuracy gain from using feature selec-
tion with C4.5. This is not surprising as this decision-tree-induction method
already employs a sophisticated approach to both selecting the order of fea-
tures in the tree and to pruning the tree afterwards. The reduction in the
number of features, however, is even larger than before.

7.3.2 Comparison with Simple Entropy Filter

The last subsection demonstrated the value of using the NP filter and NP
wrapper for feature selection as this results in smaller but often higher-
accuracy models. However, the question arises as to whether this performance
is primarily due to properties of the NP method or because it incorporates an

138 7 Feature Selection

Table 7.5. Accuracy of Naive Bayes with early termination of feature selection.

NPF NPW EF
Data Set Depth Accuracy Size Accuracy Size Accuracy Size

lymph 84.7±1.6∗ 11.6±1.1 86.9±1.9∗ 9.6±0.6 81.8 11
vote 93.0±0.5∗ 6.8±0.8 95.0±0.6∗ 4.8±1.3 89.9 10
audiology Max 69.7±0.7 28.6±3.3 73.6±1.6 30.0±3.0 75.2 43
cancer 73.7±0.3 5.4±0.6 75.5±0.5∗ 2.8±0.8 74.1 6
kr-vs-kp 90.7±1.2∗ 11.6±0.9 94.1±0.4∗ 13.0±1.6 88.1 23

lymph 83.9±0.7∗ 10.6±0.9 86.4±0.3∗ 11.2±1.1 81.8 7
vote 93.2±0.4∗ 8.2±1.1 94.7±0.8∗ 3.8±0.8 92.4 6
audiology Avg 71.0±2.7 24.8±3.5 74.8±2.8 26.6±4.3 73.5 26
cancer 73.6±0.3∗ 4.8±0.5 75.4±0.8∗ 3.0±1.7 72.7 3
kr-vs-kp 90.8±2.8 10.0±2.1 93.2±0.7∗ 12.4±1.5 89.9 14

lymph 85.7±0.7∗ 11.8±1.6 86.0±1.8∗ 9.4±0.9 80.4 2
vote 99.0±1.4∗ 5.4±2.5 94.3±0.5 5.8±0.5 95.6 2
audiology Min 70.5±3.1 11.6±1.8 73.5±2.5∗ 14.0±4.3 67.7 9
cancer 73.7±0.4∗ 4.6±0.6 74.3±0.9∗ 4.2±1.6 72.0 1
kr-vs-kp 90.7±1.3∗ 7.6±0.9 94.2±0.1∗ 7.4±1.7 86.7 5
∗ Statistically significant improvement over EF.

information gain ranking of features that is known to perform quite well in
practice.

To evaluate the contribution of the NP method versus that of simply using
the information-gain ranking we compare the performance of the NP filter and
NP wrapper with a filter that we refer to as the entropy filter (EF). This filter
simply selects the features with the highest information gain to be included
in the model. Since the number of features used by the solutions found by
the NP filter and NP wrapper is not fixed, a comparison of models with the
same number of features is not possible. However, for a fairer comparison
we change the stopping criterion of the NP algorithms so that we terminate
when a certain depth is reached, i.e., after a given number of features has
been considered for inclusion in the set. The same number of features is then
used by the EF. Given the data sets have a varying number of features but
that a common testing procedure is desired, we consider using approximately
60%, 40%, and 15% of the features in three different experiments. The results
for naive Bayes are shown in Table 7.5. The first set of results for each data
set uses 60% of features (Max), the second set 40% (Avg), and the third 15%
(Min). From these results we see that the simple EF actually performs quite
well, but on average both the NP filter and NP wrapper perform significantly
better with respect to accuracy. The average accuracy of the NP filter is
better for all problems except the audiology test set. The average accuracy of
the NP wrapper is better for all problems, and in 13 out of 15 experiments
the average accuracy of the NP wrapper is better than for both of the other
methods.

7.3 Numerical Comparison with Other Methods 139

Table 7.6. Accuracy of C4.5 with early termination of feature selection.

NPF NPW EF
Depth Accuracy Size Accuracy Size Accuracy Size

lymph 78.1±0.8∗ 12.0±0.7 82.2±1.0∗ 8.4±2.3 76.4 9
vote 95.5±0.2 6.4±1.8 96.4±0.7 6.0±2.6 95.6 8
audiology Max 76.4±0.9 28.6±3.5 79.6±1.7 27.4±4.2 77.9 36
cancer 73.4±0.0 6.0±0.0 75.9±0.2∗ 4.2±0.5 73.8 5
kr-vs-kp 91.6±3.6 10.0±0.7 96.7±0.8 17.2±2.8 97.1 19

lymph 79.1±1.4 10.6±1.1 81.5±0.6∗ 9.0±0.7 78.4 6
vote 96.6±0.2∗ 8.2±1.6 96.3±0.5 7.2±1.9 95.6 5
audiology Avg 74.6±2.9 27.2±2.2 79.5±1.6 30.4±2.5 77.9 22
cancer 73.8±0.0∗ 5.0±0.0 75.9±0.0∗ 2.6±0.9 71.7 3
kr-vs-kp 91.9±4.2 11.8±2.1 97.1±0.3∗ 1.8±0.8 96.5 12

lymph 78.7±0.6∗ 9.0±0.7 81.1±0.5∗ 9.8±1.9 73.7 2
vote 95.5±0.3 6.2±1.9 96.3±0.5 7.2±1.9 95.6 2
audiology Min 73.2±2.1∗ 13.0±3.1 77.2±1.5∗ 16.4±2.4 69.9 8
cancer 72.9±1.2∗ 4.6±0.6 74.1±1.1∗ 3.2±1.3 69.6 1
kr-vs-kp 87.2±6.2 6.6±0.9 96.2±0.9∗ 13.2±3.1 90.4 4
∗ Statistically significant improvement over EF.

The same results for the C4.5 decision tree algorithm are shown in
Table 7.6. The results here are similar, except that the NP filter performs
relatively worse, with an average improvement for only three of the five prob-
lems, namely for the “lymph,” “vote,” and “cancer” data sets. Again, the NP
wrapper has the best performance for 13 out of 15 experiments.

The improved accuracy obtained by using the NP algorithms, and espe-
cially the NP wrapper, does of course come at a price, which is increased
computational time. In Tables 7.7 and 7.8 we report the amount of computa-
tion time (in milliseconds) used by each of the algorithms for all experiments
reported above. For each of the data sets the first line reports the time used
for the experiments reported in Tables 7.3 and 7.4 and the next three lines
report the time used for the experiments reported in Tables 7.5 and 7.6.

From these results we see that using the EF takes the least amount of
time, followed by using no feature selection at all. Thus, even though using
the EF adds a step to the process, this is more than compensated for by the
faster induction of the classification model that occurs when fewer features
are employed. The NP wrapper takes by far the most amount of computation
time and the NP filter falls between the NP wrapper and no feature selection.

7.3.3 The Importance of Intelligent Partitioning

We have seen that the high accuracy obtained by the NP filter and NP wrap-
per is not completely explained by the use of an information-gain ranking.
Conversely, we can ask how much is due to the generic NP framework itself

140 7 Feature Selection

Table 7.7. Average speed using Naive Bayes (milliseconds).

Data Set Depth NFS NPF NPW EF

lymph Full 114 5313 6113 N/A
Max N/A 3954 3833 120
Avg N/A 2557 2628 120
Min N/A 1190 853 112

vote Full 164 11541 13341 N/A
Max N/A 8096 8711 180
Avg N/A 5416 5350 178
Min N/A 1791 1915 154

audiology Full 370 124205 127769 N/A
Max N/A 88125 77452 322
Avg N/A 52583 43256 297
Min N/A 16049 16387 252

cancer Full 119 2390 2888 N/A
Max N/A 1679 1987 124
Avg N/A 1232 1064 124
Min N/A 573 431 126

kr-vs-kp Full 886 410682 515299 N/A
Max N/A 272552 315520 1294
Avg N/A 160109 192314 1298
Min N/A 50278 63697 1262

Table 7.8. Average speed using C4.5 (milliseconds).

Data Set Depth NFS NPF NPW EF

lymph Full 304 5476 28929 N/A
Max N/A 4210 14188 270
Avg N/A 2774 9514 276
Min N/A 1402 2912 240

vote Full 392 11685 41708 N/A
Max N/A 8238 22178 356
Avg N/A 5588 13890 302
Min N/A 2017 5454 222

audiology Full 1076 127100 327725 N/A
Max N/A 92225 172884 845
Avg N/A 54246 100969 709
Min N/A 16622 32048 488

cancer Full 373 2650 8142 N/A
Max N/A 1985 4877 303
Avg N/A 1538 2940 284
Min N/A 801 1031 188

kr-vs-kp Full 4558 430171 1836724 N/A
Max N/A 276450 614206 3509
Avg N/A 189066 382934 2794
Min N/A 54348 101643 1772

7.3 Numerical Comparison with Other Methods 141

and how much to the intelligent partitioning scheme. Thus, we compare NP
algorithms using the intelligent partitioning to NP algorithms using all other
possible ways of partitioning . We use a complete enumeration of all partitions
to find the best and worst one and compare those to intelligent partitioning.
Since the number of ways in which the features can be ordered is n!, where
n is the number of features, a study of even the smallest test problem would
be prohibitively time-consuming. We thus modify the data sets so that we
first draw a sample of seven features and then apply the NP algorithms, re-
peating it five times to reduce any bias. We restrict ourselves to the “vote”
and “cancer” data sets and consider only the NP wrapper with naive Bayes
classification. Results for other configurations are similar.

In Table 7.9 the prediction accuracy of the models using intelligent par-
tition, as well as the best and worst partition found using enumeration, are
reported. The accuracy found using the intelligent partition is very close to
optimal. For half of the problems the intelligent partitioning always results in
the same accuracy as does the optimal partition, and for the other half the
performance difference is not statistically significant. On the other hand, poor
partitioning results in feature subsets that have significantly lower accuracy
but even for the worst possible partition, the NP method is still able to obtain
fairly high-quality subsets.

We also compare the computational time used by the NP wrapper if dif-
ferent partitioning schemes are used. These results are reported in Table 7.10
and we see again that using the intelligent partitioning results in a perfor-
mance that is close to optimal, although there is greater difference than with
respect to accuracy. In particular, the intelligent partitioning takes on aver-
age 1.36 and 1.75 times longer than does the best, but the worst partitioning
takes on average 6.24 and 5.32 times longer than the intelligent partitioning
for the the ‘vote’ and ‘cancer’ data sets, respectively. We conclude that the NP

Table 7.9. Accuracy evaluation of intelligent partitioning in NP Wrapper using
Naive Bayes.

Accuracy
Data Set Intelligent Best Worst

1 90.8±0.3 91.0 86.4
2 95.9±0.0 95.9 94.3

vote 3 89.0±0.0 89.0 87.4
4 90.0±0.3 90.1 85.1
5 95.6±0.0 95.6 92.0

1 75.9±0.0 75.9 72.7
2 75.7±0.2 75.9 72.7

cancer 3 75.8±0.2 75.9 73.1
4 72.8±0.3 73.1 70.6
5 75.9±0.0 75.9 72.0

142 7 Feature Selection

Table 7.10. Speed evaluation of intelligent partitioning in NP Wrapper using Naive
Bayes.

Computation Time
Data Set Intelligent Slowest Fastest

1 3812 20370 2184
2 3515 19408 2153

vote 3 3371 35080 2784
4 3690 18046 2774
5 3433 17375 3094

1 2740 14050 1382
2 2624 16013 1372

cancer 3 2664 20390 1342
4 4969 25226 1362
5 2642 6920 1372

filter compensates fairly well for poor partitioning in terms of accuracy, but
requires much computation. The intuitive explanation is that any NP algo-
rithm can compensate for mistakes by backtracking but frequent backtracking
is time-consuming and slows the search. Finally, we note that the difficulty of
obtaining the optimal partitioning is in general equal to solving the problem
itself. However, our results show that a very high-quality partition can be
obtained efficiently with the new intelligent partitioning method.

7.3.4 Scalability of NP Filter

In this section we consider the scalability of the NP method for feature selec-
tion by evaluating the accuracy and computational time as functions of both
the number of features and number of instances. For these tests we gener-
ated synthetic test data sets with m ∈ {50, 100, 200, 400, 800} instances, and
n ∈ {50, 100, 200, 400, 800} features using the following approach. To create a
single instance i, a value for the class feature Yi is generated from a uniform
distribution on [−3, 3], i.e., Yi ∼ U(−3, 3). The value for each of the other
features Xij is then generated via

Xij = ρjYi + (|ρj | − 1) · Zj ,

where ρj is the amount of correlation between feature j and the class feature,
and Zj is drawn from a unit normal distribution, j = 1, 2, ..., n, i = 1, 2, ...,m.
For each of the test problems, 10% of the features are highly correlated with
|ρj | ≥ 0.9, 40% have correlation 0.3 ≤ |ρj | < 0.9, and 50% of the features
do not correlate highly with the class feature, i.e. |ρj | < 0.3. The NP filter,
followed by naive Bayes classification-model induction, is run five times for
each of those test sets.

First consider the scalability with respect to the number of attributes.
Figure 7.2 shows accuracy as a function of the number of attributes for two

7.3 Numerical Comparison with Other Methods 143

0 100 200 300 400 500 600 700 800
91

92

93

94

95

96

97

98

99

100

101

102

Number of Attributes

P
re

di
ct

io
n

A
cc

ur
ac

y
Average Accuracy
Lower Bound
Upper Bound

0 100 200 300 400 500 600 700 800
91

92

93

94

95

96

97

98

99

100

101

102

Number of Attributes

P
re

di
ct

io
n

A
cc

ur
ac

y

Average Accuracy
Lower Bound
Upper Bound

Fig. 7.2. Accuracy as a function of attributes for 100 instances (top) and 400
instances (bottom).

of the five instance settings (100 and 400 instances). The other settings had
similar results. The figure reports both the average accuracy over the five repli-
cations (solid line) and a t-distribution based 95% confidence interval around

144 7 Feature Selection

this average (dashed lines). From these results we conclude that there is no
significant change in the accuracy obtained as the number of attributes grows.
The results for computation time as a function of attributes are reported in
Figure 7.3 for three settings, 50, 200, and 800 instances. The time grows very
rapidly as the number of attributes increases, and appears to demonstrate
exponential growth. Thus, although quality is not lost as the problem size
increases, the time it takes to achieve this quality increases quickly and the
NP filter is therefore somewhat lacking in terms of scalability with respect to
the number of attributes.

Finally, looking at the scalability of the NP filter as a function of the
number of instances, Figure 7.4 reports the accuracy obtained as a function
of the number of instances in a similar manner to what was done above. An
interesting observation from this figure is that the solution quality actually
improves as the problem size increases, which is not entirely surprising as more
instances imply more data are available to induce a model with high accuracy.
Turning now to the computation time required to achieve this accuracy, Figure
7.5 shows the time used as a function of number of instances for the 100,
200, 400, and 800 attribute problems. As opposed to the rapid growth in
computation time seen when the number of attributes increases, the time
here grows only linearly, thus implying that the NP filter is scalable with
respect to the number of instances.

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6
× 107

Number of Attributes

C
om

pu
ta

tio
na

l T
im

e

50 Instances
200 Instances
800 Instances

Fig. 7.3. Computation time as a function of attributes.

7.3 Numerical Comparison with Other Methods 145

0 100 200 300 400 500 600 700 800
86

88

90

92

94

96

98

100

Number of Instances

P
re

di
ct

io
n

A
cc

ur
ac

y

Average Accuracy
Lower Bound
Upper Bound

0 100 200 300 400 500 600 700 800
86

88

90

92

94

96

98

100

Number of Instances

P
re

di
ct

io
n

A
cc

ur
ac

y

Average Accuracy
Lower Bound
Upper Bound

Fig. 7.4. Accuracy as a function of number of instances for 100 attributes (top)
and 800 attributes (bottom).

146 7 Feature Selection

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12
× 105

Number of Instances

C
om

pu
ta

tio
na

l T
im

e
100 Attributes
200 Attributes

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6
× 107

Number of Instances

C
om

pu
ta

tio
na

l T
im

e

400 Attributes
800 Attributes

Fig. 7.5. Computation time as a function of number of instances.

7.4 Improving Efficiency through Instance Sampling 147

7.4 Improving Efficiency through Instance Sampling

In Chapter 3 we discussed how the NP method can be applied effectively even
when the objective function is noisy. This is important when applying NP
for data mining problems such as the feature selection problem because in
practical data mining projects it is common that the database is too large to
work with all the data simultaneously. In particular, when there are millions
of instances it is common to sample the database and apply the data mining
algorithms to the sample instance subset. This sampling causes the objective
function evaluation to be noisy since different samples of the database may
result in different performance (e.g., different estimates of the accuracy of
a classification model). On the other hand, using a (small) sample may be
expected to greatly improve the speed of the data mining algorithm.

In light of the above discussion, we propose the following variant of the NP-
Filter. In the kth iteration, randomly sample and use a set Ψk of instances.
To reduce bias, a new instance subset should be sampled in each iteration
independently of previous sets. Thus, if the new instances indicate that an
erroneous decision has been made the backtracking step of the NP method
enables the algorithm to make corrections. Our main premise is therefore that
the NP backtracking automatically reduces the potential bias introduced by
the sampling. Several issues must be addressed regarding this approach:

• The value of random sampling in the NP-Filter must be evaluated. If
the use of random sampling of instances cannot significantly reduce the
computation time then the goal of increased scalability will certainly not
be reached.

• The premise of automatic correction using backtracking must be assessed.
• As always when sampling of instances is used in data mining, the issue of

sample size must be addressed, that is, we must determine the appropriate
size of the set Ψk of instances.

To evaluate these questions empirically, we conduct a set of numerical
experiments with the NP-Filter. The datasets are the same as before, and for
each dataset we run seven experiments, with 2%, 5%, 10%, 20%, 40%, 80%,
or 100% of the instances used.

The results are reported as average and standard deviation over five repli-
cations, and are shown in Table 7.11. First note that the desired speedups
in the algorithm are indeed achieved. By using 10% rather than 100% of the
instances, the computing time is reduced by 71%, 13%, 39%, 93%, and 28%
for the five datasets, respectively. This improvement is statistically significant
for all but the ‘audiology’ dataset. Even though we accomplished the speedup,
the performance as measured by the accuracy is not significantly sacrificed for
any of the datasets. In the case of the ‘kr-vs-kp’ dataset, the accuracy even
increased. These are promising results and motivate that random sampling
is a reasonable way to improve the scalability of the NP-Filter. However, as
illustrated by the difference in improvements between the test datasets, the

148 7 Feature Selection

Table 7.11. Effect of instance sampling on speed and accuracy.

Data Set Fraction Accuracy Speed (millisec) Backtracking

vote 100% 93.5±0.4 2820±93 0.0±0.0
80% 92.8±0.6 2766±224 0.0±0.0
40% 92.2±0.5 1694±352 0.0±0.0
20% 92.6±1.3 1065±174 0.6±0.5
10% 92.4±1.0 816±167 1.6±2.2
5% 91.9±1.7 947±515 13.2±18.5
2% 92.6±1.1 1314±728 90.4±66.7

audiology 100% 69.7±1.9 41105±3255 0.0±0.0
80% 70.2±1.9 58230±18616 78.8±66.8
40% 70.2±2.3 38462±3451 108.6±13.3
20% 70.5±1.0 37280±26368 235.0±214.6
10% 69.2±2.4 35840±14563 371.0±182.2
5% 69.6±1.9 37025±14612 566.2±279.1

cancer 100% 73.2±0.6 795±83 0.0±0.0
80% 73.6±0.3 793±26 0.8±1.3
40% 73.0±0.8 647±142 1.8±1.5
20% 73.3±0.8 640±140 3.8±4.1
10% 72.6±1.2 486±89 7.4±3.4
5% 73.1±0.4 947±456 78.4±48.8

kr-vs-kp 100% 87.9±5.7 107467±8287 0.0±0.0
80% 87.3±7.3 87687±12209 0.0±0.0
40% 89.8±3.1 47741±4359 0.0±0.0
20% 86.1±4.4 19384±2727 0.4±0.9
10% 91.1±3.6 11482±2074 0.2±0.4
5% 89.0±1.2 7246±809 1.8±3.0
2% 88.6±2.3 7742±1892 25.8±15.6

lymph 100% 83.3±1.2 1734±38 0.0±0.0
80% 84.2±1.3 2289±545 0.0±0.0
40% 84.3±2.0 1512±344 2.6±3.8
20% 84.7±1.0 1013±182 2.0±1.6
10% 84.5±1.1 1248±385 30.0±16.0
5% 83.1±2.1 28104±21543 2655±2122.0

effectiveness of this approach will in general depend on the particular dataset
being analyzed.

The use of sampling speeds up the algorithm, but as pointed out above it
also introduces noise into the performance estimation. Higher noise will lead
to more incorrect moves in the NP-Filter, but since the overall quality of the
solution, as measured by the accuracy reported in Table 7.11, does not de-
generate, the NP-Filter appears able to compensate for such incorrect moves.
The manner in which incorrect moves are corrected is through backtracking,
which occurs when the algorithm discovers that the best solution in the cur-

7.5 Adaptive NP-Filter 149

rent iteration is in the complimentary region. We would therefore expect more
backtrackings when the noise is higher, and this is indeed supported by the
numerical results reported in Table 7.11. The average number of backtracks
clearly increases as the size of the instance sample sets decreases.

The numerical results reported so far indicate that random sampling is an
effective approach in speeding up the NP-Filter, and that the backtracking
element of the algorithm is effective in compensating for the increased noise.
The final issue we consider in this section is the ideal size of the instance
sample subset. From Table 7.11, of the seven sample rates used, 10% is best
for the ‘vote,’ ‘audiology,’ and ‘cancer’ datasets, although it cannot be said
that they are statistically significantly better than all others. For the other two
datasets, 5% sample rate is best for ‘kr-vs-kp’ and 20% is best for the ‘lymph’
dataset. These results are appealing in that the ‘lymph’ data set is the smallest
(only 148 instances), and the ‘kr-vs-kp’ is the largest (3196 instances). Thus,
a smaller percentage of instances appear to be needed for the larger datasets.

Given the value of random sampling, the question arises as too how the
best (or a good) instance sample rate should be determined. Furthermore,
should this sample rate be constant, as in the experiment reported above, or
allowed to change as the algorithm progresses? The numerical results reported
above indicate that there is some relationship between problem size and a
good sample rate, but another interesting observation is how it relates to
the amount of backtrackings. For example, at the best sample rate of 10%
for the ‘vote’ dataset the average number of backtracks are 1.6, but at 5%
this sharply increases to 13.2. Similar patterns are observed for all the other
datasets. The intuitive explanation for these observations is that although
using smaller instance sets will generally speed the algorithm, once the noise
increases to a certain level, excessive amount of backtracks are needed and
this eventually starts to outweigh the benefits of a smaller instance subset.
Although this observation does not prescribe the size of the instance sample
set apriori, it suggests observable conditions under which the current size can
be judged to be either too small or too large, enabling a dynamic adjustment
of the instance sample rate. This will be explored further in the next section.

7.5 Adaptive NP-Filter

We have seen that using a random sample of instances can significantly im-
prove the computation time of the NP-Filter but determining the best sam-
ple rate remains an open issue. In this section we propose a new approach
to adaptively determine a good instance sampling rate. As described above,
the number of backtrackings is one of the critical factors determining the
computation time of the NP-Filter. Backtracking is necessary to correct mis-
takes, but when high noise causes excessive backtrackings it leads to increased
computation time (see Section 2.4). Thus, we propose the following generic
principles for adjusting the sampling rate:

150 7 Feature Selection

• If relatively few backtrackings have been observed, then decrease the sam-
ple rate since using fewer samples will speed up the evaluation in each
step.

• If a large number of backtrackings have been observed, then the perfor-
mance estimates are too noisy and the sample rate should be increased.
Thus, in each iteration, the sample rate will be either decreased or in-
creased based on the amount of backtrackings observed.

To make this approach more specific, we define the following notation:

Bk = Total number of backtracks made by the algorithm
Bk,N = Number of backtracks in the last N iterations.

The key idea of the new approach is that if the average number of backtracks
observed in the past few iterations exceeds the average number of backtracks
over the entire run of the algorithm, that is, Bk,N

N > Bk

k , then the noise has
become too great and the sample rate should increased. Otherwise it should be
decreased. To determine by how much the recent backtracking must exceed
the average backtracking, we define a constant c ≥ 1, so the condition for
increasing the sample rate becomes:

Bk,N

N
≥ c · Bk

k
. (7.6)

Thus, the general rule employed is to decrease the number of samples used,
except to prevent excessive backtrackings when detected by the rule above.

The amount of change in the sample rate also needs to be determined.
We denote the sample rate in the kth iteration as Rk and use the following
equation for increasing/decreasing the number of instances

Rk = Rk−1 +
Δ

k
(7.7)

where Δ is a predefined constant, but the amount of change decreases as the
number of iterations k increases. The idea is that larger changes in the sample
rate will be required earlier on, but as the algorithm progresses the sample
rate is allowed to settle down and converge. We call the NP feature selection
method incorporating these ideas the Adaptive NP-Filter.

To test the effectiveness of the Adaptive NP-Filter, we evaluate it numer-
ically on the same standard test problems as before. The parameters of the
algorithm that are varied are the initial sample rate R0, the constant c used
in equation (7.6) to compare recent backtracks to overall backtracks, and the
number N that defines how many steps are considered recent. The value of
the initial sample rate is set as R0 ∈ {5, 10, 20, 40, 80}. The constant c is set to
either c = 1.0 or c = 1.2. Since the number of steps required by the algorithm
is proportional to the size of the problem as reflected by the depth of the
partitioning tree, which in turn is equal to the number of features, N is set to

7.5 Adaptive NP-Filter 151

either 5% or 10% of the number of features and is therefore different for dif-
ferent test problems. Since the ‘cancer’ dataset has only 9 features, however,
this dataset is omitted from the experiments that set N equal to 5% of the
features. Finally, the amount of change in the sample rate in equation (7.7)
is set as Δ = 0.2.

We now evaluate the Adaptive NP-Filter in terms of accuracy and compu-
tational time. As before, all averages and standard deviation results reported
are based on 5 replications of the algorithm. The results are reported in Table
7.12 for c = 1.0 and N set to 5% of features, in Table 7.13 for c = 1.2 and
N set to 5% of features, and in Table 7.14 for c = 1.0 and N set to 10% of
features. In each table, the initial instance sample rate is varied .. We observe
that the accuracy is not significantly affected by most of the parameter set-
tings, which indicates that the solution quality of the method is robust with
respect to the parameter settings. However, the computational performance
of the algorithm varies, and we observe:

• The speed depends on the value of N that determines the number of recent
steps in equation (7.6), and the difference can be as large as an order of
magnitude.

• The initial instance sample rate can also greatly affect the speed.
• The speed appears to be closely related to the amount of backtracking,

with excessive backtracking leading to long computation time.

Table 7.12. Numerical results of Adaptive NP-Filter with c = 1.0 and N = 5%.

Data set R0 Accuracy Speed Backtracks R∗

vote 5 92.5±1.5 1267±402 49.2±41.1 7.3±9.8
10 93.1±0.4 4338±4368 303.4±363.1 3.7±2.1
20 91.6±0.7 3662±3789 270.8±366.5 2.0±0.8
40 93.1±1.1 3663±1482 240.4±147.7 1.6±0.2
80 92.2±1.0 1067±61 0.6±0.9 16.3±0.3

audiology 5 71.3±2.1 36012±29713 129.8±124.2 29.0±6.9
10 70.4±3.0 207481±169931 1357.4±1240.2 23.1±9.0
20 70.8±1.6 47781±20390 167.6±88.9 35.4±8.1
40 69.0±2.5 206110±258237 944.2±1206.5 33.8±14.0
80 70.6±2.6 37078±20248 79.4±67.1 59.0±4.5

kr-vs-kp 5 86.6±2.4 7122±3167 13.8±8.9 4.1±4.2
10 84.9±4.3 7122±1306 16.8±5.7 4.7±2.3
20 85.5±5.0 9932±6555 17.2±9.7 6.0±5.7
40 87.2±4.7 12054±7838 15.6±10.6 5.4±5.4
80 83.4±6.6 262008±512274 89.2±194.5 27.9±16.1

lymph 5 84.3±1.3 10790±9759 658.2±640.0 10.6±0.7
10 83.7±0.9 13800±11248 830.0±699.8 15.6±10.6
20 84.3±1.2 5625±4392 318.4±282.5 11.8±8.0
40 84.9±1.4 12193±16855 701.4±1041.6 7.4±3.9
80 83.9±0.7 1107±210 6.8±8.0 12.3±1.1

152 7 Feature Selection

Table 7.13. Numerical results of Adaptive NP-Filter with c = 1.2 and N = 5%.

Data set R0 Accuracy Speed Backtracks R∗

vote 5 92.5±1.0 903±587 19.4±27.7 8.6±8.8
10 91.7±1.2 655±77 7.2±3.5 6.9±4.9
20 92.2±0.5 663±66 5.8±0.8 5.3±0.5
40 91.8±1.5 869±194 6.0±4.7 9.9±8.9
80 93.7±0.6 1490±77 0.4±0.9 33.4±9.7

audiology 5 71.9±4.1 53054±14825 194.0±137.2 15.1±13.0
10 69.0±3.6 26173±12959 107.0±58.1 31.9±9.3
20 71.3±1.5 44677±19774 132.0±69.1 39.5±2.8
40 68.3±1.5 31386±10880 89.2±46.2 43.0±9.5
80 70.9±2.6 64686±32568 111.4±106.9 77.7±10.2

cancer 5 73.2±0.9 507±153 20.8±14.2 12.9±9.7
10 73.4±0.7 444±98 13.4±6.3 14.1±2.9
20 73.4±0.5 866±502 47.6±47.0 25.2±23.9
40 73.8±0.3 1007±369 55.0±36.4 22.4±12.7
80 74.1±0.5 523±32 0.8±0.8 39.5±8.4

kr-vs-kp 5 88.0±5.0 7835±3419 5.6±1.1 6.3±4.4
10 86.0±4.2 8556±4984 6.4±3.8 6.8±5.1
20 86.2±4.4 13301±11386 13.8±12.2 9.3±9.4
40 87.0±3.9 15104±3659 5.4±2.8 7.6±3.3
80 86.1±5.5 60395±13765 2.6±3.6 44.5±13.2

lymph 5 84.6±0.9 4373±3750 319.0±359.8 20.1±3.3
10 83.8±1.1 2448±2326 155.8±243.3 17.0±4.3
20 84.9±1.4 3205±2952 217.6±284.8 16.7±8.8
40 84.1±0.9 999±113 8.0±3.4 16.4±5.2
80 84.3±0.6 1240±199 1.6±2.3 37.7±6.4

However, despite the sensitivity to the parameters, in practice it does not
appear to be difficult to recommend robust initial parameters:

• The user should avoid setting the initial sample rate very small or very
large (e.g., for any problem R0 = 20% appears to be quite robust).

• The number of recent steps should not be selected too small (e.g., for any
problem, setting N equal to 10% of features appears to be quite robust).

We also note that from the final sampling rate (R∗), that the Adaptive NP-
Filter converges to is similar or a little lower than the best sampling rate found
above. For example, the converged rate of ‘vote’ dataset ranges from approxi-
mately 5% to 10%, compared with the 10% found best for the NP-Filter with
constant sampling rate (see Table 7.11). Similarly, the final sampling rate con-
verges to between 10% and 20% in ‘lymph’ dataset, compared with the 20%
found to be best for the constant sampling rate. An intuitive explanation is
that the amount of sampling needed depends on where in the partitioning
tree the current most promising region is located. At the top of the tree, it is
intuitive that more accurate performance estimates are needed to select the

7.5 Adaptive NP-Filter 153

Table 7.14. Numerical results of Adaptive NP-Filter with c = 1.0 and N = 10%.

Data set R0 Accuracy Speed Backtracks R∗

vote 5 92.4±2.2 700±188 9.8±4.0 9.1±6.1
10 91.2±1.2 762±90 8.6±2.6 7.0±4.7
20 92.6±0.8 669±46 6.4±2.1 5.4±2.0
40 93.0±1.7 859±125 5.8±2.2 9.4±7.3
80 93.6±0.7 1474±17 0.0±0.0 36.5±0.0

audiology 5 69.9±2.6 53206±18499 138.8±26.5 70.8±13.6
10 72.6±2.0 44006±33919 89.4±58.2 54.5±6.5
20 72.7±1.6 49587±31218 98.4±57.7 52.5±26.5
40 71.0±2.8 75714±20107 123.2±20.8 85.7±10.8
80 69.6±1.0 229611±392499 434.4±802.3 90.2±10.8

cancer 5 73.0±1.6 779±354 31.4±19.5 25.0±12.0
10 73.6±0.8 630±292 26.0±21.0 17.5±10.2
20 73.7±0.6 502±12.7 13.2±7.4 27.1±14.4
40 73.7±0.4 795±488 34.2±37.9 26.0±13.3
80 73.6±0.5 524±37 3.8±3.9 29.4±2.1

kr-vs-kp 5 89.9±2.3 7350±2296 5.8±2.9 5.3±3.9
10 86.8±2.9 13222±15670 10.4±13.8 8.0±9.6
20 88.5±5.5 9243±2440 6.2±2.2 8.1±4.7
40 90.7±1.5 13312±806 3.6±1.1 6.2±3.3
80 84.1±7.2 51772±5016 0.2±0.4 35.9±2.3

lymph 5 83.9±1.1 7754±4051 604.0±341.8 20.1±12.6
10 84.3±0.7 3391±5420 226.0±484.7 18.5±4.7
20 83.9±1.8 2996±4202 171.6±360.2 16.0±16.2
40 84.9±1.4 1091±127 5.0±3.7 20.6±9.5
80 84.5±1.3 1101±101 1.6±1.7 38.3±4.9

correct move, whereas at lower depth the decision becomes easier and the al-
gorithm is able to proceed with noisier estimates and hence a lower sampling
rate.

For the next numerical results, Table 7.15 compares the Adaptive NP-
Filter with both the original NP-Filter and the NP-Filter using a sampling
of instances with the best constant sample rate indicated in Table 7.11. In
addition to the accuracy, speed, and number of backtracks, Table 7.15 also
compares the final sample rate (R∗) of the Adaptive NP-Filter with that of
the other two algorithms. The following observations can be made from the
table:

• Differences in accuracy between the algorithms are small and mostly not
significant.

• The Adaptive NP-Filter provides the best overall performance in terms of
speed for all the datasets while maintaining an acceptable accuracy level.

• The original NP-Filter demonstrates the worst computational perfor-
mance. We finally note that determining a good constant sampling rate

154 7 Feature Selection

Table 7.15. Comparison of the Adaptive NP-Filter, the constant sampling rate
NP-Filter, and the Original NP-Filter.

Data set Approach R∗ Accuracy Speed Backtracks

vote Adaptive NP 6.9 91.7±1.2 655± 77 7.2±3.5
Constant NP 10 92.4±1.0 816±167 1.6±2.2
Original NP 100 93.5±0.4 2820± 93 0.0±0.0

audiology Adaptive NP 31.9 69.0±3.6 26173±12959 107.0±58.1
Constant NP 10 69.2±2.4 35839±14563 371.0±182.0
Original NP 100 69.7±1.9 41105± 3255 0.0±0.0

cancer Adaptive NP 14.1 73.4±0.7 444±98 13.4±6.3
Constant NP 10 72.6±1.2 486±89 7.4±3.4
Original NP 100 73.2±0.6 795±83 0.0±0.0

kr-vs-kp Adaptive NP 2.4 88.3±1.2 5225±1035 10.4±2.9
Constant NP 5 89.0±1.2 7246± 809 1.8±3.0
Original NP 100 87.9±5.7 107467±8287 0.0±0.0

lymph Adaptive NP 16.4 84.1±0.9 999±113 8.0±3.4
Constant NP 20 84.7±1.0 1013±182 2.0±1.6
Original NP 100 83.3±1.2 1734± 38 0.0±0.0

apriori would in general be difficult, giving the Adaptive NP-Filter another
advantage.

The results reported above indicated that sampling should be done more ag-
gressively for larger data sets (e.g., the ‘kr-vs-kp’ data set where a 5% sampling
rate is best) than for smaller data sets (e.g., the ‘lymph’ data set where a 20%
sampling rate is best). Table 6 also shows that the speedup of the Adaptive
NP-Filter relative to the Original NP-Filter is greater for the larger data sets
(e.g., 95% faster for the ‘kr-vs-kp’ data set versus 42% faster for the ‘lymph’
data set).

7.6 Conclusions

The feature selection problem is an important data mining problem that is
inherently a combinatorial optimization problem. In this chapter we have
shown that the NP method can be effective used to obtain high-quality feature
subsets within a reasonable time and that by using intelligent partitioning the
efficiency of the algorithm can be improved by an order of magnitude. We
have also developed an adaptive version of the NP algorithm that only uses
a sample of instances in each iteration and is consequently capable of scaling
to large databases. This is possible because of the backtracking aspect of the
NP method that allows the algorithm to recover from incorrect moves made
due to decisions based on a relatively small fraction of all instances.

7.6 Conclusions 155

Our numerical results indicate that the NP method only requires using a
small fraction of instances in each step to obtain good solutions, and this
fraction tends to decrease as the problem size increases. However, this is
application-dependent and it is non-trivial to determine apriori what the opti-
mal instance sample rate should be for the method. The Adaptive NP feature
selection method, on the other hand, is able to dynamically adjust the sample
rate according to the observed frequency of backtrackings - many backtrack-
ings imply that more instances should be used and vice versa - and thus
achieve the benefits of random sampling without requiring the user to apriori
determine an optimal or even good sample rate. Our numerical results show
that the Adaptive NP-Filter is quite scalable and much faster than the original
NP feature selection algorithm. Furthermore, the Adaptive NP-Filter obtains
comparable solution quality and speeds equal to or faster than the NP using
a constant sampling rate, where the sampling rate is set to the best value
found. This indicates that not only does it have the benefit of automatically
determining the sampling rate, but the fact that it is allowed to vary may
actually improve on using the best constant sample rate.

8

Supply Chain Network Design

This chapter presents the first NP hybrid utilizing mathematical program-
ming, rather than heuristics, to generate higher-quality solutions. Specifically,
it employs both approaches introduced in Section 4.4. First, it decomposes
the problem into the difficult decisions, which are determined using random
sampling, and the easier decisions, which are completed by obtaining exact
solutions to a restricted optimization problem. Second, to generate better sam-
ple solutions to the difficult decision, a biased sampling approach is devised,
which incorporates the results of solving a LP relaxation of the restricted
problems. The restricted problems and relaxations are solved using CPLEX,
resulting in a hybrid NP/CPLEX algorithm. Finally, the hybrid algorithm
also uses the relaxed problem solution to initialize the NP search, so rather
than starting with the entire search space as the most promising region, it
starts with a subset that is found heuristically using those LP bounds as is
discussed in Section 2.4.

The application addressed in this chapter is a location problem, which
describes a wide range of problems in which the goal is to locate a set of
facilities in a distribution network while satisfying the given constraints. Even
the most basic location models are generally computationally intractable for
large problem instances. In capacitated facility location models the goal can be
the selection of a predetermined number of warehouses that minimize cost or
simply finding an optimal set of warehouses to minimize the total cost. Also,
the problem may be single-source, where it is required that each customer is
supplied by exactly one warehouse for each product (Neebe and Rao 1983)
or for all products (Hindi et al. 1998), or multiple source where splitting of
the demand for a product by a customer among a number of warehouses is
allowed (Bramel and Simchi-Levi 1997).

158 8 Supply Chain Network Design

8.1 Multicommodity Capacitated Facility Location

8.1.1 Background

The literature on warehouse location problems is very extensive, dealing with
different models and different scenarios (Klose and Drexl 2003). Lee (1993)
proposed a heuristic based on Benders decomposition and Lagrangian relax-
ation for a multicommodity capacitated single-layer (no plants) facility loca-
tion problem with a choice of facility type in which each facility type offers a
different capacity for a particular product with different fixed setup costs. The
largest test problem had 200 possible warehouse locations, 200 customers, 20
products, and 10 facility types.

However, not much work has been done on the two-layer warehouse loca-
tion models (Hindi and Basta 1994). One of the classical papers in solving
locations problems is Geoffrion and Graves (1974), which solves the distribu-
tion system design problem using Benders decomposition. Their largest test
problem had 5 products, 3 plants, 67 possible warehouse locations and 127
customer zones. Selection of plant locations simultaneously with the ware-
house locations has also been studied in the literature (Pirkul and Jayaraman
1996). In this chapter, we do not consider selection of plants instead, our focus
will be on the type of problems where multiple layers and multiple product
types are considered and warehouse locations are selected from a possible list
of candidates.

Recent literature on facility location models offers several additional so-
lution techniques. These include but are not limited to branch & bound and
cutting plane algorithms (Hindi and Basta 1994, Aardal 1998), Lagrangian re-
laxation techniques (Klincewicz and Luss 1986, Pirkul and Jayaraman 1996,
Mazzola and Neebe 1999, Klose 2000), simulated annealing (Mathar and
Niessen, 2000), and Tabu search algorithms (Crainic et al. 1996, Delmaire
et al. 1999). Branch & Bound (BB), Branch & Cut, and Lagrangian relax-
ation approaches are currently the most widely applied solution techniques in
this area.

8.1.2 Problem Formulation

Driven by the structures and data provided by our industrial partner, and sim-
ilar models introduced in the literature (Geoffrion and Graves 1974), (Pirkul
and Jayaraman 1996), (Bramel and Simchi-Levi 1997), we introduce the
following model, which considers multiple manufacturing plants and multi-
product families. The model we consider, which was given in (Bramel and
Simchi-Levi 1997), has the following features:

• A set of plants and customers are geographically located in a region.
• Each customer demands variety of products that are manufactured at

the plants. Products are shipped from plants to warehouses and then

8.1 Multicommodity Capacitated Facility Location 159

distributed to customers. For each shipping link and product there is a
per unit shipping cost.

• Each customer’s demand for each product is met from a single warehouse
(single-source constraint).

• A given number of warehouses must be located among a list of potential
sites. A fixed opening and operating cost must be paid for each warehouse
that is opened.

• Each warehouse has a capacity not to be exceeded.

We now give some notation that will be used throughout this chapter. We let
I denote the set of all customers, J denote the set of warehouses, K denote
the set of products (commodities), and L denote the set of plants. We also
use I, J , K and L to denote the cardinalities of those sets. The parameters
use by the formulation are as follows:

cljk = unit shipping cost from plant l to warehouse j of product k,

djik = unit shipping cost from warehouse j to customer i of product k,

fj = fixed cost of opening and operating a warehouse at site j,

wik = demand of customer i for product k,

vlk = capacity of plant l for product k,

qj = capacity (in volume) of warehouse located at site j,

sk = volume of one unit of product k.

The decision variables for the problem are as follows:

yj =
{

1 if a warehouse is opened on site j,
0 otherwise, (8.1)

xjik =
{

1 if customer i receives product k from warehouse j,
0 otherwise, (8.2)

uljk = amount of product k from plant l to warehouse j. (8.3)

With this notation, we can now state the problem. The objective function has
three components. The first component is the transportation cost between the
plants and warehouses, ∑

l∈L

∑

j∈J

∑

k∈K

cljkuljk,

the second part of the objective function measures the transportation costs
from warehouses to customers,

∑

i∈I

∑

j∈J

∑

k∈K

dijkwikxjik,

and the last term of the objective is the fixed cost of locating and operating
warehouses,

160 8 Supply Chain Network Design

∑

j∈J

fjyj .

Now turning to the constraints needed for the problem. A set of single
supplier constraints guarantee that to every product/customer pair there is
only one warehouse assigned:

∑

j∈J

xjik = 1,∀i ∈ I, k ∈ K.

Warehouse capacity constraints are needed to ensure that the total amount
of products shipped from warehouses does not exceed the capacities of the
warehouses and that no shipments are made through closed warehouses:

∑

i∈I

∑

k∈K

skwikxjik ≤ qjyj ,∀j ∈ J.

Conservation at warehouses constraints ensure that the amount of product
arriving at a warehouse from plants equals the amount of products shipped
from warehouses to customers:

∑

i∈I

wikxjik =
∑

j∈J

uljk,∀l ∈ L, k ∈ K

Plant capacity constraints guarantee that for every product, the amount of
that product supplied by a plant does not exceed the production capacity of
the plant for that product:

∑

j∈J

uljk ≤ vlk,∀l ∈ L, k ∈ K.

Finally, the fixed number of warehouses constraint ensures that we locate
exactly W warehouses: ∑

j∈J

yj = W.

Taking all of the objective function components and constraints together, the
Multicommodity Capacitated Facility Location Problem (MCFLP) can now
be stated mathematically as follows:

min
y,x,u

∑

l∈L

∑

j∈J

∑

k∈K

cljkuljk +
∑

i∈I

∑

j∈J

∑

k∈K

dijkwikxjik +
∑

j∈J

fjyj (8.4)

∑

j∈J

uljk ≤ vlk,∀l ∈ L, k ∈ K, (8.5)

∑

i∈I

∑

k∈K

skwikxijk ≤ qjyj ,∀j ∈ J (8.6)

∑

i∈I

wikxjik =
∑

l∈L

uljk,∀j ∈ J, k ∈ K, (8.7)

8.1 Multicommodity Capacitated Facility Location 161

∑

j∈J

yj = W, (8.8)

∑

j∈J

xjik = 1,∀i ∈ I, k ∈ K, (8.9)

yj , xjik ∈ {0, 1},∀l ∈ L, j ∈ J, k ∈ K, i ∈ I, (8.10)
uljk ≥ 0,∀l ∈ L, j ∈ J, k ∈ K. (8.11)

Before addressing the problem using a hybrid NP algorithm, we consider how
it could be solved using standard mathematical programming methods.

8.1.3 Mathematical Programming Solutions

In Chapter 4 we discussed how the branch and bound algorithm and its vari-
ants can be applied to large and numerically difficult mixed integer program-
ming (MIP) problems. Recall that a MIP is essentially a linear program (LP)
with integrality restrictions on one or more variables. The branch and bound
algorithm guarantees optimality (assuming the problem has an optimal solu-
tion) if it is allowed to run to completion, which might require unacceptably
large solution times and experience memory problems.

To solve the MCFLP problem formulated above, we used the AMPL 8.1
mathematical programming modeling language to model the MCFLP and
solved it using CPLEX 8.1. The reader is referred to Mitchell (2000) for a dis-
cussion of Branch & Cut algorithms for combinatorial optimization problems.
Hindi and Basta (1994) obtained feasible solutions for the multiple-source
MCFLP using BB, and obtained lower bounds using Dantzig-Wolfe decom-
position. Their largest test problem had 3 products, 10 plants, 15 possible
warehouse locations and 30 customers.

Recall that many hard integer-programming problems can be viewed as
easy problems complicated by a relatively small set of side constraints (see
Section 4.1.1). Dualizing the side constraints produces a Lagrangian prob-
lem that is often easy to solve and whose optimal value is a lower bound
(for minimization problems) on the optimal value of the original problem.
The Lagrangian problem can thus be used in place of a linear programming
relaxation to provide bounds in a branch and bound algorithm.

Beasley (1993) demonstrates the use of Lagrangian relaxation (LR) meth-
ods to solve various location problems. Here we consider two different LR
approaches. We start with a commonly used approach (Pirkul and Jayara-
man 1996, Bramel and Simchi-Levi 1997), namely relaxing single supplier
constraints and conservation at warehouse constraints, a common practice in
the literature. In particular, we relax single supplier constraints (with multi-
pliers λik) and conservation at warehouse constraints (with multipliers θjk).
The resulting problem is

162 8 Supply Chain Network Design

min
y,x,u

∑

l∈L

∑

j∈J

∑

k∈K

cljkuljk +
∑

i∈I

∑

j∈J

∑

k∈K

dijkwikxjik +
∑

j∈J

fjyj (8.12)

+
∑

j∈J

∑

k∈K

θjk

(
∑

i∈I

wikxjik =
∑

l∈L

uljk

)

+
∑

i∈I

∑

k∈K

λik

⎛

⎝1 −
∑

j∈J

xjik

⎞

⎠ ,

subject to the following constraints: plant capacity (8.5), warehouse capacity
(8.6), fixed number of warehouses (8.8).

Because the relaxation of conservation of flow decouples warehouse ship-
ments from plant shipments, this problem can be decomposed into two sepa-
rate problems, a plant-warehouse subproblem and a warehouse-customer sub-
problem. Since there is no coupling between warehouses except for the cardi-
nality constraint

∑
j∈J yj = W , the preceding warehouse-customer problem

can be solved by considering a set of |J | single warehouse problems. Specif-
ically, for every warehouse j, a knapsack problem (corresponding to yj = 1)
with |I| · |K| items is solved to obtain a value for warehouse j.

The optimal solution to the plant-warehouse problem is then obtained
by concatenating the best W solutions of these separate problems (Bramel
and Simchi-Levi 1997) and closing the remaining warehouses. Then a lower
bound to the original problem is given by zλ,θ = zpw + zwc +

∑
i∈I

∑
k∈K λik,

where zpw and zwc are the optimal solutions of the plant-warehouse and the
warehouse-customer problems, respective. To approximately maximize zλ,θ we
use a subgradient algorithm.

Since solving the Lagrangian subproblems usually results in solutions that
are not feasible for the original problem many implementations of this tech-
nique use a heuristic to obtain feasible solutions from relaxed solutions. Pirkul
and Jayaraman (1996) used Lagrangian relaxation to obtain lower bounds for
the MCFLP while employing a heuristic to obtain feasible solutions at every
iteration. Their largest test problem had 10 products, 10 plants, 30 possible
warehouse locations and 75 customers. The largest problem solved in Bramel
and Simchi-Levi (1997) has 9 products, 9 plants, 32 possible warehouse loca-
tions and 144 customers. A maximum distance of 100 miles is allowed between
a warehouse and a customer to have a shipping link. The following section
discusses two other approaches based on stronger formulations of the basic
MCFLP.

8.2 Hybrid NP/CPLEX for MCFLP

As we have noted throughout the book, an efficient implementation of the NP
method should take advantage of the problem structure to the extent possible
by incorporating this structure into the NP framework.

We have also discussed how many complex problems have aspects that are
difficult, and others that can be solved more efficiently. Specifically, for the
MCFLP we can think of it as consisting of three parts. First, we must decide

8.2 Hybrid NP/CPLEX for MCFLP 163

which W warehouses are opened, second, we must determine from which of
the open warehouse each customer receives each product, and third, we must
determine how much of each product is shipped from each plant to each open
warehouse.

Now, suppose it is known which warehouses are opened, that is, the values
for yj , j ∈ J . Let J1 denote the open warehouses, that is, yj = 1 for j ∈ J1,
and yj = 0 for j ∈ J \ J1. Then the MCFLP problem reduces to a restricted
problem:

min
x,u

∑

l∈L

∑

j∈J

∑

k∈K

cljkuljk +
∑

i∈I

∑

j∈J

∑

k∈K

dijkwikxjik +
∑

j∈J1

fj (8.13)

∑

j∈J

uljk ≤ vlk,∀l ∈ L, k ∈ K, (8.14)

∑

i∈I

∑

k∈K

skwikxjik ≤ qj ,∀j ∈ J1 (8.15)

∑

i∈I

wikxjik =
∑

l∈L

uljk,∀j ∈ J1, k ∈ K, (8.16)

∑

j∈J1

xjik = 1,∀i ∈ I, k ∈ K, (8.17)

xjik ∈ {0, 1},∀j ∈ J1, i ∈ I, k ∈ K (8.18)
uljk ≥ 0,∀l ∈ L, j ∈ J1, k ∈ K. (8.19)

Note that this problem has significantly fewer binary variables. By constraint
(8.9) there must be W variables in J1, so the total number of x variables is
W · |I| · |K| in the restricted problem, versus |J | + |J | · |I| · |K| total y and x
variables for the MCFLP. Furthermore, for any application W << |J |, that is,
there are many more possible warehouse locations in J than the W warehouses
that are eventually opened. Hence, W · |I| · |K| << |J | + |J | · |I| · |K|. The
constraints of the restricted problem are also easier. In particular, constraints
(8.9) are dropped, and constraints (8.6) are significantly simplified. Finally,
there are many fewer constraints in constraint set (8.7) than before (W versus
|J | constraints). It is therefore more feasible to solve this restricted problem
exactly using standard MIP solvers such as CPLEX, even for relatively large
problems. Thus, we use the following approach to solve the MCFLP:

• Use random sampling to determine the warehouse solution, that is, some
feasible values ỹj , j ∈ J , that satisfy

∑

j∈J

ỹj = W.

• For each feasible solution (ỹ1, ..., ỹJ) generated by random sampling in
the NP algorithm, use CPLEX to complete the solution, that is, solve a
restricted optimization problem to find the optimal values x∗

jik(ỹ1, ..., ỹJ)
and u∗

ljk(ỹ1, ..., ỹJ), given the warehouse solution.

164 8 Supply Chain Network Design

Thus, the more difficult warehouse decisions are determined using random
sampling, while the exact solution can then be completed using CPLEX for
the remaining decision variables.

8.2.1 Partitioning

Since CPLEX is used to complete the solution given a determination of which
warehouses are open, the feasible region is therefore X = {y ∈ {0, 1}J}, and
the partitioning is only concerned with the decision variables yj , j ∈ J . Thus,
the current most promising region σ(k) in the kth iteration is determined by
a set of warehouses that have already been fixed to be either open, denoted
J1 or closed, denoted J0, that is,

σ(k) = {y ∈ X : yj = 1,∀j ∈ J1, yj = 0,∀j ∈ J0}. (8.20)

This most promising region is then partitioned into two subregion and the
complimentary region:

σ1(k) = (y ∈ σ(k) : ỹ = 1) , (8.21)
σ2(k) = (y ∈ σ(k) : ỹ = 0) , (8.22)
σ3(k) = X \ σ(k). (8.23)

Thus, in σ1(k) it has been decided that the next warehouse ỹ is open, whereas
in σ2(k) the same warehouse is closed.

The sequence in which warehouses are selected to be either opened or
closed determines the quality of the partitioning, and we know that a rea-
sonable guide is to attempt to measure the importance of variables and fix
the most important variables first (see Section 2.2). This implies that a ware-
house ranking is needed, which can for example be done using the following
algorithm:

Algorithm Warehouse Ranking

1. Pick a warehouse j̃ ∈ J from the set of warehouses and open it. Close all
other warehouses, that is,

yj =
{

1, j = j̃,
0, otherwise.

Note that since only one warehouse is allowed to be open, it may not
be possible to meet demand, that is, it may not be possible to satisfy
constraint (8.17) with a single warehouse. It is thus necessary to relax
the xj̃ik variables, and replace the demand constraints (8.17) with weaker
constraints.

2. Solve the linear programming relaxation of the MCFLP that requires that
the total warehouse throughput equals the warehouse capacity, replacing

8.2 Hybrid NP/CPLEX for MCFLP 165

Fig. 8.1. Ranking heuristic iteration for warehouse j.

the customers’ demand equations by upper bounds that limit product-
customer shipments to at most the demand (see Figure 8.1):

min
x,u

∑

l∈L

∑

k∈K

clj̃kulj̃k +
∑

i∈I

∑

k∈K

dij̃kwikxj̃ik + fj̃

ulj̃k ≤ vlk,∀l ∈ L, k ∈ K,
∑

l∈L

∑

k∈K

ulj̃k = qj̃ ,

∑

l∈L

ulj̃k ≤
∑

i∈I

wik,∀k ∈ K,

xj̃ik ∈ [0, 1],∀l ∈ L, k ∈ K

ulj̃k ≥ 0,∀l ∈ L, k ∈ K.

Note that this is a relaxed restricted problem because the integer variables
corresponding to product-customer pairs are relaxed to continuous vari-
ables. The optimal value of this linear programming problem (involving
only one warehouse but all plants and customers) yields the lowest total
cost z̃(j̃) associated with full utilization of the warehouse j̃ ∈ J . (Note
that this optimal value also includes the fixed cost of the warehouse.)

3. Calculate an average unit cost for each warehouse by the dividing the
total cost by the (fully utilized) capacity of the warehouse:

z̄(j̃) =
z̃(j̃)
qj

(8.24)

4. Rank the set of warehouses according to the average unit costs.

z̄(j[1]) ≤ z̄(j[2]) ≤ ... ≤ z̄(j[J]). (8.25)

The ranking (8.25) can now be used to determine the sequence in which
warehouses are fixed by the partitioning.

L plants

ikw

I customers

j jqthroughput

166 8 Supply Chain Network Design

8.2.2 Generating Feasible Solutions

In addition to the partitioning, the other component determining the effi-
ciency of the NP method is how successfully high-quality random solution
can be generated from each region. We know that any heuristic that ranks
the importance of variables can be incorporated into the NP method by using
it to bias the sampling distribution used to generate feasible solutions (see
Section 5.1.1). In particular, the warehouse ranking algorithm can be used for
this purpose, and hence the following biased sampling algorithm can be used
to generate feasible solutions from each region:

Algorithm LP-Bound Sampling

1. Given a rank cutoff value of R, place the top R ranked warehouses accord-
ing to equation (8.25) in a set called TOP , and the remaining warehouses
are in set BOTTOM :

TOP =
{
j[1], ..., j[R]

}
, (8.26)

BOTTOM =
{
j[R+1], ..., j[J]

}
. (8.27)

2. Let J1 = {j : yj = 1} denote the open warehouses, and similarly, let J0

denote the warehouses that have been fixed to be closed.

If |J1| = W , stop because enough warehouses have been opened. Other-
wise, open another warehouse by selecting a warehouse according to the
following probability distribution:

P [Select warehouse j] =

{
p

|TOP\J1 , if j ∈ TOP,
1−p

|BOTTOM\J1 , if j ∈ BOTTOM.
(8.28)

In other words, the probability of choosing a warehouse in the sampling
scheme from TOP is p and the probability of choosing it from BOTTOM
is 1 − p. Within each set the probability is uniform.

3. After it has been determined which warehouses will be opened, solve the
restricted optimization problem defined by equations (8.13) to (8.19) to
find the optimal values x∗

jik and u∗
ljk.

We can now put the partitioning and sampling algorithms together in a
hybrid NP algorithm.

8.2.3 Hybrid NP/CPLEX Algorithm

The hybrid NP algorithm will use the warehouse ranking (8.25) in both the
partitioning and generation of feasible solutions. Note that a simple heuristic
solution to the problem would open the top W ranking warehouses and then
complete the solution by solving the restricted problem using CPLEX. While

8.2 Hybrid NP/CPLEX for MCFLP 167

this is unlikely to be the optimal solution, it is likely that a few of the top
ranked warehouses are included in all good solutions, and in the optimal
solution in particular. It may thus be possible to speed up the NP search by
defining the initial most-promising region by opening some w0 number of the
highest-ranked warehouses.

By combining the partitioning, solution generation, and initialization pro-
cedures described above, we now obtain the following NP/CPLEX hybrid
algorithm:

Algorithm NP/CPLEX Hybrid

0. Initialization. The initial promising region is obtained by fixing the high-
est ranked w0 warehouses as open. In other words,

σ(0) =
{
y ∈ X : y[j] = 1, j ≤ w0

}
, (8.29)

where the ranking is obtained from equation (8.25) above. Set k = 0.
1. Partitioning . Let J1 and J0 denote the warehouses that are fixed to

open and closed, respectively, in σ(k). (For example, J1 = {j[1], ..., j[w0]},
J0 = ∅ for σ(0).)

Another warehouse ỹ �∈ J1 ∪ J0 is selected randomly from the set
TOP \(J1∪J0) with probability p, and from the set BOTTOM \(J1∪J0)
with probability (1− p), where TOP and BOTTOM are defined accord-
ing to (8.26) and (8.27), respectively.

The selected warehouse j̃ is set to be open in subregion σ1(k), and closed
in subregion σ2(k). In other words, we partition the most promising region
σ(k), into two subregions:

σ1(k) = (y ∈ σ(k) : ỹ = 1)
=

(
y : yj = 1,∀j ∈ J1, jj = 0,∀j ∈ J0, ỹ = 1

)
,

σ2(k) = (y ∈ σ(k) : ỹ = 0)
=

(
y : yj = 1,∀j ∈ J1, jj = 0,∀j ∈ J0, ỹ = 0

)
.

In the complementary region at least one of the warehouses used to define
the promising region is not allowed in the warehouse sets considered in
this region, that is,

σ3(k) = X \ σ(k).

2. Generating Feasible Solutions. A two step process is used to generate
feasible solutions. Specifically, the following steps are repeated Nj times
for each regions σj(k), j = 1, 2, 3:
a) To generate the ith sample point, first use random sampling to deter-

mine the values for the y values not fixed by the partitioning. Specif-
ically, the LP-Based Sampling algorithm and the biased distribution
(8.28) are used to create a partial sample point yj

i .

168 8 Supply Chain Network Design

b) Second, solve the restricted problem (8.13) - (8.19) using CPLEX to
obtain a completed sample point (yj

i , x
j
i , u

j
i).

After repeating the sample point generation process for each region, cal-
culate the corresponding performance values:

z(yj
1, x

j
1, u

j
1), z(yj

2, x
j
2, u

j
2), ..., z(yj

Nj
, xj

Nj
, uj

Nj
), j = 1, 2, 3.

3. Calculate Promising Index. For each region σj , j = 1, 2, 3, calculate
the promising index as the best performance value within the region:

I(σj) = min
i=1,2,...,Nj

z(yj
i , x

j
i , u

j
i), j = 1, 2, 3.

4. Move. Calculate the index of the region with the best performance value.

ĵk ∈ arg min
j=1,2,3

I(σj), j = 1, 2, 3.

If more than one region is equally promising, the tie can be broken arbi-
trarily. If this index corresponds to a region that is a subregion of σ(k),
that is ĵk ≤ 2, then let this be the most promising region in the next
iteration

σ(k + 1) = σĵk
(k)

Otherwise, if the index corresponds to the complimentary region, that is
ĵk = 3, backtrack to the previous most promising region:

σ(k + 1) = σ(k − 1).

Note that the warehouse ranking, and hence the LP bounds found using
CPLEX, are incorporated into Step 0 - Step 2, and CPLEX is further used
to complete the sample generated in Step 2. On the other hand, Step 3 and
Step 4 are analogous to the pure NP algorithm.

Finally, we note that even though the NP/CPLEX hybrid utilizes the
results of the warehouse ranking heuristic to initialize the search process,
which is found to speed the search, the algorithm nevertheless maintains a
global view of the search space. Backtracking may result in some of the w0

warehouses that are initially open being closed, and when generating feasible
solution even low-ranked warehoused always have a positive probability of
being considered.

8.3 Experimental Results

To illustrate the hybrid NP/CPLEX algorithm we apply it to 17 hard prob-
lem instances out of 42 test problems. These problems have various values
for 5 design parameters: numbers of plants, warehouses, open warehouses,
customers, and products resulting in problems of varying size and difficulty.

8.3 Experimental Results 169

Table 8.1. Test problems suite.

Opened
Problem Plants Warehouses Warehouses Customers Products

(|L|) (|J |) (W) (|I|) (|K|)
10 5 100 10 50 10
12 5 100 10 200 10
16 5 100 20 200 10
20 10 30 10 200 10
26 10 100 10 50 10
27 10 100 10 200 3
28 10 100 10 200 10
32 10 100 20 200 10
33 5 100 10 50 15
34 5 100 10 250 5
35 5 100 10 250 10
36 5 100 20 250 10
37 10 30 10 250 10
38 10 100 10 50 15
39 10 100 10 250 5
40 10 100 10 250 15
42 10 100 20 250 15

Table 8.1 shows the values for the design parameters for the problems used
in this chapter. These test problems were constructed using the distributions
given in detail in Pirkul and Jayaraman (1996). After randomly generating
the data for each problem we froze the data so that various solution strategies
could be compared for each problem.

The algorithms were coded in AMPL 9.0 and CPLEX 9.0 was used as the
branch and cut solver. The computational experiments were carried out on
Sun machines with 1.2 GHz UltraSPARC-III CPU, 8 MB L2 external cache
and 1 GB RAM.

The lower bounds obtained by using both LR approaches and strong MIP
formulation are usually quite similar (Table 8.2). This is most likely due to
the fact that we initialize the Lagrangian multipliers to be the optimal dual
variables from the strong formulation LP relaxations of MDSD and the LR
process generally makes only a marginal improvement to the lower bound.

Moreover, because of the effectiveness of the fast warm starting procedure
employed by NP the times required by hybrid NP/CPLEX to reach highest
quality solutions are generally only a few minutes (after which an even slightly
better solution is rarely found). This is in strong contrast to all of the other
methods which either typically produce poor quality solutions even after two
hours (standard MIP approach) or which require initial solution of the relax-
ation of the strong MIP formulation, an initialization procedure that itself
often requires an hour or more (and, in one case, more than two hours) for

170 8 Supply Chain Network Design

Table 8.2. Comparison of the hybrid NP/CPLEX to other approaches for 17 diffi-
cult problems (best lower bounds in boldface).

Hybrid NP/CPLEX Traditional Lower Bounds
Problem # UB LB MIP LB LR LB

10 1,255,900 1,161,715 1,154,105 1,154,925
12 5,024,820 4,695,313 4,106,413 4,658,537
16 4,033,560 3,843,819 3,816,473 3,851,205
20 4,812,650 4,520,998 4,486,513 4,475,600
26 1,104,190 991,254 983,775 976,206
27 1,235,210 1,132,667 1,108,508 1,124,280
28 4,545,020 4,094,412 3,573,921 4,066,798
32 3,514,680 3,377,853 3,293,284 3,374,194
33 1,992,120 1,776,014 1,764,628 1,766,750
34 3,141,820 2,818,629 2,684,202 2,797,910
35 6,321,140 5,798,602 4,718,861 5,753,405
36 5,021,480 4,753,128 4,533,561 4,751,316
37 6,254,060 5,717,303 5,692,836 5,674,061
38 1,775,690 1,559,872 1,556,433 1,536,800
39 2,725,680 2,479,553 2,379,891 2,460,995
40 8,720,900 7,571,878 5,722,300 7,565,944
42 6,600,730 6,135,910 5,450,845 6,217,881

the more difficult problems. Thus, the NP framework for the use of branch-
and-cut solvers to handle subproblems has proven to be efficient, reliably fast,
and effective in terms of providing high-quality solutions. Specifically, for the
17 harder problems in the test suite, hybrid NP/CPLEX obtains the best so-
lution in 14 cases, the new LR approach is better in 2 cases, while stand-alone
CPLEX is better in only 1 case (corresponds to a standard MIP model).

8.4 Conclusions

The computational results reported in this chapter demonstrate that the NP
method is capable of efficiently producing very high-quality solutions to dis-
tribution system design problems. For large-scale problems in this class, this
approach is significantly faster and generates better feasible solutions than ei-
ther general-purpose combinatorial optimizers (such the branch-and-cut solver
within CPLEX) or specialized approaches such as those based on Lagrangian
relaxation. The results illustrate that the NP framework can effectively com-
bine problem-specific heuristics with MIP tools (such as AMPL/CPLEX),
so for this problem class we have developed an excellent warehouse rank-
ing heuristic and used this heuristic to construct a “warm start” procedure

8.4 Conclusions 171

followed by an effective biased sampling approach (using CPLEX to solve the
MIPs corresponding to the samples) that uses this ranking and is guided by
a global view of the problem. This work has also established the applicability
of the AMPL/CPLEX modeling-language/solver combination as an excellent
means for the implementation of the NP method and thus represents a novel
and successful use of these powerful software tools.

9

Beam Angle Selection

This chapter presents an application where the evaluation of solution quality is
extremely complex. The solutions, namely plans for radiation treatment, must
be evaluated for their success at treating a specific patient, that is, hitting the
target tumor while minimizing the harm done to vital organs. Thus, evalu-
ating the performance may involve expert judgement from clinicians, as well
as quantitative assessment by commercial software. Such external evaluation
can be effectively incorporated into the promising index of the NP method
(see Section 2.5), which is illustrated in this chapter. Furthermore, since this
evaluation of the promising index is very expensive, only a few iterations of
the NP algorithm may be possible. It thus becomes imperative to incorporate
special structure into both the partitioning (see Section 2.2) and generation
of samples (see Section 2.3) to ensure that the search makes rapid progress.
To achieve this, this chapter considers two ways of intelligent partitioning for
the problem, as well as biased sampling and heuristics for quickly generating
high-quality solutions.

9.1 Introduction

Modern healthcare treatment technologies allow clinicians to develop complex
treatment plans for a wide array of illnesses, including many forms of cancer.
While expert judgment may lead to good treatment plans, as for other plan-
ning and scheduling problems the number of alternative plans usually grows
exponentially and it quickly becomes impossible for an expert to identify the
best plan. An alternative is to formulate the treatment planning as an opti-
mization problem and solve for the optimal solution. As we will see in this
chapter, this often yields treatments that are significantly better than those
previously selected by experts.

The Beam Angle Selection (BAS) problem for Intensity Modulated Ra-
diation Therapy (IMRT) was introduced in Chapter 1. In this chapter we
explore this problem in detail and show how the NP method can be used

174 9 Beam Angle Selection

for automating and improving the selection of the beam angles. Importantly
for this application, the practice and power of current available commercial
softwares and clinician’s valuable experiences are easily incorporated in the
NP framework. The computational results reported show that using the NP
method leads to significant reductions in treatment complexity and delivery
time relative to treatments generated by the commercial radiation treatment
planning software currently used in clinics. We give the necessary background
for the treatment planning problem that we are addressing.

9.1.1 Intensity-Modulated Radiation Therapy

Intensity-modulated radiation therapy is a recently developed complex tech-
nology for radiation treatment. It employs a multileaf collimator to shape
the beam and to control, or modulate, the amount of radiation that is de-
livered from each of the delivery directions (relative to the patient). Due to
the complexity of delivering IMRT, the treatment planning problem is gen-
erally divided into three subproblems. The first of these is termed the beam
angle selection problem. In essence, beam angle selection requires the deter-
mination of roughly 4-9 angles from 360 possible angles subject to various
spacing and opposition constraints. It is computational intense to solve this
selection problem. In modern clinics the rotation angles of treatment couch
is also considered as another set of decision variables. This adds even more
complexity to the problem. Because of this reason, currently the angles are
selected manually by clinicians based on their experiences.

The second phase of IMRT treatment planning is dose optimization. This
problem includes optimizing beamlet weights as described in Langer et al.
(1996), Preciado-Walters et al. (2004), and Lee, Fox and Crocker (2003). In
IMRT multiple sub-apertures or segments are used at each pre-selected beam
angle in order to achieve different fluence values over the grid of beamlets
that comprise the overall aperture. Dose optimization optimizes the radiation
delivered from each beamlet. A variety of objectives have been considered
for this problem, such as minimizing a weighted sum of dose delivered to
the organs-at-risk, including maximizing the minimum tumor dose. Difficult
versions of this problem include dose-volume histogram (DVH) constraints,
which assure that no more than α% of an organ-at-risk can exceed a certain
dose and at least β% of the tumor tissue should exceed a certain dose. Different
optimization methods have been used to solve this problem, such as simulated
annealing, column generation, and general mixed integer programming. For
different cases and different approaches the solution time varies from minutes
to hours. As oppose to solving this problem separately, we combine an easy to
understand LP based dose optimization algorithm with beam angle selection
using the NP method.

After applying the NP method we thus not only obtain the set of angles
to deliver the radiation but also the optimized intensity maps for each an-
gle as well. These intensity maps form the input for the last phase, called

9.1 Introduction 175

intensity-map segmentation or leaf sequencing (Langer, Thai and Papiez
2001). The goal is to use as few apertures as possible to deliver the opti-
mized radiation intensity pattern to the patient. The number of segments is
an important factor in treatment session time. Increasing segment counts also
leads to more possibilities for delivery error due to patient motion. Currently,
mixed integer programming and heuristic methods are used to solve the seg-
mentation problem. This phase is usually solved separately from the beam
angle selection and dose optimization.

9.1.2 Beam Angle Selection

Designing an optimal IMRT plan requires the selection of beam orientations
from which radiation is delivered to the patient. These orientations, called
beam angles, are currently manually selected by a clinician based on his/her
judgment.

The planning process proceeds as follows: A dosimetrist selects a collection
of angles and waits ten to thirty minutes while a dose pattern is calculated.
The resulting treatment is likely to be unacceptable so the angles and dose
constraints are adjusted and the process repeats. Finding a suitable collection
of angles often takes several hours. The goal of using optimization methods
to identify quality angles is to provide a better decision support system to
replace this tedious repetitive process.

An integer programming model of the problem contains a large number of
binary variables and the objective value of a feasible point is evaluated by solv-
ing a large, continuous optimization problem. For example, in selecting 5 to 10
angles, there are between 4.9× 1010 and 8.9× 1019 subsets of {0, 1, 2, ..., 359}.
This fact has lead researchers to investigate heuristics (Ehrgott, Holder and
Reese 1995).

A relatively simple heuristic for BAS is the set covering approach (Ehrgott
and Johnston 2003). An angle covers a dose point if the sum of all the doses
delivered from the beamlets of the angle to the point is greater than certain
threshold. The cost of selecting an angle is large if it contains a large number
of beamlets that deliver dose to a critical structure. Other researchers have
heuristically solved the angle selection problem by scoring each angle and se-
lecting a high quality set of angles (Pugachev and Xing 2001, Rowbottom,
Webb and Oldham 1998, Sultan 2002, Woudstra and Storchi 2000). An an-
gle’s score increases as the beamlets that comprise the angle become capable
of delivering more radiation to the target without violating the restrictions
placed on the non-targeted regions. These heuristics consider beamlet individ-
ually and then aggregate this information to form a score for the entire angle.
High scores are considered desirable since they indicate that it is possible to
deliver large amounts of radiation to the target while maintaining the restric-
tions on the remaining tissues. Thus the scoring technique uses the bounds
on the non-targeted tissues to form constraints, and the score represents how
well the target can be treated under these constraints. This is reverse of the

176 9 Beam Angle Selection

perspective in set covering, where the constraints attempt to guarantee that
the target is treated and the objective function strives to reduce the damage
to the critical structures. A vector quantization (Holder and Salter 2004) se-
lector considers the probability that an angle is used in an optimal treatment.
Although the vector quantization heuristic is deterministic, its essence is in
modeling the probability that an angle is selected.

The above described heuristics reduce the search space of the original beam
angle selection problem and then select a collection of angles from the reduced
set, either by solving an optimization problem or through a rule. Other ap-
proaches, such as local search heuristics (Ehrgott and Johnston 2003, Das
et al. 2003, Meedt, Alber and Nusslini 2003), simulated annealing (Bortfeld
and Schlegel 1993, Djajaputra et al. 2003, Pugachev et al. 2001, Rowbottom,
Nutting and Webb 2001, Stein et al. 1997) and genetic algorithms (Haas,
Burnham and Mills 1998, Hpu et al. 2003, Schreibman 2004) have also been
applied to beam angle selection problem. They search the beam space and
iteratively select collections of angles, keeping track of which collection has
the best objective value.

9.2 NP for Beam Angle Selection

We now use the beam angle selection problem to illustrate how the NP frame-
work can be applied in radiation treatment planning problems. First we give
a general formulation of the BAS problem (Ehrgott, Holder and Reese 1995).
Let A = {0, 1, 2, ..., 359} be a candidate collection of angles from which we
will select N to treat the patient. The goal of the objective function is to
capture the criteria a treatment planner uses to decide between good and bad
treatments. We let P (A) to be power set of A and R∗

+ to be the nonnegative
extended reals, i.e., R∗

+ := {x ∈ R : x ≥ 0} ∪ {∞}, for any A′ ∈ P (A) we give
the general formulation as

f(A′) = min
x

{z(x) : x ∈ X(A′)}, (9.1)

where X(A′) is the feasible set of beam weights for A′ and z maps the beam
weights into R∗

+. If the demands of a physician cannot be satisfied with a col-
lection of angles, i.e., X(A′) = φ, then we assume that f assigns the value of
∞ to this collection. A beam weight vector x represents the amount of radia-
tion delivered from each beamlet of an angle. There are numerous approaches
to estimating f , and the manner in which a treatment is judged varies from
patient to patient and from clinic to clinic. In this chapter we will consider
two approaches for evaluating beam sets. The first uses linear programming
and the second uses a commercial treatment planning system called Pinnacle.

A simpler formulation, which we will use for the remainder of this chapter,
is obtained by focusing only on the angles selection, rather than the weights.

9.2 NP for Beam Angle Selection 177

Fig. 9.1. Partitioning of the beam angle selection space for a 7-field plan.

Assume that we need to select N angles θ to be used (with amount of radiation
to be determined later), then the problem can be formulated as

min
θ

f(θ) (9.2)

s.t. θ ∈ X (9.3)
θ ∈ {0, 1, ..., 359}N . (9.4)

Here, as before, X denotes the feasible region, that is, the constraints the
physician(s) have specified for the set of angles. The difficult problem remains
the estimation of f , that is, evaluating the quality of a feasible set of beam
angles. We will come back to this issue in Section 9.2.3, but in the next
two subsections we first address the two critical issues of partitioning and
generating feasible solutions. This includes using our knowledge of the BAS
to define an intelligent partitioning and using biased sampling method to
obtain good feasible solutions.

9.2.1 Partitioning

To develop a NP algorithm for the BAS problem, first we need to consider
how to partition the solution space. As we know the NP method does not limit
the way in which we partition but the specific strategies employed have a high
impact on the efficiency of the algorithm (see Section 2.2). For example, in
Chapter 7 we saw how intelligent partitioning can improve the efficiency of the
algorithm by an order of magnitude. Through partitioning, if good solutions
are clustered together, the NP algorithm will then quickly identify a set of
near optimal solutions.

Figure 9.2.1 shows a simple example of how to partition the solution space
for the BAS problem, in which N = 7 (seven angles need to be selected to
deliver radiation). We can first divide the solution space into 360 subregions by
fixing the first index to be any one of the 360 angles. We can further partition
each such subregion by fixing the second index to be any of the remaining

178 9 Beam Angle Selection

θ1 θ2 … θ7

50 θ2 … θ7 θ1 θ2 … θ7

(can’t choose 50)

50 80 θ3 … θ7 50 θ2 θ3 … θ7

(can’t choose 80)

Fig. 9.2. Intelligent partitioning of the beam angle selection space.

angles, subject to satisfying corresponding constraints. This procedure can be
repeated until a singleton region is reached, when all seven angles are selected.

The importance of intelligent partitioning that imposes good structure
on the search space is discussed in Section 2.2 and demonstrated in both
Chapter 7 and Chapter 8 above. We know that to impose such a structure we
need a ranking of the variables, so that the most important variables can be
used at the top of the partitioning tree. This tends to impose a useful structure
on the search space. For the BAS problem it would be too time consuming
to rank all 360 angles. Instead we note that all that is needed is to determine
which angle should be used next, that is, we need a procedure to find a good
angle that can then be used for the partitioning.

To find the angle to use for the partitioning we first compute the optimal
solution of an integer program that optimizes beam orientation using mean
organ-at-risk dose (MOD) data from single-beam plans (D’Souza, Meyer and
Shi 2004). The detailed formulation is as following:

min
w

∑

OAR

[αOAR(
∑

θ

wθMODθ,OAR)]

s.t.
∑

θ

wθ = n (9.5)

wθ + wθ+δ + wθ+2δ + wθ+(m−1)δ ≤ 1, θ = 0, 5, 10, ..., 355 (9.6)
wθ + wθ+k ≤ 1, k = 180 − δ, 180, 180 + δ, θ = 0, 5, 10, ..., 355 (9.7)
wθ ∈ {0, 1} (9.8)

The objective function is the weighted average MOD over all the beams. While
the beam orientation space is discretized in increments of 10◦ to generate
single-beam plans within a reasonable amount of time, MOD is estimated at
finer intervals of 5◦ by interpolating the MODs obtained at 10◦ increments.
The αOAR is the weight associated with an OAR, θ is the beam orientation
index, wθ is the binary selection variable for a beam at angle θ, MODθ,OAR

is the MOD for an OAR from a single beam at angle θ, n is number of beams
to be selected, δ is the spacing between adjacent beams (in this case, 5◦) and
mδ is the minimum geometric spacing required between beams. Constraint

9.2 NP for Beam Angle Selection 179

Table 9.1. Illustration of frequency index.

Frequency Index

Angle 50◦ 80◦ 110◦ 250◦ 280◦ 310◦ 350◦ others
Index 1 1 1 1 1 1 1 0

(9.2) specifies how many angles to select. The inequality constraints specify
the minimum spacing between beams (9.3) and the exclusion of opposed (or
nearly opposed) beams (9.4). This program can be solved in a few seconds
using CPLEX and the solution proved to be good quality in clinical cases.
But this beam angle selection problem is solely based on the mean organ-at-
risk dose (MOD) information so additional data can be used to improve the
solution.

Now suppose a good angle set (50◦, 80◦, 110◦, 250◦, 280◦, 310◦, 350◦) is
obtained by solving the integer program above. As shown in Figure 9.2.1 we
can then partition on the first angle in the set, which is 50◦ in this example.
Then one subregion includes angle 50◦, the other excludes excluding 50◦.

Similar to the initialization done in Chapter 8, we can also use the IP
solution in determining the initial most promising region, that is, determine
a ‘warm-start’ most promising region σ(0) different from the default value of
the entire feasible region. Specifically, we will do this by letting

σ(0) = {θ = (θ1, ..., θ2) ∈ X : θ1 = θ̃}, (9.9)

where θ̃ is the highest ranked angle from the IP solution, and the initial most
promising region is defined by including this angle in the solution.

For instance, suppose the solution from IP is 50◦, 80◦, 110◦, 250◦, 280◦,
310◦, 350◦, for N = 7. To apply intelligent partitioning, we first define a
frequency index for each angle, which tells us how many times a particular
angle has appeared in the best angle set. Initially the index is as shown in
Table 9.1. An angle with a high frequency index means that the angle with
a high probability to be a high-quality angle. Thus when defining the initial
most-promising region, choose an angle with the highest frequency index to
appear in the promising region. Initially all the seven angles have the same
frequency index, so we could choose any one of them. For example, let angle
50◦ to be required in the initial most promising region, that is,

σ(0) = {θ ∈ X : θ1 = 50}.

The frequency index is also useful in further partitioning. Since we know
that the IP solution is of good quality, we want to utilize this information and
pick another angle currently in the IP solution, or more specifically an angle
with a high frequency index, to use for partitioning. Thus, we can for example
pick angle 80◦ next to break the tie. That means that in the first iteration of
the algorithm σ(0) is partitioned into subregions

180 9 Beam Angle Selection

σ1(0) = {θ ∈ σ(0) : θ2 = 80} ,

= {θ ∈ X : θ1 = 50, θ2 = 80} ,

σ2(0) = {θ ∈ σ(0) : θ2 �= 80} ,

= {θ ∈ X : θ1 = 50, θ2 �= 80} ,

and the complimentary region is

σ3(0) = {w ∈ X : θ1 �= 50} .

This intelligent partitioning is illustrated in Figure 9.2.1.
Another intelligent partitioning is called a beam weight based partition.

Still starting from the IP solution of 50◦, 80◦, 110◦, 250◦, 280◦, 310◦, 350◦,
for N = 7, we solve a dose optimization linear programming (LP) formulation
that penalizes DVH violations. The LP objective is to minimize a weighted
sum of doses delivered to the voxels that are over the threshold related to
DVH constraints. The treatment region is divided into three regions: region
O includes organs-at-risk, region T includes the tumor and region N includes
other normal tissue. The constants bO, bT , bN specify the thresholds for each
region. The variable xT is a vector of underdoses delivered to the target re-
gion.The variable xO is a vector of overdoses delivered to the critical region.
The variable xN is a vector of overdoses delivered to the normal region. The
subset sp of O, corresponds to a special region such as the spinal cord voxels.
Dose delivered to sp is bounded above by bU

sp. The variable W is the radiation
delivered from each angle or beamlet. The overall model is thus:

min C
′

T xT + C
′

OxO + C
′

NxN

s.t. AT W + xT ≥ bT (9.10)
AOW ≤ xO + bO (9.11)
ANW ≤ xN + bN (9.12)
AspW ≤ bU

sp (9.13)
W,xT , xO, xN ≥ 0 (9.14)

After solving the LP dose optimization problem, we obtain the beam
weights associated with the angle set as illustrated in Table 9.2. These beam
weights tell us how much radiation is delivered from a particular angle in
the current angle set. An angle with a high beam weight also indicates that

Table 9.2. Illustration of beam weight.

Beam Weights

Angle 50◦ 80◦ 110◦ 250◦ 280◦ 310◦ 350◦ others
Weight 4 15 661 19 4 113 18 0

9.2 NP for Beam Angle Selection 181

θ1 θ2 … θ7

110 θ2 … θ7

7

θ1 θ2 … θ7

(can’t choose 110)

110 310 θ3 … θ 110 θ2 θ3 … θ7

(can’t choose 310)

Fig. 9.3. Intelligent partitioning of the beam angle selection space.

the angle with a high probability to be a high-quality angle. This gives us a
new way of defining both the initial promising region σ(0) and further intel-
ligent partitioning. In this case, we choose an angle with the highest beam
weight to appear in the initial most promising region. From Table 9.2, we
select angle 110◦ to be required in the promising region (θ1 = 110). Then
the complementary region is defined as excluding angle 110◦ (θ1 �= 110). This
initial most-promising region definition together with further partitioning is
illustrated in Figure 9.3. After defining the initial promising region, we se-
lect another angle currently in the IP solution, with second highest frequency
index, to use for partitioning. Thus it is angle 310◦. Then we obtain one par-
tition θ1 = 110, θ2 = 310, the other is θ1 = 110, θ2 �= 310. Comparing this
result to Figure 9.2.1, we observe that incorporating different knowledge into
the intelligent partitioning may result in completely different partitions.

9.2.2 Generating Feasible Solutions

Recall that the method used to randomly generate feasible sample solutions
from each region in each iteration is flexible for the NP algorithm (see Sec-
tion 2.3). The only requirement is that each solution point in a sampling
region should have a positive probability of being selected. As we have seen
throughout this book, while a uniform sampling scheme may works well in
certain cases, incorporation of a simple heuristic into the sampling scheme
can drastically improve the sampling quality.

A critical issue is therefore how to generate feasible samples for a dose op-
timization program. First, based on the angles included in the current region,
we can eliminate several angles from the sample list using constraints (9.3)
and (9.4). For example, for the first partition w50 = 1, w80 = 1, so if we let
the spacing be 30◦, we know that angles 25◦, 30◦, 35◦, 40◦, 45◦, 55◦, 60◦, 65◦,
70◦, 75◦, 85◦, 90◦, 95◦, 100◦, 105◦, 225◦, 230◦, 235◦, 255◦, 260◦, 265◦ should
not be in the sample list.

After computing a list of feasible angles there are two ways to generate a
sample. One way is to randomly select angles from the list with each angle in
the list having equal selection probability. The other way is biased sampling.

182 9 Beam Angle Selection

After evaluating a sample we can obtain information related to the beam
weights from the angles. Based on these weights, samples for the next iteration
can be generated related to these weights. For example, angles with higher
beam weights can be given higher selection probability.

After the initial sample beam sets have been obtained using the biased
sampling, we can then incorporate many effective heuristic methods into the
NP algorithm by using them to generate further high-quality feasible solu-
tions from each region (see Chapter 5). In particular, heuristics often used
for radiation planning can be applied effectively. This includes for example
local search heuristics (Ehrgoo and Johnston 2003, Das et al. 2003, Meedt,
Alber and Nusslini 2003), simulated annealing (Bortfeld and Schlegel 1993,
Djajaputra et al. 2003, Pugachev et al 2001, Rowbottom, Nutting and Webb
2001, Stein et al. 1997) and genetic algorithms (Haas, Burnham and Mills
1998, Hpu et al. 2003, Schreibmann et al. 2004), each of which can be applied
within each region. Since each region is a subregion of the original solution
space, the heuristics can work much faster. For example, we can take the
sample points as initial solutions and for each perform a fixed number of
improvements based on a given heuristic method. In a parallel computing
environment many such heuristics may be simultaneously applied.

9.2.3 Defining the Promising Index

A complication to formulating the radiation treatment planning problem as
an optimization problem is that there is not a uniquely specified objective
function, and in the end the plan is measured by the expert opinion of one or
more physicians. This evaluation is therefore both expensive and noisy, but
as is discussed in Chapter 3 such noisy performance estimates can be handled
effectively by the NP method.

Thus, a variety of evaluation approaches can be used, incorporating clinical
experience and knowledge, into a promising index used by the NP algorithm
(see Section 2.5). For different treatment quality measures, we can use different
promising index estimators. For example, we can minimize the doses to the
OARs, or maximize doses to the target. We can also let the promising index to
be lowest violation of the DVH constraints as well. A user-controlled interface
can be set up based on these different choices. Then a user, such as a physician,
can employ his/her objective and experience to define the promising index.
Then NP can apply this user-selected promising index to continue partition
and generating feasible solutions.

The use of such complex promising indices is demonstrated in the next
section through some case studies.

9.3 Computational Results

In this section we present two numerical examples to illustrate the implemen-
tation and results of using the NP framework for the beam angle selection
problem. One uses an LP model to evaluate beam angles generated by NP

9.3 Computational Results 183

Table 9.3. Data set: Pancreas case #1.

Region Number of voxels

Target 1244
Critical-Spinal Cord 514
Critical-Liver 53244
Critical-Left Kidney 9406
Critical-Right Kidney 6158
Normal 747667

Total 818181

Table 9.4. Penalty values.

Normal Spinal Cord Left Kidney Right Kidney Liver

Penalty Values (1) 1 200 3 3 2
Penalty Values (2) 1 300 5 5 2

Threshold - 50% 20% 36% 22%

and the other uses a commercial available planning systems called Pinnacle
to generate treatment plans from the selected beam angles.

9.3.1 Using LP To Evaluate NP Solutions

The first data set, also used in Olafsson and Wright (2006) and Lim (2002),
is from a patient with pancreatic cancer and uses beam angle rather than
beamlet data. There are several critical structures, including liver, spinal cord,
left and right kidney. Distribution of voxels between the target, critical regions
and normal regions is shown in Table 9.3. The full dose matrix has 36 columns
(one for each 10◦ angle) and more than 800,000 rows (one for each voxel).

Two tests were done with different penalty values, as shown in Table 9.4
together with the threshold levels. Threshold levels are represented as per-
centages of the desired upper bound of each OAR.

The DVH constraints used were set as following:

• At least 96 % of the spinal cord should receive dose less than the given
threshold.

• At least 60 % of the liver should receive dose less than the given threshold.
• At least 60 % of the kidneys should receive dose less than the given

threshold.

Since we are solving an LP to evaluate each feasible sample, the efficiency
of the LP solver is very important. Thus, a small experiment was conducted
to determine a good LP strategy in CPLEX. Table 9.5 shows the test results.
From these results, a good choice of strategy for this LP is primal simplex,
which finishes in about 80 seconds. We therefore use the CPLEX option in bold

184 9 Beam Angle Selection

Table 9.5. LP strategy evaluation results.

n Method Pricing CPU Time (sec) Iter

1 primal simplex reduced 127.98 42818
2 primal simplex combined 118.21 52582
3 primal simplex devex 81.91 43468
4 primal simplex st edge >300 -
5 primal simplex st edge/sl 295.49 52640
6 primal simplex full 81.69 48985
7 dual simplex automatic 120.14 29794
8 dual simplex standard 111.24 43749
9 dual simplex st edge 120.26 29794
10 dual simplex st edge/sl 157.37 28609
11 dual simplex st edge/no 120.53 29794
12 dual simplex devex 88.18 32077
13 barrier Standard 107.00 37429
14 barrier Infea. esti. 105.62 37429
15 barrier Infea. cons. 106.41 37429

when evaluating samples. Allowing all 36 beam angles yielded the following
overdose volumes: 4.5% of cord, 20.7% of liver, 39.9% of kidneys.

Table 9.6 summarizes the results of applying the NP algorithm with the
first set of penalty values. The column labeled “overdose” shows the total
percentage volumn of the full set of OAR voxels that are overdosed. In this
test 20 samples were generated in the promising region and 5 samples in the
complementary region. This example terminated in 2 hours and 3 minutes. L
denotes the left “half” of the promising region and R denotes the right half. In
this test the left half always contained the best sample. The last four columns
in Table 9.6 are the information of percentage of voxels over the threshold,
which is the proper quality measure of the angle set. During the NP process
the number of angles used was restricted to be less than or equal to 7. In some
of the solutions, only 6 beams were used even though 7 were allowed. From
the view point of DVH constraints, the solution obtained from iteration 2 (in
bold) is the best.

Table 9.6. NP results using LP to evaluate samples.

No. of Overdose Spinal Kidney Liver
Iter. Partition angles Obj. Normal OAR (%) Cord (%) (%) (%)

0 - 13 26478 20979 5499 24.9 4.5 39.9 20.7
1 L 6 26815 20964 5852 21.6 5.8 34.5 17.9
2 L 7 26809 21086 5724 19.6 3.5 28.2 17.2
3 L 7 26736 21049 5687 22.3 6.2 33.7 19.1
4 L 6 26661 20979 5682 26.1 6 42.5 21.5
5 L 7 26633 21017 5616 25.3 6.2 43.9 20

9.3 Computational Results 185

The details of how this NP search progressed was as follows: Solving the
initial LP model, generated a solution with 13 angles and beam weights asso-
ciated with each angle:

Angle: 3 9 10 12 13 16 18
Weight: 0.003 0.041 0.092 0.007 0.014 0.037 0.095

Angle: 19 24 27 29 34 35
Weight: 0.033 0.019 0.060 0.003 0.110 0.010

The initial most promising region was defined by including the angle with
the highest beam weight from the initial LP solution. That is, angle 34 with
weight 0.110, so

σ(0) = {θ ∈ X : θ1 = 34} .

Then the partition was done on the angle with the second highest beam weight,
which is angle 18 with weight 0.095. Thus, the subregions are

σ1(0) = {θ ∈ X : θ1 = 34, θ2 = 18} ,

σ2(0) = {θ ∈ X : θ1 = 34, θ2 �= 18} ,

and the complimentary region is

σ3(0) = {θ ∈ X : θ1 �= 34} .

Then sample solutions were generated by randomly selecting the other angles
to make a 7-beam sample. Samples were evaluated by the same LP model.
Here the best sample is the angle set A = {6, 10, 13, 18, 27, 34}, which is
obtained from the partition including angle 18, that is σ1(0). Thus, in the
next iteration angle 18 is fixed to be in the angle set, that is, σ(1) = σ1(0).

To determine which angle to use for the next partition, we use the fre-
quency index introduced previously. Note that other than angle 34 and an-
gle 18 that have already been fixed by the partitioning, angle 10, 13 and
27 are all the only angles included in both the initial LP-generated angle
set {3, 9, 10, 12, 13, 16, 18, 19, 24, 27, 29, 34, 35} and the best sample angle set
{6, 10, 13, 18, 27, 34} generated in the first iteration. These three angles are
therefore tied with two appearances, and any of these could be used for the
next level of partitioning. We randomly selected 27, and in the next iteration
we thus have a most promising region

σ(1) = {θ ∈ X : θ1 = 34, θ2 = 18} ,

subregions

σ1(1) = {θ ∈ X : θ1 = 34, θ2 = 18, θ3 = 27} ,

σ2(1) = {θ ∈ X : θ1 = 34, θ2 = 18, θ3 �= 27} ,

186 9 Beam Angle Selection

Table 9.7. NP results using LP to evaluate samples.

No. of Overdose Spinal Kidney Liver
Iter. Partition angles Obj. Normal OAR (%) Cord (%) (%) (%)

0 - 12 27095 20973 6122 23.5 3.7 31.7 21.3
1 L 7 28292 21445 6847 16.1 2.7 21.7 14.6
2 L 6 27842 21240 6603 19.4 6.2 18.8 19.7
3 L 7 27791 21141 6650 21.4 5.6 31.0 18.7
4 L 7 27676 20925 6752 16.7 4.9 12.3 18.1
5 R 7 27661 21119 6542 19.2 3.9 21.5 18.7
6 L 6 27619 21147 6473 17.8 3.7 16.7 18.2

and the complimentary region is defined by

σ3(1) = {θ ∈ X : (θ1, θ2) �= (34, 18)} .

As the procedure continued, in this case it happened that at each iteration
one angle was fixed to be in the angle set, resulting in the following sequence
of best angle sets:

Iteration Best Angle Set Frequent Angles Selected
1 6 10 13 18 27 34 10, 13, 28(2) θ̃ = 27
2 5 10 16 18 25 27 34 10(3), 13, 16(2) θ̃ = 10
3 9 10 11 18 24 27 34 9, 11, 13, 16, 24(2) θ̃ = 24
4 10 13 18 24 27 34 13(3), 9, 11(2) θ̃ = 13
5 9 10 13 18 24 27 34

As we can see from Table 9.6, the best solution was generated in the second
iteration.

For the second set of penalty values, results are shown in Table 9.7. In this
test, a higher penalty was set for spinal cord region to give higher protection
to it. The test finished in 1 hour and 5 minutes because we used fewer samples
in the promising region.

From the results, we can see that using NP with LP to evaluate samples led
to improved solutions. In particular, the solution generated via NP in the first
iteration yields the following reductions in radiation relative to the original
beam set: spinal cord, original overdose volume 3.7%, iteration 1 solution
overdose volume 2.7% (relative reduction of 27%); kidney, original overdose
volume 31.7%, iteration 1 overdose 21.7% (relative reduction of 32%); liver,
original overdose volume 21.3%, iteration 1 overdose 14.6% (relative reduction
of 31%). We also have more flexibility in selection of the solutions. Because
we can vary the penalties for the OARs depending on the DVH constraints,
we can obtain different solutions. We can also select different results within
all the NP iterations (DVH effects versus objective values).

9.3 Computational Results 187

9.3.2 Using Condor for Parallel Sample Evaluation

An important feature of the NP method is that it is naturally parallelized and
this opens up an intriguing possibility of integrating the NP method with a
high-performance distributed computation environment such as Condor. Fig-
ure 9.4 illustrates the role of Condor in a distributed implementation of the
NP method. In this example, we use the modeling program GAMS. An ad-
vantage of using GAMS is that it is designed for optimization and it uses
powerful commercial solvers, such as CPLEX. We can generate a good initial
solution via IP to start NP. Another advantage of using GAMS is that LP
can be utilized to determine an index. A disadvantage is the time spent on
generation of the samples. After partitioning and sampling, the samples are
submitted to Condor (Litzkow, Livny and Mutka, 1988). We take advantage
of the High Performance Computing Grids recently provided by GAMS. This
extends the GAMS language to support asynchronous submission and collec-
tion of model solution tasks to take advantage of grid environments. Condor
will treat the GAMS main program as master, then will use the script file au-
tomatically generated by the GAMS grid computation interface to distribute
the jobs to the “workers”, which are the available machines on the network.
Our program will check for the completion of evaluation of each job. Here each
job generates the promising index of the corresponding sample. When all the
jobs are completed, we obtained the updated promising index for each region.
The partitioning and sampling can be repeated in the same fashion. Compu-
tational results shown below demonstrate parallel evaluation of samples saves
time compared to sequential evaluation.

Results using the sequential evaluation method to evaluate all the samples
generated by the NP are shown in previous section. That is, we generate the
first sample in the first region and use LP to obtain a “score” for this sample.
Then we generate the next sample and obtain the “score”. After all samples in
the region are generated and evaluated, the promising index for this region is
the best “score” of the samples. Then we apply the same procedure to the rest
of the regions. When all the promising indices are obtained, we can define the
most promising region for the next iteration. In our test using the sequential
evaluation method, we generated 20 samples for the promising region and 5
samples for the complimentary region. So in each iteration of NP, a total of
25 samples were evaluated. Our program terminated after 5 iterations in 123
minutes.

The parallel evaluation was done using Condor as shown in Figure 9.4. The
summary of the results for each step is shown in Table 9.8. From this table
we can see that using parallel evaluation of samples, the computational time
is 60 minutes, including about 9 minutes spent on waiting for the acquisition
of resources. Compared to doing this sequentially, we save more than half of
the computational time.

We can further reduce the computational effort by sampling normal tissues.
Two more tests were done with different number of normal voxels, as shown

188 9 Beam Angle Selection

Fig. 9.4. Flowchart of parallel evaluation of NP samples.

in Table 9.9. They represent the full data set, approximately 10% of normal
voxels and 5% of normal voxles, respectively. For the two reduced data sets,
the normal voxels were sampled randomly. Test 1 terminated in 2 hours and
3 minutes without using Condor. If Condor is utilized to evaluate samples in
parallel, Test 1 terminated in 51 minutes. Table 9.9 also shows the run time
comparison of single NP iteration with Condor for three tests. We can see
that with reduced number of normal voxels we could save about 5 minutes for
each NP iteration.

9.3 Computational Results 189

Table 9.8. Using Condor for parallel evaluation of NP samples (5 NP iterations).

Iteration Task Accomplished Time (minutes)

Started program 0

Iteration 0 Obtained initial IP solution 4

Iteration 1 Submitted 1st sample 4
1st sample evaluated 6

Submitted 25th sample 10
25th sample evaluated 18

Iteration 2 Submitted 1st sample 18
Obtained available machine 24

1st sample evaluated 25
Submitted 25th sample 25
25th sample evaluated 28

Iteration 3 Submitted 1st sample 28
1st sample evaluated 29

Submitted 25th sample 36
25th sample evaluated 38

Iteration 4 Submitted 1st sample 38
1st sample evaluated 41

Obtained available machine 44
Submitted 25th sample 45
25th sample evaluated 50

Iteration 5 Submitted 1st sample 51
1st sample evaluated 52

Submitted 25th sample 58
25th sample evaluated 60

Table 9.9. Comparison of Condor run time for three voxel sets (single iteration).

Time Test 1 Test 1 Test 2 Test 2 Test 3 Test 3
(min:sec) (15∗) (25∗) (15∗) (25∗) (15∗) (25∗)

Voxels 747,667 (full) 70,000 (10%) 35,000 (5%)

Run total 7:22 11:23 5:00 6:28 4:22 6:15
Generation 5:12 7:37 2:38 3:13 1:57 3:07
Solving 2:10 3:46 2:22 3:15 2:25 3:08
Acquiring 7:23 1:20 1:00 3:40 5:23 1:35
∗ Number of samples.

9.3.3 Using Pinnacle To Evaluate NP Samples

As a benchmark for using the LP to evaluate samples, we also use a promising
index computed via the Pinnacle system. Two cases were used, one is a head
and neck case, the other is a pancreas case. The data are listed in Table 9.10
and 9.11.

190 9 Beam Angle Selection

Table 9.10. Data set: Head and neck
case.

Region Number of voxels

PTV 3034
GTV 849
Spinal Cord 202
Left Parotid 407
Right Parotid 614
Normal 329424

Total 334530

Table 9.11. Data set: Pancreas case
#2.

Region Number of voxels

PTV 10874
CTV 6934
Spinal Cord 424
Left Kidney 2886
Right Kidney 2906
Liver 30342
Normal 448297

Total 502663

This time the initial solution was obtained by using the IP model described
in Section 9.2.1, which is solely based on MOD information. The promising
region was defined by selecting an angle in the initial solution. Then the par-
tition was based on the frequency index. We ran five iterations for each case.
There are 42 samples better than the initial IP solution for the head and neck
case, and 7 samples better for the pancreas case. The sample evaluator or scor-

Table 9.12. Head and neck case solution (Pinnacle).

Initial Solution Score

angle set 10 40 110 140 210 300 330 0.404307

Frequency Based Partition

Iteration 1 Score
angle set 25 70 110 140 185 300 330 0.624833

Iteration 2 Score
angle set 5 55 110 140 205 300 330 0.897575

Iteration 3 Score
angle set 0 30 80 140 195 300 330 0.344441

Iteration 4 Score
angle set 15 50 140 180 210 300 330 0.280254

Iteration 5 Score
angle set 20 105 140 180 210 300 330 0.524283

Beam Weight Based Partition

Iteration 1 Score
angle set 35 70 110 180 230 300 330 0.881381

Iteration 2 Score
angle set 20 50 110 175 210 300 330 0.605615

Iteration 3 Score
angle set 10 80 110 175 210 300 330 0.852836

Iteration 4 Score
angle set 20 50 135 165 210 300 330 0.325324

Iteration 5 Score
angle set 20 80 115 175 220 310 340 0.688058

9.4 Conclusions 191

Table 9.13. Pancreas case solution summary (Pinnacle).

Initial Solution Score

angle set 30 60 90 260 290 320 350 0.672251

Iteration 1 Score

angle set 30 60 90 260 290 320 350 0.672251

Iteration 2 Score

angle set 30 90 125 155 220 315 350 0.624467

Iteration 3 Score

angle set 30 60 90 150 255 295 350 0.61254

Iteration 4 Score

angle set 30 90 120 155 185 230 350 0.442872

Iteration 5 Score

angle set 30 90 120 155 185 230 350 0.442872

Table 9.14. Comparison between using Pinnacle and LP to evaluate samples.

Data used Min. Score Ave. Score

Pinnacle Beamlet 0.280254 0.60246

LP Beamlet 0.806525 1.351387

IP MOD 0.404307 0.404307

ing scheme we used is the weighted sum of the violation of DVH constraints.
Each sample generated by NP framework was input to Pinnacle to generate a
full clinical plan. From the plan we obtained the percentage of voxels violating
the DVH constraints and multiplied this percentage by the same weight used
in the IP program described previously for each OAR. Adding the number
for all the OARs we obtained the final score. The best solution obtained by
NP is found to be much better than the one IP obtained, as can be seen from
Table 9.12 and 9.13. Finally, Table 9.14 compares the method of using LP and
Pinnacle to evaluate NP samples.

9.4 Conclusions

We have demonstrated that the NP method provides an effective framework
for obtaining high-quality solutions to the beam angle selection problem in
Intensity-Modulated Radiation Therapy. Relative to good quality beam angle
sets constructed via expert clinical judgement and other approaches, the beam
sets generated via NP showed significant reduction (up to 32%) in radiation
delivered to non-cancerous organs-at-risk near the tumors. Thus, in addition
to providing a method for automating beam angle selection, the NP framework
yields higher quality beam sets that significantly reduce radiation damage to
critical organs.

10

Local Pickup and Delivery Problem

In Chapter 4 we introduced some general techniques for using the solutions to
linear programming relaxations, as well as other mathematical programming
(MP) methods, to define both intelligent partitioning and methods for gener-
ating more high-quality sample solutions. This results in what we refer to as
hybrid NP/MP algorithms. In this chapter, we illustrate these techniques for
a specific application, namely the local pickup and delivery problem (LPDP).

10.1 Introduction

In recent years, the competition in the transportation and logistics sector has
become increasingly intensified. To respond to this challenge, commercial car-
riers have been investing heavily in new technologies and have been focusing
on developing cost-cutting strategies in order to improve their profitability.
For instance, the local pickup and delivery problem (LPDP), a variant of the
vehicle routing problem (VRP), has drawn a great deal of interest lately. In
this chapter, we aim to provide a new general solution approach for solving
this type of problem.

The LPDP is concerned with the optimal movement of a set of loads in a
local service area over a relatively short planning horizon. The basic operations
involved in LPDP can be described as follow: At the beginning of each work
day, a fixed number of vehicles are positioned throughout the service area.
A vehicle can serve only one load at a time. After the delivery of a load, it runs
for another load immediately or becomes idle. Served loads generate revenues
and unserved ones may be subcontracted to other carriers (for a nominal fee)
or simply lost (without generating any revenue). Empty movements of vehicles
incur costs. The optimization objective is to maximize the overall profit over a
fixed planning horizon, e.g., from the decision epoch to the end of the day. To
achieve this objective, a carrier must balance between serving as many loads as
possible and minimizing empty movements. Such a problem arises when small
local logistics companies with fleets consisting of dozens of vehicles try to meet

194 10 Local Pickup and Delivery Problem

demand within the vicinity of a city (e.g., local taxicab companies). Another
example is for some large truckload carriers with dedicated truck fleets to
certain geographical regions or hubs to handle local loads. While some previous
work has been concerned with VRP in dynamic and stochastic settings (Powell
2003, Gendreau, Laporte and Sequin 1996), in this chapter we deal with the
static and deterministic version of the problem. The planning horizon of the
LPDP is generally short, and in many applications, a deterministic model
(run either in a static or rolling horizon manner) can be satisfactory.

Modeling issues relevant to LPDP have been discussed by many re-
searchers. One set of constraints represents load-specific requirements. Time
window constraints (or sometimes, pickup time window constraints) are one
of the most important attributes of loads, and have been considered in vari-
ous formulations (Wang and Regan 2002, Dumas, Esrosiers and Soumis 1991,
Brasy and Gendreau 2005, Desrosiers et al. 1986). As often considered in
applications where loads are associated with intermodal routes, service time
window constraints enforce that each load either will be served within a given
time window or will not be served at all. Such constraints result in significant
computational difficulties when solving LPDP. Some other constraints on the
load side are also considered, such as job precedence constraints (Fagerholt
and Christiansen 2000) and nested precedence constraints (Xu et al. 2001).

Besides load constraints, there are also constraints imposed on the re-
source/vehicle, e.g., capacity and working hours of vehicles (Mourkousis,
Protonotarios and Varvarigou 2003), different vehicle speeds and unit operat-
ing costs, and minimum workload of each vehicle per day (Lim, Wang and Xu
2006). Also, for years truckload carriers have been facing increasingly serious
driver shortage problems, and the current turnover rate of drivers is very high
(it is not rare to see 100% annually). As a result, companies are forced to pay
more and more attention to keeping their drivers happy in order to combat
driver attrition. Our formulation is motivated by such a consideration. Specif-
ically, in this chapter we account for two main sets of constraints along with
hard time window constraints:

• Homing driver constraints: As discussed in Pan, Shi and Pi (2005), the
most important consideration in creating driver satisfaction in the plan-
ning process is to allow a driver to return home each day, should this be the
driver’s preference. Creating a personalized, pre-determined work schedule
for the driver will clearly make the driver’s life easier.

• Driver qualifications and preference constraints. For some special loads,
such as just-in-time loads, they can only be served by qualified drivers.
Also, drivers may have preference over types of loads, which should be
accommodated whenever possible.

For both types of constraints mentioned above, we model them as hard con-
straints. In practice, however, it might be desirable to relax them by way of
penalty terms added to the objective function. Overall, we end up with a
LPDP with time window constraints and nonhomogeneous resources. In this

10.2 LPDP Formulation 195

chapter, we present a mixed integer programming (MIP) formulation for this
problem.

In standard solution approaches for this type of problems, one tries to solve
the problem optimally using MIP solvers (Wolsey 1998), dynamic program-
ming (Thomas 1976), or some specialized algorithms (Arunapuram, Mathur
and Solow 2003, Lu and Dessouky 2004). These methods generally are not ca-
pable of handling large-scale problems in the real world. On the other hand,
fast and good approximate methods are more useful in solving such problems.
In Wang and Regan (2002), the authors provided the time window reduction
and partitioning method, which handles the difficulty associated with the
service time window constraints. In Powell and Carvelho (1998) and Powell,
Shapiro and Simao (2002), the approximate dynamic programming (ADP)
method is provided, based on establishing value functions in each stage to
reduce the problem size. These two methods are more efficient for problems
with homogenous resources. There are also some good computational results
on this type of problems through Column Generation (CG) method (Xu et al.
2001). Mostly, a large set of columns need to be generated, and the highly spe-
cialized and efficient algorithm for solving the pricing problem is the essential
part of the CG procedure. Many of the heuristics proposed for the problem,
such as dispatching rules, are fast, but the solution quality is often not good.
Some others methods, e.g., tabu search, genetic algorithm, etc, are efficient if
well designed, but highly problem-dependent.

10.2 LPDP Formulation

We now formulate the local pickup and deliver problem (LPDP) precisely.
Recall that in this problem there is a fixed set K of vehicles positioned in a
service area where a set L of loads needs to be served. Each vehicle can only
serve one load at a time and after each load it either goes directly to serve
another load or it becomes idle.

The decision variables determine both the assignment of vehicles to loads
and the sequence. Specifically,

xklj =
{

1, if vehicle k serves load l and then goes on to serve load j,
0, otherwise.

(10.1)
With these decision variables the objective function, that is, the total revenue
minus the total transportation cost, can be formulated as follows:

z = max
xklj

∑

l∈L

rl ·
∑

k∈K

∑

i∈L∪{k+|L|}
xkil

−
∑

l∈L∪{k+|L|}

∑

j∈L∪{k+|L|+|K|}
Clj ·

∑

k∈K

xkil,

196 10 Local Pickup and Delivery Problem

where rl is the net revenue of load l ∈ L and Clj is the cost of traveling from
the destination of load l ∈ L to the origin of load j ∈ L.

The first set of constraints are the standard multi-commodity network flow
constraints:

∑

j∈L∪{l+|K|}
x(l−|L|)lj = 1,∀l ∈ S,

∑

l∈L∪{j−|K|}
x(l−|L|−|K|)lj = 1,∀j ∈ H,

∑

i∈L∪{k+|L|}
xkij =

∑

l∈L∪{k+|L|+|K|}
xkjl,∀k ∈ K, j ∈ L.

These constrains simply assure the proper balance in the network, e.g., a truck
cannot leave a node that it does not enter. The next set of constraints assures
that each load is served at most once:

∑

k∈K,i∈L∪{k+|L|}
xkij ≤ 1,∀j ∈ L.

We note that a load does not have to be served but since the objective is
to maximize the revenue of loads minus the cost, the optimization program
attempts to serve all load as profitably as possible.

There may be also be some limitation on driver qualification and/or their
preferences. This excludes some assignments and these are represented in the
set Qkl for each vehicle/driver k ∈ K and load l ∈ L, that is, we have the
following constraint:

∑

j∈L∪{k+|L|+|K|}
xkij = 0,∀k ∈ K, l ∈ L : Qkl = 0.

The next set of constraints preserves the temporal relations between consec-
utive nodes:

tl + Tlj − tj ≤
(

1 −
∑

k∈K

xklj

)

· bl + Tlj − aj ,∀l ∈ L, j ∈ L,

tl + Tlj − tj ≤
(
1 − x(1−|L|)lj

)
· bl + Tlj − aj ,∀l ∈ S, j ∈ L,

tl + Tlj − tj ≤
(
1 − x(1−|L|−|K|)lj

)
· bl + Tlj − aj ,∀l ∈ L, j ∈ H.

Finally, there are time windows [al, bl] for the pickup times of each load l ∈ L,
that is,

tl ≥ al,∀l ∈ L ∪ S,

tl ≤ bl,∀l ∈ L ∪ H.

In the next section we discuss an efficient and effective implementation
of the NP method to solve this very complex MIP. In particular, we show

10.3 NP Method for LPDP 197

how mathematical programming techniques can be incorporated into the NP
framework at various stages to improve the efficiency of the resulting hybrid
NP algorithm.

10.3 NP Method for LPDP

We now show how an efficient hybrid NP algorithm can be developed for this
problem, by incorporating exact mathematical programming methods into
both the partitioning and the generation of feasible sample solution. We refer
to the resulting algorithm as a hybrid NP/MP algorithm.

10.3.1 Intelligent Partitioning

To develop an intelligent partitioning method, we note that the decision vari-
ables contain two separate decisions: the assignment of vehicles to loads and
the sequence of loads assigned to the same vehicle. To separate the two we
rewrite the decision variables as

xklj = ykl · ykj · slj , (10.2)

where

ykl =
{

1 if vehicle k is assigned to load l,
0 otherwise, (10.3)

slj =
{

1 if load l is directly followed by load j.
0 otherwise. (10.4)

We have now decoupled the two decisions, which is important because it turns
out that once assignments are made the remaining sequencing decision can be
solved fairly easily using mathematical programming methods. As was pointed
out in both Chapter 1 and Chapter 4, the ability to do this type of decoupling
is fairly common for many complex integer programming problems, and the
NP method can take advantages of this in an effective manner.

As we did in Chapter 4, we will take advantage of the flexibility of the NP
method by using random sampling to obtain solutions to the more difficult
assignment decisions (y = {ykl}), and then solve an IP to complete the solu-
tion, that is, obtain the values for the sequencing decisions (s = {slj}), given
the assignments. We note that in general sequencing problems are hard but
the structure and moderate size of the sequencing problem considered here
make them tractable.

The solution space to be partitioned thus becomes:

X =

{

y :
∑

k∈K

ykl = 1,∀l ∈ L; ykl ∈ {0, 1},∀k ∈ K, l ∈ L

}

. (10.5)

198 10 Local Pickup and Delivery Problem

We note that this is simply a binary integer program (BIP) with |K| × |L|
zero-one decision variables, and a constraint that assures that each load is
assigned to exactly one vehicle.

We now develop an intelligent partitioning procedure for the assignment
decisions. As we have done in previous applications (see e.g., Chapter 7 and
Chapter 9), we need to sequence the variables in order of importance, so the
most important variable can be used first in the partitioning. Since this is a
BIP, equation (4.18) from Chapter 4 could be applied to define a sequence
among these variables. However, (4.18) has a symmetry between variables
that are set to zero and variables that are set to one. For the LPDP almost
all of the variables are set to zero so it is the ones that are set to one that
are of the most importance. We therefore solve the LP relaxation and define
a new sequence based on the relaxed solution yLP = {yLP

kl }k∈K,l∈L such that

z
(
yLP
(k,l)[1]

)
≥ z

(
yLP
(k,l)[2]

)
≥ ... ≥ z

(
yLP
(k,l)[n]

)
, (10.6)

where n = |K| · |L| is the total number of variables. We can then proceed by
first partitioning based on yLP

(k,l)[1] being either zero or one, then yLP
(k,l)[2], and

so forth. Specifically, in the first iteration the most-promising region will be
defined as σ(0) = X, and this is then partitioned into two subregions:

σ1(0) =
{

y ∈ X : yLP
(k,l)[1] = 1

}
, (10.7)

σ2(0) =
{

y ∈ X : yLP
(k,l)[1] = 0

}
. (10.8)

This partitioning is then continued in the same manner.
Say, for example, that we have a problem with two vehicles (|K| = 2) and

seven loads (|L| = 7). We solve the LP relaxation, and obtain the following
solution:

yLP
kl =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.10, if k = 1, l = 1,
0.50 if k = 1, l = 2,
0.20 if k = 1, l = 3,
0.10 if k = 2, l = 5,
0.05 if k = 2, l = 6,
0 otherwise.

(10.9)

We now have a ranked list of assignments that can be used to define an
intelligent partitioning:

yLP
12 > yLP

13 > yLP
11 = yLP

25 > yLP
26 .

This means that since yLP
12 = 0.50 takes the highest value, the assignment

of Load 2 to Vehicle 1 can be considered the most critical, and the top level
partitioning is:

σ1(0) = {y ∈ X : y21 = 1} ,

σ2(0) = {y ∈ X : y21 = 0} .

10.3 NP Method for LPDP 199

Suppose that after generating feasible solutions from each region σ1(0) is found
most promising, then σ(1) = σ1(0), and there are two subregions:

σ1(1) = {y ∈ X : y21 = 1, y13 = 1} ,

σ2(1) = {y ∈ X : y21 = 1, y13 = 0} ,

and a surrounding region

σ3(1) = {y ∈ X : y21 = 0} .

This intelligent partitioning then continues in the same manner, going down
the ranked list of most important assignments.

10.3.2 Generating Feasible Solutions

We know that the ability to quickly generate high-quality feasible solutions
from each region is also critical to a successful implementation of the NP
method. To address this for the LPDP, we again divide the solution generation
into two parts: first we use sampling to address the more difficult decision
variables of the problem, and then we use mathematical programming to
complete the feasible solution.

Recall that for the LPDP there are two types of decisions: the loads must
be assigned to the trucks/drivers and the truck must then be sequenced given
the available loads (but does not necessarily need to serve all of the assigned
loads). To generate a complete feasible solution both of these decisions must be
made. Furthermore, to assure an optimal solution both of them must be made
simultaneously. However, within the NP method they can be separated to
improve the efficiency while still maintaining the global convergence property.

The following two step algorithm can therefore be used to generate high
quality feasible solutions:

Algorithm MP-Sampling

1. Use random sampling to assign loads to trucks, that is randomly assign
values y0

kl to the variables ykl as defined by equation (10.3) above.
2. Given the fixed values y0

kl, solve the reduced problem using standard in-
teger programming solver to determine values s0

lj for the remaining se-
quencing decisions slj .

To illustrate this two part process, we return to the example with two ve-
hicles (|K| = 2) and seven loads (|L| = 7). To generate a feasible solution (as-
sume no assignment has been fixed by the partitioning), we start by randomly
generating an assignment of loads to vehicles. Say, for example, that the ran-
domly generated assignment is y11 = y12 = y13 = y17 = y24 = y25 = y26 = 1,
and ykl = 0 otherwise. In other words, Load 1,2,3 and 7 are assigned to Vehicle
1 and Load 4,5 and 6 are assigned to Vehicle 2 (see Figure 10.1).

200 10 Local Pickup and Delivery Problem

Vehicles

K2

Loads

K1

L1

L4

L5

L6

L7

L3

L2

Fig. 10.1. Generating a partial solution using random sampling.

To complete this solution an IP is solved for the values of slj as defined
by equation (10.4). In this example, the optimal solution is s∗12 = s∗23 = s∗65 =
s∗54 = 1, and s∗lj = 0 otherwise. Thus, the optimal solution is for Vehicle
1 to pickup and deliver Load 1, Load 2, and Load 3 in that sequence, and
for Vehicle 2 to pickup and deliver Load 6, Load 5, and Load 4, and that
sequence (see Figure 10.2). Load 7 is dropped and no revenue is realized for
this load. Note that a complete feasible solution has now been generated, by
first sampling to find the values for the load assignments y, and then solving an
IP to obtain the values of s, given these load assignments. The original decision
variables x of (10.1) can now be recovered according to xklj = yklykjslj , that
is,

xklj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if k = 1, l = 1, j = 2
1, if k = 1, l = 2, j = 3
1, if k = 2, l = 6, j = 5
1, if k = 2, l = 5, j = 4
0, otherwise.

(10.10)

L1

Vehicles

K2

Loads

K1

L4

L5

L6
L7

L3

L2

HomeHome

Fig. 10.2. Completing the sample solution by solving an IP.

10.4 Numerical Results 201

In the first step of the solution generation algorithm, the sampling can be
uniform or biased to select more favorable assignments with higher probability.
In the second step, since in practical applications relatively few loads are
assigned to each truck, solving the sequencing subproblem to optimality can
be done quickly using standard software such as CPLEX.

To bias the sampling distribution in the first step we can again use a
linear programming relaxation (see Section 4.3.1). Let (yLP , sLP) denote the
optimal solution found by solving the LP relaxation of the LPDP. Define the
weight associated with assigning load l to truck k to be

wlk =
yLP

kl∑
h∈K yLP

hl

, (10.11)

and then generate load assignment according to this distribution, that is,

P [Load l is assigned to truck k] = wlk.

We can now put this together in an algorithm for generating high-quality fea-
sible solutions for the LPDP:

Algorithm Biased-MP-Sampling

1. Use random sampling to assign loads to trucks, that is randomly assign
values 0 or 1 to each of the variables ykl according to the following distri-
bution:

P [ykl = 1] = wlk =
yLP

kl∑
h∈K yLP

hl

, (10.12)

where as before the solution yLP is found by solving the LP relaxation of
the problem.

2. Given the fixed values for the assignment decisions y, solve the reduced
problem using a standard solver to determine values s0

lj for the remaining
sequencing decisions s.

In this algorithm, mathematical programming is therefore employed twice:
first LP relaxations are used to bias the sampling distribution for assignments,
and standard integer programming solver is then used to find the optimal
sequence given the assignments. This will assure that high-quality solutions
are found quickly.

10.4 Numerical Results

Since the LPDP can be formulated as a MIP, we consider using standard
solvers to solve it (Wolsey 1998). We have randomly generated test instances
and tested them using CPLEX 9.1, which is the state-of-the-art MILP solver,
combining standard branch-and-cut, branch-and-bound, and highly efficient

202 10 Local Pickup and Delivery Problem

meta-heuristics. We examine the performance of the formulations with a time
limit of 30 minutes, which is regarded as the typical requirements of the en-
vironment this kind of algorithm intended to support. For small and medium
size problems with 10–15 trucks, 30–50 loads, and the length of the pickup
time window to be Uniform(0,4) hours, CPLEX can provide a result with
a satisfactory optimality gap. For large scale problems, CPLEX is not very
efficient, typically with an optimality gap greater than 10%.

In this section, we report on our computational experience with the pro-
posed algorithms on randomly generated instances.

10.4.1 Test Instances

We randomly generated a set of instances to test the hybrid NP/MP algo-
rithm. The experiment settings are as follows:

• Map and Locations: We generate 60 locations in a rectangle map of
X × Y square miles. For each location pair, the length between the two
locations is the Euclidean distance on the map.

• Loads: Generate loads randomly on the origin-destination location pairs.
The handling time of each load is H. The earliest starting time for each
load is generated randomly on the time horizon from 7 am to 6 pm, and the
length of the pickup time window is set to be Uniform(0,4) hour. The net
revenue of serving a load is set to be V ·(loaded movement time+handling
time), where V is the rate of revenue per each service time unit.

• Vehicles: For each vehicle, the initial and homing locations are randomly
assigned among the locations. (These two locations are not necessarily the
same, since our model and algorithm also intent to support some running
horizon systems.) Each vehicle’s working time is randomly set to be from
Uniform(7,9) am to Uniform(4,6) pm individually. The speed of each ve-
hicle is 40 mph. The cost rate of empty movements of vehicles is 10 per
time unit.

• Qualification/Preference: For each vehicle-load pair (k, i), the proba-
bility that vehicle k is qualified and prefer to serve load i is set to R.

Overall, we generated 42 test instances, with 6 different groups of parameter
setting (as shown in Table 10.1) and 7 different groups of scale setting (as
shown in Table 10.2). All these setting are of common properties and scales
in real applications. For example, the typical size of local sub fleet handled by
a single load manager is around 20, which is the minimum size we use in our
test problems.

10.4.2 Algorithm Setting

We first solved all of the test instances using CPLEX 9.1 with default CPLEX
parameter settings. We implemented our hybrid algorithm in AMPL, and lim-
ited the computation time to be within 30 minutes. (For the computation time,

10.4 Numerical Results 203

Table 10.1. Parameter settings.

Index R H(h) (X, Y) (m2) V

a 0.8 0.1 (40,40) Uniform(30,35)
b 0.8 0.1 (40,40) Uniform(50,60)
c 0.6 0.05 (40,40) Uniform(30,35)
d 0.8 0.05 (40,40) Uniform(50,60)
e 0.8 0.05 (60,40) Uniform(50,60)
f 0.8 0.1 (60,40) Uniform(50,60)

Table 10.2. Scale setting.

Index Number of Trucks Number of Loads

1 20 60
2 20 65
3 25 70
4 25 75
5 25 80
6 30 80
7 30 90

we only calculate the time for the LP solution calculating and partial solution
evaluation.) The specifics of the hybrid NP/MP algorithm are described as
follow:

• The partitioning is the intelligent partitioning that uses the solution of the
LP relaxation to order the vehicle/load assignments.

• For each promising region, the LP relaxation is solved using the dual sim-
plex method.

• Depending on the size of the problem, a total number of 20-100 feasible
sample solutions are generated in each iteration.

• Biased random sampling is used to generate vehicle/load assignments for
each sample solution. CPLEX is then called to solve the problem associated
with that partial solution. Specifically, we apply the value of the current
best solution as the feasible bound, set the MIP tolerance gap to be 0.01,
and set the computation time limit to be 2 seconds. In our experience,
most partial solutions can be completed within one second.

• The algorithm is stopped if one of two criteria is satisfied: (1) The most
promising region becomes sufficiently small so that the standard solver can
find the optimal solution. (2) If the optimality gap between a known upper
bound and the best feasible solution (lower bound) becomes sufficiently
small. For many of the test instances, these stopping criteria resulted in
the computation time begin much shorter than the 30 minutes time limit.

As a further benchmark for the hybrid NP/MP algorithm, we also imple-
mented and tested a myopic approach that is one most popular method used
in applications. This myopic approach is briefly described as follow:

204 10 Local Pickup and Delivery Problem

• In each iteration, assign at most one load to each vehicle, and maximize
the profits (revenue - empty movement cost) for this stage. Then, let the
vehicle serve its assigned load, and update the location and available time
of the vehicle. Constraints that guarantee that each can get home on time
are added, and assigning a load to a vehicle is only allowed when the profit
of the assignment is bigger than a pre-determined parameter F . Repeat
the above process until no profits can be made.

• Then, ∀l ∈ L, k ∈ K, if load l is assigned to vehicle k, in the original MIP
problem, let load l only be available to vehicle k by fixing some variables:
∀k′ ∈ K.j ∈ L ∪ |L| + |K| + k′ : k′ �= k, fix xk′lj = 0. Then resolve the
MIP problem to obtain the final schedule.

• For each instance, run the myopic approach for two times with F set to
be 0 and 10 respectively, and the better result is selected.

10.4.3 Test Results

For 15 of the test instances, it is possible to solve them using CPLEX to an
optimality gap less than 10%, that is, if zCP is the upper bound from CPLEX,
and zCP is CPLEX lower bound, that is, the best solution found by CPLEX,
the the percentage optimality gap between those upper and lower bounds:

zCP
GAP =

zCP − zCP

zCP
,

satisfies zCP
GAP < 0.1. We refer to those as the easy instances.

Table 10.3. Results for easy instances.

Ins zCP zCP zCP
GAP zNP zNP

GAP

a3 1236 1236 0.0 1203 2.7
a4 1265 1296 2.5 1285 0.9
b3 2137 2162 1.2 2129 1.6
c1 887 899 1.4 876 2.6
c2 933 987 5.8 958 3.0
c3 1045 1112 6.5 1085 2.5
d2 1728 1757 1.7 1725 1.9
d3 1795 1969 9.7 1958 0.6
e1 1911 1916 0.3 1872 2.4
e3 2166 2352 8.6 2321 1.3
e4 2428 2454 1.1 2402 2.2
f1 2076 2081 0.2 2041 1.9
f2 2272 2274 0.1 2244 1.3
f4 2653 2657 0.2 2625 1.2
f6 2753 2787 1.2 2743 1.6

Average 2.68 1.85

10.4 Numerical Results 205

Table 10.4. Results for difficult instances.

Ins zCP zCP zCP
GAP zMY zMY

GAP zNP zNP
GAP Δz

a1 912 1009 10.6 822 22.7 992 1.7 8.8
a2 984 1102 12.0 886 24.4 1067 3.3 8.4
a5 1103 1372 24.4 1089 26.0 1345 2.0 21.9
a6 1154 1361 17.9 1125 21.0 1323 2.9 14.6
a7 1169 1588 35.8 1284 23.7 1549 2.5 20.6
b1 1605 1773 10.5 1529 12.1 1735 2.2 8.1
b2 1666 1935 16.1 1678 15.3 1890 2.4 12.6
b4 2004 2269 13.2 1952 16.2 2240 1.3 11.8
b5 1903 2398 26.0 2123 13.0 2338 2.6 10.2
b6 2082 2374 14.0 2093 13.4 2333 1.8 11.5
b7 2153 2769 28.6 2346 18.0 2725 1.6 16.2
c4 1017 1169 14.9 968 20.8 1128 3.6 10.9
c5 1029 1234 20.0 1011 22.1 1186 4.0 15.3
c6 1079 1224 13.4 1039 17.8 1187 3.1 10.0
c7 1132 1432 26.5 1130 26.7 1392 2.9 23.0
d1 1445 1609 11.3 1376 16.9 1568 2.6 8.5
d4 1792 2062 15.1 1774 16.2 2011 2.5 12.2
d5 1778 2178 22.5 1902 14.5 2132 2.2 12.1
d6 1802 2154 19.5 1890 14.0 2129 1.2 12.6
d7 1882 2520 33.9 2191 15.0 2475 1.8 13
e2 1871 2098 12.1 1918 9.4 2044 2.6 6.6
e5 2360 2607 10.4 2211 17.9 2557 2.0 8.3
e6 2055 2565 24.8 2226 15.2 2509 2.2 12.7
e7 2357 3025 28.3 2576 17.8 2954 2.4 14.7
f3 2270 2541 11.9 2175 16.8 2508 1.3 10.5
f5 2387 2823 18.7 2418 17.3 2743 2.9 13.4
f7 2519 3270 29.8 2786 17.4 3220 1.6 15.6

Average 19.46 17.84 2.34 12.75

We also tested our hybrid approach on these easy instances. The detailed
computational results for these 15 instances are shown in Table 10.3. In this
table, Ins is the instance index, and, similar to the definitions above, zNP is
the performance of the best solution found by the hybrid NP/MP algorithm,
which is thus a lower bound on the optimal performance, and

zNP
GAP =

zCP − zNP

zCP

is the percentage optimality gap. The performance of the hybrid NP/MP
algorithm on these easy instances is also good, with an average optimality
gap of 1.85%. Although the average gap is smaller for the hybrid NP/MP, for
some of these instances, CPLEX finds better solutions.

For all other 27 instances, the optimality gap of CPLEX results is greater
than 10%, which we consider as difficult instances. We tested our hybrid algo-
rithm and the myopic approach on these instances. The computational results

206 10 Local Pickup and Delivery Problem

are shown in Table 10.4. In this table, zMY is the bound from the best solu-
tion of the myopic approach, zMY

GAP is the corresponding optimality, and Δz
is the improvement between the hybrid NP/MP result and the better of the
CPLEX and myopic algorithm results, that is,

Δz = zNP − max{zCP , zMY }.

For all these difficult instances, the hybrid NP/MP algorithm outperforms
CPLEX and the myopic approach by a significant margin. The solution quality
of the hybrid algorithm is very promising, with an average optimality gap
of 2.34%, ranging from 1.2–4.0%, compared to an average optimality gap for
CPLEX and the myopic algorithm of 19.36% and 17.84%, respectively. Finally,
we note that the improvement of our approach is Δz=12.75%.

10.5 Conclusions

In this chapter we provide an MIP formulation of the LPDP, which is a difficult
problem that arises in logistics operations. We developed an hybrid NP/MP
algorithm to solve this problem. This algorithm incorporates mathematical
programming into the NP framework in two different ways. First, it uses the
solution of an LP relaxation to define an intelligent partitioning method, and
second it uses both LP relaxation solutions and the solution to a restricted
IP to quickly generate high-quality feasible solutions from each region.

The computational results show that the hybrid NP/MP outperforms ap-
plying a state-of-the-art MIP solver directly the problem (CPLEX 9.1). It also
performs betters than a myopic heuristic that is frequently used in practice.
The results also shows that the advantages of the NP method are greater for
difficult problem instances. This is consistent with other results that show that
the NP method is most useful for large-scale, complex discrete optimization
problems.

11

Extended Job Shop Scheduling

This chapter presents another example of how the NP method can effectively
handle realistic problems with very complex constraints. Namely, an extended
job shop scheduling problem, where bill-of-material and work-shift constraints
are also accounted for in the formulation. To solve this problem, we present
an NP algorithm that utilizes intelligent partitioning to impose structure on
the search space, and uses an innovative sampling strategy to generate high-
quality solutions subject to complex constraints.

11.1 Introduction

In a typical shop floor manufacturing environment, one of a scheduler’s daily
tasks is to assign the released jobs of the day to certain machines with par-
ticular performance measures, such as shortest makespan, smallest number of
late jobs, lowest cost, or highest throughput. Enterprise Resource Planning
(ERP) systems provide a way to easily access all of the necessary information
for this task. However, how to efficiently utilize the production resources in
a complicated environment still remains a problem for planners and sched-
ulers in factories. Most of the time, the basic form of this assignment process
can be modeled as a job shop scheduling problem. The classical job shop
scheduling problem has been studied since the 1960’s, and is known to be an
NP-hard problem. Due to its practical importance, much research has been
devoted to the development of efficient solution approaches to tackle this diffi-
cult problem. For example, in early work Balas (1969) formulates the job shop
scheduling problem in an MIP model without any computational result. Exact
methods for solving this MIP are usually based on a branch-and-bound tech-
nique. For example, Carlier and Pinson (1989) developed a branch-and-bound
method, and for the first time solved the famous 10x10 job shop problem pro-
posed by Fisher and Thompson (1963). Brucker, Jurisch and Sievers (1994)
also present a fast branch-and-bound algorithm. Since obtaining exact solu-
tions is often impractical for real problems, many heuristic methods have been

208 11 Extended Job Shop Scheduling

proposed to find good solutions instead. One of the most successful approaches
is the shifting bottleneck procedure of Adams, Balas, and Zawack (1988). This
approach improves the schedule by iteratively solving a single bottleneck ma-
chine problem. Computational results showed that it is effective for many
problems. However, implementing or extending the shifting bottleneck proce-
dure is not trivial, which is sometimes a drawback to this approach. Another
most applicable and popular approach are various dispatching rules (DR).
Blackstone, Philips and Hogg (1982) summarized the main DR available at
the time and provided some numerical comparison. Metaheuristics have also
been applied extensively to the job shop scheduling problem, and work in this
area includes tabu search (Dell’Amico and Trubian 1993, Shi and Pan 2005,
Nowicki and Smutnicki 1996) and simulated annealing (Van Laarhoven, Aarts
and Lenstra 1992).

As is true for many well-studied problems, a review of the job-shop schedul-
ing literature reveals that the problem often was handled by relaxing many
constraints found in the real manufacturing process. The production process in
a real shop floor can be much more complicated than the constraints accounted
for in the classic job shop formulation, and in particular, we have observed that
in addition to the job precedence and machine capacity constraints, there are
often constraints on work shifts, bill-of-material, labor availability, multiple
machines, and so forth. In this chapter, we address the large-scale extended
job shop scheduling problem that adds two of those constraints, namely work
shifts and bill-of-material constraints.

11.2 Extended Job Shop Formulation

We first consider a job shop scheduling problem with a job set J and a
machine set M. There are n jobs in J . For each job j ∈ J , the production
process of the job follows a predefined operations routine Oj = {1, 2, ..., lj}
(We assume each job j starts from operation 1 and ends at operation lj). Let
O = {(j, i)|j ∈ J, i ∈ Oj}. Each operation Oji requires a specified processing
time, pji, to run on a particular machine k. This is denoted as Ok

ji. Let Aj =
{(Oji1 ,Oji2)|j ∈ J , i1 < i2} and Ek = {Ok

ji|k ∈ M}. Aj represents the
precedence relationship between operations in job j and Ek represents the set
of operations running on machine k. A schedule of the job shop scheduling
problem consists of the operation sequence on each machine and the start and
stop time of each operation Ok

ji, which are denoted as Sji and Cji, receptively.
A feasible non-preemptive schedule must satisfy the following conditions:

Cji = Sji + pji,∀(j, i) ∈ O (11.1)
Cji1 ≤ Sji2 ,∀(Oji1 ,Oji2) ∈ Aj , j ∈ J (11.2)
Cj1i1 ≤ Sj2i2 or Cj2i2 ≤ Sj1i1 ,∀Oj1i1 ,Oj2i2 ∈ Ek, k ∈ M (11.3)
Sji ≥ 0,∀(j, i) ∈ O (11.4)

11.2 Extended Job Shop Formulation 209

In most previous research, the objective of the job shop scheduling problem
was to find a non-preemptive schedule with minimal makespan. In our more
realistic problem, each job j has a specified due date dj . Our goal is to obtain
a non-preemptive schedule with minimal number of late jobs so as to avoid
lateness penalties. Let Sj and Cj be the start and stop time of job j (i.e.
Sj = Sj1, Cj = Cjlj), respectively. The binary decision variable for job j is
defined as

Uj =
{

1 if Cj > dj

0 Otherwise

Thus, our objective can be expressed as min
∑

Uj .
Some research work in this area was based on the assumption that each

job visits a machine no more than once in the scheduling problems. However,
we observed that in many production routines, it is not rare that two or more
operations of a job are performed on the same machine. These operations
can be either adjacent or not. These kinds of jobs are called reentrant jobs.
Clearly, the reentrant jobs have determined operation orders on the associated
machine.

11.2.1 Bill-of-Materials Constraints

Sometimes, we may need an operation to assemble different components to
build a product. That means some other subjobs for the components have to
be performed before the main job. This is called Bill of Materials (BOM).
For example, in order to make a computer, we need to produce many other
parts first, such as the motherboard, hard drive, memory, CPU, etc. Then we
can assemble these parts to be a complete computer. Figure 11.2.1 shows
the relationship between the main job and its subjobs. Job j1 and j2 are the
subjobs of job j. l1 and l2 are the last operation of j1 and j2, respectively.

The scheduling problem with a BOM was first studied by Balas (1969),
who proposed a conceptual MIP model. This model and the algorithm pre-
sented in the paper were not tested for large-scale problems due to the lack
of adequate computational resources. Czeerwinski and Luh (1994) formulated
the BOM constraint by introducing each operation a set which contains all the
immediately following operations. Then they used a Lagrangian Relaxation
technique to generate a lower bound for the scheduling problem. In our model,
we used similar formulation as Czerwinski and Luh (1994). We extended the

jlj

j

jlj

Fig. 11.1. Bill of material.

210 11 Extended Job Shop Scheduling

base of set A from job to operation, because the job precedence constraint is
now not a job’s only restriction. Specifically, let Aji be the set of all immediate
successors of operation Oji. Accordingly, the constraint (11.2) is changed to:

Cj1i1 ≤ Sj2i2 ,∀Oj2i2 ∈ Aj1i1 . (11.5)

In practice, there exists one or two levels of subjobs in most manufac-
turing environments. Hence, the bill of materials constraint changes the data
structure of operations in a particular job from chain to intree. This change
complicates the original problem, and consequently, some methods are not
applicable with this new setting.

11.2.2 Work Shifts Constraints

In the classical job shop scheduling problem, it is always assumed that all
of the machines are ready at any time. However, in the real problem, the
machine can only work during some specified shifts of a day (usually 8 hours
per shift). In addition, a shop floor may be closed during the weekend and
the machines in this shop floor therefore stop running during the weekend.
For different machines, these working shifts may be different. An operation
does not have to be completed during a full working shift, but whenever a
machine resumes at the starting time of a shift, it will continue to perform
the unfinished operation left on it by the last working shift. This is because
of the non-preemptive property of the schedule. An example of working shifts
is shown in Figure 11.2.2.

To express the work shifts constraints, we introduce the following param-
eters and variables.

Tmkt = the kth working shift for machine m. t is binary. Tmk0 and Tmk1

are the start time and the stop time of the shift k, respectively.
Lm = the number of working shifts for machine m.
Xjil = the binary variable that specifies the start shift for operation Oji.
Yjil = the binary variable that specifies the stop shift for operation Oji.
Zjil = the binary variable that specifies the working shifts for operation
Oji.

Then the formulation can be written as follows:
Lm∑

l=1

XjilTml0 ≤ Sji ≤
Lm∑

l=1

XjilTml1,∀(j, i) ∈ O,Oji ∈ Em (11.6)

Fig. 11.2. Work shifts.

CS

X = 1
Y = 0
Z = 0

X = 0
Y = 0
Z = 1

X = 0
Y = 0
Z = 1

X = 0
Y = 1
Z = 1

a1 a2 a3 a4

p = a1 + a2 + a3 + a4

11.2 Extended Job Shop Formulation 211

Lm∑

l=1

YjilTml0 ≤ Cji ≤
Lm∑

l=1

YjilTml1,∀(j, i) ∈ O,Oji ∈ Em (11.7)

Lm∑

l=1

Xjil = 1,∀(j, i) ∈ O,Oji ∈ Em (11.8)

Lm∑

l=1

Yjil = 1,∀(j, i) ∈ O,Oji ∈ Em (11.9)

Lm∑

l=1

XjilTml0 ≤
Lm∑

l=1

YjilTml0,∀(j, i) ∈ O,Oji ∈ Em (11.10)

Zji(l+1) − Zjil ≤ Xjil,∀(j, i) ∈ O, l ∈ [1, Lm − 1],Oji ∈ Em (11.11)
Zjil − Zji(l+1) ≤ Yjil,∀(j, i) ∈ O, l ∈ [1, Lm − 1],Oji ∈ Em (11.12)

Lm∑

l=1

XjilTml1 − Sji+

Lm∑

l=2

Zjil(Tml1 − Tml0) ≥ pji,∀(j, i) ∈ O,Oji ∈ Em (11.13)

Sji + pji +
Lm∑

l=2

Zjil(Tml1 − Tm(l−1)0) = Cji,∀(j, i) ∈ O,Oji ∈ Em (11.14)

Constraint (11.6) and (11.7) specify the start shift and the stop shift of
an operation. Constraint (11.8) and (11.9) ensure that an operation can start
and stop only once. Constraint (11.10) guarantees the stop shift is located
no earlier than the start shift. Constraint (11.11) and (11.12) force the val-
ues of Z between the start and stop shifts to be consecutively “1” or “0”.
Constraint (11.13) allocates enough working shifts for an operation. Con-
straint (11.14) is a replacement of Constraint (11.1). Assume Xjil1 = 1 and
Yjil2 = 1. From the constraints above, we know that l1 ≤ l2 and for any
l ∈ (l1, l2], l1 < l2, Zjil = 1. If l1 = l2 (i.e. the operation can be completed in
one full shift), Zjil1 will be forced to 0.

11.2.3 Dispatching Rules (DR)

Considering the job’s priority, one might instinctively schedule the job with
highest priority first and let it occupy all the required resources, and then
schedule the other jobs in the descending order of priority. The priority can
be determined by various rules, such as Earliest Due Date (EDD), Shortest
Processing Time (SPT), Minimum Slack (MINSLACK), calculated accord-
ing to σj = dj − Cj , First Come First Serve (FCFS), Most Work Remaining
(MWR). Since our objective is to minimize the number of late jobs, which is

212 11 Extended Job Shop Scheduling

due date related, we use the rules of EDD and MINSLACK to sort jobs. In
MINSLACK, we estimate the completion time of each job independently. This
estimation is computed by accumulating the processing times of the involved
operations with the assumption that the associated machines have infinite
capacities. Although the operation processing time is dependent on the start
time due to the existence of non-working shifts, the completion time is still
easily to be estimated since we assume all jobs can start at time 0. Thus, the
job that is completed closest to its due date will have the highest priority.
Apparently, the solutions generated by DR are always feasible. The DR for
our problem can be stated as follows:

Algorithm Dispatching Rules

1. Sort jobs according to either EDD or MINSLACK. Label the job from 1
to n accordingly. Let j = 1.

2. If j > n, STOP. Otherwise, let i = 1.
3. If i > lj , then j ← j + 1, go to Step 2. Otherwise, on machine m, where

Oji ∈ Em, allocate the earliest free working shifts, which have at least pji

in length, to operation Oji.
4. Let i ← i + 1. Go to Step 3.

Dispatching rules are very quick construction heuristics, but when applied
on their own the solution quality is usually less than more elaborate and
intelligent heuristics. However, dispatching rules can ge integrated into other
techniques to improve the performance of those approaches. For example,
Carlier and Pinson (1989) used MWR in their proposed branch-and-bound
method for the branching scheme.

11.3 NP Method for Extended Job Shop Scheduling

11.3.1 Partitioning

As we know, partitioning is the first step in the NP method. It divides the
solution space into smaller subregions by fixing some of the decision variables.
In the job shop scheduling problem, fixing different operations at a particular
position on a machine generates distinct subregions. A sequence of all the
positions defines a partitioning scheme. Basically, for a fixed machine order,
there are two types of partitioning schemes for the job shop scheduling prob-
lem. One that can be termed horizontal and the other that can be termed
vertical. Horizontal scheme is based on machine preference. It fixes an opera-
tion to each position one by one on machine k first, then considers machine
k + 1. On the other hand, a vertical scheme is based on position preference.
It fixes an operation on position i of all the machines first, then switches to
position i + 1. In practice, neither one performs better than the other for any
instance. But we will later see that the horizontal scheme is more suitable for

11.3 NP Method for Extended Job Shop Scheduling 213

generating feasible sample solution within the NP method. Thus, we use this
scheme in the partitioning step.

We already know that both partitioning schemes are designed on an or-
dered machine group. But how do we order the machines? Typically, the
workload of a given machine plays an important role in scheduling problem.
We will have more choices at the very beginning if we partition the most
loaded machine first. Therefore, in order to obtain an intelligent partitioning
strategy, we first sort all the machines in descending order of the number of
distinct jobs (We do not sort machines in the order of the number of opera-
tions because of the reentrant jobs). For the distinct operations of the same
job on the same machine, we will have to fix the earliest operation that needs
to run in the job.

11.3.2 Generating Feasible Sample Solutions

For the extended job shop scheduling problem, random sampling is the key
to generating feasible sample solutions. In this problem the constraints are
very complex, and it is important to keep doing random sampling of feasible
points. Sampling of infeasible points in every region will not only obtain useless
solutions, but also waste computation resources and eventually reduce the
algorithm efficiency. For our problem, the difficulty of sampling feasible points
lies in the fact that with prefixed operations on some machines, the orders of
some operations on other machines should have been determined. Keeping
track of these orders while doing the sampling is apparently not an efficient
solution. An algorithm for obtaining a feasible solution without operations
prefixed can be found in Pinedo (1995). It develops a solution tree by selecting
an operation from a scheduleable operation set Ω each time. However, this
algorithm fails to deal with the situation under partitioning, because it does
not track those forbidden operation orders caused by prefixed operations. For
example, given machines M1 and M2 and operations O1

11, O1
22,O2

21,O2
12, if

we prefix operation O1
22, and Ω = {O1

11,O2
21}, then the selecting and fixing

operation O1
11 updates Ω = {O2

12,O2
21}. If now operation O2

12 is selected to
fix, then the solution is infeasible. This shortcoming of the algorithm can
be fixed by forbidding the addition of some scheduleable operations to Ω.
This is the basic idea of our sampling approach. For the sake of presentation,
we introduce the following concepts before the detailed explanation of the
approach.

Definition 11.1. A search tree of a machine is an ordered tree with the as-
sociated operations as nodes. The root operation is empty. Every child node is
an operation that can be run after the operation in the associated parent node
is completed.

Definition 11.2. An operation is free if it has no predecessor or all of its
predecessors have already been scheduled.

214 11 Extended Job Shop Scheduling

…

Fig. 11.3. Search tree and blocked machine.

Definition 11.3. A machine is blocked if there is a fixed operation that is
not free. On a blocked machine j, the first none free fixed operation is called
a frozen operation, and its position (starting from 0) is called a frozen point,
denoted as Fj

A search tree enumerates all possible operation sequences on a machine.
A path from the root to a leaf represents a feasible job sequence on the ma-
chine. Because of the job precedence constraint, some operation orders will
possibly become infeasible if an operation on another machine is fixed. Ac-
cordingly, some branches of a machine’s search tree will possibly be fathomed.
Thus, with different operations fixed on machines, the search tree on each ma-
chine might be different.

The prefixed operations are also required to be included in the sampling
process. In other words, the free prefixed operations will be added into Ω.
If a free prefixed operation is selected from Ω, it will be scheduled at the
prefixed position. The free operations on a blocked machine are forbidden to
be added to Ω, unless they are prefixed and their positions are less than F .
When all of the predecessors of a frozen operation have been scheduled, the
frozen operation becomes free and the frozen point is moved to the next frozen
operation. Meanwhile, all the free operations between the old frozen point and
the new one will be added to Ω. The following example shows this process.

Suppose we have two machines M1 and M2. On M1, there are three op-
erations O11, O21,O32. Machine M2 is a blocked machine with operations
O12, O31 and O22 fixed. Figure 11.3.2 shows the search trees of M1 and
M2. Originally, Ω = {O11,O21}. O31 is a free operation, but it is not in-
cluded in Ω because its position is grater than F2 = 0. If O21 is selected
for schedule, it will not release O22 because M2 is blocked with F2 = 0. If
O11 is selected for scheduling, it releases not only operations O12, but also
O31 on M2. Thus, Ω = {O12,O31,O21}. The selection also moves the M2’s
frozen point to position 2 (i.e. F2 = 2), where the new frozen operation
is O22. By repeating these steps, eventually we will have generated a feasi-
ble random solution. The complete approach is presented in the algorithm
below.

11.3 NP Method for Extended Job Shop Scheduling 215

Algorithm Random-Sampling with Operations Prefixed (RSOP)

0. Let Pki be the position of the prefixed operation i on machine k. For each
machine k, if all of the prefixed operations are free , Fk ← −1. Let Ω ← ∅;

1. For each machine k, if Fk = −1, include all of the free operations on k to
Ω. Otherwise, include every free prefixed operation i where Pki < Fk to
Ω;

2. Randomly select one operation i ∈ Ω. If i is prefixed, schedule it on the
associated position; otherwise, schedule it to the earliest available position
on its machine;

3. Let operation j be the immediate successor of i and j is on machine m.
If j is free, then do the following:
a) if Fm = −1, add j into Ω. Otherwise
b) if Pmj = Fm and Gm is the position of the next prefixed operation

that is not free, then add all free fixed operations from Fm to Gm − 1
into Ω, Fm ← Gm; if Gm does not exist, Fm ← −1, add all left free
operations on m into Ω;

4. Let Ω ← Ω \ i;
5. If Ω = ∅, STOP. Otherwise, goto Step 2.

Proposition 11.4. If the prefixed operations define a nonempty solution
space, any solution generated by RSOP is feasible.

Proof: First, we prove that the RSOP procedure can always generate
a solution (i.e. operation sequence for each machine). Suppose when RSOP
finishes (i.e. Ω = ∅), there is an unscheduled operation Oij remained on ma-
chine k. That implies at least one of its predecessors must be unscheduled on
a blocked machine k1 and the frozen operation Ok1 has never been released.
Hence, one of Ok1 ’s predecessors must be unscheduled on another blocked ma-
chine k2 with the frozen operation Ok2 unreleased. Repeat this backtracking
along the job precedence path; at least one operation Oki will be visited twice
since the operations set is finite. Then we find a cycle with the job precedence
and the precedence forced by the prefixed operations only. Consequently, the
associated subregion has an empty solution space, which is a contradiction of
our assumption. Second, we prove that every solution generated by RSOP is
feasible. Suppose there is a solution that is generated with operations cycle
O1 → O2 → O3 → ... → O1. Without loss of generality, let operation O1

be the last scheduled operation. The arc O1 → O2 does not represent the
order performed on the same machine because O2 is scheduled earlier than
O1. Hence O1 must be a job predecessor of O2. This means O2 is scheduled
without its predecessors scheduled first, which violates RSOP procedure.

Corollary 11.5. If RSOP procedure stops with operations unscheduled, the
subregion defined by the prefixed operations contains no feasible solution.

216 11 Extended Job Shop Scheduling

Proposition 11.6. Every feasible solution in the subregion defined by pre-
fixed operations has a positive possibility of being generated by RSOP.

Proof: Suppose there is a feasible solution S that cannot be generated by
RSOP. Since the subregion is not empty, by Prop. 11.4, RSOP can generate
a feasible solution. We follow the RSOP procedure to schedule operations on
the exact positions suggested by S. This procedure will stop at some stage,
in which Ω �= ∅, but there is no operation that can be chosen to fit at the
exact position as in S. On S, let Ψ = {Ok : the operation that is immediately
after the last scheduled operation on machine k by RSOP}. By assumption,
Ω

⋂
Ψ = ∅. This implies for any operation Ok ∈ Ψ , there is an operation

Ok′ ∈ Ψ with k �= k′, from which we can start a path to Ok. Because the
number of machines is finite, Ψ is finite too. Consequently, there is a cycle
that contains two or more operations in Ψ . Hence, S is not feasible. This is a
contradiction.

Proposition 11.7. The computational complexity of RSOP is O(|O|) , where
|O| is the number of total operations.

The sampling under uniform distribution is a common method when there
is no other information known. However, as for most applications considered
in this book, for this problem it is unlikely that every feasible solution is
equally possible of being optimal, and is thus likely that a biased random
sampling procedure will outperform uniform sampling (see Section 2.3.1). For
example, if we sort the operations in the scheduleable operation set Ω in the
ascending order of the jobs’ due date, then intuitively, the solution which
chooses the first operation from Ω each time will have a higher probability of
being optimal than that which chooses the last operation each time.

The priority of an operation is determined according to the associated
job’s slack σj = dj − Cj . The operation with little slack (that is, a tight due
date) should potentially be processed earlier. dj is a constant parameter in
our problem and Cj can be estimated by adding the remaining operations’
processing time. We already know that the selection of an operation from Ω
may change the search trees of other machines. Thus, the estimated Cj might
be changed dynamically. To simplify the procedure, we estimate each Cj at
the very beginning (i.e. Cj =

∑
i pji +

∑
Lidle, where Lidle is the length of

idle shift between each two adjacent working shifts) and use σj to guide our
weighted sampling. We magnify the σj with an exponential function so that
the operation with minimum slack will be chosen earlier. We also maintain
the operations in Ω in the ascending order of σj in order to choose the closest
due date operation quickly. Define

Fji = eα/σj − 1 ,∀Oji ∈ O

Theoretically, α can be any positive number. However, if α is too big, Fji will
easily overflow on the computer representation. Hence, we let α ∈ (0, 1] and
set a maximum number for α/σ. Then define

11.3 NP Method for Extended Job Shop Scheduling 217

Pji =
Fji∑

Okl∈Ω Fkl
,∀Oji ∈ O (11.15)

To choose a job from Ω, we still need to generate a real number p ∈ [0, 1].
A random number a can be generated in a uniform distribution [0, 1]. To more
flexibly adjust the possibility of an operation being selected from Ω, let

q = 1 − aβ (11.16)

where β ∈ [0, 1]. From the ordered set Ω, search the smallest k, such that
the first k operations’ total P is greater than or equal to q. Then the kth
operation is the one to be chosen.

Thus, the algorithm RSOP can be easily changed to WSOP and propo-
sition 11.4 and 11.6 still hold. However, the computational complexity is
changed due to the ordered set Ω. The additional steps in WSOP are set
Ω order maintenance (in O(log n)) and operation position locating in Ω (in
O(n)). Therefore, we have the following proposition.

Proposition 11.8. The computational complexity of WSOP is O(|O|nlogn).

11.3.3 Estimating the Promising Index and Backtracking

We already know that the job shop scheduling problem can have different
objectives. Given an operation sequence on each machine, we need to assign
machine time to each individual operation in order to achieve the predefined
goal. This process is called time tabling. The strategies of time tabling are
different for different objectives. For example, the job shop scheduling prob-
lem with the objective of minimizing makespan prefers to apply left justify
schedule, because it advantageous to start each operation as early as possible.
But for the problem with the objective of minimizing total inventory, the right
justify strategy applies. For our objective of minimizing the number of late
jobs, it is apparently better to adopt the left justify schedule.

As usual, we define the promising index function as the best solution found
in the region. The tie is broken arbitrarily if two or more regions are equally
promising. If the most promising index region happens to be the surrounding
region, we simply backtrack to the root region and start from the beginning.
The stop criteria is that either a bottom region is reached or no better solution
is found within predefined time.

Remark 11.3.1 Since we are considering the problem with working shifts,
the duration of each operation does not have to be the fixed processing time.
We need to insert machine idle time if necessary.

Suppose there are w machines in M. Let Φm and Γm be the sets of all op-
erations and jobs running on machine m, respectively. Let Nm be the number
of jobs in Γm and Πm be the fixed operation sequence on machine m. Denote

218 11 Extended Job Shop Scheduling

the current most promising region as X. The NP algorithm for the extended
job shop scheduling problem can then be described as below.

Algorithm NP Method

0. Let Πm = ∅ for all m ∈ M. Sort the machines in descending order of Nm.
Label the sorted machine from 1 to w.

1. Let i = 1, X = root region.
2. If i > w, STOP.
3. Partition X into Ni subregions X ′

1,X
′
2, ...,X

′
Ni

by fixing the first operation
of each job j ∈ Γi on machine i.

4. Apply RSOP or WSOP on each subregion and the surrounding region.
5. Evaluate each sample and determine the most promising region X

′′
. If X

′′

is one of the subregions, then X = X
′′

and goto Step 6. Otherwise, goto
Step 7.

6. Suppose X is defined by fixing operation Ojl, then add Ojl in Πi and
Φi = Φi \ Ojl. If there is no Ojl′ ∈ Φi, then Γi = Γi \ j and Ni = Ni − 1.
If Ni = 0, then i = i + 1. Goto Step 2.

7. Let Πi = ∅ and reset Φi and Γi for all i ∈ M. Goto Step 1.

11.3.4 DR-Guided Nested Partitions (NP-DR)

As we will show in Section 11.4, the NP approach is effective for the extended
job shop scheduling problem. However, it may be possible to improve it’s
efficiency further, especially for large-scale problems. One idea to improve the
NP efficiency is to reduce the number of sampling points generated in each
subregion. But this number cannot be too small, otherwise, the sampled points
cannot represent the whole subregion’s quality. The improvement of this way
is very limited.

Suppose we already know a good solution before executing the NP method.
If we are able to completely or partially use this good solution in the NP
method, we may obtain better solutions with shorter computation time. Re-
call that the basic NP method presented in this chapter starts from scratch
at the root node, with no operation prefixed, and iteratively searches the sub-
region until the bottom node is reached. If a good solution is already known
before applying NP, then this solution can be used as a guide to prefix some
operations in NP (see Section 2.4). In other words, instead of starting from
the root node for a new problem, NP can start from a promising subregion,
which has a high probability of containing the optimal solution. The guiding
solution can be obtained in various ways. For the sake of efficiency, this solu-
tion should be achieved quickly. As we describe in Section 11.2.3, dispatching
rules are straightforward, and take very little time to obtain a solution. Al-
though the solution obtained by DR is not comparable to that obtained by
NP due to the simplicity of the approach most of the times, it is good enough
to serve as a guide for our NP approach.

11.4 Computational Results 219

There are many ways to guide NP from a solution. For example, one can fix
all the operations that are not late in the solution schedule, and then apply NP
to fix those late operations. In our application, we first fix operation sequence
on one or more machines according to the guiding solution produced by DR.
Then, NP is applied to decide the operation sequences on the other machines.
The complete description of NP-DR is as below.

Algorithm NP/DR Hybrid

0. Obtain a solution S by executing Dispatching Rules;
1. Sort machines in the order of number of operations loaded. Choose the

first kth machines (k ≤ w), fix the operations on these machines in the
order suggested by S;

2. Starting from the subregion defined from Step 1, apply the algorithm NP1.

In Algorithm NP/DR Hybrid, if we let k = 0, then this is a pure NP
method, while if k = w, the algorithm turns out to be the DR. We can thus
view NP/DR as aa hybrid approach of NP and DR, where DR emphasis
algorithm speed and NP aims at good solution quality. Therefore, it is up to
the user to trade off between approach speed and solution quality by setting
k to an appropriate value.

11.4 Computational Results

Our experimental data is from a real industry case. The scheduling length
varies from the short term (3 days) to the long term (60 days). Based on
the number of jobs involved, we classify the instances in 3 groups: small-scale
(n ≤ 100), mid-scale(100 < n ≤ 400) and large-scale (400 < n ≤ 800). For
each group, we select 5 instances to test. The details of the instances we
tested are shown in Table 11.1. Usually, a job contains 4 to 5 operations, but
because some of the operations are virtual operations (e.g. shipping), which
do not really consume factory resources, we ignore these operations. Hence,
in a typical job shop scheduling problem, one job has 2 to 3 operations on
average. The “|O|sub” in Table 11.1 shows the number of operations in the
jobs to finish the bill of materials. Although we treat these jobs the same as
the other jobs from customers, we actually do not have specified due dates for
them. In order to be consistent with the problem setting, we manually assign
due dates to these jobs (usually 7 days ahead of the due date of the supporting
jobs). But any delay of these jobs is not counted in our final schedule.

1 In case of backtracking, the approach does not return back to the root node, but
to the subregion that the NP-DR starts from.

220 11 Extended Job Shop Scheduling

Table 11.1. Instances setting.

Small-Scale
Instance 1 2 3 4 5

n 28 30 91 72 52
|O| 64 54 140 132 104

|O|sub 2 16 11 11 10
w 27 19 43 47 44

Mid-Scale
Instance 6 7 8 9 10

n 224 225 266 204 361
|O| 459 532 480 443 801

|O|sub 65 60 46 61 68
w 97 90 89 87 101

Large-Scale
Instance 11 12 13 14 15

n 423 473 606 664 725
|O| 906 1028 1220 1440 1601

|O|sub 94 107 113 131 142
w 115 117 128 132 135

Table 11.2. Problem size.

Instance Number of Variables Number of Constraints

1 15382 10900
2 16231 21334
3 33662 24393
4 31888 21870
5 24397 17371
6 508937 347428
7 764565 522257
8 386568 271341
9 366822 259137
10 1455030 1008630
11 1499550 1031470
12 1221940 851892
13 1049080 762969
14 2416490 1689110
15 2034000 1456200

We coded our algorithm in C++. All the instances were tested on a Pen-
tium IV 3.2GHz CPU. The numerical results of the two dispatching rules EDD
and MINSLACK are shown in Table 11.3. We demonstrated the solutions by
dispatching rules EDD and MINSLACK, which were obtained in almost no
time. We also give the lower bounds for parts of the instances. These lower
bounds were calculated by solving the MIP model in Section 11.2. We modeled
the extended job shop scheduling problem in AMPL and solved by CPLEX.

11.4 Computational Results 221

Table 11.3. Dispatching rules solutions and lower bounds.

EDD MINSLACK Lower Bound
Ins

∑
Uj CPU(sec) Gap (%)

∑
Uj CPU Gap

1 1 1 0 1 1 0 1
2 3 1 50 3 1 50 2
3 28 1 56 28 1 56 18
4 14 1 133 15 1 150 6
5 8 1 167 6 1 100 3
6 47 1 135 43 1 115 20
7 75 1 150 70 1 129 39
8 19 1 533 18 1 500 3
9 62 1 313 59 1 293 15
10 102 1 - 100 1 - -
11 104 1 - 102 1 - -
12 106 1 - 106 1 - -
13 182 2 - 163 2 - -
14 194 2 - 188 2 - -
15 201 2 - 193 2 - -
Number in bold is the optimal value.

However, due to the size of the problem (see Table 11.2), none of the testing
instances can be solved completely by applying this model directly. Only by
relaxing parts or all of the binary variables (X,Y,Z) for time slots were we
able to obtain the lower bounds for some small-scale instances. All the lower
bounds shown were the result of executing the MIP model for 2 hours.

11.4.1 Effectiveness of Weighted Sampling

Table 11.4 shows the results of NP-WSOP with different α and β. Com-
pared to the results in Table 11.3, NP-WSOP is much better than EDD and
MINSLACK in most instances. Some of the solutions can even reach optimal-
ity. With the guide of σ, NP-WSOP actually concentrates its limited samples
on the solutions with the highest probability of being optimal. In fact, many
effective NP applications are embed weighted sampling. Hence, for our prob-
lem, we prefer to use NP-WSOP rather than NP-RSOP. Keep in mind that it
does not mean RSOP is meaningless for this NP application. On the contrary,
the RSOP provides a way to detect the infeasible region (Cor. 11.5) and a
way to sample the feasible solutions in a subregion (Prop. 11.4 and 11.6).
WSOP improves upon RSOP by introducing σ, with the purpose of locating
more accurate subregion within a small number of samples.

Both NP-WSOP and the dispatching rules EDD and MINSLACK take ad-
vantage of external information. Because NP-WSOP is intelligent in searching
in each solution space and samples more solutions than the dispatching rules,
it is not surprising that it outperforms EDD and MINSLACK on most of the
problems. The cost of this improvement is computation time. This difficulty

222 11 Extended Job Shop Scheduling

Table 11.4. Solutions found by the NP method.

α = 1, β = 0.125 α = 0.6, β = 0.25 α = 0.25, β = 0.8 β = 0
Ins

∑
Uj CPU(sec)

∑
Uj CPU

∑
Uj CPU

∑
Uj CPU

1 1 1 1 1 1 1 1 1
2 3 1 3 1 3 1 3 1
3 29 1 33 2 22 2 24 1
4 19 1 19 1 9 1 14 1
5 6 1 6 1 6 1 5 1
6 37 18 35 18 35 18 33 7
7 80 27 102 28 85 28 86 10
8 3 245 3 229 3 237 3 74
9 83 29 85 30 83 32 66 6
10 107 34 109 35 104 37 90 7
11 72 174 77 178 85 187 64 58
12 114 222 94 228 93 242 112 74
13 127 576 126 592 147 637 111 95
14 158 828 177 849 171 907 135 272
15 200 1200 198 1222 195 1365 176 395

can be remedied by applying NP-DR. As shown in Table 11.5, by fixing oper-
ations in a number of machines according to the solutions produced by DR,
NP-DR quickly determines its starting subregion, and dramatically decreases
the computation time. The solutions of NP-DR is guaranteed to be no worse
than DR. Hence, in some special cases, such as the 7th instance, when DR
outperforms NP-WSOP, NP-DR obtains better solutions based on the ones
produced by DR.

11.4.2 α Sensitivity

The exponential function parameter α is introduced to magnify the possibility
that the operation with the tightest due date will be selected from Ω. It can
be seen that Pji for the operation with the smallest σ increases dramatically
as α increases, while on the other hand, all the other Pji decrease quickly.
Theoretically, if α → +∞, we actually choose the operation with smallest σj

every time from Ω. In this situation, our NP method needs to check only one
sample in each subregion. As a result, it solves mid and large scale problems
much more quickly than the normal NP approach.

Generally, NP-WOSP with α → +∞ can find good solutions. However,
not all optimal solutions require the most urgent operation to be scheduled
first. For many scheduling problems, giving up the most urgent job leaves
more available resources for others, which may help more of the other jobs
to be completed on time. Moreover, recall that we use a static σ instead of
a dynamic σ. Considering the error between the estimated and the real most

11.4 Computational Results 223

Table 11.5. Solutions found by the Hybrid NP/DR method.

NP-DR(α = 0.6, β = 0.25) Best NP Solution
Ins

∑
Uj Fixed Machines CPU(sec) Gap (%) Improved(%)*

1 1 2 1 0 0
2 3 2 1 50 0
3 20 2 1 11 44
4 15 2 1 50 83
5 5 2 1 67 100
6 32 2 13 60 55
7 69 8 7 125 4
8 5 3 77 0 500
9 57 13 3 280 33
10 87 12 5 - 13
11 93 3 106 - 37
12 106 3 148 - 12
13 107 20 33 - 34
14 184 5 355 - 28
15 193 10 218 - 8

*Compared with DR. For Instance 1 to 9, the improved is the difference
of gap; from 10 to 15, the improved is calculated by 100 ∗ (minDR

∑
Uj −

minNP

∑
Uj)/ minDR

∑
Uj .

urgent jobs, the static σ does not guarantee that we choose the exact job from
Ω every time.

Figure 11.4.3 demonstrates how α affects the number of late jobs with
fixed β for the 12th instance. This figure clearly shows that the best solution
is not found at the largest α (in our experiment setting, α ∈ (0, 1]). The best
α is different for different problems.

11.4.3 β Sensitivity

If the random variable q is uniformly selected in [0,1], then Pji defined in
Eq. (11.15) exactly represents the probability that operation Oji can be cho-
sen. As stated in Section 11.4.2, the value of Pji can be adjusted by altering
the value of α. However, we already indicate in Section 11.3.2 that α cannot
be too big because of the capacity of the computer representation. Then in
some cases in which α is not big enough to ensure the high possibility that the
operation with the tightest due date will be chosen, it is necessary to adjust
β as a supplement. The smaller the β, the higher the probability that the
operation with tightest due date will be chosen.

In fact, in Eq. (11.16), if β = 1, we have regular random values in uniform
distribution; but if β = 0, then q ≡ 0, which means we always choose the
first operation in Ω. This is equivalent to letting α → +∞. We have already
discussed this situation in Section 11.4.2. Figure 11.4.3 shows the different
results with different β for the 12th instance. From this figure, we can see

224 11 Extended Job Shop Scheduling

Fig. 11.4. α Sensitivity for the 12th instance.

Fig. 11.5. β Sensitivity for the 12th instance.

that the solution at either end is not the best. Similar to the selection of α,
for most instances, the best β is found between 0 and 1.

It looks like redundant to use two parameters to express a probability
function in the weighted sampling. However, we introduce α and β for different
purposes. We have already explained the reason of applying β. One might
ask if we can use β only and ignore α. Remember that the purpose of the
exponential function with parameter α is to magnify the possibility that the
operation with the tightest due date will be present in the ordered set Ω.
Apparently, β does not have such a feature. Therefore, we include both α and
β together in our NP algorithm with WSOP.

11.5 Conclusions

This chapter illustrates the NP method for a very complex real application,
namely the classic job shop scheduling problem with additional constraints
that account for realistic requirements usually absent in job shop formu-
lations. As has been done elsewhere in this book, the keys to a successful

11.5 Conclusions 225

implementation is to (a) design a method for intelligent partitioning that im-
poses a structure on the feasible region, and (b) design an efficient method for
generating high-quality feasible sample solutions. Both are achieved in this
chapter.

The resulting NP algorithm was tested on real industry date. The results
show that all of the tested problems can be solved by NP efficiently. Note that
the time for solving the largest scale instance is less than 30 minutes. This
computation time is acceptable by most industrial schedulers, especially those
in median sized businesses, thus illustrating the NP algorithms capabilities for
solving real industry problems within acceptable time.

12

Resource Allocation under Uncertainty

12.1 Introduction

In this final chapter of the book, we consider a resource allocation problem
where the objective function is inherently noisy. Resource allocation problems
is a very general class of problem, and may include problems such as facility
planning, job scheduling, buffer allocation, pollution control, and portfolio
management. Many such problems fall into the applicable areas of stochastic
discrete optimization. Owing to the complexity inherent in these systems,
the search for optimal solutions can be daunting. Two of the key difficulties
for solving the problem are: (1) the combinatorial explosion of alternatives
normally leads to NP-hard optimization problems; (2) the lack of analytical
expressions relating performance functions to solutions usually results in noisy
estimates of the performances. The first of these has been extensively explored
in this book, and as outlined in Chapter 3, the NP method is also applicable
when the objective function is noisy.

12.2 Optimal Computing Budget Allocation

In Section 3.2.1, we introduced the concept of ordinal optimization and the
connections between the NP method and ordinal optimization (Ho, Sreeni-
vas and Vakili 1992). In this chapter, we will build further on those con-
cepts and combine them with an efficient simulation control technique (Chen
et al. 1997). Recall that from the perspective of ordinal optimization, the NP
method uses order comparison to determine the most promising region from
a set of sample solution that it generates. The benefits of only needing ordinal
comparisons stem from the fact that it has been shown (Dai 1996) that the
convergence rate of the ordinal comparison can be exponential as the number
of simulation replications or samples increases while the convergence rate of
the cardinal value estimate is at most O(1/

√
t), where t is the number of sim-

ulation replications for a terminating simulation, or the number of simulation

228 12 Resource Allocation under Uncertainty

samples for a steady-state simulation (Fabian 1971, Kushner and Clark 1978)
This characteristic lends itself readily to simulation-based ordinal comparison
approach.

While ordinal optimization could significantly reduce the computational
cost for discrete event systems simulation, there is potential for further im-
provement of its performance by intelligently determining the numbers of
simulation samples (or replications) among different solutions. Intuitively, to
ensure a high alignment probability, a large portion of the computing bud-
get should be allocated to those solutions that are critical in the process of
identifying superior solutions. In other words, a large number of simulations
must be conducted with those critical solutions in order to reduce variance of
ordinal comparison. Conversely, efforts ought to be minimized on computa-
tions devoted to non-critical solutions exerting little or no effect on identifying
superior solutions even though these solutions boast large variances. In so do-
ing, the overall simulation efficiency is improved. Ideally, we want to optimally
choose the number of simulation samples (or replications) for all solutions to
maximize simulation efficiency with a given computing budget. OCBA (opti-
mal computing budget allocation) is one of such techniques that can be used in
a simulation-optimization procedure for efficiently ranking and selecting the
most appropriate solution (Chen et al. 1996).

As we can see, the NP method focuses on selection of solutions, whereas
ordinal optimization and OCBA emphasize comparison of selected solutions.
Functionally, these two approaches are mutually complimentary. We apply
this hybrid algorithm for a stochastic resource allocation problem where no
analytical expression exists for the objective function and where the problem
can only be estimated through simulation. Numerical results show that our
proposed algorithm can be effectively used for solving large-scale stochastic
discrete optimization problems.

12.3 Stochastic Resource Allocation Problems

There are many resource allocation problems in the design of discrete event
systems. The following examples are two typical cases in point.

Example 1. Buffer Allocation Problem in Communication Networks
We consider a 10-node network shown in Figure 12.1 (details can be found
in Chen and Ho 1995). There are 10 servers and 10 buffers that are intercon-
nected in a switching network. We then assume that there are two classes of
customers with different arrival distributions, but the same service require-
ments. We consider both exponential and non-exponential distributions (uni-
form) in the network. Both classes arrive at any of Nodes 0-3, and leave the
network after having gone through three different stages of service. Rather
than probabilistic, the routing is class dependent as shown in Figure 12.1.

12.3 Stochastic Resource Allocation Problems 229

Exp (1)

Unif [1, 7]

C1

C1

C1

C1

C2

C2

C2

C2

C1,C2

C1, C2

C1, C2

C1,C2

Arrival:
C1: Unif [2, 18]

C2: Exp (0.12)

0

1

2

3

4

5

6

7

C1

C2

8

9

Unif [1, 7]

Fig. 12.1. A 10-node network.

Finite buffer sizes at all nodes are assumed which is exactly what makes our
optimization problem interesting. Specifically, we are interested in distribut-
ing optimally a given number of buffer spaces to different nodes so that the
network throughput is maximized. A buffer is said to be full if and when there
are as many customers as its capacity allows, not including the customer being
tended to in the server. We consider the problem of allocating 12 buffer units,
among the 10 different nodes numbered from 0 to 9. We denote the buffer size
of node i by xi. Specifically,

x0 + x1 + x2 + . . . + x9 = 12, and xi is a non-negative integer (12.1)

The number of different combinations of [x0, x1, x2, . . . , x9] which satisfy
the constraint in (12.1) can be calculated as follows:

(
12 + 10 − 1

10 − 1

)
= 293, 930.

Unfortunately, due to the dynamic nature of the system, there is no closed-
form analytical formula to evaluate the performance function (throughput,
in this example). For each combination, the performance measure estimation
involves a very long simulation (for steady state simulation) or a huge number
of independent replications (for transient simulation). The total simulation
cost is prohibitively high even if the simulation cost for a single solution
alternative is low. In Section 12.5, we will illustrate the benefits of using
the proposed algorithm to this buffer allocation problem.

230 12 Resource Allocation under Uncertainty

Example 2. Resource Allocation in Manufacturing Systems
A manufacturing system consists of C manufacturing cells and a total of R
resources that can be allocated to any of the manufacturing cells. What we
seek is the optimal allocation of resources to manufacturing cells. Given a
performance function (or measure) J(·), we can formulate this problem as
follows:

max
x∈X

J(x = x1, x2, . . . , xC) (12.2)

s.t.

x1 + x2 + . . . + xC ≤ R and ∀xi ≥ 1.

As can be seen, the solution alternatives grow exponentially when the
problem size increases. For example, if we let C = 10 and R = 30, then

the total number of different combinations (solutions) is
∑R

m=C

(
m − 1
C − 1

)
=

30, 045, 015.
Tackling the type of resource allocation problems discussed above is the

main focus of this paper. It should be noted that we do not assume any
special property with respect to the performance function. In addition, due to
the inherent complexity of resource allocation problems, we expect that most
performance functions cannot be defined by an analytical expression. Often
J(x) is an expectation of some random estimate of the performance,

J(x) = E[L(x, ξ)] (12.3)

where ξ is a random vector that represents uncertain factors in the systems,
x ∈ X and X is a discrete and finite set. To be able to estimate J(x), two
main approaches are available: analytic approximation and simulation. In this
paper, we consider using discrete event simulation, i.e., to estimate E[L(x, ξ)]
by

E[L(x, ξ)] ≈ Ĵ(x) ≡ 1
t

t∑

i=1

L(x, ξi). (12.4)

Unfortunately, t cannot be too small for a reasonable estimation of
E[L(x, ξ)]. Thus, obtaining an optimal solution for resource allocation prob-
lems becomes an arduous task when the solution space is presumably very
large. In the next section, we will present an effective approach for this type
of resource allocation problems.

12.4 NP Method for Resource Allocation

It is well known that simulation could be very time consuming when it comes
to a complicated objective function. In particular, as the number of alternative
solutions grows, so does the total simulation cost. To remedy the situation,

12.4 NP Method for Resource Allocation 231

θ0 θ1 θ2

1 θ1 θ2 2 θ1 θ2 3 1 1

1 1 θ2 1 2 θ2 1 3 1 2 1 θ2 2 2 1

1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 2 1 1 2 1 2

Fig. 12.2. Partitioning of the manufacturing resource allocation problem.

our proposed hybrid approach integrates the NP method, ordinal comparison,
and OCBA for ranking and selection. Among the merits of this approach,
ordinal comparison has emerged as an efficient technique for simulation and
optimization, converging exponentially in many cases. The OCBA further
enhances the efficiency of ordinal optimization by intelligently determining
the best allocation of simulation replications or samples necessary to maximize
the probability of identifying the optimal ordinal solution. The integration of
these methods within a hybrid NP method enables the combined approach to
be applied to large-scale discrete optimization problems.

As for any other NP hybrid, the first step is to partition the current most
promising region. This partitioning strategy imposes a structure on the feasi-
ble region and is therefore very important for the rate of convergence of the
algorithm. As an illustration, we can partition the solution space of Example
2 as showed in Figure 12.2, given that R = 5 and C = 3. It should be noted
that the partitioning showed here is completely unrelated to the performance
function, so this is a generic partitioning approach. As we have encountered
for other applications, more efficient partitions could be constructed if the per-
formance function is considered, that is, by developing intelligent partitioning
(see Section 2.2). This will be done later.

The other key element to a successful NP implementation is a method for
efficiently generating high-quality sample solutions. Although we know that
uniform sampling can always be used, we also know that it is usually worth-
while to incorporate special structures into the sampling procedure so that the
solution quality can be improved. For example, we can use a weighted sam-
pling scheme to generate a sample point for the resource allocation problem
discussed in Example 1. The weight can be determined by carefully consid-
ering the system structure so that some solutions have a higher probability
of being chosen than other solutions. Such a biased sampling scheme will be
discussed below.

12.4.1 Calculating the Promising Index through Ordinal
Optimization

After generating feasible sample solution from each region, the next step of the
NP algorithm is to calculate the promising index of each region. As we saw in

232 12 Resource Allocation under Uncertainty

Chapter 2 and throughout the application chapters of the book, a commonly
used promising index is

I(σ) ≡ max
x∈σ

J(x). (12.5)

where σ is a subregion of X. To estimate the promising index, we let

Î(σ) ≡ max
x∈{the sampled solutions in σ}

Ĵ(x). (12.6)

It follows that the region with that best sample solution becomes the new
promising region in the next iteration. Let H(k) be the set which collects all
sample solutions to be simulated in the k-th iteration. Namely H(k) is the
union of all sample solutions from all subregions. Even though the size of H(k)
is much smaller than the entire solution space, it is still very time consuming
to evaluate all the solutions in H(k). For example, if we have 10 subregions
in each iteration and we have 15 sample solutions for each subregion, then we
have to simulate 150 solutions totally at each iteration in order to determine
the most promising region.

With traditional simulation methods, the accuracy, as measure by the
width of a confidence interval around the estimate Ĵ(x), cannot improve faster
than O(1/

√
t), the result of averaging i.i.d. noise. To obtain an acceptable

statistical estimate for a solution, a large t is therefore usually required for
each solution, again implying a long computation time.

Although the variance of the estimate of Ĵ(x) decays slowly as t goes to in-
finity, recent research has shown that comparing relative orders of performance
measures converges much faster than the performance measures themselves
do. As stated above, this is the basic idea of ordinal optimization (Ho et al.
1992). Dai (1996) shows that under certain conditions the rate of convergence
for ordinal comparison can be exponential (details are given in Theorem 12.1).
A significant implication of this observed result is that a good estimate on the
relative order of compared solutions can be obtained when the value estimate
remains poor. This idea is applicable not only to problems with discrete solu-
tion space, but also to problems over a continuous solution space (Cassandras
and Bao 1994, Cassandras and Julka 1994, Chen et al. 1998, Chen et al. 1999,
Gong et al. 1995, Patsis et al. 1997, Yan and Mukai 1993).

As we can see from (12.6) and we have noted before, the NP method is
based on order comparison. At each NP iteration, we select the region that
contains the best solution xa(k) using the following criterion:

xa(k) ≡ arg max
x∈H(k)

Ĵ(x)(=
1
t

t∑

i=1

L(x, ξi)). (12.7)

For notational simplicity, we use xa a rather than xa(k) in the remainder
of the chapter. Given the fact that we use only a finite number of simulation
replications, t, Ĵ(x) is an approximation to the true expected performance
E[L(x, ξ)]. The solution xa with the largest value of Ĵ(x) is not necessarily
the true best solution. Thus, we introduce the following concept.

12.4 NP Method for Resource Allocation 233

Definition 12.1. Define correct selection (CS) as the event that the selected
solution xa is actually the best solution in H(k). Define the correct selection
probability P (CS) ≡ P{The current top-ranking solution xa is actually the
best among the simulated solutions}.

Based on the results from ordinal comparison (Dai 1996), it is possible to
establish relative order of Ĵ(x) efficiently (i.e., to make the probability P (CS)
sufficiently high) although the variance of Ĵ(x) may attrition slowly.

Theorem 12.2. Suppose the simulation samples for each solution are i.i.d.
and the simulation samples between any two solutions are independent. As-
sume that L(x, ξi) has a finite moment generating function. The ordinal com-
parison confidence probability converges to 1 exponentially. More specifically,
there are α > 0, β > 0 such that

P (CS) ≥ 1 − αe−βt

Proof. See Theorem 5.1 in Dai (1996).
Since most statistical distributions (for example, normal, exponential, Er-

lang, and uniform distributions) have finite moment generating functions,
Theorem 12.1 is valid in most cases. However, it is not easy to estimate α
and β, which are functions of the relative differences among all solutions and
their variances. While it is possible to estimate P (CS) using an extra Monte
Carlo simulation, it is too expensive given this setting. Under a Bayesian
model, Chen (1996) develops an estimation technique to quantify the confi-
dence level for ordinal comparison P (CS), which is presented as follows:

Theorem 12.3. Let J̃x denote the random variable whose probability distri-
bution is the posterior distribution of the expected performance for solution x
under a Bayesian model. Assume J̃xi and J̃xj , i �= j, are independent (i.e.,
the simulations for different solutions are independent). For a maximization
problem,

P (CS) ≈
∏

j �=a

P{J̃xa > J̃xj}

≡ Approximate Probability of Correct Selection (APCS).

Under the Bayesian model, the posterior distribution p(J̃x) consists of
information from both the prior distribution and the simulation results
{L(x, ξi), i = 1, 2, . . . , t}. Furthermore, with a mild Gaussian assumption, if
the variance σ2

x is known (Bernardo and Smith 1995),

J̃x ∼ N(
1
tx

tx∑

i=1

L(x, ξi),
σ2

x

tx
)

Then,

234 12 Resource Allocation under Uncertainty

APCS =
∏

j �=a

P{J̃xa > J̃xj}

=
∏

j �=a

Φ

⎛

⎜
⎜
⎝

1
ta

∑ta

i=1 L(xa, ξi) − 1
tj

∑tj

i=1 L(xj , ξi)
√

σ2
a

ta
+

σ2
j

tj

⎞

⎟
⎟
⎠ . (12.8)

where Φ is the standard normal cumulative distribution function and tx, ta,
ti, and tj are simulation numbers. The APCS in (12.8) gives an estimate of
the probability that the selected best solution is indeed the true best solu-
tion. Note that the computation of APCS is simply a product of pairwise
comparison probabilities. If the variance is unknown, σ2

x can be replaced by
the sample variance and J̃x becomes t-distributed (Chick 1997). Empirical
testing shows that APCS provides a good approximation for P (CS) (Chen
1996, Chen et al. 1998b, 2000a, Inoue and Chick 1998, Chick et al. 1999). For
this reason, we adopt APCS to estimate P (CS) for ordinal optimization.

12.4.2 The OCBA Technique

While ordinal optimization could significantly reduce the computational cost
for identifying the promising region, there is potential for further improve-
ment of performance by intelligently determining the number of simulation
replications among different solutions. Intuitively, to ensure a high P (CS) or
APCS, a larger portion of the computing budget should be allocated to those
solutions which are potentially good solutions (or critical solutions) in order
to reduce estimator variance. On the other hand, limited computational effort
should be expanded on non-critical solutions that have little effect on iden-
tifying the good solutions even if they have large variances. Ideally, we want
to optimally choose the number of simulation replications for all solutions to
maximize simulation efficiency with a given computing budget. In this section,
we present a technique called optimal computing budget allocation (OCBA)
which makes use of this idea. In fact, OCBA is complementary with the NP
method. In the NP method, we concentrate sampling effort in the promis-
ing regions so that a best solution can be sampled with a higher probability.
On the other hand, OCBA balances the simulation accuracy for all sample
solutions selected from different regions, so that the overall simulation effi-
ciency can be dramatically improved. We elaborate the OCBA technique in
the following.

Let tx be the number of simulation replications for solution x, H be the set
of sample solutions to be evaluated and H = {x1, x2, · · · , xh}. If simulation is
performed on a sequential computer and the difference of computation costs
of simulating different solutions is negligible, the total computation cost can
be approximated by

∑h
i=1 txi . The goal is to choose txi for all xi such that

the total computation cost is minimized, subject to the restriction that the

12.4 NP Method for Resource Allocation 235

ordinal comparison confidence level defined by APCS is greater than some
satisfactory level.

min
h∑

i=1

txi

s.t. APCS ≥ P ∗.
where P ∗ is a user-defined confidence level requirement, which corresponds to
the stopping criterion in each iteration of the NP method.

Chen et al. (2000b) offer an asymptotic solution, which is summarized in
the following theorem.

Theorem 12.4. Assume the simulation is performed on a sequential com-
puter and the difference of computation costs of simulating different solutions
is negligible. Given total number of simulation budget T to be allocated to a
finite number of competing solutions, as T → ∞, the APCS can be asymp-
totically maximized when

(a)
ta
tb

→ sa

sb

⎡

⎣
∑

x�=a,x∈H

(
δ2
a,b

δ2
a,x

)⎤

⎦

1/2

(b)
tx
tb

→
(

sx/δa,x

sb/δa,b

)

where a is the solution having the largest sample mean, b is the solution having
the second largest sample mean, δi,j = 1

ti

∑ti

u=1 L(xi, ξu)− 1
tj

∑
u=1 tjL(xj , ξu),

and sx is the sample standard deviation of solution x.

Using the concepts of ordinal optimization and optimal computing budget
allocation, we develop an iterative experimentation procedure for simulation
evaluation of the set solution, H. The procedure is summarized as follows:
We assume total absence of knowledge about any solution considered and any
other basis for allocating computing budget at the beginning of the experi-
ment. We first simulate all solutions in H with t0 replications. The sample
means and variances can be calculated and then Theorem 12.3 is applied
to determine further simulation allocation. More simulation replications are
performed based on the allocation. Since the available information about the
sample means and variances are approximations, we sequentially update the
information and limit the additional computing budget for each iteration to
a pre-specified Δ. We repeat the above procedure until APCS is sufficiently
high. The algorithm is summarized as follows:

Algorithm Sequential Optimal Computing Budget Allocation (OCBA)

0. Perform t0 simulation replications for all solutions; l ← 0; tlx1 = tlx2 =
. . . = tlxh = t0.

236 12 Resource Allocation under Uncertainty

1. If APCS ≥ P ∗, stop.
2. Increase the computing budget (i.e., number of additional simulations)

by Δ and compute the new budget allocation, tl+1
x1 , tl+1

x2 , . . ., tl+1
xh , using

Theorem 3.
3. Perform additional max(0, tl+1

xi − tlxi) simulations for solution xi, for each
i. l ← l + 1. Go to Step 1.

In the above algorithm, l is the iteration number, APCS is used to esti-
mate the ordinal comparison confidence level P (CS), and P ∗ is a user-defined
confidence level requirement. In addition, we need to select the initial num-
ber of simulations, t0, and the one-time increment, Δ. Chen et al. (2000a)
offers detailed discussions on the selection. It is well understood that t0 can-
not be too small as the estimates of the mean and the variance may be very
poor, resulting in premature termination of the comparison. A suitable choice
for t0 is between 5 and 20 (Law and Kelton 1991, Bechhofer et al. 1995).
Also, a large Δ can result in waste of computation time to obtain an un-
necessarily high confidence level. On the other hand, if Δ is small, we need
to compute APCS (in step 1) many times. A suggested choice for Δ is a
number bigger than 5 but smaller than 10% of the simulated solutions. In
particular, we set t0 = 5 and Δ = 10 for our numerical experiments reported
below.

12.4.3 The NP Hybrid Algorithm

We will now describe the hybrid algorithm in detail. In the k-th iteration we
assume that there is a subregion σ(k) ⊆ X of the feasible region that may be
considered most promising. Initially we assume no knowledge about the most
promising region and let it be σ(0) = X, that is, we do not use warm-start.
The first step is to partition the most promising region into Mσ disjoint sub-
regions and aggregate the surrounding region (if any) into one. For example,
in Figure 12.2, we first partition the solution space into Mσ(0) = 3 subregions
without any surrounding region. Next, if σ(1) = {2, x2, x3} becomes the most
promising region, we then partition σ(1) into Mσ(1) = 2 subregions and the
surrounding region is X \ σ(1). The second step is to use a random sampling
method to generate a set of feasible solutions from each region. As outlined in
Chapter 2, this should be done in such a way that each point has a positive
probability of being selected. However, as we know, many heuristics may also
be incorporated into the sampling step through a weighted sampling scheme,
and this will be further illustrate for the resource allocation problem through
an example below. The third step is to apply the ordinal optimization and
OCBA technique to rank and select the best from a set of sample solutions,
a union of all sample solutions from each disjoint region. The final step is to
determine the most promising region for the next iteration. The subregion es-
timated to have the best promising index becomes the most promising region
in the next iteration. The new most promising region is thus nested within

12.4 NP Method for Resource Allocation 237

the last. By extension, if the surrounding region is found to have the best
promising index, the algorithm backtracks to a larger region that contains
the best solution. The partitioning continues until singleton regions are ob-
tained and no further partitioning is possible. Thus, each step is the same
as in the general NP framework, except in the third step, where both ordi-
nal optimization and the OCBA techniques are incorporated to improve the
selection of a sample solution. This can now be summarized in the following
algorithm.

Algorithm Hybrid NP/OCBA

0. Initialization. Let σ(0) = X and k = 0.

1. Partitioning. If |σ(k)| > 1, partition σ(k) into Mσ(k) subregions,

σ1(k), σ2(k), . . . , σMσ(k)(k)

If σ(k) �= X aggregate the surrounding region into one region,

σMσ(k)+1(k) = X \ σ(k)

It should be noted that σMσ(k)(k) only depends on σ but not k.

2. Sampling. Use a random sampling procedure to select hj sample points
from each subregion σj(k), j = 1, 2, . . . ,Mσ(k) + 1. Let Dσj(k) denote the
set containing the sample solutions in σj(k), i.e.,

Dσj(k) = {xj1, xj2, .., xjhj}. (12.9)

3. Ranking and selection of the best solution via Ordinal Opti-
mization & OCBA. Use the promising index set performance function
I : Σ → R given in (12.5) and its estimation given in (12.6). i.e,

I(σ) = max
x∈σ

J(x), (12.10)

and
Î(σ) = max

x∈Dσ

Ĵ(x). (12.11)

Then find the index of the most promising region.

ĵk = arg max
j=1,...,Mσ(k)+1

Î(σj(k)). (12.12)

This step involves two levels of optimization and is the most time con-
suming one in our hybrid algorithm. Ordinal optimization and OCBA are
applied to efficiently solve the optimization problem in (12.11) and (12.12),
and to identify the most promising region. Details are given below.

238 12 Resource Allocation under Uncertainty

4. Backtracking. If more than one region is equally promising, the tie can be
broken arbitrarily (e.g. with equal probability to be selected). If this index
corresponds to a region that is a subregion of σ(k), then let this be the
most promising region in the next iteration. That is let σ(k +1) = σjk

(k).
If ĵk correspond to the surrounding region, backtrack to a larger region
containing ĵk. Let k = k + 1. Go back to step 1.

The hybrid algorithm provides an optimization framework for the resource
allocation problem. Step 3 is most time consuming. By integrating ordinal
optimization and OCBA into Step 3, overall efficiency can be significantly im-
proved. In addition, there is great flexibility to incorporate heuristic methods
into Step 2, the random sampling, and Step 3, the estimation of the promis-
ing index. In the following section, we consider the buffer allocation problem
(Example 1) and present a more detailed, step-by-step description of the al-
gorithm, while incorporating some heuristics in the algorithm.

12.4.4 Implementation

We will illustrate the hybrid NP/OO/OCBA by applying it to the buffer
resource application problem discussed earlier in this chapter.

Partitioning

To apply the hybrid NP algorithm to the resource allocation problem, still we
need to consider how to partition the solution space. Although the NP method
does not limit the way in which we partition, specific strategies employed
have impact on the efficiency of the algorithm (see Section 2.2). Through
partitioning, if good solutions are clustered together, the NP algorithm will
then quickly identify a set of near optimal solutions. For the buffer allocation
problem, we can first divide this solution space into M = 13 subregions by
fixing the first buffer x0 to be 0, 1, . . . , 12. We can further partition each such
subregion by fixing the second buffer to be any of the remaining numbers.
This procedure can be repeated until the singleton region is reached, when all
the resources are allocated to the buffers. It can be seen from Figure 12.3 that
for the buffer allocation problem, at the same level, each subregion contains a
different number of feasible points. This partitioning approach is implemented
in the numerical experiments reported below.

Generating Feasible Sample Solutions

The method used to obtain random samples from each region in each iteration
is flexible for the NP algorithm. The only requirement is that each point in
a sampling region should have a positive probability of being selected. While
uniform sampling scheme works well in most cases, from our experiences,
incorporation of a simple heuristic into the sampling scheme can drastically

12.4 NP Method for Resource Allocation 239

θ0 θ1 … θ9

0 θ1 … θ9 1 θ1 … θ9 j θ1 … θ9 12 0 … 0

…
…

j 0 θ2 … θ9 j 1 θ2 … θ9 j 12-j 0 … 0

… …

Fig. 12.3. Partitioning of the buffer allocation problem.

improve the sampling quality. The sampling scheme used in our numerical
testing below is involves a relatively minor change from a uniform distribution.
The detailed procedure is given as follows:

Suppose the current sampling region has the form of σ(k) = {(x0, . . . , x9)|x0

= x̂0, . . . , xk = x̂k}. This means that the number of buffer units at the first
k nodes (x̂0, . . . , x̂k) is fixed. xk+1, . . . , x9 are to be determined. Generating
a random sampling point in σ(k) means to randomly select xk+1, . . . , x9 such
that constraint (12.1) (x0 + x1 + x2 + . . . + x9 = 12) is satisfied. One way is
to sequentially generate a random number for each of xi, i = k + 1, . . . , 9. Let

Ri = 12 −
i−1∑

j=0

xj .

Thus Ri is the number of buffer units that we can allocate to nodes i to 9.
It is also an upper bound of xi. To generate a random sample of xi, instead
of generating a random number uniformly distributed between 0 and Ri, we
adopt a very simple heuristic for our sampling scheme. Since we intend to
allocate 12 buffer units to 10 nodes, on average, each node can be allocated
only 1.2 units. Intuitively, it is very unlikely for a large amount of units to
be allocated to a particular node. Conceptually, it is also undesirable for such
an allocation to take place, because the system is symmetric. Thus, we favor
the allocation with no more than 2 units in each node. For example, we can
weigh the probabilities for the numbers between 0 and 2 three times higher
than the numbers bigger than 2. This sampling scheme is illustrated in Figure
12.4 with Ri greater than 2.

In cases when Ri is less than or equal to 2, we can just use a uniform
distribution for generating a sample for xi. The above procedure is repeated
until the last node is allocated (i = 9) or all buffer units are used (Ri = 0).

Promising Index using Ordinal Optimization & OCBA

The most promising region in each iteration of the hybrid algorithm is deter-
mined by solving two optimization problems defined in (12.11) and (12.12).

240 12 Resource Allocation under Uncertainty

3/(Ri+7)

0 1 2 3 4 5 :::::::::::::: Ri θi

Pr{θi}

1/(Ri+7)

Fig. 12.4. Weighted sampling scheme.

(12.11) is used to estimate the promising index (or the best sample solution)
in each disjoint region and (12.12) identifies the most promising region. Since
we need to only pinpoint the most promising region, we do not have to esti-
mate all the promising indices for all the subregions. Instead, to utilize the
OCBA technique, we combine two optimization problem (12.11) and (12.12)
into the following optimization problem

x∗ = arg max
x∈H(k)

Ĵ(x) (12.13)

where H(k) =
Mσ(k)+1

∪
j=1

Dσj(k) is all the sample solutions selected in the k-th

iteration.
Thus, the most promising region refers to the region to which x∗ belongs.

The total number of solutions that must be evaluated using simulation in each
iteration is

∑Mσ(k)+1
j=1 hj . While

∑Mσ(k)+1
j=1 hj is much smaller than the total

number of solutions in the whole solution space, the total simulation cost for
all

∑Mσ(k)+1
j=1 hj solutions is still very high. Therefore improving computation

efficiency at the most time consuming Step 3 is crucial to the overall efficiency
of the hybrid algorithm.

As we mentioned before, the NP method is based on order comparison
to determine a promising region. An accurate estimation of the promising
index for each region is not necessary. That is, the relative order of promising
indices, or the relative order of the considered solutions, is more essential
than the value of the promising index itself. This is an ideal situation for the
use of ordinal optimization. As shown in Theorem 12.1, if we concentrate on
the order comparison, the probability of correctly selecting the solution x∗

converges to one exponentially. This means that the probability of correctly
identifying the most promising region using ordinal optimization converges to
1 exponentially.

Furthermore, instead of simulating all solutions equally, we apply OCBA
to intelligently determine the optimal simulation budget for each solution so
that the total simulation cost can be significantly reduced. The algorithm
presented in Section 3.3 is applied to the problem in (12.13). As will show in

12.4 NP Method for Resource Allocation 241

Section 4, OCBA can achieve a speedup factor of 16 on the top of the use of
ordinal optimization.

Note that it is more advantageous if OCBA is applied to the combined
problem (12.13) directly than if it is applied to the two-level optimization
problems in (12.11) and (12.12) separately. OCBA has the capability to op-
timally allocate simulation budget by considering the means and variances of
all sample solutions from different regions. This way, the information of both
solutions and regions can be utilized when allocating simulation budget to
achieve a better performance.

Backtracking

There are many backtracking rules for the hybrid algorithm. In this paper,
we consider the following options for backtracking since they are easy to im-
plement.
Backtracking Rule I : Backtracking to the superregion of the current most
promising region. That is let:

σ(k + 1) =
{

σĵk
(k)if ĵk < Mσ(k) + 1

s(σ(k)), otherwise
.

We refer to the hybrid algorithm using this backtracking rule as the Hybrid
Algorithm I. It should be noted that in order to backtrack to the superregion
of the current most promising region, we need to keep track of only those
regions that lead from the current most promising region back to the entire
feasible region. This imposes minimal memory overhead.
Backtracking Rule II : Backing tracking to the entire feasible region. That is
let:

σ(k + 1) =
{

σĵk
(k)if ĵk < Mσ(k) + 1
X, otherwise.

We refer to the hybrid algorithm using this backtracking rule as the Hybrid
Algorithm II. The difference between these two algorithms can be thought
of in terms of long-term memory. If the algorithm II is used, then we can
move immediately out of that region in a single transition. For the algorithm
I, on the other hand, completely moving out of regions of more depth than
one requires more than one transition. Therefore, Algorithm I has long-term
memory, but the algorithm II does not. Alternatively, since most of the sam-
pling effort is concentrated in the promising region, we can think of the back-
tracking feature as a method to change the sampling distribution. Using this
interpretation, the Algorithm I only allows for a slight change in the sam-
pling distribution at each iteration, but the algorithm II permits us to make
a drastic change.

Other backtracking methods exist that can also change the sampling dis-
tribution drastically. Note for example, we can backtrack to any superregion

242 12 Resource Allocation under Uncertainty

of a singleton region that contains the best solution found in the current iter-
ation. Such a backtracking rule would severely bias the sampling distribution
towards the best solution found in each iteration, regardless of it being in the
current most promising region or the surrounding region. For example, for the
buffer allocation problem, we can use the following backtrack rule that uses
the information obtained in the previous iteration.
Backtracking Rule III : Assume that

x∗ ≡ (x∗
0, x

∗
1, . . . , x

∗
9) is the best solution for (12.13) found in the current

iteration,
x− ≡ (x−

0 , x−
1 , . . . , x−

9) is the best solution for (12.13) found in the previous
iteration.
backtrack to the level that x∗ and x− have the same component at that level
and above. That is, backtrack to the partition whose elements are in the form
of (x∗

0, . . . , x
∗
k, xk+1, . . . , x9) where k = max{i : x∗

j = x−
j , for all j ≤ i}.

12.5 Numerical Results

In this section, we apply the hybrid algorithm to the buffer allocation problem
discussed above. Before we report the numerical result of the hybrid algorithm,
we first demonstrate how the ordinal optimization and OCBA techniques can
be applied to a simplified version of the buffer allocation problem. In this
simplified version, since the total number of solutions (or solutions) is 210, the
ordinal optimization can be directly applied. We show that OCBA can achieve
a speedup factor as high as 16 on top of the use of ordinal optimization only.
In the next section, we apply the hybrid algorithm to deal with the original
buffer allocation problem that has a much larger solution space. We show that
a better solution (comparing with the solution obtained from the simplified
problem) can be obtained with a reasonable simulation cost. Finally, we apply
the hybrid NP algorithm to a more complex and less structured problem with
a much bigger solution space. Again, our algorithm converges to the optimal
solution with a reasonable simulation cost.

12.5.1 A Reduced Problem

Consider the 10-node network presented in Section 12.2 in which the objec-
tive is to select a solution with minimum expected time to process the first
100 customers from a same initial state when the system is empty. This is
a transient simulation, and L(x, ξi) is the simulation result of the i-th run.
Multiple simulation runs are needed to estimate E[L(x, ξ)] for each x. As
discussed in Section 2, even for an allocation of 12 buffer units to 10 nodes,
there are 293,930 different combinations. While the simulation time for each
combination is not very long, the total simulation time for 293,930 solutions
are not affordable. To reduce the number of solutions for consideration to a
manageable size, observing that the network is symmetric, we then set the

12.5 Numerical Results 243

Table 12.1. Average total simulation runs for different confidence level of APCS
over 10,000 independent simulation experiments. The second column is the needed
simulation runs using ordinal optimization only. The third column includes the re-
sults for OCBA.

APCS ≥ P ∗ Simul. Runs using Simul. Runs using Speedup using
OO only OO + OCBA OCBA

60% 20622 2206 9.34
70% 29211 2631 11.1
80% 48699 3522 13.8
90% 91665 5716 16.0

following three constraints:

x0 = x1 = x2 = x3 (12.14)

x4 = x6 (12.15)

x5 = x7 (12.16)

With the above three constraints, the number of solutions considered here
is reduced to 210. Since the network is symmetric, we originally anticipated
that the optimal solution should satisfy all the above three constraints. This
turned out not to be the case after we apply the hybrid algorithm, as we will
show later in next subsection.

We first focus on the reduced 210 solutions and apply ordinal optimiza-
tion and OCBA to this simplified problem. We stop simulation at different
confidence levels of APCS. Since the required simulation run for a desired
confidence level varies from time to time, 10,000 independent experiments are
performed and the average simulation runs are compared. Table 1 compares
the averages of the required simulation runs for different confidence levels for
ordinal optimization and the integration of ordinal optimization and OCBA.

From the Table 12.1, we observe that a higher computing budget can lend
readily to a higher APCS. Using the OCBA scheme, however, significantly
reduces the computation cost for a desired level of APCS. Furthermore, the
speedup of using OCBA increases, as the desired confidence level becomes
higher. The speedup factor is as high as 16 as P ∗ = 90%. We anticipate that
the observed savings will become even more significant when P ∗ is higher,
since we will have more flexibility to manipulate the budget allocation.

In order to have a better idea about the optimal solution, we conduct
a simulation experiment for all 210 solutions with P ∗ = 99.999%. The best
solution we obtained is [x0, x1, x2, . . . , x9] = [1, 1, 1, 1, 2, 1, 2, 1, 1, 1]. We will
show that the proposed hybrid algorithm can obtain a better solution with a
reasonable simulation cost in the next subsection.

244 12 Resource Allocation under Uncertainty

Table 12.2. The promising region at each iteration.

Iteration Action Promising Region
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

0 Sampling
1 Partition 1
2 Partition 1 1
3 Backtracking 2
4 Partition 2 1
5 Partition 2 1
6 Partition 2 1 1 1
7 Partition 2 1 1 1
8 Partition 2 1 1 1 0
9 Partition 2 1 1 1 0 2
10 Partition 2 1 1 1 0 2 1
11 Backtracking 2 1 1 1 2
12 Partition 2 1 1 1 2 1
13 Partition 2 1 1 1 2 1 2
14 Partition 2 1 1 1 2 1 2 1
15 Stop 2 1 1 1 2 1 2 1 0

12.5.2 The Original Resource Allocation Problem

In this subsection we apply the hybrid algorithm to the original 10-node net-
work. Note that the problem considered here has 293,930 different solutions
that are dramatically bigger than the 210 considered in the reduced problem.

In each iteration, we follow the partition rules described in above and
illustrated in Figure 12.3. Namely, we first divide this solution space into
M = 13 subregions by fixing the first buffer x0 to be 0, 1, . . . , 12. We then
further partition each such subregion by fixing the second buffer to be any of
the remaining numbers. We randomly sample 45 solutions from the promising
region, and 105 solutions from the surrounding region, creating a total of 150
solutions for consideration in an iteration (i.e., |H(k)| = 150). The stopping
criterion is set at the point where the confidence level of identifying the best
in the 150 solutions is no less than 90%, i.e., APCS > 90%. In the OCBA
algorithm, we set t0 = 5 and Δ = 10. In order to improve the quality of our
sampling solutions, we adopt the simple heuristic illustrated in Figure 12.4 for
our sampling scheme. Table 12.2 shows how our algorithm evolves by giving
the promising region at each iteration. Note that x9 is determined as soon as
x0, x1, x2, . . . , and x8 are fixed at iteration 15, because the total number of
buffer units is given.

From Table 12.2, we can see that after 15 iterations, our algorithm con-
verges to a solution [x0, x1, x2, . . . , x9] = [2, 1, 1, 1, 2, 1, 2, 1, 0, 1]. It turns out
that this solution is better than the solution we found in the previous sec-
tion. Obviously, this solution does not satisfy the symmetric constraints in

12.5 Numerical Results 245

Table 12.3. Different queue disciplines considered at the four arriving nodes.

Queue discipline Descriptions

A FIFO First In First Out
B LIFO Last In First Out
C C1F Class 1 customers have higher priority than Class 2 customers
D C2F Class 2 customers have higher priority than Class 1 customers

(12.14,12.15,12.16). If we had relied simply on the reduced problem, we would
never have uncovered this solution. The total number of simulation runs to
converge to this solution is 17,379, which is about only 3 times bigger than the
cost needed for the reduced problem discussed above. Given that the solution
space is much bigger (293, 930/210 ≈ 1400 bigger), the time saving is highly
significant.

It is interesting to see that the optimal solution is not symmetric, although
the structure of the network is. We guess this is due to the integer constraint
of the buffer size. If the integer constraint is relaxed (for example, 0.8 buffer
unit is allowed), then the optimal solution should be symmetric.

In our simulation, one arrival event and three departure events must be
generated in order to simulate one customer. 100 customers are simulated
in one run based on the performance measure requirement. Thus, the total
number of events generated for converging to the optimal solution is about
4× 100× 17, 379 = 6, 951, 600. While the number of needed evens is problem-
specific, the CPU time on a SUN Sparc 20 workstation is less than one minute.
Please note that our algorithm does not utilize the property of the problem
structure. Some other algorithms, which utilize the structure information to
direct the search direction, such as Cassandras et al. (1998) may find an
optimal solution with an even lower computation cost. However, our algorithm
can be effectively applied to other general problems without knowing much
about the problem structure. We present one example in the next subsection.

12.5.3 A More Complex and Less Structured Problem

In order to show that our algorithm is equally applicable to less structured
problems, we consider a more complex problem. In each of the arriving nodes
(nodes 0-3) of the 10-node network, class 1 and class 2 customers wait in
the same queue when the server is busy. Whenever the server is available for
serving customers in the queue, the two types of customers have to compete
for a same server. In addition to the FIFO considered in earlier examples,
three more queue disciplines are included herein for each of these four arriving
nodes, which are depicted in Table 3.

With the inclusion of different queue disciplines at each of the four arriving
nodes, the total number of solutions is increased to 293, 930×44 = 75, 246, 080.
Furthermore, there is no obvious relationship between any two disciplines in

246 12 Resource Allocation under Uncertainty

terms of their impact on the performance. Traditional gradient-search meth-
ods therefore can not be directly applied to such a problem.

Since it is impossible to exhaustively search the whole solution space, we
carefully select a performance measure so that we know what the optimal
solution is and then we can check how well our algorithm works. In this
problem, the objective is to select a solution with minimum expected time to
process the first 100 arriving customers from a same initial state. It is clear
that the best queue discipline is FIFO, because other disciplines may change
the order of customer service and so delay the completion of the targeted 100
customers.

All the settings in our algorithm are the same as those in the pre-
vious section. Our algorithm converges to a solution [x0, x1, x2, . . . , x9] =
[2, 1, 1, 1, 2, 1, 2, 1, 0, 1], which should be the optimal solution based on our
observation. The total number of simulation runs to converge to this solu-
tion is 19,281, which is not much higher than the cost needed for the original
problem. Given that the solution space is much bigger (256 times bigger), our
algorithm is efficient when handling big and complex problems.

12.6 Conclusions

In this chapter we consider a hybrid NP algorithm to solve a stochastic dis-
crete resource allocation optimization. The problem considered here is very
difficult to solve since it is typically susceptible to noisy estimation of the per-
formance function and exponentially increased solution space. As described in
Chapter 3, the NP method is very applicable to such problems, and here we in-
corporated the paradigm of ordinal optimization and an efficient ranking and
selection technique called optimal computing budget allocation (OCBA) into
the NP framework. Specifically, the NP method provides the overall frame-
work, structuring of the search space through partitioning, and uses random
sampling to generate feasible solution. Ordinal optimization and the OCBA
technique are then incorporated to improve the comparison of sample solu-
tions that are generated. This hybrid NP algorithm can be applied to a wide
variety of resource allocation problems, and its efficiency was been demon-
strated through a numerical example.

References

1. Aardal, K., 1998, “Capacitated Facility Location: Separation Algorithms and
Computational Experience,“ Mathematical Programming 81, 149–175, (1998).

2. Adiri, I. and Yehudai, Z. (1987) Scheduling on Machines with Variable Service
Rates. Computers and Operations Research, 14, 289–97.

3. Aha, D.W., R.L. Bankert. 1996. A comparative evaluation of sequential feature
selection algorithms. D. Fisher and J.-H. Lenz, eds. Artificial Intelligence and
Statistics V. Springer-Verlag, New York.

4. T. Altiok and S. Stidam (1983), The allocation of Inter-stage Buffer Capacities
in Production Lines, IIE Transactions, Vol. 15, No. 4, 292–299.

5. A. Andijani and M. Anwarul (1997), Manufacturing Blocking Discipline: A
Multi-Criteria Approach for Buffer Allocation, International Journal of Pro-
duction Economics, Vol. 51, 155–163

6. Andradóttir, S. 1995. “A Method for Discrete Stochastic Optimization,” Man-
agement Science, 41, 1946–1961.

7. Andradóttir, S. 1996. “A Global Search Method for Discrete Stochastic Opti-
mization,” SIAM Journal on Optimization 6, 513–530.

8. Balakrishnan, P.V. and V.S. Jacob, “Genetic Algorithms for Product Design,”
Management Science 42, 1105–1117 (1996).

9. —– and —–, “Triangulation in Decision Support Systems: Algorithms for
Product Design,” Decision Support Systems 14, 313–327 (1995).

10. Basu, A. 1998. Perspectives on operations research in data and knowledge
management. European Journal of Operational Research 111 1–14.

11. Beasley, J., 1993, Lagrangian Heuristics for Location Problems, European
Journal of Operational Research 65, pp 383–399.

12. Blake, C.L., C.J. Merz. 1998. UCI repository of machine learning databases.
http://www.ics .uci.edu/∼mlearn/MLRepository.html. Department of Infor-
mation and Computer Science, University of California, Irvine, CA.

13. Boxma, O.J., Rinnooy Kan, A.H.G. and Van Vliet, M. (1990) Machine Alloca-
tion Problems in Manufacturing Networks. European Journal of Operational
Research, 45, 47–54.

14. Bradley, P.S., U.M. Fayyad, O.L. Mangasarian. 1999. Mathematical program-
ming for data mining: formulations and challenges. INFORMS Journal on
Computing 11 217–238.

248 References

15. Bradley, P.S., O.L. Mangasarian, W.N. Street. 1998. Feature selection via
mathematical programming. INFORMS Journal on Computing 10 209–217.

16. Bramel, J. and Simchi-Levi, D., 1997, The Logic of Logistics: theory, algo-
rithms, and applications for logistics management, Springer Series in Opera-
tions Research.

17. J. A. Buzzocott (1967), Automatic Transfer Lines with Buffer Stocks, Inter-
national Journal of Production Research, Vol. 6, 183–200

18. Caruana, R., D. Freitag. 1994. Greedy attribute selection. Proceedings of the
Eleventh International Conference on Machine Learning. Morgan Kaufmann.
New Brunswick, NJ. 28–36.

19. Cassandras, C.G., L. Dai, and C.G. Panayiotou. 1998. “Ordinal Optimiza-
tion for a Class of Deterministic and Stochastic Discrete Resource Allocation
Problems,” IEEE Transactions on Automatic Control, 43, 881–900.

20. Cheng, T.C.E. and Sin, C.C.S. (1990) A State-of-the-Art Review of Parallel-
Machine Scheduling Research. European Journal of Operational Research, 47,
271–92.

21. R. W. Conway et al (1988), The Role of Work-In-Process Inventory in Serial
Production Lines, Operations Research, Vol. 36, 229–241

22. Crainic, T., Toulouse, M., and Gendreau, M., 1996, Parallel asynchronous tabu
search for multicommodity location-allocation with balancing requirements,
Annals of Operations Research 63, pp277–299

23. Dai, L. 1996. “Convergence Properties of Ordinal Comparison in the Simu-
lation of Discrete Event Dynamic Systems,” Journal of Optimization Theory
and Applications, 91, 363–388

24. Dai, L. and C.H. Chen. 1997. “Rates of Convergence of Ordinal Comparison
for Dependent Discrete Event Dynamic Systems,” Journal of Optimization
Theory and Applications, 94, 29–54.

25. Delaney, R., 2003, 14th Annual State Of Logistics Report, June 2, National
Press Club Washington, D. C.

26. Y.Dallery, R. David and X.L.Xie (1988), An efficient Decomposition method
for the approximate evaluation of tandem queues with finite storage space and
blocking, IIE Transactions, Vol.20, 280–283

27. Y.Dallery, R. David and X.L.Xie (1989), Approximate Analysis of Transfer
Lines with Unreliable Machines and Finite Buffers, IEEE Transactions on
Automatic Control, Vol. 34, No.9, 943–953

28. Daniels, R.L. and Mazzola, J.B. (1994) Flow Shop Scheduling with Resource
Flexibility. Operations Research, 42, 504–22.

29. Daniels, R.L., Hoopes, B.J. and Mazzola, J.B. (1996) Scheduling Parallel Man-
ufacturing Cells with Resource Flexibility. Management Science, 42, 1260–76.

30. Daniels, R.L. and Sarin, R.K. (1989) Single Machine Scheduling with Control-
lable Processing Times and Number of Jobs Tardy. Operations Research, 37,
981–4.

31. M. B. M. DE Koster (1987), Estimation of Line Efficiency by Aggregation,
International Journal of Production Research, Vol. 25, 615–626.

32. Delmaire, H., Daz, J., and Fernndez, E., 1999, Reactive GRASP and tabu
search based heuristics for the single source capacitated plant location prob-
lem, INFOR, Canadian Journal of Operational Research and Information Pro-
cessing 37(3), pp194–225

References 249

33. Dobson, G. and S. Kalish, “Heuristics for Pricing and Positioning a Prod-
uct Line Using Conjoint and Cost Data,” Management Science 39, 160–175
(1993).

34. D’Souza, W., Meyer, R., Naqvi, S., and Shi, L., 2003, Beam orientation opti-
mization in imrt using single beam characteristics and mixed-integer formula-
tions, AAPM Annual Meeting, San Diego

35. Fayyad, U.M. K.B. Irani. 1993. Multi-interval discretisation of continuous-
valued attributes. Proceedings of the Thirteenth International Joint Confer-
ence on Artificial Intelligence. Chambery, France. 1022–1027.

36. Fisher, M., 1981, The Lagrangian Relaxation Method for Solving Integer Pro-
gramming Problems, Management Sciences 27, pp1–18

37. Frenk, H., Labbé, M., Van Vliet, M. and Zhang, S. (1994) Improved Algorithms
for Machine Allocation in Manufacturing Systems. Operations Research, 42,
523–30.

38. C.D.Geiger, K.G.Kempt and U.Uzsoy (1997), A Tabu Search Approach to
Scheduling an Automated Wet Etch Station, Journal of Manufacturing Sys-
tems, Vol. 16, No.2, 102–116

39. Geofrion, A. and Graves, G., 1974, Multicommodity Distribution System De-
sign by Benders Decomposition, Management Science 20, pp 822–844.

40. S. B. Gershwin (1987), An Efficient Decomposition Method for the Approxi-
mate Evaluation of Tandem Queues with Finite Storage Space and Blocking,
Operations Research, Vol. 35, 291–305.

41. S. B. Gershwin (1994), Manufacturing Systems Engineering, Prentice Hall,
New Jersey

42. Glover (1986), Future Paths for Integer Programming and Links to Artificial
Intelligence, Computers and Operations Research, Vol. 13, 533–549

43. F. Glover and M. Laguna(1997), Tabu Search, Kluwer Academic Publishers,
Boston

44. Gong, W.-B., Y.-C. Ho, and W. Zhai. 1999. “Stochastic Comparison Algorithm
for Discrete Optimization with Estimation,” SIAM Journal on Optimization,
10, 384–404.

45. Green, P.E., J.D. Carrol, and S.M. Goldberg, “A General Approach to Product
Design Optimization via Conjoint Analysis,” Journal of Marketing 45, 38–48
(1981).

46. —– and A.M. Krieger, “Models and Heuristics for Product Line Selection,”
Marketing Science 4, 1–19 (1985).

47. —– and —–, “Recent Contributions to Optimal Product Positioning and
Buyer Segmentation,” European Journal of Operations Research 41, 127–141
(1989).

48. —– and —–, “A simple heuristic for selecting ’good’products in conjoint anal-
ysis,” J. Advances in Management Science 5, R. Schultz (ed.), JAI Press,
Greenwich, CT (1987).

49. —– and —–, “An application of a product positioning model to pharmaceutical
products,” Marketing Science 11: 117–132 (1992).

50. —– and V. Srinivasan, “Conjoint Analysis in Consumer Research: New De-
velopments and Directions,” Journal of Marketing 54, 3–19 (1990).

51. Hall, M.A. 2000. Correlation-based feature selection for discrete and numeric
class machine learning. Proceedings of the Seventeenth International Confer-
ence on Machine Learning. Stanford University, Stanford, CA. Morgan Kauf-
mann. 359–366.

250 References

52. J. H. Harris and S. G. Powell (1999), An Algorithm for Optimal Buffer Place-
ment in Reliable Serial Lines, Vol. 31, 287–302.

53. F. S. Hillier and R. W. Boling (1966), The Effect of Some Design Factors on
the Efficiency of Production Lines with Variable Operation Times, Journal of
Industrial Engineering, Vol. 17, 651–658

54. F. S. Hillier and K. C. So and R. W. Boling (1993), Notes: Toward Charac-
terizing the Optimal Allocation of Storage Space in Production Line Systems
with Variable Processing Times, Management Sciences, Vol. 39, 126–133

55. Hindi, K. and Basta, T., 1994, Computationally Efficient Solution of a Mul-
tiproduct, Two-Stage Distribution-Location Problem, Journal of the Opera-
tional Research Society 45, pp 1316–1323.

56. Hindi, K., Basta, T., and Pienkosz, K., 1998, Efficient solution of a multi-
commodity, two-stage distribution problem with constraints on assignment of
customers to distribution centers, International Transactions in Operations
Research 5(6), pp 519–528.

57. Ho, Y.-C. 1997. “On the Numerical Solutions to Stochastic Optimization Prob-
lems,” IEEE Transactions on Automatic Control, 42, 727–729.

58. Y. C. Ho, M.A. Eyleer and T. T. Chien (1979), A Gradient Technique for
General Buffer Storage Design in a Production Line, International Journal of
Production Research, Vol. 17, 557–580

59. Ho, Y.-C., R.S. Sreenivas, and P. Vakili. 1992. “Ordinal Optimization of
DEDS,” Discrete Event Dynamic Systems: Theory and Applications, 2, 61–88.

60. M. A. Jafari and J. G. Shanthikumar (1987), Exact and Approximate solutions
to Two-Stage transfer Lines with general Uptime and Downtime Distribution,
IIE Transactions, Vol. 19, 412–420

61. Karabati, S. and Kouvelis, P. (1997) Flow-line Scheduling Problem with Con-
trollable Processing Times. IIE Transactions, 29, 1–15.

62. Karabati, S., Kouvelis, P. and Yu, G. (1995) The Discrete Resource Allocation
Problem in Flow Lines. Management Science, 41, 1417–30.

63. Kekre, S. and K. Srinivasan, “Broad Product Line: A Necessity to Achieve
Success?” Management Science 36: 1216–1231 (1990).

64. Kim, Y.S., W.N. Street, F. Menczer. 2000. Feature selection in unsupervised
learning via evolutionary search. Proceedings of the 6th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. Boston, MA.
365–369.

65. Klincewicz, J. and Luss, H., 1986, A Lagrangian Relaxation Heuristic for Ca-
pacitated Facility Location with Single-Source Constraints, Journal of Oper-
ational Research Society 37, pp 495–500.

66. Klose, A., 2000, A Lagrangean relax-and-cut approach for the two-stage ca-
pacitated facility location problem, European Journal of Operational Research
126, pp 408–421.

67. Klose, A. and Drexl, A., 2003, Facility location models for distribution system
design, European Journal of Operational Research, In Press, Corrected Proof,
Available online 15 January 2004.

68. Kohli, R. and R. Krishnamurti, “A Heuristic Approach to Product Design,”
Management Science 33, 1523–1533 (1987).

69. —– and —–, “Optimal Product Design Using Conjoint Analysis: Computa-
tional Complexity and Algorithms,” European Journal of Operations Research
40, 186–195 (1989).

References 251

70. —– and Sukumar, “Heuristics for Product-Line Design using Conjoint Anal-
ysis,” Management Science 35: 1464–1478 (1990).

71. Lee, C., 1993, A Cross Decomposition Algorithm for A Multiproduct-
Multitype Facility Location Problem, Computers and Operations Research
20, pp527–540

72. Lee, L.H., T.W.E. Lau, and Y.-C. Ho. 1999. “Explanation of Goal Softening in
Ordinal Optimization,” IEEE Transactions on Automatic Control, 44, 94–99.

73. M. Litzkow, M., and M. Mutka. 1988. “Condor - A Hunter of Idle Worksta-
tions,” Proceedings of the 8th International Conference of Distributed Com-
puting Systems, pages 104–111.

74. C. M. Liu and C.I. Lin (1994), Performance Evaluation of Unbalanced Se-
rial Production Lines, International Journal of Production Research, Vol. 12,
2897–2914

75. Liu, H., and H. Motoda. 1998. Feature Extraction, Construction and Selection:
A Data Mining Perspective, Kluwer Academic Publishers. Boston, MA.

76. Lovsz, L., 1996, Randomized Algorithms in Combinatorial Optimization,
Combinatorial Optimization, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, American Mathematical Society pp153–179

77. M. Mascolo, R. David and Y. Dallery (1991), Modelling and Analysis of As-
sembly Systems with Unreliable Machines and Finite Buffers, IIE Transac-
tions, Vol. 23, No. 4, 315–331

78. Mathar, R. and Niessen, T., 2000, Optimum positioning of base stations for
cellular radio networks, Wireless Networks 6(6), pp421–428

79. Mazzola, J. and Neebe, A., 1999, Lagrangian-relaxation-based solution proce-
dures for a multiproduct capacitated facility location problem with choice of
facility type, European Journal of Operational Research 115, pp285–299

80. Modrzejewski, M. 1993. Feature selection using rough sets theory. P.B. Brazdil,
ed., Proceedings of the European Conference on Machine Learning. Vienna,
Austria. 213–226.

81. Mirchandani, P. and Francis, R., 1990, Discrete Location Theory, John Wiley
and Sons, Inc.

82. Mitchell, J., 2000, Branch-and-Cut Algorithms for Combinatorial Optimiza-
tion Problems, to appear in the Handbook of Applied Optimization, Oxford
University Press

83. Nair, S.K., L.S. Thakur, and K. Wen, “Near Optimal Solutions for Product
Line Design and Selection: Beam Search Heuristics,” Management Science 41,
767–785 (1995).

84. Narandra, P.M., K. Fukunaga. 1977. A branch and bound algorithm for feature
subset selection. IEEE Transactions on Computers 26 917–922.

85. Neebe, A. and Rao, M., 1983, An Algorithm for the Fixed-Charge Assign-
ing Users to Sources Problem, Journal of Operational Research Society 34,
pp1107–1113

86. Norking, W.I., Y.M. Ermoliev, and A. Ruszczyński. 1998. “On Optimal Allo-
cation of Indivisables Under Uncertainty,” Operations Research, 46, 381–395.

87. Ólafsson, S. 1999. Iterative ranking and selection for large-scale optimization.
Proceedings of the 1999 Winter Simulation Conference. Phoenix, AZ. 479–485.

88. Ólafsson, S. and L. Shi. 1999. “Optimization via Adaptive Sampling and Re-
generative Simulation,” in P.A. Farrington, H.B. Nembhard, D.T. Sturrock,
and G.W. Evans (eds.), Proceedings of the 1999 Winter Simulation Confer-
ence, 666–672.

252 References

89. Ólafsson, S. and L. Shi, “A Method for Scheduling in Parallel Manufacturing
Systems with Flexible Resources,” IIE Transactions, 32, 135–142, (2000).

90. Ólafsson, S., L. Shi. 2002. Ordinal comparison via the nested partitions
method. Journal of Discrete Event Dynamic Systems 12 211–239.

91. Pinedo, M. (1995) Scheduling: Theory, Algorithms, and Systems. Prentice-
Hall, Englewood Cliffs.

92. Pirkul, H. and Jayaraman, V., 1996, Production, Transportation, and Distri-
bution Planning in a Multi-Commodity Tri-Echelon System, Transportation
Sciences 30(4), pp291–302.

93. S. G. Powell and D. F. Pyke (1998), Buffering Unbalanced Assembly Systems,
IIE Transactions, Vol. 30, 55–65.

94. Quinlan, J.R. 1986. Induction of decision trees. Machine Learning 1 81–106.
95. N. P. Rao (1976), A Generalization of the Bowl Phenomenon in Series Produc-

tion Systems, International Journal of Production Research, Vol. 14, No. 4,
437–443

96. C.R.Reeves (Editors)(1993), Modern Heuristic Techniques for Combinatorial
Problems, Blackwell Scientific publications, Oxford

97. Santos, C., Zhu, X., and Crowder, H., 2002, A Mathematical Optimiza-
tion Approach for Resource Allocation in Large Scale Data Centers, Techni-
cal Report HPL-2002-64(R.1), Intelligent Enterprise Technologies Laboratory
HP Laboratories Palo Alto, http://www.hpl.hp.com/techreports/2002/HPL-
2002-64R1.pdf

98. Shi, L. and S. Ólafsson. 2000a. “Nested Partitions Method for Global Opti-
mization,” Operations Research, 48, 390–407.

99. Shi, L. and S. Ólafsson. 2000b. “Nested Partitions Method for Stochastic Op-
timization,” Methodology and Computing in Applied Probability, 2, 271–291.

100. —–, S. Ólafsson, and N. Sun, “New Parallel Randomized Algorithms for the
Traveling Salesman Problem,” Computers & Operations Research 26, 371–394
(1999).

101. L. Shi and S. Olafasson and Q. Qun (1999), A New Hybrid Optimization
Algorithm, Computer and Industrial Engineering, Vol. 36, 409–426.

102. Shih, Y.-S. 1999. Families of splitting criteria for classification trees. Statistics
and Computing 9 309–315.

103. Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., 2000, Designing and Man-
aging The Supply Chain, Irwin McGraw-Hill

104. Skalak, D. 1994. Prototype and feature selection by sampling and random
mutation hill climbing algorithms. Proceedings of the Eleventh International
Machine Learning Conference. Morgan Kaufmann, New Brunswick, NJ. 293–
301.

105. V.J.R.Smith et al (1996), Modern Heuristic Search Methods, John Wiley and
Sons, Chichester

106. So, K.C. (1990) Some Heuristics for Scheduling Jobs on Parallel Machines
with Setups. Management Science, 36, 467–75.

107. K. C. So (1997), Optimal Buffer Allocation Strategy for Minimizing Work-
in-Process Inventory in Unpaced Production Lines, IIE Transactions, Vol. 29,
81–88

108. Tang, Z.B. 1994. “Adaptive Partitioned Random Search to Global Optimiza-
tion,” IEEE Transactions on Automatic Control, 39, 2235–2244.

109. Trick, M.A. (1994) Scheduling Multiple Variable-Speed Machines. Operations
Research, 42, 234–48.

References 253

110. Van Wassenhove, L.H. and Baker, K.R. (1982) A Bicriterion Approach to Time
Cost Trade-Offs in Sequencing. European Journal of Operational Research, 11,
48–54.

111. Vickson, R.G. (1980) Choosing the Job Sequence and Processing Times to
Minimize Processing Plus Flow Cost on a Single Machine. Operations Re-
search, 28, 1115–67.

112. G. A. Vouros and H. T. Papadopoulos (1998), Buffer Allocation in Unreliable
Production Lines Using a Knowledge Based System, Computers and Opera-
tions Research, Vol. 25, No.12, 1055–1067

113. Witten I.H., E. Frank, L. Trigg, M. Hall, G. Holmes, S.J. Cunning-
ham. 1999. Weka: Practical machine learning tools and techniques with
Java implementations. N. Kasabov, K. Ko, eds., Proceedings of the
ICONIP/ANZIIS/ANNES’99 International Workshop: Emerging Knowledge
Engineering and Connectionist-Based Information Systems. Dunedin, New
Zealand. 192–196.

114. Wolsey, L., 1998, Integer Programming, John Wiley & Sons, Inc.
115. Xie, X.L. 1997. “Dynamics and Convergence Rate of Ordinal Comparison of

Stochastic Discrete Event Systems,” IEEE Transactions on Automatic Con-
trol, 42, 586–590.

116. H. Yamashita and T. Altiok (1998), Buffer Capacity Allocation for a Desired
Throughput in Production Lines, IIE Transactions, Vol. 30, 883–891.

117. Yan, D. and H. Mukai. 1992. “Stochastic Discrete Optimization,” SIAM Jour-
nal Control and Optimization, 30, 594–612.

118. Yang, J., V. Honavar. 1998. Feature subset selection using a genetic algorithm.
H. Motada, H. Liu, eds, Feature Selection, Construction, and Subset Selection:
A Data Mining Perspective. Kluwer, New York. 117–136.

119. Zufryden, F., “A Conjoint-Measurement-Based Approach to Optimal New
Product Design and Market Segmentation,” in Analytical approaches to prod-
uct and market planning, A.D. Shocker (Ed.), Marketing Science Institute,
Cambridge, MA (1977).

Index

absorbing state, 37–39, 41, 42
ant colony optimization, 4, 99
assignment problem, 8

backtracking, 5, 12, 19, 20, 33, 34, 135,
142, 147, 149–151, 155

beam angle selection, 10, 14, 173–176,
179, 182, 191

bounds, 2, 3, 5, 11, 35, 36, 70–72, 74,
78, 79, 121, 161, 162, 169, 175

branch-and-bound, 2, 5, 73, 83, 109, 161
branch-and-cut, 2, 74, 170, 201

cellular manufacturing system, 108
column generation, 70, 72, 73
combinatorial optimization, 2, 4, 8, 9,

19, 93, 97, 154, 161
complimentary region, 5, 20–23, 33, 38,

59, 60, 90, 93, 95, 98–101, 120,
130, 135, 149, 168

critical path method, 7, 8, 71, 78, 80

data mining, 1, 9, 125
decision tree induction, 9
decomposition, Dantzig-Wolfe, 2, 72
domain knowledge, 5, 8, 9, 11, 12, 20,

23, 35, 36, 74, 76, 81, 102, 103
dynamic programming, 74

feature selection problem, 6, 9, 26, 126

generating feasible solutions, 3, 6, 8, 13,
30, 37, 45, 51, 73, 74, 79–81, 86,

94, 103, 117, 119, 128, 166, 177,
182

genetic algorithm, 4, 6, 13, 32, 33, 36,
85, 93, 94, 100, 126, 176, 182

heuristics, 2–6, 10–13, 23, 32–36, 72,
74–77, 80, 85, 86, 90–92, 94, 96,
109, 118–120, 127, 158, 162, 165,
170, 175, 176, 181, 182, 255

improvement heuristic, 94
integer programming, 2, 11, 14, 40, 81,

82, 109, 161, 174, 175, 199, 201,
256

intensity-modulated radiation ther-
apy, 10

job scheduling problem, 108

Lagrangian dual, 72
Lagrangian relaxation, 2
local search, 119
location problems, 157
location problems, multicommodity

capacitated facility, 158

Markov chain, 37–43, 45, 48–52, 63–65
Markov chain, ergodic, 48
Markov chain, stationary distribution,

48, 50
Markov chain, transition probability, 48
master problem, 72
mathematical programming, 2, 6, 8,

11–13, 23, 31, 35, 69, 70, 73, 79,
80, 83, 127, 161, 199

256 Index

maximum depth, 20
metaheuristics, 4, 5, 13, 69, 73, 92, 97,

99, 102
mixed integer programming, 69
mixed integer programming, 45, 161
most promising region, 5, 20–23, 26,

30, 31, 34, 35, 37, 40, 47–49, 57,
59–61, 89, 90, 93, 95, 96, 98, 99,
101, 116, 119, 128, 130, 131, 134,
135, 152, 168, 187

nested partitions method, 1, 2, 4–6, 8,
10–15, 19, 21–25, 28–31, 33–35,
40, 45–52, 57–59, 69, 70, 72–76,
79–83, 85, 87, 90–93, 97, 102, 103,
113, 120, 121, 135, 137, 138, 141,
142, 147, 154, 155, 162, 170, 171,
173, 174, 177, 182, 187, 191, 196

nested partitions method, hybrid, 6, 33,
85, 94, 162

nested partitions method, hybrid
NP/ACO, 100

nested partitions method, hybrid
NP/Tabu, 98

nested partitions method, knowledge-
based, 6, 102

nested partitions method, pure, 5, 22
nested partitions method, two-stage,

60, 61
neural network, 9
non-linear programming, 81
NP-hard, 7, 24, 78, 87, 109

optimization, continuous, 45
optimization, large-scale, 44
ordinal optimization, 57, 58

partitioning, 5, 6, 9–15, 20–26, 28–31,
34, 37–40, 45, 47, 51, 52, 54, 60,
70, 74–77, 79, 82, 83, 86, 91, 92,
94, 98, 100, 102, 103, 113–117,
119, 127, 132, 139, 141, 142, 150,
152, 154, 167, 177, 180, 181, 187,
197, 198, 212

partitioning, generic, 23
partitioning, intelligent, 23, 25, 26, 28,

29, 38, 103, 127, 139, 213
PMFRS problem, 109, 113, 121
principle of optimality, 75

probability of correct selection, 62, 93
product design problem, 87, 89
project scheduling, resource

constrained, 80
project scheduling, resource-

constrained, 6, 7, 77
promising index, 12, 20–23, 35, 36, 45,

46, 49, 58, 61, 69, 74, 81, 83, 90,
94, 99, 101, 182, 187, 217

promising index, estimating, 147

radiation treatment planning, 6, 10
random sampling, 5, 6, 8, 20, 22, 29, 30,

34, 36, 50, 59, 80, 82, 90, 92, 98,
100, 119, 147, 149, 155, 199, 201

random sampling, biased, 128
random sampling, uniform, 31
random sampling, 8, 20, 117
random sampling, biased, 30, 79, 117,

166, 201
random sampling, local search, 32
random search, 4, 13, 92–94, 97, 132
random search, point-to-point, 93, 97
random search, population-based, 93, 99
ranking and selection, 59
region, depth, 20, 22
region, most promising, 5, 19–23, 26,

30, 31, 34, 35, 37, 40, 47–49, 57,
59, 61, 89, 90, 93, 95, 96, 98, 99,
101, 116, 119, 128, 130, 131, 134,
135, 152, 168, 187

relaxation, 2, 70, 71
relaxation, Lagrangian, 2, 3, 14, 35, 72,

158, 161, 162, 170
relaxations, linear programming, 71
restricted master problem, 73
Rinott’s procedure, 59, 62

sampling, 5, 6, 8, 10, 13, 21, 22, 26,
29–34, 36, 45, 48, 50, 54, 55, 57,
59, 60, 74, 76, 79–83, 86, 89, 90,
92, 98, 100, 117–120, 128, 130, 135,
147–149, 152–155, 171, 177, 181,
182, 187, 199, 201, 215, 216, 256

sampling, biased, 166, 216
sampling, two-stage, 33, 59
scheduling problem, 107, 108
scheduling, parallel machines, 107
simulation, 60

Index 257

stopping rule, 67, 68
subregion, 5, 20–26, 29, 30, 39, 40,

49, 57, 59–61, 75–77, 85, 89, 90,
93–95, 98–101, 114–116, 120, 130,
135, 168, 177, 182

supply chain problems, 157
support vector machine, 9

tabu search, 4, 6, 13, 85, 97–100, 158

transition probability, 52

travelling salesman problem, 8, 23, 99

valid region, 20–22, 35–37, 39, 41, 45,
46, 49, 50, 52, 57, 58, 81, 89

Early titles in the
INTERNATIONAL SERIES IN OPERATIONS RESEARCH
& MANAGEMENT SCIENCE

Frederick S. Hillier, Series Editor, Stanford University

Saigal/ A MODERN APPROACH TO LINEAR PROGRAMMING
Nagurney/ PROJECTED DYNAMICAL SYSTEMS & VARIATIONAL INEQUALITIES WITH

APPLICATIONS
Padberg & Rijal/ LOCATION, SCHEDULING, DESIGN AND INTEGER PROGRAMMING
Vanderbei/ LINEAR PROGRAMMING
Jaiswal/ MILITARY OPERATIONS RESEARCH
Gal & Greenberg/ ADVANCES IN SENSITIVITY ANALYSIS & PARAMETRIC PROGRAMMING
Prabhu/ FOUNDATIONS OF QUEUEING THEORY
Fang, Rajasekera & Tsao/ ENTROPY OPTIMIZATION & MATHEMATICAL PROGRAMMING
Yu/ OR IN THE AIRLINE INDUSTRY
Ho & Tang/ PRODUCT VARIETY MANAGEMENT
El-Taha & Stidham/ SAMPLE-PATH ANALYSIS OF QUEUEING SYSTEMS
Miettinen/ NONLINEAR MULTIOBJECTIVE OPTIMIZATION
Chao & Huntington/ DESIGNING COMPETITIVE ELECTRICITY MARKETS
Weglarz/ PROJECT SCHEDULING: RECENT TRENDS & RESULTS
Sahin & Polatoglu/ QUALITY, WARRANTY AND PREVENTIVE MAINTENANCE
Tavares/ ADVANCES MODELS FOR PROJECT MANAGEMENT
Tayur, Ganeshan & Magazine/ QUANTITATIVE MODELS FOR SUPPLY CHAIN MANAGEMENT
Weyant, J./ ENERGY AND ENVIRONMENTAL POLICY MODELING
Shanthikumar, J.G. & Sumita, U./ APPLIED PROBABILITY AND STOCHASTIC PROCESSES
Liu, B. & Esogbue, A.O./ DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES
Gal, T., Stewart, T.J., Hanne, T. / MULTICRITERIA DECISION MAKING: Advances in MCDM Models,

Algorithms, Theory, and Applications
Fox, B.L. / STRATEGIES FOR QUASI-MONTE CARLO
Hall, R.W. / HANDBOOK OF TRANSPORTATION SCIENCE
Grassman, W.K. / COMPUTATIONAL PROBABILITY
Pomerol, J-C. & Barba-Romero, S. / MULTICRITERION DECISION IN MANAGEMENT
Axsäter, S. / INVENTORY CONTROL
Wolkowicz, H., Saigal, R., & Vandenberghe, L. / HANDBOOK OF SEMI-DEFINITE PROGRAMMING:

Theory, Algorithms, and Applications
Hobbs, B.F. & Meier, P. / ENERGY DECISIONS AND THE ENVIRONMENT: A Guide to the Use of

Multicriteria Methods
Dar-El, E. / HUMAN LEARNING: From Learning Curves to Learning Organizations
Armstrong, J.S. / PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners
Balsamo, S., Personé, V., & Onvural, R./ ANALYSIS OF QUEUEING NETWORKS WITH

BLOCKING
Bouyssou, D. et al. / EVALUATION AND DECISION MODELS: A Critical Perspective
Hanne, T. / INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING
Saaty, T. & Vargas, L. / MODELS, METHODS, CONCEPTS and APPLICATIONS OF THE ANALYTIC

HIERARCHY PROCESS
Chatterjee, K. & Samuelson, W. / GAME THEORY AND BUSINESS APPLICATIONS
Hobbs, B. et al. / THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT

MODELS
Vanderbei, R.J. / LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed.
Kimms, A. / MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR

SCHEDULING PROJECTS

Baptiste, P., Le Pape, C. & Nuijten, W. / CONSTRAINT-BASED SCHEDULING
Feinberg, E. & Shwartz, A. / HANDBOOK OF MARKOV DECISION PROCESSES: Methods and

Applications
Ramı́k, J. & Vlach, M. / GENERALIZED CONCAVITY IN FUZZY OPTIMIZATION AND DECISION

ANALYSIS
Song, J. & Yao, D. / SUPPLY CHAIN STRUCTURES: Coordination, Information and Optimization
Kozan, E. & Ohuchi, A. / OPERATIONS RESEARCH/ MANAGEMENT SCIENCE AT WORK
Bouyssou et al. / AIDING DECISIONS WITH MULTIPLE CRITERIA: Essays in Honor of Bernard Roy
Cox, Louis Anthony, Jr. / RISK ANALYSIS: Foundations, Models and Methods
Dror, M., L’Ecuyer, P. & Szidarovszky, F. / MODELING UNCERTAINTY: An Examination of Stochastic

Theory, Methods, and Applications
Dokuchaev, N. / DYNAMIC PORTFOLIO STRATEGIES: Quantitative Methods and Empirical Rules for

Incomplete Information
Sarker, R., Mohammadian, M. & Yao, X. / EVOLUTIONARY OPTIMIZATION
Demeulemeester, R. & Herroelen, W. / PROJECT SCHEDULING: A Research Handbook
Gazis, D.C. / TRAFFIC THEORY
Zhu/ QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING
Ehrgott & Gandibleux / MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated

Bibliographical Surveys
Bienstock/ Potential Function Methods for Approx. Solving Linear Programming Problems
Matsatsinis & Siskos / INTELLIGENT SUPPORT SYSTEMS FOR MARKETING DECISIONS
Alpern & Gal / THE THEORY OF SEARCH GAMES AND RENDEZVOUS
Hall/ HANDBOOK OF TRANSPORTATION SCIENCE-2nd Ed.
Glover & Kochenberger / HANDBOOK OF METAHEURISTICS
Graves & Ringuest/ MODELS AND METHODS FOR PROJECT SELECTION: Concepts from

Management Science, Finance and Information Technology
Hassin & Haviv/ TO QUEUE OR NOT TO QUEUE: Equilibrium Behavior in Queueing Systems
Gershwin et al/ ANALYSIS & MODELING OF MANUFACTURING SYSTEMS
Maros/ COMPUTATIONAL TECHNIQUES OF THE SIMPLEX METHOD
Harrison, Lee & Neale/ THE PRACTICE OF SUPPLY CHAIN MANAGEMENT: Where Theory and

Application Converge
Shanthikumar, Yao & Zijm/ STOCHASTIC MODELING AND OPTIMIZATION OF MANUFACTURING

SYSTEMS AND SUPPLY CHAINS
Nabrzyski, Schopf & Weglarz/ GRID RESOURCE MANAGEMENT: State of the Art and Future Trends
Thissen & Herder/ CRITICAL INFRASTRUCTURES: State of the Art in Research and Application
Carlsson, Fedrizzi, & Fullér/ FUZZY LOGIC IN MANAGEMENT
Soyer, Mazzuchi & Singpurwalla/ MATHEMATICAL RELIABILITY: An Expository Perspective
Chakravarty & Eliashberg/ MANAGING BUSINESS INTERFACES: Marketing, Engineering, and

Manufacturing Perspectives
Talluri & van Ryzin/ THE THEORY AND PRACTICE OF REVENUE MANAGEMENT
Kavadias & Loch/ PROJECT SELECTION UNDER UNCERTAINTY: Dynamically Allocating Resources

to Maximize Value
Brandeau, Sainfort & Pierskalla/ OPERATIONS RESEARCH AND HEALTH CARE: A Handbook of

Methods and Applications
Cooper, Seiford & Zhu/ HANDBOOK OF DATA ENVELOPMENT ANALYSIS: Models and Methods
Luenberger/ LINEAR AND NONLINEAR PROGRAMMING, 2nd Ed.
Sherbrooke/ OPTIMAL INVENTORY MODELING OF SYSTEMS: Multi-Echelon Techniques, Second

Edition
Chu, Leung, Hui & Cheung/ 4th PARTY CYBER LOGISTICS FOR AIR CARGO
Simchi-Levi, Wu & Shen/ HANDBOOK OF QUANTITATIVE SUPPLY CHAIN ANALYSIS: Modeling in

the E-Business Era

∗ A list of the more recent publications in the series is at the front of the book∗

