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  Pref ace   

 A great deal of progress has been made in the past couple of decades with regard to 
research and publications focused on technical and methodological aspects of plan-
ning and analyzing adaptive design. The major impetus behind the interest in the 
use of adaptive designs is the increased effi ciency they offer, resulting in savings of 
cost and time, ultimately getting drugs to patients sooner. However, the adoption of 
adaptive designs in clinical development has been relatively low, approximately 
20 % in recent years, according to a survey conducted by Tufts Center for the Study 
of Drug Development. One of the chief reasons for this has been the increased com-
plexity of adaptive trials compared to traditional trials. Barriers, some perceived and 
some real, to the use of clinical trials with adaptive features still persist, and these 
may include, but are not limited to, the concerns about the integrity of study design 
and conduct, the risk of regulatory acceptance, the need for an advanced infrastruc-
ture for complex randomization and clinical supply scenarios, change management 
for process and behavior modifi cations, extensive resource requirements for the 
planning and design of adaptive trials, and the potential to relegate key decision 
makings to outside entities (such as Data Monitoring Committees). There have been 
limited publications on practical considerations and recommendations on adaptive 
trial designs and suggestions regarding best practices and solutions on implementa-
tion to address these real or perceived barriers. 

 This book aims to fi ll this publication void and serves as a resource for trialists 
who wish to consider adaptive trials in their clinical development programs, pro-
viding them with guidance on practical considerations for adaptive trial design and 
implementation. The target audience is anyone involved, or with an interest, in the 
planning and execution of clinical trials, in particular, statisticians, clinicians, 
pharmacometricians, clinical operation specialists, drug supply managers, infra-
structure providers working in academic or contract research organizations, gov-
ernment, and industry. Our goal for this book is to provide, to the extent possible, 
a balanced and comprehensive coverage of practical considerations for adaptive 
trial design and implementation. 
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 This book is comprised of three parts: Part I focuses on practical considerations 
from a design perspective, Part II delineates practical considerations related to the 
implementation of adaptive trials, and Part III presents a rich collection of practical 
case studies. 

 Part I includes a total of ten chapters. Chapter   1     discusses the need for and the 
future of adaptive designs in clinical development. Regulatory guidance documents 
on adaptive designs have been released by the European Medicines Agency (EMA) 
and US Food and Drug Administration (US FDA). Chapters   2     and   3     discuss key 
points in these two guidance documents from industry and regulatory perspectives, 
respectively. Improving clinical development effi ciency starts at the program level. 
To provide trialists with the tools to strategically consider their clinical development 
plans, Chap.   4     describes adaptive program concepts and illustrates the effi ciency of 
complex strategies for clinical program development through a case study, while 
Chap.   5     provides optimal Go/No Go decisions for clinical development. To provide 
guidance to practitioners on key issues associated with interim analyses, Chap.   6     
presents a comprehensive and balanced discussion on optimal timing and frequency 
of interim analyses, including logistic and regulatory considerations. Adaptive 
design approaches provide greater effi ciency, as compared to traditional design 
approaches, with regard to dose fi nding and optimal dose selection. The main statis-
tical methods available for planning and analysis of adaptive designs in Phase I, II, 
and III are covered in Chap.   7    . Chapter   8     provides a review of currently available 
simulation software tools, discussing detailing their specifi c features. Often evalua-
tion of an adaptive design approach for a trial requires careful examination of ran-
domization needs. Randomization challenges in adaptive design trials, and 
randomization techniques that help addressing these challenges, are described in 
Chap.   9    . Chapter   10     discusses response-adaptive randomization, including regula-
tory concerns and recommendations for the path forward. 

 As reported in the DIA Adaptive Design Scientifi c Working Group (ADSWG) 
2012 survey, the key barriers for the broader adoption of adaptive trials in clinical 
development include the lack of experience with and knowledge in the implementa-
tion of adaptive designs, along with a lack of appropriate processes and infrastruc-
ture to support effi cient trial execution. Part II of the book deals with these issues in 
Chaps.   11     through   16    . Chapter   11     highlights operational challenges that must be 
taken into consideration when conducting an adaptive trial and provides strategies 
for effi cient execution of an adaptive design trial. Similarly, Chap.   12     illustrates vari-
ous operational challenges via a case study, while Chap.   13     discusses logistic and 
operational challenges with a focus on IT and infrastructure improvement. A particu-
larly critical issue for adaptive clinical trials, with potentially great impact on how 
large a role this type of studies will play in confi rmatory stages of clinical develop-
ment, involves the processes by which accruing data are collected and analyzed, and 
adaptation decisions are made and implemented. Chapter   14     discusses who should 
be involved in data review for adaptation decisions, how the data fl ow and access to 
results should be controlled, and the specifi c role that Data Monitoring Committees 
might play in this process. Drug supply and patient recruitment play critical roles in 
the ultimate success of adaptive trial execution. Chapters   14    ,   15    , and   16     cover, 
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respectively, the roles that modeling and simulation may play in successfully plan-
ning and carrying out clinical supply and patient recruitment strategies. 

 Putting it all together, Part III, featuring Chaps.   17     through   20    , presents four 
illustrative case studies ranging from description and discussion of various specifi c 
adaptive trial design considerations to the logistic and regulatory issues faced in trial 
implementation. The solutions to practical challenges and recommended best prac-
tices, along with the rest of the chapters in the book, should equip clinical trialists 
with the much needed toolkit to embark on their journey to effi cient adaptive trial 
design and implementation. 

 We would like to express our sincerest gratitude to all of the contributors who 
made this book possible. They are the leading experts in adaptive trial design and 
implementation from industry, regulatory and academia. Their in-depth discussions, 
thought-provoking considerations, and abundant advice based on a wealth of expe-
rience make this book unique and valuable for a wide range of audiences. We hope 
that you will fi nd this book helpful as well. We would also like to thank Marc 
Strauss of Springer Science and Business Media for giving us the idea for this book 
and for providing us with the opportunity for publication. Thanks also go to Jonathan 
Gurstelle and Hannah Bracken, both of Springer Science and Business Media, for 
their patience and help in guiding us through the production phase of the book. 
Finally, our immense thanks go out to our families for their unfailing support.  

  Rahway, NJ, USA     Weili     He   
 Raritan, NJ, USA     José     Pinheiro   
 Rahway, NJ, USA     Olga     M.     Kuznetsova    
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    Abstract     There has been much progress in the development and implementation of 
adaptive designs over the past 20 years. A major driver for this class of novel designs 
is to increase the information value of clinical trial data to enable better decisions, 
leading to more effi cient drug development processes and improved late-stage suc-
cess rates. In this chapter, we review common types of adaptive designs that have 
been developed and the frequently encountered challenges associated with their 
implementations. We discuss reasons why, in our opinion, the interest in adaptive 
designs will continue to rise. Furthermore, we describe what still needs to be done 
to move adaptive designs into our standard toolbox of design options. We empha-
size the importance to implement adaptive designs with thorough upfront planning. 
The business case mandates that we treat the opportunities offered by adaptive 
designs carefully so that we can successfully foster a broad acceptance of properly 
designed and executed adaptive designs, when they represent the best design options 
based on their performance characteristics to address the need of a particular 
situation.  

  Keywords     Adaptive randomization design   •   Adaptive dose–response design   • 
  Group sequential design   •   Sample size re-estimation   •   Software development   • 
  Treatment selection design  

    Chapter 1   
 The Need for and the Future of Adaptive 
Designs in Clinical Development 

             Christy     Chuang-Stein      and     Frank     Bretz    

        C.   Chuang-Stein      (*) 
     Pfi zer Inc ,   5857 Stoney Brook Road ,  Kalamazoo ,  MI   49009 ,  USA   
 e-mail: Christy.j.Chuang-Stein@pfi zer.com   

    F.   Bretz      
     Novartis Pharma AG ,   WSJ-27.1005 ,  4002   Basel ,  Switzerland   
 e-mail: Frank.Bretz@novartis.com  

mailto:Christy.j.Chuang-Stein@pfizer.com
mailto:Frank.Bretz@novartis.com


4

1.1         Introduction 

 The fi rst decade of the twenty-fi rst century saw a great interest in the research and 
implementation of adaptive designs in clinical trials to support product develop-
ment. A major driver for this was the observation that the confi rmatory trials were 
failing at an alarmingly high rate. The rate was allegedly to be between 50 % and 
60 %. While safety issues contributed to the high failure rate, a majority of the fail-
ures occurred because of the inability to demonstrate the benefi t of the new treat-
ment over the comparator in a superiority trial setting (Milligan et al.  2013 ). The 
fi nding prompted many to conduct root cause analyses and look for solutions to 
reduce the failure rate. This effort led to the investigation of alternative designs that 
may allow trialists to critically examine the design features, especially the assump-
tions underlying a design, and modify certain aspects of the design in a prespecifi ed 
manner while the trial is ongoing. 

 The desire for alternative designs led researchers to look beyond group sequen-
tial designs (GSD) which became popular for trials of mortality or major morbidity 
endpoints in the 1990s (Jennison and Turnbull  2000 ). A GSD allows a study to be 
stopped early for effi cacy or lack thereof. A traditional GSD does not allow chang-
ing design features such as sample sizes or the primary study population once the 
study is started. 

 Other than GSDs, the most noted early research on adaptive designs focused on 
sample size re-estimation, both in a blinded (i.e., not using treatment assignment 
information) and an unblinded (i.e., using treatment assignment information) man-
ner (Wittes and Brittain  1990 ; Cui et al.  1999 ; Gould  2001 ; Friede and Kieser  2001 ; 
Kieser and Friede  2003 ; Proschan  2005 ; Chuang-Stein et al.  2006 ). The former is a 
response to inaccurate assumptions on the variability associated with a continuous 
endpoint or an assumed event rate for a binary endpoint among those who received 
the control treatment in the enrolled population. By comparison, the unblinded sam-
ple size re-estimation is in response to an assumed treatment effect that is overly 
optimistic judged by the interim data collected in the study. As a result, the trial 
sponsor may wish to increase the sample size so that the study has a reasonable 
chance to detect a smaller, and still clinically meaningful, treatment effect. The 
resulting designs include proper statistical analysis that controls the overall type I 
error rate and addresses the estimation of the treatment effect. 

 Even early on, researchers of adaptive designs realized the importance of opera-
tional support needed to implement these designs. This is so because an adaptive 
trial requires (1) availability of fi t-for-use interim data in a timely manner to enable 
adaptation decisions, (2) a committee to oversee the decision process for the pro-
posed adaptations, and (3) a proper communication channel by which major deci-
sions could be relayed back to the sponsor or the study team. The absence of a well 
laid-out process with tight control could introduce operational bias to an adaptive 
trial. These considerations have led many to propose procedures that focus on the 
execution of adaptive trials (Gallo  2006a ,  b ; Quinlan and Krams  2006 ; Gaydos et al. 
 2009 ; Antonijevic et al.  2013 ). 
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 The research on sample size re-estimation started the trend of using simulation 
to thoroughly evaluate study designs for their performance characteristics. As 
efforts to look for alternative designs gathered momentum, clinical trialists realized 
that another major factor contributing to the high failure rate is the suboptimal 
choice of dose(s) from the dose–response study in phase II (Antonijevic  2009 ). 
A traditional dose–response study typically includes three doses with a concurrent 
control. Patients are randomized to the four treatment groups in fi xed ratios through-
out the study. At the end of the study, each dose is compared with the control to 
decide if it is worthy of further testing in phase III trials. This practice depends criti-
cally on our ability to include relevant doses that are in the appropriate range of the 
dose–response curve in the phase II dose–response study. Experience has shown 
that this has not always been the case. In fact, many dose–response studies had to be 
repeated with lower doses, a higher dose or doses between two previously chosen 
doses. Realizing the value of a more quantitative product development process 
(Kowalski et al.  2007 ), researchers began to advocate including more doses in a 
dose–response study and conducting model-based analyses to identify the mini-
mum effective dose (Milligan et al.  2013 ). 

 Because dose–response studies focus more on estimation than testing, their 
designs allow more fl exibility in which methods to use and are less concerned with 
type I error rate control. In fact, dose–response studies have proven to be the most 
fertile ground for adaptive designs (Bornkamp et al.  2007 ; Pinheiro et al.  2010 ). 
Proposed adaptations for these studies include modifying randomization ratio of 
patients to doses based on interim results, introducing new doses or dropping exist-
ing doses. The analysis as well as the decision criteria for progressing the com-
pound to phase III development could be based on either the Bayesian or the 
frequentist approaches. 

 The logical progression of innovation in study designs took another forward step 
when researchers advocated the need to consider studies in the exploratory phase 
together with those in the confi rmatory phase in an integrated manner (Julious and 
Swank  2005 ; Bretz et al.  2009a ). They argued that while each study has its unique 
role in supporting product development and approval, studies need to be planned 
together so that the information produced by distinct studies fi ts together to tell a 
complete story. This observation has motivated active research to assess adaptivity 
at the program level. Metrics used to compare phase II designs under this new para-
digm include the probability of a successful phase III trial (Antonijevic et al.  2010 ) 
and the expected net present value of the product (Patel et al.  2012 ). 

 Common interests among statisticians supporting clinical trials in adaptive 
designs led to the formation of the Adaptive Designs Working Group (ADWG) in 
the spring of 2005 under the auspices of the Pharmaceutical Research and 
Manufactures of America (PhRMA). The initial objectives of the group were to 
foster and facilitate wider usage and regulatory acceptance of adaptive designs to 
enhance clinical development through fact-based evaluation of the benefi ts and 
challenges associated with these designs (Gallo et al.  2006 ). Since 2005, ADWG 
has sponsored workshops, presentations and publications. Members of the group 
have also reached out to regulators to discuss best adaptive design practice and 
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share experience from implementing adaptive designs (Enas et al.  2008 ; 
 Chuang- Stein et al.  2009 ). Early interactions with regulators for confi rmatory trials 
were considered especially important because regulatory buy-in was essential for 
these trials. In addition, the increasing trend of conducting multiregional trials to 
satisfy marketing authorization requirements in multiple regions implied that we 
needed regulators to hold similar views on this new class of designs. 

 Since its inception, ADWG ran multiple workstreams concurrently. Some earlier 
workstreams such as regulatory interactions and desirable features of software to 
support modeling and simulation were sunset after the workstreams had completed 
the planned activities. Other workstreams have spanned over many years. The most 
noted long-running activity has been the monthly key opinion leader lecture series. 
Early lectures focused on theory behind adaptive designs. Over time, the lectures 
have moved to case studies of adaptive trials. The sponsorship of ADWG was offi -
cially transitioned from PhRMA to the Drug Information Association (DIA) in 
2010. The name of the group was changed to Adaptive Design Scientifi c Working 
Group (ADSWG) after the transition. ADSWG remained active with additional new 
workstreams such as adaptive program, precision medicine and portfolio evalua-
tion. A survey workstream repeated a survey (Jorgens-Coburger  2012 ) previously 
reported by Quinlan et al. ( 2010 ). The repeat survey showed the uptake in adaptive 
designs, not just by pharmaceutical sponsors, but also by academic institutions. The 
survey also showed a clear increase in the use of adaptive designs in all phases of 
drug development. 

 The interest in adaptive trials has led the European Medicines Agency to issue a 
refl ection paper on adaptive designs in 2007 (CHMP  2007 ). In the US, the Food and 
Drug Administration issued a draft guidance in February 2010 ( US FDA 2010 ) for 
the public to comment. EMA’s refl ection paper focuses primarily on confi rmatory 
trials while FDA draft guidance covers trials in both the exploratory and the confi r-
matory space. At the time this chapter was fi nalized (February 2014), the FDA has 
yet to fi nalize its draft guidance on adaptive designs. 

 The advent of personalized medicine has offered another application of adaptive 
designs because changing the primary patient population is an adaptive feature. 
Research work supporting this aspect of adaptation has initially focused on oncol-
ogy trials (Wang et al.  2007 ; Brannath et al.  2009 ). It will undoubtedly expand to 
other disorders where there are good clinical and biological rationales for choosing 
specifi c subgroups. We will describe the role that adaptive designs can play in help-
ing deliver personalized medicine in Sect.  1.3 . 

 In the next section, we will give a high-level overview of the advancements in 
adaptive designs. In Sect.  1.3 , we will argue why interest in adaptive designs will 
continue to rise. While research on adaptive designs has made signifi cant progress 
in recent years (Bretz et al.  2009a ; Gaydos et al.  2009 ), there remains much work to 
do to turn theory into practice. We will describe such work in Sect.  1.4 . 

 We have confi dence that statisticians, with their expertise and collaborative 
spirit, will take a leadership role in making adaptive designs part of the design arma-
mentarium for clinical trials in the twenty-fi rst century.  
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1.2      Advancements in Adaptive Designs 

 In this section we describe major types of adaptive designs used at different phases 
of drug development and link them to topics covered in the various chapters of this 
book. A detailed taxonomy of adaptive designs in the context of clinical develop-
ment is given in Dragalin ( 2006 ). An overview of applications of adaptive designs 
throughout drug discovery and development is given by Bretz et al. ( 2009b ). We 
also discuss advancements in the implementation and tool development for adaptive 
trials. We offer two examples of confi rmatory adaptive trials. 

1.2.1     Types of Adaptive Designs 

1.2.1.1     Adaptive Randomization Designs 

 One of the earliest types of adaptive designs described in the literature is adaptive 
randomization which allows changing the treatment randomization probabilities 
during an ongoing study. Adaptive randomization can be grouped into four catego-
ries (Hu and Rosenberger  2006 ): (1) Restricted randomization, where the allocation 
probability is conditional on past treatment assignments, such as the biased coin 
design from Efron ( 1971 ); (2) covariate-adaptive randomization, where the alloca-
tion probability is conditional on past treatment assignments, covariates and the 
covariate vector of the current patient, such as the minimization design from Pocock 
and Simon ( 1975 ); (3) response-adaptive randomization, where the allocation 
 probability is conditional on past treatment assignments and responses, such as the 
randomized play-the-winner rule from Wei and Durham ( 1978 ); and (4) covariate-
adjusted response-adaptive randomization that combines covariate- adaptive and 
response-adaptive randomization. For a recent overview of adaptive randomization 
we refer readers to Rosenberger et al. ( 2012 ). 

 To motivate the use of adaptive randomization techniques in clinical practice, 
consider, for example, a clinical study with four important covariates: study site (20 
centers), gender (male or female), age (<65 or ≥65), and prognosis (good, poor). 
Applying stratifi ed randomization one would have to balance treatment assignment 
in each of 20 × 2 × 2 × 2 = 160 strata, which is clearly infeasible in a study of moder-
ate size. However, if marginal balance is suffi cient (i.e., balanced on the four covari-
ates individually), adaptive randomization techniques applied to the 20 + 2 + 2 + 2 = 26 
covariate levels are possible. Covariate-adaptive randomization approaches incor-
porate information on important patient baseline covariates into the randomization 
design in order to prospectively balance prognostic profi les of patients in different 
treatment groups while maintaining randomization. For a more general discussion 
of randomization challenges in adaptive design studies, we refer readers to Chap.   9    . 
Chapter   10     focuses on response-adaptive randomization designs.  
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1.2.1.2     Adaptive Dose–Response Designs 

 Another important application of adaptive designs occurs in phase I and II studies to 
estimate dose–response and/or target doses of interest. This includes Bayesian adap-
tive dose-escalation designs, such as the continual reassessment method (CRM) pro-
posed by O’Quigley et al. ( 1990 ) to estimate the maximum tolerable dose in phase I 
studies. The original CRM chooses the fi rst dose level based on some assumed 
dose–response model. After each cohort of patients, the model is updated. The 
updated model is used to calculate the probability of dose-limiting toxicity (DLT) at 
each dose of interest. The statistical dose recommendation for the next patient cohort 
is communicated to the clinical team, who decides on the next dose based on the 
statistical input as well as other relevant information (e.g., toxicities that do not 
qualify for a DLT). The basic CRM has led to much research (Garrett- Mayer  2006 ) 
and numerous extensions (Neuenschwander et al.  2008 ; Cheung  2011 ). 

 A challenge in selecting the right dose is the trade-off between desired and un- 
wanted effects. A prerequisite for informed decision and dose selection at the end of 
phase II is a solid characterization of the dose–response relationship. In the past, 
phase II dose fi nding studies were often designed using a small number of doses and 
a narrow dose-range, focusing on the upper end of the dose–response relationship. 
Only in recent years has there been a noticeable shift towards investigating the full 
dose–response range and estimating the minimum effective dose. This shift was 
partially driven by the PhRMA “Adaptive Dose-Ranging Studies” (ADRS) working 
group. The objectives of this group were to develop and evaluate novel adaptive and 
non-adaptive dose-ranging methods and to provide methodological recommenda-
tions for industry and regulatory agencies alike. 

 Extensive simulation work conducted by the ADRS working group showed that 
no single type of clinical trial design or analysis is universally best, though novel 
approaches outperform conventional designs in many plausible scenarios. 
Simulations also showed that with current phase II trial sizes, even novel dose- 
ranging approaches have non-negligible chance of making erroneous dose selec-
tion. It is clear that both the design and the amount of information to be generated 
need careful consideration. The working group also concluded that the probability 
of success was increased by including a wider range of doses in these trials. Despite 
these fi ndings, adaptive designs are not always optimal, and are not always feasible. 
Trial sponsors should maximize their success rates by employing a “toolbox” 
approach, selecting different designs for different experimental situations. Details 
on adaptive dose-ranging designs can be found in the white papers from the ADRS 
working group (Bornkamp et al.  2007 ; Pinheiro et al.  2010 ).  

1.2.1.3     Group Sequential Designs 

 Although there is a vast literature on sequential designs, with initial ideas dating 
back to the 1920s, for most clinical trials it is unrealistic to assess data after every 
observation. This restriction has led to group sequential designs (GSDs) that include 
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only a small number of interim analyses as groups of observations become  available. 
GSDs have been used for clinical trials since the 1970s (Pocock  1977 ; O’Brien and 
Fleming  1979 ) and are now standard for many long-term trials because these trials 
often include hundreds or thousands of patients and may last for several years. 
Ethical and economic reasons often mandate the conduct of interim analyses for 
these trials because: (1) patients should not be treated with a new therapy if the 
ongoing trial gives no indication of a potential benefi t associated with the new ther-
apy; (2) clinical trials should not be continued if a clear tendency favoring a particu-
lar treatment emerges. Thus, clinical trial designs that include the possibility for 
early decisions may help reduce the overall costs and timelines of the development 
while meeting the ethical obligation. 

 To properly control the type I error rate when interim analyses could result in 
early declaration of effi cacy, researchers have developed a variety of stopping pro-
cedures for different types of data (e.g., continuous, binary, survival). The theory of 
GSDs is well described in, for example, the review paper by Emerson ( 2007 ) and 
the books by Whitehead ( 1997 ), Jennison and Turnbull ( 2000 ), and Proschan et al. 
( 2006 ). GSDs have been implemented in software packages such as ADDPLAN, 
EAST, PEST and S+SeqTrial (Wassmer and Vandemeulebroecke  2006 ). Some of 
them are also described in Chap.   8    . 

 Despite their popularity, GSDs have some limitations. For example, it is neces-
sary to prespecify the required sample size for a GSD in the study protocol. While 
conceptually simple, choosing an appropriate sample size could be challenging due 
to uncertainties around nuisance parameters or the defi nition of a clinically mean-
ingful treatment difference. GSDs address the latter issue by allowing the study to 
stop early if the observed effect is larger or smaller than the effect for which the 
study was powered to detect. However, modifying the sample size for future stages 
of the trial based on the interim effi cacy information is not allowed under the tradi-
tional GSDs.  

1.2.1.4     Sample Size Re-estimation 

 Sample size re-estimation (SSR) methods have been developed since the 1990s. SSR 
allows one to adjust the sample size of the trial based on emerging interim data of the 
ongoing trial. SSR methods fall into two main categories, depending on whether the 
treatment randomization information is used (unblinded SSR) or not (blinded SSR). 
In the latter case, an SSR approach adjusts sample size that were calculated using 
assumed nuisance parameters that are judged to be erroneous from blinded data at a 
prespecifi ed interim look. Wittes and Brittain ( 1990 ) fi rst introduced this concept 
and referred such designs as internal pilot study designs. They have found that such 
designs can be used in large randomized clinical trials to assess key nuisance param-
eters (e.g., the error variance for continuous data, the response rate with binary data 
in the control group, or the accrual rate with time-to-event data) and make appropri-
ate modifi cations to the sample size with little impact on the type I error rate. 

 In contrast, unblinded SSR is based on a revised estimate of treatment effect 
using unblinded interim data. While using unblinded data could provide more 
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 accurate sample-size estimates, concerns exist over potential bias that may result 
from knowledge of observed treatment effect at interim. External data monitoring 
committees (i.e., external to the trial sponsor) are typically used to handle unblinded 
SSR for registration trials. As the type I error rate might be affected when using 
unblinded data to effectuate trial adaptations, care is necessary when conducting the 
fi nal analysis. Chapters   11     through   14     discuss blinding and unblinding issue associ-
ated with adaptive trials. 

 A common approach to control the type I error rate is the combination test prin-
ciple that combines stage-wise  p -values using a prespecifi ed combination function 
(Bauer and Köhne  1994 ). The key idea is to calculate separate test statistics from the 
samples at the different stages (e.g., before and after an interim analysis) and to 
combine them in a prespecifi ed way for the fi nal decision. Examples of such  p -value 
combination functions include Fisher’s product test and the inverse normal method 
(Lehmacher and Wassmer  1999 ; Cui et al.  1999 ). A closely related approach is 
based on the conditional error principle, which computes the conditional type I error 
rate based on the observed data at the interim analysis under the null hypothesis 
(Proschan and Hunsberger  1995 ; Müller and Schäfer  2004 ). Chapter   6     discusses at 
a strategic level the optimal timing of an interim analysis for futility and/or sample 
size re-estimation. Additional discussions on sample size re-estimation can be 
found in Chuang-Stein et al. ( 2006 ) and Friede and Kieser ( 2006 ).  

1.2.1.5     Treatment Selection Designs 

 The  p -value combination function approach and the conditional error rate princi-
ple can also be used for other types of adaptations such as changes in randomiza-
tion ratio, study population, or number of treatment arms with a strict type I error 
rate control (Hommel  2001 ; Bretz et al.  2006 ). A particularly appealing applica-
tion occurs in phase III studies with treatment selection at interim. Consider, for 
example, a phase III study that starts with several treatments and a control. At a 
prespecifi ed interim analysis, one (or more) treatment(s) would be selected 
based on the available information, external information, and expert knowledge. 
Recruitment would continue, but now patients will only be randomized to the 
selected treatment(s) with a possibly reassessed sample size. The fi nal analysis of 
the selected treatment(s) consists of patients in both stages and is performed in 
such a way that the overall type I error rate is controlled at a prespecifi ed level, 
thus providing confi rmatory evidence of effi cacy that is of the registration quality. 
Chapter   7     includes a case study of a confi rmatory treatment selection design.   

1.2.2     Implementation of Adaptive Trials 

 The overall statistical methodology to implement confi rmatory adaptive designs 
seems to be reasonably developed (Bretz et al.  2009a ). Strict type I error rate control 
is mandatory for acceptable phase III adaptive designs. This implies that the 
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experimental questions and hypotheses to be tested need to be clearly specifi ed 
upfront in the study protocol. The number of possible adaptations should be kept to 
a minimum. Explorative, hypotheses-generating adaptive designs are not acceptable 
for confi rmatory trials. 

 While adaptive designs often increase the information value given the same 
number of patients and lead to shorter overall development time and earlier access 
to effective treatments by patients, their implementations are subject to several fac-
tors such as time needed to assess treatment response, recruitment speed, proce-
dures to protect trial integrity, and drug supply management. These factors may 
hinder the smooth implementation of an adaptive trial. For example, when a trial has 
the option to terminate treatment arms or change the allocation ratio of patients to a 
set of dose groups, drug supply personnel needs to be ready to make the necessary 
adjustments to study medications. Chapter   15     discusses drug supply issues associ-
ated with adaptive trials. Similarly, accurate prediction on patient enrollment is 
critical for a timely decision because too slow or too fast patient enrollment may put 
the planned adaptations at risk. Chapter   16     discusses different models to predict 
patient recruitment patterns. 

 Increasingly, sponsors use interactive voice randomization systems (IVRS) to 
manage treatment randomization. Prespecifi ed algorithms could be built into the 
system to allow minimum sponsor intervention. Such a system requires careful 
upfront validation to ensure that the system is capable of handling the foreseeable 
scenarios. Interim results for adaptive trials are generally assessed by data moni-
toring committees that are independent of the study teams. For confi rmatory trials, 
the data monitoring committees are typically external to the trial sponsors to avoid the 
possibilities that the sponsors might subtly affect the trials if they are aware of 
the comparative interim results. Chapter   14     discusses the planning, conduct and 
monitoring of interim results. Considerations on other key operational challenges, 
such as protecting trial integrity and minimizing operational bias, are further dis-
cussed in Chaps.   11    –  13    .  

1.2.3     Other Impact of Adaptive Designs 

 The endeavors of assessing adaptive designs over the last two decades have resulted 
in a number of positive by-products. For one, the efforts have led to better integra-
tion of clinical, statistical, operational, and regulatory perspectives when designing 
a trial. This is a topic of Chap.   4    . Another important by-product is to expand the 
focus from the trial to the program level. Focusing the clinical development strategy 
at the program level means that an adaptive trial is of benefi t only if it offers more 
evidence to the overall development program than a non-adaptive counterpart. 
Chapter   5     discusses making optimal Go/NoGo decisions that incorporate cost con-
siderations at different stages of drug development. 

 A third positive impact from the adaptive design evolution is the heavy use of 
modeling and simulation techniques. In addition to adaptive designs, statisticians 
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have begun to use modeling and simulations to assess a wide range of issues 
 associated with trial designs such as missing data and multiple comparison proce-
dures. The latter has started a shift towards model-based drug development and 
more quantitative decision making. 

 In our opinion, recent advancements in adaptive designs and their by-products 
have contributed substantially to the ultimate objective of employing more effi cient 
designs and analyses in support of product development.  

1.2.4     Two Examples of Confi rmatory Adaptive Trials 

 Adaptive designs are increasingly being used in both the exploratory and the confi r-
matory settings. Bauer and Einfalt ( 2006 ) performed a literature review of clinical 
trials employing adaptive designs that employed methods like  p -value combination 
functions or conditional error rate functions. Schmidli et al. ( 2006 ) provided appli-
cations and case studies of adaptive designs addressing more complex trial objec-
tives (e.g., treatment selection, population enrichment) from their experience. 
Quinlan et al. ( 2010 ) and Jorgens-Coburger ( 2012 ) reported the results of cross- 
industry surveys, which showed a clear increase in the use of adaptive designs in all 
phases of clinical development during the time between the two surveys. In the 
following, we illustrate this trend with two examples where adaptive trials provided 
confi rmatory evidence for product approval. Further case studies of adaptive trial 
designs are presented in Chaps.   17    –  20    . 

 The fi rst example is an adaptive trial that compared latanoprost in combination 
with timolol maleate against latanoprost alone in reducing intraocular pressure. An 
unblinded sample size reestimation was planned when approximately 50 % of 
patients were half-way through an 8-week treatment period. At this interim analysis, 
conditional power to detect a difference between the combination and latanoprost 
alone, based on the interim treatment effect estimate, will be calculated. If the 
 conditional power is ≥90 %, there will be no change in the sample size. If the con-
ditional power is ≥50 % but <90 %, the sample size will be increased to obtain a 
conditional power as close as possible to 90 %, but the increase will be no greater 
than 33 % of the originally targeted sample size. If the conditional power is <50 %, 
there will be no change in the sample size and the study will continue to the sched-
uled end. This approach is based on the method in Chen et al. ( 2004 ). As stated in 
Ando et al. ( 2011 ), sample size was not increased after the interim analysis in the 
actual trial. The study was found to be positive, leading to the approval of the com-
bination of latanoprost and timolol for glaucoma and ocular hypertension. 

 The second example is a two-stage adaptive design with treatment selection at 
interim. This trial is one of two pivotal trials to support Indicaterol for marketing 
authorization for chronic obstructive pulmonary disease (COPD) (Barnes et al. 
 2011 ). The aim of the trial was to provide pivotal confi rmation of effi cacy, safety, 
and tolerability of the selected Indicaterol doses, where the dose selection is done at 
a prespecifi ed interim analysis. In the fi rst stage, patients were randomized to one of 

C. Chuang-Stein and F. Bretz

http://dx.doi.org/10.1007/978-1-4939-1100-4_17
http://dx.doi.org/10.1007/978-1-4939-1100-4_20


13

seven treatments arms (four different doses of Indicaterol, placebo and two active 
control groups). Based on the observed interim data, two Indicaterol doses were 
continued to the second stage, together with placebo and one of the two active con-
trols. The fi nal analysis compared the two selected dose groups with placebo and 
the continued active control on a prespecifi ed sequence of primary and secondary 
endpoints. Evidence from both stages was combined in the fi nal analysis, using a 
one-sided Bonferroni adjusted signifi cance level of 0.025/4 for comparing each of 
the two Indicaterol doses with the placebo in the fi nal analysis since the study 
started with four Indicaterol doses. More powerful approaches using, for example, 
 p -value combination functions or conditional error rates, could have been applied, 
but were not chosen because of the complexity of the trial design and the desire to 
test for both primary and some key secondary endpoints. 

 For the COPD study, different dose selection rules were extensively simulated in 
order to understand the operating characteristics of the rules. It is worthwhile to 
note that Bayesian decision tools or modeling approaches could have been used to 
guide the interim decision without compromising the overall type I error rate. A set 
of dose selection guidelines for a variety of possible interim scenarios was compiled 
and included in the data monitoring committee charter. The charter, however, 
allowed the data monitoring committee to deviate from these guidelines, if neces-
sary (mainly in case of unexpected results), and select doses on its own, possibly 
after consultation with senior representatives of the sponsor. In the actual trial, the 
intermediate two Indicaterol doses were selected for the second stage. Effi cacy, 
safety, and tolerability of both doses were confi rmed in the fi nal analysis of this two- 
stage adaptive trial as well in the second parallel pivotal trial. This case study is 
presented in more detail in Chap.   7    ; see also Lawrence et al. ( 2014 ).   

1.3       Why Will the Interest in Adaptive Designs 
Continue to Rise? 

 In this section, we will discuss reasons why, in our opinion, the interest in adaptive 
designs or in adaptations more generally will continue to rise. 

1.3.1     Responding to Emerging Scientifi c Knowledge 
or Regulations 

 When developing products in diseases with emerging new knowledge or regula-
tions, a sponsor needs to be able to adjust to knowledge from both within a trial and 
outside of the trial. While this fl exibility may lead to a small reduction in trial design 
effi ciency measured by the expected sample size needed for the study (Tsiatis and 
Mehta  2003 ), this trade-off is often considered worthwhile. 
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 For example, in Nov  2010 , the US FDA issued a draft guidance for 
 hospital- acquired and ventilator-associated bacterial pneumonia (HABP and 
VABP). The draft guidance sets the 28-day mortality rate as the primary endpoint. 
The draft guidance targets a patient population with an approximately 20 % mortal-
ity rate and describes a 10 % non-inferiority margin for an active control trial. The 
draft guidance also states that if the 28-day all-cause mortality rate in the active-
controlled group is lower than 20 %, a sponsor should consider using the odds ratio 
metric as the measure for assessing treatment effi cacy. In the latter case, the non-
inferiority margin expressed on the absolute difference scale will be a function of 
the mortality rate in the control group. 

 Many groups submitted comments to the agency including the Society of Critical 
Care Medicine whose comments were posted publicly on March 23rd 2011 (  http://
www.regulations.gov/#!documentDetail;D=FDA-2010-D-0589-0015    ). The society 
stated its ongoing efforts to reduce mortality in HABP/VABP patients and ques-
tioned the targeted 20 % mortality rate. They cited a study by Chastre et al. ( 2008 ) 
that reports 28-day mortality rate of 10.8 % and 9.5 % in the two treatment groups. 
The Society commented that this study was the largest clinical trial ever conducted 
of an investigational drug for ventilator-associated pneumonia (VAP). The mortality 
rate was much lower than that in prior studies, but the Society argued that it was 
representative of current VAP mortality rates in Intensive Care Units. They expressed 
a signifi cant concern that should the enrollment be expanded to include more unsta-
ble patients to increase the mortality rate in a VABP trial, the mortality rate will 
refl ect the clinical and critical care management and not the effi cacy of the antimi-
crobial being studied. The concern and uncertainty around the mortality rate and 
study population expressed by the Society means that some form of adaptation is 
necessary for a modern-day trial in HABP or VABP. 

 The need to respond to emerging information is equally compelling in areas of 
unmet medical needs. Increasingly, efforts are directed towards disease-modifying 
products. For example, with an aging population, it is highly desirable to have prod-
ucts that could delay the structural progression in osteoarthritis measured by joint 
space narrowing (i.e., disease-modifying osteoarthritis drug, DMOAD). Despite the 
existence of a pathway for a DMOAD indication, no DMOADs are currently avail-
able commercially. Similarly, many sponsors are interested in a disease-modifying 
claim for the Alzheimer’s Disease (AD) even though no guidance yet exists for such 
an indication path. In both cases, a sponsor needs to have information on the rate of 
disease progression in the placebo group (which may be enriched through inclusion 
criteria) since the treatment effect is likely measured in terms of % reduction in 
disease progression. For AD, the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI,   http://adni.loni.ucla.edu/    ) and other groups have been collecting longitudi-
nal biomarker and clinical data in elderly normal subjects and patients at various 
stages of AD. As the management of AD moves to possible interventions in popula-
tions with an early symptomatic stage of AD, but without dementia (   Aisen et al. 
 2011 ), a sponsor will need data on the rate of disease progression in this new sub-
population using validated measurements judged to be sensitive to treatment effect 
by the medical community. The latter often needs to come from the ongoing trial or 
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a recently completed trial. When facing with this type of challenge, a sponsor needs 
to stay agile in responding to emerging information, both from the internal and the 
external source. Adaptive designs offer an answer to this need.  

1.3.2     Allocating Resources to Support Multiple 
Programs in a Portfolio 

 Some critics of adaptive designs have argued that trialists should design studies to 
detect a minimum clinically important difference (MCID) and rely on early stop-
ping rules of a group sequential design to stop the study early if the treatment effect 
is substantially higher than the MCID. While this strategy is a good one from the 
expected sample size perspective, it also means that a large commitment is neces-
sary upfront to support the trial. This could be a challenge for many resource- 
constrained enterprises where many trials are competing for the same funding pool. 
Other than a few programs that are adequately funded, several programs need to 
share the remaining budget. Since programs could be terminated early for either 
safety or effi cacy, programs that are suboptimally funded initially could have a 
chance to receive additional funding later when resources allocated to terminated 
programs are redirected. In other words, development decisions are often based on 
effi ciency together with other considerations. If one insists on effi ciency and a 
large upfront commitment for each program, many programs will not have a chance 
to be initiated. 

 The need to optimize on resource allocation occurs at all levels of product devel-
opment. For example, a company may have a large exploratory portfolio. Experience 
tells us that only a very small number of candidates would have an effi cacy that 
achieves or exceeds a target value. Limited resources would preclude one from pur-
suing a large study for every candidate to determine Go versus No Go with high 
confi dence. An alternative strategy is to utilize an early signal of effi cacy design as 
a screening tool to identify most failures and some clear winners (Brown et al. 
 2012 ). The few candidates with a superior effi cacy profi le could be identifi ed 
quickly because of the smaller sample size. This, in conjunction with some good 
development planning, could enable acceleration to market. The obvious downside 
is that compounds in the Go Slow category are likely to take longer to develop if 
they are proven successful in a subsequent trial.  

1.3.3     The Journey to Targeted Therapies 

 On December 14  2012 , US FDA issued a draft guidance on “Enrichment Strategies 
for Clinical Trials to Support Approval of Human Drugs and Biological Products”. 
The draft guidance discusses a variety of strategies to select a subset of the general 
population in which the effect of a drug, if it exists, can be more readily 
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demonstrated. The strategies include investigating a new treatment in patients who 
did not respond to another treatment, patients who could not tolerate another treat-
ment or patients who have a positive (or negative) response to a biomarker assay at 
baseline. The selection of patients based on a pretreatment marker assay has become 
increasingly frequent in our search of targeted therapies, particularly for cancer 
patients where drugs block the growth and spread of cancer by interfering with 
specifi c molecules (targets) involved in tumor growth and progression. 

 When treatment effect is suspected to vary as a function of a marker status, the 
ideal situation is to have reasonable evidence for this association before conducting 
a late-stage study to confi rm a treatment effect in a subgroup defi ned by the marker 
status. Unfortunately, this is not always possible for studies where assessing treat-
ment effect on a clinical outcome such as survival may take a long time. The draft 
enrichment guidance acknowledges this challenge. It specifi cally states that entry 
criteria or sample sizes can be modifi ed for later stages of a trial if factors can be 
identifi ed that increase the event rate or treatment response (e.g., discovery that the 
enrichment factor has a greater impact on response than anticipated or that the 
patients without the enrichment factor have a very poor response). 

 One option to carry out mid-trial enrichment is to enroll all subjects regardless of 
their marker status but collect samples for marker assessment. If a preplanned 
interim analysis shows a strong treatment effect in marker-positive subjects and 
little effect in the marker-negative subjects, the study may enroll only marker- 
positive subjects for the rest of the trial and change the primary analysis population 
to marker-positive subjects. It goes without saying that under such a design, the 
study results need to be properly analyzed to control the type I error rate (Brannath 
et al.  2009 ). 

 It is possible that a trial does not restrict enrollment but specifi es multiple pri-
mary analysis populations in the fi nal analyses, one of which being a genomic sub-
set. Research work in this scenario is reported in Wang et al. ( 2007 ,  2009 ). It is also 
possible to use the same study to identify and confi rm treatment effect in a sub-
group. Freidlin and Simon ( 2005 ) proposed an adaptive signature design that uses 
genomic data collected on all randomized subjects to identify the subgroup. They 
propose to divide the study into two parts. The primary fi nal analyses consist of test-
ing the treatment effect in the overall population and also testing it based on data 
collected in the second part of the study in a subgroup identifi ed from data collected 
in the fi rst part. The allowed two-sided type-I error rate 0.05 is split so that the over-
all population is tested at the two-sided 0.04 level while the effect in the subgroup 
is tested at the 0.01 level. Jiang et al. ( 2007 ) propose an extension where the sub-
group is defi ned by a threshold value on the biomarker measurement. 

 The approvals of targeted therapies such as crizotinib for patients with ALK- 
positive advanced non-small-cell lung cancer and vemurafenib for late-stage (meta-
static) or un-resectable melanoma with the BRAF V600E mutation in 2011 by the 
FDA in the US were examples of what are surely to come as we accelerate the 
journey to personalized medicine. Information of these approvals is available at 
FDA’s Web site on approved drugs and in the labels for these two products.  
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1.3.4     Other Reasons 

 Identifying subgroups is important not only from the safety and effi cacy  perspective, 
but also from the cost-effectiveness perspective. In countries that practice social 
medicine, cost-effectiveness assessment often resulted in coverage decisions for 
subpopulations of the population for which the product is indicated. Therefore, a 
sponsor may want to conduct interim economics assessment during a phase III 
study and consider restricting patients to subgroups for the remainder of the trial 
based on cost-effectiveness considerations during the interim analysis. 

 For some confi rmatory trials with a long-term clinical endpoints, dose selection 
is often based on a short-term endpoint in a phase II study. Depending on the asso-
ciation between the short-term and long-term endpoints, adjustment to the doses 
may be necessary in the confi rmatory trial, based on early results on the long-term 
endpoint within the trial.   

1.4      What Is Still Needed to Support the Adaptive 
Design Evolution? 

 There are many situations for which more effi cient designs (compared to existing 
standards) are available but are not yet widely used. Many senior leaders in pharma-
ceutical companies hold the belief that simple, conventional and tested designs 
mean quicker development and regulatory approval. They fear that, if the proposed 
trial designs and/or development strategies deviate from the standard approaches or 
are perceived to be more complex, the proposals will face diffi culty in receiving 
regulatory endorsement even if the basis for decision-making is more robust. 
Because of this fear, it is not unusual for senior leaders within these companies to 
ask “Wouldn’t something simpler be better?” when presented with adaptive designs 
at internal review meetings. 

 We need to create a culture where clinical trial designs are selected based on 
well-informed comparisons of operating characteristics of the designs, and not on 
traditions. To effectuate this cultural change requires educating all parties involved 
in clinical trial planning on the benefi ts of novel approaches, including adaptive 
designs. Education helps increase awareness. In addition to the cultural hurdle, it 
helps solve logistical hurdles for implementation because all parties are working 
together towards a common goal. Furthermore, education stimulates the develop-
ment of software tools. While there are opportunities for further methodological 
research for adaptive designs, the most pressing need currently is a greater aware-
ness of available methods and an expanded pool of expertise and software to facili-
tate their use. 

 In most companies, the key drivers for selecting a trial design are time, cost and 
quality. Among these three, time and cost are often more infl uential than quality. 
The current drug development strategy is often determined by the “shortest path to 

1 The Need for and the Future of Adaptive Designs in Clinical Development



18

market”. Whilst this may generate the greatest fi nancial returns for a successful 
development program, it also has a greater risk because of a higher failure rate in 
most cases. Decisions in companies are typically made by scientists and project/
business managers. The latter are often more focused on meeting targets and mile-
stones measured in time and cost rather than quality. Balancing between minimizing 
time to market and maximizing the probability of success requires rethinking by 
clinical trial sponsors, in particular the pharmaceutical companies. As scientists, we 
need to fi nd ways to more effectively quantify risks and communicate them to the 
senior leaders and non-statisticians in our respective organizations in languages 
they can understand. 

 Clearer thinking is required to identify and formulate key questions to be 
answered from a trial and then to select the trial design that is the most effi cient in 
providing data to answer the questions with suffi cient precision. Innovative designs 
and methods need “top-down” (key decision makers and budget holders) and 
 “bottom- up” (clinical teams and regulatory affairs colleagues) buy-in within organi-
zations for wide implementation. A culture operated in this fashion will promote 
better decisions and lead to a lower late-stage failure rate. Such a culture is crucial 
to a successful future for drug development. 

 At present, the capacity to effi ciently assess trial designs is not widely available. 
Some of the commercial software contain proprietary information and are not freely 
available to the broader clinical trial community. Attempts have been made to initi-
ate cross-company and foster joint industry/academic collaborations (in the pre- 
competitive space) to develop effective simulation tools to evaluate different clinical 
trial scenarios. Such tools can help compare and present the performance character-
istics of different clinical trial design more effectively. 

 Clinical trial sponsors tend to use “standard” clinical trial designs when develop-
ing medicines. The number of designs that can be called “standard” is still arguably 
too few. While some advances have been made as outlined in Sect.  1.2 , the set of 
commonly used designs need to be substantially expanded. To assist the latter, it 
would be benefi cial if sponsors would require their clinical development teams to 
consider adaptive design as an option on a routine basis. Based on the authors’ 
experience, even where not selected, considering how to plan an adaptive trial has 
led to more carefully developed plans being submitted for internal decisions. The 
introduction of a culture where multiple designs are considered regularly and selec-
tions made on their comparative operating characteristics could have a positive 
impact on the practice of using the most effi cient designs. 

 It is generally agreed that improving the scope, conduct or effi ciency of explor-
atory development trials can help us identify eventual “failures” earlier in the devel-
opment process. Unfortunately, the more sophisticated novel designs are not without 
their challenges. Since these methods are not routinely used by sponsors, the num-
ber of sponsors (and their partners, consultants and contracted clinical research 
organizations) who have the necessary expertise to implement them is limited. 
Clinical key opinion leaders are often not in a good position to help either. This 
problem extends to investigators who may be discouraged from participating 
because the trial design seems complicated and unfamiliar. In recent years, there are 
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workshops and short courses on adaptive designs. These venues help educate 
 trialists and clinical scientists on how to select the most appropriate design or series 
of designs for trials, particularly those in the exploratory stage. Sharing and publish-
ing case studies of novel approaches is another way to increase the collective experi-
ence of the clinical trial community and help establish good practice for adaptive 
designs. 

 One prevailing impression is that regulatory agencies are generally not recep-
tive to novel designs and methods. Our experience suggests that adaptive designs 
that are well-justifi ed, well-planned and well-executed have generally been 
accepted by regulators. Similarly, our interactions with regulators suggest that 
regulators welcome more and earlier discussions on scientifi c matters including 
adaptive designs together with regulatory standards and requirements. Novel 
designs should not be avoided for fear of regulatory rejections. All clinical trial 
designs should be judged by their properties and design characteristics, and not by 
whether or not they are novel. With proper planning and explanation a well formu-
lated adaptive design that does not compromise standards for making decisions or 
protecting patient safety should not pose any particular diffi culty to the regulators. 
We need to work with internal decision makers to dispel the “regulators do not like 
adaptive designs” myth. 

 Implementing adaptive designs for multi-regional clinical trials can be particu-
larly challenging when different regulatory agencies make different requests. That 
is, a sponsor may receive confl icting scientifi c advice about a proposed adaptive 
global trial from different regulatory agencies. If one agency disagrees with the trial 
design, it may not be possible to rework the entire trial and resubmit to each of the 
agencies for approval. When this happens, there is a tendency for a sponsor to default 
to a standard design, hoping for a speedy acceptance by all regulatory agencies 
involved. Thus, global harmony between regulatory attitudes is important. The latter, 
in our experience, seems to be generally the case when it comes to the role, conduct 
and interpretation of adaptive trials (Chuang-Stein et al.  2009 ; Laurie et al.  2008 ). 
We would like to point out that when a multi-regional trial is planned, a sponsor 
should consider seeking parallel scientifi c advice between EMA and FDA, which 
may lead to greater collaborations between international regulatory authorities.  

1.5     Final Remarks 

 Adaptive designs require careful planning to protect trial integrity and reduce pos-
sible operational bias. This applies to all designs with at least one interim analysis, 
including group sequential design. Consider a group sequential design with bound-
aries to allow for early stopping for effi cacy or futility. If the decision from an 
interim analysis is to continue the trial, an astute individual familiar with the stop-
ping rules will know the range where the interim comparative results fall. The con-
cern for possible information breach led many pharmaceutical companies to develop 
internal operating procedures to detail how interim results should be obtained, 
shared and communicated. 
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 While many adaptive designs have been proposed, some of them might be more 
of an intellectual interest with less appeal for practical applications. An elaborate 
adaptive design, although may appear statistically sound, could encounter real chal-
lenges in implementation. Thus, focusing on those adaptations that are practically 
feasible will result in the most successful implementation as the research enterprise 
is collectively gaining experience with this new class of designs. 

 Incremental improvement is how we advance the fi eld of clinical trial designs. 
Research on adaptive designs and our collective experience from implementing 
them contributes to the incremental improvement. Instead of letting our fear of 
potential misuse prevent us from benefi ting from adaptive designs, we should help 
promote good practices for adaptive designs so that the designs are implemented 
appropriately. 

 Even though we take much pride in the progress made on adaptive designs and 
believe in the business needs for this class of innovative designs for both the explor-
atory and confi rmatory trials, we want to emphasize that a critical consideration in 
choosing the design for a trial is to choose the design that can best answer the 
research questions at hand. In some situations, a fi xed design may be the most 
appropriate design to answer the research questions. In addition, we want to make it 
clear that while we believe that adaptive designs could help increase the success rate 
of our late stage trials, they are not the panacea to solve our late stage failure prob-
lem. The latter will require a holistic approach to product development, of which 
smart designs are an important part, but not all of it. 

 Adaptive designs open many opportunities to make preplanned mid-trial adjust-
ments. We offer some examples on why we believe clinical trialists will continue to 
welcome these opportunities. We want to emphasize that these opportunities should 
be used with care. The last thing we want to do is to treat the opportunities offered 
by adaptive designs haphazardly, which could result in rejected trials and lead to the 
mistrust in these designs. The latter will delay broad acceptance of properly designed 
and properly executed adaptive designs.     
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    Abstract     Adaptive designs have the potential to be a transformative methodology 
in clinical drug development, but acceptance by regulatory agencies is a prerequisite 
for their broader adoption and success, especially in the context of confi rmatory 
studies. Both FDA and EMA have published guidance documents focusing on adap-
tive designs, which have been neither discouraging nor clearly supportive of the 
approach in their assessments and recommendations. As a result, the interpretation 
of the  regulatory position  on adaptive designs also has been mixed, with some citing 
the guidance documents as evidence that health authorities do not accept adaptive 
designs, while others mentioning the same documents as indication that regulators 
support their use in drug development, when properly planned, conducted, and 
 analyzed. This chapter reviews and discusses the two main regulatory documents on 
adaptive designs issued by the time this book was published: the refl ection paper by 
EMA (Refl ection paper on methodological issues in confi rmatory clinical trials with 
fl exible design and analysis plan (draft CHMP/EWP/2459/02, 23-Mar-2006), 2007) 
and the draft guidance by FDA (Adaptive design clinical trials for drug and biolog-
ics draft guidance, 2010). Reactions from the biopharmaceutical industry to both 
documents, collated by industry trade groups, are also presented and discussed.  
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2.1         Introduction 

    Adaptive designs (AD) have the potential to transform clinical drug development, 
as discussed and illustrated throughout this book. The very reason that makes AD 
attractive to drug developers, the opportunity to make pre-planned design and 
analysis modifi cations to an ongoing clinical trial, also raises understandable con-
cerns from regulatory agencies (RA), especially when utilized in confi rmatory 
studies. The ultimate success, or failure, of AD in the context of drug develop-
ment hinges on their acceptance by RA around the world. This was recognized 
early on by industry groups advocating the broader use of AD in drug develop-
ment, most notably the PhRMA Adaptive Designs Working Group (ADWG). 
Members of the ADWG engaged in early discussions on AD with RA in the USA 
(FDA), Europe (EMA), and Japan (PMDA), emphasizing the importance of guid-
ance documents to provide a clear position with regard to regulatory acceptance, 
or not, of AD. 

 Two guidance documents focusing on AD were issued, at least in part, as a result 
of the advocacy efforts by industry groups: the EMEA refl ection paper (EMEA/
CHMP  2007 ) and the FDA draft guidance (FDA  2010 ). The former is a relatively 
short, high-level document, focusing almost entirely on confi rmatory studies—
neither encouraging, nor ruling out the use of AD, from a regulatory perspective. 
The FDA draft guidance is considerably more detailed, covering both exploratory 
and confi rmatory studies (but with greater emphasis on the latter), and providing not 
only potential regulatory concerns about the use of AD but also recommendations 
on how to circumvent them in drug development practice. Although its overall tone 
is broadly supportive of adequately planned, executed, and analyzed AD, the FDA 
draft guidance has been interpreted by some in the biopharmaceutical industry as 
evidence that FDA does not favor the use of AD. 

 Both guidance documents elicited strong, mostly positive reactions from 
industry groups, who provided many comments and suggestions during the 
respective review periods. The EMA refl ection paper incorporated some of the 
suggestions received during the consultation period (and provided responses to 
those which were not adopted) in the fi nal version adopted by CHMP. The FDA 
draft guidance was yet to be revised and fi nalized at the time of publication of 
this book. 

 This chapter reviews both the EMA and FDA guidance documents on AD from 
an industry perspective. Section  2.2  describes the FDA draft guidance, discussing 
its impact on the biopharmaceutical industry. The EMA refl ection paper is covered 
in Sect.  2.3 , being contrasted to the FDA draft guidance. The industry perspective 
on both guidance documents and, more broadly, on the perceived regulatory posi-
tion on AD are discussed in Sect.  2.4 , with a focus on comments and recommenda-
tions issued over time by the ADWG.  
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2.2      US FDA Draft Guidance on Adaptive Designs 

 Even though the EMA refl ection paper was issued prior to the FDA draft guidance, 
the latter is presented and discussed fi rst in this chapter, as it has a considerably 
broader scope and has had more impact in industry than the former. The guidance 
document on AD was a PDUFA IV commitment of FDA, originally scheduled to be 
issued by October 2008 and fi nally published in March 2010. The inclusion of a 
guidance document on AD as part of the PDUFA IV negotiations was a clear indica-
tion of the importance that the biopharmaceutical industry placed on this methodol-
ogy as a tool for modernizing and improving the effi ciency of drug development, as 
a well as a recognition that regulatory guidance was a critical prerequisite for its 
successful utilization. The formation of the PhRMA ADWG in early 2005 also 
provided clear indication of the industry support for and interest in AD. The ADWG 
played a critical catalyzing role with regard to broad awareness, early adoption, and 
regulatory engagement on AD. The ADWG went on to publish a series of highly 
impactful white papers (Gallo et al.  2006 ; PhRMA  2006 ; Bornkamp et al.  2007 ; 
Antonijevic et al.  2010 ; Gallo et al.  2010 ; Pinheiro et al.  2010 ), to engage in produc-
tive discussions on AD with RA around the world (FDA, in particular), and to dis-
seminate AD at scientifi c conferences. A good number of issues advocated by the 
ADWG made their way into the FDA draft guidance, but many were left out. 

 The overall tone of the FDA draft guidance is  encouraging of AD, but with 
 caution : the document states that FDA recognizes AD as having the potential to 
improve the effi ciency and success rate of drug development, but raises some con-
cerns about their use, mostly in the context of pivotal studies. It also acknowledges 
that the main appeal of AD is to allow pre-planned midway corrections to ongoing 
trials, revising design assumptions and research goals in light of observed data. Two 
main regulatory concerns are expressed early on and throughout the guidance: the 
potential for  Type I error rate infl ation  and  operational bias  that could compromise 
study integrity and the validity/interpretability of the fi nal results. The cautionary 
tone is pretty much consistent with regulatory guidance documents issued on other 
topics, but it was perceived by some in industry as an indication that FDA would be 
reluctant to accept AD, especially for confi rmatory studies. 

2.2.1     Description and Motivation for Adaptive Designs 

 The guidance defi nes AD as a clinical study that includes a prospectively planned 
opportunity for modifi cation of one or more aspects of its design and hypotheses, 
based on analysis of data (usually interim data) from subjects in the study. This is 
consistent with other references on AD, including the ADWG Executive Summary 
(Gallo et al.  2006 ), which defi nes AD as  a clinical study design that uses accumu-
lating data to decide how to modify aspects of the study as it continues, without 
undermining the validity and integrity of the trial . By  prospectively  the guidance 
means before any unblinded data analysis is performed, but the recommendation 
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put forward in the guidance is that any adaptation be planned, described, and 
 evaluated before the study protocol is fi nalized. In addition, the timing of any adap-
tations should be pre-specifi ed. The adaptations can be based on blinded or 
unblinded data, and may or may not include statistical hypothesis testing. A number 
of potential study design modifi cations that can be implemented in an AD are listed 
in the guidance, including

•    Study eligibility criteria  
•   Randomization procedure  
•   Treatment allocation (e.g., dose, schedule)  
•   Total sample size and/or study duration  
•   Concomitant medication  
•   Planned patient evaluation schedule  
•   Primary endpoint (e.g., single vs. composite)  
•   Secondary endpoints (selection and testing order)  
•   Analysis methods to evaluate endpoints    

 The two main types of adaptations discussed in the guidance are  treatment 
 allocation  and  total sample size/study duration . Some of those potential adapta-
tions, like the  primary analysis method , appear to be included in the guidance just 
for completeness as they are declared as  unlikely to be acceptable  from a regulatory 
perspective right after being listed. 

 FDA acknowledges the motivation for AD in the guidance, naming, in particular 
the improvement in knowledge effi ciency compared to conventional (i.e., nonadap-
tive) study designs (same information faster and/or cheaper; or more information 
for the same investment and time). Additional potential advantages of AD also men-
tioned are the increased likelihood of success (via midtrial corrections), the reliable 
early termination via futility rules, and the improved understanding of treatment 
effects (e.g., better evaluation of dose–response profi le or subgroup effects).  

2.2.2     Study Types 

 The guidance differentiates between two types of studies for which AD can be 
 considered: adequate and well-controlled (A&WC) effectiveness studies intended 
to support drug marketing and exploratory studies, which can be considered as the 
complement of A&WC studies. From the point of view of AD, the main difference 
between the two types of study is that for an A&WC study strict control of Type I 
error rate is paramount, while for exploratory studies it is less critical. The focus of 
the guidance is on AD in the context of A&WC, but AD in the context of explor-
atory studies are also discussed in the document. 

 From a methodological perspective, the main concern expressed in the guidance 
about the utilization of AD with an A&WC study is the potential infl ation of Type I 
error rate, with possible bias in the estimation of treatment effects also being 
 mentioned, but somewhat downplayed. It is acknowledged that statistical methods 
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have been developed to adequately control Type I error for a wide range of AD 
based on unblinded data (there is less of a concern about Type I error infl ation when 
adaptations are based on blinded data), but it is emphasized that it is incumbent 
upon sponsors to demonstrate, preferably analytically, that the proposed statistical 
analysis methods will indeed control Type I error under the planned AD. 

 The other main concern related to AD in A&WC studies expressed in the guid-
ance is harder to pin down and ensure control over: potential for operational bias 
due to leaking of unblinded results as the study is ongoing. If present, it could jeop-
ardize the scientifi c validity of study, making results diffi cult to interpret and accept. 
Changes in patient population after an unblinded adaptation are cited as an example 
of operational bias associated with AD. Of course, changes in patient population 
during a clinical trial can, and do, also occur when no adaptations are used in the 
study. They may be the result, for example, of different regions/sites starting recruit-
ment later in the trial. The recommendation, implicit in the guidance and expressed 
by FDA representatives at conferences and public meetings following the publica-
tion of the draft guidance, is that sponsors should ensure, and document, “squeaky 
clean” execution of AD to avoid any potential indication, real or perceived, that 
access to unblinded data during the study led to operational bias. Since the publica-
tion of the draft guidance, different vendors have developed commercial software to 
support the execution of AD that can be used to document the data access opera-
tional integrity of AD (see Chap.   8    , on available software for AD). 

 The draft guidance explicitly encourages the use of AD in the context of 
 exploratory studies, stating that they provide a natural framework for learning about 
dose–response, subgroup effects, etc. and have the potential to lead to substantial 
gains in knowledge effi ciency. It is also mentioned that exploratory studies provide 
a natural framework for implementing and getting familiarity with unblinded adap-
tations currently included in the less well-understood category. That is, the guid-
ance suggests that utilization of (currently) less well-understood adaptive methods 
in exploratory studies may pave the way for their future acceptance as well-under-
stood AD. One potential practical diffi culty for the implementation of this recom-
mendation is that sponsors often design exploratory studies, especially in Phase 2, 
as mini A&WC studies, in the hope that if great results are observed, the study may 
be accepted by RA as one of the required pivotal studies. The guidance specifi cally 
discourages this type of practice.  

2.2.3     Well-Understood vs. Less Well-Understood 
Adaptive Designs 

 Within the class of A&WC studies, the guidance introduces a classifi cation of 
 well- understood   and  less well-understood  types of adaptive designs. This has been 
mistakenly interpreted by many in industry, most notably by some in regulatory 
affairs groups, to mean that only AD of the well-understood type would be accept-
able to FDA. Even though it has been clarifi ed by FDA representatives (involved 
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in the writing of the draft guidance) at public meetings and conferences that the 
 categorization only referred to the state of regulatory knowledge of and familiarity 
with different types of AD at the time the draft guidance was published, the misun-
derstanding persists till the time of publishing of this book. There is an expectation 
that this issue will be addressed in the fi nal version of guidance, when it is 
published. 

 The set of well-understood AD identifi ed in the draft guidance is composed 
broadly of group sequential designs (with early termination for either demonstrated 
effi cacy or futility) and adaptations that do not involve post-baseline unblinded data. 
Examples include adaption of study eligibility criteria based on baseline data, blinded 
sample size or study duration re-estimation, and adaptations based on outcome unre-
lated to effi cacy (though the guidance warns that this may be diffi cult to ascertain). 
In general, adaptations based on blinded and/or baseline data (carried out by person-
nel without access to unblinded results) do not raise any regulatory concerns. 

 The fact that group sequential designs, though involving adaptations based on 
unblinded data, are included in the well-understood category gives further indica-
tion that the classifi cation is more based on regulatory familiarity than acceptance. 
It also suggests that, as FDA is exposed to more AD trials involving unblinded 
adaptations, some of the methods currently in the less well-understood category 
may fi nd their way into the well-understood group. 

 All designs involving adaptations based on unblinded post-baseline data, with the 
exception of group sequential designs, fall into the less well-understood category. 
Examples include unblinded sample size/study duration re-estimation, response-
adaptive randomization, adaptive subgroup and/or endpoint selection- based 
observed treatment effects, and adaptive dose selection. With regard to the latter, the 
guidance recognizes its potential value in the context of A&WC studies (to allow 
some limited exploration of dose–response), provided strict control of Type I error 
rate can be demonstrated. Within the category of less well-understood AD, the guid-
ance highlights designs with multiple types of adaptations and adaptations in non-
inferiority studies. With regard to the fi rst, the guidance expresses concerns related 
to the increasing complexity that results from combining different types of adapta-
tions in the same study, which could lead to diffi culties in interpreting the fi nal 
results. The value of adaptations in the context of non-inferiority studies is acknowl-
edged, but the guidance points out that some of the design elements in non-inferior-
ity trials are not suitable for adaptation, most notably the non- inferiority margin. 

 Besides the usual concerns about potential Type I error rate infl ation, bias in 
treatment effect estimates, and operational bias in trial conduct, the guidance also 
indicates the potential for Type II error rate increase in the context of less well- 
understood AD, citing too liberal futility rules and suboptimal dose selection as 
examples. Of course these are concerns that typically resonate and concern more 
sponsors than regulators, so it is refreshing to see them mentioned in the guidance. 
The discussion around less well-understood AD ends on a positive note, with the 
guidance stating that  cautious use of adaptive designs can advance overall develop-
ment programs . This is likely to be as supportive as one could expect to read in a 
guidance document.  
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2.2.4     Role of Trial Simulations 

 As well known among practitioners who have designed and/or implemented 
 adaptive designs, modeling and trial simulations play a central role in their evalua-
tion and the understanding of their operating characteristics. Even relatively simple 
AD, such as blinded sample size re-estimation, require simulations to properly char-
acterize its performance under alternative scenarios (e.g., underlying effect and 
variability) and design choices (e.g., when to conduct the interim analyses). 
Modeling plays a central role in the characterization of alternative scenarios, such 
as the recruitment and dropout processes, dose–response profi les, and correlation 
between endpoints. The combination of modeling and trial simulation provides the 
backbone for the evaluation and comparison of alternative designs, including adap-
tive ones, and the planning of a specifi c adaptive design (e.g., number and timing of 
adaptations, impact on Type I error rate and power). 

 The guidance acknowledges the importance of trial simulations for the determi-
nation of operating characteristics of AD, the comparison of alternative designs to 
justify the selection of a particular AD, and the understanding of inferential proper-
ties of an AD. In fact, the guidance states that the reporting of trial simulations 
should be an important component of the documentation to be submitted to FDA 
when a sponsor proposes the use of an AD in the development program. The guid-
ance goes further and indicates that the models, programs, and fl ow charts for pos-
sible adaptive pathways used in the simulations should also be included as part of 
the submitted documentation. Among the inferential characteristics of the design 
that can be investigated via simulation, the guidance names the impact on Type I 
error rate, power, and bias in the estimation of treatment effects. The document goes 
into some detail on the types of models that could be considered in the simulation- 
based evaluation of AD, including withdrawal and dropout models, models for 
selecting among multiple endpoints, and models characterizing the study endpoints 
(e.g., longitudinal models). It also includes a list of which elements should be 
included when reporting simulations used for AD evaluation, such as a listing of all 
possible adaptation branches, the design features and assumptions, and calculation 
of Type I error rate and power. 

 While discussing the importance and usefulness of trial simulations, the guidance 
goes on a short detour to discuss how Bayesian methods can play a relevant role in 
the context of AD. It indicates that Bayesian approaches provide a useful framework 
for describing the various choices and decisions available in an AD, placing them in 
a probabilistic context that is naturally handled under the Bayesian paradigm. The 
guidance even goes as far as to state that Bayesian decision rules can be used to 
guide adaptations while preserving the Type I error rate in a frequentist sense. It is 
unclear, though, if such framework would be accepted by regulators in the context 
of an A&WC study, or if it should have its use limited to exploratory studies. 

 On a side note that was disappointing to some, the guidance states that, though 
trial simulations are acknowledged as useful, or even essential, for the understanding 
of operating characteristics of an AD, their use to establish strict control of Type I 
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error rate in an AD is  controversial and not fully understood . Because many AD are 
complex enough not to allow the analytical derivation of its Type I error rate, this 
remark in the guidance has led to lively reactions from industry. In general, the 
available analytical solutions rely on rather ineffi cient upper bounds for the Type I 
error rate, in the sense that the true signifi cance level is considerably smaller than 
the upper bound, under a wide range of realistic scenarios. This leads to loss in 
power, or increases in sample size to avert it (both of which, of course, are evaluated 
via trial simulations).  

2.2.5     Protocol and SAP for an Adaptive Design 

 Because of the heightened concerns about operational bias and trial integrity 
 surrounding AD, the prospective specifi cation of all aspects of the study design and 
planned analyses is of paramount importance. As frequently mentioned in the 
ADWG publications and also highlighted in the draft guidance, to ensure the scien-
tifi c validity of an AD, any potential adaptations need to be pre-specifi ed:  adaptive 
by design , as aptly stated in Gallo et al. ( 2006 ). 

 The protocol of an A&WC AD study, according to the draft guidance, typically 
needs to be more detailed than for a conventional design. The protocol and its sup-
portive documentation (such as the simulation report) need to contain all critical 
information to allow FDA to evaluate the AD. These should include

•    Study rationale  
•   Justifi cation of design features, including any proposed adaptations  
•   Operating characteristics of proposed design, such as Type I error rate and power  
•   Plans to ensure study integrity when unblinded interim analyses are planned  
•   Role of AD in overall clinical development strategy  
•   Objectives and design features of the AD, all possible adaptations envisioned, 

assumptions, analysis methods, and quantitative justifi cation for design choices 
at planning stage (typically via simulations)  

•   Impact of adaptations on frequentist operating characteristics (e.g., Type I error 
rate)  

•   Summary of models used in planning (e.g., disease progression, dropout, 
dose–response)  

•   Analytical derivations to demonstrate strict control of Type I error rate, if 
 appropriate (e.g., A&WC studies)  

•   Charter of personnel involved in carrying out adaptations and study monitoring    

 It is acknowledged that data monitoring committee (DMC) charters will gener-
ally need to be more detailed for an AD compared to a more conventional design 
involving interim analyses (e.g., group sequential design). 

 The extensive list of protocol elements for an AD mentioned in the draft guid-
ance has raised some concerns about the greater scrutiny that this type of design 
may receive at FDA. In reality, most of the items in the guidance list apply equally 
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to nonadaptive designs and should be part of the checklist of good design practice. 
Adaptive designs have created greater awareness about the importance of proper 
scenario evaluation via modeling and trial simulations, which should lead to better 
design planning and justifi cation across drug development, and not just for AD. 

 With regard to statistical analysis plans (SAP) for AD, the key message in the 
guidance is  prospective specifi cation . The guidance encourages sponsors to have the 
SAP fi nalized by the time of protocol fi nalization, a practice already adopted by 
some, but certainly not the majority of biopharmaceutical companies. Specifi c ele-
ments that should be included in an AD SAP listed in the guidance are the 
following:

•    All prospectively planned adaptations  
•   Statistical methods to be used to implement adaptations (e.g., how to calculate a 

potential increase in sample size or trial duration, rule used to select a dose)  
•   Justifi cation of Type I error control  
•   Statistical approach to be used for appropriately estimating treatment effects    

 The overarching message in the guidance with regard to regulating AD is that 
FDA understands that this type of design requires more in-depth regulatory review 
and evaluations. Accordingly, it is expected that sponsors will provide documenta-
tion, such as protocols and SAP, with the level of detail necessary to allow the 
proper regulatory oversight.  

2.2.6     Interactions with FDA on Adaptive Designs 

 According to the guidance, it is anticipated that sponsors will need earlier and 
more intense interactions with FDA to discuss and reach agreement on planned 
AD. This will, of course, vary with the type of AD and the phase of development, 
being more critical for less well-understood A&WC trials. The guidance is not 
entirely clear on the type of meeting request that should be made for the discussion 
of AD. For exploratory studies, it is recommended that either a Type C or an end of 
Phase 2 (EOP2) meeting request be used. For an A&WC study, the guidance indi-
cates that, when appropriate, an EOP2 meeting request should be used, but 
acknowledges that there will be instances in which this will not be adequate. The 
guidance states that a special protocol assessment (SPA) meeting would  not  be 
appropriate to discuss AD and discourages sponsors from submitting SPA requests 
for that purpose. Further clarity on the type of meeting request that would be most 
appropriate for engaging FDA in discussions on proposed AD would be useful to 
sponsors. Perhaps a new type of meeting, or the extension of existing meeting 
types, should be considered for AD. 

 The protection of study blind among trial personnel non-authorized to have 
access to treatment assignment during the trial is a recurrent theme in the draft guid-
ance, identifi ed as a critical issue to ensure the integrity and validity of an AD. The 
guidance indicates that SOPs specifi c to AD should be put in place by sponsors, 
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clearly indicating who will implement adaptations and how access to unblinded 
data during the study will be controlled (in particular, when study personnel and 
investigators may have access to unblinded results). The guidance highlights that an 
independent group from the study personnel should be responsible for unblinded 
interim analyses and adaptive decision making. The role can be assigned to an inde-
pendent DMC (IDMC) or some other group. There is still no consensus across the 
biopharmaceutical industry, or among regulators on whether conventional IDMC 
should have their role extended to also handle AD monitoring and decision making, 
or if a new type of independent group should be formed for this type of study (see 
Chap.   14    , on DMC).  

2.2.7     Final Remarks 

 The draft guidance concludes with some specifi c recommendations regarding the 
report of the fi nal results of an AD. There should be strict compliance with the pro-
spectively planned adaptation process and with the procedures for ensuring study 
integrity, such as the preservation of treatment blinding. The fi nal documentation 
submitted to FDA should include a description of the processes and procedures 
actually carried out in the trial, any records from deliberations of the IDMC and any 
other groups involved in carrying out adaptations, interim results used for adapta-
tions, and an assessment of the adequacy of fi rewalls to prevent access to unblinded 
results by unauthorized personnel. All analyses included in the fi nal report should 
strictly adhere to the SAP. Because of concerns about shifts in patient population 
during the study, possibly induced by adaptations, the guidance recommends that 
the consistency of estimated treatment effects across study stages (i.e., before and 
after adaptations) should be explored and reported with the fi nal results. If potential 
shifts are observed, they are likely to become a review issue. 

 The overall message of the guidance is positive on AD while being cautious 
about their proper planning, implementation, and reporting. The guidance recom-
mends that sponsors keep AD simple, avoiding too many or too complex adapta-
tions in the same trial. It encourages increased planning and early interactions with 
FDA, especially for more complex A&WC studies. Assurance that treatment blind-
ing is preserved and adequately documented is paramount to regulatory acceptance 
of the results from an AD.   

2.3      EMEA Refl ection Paper on Adaptive Designs 

 The EMEA refl ection paper played a pioneering role with regard to regulatory 
guidance on adaptive designs, being published at a time of active discussion on dif-
ferent aspects of adaptive designs, such as methodology, implementation, and regu-
latory acceptance. The EMEA document shed some critical light into the discussions 
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taken place then and, in many ways, paved the way for the FDA draft guidance 
published years later. The EMEA document is considerably narrower in scope and 
less detailed than the FDA draft guidance. On the other hand, it emphasizes some 
regulatory concerns about AD that are only tangentially discussed in the FDA docu-
ment, making it a useful complement to the latter with regard to regulatory thinking 
on AD at the time this book was published. This section summarizes the key points 
in the refl ection paper, contrasting them to the FDA draft guidance and considering 
them from an industry perspective. 

 The EMEA document focuses almost exclusively on confi rmatory trials, or, in the 
notation of the FDA draft guidance, A&WC studies. The overall tone of the docu-
ment is accepting of the potential utility of AD, but with clear concerns about their 
adequate implementation in clinical trial practice. By comparison, the refl ection 
paper is less encouraging about AD than the FDA guidance, but it does not strike a 
negative tone with regard to their utilization, when properly planned, conducted, and 
analyzed. In its opening remarks, the EMEA refl ection paper recognizes that AD 
have the potential to speed up drug development and more effi ciently allocate 
resources, without compromising the scientifi c and regulatory standards, while high-
lighting that the basis for regulatory decision making will need to be improved to 
allow AD to be fully embraced by regulators. A less encouraging comment in the 
opening section of the document is that AD in the context of confi rmatory trials is a 
contradiction in terms, as one should not need to adapt what is to be just confi rmed. 
Of course this is too narrow a view of the regulatory dichotomization between the 
exploratory and confi rmatory phases of development, being toned down in later sec-
tions of the document. It is not the case in drug development practice that all is known 
about a compound before it is taken into Phase 3 studies—development programs 
would take substantially longer, and approved drugs would cost signifi cantly more, if 
this narrow interpretation of the regulatory process were to be followed to the letter. 

 An important and interesting difference between the EMEA refl ection paper and 
the FDA draft guidance is the focus of the former on the assessment of homogeneity 
between stages of an AD. The issue is certainly discussed in the FDA draft guidance, 
but with considerably less prominence than in the EMEA document, where it appears 
to be central to the regulatory acceptance of AD. There are, of course, more similarities 
than differences between the EMEA and FDA documents and certainly no disagree-
ment between them with regard to recommendations and regulatory requirements. 

 The EMEA refl ection paper is less didactic than the FDA draft guidance, with no 
attempts at classifying AD, like is done in the latter. A more formal defi nition of 
adaptive designs is only included in the last page of document and it illustrates the 
narrow view of the document: “a study design is called ‘ adaptive ’ if statistical meth-
odology allows the modifi cation of a design element … at an interim analysis with 
full control the type I error.” It is clear from this defi nition that the main concern in 
the document about the validity of an AD is the preservation of strict control of Type 
I error rate in the presence of possible adaptations. The defi nition of AD presented 
in the FDA draft guidance is much broader in scope and more in line with main-
stream publications in the fi eld. 

 The concern about potential operational bias induced by an AD is shared between 
the EMEA and FDA documents, though in the former such concern is almost 
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 exclusively associated with the possible change in patient population during the 
study. The document states that if substantial differences are observed in patient 
composition (e.g., demographics, baseline characteristics) and/or in trial results 
before and after an adaptation then there would be serious regulatory concerns 
about the validity of the fi nal conclusions and the integrity of the study as a whole. 
It is not clear, though, what would characterize a  substantial difference  in this con-
text, or whether it should be formally tested via a hypothesis test, or just explored 
via summary statistics and estimated effects. There is a clear tone of discourage-
ment of unblinded interim analyses in the refl ection paper, because of the perceived 
risks of information leak resulting from them. The recommendation is that unblinded 
interim analyses only should be used when there is a clear, justifi able need, should 
be kept to a minimum number, and with the fl ow of unblinded information should 
be carefully documented and controlled. One is left to wonder if the regulators who 
produced the refl ection paper would fi nd the implementation of an AD as suffi cient 
reason to justify the inclusion of interim analyses in the study. 

 It is possible (and, one would hope, likely) that regulatory thinking at EMA has 
evolved since the publication of the refl ection paper and a more accepting view of 
the ability of sponsors to preserve the blind in an AD and avoid the leaking of 
unblinded results via appropriate processes and fi rewalls now prevails. If that is the 
case, one would expect a more positive view of unblinded interim analyses, not only 
in the context of AD, but in confi rmatory trials, more broadly. Interestingly, the 
refl ection paper seems to be supportive, or at least not discouraging, of group 
sequential designs, which, of course, require unblinded interim analyses. 

 A topic discussed in the EMA refl ection paper but omitted from the FDA draft 
guidance is that of overrunning, i.e., observed data on certain patients only becom-
ing available after a decision to stop the study at an interim analysis point was made. 
This may be because overrunning is a topic that has been extensively discussed and 
addressed in the context of group sequential designs, being less of an issue in AD 
that do not include an early effi cacy stopping rule. Of course, it is a nonissue in the 
case of futility stopping. 

 Similarly to the FDA draft guidance, the EMEA refl ection paper states that any 
adaptation under consideration should be pre-planned, be properly justifi ed in the con-
text of the development program, and have their number kept to the necessary mini-
mum. Strict control of Type I error rate is indicated as a prerequisite for the regulatory 
acceptance of any AD, but appropriate statistical methods for treatment effect estima-
tion (point-wise and confi dence intervals) in the context of an AD are also necessary. 
The refl ection paper stresses at various points that AD should not be used as a substitute 
for good planning and thorough exploration in early phases of clinical development. 

 The refl ection paper names and discusses a number of specifi c types of adapta-
tions, a subset of which are briefl y summarized below.

•     Sample size re-estimation : The blinded version should be used whenever possi-
ble, but the unblinded alternative can also be considered, when properly justifi ed. 
In either case, there should be good justifi cation of why the use of this type of 
adaptation is not an indication of just insuffi cient investigation in exploratory 
studies.  
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•    Change or modifi cation of primary endpoint : This would be very diffi cult to 
justify in practice and would likely lead to diffi culties in statistical inference if 
one were to combine results from stages utilizing different endpoints (e.g., rejec-
tion of a global null hypothesis).  

•    Discontinuing treatment arms : Discontinuing the placebo arm after an interim 
analysis is discouraged, as it may result in changes in patient population and lead 
to inferential hurdles at the end of the study; unbalanced randomization favoring 
active treatment over placebo throughout the study should be considered as an 
alternative. Multiple comparison approaches are required to properly control the 
Type I error rate.  

•    Phase 2/3 combinations : The refl ection paper suggests that Phase 2/3AD are in 
principle acceptable, but need to be properly justifi ed (and with any AD men-
tioned in the document) and would not provide suffi cient evidence of effi cacy for 
regulatory approval if it were the single pivotal study conducted in the program. 
That would be the case even in indications in which a single Phase 3 study could 
be accepted for approval. The use of two Phase 2/3AD studies is mentioned as a 
possible path for approval, though it may be challenging to ensure that the same 
decisions are reached in both trials. One assumes that the combination of one 
Phase 2/3AD design with one conventional Phase 3 design would also provide 
suffi cient evidence of effi cacy for regulatory approval. Single Phase 2/3AD stud-
ies could be considered for orphan indications.    

 The FDA draft guidance does not contradict any of the recommendations 
included in the EMEA refl ection paper, but it certainly strikes a more positive note 
on the regulatory acceptability of and support for adaptive designs. One of the pos-
sible reasons explaining this difference in tone between the two regulatory docu-
ments is that the FDA document was crafted following innumerous discussions with 
industry groups focused on AD at scientifi c meetings and through visitations to 
FDA, as well as several white papers published by those same industry groups. The 
EMEA refl ection paper did not benefi t from the same level of open dialog between 
industry representatives and regulators on methodological and operational issues 
related to AD, and may refl ect a more one-sided view on AD.  

2.4      Industry Reaction and Perspectives 
on Guidance Documents 

 The biopharmaceutical industry, by and large, regards adaptive designs as a useful 
tool for its ongoing effort to modernize and improve the effi ciency of drug develop-
ment. Clear regulatory guidance on the acceptability, or not, of different types of 
AD is a precondition for the effectiveness and viability of these methods in practice. 
Therefore, both the EMEA refl ection paper and the FDA draft guidance on AD were 
well received by industry, despite the less than encouraging tone of the former and 
the ambiguity of some elements in the latter. They were perceived as an encouraging 
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sign of regulatory agency acknowledgement of the potential benefi ts of AD while 
providing some level of guidance on how to possibly address regulatory concerns 
about their use in clinical development practice. 

 Following the release of the regulatory documents, industry groups were orga-
nized and collated their concerns and suggestions on the guidance documents, sub-
mitting them during the corresponding comment periods. Some of those suggestions 
have been implemented in the published version of the EMEA refl ection paper. The 
fi nal version of the FDA draft guidance had yet to be released at the time of publish-
ing of this book, being unclear on which, if any, of the industry suggestions would 
be incorporated in the revised document. We review here the comments and sugges-
tions collated for each of the documents by PhRMA industry groups, following the 
same order used previously in the paper, namely starting with the FDA draft guid-
ance, followed by the EMEA refl ection paper. 

2.4.1      FDA Draft Guidance 

 By the time the draft guidance was released, the ADWG was no longer affi liated 
with PhRMA, so a new group needed to be formed to review and produce the 
PhRMA response to the document. However, the majority of the PhRMA review 
team was composed of former members of the ADWG, so a certain level of continu-
ity was achieved in the response to the FDA draft guidance submitted by PhRMA. 

 The overall reaction of the PhRMA review team (and industry as a whole) to the 
draft guidance was positive, with the group acknowledging that the document was 
quite helpful in clarifying FDA’s position on and concerns about AD, and with the 
expectation that the guidance would positively impact the broader acceptance and 
proper utilization of AD in clinical drug development. There were also a number of 
comments, concerns, and suggestions for improvement put forward by the PhRMA 
review team, summarized below. 

 The main concern was the categorization of adaptive designs for A&WC studies 
into well understood and less well understood. The team indicated the fear that less 
well understood would be misunderstood as not-to-be-used by many in industry, 
which unfortunately turned out to be the case. A suggestion was made for FDA to 
clarify in the fi nal version of the guidance that, when properly planned, implemented 
and analyzed, less well-understood AD were also acceptable for A&WC studies. 
Furthermore, one would expect that as FDA became more familiar with the appro-
priate utilization of those AD, they would be moved to the well-understood category 
in possible future revisions of the guidance. One point raised by the review team was 
that many of the cautions indicated in the guidance for less well- understood AD 
(e.g., potential for operational bias after unblinded interim analyses) also apply to 
well-understood AD (e.g., group sequential designs) and even conventional, non-
adaptive designs. Adaptive designs may have motivated greater awareness and dis-
cussion around such issues, but they are not exclusive, or even more prevalent in AD. 

 While the draft guidance is clearly encouraging of the use of AD in explor-
atory studies, the message is somewhat ambiguous with regard to A&WC studies. 
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The many references to bias in the context of AD for A&WC studies (operational, 
 estimation, and in hypothesis testing) go beyond cautionary to strike a somewhat 
negative tone. The PhRMA review team suggested that the fi nal guidance included 
a clear message of FDA’s willingness to consider AD both for exploratory and 
A&WC studies. 

 The lack of clarity in the guidance about which type of meeting request would be 
appropriate for discussion and review of AD with FDA was another important point 
raised by the PhRMA review team. The group suggested that there should be greater 
clarity in the fi nal version of the guidance on how sponsors should seek input from 
FDA on AD with different degrees of complexity and the circumstances under 
which an SPA would be the appropriate type of meeting for such interactions. 

 The Biotechnology Industry Organization (BIO) also formed a review team that 
produced an industry response to the FDA draft guidance. The comments and sug-
gestions submitted by the BIO review team were broadly similar to those of the 
PhRMA group, with a few noteworthy additions. The BIO group made the recom-
mendation that, to avoid potential confusion, methods and statistical and logistical 
consideration for AD be separately described in the guidance for exploratory and 
A&WC studies. In addition, the review team suggested that there should be better 
balance between exploratory and A&WC AD studies in the document—the draft 
guidance focuses mostly on the latter (which is understandable, from a regulatory 
perspective).  

2.4.2     EMEA Refl ection Paper 

 The PhRMA response to the refl ection paper was mostly driven by the ADWG, 
which was still affi liated with the trade association at the time the document was 
released. The comments from the PhRMA team were more directly targeted at 
defending certain types of AD and related implementation practices, compared to 
what was included in the PhRMA response to the FDA draft guidance. This refl ects 
the less positive tone of the refl ection paper on adaptive designs and practices. 

 Adaptive seamless Phase 2/3 designs were prominently discussed in the PhRMA 
response, refl ecting the industry mindset at that time. The naming of this type of 
design has changed since, to avoid the explicit reference to combining exploratory 
and confi rmatory phases in one study (though the essence of the AD remains very 
much present in clinical development). Regulators expressed concern about having 
exploratory elements (i.e., Phase 2) in a study intended to be confi rmatory. An 
example of new naming for this type of design is adaptive A&WC study with dose/
subgroup selection. In their response, the PhRMA review team lists the benefi ts of 
this type of AD, including increased information on doses and effi cacy prior to trig-
gering the confi rmatory stage, reduced development timelines and costs (compared 
to running separate Phase 2 and Phase 3 studies), more safety information, and 
increased chance of treating patients in the trial with effi cacious and safe drugs (see 
Chap.   20     for an example of a successful seamless two-stage design). The response 
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also included a discussion of possible regulatory strategies for including an adaptive 
seamless Phase 2/3 trial as one of the pivotal studies in a submission. Some of the 
suggestions were incorporated in the fi nal version of the refl ection paper published 
by CHMP. 

 The PhRMA review team defended the opportunity for limited sponsor involve-
ment in interim decision making during an AD, pointing out that IDMC members 
may not be prepared, or willing, to make decisions that have important commercial 
implications to sponsors. Processes and safeguards that would allow this type of 
limited sponsor involvement to take place while protecting the integrity of the study 
are proposed in the team’s response (and have been presented and discussed in 
white papers published by the ADWG, such as Gallo et al.  2010 ; see also Chap.   14     
for more recent thinking on DMC for AD). 

 The potential for operational bias as a result of a poorly planned and/or imple-
mented AD was acknowledged by the PhRMA review team, but they pointed out 
that this risk is also present with classic group sequential designs and has long been 
successfully addressed by sponsors. The team suggested that the potential for oper-
ational bias in an AD should be prospectively mitigated via design and implementa-
tion safeguards discussed and agreed upon with regulators prior to the start of the 
study, and not via post-trial assessment of changes in patient population during the 
study (which may occur irrespective of and unrelated to adaptations). 

 The response from the PhRMA review team included a suggestion to have AD 
for confi rmatory studies classifi ed into two categories of regulatory support: accept-
able and possible. Blinded sample size re-estimation and subgroup selection were 
cited as examples of regulatory acceptable AD, while unblinded sample size 
 re- estimation was mentioned in the possible category. The intention of the sugges-
tion, at the time, was to request clear regulatory guidance on what types of AD were 
endorsed by EMA and which would require further justifi cation and discussions 
with regulators. Even though this suggestion was not implemented in the fi nal ver-
sion of the refl ection paper, it possibly provided the seed for the classifi cation of AD 
A&WC studies into well understood and less well understood. In hindsight, the 
suggestion may not have the most benefi cial for advancing the broader use of AD, 
from an industry perspective. 

 Additional comments and recommendations on the refl ection paper put forward 
by the PhRMA review team were related to adaptive dose-fi nding designs (use of 
parsimonious modeling), unblinded sample size re-estimation (should not be ruled 
out as a valid AD), and Bayesian approaches (to be included in the refl ection paper 
and have its potential use in AD discussed).   

2.5     Concluding Remarks 

 The regulatory guidance documents on AD published to date have had a critical 
impact on the acceptance and utilization of AD by the biopharmaceutical industry. 
Both documents, in particular the FDA draft guidance, have helped clarify the 
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regulatory position and concerns on AD, which by itself is quite useful. However, 
the cautionary tone of both documents and the classifi cation of some AD for A&WC 
studies as less well understood in the FDA guidance have caused some negative 
reaction in industry with regard to regulatory acceptance of AD, more generally. As 
a result, the increased utilization of AD that was expected after the release of the 
FDA draft guidance never materialized. 

 One important change that has occurred from the time prior to the release of the 
FDA draft guidance is that the ADWG is no longer affi liated to PhRMA and, per-
haps for this reason, no longer active with regard to scientifi c advocacy for adaptive 
designs. The publication of the fi nal version of the FDA guidance which addressed 
the key industry concerns listed in Sect.  2.4.1  would go a long way toward increas-
ing the acceptance and utilization of AD in industry. We hope that FDA will be able 
to provide industry advocates of AD with this valuable support soon.     
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3.1         Historical Landscape 

 Fixed design confi rmatory trials rely on emerging and reliable prior data and 
knowledge to provide necessary assumptions about the key design parameters 
including nuisance parameters. Traditionally, a fi xed design has been the gold stan-
dard for its simplicity, validity, and ability to provide an unbiased estimate of the 
treatment effect. To allow for pre-specifi ed fl exibility in an ongoing trial, a simple 
two-arm controlled trial with a single primary effi cacy endpoint, the repeated sig-
nifi cance testing involving multiplicity adjustment becomes more complex than a 
fi xed design approach. The repeated signifi cance testing recognized in group 
sequential design and analysis was proposed as early as the randomization ratio 
adaptation in late 1960s (Zelen  1969 ), e.g., Armitage et al. ( 1969 ). 

 In a broader sense, is a group sequential design controversial in the context of 
confi rmatory trials? It may be possible to judge if a study design is controversial by 
examining the design features on whether the null hypothesis and the statistical 
information (i.e., sample size or number of clinical events initially planned for) 
remain unchanged. In group sequential designs, neither the initial null hypothesis nor 

    Chapter 3   
 A Commentary on the U.S. FDA Adaptive 
Design Draft Guidance and EMA Refl ection 
Paper from a Regulatory Perspective 
and Regulatory Experiences 

             Sue-Jane     Wang     

        S.-J.   Wang ,  Ph.D.      (*) 
     Offi ce of Biostatistics, Offi ce of Translational Sciences, Center for Drug Evaluation 
and Research ,  US Food and Drug Administration ,   10903 New Hampshire Avenue, 
Building 21, Room 3526, HFD-700 ,  Silver Spring ,  MD   20993-0002 ,  USA   
 e-mail: suejane.wang@fda.hhs.gov  

mailto:suejane.wang@fda.hhs.gov


44

the maximum statistical information, e.g., the number of clinical events in an event-
driven trial, is changed. Although the only and critical concern with group sequential 
design seems to be the potential maneuvers caused by unblinding that occurs in an 
interim analysis, we have gone a long way from adhering to fi xed designs to adopting 
group sequential designs and such proposals have been considered by regulatory 
health authorities for medical product developments and licensures. 

 The conference on the practical issues with data monitoring of clinical trials held 
in 1992 (Ellenberg et al.  1993 ) signifi es the milestones embracing group sequential 
designs in clinical trial practice following the public debates among experts involved 
in design and analysis of clinical trials, and the general recognition among clinical 
trialists, academia, and regulators. To maintain the integrity of a trial, the data moni-
toring committee (DMC) or data and safety monitoring committee (DSMC) previ-
ously known as the data and safety monitoring board (DSMB) was instituted to 
serve as an independent third party to communicate the only necessary information 
to drug sponsors. 

 Furthermore, the additional fl exibility to modifying the multiple design aspects, 
e.g., adapting to some specifi c dose hypotheses with the potential to increase sam-
ple size in an interim analysis, has been proposed. The overwhelming interests in 
proposing adaptive designs in lieu of group sequential designs in regulatory sub-
missions since mid-2000 allow the clinical trial community to experiment alterna-
tive trial designs beyond those fairly understood fi xed designs and group sequential 
designs. In this chapter, regulatory guidance and refl ection paper from health 
authorities on adaptive design will be briefl y introduced. Their similarities and dif-
ferences in emphasis will be highlighted. Key additions to the European Medicines 
Agency (EMA) refl ection    paper (European Medicines Agency  2007 ) described in 
United States Food and Drug Administration (US FDA) draft guidance (FDA  2010 ) 
will be bulleted. In addition, adaptive design proposals submitted to the US FDA 
both before and following publication of the draft guidance will be briefl y summa-
rized. Some of the challenges observed in implementing adaptive design confi rma-
tory trials will be shared. Regulatory perspectives on statistical considerations for 
use of adaptive designs will be articulated based on current thinking, and a sum-
mary will follow.  

3.2     Regulatory Guidance Documents 

 Shortly after Dr. Robert O’Neill, the former Director of Offi ce of Biostatistics, 
Center for Drug Evaluation and Research, US Food and Drug Administration 
(FDA), instituted the regulatory roles in preparation of FDA regulatory review func-
tions on adaptive design submissions, the EMA (the European counterpart) had 
drafted the refl ection paper on methodological issues in confi rmatory clinical trials 
planned with an adaptive design, agreed by the Effi cacy Working Party (EWP) of 
Committee for Medical Products for Human use (CHMP) on January 11, 2006 
(European Medicines Agency  2007 ). With oversights of regulatory submissions and 
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their experience building since late 2005, the US FDA draft guidance for industry 
on adaptive design clinical trials for drugs and biologics was released for public 
comment on February 26, 2010 (FDA  2010 ). 

 The term “adaptive” and the rationales behind the regulatory guidance may not 
be quite the same between the two continents as the term “fl exible” (e.g., Bauer 
et al.  2001 ; Hung et al.  2006 ) was also used until the term “adaptive” was eventually 
adopted in the two regulatory guidance documents (European Medicines Agency 
 2007 ; FDA  2010 ). Earlier, the greater interests in applying adaptive design beyond 
group sequential design were from Europe with its majority in Germany due to the 
fact that the broad early research on the newer adaptive design topics that combine 
stages from a single trial was performed in the Europe region, see (Bauer  1989 ; 
Bauer and Kohne  1994 ). Such interests gradually emerged and received enthusiastic 
attention in U.S. As a result, the development of the US FDA draft guidance for 
industry on adaptive design clinical trials for drugs and biologics (FDA  2010 ) was 
necessary to defi ne the boundaries of adaptive designs regarding what are fl exible, 
what are exploratory and what are adequate and well controlled (A&WC) (FDA 
 2002a ) for clinical trials aiming for drug and biologics development. 

3.2.1     EMA Refl ection Paper on Methodological Issues 
in Confi rmatory Clinical Trials Planned 
with an Adaptive Design 

 The EMA refl ection paper on methodological issues in confi rmatory clinical trials 
planned with an adaptive design (European Medicines Agency  2007 ) adopted by 
EMA/CHMP in October 2007 is a 10-page document. The    EMA refl ection paper is 
structured into four sections. The main body of the texts is in section 4, which out-
lines general considerations for studies incorporating interim analyses that are pre- 
planned (4.1), followed by a set of minimal requirements for interim analysis with 
design modifi cations that must be fulfi lled whenever confi rmatory clinical trials are 
planned with an adaptive design (4.2). 

 More specifi cally, in section 4.1, three topics on interim analyses for general 
considerations are discussed in details. They are (1) the importance of confi dential-
ity of interim results, (2) considerations about stopping trials early for effi cacy, and 
(3) overrunning. Specifi c design modifi cations that have been proposed in the rele-
vant literature on (1) sample size reassessment, (2) change or modifi cation of the 
primary end-point, (3) discontinuing treatment arms, (4) switching between superi-
ority and noninferiority, (5) randomization ratio, (6) phase II/phase III combina-
tions, applications with one pivotal trial and the independent replication of fi ndings, 
(7) substantial changes of trial design, and (8) futility stopping in late phase II or 
phase III clinical trials are commented in section 4.2. See Appendix  1  for table of 
contents of the EMA refl ection paper (European Medicines Agency  2007 ).  
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3.2.2     FDA Draft Guidance for Industry on Adaptive 
Design Clinical Trials for Drugs and Biologics 

 The US FDA draft guidance for industry on adaptive design clinical trials for drugs 
and biologics (FDA  2010 ) targets multidisciplinary readers directly or indirectly 
involved in designing, planning, performing, monitoring, and analyzing clinical tri-
als for drug development including, e.g., external experts/consultants. This draft 
guidance is a 50-page document structured into 12 sections. The earlier sections of 
the document give (1) description of and motivation for adaptive designs, and (2) 
general concerns associated with use of adaptive design in drug development. The 
mid-sections of the document elaborate extensively on (1) generally well- understood 
adaptive designs with valid approaches to implementation, (2) adaptive study 
designs whose properties are less well understood, (3) statistical considerations for 
less well-understood adaptive design methods, and (4) safety consideration in adap-
tive design trials. 

 The later sections of the document provide details on the processes, procedures, 
and documentations needed to maintain the integrity of the trial and its results when 
planning and implementing an adaptive design clinical trial. Specifi cally, these sec-
tions discuss (1) contents of an adaptive design protocol, (2) interactions with US 
FDA when planning and conducting an adaptive design, (3) documentation and 
practices to protect study blinding and information sharing for adaptive designs, and 
(4) evaluating and reporting a completed study. See Appendix  2  for table of contents 
of the FDA draft guidance (FDA  2010 ).   

3.3     Basic Premises/Defi nitions 

 In discussing the guidance document of FDA (FDA  2010 ) and the refl ection paper 
of EMA (European Medicines Agency  2007 ), one should keep in mind that each 
document has its own objectives. I begin by extracting the basic premises and their 
defi nitions of adaptive designs in clinical trials. 

3.3.1      Basic Premises 

 The word “should” in the FDA draft guidance means that something is suggested or 
recommended, but, not required. Such concept is specifi c to FDA guidances. This is 
because guidances describe the Agency’s current thinking on a topic and should be 
viewed only as recommendations, unless specifi c regulatory or statutory require-
ments are cited. There are two such requirements cited in the FDA draft guidance 
on adaptive design clinical trials for drugs and biologics (FDA  2010 ). One is “The 
major focus of this guidance is adequate and well-controlled effectiveness (A&WC) 
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studies intended to provide substantial evidence of effectiveness required by law to 
support a conclusion that a drug is effective (see 21 CFR 314.126 (FDA  2002a )).” 
The other is “In addition to the full documentation required for a study protocol (21 
CFR 312.23(a) (FDA  2002b )), there should be comprehensive and prospective writ-
ten standard operating procedures (SOPs) …” In this spirit, when the FDA adaptive 
design draft guidance is fi nalized, a sponsor can use an alternative approach if the 
approach satisfi es the requirement of the applicable statutes and regulations. 

 Instead of regulatory or statutory requirements cited in the FDA draft guidance 
(FDA  2010 ), the EMA refl ection paper (European Medicines Agency  2007 ), focus-
ing on the learning and thinking via refl ection, gives a list of minimal requirements 
on adaptation of design specifi cations with interim analyses anticipated in a confi r-
matory clinical trial. They are highlighted below.

•    It requires pre-planning and a clear justifi cation  
•   The number of design modifi cations should be limited  
•   It requires the control of the pre-specifi ed Type I error, pre-specifi cation of the 

corresponding methods to estimate the size of the treatment effect and to provide 
confi dence intervals with pre-specifi ed coverage probability in addition to the 
presentation of the  p -value  

•   A measure for the treatment effect that is readily interpretable for clinicians 
should be preferred when the effect can be measured on different scales  

•   From a regulatory point of view, whenever trials are planned to incorporate 
design modifi cations based on the results of an interim analysis, the applicant 
 must  pre-plan methods to ensure that results from different stages of the trial can 
be justifi ably combined.  

•   Depending on the nature of the design modifi cation, the simple rejection of a 
global null hypothesis across all stages of the trial may not be suffi cient to estab-
lish a convincing treatment effect  

•   The involvement of sponsor personnel in interim decision making remain contro-
versial, which introduces an additional risk when the credibility of the trial 
results is challenged, since it would be more diffi cult to argue that importantly 
different results from different stages are only due to chance.    

 The following key points are also emphasized in the EMA refl ection paper 
(European Medicines Agency  2007 ).

•    The body of evidence justifying the fi nal treatment recommendation  must  be 
discussed.  

•   The EMA refl ection paper focuses on the opportunities for interim trial design 
modifi cations, and the prerequisites, problems and pitfalls that  must  be consid-
ered as soon as any kind of fl exibility is introduced into a confi rmatory clinical 
trial intended to provide evidence of effi cacy.  

•   A set of minimal requirements is outlined that  must  be fulfi lled whenever confi r-
matory clinical trials are planned with an adaptive design.  

•   Analysis methods that control the Type I error  must  be pre-specifi ed.  
•   Effects  must  always be attributable to specifi c endpoints to clarify the  capabilities 

of the drug treatment in a confi rmatory setting.     
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3.3.2      Defi nitions 

 The EMA refl ection paper (European Medicines Agency  2007 ) defi nes ‘A study 
design is called “adaptive” if statistical methodology allows the modifi cation of a 
design element (e.g., sample-size, randomization ratio, number of treatment arms) 
at an interim analysis with full control of the Type I error.’ In this defi nition, a clini-
cal trial with “adaptive” design may not be a group sequential trial, although this 
document begins with general considerations for studies incorporating interim 
analyses. 

 In contrast, a more extensive defi nition can be found in the FDA draft guidance 
(FDA  2010 ), which contains three components. That is, “an  adaptive design clinical 
study  is (1) a study that includes a  prospectively planned opportunity  for modifi ca-
tion of one or more specifi ed aspects of the study design and hypotheses based on 
analysis of data (usually interim data) from subjects in the study. (2) Analyses of the 
accumulating study data are performed at  prospectively planned timepoints  within 
the study, (3) can be performed in a fully blinded manner or in an unblinded manner, 
and can occur with or without formal statistical hypothesis testing.” FDA defi nition 
of adaptive design includes group sequential design. This distinction will be elabo-
rated later in Sect.  3.5  of this chapter.   

3.4     Similarities 

    There are several similar concepts and principles between the FDA regulatory guid-
ance and the EMA refl ection paper for adaptive studies designed as confi rmatory 
trials. We highlight a few in this section.

•    Prospectively planned adaptation and its justifi cation    

 ICH E9 (ICH  1998 ) emphasizes the concept of prospective planning of a confi r-
matory clinical. This concept is repeatedly stated in the FDA defi nition of adaptive 
design shown as italic phrases    in Sect.  3.3.2 . Although the defi nition of adaptive in 
the EMA refl ection paper did not mention the concept of pre-planning, it is the fi rst 
bullet in the list of minimal requirements summarized in Sect.  3.3.1 . In fact, the 
EMA refl ection paper does not recommend unplanned changes to the design of an 
ongoing confi rmatory trial, even though such changes could be introduced with full 
control of the Type I error (p. 5 of European Medicines Agency  2007 ). 

 As for the need of justifi cation for why pursuing an adaptive design, it is stated 
in the EMA refl ection paper that “In all instances the interim analysis and the type 
of the anticipated design modifi cation (change of sample size, discontinuation of 
treatment arms, etc.) would need to be described and justifi ed in the study protocol.” 
(European Medicines Agency  2007 ) Similarly, the FDA draft guidance states that 
document should include the rationale for the design, justifi cation of design  features, 
evaluation of the performance characteristics of the selected design (particularly 
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less well-understood features), and plans to assure study integrity when unblinded 
analyses are involved, see the subsection A on “A&WC Adaptive Design Studies” 
of Section IX of the FDA draft guidance (FDA  2010 ).

•    Control of pre-specifi ed type I error    

 Both documents stress the need to control the pre-specifi ed Type I error in adap-
tive design confi rmatory trials or A&WC trials. The term “Type I error” occurs 11 
times in the EMA refl ection paper (European Medicines Agency  2007 ) and 52 times 
in the FDA draft guidance (FDA  2010 ). From the EMA refl ection paper (European 
Medicines Agency  2007 ), a minimal prerequisite for statistical methods to be 
accepted in the regulatory setting is the control of the pre-specifi ed Type I error, 
which is used as an abbreviation for “the control of the family-wise Type I error in 
the strong sense, i.e., there is control on the probability to reject at least one true null 
hypothesis, regardless which subset of null hypotheses happens to be true”, see page 2 
of CHMP Point to Consider on multiplicity issues in clinical trials (European 
Medicines Agency  2002 ). The importance of “controlling study-wide Type I error 
rate” can be found in Section VII, which is elaborated under subsection “A” of the 
FDA draft guidance (FDA  2010 ). This draft guidance further states that using 
Bayesian predictive probability may aid in deciding which adaptation should be 
selected, while the study design is still able to maintain statistical control of the 
Type I error rate in the frequentist design. The Type I error rate control here refers 
to the hybrid setting where adaptive design relies on the frequentist analysis and 
incorporates Bayesian predictive probability tool for the purpose of adaptation 
decision.

•    Sample size re-estimation    

 There has been a great interest to preplan the possibility of modifying the study 
sample size or statistical information based on interim unblinded treatment effect 
estimate, e.g., (Gao et al.  2008 ) on the methodological relationship of the many 
references cited therein. However, both guidance documents encourage blinded 
methods for sample size re-estimation. The EMA refl ection paper (European 
Medicines Agency  2007 ) states that whenever possible, methods for blinded sample 
size reassessment that properly control the Type I error should be used, especially if 
the sole aim of the interim analysis is the re-calculation of sample size. In cases 
where sample size needs to be reassessed based on unblinded data, suffi cient justi-
fi cation should be made. 

 The similar concepts fl ow in the FDA draft guidance (FDA  2010 ) as such “sam-
ple size adjustment using blinded methods to maintain desired study power should 
generally be considered for most studies.” The FDA draft guidance elaborates on 
the blinded interim analyses used to make decisions to increase the sample size and 
discourages it to decrease the sample size “because of the chance of making a poor 
choice caused by the high variability of the effect size and event rate or variance 
estimates early in the study.”
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•    Sponsor personnel involvement in interim adaptive process and decision 
making    

 The concerns with the involvement of sponsor-affi liated personnel in interim 
adaptive decision making have been articulated in detail in the FDA guidance for 
clinical trial sponsors on establishment and operation of clinical trial data monitor-
ing committees released in 2006, see section 6.4 Statisticians conducting the interim 
analyses (FDA  2006 ). A key concern is the confl icting nature between the sponsor- 
affi liated statistician and the sponsor regarding the ability to ensure the sponsor is 
unaware of the interim comparative data. This can be seriously questioned when the 
primary trial statistician or sponsor affi liated statistician is (extremely) knowledge-
able about the study or is involved in regard to making decisions about design 
modifi cations. 

 In a similar vein, the EMA refl ection paper (European Medicines Agency  2007 ) 
acknowledges that decision in certain types of adaptive trials are more complicated 
to set into an algorithm for independent interpretation than, for example, a sample 
size re-estimation problem or group-sequential stopping guidelines. Nevertheless, 
sponsor involvement introduces an additional risk when the credibility of the trial 
results is challenged as such with sponsor involvement it would be more diffi cult to 
argue that importantly different results from different stages are only due to chance. 
Therefore, “it remains controversial if the sponsor-affi liated personnel is involved in 
interim adaptive decision making.” (European Medicines Agency  2007 )

•    When a number of design aspects need modifi cation    

 In the section describing the minimal requirements, the EMA refl ection paper 
(European Medicines Agency  2007 ) notes that “the need to modify a number of 
design aspects, e.g., re-assess sample size, change inclusion or exclusion criteria, 
change dosing, treatment duration, model of application, allow for alternative co- 
medications, may change the emphasis from a confi rmatory trial to a hypothesis 
generating, or exploratory trial.” 

 To articulate, the FDA draft guidance (FDA  2010 ) devotes a subsection VI.F to 
addressing “adaptation of multiple-study design features in a single study.” The 
concerns include that the study will become increasingly complex and diffi cult to 
plan and increased diffi culty in interpreting the study result. In addition, if there are 
interactions between the changes in study features, multiple adaptations can be 
counterproductive and lead to failure of the study to meet its goals. Because of these 
concerns, the draft guidance highlights that “an A&WC study should limit the num-
ber of adaptations and recommends exploratory studies may be better suited to cir-
cumstances when multiple adaptations are warranted.” (FDA  2010 )

•    Investigate more than one dose in confi rmatory clinical trials    

 The EMA refl ection paper (European Medicines Agency  2007 ) notes that even 
after a carefully conducted phase II program, in some instances, some doubts about 
the most preferable dose for phase III may still exist and recommends that “investi-
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gators may wish to further investigate more than one dose of the experimental 
 treatment in phase III”. Similarly, the FDA draft guidance (FDA  2010 ) states that 
“fully evaluating more than one dose in the larger A&WC studies is almost always 
advisable whenever feasible.”  

3.5      Differences in Emphasis 

 Some of the emphases differ between the FDA draft guidance (FDA  2010 ) and the 
EMA refl ection paper (European Medicines Agency  2007 ). Below, I comment on a 
few key aspects.

•    A&WC versus confi rmatory    

 The EMA refl ection paper (European Medicines Agency  2007 ) focuses on 
 confi rmatory trials citing ICH E9 (ICH  1998 ) that a confi rmatory trial is an ade-
quately controlled trial in which the hypotheses are stated in advance and evaluated. 
As a rule, confi rmatory trials are necessary to provide fi rm evidence of effi cacy 
or safety. 

 Instead of using “confi rmatory trials”, the FDA draft guidance (FDA  2010 ) dis-
tinguishes between A&WC studies (used here to refer only to effectiveness studies) 
and other studies, termed exploratory studies. In US, Section 314.126 in Code of 
Federal Regulations (CFR) defi nes in details on what are adequate and well- 
controlled (A&WC) studies (FDA  2002a ). From CFR 314.126, the key characteris-
tics of an A&WC study includes (1) a clear statement of the objectives of the 
investigation and a summary of the proposed or actual methods of analysis in the 
protocol for the study and in the report of its results, (2) uses a design that permits a 
valid comparison with a control to provide a quantitative assessment of drug effect, 
(3) the method of selection of subjects provides adequate assurance that they have 
the disease or condition being studied, or evidence of susceptibility and exposure to 
the condition against which prophylaxis is directed, (4) the method of assigning 
patients to treatment and control groups minimizes bias and is intended to assure 
comparability of the groups with respect to pertinent variables such as age, sex, 
severity of disease, duration of disease, and use of drugs or thereby other than the 
test drug, (5) adequate measures are taken to minimize bias on the part of the sub-
jects, observers, and analysts of the data, (6) the methods of assessment of subjects’ 
response are well defi ned and reliable, (7) an analysis of the results of the study 
adequate to assess the effects of the drug. 

 The distinction between A&WC and exploratory adaptive design clinical trials 
stated in the FDA draft guidance has major implications. The rationales of this dis-
tinction are summarized in the second bullet of section 6 on “Additions”, as such an 
exploratory adaptive design trial as designed cannot be converted to an A&WC 
adaptive design trial. The regulatory and statistical requirements will be demanded 
for A&WC adaptive design trials, which may not be the case for exploratory adap-
tive design trials. To build on practical experiences with use of more complex adap-
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tations, the FDA draft guidance encourages sponsors to gain experience with the 
less well-understood methods in the exploratory study setting (FDA  2010 ).

•    Interim analysis    

 The term “interim analysis” is not further explained, other than to note that 
adaptive design involves design modifi cations based on the results of an interim 
analysis in the EMA refl ection paper (European Medicines Agency  2007 ). Interim 
analysis is defi ned in the ICH E9 (ICH  1998 ) as “any analysis intended to compare 
treatment arms with respect to effi cacy or safety at any time prior to the formal 
completion of a trial.” However, the FDA draft guidance (FDA  2010 ) gives a foot-
note specifi cally to explain its broader meaning for interim analysis than those 
defi ned in ICH E9 (ICH  1998 ) to accommodate the broader range of analyses of 
accumulated data that can be used to determine study adaptations at an intermedi-
ate point in the study. For instance, an interim analysis in this broader defi nition 
may include a pre-planned analysis of accumulating data without performing a 
formal statistical hypothesis test, but may make the decision to increase statistical 
information, e.g., sample size, event count (or study duration in certain circum-
stances), in an ongoing trial.

•    Blinded versus unblinded interim analysis    

 In addition to “Routinely breaking the blind should be avoided …”, general 
statements on whether interim unblinded data can be protected or when blind can-
not be maintained in an interim analysis and use of blinded sample size reassess-
ment are mentioned using group sequential design as the backbone in the EMA 
refl ection paper (European Medicines Agency  2007 ). In contrast, the FDA draft 
guidance (FDA  2010 ) devotes four subsections in the generally well-understood 
adaptive designs session. This includes (1) V.A. on adaptation of study eligibility 
criteria based on analysis of pretreatment (baseline) data, (2) V.B. on adaptations to 
maintain study power based on blinded interim analyses of aggregate data, (3) V.C. 
on adaptations based on interim results of an outcome unrelated to effi cacy, and (4) 
V.E. on adaptations in the data analysis plan not dependent on within study, between- 
group outcome differences. Note on the unblinded interim analysis in FDA draft 
guidance (FDA  2010 ) can be found under the bullet “Well-understood versus less 
well-understood” below. 

 Those described in V.A. are relatively commonly known. For V.B., it may 
include, e.g., blinded enrichment modifi cation, blinded interim analysis to upsizing 
for power improvement in a noninferiority trial. For V.C., it may be in a situation 
where if an unexpected serious toxicity is observed in safety monitoring, dropping 
the dose groups early with excessive toxicity would be an outcome unrelated to 
effi cacy. Examples of where V.E. may be useful to include situations in which the 
observed data violate prospective assumptions regarding the distribution of the data 
or where data transformations or use of a covariate is called for in the analysis to 
achieve adequate conformity with the method’s assumptions, e.g., (Wang and Hung 
 2005 ). These subsections involve interim analyses that are used in a broader sense 
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than those defi ned in ICH E9 (ICH  1998 ), i.e., blinded interim analyses not for early 
effi cacy or futility stopping.

•    Phase II/III or phase 2/3 or seamless    

 In statistical literature, the term “seamless Phase II/III” was getting popular, e.g., 
(Schmidli et al.  2006 ; Friede et al.  2011 ), during and after the development of the 
EMA refl ection paper (European Medicines Agency  2007 ). Section 4.2.7 of the 
EMA refl ection paper (European Medicines Agency  2007 ) is devoted to “Phase II/
Phase III combinations, applications with one pivotal trial and the independent rep-
lication of fi ndings”. This section further elucidates what criteria should be consid-
ered as a basis for drug licensing in Europe. 

 Since “phase 2/3” or “seamless” used to describe an adaptive design confi rma-
tory trial introduces confusion on whether a study is initially designed to be ade-
quate and well-controlled, and ultimately demonstrate effectiveness, they also do 
not add to understanding of the design beyond the already inclusive term “adap-
tive”. The FDA draft guidance (FDA  2010 ) therefore acknowledges these terms 
citing statistical literature, but, uses the terms exploratory study versus A&WC 
study (FDA  2002a ), each can be an adaptive trial in itself.

•    Well-understood versus less well-understood    

 In the EMA refl ection paper (European Medicines Agency  2007 ), there is no 
distinction made on whether certain types of adaptive designs would be well or less 
well understood. Interestingly, specifi c adaptive designs sub-bulleted for special 
considerations listed in section 2.1 mostly involve unblinded interim analysis. In 
their discussion, the document distinguishes between group sequential trials and 
adaptive designs. 

 Whilst, group sequential trials is a type of A&WC adaptive design clinical trials 
described in the FDA draft guidance (FDA  2010 ) as whose properties are well 
understood. In addition, those A&WC adaptive design clinical trials adopting 
blinded approaches listed in section V also belong to the well-understood category. 
The blinded approaches in the comparative studies do not make use of the treatment 
codes in their pre-specifi ed interim adaptation(s). As for A&WC adaptive design 
clinical trials whose properties are less well-understood, the adaptive design meth-
ods are all based on unblinded interim analyses that estimate the treatment effect(s).

•    Consistency of and bias in treatment effect estimates    

 The EMA refl ection paper (European Medicines Agency  2007 ) repeatedly 
reminds of the importance and the need to check for consistency of treatment effect 
estimates before and after the interim analysis in an adaptive design trial with a 
preplanned method, but only notes once about the bias as “assessment of results 
from clinical trials involves, amongst other issues, a full discussion of potential 
sources of bias.” 
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 In contrast, the FDA draft guidance (FDA  2010 ) repeatedly articulates and cau-
tions regarding the bias issue induced by adoption of an adaptive design in lieu of a 
fi xed design. Here, the biases include both the statistical bias embedded in the 
design, analysis, and interpretation of study fi nding and the operational bias caused 
by the conduct of an adaptive design trial mostly resulting from unblinded adapta-
tion. The term “bias” occurs around 70 times but only twice regarding the consis-
tency of treatment effect estimates.

•    Situations or settings for encouraging adaptive design use    

 The ideal setting to utilize adaptive designs, explained by the EMA refl ection 
paper (European Medicines Agency  2007 ), is using it as a tool for planning clinical 
trials in areas where it is necessary to cope with “diffi cult experimental situations” 
in confi rmatory trials. It goes on to state “In all instances the interim analysis and 
the type of the anticipated design modifi cation (change of sample size, discontinua-
tion of treatment arms, etc.) would need to be described and justifi ed in the study 
protocol. Adaptations to confi rmatory trials introduced without proper planning will 
render the trial to be considered exploratory”. 

 Here, “diffi cult experimental situations” refer to diseases, indications, or 
patient populations, where it is common knowledge that clinical trials will be dif-
fi cult to perform (European Medicines Agency  2007 ). Three examples given as 
diffi cult experimental situations are (1) placebo response is diffi cult to predict, 
even in situations where criteria for inclusion and exclusion of patients to trials 
are well defi ned, (2) small populations or orphan diseases with constraints to the 
maximum amount of evidence that can be provided, and (3) ethical constraints to 
experimentation. 

 In contrast, the FDA draft guidance (FDA  2010 ) acknowledges the greatest inter-
est in adaptive design clinical trials has been in the adequate and well-controlled 
study setting intended to support marketing a drug. Because these studies have the 
greatest regulatory impact, it is critical to avoid increased rates of false positive 
study results and to minimize introducing bias. The FDA draft guidance also notes 
that many adaptive methods are also applicable to exploratory studies and encour-
ages sponsors to gain experience with the less well-understood methods in the 
exploratory study setting (FDA  2010 ).  

3.6     Additions 

 It is noticeable that the FDA draft guidance (FDA  2010 ) is much more extensive 
than the EMA refl ection paper (European Medicines Agency  2007 ). Instead of dis-
cussing specifi c statistical methods, the EMA refl ection paper (European Medicines 
Agency  2007 ) focuses on the opportunities for interim trial design modifi cations, 
and the prerequisites, problems and pitfalls that must be considered as soon as any 
kind of fl exibility is introduced into a confi rmatory clinical trial intended to provide 
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evidence of effi cacy. A few key additions described or discussed in the FDA draft 
guidance (FDA  2010 ) are listed below.

•    Comprehensively describing the rationales, motivations, and clinical contexts in 
drug development that should also be understandable to non-statisticians.  

•   Rationally articulating “adaptive design exploratory studies are usually different 
in multiple aspects of design rigor from A&WC studies so that design revisions 
while the study is underway will usually not be suffi cient to convert the study 
into an A&WC study. As such studies that are intended to provide substantial 
evidence of effectiveness should not be designed as exploratory studies, but 
rather as A&WC studies at initial planning.” With this theme, safety consider-
ations in adaptive design trials are mostly exploratory studies.  

•   Extensively elaborating on the roles of clinical trial simulation in adaptive design 
planning and evaluation. This includes, but are not limited to, reliance on statisti-
cal models for the disease or the drug, use of modeling and simulation strategies 
with either a Bayesian or a frequentist approach, comparison of the design per-
formance characteristics among competing designs under different scenarios 
mostly in situations where multiple factors will be simultaneously considered in 
the adaptive process, but, with little analytical solution on the strong control of 
study-wide Type I error.  

•   Mindfully recommending an elaborate standard operating procedure (SOP) for 
an adaptive design study in the less well-understood category, in addition to what 
has been in place for traditional group sequential trials, such as, how adaptation 
decision will be made, actual interim analysis results and a snapshot of the data-
bases used for that interim analysis and adaptation decision should also be 
retained in a secure manner, acknowledging these SOPs will be related to the 
type of adaptation and the potential for impairing study integrity.  

•   Cautiously stipulating two types of trial logistics/adaptive monitoring models: 
one is the typical DMC model with procedures in place to ensure certain kinds of 
information with possibly unblinded analyses do not become available outside of 
the committee. Alternatively, a model with two separate committees with a DMC 
delegated only the more standard roles (e.g., ongoing assessment of critical 
safety information) and a separate adaptation committee used to examine the 
interim analysis and make adaptation recommendations. In either case, the spe-
cifi c duties and procedures of the committees should be fully and prospectively 
documented.  

•   Extensively detailing the content of an adaptive design protocol, processes in the 
interactions with FDA when planning and conducting an adaptive design clinical 
trial for a drug development or drug developments, documentation, and practices 
to protect study blinding and information sharing for adaptive designs, and eval-
uating and reporting a completed study     
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3.7     Regulatory Submissions and Statistical Considerations 

 The FDA draft guidance (FDA  2010 ) offers an opportunity to take a fresh look of 
fi xed designs, group sequential designs, and a broader class of adaptive designs. 
While the draft guidance pinpoints important differences among these designs, 
adaptive designs may be considered with care for improving the effi ciency of a 
clinical development program, but it is necessary, at the minimum, to distinguish if 
a trial is designed at the outset an exploratory trial or a confi rmatory trial (Wang 
 2010a ). 

3.7.1     Regulatory Submissions 

 The overwhelming interests in pursuing an adaptive design clinical trial appears to 
be where it has most regulatory impacts for its potential in gaining regulatory licen-
sure, namely, adaptive design confi rmatory trials by the EMA refl ection paper 
(European Medicines Agency  2007 ) or adaptive design A&WC trials by legal stat-
utes and regulations stated in the FDA draft guidance (FDA  2010 ). 

 In 2005, the results of CDER’s preliminary survey to capture any interest in 
adaptive/fl exible design strategy up to September 2002 were published (Wang et al. 
 2005 ). Of the 46 study cases reported involving any fl avor of adaptive/fl exible 
designs irrespective of methodological validity, approximately 80 % were investiga-
tional new drugs (INDs) and 20 % were new drug applications (NDAs). In this 
preliminary survey, the most frequently considered adaptation was the sample size 
re-estimation (43 %) where blinded and unblinded approaches were proposed. 
Twenty-two percent of submissions considered dropping at least one treatment dose 
arm and 20 % considered study objective change from superiority to non-inferiority 
and vice versa. About 9 % involved adaptation on primary endpoint, 4 % on primary 
statistical analysis method and 2 % on multiplicity adjustment method. 

 The newer adaptive designs attempt to combine data in the fi rst stage with data 
in the second stage for statistical inference in a two stage adaptive design trial. The 
germane question is what is the study-wise Type I error rate when data from both 
stages are combined. If the adaptive design trial as proposed is an exploratory trial, 
the study objectives aim at learning; therefore, study-wise Type I error rate control 
standard may not be the focus. In contrast, if the adaptive design trial is proposed as 
a confi rmatory trial, the study-wise Type I error rate would be at issue. 

 Since 2005, a part of the newer topics for adaptive/fl exible design consideration 
geared towards pharmacogenomics trials due to overwhelming interests in person-
alized medicine drug development (Wang  2006 ,  2007 ). Other newer topics attempted 
to pursue a learn-and-confi rm approach (Wang  2010a ), which prompted regulatory 
research to investigating the impact of family-wise Type I error rate in the context 
of learning-free in Stage 1 that combines data from both stages for statistical infer-
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ence (Wang et al.  2010 ). Gradually, the learn-and-confi rm approach was recognized 
for its suitability in exploratory trials to demonstrate preliminary early evidence, 
which can serve as a priori knowledge for planning confi rmatory trials that can 
employ fi xed design or adaptive design. 

 We have since received many two-stage adaptive design clinical trial submis-
sions that are either exploratory (such as, proof of concept studies) or A&WC (FDA 
 2002a ). Often, we see Bayesian approaches are proposed in exploratory adaptive 
design clinical trials including early dose escalation or tolerability studies. 
Interestingly, the majority of the adaptive design proposals are still in the domain of 
sample size or statistical information adaptive design that adapt either statistical 
information alone (Wang et al.  2012 ) or in conjunction with adaptive selection 
(Wang et al.  2013 ). 

 Traditionally, the proof of concept studies and dose-ranging studies are mostly 
fi xed design trials. To enhance the fl exibility and consistent with the recommenda-
tion from FDA draft guidance (FDA  2010 ), we are seeing an increase in two-stage 
adaptive design proof of concept trial proposals seeking preliminary data informa-
tion prior to launching A&WC clinical trials. We have also received submissions 
proposing a two-stage adaptive design dose ranging exploratory trial based on 
short-term endpoints. 

 Recent regulatory experiences on adaptive design A&WC trials leading to even-
tual drug approval identifi ed a number of challenges, though effi cacy evidence sup-
ported by statistical signifi cance may not be critically challenged. In a few 
incidences, the treatment effect estimates before and after adaptation can easily be 
argued to be inconsistent but with unclear causes or may be speculated to be due to 
patient heterogeneity or baseline imbalance between stages (Wang et al.  2013 ). Fast 
accrual results in a haphazard adaptation on statistical information (Wang and Hung 
 2013a ), interim selection of treatment arm may have been impacted by market com-
petition on effi cacy benefi t when safety risks are not well understood (Wang  2009 ). 

 It can be questioned that interim data used for interim adaptation can be subop-
timal if data quality at interim time can be of concern possibly due to timing for data 
cleaning versus for interim analysis to make adaptation recommendation and adap-
tation decision. We believe regulatory learning curve will continue, especially on 
challenges that may evolve from more regulatory reviews of the less well- understood 
completed adaptive design confi rmatory trials. The accumulating experiences from 
overseeing the range of trial logistics models for interim analysis, recommendation, 
and decision to adapt may facilitate future development of good adaptive design 
implementation practices in those less well-understood adaptive design trials aim-
ing for A&WC investigation.  
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3.7.2     Statistical Considerations 

 In discussing the evidential standards for a confi rmatory or A&WC clinical trial, the 
term “family-wise” in (European Medicines Agency  2002 ) is referenced in the 
EMA refl ection paper (European Medicines Agency  2007 ) and the term “study- 
wide” is used in the FDA draft guidance (FDA  2010 ). For commentary, I will use 
the term “study-wise” to refer to the various terms: “family-wise”, “experiment- 
wise”, “study-wise”, “overall” seen in the statistical literature regarding multiplicity 
in a study, a family, or an experiment.

•    One trial one study-wise Type I error rate    

 Multiplicity issues may arise in a single hypothesis adaptive design clinical trial 
if (1) there is adaptation of a design feature, e.g., sample size reassessment based on 
the interim observed treatment effect estimate, or (2) there is adaptation of an analy-
sis feature, e.g., repeated signifi cance testing using independent incremental data 
information for potential early rejection of the same null hypothesis at an interim 
analysis, or (3) both (Bauer and Kieser  1999 ). For the newer adaptive designs 
intended to perform unblinded interim evaluations for adapting statistical informa-
tion or adaptive selection, either the initial null hypothesis and/or the initial alterna-
tive hypothesis may have been modifi ed (Wang et al.  2011a ). 

 A minimum requirement for a statistically valid A&WC trial is the strong control 
of the study-wise (family-wise) Type I error rate (European Medicines Agency 
 2002 ). An adaptive design clinical trial to be considered A&WC should be sub-
jected to the same requirement in addition to prospective specifi cation of the adapta-
tion criteria. In this spirit, the study-wise error rate control of an adaptive design 
clinical trial can be achieved, for example, using  p -value combination tests or 
weighted Z-tests; see the literature such as (Bauer and Kohne  1994 ; Bauer and 
Kieser  1999 ; Posch et al.  2005 ; Bretz et al.  2009 ; Wang et al.  2007 ,  2009 ) and some 
articles cited therein. The principle of strong control of the study-wise Type I error 
rate is also adopted in the EMA refl ection paper (European Medicines Agency 
 2007 ). 

 However, methodologies that do not require pre-specifi cation of what to adapt 
after an interim unblinded analysis exit, and yet these approaches can control the 
pre-specifi ed overall Type I error by controlling the conditional Type I error, e.g., 
control of conditional Type I error (Proschan and Hunsberger  1995 ; Schäfer and 
Müller  2001 ), recursive combination tests (Brannath et al.  2002 ). With this fl exibil-
ity feature, it is possible that at any (unscheduled) time the remainder of the pre- 
planned design, say, group sequential design, can be replaced by an “adaptive design 
which preserves the conditional type I error rate” (Müller and Schäfer  2004 ). As 
noted by Bauer ( 2006 ) “such designs can be looked at as perfect tool to deal with 
the unexpected. The price to be paid for such a wide fi eld of fl exibility is mainly 
known.” 

 It should be obvious that such approaches to control the study-wise Type I error 
may be controversial in the context of an adaptive A&WC trial that has wide fl exi-
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bility without the need for pre-specifi cation (Wang  2010a ; Wang et al.  2010 ,  2011a ). 
Not only there is no pre-specifi ed adaptation, the elements to adapt can also be wide 
and fl exible. These features would be inconsistent with the principles laid out in 
both regulatory guidance documents. In fact, both Koch ( 2006 ) and Hung et al. 
( 2006 ) hinted similar concerns and only commented directly on the logistical chal-
lenges cited by Bauer ( 2006 ). These three commentaries were published prior to the 
release of either regulatory document. 

 For a while, several regulatory submissions using an adaptive design clinical trial 
aiming for an A&WC consideration propose to adjust for multiplicity only on the 
selected hypotheses based on the stage 1 data when data from both stages are to be 
combined for fi nal statistical inference, referred to as a learn-and-confi rm adaptive 
design clinical trial (Wang et al.  2011a ). The Type I error rate in a learn-and-confi rm 
adaptive design trial has recently been coined as learning-free Type I error rate by 
Wang et al. ( 2010 ). In the learn-and-confi rm framework without increasing the total 
sample size, the learning free Type I error rate in a confi rmatory trial has been shown 
to be liberal. Depending on the particular adaptation scenarios, the Type I error rate 
infl ation can increase substantially beyond the intended signifi cance level, such as 
the conventional one-sided 0.025 or two-sided 0.05 level, see (Wang et al.  2010 ). 

 Wang et al. ( 2010 ) note that in the scenario of selecting the better dose regimen 
between two doses in stage 1, the simulation studies show that the learning-free 
Type I error rate control requires use of an extremely stringent criterion for an ad- 
hoc adaptive dose selection if necessary multiplicity adjustment is ignored. That is, 
the perceived minimum multiplicity adjustment due to only two hypotheses without 
adjusting for interim adaptation may not be as straightforward as one would expect. 
This is because the selection between one of the two dose regimens, if the criteria 
are not carefully considered, can lean toward random selection as such either dose 
regimen has equal probability of being chosen without adjusting for all sources of 
multiplicity.

•    Simulated Type I error rate aiming at an A&WC investigation    

 An adaptive design clinical trial to be counted toward one of the registration tri-
als but without an analytical solution to the study-wise Type I error rate control 
signals the complexity of the design and the complexity of the inter-relationship 
among the design elements desired for potential adaptation. Simulation tools have 
been highly recommended to consider aspects of modernizing drug development 
via clinical scenario planning and evaluation (Benda et al.  2009 ). Recently, the sim-
ulation studies with or without modeling have received wide acceptance to critically 
assess the utility of adaptive design in terms of the study power, bias, mean square 
error, and the sample size. 

 In simple setting, analytical solutions of Type I error probability are available, 
e.g., sample size reassessment. However, the assessment of study-wise Type I error 
rate via (modeling) simulations in the context of an adaptive design clinical trial 
where no analytical solution is available and the adaptive design trial is intended to 
be considered as A&WC has been debated; see, for example, (Posch et al.  2011 ) and    
views by Brannath in (Wang and Bretz  2010 ). 
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 In principle, if the statistical behavior of the test statistic is mathematically trac-
table, using simulation to fi nd the critical value or performing numerical integration 
can be well understood. In general, simulation studies should be routinely per-
formed for power assessment when clinical scenarios are to be compared at the 
planning stage with adaptive design in mind. This will demand people who plan the 
trials to think about what are likely adaptive design clinical scenarios for power 
assessment. The drug sponsors are always encouraged to use simulation to assess 
the statistical effi ciency of a trial design. However, it can be very risky if the study- 
wise Type I error in a complex adaptive design trial aimed for confi rmatory evi-
dences has to depend on the unknown mathematical models with no good pilot data.

•    Bias    

 For all practical purposes, the bias associated with adaptations can come in 
 several forms into a study. This includes study design, study conduct, analysis and 
interpretation of the study results, and can be grouped into statistical bias and opera-
tional bias, e.g., ICH E9 (ICH  1998 ; Wang and Nevius  2005 ). The statistical bias in 
the treatment effect estimate can be induced by design due to interim adaptive 
 selection; see, for example, (Bauer et al.  2010 ; Bretz and Wang  2010 ; Hung et al. 
 2010 ). Statistical bias induced by design can be adjusted for, e.g., median unbiased 
estimates (Posch et al.  2005 ; Brannath et al.  2006 ), or mean unbiased estimates 
(Lawrence and Hung  2003 ) for sample size re-estimation, and (Bowden and Glimm 
 2008 ) for selected treatment means in two-stage adaptive design clinical trials. 

 The operational bias causing inaccurate treatment effect estimates can be the 
results of changes in trial conduct due to interim adaptive decision, in trial imple-
mentation due to adaptive monitoring by the unblinded parties who either have sci-
entifi c interests or fi nancial interests among other factors impacted by interim 
unblinding. To minimize the operational bias, it is often questioned to what degree 
a sponsor should be involved in making the adaptive decision based on interim 
unblinded data information (Benda et al.  2010 ; Wang et al.  2011b ).

•    Consistency of treatment effects before and after adaptation    

 In the section articulating the importance of confi dentiality of interim results in 
the EMA refl ection paper (European Medicines Agency  2007 ), checking for consis-
tency of treatment effect estimates from the data collected before and after the 
interim analysis is highlighted for interpretable conclusions in studies planned with 
an adaptive design. The document notes its greater importance if treatments cannot 
be fully blinded, if it is suspected that the observed discrepancies are a consequence 
of (intentional or unintentional) dissemination of the interim results, or if the assess-
ment of results incorporates some subjective elements. 

 Viewing it as an integral part of the adaptive design proposal for regulatory con-
siderations, Koch ( 2006 ) notes that it is essential to pre-specify the approaches to 
evaluating consistency of treatment effects to avoid post-hoc discussions whenever 
observed data may only indicate that combination of results from different stages is 
questionable. Following this plea, some methods are proposed in statistical litera-
ture, e.g., (Wang et al.  2013 ; Friede and Herderson  2009 ; Wang and Hung  2013b ).   
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3.8     Diffi cult Experimental Situations 

 Should an A&WC adaptive design clinical trial be best utilized as a tool for plan-
ning clinical trials in areas where it is necessary to cope with diffi cult experimental 
situations noted in EMA refl ection paper (European Medicines Agency  2007 ) or 
experimentation in exploratory trials with the less well-understood methods encour-
aged by US FDA (FDA  2010 ) or both? In an editorial, Wang ( 2010b ) commented 
that a well-understood experimental situation refers to a well-understood primary 
endpoint, patient population, likely range of treatment effect size based on a plau-
sible dose regimen or regimens, etc. An A&WC adaptive design trial can then be 
used to design a study to deal with the remaining uncertainty, such as the variability 
of the effect size or limited uncertainty on the magnitude of effect size, and to avoid 
falling short of statistical signifi cance, such as a p-value slightly greater than the 
pre-specifi ed signifi cance level when the completed trial is analyzed (Wang and 
Hung  2013b ). 

3.8.1     Some Philosophy in EMA Refl ection Paper 

 Best use of adaptive design in diffi cult experimental situations appears to bear a dif-
ferent philosophy. Rather than dealing with the limited uncertainties, the common 
theme of those examples cited in the EMA refl ection paper (European Medicines 
Agency  2007 ) is ‘diffi cult’. In one situation, it is diffi cult to predict placebo response 
though inclusion and exclusion of patients are well defi ned, such as in pain medica-
tion development. In other situations, ethical constraints may make it diffi cult to 
experiment, e.g., not feasible to pursue a superiority trial in an active controlled trial 
but a statistical non-inferiority margin may not be readily available. Or, orphan or 
rare diseases may make it diffi cult to plan and conduct suffi ciently powered trials 
due to limited number of patients and consequently poses constraints on the maxi-
mum amount of evidence that can be provided.  

3.8.2     Types of Adaptive Design and Study Endpoint 

 Should different standards be considered in diffi cult experimental situations? For 
instance, should learn-and-confi rm adaptive design (Wang  2010a ) be an acceptable 
design choice for establishing regulatory evidence of effi cacy in diffi cult experi-
mental situations? It would be challenging if the only confi rmatory trial for evi-
dence setting relies only on a single learn-and-confi rm adaptive design trial that 
does not have a clear intent of being adequate and well controlled. Such learn-and- 
confi rm adaptive design does not consider strong control of the study-wise Type I 
error rate (Wang  2010a ). 
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 Should the less well-understood adaptive design approach proposed to be A&WC 
be viewed as A&WC? The less well-understood adaptive design trial would be sci-
entifi cally sound if it follows an A&WC investigation (FDA  1998 ,  2002a ). In the 
case that a second trial is not feasible, US FDA Moderization Act released in 1997 
may consider data from one A&WC clinical investigation and confi rmatory evi-
dence of substantial evidence (FDA  1997 ). In such cases, one trial one study- wise 
Type I error rate (Wang et al.  2010 ) should ideally be the statistical criterion for the 
only feasible adaptive design clinical trial, in addition to meeting the criteria on the 
characteristics of an A&WC trial. 

 Can a shorter-term endpoint be acceptable in place of the long-term clinical ben-
efi t endpoint? The effect size of a shorter-term endpoint measuring biological activ-
ity, especially if the endpoint is a continuous measurement, is generally not small. 
In the spirit of adaptation acknowledging upfront the risks and uncertainties one has 
to bear, it may be pragmatically plausible to plan with an adaptive design clinical 
trial based on a shorter-term endpoint. Would it be public health sound for  benefi ting 
patients in a near term when there may not have suffi cient plausible prior data to 
expect the shorter-term endpoint’s likelihood of predicting a long-term clinical ben-
efi t/risk endpoint in diffi cult experimental situations? 

 For instance, can allowing pre-specifi ed adaptation on statistical information 
and/or adaptive selection, early futility stopping, and possibly early effi cacy stop-
ping based on a shorter-term endpoint meet the challenges of ethical constraints 
given the limited patient population in orphan or rare diseases? Consequently, the 
ultimate clinical endpoint benefi t risk assessment may take years to unravel the 
uncertainty. Learning will be a big part in such an adaptive design trial applied in 
diffi cult experimental situations.   

3.9     Summary 

 In summary, based on my review of both regulatory guidance documents as well as 
my experience with US regulatory submissions, the criteria for an A&WC adaptive 
design clinical trial should possess, at a minimum, the following characteristics:

•    Pre-specifi cation of all hypotheses and adaptation elements at the planning stage 
based on clinical scenario planning with simulation studies to justify the ‘adapta-
tion’ value  

•   Provision of the background information on what data information have been 
gathered thus far and where the particularly proposed adaptive design clinical 
trial is positioned within its own drug development program  

•   Use of a valid study-wise Type I error rate control method  
•   Utility of drawing strength from external trials, but, caution the credibility of 

external evidence when they are anecdotal, preliminary, or limited  
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•   Careful use of “learning” for “confi rming” in a single adaptive design trial by 
distinguishing whether the primary study objectives are confi rmatory or explor-
atory at the planning stage  

•   Necessary interim communication fi rewalls on adaptive monitoring and for 
properly handling the adaptive design trial logistics via adequate standard oper-
ating procedures and charters  

•   Consideration of a valid point estimate and its corresponding interval estimates    

 The last bullet point may be subject to debate given that regulators have not 
required a properly adjusted point estimate and the corresponding interval estimates 
in a confi rmatory or A&WC trial with a group sequential design. However, these 
estimates are critical for future study planning, especially for defi ning the non- 
inferiority margin in designing non-inferiority active-controlled clinical trials. Note 
that the inability to mask in open-label studies can confound many operational and 
logistic factors. In general, a double-blind adaptive design clinical study is 
preferred. 

 Traditionally, statistical effi ciency discussed is at an individual trial level. But 
this consideration may not be suffi cient in the context of adaptive design that aims 
to incorporate design effi ciency considerations into the entire development pro-
gram. Setting the effi ciency debate aside, what could be the benefi t of using an 
adaptive design in any disease indication, if the experimental treatment may not be 
effective or only minimally effective? Perhaps, the early futility stopping is a major 
advantage to minimize the loss in drug developments and would be ethical so as not 
to expose more patients than necessary to an experimental treatment, particularly 
when the experimental treatment is also toxic.     
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Abstract Although the efficiency of adaptive design on the trial level is well 
 recognized, its impact is even greater when applied at the program or portfolio level. 
Besides its simplest form of sample size reestimation or early stopping in a given 
trial, the adaptive design achieves efficiency by combining in a single trial objec-
tives that are usually addressed in two separate conventional studies. Another  feature 
of adaptive design is population enrichment where drug response can be optimized 
to specific patient subpopulations that respond better to treatment. More complex 
adaptive strategies integrate the development of several compounds and/or indica-
tions into one process. We provide an overview of these types of adaptive designs 
and illustrate their value added in a case study of an adaptive “compound” finder 
that investigates several compounds in Alzheimer’s disease area simultaneously 
approaching the proof-of-concept stage.
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4.1  Background

The adoption of an adaptive design strategy across the product development 
 process brings a number of important benefits. These include increased R&D effi-
ciency, increased R&D productivity, and importantly increased probability of suc-
cess at phase III. We are all too familiar with the worrying industry statistic that 
50 % of phase III studies fail and in some therapeutic areas such as oncology or 
Alzheimer’s disease the failure rate is even higher. Innovative adaptive design trials 
offer the potential to change this industry statistic and dramatically increase the 
ability of pharmaceutical companies to successfully bring more effective treat-
ments to the market.

Adaptive designs enhance development efficiency by mitigating the need to 
repeat trials that just miss their clinical endpoint or fail to identify the effective 
dose–response at the first attempt. By avoiding the need to run these trials again, 
significant cost and time savings are achieved. This is possible through use of 
adaptive designs that enable additional patients to be added to achieve statistical 
significance the first time around or by allowing a wider dose range to be studied 
and a better understanding of the dose–response relationship. In addition, early 
stopping of development programs because a product is ineffective enables scarce 
resources to be redeployed in additional trials which may show more promise. 
Early stopping of a trial for efficacy is also possible. All of these factors increase 
development efficiency.

Adaptive design increases development productivity by enabling more accurate 
definition of the effective dose in a phase II trial which enables better design of the 
pivotal phase III program, which in turn increases the probability of success of this 
trial. A number of phase III trials fail because the dose is either too high and causes 
unwanted safety issues or too low to show sufficient efficacy. Adaptive design 
enables optimized dose selection before the pivotal trial is initiated.

Another feature of adaptive design is population enrichment where drug response 
can be optimized to specific patient subpopulations that respond better to treatment. 
Many phase III studies fail because the overall efficacy of treatment is diluted as a 
consequence of the drug being evaluated in the full population rather than in the 
specific subset where the drug works best. Adaptive design enables early selection 
of the appropriate patient population and increases the probability of success.

Phases I and II are critical steps in the product development process as this is 
where important information about the product has to be generated and assessed, 
before the decision is taken to commit to expensive phase III pivotal studies. This 
early phase of development is known as the “learn phase” and the data that has to be 
generated relates to the effective dose–response, the safety profile and therapeutic 
index, appropriate endpoints, and the population of patients that will benefit best 
from the product under evaluation.

Choosing which development candidate to back when there is a large portfolio of 
products competing for a fixed level of investment can be a difficult and complex 
process. The adoption of an adaptive design strategy at the portfolio level can 
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 provide significant value to the critical decision making required to deliver an 
 optimized pipeline of products.

Adaptive design can:

• Increase the value of the pipeline by maximizing the probability of success and 
reducing the cost of development

• Enable better management of resources across a pipeline of products
• Optimize investment decision making
• Increase portfolio value

In its simplest form adaptive design enables early termination of trials in which 
the product just does not work and as a consequence enables redeployment of fund-
ing and resources to more promising programs. Another type of adaptive design, 
applied on the program level of a compound, is achieving efficiency by combining 
in a single trial objectives that are usually addressed in two separate conventional 
studies. Such a strategy provides the obvious benefit of reducing the timeline by
running the two studies seamlessly under a single protocol with the same clinical 
team and the same centers and achieves trial efficiency by combining the informa-
tion from subjects in both studies in the final analysis. Examples are:

• Combining a conventional multiple ascending dose escalation in patients and 
proof of concept (POC) in a single trial

• Combining the proof of concept with the dose-ranging study, by starting the 
study with equal randomization of patients to the top dose and placebo and then 
opening enrollment to other doses of the compound only if a futility rule is 
overpassed

• Seamless phase II/III adaptive designs, by starting a confirmatory trial with cou-
ple of doses of the new compound with a pre-planned option of selecting the 
“best” dose for the second stage of the trial

Furthermore, such adaptive designs optimize the benefit/risk balance for partici-
pating subjects via improved efficiency of decision making in relation to the doses 
of the new drug studied. They minimize the number of subjects that are exposed to 
ineffective doses of the drug while simultaneously focusing subjects to doses that 
are most informative for accurate dose selection for subsequent stages of compound 
development.

More complex adaptive strategies integrate the development of several com-
pounds and/or indications into one process. The principle is to keep one or more 
aspects of the trial fixed and pre-plan for several adaptation options that will be 
applied during the conduct of the study. Examples are:

• Adaptive “population” finder: The fixed aspect of the trial is the indication (e.g., 
breast cancer) and the treatment (e.g., epidermal growth factor receptor inhibi-
tor). The design aims to establish which subset of the population benefits most.

• Adaptive “compound” finder: The fixed aspects of the trial are the indication 
(e.g., Alzheimer’s disease), the patient population (e.g., mild to moderate), and 
the gold standard treatment we are comparing ourselves against (currently 
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 available best standard of care). The competing options are three different 
 compounds for the same indication. The adaptive design aims to identify the 
compound with the most impressive therapeutic index to pursue in the further 
development. See the case study in the next section.

• Adaptive “indication” finder: The fixed aspect of the trial is the compound (e.g., 
a cytostatic treatment). The competing options are different indications (e.g., dif-
ferent tumor histologies). The design aims to establish which of the indications 
show therapeutic benefit.

• Adaptive “compound/population” finder: The fixed aspect is the population, but 
its heterogeneity is recognized from the outset. Multiple development candidates 
are assessed in parallel and matched with biomarker signatures of different sub-
populations. The design aims to dynamically change the allocation of new 
patients with a given signature to different compounds, graduating successful 
compound/biomarker pairs to small, focused, more successful confirmatory 
phase, as is the case with breast cancer in the well-publicized ISPY-2 trial (Barker
et al. 2009); see also BATTLE trial in lung cancer (Zhou et al. 2008).

These approaches assist in and enhance the decision on which product to be 
developed. However, adaptive design offers much more than selecting the right can-
didate to develop. It enables more effective decision making throughout the whole 
development process by increasing the quality of information generated at each 
stage of a trial. This increases development efficiency, productivity, and the proba-
bility of success at phase III, and ultimately contributes to the success of the overall 
portfolio.

All these factors contribute to a decrease in the cost of the portfolio and an 
increase in portfolio success which culminates in increased portfolio value. 
Adopting an adaptive design strategy at the portfolio level will significantly increase 
the return on the investment in several areas including new product development, 
lifecycle decision making, and product repurposing.

In the next section, we illustrate the efficiency of such complex strategies in 
clinical development programs in a case study of an adaptive “compound” finder.

4.2  Case Study

The sponsor has up to three compounds simultaneously approaching the POC stage 
in the same therapeutic area—Alzheimer’s disease (AD). A conventional develop-
ment strategy is to investigate these three compounds in a sequential manner, one 
after another in separate trials. The conventional design of each of such study is a 
multicenter, randomized, double-blind, placebo-controlled trial with two active 
arms (low, high) and placebo in a 1:1:1 randomization, all as adjunctive to back-
ground therapy.

This conventional development strategy is compared and contrasted with an 
adaptive compound finder proof-of-concept study design that investigates several 
compounds in a single trial. The objective is to find with high probability the 
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“best” compound using adaptive allocation of subjects to competing treatments. 
The  primary endpoint for comparing the efficacy of the compounds is the change 
from baseline at 12 months in ADAS-Cog. A maximum sample size of 450 sub-
jects is utilized to adaptively allocate to six active treatments (low and high doses 
for each compound), all as adjunctive to background therapy, and a placebo 
 (standard of care). An early stopping for efficacy or futility is utilized.

The comparison of these two design strategies is done through intensive simula-
tions. Response data is simulated under a dozen of possible scenarios and the two 
strategies are compared on different operating characteristics: the average number 
of subjects, the average study duration, and probability of correctly identifying the 
“best” compound.

4.2.1  Treatment Duration

To decide on the treatment duration of the trial, different time courses of the change 
from baseline inADAS-Cog have been considered. In Pfizer’s comprehensive meta-
analysis (Ito et al. 2010) of public data sources from 1990 to 2008, as well as clini-
cal studies that evaluated the rate of deterioration of AD patients, a model describing 
the time course of the change from baseline in ADAS-Cog for mild- to moderate-
severity AD patients was developed. The model was used to investigate the required 
number of subjects per arm for a conventional parallel-group study design with a 
two-sample t-test at a two-sided significance level of 0.05. It is assumed that the 
standard deviation (SD) for the change from baseline in ADAS-Cog is 6 points for
each treatment and at each time point. Treatment durations of 12, 26, 40, and 
52 weeks are considered. Figure 4.1 plots the mean difference in change from base-
line on ADAS-Cog between the active treatment and placebo, for the three drugs
investigated in Ito et al. (2010): donepezil, galantamine, and rivastigmine. The dots 
show the mean difference used in the sample size calculation in Table 4.1.

It can be seen that the donepezil treatment effect is around −2 points and is 
almost constant starting at week 12. Therefore for drugs like donepezil the duration 
of treatment is not so important. However, the treatment effect of galantamine 
depends very much on treatment duration and changes from −2.3 at week 12 to −3.9 
at week 52. For the rivastigmine, the treatment effect is small overall (only −1.36 at 
week 52), so the time course is also not very pronounced. As a result, the effect on 
the required sample size is different for different drugs. For donepezil, the range is 
140–118 subjects per arm for 80 % power. In contrast, for the galantamine the range 
is from 105 to 39 for the same 80 % power. For the rivastigmine, because the treat-
ment effect is so small the required number of subjects is more than doubled when 
considering 12-week treatment period versus 52-week period.

Because at this stage there is no information what might be the time course of 
treatment effect for these three drugs, the recommended treatment duration will be 
52 weeks.
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4.2.2  Conventional Development Strategy

Each compound is investigated in a separate clinical trial. The primary endpoint is 
the change from baseline at 12 months in ADAS-Cog. A parallel-group design with
two active treatment arms (low dose and high dose) and placebo is considered.
Literature review of studies with subjects treated with standard of care provides

the following rates of decline over 12 months in the ADAS-Cog (Table 4.2):

Fig. 4.1 Time course of mean difference in change from baseline inADAS-Cog between an active
drug and placebo

Table 4.1 Sample size per arm for a conventional parallel-group design with fixed sample size:
Two-sample t-test at a two-sided significance level of 0.05, SD=6 units

Donepezil Galantamine Rivastigmine

Time point Power 80 % Power 90 % Power 80 % Power 90 % Power 80 % Power 90 %

12 weeks 140 187 105 140 702 940
26 weeks 124 165 52 70 395 528
40 weeks 120 160 43 57 338 452
52 weeks 118 158 39 51 309 413
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A meta-analysis of 14 studies (Hansen et al. 2008) reported the mean change in 
ADAS-Cog from baseline to endpoint for active treatment (donepezil, galantamine,
and rivastigmine) compared with placebo in subjects with mild-to-moderate demen-
tia in a range of [−3.90, −1.60]. The pooled weighted mean difference in change 
between active treatment and placebo was −2.67 (95 % CI (−3.28,−2.06)) for done-
pezil, −2.76 (95 % CI (−3.17,−2.34)) for galantamine, and −3.01 (95 % CI 
(−3.80,−2.21)) for rivastigmine.

To calculate the required sample size for a given power, we use different standard 
deviations (SD) for the change from baseline in ADAS-Cog (6 and 7 points) and
different treatment effects measured as the difference in mean change from baseline 
between active treatment and placebo (−2, −3, −4 points).

Table 4.3 provides the sample size per arm for a conventional trial assuming dif-
ferent treatment effects and required power. A two-sample t-test at a two-sided sig-
nificance level 0.05 is assumed for comparing each dose with placebo with no 
adjustment for multiplicity.

The required number of subjects per group for 80 % power and a minimum treat-
ment effect of −2 units is 143 (assuming SD=6). This might be too large for a
proof-of-concept study; therefore we will assume that the expected treatment effect 
is −3 that results in 64 subjects per group for 80 % power. We will use this setup as 
the benchmark in our comparison with the adaptive design trial.

4.2.3  Adaptive Design Trial Structure

The structure of the adaptive trial is as follows.

Table 4.2 Rates of decline over 12 months in the ADAS-Cog in subjects treated with standard
of care

Study Sample size
Mean change  
in ADAS-Cog (SD) Monthly decline

Reines et al. (2004) 327 5.4 (NA) 0.45
Thal et al. (1996) 211 7.0 (7.8) 0.58
Aisen et al. (2003) 111 5.7 (8.2) 0.48
Thal et al. (2000) 102 7.5 (8.0) 0.63
Aisen et al. (2000)  69 6.3 (6.4) 0.53

Table 4.3 Sample size per arm for a conventional parallel group design with fixed sample size:
Two-sample t-test at a two-sided significance level of 0.05

Difference in mean change from baseline/SD

Power −2/6 −2/7 −2.5/6 −2.5/7 −3/6 −3/7 −4/6 −4/7
80 % 143 194 92 125 64 87 37 50
90 % 191 259 123 166 86 116 49 66
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Design: There is an initial burn-in period of 50 subjects equally allocated to each of 
the seven treatments. After this first look, additional interim analyses are conducted 
after every 50 subjects enrolled. If there are at least 100 subjects in the trial then the 
trial can stop for efficacy or futility. If the trial does not stop at an interim analysis 
then the trial continues with adaptive interim looks until 450 subjects have been 
randomized.

Allocation rule: Any active treatment with the posterior probability of being better 
than placebo Pr(T beats Plbo) < 0.4 will be dropped for further allocations; that is, 
no new subjects will be allocated to this treatment. However, the subjects already 
allocated to this treatment will be followed up for their endpoint at 52 weeks. The 
new subjects will be equally allocated to the remaining active treatments and 
placebo.

Stopping rule: If there are at least 100 subjects in the trial, a decision is made at each 
interim analysis whether to stop the trial for success or futility.

• Early success: The trial is stopped for success if the active treatment group with 
the highest posterior probability of having the maximum effect has at least a 0.80 
probability of achieving the clinical significant difference (CSD) of 3 points in
ADAS-Cog change frombaseline compared to placebo, Pr(CSD |T=Max)>0.80.
If the condition is satisfied, the enrollment is stopped and the last subject is 
 followed up for the endpoint at 52 weeks.

• Early futility: The trial is defined as futile if Pr(CSD | T=Max)<0.05. If the
condition is satisfied, the enrollment is stopped and the last subject is followed 
up for the endpoint at 52 weeks.

Decisions at trial completion: At the conclusion of the trial, at full 52-week follow-
 up for the last subject enrolled, the trial is defined as follows:

• Late success: The trial is defined as a success if the active treatment group with 
the highest posterior probability of having the maximum effect has at least a 0.95 
probability of being better than placebo, Pr(T beats Plbo| T=Max)>0.95 and has
at least 0.25 probability of achieving the clinical significant difference, Pr(CSD |
T=Max)>0.25.

• Late futility: Otherwise, the trial is defined as futile.

There is a possibility that the trial is stopped early (either for success or futility), 
but after the last subject is followed up for 52 weeks, the terminal decision is 
reversed. In the simulation study, this is counted as a “flip-flop” outcome.

Statistical hierarchical model: A Bayesian hierarchical model is used as the analysis 
working model. The change from baseline at 52 weeks in the ADAS-Cog score for
each treatment t=0,1,…,6 (t=0 means placebo arm) arm is modeled as normal
 distribution with mean μt and variance σ2:

 
Y Nt t~ ( )m ,s 2 .
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The mean responses μt of the experimental treatments (t=1,…,6) are assumed to
follow a normal distribution with a common mean μ (μ=−5 is used) and variance τ2:

 
m mt N~ .,t 2( )

 

The prior distribution for the variance components is inverse-gamma:
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that is equivalent to assuming 5 observations with differences between observa-
tions of 6.

Longitudinal modeling: The primary endpoint is the ADAS-Cog score. The change
from baseline for the ADAS-Cog is observed at 12, 26, 40, and 52 weeks. These
measurements will be used to inform the primary endpoint for subjects with partial 
information.
The early measurements of ADAS-Cog are modeled using a linear regression

model:

 
Y N y for k and tt k k t k k~ , , , , , ,,a b l+( ) = = ¼2 12 26 40 0 1 6

 

where yt,k is the ADAS-Cog change from baseline at week k and Yt is the change 
from baseline at 52 weeks. Therefore, it is a piecewise linear model. Separate linear
models are used for modeling the placebo (t=0) and the other treatments (t=1,…,6).

The prior distributions are
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The model helps guide the adaptive algorithm in allocating subjects and possibly 
stopping early for efficacy or futility. However, these longitudinal models do not 
affect the final conclusion when the final endpoint for a subject is known.

This piecewise linear longitudinal model is flexible enough to accommodate 
more complex ADAS-Cog time profiles investigated in the literature. For example,
in a recent model-based analysis (Ito et al. 2010) of 52 literature sources consisting 
of 576 mean values ofADAS-Cog at each visit from approximately 20,000 subjects,
the time profile models have been developed for both the placebo and active 
 treatments (donepezil, galantamine, and rivastigmine). Figure 4.2 shows the time 
course of ADAS-Cog for these four treatments. It is easy to see that these nonlinear
time courses can be well approximated by two or three piecewise linear segments. 
In our simulation study we will be generating the longitudinal time profile similar 
to the donepezil (the top-right panel), while the fitting longitudinal model will be 
the piecewise linear model described in this section.
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4.3  Simulations

In order to evaluate the operating characteristics of the adaptive design, several 
simulation scenarios are created. In these simulations, virtual subjects with pre- 
specified distribution of the primary clinical endpoint (ADAS-Cog) are gener-
ated and their results simulated. These simulated subjects and the simulations 
have no bearing on the actual trial, but merely evaluate the characteristics of the 
described design.

In each simulation scenario presented in this section we assume that the standard 
deviation for the primary clinical endpoint ADAS-Cog is 6 points. The weekly
accrual rate is assumed to be three subjects. Therefore, if the trial enrolls to the 
maximum number of subjects 450 without early stopping, the duration of the study 
will be 202 weeks (150-week accrual period plus 52-week follow-up).

The results of the simulations are described in the next section.

Fig. 4.2 Time course of mean change from baseline in ADAS-Cog on active drugs
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4.3.1  Operating Characteristics

This section presents the operating characteristics of the design under six different 
scenarios. For each scenario, assumptions about the change from baseline inADAS-
Cog at week 52 for each treatment, including placebo, are made. They are presented 
in Table 4.4. The treatments are numbered from 0 to 6, 0 being placebo, followed by 
low and high doses of each of the three active treatments.

The first scenario, called “flat,” assumes that all treatments, including placebo, 
have the same change from baseline inADAS-Cog of 5 points. The 5 points decline
at week 52 inADAS-Cog is consistent with the placebo effect derived by the model-
ing approach in Ito et al. (2010), and it is smaller than the annual rates of decline 
reported in Table 4.1, but close to the one (5.4 points) reported in the largest study 
(Reines et al. 2004).

The second scenario assumes that all active treatments are equally effective with 
the change from baseline inADAS-Cog of 1 point compared to 5 points on placebo.
Therefore, all treatments are very effective with a mean change difference of −4 
points, a treatment effect that is greater than the 95 % CI reported in the meta- 
analysis by Hansen et al. (2008): (−3.28,−2.06) for donepezil, (−3.17,−2.34) for 
galantamine, and (−3.80,−2.21) for rivastigmine.

The third scenario, called “nugget 4pts,” assumes that only one treatment 
 (treatment 4) is highly effective (nugget effect); all the others have just 1 point mean 
difference from placebo.

The fourth scenario assumes that there are two nuggets, treatment 4 and 6. The 
fifth scenario assumes also that there are two nuggets, but the magnitude of the 
effect is only 3 points mean difference. The last scenario assumes the same magni-
tude but only for treatment 4.

For each scenario, 1,000 simulation runs have been conducted and the following 
operating characteristics are reported in Table 4.5:

• Average sample size
• Average study duration
• Probability of early stopping for success
• Probability of early stopping for futility

Table 4.4 Simulation scenarios: Assumed change from baseline in ADAS-Cog at week 52

Scenario name

Assumed change from baseline in ADAS-Cog at week 52

0 1 2 3 4 5 6

Flat 5 5 5 5 5 5 5
Equal 4pts 5 1 1 1 1 1 1
Nugget 4pts 5 4 4 4 1 4 4
2nuggets 4pts 5 4 4 4 1 4 1
2nuggets 3pts 5 4 4 4 2 4 2
Nugget 3pts 5 4 4 4 2 4 4
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• Probability of late success
• Probability of late futility
• Probability of “flip-flop”

Across all six scenarios the mean number of subjects required by the adaptive 
design is smaller than 401. The smallest mean number of subjects (257.4) is required 
under scenario “equal 4pts” when all active treatments are very effective. The larg-
est mean sample size (400.8) is required under scenario “nugget 3pts” when only 
one treatment achieves the mean change difference of 3 points.

The “flat” scenario is used here to quantify the false-positive rate of the adaptive 
design. It can be seen that the probability of wrongly claiming success under this 
scenario is only 0.045.

Probability of early futility is about 0.50, which means that in about 50 % of the 
simulations the trial did not enroll to the maximum of 450 subjects.

On the other hand, for “good” scenarios, the probability of early futility is well 
under 0.05. Under scenario “equal 4pts,” the trial stops early for success in 91.5 % 
of cases. This is a good property of the design because in such situation it is good to 
find at least one good treatment as soon as possible to proceed to further  development 
stage. In the case of only one treatment with effect of mean change difference of 3 
points (scenario “nugget 3pts”), the trial requires about 400 subjects and the prob-
ability of early success is only 0.238. But overall, the probability of futility is only 
0.25. As can be seen from Table 4.6, the average number of subjects allocated to 

Table 4.5 Operating characteristics of the adaptive design

Scenario name

Mean 
number 
subjects

Mean 
trial 
duration

Prob.  
of early 
success

Prob.  
of early 
futility

Prob.  
of late 
success

Prob.  
of late 
futility

Prob.  
of flip-flop

Flat 370.75 176 0.021 0.499 0.045 0.425 0.010
Equal 4pts 257.40 138 0.915 0.000 0.084 0.000 0.001
Nugget 4pts 361.60 173 0.506 0.011 0.436 0.037 0.010
2nuggets 4pts 328.40 162 0.659 0.003 0.318 0.013 0.007
2nuggets 3pts 377.15 178 0.389 0.024 0.475 0.100 0.011
Nugget 3pts 400.80 186 0.238 0.050 0.501 0.198 0.013

Table 4.6 Average number of subjects allocated to each treatment

Scenario name

Treatment allocation

0 1 2 3 4 5 6

Flat 71.886 49.401 48.845 49.737 49.29 48.706 52.885
Equal 4pts 37.682 36.627 36.465 36.322 36.95 36.635 36.719
Nugget 4pts 62.716 47.711 47.294 47.801 59.833 48.410 47.835
2nuggets 4pts 52.949 42.633 42.427 43.722 51.902 43.488 51.279
2nuggets 3pts 62.207 49.296 49.479 49.486 58.325 49.049 59.308
Nugget 3pts 66.971 54.371 54.830 54.695 63.081 53.469 53.383
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placebo and the “nugget” treatment 4 is 67 and 63, respectively. This can be 
expected, because according to the sample size calculations in Table 4.3, 64 subjects 
per arm are required in such case for 80 % power.

In contrast, for the more effective scenario “nugget 4pts,” the corresponding 
numbers of subjects on placebo and treatment 4 are only about 63 and 60, respec-
tively, and the overall number of subjects is 361.6. Moreover, the probability of 
futility is reduced to 0.048. Therefore, in a situation of a single treatment effect with 
very effective mean difference of 4 units, the adaptive design reduces the false- 
negative rate by 20 % in comparison with the case of only 3 points difference, and 
achieves that also by reducing the overall number of subjects by about 40.

Under scenario “equal 4pts,” the average number of subjects allocated to each 
dose is approximately 37, which is exactly the required number of subjects per arm 
for such situation (see Table 4.3, column 6). For scenario “nugget 4pts,” most sub-
jects are allocated to placebo and treatment 4. Similarly, for the other scenarios, the
placebo and the treatments that have higher efficacy get more subjects allocated.

Another important operating characteristic is the probability of being selected as 
the treatment with the maximum effect that is presented in Table 4.7. The numbers 
in boldface correspond to treatments that are indeed the true treatments with the 
maximum treatment effect. For scenarios with a single nugget, the probability of 
correctly selecting it is very high, 0.974 and 0.863 for scenarios “nugget 4pts” and 
“nugget 3pts,” respectively. For the scenarios with two nuggets, the probabilities of 
selecting them are split almost evenly, but overall the probabilities of correctly 
selecting either one are 0.99 and 0.95, respectively.

For each scenario two figures are presented to highlight specific operating char-
acteristics; see Figs. 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8. For each scenario, the top figure 
presents the box plots for the sample size per treatment. The bottom figure shows 
the probability each treatment is selected as the most likely treatment with the maxi-
mum effect (Max).

Table 4.8 presents the bias in estimating the primary endpoint at each treatment, 
including placebo. The bias is smallest at the treatments that are selected, which is 
very important, because the response at that treatment will be used for planning the 
future development.

Table 4.7 Probability of being selected as treatment with the maximum effect

Scenario name

Probability of being selected as treatment with the maximum effect

1 2 3 4 5 6

Flat 0.155 0.163 0.171 0.188 0.149 0.174
Equal 4pts 0.160 0.148 0.140 0.185 0.176 0.191
Nugget 4pts 0.005 0.004 0.005 0.974 0.005 0.007
2nuggets 4pts 0.004 0.001 0.003 0.488 0.002 0.502
2nuggets 3pts 0.015 0.012 0.009 0.452 0.011 0.501
Nugget 3pts 0.032 0.029 0.030 0.863 0.029 0.017
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4.3.2  Comparison to a Conventional Development Strategy

In this section the adaptive design is compared to a conventional development 
 strategy, defined as follows. Each trial enrolls 192 subjects equally allocated (64 per 
group) to placebo, low, and high dose of the corresponding active treatment. From 
Table 4.3, this guarantees a power of 80 % to detect a mean difference of 3 points 
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with the assumed standard deviation of 6 points. Assuming the same accrual rate of 
3 subjects per week, the trial duration is 116 weeks (64-week enrollment plus 
52-week follow-up). Because the conventional strategy will run the three trials one 
after another, the total number of subjects will be 576 and the total duration of the 
program 348 weeks. These are both much larger than the maximum number of 
 subjects required by the adaptive strategy: 450 subjects and 202 weeks. Therefore, 
the net benefit of the adaptive strategy versus the conventional one is total saving of 
126 subjects and 146 weeks in POC study duration.
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However, the adaptive design strategy provides additional efficiency by incorpo-
rating early stopping and dropping treatment arm options. On the other hand, the 
conventional strategy may also stop the program after finding an effective treatment. 
The comparison of this modified conventional strategy with the adaptive one is 
given in Table 4.9 that presents the mean number of subjects and average duration 
of the study for the two strategies under different scenarios. For the conventional 
strategy, three situations are considered for the order in which the trials will be run. 
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For example, “12 → 34 → 56” means that the low and high dose of the first active 
treatment will be run against placebo, followed if not successful by the low and high 
dose of the second active treatment against placebo, and then followed if not 
 successful by the low and high dose of the third treatment against placebo.

Under “flat” scenario, the adaptive design is a clear winner, requiring on average 
370.75 subjects and the average study duration of 176 weeks. The conventional 
strategy requires an additional 178 subjects and prolongs the study duration by 
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155 weeks. Under “equal 4pts” scenario, the situation is reversed because the 
 conventional strategy stops with high probability (0.998) after the first trial.

The comparison results for the remaining scenarios depend on the order in which 
the conventional strategy will run the three trials. The situation “34 → 12 → 56” is 
the best, giving the treatment 4 the high chance of being selected after the first trial. 
The situation “12 → 56 → 34” is the worst, running the trial with the nugget treat-
ment 4 only in the third trial. The situation “12 → 34 → 56” is in the middle, running 
the treatment 4 in the second trial.
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Although the conventional strategy may require smaller number of subjects (see, 
e.g., scenario “nugget 4pts” under first situation: 335.44 vs. 361.60), the duration of 
the study is greater than that of the adaptive strategy. Moreover, under the first and 
third situations, the study duration is greater than 202 weeks which is the maximum 
study duration for the adaptive strategy, irrespective of the scenario.

Notice that in the conventional strategy each patient has a 1/2 chance to be 
 allocated to placebo, compared to 1/7 in the adaptive strategy trial.
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Another important point to be made is the fact that the adaptive strategy gives 
each treatment a chance to be investigated and the treatment is dropped only if it 
shows a low chance of being effective, while the conventional strategy may very 
well never reach the point of investigating a given treatment.

The “white space” between closing a trial and starting another one was ignored 
in previous comparison, but this time may be considerable in practice.

4.4  Discussion

Although enormous progress has been made in recent years in understanding the 
pathophysiology of Alzheimer’s disease, this progress has not yet translated into 
new treatments. The high cost and low success rate of drug development in 
Alzheimer’s disease can be attributed, in large part, to late-stage clinical trial fail-
ures. Thus, identifying in “learn” phase drugs that are likely to fail could have a 
dramatic impact on the costs associated with developing new drugs.

In the case study, we illustrated the novel adaptive screening strategy of several 
compounds for treatment of mild-to-moderate Alzheimer’s patients in the portfolio 
of a single company. However, the methodology can be applied in the setting of 
testing several candidate drugs from different sponsors simultaneously.

Table 4.8 Bias in ADAS-Cog at week 52 estimate

Scenario name

Bias in ADAS-Cog at week 52 estimate

0 1 2 3 4 5 6

Flat −0.0414 0.1889 0.1565 0.1543 0.0965 0.1810 0.1268
Equal 4pts 0.1114 0.1085 0.1546 0.1283 0.0735 0.1103 0.0657
Nugget 4pts 0.2020 0.1184 0.1686 0.1286 −0.0008 0.1153 0.1023
2nuggets 4pts 0.1605 0.1330 0.1087 0.0821 0.0404 0.1194 0.0602
2nuggets 3pts 0.1302 0.0854 0.1254 0.1577 0.0559 0.1327 −0.0083
Nugget 3pts 0.0780 0.1122 0.0538 0.0660 0.0312 0.1228 0.1240

Table 4.9 Comparison of adaptive and conventional strategies on the number of subjects (N Subj)
and study duration (S Dur)

Conventional strategy

Scenario name

Adaptive strategy 12 → 34 → 56 34 → 12 → 56 12 → 56 → 34

N Subj S Dur N Subj S Dur N Subj S Dur N Subj S Dur

Flat 370.75 176 548.03 331.1 548.03 331.1 548.03 331.1
Equal 4pts 257.40 138 192.31 116.2 192.31 116.2 192.31 116.2
Nugget 4pts 361.60 173 335.44 202.7 203.24 122.8 430.95 260.4
2nuggets 4pts 328.40 162 335.44 202.7 203.24 122.8 335.44 202.7
2nuggets 3pts 377.15 178 354.30 214.1 248.22 150.0 354.30 214.1
Nugget 3pts 400.80 186 354.30 214.1 248.22 150.0 430.95 260.4
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The Executive Director of the Innovative Medicines Initiative (IMI) Michel 
Goldman mentioned recently that “[T]he challenge of developing new treatments 
for Alzheimer’s disease is too great for any single organisation, country or company 
to tackle alone. What is needed is an unprecedented, international, collaborative 
approach bringing together all stakeholders involved in the development of new 
treatments for Alzheimer’s.”

On December 11, 2013, the IMI launched a major new project that will pioneer 
a novel adaptive approach to clinical trials of drugs designed to prevent Alzheimer’s 
disease, which is expected to affect 100 million people worldwide by 2050. The 
project will focus its efforts on speeding up drug development and patient access to 
the latest treatments by testing several candidate drugs from different sponsors 
simultaneously.

Furthermore, this novel “adaptive” trial design can allow researchers to consider 
patients with different stages of Alzheimer’s disease and adapt the trial design in 
response to emerging results. For example, if a compound appears to be particularly 
effective in only early (the so-called prodromal) Alzheimer’s disease patients, then 
assignment of that compound can be preferentially directed to those patients to 
confirm this finding and perhaps “promote” that compound to a confirmatory 
clinical trial. Similarly, new candidate drugs can be added to the trial and the ones
that turn out to be ineffective can be dropped.
The strategy has already proved effective in the I-SPY 2 trial of new treatments

for breast cancer. The adaptive trial design enabled two experimental breast-cancer 
drugs to deliver promising results after just 6 months of testing, far shorter than the 
typical length of a clinical trial. Researchers assessed the results while the trial was 
in process and found that cancer had been eradicated in more than half of one group 
of patients, a particularly favorable outcome.
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Abstract In late-stage drug development, drug developers have to make two 
 critical Go–No Go decisions. The first one is whether to proceed to the definitive 
Phase III investigation after a Phase II proof-of-concept (POC) trial. The second one 
is whether to stop a Phase III confirmatory trial for futility after an interim analysis 
of the data. In practice, the two decisions are heuristically made with limited statisti-
cal input, usually amounting to statistical characterization of proposed options. We 
propose to find the optimal decisions by explicitly maximizing a benefit–cost ratio 
function, which is often the implicit objective in an otherwise qualitative decision- 
making process. The numerator of the function represents the benefit (proportional 
to the expected number of truly active drugs identified for Phase III development in 
the POC setting; proportional to the expected power for successful completion of 
Phase III in the interim analysis setting), and the denominator represents the 
expected total late-stage development cost. The method is easy to explain and sim-
ple to implement. The optimal design parameters provide a rational starting point 
for decision makers to consider. As an illustration, the method developed herein is 
applied to examples from the oncology therapeutic area including an adaptive seam-
less Phase II/III design. The same idea is applicable to any disease area where cost- 
effectiveness of a Go–No Go decision is a major concern.
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5.1  Introduction

This chapter addresses two Go–No Go decision issues in late-stage drug develop-
ment, followed by a real example of seamless Phase II/III design. As an illustration, 
the method developed herein is applied to examples from the oncology therapeutic 
area. The same idea is applicable to any disease area where cost-effectiveness of a 
Go–No Go decision is a major concern. The first issue comes from Phase II proof-
of- concept (POC) trials. A POC trial is defined as a trial which provides the critical 
information about drug activity or lack thereof in a patient population for deciding 
whether to proceed to definitive Phase III investigation. The phenomenal expansion 
of our knowledge in the molecular biology in the last decade has led to an unprec-
edented number of exciting new targets, which in turn lead to numerous opportuni-
ties for POC. These opportunities are often of similar interest given the difficulty in 
picking the likely winners based on preclinical and early clinical data alone. Because 
the total resource budget is often capped, drug developers must decide how many 
POC trials to move forward, how large each trial should be and how to set the cor-
responding Go–No Go decision criterion to Phase III. The second issue comes from 
the Phase III confirmation trial. Historically, the majority of Phase III oncology tri-
als fail in spite of strong efficacy signals observed in POC trials. One way to reduce 
the consequences of failure in Phase III is to conduct an interim futility analysis of 
the data to reduce resource expenditure on therapies that appear unlikely to succeed. 
However, it remains a challenging issue when to perform the futility analysis and 
how to set the futility boundary.

At the center of each of these issues is how to appropriately balance benefit and 
cost. The balance of benefit and cost is particularly important when there is a fixed 
maximum resource budget (number of patients, or financial costs) which does not 
allow us to adequately investigate all possible drugs, schedules, and indications of 
interest. A fixed maximum total research budget is a common reality in both private 
and public sector drug development. In the face of a fixed maximum budget, maxi-
mization of the benefit–cost ratio will maximize benefit.

In the literature, there are two quantitative approaches to finding the optimal bal-
ance between benefit and cost. The first approach is to find optimal design parame-
ters that minimize patient exposure (a surrogate to trial cost) at fixed type I/II error 
rates, e.g., under null as in Simon (1989) or under any prior distribution for treat-
ment effect as in Anderson (2006). This approach (hereafter referred to as sample 
size minimization approach) is appealing to statisticians because it is parsimonious 
and avoids assumptions that could be controversial such as the overall benefit of the 
study drug. As a result, numerous publications have been generated in the statistical 
literature. However, this approach has limitations when the choice of type I/II error 
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rates itself is an issue and when the benefit of the study drug has to be taken into 
account. The second approach is a decision-theoretic approach that applies Bayesian 
decision analysis techniques to find the optimal design parameters by directly maxi-
mizing the net return (i.e., benefit–cost). It is used for determination of optimal 
sample size for Phase III trials subject to budget constraints (Patel and Ankolekar 
2007) as well as for determination of Phase II sample sizes (Stallard 1998 and 
Stallard 2003). Relevant work can also be found in Stallard et al. (2005) and 
O’Hagen et al. (2005). This approach is appropriate when benefit can be quantified 
upfront and the parameter space for decision-making is very well defined. When 
benefit is overestimated, which occurs often in practice, such analyses tend to rec-
ommend a low bar for a Go decision, making it hardly acceptable to stakeholders 
(Leung and Wang 2001).

We proposed a new simple-to-apply decision-theoretic approach with unique 
advantages (Chen and Beckman 2009a, b; Chen and Beckman 2014). The idea is to 
find optimal cost-effective parameters by maximizing a benefit–cost ratio function 
(a direct measure of expected benefit per expected resource unit expended). The 
numerator of the function is the probability-of-success (POS) and Type II error 
adjusted benefit, as given by the expected number of truly active drugs correctly 
identified for Phase III development (in the proof of concept application) or the 
expected power for successful completion of Phase III (Phase III interim analysis 
application), each multiplied by the benefit per drug if applicable, and the denomi-
nator is the expected total late-stage development cost, including that resulting from 
both Type I and Type II errors. From a high-level perspective, the sample size mini-
mization approach is equivalent to the use of our denominator as a utility function 
while assuming a constant numerator. The decision-theoretic approach is equivalent 
to the use of the difference between our numerator and denominator as a utility 
function. One major difference among the three approaches resides on the way the 
intrinsic benefit of a study drug, denoted by B in Sects. 5.1–5.3 in this chapter, is 
handled. Our approach acknowledges the fact that variations in benefit, POS, and 
Type II error may be important, and therefore incorporates them into the utility 
function in contrast to the sample size minimization approach which simply attempts 
to minimize cost. However, in contrast to the decision-theoretic approach, our 
approach is less sensitive to small errors in estimation of benefit (and cost). When 
only one trial is considered, the optimal design is independent of the benefit; when 
more than one trial are considered, the optimal designs depend only on the relative 
benefit which is considerably easier to assess than the absolute benefits that the 
decision-theoretic approach relies on.

Our proposed approach is similar to the decision theoretic approach in its han-
dling of POS (denoted by p in Sects. 5.1–5.3 in this chapter), the probability of the 
study drug being truly active in the study population. The probability of no treat-
ment effect is then 1-POS (as can be seen in Sect. 5.2.3 in this chapter our proposed 
approach can accommodate a general distribution for treatment effect). For our 
illustrative purposes, the POS for an oncology study drug is assumed to be 0.1–0.3 
before POC or is 0.3–0.7 after passing POC. The estimate seems reasonable or pos-
sibly generous from historical data. Prior information on POS as such, be it 
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 subjective or objective, is frequently cited by relevant decision makers in a drug 
development program. However, the information is rarely fully accounted for in the 
actual (mostly qualitative) decision-making process. It is not the focus of this chap-
ter to estimate prior POS, or update posterior POS after data from the POC trial or 
the interim analysis becomes available. Our focus is how to properly use the same 
information for making quantitative decisions at the design stage, rather than as a 
data analysis tool. We assume data from the trial will be analyzed using a Frequentist 
approach.

To demonstrate the power and the flexibility of our proposed approach, we will 
address the two decision issues with several examples in the next two sections. We 
will further illustrate with a real example that shows how to apply the method to a 
complicated Phase II/III seamless design (Sun and Chen 2012). There are many 
ways to extend our proposed approach in both method and application. We briefly 
touch upon some of them without supplying full details.

5.2  Optimal Designs for POC Trials

Consider a typical POC trial with two arms (study drug or placebo, or more typi-
cally in oncology, standard of care plus study drug or standard of care plus placebo). 
Denote by Δ (>0) the standardized effect size (treatment effect divided by standard 
deviation) of clinical interest with respect to an endpoint, which is typically a sur-
rogate marker to overall survival in oncology. Denote by (α, β) the doublet of one- 
sided Type I error rate and Type II error rate of the trial. The total sample size for 
the trial is approximately

 
N = +( )- -4 1 1

2 2Z Za b D/
 

(5.1)

where Z(.) denotes the respective quantile of the standard normal distribution. When 
a time-to-event variable is the primary endpoint of interest, Δ refers to logarithm of 
hazard ratio (placebo vs. study drug) and N refers to number of events. While total-
ity of data will be looked at closely, a Go decision to continue the program for later 
development in a Phase III confirmatory trial is generally made if the one-sided 
p-value from the POC trial is less than α favoring the study drug. Notice that the 
standard error for estimate of the treatment difference is 2 / N  which is equal to 
Δ/(Z1 − α + Z1 − β) from the sample size formula, the cutoff point for the minimum 
empirical treatment difference (empirical bar) relative to Δ in a Go decision (i.e., 
corresponding to one-sided p-value < α) is Z1 − α/(Z1 − α + Z1 − β). Clearly, the empirical 
bar increases when Type I error rate decreases or when Type II error rate increases. 
It is >0.5 when α < β and >1 when β > 50 %.

In the oncology therapeutic area, a single confirmatory trial accompanied with a 
supportive POC trial usually meet the minimum requirements for regulatory regis-
tration purposes. Denote by C2 the cost for a POC trial and by C3 the cost for the 
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future Phase III confirmation trial in the same population. In the first line lung 
 cancer setting, a typical POC trial with (α, β) = (0.1, 0.2) for the detection of a 40 % 
hazard reduction in terms of progression-free-survival may need 100–150 patients 
with a minimum follow-up of 4–6 months. A confirmatory trial in the same setting 
with (α, β) = (0.025,0.1) for the detection of a 25 % hazard reduction in terms of 
overall survival may need 600–800 patients with a minimum follow-up of 8–10 
months. When cost is proportional to sample size, the relative cost of a POC trial to 
a confirmatory trial (i.e., C2/C3) is around 20 % in this setting. The Phase II to Phase 
III cost-ratio may be different in different settings. For simplicity, we consider C3 to 
be fixed, i.e., design of the Phase III trial is independent of strength of signal from 
the POC trial. We leave the extension on non-fixed C3 to Chap. 5, Sect. 5.2.3.

5.2.1  Design of a Single POC Trial

Let us start with a simple question. Given a fixed budget for conducting a typical 
POC trial with (α, β) = (0.1, 0.2) as described above, what is the optimal (α, β) to be 
most cost-effective? There are infinitely many ways to choose (α, β) as long as the 
choice satisfies the sample size constraint below.

 
Z Z Z Z1 1 1 0 1 1 0 2- - - -+ = +a b . .  

(5.2)

Each choice corresponds to a different Go–No Go criterion to confirmatory trial. 
A self-evident choice is (0.2, 0.1) by the equivalence of (β, α) to (α, β) in Eq. (5.1). 
However, a Type I error rate of 20 % or indeed any number for this matter could 
easily be challenged. Many clinical researchers (Rubinstein et al. 2005; Simon et al. 
2001; Estey and Thall 2003; Korn et al. 2001) have provided qualitative guidance 
for how to properly size POC trials and make Go–No Go decisions. Here we pro-
vide quantitative guidance. To answer the above question, let us assume that the true 
standardized effect size θ has a binary distribution in that the probability is p for 
θ = Δ and 1 − p for θ = 0, and consider the following benefit–cost ratio function that 
involves design parameters (p, α, β, B, C2, C3):

 

R
Bp

C C p p1
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1
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b
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(5.3)

The numerator represents the benefit adjusted with probability-of-success (POS) 
and Type II error (the benefit of a truly inactive drug is assumed to be zero). It rep-
resents the expected number of active drugs correctly identified by the POC study, 
multiplied by the benefit per drug, and thus is a simple surrogate for overall benefit. 
The denominator represents the summation of the cost for the POC trial and the 
expected cost for the Phase III trial multiplied by the probability of a positive out-
come, true or false, from the POC trial. Thus the denominator represents the total 
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expected cost of the overall late development program, where the Phase III trial 
 happens if and only if the POC trial gives a true positive or a false positive outcome. 
Hence, the ratio-function defined in Eq. (5.3) directly measures the cost- effectiveness 
of the design. Maximization of R1 is equivalent to maximizing of the return in benefit 
in the face of limited resources, rendering the design strategy the most cost- effective 
one from a portfolio management standpoint. When B is unknown (likely the case 
for most of the oncology drugs because it is driven by the drug activity that is hard to 
predict based on preclinical and early clinical data), it does not have any impact on 
optimization, making our proposed approach more robust to uncertainties in benefit 
assessment, in contrast to the decision-theoretic approach. In our illustration, we 
assume that C2/C3 is known so that the optimal choice of (α, β) can be easily obtained 
by maximizing R1 subject to the sample size constraint (5.2) for fixed (p, C2/C3). 
In practice, actual values of (B, C2, C3) are relevant if the R1 value is used for choosing 
which trials to conduct among many opportunities. Apparently, a minimum require-
ment for a trial to be included in a portfolio of trials is R1 > 1 when B, C2, and C3 are 
determined reasonably accurately and expressed in comparable units.

Table 5.1 provides optimal design parameters for a typical POC with fixed sam-
ple size under (α, β) = (0.1, 0.2) for different POS levels and C2/C3 values. As 
expected, the empirical bar associated with optimal (α, β) decreases with increasing 
POS and C2/C3. In the first line lung cancer setting where C2 /C3 is around 0.2, the 
optimal empirical bars are in the range of 0.66Δ to 0.71Δ, the optimal α levels are 
in the range of 6.7–8.0 % (one-sided) and the optimal β levels are in the range of 
23.7–26.7 %. As a comparison, the starting point of (α, β) = (0.1, 0.2) would be 
approximately optimal at C2/C3 = 0.3 when POS is 30 %, and the associated optimal 
empirical bar for a Go decision would be lower at 0.60Δ.

5.2.2  Design of Multiple POC Trials

Let us consider a more complicated problem. Suppose that there is a fixed budget 
for conducting a certain number of POC trials with (α, β) = (0.1, 0.2). But there are 
more trials with different POS and benefit that are of similar interest. What is the 

Table 5.1 Optimal designs of a POC trial with fixed sample size under (α, β) = (0.1, 0.2)

POS (p) C2/C3 Optimal α (%) Optimal β (%)
Empirical bar 
relative to Δ

0.1 0.2 6.7 26.7 0.71
0.1 0.3 8.8 22.0 0.64
0.1 0.4 10.7 18.9 0.59
0.2 0.2 7.2 25.3 0.69
0.2 0.3 9.6 20.7 0.62
0.2 0.4 11.5 17.8 0.56
0.3 0.2 8.0 23.7 0.66
0.3 0.3 10.4 19.3 0.59
0.3 0.4 12.6 16.4 0.54
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optimal resource allocation strategy and optimal design parameters? These POC 
trials may be for the same drug or for different drugs. Let (pi, αi, βi, Bi, C2i, C3i) be 
the design parameters associated with the i-th trial (i = 1,…,k). Consider the follow-
ing general version of the benefit–cost ratio function to Eq. (5.3)
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(5.4)

From the expression of R2, it is clear that only relative benefit is needed for opti-
mization. When the actual values of (pi, Bi, C2i, C3i) for all indications are available, 
the optimal (αi, βi) are obtained by maximizing in R2 in Eq. (5.4). Let us illustrate 
under the simplified assumption that cost structure and treatment effect for detec-
tion are the same for the k POC trials. We further assume that the costs for the 
 corresponding Phase III trials are also the same and fixed, i.e., C3i = C3 (i = 1,…,k). 
After the simplification, the optimal Type I/II error rates (αi, βi) and resource alloca-
tion ratio (C2i/C2) only depend on relative benefit Bi, probabilities of success pi, and 
the ratio of total POC trial resources to cost of a single Phase III trial, C2/C3. They 
are solved by maximizing Eq. (5.4) subject to the following constraints (i = 1,…,k)

 
Z Z C C Z Z

i i i1 1 2 2 1 0 1 1 0 2- - - -+ = +( )a b / . .  
(5.5)
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k
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=
å =

1
2 2

 
(5.6)

Once optimal Type I/II error rates are obtained, optimal empirical bars follow 
immediately.

In the first example, we assume that there is a budget for one typical POC trial 
under (α, β) = (0.1, 0.2) but there are two POC trials with p1 = 0.3 and p2 = 0.2 as well as 
B1 = B2 of interest. Figure 5.1 presents the optimal resource allocation ratio and empiri-
cal bar for the two POC trials as a function of C2/C3. Just as in the single-trial case, the 
empirical bar associated with optimal (α, β) decreases with increasing POS and C2/C3. 
The figure shows that if the budget for the POC trials is around 20 % that of a confir-
matory trial as in the first line lung cancer setting both POC trials should be conducted 
with approximately 60 % of the resource allocated to the one with 30 % POS and the 
remaining 40 % of the resource to the one with 20 % POS. The corresponding (α, β) is 
(10 %, 32 %) for the trial with 30 % POS and is (5 %, 68 %) for the one with 20 % 
POS. This analysis suggests more and smaller trials with higher empirical bars to be 
more cost-effective in this setting. The cutoff point in terms of C2/C3 value for deciding 
whether to conduct one or two trials is at about 17 % (the cutoff point would be con-
siderably lower if the two trials had the same POS level—results are not shown here). 
If the budget is lower than that, it is more cost-effective to just conduct the trial with 
higher POS. The results are sensible and consistent with intuition. However, intuition 
alone will not be able to pinpoint the optimal decision points.
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In the second example, we assume that there is a budget for two typical POC 
 trials under (α, β) = (0.1, 0.2) but there are four trials with p1 = 0.4, p2 = p3 = 0.3 and 
p4 = 0.2 as well as B1 = B2 = B3 = 1 and B4 = 2 of interest. This represents a more com-
plex situation than the first example. Figure 5.2 presents optimal resource alloca-
tion ratio and empirical bar for the four POC trials as a function of C2/C3. It shows 
that when the budget for two POC trials is over 40 % that of a single confirmatory 
trial as for the first line lung cancer setting, all four POC trials should be conducted. 
The trial with lowest POS (20 %) but highest benefit takes the largest share of 
resource at approximately 33 %. The trial with highest POS (40 %) is second at 
approximately 29 %. The remaining two trials with 30 % POS enjoy approximately 
19 % each. In terms of empirical bar for a Go decision, it is highest for the two trials 
with 30 % POS followed by the trial with 20 % POS and the one with 40 % 
POS. Optimal number of trials and corresponding Go–No Go criteria depending on 
the C2/C3 value. When it is above approximately 18 %, all 4 trials should be con-
ducted; when it is between approximately 12 and 18 %, the two trials with 40 % 
POS and 20 % should be conducted; otherwise, only the trial with 20 % POS (but 
highest benefit) should be conducted.

Fig. 5.1 Optimal resource allocation (left panel) and empirical bars for a Go decision (right 
panel) for two POC trials of different POS when there is budget for a typical POC trial under (α, 
β) = (0.1, 0.2). C2 represents the cost for a POC trial and C3 represents the cost for a Phase III trial

C. Chen et al.
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5.2.3  Extensions

The proposed design strategy for POC trials can be easily extended to account for 
more complicated settings that may arise in oncology and other therapeutic areas. 
We show a few of them by considering the single-trial case as in Chap. 5, Sect. 5.2.1. 
Extensions to the multiple-trial case as in Chap. 5, Sect. 5.2.2 follow immediately.

General distribution for treatment effect: Instead of assuming that the true standard-
ized effect size (θ) has a binary distribution, we may assume that it has a general 
distribution function, say f(θ), which might be estimated from previous trials on 
same drug or drugs with same mechanism of action. We may also assume the cor-
responding benefit to be B(θ). Observe that B(Δ) = B and B(0) = 0 for R1 in Eq. (5.3). 
In this setup, a generalized version of R1 is

 

R
B f d

C C f d
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2 3

=
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+ ( ) ( )

ò
ò

q q g q q
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(5.7)

Fig. 5.2 Optimal resource allocation (left panel) and empirical bars for a Go decision (right 
panel) for four POC trials of different POS and benefit when there is budget for two typical POC 
trials under (α, β) = (0.1, 0.2). The benefit for the trial with lowest POS (p4 = 0.2) is twice as high as 
for any of the three other trials. C2 represents the cost for two POC trials and C3 represents the cost 
for a single Phase III trial
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where γ(θ) is the probability to Go when the treatment effect of the study drug is θ. 
Under the same assumption that the POC trial is sized at (α, β) = (0.1, 0.2) for an 
effect size Δ, γ(θ) satisfies

 
Z Z Z Z1 1 0 1 1 0 2- ( ) - -+( ) = +( )a g q q D/ /. .  

(5.8)

from the sample size formula in Eq. (5.1). Notice that γ(Δ) = 1 − β under the binary 
distribution. For ease of computation in practice, in absence of an objective continu-
ous estimate for f(θ) we may assume a multinomial distribution which takes values 
at a set of discrete points, e.g., 0, 0.4Δ, 0.6Δ, 0.8Δ and 1.2Δ.

Adaptive design: Another extension is to adaptively size the Phase III trial based on 
the outcome from the POC trial. For example, the Go–No Go decision may be 
revised so that a Phase III trial at cost of C3 will be conducted if the p-value from the 
POC trial is less than α but greater than α′ (α′ < α). But a smaller trial at cost of C3' 
will be conducted if the p-value is less than α′ (study drug is more active than ini-
tially expected). If the assumed benefit is B for p-value between α′ and α, and B′ for 
p-value less than α′, the corresponding benefit–cost ratio function would be
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(5.9)

Notice that both (α, β) and (α′, β′) satisfy the sample size formula. One may find 
the optimal α and α′ (i.e., Go–No Go criteria) for fixed C3 and C3′.

Multiple arms or endpoints: Some POC trials may have multiple arms for dose 
selection purpose or may have more than one endpoint (Sun et al. 2009). As long as 
the decision rule is quantifiable, our proposed approach can be applied with mini-
mal modifications. Take a dose-selection POC study with two active arms and a 
placebo arm (1:1:1 randomization) for example. Let Z1 and Z2 be the two statistics 
for testing the treatment effect against placebo of the two dose levels with positive 
values corresponding to favorable outcomes for the study drug. Observe that Z1 are 
Z2 are normal variables with correlation 0.5. The decision rule is to carry the dose 
level with maximum Z-statistics (play the winner) to Phase III if it satisfies that 
Pr(max{Z1, Z2} > 0) < α*. Let β* be the Type II error rate corresponding to the maxi-
mum Z-statistics under a given alternative hypothesis. It has a more complex rela-
tionship with α* under the sample size constraint. The optimization problem is 
more difficult than in Eq. (5.2) but certainly tractable.

Flexible budget: In the previous sections, a 2-arm trial under (α, β) = (0.1, 0.2) is 
used as reference for standard cost of a POC trial. Standardization of cost structure 
as such is a common practice in portfolio management. But the reference trial may 
use a different set of (α, β) in practice. Optimal designs will change accordingly. The 
changes will be more drastic when the budget for a POC trial is not fixed upfront and 
needs to be optimized. Chap. 4, Sect. 5.2.2 discussed the related example of allocat-
ing POC resources among competing programs. Details and associated program 
codes have been previously published (Chen and Beckman 2009a).

C. Chen et al.
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5.3  Optimal Futility Analysis Strategies

After a drug has passed POC evaluation, a natural follow-up is to conduct a Phase 
III confirmatory trial in the same population. Phase III oncology trials usually 
implement a group sequential design with a survival endpoint (Jennison and 
Turnbull 2000). To mitigate failure rate, a confirmatory trial has at least one futility 
interim analysis. The study prior to the interim analysis is sometimes called a Phase 
II part and the one afterwards a Phase III part, making the trial a Phase II/III combi-
nation trial. The Phase II part may involve dose selection, population selection and 
other conventional Phase II characteristics. In our discussion below, we consider a 
straight Phase III confirmatory trial without such Phase II features, which will be 
discussed in Chap. 4, Sect. 5.5. The example trial has one interim analysis and the 
endpoint for deciding whether to continue or not after the interim analysis is the 
same as the primary endpoint for the overall trial. The trial is designed for detecting 
a survival benefit of interest (e.g., 25 % hazard reduction in the first line lung cancer 
setting) at Type I error rate of 2.5 % (one-sided) and Type II error rate of 10 % (90 % 
power) prior to futility adjustment. The futility boundary is assumed to only impact 
the Type II error rate but not the Type I error rate (non-binding), a common assump-
tion in the drug registration environment. As before, it is assumed that the Phase III 
trial costs C3 if it runs to completion.

5.3.1  Futility Analysis of a Single Trial

Suppose that after cost CIA is spent at the interim look, t fraction of survival informa-
tion (proportion of events observed at interim analysis) is available for analysis. A 
Go decision will be made if the one-sided p-value from the analysis is less than α 
favoring the study drug and a No Go decision will be made otherwise (α is referred 
to be the futility boundary in p-value scale). Denote by β the Type II error rate spent 
at the interim analysis. How to appropriately choose (α, β) to make the Go–No Go 
decision the most cost-effective? Consider the following benefit–cost ratio 
function
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(5.10)

where β* is the overall Type II error rate, i.e., 1 − β* is the actual overall power 
after taking the futility analysis into account. This ratio function has similar if not 
identical interpretation as Eq. (5.3). Just as in the previous sections, the benefit 
term B is fixed and does not have an impact on the optimal choice of (α, β). Observe 
that the test statistics at information fraction t (denoted by Xt) and at final analysis 
(denoted by X) have correlation t . The unconditional probability for Xt to cross 
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the interim futility bar is 1 − β and for X to demonstrate statistical significance at 
the final analysis is 90 %. The overall Type II error rate β* for the trial satisfies the 
following relationship

 
Pr , .

*X Z X Zt > >( ) = -b b0 1 1
 

(5.11)

From the sample (event) size formula, (α, β) satisfies

 
Z Z t Z Z1 1 1 0 025 1 0 1- - - -+ = +( )a b . .  

(5.12)

Maximization of R3 in Eq. (5.10) with respect to (α, β) subject to the constraints 
(5.11) and (5.12) yields the optimal design parameters for the futility analysis. As 
before, the empirical futility bar relative to Δ in a Go decision is Z1 − α/(Z1 − α + Z1 − β). 
The conditional power for a positive trial after successfully passing the futility anal-
ysis is

 
Pr | /.

*X Z X Zt> >( ) = -( ) -( )0 1 1 1b b b
 

(5.13)

The first example illustrates how optimal futility boundaries change with infor-
mation fraction and POS after 50 % of the budget is spent, i.e., CIA = 0.5C3 (Table 5.2). 
The empirical futility bar decreases with increasing POS level, rightfully reflecting 
the impact of prior information as expected. It increases with increasing information 
fraction, suggesting that a more definite decision can be made when more informa-
tion becomes available. For trials of low POS, a mild to moderate positive trend in 
effect size should be observed before moving forward. But for trials with high POS 
level, even a slight negative trend could trigger the same decision. The optimal over-
all power ranges from 80–81 % at p = 0.3 to 82–83 % at p = 0.5 to 85–86 % at p = 0.7 
after accounting for the futility analysis. As a comparison, although the aforemen-
tioned sample size minimization approach may be able to find the optimal futility 
boundaries under a prespecified level of Type II error rate (or overall power), it 
 cannot be used to decide which level to start with. This is something our proposed 

Table 5.2 Optimal futility boundaries at interim analysis after 50 % of budget is spent

POS (p)
Information 
fraction

Futility boundary 
in p-value (%)

Empirical futility 
bar relative to Δ

Beta-  
spent (%)

Overall  
power (%)

0.3 0.15 45.0 0.10 13.0 80.2
0.3 0.20 36.8 0.23 13.3 80.3
0.3 0.25 30.9 0.31 13.1 80.8
0.5 0.15 51.6 −0.03 9.8 82.8
0.5 0.20 42.5 0.13 10.4 82.6
0.5 0.25 35.5 0.23 10.6 82.8
0.7 0.15 61.6 −0.23 6.1 85.7
0.7 0.20 51.3 −0.02 6.9 85.3
0.7 0.25 43.2 0.11 7.4 85.2
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approach can naturally address. However, the sample size minimization approach is 
appropriate if it is the intention of the trial to maintain the overall Type II error rate 
at a prespecified level. Notice that, although the optimal overall power decreased by 
4–10 % it can be easily seen from Eq. (5.13) that the conditional power for a positive 
trial after the futility analysis is generally higher than 90 %.

5.3.2  Futility Analyses for Multiple Trials

In a portfolio management of multiple confirmatory trials with different benefit and 
POS, how should one appropriately prespecify their futility boundaries? To answer 
this question, consider the following general version of the benefit–cost ratio func-
tion analogous to Eq. (5.10)

 

R
B p
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(5.14)

where subscript i is used to indicate the design parameters for the i-th trial. 
Maximization of R4 with respect to (αi, βi) subject to same constraint as in Eq. (5.11) 
and (5.12) yields the optimal solution. The timing for each trial at the futility analy-
sis can be totally different from each other.

Consider two Phase III trials with same total cost (i.e., C31 = C32) but different 
benefit and POS. The first trial has lower POS but has a benefit twice as high as the 
second one. An interim futility analysis occurs after 50 % of the budget is spent, just 
as in the first example of Chap. 4, Sect. 5.3.1. Table 5.3 shows the optimal futility 

Table 5.3 Optimal futility boundaries at interim analyses for two POC trials after 50 % of budget 
is spent for each when the benefit ratio is 2:1 between the two (p1 vs. p2)

POS (p1/p2)
Information 
fraction

Trial with POS = p1 Trial with POS = p2

Futility 
boundary  
in p-value (%)

Empirical 
futility bar 
relative to Δ

Futility 
boundary  
in p-value (%)

Futility boundary 
in empirical bar 
relative to Δ

0.3/0.5 0.15 50.8 −0.02 49.3 0.01
0.3/0.5 0.20 42.0 0.14 40.4 0.17
0.3/0.5 0.25 35.3 0.23 33.8 0.26
0.3/0.7 0.15 45.8 0.08 65.2 −0.31
0.3/0.7 0.20 37.9 0.21 55.3 −0.07
0.3/0.7 0.25 32.0 0.29 45.6 0.07
0.5/0.7 0.15 60.4 −0.21 55.4 −0.09
0.5/0.7 0.20 50.4 −0.01 45.7 0.09
0.5/0.7 0.25 42.7 0.11 37.3 0.20
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boundaries for each trial at common information fraction under different POS 
assumptions. Just as in Table 5.2, the empirical futility bar generally increases with 
increasing information fraction but decreases with increasing POS level. The bars 
are comparable between the two trials when the POS is 30 % for the first one and 
50 % for the second one. The bars become higher for the first one and lower for the 
second one when POS for the second trial is changed to 70 %, i.e., the benefit–POS 
balance favors the second one. The balance shifts back to the first one when its 
POS is changed to 50 %. This example provides important insight into the dynamic 
impact of POS and benefit on the cost-effectiveness of a Go–No Go decision in 
futility analysis.

5.3.3  Extensions

We have used the time-to-event survival endpoint (typical endpoint in oncology) for 
illustration, but the approach can be easily extended to any type of endpoint (e.g., 
continuous or binary endpoint in other therapeutic areas). We used 10 % for Type II 
error rate for illustration purpose. The approach can be easily revised to account for 
a different Type II error rate. The same extension as for POC trials can be made by 
assuming a general distribution function for true treatment effect as well as one for 
benefit. Observe that information on the survival endpoint is often collected in the 
POC trial preceding the Phase III trial. It provides an objective estimate of the dis-
tribution function for the true treatment. A similar adaptive design can be imple-
mented by adopting a multitier decision rule (i.e., sample size and cost for the 
remaining trial is dependent upon the interim outcome). Further extensions specific 
to a Phase III trial may include the following.

Optimal timing of futility analysis: Optimal timing for futility analysis is a less 
explored topic in literature. Gould (2005) discusses this topic in the context of POC 
trials. Our proposed approach allows evaluation of timing. By comparing optimal 
R3 or R4 values at different time points of practical relevance, optimal timing for 
interim analysis can be determined. However, caution must be exercised in such 
analysis because timing is driven by other practical considerations as well. Moreover, 
if the curve of the efficiency function is broad and flat near the optimum, any choice 
within the range may be reasonable.

Multiple futility analyses: When there is a need (and it is feasible) to have more than 
one futility analyses, similar cost-effectiveness evaluation can be conducted for 
comparison of different futility boundaries. It becomes more complicated if an 
intermediate endpoint is used for an early futility analysis. However, it is tractable 
if the relationship between the intermediate endpoint and the clinical endpoint can 
be properly estimated.
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5.4  Application to a Seamless Phase II/III Design

5.4.1  Study Design of the Motivating Example

The motivating example comes from the development of a drug candidate for 
 platinum resistant ovarian cancer patients. By the time this test drug’s MTD was 
defined, several competing drug candidates in the same class had completed single 
arm Phase II studies. To become commercially viable, a seamless Phase II/III design 
was considered to accelerate the program in that two doses will be studied in Phase 
II and only one will be carried to Phase III. The primary hypothesis of the pivotal 
trial is that:

• The test drug is non-inferior to the comparator (chemotherapy) in terms of 
 overall survival (OS) at the 1.1 hazard ratio margin (and superior to the compara-
tor in terms of safety profile).

• OR the test drug is superior to the comparator in terms of OS.

Hierarchy testing procedure will be used to control the type I error rate. That is, 
the non-inferiority will be tested first, and once passed, the superiority will be tested.

There are two types of seamless designs, inferentially seamless and operationally 
seamless. The inferentially seamless designs (Stallard and Todd 2003; Posch et al 
2005) combine Phase II data and Phase III data with some multiplicity adjustment to 
control type I error rate in the final analysis. Although statistically valid, such designs 
are deemed to be less well understood adaptive designs by regulatory agencies. 
Operationally seamless designs only use Phase III data in the final analysis, but the 
enrollment is seamless between Phase II and Phase III. In addition to acceptance by 
regulatory agencies, several other factors led the development team to choose the 
operationally seamless Phase II/III design. One factor is the difficulty of using sur-
rogate biomarker, in this case progression-free survival (PFS), to make GNG deci-
sion while the Phase III endpoint is OS. Another factor is about which decision body 
to make the dose selection based on Phase II data. If the inferentially seamless design 
is chosen, the dose selection has to be made by an external data monitoring commit-
tee (eDMC), because otherwise the Phase II data may be unblinded and cannot be 
utilized in the final analysis. Dose selection is usually a complicated decision. Even 
though the guidelines for dose selection can be prespecified in the study protocol, 
not all scenarios can be foreseen or simulated. Therefore, the development team 
preferred to make the dose selection by a joint effort of internal and external experts 
and chose an operationally seamless design over an inferentially seamless design.

The final design of the motivating example is shown schematically in Fig. 5.3 
with GNG bars derived below. In the Phase II portion, patients will be randomized 
to three treatment groups with equal allocation: test drug at high dose, test drug at 
low dose, and control. The primary endpoint for Phase II is PFS. Phase II enrolls 
about 210 patients and completes after 135 PFS events have been observed to have 
sufficient power for each dose of the test drug to demonstrate superiority to the 
control in terms of PFS. The primary endpoint of Phase III is OS. Phase III enrolls 
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about 720 patients and completes after 508 deaths have been observed to have 
 sufficient power to demonstrate that the test drug is non-inferior to the control drug. 
This sample size also provides sufficient power (>95 %) to demonstrate that the test 
drug is superior to the control in terms of event rate for a safety endpoint.

In order to realize seamless transition, an interim analysis will be conducted in 
Phase II. The enrollment of Phase II will close when it is predicted that approxi-
mately 4 months after this time point there will be 135 PFS events. The interim 
analysis will take place approximately one month before the accrual completion. 
The purpose of this interim analysis is to determine whether Phase III enrollment 
can be initiated before final data of Phase II is available. If a Go decision is made, 
one arm of the test drug along with the control arm will be carried to Phase III. If a 
Go decision cannot be made at the interim analysis, Phase III will be on hold and a 
final decision will be made at end of Phase II. The Go criterion at this interim analy-
sis is to have at least 80 % conditional power (as a team consensus) to make a Go 
decision at the final analysis of Phase II. Since it will take about one month to con-
duct the interim analysis and make a decision, the timing of this interim analysis is 
chosen so that Phase III accrual will potentially start seamlessly when Phase II 
accrual completes.

5.4.2  Incorporating Surrogate Biomarker Data  
in Go–No Go (GNG) Decision Making

The GNG decision for a drug candidate to move from Phase II to Phase III is a 
major decision in drug development. Ideally the decision should be made based on 
the data from the same endpoint which will be the primary endpoint of Phase III 
(i.e., OS in oncology or a composite cardiovascular event in cardiovascular disease). 
Since it usually takes long time to observe the clinical endpoint data, a common 
practice in drug development is to make GNG decision only based on the surrogate 

Fig. 5.3 Flowchart of the seamless Phase II/III study in platinum resistant ovarian cancer patients
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biomarker (i.e., PFS in oncology or blood pressure and glucose level in cardiovas-
cular disease). However this approach often causes heated debate within the devel-
opment team as what role the (limited) clinical endpoint data plays. In oncology, 
this often leads to a vague conditional requirement of “positive OS trend” before a 
Go decision can be made. In Chen and Sun (2011), it is proposed to combine the 
PFS data and OS data for decision making so that no information is wasted and a 
decision rule can be prespecified without ambiguity. Before we explain how to com-
bine PFS and OS data, we first discuss how to use PFS data from Phase II to esti-
mate OS treatment effect.

The relative effect size (γ) between a clinical endpoint and a surrogate endpoint 
in general holds the key in such estimation. Estimation of γ should be based on 
proper meta-analysis. In our motivating example, the ratio between OS and PFS (in 
log-hazard-ratio scale) is estimated to be 0.6 (Chen et al. 2013, Sun and Chen 2012). 
It implies that the treatment effect in OS is 60 % of the treatment effect in PFS, 
which represents a reasonable estimate based on published data of a variety of solid 
tumor in recent years. For example, if a drug has a treatment effect of hazard ratio 
(HR) = 0.8 in OS it is expected to have a treatment effect of HR = 0.69 in PFS. In 
other words, if the treatment effect in PFS is 31 % hazard reduction in Phase II, it 
implies that the treatment effect in OS is 20 % hazard reduction. Most GNG deci-
sions between Phase II and Phase III in oncology drug development were made this 
way, even though often times the relative effect size were implicitly used and the 
decision makers may not even realize it. Is the translation from effect size in PFS to 
effect size in OS always a one-to-one translation? The answer is no. To adequately 
account for the uncertainty in effect size translation, we assume that the relative 
effect size (γ) has a normal distribution with mean of 0.6 and standard deviation of 
0.2. This assumption covers a wide range of effect size ratio seen in the literature. 
With this variability, a 0.69 hazard ratio in PFS may translate into a range of hazard 
ratio in OS, and 95 % confidence interval of the estimated HR in OS fall between 
0.69 and 0.93.

We then used a weighted method to combine the OS effect predicted from the 
observed PFS effect (γΔPFS) and the observed OS effect OS (ΔOS), both in log-
hazard- ratio scale, using the formula below (Chen and Sun (2011).

 
S w wOS PFS= - + -( )( )D D1 g

 
(5.15)

With minus sign on the right-hand side, S is an approximate measure of hazard 
reduction, a parameter clinical researchers are more familiar with. Since the number of 
OS events in Phase II is relatively small compared to the number of PFS events, a 
weight of 0.15 (i.e., w = 0.15) is given to the observed OS effect in Phase II, and a 
weight of 0.85 is given to the predicted OS effect. This weight approximately mini-
mizes the variance of S when the true treatment effect is in the parameter space of inter-
est while the actual numbers of PFS and OS events are reasonably close to the target. 
The correlation between ΔPFS and ΔOS, and the variance of γ are all incorporated into the 
variance estimate of S. (See Chen and Sun 2011 and Sun and Chen 2012 for technical 
details of the characteristics of the test statistics.)
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In the next section, we will discuss what value of S will constitute a GNG crite-
rion between Phase II and Phase III using the same technique as developed in previ-
ous sections.

5.4.3  A Benefit–Cost Effective GNG Criterion

We denote the Go criterion from Phase II to Phase III to be S > C, where S is given 
in Eq. (5.15) and C is a critical value to be solved so that the return on investment 
can be maximized. P(S > C) is the probability of Go from Phase II to Phase III.

We assume that the treatment effect has a discrete prior distribution, with π1 
probability of being superior the control with HR = 0.8, π2 probability being equiva-
lent to the control with HR = 1, and (1 − π1 − π2) probability of being inferior to the 
control with HR = 1.1. We used π1 = π2 = 1/3 in our example, i.e., the test drug is 
assumed to have equal chance of being superior, equivalent, and inferior to the con-
trol drug. In this example, the Phase III is successful in two scenarios: (1) Superiority 
in efficacy is demonstrated; (2) Only non-inferiority is demonstrated. The regula-
tory approvability and benefits are different in these two scenarios. We incorporated 
this consideration into our benefit calculation. In our example, stakeholders and 
experts believe the relative approvability from health authority is 2:1 for scenario 1 
vs. scenario 2, and the corresponding relative benefit is 5:1. Let V be the relative 
value of the two scenarios, then V = 2 × 5 = 10.

With the above setup, let B be the predictive POS adjusted benefit of the program 
in the motivating example,
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where

 – MB is an unknown constant. It is the overall benefit of the test drug when only 
non-inferiority in efficacy is demonstrated. Just like most of the oncology proj-
ects, it is extremely difficult to predict the benefit including commercial value. 
Fortunately, it does not have any impact on our analysis.

 – πi is the probability mass of the discrete prior distribution for the treatment effect 
(HR), i = 1, 2, 3. π1 + π2 + π3 = 1. Because there is no value of the test drug when it 
is inferior to the control, we do not include i = 3 in the benefit calculation.

 – pi is the probability of Go from Phase II to Phase III under the ith value of HR in 
the discrete prior distribution. For example, p1 is P(S > C) under HR = 0.8.

 – V is the relative value of demonstrating superiority in efficacy vs. demonstrating 
non-inferiority in efficacy and superiority in safety, and it is 10 in our case.

 – qS,i is the probability of demonstrating superiority in Phase III under the ith value 
of HR in the discrete prior distribution.

 – qNI,i is the probability of only demonstrating non-inferiority in Phase III under the 
ith value of HR in the discrete prior distribution.
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 – Let D be the cost of the development program for Phase II and Phase III 
portion.
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where

 – MC is a constant. It is the cost of the Phase III study, which just like MB does not 
have any impact on our analysis.

 – R is the relative cost of Phase II portion to Phase III portion. In the motivating 
example, the operation team’s estimate of R is 0.4 including Phase III trial initia-
tion and various other factors.

With the above setup, the optimal GNG bar C is obtained by maximizing the 
benefit–cost ratio B/D with respect to C whereas B and D are provided in Eqs. 
(5.16) and (5.17), respectively. The input variables that we need to give before 
solving for C are: the discrete prior distribution of treatment effect, the relative 
benefit of the superiority vs. non-inferiority Phase III results which is considerably 
easier to assess than the absolute benefits, and the relative cost of the Phase II por-
tion vs. the Phase III portion. For the values of the input variables that we used in 
the motivating example, the optimal bar is C = 0.09. Roughly speaking, this cor-
responds to a 9 % hazard reduction based on the joint estimate of the OS (S). The 
solid line in Fig. 5.4 illustrates how the benefit–cost ratio changes with C, which 
decreases when it moves farther away from the optimal value. This is typical in a 
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Fig. 5.4 Illustration of how the benefit–cost ratio (B/D) changes with the GNG Criterion (C) in the 
Phase II/III study in platinum resistant ovarian cancer patients
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benefit–cost ratio analysis; the optimal design is unique and optimality is mathe-
matically global.

When using the surrogate biomarker PFS data in decision making, we made an 
assumption about the relative effect size of PFS and OS. At the end of Phase II, to 
mitigate the risk of using a wrong assumption, we should check the relative effect 
size observed in Phase II. If the observed OS effect is smaller than the lower bound 
of the 95 % confidence interval (CI) for the predicted OS effect from PFS effect 
(γΔPFS), we would be concerned because it indicates that the observed OS effect is 
much smaller than the predicted effect from PFS data using the historical relation-
ship of relative effect size. Therefore, our proposed GNG criteria at the end of Phase 
II are (1) the estimated OS effect (S) is greater than the optimal bar (~9 % hazard 
reduction based on benefit–cost ratio analysis); (2) the observed OS effect is greater 
than the lower bound of the 95 % CI for the predicted OS effect (to mitigate the risk 
of a wrong assumption on historical relationship of relative effect size). The dotted 
line in Fig. 5.5 shows the boundary for criterion (5.2). Overall, it is a Go decision if 
the observed PFS effect and OS effect from Phase II falls below both solid and dot-
ted lines, and is a No Go decision otherwise.

Now we have the optimal GNG bar for the end of Phase II data, we can 
 back- calculate the bar for the interim analysis (IA) in Phase II which gives 80 % 
conditional probability that the Go bar will be passed at the end of Phase II. The 
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Fig. 5.5 Optimal GNG Criteria at the end of Phase II in the Phase II/III study in platinum resistant 
ovarian cancer patients. The lower bound of the 95 % CI of predicted OS effect is the upper bound 
of the 95 % CI in hazard ratio scale (test vs. control). The higher the HR the smaller the treatment 
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calculation shows that a seamless Phase III enrollment will be triggered if the 
 following criteria are met for the interim analysis data.

 (a) The estimated OS effect (S) is greater than 0.16 (~16 % hazard reduction).
 (b) The observed OS effect at IA is greater than the lower bound of the 95 % CI for 

the predicted OS effect based on observed PFS effect at IA.

Figure 5.6 shows the boundaries for criterion (a) and (b). If the observed OS 
effect and PFS effect at IA fall below both solid and dotted lines, Phase III enroll-
ment will be triggered while waiting for the Phase II data to become mature.

5.5  Conclusions

In this chapter, we have defined a benefit–cost ratio function for measuring effi-
ciency of two Go–No Go decisions (Phase II POC to Phase III transition and futil-
ity analysis of a Phase III trial). Maximization of the benefit–cost ratio function 
leads to optimal cost-effective decisions. Both decision issues are complex in 
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Fig. 5.6 Criteria at interim analysis of Phase II to trigger Phase III enrollment in the Phase II/III 
study in platinum resistant ovarian cancer patients. The lower bound of the 95 % CI of predicted 
OS effect is the upper bound of the 95 % CI in hazard ratio scale (test vs. control). The higher the 
HR the smaller the treatment effect
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nature and each merits a separate treatment. They are bundled together in this 
chapter to demonstrate the broad applications of our proposed approach so that 
readers have a comprehensive appreciation. Some of the extensions mentioned in 
the chapter are being worked in greater depth and results will be presented in sepa-
rate publications.

Our approach to the two decision issues is most appropriate when resources 
saved from a No Go decision after a POC trial or from early termination of a Phase 
III confirmation trial can be immediately redeployed to emerging projects of higher 
interest. Therefore, one major application of this approach is in, but certainly not 
limited to, portfolio management of a large and steady flow of drug candidates 
under fixed resource constraints. If the condition of an excess of development 
opportunities beyond available resources is not met, our designs may not be opti-
mal. However, when there are not enough drug candidates lined up for develop-
ment, our proposed approach helps set an upper limit on how high the cutoff point 
for a Go–No Go decision should be. Our approach is suitable when absolute benefit 
of drug candidates cannot be well assessed. Otherwise, the decision-theoretic 
approach may represent a viable alternative solution. As with any optimization 
problem, the curve for a utility function may be relatively flat at the optimum. When 
applying our method, practitioners need to make sure that the mathematically opti-
mal solutions are also of practical relevance. Although we have used a prior POS 
estimate, we did not take a fully Bayesian approach to the decision issues. This is 
consistent with common practice in the drug development environment, and avoids 
complexity in presentation. Interested readers may consult Berry (2004) for possi-
ble Bayesian expansion.

The general method is simple to implement and easy to understand. It provides 
statisticians working in the late-stage development environment with a quantitative, 
objective approach to key clinical program design issues. The extensions discussed 
in previous sections may inspire expanded applications of this method.

In this chapter, we also used a motivating example in oncology to discuss and 
address a few challenging aspects in Phase II/III drug development: (1) How to use 
seamless design to accelerate development timeline? (2) How to explicitly incorpo-
rate surrogate biomarker data in decision making? (3) How to make objective GNG 
decision from Phase II to Phase III by maximizing the benefit–cost ratio? The exam-
ple shows that the benefit of a seamless design can be fully realized in practice after 
proper risk mitigation.

Although our work is motivated by oncology drug development where cost- 
effectiveness of a Go–No Go decision is a major concern, the general method pro-
posed in this chapter should be equally applicable to therapeutic areas with the same 
concern or to similar decision issues at any stage of drug development. These may 
include transition from earlier phases to Phase II, incorporation of a subpopulation 
(e.g., defined by a gene signature) hypothesis in a confirmatory trial, optimal alpha 
split between a full population and a subpopulation hypothesis in a confirmatory 
trial (Chen and Beckman 2009c), and many other possibilities.
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    Abstract     In many pivotal clinical trials, timing and frequency of interim analyses 
are important for ethical treatment of patients and for practical and regulatory pur-
poses. It is often desirable to evaluate a large trial of a new treatment that has some 
safety risk in order to stop or modify the trial based on the emerging risk–benefi t 
profi le compared to control treatment. Statistical considerations would suggest not 
stopping too soon in order to avoid large Type I or Type II error or basing a decision 
on inadequate data. Regulators often prefer to minimize interim analyses of effi cacy 
due to presumed bias created by early stopping and an inability to adequately evaluate 
important secondary effi cacy endpoints, safety, or the general risk–benefi t profi le 
for the new treatment. For practical purposes, analyses must be done soon enough 
to have a meaningful impact on the trial. For the same reason, limiting enrollment 
rates and ensuring prompt collection and analysis of data are important. We discuss 
tradeoffs between these factors in deciding when to perform interim analyses. 
In addition to formal evaluations for early positive effi cacy fi ndings, there are different 
considerations for trials early in the development process, for safety monitoring 
during a trial, and for futility analyses. We consider logistical and regulatory issues 
throughout.  
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6.1         Introduction 

 There are a variety of unknown factors at the    time of study design that can make it 
highly important to evaluate the risk–benefi t of a new treatment during the course 
of a clinical trial. Patient safety is the most important of these factors, but safety 
monitoring is often done in a statistically informal way due to the lack of knowl-
edge of what type of safety issues may arise or the frequency with which they may 
appear. More formal procedures are often set up for effi cacy evaluation and many 
issues arise: 

•    Lack of knowledge of the treatment effect for effi cacy of the new treatment under 
study.  

•   Lack of precise knowledge of the outcome distribution in the control group.  
•   Regulatory concerns of stopping a trial early for a positive effi cacy fi nding or for 

doing multiple interim effi cacy analyses.  
•   The ability to collect, enter, and analyze data in a timely fashion.  
•   Enrollment rates that allow interim analysis that is meaningful well before a trial 

is completed.  
•   Primary endpoints that are too far out in time to be evaluated at interim 

analyses.  
•   Use of surrogate endpoints for interim analyses.  
•   Ensuring that Type I error and Type II error associated with an interim analysis 

are adequately controlled. Other statistical properties such as the observed treat-
ment effect required to stop a trial or a conditional power evaluation may also be 
considered.  

•   For more adaptive trials, selecting treatment arms to continue or adapting sample 
size can be challenging objectives.    

 We will discuss the above items largely through a series of examples. There is no 
pretense at completeness as there are many situations that have presented and will 
potentially present themselves. However, we hope the examples may provide a use-
ful point of reference for many readers. Many of the examples are based on the 
practical experience of the author as opposed to, or in addition to, theoretical con-
siderations. The organization of the chapter begins with a section on when strategies 
with frequent interim analyses might be used, followed by sections on interim anal-
yses for futility and effi cacy, and ending with a brief discussion.  

6.2     Frequent Interim Analyses 

 In early development and in some cases in later development, frequent interim 
analyses may prove useful. Safety monitoring tends to be an ongoing process as a 
drug is fi rst being studied. We will focus on more formal approaches where analyses 
are frequent. The FDA draft guidance on adaptive designs encourages more 
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frequent adaptation and more innovative methods in early studies in development 
(Center for Drug Evaluation and Research and Center for Biologics Evaluation and 
Research  2010 ). Most typical are dose-fi nding trials with continuous or very fre-
quent modeling. While these are addressed in other chapters, we mention a couple 
of specifi c approaches here. 

 For safety in oncology trials, the “3+3” design has a long history, but is often 
noted to have limitations in terms of accurately identifying a dose with a target toxic-
ity level. Other approaches with frequent monitoring such as the continual reassess-
ment method (CRM; O’Quigley et al.  1990 ) or variations such as the (modifi ed) 
toxicity probability interval (Ji et al.  2010 ) can provide a more accurate method of 
dose-fi nding. These methods can formally adapt doses over longer sequences of 
patients, adapting to collect a suitable amount of data. The CRM method can some-
times be criticized as a ‘black box’ where the dose adaptations are not completely 
obvious. The mTPI is essentially a CRM method that has table that fully identifi es 
the dose-adaptation rules, meaning that no computer program is required once the 
trial is enrolling. The speed of enrollment can be based on how close to an adaptation 
boundary the trial is at any point in time. That is, for lower-risk groups it may be 
possible to accelerate enrollment somewhat when not close to a toxicity bound. 

 For larger trials, including very large trials with rare, important safety events 
such as rotavirus vaccine trials evaluating intussusception (The REST Study Group 
 2006 ) or cardiovascular trials with intracranial hemmorhage risk, fully sequential 
methods can be useful. While group sequential methods are discussed elsewhere, 
fully sequential methods such as the sequential probability ratio test (SPRT, Wald 
 1945 ) or related methods (Siegmund  1985 ) are what we refer to here. For these 
examples, a formal evaluation of safety risk can be performed at the occurrence of 
each event. This has the advantage of stopping a trial as soon as a safety risk is reli-
ably identifi ed. For important risks identifi ed prior to trial start, this formal approach 
can avoid an inappropriate early stop due to informal stopping decisions without 
evaluable operating characteristics. 

 Another early development area where adaptation is common is in Phase II, single 
arm effi cacy evaluations of response rates. The Simon two-stage (Simon  1989 ) 
design provides a simple futility rule for an early stop in such trials. If this hurdle is 
passed, a fi xed additional number of patients are evaluated. Without much change in 
operating characteristics, fully sequential monitoring can be performed with con-
tinuous monitoring to allow more fl exibility in terms of when early decisions can be 
made between some minimum and maximum targeted number of observations 
using a truncated version of the SPRT (Wald  1945 ); this is implemented using the 
 binomialSPRT  routine in the gsDesign R package (Anderson  2014 ). Delaying 
the fi rst analysis until some minimum sample size has been tested, consistent with 
the start of a Simon two-stage design, can reassure investigators that a trial will not be 
stopped too early. The continuous monitoring can reassure a sponsor that a formal 
futility stop or accelerated go to a next study can be adopted as soon as reasonably 
reliable conclusions can be made. Another alternative with more fl exible timing 
based on Bayesian decision-making was developed by Lee and Liu ( 2008 ).  
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6.3     Futility Analyses 

 Futility analyses are interim analyses to consider stopping a trial early by examining 
signals for patient harm or lack of effi cacy benefi t. This can be considered the most 
effective way to save costs in a large portfolio of clinical trials typical in a large 
pharmaceutical company. The strategy may be less appealing to smaller companies 
with smaller product portfolios; it is also often unappealing to a ‘product team’ 
within a larger company which may have a large personal investment in a project. 
We will consider the topic of futility somewhat broadly in this discussion, including 
safety and risk–benefi t considerations as well as effi cacy. We will also briefl y 
discuss the role of futility analyses in practical aspects of treatment selection. 

 Clearly, one of the most important aspects of early interim analyses is to monitor 
patient safety. In the previous section, we discussed the importance of ongoing 
safety monitoring. Another important type of safety interim analysis is to collect 
and analyze a uniform and systematic early review of safety to examine less obvious 
potential issues than those captured through ongoing safety monitoring. When there 
are potential safety issues, it is important to consider the risk–benefi t tradeoff both 
for patients in the trial and for future patients who may receive benefi t or harm from 
a new treatment. Some of these issues can only be addressed after a large trial is 
completed and will be discussed further in the following section. Others can be 
assessed for a tradeoff with potential positive effi cacy fi ndings during the course of 
a trial. The potential for more severe safety fi ndings may drive an earlier interim 
analysis, while having more data for a careful tradeoff with effi cacy benefi t may 
suggest a delay in timing for any interim futility analysis. Often analyses of this 
nature are performed on a regular calendar basis, say every 3 or 6 months. Which of 
these analyses include effi cacy analyses and to what extent is important for the 
control of Type I error will be discussed in the next section. 

 As noted by Bauer et al. ( 2010 ), a trial with an objective of treatment selection 
among multiple arms has a basic confl ict between a desire to collect as much data as 
possible on a fi nal treatment arm selected versus wanting as much data as possible to 
select between treatment arms. One issue this author has seen is an adaptive design 
where effi cacy analysis of discontinued arms changes before a trial is completed 
since some patients on discontinued arms may not have had complete data at the time 
of an interim analysis. In the particular case of interest, in retrospect, a non-adaptive 
trial may have been preferable since the cost was not a major prohibition in Phase II, 
but having to reconsider multiple arms in Phase III was a major cost. That said, 
selecting between treatment groups at interim analyses is challenging in the absence 
of large differences in safety or effi cacy, leading to a personal bias for this author to 
leave arms in a trial in absence of large differences. Another approach occasionally 
referred to by the FDA is to simply choose the highest dose that is safe at an interim 
analysis, along the lines of the Phase III (The PURSUIT Investigators  1998 ) trial of 
platelet inhibition in acute coronary syndromes. This allowed an analysis of a sub-
stantial number of patients to address a challenging dose selection question while not 
requiring completion of the entire the trial with two experimental arms. 
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 The FDA draft guidance on adaptive design (Center for Drug Evaluation and 
Research and Center for Biologics Evaluation and Research  2010 ) provides only 
basic, general recommendations for futility analyses. While not directly commented 
on as a futility analysis, there are comments on monitoring enrollment and what 
criteria may be preventing timely enrollment of a trial. If this is done on a blinded 
basis, changes to enrollment criteria to speed timely completion may be considered. 
It is probably best to do this relatively early in the trial to ensure the majority of the 
trial is performed as uniformly as possible. Among the fi rst considerations in per-
forming an early futility analysis for effi cacy is the tradeoffs between (1) setting a 
meaningful bound for clinical effi cacy, (2) controlling the probability of stopping a 
trial for a drug that is truly useful (Type II error), and (3) performing any futility 
analysis at a time where stopping the trial or an arm in the trial can have a meaningful 
impact on the trial. We will discuss each of these topics separately, as well as the 
confl icts between these objectives. 

 We begin with the timing question as a futility analysis performed late in a trial 
may have a minimal impact on study costs relative to the impact it has on the simple 
interpretation of trial results achieved by running a trial to completion. The rates of 
enrollment versus collection of essential assessment data makes it impossible to 
perform interim futility analysis in many cases. If interim futility analyses are incor-
porated in such cases regardless of these considerations, it may mean that trial 
enrollment has to be halted prior to the futility being performed in order for the 
analysis to have an impact on the number of patients exposed to treatment. This can 
lead to many sites abandoning a trial in favor of other, actively enrolling trials—
leading to the potential for substantial patient population differences before and 
after the interim analyses. If enrollment is not paused in these trials with fast enroll-
ment relative to assessment, then the trial may be nearly completely enrolled prior 
to being able to actually perform the interim analysis. One consideration is to limit 
the number of sites enrolling patients until a futility analysis is performed; this can 
have a substantial impact on completing the trial. One could also consider perform-
ing a smaller trial initially to get a preliminary indication of effi cacy, although a 
common reaction to this is that running two separate trials would substantially delay 
any possibility of bringing forward a new, potentially benefi cial treatment to 
patients. The reader can see that tradeoffs are diffi cult under this type of scenario. 

 Next, we consider setting a clinically meaningful futility bound and control of 
Type II error. By “a clinically meaningful futility bound” we mean a bound that cor-
responds to requiring some positive indication of effi cacy. With very little effi cacy 
data, the estimate of treatment effect is highly variable and setting a clinically mean-
ingful treatment bound results in substantial Type II error. Given the issues just noted 
with late interim futility analysis, fi nding the right tradeoff can be challenging. 
Generally, considering timing at 25–50 % of data seems potentially useful. The earlier 
timing provides the potential of larger savings while requiring a “low clinical benefi t 
bar” in order to avoid a steep power loss. The later timing requires particularly careful 
assessment of whether or not the interim analysis can be performed at a time when it 
has a meaningful impact on the trial. Another strategy that may be worth considering 
is lowering the desired power from a typical 90 % (or more) to 85 % or 80 %, with the 
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thought the most of the power loss will ‘pay for’ the ability to perform a meaningful 
early futility analysis. This also limits the increase in sample size that accompanies a 
strategy of a futility analysis with a stringent futility bar and high power. 

 All of the above reinforce the careful consideration of the tradeoffs between clini-
cally meaningful futility bounds, meaningful timing for decisions and minimizing 
Type II error. One thing that makes this easier is if only substantial harm is considered 
suffi cient justifi cation for early futility stopping. If a futility analysis requiring some 
indication of clinical benefi t cannot be performed, a futility analysis to react to harm 
in terms of the primary effi cacy endpoint can still be highly important. 

 In order to try to get around some of the above tradeoffs, surrogate endpoints for 
the primary endpoint of interest are sometimes used for futility decisions. For many 
trials with longitudinal measures of an effi cacy endpoint, it might be expected that 
effi cacy at an early follow-up time point would be necessary for effi cacy to exist at 
a later timepoint. For oncology trials, an early futility analysis based on progression 
free survival may be performed in a trial with an ultimate objective of showing a 
mortality benefi t. While the impact of these strategies on power for the true end-
point of interest is diffi cult to assess, these are potentially important methods of 
realizing considerable savings in the conduct of a potentially large and expensive 
clinical trial. 

 Finally, we wish to mention that prior information on treatment effectiveness and 
risk–benefi t has a substantial impact on consideration of a futility analysis. A drug 
that has a reasonably well-established safety and effi cacy profi le and is being stud-
ied in multiple related scenarios may not be an attractive candidate for futility analy-
ses. As an example, an effective diabetes drug in Phase II may be studied in many 
Phase III indications and it may be desirable to get a complete assessment in each 
of the indications. In situations where a futility bar provides a fi rst assessment of 
effi cacy for any clinical indication for a compound, a futility bar may be considered 
more important, especially when the fi rst indication studied is considered likely to 
provide the most promising population for the compound.  

6.4     Effi cacy Analyses 

 We begin this section with some regulatory considerations, followed by a discussion 
of study bounds and a discussion of calendar and information-based group sequen-
tial designs. We end with a brief discussion of blinded sample size re-estimation. 

 Early stopping for a positive effi cacy fi nding can be a controversial topic. There 
may be pressures on a pharmaceutical company to bring a drug to market as soon as 
possible, making early establishment of effi cacy attractive. These pressures can come 
not only from shareholders, but also from patient advocacy groups. However, the 
general regulatory and other societal perspectives require a careful assessment of the 
risk and benefi t of a new drug before it is approved for human use (see, for example, 
ICH E9 or CFR312). As noted by Paul Canner in a review of interim monitoring of 
the coronary drug project (The Coronary Drug Project Research Group  1981 ), “…
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decision making in clinical trials is complicated and often protracted…no single 
statistical decision rule or procedure can take the place of the well-reasoned consid-
eration of all aspects of the data by a group of concerned, competent, and experi-
enced persons with a wide range of scientifi c backgrounds and points of view.” 
The FDA (CFR 312 part 21) notes that “Phase 3 studies…are intended to gather the 
additional information about effectiveness and safety that is needed to evaluate the 
overall benefi t–risk relationship of the drug and to provide an adequate basis for 
physician labeling.” These needs suggest that interim stopping criteria must go 
beyond any simple effi cacy rule provided by, say, a carefully designed group sequen-
tial trial. My recent experience with FDA oncology regulators suggested no interim 
effi cacy analyses until after 50 % of effi cacy data have been collected. This runs 
counter to some previous experience where large treatment effects were observed 
early (e.g., EPILOG Investigators  1996 ; Demetri et al.  2006 ). The EPILOG trial 
(EPILOG Investigators  1996 ) may have been an exception since the drug studied was 
previously approved, the effi cacy benefi t was twice that observed in a previous trial, 
and previous safety concerns were substantially reduced; also, while the interim 
analysis was early in terms of the planned fi nal information, there was already a large 
number of patients treated. In any case, the case for changing the prevalent treatment 
paradigm was compelling. In addition to FDA suggestions to limit early effi cacy 
analyses, the European Medicines Agency (EMA) has also strongly suggested limit-
ing the number of interim effi cacy analyses. 

 Along with timing recommendations, the FDA sometimes suggests (e.g., Center 
for Drug Evaluation and Research and Center for Biologics Evaluation and Research 
 2010 ) O’Brien–Fleming-like criteria (O’Brien and Fleming  1979 ; Lan and DeMets 
 1983 ) for early stopping. While these are generally considered conservative criteria 
for stopping, we wish to note here that at 60 % of the fi nal sample size for a group 
sequential trial designed with 90 % power and 2.5 % Type I error, 1 sided, the 
approximate treatment effect required to stop the trial early is approximately 1.04 
times the treatment effect for which the trial is powered. Thus, even more stringent 
interim bounds may be desirable if there are substantial risk–benefi t considerations 
beyond the primary endpoint. For instance, in an oncology trial with a primary 
progression free survival endpoint, as complete assessment as possible of overall 
survival can be an essential part of the evaluation of benefi t; in this situation early 
stopping for effi cacy should be done cautiously. For treatments of chronic condi-
tions where evaluation of safety is particularly important for assessing risk–benefi t 
tradeoffs, early stopping should consider the sample size needed for risk–benefi t 
evaluation. 

 As discussed in the section on frequent interim analyses, calendar-based timing 
of analyses may be of use in effi cacy evaluations for a drug. It is not uncommon for 
enrollment rates or event rates that vary from those used to plan a trial. If events 
occur slower than expected, there may be a much longer gap between planned 
 effi cacy analyses. If events occur faster than expected, the anticipated time between 
planned interim analyses can largely disappear. Information-based group sequential 
trials (Jennison and Turnbull  2000 ; Mehta and Tsiatis  2001 ; Scharfstein et al.  1997 ; 
Tsiatis  2006 ) adapt interim and fi nal analysis boundaries based on the amount of 
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statistical information available at an interim analysis. This is most commonly 
achieved through the use of error spending functions to establish and modify group 
sequential bounds (Lan and DeMets  1983 ). In these cases, a gap of more than 1 year or 
less than, say, 6 months, may be considered too long and too short of a time, respec-
tively, between an evaluation of risk–benefi t that includes an effi cacy evaluation. 
For many trials, planning interim analyses at least partially on a calendar basis using 
a spending function approach can be essential to having an appropriate number of 
and timing of interim analyses.  

6.5     Discussion 

 We have provided some considerations for timing and number of interim analyses that 
run from continuous analysis of important safety outcomes or early effi cacy fi ndings 
to a very limited number of effi cacy evaluations in pivotal trials. All possibilities exist 
depending on the needs of a trial, and there are many statistical methods to deal with 
the many interim analysis issues that need to be addressed in a trial (Dragalin  2006 ). 
The general summary of timing and number of interim analyses is: 

•    Safety monitoring should be ongoing during a trial, often with systematic reviews 
of safety at interim analyses carried out at regular calendar intervals. Formal 
safety stopping rules may be considered for endpoints that are anticipated to 
potentially demonstrate a drug safety issue.  

•   Trials in early development may benefi t from frequent analyses that allow altering 
or stopping a trial; this is actually encouraged by the FDA (Center for Drug 
Evaluation and Research and Center for Biologics Evaluation and Research  2010 ).  

•   Interim analyses for futility should carefully consider tradeoffs between the 
impact on power, the ability to stop a trial at a meaningful time and the approxi-
mate clinical benefi t required to pass a futility bound. Earlier futility analyses 
can be meaningless in terms of establishing some sign of effi cacy or can have a 
substantial power impact if made too stringent. Late interim analyses can minimize 
the ability to meaningfully impact the conduct of a trial.  

•   Effi cacy interim analyses are often required to be very stringent, reasonably well 
into a trial, and infrequent. Careful risk–benefi t evaluation should be considered 
in addition to any formal effi cacy stopping bound.        
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    Abstract     Adaptive designs use accumulating data to modify in a prospectively 
planned manner certain design aspects of a clinical study without undermining its 
validity and integrity. The aim of this chapter is to review adaptive design approaches 
for dose fi nding and optimal dose selection and to demonstrate that adaptivity is a 
fundamentally important concept, which can be applied to dose selection in different 
stages of clinical development. We review the major statistical methods available for 
planning and analyzing adaptive designs in Phase I, II, and III. To illustrate the ideas, 
we refer to examples and case studies from the literature, where available.  

  Keywords     Dose selection   •   Maximum tolerated dose   •   Minimum effective dose   
•   MCP-Mod   •   Dose limiting toxicity  

7.1         Introduction 

 As outlined in Chap.   1     of this book, a major driver for adaptive designs is to increase 
the information value of clinical trial data to enable better decisions, leading to more 
effi cient drug development processes and improved late-stage success rates. This is 
particularly true for optimal dose selection: A well-known problem of failed Phase 
III programs is often believed to be poor dose selection resulting from inappropriate 
knowledge of the dose–response relationship (effi cacy and safety) at the end of 
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the learning phase of drug development, i.e., Phase II. Selection of a dose (or doses) 
to carry into confi rmatory Phase III trials is among the most diffi cult decisions in 
drug development. Although the exact numbers are unknown, it is believed that the 
high attrition rate plaguing the pharmaceutical industry in Phase III studies are due, 
at least in part, to inadequate dose selection for confi rming safety and effi cacy in the 
intended patient population—doses that are too low to achieve adequate benefi t, as 
well as doses that are too high and lead to dose-related safety events. There is also 
evidence that, even after registration, dose adjustments in the label continue to be 
required with some frequency (Cross et al.  2002 ; Heerdink et al.  2002 ). Given this 
context it is no surprise that dose fi nding has been described as “diffi cult, essential 
and often badly done” (Senn  1997 ). This chapter illustrates, with examples, some of 
the adaptive dose fi nding options that exist across the phases of drug development 
and may aid us in our understanding of the dose–response relationship and improve 
the probability of selecting the correct dose, or doses, to take to market.  

7.2     Current Issues with Dose Ranging and Issues 
to Consider for Adaptive Dose Ranging 

 The basic diffi culty in getting the right dose is the trade-off between wanted and 
unwanted effects. In the past, dose fi nding studies were often designed using a 
small number of doses and a narrow dose range, often focused on the upper end of 
the dose–response relationship. Only in recent years has there been a noticeable 
shift towards investigating the full dose–response relationship and estimating 
the so- called minimum effective dose (MED). The MED denotes the smallest dose 
achieving a prespecifi ed clinical treatment effect. Knowing the MED is important, 
because it defi nes a lower bound for therapeutically useful doses. 

 One of the main issues with dose response is that many different profi les are pos-
sible. Figure  7.1  displays a non-exhaustive set of possible profi les that are often seen 
in clinical dose fi nding studies, together with the associated MED. In this example the 
MED occurs at an expected treatment effect of approximately 250 units implying that 
the threshold for clinical relevance is an improvement of 200 units over the placebo 
response (where the placebo, dose 0, response is approximately 50 points). As seen 
from Fig.  7.1 , the MED depends quite strongly on the true, underlying dose response 
profi le and can vary between 50 (for the emax1 model) and 350 (for the linear model).

   An indication of the importance of properly conducted (and informative) dose 
response studies is the early publication of the ICH E4 guideline (ICH  1994 ), which 
is the primary source of regulatory guidance in this area. The guideline gets very 
specifi c already in the introduction when it motivates the importance of dose 
response information:

  Historically, drugs have often been initially marketed at what were later recognized as 
excessive doses … This situation has been improved by attempts to fi nd the smallest dose 
with a discernible useful effect or a maximum dose beyond which no further benefi cial 
effects is seen… 
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   It becomes transparent from this quote, and the remainder of the ICH E4 guide-
line, that regulatory agencies recognize the need to obtain appropriate dose response 
information as a critical part of clinical drug development. But even if it is generally 
agreed that understanding the relationships among administered dose, drug- 
concentration in blood, and clinical response is important, setting the objectives for 
an actual trial may be subject to much debate and different questions might be of 
interest: (1) detecting a dose response signal, (2) identifying a predefi ned clinically 
relevant response within the observed dose range provided that a dose response 
signal has been established, (3) selecting a target dose to be further studied in late 
phase trials, and (4) estimating the dose response profi le within the observed dose 
range (Bornkamp et al.  2007 ). 

 Typically, dose selection in a clinical program begins with the drug being fi rst 
studied in man as single ascending doses, followed by multiple ascending doses in 
healthy volunteers. Initially we wish to establish both a “no effect” dose and a dose 
where subjects begin to experience “symptom-limiting” adverse events (the so- 
called maximum tolerable dose, MTD). This can then be followed by evidence that 
the drug has an effect on the disease being studied, often conducted by a dedicated 
proof-of-concept (PoC) study. Once PoC has been declared, dose ranging will be 
performed in a study containing multiple doses to identify the dose response shape 
and estimate the MED or other target doses of interest. The result of the dose 

  Fig. 7.1    Example dose response profi les often seen in clinical dose fi nding studies.  Open dots  
indicate the expected responses at selected dose levels. The minimum effective dose (MED) is 
defi ned as the smallest dose achieving a prespecifi ed clinical treatment       
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response study will be used to inform the dose, or doses, to be taken forward into 
Phase III and ultimately to market. However, in many cases only a small amount of 
clinically-derived data are available to justify the dose selection and that data may 
be being used in a suboptimal fashion. 

 In contrast to standard dose fi nding, in adaptive dose fi nding prespecifi ed adapta-
tions allow modifi cations to the original study design as dose response information 
accrues. This information can be used to answer one or more of the four questions 
outlined above. Generally speaking, adaptive designs use accumulating data to 
modify aspects of the study in a prospectively planned manner without undermining 
the validity and integrity of the trial (Gallo et al.  2006 ). Validity involves the statisti-
cal properties of the trial related to inference and estimation, i.e., providing correct 
statistical inference by, for example, ensuring control of the Type 1 error rate, and 
the calculation of adjusted p-values, estimates, and confi dence intervals, assuring 
consistency between different stages of the study and minimizing statistical bias. 
Trial integrity is primarily about transparency and trial conduct acceptable to the 
intended external audience, i.e., providing convincing results to a broader scientifi c 
community, by, for example, preplanning as much as possible, basing any study 
design changes on intended adaptations and maintaining confi dentiality of data 
while the study is ongoing. 

 The majority of adaptive dose fi nding studies take place in Phase I and II and, 
thus, regulatory concerns often associated with adaptive trials in the confi rmatory 
setting (Phase III) are less of an issue here. Adaptive dose fi nding designs should be 
considered as an effective learning paradigm for drug development where the risks 
of missing an accurate assessment of the true underlying dose response profi le of an 
investigational treatment are borne by the sponsor. These plans would not require 
special approval from regulatory agencies. While trial designs for early phase drug 
development are under the purview of the sponsoring company as long as strict 
compliance to regulations around potential human risk and safety is maintained, a 
successful dose ranging trial brings major evidence to regulatory discussions such 
as End-of-Phase IIa or IIb meetings. It is also possible for investigation of dose to 
continue into Phase III and then there is additional regulatory concern. These issues 
will be discussed in Sect.  7.5 . Nevertheless, to ensure the validity of the trial results, 
there has to be an implicit assumption that demographic and other relevant charac-
teristics of the patients enrolled in the study remain relatively constant over time. 
As with any adaptive design, it is assumed that the effi cacy response being measured 
is available in a suffi ciently rapid time frame (relative to the enrollment period and the 
duration of the study) to allow for meaningful adaptations to occur. It is very com-
mon for an adaptive dose fi nding trial to use an endpoint different from the endpoint 
used in the confi rmatory trial for regulatory approval because, for example, the reg-
istration endpoint takes too long to measure (e.g., a survival endpoint). In such situ-
ations, a validated biomarker with shorter duration may be introduced for the 
purpose of either proof-of-concept or adaptive randomization of patients. Lastly, it 
is assumed that the transmission of relevant information to the data analysis group 
is suffi ciently rapid to allow adaptations to occur according to the prescribed meth-
odology. Additional points to consider when designing an adaptive dose ranging 
study would be to ideally run the study in a small number of centers to limit issues 
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with drug supply management. Of course the ability to produce enough dose levels 
(i.e., no manufacturing problems) must be present. Issues such as these must be 
taken into consideration before embarking on any adaptive dose fi nding study.  

7.3     Phase I 

 When evaluating a new experimental treatment, the purpose of fi rst-in-human stud-
ies is to identify the MTD. Phase I trials are typically adaptive whether they involve 
single or multiple ascending doses. In general, cohorts of healthy volunteers (e.g., 
six subjects on active and two on placebo) will enter the study and decisions will be 
made after each cohort on whether to initiate the next dose or possibly stop the trial 
altogether. These decisions will be based on safety, tolerability, pharmacokinetics, 
and pharmacodynamics. 

 The need for and acceptance of adaptive dose escalation designs is particularly 
well established in the area of Oncology. Here, MTD fi nding studies in Phase I fre-
quently classify a patient’s toxicity (safety) data into one of two levels: dose limiting 
toxicity or not. The purpose of MTD fi nding studies is then to estimate the dose 
which achieves a probability of toxicity close to a targeted level, frequently in the 
order of 25–35 %, although the actual level will be situational dependent. Adaptive 
dose escalation designs to estimate the MTD then allocate small cohorts of patients 
(typically of size 3) to a selected dose based on the available cumulative toxicity 
data, that is, the dose that is anticipated to achieve a degree of toxicity closest to the 
targeted level. The dose selection mechanism is therefore response adaptive: the 
cumulative knowledge is used to inform the actual dose allocated to the (future) 
next cohort of patients. This allocation can be informed by a number of methods, 
including Bayesian adaptive dose escalation designs, such as the continual reassess-
ment method (CRM) proposed by O’Quigley et al. ( 1990 ). The original CRM 
chooses the fi rst dose level based on some assumed dose response model. After each 
cohort of patients, the model is updated. The updated model is used to calculate the 
probability of dose limiting toxicity (DLT) at each dose of interest. The statistical 
dose recommendation for the next patient cohort is communicated to the clinical 
team, who decides on the next dose based on the statistical input as well as other 
relevant information (e.g., toxicities that do not qualify for a DLT). The basic CRM 
has led to much research (Garrett-Mayer  2006 ) and numerous extensions 
(Neuenschwander et al.  2008 ; Cheung  2011 ).  

7.4     Phase IIa/IIb 

 The advantages of an adaptive dose ranging design in Phase II may be illustrated by 
an example of a combined Phase IIa/b study in dental pain (Vandemeulebroecke et al. 
 2010 ). The compound was developed as an analgesic for the treatment of chronic 
pain. In order to provide a scientifi c rationale for the clinical development in such a 
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chronic indication, the potential benefi t of the compound was fi rst investigated in a 
proof-of-concept study for an acute pain indication. More specifi cally, a dental pain 
study was developed which looked for proof of analgesic effi cacy after molar teeth 
were removed. In view of this clinical development plan and the possibility to apply 
the compound as a multiple dose therapy for chronic pain indications, it was impera-
tive to collect conclusive dose response information for both effi cacy and safety in the 
intended dental pain PoC study. More specifi cally, there was a need to determine:

•    A safe dose range for testing in patients.  
•   Whether the effi cacy signal observed was large enough to support further 

development.  
•   The dose–response relationship in order to select one or more doses for larger, 

later stage trials.    

 To aid these decisions and to accelerate the outlined development plan, the dental 
pain study considered here prospectively combined Phase IIa and Phase IIb by 
bridging PoC and dose fi nding into a single, adaptive study. The PoC part looked for 
proof of analgesic effi cacy after molar teeth were removed. If PoC could be estab-
lished, the study would seamlessly continue into a dose fi nding part, to provide dose 
ranging information for the further development of the compound in the chronic 
pain indication. 

 Accordingly, this dental pain study consisted of three parts A, B and C, see 
Fig.  7.2 . Part A consisted of the fi rst administration of the compound in patients. Its 
goal was to determine two safe doses for Part B (Low & High dose). Part B 
 investigated PoC. It compared Low and High dose of the compound against placebo 
for PoC declaration, based on patients from Parts A and B. Only if PoC was declared, 
would the study continue with dose fi nding in Part C. The complete data from Parts 
A and B is used to optimize the design of Part C. The aim of Part C was to establish 
dose response information for both effi cacy and safety. For example, it would be 
used to determine the MED, i.e., the smallest dose that achieves a clinically relevant 
effect. The fi nal analysis would use the MCP-Mod approach (Bretz et al.  2005 ; 

  Fig. 7.2    Combined Phase IIa/b study bridging proof-of-concept and dose fi nding (pts = patients)       
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CHMP  2013 ), based on all data from Part A, B, and C. The MCP-Mod approach 
combines principles of  M ultiple  C omparisons  P rocedures with  Mod eling tech-
niques to overcome some of the shortcomings of applying either approach alone. 
More specifi cally, it provides an effi cient statistical methodology for model-based 
design and analysis of Phase II dose fi nding studies acknowledging model uncer-
tainty through the following steps: (1) testing for the presence of a dose response 
signal, (2) selecting the best dose response model for the observed data out of a 
pre-specifi ed set of candidate models, and (3) estimating target doses of interest 
(e.g., the minimum effect dose, MED) via modeling.

   In a traditional drug development program, Parts B and C would be run as two 
separate studies. However, in this study design it was decided to use an adaptive 
design prospectively combining, PoC and dose fi nding, to more effi ciently use the 
accumulating data across the three seamless parts of the study. It is an adaptive 
design because between Part B and C an interim analysis is performed to (1) assess 
PoC and possibly terminate the study early for futility, and (2) use the complete data 
from Parts A and B to optimize the design of Part C. The application of such an 
adaptive design was possible because of:

•    The availability of a fast readout for a clinically relevant endpoint (reduction in 
pain intensity 72 h after removing the molar teeth).  

•   The possibility to conduct this study in very few centers, thus avoiding potential 
drug supply management issues.  

•   The ability to produce small enough dose levels (no manufacturing issues).  
•   The availability of a clinical team bridging Early and Full Development to 

 prospectively plan an integrated PoC and dose fi nding study.    

 This trial design was well accepted by regulatory agencies and this case study 
shows how dose response information can be sequentially built up by combining 
PoC and dose fi nding in an adaptive manner and how this information may be used 
to select doses to be tested in later development stages.  

7.5      Phase III 

 Although it would be preferable to learn about dose in early phase studies when 
decision making comes under the heading of “sponsor’s risk,” in certain situations 
it may be necessary to further investigate dose in Phase III. This is possible using a 
pivotal two-stage adaptive design with dose selection at interim. Such a design aims 
at addressing two objectives by a single, uninterrupted study conducted in two 
stages, which otherwise would have been addressed by two separate studies. Under 
the adaptive design, one (or more) dose level(s) are selected using data from the fi rst 
stage reviewed at an interim analysis. These dose(s) are then carried forward to the 
second stage. The fi nal analysis of the selected dose(s) includes data from both 
stages, and is performed in such a way that the validity of the conclusions is main-
tained (Bretz et al.  2009 ). 
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 As this type of study is used for pivotal confi rmation of effi cacy and safety, it will 
be submitted to regulatory agencies. Regulatory agencies are more cautious about 
adaptive designs for confi rmatory trials than for exploratory trials (CHMP  2007 ; 
FDA  2010 ). This arises from concerns over trial validity and integrity, for example 
due to potential information leak (i.e., unblinding of patients or investigators to 
study results before fi nal database lock) due to the ensuing adaptations, introducing 
operational bias and therefore compromising trial integrity (Gallo  2006 ). This cau-
tion is understandable, since confi rmatory trials assume a considerable body of pre-
existing information and limit sponsor options in dealing with uncertainties. The 
adverse impact of moving forward (i.e., approval) with an ineffective or unsafe 
product is much greater at this stage than at earlier stages of drug development. As 
a result, regulators want scientifi c assurance that the proposed adaptive design has 
the desirable property of a confi rmatory trial and is not proposed purely to save trial 
cost and time at the possible expense of scientifi c rigor. Both the European Medicines 
Agency (EMA) and the US Food and Drug Administration (FDA) have produced 
guidances on adaptive designs (CHMP  2007 ; FDA  2010 ) and are aligned with clear 
common areas for attention: Type I error rate control, rigorous planning, data 
confi dentiality at interim analyses, as well as a limited number and frequency of 
adaptations (preferably limited to only one type of adaptation in a confi rmatory trial). 
In the confi rmatory setting, hypotheses about the potential benefi cial effect for a 
new therapy have to be prespecifi ed in the study protocol and need to be confi rmed 
at the study end using proper statistical analysis methods (Bretz et al.  2009 ). 

 One example of a Phase III two-stage adaptive design is the INHANCE study 
(Donohue et al.  2010 ). Other examples of two-stage adaptive clinical trials with 
dose selection at the end of stage 1 are described in (Heritier et al.  2011 ; Chaturvedi 
et al.  2014 ). INHANCE was a multinational, multicenter, double-blind, double 
dummy, adaptive, parallel group study design with blinded formoterol and open 
label tiotropium as active controls in patients with chronic obstructive pulmonary 
disease (COPD). The study was split into two stages. In the fi rst stage two of four 
indacaterol doses were selected at an interim analysis (based on data from the fi rst 
14 days of treatment, i.e., an early readout of the effi cacy endpoints) to continue into 
a second stage where effi cacy, safety, and tolerability of the two selected doses 
could be confi rmed in comparison to active and placebo comparators over a total of 
26 weeks. It was one of the pivotal trials used to support registration of indacaterol. 
The study design is shown in Fig.  7.3 , where the two selected indacaterol doses in 
stage 2 (which could be any two of the four indacaterol doses from stage 1) are 
denoted as A and B.

   A Data Monitoring Committee (DMC) of recognized experts in the respiratory 
and statistical fi eld appointed by the sponsor but independent of study conduct 
reviewed effi cacy and safety data at the interim analysis. Dose selection was primar-
ily based on predefi ned criteria comparing the effi cacy of indacaterol with placebo 
and the active controls. One of the most important issues in adaptive designs for 
confi rmatory clinical trials is an adequate separation of the decision making com-
mittee (in this case, the DMC) from the project team, i.e., there should be no spon-
sor involvement in the decisions made at the end of stage 1 of a confi rmatory 
two-stage adaptive design. Therefore, there is a need to prespecify the process by 
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which any decision will be made by this external, independent DMC, with an 
 algorithm for determining the adaptation specifi ed and agreed in advance. For the 
INHANCE study, a set of dose selection guidelines for a variety of possible interim 
analysis scenarios was compiled and included in the DMC charter. The DMC was 
asked to select two adjacent doses (i.e., either 75 μg and 150 μg, 150 μg and 300 μg, 
or 300 μg and 600 μg) based on trough Forced Expiratory Volume in 1 s (FEV 1 ) and 
FEV 1  area under curve (AUC  (1h–4h) ) after two weeks of treatment. Safety data was 
also presented to the DMC to include in its deliberations. 

 In the confi rmatory setting there are two key issues that are fundamental to the 
acceptability of an adaptive design: Type I error rate control and sponsor access to 
interim data. In the INHANCE study the fi nal analysis consisted of comparing the 
two selected dose groups with placebo and tiotropium on a prespecifi ed sequence of 
the primary, key and important secondary endpoints. Evidence from both stages was 
combined in a rigid statistical hypothesis-testing framework. In this study, a Bonferroni 
adjustment with a signifi cance level α/4 was used for comparing each of the two dose 
groups against placebo, since the study started with four indacaterol doses. Here, α 
denotes the usual study-wise Type I error rate acceptable for confi rmatory trials (i.e., 
α = 0.05 for two-sided or α = 0.025 for one-sided hypotheses testing). The primary, 
key, and important study objectives were tested sequentially at level α/4 in the 
 prespecifi ed hierarchy for each of the two selected doses (Maurer et al.  1995 ). 

 Current regulatory guidance in more traditional monitoring settings, such as 
group sequential designs, specifi es that sponsors should not have access to interim 
data while trials are ongoing. One concern in the context of adaptive designs is that 
unanticipated complexities might not fi t a prespecifi ed algorithm, such as unex-
pected safety signals, lack of monotone dose response or potential stop for futility. 
Additionally, the interim decision could have major impacts on the sponsor’s busi-
ness, and it is therefore in the sponsor’s interest to have some limited role pre-

  Fig. 7.3    INHANCE—a Phase III two-stage adaptive design with dose selection (adapted from 
Lawrence et al.  2014 )       
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planned in the DMC charter. For the INHANCE study, the proposed interim decision 
rules were included in the DMC charter with the understanding that the DMC had 
the discretion to deviate from them as necessary. If the DMC were confronted with 
data that would result in a deviation from the dose selection guidelines, the DMC 
were able to confi dentially discuss unblinded results with two senior members of 
the sponsor (who were identifi ed by role in the company in the charter and were not 
otherwise involved in the study) to reach consensus on the doses chosen. If the con-
sensus deviated from the guidelines, the DMC would document an explanation of 
the decision making for possible future reference by regulatory agencies, but that 
was to remain confi dential while the trial was ongoing. 

 The results of the interim analysis of INHANCE have been published in full 
(Barnes et al  2010 ), as have those of the fi nal analysis (Donohue et al.  2010 ). More 
details on the methodology employed in this trial can be found in Lawrence et al. 
( 2014 ). INHANCE was included as a pivotal study in submissions to regulatory 
agencies globally and indacaterol is now approved in all major markets globally for 
once-daily maintenance bronchodilator treatment of airfl ow obstruction in adult 
patients with COPD. This example illustrates that in certain specifi c situations dose 
selection in Phase III is possible using adequate adaptive methods.  

7.6     Discussion 

 Adaptive designs have a potential role in optimal dose selection. Integrating proof-
of- concept and dose selection or the dose selection and confi rmatory phases of drug 
development has a number of advantages, most obviously in the lack of delay 
between two subsequent phases and a faster overall drug development process. 
Adaptive designs make effi cient use of resources by reducing patients’ exposure to 
potentially less effective or unnecessarily high doses. For the selected doses, the 
data from both study stages contribute to the analysis of the overall study. 

 In a review of the PhRMA working group there was broad agreement that model- 
based adaptive designs in “Learn” phase have the potential to greatly improve the 
effi ciency of learning about the dose response, thus leading to more reliable dose 
selection for Phase III (Krams et al.  2007 ). The PhRMA working group on adaptive 
dose ranging studies clearly indicated the superiority of adaptive methods. There is 
a consensus that detecting dose response is considerably easier than estimating it, or 
identifying the target dose to bring into the confi rmatory phase. Sample sizes used 
for dose ranging studies based on power calculations to detect the presence of dose 
response, are likely to be inadequate for dose selection and actual dose response 
estimation. Adaptive dose ranging designs and methods clearly lead to gains in 
power to detect dose response and in precision to select target dose(s) and to esti-
mate the dose response (Bornkamp et al.  2007 ). Clinical trials are not designed in a 
fi nancial vacuum, so there may be resource constraints for Phase II programs that 
mean more than one dose may need to be brought forward to the next phase of 
development. Two-stage adaptive trials in Phase III may provide an opportunity to 
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further refi ne the choice of dose, although these trials should be considered to 
belong in the realm of “Confi rm.” As such their applicability requires case-by-case 
consideration and discussion with regulatory agencies. 

 The advantages of adaptive dose ranging studies do not come without cost and 
one should balance the potential gains associated with adaptive dose fi nding designs 
against their greater methodological and operational complexity. Adaptive dose 
fi nding designs require substantial planning, using existing knowledge, and careful 
assessments of the properties of interim decisions and the related risks. They are 
likely to require additional resources during the planning phase. Additionally, the 
initial dose fi nding period needs to be long enough for a thorough evaluation of the 
treatment effects. 

 The adequacy of the interim dose selection procedure/PoC criterion is critical to 
the success of any such adaptive trial. Ideally, the endpoint(s) used at the interim 
analysis should be the same as or shown to be strongly correlated with the fi nal 
study primary endpoint, and should be recognized and accepted (Chow and Chang 
 2008 ). As dose is a critical aspect and the knowledge generated from an adaptive 
dose ranging trial is crucial in taking the drug to approval even when the trial usu-
ally occurs in the early phase of the drug development it is important to include 
potential regulatory concerns as a part of the trial design considerations. The timing 
of initiating these regulatory discussions is also very important. Depending on the 
design features, it could occur as early as a pre-IND meeting if a Phase IIa/b seam-
less adaptive dose ranging trial is planned. Early discussion would have the further 
advantage of triggering much earlier internal discussion and potentially provoking 
more thorough modeling and simulation initiatives looking at many possible devel-
opment options. This is likely to improve the quality of a development program 
whether an adaptive design is ultimately used or not.  

7.7     Conclusions 

 It is seven years since the PhRMA white paper on innovative approaches for design-
ing and analyzing adaptive dose ranging trials. This paper made clear that better dose 
response learning approaches exist and can produce substantial knowledge gains. 
However, while there is evidence that learning about dose has improved dose response 
still remains a diffi cult subject. Unfortunately there is no silver bullet approach to the 
dose fi nding conundrum. No design/method uniformly is best: relative performance 
depends on the specifi c scenario and assumptions made along with the learning pri-
orities of the trial, e.g., dose selection vs. dose response characterization. Sample size 
calculations need to take account of these differing priorities and should also take 
into account the precision of estimated dose required. Adaptive designs have a major 
role to play in dose selection but it is not always best/necessary to use adaptive 
designs. Simulations should be used for protocol design to investigate the most 
appropriate approach in specifi c situations (adaptive, model-based, Bayesian, opti-
mal design, etc). The most appropriate place to use adaptive designs in dose selection 
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would appear to be in the early phases of drug development and combining proof-of-
concept and dose selection into one seamless trial seems a learning space where 
major learning gains can be made. In certain situations it may be valid to select more 
than one dose for Phase III and couple this with an adaptive design. 

 Stephen Senn’s observation that dose fi nding is “diffi cult, essential” remains true 
but with the use of model based approaches and adaptive designs we have the potential 
tools to make sure it is not “badly done.”     

   References 

    Barnes PJ, Pocock SJ, Magnussen H, Iqbal A, Kramer B, Higgins M, Lawrence D (2010) 
Integrating indacaterol dose selection in a clinical study in COPD using an adaptive seamless 
design. Pulm Pharmacol Ther 23:165–171  

     Bornkamp B, Bretz F, Dmitrienko A, Enas G, Gaydos B, Hsu CH, Koenig F, Krams M, Liu Q, 
Neuenschwander B, Parke T, Pinheiro J, Roy A, Sax R, Shen F (2007) Innovative approaches 
for designing and analyzing adaptive dose ranging trials (with discussion). J Biopharm Stat 
17:965–995  

    Bretz F, Pinheiro J, Branson M (2005) Combining multiple comparisons and modeling techniques 
in dose response studies. Biometrics 61:738–748  

     Bretz F, Koenig F, Brannath W, Glimm E, Posch M (2009) Adaptive designs for confi rmatory clini-
cal trials. Stat Med 28:1181–1217  

   Chaturvedi PR, Antonijevic Z, Mehta C (2014). Practical considerations for a two-stage confi rma-
tory adaptive clinical trial design and its implementation: ADVENT trial. In W He, J Pinheiro, 
OM Kuznetsova, editors, Practical Considerations for Adaptive Trial Design and 
Implementation. Springer, New York, 77–93  

    Cheung YK (2011) Dose fi nding by the continual reassessment method. Chapman & Hall, 
New York  

    CHMP (2007) Refl ection paper on methodological issues in confi rmatory clinical trials with an 
adaptive design (CHMP/EWP/2459/02)  

   CHMP (2013) CHMP Draft Qualifi cation Opinion of MCP Mod as an effi cient statistical method-
ology for model-based design and analysis of Phase II dose fi nding studies under model uncer-
tainty. EMA/CHMP/SAWP/592378/2013.    http://www.ema.europa.eu/docs/en_GB/document_
library/Regulatory_and_procedural_guideline/2014/02/WC500161027.pdf         Accessed 24 Feb 
2014  

    Chow S-C, Chang M (2008) Adaptive design methods in clinical trials—a review. Orphanet J Rare 
Dis 3:11  

    Cross J, Lee H, Westelinck A, Nelson J, Grudzinkas C, Peck C (2002) Postmarketing drug dosage 
changes of 499 FDA-approved new molecular entities, 1980–1999. Pharmacoepidemiol Drug 
Saf 11:439–446  

    Donohue JF, Fogarty C, Lötvall J (2010) Once-daily bronchodilators for chronic obstructive pul-
monary disease: Indacaterol versus tiotropium. Am J Respir Crit Care Med 182:155–162  

    FDA (2010) Guidance for Industry: Adaptive design clinical trials for drugs and biologics (draft 
February 2010)   www.fda.gov    . Accessed 8 Feb 2011  

    Gallo P (2006) Confi dentiality and trial integrity issues for adaptive designs. Drug Inf J 
40:445–450  

    Gallo P, Chuang-Stein C, Dragalin V, Gaydos B, Krams M, Pinheiro J (2006) Adaptive designs in 
clinical drug development—An executive summary of the PhRMA Working Group. J Biopharm 
Stat 16:275–283  

    Garrett-Mayer E (2006) The continual re-assessment method for dose fi nding studies: a tutorial. 
Clinical Trials 3:57–71  

D. Lawrence and F. Bretz

http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2014/02/WC500161027.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2014/02/WC500161027.pdf
http://www.fda.gov/


137

    Heerdink ER, Urquhart J, Leufkens HG (2002) Changes in prescribed dose after market introduc-
tion. Pharmacoepidemiol Drug Saf 11:447–453  
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Abstract This chapter provides a brief review of methodologies and software 
 solutions for several types of adaptive designs: the traditional and adaptive group 
sequential designs including sample size reestimation, multistage adaptive designs 
with arm and subpopulation selection at interim analyses, and adaptive designs for 
dose-finding studies.

Keywords Adaptive design software • Simulations • Group sequential •Many-to-one
comparison • Arm selection • Population enrichment • Dose-ranging

Novel statistical methods for design and analysis of clinical trials seek to address 
the growing complexity of development programs for new drugs and devices and to 
improve study efficiency in general. Adaptive designs (AD) often present computa-
tional challenges which result in the need for robust software implementation. For 
example, group sequential methods require efficient numerical integration to define 
a study design. There are many cases where planning a trial using statistical simula-
tions is the only feasible way to evaluate operating characteristics of the design 
under different scenarios. This chapter is intended to provide a review of the avail-
able AD software and their capabilities. Our focus is primarily on the methods for
Phase 2 and Phase 3 clinical studies. The description of the AD methodologies is
intrinsic for the presentation of the implementations’ capabilities and uses. So a fair
amount of the material presented in this chapter is a concise overview of how a 
particular method works and what it does. The intent was to highlight the working 
principles and paradigms. Software that would be referred to as an implementation
of a particular method or procedure typically contains very extensive manuals, 
sometimes thousands pages long. Some software packages are very comprehensive,
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so listing their capabilities and features would be beyond the scope of this chapter. 
We are going to use a method-centric way of material arrangement without provid-
ing a qualitative comparison of the various software packages. Whenever some 
comparison is presented, it serves as an example of the evaluation process that a 
designer might want to consider.
Section 8.1 describes the traditional and adaptive group sequential designs along 

with implementations for a single hypothesis test framework. Adaptive study 
designs with multiple hypotheses either due to several treatment arms or subpopula-
tions are considered in Sect. 8.2. Section 8.3 contains a review of methods and soft-
ware for adaptive dose-finding studies. The chapter concludes with a discussion of 
the current state of available AD implementations and future trend

8.1  Traditional and Adaptive Group Sequential Designs

Group sequential designs are well-established methods that are commonly used in
clinical trials where repeated significance testing is done during interim analyses 
(IA) of an ongoing study. Numerical computations for the methods are primarily
based on application of recursive integration techniques by Armitage et al. (1969),
originally developed for the sequential testing procedure. The applicability of group 
sequential methods is very broad because the methodology covers practically all 
possible statistical testing situations resulting from different trial designs and analy-
sis types. We refer the reader to the excellent textbook by Jennison and Turnbull
(2000) for a comprehensive review of this topic. The following canonical form of
the group sequential testing framework is used to embed a wide variety of designs, 
at least asymptotically. Throughout this section we consider methods that are known 
to control the Type I error rate based on theoretical justifications.

Consider the hypothesis testing problem for the parameter of interest θ and 
assume that the joint distribution of the test statistics Z1, Z2, …, ZK at the K planned 
analyses (interim and final) follows the multivariate normal distribution with the
increasing sequence of statistical information denoted by {I1, I2, …, IK} such that

 1. E(Zj) = θ √Ij

2. Cov(Zi,Zj) = =√Ij/√Ij, 1 ≤ i ≤ j ≤ K.

The statistical information about θ is proportional to the sample size (or to the 
number of events for time-to-event data) and is the reciprocal of the variance of the
θ estimate.
The landmark tests of Pocock and O’Brien-Fleming introduced in the 1970s were

originally developed for a fixed number of equally spaced information levels. 
Although there are techniques that extend the traditional “fixed” boundary group 
sequential designs to cases with unequal and different than originally planned incre-
ments of information, (see Emerson and Fleming (1989) and Pampallona and Tsiatis
(1994)), the practical popularity of the group sequential methods is probably due to
the error spending function approach proposed by Lan and DeMets (1983) and Kim
and DeMets (1987). This approach allows flexibility for the number and timing of
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interim analyses. It can accommodate irregular and unplanned analyses provided 
that future analyses do not depend on previous estimates of θ, and the maximum 
statistical information about θ is fixed upfront. This is different for adaptive group 
sequential designs, where future analyses are flexible and can be data-driven. In
particular, the future analyses can be determined using the unblinded treatment 
effect. Originally introduced by Bauer (1989), the adaptive designs approach has
received considerable attention in the literature (e.g., refer to Bauer et al. (2001) and
Posch et al. (2003)).

Here, we discuss software solutions available for the group sequential designs 
including the adaptive aspect just described. We restrict our attention to the two 
stand-alone commercial implementations—EASTTM 6.2 by Cytel Inc. and
ADDPLANTM v6.0 byAptive Solution Company.We also consider the implementa-
tion programmed as a module within the R programming language, called the gsDe-
sign package (available from CRAN; http://www.cran.r-projects.org). The gsDesign
package comes with the simple graphical user interface program called gsDesing-
Explore. Many other solutions are available (e.g., PASS 11 and SAS v9.2
SEQDESIGN). Recent reviews that the author is aware of are manuscripts by
Wassmer and Vandemeulebroecke (2006) and Zhu et al. (2011).
The early versions of EAST handled the traditional group sequential method.

Starting from version 5, the adaptive group sequential design module was offered.
ADDPLAN software has a somewhat different paradigm as it is based on
the weighted combination test principle of Lehmacher and Wassmer (1999). It is
similar to the method proposed by Cui et al. (1999) to control the type I error rate
when adaptive sample size reestimation is performed at the interim analysis. 
The combination test is defined in terms of the stage-wise p-values from the K
stages by ρ(p1, …, pK)=∑ Kj = 1wjΦ− 1(1 − pj), whereΦ− 1(.) is the inverse of the standard
normal cumulative density function, and ∑ Kj = 1wj

2 = 1. The recursive  integration 
framework is also valid for this formulation, and the critical values for the tradi-
tional fixed information group sequential designs can be computed (including the 
alpha spending function method) by adjusting the stage weights to

w n n nj j K= +¼( )-1

1
, where nj is the planned sample size (information) at stage

j, j = 1,…K. The predefined and fixed weights ensure the control of the Type I 
error rate even in the presence of data-driven adaptations, provided that stage-wise 
p-values are stochastically independent under the null hypothesis. For example, this 
condition holds if the stage-wise p-values are computed from separate subject 
cohorts that constitute study stages. For trials with a survival endpoint, the study 
stages are formed by the calendar time. Wassmer (2006) showed that the inverse

normal combination method is also applicable for censored survival endpoints.
Both ADDPLAN and EAST support the adaptive design methodology based on

(a) the weighted combination method and (b) the conditional type I error approach
by Muller and Schafer (2001) and Brannath et al. (2002), also referred to as “the
recursive combination approach” in the literature. The latter method is very general. 
It allows for data-driven change of an entire design, e.g., study size, timing of IA, 
spending functions, and population enrichment. It can be applied recursively mul-
tiple times during the study.
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The core functionality of theRpackage gsDesing byK.Anderson is the quantification
of group sequential design boundaries and properties. The package also includes use-
ful utility routines for binary and time-to-event study planning. It has a very rich 
preprogrammed collection of the spending functions and provides an excellent plat-
form to optimize study design with respect to α- and β-spending functions (see 
Anderson (2007)). Anderson and Clark (2010) showed examples where the study
design requirements are better met by considering the spending functions’ families 
with more than one parameter (which is not available in EAST or ADDPLAN).
Zhu et al. (2011) provided a detailed side-by-side comparison of the capabilities of

East v.5.2, ADDPLAN v5.0, gsDesign R package, and SAS v9.2 SEQDESIGN and
SEQTEST implementations for traditional group sequential methods.Although there
are some differences in capabilities and features, it would be fair to say that all plat-
forms provide functionalities that are adequate to cover most practical situations.
Programming language environments like SAS or R are highly customizable for

performing design simulations and actual analyses during study monitoring and 
final reporting. It is interesting that EAST opened a door for additional customiza-
tions through calls to user written routines in the R language. Also, design features
like the lag in subjects’ response, accrual, and dropout were added for normal and 
binary endpoints to facilitate the quantification of potential resource savings due to 
early stopping of AD studies. This is useful for comparison of the traditional and
adaptive group sequential designs, as the benefits of early stopping with the tradi-
tional group sequential methods are reduced by the so-called the “pipeline” effect 
(when subjects are already enrolled by not evaluable for analysis).
ADDPLAN 6.0 and EAST 6.2 software have benefits due to the graphical user

interface (GUI) and the extensive collections of step-by-step wizard navigations for
many testing problems that cover normal, binomial, survival data types. Also, tools 
for the creation, review and comparison of multiple design scenarios are provided. 
EAST 6.2 provides a richer collection of features and capabilities in the opinion of
the author. In addition to design and simulation modules,ADDPLAN and EAST are
equipped with the analysis GUI for study monitoring and calculation of confidence
intervals and p-values. Nevertheless, execution of interim analysis outside of a fully 
automated system like SAS is undesirable as manual data transfer prompts potential
errors. A remark regarding challenges of an analysis execution is that, if an adaptive 
design method requires stage-wise data analysis, one needs to plan on how subjects 
with partial data at the time of the IA are handled, e.g., in trials where there are 
multiple observations per subject.

The decisions to stop early in group sequential trials are defined by the stopping 
boundaries that can be expressed in different scales, e.g., Z-, p-, and B-values. One
scale, the conditional power (CP) value, deserves special attention because it
requires assumptions about the future data (see Lachin (2005)). The conditional
power is the probability of getting statistically significant positive results in the 
ongoing study given the interim analysis data. CP often serves as the main criterion
for the sample size reestimation. Depending on the assumptions about the future
data, CP would have a very different numerical value for the same observed at the
interim data. EAST, ADDPLAN, and gsDesign allow for relatively easy translation
of one boundary scale to another including the observed IA effect size scale, which 
is useful for communication purposes. Besides different boundary scales, it is
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important to consider how the interim decision rules would play out under different 
scenarios for the true parameter θ. An example is the evaluation of the probability 
to increase the sample size in an AD study, if the true value of θ is half of what has 
been originally used to power the fixed sample size design study.

Next, we move to the setup when an additional level of complexity is  
considered—multiple hypotheses due to the presence of several treatment arms or 
several subpopulations in the study.

8.2  Confirmatory Adaptive Multistage Designs  
with Multiple Hypotheses

This section focuses on confirmatory multistage designs, specifically, the adaptive 
seamless designs (ASDs) that integrate Phase II and Phase III trials into one trial,
the so-called seamless Phase II/III design. One example of the seamless Phase II/III
design is when doses are selected at IA after the completion of the Phase II portion,
and, after that, subjects are randomized only to the selected doses and the control 
arm in the confirmatory Phase III portion of the trial. The final comparison of the
selected doses to the control includes data before and after dose selection. The 
adaptive multistage procedure for the just described “many-to-one” comparison 
setting is extensively studied in the literature (e.g., refer to Bretz et al. (2009) for an
overview). Another important application of ASDs is referred to as the patient
enrichment or population enrichment design (see Temple (1994, 2005)). There, at
an interim adaptation point, some selection of patient subpopulations (typically 
based on a predictive model of response) is done, and the enrollment is limited to
the selected subpopulations in the remainder of the trial. In both examples, proper 
control of the type I error is required to adjust for multiple hypotheses testing and 
adaptive treatment arms (subgroups) selection at IA. Often, ASDs also incorporate
early stopping for efficacy or futility as well as sample size reestimation. Statistical
methodologies need to account for all potential sources of the Type I error rate 
inflation in such designs.
Due to the complex nature of ADs with multiple hypotheses involved, it is diffi-

cult to derive operating characteristics of such methods analytically. Instead, simula-
tions are typically used to investigate and optimize design properties. The typical 
objectives of a trial simulation include: (a) computation of the essential operating
characteristics such as power to demonstrate that the design adequately meets 
requirements; (b) comparison of alternative designs, in particular, the conventional
design where Phase II and Phase III studies are done separately; (c) identification of
the optimal design parameters such as sample sizes, timing of interim analyses, anal-
ysis methods, and rules that drive selection and early stopping at adaptation points.

The commercial software implementation for the multistage adaptive seamless 
designs is provided by ADDPLANTM 6.0 in two modules—MC and PE. The latter
module covers patient enrichment designs and the former is for multiple comparisons 
in multistage studies. The R package we are aware of is called “asd” (available from
CRAN; http://www.cran.r-projects.org) described in Parsons et al. (2012).
We briefly review the statistical methodology of ASDs next.
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8.2.1  Classical Multiplicity Adjustment Method

A simple approach is to adjust for the original number of hypotheses involved using 
the conventional multiplicity adjustments, although just a subset of these hypothe-
ses would be tested at the final analysis as some hypotheses were unselected at 
interim. The closure test principle by Marcus et al. (1976) is a fundamental method
used to control the family-wise Type I error rate in many-to-one comparisons. An 
individual null hypothesis is rejected at the global level α only if all intersection 
hypotheses from the closed system that involve the individual hypothesis are 
rejected by a local α-level test. There is flexibility as for the choice of a method to
be used for testing the intersection hypotheses (e.g., the commonly used tests are 
Dunnett, Sidak, Simes, and Bonferroni procedures). Koenig et al. (2008) described
how conventional methods could be modified to account for the treatment selection 
procedure. Note that this simple method does not allow for adaptations other than 
arm selection (i.e., no early stopping or sample size recomputation).

8.2.2  Adaptive Dunnett Test Procedure

Proschan and Hunsberger (1995) proposed the adaptive two stage test for a single
null hypothesis based on the conditional error function. This concept was general-
ized in Muller and Schafer (2001). The method is based on preserving the condi-
tional Type I error rate. The null hypothesis H can be rejected at the final analysis 
controlling the Type I error at α if the p-value from the second stage, p2, is less than 
A(p1), where p1 is the p-value from the first stage, and A is any non-increasing func-
tion such that ∫ A(p)dp = α.
Koenig et al. (2008) developed the adaptive two stage test in the context of many-

to- one treatment arm comparison where the conditional type I error is computed for 
the Dunnett test (this is known as the Adaptive Dunnett Test Procedure). For this 
procedure the variance is assumed to be known, so it should be used in studies with 
a large sample size in order for the approximation to be valid. No formal early stop-
ping rules are developed within this procedure, so it can be used only for treatment 
selection and sample size reestimation for a single interim analysis.

8.2.3  Design Based on Combination Test Approach

The approach based on a combination test function applied together with the closed 
test principle described above provides plenty of flexibility for ASDs while control-
ling Type I in a strong sense. Several authors suggested this approach for the
adaptive treatment arm selection design (refer to Bauer and Kieser (1999); Kieser
et al. (1999); Posch et al. (2005)). Using this framework, the multistage adaptive
study selection process of multiple arms (subpopulations) at an interim time can
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also incorporate the adaptive early stopping and sample size reestimation. 
Furthermore, the selection rule is very flexible; in particular, the number of arms
selected after interim analyses does not have to be prespecified. The statistical meth-
odology for the adaptive enrichment design where prespecified subpopulations or 
the full population is selected at the interim analysis is similar to the arm selection 
case (see Brannath et al. (2009) and Wang et al. (2009)).
Friede and Stallard (2008) compared performance of the three methods described

above and the method proposed by Stallard and Friede (2008) for treatment selec-
tion. For the latter method, the critical value is derived from the test statistic which 
is the sum of the largest test statistics based on the data from each stage of the trial. 
Therefore, the number of treatment arms present in the trial at each stage needs to 
be prespecified. Their results suggested similar power properties for the three adap-
tive design methods.
ADDPLAN 6.0 software provides a comprehensive simulation platform for the

multi-armed seamless designs and adaptive population enrichment designs in the 
MC and PE modules, respectively. There are many common features and function-
alities between the MC and PE modules, but some aspects, such as the specification
of subpopulations and logical structure among hypotheses, (e.g., the concept of the 
full population in the enrichment designs), segregate the modules. The R package
asd implements only the adaptive selection of arms at the single interim analyses 
using the combination function approach applied together with Dunnett’s proce-
dure. An interesting feature of the package is that the selection could be based either 
on the actual primary endpoint of interest or the early outcome correlated with the 
primary endpoint (see Friede et al. (2011)). Among others, both software solutions
implement the following selection rules: the best performing arm; several best arms;
all arms with the response no worse than a given threshold difference from the best 
arm; and all arms with the response greater than a given absolute response.

In general, the choice of an optimal design is likely to depend on the specifics of 
a particular study and in many circumstances the methods have similar power. The 
following table aggregates some rules of thumb features of the considered methods.

Method Advantages Disadvantages

Adaptive dunnett Good power properties. Allows
for sample size reestimation 
(SSR) and arbitrary arm
selection rules

No early stopping; applicable for large
sample sizes (assumes response 
variance is known); complex;
requires special software

Combination test applied 
together with closed 
testing principle

Good power; flexible methods
(early stoppings, SSR,
selection rules)

Complex; requires special software;
Inference is based on weighted 
test statistics, not usual sufficient 
test statistics

Classical multiplicity 
adjustment, e.g., 
Dunnet procedure

Simple conservative approach;
no special software is 
required

Less powerful in cases when 
the sample size for stage 1 
is small

Separate phase 2/3 Simple approach Substantial drop in power if sample
size for stage 1 is large
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Method Advantages Disadvantages

Group sequential
based on the sum of 
stage-wise maximum 
of tests, by Stallard
and Friede (2008)

Good power; Inference is based
on the usual sufficient test 
statistics (cutoff values are 
prespecified)

No SSR; need to prespecify
number of arms present at stages;
no commercial software is 
currently available

8.3  Adaptive Designs for Dose-Ranging Studies

In this section we consider designs and implementation software for adaptive dose- 
ranging studies. We will differentiate between the ADR design with a few interim
analyses and the designs from the large class of methods that utilizes the so-called 
frequent adaptation scheme. For this class, it is typically assumed that time to 
observed response is short relative to the whole trial duration; therefore, changes in
subject allocation ratio could appear after observing responses from each small 
cohort of subjects. In cases where time to observed response is relatively long, lon-
gitudinal modeling to predict final response based on early readouts can be consid-
ered. There is a wide variety of designs that fall into this framework available in the 
literature. Bornkamp et al. (2007) and Dragalin et al. (2010) report on the two evalu-
ation studies done by the PhRMA Working Group on Adaptive Dose-Ranging
Studies to compare different approaches.
The general algorithm utilized in ADR designs is the following:

• Fit a model using all available data at an adaptation point.
• Based on the fitted model, optimize allocation for the next cohort of subjects to

maximize some utility function, for example, information at the target dose or 
the minimal dose that provides the specified response relative to placebo.

• Repeat above steps at each adaptation point using accumulating subject
responses.

The ADR designs can incorporate other types of adaptation, e.g., early dose
(study) stopping or arm selection. Therefore, the considerations provided in
Sects. 8.1 and 8.2 are applicable here as well. We briefly describe several adaptive
design methods next.

8.3.1  Bayesian Parametric Designs

The Bayesian parametric designs assume that responses follow some functional model
which captures potential dose–response profiles. For example, consider the four 
parameter logistic model specified by the equation for the expected response value, 
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where D is a dose level and Y is the response. For the continuous response, the 
observational error is assumed to be normally distributed with mean 0 and variance
σ2. For the binary case, Y=1 indicates a “response” andY=0 indicates “no response.”
Here δ is the absolute range of values of the response Y, β is the minimum or maxi-
mum value of the response depending on whether δ is positive or negative, respec-
tively, θ is the value of dose D that achieves half of δ (i.e., the dose that gives an 
expected response that is midway between the minimum and maximum responses),
and τ is proportional to the slope of the dose response curve at D = θ. The restriction 
that τ>0 is necessary for unique identification of the parameters. The four param-
eters β, δ, θ, and τ (and σ2 for the continuous case) are treated as random variables
with user-specified prior distributions. Once responses are measured on a cohort,
the posterior distribution of the parameters is calculated and used in an allocation 
(decision) rule. For example, the rule that seeks to minimize a weighted average of
the posterior response variance at prespecified percentiles of the dose–response 
curve. There is no closed form solution for the posterior distributions, so computa-
tionally intensive Bayesian techniques are employed.

Alternate parameterizations of the above model or models with fewer parameters 
can be used.

8.3.2  Normal Dynamic Linear Models

Berry et al. (2002) proposed using Normal Dynamic Linear Models (NDLM) in the
dose–response setting. A dynamic linear model is typically defined in terms of a 
system of equations specifying how observations of a process are stochastically 
dependent on the current process state and by how the process parameters evolve in 
time (refer to West and Harrison (1997)). In the dose–response setting, the role of
time is played by the dose variable. NDLM does not require a monotonic dose–
response relationship assumption; only the assumption about dose ordering is nec-
essary. This allows flexibility in the shape and form of the response. NDLM can be
viewed as a smoothing technique that is applied to estimate the response at each 
dose level by sharing information across doses. The degree of smoothing is con-
trolled by a parameter, and its misspecification might result in an inadequate fit. At 
extreme values of the smoothing parameter, the NDLM estimate approaches the
simple mean estimate. Note that as with any smoothing technique, an NDLM fit
results in some bias in the response estimate at a dose level.

As an example, consider the following simple model formulated in terms of a set 
of equations where the doses are indexed by j and subjects are indexed by k:
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In this model, the parameter W defines smoothness, and can be estimated from 
the data if some assumption is made regarding its relationship with the observation 
error σ2. Different NDLM implementations might vary with respect to how to con-
trol the smoothness.
At each adaption point, an NDLM is fitted using all available data, and the

posterior probability of the response is computed. Based on the fit, randomization
of subjects to treatments (including placebo) is done sequentially in cohorts by
optimizing some utility function defined according to study objectives. The Bayesian
formulation is useful in the interim analysis decision making process. For example, 
the posterior probability that response exceeds some threshold can drive an early 
dose or study stopping decision.

8.3.3  “Up-and-Down” Designs

The so-called “up-and-down” methods belong to the class of model-free adaptive 
designs for dose-finding. This methodology has broad application. It often used in 
early phase toxicity clinical trials. A comprehensive review of the topic is given by 
Ivanova (2006). Suppose that the goal of the study is to estimate a dose that provides
the targeted prespecified probability of response. Cohorts of subjects are treated 
sequentially during the study. The subsequent cohort receives the next lower or next 
higher dose (if available) than the previous cohort depending on responses observed
thus far. Up-and-down designs are easy to understand, as intuitively it is clear that
the assigned doses migrate to and cluster around the target dose of interest. The 
design minimizes observations at doses that are too low or too high in comparison 
to a completely randomized design. These designs can be used in the combined 
proof-of-concept and dose-finding trials. There are modifications of the up-and- 
down designs that use information from all previous cohorts of subjects, not only 
the most recent cohort (see the t-statistic design by Ivanova et al. (2008)).

8.3.4  Fixed Dose Ranging Design

It is important to compare performance characteristics of an adaptive design relative 
to the fixed-sample design. The latter are typically easier to implement than adap-
tive designs. Usually, equal allocation is used, but it worth considering unequal
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allocation when optimizing power of test procedures. The following two fixed 
design analysis approaches are often adopted.

8.3.4.1  ANOVA Method

• Compare each dose to placebo using some adjustment for multiplicity (e.g., the 
Dunnett (1955) procedure). If there is at least one significant difference from
placebo, conclude that dose response is established.

• The smallest significant dose that meets the minimal clinical effect requirement 
is selected as the target dose.

• The dose–response relationship can be modeled as just a simple estimation of 
means at each dose, by isotonic regression, or by other model fitting 
techniques.

For details on the estimates based on isotonic regression refer to Robertson et al.
(1988). The isotonic estimators are the maximum likelihood estimates under the
assumption of monotonicity of response. No particular parametric model is neces-
sary, only the response ordering assumption is required. In many situations it is 
natural to restrict attention to the monotonic (or unimodal) dose–response relation-
ship to improve mean square errors of the estimators compared to the simple mean 
estimates.

8.3.4.2  MCPmod Approach

Bretz et al. (2005) proposed the procedure that utilizes both multiple comparisons
and modeling techniques, hence the name MCPMod, for use in the dose-finding
study design and analysis. First, the set of plausible dose–response profiles, (e.g., 
“Emax,” exponential or quadratic models) needs to be identified as the candidate
models. After that, the optimal contrast tests and the corresponding critical value, 
which takes into account correlation among tests, are computed to handle multiplic-
ity in establishing the dose–response. This is similar to the trend test analysis intro-
duced by Tukey et al. (1985). Next, to estimate the target dose or the minimum
efficacious dose, the model that best fits the data (based on the AIC or BIC criteria)
is selected. Alternatively, the model corresponding to the most extreme contrast test 
statistic can be used as well. The precision of the dose estimation can be assed using 
bootstrapping techniques. This methodology is implemented in the R package
“DoseFinding” (refer to Bornkamp et al. (2009)). Also, the ADDPLAN™DF mod-
ular provides a standalone software implementation.
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8.3.5  Two Stage (Multistage) Adaptive Design

The methods discussed in Sect. 8.2 (implemented in ADDPLAN 6 MC) are clearly
applicable in the dose-ranging studies as well. For that, each dose is viewed as a 
separate treatment arm. In principle, dose–response modeling can be used for a dose 
selection rule and COMPASS™ software has such functionality.
Another example is the MCPmod method extended to the adaptive design frame-

work by Bornkamp et al. (2011). The adaptive version of this approach incorporates
determination of the optimal design that aims to change subject allocation depend-
ing on responses observed at interim analyses. Interestingly, it was noted by the 
authors that most benefits from the adaptations in terms of improved operating char-
acteristics would come within just a few interim analyses. The results from the 
Bornkamp et al. (2007) and the Dragalin et al. (2010) simulation studies also seemed
to be in concordance with this remark. The same conclusion can be drawn from the 
example of the simulation study presented in the subsection below.

The designs with few interim analyses for dose selection are common in practice. 
Also, a reasonably large sample size for the initial stage is usually recommended for 
the adaptive designs with the frequent adaptation scheme described above in order 
to reduce “wandering” on the dose levels adjusting for early noisy data.

When the trial execution complexity is weighted against the benefits from interim 
adaptations, the designs with a single or few IAs can be a good middle-ground 
approach between the fixed-sample design and the designs with frequent changes to 
the allocation ratio during the trial.

8.3.6  Implementation Software, a Simple Example 
of the Simulation Study for the Designs Comparison

As an example of the simulation study that one might need to conduct in order to 
decide on the most appropriate method for a particular trial, consider the following 
evaluation strategy. We restrict attention to some methods described above and with 
implementations available in commercial software by COMPASS™ by Cytel Inc.
and FACTS™ by Tessella and Berry Consultants. The point of this exercise is not
to identify the best procedure or implementation but rather to demonstrate the evalu-
ation practice. We are not optimizing the tuning parameter for each method here, 
nor are we using the full capability of simulation features (e.g., longitudinal response 
modeling, early stopping etc.). In a particular clinical trial, these choices should be
made by balancing on relative priorities and importance of specific dose-finding 
objectives on the basis of operating characteristics.
The designs’ performances were explored under two sets of conditions: (1) mod-

erate or large number of dose levels in a trial; (2) different numbers of equally
spaced interim analysis (adaptations) conducted during a trial. The true underlying
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dose–response curves used to simulate data are presented in Fig. 8.1. We consider 
the following methods and implementation versions:

1. Fixed-sample design (implemented in R)

(a) Equal allocation to all doses and placebo (dose 0)
(b) Placebo skewed allocation (about twice as many subjects on placebo than on
each dose)

2. FACTS software

(a) Normal Dynamic Linear Model (NDLM)
(b) No model (simple mean estimates at each dose level)

Fig. 8.1 Dose–response models used in the simulation example
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Probabilities of identifying clinical relevant dose

Cytel NDLM 4PL LSF
Cytel NDLM Bayes

Cytel NDLM Isotonic
Cytel param4 4PL LSF
Cytel param4 Isotonic

Cytel Tstat Isotonic
fixed Dunnett eqAlloc

fixed Dunnett plbSkewed
Tessella NDLM

Tessella no_model
Tessella param4

60 70 80 90 100

Emax

20 40 60

Emax.low

80 85 90 95 100

Emax.sigm

Cytel NDLM 4PL LSF
Cytel NDLM Bayes

Cytel NDLM Isotonic
Cytel param4 4PL LSF
Cytel param4 Isotonic

Cytel Tstat Isotonic
fixed Dunnett eqAlloc

fixed Dunnett plbSkewed
Tessella NDLM

Tessella no_model
Tessella param4

60 70 80 90 100

explicit

50 60 70 80 90 100

exponential

0 1 2 3 4 5

flat

Cytel NDLM 4PL LSF
Cytel NDLM Bayes

Cytel NDLM Isotonic
Cytel param4 4PL LSF
Cytel param4 Isotonic

Cytel Tstat Isotonic
fixed Dunnett eqAlloc

fixed Dunnett plbSkewed
Tessella NDLM

Tessella no_model
Tessella param4

60 70 80 90 100

linear

70 80 90 100

umbrella

ndoses= 5; nadapt= 0
ndoses= 9; nadapt= 0
ndoses= 5; nadapt= 1
ndoses= 9; nadapt= 1
ndoses= 5; nadapt= 4

ndoses= 9; nadapt= 4
ndoses= 5; nadapt= 8
ndoses= 9; nadapt= 8
ndoses= 5; nadapt= 16
ndoses= 9; nadapt= 16

Fig. 8.2 An example of the side-by-side method comparison by looking at the probability of iden-
tifying clinical relevance
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(c) Bayesian parametric model (“Emax” curve with four parameters)

3. COMPASS software

(a) Bayesian parametric model (four parameter logistic curve)
(b) NDLM considering Bayesian modeling, isotonic regression or the least
square error fit (LSF) based on four parameter logistic model

(c) T-statistic design (“up-and-down”)

Figure 8.2 reports the probability of identifying clinical relevance defined as the 
probability of finding a dose with the effect size greater than or equal to the target 
response after establishing POC (proof-of-concept) where different methods are
compared side-by-side for different configurations of the number of active doses 
and number of interim analyses in the trial. The figure was generated in R by load-
ing saved simulation results, so the comparison could be done across two platforms. 
Both software platforms have convenient GUI to set up simulations and process
results from different scenarios and design versions covering a very extensive list of 
capabilities and methods. The reader is referred to http://www.cytel.com/software/
compass for the details on COMPASS design software. More information about
FACTS can be found at http://www.smarterclinicaltrials.com/what-we-offer/facts/ .

8.4  Discussion

The current state of available commercial implementations of adaptive designs 
 covers substantial practical needs. Furthermore, there is the dynamic ongoing devel-
opment of tools and methodologies to close the gaps that still remain. One example
of a gap is the implementation of the adaptive arm selection based on an endpoint 
different from the endpoint planned for the final analysis (e.g., an early readout for 
the primary endpoint). On the other hand, there are also practical situations where a
need exists for custom-made programming to satisfy requirements and special fea-
tures of a particular study or program. Such cases are hard to envision up-front in
order to warrant a commercial off-the-shelf tool. An example could be a study with 
multiple doses of the active drug, multiple comparators and several primary end-
points, where the corresponding multiple tests can be organized into some logical 
structure resolved by the application of a gatekeeping-type of procedure (e.g., see 
Dmitrienko and Tamhane (2009)), to address the multiple testing problem. Adding
adaptive aspects to this type of study will likely require new implementation solu-
tions. Still, the already available off-the-shelf tools can be useful to get a sense of
potential problems. Judging from the software development history, one might pre-
dict that future commercial programs are heading in the direction of providing con-
solidated solutions on a single platform (perhaps formed by a union of multiple 
modules that share common functionality). While this chapter deals with adaptive
designs, the tools discussed are very useful in planning fixed design studies. 
Furthermore, fixed design studies can benefit from statistical simulations as well.

8 A Review of Available Software and Capabilities for Adaptive Designs
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Abstract Adaptive design studies often face randomization challenges. Adaptive 
dose-ranging studies require randomization techniques that, in a small cohort, 
approximate reasonably well an inconveniently skewed allocation ratio to several 
treatment arms. When a small interim analysis sample needs to be balanced in sev-
eral important predictors, dynamic allocation might be required to achieve this 
goal. Accelerated drug development often necessitates a large number of centers to 
speed up the study enrollment. When the drug is limited or costly, as is often the 
case with adaptive design studies conducted early in drug development, advanced 
randomization techniques are needed to efficiently manage the drug supplies in 
multicenter trials. In open-label adaptive design trials randomization procedures 
less predictable than permuted block randomization help reduce potential for selec-
tion bias. Randomization techniques developed for equal allocation to several treat-
ment arms help dealing with the randomization challenges in equal allocation 
adaptive design studies. When these techniques are expanded to unequal allocation 
common to adaptive designs, care should be taken to preserve the allocation ratio at 
every allocation step. In this chapter we review randomization techniques useful in 
adaptive design studies, including those developed in recent years to specifically 
address the needs above.
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tunnel randomization •Unequal allocationminimization •ModifiedZelen’s approach
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Dose-ranging study • Covariate-adaptive allocation • Minimization • Allocation
ratio • Unequal allocation • Multicenter study • Open-label study • Permuted block
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randomization • Selection bias • Dynamic allocation • Variations in allocation ratio
• Expansion of allocation procedure to unequal allocation • Central randomization •
Forced allocation • Randomization in multicenter trials • Divergence of the drug ID
sequences • Double-permuted drug codes • Scrambled drug codes

9.1  Introduction

Widespread adaptive design trials revealed the need to address a number of unre-
solved randomization issues. In recent years, solutions for many of these issues have 
been found and implemented.

In the settings of adaptive dose-ranging studies randomization techniques that, in 
a small sample of subjects, approximate reasonably well an unbalanced allocation 
ratio to several treatment arms were lacking. Sophisticated methods are employed
to derive the allocation ratio for the next cohort of subjects that works best for the 
specified goals of the dose-finding (Chap. 17). However, after the best allocation 
ratio is derived, patients are commonly randomized to multiple dose arms indepen-
dently or using a permuted block schedule with a block size far exceeding the size 
of the cohort. As a result, the observed allocation ratio in the next cohort of subjects 
might differ a lot from the targeted one.
Kuznetsova and Tymofyeyev (2009, 2011a) offered a way to generate a small 

allocation sequence that keeps the allocation ratio close to the targeted one through-
out the enrollment. They called their restricted randomization procedure the Brick
Tunnel Randomization. This procedure can be used with a cohort of any size—an
important requirement for adaptive dose-ranging studies where cohorts could vary 
in size depending on the screening pattern. The important property of the brick tun-
nel randomization is that the allocation ratio is the same for every allocated subject, 
regardless of his place in the allocation sequence. The allocation sequence can be
generated automatically and made a part of the algorithm that derives the allocation 
ratio and the sequence of treatment assignments.

In adaptive design studies with an interim analysis performed on a small sample, 
an imbalance in a strong predictor of the response among the treatment groups 
makes the study results hard to interpret. When balance in several important predic-
tors is required, the best if not the only randomization solution involves some form 
of dynamic allocation (Rosenberger and Lachin 2002; Taves 1974; Pocock and
Simon 1975; Heritier et al. 2005; Signorini et al. 1993; Morrissey et al. 2010).

Dynamic allocation techniques might also be needed in multicenter adaptive 
design studies to efficiently manage limited or expensive at an early stage of devel-
opment drug supplies. Accelerated drug development often requires studies with 
large number of centers which might be impossible to adequately supply for central 
randomization to multiple treatment arms.
The use of dynamic allocation techniques when coupled with the frequent need

for unequal allocation in adaptive design studies presented theoretical challenges. 
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The problem was first identified by Proschan et al. (2011) who pointed out that in 
certain examples of minimization expansion to unequal allocation the 
 re- randomization difference in the treatment group means is shifted away from 0. 
Kuznetsova and Tymofyeyev (2012) explained this phenomenon by changes in the 
allocation ratio from allocation to allocation in the described expansion of minimi-
zation to unequal allocation as well as in other examples of unequal allocation (Han
et al. 2009). They derived the asymptotic value of the shift in the re-randomization
difference in the treatment group means through the sequence of allocation proba-
bilities at the i-th allocation (i=1, 2, …). They also showed that the asymptotic shift
is 0 for procedures that preserve the allocation ratio at every allocation step. 
Avoiding variations in allocation ratio from allocation to allocation is also important 
because such variations can lead to selection and observer’s bias even in double-
blind studies; they can also lead to an accidental bias.
Kuznetsova and Tymofyeyev offered an easy way to expand any dynamic alloca-

tion procedure to unequal allocation while preserving the allocation ratio at every 
allocation step (Kuznetsova and Tymofyeyev 2011b, c, 2012). They applied their
approach to expand a range of dynamic allocation procedures needed in adaptive 
design studies: those that provide balance in baseline covariates (minimization
(Taves 1974; Pocock and Simon 1975; Kuznetsova and Tymofyeyev 2012), dynamic 
hierarchical schemes (Heritier et al. 2005; Signorini et al. 1993; Kuznetsova and
Tymofyeyev 2011a, 2014b)), those that lead to efficient drug use in multicenter 
studies (modified Zelen’s approach and dynamic allocation with partial blocks sent
to centers (Morrissey et al. 2010; Kuznetsova and Tymofyeyev 2011b, c) and hybrid 
procedures that combine within-center balancing with balancing on important base-
line predictors (Akazawa et al. 1991; Nishi and Takaishi 2003; Kuznetsova and
Tymofyeyev 2014b).
Some adaptive design studies conducted early in drug development are open-label

and thus require allocation procedures that reduce potential for selection bias. While 
a number of such allocation techniques are available for studies with equal allocation, 
they were lacking for studies with unequal allocation. Kuznetsova and Tymofyeyev
offereda solution tohis problemcalledWideBrickTunnel randomization (Kuznetsova
and Tymofyeyev 2013b, 2014a) that preserves the allocation ratio at every step while 
keeping the allocation ratio close to the targeted one, but not as close as with the 
Brick Tunnel randomization to reduce the predictability of the next assignment.

In addition, often special precautions have to be taken in adaptive design studies 
when implementing an allocation or generating drug packaging codes. In a seam-
less Phase II/Phase III study the decision to drop a treatment arm will become
apparent if the allocation numbers that correspond to this treatment arm remain 
unassigned on the allocation schedule generated at study initiation. In other exam-
ples, gaps in the original allocation schedule can unblind the study personnel to the 
actual treatment assignments. The sequences of the drug codes could be also
unblinding with regard to treatment assignments when the drug use ratio changes 
across the study—which can be helped by using scrambled sequences of drug codes
(Kuznetsova 2001; Lang et al. 2005).

9 Randomization Challenges in Adaptive Design Studies
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In this chapter, we describe randomization challenges in adaptive design studies 
and solutions developed to overcome those. In Sect. 9.2 we describe Brick Tunnel
randomization that keeps an allocation ratio close to the targeted one in a small cohort 
of subjects. In Sect. 9.3 we discuss the expansion of the covariate-adaptive proce-
dures to unequal allocation that preserves the allocation ratio at every step. Section 9.4 
is dedicated to the allocation procedures (fixed as well as dynamic) that facilitate
efficient drug use in multicenter studies. In Sect. 9.5 we describe the techniques that 
help reduce potential for selection bias in open-label studies, including those with 
unequal allocation. In Sect. 9.6 we discuss implementation techniques that prevent 
unblinding with respect to adaptive decisions or treatment assignments through the 
sequence of allocation numbers or drug codes. Discussion concludes the chapter.

Response-adaptive allocation used in adaptive design studies is described in 
Chap. 10 of this book and is not discussed in present chapter. The only link to
response-adaptive allocation is the description of the technique that implements the 
randomization in the adaptive design dose-ranging studies (Sect. 9.2).

9.2  Approximating Inconvenient Allocation Ratio in a Small 
Cohort with Brick Tunnel Randomization

In adaptive design dose-finding studies (Gaydos et al. 2006), small cohorts of sub-
jects are typically randomized to several doses of the experimental treatment and 
placebo. The allocation ratio for the next cohort is determined by the performance
of the doses in the earlier cohorts and desired distribution of subjects across the 
doses at the end of the study. In some studies, the cohort size is fixed, while in other 
studies the cohort sizes can vary.
The methods employed to derive the best ratio for the next cohort often result in

an inconvenient allocation ratio, for example, 20:0:19:22:31:8 allocation to placebo
and five doses of the experimental drug. Permuted block randomization will not
match the target allocation well in a small cohort of subjects when the required 
block size is large (as 100 in the example above). In fact, permuted block allocation
in this example will not be much better than independent allocation (complete ran-
domization) often used in dose-ranging studies.

In studies where the cohort size is fixed at M subjects, the allocation ratio can be 
optimized over the range of the allocation ratios that can in fact be achieved in a 
cohort of M subjects. This approach will not work for studies where the size of the
next cohort is not known in advance.

In studies where placebo arm is assigned to the same fraction of subjects in all 
cohorts, the allocation ratio to placebo vs. experimental drug can be better targeted 
with partial blocking (Parke 2008). It works in such a way that if the permuted block 
size is 20 and Placebo should be assigned to 20 % of subjects, one placebo alloca-
tion is randomly selected within each of the four consecutive sub-blocks of five 
subjects. This method ensures that placebo allocations are spread evenly across the
block of 20 subjects; however, it does not help to approximate the targeted allocation
among the doses of the experimental treatment.

O.M. Kuznetsova
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Kuznetsova and Tymofyeyev (2009, 2011a, b, c) introduced Brick Tunnel ran-
domization that executes allocation to K ≥2 treatment groups in C1:C2:..:Ck ratio 
while keeping the allocation ratio close to the targeted one throughout the enroll-
ment—in particular, in small cohorts of subjects.
To describe this procedure, it is helpful to visualize the allocation sequence in a

study with K treatment groups as a path along the integer grid in the K-dimensional 
space where each of the axes represents one of the treatment groups. The allocation
path starts at the origin and with each allocation moves one unit along the axis that 
corresponds to the assigned treatment (Berger et al. 2003). In a study with permuted 
block allocation to K ≥2 treatment groups G1, …, Gk in a C1:…:Ck ratio (where C1, 
…, Ck are integers that have no common to all of them divisor), at the end of each 
permuted block the allocation path returns to the allocation ray AR=(C1u, C2u, …, 
Cku), u ≥ 0, that represents the exact allocation ratio. Within the block, the allocation 
path can venture anywhere within the k-dimensional parallelepiped with the sides 
C1, C2, …, Ck—which could be too far from the allocation ray for a small cohort.
The Brick Tunnel randomization restricts the allocation space by requiring the

allocation path to be confined to the set of the k-dimensional unitary cubes pierced 
by the allocation rayAR=(C1u, C2u, …, Cku), u ≥0 (the “brick tunnel”). The impor-
tant property of the Brick Tunnel randomization is that the transition probabilities at
each node within the tunnel are defined in such a way that the allocation ratio is the 
same for every allocation step (Kuznetsova and Tymofyeyev 2009, 2011a).

Figure 9.1 illustrates the advantage of the Brick Tunnel randomization over the
permuted block randomization in the example of the allocation in 19:22:31 ratio to
Treatment 1, Treatment 2, and Treatment 3. Instead of occupying the whole paral-
lelepiped of 19×22×31 as is the case with permuted block randomization, alloca-
tion sequences are constrained to a chain of unitary cubes along the allocation ray 
AR=(19u, 22u, 31u) when the Brick Tunnel randomization is used. Thus, even a
short cohort of 10–15 subjects allocated along such sequence will have an observed 
allocation ratio reasonably close to 19:22:31.
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Fig. 9.1 The allowed space
for the 19:22:31 Brick  
Tunnel randomization to
Treatment 1, Treatment 2,
and Treatment 3, pictured
within the allowed space for 
19:22:31 permuted block
randomization
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For two groups, the allocation space for C1:C2 Brick Tunnel randomization
(C2 ≥ C1) consists of the allocation sequences contained within the strip ± bBT in 
height around the allocation ray AR=(C1u, C2u), u ≥ 0, where bBT=(C2 − 1)/C1 + 1. 
Thus, in the two-group case the set of the Brick Tunnel allocation sequences is the
same as the set of allowed sequences in Salama et al. (2008) expansion of the maxi-
mum procedure to unequal allocation that covers the strip ± b in height around the 
allocation ray, with b = bBT. However, in Salama et al. expansion all allowed sequences
are assigned equal probabilities, which leads to variations in the allocation ratio 
from allocation to allocation (Kuznetsova and Tymofyeyev 2009, 2011a). In con-
trast, the Brick Tunnel randomization preserves the allocation ratio at every step and
its allocation sequences are not equiprobable.
The transition probabilities for the two-group Brick Tunnel randomization are

uniquely determined, while for more than two treatment groups the Brick Tunnel
allocation sequences could be made to stay closer to the targeted allocation ratio or 
allowed to deviate more from it while still contained within the brick tunnel.
The algorithm to generate the Brick Tunnel allocation sequences could be pro-

grammed—easily in the case of the 2-group studies and with more complex deriva-
tions for K>2 treatments. The generation of the Brick Tunnel allocation sequence
can be incorporated into a module that analyzes the dose–response data, derives the 
allocation ratio, and generates the allocation schedule for the next cohort.

While adaptive dose-ranging studies with common to them inconvenient alloca-
tion ratio and small cohorts provide the most direct use for the Brick Tunnel random-
ization, unequal allocation arises in other types of adaptive studies. Multi-arm studies
with sample size reestimation and two-stage studies where the second stage alloca-
tion ratio differs for new arms and old arms may also end up with an inconvenient 
allocation ratio and thus a large block size. BT randomization can be used in these
studies to better approximate the targeted allocation ratio at the end of enrollment 
and make the allocation more balanced in time and thus less prone to an accidental 
bias associated with a time trend.

9.3  Covariate-Adaptive Allocation That Balances Treatment 
Groups in Important Baseline Covariates at the Interim 
Analysis

In adaptive design studies, the interim analysis is often performed on a moderate 
size sample. An imbalance in a strong predictor at the interim stage might lead to 
biased or unconvincing results and because of that to an incorrect interim decision. 
In a moderate size sample, randomization that does not explicitly enforce balance in 
known predictors might lead to an undesirable imbalance in some of them. Thus,
the incentives to balance randomization on important predictors in adaptive design 
studies are strong.
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While balance in a small number of predictors (1–3) could be typically achieved
with stratified randomization (Zelen 1974; Rosenberger and Lachin 2002), with a 
large number of predictors stratification often fails to provide desired balance due 
to a large number of incomplete blocks (Therneau 1993). Dynamic allocation pro-
cedures, such as minimization (Taves 1974; Pocock and Simon 1975) or dynamic 
hierarchical schemes (Heritier et al. 2005; Signorini et al. 1993) can be success-
fully used to balance the treatment groups in a large number of predictors even in 
a small study (Therneau 1993; Scott et al. 2002; McEntegart 2003; Rosenberger 
and Lachin 2002). Usually the versions of these procedures that include a random
element are recommended over largely deterministic versions (ICH 1998; CPMP
2003; Kuznetsova 2010).
Often the need to balance randomization within centers—either because of

expected differences across centers or to efficiently manage the drug supplies—
excludes stratification as a balancing tool since the strata become too small. 
Covariate-adaptive procedures that provide balance within study centers with or
without balancing on other baseline predictors will be discussed in more detail in 
Sect. 9.3.

However, in studies with unequal allocation common for adaptive design studies, 
a proper expansion of dynamic allocation procedures to unequal allocation should 
be used. If the naïve expansion is undertaken, as in minimization examples consid-
ered in (Proschan et al. 2011) or version of unequal allocation minimization pro-
posed by (Han et al. 2009), the allocation ratio varies from allocation to allocation 
(Kuznetsova and Tymofyeyev 2009, 2011a, b, c, 2012). This provides potential for
accidental bias (especially in studies with allocation stratified by center) as well as
selection and evaluation bias (even in double-blind studies).
Proschan et al. (2011) considered expansion of the biased coin randomization 

and minimization to 1:2 allocation where variations in allocation probabilities were
confounded with a temporal trend so that one treatment had a higher probability to 
be assigned at the positions where patients were healthier. As a result, the Type I
error of the Z-test was inflated. This type I error inflation is a direct consequence of
the variations in the allocation ratio and would not happen with unequal allocation 
procedures that preserve the allocation ratio at every allocation.
Additionally, Proschan et al. (2011) pointed out that in the considered examples 

of minimization expansion to two-group unequal allocation the re-randomization 
difference in the treatment group means is shifted away from 0. The shift in the re-
randomization distribution lowers the power of the randomization test.
Kuznetsova and Tymofyeyev (2012) showed that the shift phenomenon is not 

peculiar to minimization or dynamic allocation, but instead is common to all unequal 
allocation procedures, fixed or dynamic, that have changes in the allocation ratio 
from allocation to allocation. They derived the asymptotic value of the shift in the
re-randomization difference in the treatment group means through the sequence of 
allocation probabilities at the i-th allocation (i=1, 2, …). They also showed that the
asymptotic shift is 0 for procedures that preserve the allocation ratio at every 
allocation step. More on the randomization test with allocation procedures that do
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not preserve the allocation ratio at every step can be found in (Kaiser 2012; Han 
et al. 2013; Kuznetsova and Tymofyeyev 2013a; Kuznetsova 2012).
Kuznetsova and Tymofyeyev offered an easy way to expand any allocation pro-

cedure (fixed or dynamic) defined for equal allocation to several treatment arms, to
unequal allocation while preserving the allocation ratio at every allocation step 
(Kuznetsova and Tymofyeyev 2011b, c, 2012).
Suppose the expansion of the allocation procedure to allocation to K ≥2 treatment

groups Gl, l =1, …, K in C1:C2:…:Ck ratio is desired, where S = C1 + C2+ …+Ck . 
First, an equal allocation to S “fake” treatment arms F1, F2, …, Fs is executed fol-
lowing the algorithm defined for equal allocation to S arms. Then the first C1 “fake”
treatment arms F FC1 1

- are mapped to Treatment G1; the next C2 “fake” treatment
arms F FC C C1 1 21+ +- are mapped to Treatment G2; and finally, the last Ck “fake” treat-
ment arms F FC C Sk1 1 1+¼+ +-

- are mapped to Treatment Gk. Due to symmetry, such 
procedure will provide equal allocation to S “fake” treatment arms F1, F2, …, Fs at 
every allocation. Thus, it would automatically provide C1:C2:…:Ck allocation ratio 
to treatment groups Gl, l =1, …, K, at every allocation step.
This approach was applied by Kuznetsova and Tymofyeyev to expand to unequal

allocation fixed and dynamic allocation procedures, such as biased coin randomiza-
tion, minimization (Kuznetsova and Tymofyeyev 2012), modified Zelen’s approach
and dynamic allocation with partial block supplies sent to centers introduced for 
equal allocation byMorrissey et al. (2010) (Kuznetsova and Tymofyeyev (2011b, c)), 
and hierarchical allocation procedures that incorporate modified Zelen’s approach
at center level (Kuznetsova and Tymofyeyev 2014b). This approach works well
when the block size is small—for example for 1:2, 1:3, or 2:3 allocation ratios com-
mon in clinical trials.
However, when the block size is large, such as 60 in the 14:21:25 allocation exam-

ple considered in the section on the BT, the balance in treatment assignments overall
or within a level of a covariate will not be better than the one provided with the per-
muted block randomization. In this case, other approaches can be used. For proce-
dures based onmodified Zelen’s approach,modified Zelen’s approach can be replaced
with the dynamic allocation based on partial block supplies sent to the centers.

For biased coin randomization with C1:C2 (or with probabilities p1 and p2, p1 < p2) 
allocation to treatment groups G1 and G2 the allocation ratio can be made constant 
in the following way. We will consider allocation to G1 a preferred allocation after i 
allocations if

 N N C C2 1 2 1> ´ /  

Let us fix the probability to assign G1 when it is a non-preferred treatment for all 
allocations at pnonpref < p1. Let us denote by Si the probability that after i allocations 
G1 is the preferred treatment for the (i +1)-th allocation. Then the probability 
p(i+1)_pref to assign G1 at (i + 1)-th allocation when it is a preferred treatment is derived 
from the equation

 
S p S p pi i pref i nonpref+( ) + -( ) =1 11_ .
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With this choice of p(i+1)_pref, the probability to assign treatment G1 at (i + 1)-th 
allocation is preserved at p1. The probabilities p(i+1)_pref are calculated iteratively. 
With increasing i, the Si and pi_pref sequences converge to a periodic pattern with 
period C1 + C2. Lower pnonpref results in higher variations in pi_pref across the alloca-
tions. Similar approach, with increased complexity, can be used for C1:C2 minimiza-
tion with large block size.
Extensive simulations show that covariate-adaptive procedures provide good

balance in several factors in small and moderate size studies (Taves 1974; Pocock
and Simon 1975; Therneau 1993; Begg and Iglewicz 1980; Birkett 1985; Zielhuis
et al. 1990;Weir and Lees 2003; Kuznetsova and Tymofyeyev 2012) and thus, meet 
the needs of adaptive designs.
Likelihood-based methods can be used in the analyses of the data from trials

with covariate-adaptive randomization (Rosenberger and Lachin 2002; Rosenberger 
and Sverdlov 2008). It is recommended to include the factors that randomization 
balances on in the analysis model to preserve the Type 1 error (Kalish and Begg
1985, 1987); however, it might not be practical when the number of factors is large. 
In the past, the Type I error rates with covariate-adaptive procedures and the impact
of omitting the covariates from the analysis model were studies through simula-
tions. Forsythe (1987) and Weir and Lees (2003) demonstrated that Type I error is
preserved when the covariates are included in the analysis of covariance model; for 
linear models, omission of covariates was shown to lead to conservative Type I
errors (Birkett 1985; Weir and Lees 2003).
Recently, important theoretical developments were made by Shao et al. (2010) 

who established that a test procedure valid for simple randomization is valid for 
covariate-adaptive randomization provided that the model is specified correctly and 
includes the covariates used in the randomization procedure. Moreover, they proved
that the two-sample t-test (test with omitted covariates) is conservative with
covariate- adaptive biased coin randomization and derived bootstrap test that pre-
serves the Type I error with this randomization procedure. Shao and Yu (2013) 
further advanced the statistical theory of inference with covariate-adaptive random-
ization by establishing asymptotic results for covariate-adaptive biased coin ran-
domization under generalized linear models with possibly unknown link functions. 
They showed that for these models the t-test is conservative and constructed a valid 
test using bootstrap. They illustrated the theory with the examples of binary
responses and event counts under the Poisson model as well as exponentially dis-
tributed continuous responses.
Furthermore, Ma and Hu (2013) showed that for a large class of covariate- 

adaptive designs the hypothesis testing is usually conservative and more powerful 
than with complete randomization.
Excellent review of the latest theoretical developments in the field of covariate-

adaptive allocation is provided in Hu et al. (2014).
With advancing understanding of validity of covariate-adaptive allocation, these 

techniques can find a wider use in adaptive design trials when balance in several 
important predictors is needed for an accurate interim analysis decision.
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9.4  Randomization Techniques That Promote Efficient Drug 
Use in Multicenter Trials and Better Approximate 
Targeted Allocation Ratio Within Centers

Adaptive designs are often used early in the drug development, when the drug sup-
plies are scarce or expensive. At the same time, accelerated drug development often 
necessitates large number of centers to speed up the enrollment in the study. Each
center requires its own initial stock of drug supplies to start randomization and addi-
tional drug shipments to replenish the drug supplies as subjects continue to be ran-
domized. Thus, the allocation techniques that facilitate economical drug use in the
multicenter trials can be very useful in adaptive design trials.

9.4.1  Stratified by Center Fixed Allocation

Stratified by center fixed allocation, where an allocation schedule (typically, a per-
muted block sequence) is predefined for each center provides full predictability of 
the required drug supplies. With predictable treatment assignments, each center 
needs the drug supplies only for the next few subjects on its own allocation sched-
ule, while without such predictability each center needs the drug supplies for all 
possible combinations of the treatment assignments the next few subjects can get. 
For example, if in a study with equal allocation to six treatment arms a center 
requires drug supplies for the next three subjects, with predictable allocation the 
center needs three randomization drug kits at any point of enrollment compared to 
3×6=18 drug kits for unpredictable allocation. This leads to large savings in drug
supplies, especially in studies with multiple treatment arms, studies with unequal 
allocation, and studies where randomization visit drug supplies cannot be reused for 
later visits and thus are wasted at the end of enrollment.
Stratifying randomization by center might also be required when centers are

expected to vary in response due to differences in subject population, medical prac-
tice, experience or other reasons.

However, stratified by center allocation becomes problematic if centers are small 
(which is common at the time of the interim analysis) and the block size is large
(due to a large number of arms or unequal allocation common in adaptive design
studies). In this case most of the blocks on the randomization schedule have just a 
couple of subjects at the time of the interim analysis and the treatment group totals 
might be out of balance for equal allocation studies or deviate from the targeted 
totals for unequal allocation studies. Incomplete blocks cause even a bigger  problem 
when the randomization needs to be stratified by other baseline factors, thus break-
ing each center into several strata.
Balance in treatment assignments in studies with large number of centers can be

improved if the center-specific permuted blocks are balanced across the centers 
(Kuznetsova and Ivanova 2006; Song and Kuznetsova 2003; Kuznetsova 2008; 

O.M. Kuznetsova



167

Morrissey et al. 2010). Specifically, in a study with equal allocation to K treatment 
arms, K × K Latin squares with columns representing permuted blocks of K alloca-
tions are randomly generated. The columns of the first Latin square are sent to the
first K centers (centers 1 through K) as the center-specific allocation schedules for 
the first K subjects enrolled at a center; the columns of the second Latin square are
sent to centers (K+1) to 2K, and so on. When the first K centers have each at least 
j subjects enrolled, there will be a balance in treatment assignments across the filled 
rows of the Latin square, that is across the subjects allocated first, second, …, and
j-th in their respective centers. Thus, when all center-specific permuted blocks are
barely filled, the balance in treatment assignments is improved through balancing 
across the centers more than through the balancing within the centers.
Balancing of permuted blocks across centers can be done for unequal allocation

as well. When unequal allocation leads to a large block size, constrained permuted 
blocks (Youden 1964, 1972; Kuznetsova and Ivanova 2006; Song and Kuznetsova
2003; Kuznetsova 2008) that provide a better approximation of the targeted alloca-
tion ratio among the first few allocations can be used as the columns of the Latin
squares. The task of constructing an unequal allocation Latin square with con-
strained permuted block columns can be very taxing on a statistician. An easier 
solution can be found in balancing the center-specific incomplete blocks across cen-
ters (Kuznetsova and Ivanova 2006; Song and Kuznetsova 2003; Kuznetsova 2008).
Consider an example of a 6-group study with a 2:3:3:4:4:4 allocation to groups

A, B, C, D, E, and F (block size of 20) where the allocation needs to be stratified by
center. The centers are expected to enroll up to 20 subjects each and an interim
analysis is expected to include on average five subjects per center. Thus, each center
needs a block of 20 allocations. To keep an allocation ratio among the first five sub-
jects at a center close to the targeted allocation ratio, the block of 20 allocations is
broken into four reasonably balanced incomplete blocks of 5 allocations of the fol-
lowing types: Type 1=ABDEF, Type 2=ACDEF, Type 3=BCDEF, and Type
4=BCDEF. Next, a random 4×4 Latin square that determines the sequence of four
Types of incomplete blocks for each of the first 4 centers is randomly generated.
Random permutation of the five treatment assignments within each incomplete 
block completes the generation of the 20-allocation permuted block schedules for
each of the first four centers. Together, the allocations of the first 5 subjects in each
of the first 4 centers comprise a complete block of 20. The procedure is repeated for
the next four centers and so on. Thus, for studies with a large block size building an
allocation schedule of incomplete permuted blocks balanced across centers keeps a 
within-center allocation ratio close to the targeted one and better approximates the 
overall allocation ratio at the time of the interim analysis compared to a regular 
stratified by center permuted block allocation.

Another option of dealing with a large block size in a multicenter study with small 
centers is the partial block center stratification described for studies with equal alloca-
tion to several treatment arms in (Morrissey et al. 2010). With this technique, the 
allocation schedule is cut into segments smaller than the block size that are distrib-
uted across centers at the study initiation. When a center is known to soon approach 
the end of its first allocation segment, the next segment is assigned to the center. 
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When all initial segments are filled, the allocation ratio among the subjects allocated 
using the initial segments is very close to the targeted one. As a result, even when 
subsequent segments are only partially filled, the overall balance in treatment assign-
ments improves compared to regular stratified by center randomization. When applied 
to studies with unequal allocation, this technique will result in an overall balance 
similar to the one achieved with incomplete blocks balanced across centers, but will 
not necessarily provide a good within-center balance in treatment assignments.

Although these fixed allocation techniques help to improve balance in multi-
center studies with stratified by center allocation, they do not provide an exact bal-
ance in smaller studies (or at the interim stage) and cannot accommodate several
other stratification factors.

9.4.2  Central Randomization

Central randomization where subjects are allocated along the same allocation
sequence regardless of their center, provides an excellent balance in treatment assign-
ments and can be stratified by several factors. Central randomization is routinely
used in adaptive design dose-ranging studies, where the cohorts are small and strati-
fication by center is hardly an option, and is the most common randomization choice 
in other types of adaptive design studies. However, it generally demands larger 
stocks at the sites and might result in within-center imbalance in treatment assign-
ments. When the drug is scarce, automatic support of resupplies through standard 
triggers (Chap. 15) is often supplemented by micro-management of limited supplies 
with close stock monitoring and manual shipment orders for faster enrolling sites.
The drug volume required to support central allocation can be reduced if, when

a center is out of the drug that a subject is supposed to be allocated to, a subject is 
allocated to the next treatment on the schedule available at the center [forced alloca-
tion (McEntegart 2002)]. This option is offered by all IVRS providers and is often
used in clinical trials. When forced allocation is allowed, the sites are stocked and 
resupplied with enough drug to result in a small percentage of forced allocations. In 
more complicated cases, the required stock levels and resupply trigger parameters 
are estimated through simulations (Chap. 15). Allowing small percentage of forced 
allocations considerably reduces the drug volume in an adaptive design study.
Forced allocation performed automatically by IVRS and concealed from anyone

involved in the study prevents possible unblinding at the sites that might happen 
when the site learns that the subject cannot be allocated because the assigned drug 
is not available at the site. Additionally, forced allocation allows dealing with 
unforeseen delays in getting the drug to the sites, lost shipments, drug spoilage, and 
other problems. It is essential that the sites promptly acknowledge the drug ship-
ments they receive, or else IVRS might unnecessarily force allocate subjects. For
example, if the randomization visit shipment is not acknowledged at the site that has 
a large stock of placebo run-in supplies, IVRS might force allocate several subjects
in a row to the placebo arm at that center.
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There are no theoretical grounds to justify “maximum allowed” percentage of
forced allocations. Although the practice of using forced allocation is widespread 
and it is believed that small percentage of forced allocations is acceptable to regula-
tory agencies (McEntegart 2002), there is no clear regulatory guidance on this very 
helpful for adaptive design studies technique.
Labeling of the drug supplies with central randomization in a study that uses

unequal allocation has to be carefully considered when the sites are stocked with 
drug kits in a ratio different from the allocation ratio. In this case, the double- 
permuted drug kit labeling (not universally available) must be used as otherwise the
partial unblinding of the treatment assignments through divergence in the drug ID 
labels could arise (Kuznetsova 2001; Lang et al. 2005; Byrom et al. 2011; He et al. 
2012). This issue will be considered in more detail in Sect. 9.5.

9.4.3  Dynamic Allocation Procedures That Provide Within- 
Center Balance, Promote Balance in Other Covariates, 
and Reduce the Required Volume of Drug Supplies

Where non-dynamic allocation techniques fail to provide required balance in impor-
tant baseline predictors (that might include center) or cannot support central ran-
domization in a multicenter study with limited drug supplies, dynamic allocation 
procedures can be used to fulfil these needs.
Modified Zelen’s approach described for studies with equal allocation in (Zelen

1974; McEntegart 2008; Morrissey et al. 2010) is the dynamic allocation that pro-
vides an excellent within-center balance and overall balance in treatment assign-
ments. It can be stratified by other baseline factors (Zelen 1974) or incorporated in 
covariate-adaptive (Akazawa et al. 1991; Nishi and Takaishi 2003) or hierarchical 
allocation procedures (Kuznetsova and Tymofyeyev 2011b, c, 2014b) to provide 
balance in covariates other than center.

In studies with equal allocation to several treatment arms the simplest version of 
the modified Zelen’s approach works in the following way. At study initiation a full
block of treatment assignments is made available for allocation at each center; 
accordingly, a full block of randomization drug supplies is sent to each center. If a 
center is expected to enroll more than one block of subjects, the second block of 
allocations (and respective randomization drug supplies) will be later provided to the
center. However, the second block of treatment assignments will not be made avail-
able for randomization at the center until the first block of randomization assign-
ments is completely used. The central allocation schedule is prepared for the study
and the subjects are allocated to the first unused treatment assignment on the central 
schedule available for randomization at their center. The gaps on the allocation
schedule formed when a center cannot allocate a subject to the next treatment on the 
randomization sequence are filled in by the subjects allocated later at other centers. 
Thus, at the time of the interim analysis the randomization schedule will mostly
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consist of filled blocks providing an excellent balance in treatment assignments 
(Morrissey et al. 2010) even when centers have just one or two subjects each.

When stratification by baseline factors is required, a separate central allocation 
schedule is prepared for each stratum and subjects are allocated to the first unused 
treatment assignment on the schedule for their stratum available for randomization 
at their center.
The logistics or drug resupplies with this version of modified Zelen’s approach

is very simple, as the resupplies are sent in complete blocks regardless of what was 
used in the center.
With the described version of the modified Zelen’s approach the sequence of

treatment assignments at any given center is a permuted block sequence; however, 
this sequence is not prespecified in advance, but is instead determined by the order 
of subjects’ entry into the study and the central randomization schedule. In studies
with equal allocation to two arms or open-label studies, a permuted block sequence 
with the smallest block size S might be considered to have too many predictable
allocations. In this case, one can use the version of the modified Zelen’s approach
where the imbalance in treatments assignments at a center (the range of the within-
center treatment totals) is allowed to exceed 1, but is not allowed to exceed a pre-
specified threshold M. This version requires larger volume of drug in circulation as
M blocks of treatment assignments are available for allocation at any time. Thus,M 
blocks of randomization drug kits are sent to every center at study initiation. The
(M + 1)-th block of allocations is made available at a center when the first block of 
M allocations is completely used; by that time, the (M + 1)-th block of randomiza-
tion drug supplies should be received by the center.

When in a study with equal allocation the number of treatment arms is large and 
the centers are small, sending a whole block of supplies to each center could be 
wasteful. To reduce the drug waste, Morrissey et al. (2010) proposed to use a 
dynamic allocation procedure with partial block of supplies sent to the centers. This
procedure is similar to modified Zelen’s approach, except that partial blocks and not
complete blocks of allocations are assigned to the centers. For example, in a study 
with seven arms where most centers are expected to enroll two to three subjects, 
partial blocks of three will be assigned to the centers. The subjects will then be
allocated along the central allocation schedule—to the first treatment available for
allocation at their center. As Goodale and McEntegart (2013) point out, this tech-
nique generally reduces the potential for selection bias as the contents of the incom-
plete blocks is unknown at the site.
These dynamic allocation procedures developed for studies with equal allocation

could be even more useful in studies with unequal allocation where drug supplies 
issues are especially challenging. However, similar to minimization, these proce-
dures need to be expanded to unequal allocation in a way that preserves the alloca-
tion ratio at every allocation (Kuznetsova and Tymofyeyev 2011b, c). If the modified 
Zelen’s approach is naively generalized by making a permuted block of allocations
(and drug kits) available at the study centers [as in (Frane 1998)], the achieved allo-
cation ratio will vary depending on the order of allocation within a center. In the 
example of 2:1 allocation to Active and Control treatments, the probability of
Control allocation will exceed 1/3 for the first and third allocations in center-specific
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blocks of three subjects, and will be below 1/3 in the second allocation in the block
(Kuznetsova and Tymofyeyev 2011b, c). This problem is also observed with naïve
expansion of the dynamic allocation with partial block supplies sent to the centers 
(Kuznetsova and Tymofyeyev 2011b, c).
Kuznetsova and Tymofyeyev (2011b, c) expanded these dynamic allocation pro-

cedures to unequal allocation following the allocation ratio preserving approach 
described in Sect. 9.2. For the partial block dynamic allocation an extra step is 
required: to define acceptable partial blocks of the drug supplies that preserve the 
symmetry with respect to the S fake treatments. A way to define such blocks is 
described in detail in (Kuznetsova and Tymofyeyev 2011b, c).
Using the partial block dynamic allocation in adaptive design dose-finding stud-

ies might reduce the amount of drug required to support the unknown allocation 
ratio in the next cohort. Indeed, this approach will not require all treatments to be 
available at every site. However, a valid drug resupply strategy for such studies and 
implementation aspects of this approach in dose-finding studies need to be further 
developed.

When randomization needs to be balanced on more baseline factors than strati-
fied modified Zelen’s approach can handle, modified Zelen approach at a center
level can be successfully incorporated in a minimization-type covariate-adaptive 
procedure (Akazawa et al. 1991; Nishi and Takaishi 2003) or a hierarchical dynamic 
balancing scheme (Kuznetsova and Tymofyeyev 2011b, c, 2014b). For studies with 
unequal allocation, an expansion that preserves the allocation ratio at every alloca-
tion should be used.
Overall, a variety of advanced allocation techniques can be used in adaptive

design multicenter studies to help reduce the required volume of drug while provid-
ing a good balance in treatment assignments in a small interim sample. When the 
within-center balance as well as balance in several important baseline covariates is 
required, dynamic allocation techniques based on modified Zelen’s approach or par-
tial blocks of supplies sent to the centers often perform much better than fixed alloca-
tion procedures, especially in studies with several treatment arms or large block size.

9.5  Allocation in Open-Label Adaptive Design Studies

Some randomized adaptive design studies conducted early in drug development are
open-label—often because blinding is very difficult and thus is not considered prac-
tical in a non-pivotal study. Predictability of upcoming treatment assignments is a
problem in open-label studies (mostly, in single-center studies or multicenter stud-
ies with randomization stratified by center where the investigator knows the com-
plete sequence of treatment assignments) and might lead to a selection bias. 
Permuted block randomization commonly used in clinical trials is partially predict-
able because the allocation sequence is known to achieve the exactly targeted allo-
cation ratio at the end of each block. Thus, the allocation procedures less predictable
than permuted block randomization help reduce the potential for selection bias in 
open-label studies.
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A number of allocation procedures that do not require reaching the exact allocation 
ratio at any point of randomization were developed for two-group studies with 1:1 
allocation. Complete randomization (Rosenberger and Lachin 2002), where each 
subject is allocated independently in 1:1 ratio, is absolutely unpredictable, but can 
result in a notable imbalance in treatment group totals, especially in smaller studies. 
Biased Coin randomization where a subject is allocated with higher probability to
the underrepresented group (Efron 1971) generally provides a good balance in treat-
ment assignments throughout the enrollment. However, there exists a small proba-
bility that it will result in a relatively large imbalance in a small sample (Markaryan
and Rosenberger 2010).

When the imbalance in treatment totals in a two-arm study with equal allocation 
needs to be tightly controlled, one of the allocation procedures that limit the imbalance 
in treatment assignments at a prespecified level can be used. Among these procedures 
are the replacement randomization (Pocock 1979), modified replacement randomiza-
tion (Abel 1987), maximal procedure (Berger et al. 2003), Soares andWu (1983) big 
stick design, Chen’s biased coin design with imbalance tolerance (Chen 1999), 
Ehrenfest urn design (Chen 2000), and Baldi Antognini and Giovagnolli’s (2004) 
adjustable biased coin design (with limited allowed imbalance). These procedures
restrict the set of allowed allocation sequences to those for which the absolute imbal-
ance in assignments to Treatments A and B after i allocations does not exceed pre-
specified threshold b: |NBi – NAi | ≤ b, i=1, 2, …. Here NAi and NBi are the numbers of 
subjects allocated to treatmentsA and B, respectively, within the first i allocations. The
procedures above differ in how they assign the probabilities to the allowed sequences.

In spite of being well described and studied in statistical literature, these proce-
dures remain under-used in open-label studies, as they are typically not included in 
the standard randomization tool kit.

In most cases, these procedures can be easily expanded to an equal allocation to 
K>2 treatment arms, with the imbalance in treatment totals across K arms after i 
allocations defined as the range of the treatment totals Nji, j = 1,.., K. Expanding
these procedures to unequal allocation is a different matter.

For C1:C2 (C1 ≠ C2) allocation to Treatments A and B the absolute imbalance in
treatment assignments after i allocations is commonly defined as |NBi – NAi×C2/C1| 
(or proportional to this difference) (Salama et al. 2008; Han et al. 2009). Until
recently, the problem of designing an unequal allocation procedure that includes all 
sequences that comply with a prespecified imbalance threshold |NBi – NAi×C2/C1| ≤ b 
and preserve the allocation ratio at every allocation was not resolved. Existing allo-
cation procedures either did not preserve the allocation ratio at every allocation 
(Salama et al. 2008) or did not include all allocation sequences that comply with the 
prespecified imbalance threshold (Zhao and Weng 2011).
Kuznetsova and Tymofyeyev offered a solution to this problem: the Wide Brick

Tunnel randomization for C1:C2 (C1 ≠ C2) allocation to Treatments A and B
(Kuznetsova and Tymofyeyev 2014a). The procedure starts with the Brick Tunnel
randomization which represents the sets of sequences that comply with the smallest 
possible imbalance threshold bBT=(C2 − 1)/C1+1. Then selected pairs of consecu-
tive treatment assignments of the Brick Tunnel sequences are switched places with
probability 0 < δ<1, thus expanding the set of allowed allocation sequences. The
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switches proceed until the set of allowed sequences includes all sequences that sat-
isfy the imbalance requirement |NBi − NAi×C2/C1| ≤ b. The implementation details
are described in (Kuznetsova and Tymofyeyev 2014a). Since Brick Tunnel random-
ization preserves the allocation ratio at every step and adding a random switch of 
consecutive allocations to this procedure leaves the allocation ratio intact, the Wide 
Brick Tunnel allocation keeps the allocation ratio constant at all allocations.
The main application of the Wide Brick Tunnel allocation is in two-arm open-

label studies with unequal allocation. When the block size is large, the Wide Brick
Tunnel randomization keeps the allocation ratio reasonably close to the targeted
allocation (much closer than the permuted block schedule but not as close as the BT
schedule), while reducing predictability compared to the Brick Tunnel randomiza-
tion. Wide Brick Tunnel randomization might also be used to construct a random-
ization procedure for an unequal allocation in an open-label study with >2 arms [see
examples in (Kuznetsova and Tymofyeyev 2014a)].
The switch technique could be used on its own to reduce the selection bias, in

particular, in studies with equal allocation to >2 treatment arms. Often an adaptive
design dose-finding study starts with an equal allocation to all arms to accumulate 
response information before the adaptive allocation begins. As the number of treat-
ment arms is typically large—for example, placebo, active control, and six active
doses—the permuted block schedule with the smallest block size S (S = 8 in our 
example) is used to allocate subjects. Due to a large number of arms, most of the 
treatment assignments in an open-label study are not fully predictable—except the
treatment assignments at the ends of the permuted blocks. The switch of the mS-th 
and the (mS+1)-th treatment assignments on a permuted block schedule (the last
treatment in the m-th block and the first treatment in the (m + 1)-th block) with prob-
ability 0 < δ < 1 makes the last assignment in the m-th block unpredictable. The
switch could be executed for all permuted blocks on the schedule.
To reduce the potential for selection bias in open-label adaptive design trials with

equal or unequal allocation, permuted block randomization can be replaced with 
one of the less predictable allocation procedures.

9.6  Avoiding Unblinding of the Adaptive Decisions  
or Treatment Assignments Through Allocation  
Numbers or Drug Codes

9.6.1  Avoiding Unblinding of the Adaptive Decisions Through 
Allocation Numbers

A common adaptive two-stage design includes Stage I with a large number of arms
followed by Stage II where some of the treatment arms, for example, less efficacious
doses of the experimental treatment, might be discontinued (Chaps. 4 and 14). If a 
common allocation schedule is prepared for both stages with the option to cross out 
the dropped arms for Stage II randomization, the possibility to unblind the adaptive
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decision through the allocation schedule arises (Byrom et al. 2011). Indeed, anyone 
with access to Stage II sequence of allocation numbers will see what fraction of
allocation numbers remains unfilled on the Stage II schedule and deduce how many
arms were dropped in reversed engineering (see Chap. 14). Moreover, if Stage I
schedule had unequal allocation, it might be possible to identify the dropped arms.
The adaptive decision could be easily disguised by generating a separate sched-

ule for Stage II. It could also be disguised with a single schedule for both Stages if
the allocation numbers are kept blinded until the data base lock and the subjects are 
followed by their baseline numbers. Alternatively, subjects could be assigned 
sequential allocation numbers in order of randomization (as with a dynamic alloca-
tion) or scrambled (non-sequential) allocation numbers. Byrom et al. (2011), how-
ever, warn of other pitfalls of modifications to the original schedule.

9.6.2  Unblinding Through the Divergence of the Drug ID 
Sequences

Adaptive design studies with changes to the allocation ratio across randomization 
cohorts provide potential for partial unblinding of the treatment assignments through 
the drug kit labels. Indeed, if the drug ID codes are generated using a common per-
muted block schedule, the sequences of the drug IDs diverge with time (Kuznetsova
2001; Lang et al. 2005; Byrom et al. 2011, He et al. 2012). In some cases, all types 
of drug could be identified late in the study.

A simple solution is to randomly permute the sequence of drug codes within 
each drug type (Kuznetsova 2001; Lang et al. 2005), a technique often referred to as 
"double-randomized" or “double-permuted” or “scrambled” drug codes. Byrom
et al. (2011) note that leaving the gaps in the drug code schedule allows one to use 
the reserved codes to introduce new treatments. Double-permuted drug IDs could 
also be used to package the drug supplies shareable across several studies with the 
same product. Sharing the drug supplies across the studies allows pursuing several
indications with limited drug supplies early in the drug development, where Phase
IIa/IIb adaptive design studies would fit.

However, drug management with double-permuted drug codes is not uniformly 
available and often costly, thus the need for it should be evaluated during the study 
design. Below we will consider several examples of the adaptive design studies
where unblinding through divergence in drug IDs can occur and describe the extent 
of such unblinding.

9.6.2.1  Adaptive Design Dose-Finding Study with a Single Image 
or a Double-Dummy Masking Strategy

A typical example of an adaptive design study with changes to the allocation ratio is 
an adaptive design dose-finding study. In such studies the allocation ratio for the next 
cohort is determined by the performance of the dose arms in the previous cohorts 
and is not known in advance. The allocation algorithm is designed to allocate more
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subjects to the doses of most interest. The placebo arm is commonly allocated at the
same ratio in all cohorts. The allocation schedule for the next cohort is prepared
when the required allocation ratio becomes known.
When a study uses the same image tablets for all doses and placebo (a single

image masking), typically a common permuted block drug ID schedule is prepared 
for all doses. Since the placebo arm is allocated at the same ratio in all cohorts, its
drug IDs will increase at a steady pace. However, the drug IDs for the doses that 
enroll more subjects in the later cohorts will grow faster than the placebo ID, while 
the drug IDs for less used doses will grow slowly.

In some cases, the pattern of divergent drug IDs allows personnel to link the drug 
IDs to specific treatment arms. For example, consider a study where four doses of the 
experimental drug and placebo have the same image tablets. The drug ID schedule is
prepared in equal ratio with the block size 5. Subjects are randomized in cohorts of
20; in each cohort placebo is assigned to exactly 20 % of subjects (four subjects). If
the study design allows stopping enrollment in one or two lowest doses should they 
be found inefficient, one will know if one or both doses were stopped by the number 
of drug IDs left unused in each block as the randomization proceeds. The CIDs will
also reveal if there is a group that performs better than others (and thus, has more
subjects enrolled into it) and how many such groups there are. When the drug ID 
sequences diverge, the groups of subjects randomized to the same arm will be easily 
identified. In some cases, it will be possible to identify the arms—for example, pla-
cebo arm, or the high dose arm when the dose response is known to be monotone.

When in a dose-finding study tablets of different doses have different images, the 
double-dummy strategy is often employed to mask the treatment. To that end, a
matching image tablet is prepared for each of the doses; each subject gets an active 
tablet for the dose he is allocated and a placebo tablet for each of the remaining 
doses. Typically, a separate drug ID schedule is prepared for each pair of tablets—
an active tablet and a placebo tablet—corresponding to the same dose.
Consider the same example of the dose-ranging study with four active doses of

the experimental drug and the placebo arm that now employs a double dummy strat-
egy. Since each subject will receive one active tablet for the dose he is allocated to
and three placebo tablets for the remaining doses, three times more placebo tablets 
than active tablets are packaged for each dose. Four separate drug ID schedules are 
prepared in 1:3 (Active to Placebo) ratio for each of the four doses.

With double-dummy blinding and separate schedules for each dose, stopping 
enrollment into a certain dose will be immediately obvious. Indeed, the placebo 
drug IDs on that dose schedule will continue to grow, while the gaps in the schedule 
corresponding to the Active tablets will remain unfilled. The arm with low enroll-
ment will be manifested by having ¾ of the drug IDs in the blocks growing fast 
(Placebo drug IDs), while the remaining ¼ of the drug IDs (Active drug IDs) will
lag behind and fill in at a slower pace. Similarly, the arm with high enrollment will
have ¼ of its drug IDs (Active) filling in fast, and the rest of the drug IDs (Placebo)
lagging behind. Thus, if there is a dose–response, the double-dummy blinding strat-
egy with separate drug ID schedules for each dose will eventually unblind the per-
formance of each dose through divergent drug IDs of active and placebo drug types. 
The individual allocations of the subjects in later cohorts will also be unblinded.
The problem remains if a single schedule is used for all doses.
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9.6.2.2  Two-Stage Study with Stage II Allocation Ratio Unknown 
in Advance

Another potentially unblinding scenario common for adaptive design studies is 
when the allocation ratio is constant throughout a stage of the study, but is unknown 
in advance. For example, in two-stage trials with new doses included in Stage II, the
allocation ratio for Stage II is often unequal as it differs for the old doses included
in Stage I and the new doses added in Stage II. In addition, this ratio might depend
on the actual numbers of subjects enrolled in Stage I arms before the randomization
into Stage I was stopped. As the Stage II drug needs to be packaged before the exact
allocation ratio for Stage II becomes known, the drug ID schedule is generated in
the drug ratio somewhere in the middle of the possible range. Discrepancy between 
the actual allocation ratio and the drug packaging ratio provides a potential for par-
tial, and in some cases, full unblinding.

9.6.2.3  Multicenter Study Where Drug Supplies Are Packaged  
in a Ratio Different from the Allocation Ratio

Divergence of drug IDs can also occur in an adaptive design multicenter study with 
unequal allocation ratio even when the allocation ratio remains constant throughout 
the study. Often in a multicenter study with a skewed allocation ratio and central
allocation the drug supplies are packaged in a ratio different from the allocation 
ratio. This is done to provide the sites with enough of the “low ratio” treatment kits
to minimize the chance of a site running out of these kits in the event a few “low
ratio” treatment assignments in a row are made at the site. This typically results in
the smaller groups being overstocked and the bigger groups being understocked in 
the set of supplies sent to the sites initially and maintained at the sites. This leads to
a more “balanced” drug ratio of the site stocks, and thus, the packaged drugs, com-
pared to the allocation ratio.
For example, in a 200-center study with 7:3:1 allocation to Experimental Drug,

Active Control, and Placebo, where centers are expected to enroll about 6 subjects
each, the initial pack might include four Experimental, three Active Control, and
two Placebo drug kits. Most likely, this drug packaging ratio would be derived
through informal considerations along the following lines. If a block of 7+3+1
drug kits is sent to each site, there is a chance that at one of the sites the first two 
subjects are both allocated to Placebo. To avoid drug shortage in this case, two pla-
cebo kits instead of one are sent to each site. Also, there is no need to send seven 
Experimental drug kits to each site: four Experimental drug kits are sufficient as
there will be enough time to send in replacement kits for the first couple of subjects 
before the fifth subject is allocated to Experimental Drug at the site. Formal consid-
erations to justify this approach can be based on the acceptable probabilities of a 
stock-out for the resupply strategy used in the trial.
However, packaging the drug in 4:3:2 ratio will lead to the divergence of the drug

ID sequences. Indeed, suppose a permuted block drug ID schedule was prepared in 
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4:3:2 ratio (block size 9). The randomization schedule, nevertheless, is a permuted
block schedule with the allocation ratio of 7:3:1 (block size 11). At the study start, a
block of nine drug kits is sent to each center and maintained through resupplies. 
A total of 200 blocks are sent out at study initiation. Thus, when randomization
starts, the resupplies from blocks 201 and above on the drug ID schedule are sent out.
When the first 55 subjects are randomized into the study (5 blocks of 11), there are

35 subjects allocated to Experimental Drug, 15 subjects allocated to Active Control,
and 5 subjects allocated to Placebo. That far into randomization, it is clear that the
replacement drug kits sent to the sites are coming from different blocks on the replace-
ment part of the drug ID schedule. If the 56th subject is allocated to Experimental
Drug, the replacement drug ID will come from block 209 on the drug ID schedule; if
he is allocated to Active Control the replacement drug ID will come from block 206;
if he is allocated to Placebo the replacement drug ID will come from block 203.
Thus, if the drug IDs are not scrambled, the drug IDs for replacement kits will

allow one to distinguish kits for arms A, B, and C very early in randomization.
Someone with access to the complete sequence of the drug IDs received by all
 centers will be able to identify the treatment groups corresponding to the replace-
ment kits in the considered example. In other examples, when some of the treatment 
arms have the same allocation ratios (as in 2:2:5:5 allocation), such observer will be
able to differentiate large groups from the small ones, but not to distinguish between 
the two groups with the same ratio.
Study personnel that have access only to the drug IDs at their own site might or

might not be unblinded or biased through the drug IDs they see.
In addition to considered examples, differences in the dropout rates among the 

treatment groups as well as up- or down- titration for efficacy or safety reasons can 
also provide the potential for unblinding through drug codes.

9.7  Discussion

There is a wide opportunity for the use of advanced randomization techniques in
adaptive design studies. In dose-ranging studies, an inconvenient allocation ratio in 
a small cohort is better targeted with the Brick Tunnel randomization than with
permuted block or complete randomization. In open-label adaptive design studies 
the allocation techniques less predictable than permuted block randomization help 
reduce the selection bias.

Dynamic allocation techniques are often required in adaptive design trials. 
Covariate-adaptive allocation can ensure balance in a large number of important
predictors in a small interim analysis sample and thus reduce the risk of biased 
results leading to a wrong interim decision. In multicenter adaptive design trials, 
dynamic allocation methods provide within-center balance in treatment assign-
ments and, if needed, balance in other important predictors. They also help effi-
ciently manage limited and expensive drug supplies and reduce the required volume 
of drug supplies and the number of resupplies shipments.
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In adaptive design studies IVRS that governs the complicated trial logistics is
already in place (Chap. 12). Many IVRS providers have solid experience using
dynamic allocation techniques, with all quality control steps [validation, testing as 
described in (Downs et al. 2010)] in place. Nevertheless, dynamic allocation remains 
underused in adaptive design studies in the pharmaceutical industry, even when it is 
clearly advantageous. As a result, the examples of studies with imbalance in one of 
the known important predictors large enough to question the study results are not 
uncommon (Rosenberger and Sverdlov 2008; Pond et al. 2010).
The major reason for reluctance to use dynamic allocation techniques is the

uncertainty of regulatory acceptance of such techniques. While ICH Guidelines list
covariate-adaptive allocation among other accepted allocation methods, its use was 
discouraged by the Points to Consider on Adjustment for Baseline Covariates
(EAEMP CPMP 2003). This opinion was much debated in the literature (see
Rosenberger and Sverdlov 2008; Buyse and McEntegart 2004) and the language 
that discouraged the use of dynamic allocation was removed from the latest Draft 
Guideline on Adjustment for Baseline Covariates (EMA CHMP 2013).
More positive regulatory views and better understanding of dynamic allocation

due to recent advances in theory of inference following covariate-adaptive random-
ization (Shao et al. 2010; Shao and Yu 2013; Ma and Hu 2013; Hu et al. 2014) are 
likely to lead to a wider use of these procedures in adaptive design trials.
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Abstract Response-adaptive randomization in clinical trials uses accumulated 
patient response data to adjust the allocation probability for the next patient, so that 
a particular objective, for example, more patients assigned to the better performing 
treatment arm, can be achieved. This ethically appealing randomization procedure 
has gained significant attention in academia, regulatory agencies, and industry in 
light of widespread of adaptive clinical trial designs with the FDA’s Critical Path 
Initiative (FDA: Innovation or stagnation: challenge and opportunity on the critical 
path to new medical products, 2004). However, this procedure has also generated 
unmatched controversy since its first application in the ECMO trial (Bartlett et al., 
Pediatrics 76:479–487, 1985). In this chapter, we will describe response-adaptive 
randomization procedures from both frequentist and Bayesian perspectives and pro-
vide a comprehensive assessment on situations where such procedures should be 
applied.
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10.1  Introduction

Most clinical trials are comparative studies where two or more treatments (or placebo) 
are administered to human subjects and their effectiveness is evaluated and compared. 
For instance, one may want to compare an investigational drug A to standard of care 
drug B in terms of blood pressure reduction in hypertensive patients. An ideal exper-
iment or trial for this comparison is one in which all patients are exactly the same in 
all aspects except that they may have received different treatments, thus creating a 
state of “all other things being equal.” Then the treatment effect, or the difference in 
blood pressure reduction between two groups of patients, can be evaluated without 
bias and attributed only to the treatment difference. However, such an ideal experi-
ment will never happen in practice and randomization is used to design a trial or 
experiment so that it is as close to the ideal as possible.

Randomization as an experimental design principle did not originate in medical 
research. Its application was pioneered in 1920s by Ronald Fisher while he was 
working at Rothamsted Experimental Station, and popularized by his book (Fisher
1935). As mentioned above, the ideal state of “all other things being equal” cannot 
be achieved in practice; however, randomization can help to average out effect of 
factors between two treatment groups that may confound the treatment effect, and 
thus make a close to ideal comparison. On the other hand, statistical analysis of the
experimental results usually demands that experimental outcomes are indepen-
dently distributed. This assumption cannot be verified statistically; instead, it can 
only be substantiated through random sampling procedure (through randomiza-
tion). Because of its role in reducing bias and providing valid basis for statistical 
analysis, randomization has become the cornerstone of experimental design.

10.1.1  Randomization in Clinical Trials

In clinical trials, the same principles apply and are well recognized in regulatory 
guidelines. For example, it is stated in ICH guidance E9 (ICH 1998) that, “The most 
important design techniques for avoiding bias in clinical trials are blinding and ran-
domization, and these should be normal features of most controlled clinical trials 
intended to be included in a marketing application.” However, clinical trials, as
experiments on human subjects, introduce a heated debate on the ethical concern of 
randomization. The central question is whether one should use equal randomization 
(1:1) throughout the recruitment. The proponents of the application of equal ran-
domization in clinical trials maintain that a state of equipoise underlies the very 
need of conducting a clinical trial and it is retained throughout the trial until the final 
analysis is conducted and result is known. On the other hand, opponents think that
the initial equipoise can be tipped as accrued data point to one treatment better than 
the other and it is therefore not ethical to use equal randomization throughout. 
Response-adaptive randomization, in which the randomization probability is 
changed or updated based on accrued data and is very likely not equal between
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treatments, is the middle ground where the benefit of randomization is retained 
while the ethical concern is mitigated when more patients are randomized to the 
better performing treatment arm. It is this ethical appeal that has motivated the 
research and application of response-adaptive randomization.

10.1.2  Response-Adaptive Randomization in Clinical Trials

Early response-adaptive allocation methods rooted in the exploration of sequential 
designs, pioneered by Wald (1947). In Robbins’ seminal paper (1952), he not only 
proposed the famous play-the-winner rule, which assigns the next patient to the 
same treatment of the current patient or to the other treatment depending on whether 
the current patient has a success or not, but also declared with amazing prescience 
that “enough is visible to justify a prediction that future results in the theory of 
sequential design will be of the greatest importance to mathematical statistics and to 
science as a whole.” The blooming research and application of adaptive designs in 
clinical trials in the past two to three decades precisely ratified his prediction. The 
play-the-winner rule is a foundational proposal; however, it is deterministic, in the 
sense that the next patient is assigned to a treatment with a probability of one or 
zero. A randomized version was proposed by Wei and Durham (1978), now known
as the “randomized play the winner rule,” which randomizes the next patient to a 
winning treatment with a probability between one and zero. We will discuss this 
procedure in Sect. 10.3. Many different approaches have emerged, including two 
books (Rosenberger and Lachin 2002; Hu and Rosenberger 2006) with frequentist 
approaches and a book with Bayesian approaches (Berry et al. 2010) in addition to 
hundreds of papers in the top statistics and biostatistics journals.

For our purpose we define response-adaptive randomization as any randomiza-
tion procedure that changes randomization probability between treatment arms 
based on the accrued data in the course of recruitment. This includes fully adaptive 
randomization where the randomization probability is updated each time a new 
patient response is available, group sequential adaptive randomization where ran-
domization probability is updated at an interim analysis of a group sequential 
design, and anything in between. However, in this paper, our discussion will be 
focused on fully adaptive randomization.

This chapter is not intended to be a technical survey of statistical methodologies 
for response-adaptive randomization. Instead we will give a quick scan of different
approaches to response-adaptive randomization, and then provide a thorough 
assessment of practical applicability of such procedures. More specifically, in Sect. 
10.2 we will introduce a template that characterizes the relationship between effi-
ciency and degree of skewing to a treatment arm through response-adaptive ran-
domization. Section 10.3 categorizes available randomization procedures into two 
types, heuristic procedures and optimal procedures, with some typical examples for 
each type. In Sect. 10.4, we discuss regulatory concerns and most often encountered 
views against application of response-adaptive randomization procedures. We con-
clude in Sect. 10.5 with some recommendations for a sensible path forward.
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10.2  The Fundamental Question of Response-Adaptive 
Randomization

Clinical trials are usually multiple objective studies, with some of them competing 
with each other. For example, cost and ethical concerns demand a trial using as few 
patients as possible. On the other hand, a large sample size is needed to power a trial 
to be conclusive. Response-adaptive randomization faces similar challenges to bal-
ance different objectives. For instance, through response adaptation, more patients 
may be randomized to a better performing treatment arm, which is beneficial from 
ethical point of view. However, this creates an imbalance between treatment arms, 
and potentially can lead to significant loss of power. To maintain the same power, a 
larger sample size is called for, which in turn can result in more patients assigned to 
an inferior treatment arm. Such conflicting objectives require a systematic approach 
to select the best response-adaptive randomization procedure.

A response-adaptive procedure has two components. The first we call the limit-
ing allocation proportion, which is the proportion of all patients randomized to a 
treatment arm if N, the total sample size of the trial, tends to infinity. Very often, a 
limiting allocation proportion depends on parameters that describe treatment end-
points. For example, in case of two treatments A and B with binary responses, a 
limiting allocation proportion may be q q qB B A( )+ , known as urn allocation pro-
portion, where q i A Bi i= − =1 θ , ,  with θi the probability of success for a patient 
assigned to treatment i. In other words, the number of patients randomized to a 
treatment is inversely proportional to the failure rate of that treatment, ensuring that 
more patients will be assigned to the treatment arm with a smaller failure rate. The 
second component we call the randomization method, which is a process that 
defines how to update or change randomization probability after new patient 
response(s) is available. Some randomization methods, for example urn models as 
described in the next section, always lead to the same limiting allocation proportion; 
whereas other randomization methods, for example the doubly adaptive biased coin 
design (DBCD) described in the next section, can target a chosen limiting allocation 
proportion.

In Hu and Rosenberger (2006), they ask a fundamental question about
response- adaptive randomization, can we develop a response-adaptive random-
ization procedure that results in fewer failures without loss of power? Here the 
power loss is compared to nonadaptive randomization procedure. The question 
can be addressed using a formal evaluation template by Hu and Rosenberger 
(2003), which decomposes the expected noncentrality parameter of Z-test for two 
proportions into three parts, with the first part determined by the limiting alloca-
tion proportion of a response-adaptive randomization procedure, the second part 
determined by the  difference between the empirical allocation proportion and limit-
ing allocation proportion, and third part determined by the variance of mean square 
error of the empirical allocation proportion. Interestingly, the first part is dependent 
on the limiting allocation proportion only and will be maximized when the limiting 
allocation proportion is the Neyman allocation proportion, which gives rise to 
the largest power given the total sample size and is to be derived in Sect. 10.3.2. 
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The second part vanishes if the empirical allocation proportion approaches to the 
limiting allocation fast and the third part is a function of the variance of the 
empirical allocation proportion (we call the variance of the randomization 
method) and is always negative. For a technical treatment of this template, refer 
to Hu and Rosenberger (2003). This template therefore presents an explicit link
between power of the test, the limiting allocation proportion, and the variance of 
the randomization method. An ethically desirable response-adaptive randomiza-
tion procedure should choose an appropriate limiting allocation proportion that 
reduces the number of failures without much deviation from the Neyman alloca-
tion proportion, and should choose an appropriate randomization method leading 
to the limiting allocation proportion with as small variance as possible.

The same template can be built for other scenarios. For example, Zhang and 
Rosenberger (2006) gave a similar template for continuous responses. Also note 
that although the fundamental question by Hu and Rosenberger (2006) is concerned 
about the ethics and efficiency, it can be generalized as, “Can we develop a response- 
adaptive randomization procedure that assigns more patients to a treatment arm(s) 
to achieve a particular objective without loss of power?” The particular objective 
can be an ethical one, as mentioned above, or quick identification of the best dose
in dose finding studies. Then the template can be used to quantify the tradeoff 
between skewing allocation proportion for a particular objective and efficiency of
the statistical test.

10.3  Response-Adaptive Randomization Procedures

Many response-adaptive randomization procedures have been proposed. Some pro-
cedures are heuristic while others are based on a formal optimization approach. In 
this section, we introduce some of these procedures.

10.3.1  Heuristic Procedures

10.3.1.1  Urn Models

The most famous response-adaptive randomization procedure is the aforementioned 
randomized play-the-winner rule. The rule can be best described as an urn model. An 
urn contains α balls representing treatment A and α balls representing treatment B. 
A ball is drawn, say, representing A, and a patient is then assigned to treatment A. If 
the patient has a success, then add β balls to the urn representing treatment A. 
Otherwise, if the patient has a failure, then add β balls to the urn representing B. So the 
urn composition is updated once a patient’s response is known, and skewed to the bet-
ter performing arm at the time. The properties of the randomized play-the- winner rule 
have been studied intensively (see, for example, Rosenberger 1999).
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Other urn models have been proposed, e.g., drop the loser rule (Ivanova 2003) 
with smallest asymptotic variance among all randomization methods that target the 
urn limiting allocation proportion (Hu et al. 2007). Interestingly, all these urn mod-
els lead to the same limiting allocation proportion, but their variances are different. 
According to the template, if one wants to choose an urn model, the one with the 
least variability is desired.

For more details on urn models, readers are referred to Chap. 10 of Rosenberger 
and Lachin (2002) and Chap. 4 of Hu and Rosenberger (2006).

10.3.1.2  Treatment Effect Mappings

An intuitive method to determine the limiting allocation proportion is to map the 
treatment effect into a function between 0 and 1. Such a treatment effect mapping 
method appeared first in Rosenberger (1993). Bandyopadhyay and Biswas (2001) 
proposed a treatment effect mapping for continuous responses. Consider a trial 
comparing two treatments with patient responses normally distributed with mean μi, 
i = A, B. They defined the limiting allocation proportion as 

 
Φ

µ µA B

T

−





 ,

 

where Φ(⋅ ) is the cumulative distribution function of the standard normal distribu-
tion and T is a tuning parameter. It has been shown that this allocation proportion 
leads to significant loss of power due to its significant deviation from Neyman allo-
cation (Zhang and Rosenberger 2006).

10.3.1.3  Bayesian Response-Adaptive Randomization

The Bayesian approach is a natural way to incorporate available data as a prior for 
decision making and therefore is advocated in response-adaptive randomization for
clinical trials (Biswas et al. 2009). However, because of emphasis of regulatory 
agencies on controlling type I error rate, this method is often discouraged as a deci-
sion making tool for confirmatory trials in drug approval applications. In this sec-
tion, we consider the Bayesian approach for Phase II trials where a better dose of a 
treatment needs to be identified in dose ranging studies or a treatment is compared 
to a control in proof of concept studies.

Thall and Wathen (2007) is an excellent introductory reference for why and how 
the Bayesian approach is used in response-adaptive randomization. We shall pro-
ceed with our introduction following their paradigm. The general procedure for 
Bayesian response-adaptive randomization:

 1. Choose a prior distribution for the parameters in the response variables, usually 
noninformative at the beginning and ideally a conjugate distribution to that of the 
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response variable. For example, if the response variable has a binomial distribution, 
a conjugate prior distribution will be a beta distribution.

 2. Determine the posterior distribution each time a patient’s response becomes 
available.

 3. By comparing posterior distributions or means of different arms, update the 
randomization probability for each treatment arm.

4. Randomize the next patient and go back to step 2.
 5. Repeat steps 2–4 until some stopping rule is satisfied or until the maximum 

sample size is attained.

In the following, we illustrate this idea by considering a trial comparing two 
treatments with binary responses and a maximum sample size N. Suppose responses 
of patients assigned to treatments A and B have a Bernoulli distribution with param-
eters θA and θB, respectively. We follow the steps listed above. Step 1 is to choose a 
prior distribution and a conjugate prior in this situation is a beta distribution. Since 
we assume there is no information to compare these two treatments at the begin-
ning, a noninformative prior of Beta distribution with parameters 0.5 and 0.5 or 
Beta(0.5, 0.5) is used for both treatment arms. In step 2, suppose NA and NB patients 
have been assigned to treatments A and B with sA and sB successes, respectively. It is 
straightforward to determine that the posterior distributions for θA and θB are 
Beta s N sA A A( . , . )+ − +0 5 0 5  and Beta s N sB B B( . , . )+ − +0 5 0 5 . In Step 3, we need 
to generate a metric representing the treatment difference using the two posterior 
distributions. An intuitive metric, as in Thall and Wathen (2007) and traced back to
Thompson (1933), is Prob(θA > θB), denoted by PA > B. Although this metric is not 
necessarily the optimal one, as will be commented shortly, we will use it in the fol-
lowing discussion for demonstration. The randomization probability for the next 
patient to treatment A, ρA, is defined by 

 
ρA

A B
c

A B
c

A B
c

P

P P
=

+ −
>

> >

( )

( ) ( )1  
(10.1)

where c is a tuning constant, with c = 0 for equal randomization and c = 1 for 
ρA = PA > B. Based on their simulation (Thall and Wathen 2007), c N N NA B= +( ) ( )2  
leads to a randomization procedure with the least variability. Again there are many 
ways to construct randomization probability in (10.1). In Step 5, a stopping rule is 
implemented in Thall and Wathen (2007) to select treatment A as better if PA > B > 0. 99 
and to select B as better if PA > B < 0. 01. Otherwise, the trial proceeds until all N 
patients have been randomized.

Several comments are in order for this Bayesian response-adaptive randomiza-
tion procedure. Firstly, this procedure can be readily generalized to more than two 
arms. For example, in the case of three treatments A, B, and C, the metric in Step 2 
can be generalized to be Prob(PA > PB, PA > PC), denoted by PA. Then Eq. (10.1) can 
be modified to

 
ρA

c

c c c

PA

PA PB PC
=

+ +
.
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Another way to generalize to more than two treatment arms is to use as a metric 
Prob ( )P PA >  where P  is the average of PA, PB and PC, as in Lee et al. (2012).

Secondly, ρA is not stabilized even when N is very large, which results in signifi-
cant variability of this procedure. Figure 10.1 depicts posterior Prob(θA > θB) (line 
with squares) and proportion of patients assigned to treatment A (line with solid 
circles) when true θ θA B= =0 25 0 30. , .  and no stopping rule is included. Note that 
even when N tends to 1,000, both PA > B and ρA remain decreasing, although the latter 
decreases more slowly since c N N NA B= +( ) / /2  approaches to 1/2 as N gets 
large. In fact, we can reasonably infer that the limiting allocation proportion of this 
procedure is zero. In other words, the limiting proportion to treatment A is 0 as long 
as θA < θB, which leads to an undesirable deterministic procedure.
Using the template, it is very easy to understand why this Bayesian response-

adaptive randomization procedure will have loss of power. The limiting allocation 
proportion, 0, deviates significantly from Neyman allocation proportion. This leads 
to a significant reduction in the first part of the decomposition in the template, there-
fore a significant loss of power no matter what randomization procedure is used. 
Response-adaptive randomization procedures based on the frequentist approach 
will suffer from the same problem if an inappropriate limiting allocation proportion 
is chosen, as will be seen in the following section.

Fig. 10.1 Probability of posterior of A larger than posterior of B and proportion of patients 
assigned to A
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10.3.2  Optimal Allocation Procedures

Based on the template, a desirable response-adaptive randomization procedure must 
select an appropriate limiting allocation proportion that balances ethical consider-
ation and preservation of power, and use a randomization method to target this pro-
portion with a small variability. In this section, we describe the optimal allocation 
approach to derive limiting allocation proportions that can preserve power, and a 
family of randomization methods targeting the proportions with small variance. In 
the following we again use a trial comparing two treatments with binary responses 
to demonstrate the optimal allocation approach.

Suppose we use the following Z-test to compare two treatments. 

 

θ θ

θ θ θ θ

 

   

A B
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where ni is the number of patients randomized to treatment i and n n NA B+ = . To 
derive a limiting allocation proportion that balances ethical consideration and power 
preservation, we use the following optimal problem,
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
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(10.2)

which minimizes the expected total number of failures with the constraint that the 
denominator of the test statistic is held constant. Solving this problem, we have 

 

n
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B
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B
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θ

θ
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or equivalently, the proportion to treatment A, ρA, is given by 

 

ρ
θ

θ θA
A

A B

=
+

.

 

This optimal allocation appeared first in Rosenberger et al. (2001) and has been 
called RSIHR proportion (acronym of authors’ initials). This optimal allocation 
proportion does not deviate much from Neyman allocation, which is the solution to 
(10.2) when the objective function is replaced with nA + nB, and proved to offer a 
desirable tradeoff between minimization of total failures and preservation of power 
after extensive comparison to other proportions (Rosenberger and Lachin 2002).
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Now since we have an appropriate limiting allocation proportion, next we 
consider a randomization method that targets this proportion. We recommend two 
methods, the DBCD method (Hu and Zhang 2004) and the efficient randomized 
adaptive designs (ERADE) (Hu et al. 2009). We start with the DBCD method, 
which is defined by the following allocation function. 

 
g x y

y y x

y y x y x y
( , )

[ ( )]

[ ( )] ( )[ ( )]
,=

−
− + − −

1

1 1 1

γ

γ γ

 

where γ is a tuning parameter with γ = ∞ defining a deterministic allocation method 
and γ = 0 defining the sequential estimation method (Melfi et al. 2001). Usually γ = 2 
is recommended and is used in the following discussion. During randomization, 
after j patients have been randomized, x will be replaced with NA(j)∕j, the empirical 
proportion of j patients to treatment A, and y will be replaced with an estimate of ρA, 
ρ A , based on responses of j patients. Then g N j jA A( ( ) , )/ ρ  is the randomization 
probability of the next patient to treatment A. 

The ERADE method uses a discrete allocation function, defined by,

 

g x y
y x y
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where 0 ≤ η < 1 is a tuning parameter reflecting the degree of randomization and a 
value between 0.4 and 0.7 is recommended. The allocation function was developed 
based on Efron’s biased coin design (Efron 1971), which can be obtained by forcing 
y =1 2  and η = 2 3 , an adaptive randomization method intended to assign equal 

number of patients to each treatment. The implementation of the ERADE method is 
the same as the DBCD method.

Figure 10.2 depicts the allocation functions of both methods when y = 0. 7 with 
tuning parameters γ = 2 and η = 2 3 . Note that for both methods, when x < 0. 7, 
then g(x, 0. 7) > 0. 7; when x > 0. 7, g(x, 0. 7) < 0. 7; when x = 0. 7, g(x, 0. 7) = 0. 7. In 
other words, based on j patients’ responses, if NA(j)∕j is larger than ρ



A , then next 
patient will be randomized to treatment A with a probability larger than ρ



A . On the 
other hand, if NA(j)∕j is smaller than the estimate of ρA, then next patient will be 
randomized to treatment A with a probability smaller than ρ



A . In the long run, both 
NA(j)∕j and ρ



A  will converge to ρA, the desired proportion to treatment A. However, 
these two functions are different in that the function for the DBCD is continuous 
whereas that of ERADE is discrete. This difference proves to be fundamental. By 
taking only three different values, the ERADE method is less variable than the
DBCD method. In fact, it has been shown that the ERADE method is asymptoti-
cally best, which means that the method has the least possible asymptotic variance 
of all response-adaptive randomization methods that target the same limiting allo-
cation proportion.
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Extensive simulations have showed that these two randomization methods perform 
very well with finite sample size (Hu and Rosenberger 2006). They are versatile in 
that they can target any limiting allocation proportions, for example, the limiting 
allocation proportion of urn models.

Recently, Flournoy et al. (2013) conducted a comprehensive comparison of dif-
ferent response-adaptive randomization procedures, including the ones we dis-
cussed in this section, with recommendations on choice of randomization procedures 
for binary outcomes and continuous outcomes.

10.4  Benefit–Risk Assessment

The major motivation for using response-adaptive randomization is initially for ethi-
cal considerations in that more patients can be randomized to a better performing 
treatment dictated by accumulated data. The application of such procedures has met 
significant resistance from major clinical trial stakeholders, such as statisticians,
clinicians, and regulators, after the first ECMO trial using randomized play-the- 
winner rule (Bartlett et al. 1985) that gave rise to a controversial design with ten out 
of total eleven patients allocated to the winning treatment arm. Although Bayesian 
response-adaptive randomization procedures have recently gained some momen-
tum, strong opposing voices still are heard frequently to challenge the value of 
response-adaptive randomization procedures (Chevret 2012; Korn and Freidlin 
2011). In this section, we conduct a comprehensive benefit–risk assessment of using
response-adaptive randomization and point out situations where such procedures 
can be applied with the most net benefit.

Fig. 10.2 The allocation functions of the DBCD and ERADE methods when y = 0. 7
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10.4.1  Regulatory Considerations

In February 2010, the Food and Drug Administration (FDA) released a draft guidance 
(FDA 2010) on adaptive design clinical trials for drugs and biologics. According to 
the guidance, trials are categorized into adequate and well-controlled (A&WC) 
studies (usually Phase III trials) and exploratory studies (usually Phase II trials) 
and the FDA has different perspectives on adaptive randomization for these two 
types of studies.

In the guidance, response-adaptive randomization is labeled as “Adaptive study 
designs whose properties are less well understood,” and “should be used cautiously 
in A&WC studies, as the analysis is not as easily interpretable as when fixed ran-
domization probabilities are used. Particular attention should be paid to avoiding 
bias and controlling type I error rate.” Since response-adaptive randomization aims 
to assign more patients to a treatment arm, thus creating a possible “poor balance in 
patient characteristics between the groups at the end of the study,” introducing bias 
into treatment effect estimate, the guidance concludes that “such poor balance in 
important characteristics could be a very significant problem for an A&WC study.” 
We think that the regulatory concern about potential bias due to imbalance treat-
ment assignment is sensible and we will address this concern later. However, their 
concern on controlling type I error rate is ungrounded, since there is adequate 
research by theory or by simulation showing optimal response-adaptive randomiza-
tion procedure controls type I error rate very well (Hu and Rosenberger 2006). Even 
for trials using Bayesian response-adaptive randomization, the frequentist frame-
work has been proposed for data analysis that strongly controls type I error rate
(Gaydos et al. 2012). Also there is vast literature that analysis of data from trials 
using response-adaptive randomization is as straightforward as when fixed designs 
are used, either following the standard methods based on normality or nonparamet-
ric methods based on linear rank test (Zhang and Rosenberger 2012). There is no 
difference in how to interpret the analysis results compared to fixed designs.

For exploratory studies (e.g., Phase II trials), the guidance in fact encourages 
companies to use adaptive designs, including response-adaptive randomization. 
According to the guidance, “Outcome dependent adaptive randomization is particu-
larly valuable for exploratory studies because it can make practical an increase in
the number of tested treatment options (increased breadth to the range of doses 
tested/and/or decreased step size between doses) explored for the drug’s activity and 
facilitate estimation of the dose-response relationship, and hypothesis testing is not 
the objective.” The authors agree with the guidance and think that more research is
needed for optimal response-adaptive randomization procedures for Phase II trials. 
As shown in last section, the Bayesian procedure, though being easy to understand, 
has very large variability compared to the optimal procedure. The optimal  procedure 
proposed in the literature mostly focuses on balancing ethical concerns and preser-
vation of power. In general, regulatory agencies have not emphasized concerns 
about the ethics of randomization and a scan through the FDA’s guidances, EMA’s 
guidances and ICH guidances on clinical trials suggests no texts discussing about 

L. Zhang and W.F. Rosenberger



195

allocating more patients to a treatment arm based on ethical consideration. In fact, 
the regulatory agencies are more concerned about potential bias due to treatment 
assignment imbalance and in the FDA guidance on adaptive design, “to address the 
concern regarding patient characteristics, we recommend that sponsors maintain 
randomization to the placebo group to ensure that sufficient patients are enrolled 
into the placebo group along the entire duration of the study.” Therefore, an optimal 
procedure for Phase II trials should be using a different objective function instead of 
one based on ethics. For example, one can minimize the total variances of parameter 
estimate if a parametric dose response model is specified and to be characterized. 
Such response-adaptive randomization procedures based on optimal properties 
should yield smaller variability and therefore either use fewer patients for a particu-
lar power or larger power given the number of patients.

In summary, although regulatory agencies labeled response-adaptive randomiza-
tion as “less well understood” adaptive designs and are cautious of using such pro-
cedures in A&WC trials, they are in general open or encourage companies to use 
response-adaptive randomization in exploratory studies. We also want to emphasize 
that by “less well understood” adaptive designs, the FDA intends to think these are
designs that lack of regulatory experiences, rather than designs that are too biased
to be valid, too difficult to understand, or too complex to implement. With accruing 
knowledge and experiences with response-adaptive randomization, the regulatory
agencies may become confident for its use in A&WC trials, in addition to explor-
atory studies.

10.4.2  Benefit–Risk Assessment of Using Response-Adaptive 
Randomization Procedures

Response-adaptive randomization was initially proposed to assign more patients to 
the better performing treatment by changing randomization probability based on 
accruing data. This ethical orientation has created significant controversies. The 
central question is, “does the benefit of response-adaptive randomization justifies 
the associated risk?” In this section, we will review most frequently cited drawbacks
of response-adaptive randomization and present situations where such designs can 
be justifiably applied.

We start with the purpose of response-adaptive randomization. As mentioned 
above, the initial intention was on ethical considerations. As noted in the FDA guid-
ance, “this randomization method had been used in placebo controlled studies 
chiefly to place more patients into the group with better outcomes.” However, we 
strongly remind the readers that the ethical appeal is not the only reason for using 
response-adaptive randomization. Instead, we would point out that the purpose of 
response-adaptive randomization is to achieve a particular trial objective by chang-
ing randomization probabilities in the middle of patient recruitment. The ethical 
consideration is only one of such objectives. Another objective may be, as men-
tioned in the FDA guidance, “…to suit the objective of dose response evaluation,” 
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because “response adaptive randomization appears to have the potential to obtain a 
more precise description of the dose response relationship by starting with a broader 
range of doses…” Another objective may be to maximize the power of a statistical 
test with a given total sample size and response-adaptive randomization with 
Neyman allocation (Zhang and Rosenberger 2006) can achieve the goal.

With this in mind, next we will examine many views in the literature against 
using response-adaptive randomization.

Response-adaptive randomization can only assign negligibly more patients to 
the better performing treatment. A typical example is a recent article (Korn and 
Freidlin 2011), “Outcome-adaptive randomization: Is it useful?” in which the 
authors conclude that “Adaptive randomization is inferior to 1:1 randomization in 
terms of acquiring information for the general clinical community and offers 
modest- to-no benefits to the patients on the trial, even assuming the best-case sce-
nario of an immediate binary outcome.” First, we note that the magnitude of benefit 
is a judgment call. For example, if a trial using the adaptive randomization with the 
same number of patients obtains the same analysis conclusion as using the fixed 
design, but causing five less patient deaths, is this benefit modest or large? Different 
people may have different opinions. Secondly, usually binary outcomes are used to 
demonstrate response-adaptive randomization, just as we did in previous sections. 
However, response-adaptive randomization in trials with other outcomes can pro-
duce larger benefits (e.g., continuous outcomes, Zhang and Rosenberger 2006 and 
survival outcomes, Zhang and Rosenberger 2007). Third, the purpose of response- 
adaptive randomization is not necessarily ethically oriented, and therefore it can 
still be used to achieve other objectives.

“…these trials [Bayesian adaptive randomization] are complex to design 
because there is a lot of flexibility in the selection of data sampling rules, allocation 
rules, early stopping rules, dose selection rules, models (doseresponse and longitu-
dinal) and prior definitions. These are also among the most difficult approaches to 
implement well.” (Gaydos et al. 2012). First, non-Bayesian adaptive randomization 
procedures are available which do not require prior definitions. Second, these 
designs do not necessarily have stopping rules and dose selection rules and if they 
do, they are no more difficult than other adaptive designs with similar rules. Third, 
for companies that run such trials the first time, some challenges exist. However, 
with the advance of technology, for example, the central data monitoring, interac-
tive voice response services (IVRS) and interactive web response service (IWRS), 
the added complexity in implementation of such trials is eased and becomes man-
ageable, with sufficient blinding like fixed designs. In fact, many clinical research
organizations can facilitate such randomization procedures.

Poor balance in patient characteristics can cause significant treatment effect esti-
mate bias. This is also a great regulatory concern, as mentioned in previous  sections. 
One remedy may be to use block adaptive randomization and block adjusted analy-
sis (Korn and Freidlin 2011) for large or long-term trials. Another remedy is to use 
covariate adjusted response-adaptive randomization (Hu and Rosenberger 2006). 
We agree that careful consideration should be taken to avoid bias.
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“The statistical inference is complicated because the treatment assignments and 
the responses are correlated; as a consequence, rerandomization tests must be used 
instead of traditional likelihood-based tests.” (Buyse 2012). We agree that the 
response-adaptive randomization generates correlated patient responses and a re- 
randomization test can (not must) be used for data analysis. However, it is well 
established that under moderate regularity conditions (satisfied in most trial set-
tings), traditional likelihood based tests can be used for inference with well-
controlled type I error rate (Hu and Rosenberger 2006).

“Adaptive randomization can cause accrual bias (if patients wait for the prob-
ability of receiving the better treatment to increase) and/or selection bias (if patients 
are aware of the emerging difference among the treatment groups).” (Buyse 2012). 
The accrual bias, coined by Rosenberger (1996), can be avoided by using a double 
blind strategy and the selection bias mentioned can be avoided under most trials 
settings where patients are not usually aware of the treatment effect difference.

More simulations are needed to understand the operating characteristics of 
such trials and more interactions are needed with the regulatory agencies. In gen-
eral, all adaptive designs, including well-understood adaptations according to the 
FDA guidance, need more simulations than traditional designs. However, with 
more experiences gained by all stakeholders, such simulations will help improve
clinical trial design and understanding response-adaptive randomization will 
become a routine.

Of course, we cannot exhaust the list of all objections to response-adaptive ran-
domization, but we want to emphasize that as any type of study design, response- 
adaptive randomization cannot be applied with significant net benefit in all situations. 
We believe that a path forward will be to use such procedures in exploratory studies 
first. As more experiences are gained by industry and regulatory agencies, response- 
adaptive randomization may become “well understood” and applied in general set-
tings including the A&WC trials.

10.5  Conclusions

In this paper, we introduced response-adaptive randomization procedures that can 
help achieve a specific objective or balancing conflicting objectives by skewing
randomization probability during the course of recruitment. The objective can be a 
traditional one as assigning more patients to a better performing treatment arm, or 
to get a more precise estimate of dose response relationship. Although the FDA 
guidance labels such adaptive randomization procedures as “less well-understood,” 
it in fact means these procedures, like sample size adaptation based on interim effect
size, are not widely applied in practice. “This guidance encourages sponsors to gain 
experience with the less well-understood methods in the exploratory study setting.” 
As more experiences are accumulated, we believe response-adaptive randomization 
can find its best niche in clinical research.
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Many misconceptions about response-adaptive randomization are ungrounded as 
addressed in the last section. Another misconception we want to address here is 
concerning the Bayesian procedure and optimal procedure. It seems that the 
Bayesian procedure has been most applied in Phase II trials and the optimal proce-
dure has been proposed toward A&WC trials. In essence, these two types of proce-
dures can be applied in both scenarios. Which procedure should be used in a 
particular scenario depends only on which procedure can achieve the desired objec-
tive more efficiently. In this regard, more research should be conducted on using 
optimal response-adaptive randomization procedures in exploratory studies or Phase 
II trials and on type I error rate control of Bayesian procedures in A&WC trials.
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    Abstract     The use of adaptive clinical trial designs for a drug development program 
has clear advantages over traditional methods, given the ability to identify optimal 
clinical benefi ts and make informed decisions regarding safety and effi cacy earlier in 
the clinical trial process. However, operational execution can be challenging due to 
the added complexities of implementing adaptive designs. These complexities 
deserve additional attention. Key operational challenges occur in several areas: avail-
ability of statistical simulation tools for clinical trial modeling at the planning stage; 
the use of trial simulation modeling approaches to ensure that the trial is meeting 
expected outcomes; and challenges regarding rapid data collection, clinical monitor-
ing, resourcing, minimization of data leakage, IVRS, drug supply management, and 
systems integration. The purpose of this chapter is to highlight several operational 
challenges that must be taken into consideration in conducting an adaptive clinical 
trial. Adaptive design implementation strategies are also discussed in this chapter.  
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11.1         Introduction 

 Execution at the operational level can be challenging given the additional complexi-
ties found when implementing adaptive designs; however, there are clear approaches 
to operational conduct that can be utilized successfully across each unique adaptive 
design method. 

 The successful conduct of any clinical trial requires cross-departmental coordi-
nation. Implementation of an adaptive design requires far greater integration from 
all functional teams which include biostatistics, data management, clinical opera-
tions, clinical research, regulatory, interactive randomization system (IVR system), 
and drug supply. Although this level of integration can provide operational com-
plexities, it can also allow for a unique opportunity to optimize the methods for 
which we work, thereby improving clinical trial execution by requiring highly effi -
cient and fully integrated processes from study design to fi nal project delivery. 

 The logistical infrastructure required to support the conduct of an adaptive design 
must refl ect the unique elements of the fi nal design. The long and successful tradi-
tion of “non-fl exible” double-blind randomized parallel group designs has led to the 
development of our current systems, tools, and processes as they are now estab-
lished across the industry. Supporting adaptive designs with the currently available 
infrastructure although not impossible may be viewed as challenging. Adaptive 
designs stray from the traditional development models as they benefi t from building 
(1) the capability for high-speed data acquisition, analysis, and integrated reporting 
into the trial supporting infrastructure; (2) focused real-time remote clinical monitor-
ing efforts for specifi ed critical safety and effi cacy data elements; and (3) increased 
fl exibility to implement the required adaptation. 

 Given the unique operational needs for adaptive designs, the implementation of 
integrated systems and processes with enhanced fl exibility and speed will clearly 
act as enablers for execution of adaptive designs; however, it is not an absolute 
requirement. This needs to be highlighted, to avoid misperceptions that adaptive 
design implementation is only possible in an advanced technology environment. 
Nevertheless, it should be acknowledged that advances in technology will hold the 
key to realizing transformational change in the clinical development paradigm. It is 
from within this environment that we anticipate that adaptive designs will move 
from being a minor player, as they are today, to becoming a major player from 
exploratory- through confi rmatory-phase clinical development programs, ultimately 
leading to signifi cant advances in drug development. 

 As technology improves, it is conceivable that informatics platforms will be 
available that allow for real-time data capture, interoperability with electronic medi-
cal records (EMR), reduced dependencies on source verifi cation, and the provision 
of fully integrated statistical analysis tools that will trigger patient randomization, 
monitor and dispense drug supplies, and utilize decision support methodologies to 
facilitate pre-planned adaptations and futility analysis, all of which will be invisible 
to the investigator, study teams, and sponsor. However, use of existing systems 
available today, along with integrated process methodologies and approaches, 
allows for conduct of an adaptive clinical trial. 
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 Given the preceding remarks, the following sections discuss some of the key 
operational considerations and challenges when implementing an adaptive design. 
Adaptive design implementation should not be a daunting experience, as there are 
consistent best practices that can be applied at the operational level regardless of a 
design method. The key to a successful trial execution will require the application 
of each of the principles that will be discussed in the following section, along with 
an in-depth planning stage taken place prior to study initiation. The planning stage 
is a critical component for adaptive design studies and will set the stage for project 
success.  

11.2     Planning Stage 

 The planning stages for an adaptive clinical trial must be completed prior to fi nal-
izing the decision to proceed. Adaptive designs should be considered only if they 
add benefi t to the overall drug development process, allow for effective operational 
implementation, and provide effi ciency gains, thus ensuring increased probability of 
success for a given compound. Adaptive designs are not a one-size-fi ts-all approach 
and should be carefully considered prior to implementation. Adequate planning can 
take 3 to 12 months, depending on clinical trial complexities. We recommend that 
the planning stage consist of three components—statistical design simulations, and 
operational simulation, followed by systems integration approaches—to ensure that 
all specifi ed design requirements can be executed at the operational level. The plan-
ning and design phase requires cross-functional collaboration and should include 
areas such as clinical research, biostatistics, pharmacology, regulatory, and clinical 
operations. Planning and executing an adaptive design study challenges the tradi-
tional approach to clinical trial conduct and requires a fully integrated team, nontra-
ditional resourcing, and integrated informatics approaches. 

 There are common operational approaches that can be applied across all adaptive 
design methodologies; therefore, the operational teams would benefi t from under-
standing the basic types of adaptive designs that are commonly used today. 

11.2.1     Adaptive Designs 

 An adaptive design is defi ned as “a multistage study design that uses accumulating 
data to decide how to modify aspects of the study without undermining the validity 
and integrity of the trial” (Dragalin  2006 ). To maintain study validity means provid-
ing correct statistical inference and minimizing operational bias, and to maintain 
study integrity means providing convincing results, pre-planning, and maintaining 
the blind of interim analysis results. 

 Flexibility does not mean that the trial can be modifi ed any time. Modifi cation 
and adaptations must be pre-planned and should be based on data collected during 
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the course of the study. Accordingly, the draft guidance of the US Food and Drug 
Administration (FDA) for industry on adaptive design clinical trials defi nes an 
adaptive design clinical trial as “a study that includes a prospectively planned 
opportunity for modifi cation of one or more specifi ed aspects of the study design 
and hypotheses based on analysis of data (usually interim data) from subjects in the 
study FDA ( 2010 ).” Analyses of the accumulating study data are performed at pre-
planned time points within the study, with or without formal statistical hypothesis 
testing. Ad hoc, unplanned adaptations may increase the chance of misuse or abuse 
of an adaptive design trial and should therefore be avoided FDA ( 2010 ,  2012 ) and 
EMA.CHMP ( 2007 ). 

 Operational teams must have a general understanding of adaptive design meth-
ods to proceed to the planning and design stage. To support this process, we have 
listed six commonly used adaptive design types:

•     Adaptive randomization designs . Here, alterations in the randomization schedule 
are allowed depending upon the varied or the unequal probabilities of treatment 
assignment. Adaptive randomization categories include restricted randomiza-
tion, covariate-adaptive randomization, response-adaptive (or outcome-adaptive) 
randomization, and covariate-adjusted response-adaptive randomization. 
Restricted randomization procedures are preferred for many clinical trials 
because it is often desirable to allocate equal number of patients to each treat-
ment. This is usually achieved by changing the probability of randomization to a 
treatment according to the number of patients that have already been assigned. 
Covariate-adaptive randomization is used to ensure the balance between treat-
ments with respect to certain known covariates. Response-adaptive randomiza-
tion is used when ethical considerations make it undesirable to have an equal 
number of patients assigned to each treatment. Adaptive assessment is made 
sequentially, updating the randomization for the next single patient or a cohort of 
patients using treatment estimates calculated from all available patient data 
received so far. In this situation, it should be feasible to identify the “better” 
treatment; the “better” treatment should not be associated with any potential 
severe toxicity; and delay in response should be moderate allowing the adapta-
tion to take place. Covariate-adjusted response-adaptive randomization com-
bines covariate-adaptive and response-adaptive randomization. These 
randomization categories and methods are reviewed by Rosenberger and Lachin 
( 2002 ) and by Hu and Rosenberger ( 2006 ). Response-adaptive randomization is 
the most diffi cult in the execution due to its frequent update and the need of the 
clean data for the randomization decisions. Chapter   10     of this book provides an 
overview of the response-adaptive randomization methods and challenges.  

•    Adaptive dose-ranging designs . Insuffi cient exploration of a dose–response rela-
tionship often leads to a poor choice of the optimal dose used in the confi rmatory 
trial, and may subsequently lead to the failure of the trial and the clinical pro-
gram. Understanding of a dose–response relationship with regard to effi cacy 
and safety prior to entering the confi rmatory stage is a necessary step in 
drug  development. During an early development phase, limited knowledge about 
the compound opens more opportunities for adaptive design consideration. 
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Adaptive dose-fi nding designs allow fuller and more effi cient characterization of 
the dose–response by facilitating iterative learning and decision making during 
the trial. Adaptive dose-ranging designs can have several objectives. For exam-
ple, they can be used to establish the overall dose–response relationship for an 
effi cacy parameter or effi cacy and safety parameters, estimate the therapeutic 
window, or help with the selection of a single target dose. The allocation of sub-
jects to the dose currently believed to give best results, or to doses close to the 
best one, has become very popular in clinical dose-fi nding studies—for example, 
when the intention is to identify the maximum tolerated dose (MTD), the mini-
mum effi cacious dose (MED), or the most effi cacious dose. Examples are cited 
by Lai and Robbins ( 1978 ), O’Quigley et al. ( 1990 ), and Thall and Cook ( 2004 ) 
and Chevret ( 2006 ). More rigorous approaches are based on the introduction of 
utility functions, which quantify the “effectiveness” of a particular dose, and 
penalty functions, which quantify potential harm due to exposure to toxic or non-
effi cacious doses. Examples are provided by Li et al. ( 1995 ) and Fedorov and 
Leonov ( 2013 ) and Marchenko et al. ( 2014 ). Chapter   7     of this book discusses 
different statistical approaches for dose selection in adaptive trials. 

 One of the appeals of early development adaptive designs such as adaptive 
dose- ranging designs is their greater acceptance by regulatory agencies. In fact, 
the FDA draft guidance on Adaptive Design Clinical Trials for Drugs and 
Biologics encourages sponsors to utilize adaptive designs in early development, 
to improve the effi ciency of exploratory studies, as well as to gain experience 
with the use of adaptive approaches.  

•    Adaptive group sequential designs . Here, a trial can be stopped prematurely due 
to effi cacy or futility at the interim analysis. The total number of stages (the 
number of interim analyses plus a fi nal analysis) and stopping criterion to reject 
or accept the null hypothesis at each interim stage is defi ned, in addition to criti-
cal data values and sample size estimates for each planned interim stage of the 
trial. At each interim stage, all the data are collected up to the interim data cutoff 
time point. Data are then analyzed to confi rm whether the trial should be stopped 
or continued. Staged interim analyses are pre-planned during the course of the 
trial and must be carefully managed by the operational teams. The opportunity to 
stop the trial early and claim effi cacy increases the probability of an erroneous 
conclusion regarding the new treatment (Type I error). For this reason, it is 
important to choose the signifi cance levels for interim and fi nal analyses care-
fully so that the overall Type I error rate is controlled at the pre-specifi ed level. 
The stopping rules can be based on rejection boundaries, a conditional power, or 
a predictive power/predictive probability in a Bayesian setting. The boundaries 
determine how conclusions will be drawn following the interim and fi nal analy-
ses, and it is important to pre-specify which type of boundary and spending func-
tion (if applicable) will be employed. The conditional power approach is based 
on an appealing idea of predicting the likelihood of a statistically signifi cant 
outcome at the end of the trial, given the data observed at the interim and some 
assumption of the treatment effect. If the conditional power is extremely low, it 
is wise to stop the trial early for both ethical and fi nancial reasons. While it is 
possible to stop the trial and claim effi cacy if the conditional power is extremely 
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high, the conditional power is mostly used to conclude futility. The choice of 
statistical approach and the type of boundaries should depend on the objectives 
of the trial and the role of the trial in a clinical program. The timing and the num-
ber of interim analyses should be carefully considered as well. While by increas-
ing the number of analyses, the chance of stopping prior to the end of the trial 
increases, many analyses during the trial might not be practical or even possible 
due to the fast enrollment or fi nancial constraints. Chapter   6     of this book gives 
more detailed description of interim analyses and the suggested timing of analy-
ses. While considering stopping for the overwhelming effi cacy, one should keep 
in mind the implication of stopping early on the safety profi le of the drug. More 
details on sequential designs can be found in Jennison and Turnbull ( 2000 ) and 
Proshan et al. ( 2006 ).  

•    Sample size re-estimation designs . These types of designs allow for sample size 
adjustment or re-estimation based on observed data at an interim time point(s) 
for which statistical analysis may be conducted in either blinded or unblinded 
manner, based on the criteria of treatment effect size, conditional power, and/or 
reproducibility probability. Sample size re-estimation can improve the outcome 
of the trial if the information used to calculate the original sample size was unre-
liable; if the change is necessary due to new or additional information from an 
ongoing or a fi nished trial; or if recent research in the therapeutic area has led to 
new requirements or standards. Although the fl exibility to adjust the sample size 
of a trial during an interim analysis is appealing when information is limited at 
the design stage, it does not come without a price. When the adjustment is made, 
it is important to take steps to preserve the Type I error rate. Bretz et al. ( 2009 ) 
review the adaptive design methodology including sample size reassessment in 
confi rmatory clinical trials. Sample size re-estimation is an adaptive design fea-
ture mostly used in confi rmatory trials, and usually it is used to increase the 
sample size (not to decrease). Implementation of adaptive procedures for confi r-
matory trials needs to be carefully planned and executed. Similar to adaptive 
group sequential designs, the number and the timing of sample size re-estimation 
require additional considerations. While it is possible to perform the sample size 
re-estimation multiple times, it is not recommended to perform it more than once 
during the study. Careful consideration must be given to the total sample size 
utilized for decision making at the planning stage and the processes that mini-
mize potential bias which may result from knowing an interim observed treat-
ment effect. In the case of unblinded sample size re-estimation, special attention 
should be given to the management of Data Monitoring Committees (DMC) and 
the control of the result dissemination. Chapter   14     of this book provides more 
information on consideration for planning interim analyses and DMCs.  

•    Biomarker adaptive designs . This type of design allows for adaptation using bio-
marker information. Modifi cations can be made to an ongoing trial based on the 
response of a biomarker that can predict a primary endpoint outcome, or one that 
helps select or change a treatment. Biomarkers can be used to select a 
 subpopulation with an enhanced benefi t from the study treatment. Wang et al. 
( 2007 ) describe approaches to evaluation of treatment effect in randomized trials 
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with a genomic subset. Designs that can be used to perform the subgroup search 
and identifi cations based on biomarkers are discussed in Lipkovich et al. ( 2011 ) 
and Lipkovich and Dmitrienko ( 2014 ). Stallard ( 2010 ) describes a seamless 
phase II/III design based on a selection using a short-term endpoint; Jenkins et al. 
( 2011 ) present an adaptive seamless phase II/III design with subpopulation selec-
tion using correlated endpoints; and Friede et al. ( 2012 ) introduce a conditional 
error function approach for subgroup selection. Statistical designs that are used 
to screen biomarkers, validate biomarkers, and enrich the study population based 
on a biomarker or several biomarkers are of great interest to our industry and 
society. It should be kept in mind that there is still a gap in clinical development 
between identifying biomarkers associated with clinical outcomes and establish-
ing a predictive model between relevant biomarkers and clinical outcomes.  

•    Adaptive seamless phase II/III designs . Seamless phase II/III designs have 
become more popular in drug development. Such designs aim to reduce the over-
all sample size by allowing the data from phase II patients to be used in phase III 
analysis (inferentially seamless) and/or eliminating the time between phases, 
which results in a shorter total drug development time (operationally seamless). 
An adaptive seamless phase II/III design is a two-stage design consisting of the 
so-called learning stage (phase II) and a confi rmatory stage (phase III). Just as 
there are a number of phase II designs, there are a number of corresponding 
phase II/III designs. Seamless designs pose a lot of challenges as the time for 
planning a confi rmatory trial is eliminated or rather combined with the planning 
time of phase II when the information is limited and the uncertainties of the treat-
ment are bigger. A suffi cient benefi t should be expected from the combined 
phase II/III trial as compared to the strategy with a phase II trial followed by a 
separate phase III trial. In order to retain the validity, a Type I error control is 
important for the inferentially seamless designs. Approaches based on the com-
bination test principle that combines the stagewise  p -values using a pre-specifi ed 
combination function or on the conditional error principle which computes the 
Type I error under the null hypothesis conditional on the observed data at interim 
are used to control Type I error rate. Bretz et al. ( 2009 ) provide a comprehensive 
review of the methods and offer practical considerations.    

 More details and references on types of adaptive designs can be found in Chap.   1     
of this book.  

11.2.2     Trial Design and Planning 

 The design planning session is a critical element of the initial planning phase, for 
which several design sessions may be required until the design is fi nalized. Design 
sessions should include representation from key functional areas. The power of 
visualization tools cannot be underestimated and is strongly recommended during 
the planning and design stage. Computer-assisted simulation modeling, traditional 
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business process modeling (BPM) techniques, and other software tools should be 
used during this stage to support the project teams’ understanding, development, 
and optimization of the proposed trial, the critical data elements for collection, and 
predicted data fl ow during the course of the trial. Business process modeling is an 
activity that allows for the representation and documentation of key clinical trial 
activities, so that proposed operational processes may be analyzed and optimized. 
In this capacity, business process modeling is a useful tool that allows for the opti-
mization of complex operational processes that are critical to the successful execu-
tion of an adaptive design. Simulations and business modeling diagrams should 
map all operational activities from study start-up, through patient recruitment and 
corresponding data collection, and to all pre-specifi ed interim time points for data 
analysis and decision making, allowing the team to assess the impact of the desired 
design on clinical operations (e.g., drug supply, treatment assignment, sample size 
re-estimation). Simulations and diagrams will thereby permit optimization of clini-
cal trial operations and fi nalization of the design. In addition, access to metadata to 
address many of the design and operational questions will assist in fi nalizing the 
clinical development and implementation plan. 

 The planning team should have an understanding of the drug candidate, mecha-
nism of action, target product profi le (TPP), and commercialization requirements in 
addition to the existing and future competitive landscape. Such understanding facil-
itates the development of a comprehensive clinical operational strategy. 

 At a minimum, the following questions should be addressed during the planning 
stage.

    (a)    Country Selection Criteria 
 What is the optimal placement of the study in relation to the proposed protocol, 
treatment pathways, current standards of care, availability of patients, and abil-
ity to gain regulatory approvals and market authorizations for a specifi c 
country?   

   (b)    Patient Recruitment Estimates 
 What is the estimated rate of patient recruitment per country, based on the tar-
geted therapeutic area, drug indication, and prior performance of targeted study 
sites with drugs of a similar indication? What is the competitive landscape for 
drugs currently in clinical trials that may compete for patients? What is the 
investigator’s interest in the protocol, treatment regime, drug class, and likeli-
hood that the trial will be recommended?   

   (c)    Critical Data Elements 
 What are the essential data elements that must be collected and analyzed for 
interim decision making during the course of the trial? In what time frame will 
all essential data elements be collected (days, weeks, or months)? What are the 
primary, secondary, and safety endpoints for the trial and what is the forecasted 
event rate?   

   (d)    Electronic Case Report Forms (eCRFs) Design 
 How will the clinical trial case report forms be designed to capture essential data 
elements across all proposed patient visits during the course of a clinical trial?   
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   (e)    Data Cleaning 
 What data elements must be cleaned and/or source document verifi ed, to meet 
design requirements and acceptability by the Data Monitoring Committee? 
What are the best methods for data cleaning to meet planned analysis, decision 
making, and proposed design adaptations?   

   (f)    Data Capture 
 How will the data be collected by investigators, central laboratories, or other 
external sources? How will these data be integrated and in what time frame will 
all data be fully integrated (hours, days, months) to meet data transfer and 
planned statistical analysis requirements?   

   (g)    Study Start-Up 
 What is the impact of an adaptive design on study start-up and planned regula-
tory approvals based on the selected design, estimated patient recruitment, and 
forecasted time frame for which critical data elements and accumulated trial 
data will be analyzed for planned decision making and adaptation?   

   (h)    Investigational Product 
 What is the impact of an adaptive design on drug manufacturing, packaging, 
drug quantities, and supply chain, and how will investigational product be man-
aged during the course of the clinical trial? Careful consideration is required as 
the impact to drug supply is directly related to the fi nal design (e.g., will the drug 
be blinded to the investigators and patients, what route of drug administration 
will be utilized, how will the proposed clinical trial adaptations impact drug sup-
ply, and what will be the mode of drug administration that is of ease for usage 
by the investigator?). Additional considerations should also be given to the 
potential impact on patient-informed consents and clinical trial agreements.   

   (i)    Systems 
 What systems will be utilized for clinical study conduct and how will these 
systems be fully integrated? Systems may include electronic data capture, inter-
active voice randomization systems, clinical laboratory systems, centralized 
reading vendors (imaging, etc.), customized statistical programs (drug supply 
simulations, interim analysis applications, adaptive randomization), and clini-
cal trial management systems.   

   (j)    Agency Approval 
 What is the fi nal regulatory strategy, based on fi nal protocol and country selec-
tions, which will ensure that proposed regulatory submission and approval 
timelines meet the fi nal project plan for all study    deliverables?   

   (k)    Program Timelines 
 Given a clear understanding of the critical design elements, time frame for data 
capture and data cleaning, planned interim analysis, country selection, and 
patient recruitment, what are the key project milestones for the entire clinical 
program?     

 At the end of the planning and design sessions, the team should have comprehen-
sive documentation and clear visualizations that describe all operational deliver-
ables, and corresponding time frames for when each deliverable will be achieved to 
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support the fi nal design. The team should develop a baseline integrated project plan, 
fi rmly assess time and cost of the clinical study, and identify potential risks and 
contingencies if required. Given the implementation of BPM techniques during this 
stage, and the development of clear process maps for all steps across all functions, 
the implementation team will have a well-documented roadmap that describes how 
the study will actually be implemented. As an end result, the team will have a com-
prehensive analysis of what needs to be accomplished, by what time frame, and 
precisely how the work will be executed. The importance of this level of detail can-
not be underestimated given that a percentage of staff on the execution team might 
not have adaptive clinical trial expertise. A publication by  Clinical News , May 
2013, an article entitled “Tufts Report Sees Growing Use of Adaptive Trial Designs,” 
documents that it is estimated that approximately 20 % of all clinical trials today are 
adaptive and adoption continues to grow. Therefore, due to the continued and grow-
ing adoption of adaptive clinical trials at this time, it is reasonable to anticipate that 
project teams, including investigative sites that are selected to perform the adaptive 
trial, will comprise both experienced and non-experienced staffs. Taking the time to 
clearly document not only timelines and deliverables, but also process maps and 
project work instructions that defi ne how the work will be completed, will assist 
greatly in staff education, training, and optimal execution of the trial.  

11.2.3     Clinical Trial Modeling and Simulation 

 Trial simulations that compare different design’s options, evaluate a range of 
assumptions and possible scenarios, and compare operating characteristics of 
designs are an essential step in a trial design and planning stage. Gaydos et al. 
( 2009 ) outline points to consider on trial simulation. As mentioned in the paper, no 
trial design can be globally optimal. Besides statistical considerations and assump-
tions, operational assumptions should be evaluated and simulated. Each develop-
ment and operational team needs to defi ne the criteria for a design optimization. 
There are several software packages available commercially that one can use to 
design an adaptive trial, but none of the available software has the full range of 
assumptions and adaptations built in. It is critical for a statistician responsible for 
the trial design to have a good knowledge of adaptive design methodology and be 
able to use a commercial software or to write a customized code if necessary. 
Chapter   8     of this book provides a review of currently available statistical software. 

 An important aspect of the planning and design process is to complete the appro-
priate trial simulations to optimize an individual trial and assess relative impact on 
overall development. Clinical trial simulation is a key step in evaluating potential 
clinical outcomes using various design scenarios and clinical trial assumptions to 
validate the design, ensuring effective execution at the operational level. Simulation 
models are used to predict the relationships between certain inputs such as patient 
recruitment, dosing arms, clinical outcomes and event rates (such as endpoints, 
adverse events (AEs), and serious adverse events), sample size, interim analysis 
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time points, and other inputs that must occur within the study domain. Simulation 
tools can also be used to monitor clinical trial outcomes during the course of the 
study, within trial simulation, to ensure that the study is meeting expectations. 
Clinical trial simulations utilize computer programs to mimic actual conduct of the 
trial in a virtual capacity, and can be used to reforecast predicted outcomes; simula-
tions might also include an analysis of project cost, and cost management. 

 Prior to study initiation, and as an output of the planning sessions, the team 
should have an established baseline simulation model, or enrollment model, that 
forecasts key deliverables and project milestones which comprise the baseline proj-
ect plan. The project team will utilize the baseline project plan to ensure that opera-
tional execution will allow for implementation of key design elements. The baseline 
project plan should have, at a minimum, the following planned deliverables and/or 
milestones: (1) country-specifi c study start-up deliverables which include site iden-
tifi cation, site selection, regulatory submission, and approvals; (2) site initiations 
and timing for initiations; (3) patient recruitment to include screened, randomized, 
and country-specifi c recruitment caps when required; (4) dosing arms; (5) patient 
exposure; (6) clinical endpoints and key data elements; (7) electronic case report 
from completion and submission milestones; (8) site and external data submission 
milestones; (9) planned statistical analysis milestones including within trial, interim, 
and DMC; (10) remote data cleaning, and data lock deliverables throughout the 
clinical trial; and (11) clinical resource requirements to meet project deliverables. 

 A well-built baseline project plan that comprehensively forecasts and documents 
project deliverables and milestones provides a roadmap for clear execution. Further, 
reforecasting key program deliverables based on actual clinical trial data received 
during the course of the trial is an essential component for study management. 
Otherwise, how would one know if planned study objectives can be delivered on 
schedule after the study has been initiated? The ability to evaluate project variation 
from the initial baseline plan and predict future outcomes using clinical trial data 
collected during the course of the study (predictive analytics) will allow the project 
team to manage the trial using data-driven techniques. This is important, as data- 
driven trial execution provides objective evidence to determine if study activities are 
meeting planned expectations, allowing for implementation of early risk mitigation 
strategies if the project is not on schedule. 

 Analyzing project variance from baseline and using actual versus planned 
parameter’s values and predicted versus planned outcomes will allow the team to 
quickly assess clinical trial status. Simulation modeling and reforecasting tech-
niques, when used during the course of the study, are a signifi cant aid to earned 
value management (EMV), which is a project management technique for measuring 
project performance and progress. Earned value management methodologies assess 
measurements of project scope, schedule, and cost which should be implemented in 
every program. Although the intent of this chapter is not to delve into the essentials 
of good project management practice, an adaptive clinical trial requires exceptional 
project management rigor, provided by a highly seasoned, experienced leader who 
can implement earned value management using clinical trial simulation tools and 
data-driven analysis to assist with the overall management of the project.   
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11.3     IVRS and Drug Supply 

 The interactive voice randomization system (IVRS), used to manage patient ran-
domization and assignment to treatment arms, must be fully integrated into the 
clinical trial operational processes. Statistical analysis outputs used for an adaptive 
randomization or dose–response designs are directly integrated into the IVRS 
ensuring appropriate subject randomization. The IVRS must be tightly integrated 
with the EDC platform. A typical IVRS data set may contain the following for 
newly randomized subjects: country, site, subject ID, date of birth (may be age or 
month and year of birth as per local requirements), gender, randomization code, 
randomization date, core study or substudy, enrollment status, drug interruption(s), 
and drug restart. Study coordinators will call the IVRS to notify the system of 
patient status, allowing data to be tracked in real time. These data are extremely 
valuable when managing patient enrollment and trial operations. 

 The IVRS must also integrate directly with the drug supply chain mechanism. 
Drug supply requirements need to be simulated during the planning stage as a part of 
the clinical supply optimization process to ensure appropriate production, labeling, 
and inventory management. Clinical drug supply optimization parameters typically 
include simulation and demand forecasting, regulatory strategy for submission and 
approvals, packaging and labeling strategy, distribution strategy, drug supply plan 
with trigger methodology, GMP/GDP regulatory review, IVRS specifi cation require-
ments, and systems integration strategy. Chapter   15     gives more information on drug 
supply strategies and approaches for clinical supply modeling and simulation. 

 Appropriate drug formulations, dosing regimens, and routes of administration 
also need to be identifi ed. For example, various dose levels can be produced by com-
bining two or more tablets of specifi c doses. For intravenous drugs, varying dose 
levels can be achieved by requiring drug preparation to be conducted on site, using 
vials of equal volume dispensed in several dose strengths, and providing instructions 
as to how much should be removed from each vial to prepare a new dose.  

11.4     Site Selections 

 As discussed earlier in this chapter, and as a result of the growing adoption of adap-
tive clinical trials, not all investigators that may qualify for study participation will 
have adaptive clinical trial expertise. It is anticipated that an adaptive clinical trial 
will utilize a blend of experienced and non-experienced clinical investigative sites. 
Given the complexities of the adaptive design and the need for near-real-time data 
entry and cleaning for decision making, sites that are selected for study participation 
must have adequate, experienced staffs to manage the accelerated pace of the adap-
tive design. Qualifi ed sites must have experience in the specifi c therapeutic area and 
indication, have managed regulated clinical studies conducted under an IND, have 
the necessary infrastructure to support the added complexities of the trial, and have 
access to the appropriate patients. The demands of an adaptive clinical trial exceed 
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those of the more traditional designs, and site personal and institutional review 
boards must be willing to accept additional responsibilities to ensure that the trial 
can meet the intended design requirements. We have observed that given adequate 
staff, institutional infrastructure, and thorough study training, non-experienced 
investigative sites have not only been able to effectively manage even the most com-
plex adaptive designs, but also have been extremely supportive of the clinical trial, 
as they have recognized that adaptive designs may allow for earlier commercializa-
tion of a new drug product which would ultimately benefi t their patients. 

 Sites need to be prepared to handle, at a minimum, (1) near-real-time data entry 
with minimal quality errors, (2) immediate submission of study endpoints including 
safety and effi cacy, (3) effective drug management and accountability, (4) co- 
operation with clinical research organizations for real-time remote data cleaning, 
(5) potential changes to patient-informed consents, and (6) exceptional manage-
ment, and organization of source documents. Sites must be extremely effective in 
the area of high-quality data management activities to ensure that all pre-planned 
statistical analyses can be completed on schedule, and that associated DMC deci-
sions as a result of such analysis are immediately implemented should they impact 
their institution. Investigators need to be fully committed from study initiation to 
fi nal database lock given the need for continually clean, accumulating data, which 
must be obtained during the course of the study across all patients, and which 
directly impact interim decision making.  

11.5     Patient Recruitment 

 Patient recruitment rates are a critical design element, as the rate of randomization 
will drive the rate at which treatment data can be collected and analyzed, allowing 
for appropriate decision making. Recruitment rates are specifi c to the therapeutic 
area, indication, protocol requirements, and standards of care for the country in 
which the study is conducted. Initial patient recruitment assumptions could utilize 
reliable data sources from historical trials, and estimation using data mining tech-
niques. However, fi nal recruitment assessments should utilize data derived from 
comprehensive feasibility assessment which is conducted for the specifi c drug can-
didate. Recruitment assessments that are specifi cally developed for a drug candidate 
should be incorporated into fi nal simulation and enrollment models that comprise 
the fi nal baseline project plan. Given the requirements of the fi nal protocol and 
study design, a comprehensive feasibility assessment is an important output of the 
planning and design phase, and should be considered as one of the key deliverables 
from this phase to give confi dence in patient recruitment estimates, along with base-
line project planning deliverables and milestones. 

 The rate at which patients are recruited determines the treatment data capture 
rates required for statistical analysis and decision making. As a result, the rate at 
which the trial recruits must complement the desired adaptive design—faster is not 
necessarily better. Instead, recruitment rates must be optimized to meet the desired 
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pre-planned analysis within the specifi ed time period. As one example, for dose–
response designs, slower recruitment is preferable so that a dose adjustment can 
effectively be implemented for the next patient or the group of patients. Recruiting 
too quickly may not allow effective dose adjustment to occur during the specifi ed 
randomization period. Optimizing recruitment rates based on the unique design 
requirements has a positive impact on the quality, length, and cost of the clinical 
trial. The speed of randomization also has a direct impact on key operational com-
ponents—all of which need to be simulated during the planning stages—such as 
total number of sites required for study conduct, the rate of study start-up, site initia-
tions, drug packaging, and supply chain management. Chapter   16     discusses 
approaches for patient recruitment modeling and simulation.  

11.6     Treatment Data and Data Collection 

 Careful consideration should be given to the types of data used for an adaptive 
design and the method for data collection. Pre-planned statistical analysis must 
include a detailed assessment of all data that are required to perform an adaptation, 
in addition to when the data will be available and how they will be collected. 
Adaptive designs are better suited to the use of early outcome measurements as 
opposed to delayed ones. Early measures of clinical endpoints, biomarkers, or other 
effi cacy endpoints allow for revised dosing allocations (response-adaptive designs), 
adaptive randomization (based on specifi c biomarkers), or other forms of design 
adaptations. Case report forms should focus on collection of key safety and effi cacy 
data, and not on the collection of nonessential data elements, which can signifi -
cantly increase trial costs and drive operational ineffi ciencies in an already complex 
study design.

   Consideration must be given to those data elements that require cleaning rather 
than full source document verifi cation, as source verifi cation impacts the speed at 
which data can be utilized for decision making and increases operational complex-
ity and cost. EDC systems are widely used today, which speed up the data collection 
and cleaning process. However, fully integrated clinical trial platforms—allowing 
for accelerated data capture, remote data monitoring and cleaning, seamless data 
transfer, and statistical analysis for DMC decision making—are not yet mainstream. 
As a result, clinical systems need to be tightly integrated to manage the complexities 
of an adaptive trial, ensuring minimization of data leakage and protection of the data 
and preserving blinded trial status. As technology improves, it is conceivable that 
informatics platforms will be available that allow for real-time data capture, interop-
erability with electronic health records (EHR) systems, e-Source archives, reduced 
dependencies on clinical monitoring, and the provision of fully integrated statistical 
analysis tools used for decision making for adaptive trials. However, use of existing 
systems, along with integrated approaches, allows for conduct of an adaptive clini-
cal trial, but requires additional up-front planning time. 
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 In addition, it is important to develop a comprehensive data management plan 
that documents all aspects of data handling for adaptive clinical trials. At a mini-
mum, the data management plan should contain the following: (1) data cleaning 
plan, (2) edit specifi cations, (3) non-eCRF handling guidelines (include all relevant 
clinical trial data that are not captured in a traditional electronic case report form), 
(4) data coding guidelines, (4) SAE reconciliation guidelines, (5) QC plan, (6) data 
handling guidelines that document deviations from study-specifi c guidelines and 
planned procedures, (7) data integration guidelines, (8) local lab guidelines and 
central lab guidelines, (9) unblinding procedure guidelines, (10) data storage guide-
lines, (11) DMC guidelines, and (12) study-specifi c guidelines (e.g., eDC, IVRS). 

 The intent of the data management guidelines is to ensure proper data handling 
and data integrity during the course of the study. It is extremely important that rigor-
ous adherence be applied to all data handling rules to ensure that the data are not 
inappropriately biased in any way. Clinical trial data that are utilized for submission 
to regulatory authorities and for market authorizations must be protected to ensure 
that data are of the highest quality. In this capacity, it is important to clearly 
defi ne roles and responsibilities within the data management and clinical teams, 
ensuring that appropriate access to data is provided or prohibited to a given party. 

  Fig. 11.1    An adaptive design process fl ow: response-adaptive allocation design       
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As one example, for clinical trials that are conducted in a blinded manner, it is 
 customary to utilize a blinded data management team in addition to an unblinded 
team. The unblinded team has proprietary access to unblinded clinical trial data, as 
they will be responsible for data integration of unblinded data and preparation of 
safety and effi cacy reports for the data monitoring committee. However, unblinded 
data management teams must be fi rewalled from the clinical team and clinical trial 
activities, to avoid the introduction of operational bias into the clinical trial, which 
could potentially reduce the overall integrity of the data and trial. 

 For individuals that are new or less experienced to the clinical trial arena, we 
recommend a strong understanding of GCP regulations and best practices in data 
handling to protect clinical trial data from potential scrutiny by regulators. Data 
must also reside on secured storage locations, ensuring separation of blinded and 
unblinded data whether it is data with the actual treatment codes, PK/PD data, or 
safety information that can unblind treatments. Adherence to good clinical practice 
(GCP) and data handling procedures is a critical element of adaptive design trials, 
given the need for more frequent pre-planned statistical analysis and adaptation(s) 
during the course of the trial, coupled by the need for the operational teams to 
implement the required adaptation.  

11.7     Centralized Remote Clinical Monitoring 

 A nontraditional clinical monitoring approach should be utilized for adaptive design 
trials, including a hybrid clinical monitoring approach consisting of centralized 
remote monitoring in addition to onsite source data verifi cation (SDV). Centralized 
remote monitoring provides for continuous cleaning across key data elements in 
near real time, allowing for more immediate data transfers, statistical analysis, and 
decision making. The onsite clinical monitoring effort should take a risk-based 
monitoring approach, requiring minimal onsite time and source verifi cation only for 
key data elements. SDV activities will typically lag behind remote data cleaning, so 
it is important that decision makers carefully consider those data elements that do 
not require SDV versus those that do. In general, most planned analyses that result 
in adaptations rely on data elements that do not require SDV. However, for some 
design elements, SDV may be required; in these cases, the timing of the data trans-
fer and interim analysis must be carefully planned. 

 Risk-based monitoring techniques using advanced analytics and signal detection 
methodologies can also improve data quality by highlighting potential quality issues 
that need to be addressed during the trial. Some risk-based monitoring analytics 
utilize statistical analysis and variance around key risk areas that must be mitigated, 
such as AEs, SAEs, enrollment rates, protocol violations, and missing data. 

 In conclusion, nontraditional monitoring methods should be employed for adap-
tive clinical trials, taking account of data fl ow, timing of data entry, types of data 
collected, risk, data cleaning requirements, and clinical resource allocations. 
This will enable study requirements to be met and decision making to be based on 
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the specifi ed design parameters. Remote monitoring efforts must be amplifi ed in 
addition to advanced analytics methodologies to ensure high-quality clinical trial 
conduct during the course of the trial. 

 The last remaining question is that of data cleanliness required for a given analy-
sis. Is 100 % clean truly necessary for a given analysis? The answer to this question 
will depend upon the total amount of data needed for the analysis, the key data ele-
ments that will be used in the analysis, and the degree of risk should a different 
decision be reached if the data were modifi ed. In general, we believe that more data 
is usually better than exclusively relying on completely cleaned data. In order to 
assess true risk of being misled by uncleaned data, one must compare the results of 
analysis based on:

    1.    The full dataset (including uncleaned data points)   
   2.    The subset of “completely cleaned” data     

 The level of data cleanliness and SDV must be established during the design ses-
sions, will be driven by the specifi c adaptive design that is planned to be imple-
mented, and must take into consideration the key data elements necessary for the 
analysis, decision making, and subsequent adaptations.  

11.8     Data Monitoring Committee (DMC) 

 DMCs are an important component in adaptive design trials, proactively assessing 
the risk benefi t of the treatment, often at several time points during the trial, and 
making recommendations for study modifi cations based on adaptive rules specifi ed 
in the protocol and/or in the DMC charter. In order to maintain trial integrity and 
minimize bias, an independent statistical center (ISC) should be utilized to prepare 
the data for DMC review and decision making. Often, a contract research organiza-
tion (CRO) or an academic research organization (ARO) plays a role of the 
ISC. Depending on the design requirements, the ISC may need to comprise an inde-
pendent unblinded team that has been appropriately fi rewalled from the rest of the 
study team to ensure that clinical data is not compromised and data leakage is mini-
mized. The DMC charter outlines roles and responsibilities of DMC and summarizes 
statistical methods and necessary adaptations; the charter should be prepared at the 
planning stage and fi nalized prior to the fi rst look/interim analysis. A DMC is assem-
bled by a sponsor or a CRO/ARO supporting the trial, but free of a sponsor and its 
designee in terms of fi nancial and professional interests. While there are well-estab-
lished requirements including the FDA Guidance on Establishment and Operation of 
Clinical Trial Data Monitoring Committees, adaptive designs present additional 
challenges for a sponsor, DMC and ISC. It is critical that a CRO/ARO supporting an 
adaptive trial has extensive experience in performing interim analyses specifi cally in 
therapeutic area under study, and have appropriate fi rewalls established and standard 
operating procedures (SOP) that guard unblinding processes. Additionally, a CRO/
ARO statistician should be knowledgeable in adaptive designs to perform necessary 
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adaptations and analysis, and serve as a link between the sponsor and the DMC by 
acting as the designated data analysis center biostatistician. Chapter   14     provides 
more detailed information on this topic.  

11.9     Clinical Trial Management and Communication 

 Given the increased operational complexities of an adaptive design, effective project 
management and communication is a critical component to success. Adaptive design 
project teams must work in a nontraditional environment, be tightly integrated, and 
have the proper resources, instructions, and tools to manage the clinical trial. 

 Cross-functional collaboration is paramount when designing an adaptive design 
clinical trial, and the planning and design phase is a critical element that must be 
implemented to ensure success. How can the success of an adaptive clinical trial be 
measured? This is an important step because a successful adaptive trial provides 
benefi t to the overall drug development process, allows for effective implementation 
at the operational level, and provides effi ciency gains from the standard model. 
In addition, we can use existing technologies to develop and operationalize an adaptive 
design trial, and can leverage common best practices across all unique designs.  

11.10     Summary 

 The number of publications in adaptive designs has increased signifi cantly in recent 
years, and many of these designs are rapidly growing in use. While adaptive designs 
add complexity to trials, they allow more effi cient use of information for decision 
making, which ultimately translates into improved probability of success and 
shorter overall time to market for successful products. Execution of adaptive design 
trials at the operational level can be challenging, especially in studies involving 
multiple drugs, doses, biomarkers, and populations, as in the BATTLE (Zhou et al. 
 2008 ) and I-SPY2 TRIAL (Barker et al.,  2009 ). The planning stage is a critical 
component for adaptive design studies. The additional time is necessary for up-front 
planning and cross-functional coordination. Education should be provided to all key 
participants to lay out the risks and benefi ts of applying adaptive designs. Detailed 
statistical design simulations and operational simulation models are required for 
studying planning to establish an effective execution. Randomization scheme, 
recruitment rate, treatment duration, timing of treatment readouts, endpoints, patient 
and site enrollment, dropouts, study drug formulation, route of drug administration, 
and drug supply should be considered during the planning stage. Timely data cap-
ture is an important enabler for adaptive designs. Electronic data capture should be 
used for studies with adaptive designs, especially for the trials with decision-critical 
data. The quality of data, effective data fl ow, and transfer processes should be dis-
cussed and pre-planned prior to interim analyses. Interim analyses have the 
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potential for introducing statistical and operational biases due to the feedback of the 
information produced by such analyses. To minimize operational bias, interim anal-
yses should be performed and reviewed by an independent statistical center and a 
data monitoring committee. It is critical that a CRO/ARO playing a role of ISC 
would have a necessary knowledge in adaptive designs and established processes 
that support necessary elements of an operational execution of such designs. 

 In this chapter, we highlighted a few key operational challenges and discussed 
strategies that must be taken into consideration for conduct of an adaptive clinical 
trial. Next chapters will provide more details on different aspects of adaptive design 
implementation such as drug supply, patient recruitment, IVRS, planning of interim 
analyses and managing DMCs, and available technology to protect trial integrity.      

    Appendix: Process Flow Example 

 We previously discussed that business process modeling is an activity that allows for 
the representation and documentation of key clinical trial activities, so that proposed 
operational processes may be analyzed and optimized. In this capacity, business pro-
cess modeling is a useful tool that allows for the optimization of an adaptive clinical 
trial design. Described below are the essential elements of the trial design planning 
process, using business process modeling, which can occur in four general stages. 

 Stage 1:  Compound and portfolio evaluation . In this stage, the drug manufacturer 
will proceed with a portfolio management process to make an assessment of which 
compound will be developed, based on the scientifi c, technical, medical, and com-
mercial information required to assess the probability of technical success of the 
molecule. A decision will be made at the end of this evaluation period to either 
proceed or not proceed with the development of the compound. The information 
gathered in the stage will be utilized as a part of the adaptive clinical trial develop-
ment approach. 

 Stage 2:  Trial design simulation . In this stage, commercial software or custom soft-
ware applications will be utilized to simulate key features of the proposed adaptive 
design and assess operating characteristics of the design. Data from other trials with 
this compound might be used to understand the uncertainty of treatment effect assump-
tions. The relative impact of the adaptive design trial on overall development should 
be considered. Examples of specifi c adaptive design requirements may include drop-
ping or adding treatment arms; terminating the trial during an interim analysis due to 
effi cacy, futility, or safety; changing patient randomization scheme; re-estimating the 
sample size; selecting subpopulations; and any combinations of the above. 

 Stage 3:  Operational simulation . In this stage, the desired adaptive design is simu-
lated to ensure that the design can actually be executed at the operational level. 
Simulations will include regulatory submission and approval timelines based on pro-
posed country selections and study protocol, patient recruitment model, data 
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submission timelines (all data elements required for data collection and statistical 
analysis), pre-planned interim analysis and DMC milestones, drug supply, compli-
ance model, data cleaning activities, resource allocations, and fi nal proposed pro-
gram timelines. It is important to note that operational simulation efforts may 
indicate that the proposed study design may not be operationally feasible, which will 
require modifi cation of the fi nal study design to ensure successful implementation. 
The process of simulation is a critical element and should not be underestimated. 

 Stage 4:  Operational execution plan . In this stage, given fi nalization of the intended 
design and appropriate operational simulation to ensure that the trial can be success-
fully executed, a comprehensive operational plan must be developed to ensure that 
the appropriate systems are in place and can be fully integrated to meet the fi nal 
project plan deliverables. Business process fl ow diagrams are essential to ensure 
that each operational function understands how the trial will be executed, how the 
data will fl ow through the trial, and what key decisions need to be made at specifi c 
time points within the trial. This is an essential step in the process when working 
with multiple business partners, and multiple external vendors. As discussed previ-
ously, the planning and design process may take several months to complete, but is 
well worth the effort (Fig.  11.1 ).   
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Abstract In this chapter we discuss operational challenges that are specific to 
adaptive trials (as well as complex nonadaptive trials): essentially, the need to vali-
date the design, to control the trial centrally, to collect and analyze key data rapidly, 
to preserve the trial blinding and integrity, and to document all important adaptive 
decisions taken. We illustrate these challenges using an actual phase I trial in oncol-
ogy, and argue that the issues can be addressed through proper planning, choice of 
experienced vendors and independent groups (coordinating center and DSMB), sta-
tistical teams with adequate expertise in the design chosen (randomization and 
CRM), recourse to efficient computer technology (IWRS, EDC, automated 
e- mailing), and oversight by a team that must be as flexible as the trial design!

Keywords Operational issues • Phase I • Randomization • Drug supply • CRM
(continual reassessment method) • IWRS (interactive web response system) • EDC
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12.1  Introduction

The growing enthusiasm for adaptive design trials is sometimes abated by concerns 
about difficulties with their conduct (Quinlan et al. 2010). While it is undeniable 
that adaptive design trials are generally less straightforward to implement than clas-
sical, fixed sample size designs, potential difficulties can all be addressed prospec-
tively (Krams et al. 2007). Regulatory guidance documents are essential background 
references (EMA 2007; FDA 2010). Sponsors who choose to conduct adaptive 
design trials will want to ensure that the providers with whom they partner to con-
duct the trial have adequate expertise in terms of statistical methodology as well as 
operational experience in terms of using advanced technology (IWRS, EDC) and 
dealing with multiple partners (DSMB, drug supply centers, investigational sites).

In this chapter we discuss implementation issues using a phase I clinical trial as 
a case study. This trial is in many ways more complex than larger scale, later phase 
adaptive design trials, but it is illustrative of many requirements that are common to 
all adaptive designs: the need to allow for sufficient planning of the trial design and 
implementation, to validate the design prior to starting the trial, to oversee the trial 
progress centrally, to monitor drug supply at all participating sites, to collect patient 
data in real time, to clean essential data with minimal delays, to analyze the data in 
a timely fashion for appropriate adaptations to be possible, to revisit some of the 
design assumptions over the course of the trial if required, to preserve the trial 
blinding and integrity, and to document all important adaptive decisions taken over 
the course of the trial for future audits.

12.2  Case Study

The case study used here is based on an actual trial, although details have been 
modified to preserve anonymity. An experimental drug for supportive therapy of 
cancer patients had to undergo phase I testing. The goal of the phase I trial was to 
find the maximum tolerated dose (MTD), defined as the dose of the drug for which 
the probability of dose-limiting toxicity (DLT) was equal to 33 %. The experimental 
drug was added (with no expected interactions) to standard anticancer therapy.

12.2.1  Design Constraints

The design of the trial had to fulfill the following requirements specified by the 
sponsor:

• A continuous dose scale should be used over a pre-specified range of feasible 
doses.

• About ten patients should be treated at the MTD.
• A placebo group of about ten patients should be included.
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• Patients should be randomized in double-blind fashion with less patients 
randomized to placebo than to the experimental drug.

• The total sample size of the trial should be about 30-40 patients.

These conditions implied that a nonstandard phase I design had to be worked out. 
It was decided to design the trial using the likelihood-based version of the continual 
reassessment method (CRM) (O’Quigley and Shen 1996) on a continuous dose scale 
(Storer 2001). The trial was split into two stages: an initial dose-escalation stage and 
a model-guided stage. In both stages, patients were randomized to receive placebo or 
the experimental drug in addition to standard chemotherapy according to a 1:3 ran-
domization ratio. The main reason for including the placebo group was to collect 
information about the background rate of a particular type of chemotherapy- related 
toxicity the supportive therapy was aimed at reducing. The information collected was 
intended to provide some idea about the potential effect of the therapy and could be 
used by the sponsor for planning (e.g., sample size calculations) of the next trials.

12.2.2  Initial CRM Design

Initially, the design of the trial was specified as follows. In the dose-escalation stage, 
consecutive patients were assigned to doses equal to multiples of a dose d, i.e., 0.5d, d, 
2d, 3d, 4d, 5d, 6d, and 6.7d. Already at this stage, randomization to placebo (with 25 % 
probability) was implemented; that is, the assignment of patients to the sequence of the 
pre-planned active doses was interleaved with a random assignment of placebo.

Upon observing the first instance of dose-limiting toxicity (DLT), the model- 
guided stage was to be initiated. Note that observing a DLT for placebo did not
trigger the stage, nor were placebo-assigned patients used in updating the model.

In the model-guided stage, the hyperbolic-tangent dose-toxicity model was used 
for selection of the doses for consecutive patients. The model was of the form

 
p b

b
x,( ) = ´+( ){ }tanh / ,1 2

 

where π(x,β) is the probability of DLT for dose x (Fig. 12.1).
Upon observing the DLT status for a patient, the value of the parameter β would 

be updated based on all available data. Then, the next patient would be assigned the 
dose for which the probability of the DLT, based on the updated model, was equal 
to 33 %. In this stage, doses would be chosen on a continuous scale. That is, the dose 
with a DLT probability exactly equal to 33 %, according to the updated model, 
would be selected. Section 12.3.6 describes how these continuous doses were 
 managed. The following stopping rule was used for the model-guided stage: before 
assigning a dose, the probability of assigning the next four patients to a dose within 
±(2/15)d relative to the last assigned dose was computed.

• If the probability was less than 90 %, then the trial would continue.
• If the probability was equal to at least 90 %, then the number of patients already 

treated at doses higher or equal to the last assigned dose minus (2/15)d would be 
determined.
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 – If ten or more patients had already been treated at doses higher than or equal 
to the last assigned dose minus (2/15)d, the trial should be stopped.

 – If less than ten patients had already been treated at doses higher than or equal 
to the last assigned dose minus (2/15)d, additional patients—maximally four—
would be assigned to the last assigned dose in order to reach (if possible) the 
total of ten patients, after which the trial would stop without reassessing the 
model.

If, according to the above rules, any additional patients were to be added to the 
group receiving the experimental drug, and if the placebo group contained less than 
ten patients, up to two extra placebo patients could be included in the trial, so that 
the size of the placebo group would get as close as possible to ten patients.

12.2.3  Design Modifications

During the conduct of the trial, several modifications to the design had to be made. 
In particular:

• After the trial started, it appeared from extensive simulations that the condition 
used in the stopping rule for the model-guided stage (at least 90 % probability of 
assigning the next four patients to a dose differing by at most (2/15)d from the 
last assigned dose) was too stringent and would result in too large a sample size. 

Fig. 12.1 Probability of dose-limiting toxicity (DLT) as a function of dose (x). In the continual 
reassessment method (CRM), parameter β is re-estimated every time the outcome of a patient 
(DLT or no DLT) is observed
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Thus, the condition was changed to at least 80 % probability of assigning the 
next four patients to a dose differing by at most (3/15)d from the last assigned 
dose. For this condition, the expected number of patients receiving experimental 
drug would be equal to about 40. The modification was introduced by a formal 
amendment to the protocol.

• The results observed for an initial sequence of patients included in the initial 
dose-escalation stage suggested that the drug was safer than assumed and that the 
MTD could be higher than the initially set maximum of 6.7d. Hence, the margin 
of tolerance, used in the condition specified in the stopping rule, was changed 
from an absolute one to a relative one. In particular, the stopping-rule condition 
was changed to at least 80 % probability of assigning the next four patients to a 
dose differing by at most 10 % relative to the last assigned dose.

• Given that the initial results suggested that the drug was safer than assumed, 
changes to the initial dose-escalation scheme were introduced. First, the escala-
tion of doses beyond the 6.7d was formally allowed. To this aim, a second proto-
col amendment was issued, which also included the change of the margin of 
tolerance mentioned earlier and an update of the drug preparation and adminis-
tration procedures implied by the increase of the allowed maximum escalated 
dose. Next, once the total dose of 10d had been reached, the basic increase of 
dose equal to d, adopted for the initial dose-escalation step, appeared to be much 
too small. Hence, the increase was changed to 20 % of the last assigned dose. 
That is, the sequence of doses to be assigned in the initial dose-escalation stage 
was modified to 10d, 12d, 14.4d, 17.28d, etc. Moreover, the maximum dose to be 
used in the trial was reset to 66.7d. These modifications were introduced by a 
third protocol amendment, in which additional updates of the drug preparation 
and administration procedures had to be made.

12.2.4  Trial Conduct

The trial was conducted in five centers. The occurrence of a DLT was assessed dur-
ing a 5-day period. The DLT status of each patient was reviewed by a Data Safety 
and Monitoring Board (DSMB), based upon all adverse event data provided by the 
clinical sites. The DSMB was also charged with the approval of the next dose assign-
ment within the model-guided stage. Hence, the role of the DSMB extended well 
beyond the traditional role of monitoring safety, adding to it the roles of an adjudica-
tion committee and a trial steering committee (Ellenberg et al. 2002; DeMets et al. 
2006; Herson 2009; also see Chap. 14 of this book for further discussions).

The study took about 1 year until completion. Eventually, the trial never reached the 
model-guided stage, as not a single DLT was observed. The assumed level of toxicity 
of a new drug may in fact be overestimated in phase I trials, which calls for flexibility 
in the range of doses that are planned to be studied (see, e.g., Paoletti et al. 2006). In 
this trial, the accrual was stopped with a last assigned dose of the experimental drug 
equal to 62d, i.e., close to the (updated) maximum of 66.7d. The total number of 
patients included in the trial was equal to 28, with seven patients assigned to placebo.
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12.2.5  Challenges

The implementation of this trial raised a number of challenges. These included the 
need for implementing randomization and blinding, which are not standard prac-
tices in a phase I study. The randomization system had to be linked to a drug supply 
system that monitored the treatment kits available at each of the five sites. The 
DSMB had to accept or overrule the dose of each patient randomized to receive the 
experimental drug. The DSMB also had to adjudicate the outcome of each patient, 
and decide whether a DLT had been observed or not.

The conduct of this trial was further complicated by the additional design modi-
fications made during the conduct of the study, which implied modifications to the 
system used for randomization and assignment of the doses to the patients. All of 
these challenges are discussed in more detail in the next sections. Admittedly some 
of the challenges are peculiar to our case study, such as major design modifications 
that are typically not permitted in later phase trials but are to be expected in first-in-
man trials. However, this case study is of interest because many of the solutions 
adopted to address the adaptive nature of the trial are generic and can be imple-
mented identically for simpler adaptive designs of later phase trials.

12.3  Implementation

The flow chart of Fig. 12.2 summarizes, in simplified form, the way in which this 
phase I trial was implemented.

Clearly, implementation of such a design requires integration of several com-
puter systems (Gallo et al. 2006). An interactive web response system (IWRS) was 
used for patient randomization and for drug supply management and an electronic 
data capture (EDC) system was used to enter clinical data (case report forms).  
An automated e-mailing system was used to send messages from the coordinating 
center to the DSMB and to the five clinical sites where patients were being treated. 
Documents were stored in, and shared through, a web portal that gave different 
access privileges to the individuals involved in the trial conduct.

12.3.1  Planning

The planning phase is of key importance to ensure the successful implementation of 
an adaptive design (Quinlan and Krams 2006). Because the design is nonstandard, 
custom software must usually be developed, tested, and validated. The various func-
tionalities required for the trial conduct, as outlined in the next sections, usually 
involve different departments (typically, information technology, data management, 
biostatistics, and clinical operations). An “adaptive design team” dedicated to the 
trial should be put in place by the trial sponsor (Fardipour et al. 2009a). This team 
is responsible for choosing the various technologies required for the trial conduct 
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(IWRS, EDC, CRM or other adaptive statistical module, communication system), 
as well as any other vendors and the committees involved in the trial (DSMB, drug 
supply center, independent statistical center). In our example, the adaptive design 
team was based at the coordinating center of the trial, which also served as the inde-
pendent statistical center. Adaptive trials have been reported in which two indepen-
dent statistical centers were put in place in order to fully protect the blinding of 
interim data (Fardipour et al. 2009a). Generally speaking, blinding is a key consid-
eration in planning adaptive trials (Gallo 2006), especially those in which part of the 
trial is confirmatory and is intended to be used for registration, such as in seamless 
II/III designs (Maca et al. 2006).

12.3.2  Randomization

Having a correct and validated randomization system is essential for any random-
ized trial. A centralized randomization is essential for an adaptive trial where the 
randomization depends on the totality of the current data. This may sound trivial but 
a number of trials have failed or have raised serious questions about how patients 

Fig. 12.2 Flow chart showing implementation of phase I design. IWRS interactive web response 
system, EDC electronic data capture, DSMB Data Safety and Monitoring Board
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were randomized. There are several aspects to this issue: First and foremost, does 
the vendor implementing the randomization system have adequate statistical com-
petence? There exist a number of classical randomization methods (permuted 
blocks with or without stratification, minimization, etc.), and the choice of a method 
as well as the details of its implementation are among the most important features 
of any randomized trial. This is also true when outcome-adaptive randomization is 
chosen, whereby the probability of treatment allocation varies over the course of the 
study depending on the observed patient outcomes. Second, is the integrity of treat-
ment allocation ensured, and how? Third, are measures in place to address devia-
tions, such as patients not taking the medication allocated to them? Fourth, is the 
randomization monitored over time, to ensure that the system does what it is sup-
posed to do? For all these reasons, it may be desirable to choose a vendor that has a 
proven system and a track record of successful randomization implementations. 
Chapters 9 and 10 of this book provide details about points to consider regarding 
randomization in adaptive trials.

12.3.3  Continual Reassessment Method (CRM)

Special-purpose software (a SAS macro) was developed for this trial to implement 
the CRM method described in Sects. 12.2.2 and 12.2.3. The software was qualified by 
running extensive simulations aimed at checking the operational characteristics of the 
design, including the identification of the MTD and the expected sample size. One 
unusual feature in this trial was the major design changes that occurred during trial 
conduct, and required software changes and revalidation. The statistician responsible 
for the trial attended the DSMB meeting during which all relevant data were reviewed. 
Once the DLT status of a patient was confirmed by the DSMB, the statistician was 
responsible for including the information into the randomization system. Also, in the 
model-updating stage, the statistician was responsible for running the CRM module. 
However, as has already been mentioned, the trial did not reach this design stage.

12.3.4  Interactive Web Response System (IWRS)

The availability of a flexible IWRS was essential to manage the complexity of this 
adaptive design. The trial was designed to go through two distinct stages, each stage 
being substantially different from the previous one in terms of the randomization 
features. The IWRS was also designed to generate information to, and integrate 
information from, the DSMB, to provide a treatment kit number to the unblinded 
pharmacist at each site, to control the opening and closure of recruitment at each 
participating site, and to monitor investigational product needs at each site, taking 
into account the subjects and site history, as well as the current trial status.
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As stated above, the DSMB involvement was continuous in so far as they had to 
approve the dose to be administered to every patient randomized to the experimental 
drug. This is unusual and had implications on the choice of DSMB members as well 
as on the DSMB Charter, which contained clear explanations about the flow of 
information between the different parties involved in the trial. Every effort was 
made to keep all processes as simple as possible for DSMB members. They did not 
have to log into the IWRS; rather, they had stated their preference to send a fax with 
their decision to the coordinating office which entered the necessary information 
into the IWRS. All other communications to and from the DSMB were done via 
e-mailing system, which was largely automated to minimize both the time required 
and the opportunity for errors.

The sites were informed automatically and in real time of the trial status. This 
was important since the randomization was stopped and started before and after 
each DSMB meeting. They needed to know at every moment whether the random-
ization was open or closed so that they knew when they could randomize patients.

12.3.5  Electronic Data Capture (EDC)

The EDC system in this trial was used to collect key data for the IWRS to act as a 
central control system. The EDC captured real-time information on the subject 
treatment and outcome (in this case any dose-limiting toxicity). This information 
was fed to the clinical database, and was to be used by the CRM for dose selection, 
and reviewed by the DSMB for dose approval (Fig. 12.2).

12.3.6  Drug Supply Management

The drug supply process can be complex in adaptive trials, especially when the trial 
proceeds in stages with different types of supplies (product, dose, formulation, etc.) 
It is important to test the product dosage, packaging, distribution, storage, or usage 
before trial start, and to monitor these features closely during the early phases of the 
adaptive design trial. When changes in any of these parameters are mandated by 
the trial design, all possible scenarios must be simulated to estimate the quantities 
of the product required, where and when. Further discussions of points to consider for 
the drug supply process in adaptive trials can be found in Chap. 15 of this book.

An experimental product never comes in unlimited quantities and is often quite 
expensive; the shipments can have significant costs; storage conditions are not 
always ideal; product shipments may not arrive immediately. Having these restric-
tions in mind is key in order to put in place the drug supply process including 
mechanisms that will help make appropriate real-time decisions in case of unex-
pected events with drug supply. A challenge that is specific to adaptive trials is to 
optimize drug supply across all scenarios allowed by the adaptive design. 
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Whenever possible, the product formulation or packaging should ensure that there 
will be no need for additional product regardless of the scenario that actually takes 
place, for example in designing the product kits in such a way that all possible doses 
can be reconstituted with a given number of kits. This not only reduces the cost of 
drug supply, but it also ensures the integrity of the trial blind after adaptation.

For the study described above, the treatment was given as an infusion, so there 
was flexibility in modifying the dose. Since this was a double-blind study, the inves-
tigator could not be aware of the treatment being given, so the syringes were pre-
pared by an unblinded pharmacist. The pharmacist prepared two syringes by 
drawing the appropriate amount of study drug and adding the appropriate amount of 
sterile water for injection in order to get the final volume needed. The IWRS system 
provided detailed instructions to the pharmacist on the size of the syringe, and how 
much active drug and how much saline solution to combine in each syringe. All of 
this information was dynamic and depended on which dose was to be given. This 
was defined at the beginning of the study, and then modified and revalidated when 
the protocol increased the maximum possible dose as the IWRS system had to fore-
see all possible doses.

12.3.7  Data Safety and Monitoring Board (DSMB)

Adaptive designs, by definition, include interim analyses which may or may not 
trigger adaptations. Our phase I design is an extreme example in which the outcome 
of every patient receiving experimental treatment could potentially change the dose 
for the next patients entered in the trial. In traditional open-label phase I dose- 
escalation trials, the investigators themselves review the interim data to decide on 
the next dose to be administered, but in the double-blind trial discussed here the 
interim analyses were reviewed by an independent DSMB, just as they would be in 
most other adaptive design trials. The independence of the DSMB was felt essential 
to maintain the blinding and prevent operational bias from entering the trial post- 
adaptation, had the investigators and/or the sponsor been aware of interim trial 
outcomes.

Regulatory guidance documents (EMA 2005; FDA 2006) as well as several 
books (Ellenberg et al. 2002; DeMets et al. 2006; Herson 2009) discuss require-
ments for the composition and role of DSMBs, and provide templates for DSMB 
Charters. The role of DSMBs in adaptive trials is covered in detail in Chap. 14 of 
this book. The most important role of DSMBs is to ensure the protection of the 
patients entered in the trial, which entails not only a careful and regular review of 
safety data, but also a close scrutiny of the trial conduct. As stated above, DSMBs 
are typically independent from all other parties involved in the trial conduct and the 
integrity of the trial data is ensured by restricting access to interim trial outcomes to 
DSMB members only. In our phase I example, the algorithm for dose escalation was 
fully pre-specified and the DSMB acted mostly as a safeguard against unexpected 
drug effects. In late-stage adaptive designs used for confirmatory trials, it is also 
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essential that the DSMB has complete independence. In some situations, however, 
e.g., in early-stage adaptive design trials, the sponsor may find it difficult to leave 
important adaptations to a completely independent committee, no matter how care-
fully chosen. Leaving aside the sponsor’s financial interest, it may be the case that 
the sponsor has access to important information not available to the DSMB, so that 
it may be in the best interest of the trial that the sponsor be involved in the decision 
making. If the sponsor needs to be represented at all in the decision making, the 
PhRMAWorking Group onAdaptive Trial Designs (Gallo et al. 2006) recommends 
that the rationale for this be documented, that the sponsor representatives who 
receive access to interim results be adequately distanced from the trial conduct, and 
that their number be limited to the bare minimum. Table 12.1 lists essential condi-
tions under which sponsor involvement may be considered in adaptive decisions.

It should be emphasized that even if all necessary precautions are taken to main-
tain interim results blinded, adaptations will often convey indirect information on 
the treatment effects—for instance, when doses are dropped for lack of efficacy. For 
a detailed discussion of this issue, see Gallo (2006).

One problem that occurred in the trial described above, but also frequently in 
other trials, is that the DSMB may see data that raise serious questions about the 
adequacy of the design assumptions. To protect against unwarranted consequences 
of such problems, it is useful to put in place a trial Steering Committee, involving 
all parties concerned, and to pre-specify rules for any required interactions between 
the Steering Committee and the DSMB (Fardipour et al. 2009b). The fact that a trial 
is planned to be adaptive does not imply that any type of data-derived design changes 
are feasible; in fact, a well-designed adaptive trial must pre-specify what specific 
adaptations will be considered, and under what conditions. However, the setup of an 
adaptive trial ensures that mechanisms are in place to discuss other design changes 
that might be required, as in our example, whilst preserving the trial integrity.

Table 12.1 Conditions under which sponsor involvement may be considered in adaptive decisions

Condition Details

Rationale for involvement There is a strong and documented rationale for a few sponsor 
representatives to be involved, either to reach the best decision 
for the trial itself or to secure further funding for the remainder 
of the trial (e.g., if a sample size increase is considered)

Complete independence 
from trial conduct

The sponsor representatives are not involved in trial operations, 
and clearly understand the issues and risks associated with 
knowledge of interim results (e.g., operational biases)

Minimal data shared The sponsor representatives receive “minimal” pre-specified 
interim data, i.e., only at the adaptation point, and only the data 
required to reach a decision (unlike a DSMB who has a broader 
role, and may therefore see more extensive interim data)

Documentation Any release of information to sponsor representatives is duly 
documented and tracked using a secure electronic system

Adequate blinding Adequate firewalls are put in place to guarantee blinding for all 
individuals other than those involved in adaptive decisions
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12.3.8  Communication System

As is clear from Fig. 12.2, the various parties involved in the conduct of the trial 
(coordinating center, drug supply center, DSMB, participating sites) had to be 
informed quickly and consistently of new events triggering further actions. This was 
made possible through implementation of an automated e-mailing system between 
these parties, which was felt to be more reliable than an e-mailing system triggered 
by human intervention. Such a system also provided an unalterable record of the 
sequence of events throughout the course of the trial. In addition to this e-mailing 
system, a dedicated web portal was built specifically for the trial, with access privi-
leges tailored to each individual involved in the trial conduct.

12.4  Quality Assurance

12.4.1  System Validation

All systems put in place to help conduct a trial (CRM, IWRS, EDC, drug supply) 
need to be fully validated, whether for an adaptive or a nonadaptive trial. The testing 
required for system validation is more challenging for an adaptive trial, and can 
become a hefty mission when the number of potential scenarios is large. However 
the system validation provides a unique opportunity not just to test the systems, but 
also to revisit the assumptions underlying the design and the plausible scenarios 
arising from it. Unsuspected flaws can be uncovered during testing, in which case 
amendments to the design may prove necessary. Finally, the system validation 
brings added value because it involves a number of real trial actors and offers an 
opportunity to identify bottlenecks or obstacles and fine-tune all processes and com-
munication lines.

12.4.2  Simulations

When an adaptive design is implemented, it is essential to investigate the various 
potential outcomes of the trial under a range of plausible scenarios. From a statistical 
point of view, the operating characteristics of simple designs can be derived analyti-
cally, but for complex designs such as the phase I design discussed here, simulations 
must be used. If custom-made software is used to implement the design, its valida-
tion usually includes simulations aimed at showing that the design and the software 
deliver the intended outcomes. When we conducted such simulations in our phase I 
trial, they indicated that the initially proposed stopping rule for the CRM design 
would result in too large a sample size. Consequently, the stopping rule was modi-
fied. For detailed points to consider on trial simulations, see Gaydos et al. (2009).
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12.4.3  Documentation

An adaptive design requires more documentation than a traditional design. Unless 
the design has been described in a peer-reviewed publication, its operating charac-
teristics will need to be documented in detail. The advantages of the chosen design 
will need to be demonstrated, in comparison to simpler, nonadaptive, designs. The 
simulation report, in an adaptive design, may be considered a regulatory document 
alongside the statistical analysis plan. For detailed points to consider on documenta-
tion, see Gaydos et al. (2009), and Chap. 14 of this book.

12.5  Other Operational Considerations

12.5.1  Coordinating Center

The coordinating center must have statistical expertise in adaptive designs, as well 
as relevant experience in managing adaptive trials. Although adaptive designs can 
have a wide range of purposes (dose finding, seamless transition from phase II to 
phase III, sample size increase, population enrichment, etc.) with different opera-
tional implications, we have tried throughout this chapter to discuss issues that are 
common to most adaptive trials. As a matter of fact, coordinating centers having 
experience with sophisticated nonadaptive trials (e.g., trials with complex random-
ization schemes and trials using sequential or group sequential designs) will already 
have in place a number of key components discussed above (e.g., IWRS and DSMB 
experience); hence they will find it easier to extend their capabilities to address 
specific requirements of adaptive trials. In addition to relevant experience, such a 
coordinating center needs to have a help desk available to all users at all times. 
Adaptive designs have more parts that can require assistance for the sites, so it is 
important for them to be able to call someone to get help whenever needed. Since 
most trials are now worldwide, this help desk should be reachable 24/7—ideally 
either by e-mail or by telephone.

12.5.2  Change Management

The sponsor of an adaptive trial, and even more so the coordinating center in charge 
of the trial conduct, must be prepared to implement change management. In a sur-
vey of 13 large- and medium-sized pharmaceutical companies and three statistical 
consultancy groups, change management was mentioned as a major stumbling 
block against broader adoption of adaptive designs (Quinlan et al. 2010). Appropriate 
education and training are both key, but it is equally important for the coordinating 
center to maintain a spirit of openness, flexibility, and critical thinking rather than 
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over-reliance on a rigid set of standard operating procedures (SOPs). Although
project-specific SOPs can be useful in most situations, the personnel involved in the
project must be adaptive—i.e., prepared to face unexpected events and changes 
gracefully and efficiently.

12.5.3  Institutional Review Boards

Because of their inherent complexity, adaptive designs will often need to be 
explained in detail to Institutional Review Boards (called Ethics Committees in 
Europe) charged with their approval for local use. Similarly, more time may need to 
be devoted to develop informed consent forms that are truly informative about the 
nature of the trial design as well as understandable by patients (and investigators). 
Although the statistical details of the adaptation can be technically challenging, 
such details are unnecessary to understand the essence of the design, and in fact are 
best kept hidden from the trial participants, in order to avoid any operational biases 
that might arise from such in-depth knowledge. A typical example is the randomiza-
tion method used to allocate treatments to patients. Although the method must be 
fully described in the technical documentation of the trial, it should not be described 
in any detail in the documents that are publicly available (e.g., the trial protocol or 
the trial summary posted in clinicaltrials.gov).

12.6  Conclusions: Success Factors for Adaptive Trial 
Implementation

Our example illustrates that implementing an adaptive design does require careful 
planning and creates an operational overhead which adds to the overall costs of the 
trial (Quinlan and Krams 2006). We discussed a phase I dose-finding trial in cancer, 
but many of the operational difficulties would be similar in other adaptive dose- 
finding trials (Shen et al. 2011). In return for such careful planning of adaptive tri-
als, it is important to emphasize that many of the risks associated with the trial 
design and execution will have been fully addressed prior to starting patient accrual 
in an adaptively designed trial, which is fully in line with the recent guidance docu-
ments on risk-based quality management from the European Medicines Agency 
(EMA 2011) and the US Food and Drug Administration (FDA 2013). A dialogue 
with the agencies is less essential for early phase trials, where there are fewer regu-
latory concerns about adaptive designs, but for later phase trials an early interaction 
with the agencies is highly recommended (Chow and Chang 2008).

All in all, the challenges of implementing adaptive designs may be well worth the 
effort. From an operational point of view the following issues should be considered:

• The vendors in charge of implementing the trial should have knowledge of, and 
experience with, adaptive and complex designs, which requires both statistical 
and operational (randomization) expertise.
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• The vendors should be involved in the trial as soon as possible, preferably at the 
design stage.

• The members of the DSMB should have adequate expertise and availability to 
effectively monitor the trial.

• The key events and transitions between the different stages of the adaptive design 
should be clearly outlined, all operations (automated/semiautomated/manual) 
defined, and all actors identified prior to trial start.

• The computerized system (see Fig. 12.2) should be fully implemented, tested 
and validated, and revalidated in case of major design changes.

• Extensive simulations should be carried out to cover all possible scenarios 
 dictated by the adaptive design, with active involvement of all key actors in 
“dummy runs”.

• Proper documentation must be available to address any question that might be
raised during or after the trial.
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    Abstract     Experimental design and the execution environment have to go hand in 
hand to enable successful implementation of adaptive designs: the more complex, 
dynamic, and closer to real time the adaptation(s), the greater the demand on the 
execution environment. 

 As industry has dipped its toes into the adaptive pond, it has done so cautiously, 
partly handicapped by a traditional execution environment not designed to entertain 
real time learning and decision making. Therefore, the majority of adaptive designs 
currently implemented are of the simpler kind: one or two interim analyses, and 
limited adaptations: sample size adjustments, possibly dropping a dose, in other 
words: whatever a traditional and antiquated execution environment can support 
without requiring more than minor work-around solutions. 

 The opportunity space for adaptive designs from an experimental design per-
spective in pharmaceutical drug development is of course much wider (as discussed 
in other chapters). Here we present a conceptual view of a scalable execution envi-
ronment, designed to support the full opportunity space of adaptive designs, and 
highlight the role of enabling technology and integrated processes. 

 This chapter looks at the role of technology today, but perhaps more importantly, 
identifi es the role and need for technology in providing scalable and more effi cient 
solutions that not only enable larger uptake of the simpler adaptive trials of today, 
but also support the more operationally demanding of adaptive trials, as well as 
enabling custom designs to be readily implemented. Systems and processes under 
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stress introduce an increased risk of mistakes that may threaten trial integrity and 
introduce operational bias. In this future landscape, technology will play a more 
signifi cant role not only to increase effi ciency, but also to ensure trial integrity is 
maintained and operational bias is minimized. However technology is only a tool 
that is managed by humans, and as such, it is critical to remember that technology 
must go hand in hand with appropriate processes to control human behavior.  

  Keywords     Randomization   •   Drug supply management   •   Integrated systems   • 
  Scalable solutions  

13.1         Introduction: What Do We Mean by Trial Integrity 
and Operational Bias? 

 Before we begin a chapter on the role of technology in preserving trial integrity and 
minimizing operational bias, it is perhaps worthwhile to fi rst ask: What exactly do 
we mean by “trial integrity” and “operational bias”? 

 Trial integrity, or more to the point, the potential risk to trial integrity, has been 
raised as a concern and caused much discussion in relation to adaptive trials for over 
a decade. The following Wikipedia defi nition is one of the many defi nitions avail-
able: “Integrity is the concept of consistency of actions, values, methods, measures, 
principles, expectations, and outcomes.” Alternative defi nitions refer to the concept 
of incorruptibility, and the quality of soundness and being complete. 

 Clinical trials in pharmaceutical drug development are prospectively planned 
studies conducted in humans specifi cally designed to answer research questions 
about the benefi ts of new treatment interventions in terms of safety, effi cacy, and 
effectiveness. We should think of “integrity” as referring to the design and conduct 
of the trial, but also to the way data are collected, analyzed, and interpreted. 

 The conduct of the trial must follow the design outlined in the protocol. In addi-
tion the data from the trial must be complete, accurate, and reliably collected over 
the course of the trial, in order for the data to be used to answer the trial’s predefi ned 
research questions. 

 Minimizing operational bias and ensuring trial integrity go hand in hand. In their 
book, Design and Analysis of Clinical Trials by Chow and Liu ( 2014 ), the various 
sources of bias are discussed, referring to the ICH-9 guideline, Statistical Principles 
for Clinical Trials, that defi nes bias as the systematic tendency of any factors associ-
ated with the design, conduct, and evaluation of the results of clinical trials to make 
the estimate of a treatment effect value deviate from its true value. They conclude 
that bias can occur at any stage of the trial. Bias occurring due to the conduct of the 
trial is referred to as operational bias. 

 Importantly for results of a trial to be extrapolated and have meaning to the wider 
scientifi c community, the trial should be conducted in such a manner as to preserve 
trial integrity and minimize operational bias.  
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13.2     What Problem Are We Trying to Solve 
with Technology? 

 Now before considering adaptive trials, it is benefi cial to consider how traditionally 
designed trials are conducted. 

 In general, there is a divide between the planning/designing of a clinical trial and 
the operationalization of the execution of the trial. Often, the project team designs 
the trial, which includes determining the size of the trial, the treatments to study, 
dosing frequency, the data to be collected, and patient population to be studied. The 
clinical operations’ perspective may be nominally represented on the design team, 
but does the team work in a fully integrated fashion to aligned utilities and incen-
tives? Once the design work is complete and the protocol is signed off, the study 
gets handed off to an operations team, either internal to the company or from a 
CRO. The question is: to what degree are the utilities of the design and operations 
team fully integrated? And to what degree are the milestones and incentives of the 
different groups driving behaviors towards an integrated goal of wanting to make 
the correct decision at the earliest time point in the most effi cient manner, based on 
the inferences drawn from the trial? 

 In preparation for executing the trial, countries, sites, and investigators are 
selected. The randomization list is predetermined prior to the start of the trial, drug 
kit numbers are created and linked to the randomization list, and initial drug supply 
quantities are sent to site. In parallel the database is created to collect clinical and 
lab data from patients who pass the screening process and are eligible to enter the 
trial. Within this environment the investigator either logs on via a web system, or 
calls using Interactive Voice Response System (IVRS) to randomize the patient into 
the trial, and to identify which treatment kit needs to be administered or provided to 
the patient. For additional drug supplies, the investigator usually logs onto yet 
another system to generate a new shipment of supplies that is coordinated by the 
drug supply management group. 

 Data is initially recorded on paper at site, and assuming Electronic Data 
Collection (EDC) later entered into an EDC system. Importantly, data cleaning can-
not begin until after data has been entered at site. Oversight and coordination of this 
whole process is administered by the Project Manager (PM) who works with 
Clinical Research Associates (CRAs) to monitor the performance of the trial across 
sites. Ensuring procedures are followed; sites are promptly entering data, complet-
ing source data verifi cation (SDV), and investigating the resolution of outstanding 
data queries issued by data management. The PM is also responsible for managing 
the budget for the trial which includes investigator payments, and tracking hours 
spent against the planned budget. For most PMs today this involves the use of a 
Clinical Trial Management System (CTMS). 

 With the exception of data safety reviews that may be blinded or unblinded, the 
data remains blinded throughout the conduct of the trial. At the end of the trial, the 
database is locked, data unblinded for statistical analysis, and the clinical report 
written. 
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 The above is intended only as a top level overview of the process. Nonetheless, 
even at this level, it is easy to identify that clinical trial execution is complex and 
involves:

    1.    Coordination across many functional groups.   
   2.    Many people are involved in the process.   
   3.    The process potentially involves several systems that need to be linked together.   
   4.    “Importantly,” clinical trial design and clinical trial execution are primarily oper-

ating in siloes.     

 What may be less obvious by the description above is the issue of data synchro-
nization. This arises as a consequence of multiple systems being in use, often result-
ing in multiple time views of data. This is generally resolved through data 
synchronization that is performed periodically, say once a week or some other suit-
ably chosen time period. So understanding what is actually the status of the trial at 
any particular time point may be far from accurate, creating a challenge when real 
time learning is the goal. 

 Therefore even before we consider the impact of what an adaptive trial will have 
on this process, we already know we are dealing with a complex execution environ-
ment, connecting multiple users and multiple systems with multiple and differing 
demands for information, leading to complex requirements for data fl ow coordina-
tion. This is conceptually depicted in Fig.  13.1 .

   For now we will ignore what seems an obvious question of whether current prac-
tices are actually effi cient. What is important for an adaptive trial is that we have 
been trying to overlay on top of this environment interim decision making that 
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requires the data to be unblinded at least once, or potentially multiple times during 
the trial in order to make a decision about future trial conduct. Operationally the 
challenge becomes how to ensure:

•    The timely availability of data for the interim analysis.  
•   Securely control access to unblinded data for interim decision making.  
•   Speedily and seamlessly implement the interim change without disrupting the 

conduct of the trial.  
•   Prevent disclosure of information about the details of the change to those involved 

in the conduct of the trial.    

 Within this context we must continue to ensure the data collected from the trial 
is complete, accurate, and reliable. Importantly, examination of how all these chal-
lenges are managed becomes critical for protection of trial integrity and protecting 
the trial from the introduction of operational bias. 

 So what does this mean for an adaptive trial? It means we must ensure that the 
patients entering each stage of the trial are similar so that interim decisions are 
refl ective of whole trial population. All effort must be made during the execution 
phase of the trial not to disclose the timing of the interim to investigators. Importantly 
fi rewalls must be in place to restrict access to unblinded data and any change to trial 
conduct must be adequately concealed, so as not to infl uence in any way the type of 
patients investigators enroll, how future patients in the trial might be treated by the 
investigator, treatments are administered, how evaluations are made, or how patients 
may respond. 

 However given the conceptual diagram above, where there are multiple systems 
and user requirements for data, it is clear this is by no means a trivial task. Moreover, 
preservation of trial integrity and minimizing operational bias will depend on how 
well introducing these new steps required for adaptive trials are executed. In addi-
tion, a further requirement for adaptive trials is to be able to demonstrate at the end 
of the trial that these execution steps were followed, and there was control in terms 
of data access. 

 The critical questions to be asked are:

•    Who has access; when during the process do they have access; and what infor-
mation do they have access to. If there is potential for information leakage that 
would impact the integrity of the trial, or introduce operational bias, have these 
issues been thought through and what suitable and preventative solutions are 
implemented? Importantly this needs to be looked at broadly and include both 
fi eld operations for collecting data as well as the interim analysis workfl ow pro-
cess. We refer readers to Chap.   14     for further details about DMCs.  

•   Following the interim decision what changes need to be implemented:

 –    Who will implement these changes.  
 –   How will these changes be implemented.  
 –   Again if there is potential to impact the integrity of the trial, or introduce 

operational bias, what effective and preventative solutions are implemented?        
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13.3     Building Trust with Regulators 

 Regulators are mainly focused on trials that are submitted for registration, and so it 
is important to ensure if adaptive trials are intended as registration quality studies, 
that all efforts have been made to ensure trial integrity has been preserved, and the 
possibility of introducing operational bias has been minimized. However these are 
concepts that are not only applicable to registration studies. These are important 
concepts that apply to all trials including all adaptive trials. While we may accept 
differing requirements for the conduct of early phase adaptive trials, where for 
example the interim analyses are conducted, and the decision body could both be 
part of the sponsor organization, all efforts should still be made to ensure operation 
bias is not introduced and trial integrity is not compromised. No matter what the 
phase of development, we should be confi dent trial results can be extrapolated and 
have meaning to the wider scientifi c community. Otherwise trial results will be mis-
leading, not just to regulators but also to sponsors themselves. Moreover technology 
and process solutions for adaptive trials should ideally have the fl exibility to be 
applied to all adaptive trials across all phases, including allowance for some aspects 
to be relaxed for early phase trials. Like the example above where the Independent 
Statistical Center (ISC) conducting the interim analyses, and possibly the DMC are 
both internal to the sponsor. 

 When we think about these issues, we tend to begin by constraining our thoughts 
to the question of how to achieve this goal for a single trial. While this is defi nitely 
important and a good starting place, there is also a broader aspect to consider. For 
the advancement of adaptive trials we need a framework for execution that includes 
technology and process that can become an industry standard, uniformly used by 
industry and CROs alike and accepted by agencies. 

 What is important to recognize is the interdependency between technology and 
process in achieving this goal. Technology through the use of role-based access 
systems can certainly help to facilitate the management of certain aspects, such as 
controlling who has access to what data from the trial, and in particular who has 
access to unblinded data. Technology can be used to create audit trails and history 
logs to provide evidence and assurance following the trial, of who had access to 
what data and when. Technology can help implement changes to randomization, 
where treatments need to be dropped or added to the trial, or randomization ratios 
need to be changed following an interim. Technology can be used to coordinate the 
accompanying management of drug supplies to sites. 

 Although technology today can easily control access to unblinded data and interim 
results, what is needed for the future is for technology to move towards a simplifi ca-
tion of the patchwork of systems seen in Fig.  13.1 , particularly the integration of 
EDC, randomization, and drug supply management, as those aspect of clinical trial 
operationalization are affected the most by requirements for adaptive trials. The inte-
gration of these systems will lead to an overall reduction in the number of human 
touch points involved in the implementation of interim changes to the trial, thereby 
automating aspects of the workfl ow process to reduce the number of people who 
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have knowledge that an interim has taken place. While this is a benefi t for adaptive 
trials, the more likely driver to bring about this simplifi cation will be the increased 
effi ciency this brings to trial execution, not just for adaptive trials but for all trials. 
Moreover integration and simplifi cation will become the cornerstone for creating 
scalable solutions of the future to manage increased uptake of adaptive trials. 

 However it cannot be emphasized enough that technology is only part of the 
solution. Technology is a tool that needs to be managed by humans. Therefore pre-
serving trial integrity and minimizing operational bias will require a combination of 
technology married together with processes to control human behavior. 

 An example: a common practice in executing trials with safety interim analyses 
or group sequential designs is for increased activity by CRAs visiting sites prior to 
the interim, to encourage the site to enter data because an interim is imminent. 
Applying the same practice to an adaptive trial, which also includes group sequen-
tial trials, becomes a clear announcement to the investigator that an interim is about 
to occur, and a signal that a possible change to the trial could follow. The reason for 
this activity is to ensure the maximal amount of clean data is available for the 
interim, which is directly linked to practices at site for data entry and data manage-
ment cleaning processes. 

 If following the interim a treatment is dropped or another added, and the random-
ization list is not masking the interim, but suddenly displays jumps in numbers, or 
certain kit numbers are left on the shelf and not used, then an element of disclosure 
has occurred. This may have no signifi cant consequence at all. However, depending 
on the design and endpoint, the investigator may be able to make an educated guess 
or have his own interpretation in regard to the design change, which may impact the 
type of patients he recruits and how he treats future patients in the trial. This is a 
potential concern that could introduce operational bias. That being said, this can be 
rectifi ed at the planning stage, by taking this into consideration when planning the 
approach to randomization, drug kit numbers, managing CRA visits to sites, and 
data cleaning processes. 

 Ideally the timing of the interim should be concealed from investigators, so in 
their eyes the conduct of the trial appears undisrupted and seamless through the 
interim process. A possible procedural change to help achieve this would be for all 
site facing staff such as CRAs not to be told when the interim is due. Information 
related to the timing of interim analyses could be restricted only to the PM who has 
oversight of the whole trial, who can continually monitor overall site performance, 
and ensure site monitoring activity by CRAs is data driven, and does not give away 
by unusual and increased activity at site the timing of the interim. Additional sup-
portive processes should ensure maximal data is entered and cleaned at all times 
during the trial, so the data is in a state of interim readiness at all times, negating the 
need for last minute activity. In many ways the coming of risk-based monitoring 
algorithms (that include options for adaptive trials to ensure maximal collection of 
adaptive endpoint (s) data) will help operationally by providing tools for managing 
CRA activity at site. Depending on the method of randomization, consideration 
should also be given up front at the planning stages of the trial to the structure of 
randomization lists and kit numbers in order to mask the timing of the interim from 
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investigators, and minimize the possibility of disclosing information about possible 
changes to the trial through number confi gurations. Total concealment is unlikely; 
however, thoughtful consideration to these aspects is required to reduce the possi-
bility of inadvertently introducing operational bias, an issue that could be resolved 
through integrated systems that include dynamic randomization. 

 The timing of site activation is another procedural consideration. For adaptive 
trials the data collected from each stage of the trial should come from similar patients. 
If this aspect is overlooked it can adversely impact the results of the trial. This rep-
resents a potential change to traditional trial execution, where it is often common 
practice to regionally stage the startup of sites due to different constraints; for exam-
ple drug import regulations. If the traditional approach is applied to adaptive trials, 
this raises the question over the interchangeability between regional and cultural 
patient populations entering the trial. For example a global trial covering the United 
States, Western and Eastern Europe, South America, and Japan, a staggered start of 
regions is likely to occur, and may put into question whether the data used for each 
interim decision is similar and representative of the whole trial population, or actu-
ally different from the data collected from future stages of the trial. This challenge is 
very much dependent on the number and timing of the interims and the regions 
covered in the trial. However this is not procedurally impossible and can be managed 
by trying to ensure at least some representations of sites from all regions are included 
in each stage of the trial. In an area such as pain for example where it is known that 
cultural differences can impact patient responses, for a staggered start global trial 
this would certainly be a concern. However while these issues are highlighted here 
for adaptive trials, the impact of combining cross-cultural populations in a tradition-
ally designed pain trial should equally be a concern, due to the adverse impact on 
variability of studying such heterogeneous populations within a single trial. 

 These examples are used to illustrate that process-driven changes are also used to 
protect trial integrity and minimize operational bias. Demonstrating that although 
technology can be used to improve the coordination of changes to randomization and 
drug supply requirements, and assist with fi rewalls through role-based access control 
to unblinded data, technology must also be combined with processes to control 
human behavior, and procedural changes to traditional approaches to trial conduct. 

 Like in any trial, traditional or adaptive, it is impossible to provide 100 % assur-
ance. However what can be developed over time are ultimately industry standards in 
terms of requirements for both IT and processes for the conduct of adaptive trials. 
This becomes particularly important when considering scalable solutions.  

13.4     Different Levels of Risk: Not All Adaptive Trials 
Are Created Equal 

 There is a human tendency to try and simplify and categorize in order to manage 
information. Some may try to simplify trials into a dichotomous classifi cation such 
as adaptive and nonadaptive. However adaptive trials are not all the same, and pres-
ent different challenges to existing execution processes and systems. This, in part, is 
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currently driving the uptake of some designs while limiting the uptake of others. It 
is important this is understood because later we will look at where in the evolution 
of applying adaptive trials we are today, the limitations of current technology, and 
look ahead to where we want to be in the future. From this perspective we will begin 
to see an increasing need for technology solutions. 

 With this in mind, it is perhaps best to think of trials as belonging to a continuum, 
as seen in Fig.  13.2 . Like a dial that ranges from traditional trials with no interims, 
through to complex adaptive trials, where in the extreme case we may need data 
analyzed frequently after every patient, or after small cohorts of patients, and the 
changes from these interim decisions seamlessly implemented. Moreover as the 
uptake of adaptive trials increases across industry, this will put pressure on current 
work-around solutions, creating bottle necks, and technology will become an 
important and critical player in developing scalable solutions.

   So let’s fi rst try to identify what is common to “all” adaptive trials and then 
examine what makes trials simple versus complex. All adaptive trials require work-
fl ow solutions to ensure:

•    Timely availability of clean data for interim decision making.  
•   Appropriate documented processes and a controlled environment in place for 

conducting the interim decision analyses.  
•   Identifi cation of the decision body who will make the decision.  
•   Implementation of the decision.  
•    Firewalls  for controlling access to information.    

 These “must have” elements are not totally new to traditional trials. Producing 
reports for Data Safety Monitoring Boards (DSMBs) are common place. Group 
Sequential Designs which are a simple form of adaptive trial, where the decision is 
only to stop or go, have been in existence for many years. This is not to say that the 
practices used to execute these trials are perfect, and not in need of improvement. 
However, processes for their execution do exist and are familiar to operational 
teams. So in this respect it could be said that the threat to information leakage is not 
something new. Nevertheless it would be a mistake to say that current practices are 
equipped to manage all adaptive trials, or to manage a surge in the uptake of adap-
tive trials where alternative solutions may be required. 

 To explain, let’s fi rst consider an example where current practices need little 
modifi cation. As long as the important processes mentioned above to ensure consis-
tency of data across stages of the trial, and consideration is given to blinding the 
timing of the interim, and fi rewalls are in place for conducting the interim, an adap-
tive trial where the only adaptation is to increase the sample size causes little other 

  Fig. 13.2    Link between trial 
design and trial execution       
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disruption to current practices. The only additional requirement for these trials is to 
have a longer randomization list produced at the start of the trial, and to ensure 
potentially extra drug supply is available if needed. Similarly trials where futility 
stops are included cause even less disruption. 

 Not discounting that Sample Size Re-estimation (SSR) and early stops for futil-
ity are valuable techniques; the opportunity space for adaptive designs is much 
wider. Unfortunately the execution of some of these other adaptive designs repre-
sents greater challenges, because they are considered more operationally complex. 
All adaptive trials require the must have list above, but the complexity of an adap-
tive trial is driven by additional factors:

    1.    How many and how frequently interims need to be conducted?

    (a)    Is it just once or required multiple times throughout the trial?       

   2.    How fast is the recruitment speed of the trial?   
   3.    How many treatments are in the trial?

    (a)    More treatments mean more options for the following stages of the trial that 
could include for example adding/dropping treatments, changing the sam-
ples size, or changing randomization ratios.       

   4.    How many things are being changed or impacted following the interim decision?

    (a)    Is it one or a multiple of the following:   
   (b)    Changes to sample size.   
   (c)    Changes to the number of treatments.   
   (d)    Changes to randomization.

•    Are there only a limited number of treatments and interims during the trial 
making it possible to predict in advance a fi nite number of outcomes?  

•   Or are there simply so many permutations of what could come next that 
preplanning in advance to cover all outcomes is impossible?      

   (e)    Changes to drug supply.

•    Tied to changes in randomization there is a need to coordinate drug 
supply.

 –    Managing the quantities required for adding and/or dropping doses 
and/or increased amounts due to increases in sample size.  

 –   Adjusting site fl oor and ceiling settings that trigger shipments.     

•   Managing immediate post-interim quantities:

 –    An important time point for drug supply management is preparing for 
the immediate post-interim decision period.

   How to manage the risk of stock out if an interim decision requires 
large increases to certain treatments?  

  Unavailability of drug at site may result in a pause and interrupt the exe-
cution of the trial. This is not desirable because it discloses to the site 
that an interim has occurred.                  
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 Clearly these are not mutually exclusive factors, and as the combination of adap-
tation options increases, along with the number of interims required during a trial, 
so does the executional complexity of the trial increase when trying to use current 
systems and work practices. 

 The number of adaptive trials being run at any particular point in time will also 
give cause for reconsidering how the interim workfl ow process and execution of the 
changes may be best implemented. It becomes a very different discussion between 
how to implement a single adaptive trial, where work-around solutions are plausible 
solutions versus developing scalable solutions capable of effi ciently executing a 
large number of adaptive trials. Increased uptake of adaptive trials will ultimately 
impact resources driving the need for alternative solutions. One aspect of this pres-
sure is already being seen today through the impact on the number of DMCs needed, 
where the shortfall in experienced DMC members has been already identifi ed by 
many. 

 Figure  13.3  illustrates the concepts described above, in recognition that both trial 
design and execution range from the simple to the complex. Simple in the case of 
execution here indicates little change to the way traditional trials are executed. 
Along the diagonal are examples of different types of adaptive trials (not meant to 
be fully inclusive).

   Largely today, most adaptive trials being applied belong to trial designs in the 
bottom left and middle boxes, applying existing fi rewalls and processes. The pale 
yellow outer boxes represent the potential overlap in adaptive features. For example 
a trial that belongs to the center box that has only a few treatment and few interims, 
which may allow for dropping treatments, and early stopping for futility and effi -
cacy, may also incorporate SSR. While the number of trials falling into the top right 
hand box remains few by comparison: mainly restricted by lack of expertise and 
tools for designing these trials, coupled with greater complexity for execution. 

  Fig. 13.3    Link between trial design and trial execution       
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 While these types of designs are being executed today, they are largely deployed 
through work-around solutions to utilize existing systems and processes. As 
described above, little change is needed for futility stops and SSR trials, while those 
in the middle box largely deploy solutions such as creating separate randomization 
lists in advance to cover possible interim decision outcomes, or the DMC unblinded 
statistician generates a new list that is then uploading so the trial can continue.  

13.5     Where We Are Today, and the Emerging Role 
of Technology as We Prepare for the Future 

 The systems used today were originally built for traditional designs without adapta-
tions, i.e., designs where the number of treatments remains constant, the sample size 
remains the same, and where data remains blinded throughout the trial. These sys-
tems were not built for designs requiring the fl exibility to adjust the course of the 
trial along the way or to support near real time learning. Within this environment the 
teams and technology used for designing clinical trials, and clinical operations 
teams and systems for executing trials, were largely able to operate in siloes. 

 What we have been witnessing over the past decade has been an evolution in 
innovative change on two fronts. An emerging interest in adaptive trials and the 
development of adaptive trial design software, paralleled by the development of 
new technology advances in support systems for clinical trial execution. At the 
same time industry has come under increasing pressure through patent expirations, 
driving a need for greater effi ciency that we foresee will culminate in a convergence 
in evolution, merging these two innovative streams together. 

 Over the past decade the pioneers within industry, who fi rst saw the benefi ts of 
adaptive designs, have successfully brought adaptive designs to the forefront of 
discussion. While 10 years ago we were embroiled in lengthy discussions over the 
benefi ts of adaptive trials and there were limited case studies available, and no regu-
latory guidance, today the situation has changed. The availability of case studies has 
dramatically increased, as there has been growing acceptance of the methodology, 
along with the release of draft regulatory guidance on adaptive trials by the FDA in 
 2010 , and the European Medical Agency (EMA) release of their Refl ection paper 
on adaptive designs in  2007 . Nevertheless adaptive trials still represent a small frac-
tion of all clinical trials. 

 Largely the emergence of activity around adaptive designs began as an initiative 
led by statisticians across the pharmaceutical industry. While knowledge of the 
methodology and the approach has grown within the statistical community, it is still 
not applied broadly. 

 There have been some exceptions; for example one large pharmaceutical com-
pany has taken the approach of applying adaptive at the portfolio level, and others 
appear to soon follow this lead. However largely the adaptive methods applied have 
been those that can be applied causing limited disruption to current systems and 
practices. Nonetheless, the success of this approach appears to have gained attention. 
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We are starting to see evidence that some pharmaceutical companies are also begin-
ning to see adaptive approaches as a means to better manage the risks and costs of 
clinical development, by identifying failures early and increasing the chances of 
success for promising compounds. While for these companies the push can be 
aggressive to apply these methods across their portfolios, they face signifi cant tran-
sitional challenges as there needs to be a convergence of education, training, and 
alignment of technology, both in design and to support execution. 

 Approaches to building the skills and infrastructure to support the uptake of 
adaptive designs have been varied across companies. For some adoption has been 
slow, perhaps not seeing adaptive as a priority. Others have taken the approach to 
create adaptive internal hubs of expertise to work with project teams on the design 
of their trials. While for the one pharmaceutical company that stands out from the 
others and mentioned above, their approach has been to apply adaptive across their 
portfolio. 

 There are limitations to both approaches. Small expert hubs can be effective but 
are unfortunately disconnected from project teams, and often execution teams. 
Unless these skills are grown at the grass root level of the project team, the growth 
of adaptive trials will remain limited as specialized hubs will ultimately become a 
bottleneck. However applying adaptive across the portfolio requires compromise in 
the types of approaches applied. When widespread application is the goal, consid-
eration has to be given to three important factors:

•    First the availability of validated adaptive design software for project statisti-
cians accompanied by training and education.  

•   Education of clinical functions and operational teams in support of these 
approaches.  

•   Consideration to the types of adaptive designs that can be supported by current 
system infrastructure, and a planned approach for the expansion of uptake, and 
growth in the methods applied.    

 However, perhaps the best strategy is recognition that both approaches are essen-
tial for triggering change. As shown in Fig.  13.4  below, the availability of validated 
adaptive software tools in the hands of project statisticians can help facilitate the 
growth of adaptive designs on a more broad scale. As project statisticians become 
increasingly more comfortable with the methods we will begin to see an increase in 
the uptake of the adaptive methods available in the software. In parallel specialized 
adaptive teams, whether internal or external, provide support for more complex 
adaptive approaches, developing custom design solutions, and are continually 
advancing adaptive methods. In addition to the emergence over the past decade of 
adaptive design software providers, we are also beginning to see the emergence of 
collaborative efforts across industry and with design software providers to advance 
adaptive methodology, and transition these new methods into adaptive design soft-
ware. This in turn will increase the repertoire of designs available to project statisti-
cians. While adaptive statistical methods started in the hands of a few, the increasing 
availability of technology in the form of statistical design software is now laying the 
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groundwork for more broad scale uptake. However for technology providers in the 
trial execution space, the challenge or business dilemma is will this increase take 
place, when will this increased uptake take place, and what do adaptive trials really 
need that is different from traditional designs. Importantly, and understandably their 
business question is when should they invest.

   In the past trial design and execution have been able to operate mostly in siloes. 
However what is changing with the coming of adaptive trials is a need for trial 
design and execution to work together more closely. 

 Industry has dipped its toes into the adaptive pond cautiously. As mentioned 
earlier they have largely done so by embracing the simpler types of adaptive trials. 
Largely trials where only a few treatments are studied and only one or two interim 
analyses are conducted, and minimal changes following interim decisions are 
required. 

 However as advances in adaptive methodology continue, along with the need for 
custom designs, pressure to push beyond the limitations of the current execution 
environment and work-around solutions will grow. Pressure will also increase due 
to the desire to do more of the simpler adaptive trial designs that are done today. 

 In parallel to the advances in adaptive designs and the development of adaptive 
design software as an enabler for greater uptake, the past decade has also seen the 
emergence of technology advances in the fi eld of trial execution: in particular the 
development of Electronic Data Capture (EDC). As EDC software continues to 
mature we are beginning to see attempts at the integration of additional capabilities 
into these systems such as the inclusion of clinical trial management systems and 
randomization, not necessarily fully integrated or possessing the level of functional-
ity required. However it is a positive signal that the simplifi cation of the patchwork 
of systems seen in Fig.  13.1  has begun. However as these extra capabilities are 

  Fig. 13.4    Advancing adaptive trials and the role of adaptive design software       
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added, they are not done so with the execution of adaptive trials in mind. We cannot 
lose sight of the fact that EDC developers as a business have been naturally and 
understandably focused on the larger market of traditional designs. When it comes 
to adaptive trials they have been like outsiders looking in on the growth of adaptive 
watching to see how it evolves. Unfortunately as observers they are only able to see 
the tip of the iceberg of adaptive potential, and have lacked the insight to see below 
the surface, and foresee the user requirements of tomorrow’s designs, or the designs 
of today that are not applied due to being considered too complex for current sys-
tems to execute. 

 However interestingly, some advances have emerged through smaller providers 
who are involved in the development of adaptive design software, and have taken 
steps towards developing solutions for executing their own designs, or more generic 
solutions that could also apply in addition to designs from other software providers. 
This could perhaps be seen as an analogy to what is occurring in the electric car 
market. An industry also changing, where electric car manufacturers are not just 
producing electric cars, but are investing into the infrastructure of battery recharg-
ing stations to support and grow the market for their electric cars. 

 For adaptive designs, one solution is not too dissimilar to work-around solution 
for other designs of today. Their software is used for designing the trial and a param-
eter fi le that individualizes the design is part of the output. The parameter fi le is then 
required as input for the corresponding analysis engine to complete the interim 
analysis. However in terms of process, the response fi le still needs to be created 
separately and data is still transferred at the time of the interim, so an analysis can 
be run and a recommendation returned, sometimes along with a probability vector 
for the creation of a new randomization. 

 Another software design provider solution is a standalone solution for managing 
the interim workfl ow process. Data, the randomization list, and the code for analysis 
are all uploaded. The system is able to automatically create the response fi le, run the 
analysis, and has the capability to automate a simple report of the recommendation 
for the DMC. This is all done without unblinding the data used for adaptation to the 
operator of the system. Access to the system produced reports and information 
related to input for the interim analyses are all stored within the system, with role 
base access controlling who has access to unblinded results. A major purpose of the 
system is to track and provide a history log and audit trail of who had access to what 
data during the course of the interim analysis workfl ow process. 

 A third adaptive software provider has perhaps taken the fi rst step towards a 
more comprehensive solution by developing an integrated EDC, randomization and 
drug supply management system, with the beginnings of an embedded adaptive 
library of designs engines for analysis. This operates similarly to the fi rst option, 
combining the designs of the fi rst provider with a selection of their own designs to 
create the library. A parameter fi le is uploaded, and instead of needing the manual 
creation of the response fi le, internal to the system data is extracted from the data-
base, the response fi le is created, fed to the analysis engine producing a recommen-
dation and a new probability vector for creating the randomization for the next 
patient(s) into the trial. Importantly there is seamless integration between the EDC 
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system, randomization, and drug supply systems, making the execution of those 
adaptive designs from the library that require frequent interims and frequent changes 
to randomization ratios, an easy to implement reality. The system can be operated 
in both manual and automated mode and is perhaps the framework for a more scal-
able solution for adaptive trial execution. Moreover by providing a publishable 
Application Programming Interface (APIs) as an extension to the system, this would 
provide connectivity for custom designs, allowing them to benefi t from the system’s 
seamless execution capabilities, thereby giving rise to an adaptive design execution 
platform that could cater for a wide range of design types. Flipping the current situ-
ation on its head, by providing a system intentionally built with fl exibility in mind, 
where fl exibility would be turned off for traditional designs. 

 However what represents a signifi cant change through the efforts of these smaller 
adaptive design software providers is recognition that design and execution solu-
tions require integrated thinking and knowledge of adaptive trial design user 
requirements. 

 Currently it is too early to know whether any of these solutions will evolve to 
become the mainstream industry solution of tomorrow. However, perhaps the more 
likely scenario will be collaboration between design software providers and current 
IT providers for execution to create a common standard. 

 The top platform in Fig.  13.5  above represents where we are today with the 
application of the more operationally simple adaptive approaches that are available 
in current adaptive design software packages, and can be implemented using current 
systems and processes. While some more operationally complex trials are being 
conducted they may require custom design solutions that are executed using the 
combination of current systems and work-around solutions. However while fi t for 
one off trials and the limited number of adaptive trials of today, these approaches are 
not an effi cient approach for managing greater uptake.

   Nevertheless we are already beginning to see some activity on the middle plat-
form, as adaptive design software providers expand their range of design options, 
from collaborations to further develop methodology, and begin to develop solutions 
for the execution for some of the more operationally complex designs. In the wake 
of this advancement, as the repertoire of adaptive trial designs in software expands, 
we should expect to see a greater range of adaptive trial designs being applied, as 
project statisticians become more familiar with the methods and some of the barri-
ers to execution begin to disappear. 

 Importantly we are also beginning to see a signal of what could emerge as the 
beginnings of a scalable solution for adaptive trial execution, where EDC, random-
ization, and drug supply management systems are integrated, complete with an 
embedded library of adaptive trial designs, and the capabilities to provide connec-
tivity for custom designs. 

 As the transition occurs from the application of the simple adaptive methods of 
today using current systems and processes, through to scalable solutions, this is not 
a journey advancing adaptive trial designs alone, but a journey taken together with 
execution technology. Through    this evolution we will also hopefully see that the 
development of industry standards for adaptive trial execution emerges. 
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 However it also needs to be recognized that software and technology develop-
ment is a costly and time-consuming business. How fast this transition occurs, to 
develop a scalable solution that may appear futuristic to some, could potentially 
depend on whether collaborations can be forged between adaptive design software 
providers and current major players in the fi eld of technology for trial execution.  

13.6     Conclusion 

 We believe that the overarching utility of clinical trials in the context of pharmaceu-
tical drug development is to enable making the correct decision at the earliest time 
point in the most effi cient manner. The opportunity space for adaptive designs to 
contribute to this utility is substantial. To live up to the opportunity there needs to be 
an integrated effort of clinical trial designers and experts responsible for design 
execution, which also includes alignment of their incentives and milestones to 
achieve a common goal. Importantly the message of this chapter is that technology 
and process go hand in hand to protect trial integrity, minimize operational bias, and 
build regulatory trust. We argue for designing a simplifi ed execution environment 
that will ultimately create a common industry standard for integrating design and 
execution that is scalable, and can accommodate the full spectrum of adaptive and 
nonadaptive designs. Additionally the execution environment should be able to sup-
port designs from multiple adaptive software providers and allow for custom designs 
to be easily executed.     

  Fig. 13.5    Growth of adaptive designs and the linking of design and execution to create scalable 
solutions       
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    Abstract     A particularly critical issue for adaptive clinical trials, with potentially 
great impact on how large a role these trials will come to play in confi rmatory stages 
of clinical development, involves the processes by which accruing data are collected 
and analyzed, and by which adaptation decisions are made and implemented. The 
importance of this issue arises from the sensitivity of unblinded interim results and 
the potential, refl ected in current conventions in nonadaptive trials, for access to 
interim results to introduce biases into the trial conduct and its results. This issue is 
intertwined with the role of independent Data Monitoring Committees, commonly 
the only party granted access to interim comparative results in current practice. We 
discuss the issues of who should be involved in data review for adaptation decisions, 
how the data fl ow and access to results is controlled, and the specifi c role that Data 
Monitoring Committees might play in this process.  
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14.1         Introduction 

 Interim analyses of comparative accruing data within ongoing studies are of course 
a common feature in current clinical trials practice. Major motivations for conduct-
ing them include:

•    Monitoring data for potential safety concerns that may make it unethical to con-
tinue the trial in its current manner.  

•   Application of formal group sequential methods allowing stopping of the trial 
with a claim for effi cacy if a standard of proof can be met.  

•   Consideration of stopping a trial for lack of effect, or  futility , if it seems clear that 
the study will not achieve its objectives.    

 These motivations are not mutually exclusive and can overlap. For example, 
there can be ethical safety implications if an effi cacy advantage is demonstrated (or 
will not be demonstrated) for a treatment for a serious disease condition within an 
ongoing trial. 

 Current conventions, especially in trials with registration potential, hold that 
access to interim results and unblinded data should be carefully restricted, and in 
particular, not available to trial management personnel, investigators, or other study 
participants (for the purposes of this chapter, we will view the word “unblinded” as 
also including  coded , or semi-blinded, data or results, where treatments are labeled 
separately but not fully identifi ed, for example, “A,” “B,” as is sometimes done for 
interim analysis reports). The rationale behind the regulatory concerns leading to 
these conventions is thoroughly described in the FDA document  Guidance for 
Clinical Trial Sponsors on the Establishment and Operation of Clinical Trial Data 
Monitoring Committees  (US FDA  2006 ); other relevant references include (CHMP 
 2005 ; ICH  1998 ; Ellenberg et al.  2002 ; Fleming et al.  2008 ). The main points of 
concern can be summarized as follows:

•    Trial management personnel can have decisions of various types to make while 
a trial is ongoing based on objective scientifi c reasoning, and access to interim 
results diminishes their ability to manage the trial in a manner which is totally 
objective, and will be seen to be objective by all interested parties (e.g., regula-
tors and the medical community).  

•   Knowledge of interim results by trial personnel (e.g., investigators and their 
staff) could introduce subtle, unknown biases into the conduct of the trial and the 
study results, perhaps causing slight changes in characteristics of patients 
recruited, specifi c details of administration of the intervention, investigator end-
point assessments, etc.    

 Additionally, interim results may not reliably predict fi nal study results, with dif-
ferent types of serious negative implications if those results are disseminated. As 
discussed in (Ellenberg et al.  2002 ), it is important “to minimize the risk of wide-
spread prejudgment of unreliable results based on limited data (that) could adversely 
impact rates of patient accrual, continued adherence to trial regimens, and ability to 
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obtain unbiased and complete assessment of trial outcome measures. This 
 prejudgment could also result in publications of early results that might be very 
inconsistent with fi nal study data on the benefi t-to-risk profi le of the study interven-
tions.” The publication issue can take on heightened importance because the general 
readership may often not adequately understand the limitations of interim results in 
this regard. 

 On the basis of such concerns, it has become common practice to address the 
objectives of interim monitoring through the use of a  Data Monitoring Committee  
(DMC), a group of experts possessing all relevant experience and expertise 
required to perform the necessary monitoring responsibilities. As described in (US 
FDA  2006 ), DMC members should be as free as possible of all types of confl ict of 
interest, and should play no role in trial conduct other than to perform their moni-
toring functions. In pivotal trials, DMC members are typically external to the trial 
sponsor to maximize their independence and objectivity. Access to unblinded 
study data and results should be restricted to the DMC and to a small set of indi-
viduals providing the necessary statistical and programming support (these sup-
port personnel are also independent of other trial activities, and very commonly are 
external to the sponsor). 

 Once a DMC has received access to unblinded results, communications between 
the DMC and other trial entities, such as sponsor trial management personnel or a 
Steering Committee, would be limited. Communications to the DMC would gener-
ally serve to ensure that the DMC remains fully informed in order to most effec-
tively execute its responsibilities, such as in an open session of a DMC meeting. 
Communications from the DMC should not convey any information about com-
parative results until such time as there is an ethical issue requiring such communi-
cations, or the DMC is prepared to make a major recommendation (e.g., trial 
termination). Thus, in conventional monitoring practice, access to unblinded interim 
data and results typically remains restricted to the DMC and its statistical support 
staff, in order to most effectively achieve the goals of protecting patient safety, 
maintaining the integrity of the study results, and avoiding the introduction of biases 
and the potential adverse consequences that can arise from over-interpreting unde-
pendable early results. 

 Recent interest and advances in the area of adaptive trial design suggest oppor-
tunities for increased effi ciencies in clinical research, in situations where such tri-
als are viewed as appropriate based upon careful consideration and planning. 
Adaptive design trials allow modifi cation of some aspect of an ongoing trial based 
on data from within that trial, if this can be done in a manner that maintains the 
interpretability and statistical validity of the study results, based on implementa-
tion of a prespecifi ed plan that achieves these objectives (see US FDA  2010 ; 
Gaydos et al.  2009 ). 

 There are a number of actions that can be taken within an ongoing trial that fall 
under the defi nition of an adaptive design, with which there is a good deal of famil-
iarity and experience, and which can be implemented noncontroversially. These 
include the application of group sequential designs, blinded sample size reassess-
ment based upon a nuisance parameter, and event-driven designs. These are referred 
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to as “well understood” in the FDA document  Guidance for Industry: Adaptive 
Clinical Trials for Drugs and Biologics (Draft)  (US FDA  2010 ), and the roles played 
by the trial management group and the DMC are generally well established. 

 Among adaptive designs that are more novel or with which there is less regula-
tory familiarity, a few particular applications have been considered good candidates 
for roles in confi rmatory trials, including modifying the study sample size, dropping 
treatment arms, and enriching the study population. In these types of adaptive trials, 
there is of course an added reason for accessing interim data beyond the more famil-
iar monitoring motivations mentioned earlier, namely, to consider changes to some 
aspect of the conduct of the trial as it continues. This raises some fairly obvious 
challenges of several types, due largely to the sensitivity of interim results to which 
we have already alluded. For example:

•    Who are the individuals who will have access to interim results to be used for 
adaptations?  

•   What expertise/experience/perspectives should they possess?  
•   Can processes similar to those used to restrict access within a DMC in conven-

tional monitoring be utilized; or what types of changes or extensions to current 
practices might be warranted?  

•   What are the processes by which adaptations, once decided upon, are imple-
mented, and what personnel are involved?  

•   Is it reasonable or feasible to withhold from trial management personnel or the 
study sponsor the specifi c data and analyses which are the basis for modifying a 
continuing trial?  

•   What information can observation of adaptations made tell an observer about the 
nature of the results that led to that adaptation, and does this raise concerns about 
preserving trial integrity?    

 In the remainder of this chapter, we discuss such issues in some depth. The major 
broad topics are: the processes that govern the production and review of interim 
results and implementation of changes while maintaining the desired degree of con-
fi dentiality; and the composition and qualifi cations of the decision-making bodies 
(though there is a good deal of overlap between these topics). The specifi c manner 
in which these considerations play out will depend on specifi c details of particular 
trials, but we will aim to elucidate principles that should be followed in making 
trial-specifi c decisions.  

14.2     DMCs in Adaptive Trials 

14.2.1     The Potential Role of DMCs 

 Because adaptive trials require access to interim results, there are various reasons 
why it might seem sensible to consider using a DMC constituted for the more famil-
iar motivations as the party to review data for the purpose of making adaptations. 
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After all, if a study is already using a DMC for a more conventional purpose (for 
example, safety monitoring), then the DMC is already allowed access to unblinded 
interim data. We can expect that the DMC is properly “fi rewalled,” presumably with 
appropriate confi dentiality procedures in place and insulation of trial personnel from 
access to results. In addition, the same attributes of independence, objectivity, exper-
tise, and experience which would qualify someone for membership on the DMC 
might suggest that they possess qualifi cations for advising on adaptations as well. 

 Questions might arise, however, as to whether this is an optimal role for a 
DMC. Might there be some type of confl ict or mismatch with a DMC’s more famil-
iar responsibilities? If so, are these obstacles that can be overcome? And if not, then 
we still need to address the questions of exactly who will be examining the interim 
data for adaptation purposes, how the data fl ow and confi dentiality issues will be 
addressed, and how the changes will be communicated and implemented. Below, 
we delve further into some of these issues and challenges.  

14.2.2     Scope of DMC Decisions in Adaptive Trials 

 First of all, there sometimes seems to be misunderstanding of the scope that a DMC 
has in making changes within a trial. For example, because of the independence, 
objectivity, and expertise that the DMC members possess, it might be perceived that 
the DMC has wide leeway to potentially pro-actively initiate changes to a trial; that 
is, in examining the interim data the DMC can choose to modify the study and per-
haps steer it in a more favorable direction, even for a trial aspect not originally 
envisioned as a candidate for modifi cation. 

 Such a perception refl ects a fundamental misunderstanding of adaptive designs. 
In fact, the DMC is uniquely a party that  cannot  pro-actively modify an ongoing 
trial, specifi cally because it has access to unblinded data—this is in fact true for any 
unblinded monitoring by a DMC for any purpose, regardless of whether the study 
was designed as an adaptive trial, with an obvious exception of actions arising from 
a DMC’s ethical responsibility to ensure patient safety, which always takes 
precedence. 

 If we step back to consider what should be considered a valid adaptive design, 
we might start with the defi nition in (US FDA  2010 ): “an adaptive design clinical 
study is defi ned as a study that includes a prospectively planned opportunity for 
modifi cation of one or more specifi ed aspects of the study design and hypotheses 
based on analysis of data (usually interim data) from subjects in the study.” Also, 
“the term  prospective  here means that the adaptation was planned (and details speci-
fi ed) before data were examined in an unblinded manner by any personnel involved 
in planning the revision.” The level of detail of prespecifi cation required will depend 
on the particular trial and type of adaptation, and may or may not follow a rigid 
numerical algorithm; there just needs to be suffi cient specifi cation for the design to 
be embedded within a valid statistical plan. 
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 In this sense, an adaptation suggested or motivated by unblinded data generally 
cannot be retrospectively incorporated into a valid adaptive design. Therefore, for a 
DMC to pro-actively identify an aspect of the trial for potential adaptation based on 
their review of unblinded data would violate a fundamental tenet of a valid adaptive 
design. Because it is allowed access to interim results, however, a DMC is a natural 
party to consider for a main role in the  implementation  of a plan that has been thor-
oughly developed in advance—they can make recommendations or decisions 
allowed under that plan. The FDA adaptive design guidance document (US FDA 
 2010 ) concisely and elegantly summarizes this, stating that “Because a DMC is 
unblinded to interim study results, it can help implement the adaptation decision 
according to the prospective adaptation algorithm, but should not be in a position to 
otherwise change the study design except for serious safety-related concerns that 
are the usual responsibility of a DMC.” 

 It is important to keep in mind that the DMC function is to ensure overall patient 
safety by examining the risk-to-benefi t ratio, and also to protect the scientifi c integ-
rity of the trial to which the patients have contributed their participation. It is  not  to 
design or redesign the trial—that is the responsibility of a party such as a Steering 
Committee. An adaptive scheme is an aspect of trial design that similarly falls 
within the responsibilities of the trial designers, and in fact is generally invalidated 
if the party designing the adaptive scheme has access to unblinded information. 
Thus, if a DMC is to play a role in deciding on or recommending a change, it should 
be on the basis of implementing a plan that has been carefully and thoroughly pre-
specifi ed by the trial designers,  not  on the basis of pro-actively identifying candidate 
aspects for potential adaptation after viewing unblinded results.   

14.3     Regulatory Concerns and Viewpoints 

 Not surprisingly, concerns about access to interim results and the potential for oper-
ational bias are featured prominently in the draft FDA adaptive designs guidance 
document (US FDA  2010 ). Section IV.A.3, entitled “Operational Bias,” addresses 
these issues in some depth. For example, it is stated that “unblinding of the analysts 
charged with implementing the planned design revisions… raises concern about the 
possibility that the analysts might infl uence investigators in how they manage the 
trial, manage individual study patients, or make study assessments, bringing into 
question whether trial personnel have remained unequivocally objective.” It is stated 
further that “knowledge of the interim unblinded data used to make the adaptation 
decision, or even knowledge only of the specifi c adaptive choice, has the potential 
to introduce operational bias into the treatment-effect estimates. This can occur if 
investigators, because of their knowledge of the specifi c adaptation decisions, treat, 
manage, or evaluate patients differently.” The section further cites the FDA DMC 
guidance document (US FDA  2006 ), which “makes the point strongly that a steer-
ing committee or other group that could possibly decide to alter study design (in a 
partially or fully nonprospectively specifi ed manner) should be blinded to any 
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interim treatment results.” Sections IX.B and XI emphasize the need for substantial 
documentation, including SOPs and DMC charters that are expected to be more 
detailed and more extensive than is typically the case in nonadaptive settings 
because of the additional complexities. 

 An EMEA refl ection paper on fl exible designs (CHMP  2007 ) raises similar 
 concerns about the potential for operational bias, pointing out that “interim 
 analyses… always introduce the possibility of damaging the integrity of the trial” 
and that “a balance has to be struck between the needs for assessing accumulating 
information and the risk of damaging the integrity of the trial.” It is suggested that 
data before and after an adaptation interim analysis be examined for consistency of 
within-stage treatment effects. Although acknowledging that discrepancies could be 
due simply to chance, it states that it would be diffi cult to convincingly demonstrate 
that inconsistency was not due to some degree of dissemination of interim results; a 
similar point is raised in (Koch  2006 ).  

14.4     Who Makes the Adaptation Decision? 

14.4.1     Single vs. Separate Decision Boards 

 A question may arise in adaptive trials as to whether the group evaluating data for 
adaptations should be different from the group addressing the more familiar interim 
monitoring types of recommendations––in effect, whether there should be a single 
DMC, or two separate boards. The FDA adaptive design guidance (US FDA  2010 ) 
acknowledges both possibilities, stating that the adaptive decision-making role 
“could be assigned to an independent DMC when a DMC is established for other 
study monitoring purposes… Alternatively, a DMC might be delegated only the 
more standard roles (e.g., ongoing assessment of critical safety information) and a 
separate adaptation committee established to examine the interim analysis and 
make adaptation recommendations.” Arguments generally favoring the use of a 
single board are presented in Antonijevic et al. ( 2013 ). 

 A motivation for separating these functions may be that different sets of exper-
tise and experience are necessary to most effectively make the different types of 
decisions called for in an adaptive design setting. In addition, it might be perceived 
that the different decision types can most effectively and most objectively be made 
separately. Perhaps confl icts might arise between decisions of different types; for 
example, a preplanned sample size reassessment based on the primary endpoint 
might suggest increasing the number of patients, while an unexpected safety signal 
might raise concerns about the ethics of such an action, or even whether the study 
should continue. 

 Either possible model might be considered, with the specifi c details of a situation 
arguing in favor of one over the other. With regard to the relevance of differing 
expertise, it is only necessary that the decision-making body in aggregate possesses 
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proper perspectives and experience for any actions with which it is charged, a 
 fundamental principle in any DMC setting. Thus, if a single DMC were to be used 
for both safety monitoring and evaluating a potential adaptation, a board with expe-
rienced safety monitoring personnel might be supplemented with individuals hav-
ing experience in the type of adaptation being made, or more thorough statistical 
knowledge of the behavior of the adaptation algorithm (this might naturally lead to 
the presence of more than one statistician on the board). Using separate boards 
could also raise logistical challenges in terms of what information each receives and 
when, and under what conditions they might interact with each other. 

 Regarding the potential for confl ict between the types of recommendations to be 
made, the use of separate boards might not provide an answer, but rather just avoid 
the question: a confl ict will have to be resolved, and some party will need to be 
defi ned to do this. Additionally, the potential for such confl ict may refl ect that the 
adaptation plan was not adequately developed during trial design. Returning to the 
illustrative example mentioned above, a sample size modifi cation confl icting with 
another aspect of the data, perhaps the joint impact of the two aspects could have 
been taken into account in the development of the adaptation plan. If so, then poten-
tial awkwardness in reconciling a confl ict after the fact could be avoided. Ideally, 
the adaptation plan should envision what changes would be appropriate and valid 
based on the totality of all relevant data and potential outcomes (although with an 
understanding that some fl exibility is often appropriate). Determining the details of 
the plan should result from extensive advance discussions of hypothetical scenarios 
that could be envisioned, and what actions seem appropriate in these different sce-
narios, generally supported by extensive simulations. 

 The A-Heft trial (Taylor et al.  2004 ) is a helpful example. Because of uncertainty 
in the expected treatment benefi t for the primary composite endpoint, the A-Heft 
DMC was charged with the responsibility to authorize a sample size increase based 
upon interim results, using the method of Cui et al. ( 1999 ). This resulted in an 
enrollment increase of over one-third despite the fact that the DMC viewed that the 
study was trending towards likely termination on the basis of a mortality benefi t for 
the experimental treatment (and this termination subsequently occurred). 
Additionally, the sample size increase allowed the possibility that investigators 
could “reverse engineer” the algorithm and infer the interim treatment effect (see 
Sect.  14.5 ). Had the agreed-upon procedures allowed the DMC to overrule the sam-
ple size increase algorithm, they may have done so. 

 This example illustrates a challenge during the current evolution of adaptive 
designs where actual experience remains limited. Familiar DMC decision making, 
for example involving whether to terminate a trial, is rarely fully algorithmic, nor 
does decision making usually depend only on a single parameter. DMCs look at the 
totality of evidence available to them, and the internal and external consistency of 
all relevant information, to make the most informed overall risk-benefi t decision. 
On the other hand, novel adaptive statistical procedures might focus solely on 
results from a single parameter. It may take additional experience to more routinely 
learn how to effectively integrate these methods with some of the realities and com-
plexities of interim monitoring, allowing the necessary fl exibility in DMC decisions 
while maintaining validity of the study plan and design.  
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14.4.2     Additional Qualifi cations 

 We have referred above to the principle that for any interim monitoring, the DMC 
membership must include all sets of expertise and perspectives necessary for the 
types of decisions with which it is charged. More specifi cally in adaptive trials, the 
DMC must fully understand the scope of the potential changes, and the implications 
for the trial and the interpretation of its results. Among the DMC membership there 
should be individuals experienced in making the types of decisions that might be 
called for. The DMC must at a minimum include a statistician fully knowledgeable 
about the statistical methodology and algorithms associated with the adaptation 
plan. (These conditions hold for the group making the adaptation decision, whether 
it is an additional responsibility for a DMC constituted for other purposes, or pos-
sibly a separate group, as discussed in the previous section.) 

 In adaptive trials, these added requirements extend to the  reporting statistician , 
the individual supporting the DMC who provides the interim reports to the DMC 
and facilitates their interpretation. As alluded to previously, the group of statistical 
and programming personnel with access to unblinded data in order to support the 
DMC possesses all perspectives relevant to its role, is independent of other trial 
activities, and is “fi rewalled” similarly as the DMC. In any trial, the reporting stat-
istician must have full understanding of the protocol, trial design and analysis plan, 
data structures, and monitoring objectives, in order to provide the needed support. 
In an adaptive trial, the reporting statistician must additionally be fully knowledge-
able about the adaptive methodology, adaptation plan, and algorithm, and must be 
prepared to assist the DMC as needed in monitoring the behavior of the algorithm, 
including providing additional reports to the DMC upon request.  

14.4.3     Sponsor Involvement in Adaptation Decisions 

 A potentially controversial issue may arise regarding possible involvement of study 
sponsor personnel in reviewing interim data and making adaptation decisions. In 
nonadaptive trials with registration potential, it is, as we have described, common 
practice that the interim data be reviewed by an independent DMC. There would be 
no access to or knowledge of unblinded interim data by sponsor personnel until 
such time as a DMC was prepared to make a major recommendation concerning the 
trial, such as termination. In adaptive trials, it might be suggested that a particular 
adaptation type is one for which sponsor perspective might be relevant, perhaps to 
factor in marketing implications associated with different strategies under consider-
ation, or to most fully integrate into the discussion all relevant knowledge about the 
treatments in question. Also, this may involve decisions that have usually been 
viewed as a sponsor responsibility in nonadaptive settings, and that have important 
long-term implications for drug development programs. 
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 Selection of a dose of an investigational treatment for further development comes 
to mind as an illustrative example. In a traditional development program, doses in a 
phase III trial are typically chosen by the sponsor based on the results of phase II 
trials, but this process might be combined into a single adaptive study using what has 
been referred to as an  adaptive seamless design  (Maca et al.  2006 ), in which a dose 
or doses are selected for continuation at an interim analysis. Such a study aims to 
provide confi rmatory evidence for a selected dose, but there might be concern that a 
DMC entirely independent of the sponsor might not possess all relevant perspectives 
for a potentially complex decision, and that DMC members experienced in other 
monitoring contexts might not have experience in this particular type of decision. 
Thus, it might be viewed that there is a confl ict between the familiar desire to insu-
late the sponsor from access to interim results and the principle of bringing all rele-
vant perspectives to bear in order to make the most fully-informed decision. 
A question might arise as to whether a sponsor-internal group could be convened to 
make this type of decision, or whether there should at least be sponsor representation 
on an otherwise independent DMC for some limited portion of its deliberations. 

 Once again, planning can play an important role in resolving this confl ict. 
Extensive planning discussions can help mitigate sponsor concerns about allowing 
an independent DMC to make the adaptation decision without direct sponsor 
involvement. Prior to a trial’s start, or at least prior to any DMC access to unblinded 
data, it is not controversial for the sponsor and DMC to discuss issues openly. It is 
important to iron out differing viewpoints at this stage, as this can be very problem-
atic after the DMC has received access to unblinded data. The sponsor can attempt 
to “educate” the DMC in whatever relevant perspectives it might possess. The 
planning discussions should include raising varied and complex hypothetical out-
come scenarios, and discussing what might seem to be the appropriate recommen-
dations in each; simulation results will often play a large role here. This might then 
allow the actual data review and recommendations to be performed by the indepen-
dent DMC without sponsor access to the results, or direct sponsor participation in 
deliberations. 

 Though decisions as to how to proceed might depend on situation-specifi c 
details, the principles seem fairly straightforward. As described previously, study 
integrity is best maintained if trial management personnel do not have access to 
interim results. Sponsor access raises risks by compromising independence, as 
 discussed in (US FDA  2006 ). Involvement by any sponsor personnel should require 
clearly-stated and convincing justifi cation, and be  minimal  to meet the needs––
including as a desirable special case,  no access , perhaps achieved through effective 
planning sessions as mentioned above. As discussed in Gallo ( 2006 ), if some spon-
sor involvement could be convincingly justifi ed:

•    The sponsor representatives involved should be the minimum number of indi-
viduals possessing the perspectives necessary to assist in arriving at the best 
decision, probably just one or two sponsor management representatives.  

•   These individuals should not otherwise be involved in any trial activities, nor 
contribute to any discussions of trial management issues(noting that identifying 
personnel with adequate separation of functions may pose logistical challenges 
for small companies).  
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•   These individuals will have access to results only at the times of adaptation deci-
sions, and they will see only information that is relevant to the decision with 
which they are assisting (e.g., unlike an independent DMC that may be involved, 
which may have a broader and ongoing role).  

•   Appropriate fi rewalls and process documentation (SOPs, charter) should be in 
place to ensure that access to results is appropriately restricted, and there should 
be subsequent documentation that the processes were adhered to; in particular, 
numerical results remain unknown to other trial participants (trial management 
team, investigators, Steering Committee, etc.).    

 There is some similarity here to issues raised in Section 6.5 of the FDA DMC 
guidance (US FDA  2006 ), which (in nonadaptive settings) discusses the possibility 
of sponsor access to interim results for critical business purposes. It is mentioned that 
such access is “problematic” and introduces risks to trial integrity, and the document 
cites principles and practices to lessen risks that are quite similar to those we have 
listed just above. Trial integrity in adaptive trials is most strongly ensured if the adap-
tation plan can be implemented without sponsor access to interim results, presum-
ably through selection of a qualifi ed independent DMC and suffi cient planning.   

14.5      “Reverse Engineering” 

 An issue in adaptive trials with implications for maintaining confi dentiality and trial 
integrity, with some relationship to other DMC-related topics, involves the potential 
for adaptations to convey information to observers about the interim results that led 
to those changes. A useful illustrative example would be a sample size reassessment 
method, such as that of Cui et al. ( 1999 ): if the protocol-specifi ed plan is to increase 
sample size in an algorithmic manner based on the interim treatment effect estimate, 
then someone who knows the plan and becomes aware of the sample size change 
can potentially invert the algorithm and “back calculate” or “reverse engineer” to 
infer what effect estimate led to the change, information that would typically be 
restricted during an ongoing trial. 

 It is an unreasonable standard to strictly require that  no  information be conveyed 
by observation of a mid-trial adaptation. Even in conventional interim analysis set-
tings, this is never the case. All monitoring has potential action thresholds, whether 
implicit or explicit, and lack of action will generally imply that such thresholds 
have not been reached. For example, continuation of a trial in which there is safety 
monitoring usually implies that no large imbalance in serious events exists; con-
tinuation of a group sequential trial generally implies that the effi cacy results lie 
within a predefi ned continuation region (even for some familiar group sequential 
schemes, this continuation region may be narrower than commonly perceived, 
especially when an aggressive futility rule is being used). Nevertheless these prac-
tices tend not to be questioned, presumably because the information conveyed is 
judged to be quite limited and with minimal potential for introducing bias, and 
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because the advantages of the interim monitoring with regard to patient welfare and 
the effi ciency of the drug development process outweigh any slight risks. Similar 
standards should be applied to adaptive designs: steps should be taken where pos-
sible to minimize the information that could be inferred by observers, but the 
amount of such information and its potential for introducing bias should be bal-
anced against advantages that the design offers. 

 For example, in an adaptive seamless dose selection trial, or in an enrichment 
design, knowledge of which doses or sets of patients are continuing could be consid-
ered to convey  some  information to observers. However, there would usually be little 
information that could be dependably inferred about the magnitude of treatment 
effects, and the knowledge available would seem to have minimal potential for intro-
ducing biases into the trial. Furthermore, consider as an alternative to the seamless 
design simply following a conventional separate-trial paradigm; that is, dose selec-
tion is performed in a phase IIb study followed by a separate confi rmatory trial. In 
this case, detailed information from the prior trial would be widely available, perhaps 
impacting equipoise for the subsequent trial in a manner that the seamless approach 
avoids, which might possibly be considered an advantage for the adaptive approach. 

 The standard by which adaptive trials should be judged on this issue is thus as 
follows: is the information conveyed by observing the adaptation limited in regard 
to discerning the magnitude of interim treatment effects, and with no clear and 
direct mechanism that can be envisioned for introducing noticeable bias into the 
eventual trial results? If not, then the risk should be balanced against the perceived 
advantages that the adaptive design offers. 

 Beyond the dose selection examples above, other types of adaptations would 
seem to satisfy this standard if appropriately implemented, for example, sample size 
reassessment based upon within-trial information on a nuisance parameter. 
Adaptations which could be more problematic in this regard would include sample 
size reassessment methods or modifi cation of randomization allocation in a direct 
algorithmic manner based upon an estimated treatment effect. Open-label trials 
might be of particular concern, and it may require very careful consideration to 
decide whether an adaptive design could be implemented appropriately in an 
 open- label setting. 

 Sample size changes made on the basis of multiple considerations, for example, 
on both a treatment effect estimate and a nuisance parameter, might mask the interim 
effect somewhat and thus be less of a problem. “Discretizing” action thresholds 
might offer an additional possibility for lessening the concern: for example, sample 
size might be modifi ed not as a continuous function of the treatment effect estimate, 
but instead might change to one size among a small number of possibilities, corre-
sponding to specifi ed ranges in which the estimate might lie. In general, adaptations 
that would not be implemented or become apparent until late in a study would be 
expected to limit the potential for bias. 

 It is challenging to quantify when a threshold for concern about possible bias will 
be reached, but the issue should not be overlooked during design of adaptive studies. 
There should be sensitivity to this possibility and steps should be considered, both 
 during planning and in the process of DMC decision making, to try to limit the infor-
mation which might be conveyed. It might be considered whether it was acceptable for 
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a trial protocol not to contain full numerical specifi cation of certain action  thresholds. 
For example, if selection of a treatment arm or patient sub-population for continuation 
is to be made based upon predictive probability criteria, perhaps the general approach 
might be described in the protocol, with the specifi c thresholds appearing only in a 
document of more limited circulation such as the DMC charter and the document 
relaying the eventual decisions or recommendations. This information could likely not 
remain unknown to all trial personnel, but at least this approach might limit what other 
parties (e.g., investigators) could infer from the actions eventually taken.  

14.6     Summary and Recommendations 

 Adaptive designs have potential to bring added benefi ts and effi ciencies to clinical 
research, when properly planned and utilized in appropriate settings. However, their 
differences from other more familiar trial settings that involve interim monitoring, 
and the nature of those differences, raise a number of challenges that must be 
addressed as we learn how to more effectively utilize them. Some of these chal-
lenges involve access to accruing trial results, relative to current conventions aimed 
at avoiding the introduction of bias. Clearly, in the implementation of confi rmatory 
adaptive trials it will be important to limit or control knowledge of interim results. 
However, it is not the case that trials must be perceived as compromised if  any  com-
parative interim information from them becomes available to anyone outside of 
what we would view as a conventional independent DMC, since that is not the 
standard even in conventional (nonadaptive) trials with interim monitoring. Current 
interim monitoring practices have been developed to control information in order to 
achieve the best balance between the benefi ts resulting from the monitoring on one 
hand, and the integrity and interpretability of trial results on the other. For adaptive 
design implementation, the principle should be much the same. In implementing the 
interim data review and decision processes, certain critical questions must be care-
fully addressed: What perspectives and expertise are relevant to the adaptation deci-
sion? What is the nature and extent of the information that would become known? 
Can that information be reasonably considered to have potential to introduce bias 
into the trial? and What are the specifi c advantages that the adaptive design offers? 
General principles and recommendations include the following:

•    In line with current conventions, access to unblinded data and knowledge of 
interim results by trial participants should be restricted, to avoid the potential to 
compromise trial results. This is particularly important if the trial aims to  produce 
results which are confi rmatory or strongly supportive for a potential regulatory 
submission.  

•   Review of interim results and decisions regarding adaptations are best made by 
qualifi ed individuals not otherwise directly participating in the trial. A DMC can 
play a natural role in implementing an adaptation according to a sound prespeci-
fi ed plan. The membership of the DMC must possess whatever sets of expertise 
and experience are necessary for the tasks with which they are charged.  
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•   At times sponsor participation in such activities may be considered, but a con-
vincing rationale should be required, there should still be separation of informa-
tion from trial management personnel, and appropriate fi rewalls and 
confi dentiality procedures should be in place. Advance planning discussions 
might avoid the need for sponsor involvement in data review.  

•   Potential knowledge of interim results by observers or trial participants based on 
“reverse engineering” is an issue that should be considered in decisions about 
designing or implementing adaptive trials. In particular, the sensitivity of the 
specifi c information that could become known and its potential to introduce bias 
should be considered, as this might affect the manner in which the adaptive 
design is implemented. Measures to limit the information that could be inferred 
should be considered.        

   References 

    Antonijevic Z, Gallo P, Chuang-Stein C, Dragalin V, Loewy J, Menon S, Miller ER, Morgan CC, 
Sanchez M (2013) Views on emerging issues pertaining to data monitoring committees for 
adaptive trials. Ther Innov Regul Sci 47(4):495–502  

    Committee for Medicinal Products for Human Use (CHMP) (2005) Guideline on data monitoring 
committees. EMEA, London  

    Committee for Medicinal Products for Human Use (CHMP) (2007) Refl ection paper on 
 methodological issues in confi rmatory clinical trials planned with an adaptive design. EMEA, 
London  

     Cui L, Hung HMJ, Wang SJ (1999) Modifi cation of sample size in group sequential trials. 
Biometrics 55:853–857  

     Ellenberg SS, Fleming TR, DeMets DL (2002) Data monitoring committees in clinical trials: a 
practical perspective. Wiley, Chichester  

    Fleming TR, Sharples K, McCall J, Moore A, Rodgers A, Stewart R (2008) Maintaining confi den-
tiality of interim data to enhance trial integrity and credibility. Clin Trials 5:157–167  

    Gallo P (2006) Confi dentiality and trial integrity issues for adaptive designs. Drug Inf J 40:
445–450  

    Gaydos B, Anderson K, Berry D, Burnham N, Chuang-Stein C, Dudinak J, Fardipour P, Gallo P, 
Givens S, Lewis R, Maca J, Pinheiro J, Pritchett Y, Krams M (2009) Good practices for  adaptive 
clinical trials in pharmaceutical product development. Drug Inf J 43:539–556  

    International Conference on Harmonisation Expert Working Group (1998) ICH harmonised 
 tripartite guideline: statistical principles for clinical trials. Fed Reg 63:49583–49598  

    Koch A (2006) Confi rmatory clinical trials with an adaptive design. Biom J 48:574–585  
    Maca J, Bhattacharya S, Dragalin V, Gallo P, Krams M (2006) Adaptive seamless phase II/III 

designs – background, operational aspects, and examples. Drug Inf J 40:463–473  
    Taylor AL, Ziesche S, Yancy C, Carson P, D’Agostino R, Ferdinand K, Taylor M, Adams K, 

Sabolinski M, Worcel M, Cohn JN (2004) Combination of isosorbide dinitrate and hydralazine 
in blacks with heart failure. NEJM 351:2049–2057  

       US Food and Drug Administration (2006) Guidance for clinical trial sponsors on the establishment 
and operation of clinical trial data monitoring committees. FDA, Rockville MD  

         US Food and Drug Administration (2010) Guidance for industry for adaptive clinical trials for 
drugs and biologics (draft). FDA, Rockville, MD    

P. Gallo et al.



273W. He et al. (eds.), Practical Considerations for Adaptive Trial Design 
and Implementation, Statistics for Biology and Health, 
DOI 10.1007/978-1-4939-1100-4_15, © Springer Science+Business Media New York 2014

    Abstract     Clinical supply is impacted by decisions and events at every stage of a 
clinical trial. Protocol design, logistics planning, and operational dynamics pose 
challenges to the management of clinical supply in terms of complexity and uncer-
tainty. In this chapter, we propose a simulation modelling approach to address these 
issues and support decision-makers in effectively managing clinical supply. The 
approach is comprehensively described in terms of underlying structure and pro-
cess, and is illustrated with adaptive trials involving dropping of arms and a Bayesian 
responsive-adaptive design for dose fi nding.  

  Keywords     Adaptive clinical trials   •   Clinical supply   •   Simulation modelling   • 
  Bayesian response-adaptive design  

15.1         Introduction 

 Clinical supply plays a central role in clinical trials. It is impacted by decisions and 
events at every stage of a clinical trial. Protocol design determines key drivers of clini-
cal supply such as type of trial, sample size, randomization scheme, treatment regi-
men, and drug pack-types. Logistics planning defi nes the supply chain by selecting 
sites and supply depots in countries and regions, activation schedules for sites, 
inventory stocking and replenishment policies for sites and depots, and scheduling 
of packing runs. During the operational stage of a clinical trial, the clinical supply 
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is affected by patient enrolment and randomization, treatment dispensing schedule, 
inventory and expiry management at sites and depots, clinical events and patient 
dropouts, and timing of interim looks. 

 Traditional approaches to estimating drug requirement rely on historical over-
ages and experience with similar trials. The common practice is to use a spreadsheet 
to perform calculations based on averages. Uncertainty is not modelled in a trans-
parent and explicit manner. The next section of this chapter shows that uncertainty 
is inherent to medical supply for clinical trials. 

 The main disadvantages to using such spreadsheet models are:

•    There is no quantitative assessment of risk of stock-out (failed randomization).  
•   Estimates of requirements are not easily defensible because their reliability 

depends on intuition based on experience. This is especially serious in the case 
of adaptive designs for which experience is limited.  

•   There is no systematic way to answer “what-if” questions that help to optimize 
drug supply (e.g. effect of multi-pack kits, effect of adding more sites).    

 This chapter focuses on simulating clinical trial supply by explicitly modelling 
the major sources of uncertainty. The aim of the simulation approach is to support 
supply related decisions at design, planning, and execution stages of a clinical trial. 
The chapter is organized in six sections. The next section outlines the key chal-
lenges of clinical supply management and motivates the modelling and simulation 
approach to tackle them. Section  15.3  comprehensively describes simulation mod-
elling of clinical supply for a typical trial. It outlines the simulation process, 
describes the underlying structure in terms of components, and illustrates the 
approach through a running illustrative Example 1 of a typical non-adaptive fi xed 
design trial. Section  15.4  extends the clinical supply simulation model to adaptive 
trials. Two case study examples of an adaptive trial with a single interim look with 
dropping of arms (Example 2) and a Bayesian response-adaptive design (Example 
3) will be used in Sects.  15.4.1  and  15.4.2  respectively to illustrate simulation mod-
els for adaptive trials. Section  15.5  discusses strategic issues in medical supply 
modelling and simulation, computational aspects, re-simulation during the course 
of trial, and design/medical supply complexity trade-offs. Finally, Sect.  15.6  pro-
vides a chapter summary and conclusions.  

15.2     Key Challenges 

 Clinical trials vary widely in complexity in terms of both trial design and global 
supply chain logistics.

•     Design complexity : Clinical trial designs are of several types (e.g. traditional 
having parallel arms with fi xed sample size and randomization ratios, cross-
over, group sequential, adaptive with sample size reassessment, adaptive with 
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dropping of arms, adaptive in randomization ratios). Traditional designs may or 
may not be stratifi ed, and they can be randomized at the study level or at the site 
level and can have covariate adaptive randomization. Adaptive designs are even 
more complex as the adaptations introduce an additional level of uncertainty in 
the demand patterns for clinical supply at site level. Trials with interim looks 
involving dropping of arms and/or sample size re-estimation require mid-
course reconfi guration of clinical supply system. Trial designs often involve 
treatment regimens consisting of complex dispensing visit cycles and titration 
patterns. Double-blinded trial designs can involve preparation of treatment kits 
from a set of pack-types, offering several choices of combinations of active 
drugs and placebos.  

•    Supply chain complexity : Clinical trials involve complex global supply chains 
spanning several regions and countries. Clinical supplies are stocked, shipped, 
replenished, and eventually dispensed through a multi-echelon structure of cen-
tral/regional/local depots, and dispensing sites. Expiry of clinical supply has to 
be managed at all levels of this structure. While clinical supply pack-types are 
produced at manufacturing facilities in scheduled packing runs, the treatment 
kits could potentially be prepared at any level of the complex structure. All the 
links within the structure would have their own lead times between trigger and 
eventual replenishment of clinical supply stock.    

 Clinical trials have several sources of uncertainty. The major sources are 
described below.

•     Enrolment uncertainty : Prior site enrolment projections are often too optimistic. 
It is not uncommon to have as many as 30 % of the sites enrolling just one or no 
patients during the course of entire study. On the other hand, a few sites may 
contribute most of the patient enrolments. Further, there could be periods of high 
enrolment at a site followed by a lull period of low or no enrolment.  

•    Site activation uncertainty : Scheduled site activation could face uncertain logis-
tical delays due to local conditions including country-specifi c regulatory issues. 
Even after activation, the First Patient First Visit (FPFV) time is often much 
longer than suggested by the expected enrolment rate.  

•    Screening/randomization uncertainty : Inclusion/exclusion criteria can lead to 
many screening failures. Randomizations, uncertain by defi nition, may lead to 
unbalanced assignments of treatment arms at the site level, even if adequately 
balanced at the trial level through balancing mechanisms such as permuted 
blocks and covariate-adaptive minimization algorithms.  

•    Dispensing uncertainty : The fi rst (randomization) visit of a patient is highly 
uncertain due to enrolment uncertainty described earlier. Subsequent dispensing 
visits follow specifi ed cycles in terms of periods and frequency and so are rela-
tively predictable, but random delays do occur within specifi ed intervals. A long 
delay beyond a limit could lead to reverting to a “loading dose” usually associ-
ated with the fi rst visit, instead of a “maintenance dose” associated with revisits. 
The total number of dispensing visits and/or periods as implied by the specifi ed 
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cycles and frequencies could vary due to random delays and dropouts. Dose 
levels could also be determined by uncertain clinical or safety events. Trials 
based on survival endpoints have dispensing uncertainty due to randomness in 
survival periods.    

 The challenges posed by complexity and uncertainty in clinical trials can be 
addressed by using simulation to replicate a given clinical trial several hundred 
times through a model that captures the inherent complexity and uncertainty of the 
trial to assess its impact on clinical supply. This approach would enhance effi ciency 
of clinical supply management by minimizing unused supply at the end of the trial 
while controlling failed randomizations due to supply stock-outs by ensuring avail-
ability of the right supply, at the right place, at the right time. Decision-makers at 
various stages of clinical trial design, planning, and implementation can use simula-
tion to conduct “what-if” analyses of the implications to clinical supply effi ciency 
of decisions and policies and take an integrated view to effectively manage the trial. 
At the design stage, the simulation model could be used to refi ne decisions related 
to various trial parameters such as sample size, number and timing of adaptive inter-
ventions, treatment regimen, dispensing cycles, and pack-types. At the planning 
stage, the model could lead to a better supply chain structure and policies. During 
trial execution, the model can support effective monitoring and mid-course correc-
tions based on accumulated information.  

15.3      Clinical Supply Simulation Model 

 The clinical supply simulation model embodies key aspects of design, planning, and 
operations of a clinical trial. Essentially, the model enables virtual replication of a 
given clinical trial through a simulation procedure to explore various scenarios 
related to the key aspects. Peterson et al. ( 2004 ) and McEntegart and O’Gorman 
( 2005 ) give detailed descriptions of clinical supply simulation for traditional 
( non-adaptive) designs. 

 The simulation procedure consists of three basic steps that are iterated several 
times to refi ne and optimize medical supply for a clinical trial. The steps are:

    1.    Assembling inputs refl ecting relevant aspects of a trial scenario. A complete 
specifi cation of all inputs required to simulate clinical supply for a trial is called 
a scenario.   

   2.    Running Monte Carlo simulations consisting of several replicates of the trial as 
defi ned by the scenario.   

   3.    Analysis of the simulation results database to generate reports.     

 Iterative cycling through steps 1–3 is used to refi ne decision and policy parame-
ters that drive supply effi ciency. Iteration is performed to answer “what-if” ques-
tions aimed at optimizing the drug supply strategy for the trial. This procedure is 
depicted in Fig.  15.1 .
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15.3.1       Simulation Input 

 The simulation input consists of trial design and supply chain parameters. The trial 
design parameters are typically derived from the protocol document. The supply 
chain parameters are primarily derived from trial planning documents and discus-
sions with supply planners. 

 The trial design parameters typically include sample size, treatment arms, ran-
domization scheme, treatment regimen, dispensing visit cycles/frequency/dropout 
assumptions, and clinical supply pack-types. Trials with complex designs may 
involve additional parameters including number of interim looks, dropping of arms, 
sample size re-estimation, cross-over schemes, response-adaptive randomization 
schemes, etc. As a preparatory step before discussing adaptive trials in Sect.  15.4 , 
we will illustrate the various components of a clinical supply simulation model with 
the simpler case of a typical non-adaptive trial design. Inputs for this non-adaptive 
trial are described in Table  15.1 .

   The supply chain parameters typically include depot/site structure, lead times, 
enrolment rates, and activation plan as described in Table  15.2 . The sites are catego-
rized as High, Medium, and Low in terms of the range of enrolment rates. Additional 
supply chain input parameters for inventory control will be described in Sect.  15.3.2 .

  Fig. 15.1    Overview of clinical supply simulation model       
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15.3.2          Components of Clinical Supply Simulation Model 

 The clinical supply simulation model consists of the following sub-models that 
simulate specifi c aspects of a clinical trial.

•    Packing/distribution model  
•   Site activation model.  
•   Enrolment model  
•   Randomization model  
•   Site inventory model  
•   Treatment dispensing model  
•   Treatment kits model    

15.3.2.1        Packing and Distribution Model 

 The packing and distribution model addresses lot scheduling, order fulfi lment, and 
expiry management at central and local depots. Lot schedules specify delivery of 
lots to the central depot. The quantity, in multiples of the lot-size specifi ed by the 

  Table 15.1    Trial design parameters for Example 1  

 Sample size  480 patients 

 Treatment  2 Capsules per day for 6 weeks 
 Treatment arms  0 (Placebo), 20, 40, 60 mg 
 Dose pack-types  0 (Placebo), 20, 40, 60 mg 
 Treatment ratio  1:1:1:1 
 Randomization method  Permuted block (size = 4) 
 Number of dispensing visits  1 
 Treatment duration (weeks)  6 
 Interim looks  0 

   Table 15.2    Basic supply chain parameters for Example 1   

 Site categories >  High  Medium  Low 

 Number of sites 
 Country 1  1  1  1 
 Country 2  3  5  3 
 Country 3  2  2  2 

 Enrolment rates (patients/week) 
 Country 1  0.86  0.57  0.29 
 Country 2  1.21  0.80  0.40 
 Country 3  1.46  0.97  0.49 

 Range of activation delay 
(weeks from start of trial) 

 Country 1  0–4  0–4  0–4 
 Country 2  0–9  0–9  0–9 
 Country 3  9–13  9–13  9–13 

N.R. Patel et al.



279

user, should be adequate to take care of required shipments from central depot to 
local depots and sites, while controlling wastage due to expiry and unused stock. 
Orders are fulfi lled using depot stock on fi rst-in-fi rst-out basis to minimize the wast-
age due to expiry. The lot schedules can be fully or partially specifi ed (Manual 
mode) or can be determined by the model automatically for a given lot size (Auto 
mode). In both cases, the model optimizes the lot delivery schedule to minimize 
wastage due to expiry and unshipped stock. The delivery of lots and order fulfi lment 
involves lead times and costs. The supply chain parameters related to the packing 
and distribution model for the Example 1 are given in Table  15.3 .

   The simulation run control parameters for this example require that the total 
requirement for each pack-type be manufactured and shipped to the central depot 
(located in Country 2) at the start of the trial. The quantity to be packed at the central 
depot was automatically computed to be 1,160 packs (packing overage of 142 %), 
evenly distributed amongst pack-types, as given in Table  15.4 . The central depot in 
turn would ship 200 packs to the Country 1 local depot and 360 packs to the Country 
3 local depot.

   The depot stocks required at start of the trial are determined on the basis of time- 
series of simulated cumulative demand at sites supplied by the depot. These 
 time- series are aggregated per simulation and envelopes across simulations are 
computed to determine the maximum cumulative demand schedule for the depot. 

   Table 15.3    Supply chain parameters for packing and distribution model   

 Parameter  Value 

 Lot quantity per pack-type  10 
 Packing runs schedule  Auto 
 Packing expiry time (weeks)  60 
 Do not ship time prior to expiry (weeks)  7 
 Do not dispense time prior to expiry (weeks)  5 
 Cost of drug for 6 week treatment kit  $1,000 

 Depot shipment parameters 

 Depots >  1  2 (Central)  3 

 Lead time to country depots from the central depot (days)  10  –  10 
 Manufacturing and delivery lead time to central depot (days)  –  20  – 
 Depot to site lead time (days)  3  3  3 
 Cost per shipment from central or manufacturing to depots  $2,000  $10,000  $2,000 
 Cost per shipment form depot to site  $500  $500  $500 

   Table 15.4    Depot stocks required at start of trial   

 Week  A0  B20  B40  B60 

 Country 1 (local) 
 0   50   50   50   50 
 Country 2 (central) 
 0  290  290  290  290 
 Country 3 (local) 
 0   90   90   90   90 
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The depot stock required at start of the trial is then determined by a simple lookup 
of the maximum demand schedule at expiry date. The central depot stock is 
 augmented with the stocks of other local depots supplied by it.  

15.3.2.2     Site Activation Model 

 The site model simulates site activation times by random sampling from a probabil-
ity distribution for activation periods for each country and site category specifi ed by 
the user. We use a uniform distribution with earliest and latest activation times. A 
triangular distribution with an additional mode parameter is also popular. Figure  15.2  
shows profi les over time of the median and 95 % credible intervals for the cumula-
tive number of activated sites generated by 1,000 simulations for the Example 1.

15.3.2.3        Enrolment Model 

 The enrolment model generates patient enrolments, screening failures, and patient 
attributes. A Poisson process is used to generate enrolments, where rates are gener-
ated randomly using a uniform distribution within a range around specifi ed enrol-
ment rates. Several papers have proposed Poisson models. In Chap.   16     of this book, 

  Fig. 15.2    Simulated cumulative site activations for Example 1       
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Weili and Xiting describe approaches for patient recruitment modelling and simulation. 
Anisimov and Fedorov ( 2007 ) suggest using a Gamma distribution instead of a uniform 
distribution for enrolment rates. We have used such distributions in some assignments. 
However, we have found that drug supply experts fi nd it easier to specify a range of 
likely rates within which any value is as likely as any other. Screening failure for 
enrolled patients can be generated through a Bernoulli process. Patient attributes (e.g. 
Body Mass Index, covariate values) for the screened patients are randomly generated 
using specifi ed probability distributions and related parameters. Figure  15.3  shows 
cumulative profi les of enrolled patients at the study level in terms of median and 95 % 
credible intervals for Example 1.

15.3.2.4        Randomization Model 

 The randomization model implements the randomization method specifi ed in the 
protocol. A permuted block randomization is used for most designs. Other methods 
like stratifi ed permuted blocks, cross-over and covariate-adaptive minimization can 
be easily simulated with minor modifi cations to the simulation logic. This is also the 
case for simpler response adaptive designs such as dropping and adding arms and 
sample size re-estimation. We will illustrate this approach in the Sect.  15.4.1  where 
we describe a dropping arms design. 

  Fig. 15.3    Simulated cumulative enrolments for Example 1       
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 However, for more complex adaptations like Bayesian adaptive randomization it 
is preferable to leverage outputs from simulations that are routinely carried out to 
determine operating characteristics of such adaptive designs. This can be done by 
reading output fi les with patient randomization sequences from the design simula-
tions as input fi les for the medical supply simulation. We illustrate this approach in 
Sect.  15.4.2  where we describe a Bayesian adaptive randomization design for dose 
fi nding. 

 Most randomization methods result in signifi cant imbalance in demand among 
treatment arms at the site level. Site-level imbalance causes ineffi ciency in clinical 
supply, and may result in stock-out in some treatment arms and surplus in others. 
McEntegart ( 2003 ) has proposed a “forced randomization” approach, whereby the 
randomized subject facing a stock-out is “forced” to be allocated to the next free 
treatment arm in the randomization list corresponding to available treatment at the 
site. This approach is motivated by effi ciency considerations of clinical supply. This 
could encounter diffi culties with regulators, especially if there are several instances 
of “forced” allocation.  

15.3.2.5      Site Inventory Model 

 The Initial/Trigger/Resupply (ITR) model is the almost universally used method for 
controlling supply to sites in trials that use an IVRS system to control randomiza-
tion and medical supply. Excellent descriptions of how IVRS systems enable imple-
mentation of ITR models are given by Byrom ( 2002 ) and Waters et al. ( 2010 ). 
Under ITR an initial level of stock is delivered to each site when it is activated. 
Subsequent orders are triggered to replenish any shortfall below the resupply level 
set for the site, if the inventory position (stock on hand + on order) for a pack-type 
falls to its trigger level (or below). The order is placed at the end of the day and a 
shipment is scheduled at the depot that will be received at the ordering site after 
a delay known as the lead time. Typically, to reduce the number of consignments, 
when an order is triggered all pack-types (not just the one that fell below the trigger 
level) are ordered up to their resupply levels. This practice is known in the inventory 
control literature as “joint replenishment”. 

 Initial/Trigger/Resupply levels can be either explicitly specifi ed by the user or 
could be generated by the clinical supply simulator in “Auto mode”. The auto mode 
uses a heuristic algorithm that iteratively computes ITR levels aiming to keep the 
number of shipments near a target level specifi ed by the user, while ensuring that 
there are no stock-outs. The trigger level critically infl uences the probability of a 
stock-out; higher the trigger level, lower would be the probability of stock-out and 
vice versa. Basically, the trigger level should be just about adequate to meet the 
lead time demand between trigger and resupply at a site. Such demand is deter-
mined by the rate of enrolment, randomization, and the time points of trigger. Of 
these, the latter is jointly determined by the initial, trigger, and resupply levels for 
the site. In other words, the auto mode heuristic algorithm has to co-determine the 
three levels together, and they in turn determine the number of triggers or shipments. 
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For a tutorial on heuristic algorithms for optimal inventory policies in supply chains, 
see Shang ( 2011 ). Specifi cally, the number of shipments is infl uenced by the initial 
level and the gap between trigger and resupply level; higher the initial level and/or 
the gap, lower would be the number of shipments, and vice versa. On the other hand, 
higher initial, trigger, and resupply levels would increase the shipment overage 
defi ned as the fraction of excess site inventory at the end of the trial over total clini-
cal supply dispensed to the patients. The shipment overage should be distinguished 
from the packing overage defi ned in Sect.  15.3.2.1 , the latter accounting for the 
excess inventory including at central and local depots. The site inventory policy 
primarily impacts the shipment overage component of the overall packing overage. 

 The above discussion implies that setting ITR levels involves a trade-off between 
the number of shipments and the shipment overage. The auto mode heuristic algo-
rithm generates this trade-off curve for the user to resolve the trade-off by consider-
ing the constraints on total availability and cost of clinical supply as well as shipping 
costs. For Example 1, Fig.  15.4  displays the trade-off curve between average ship-
ment costs and shipped overage, and Table  15.5  gives the trigger and resupply levels 
for a median shipped overage of about 75 % (corresponding to packing overage of 
about 142 %) and a total shipment cost of around $80,000 when the initial level is 
set to be equal to the resupply level.

    The trigger/resupply levels discussed so far relate to the fi rst (randomization) dis-
pensing visit of the patient involving uncertain enrolment time at a site and random 
treatment arm. In the case of trials with multiple dispensing visits, the corresponding 

  Fig. 15.4    Shipment cost vs. overage trade-off       
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schedules and treatments are known with certainty for subsequent re-visits, except 
possibly for a small variation around planned scheduled visit and a chance of drop-
out. Therefore, it should be possible to effectively manage the clinical supply for 
dispensing re-visits with a nearly deterministic process. However, dividing clinical 
supply between fi rst visit and later re-visits into independent subsystems, each with 
its own independent set of ITR levels, would lead to sub-optimal control of total 
inventory. On the other hand, integrating the two subsystems resulting in pooling of 
clinical supply inventory across the re-visits could potentially increase inventory 
position at the trigger point. The two subsystems can be integrated through dynami-
cally augmented trigger/resupply levels on the basis of number of patients predicted 
to report for dispensing re-visit within a prediction window. Byrom ( 2002 ) describes 
setting trigger and re-ordering levels for multiple visit protocols. In addition to the 
augmented trigger/resupply levels for re-visits, the levels could also be boosted to 
account for imminent expiry of pack-types in stock as determined by the drug expiry-
related parameters. The auto mode heuristic algorithm strives to avoid stock-outs, to 
the extent possible, by setting optimal inventory policy for augmented dynamic lev-
els, and pre-emptive replenishment of stocks due to expire. If appropriate, for failed 
randomization due to stock-outs, the user can choose to model dispensing of the 
required kit at a later date. The ITR mechanism could also be used for replenishment 
of local depot stocks from central depots. Given the higher depot shipping costs and 
lead times, however, the ITR mechanism is typically dominated by high initial levels 
determined as described in Sect.  15.3.2.1  with no further replenishment.  

15.3.2.6      Treatment Kits Model 

 Treatment arms are specifi ed in terms of dose level of active pharmaceutical ingre-
dient (API). For example, the four treatment arms in Example 1 have dose levels of 
0 mg (Placebo), 20, 40, and 60 mg, each with its own pack-type. It is possible to 
improve clinical supply effi ciency by restricting pack-types to a subset of dose lev-
els and combining these pack-types for dispensation to all treatment arms. The com-
binations have to ensure that treatment arms are double-blinded, if required, and the 
number of packs needed for each treatment arm is minimized to avoid requiring 
patients to handle too many medications at each administration. Also feasibility in 
terms of manufacturing/packaging as well as treatment compliance by patients has 
to be confi rmed before considering this option. 

 Let us now modify Example 1 to a scenario where there is no pack-type of 60 mg. 
Instead pack-types of 0, 20, and 40 mg are used to dispense all four treatments. 
Table  15.6  shows how this can be done, while preserving blinding, by dispensing 
two packs to each patient.

   Running 1,000 simulations of this scenario in Auto mode shows that the packing 
overage comes down very substantially to 85 % compared to the base case overage 
of 142 %. (Both cases had no stock-out in 1,000 simulations.)  
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15.3.2.7     Treatment Dispensing Model 

 The dispensing model refl ects the protocol information associated with the treat-
ment regimen (e.g. dispensing cycles, schedule, frequency, treatment kits, permis-
sible delays). The treatment period is often divided into one or more dispensing 
cycles. If dropout rates are not negligible, the simulation model needs to be pro-
vided user inputs on dropouts at each dispensing visit. The treatment kits may be 
specifi ed to be dependent on patient attributes (e.g. weight). The dispensing model 
simulates visit times and dropouts, until the specifi ed maximum number of visits or 
total dispensing duration or dropout, whichever occurs fi rst. Multiple dispensing 
visits can signifi cantly improve clinical supply effi ciency due to “predictive resup-
ply” described earlier in Sect.  15.3.2.5 , as the schedule of subsequent revisits is 
known with greater degree of certainty compared to the randomization visit. This 
can reduce overage substantially when the proportion of the drug required for sub-
sequent visits is large compared to the fi rst randomization visit. Extending the two 
pack-types scenario described in Sect.  15.3.2.6  to two dispensing visits for Example 
1, the packing overage is reduced further to 75 % compared to the base case overage 
of 142 %. (Both cases had no stock-out in 1,000 simulations.)   

15.3.3     Simulation Results and Database 

 The model simulates relevant aspects of the clinical trial using sub-models described 
in Sect.  15.3.2  and stores the results in a database. The database is accessed to pro-
duce reports at different levels of granularity to support decisions related to clinical 
supply. Typically, following standard reports are produced by analysing the simula-
tion database:

•    Executive summary reports.

 –    Study level Key Performance Indicators (KPI) of clinical supply.  
 –   KPI report at the pack-type level.  
 –   Inventory policy in terms of trigger/resupply levels.  
 –   Inventory policy in terms of packing runs.     

•   Summary reports for each simulation (trial replication) in a run.

 –    Study level KPI per simulation.  
 –   KPI per simulation at pack-type level.     

   Table 15.6    Dispensing two pack-types for each treatment   

 0 mg pack  20 mg pack  40 mg pack 

 0 mg treatment  2 
 20 mg treatment  1  1 
 40 mg treatment  1  1 
 60 mg treatment  1  1 
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•   “Drill down” reports into selected trial simulations.

 –    Patient dispensing details for simulations with stock-outs.  
 –   Shipment details for simulations with stock-outs.  
 –   Frequency distribution of stock-outs, if any.  
 –   Patient dispensing details for a user-specifi ed set of simulations.  
 –   Shipment details for a user-specifi ed set of simulations.       

 A typical executive summary report indicating study level KPI for Example 1 
with a single dispensing visit and a single pack-type per treatment is given in 
Table  15.7 . The report was generated by performing a run consisting of 1,000 clinical 
trial simulations using the “Auto mode” ITR levels in Table  15.5 . Each row provides 
a summary of simulation results on a KPI of the trial and the supply strategy. The 
mean, standard deviation, minimum and maximum values, median, and 1st and 99th 
percentiles of the KPI are displayed. There were no dropouts specifi ed for this 
example so the number of patients randomized is equal to the sample size for each 
clinical trial simulation. FPFV and LPLV are abbreviations for the time of the fi rst 
visit of the fi rst patient and the last visit of the last patient in the trial. On the average 
842 packs were shipped to sites from depots, leaving on average 362 packs at sites 
at the end of the trial. Thus the shipping overage was 75 % (=362/480). Similarly, 
the packing overage is 142 % = 100 × (1,160 − 480)/480, being almost twice as large 
due to depot level uncertainty and complexity discussed in Sect.  15.3.2.1 . Since the 
expiry time for lots was long relative to the trial duration no packs were lost due to 
the expiry date being exceeded. It is common practice to destroy the packs left over 
at sites at the end of a trial. This can be a signifi cant cost element in the trial because 
disposal has to be documented carefully in case there is an audit by the regulatory 
authorities (see Dowlman et al.  2006  for details).

   Table 15.7    Executive summary of clinical supply simulation results for Example 1   

 Mean  Std dev.  Min  prct_01  Median  prct_99  Max 

 Patients randomized  480  0  480  480  480  480  480 
 Dropout rate (%)  0  0  0  0  0  0  0 
 FPFV to LPLV (weeks)  43.5  3.3  34  37  43  51  57 
 Start to LPLV (weeks)  45.1  3.3  35  38  45  53  58 
 Packs dispensed  480  0  480  480  480  480  480 
 Packs shipped to sites  842.0  7.3  811  824  842  858  862 
 Packs expired at sites  0.0  0.0  0  0  0  0  0 
 Overage on shipped (%)  75.4  1.5  69  72  75  79  80 
 Packs packed  1,160  0.0  1,160  1,160  1,160  1,160  1,160 
 Overage on packed (%)  141.7  0.0  142  142  142  142  142 
 Consignments  125.5  4.2  112  115  125  135  139 
 Packs per consignment  6.7  0.2  6.1  6.2  6.7  7.3  7.5 
 Drug cost ($M)  1.2  0.000  1.16  1.16  1.16  1.16  1.16 
 Shipment cost ($M)  0.1  0.002  0.07  0.07  0.08  0.08  0.08 
 Total cost ($M)  1.2  0.002  1.23  1.23  1.24  1.24  1.24 
 % Runs with failed randomization  0  0  0  0  0  0  0 
 % Runs with failed revisits  0  0  0  0  0  0  0 
 % Runs with stock-out  0  0  0  0  0  0  0 
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   Notice that the number of stock-outs is zero indicating that the Auto mode 
 performed as expected and there were no stock-outs in the 1,000 simulations—all 
the 480,000 patients simulated in the run were randomized as planned. 

 The “Consignments” row shows the number of shipments made from depots to 
sites during the trial. The number varied between 112 and 139. The “Packs per 
 consignment” row shows how many packs were in a shipment. This is useful to 
know because too high a value could lead to storage diffi culties at sites. A low value 
 signals that the number of shipments may be excessive and need to be reduced. The 
cost rows indicate the components of cost of supply for the trial.   

15.4       Clinical Supply Simulation for Adaptive Trial Designs 

 The cost and feasibility of drug supply required for adaptive clinical trials is often a 
concern. The adaptive aspect of the design increases uncertainty in the demand for 
clinical supply. For example, in an adaptive phase 2 dose fi nding study the demand 
for a particular dose is not known in advance but evolves dynamically as the trial 
progresses and randomization to doses is modifi ed by observed responses of sub-
jects to various doses. This is in contrast to non-adaptive designs where the total 
number of subjects to be allocated to each dose is fi xed and known before the trial 
begins. A simple approach for the adaptive design would be to plan for each dose at 
the maximum possible level of demand. In an adaptive trial with seven doses where 
each dose is administered as a single tablet this would lead to increasing the amount 
of drug overage by a factor of 7 over a fi xed allocation non-adaptive design with the 
same sample size. By exploring options such as multi-pack kits, multiple dispensing 
visits, and multiple packing campaigns we can reduce drug overage while ensuring 
an acceptable risk of stock-out. Nicholls et al. ( 2009 ) describe the use of simulation 
to reduce drug overage in an adaptive trial using multi-pack kits. 

 Adaptive trial designs come in varying degrees of complexity. At the simplest 
level are designs involving interim looks with dropping of arms. Such designs 
would have randomization schemes specifi ed for each look. A probability model for 
dropping of arms can be added to a clinical supply simulator and also modifi cations 
may need to be made if the patient enrolment plan calls for slowing down enrolment 
around interim looks. Such modifi cations of the clinical supply simulator are feasi-
ble for designs involving interim looks with dropping and/or adding arms and sam-
ple size re-assessment. 

 Modifying a clinical supply simulator to handle more complex adaptive trial 
designs like Bayesian adaptive randomization requires considerable effort and is gen-
erally not feasible. Fortunately in such cases, we can leverage the simulation effort 
that is almost always needed to determine the statistical operating characteristics of 
complex adaptive designs. In Chap.   9     of this book, Kyle discusses simulation model-
ling approaches for different types of adaptive trials. Our approach is to save random-
ization sequences generated by the adaptive design simulator in a fi le. The clinical 
supply simulator can be modifi ed to read this fi le to generate randomization sequences 
instead of using built-in randomization logic as is the case for simpler designs. 
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15.4.1       Two-Stage Adaptive Design with Dropping 
of Arms and Early Stopping 

 Example 2 is a modifi cation of the fi xed sample size design of Example 1 to a two- 
stage adaptive design with a single interim analysis after 240 patients. Design simu-
lations of the most likely scenario show that there is a 0.8 probability of dropping 
two of the three arms with active doses, and a 0.2 probability of stopping the trial 
for futility or effi cacy. The enrolment would be halted for 4 weeks at the interim 
look. While the placebo arm is never dropped, the dropping of any arm with an 
active dose is equally likely. Also, the design remains balanced after the dropping of 
arms with block size remaining equal to 4 and treatment ratios of the continued 
arms are 2:2. If there is just one packing campaign at the start of the trial, the over-
age is 252 %. If it is possible to schedule a second campaign during the 4 weeks 
after the interim analysis we can make the second campaign only for the placebo 
and selected arm if the trial is continued to the second stage. Table  15.8  gives the 
executive summary for the base case of a single dispensing visit and single pack- 
type per treatment.

   The simulation results indicate higher overage for the single interim analysis 
design with dropping of arms (159 %), compared to the base case of the traditional 
fi xed sample design (142 %). This is because of uncertainty in the outcome of the 
interim look in terms of early termination of the trial or which arms are dropped. 

 The fi rst packing campaign is for 210 packs of each pack-type at the start of the 
trial. The second campaign is after the arm to be continued is known and is for 170 
packs of this arm and 170 packs of placebo. 

   Table 15.8    Clinical supply simulation results single interim look design: base case   

 Mean  Std dev.  Min  prct_01  Median  prct_99  Max 

 Patients randomized  427.92  98.9  240  240  480  480  480 
 Dropout rate (%)  0  0  0  0  0  0  0 
 FPFV to LPLV (weeks)  42.5  10.0  19  21  46  55  59 
 Start to LPLV (weeks)  44.0  10.0  21  23  48  57  61 
 Packs dispensed  427.9  99.0  240.0  240.0  480.0  480.0  480.0 
 Packs shipped to sites  839.9  78.9  669  681  878  898  905 
 Packs expired at sites  0.0  0.0  0  0  0  0  0 
 Overage on shipped (%)  96.3  5.1  88  90  94  107  109 
 Packs packed  1,106.2  140.2  840  840  1,180  1,180  1,180 
 Overage on packed (%)  158.5  9.6  140  140  164  164  164 
 Consignments  122.6  23.3  71  75  134  142  145 
 Packs per consignment  7.0  0.9  6.2  6.3  6.6  9.2  9.5 
 Drug cost ($M)  1.1  0.140  0.84  0.84  1.18  1.18  1.18 
 Shipment cost ($M)  0.1  0.012  0.06  0.07  0.10  0.10  0.10 
 Total cost ($M)  1.2  0.152  0.90  0.91  1.28  1.28  1.28 
 % Runs with stock-out  0  0  0  0  0  0  0 
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 If we use two pack-types per dispensation as we did in Example 1, the overage 
goes down to 104 % from 159 %. There is a further reduction to 86 % if we also 
have two dispensation visits instead of one. 

 In practice we recommend running simulations for additional likely scenarios to 
verify robustness of the settings suggested by the above simulations.  

15.4.2       Bayesian Response-Adaptive Randomization Design 

 Our next example, Example 3, illustrates use of simulation to plan medical supplies for 
an adaptive randomization design. This type of adaptive design is popular for Phase 2 
dose fi nding trials. Example 3 is a study for treatment of dental pain and has eight treat-
ment arms including a placebo and seven doses. For our base case simulations we 
assume that, in addition to a placebo pack-type, there are seven pack-types, with doses 
of 1, 2, 3, 4, 5, 6, and 7 units on the log scale. The sample size is 120 (40 placebo and 
80 drug) with 10 cohorts of 12 patients each. Subjects in the fi rst cohort are random-
ized as follows: 4 to placebo, 2 to dose 4, and one each to the remaining six doses. The 
endpoint is measured 24 h after administration and each subsequent cohort is assigned 
doses by calculating the Bayesian posterior distribution by updating a weakly informa-
tive prior using pain score observations for all subjects in previous cohorts. The alloca-
tion ratios to doses are chosen to minimize the variance of the Bayesian estimate of 
dose response at the target dose. The target dose is the lowest dose with an expected 
pain score improvement of 15 units in the pain score from placebo. The three likely 
dose–response scenarios are depicted in Fig.  15.5 . The operating characteristics for the 
design selected for implementation were estimated using simulation. There were 500 
trial replications for each dose–response scenario which simulated subject responses 
for the subjects in cohorts and used the Bayesian calculations described above to allo-
cate subjects to doses for each cohort in each replicated trial. There are fi ve sites each 
expected to enrol one subject/week. The sites are supplied by a single central depot 
with a lead time of 1 day. The plan is to have a single packing campaign at the start of 
the trial to supply all the drug requirements for the trial.

   From the point of view of drug supply Example 3 differs from Example 2 in two 
important respects. First, there are three likely scenarios instead of a single likely 
scenario. Second, the randomization sequences of subjects depend on the statistical 
responses of subjects in complex ways (e.g. Markov Chain Monte Carlo calcula-
tions for allocation of doses) that are not easy to embed in the drug supply software. 
Figure  15.6  illustrates how allocation varies for a typical trial replication.

   There are two approaches we have used to combine scenarios. The fi rst approach 
is to assess prior probabilities that refl ect the likelihood of each scenario being the true 
scenario applicable to the trial. The second approach which is more  conservative is to 
ensure that our supply plan is robust under any of the three possible scenarios. We 
have found that in practice it is not easy to obtain prior probabilities of likely scenar-
ios. We have, therefore, most often used the robust approach that ensures good perfor-
mance of the supply strategy irrespective of which dose–response scenario holds. 
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 We fi rst use the simulator to run 500 simulations in Auto mode, one simulation 
for each of the 500 sequences of subject randomizations generated by the statistical 
design trial replications executed previously by the Compass software package for 
dose–response scenario A. These are read by CytelSupply, a clinical supply simula-
tor, from a fi le that is written by Compass. We repeat the procedure with scenarios 
B and C to obtain overages of 152, 171 and 165 % respectively. After examining the 
different sets of trigger and resupply levels we obtained under the three different 
scenarios we run the manual option in the simulator to investigate overage using a 
 common set of trigger and resupply levels . We try several different common sets of 
levels to determine the lowest overage that gives no stock-out. The set that mini-
mizes the overage is shown in Table  15.9  and the corresponding executive summa-
ries of simulation results for Scenarios A, B, and C are shown in Table  15.10 . For 
all scenarios the overage is the same, 192 %, since the amount packed and dispensed 
is the same for each scenario.

    For benchmarking it is interesting to note that for a non-adaptive traditional trial 
the simulations with equal randomization ratios for all arms, the overage is 100 %. 
However the drug supply increase in cost has to be weighed against the improved 
effi ciency of the trial. 

 The adaptive trial in Example 3 was designed for both Proof-of Concept (PoC) 
and dose fi nding. A traditional approach would require a smaller single-dose 
trial for PoC followed by a dose fi nding trial with fi xed randomization ratios. 

  Fig. 15.5    Likely dose–response scenarios for the adaptive design       
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The accuracy of estimation of the dose–response curve is much better than for a 
traditional design. Under Scenarios B and C the variance of dose–response esti-
mates at all doses is approximately half that of the traditional design, so that to 
obtain comparable accuracy the traditional design would need to have twice the 
sample size (see Orloff et al.  2009  for details). This would increase the cost of 
traditional design substantially besides increasing the time to market by about 6 
months for an effi cacious drug. 

 It is possible to use three pack-types for each dispensation by using combinations 
of pack-types for each dose as shown in Table  15.11  with inventory policy of 
Table  15.12 . The effect is to reduce overage considerably: from 192 to 74 % as 
shown in Table  15.13 .

  Fig. 15.6    Adaptive dose allocations over cohorts       

   Table 15.9    Inventory policy for adaptive design   

 A0  B1  B2  B3  B4  B5  B6  B7 

 Trigger  3  2  1  1  1  2  1  3 
 Resupply  5  4  3  3  3  4  3  5 
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   Table 15.10    Simulation results for Example 3   

 Mean  Std dev.  Min  prct_01  Median  prct_99  Max 

  Drug-supply Scenario A (base case)  
 Patients randomized  120  0.0  120  120  120  120  120 
 Dropout rate (%)  0  0  0  0  0  0  0 
 FPFV to LPLV (weeks)  24.2  3.9  15  17  24  35  37 
 Start to LPLV (weeks)  24.5  3.9  15  17  24  35  38 
 Packs dispensed  120  0.0  120  120  120  120  120 
 Packs shipped to sites  257.6  3.1  248  249  258  263  264 
 Packs expired at sites  0.0  0.0  0  0  0  0  0 

 Overage on shipped (%)  114.7  2.6  107  108  115  119  120 
 Packs packed  350.0  0.0  350  350  350  350  350 
 Overage on packed (%)  191.7  0.0  192  192  192  192  192 
 Consignments  32.6  1.9  28  29  33  37  39 
 Packs per consignment  7.9  0.4  6.6  7.0  7.9  8.9  9.1 
 Drug cost ($M)  0.4  0.000  0.35  0.35  0.35  0.35  0.35 
 Shipment cost ($M)  0.02  0.001  0.02  0.02  0.02  0.02  0.02 
 Total cost ($M)  0.4  0.001  0.37  0.37  0.37  0.37  0.37 
 % Runs with stock-out  0  0.0  0  0  0  0  0 
  Scenario B (base case)  
 Patients randomized  120  0.0  120  120  120  120  120 
 Dropout rate (%)  0  0  0  0  0  0  0 
 FPFV to LPLV (weeks)  24.3  3.9  15  17  24  35  39 
 Start to LPLV (weeks)  24.6  4.0  15  17  24  35  40 
 Packs dispensed  120  0.0  120  120  120  120  120 
 Packs shipped to sites  257.5  3.2  246  250  258  264  264 
 Packs expired at sites  0.0  0.0  0  0  0  0  0 
 Overage on shipped (%)  114.6  2.7  105  108  115  120  120 
 Packs packed  350.0  0.0  350  350  350  350  350 
 Overage on packed (%)  191.7  0.0  192  192  192  192  192 
 Consignments  31.8  1.8  26  28  32  36  37 
 Packs per consignment  8.1  0.4  7.0  7.2  8.1  9.3  9.7 
 Drug cost ($M)  0.4  0.000  0.35  0.35  0.35  0.35  0.35 
 Shipment cost ($M)  0.02  0.001  0.02  0.02  0.02  0.02  0.02 
 Total cost ($M)  0.4  0.001  0.37  0.37  0.37  0.37  0.37 
 % Runs with stock-out  0  0.0  0  0  0  0  0 
  Scenario C (base case)  
 Patients randomized  120  0.0  120  120  120  120  120 
 Dropout rate (%)  0  0  0  0  0  0  0 
 FPFV to LPLV (weeks)  24.1  3.7  14  17  24  34  37 
 Start to LPLV (weeks)  24.4  3.7  14  18  24  34  38 
 Packs dispensed  120  0.0  120  120  120  120  120 
 Packs shipped to sites  258.0  3.1  247  250  258  264  265 
 Packs expired at sites  0.0  0.0  0  0  0  0  0 
 Overage on shipped (%)  115.0  2.6  106  108  115  120  121 
 Packs packed  350.0  0.0  350  350  350  350  350 
 Overage on packed (%)  191.7  0.0  192  192  192  192  192 
 Consignments  32.5  2.1  26  28  33  37  39 
 Packs per consignment  8.0  0.5  6.6  7.0  7.9  9.1  9.8 
 Drug cost ($M)  0.4  0.000  0.35  0.35  0.35  0.35  0.35 
 Shipment cost ($M)  0.02  0.001  0.02  0.02  0.02  0.02  0.02 
 Total cost ($M)  0.4  0.001  0.37  0.37  0.37  0.37  0.37 
 % Runs with stock-out  0  0.0  0  0  0  0  0 
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15.5            Discussion 

15.5.1     Computational Aspects 

 The Auto mode is important to obtain quick assessments of various strategies for 
drug supply. Otherwise we would have to specify a large number of parameters for 
the base case and reset them for what-if analyses. In Example 1, not having Auto 
mode would require several trial and error runs in Manual mode, each of which 

   Table 15.11    Dispensing three pack-types for each dose   

 0 mg pack  1 mg pack  3 mg pack 

 0 mg dose  3 
 1 mg dose  2  1 
 2 mg dose  1  2 
 3 mg dose  2  1 
 4 mg dose  1  1  1 
 5 mg dose  2  1 
 6 mg dose  1  2 
 7 mg dose  1  2 

   Table 15.12    Inventory policy for adaptive design with three pack-types   

 A0  B1  B3 

 Trigger  10   7   7 
 Resupply  22  12  12 

   Table 15.13    Clinical supply simulation results for adaptive design with three pack-types   

 Mean  Std dev.  Min  prct_01  Median  prct_99  Max 

 Patients randomized  120  0.0  120  120  120  120  120 
 Dropout rate (%)  0  0  0  0  0  0  0 
 FPFV to LPLV (weeks)  24.2  3.9  14  17  24  34  39 
 Start to LPLV (weeks)  24.5  3.9  14  17  24  35  40 
 Packs dispensed  360  0.0  360  360  360  360  360 
 Packs shipped to sites  550.1  11.0  515  525  551  573  579 
 Packs expired at sites  0.0  0.0  0  0  0  0  0 
 Overage on shipped (%)  52.8  3.1  43  46  53  59  61 
 Packs packed  625.0  0.0  625  625  625  625  625 
 Overage on packed (%)  73.6  0.0  74  74  74  74  74 
 Consignments  25.3  1.2  21  23  25  28  30 
 Packs per consignment  21.8  0.9  19.2  19.8  21.7  23.8  25.0 
 Drug cost ($M)  0.2  0.000  0.21  0.21  0.21  0.21  0.21 
 Shipment cost ($M)  0.01  0.001  0.01  0.01  0.01  0.02  0.02 
 Total cost ($M)  0.2  0.001  0.22  0.22  0.22  0.22  0.23 
 % Runs with stock-out  0  0.0  0  0  0  0  0 
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involves specifying 12 trigger/resupply levels. If the randomization was not  balanced 
there could be as many as 48 levels to be set. Although Auto mode does not guaran-
tee minimum overage, we have found the heuristics it employs are effective in giv-
ing overages that are close to optimal if not optimal. 

 The Manual mode is also important. Example 3 illustrates one use of this mode. 
It can also be used to fi ne-tune supply chain parameter settings. Since Auto mode 
uses the same simulations to set supply chain parameters and to compute overage it 
introduces bias into estimation of stock-outs. The Manual mode offers a straightfor-
ward way to estimate this bias by using values of supply chain parameters (such as 
trigger and resupply levels) calculated in Auto mode in a new set of simulations run 
in Manual mode using a different random seed. This implements the core idea in 
data mining and forecasting of using independent “training” and “test” data sets. We 
have found that with 1,000 simulations the impact is typically small. We tested the 
inventory and packing runs policies for the Example 1 base case generated in Auto 
mode for the fi rst 1,000 trial simulations, with 50,000 independent simulations in 
Manual mode involving a total of 24 million virtual patients. We found that in 48 out 
of those 50,000 simulated trials, one patient encountered a stock-out. In other words, 
the probability of a trial with at least one stock-out is less than 0.001, and the prob-
ability of a patient experiencing a randomization failure is a negligible 0.000002. 

 Note that this method of using the Auto and Manual modes in tandem can be 
used to explore the impact of permitting a small number of stock-outs as may be 
acceptable in the case of Phase 2 dose fi nding studies where the API may be in short 
supply. For example, we could run the Auto mode for 500 simulations with no 
stock-out. Using the inventory and packing policies from Auto mode we could then 
run a larger number of simulations (say, 10,000). This would lead to more stock- 
outs than Auto mode policies computed from 1,000 simulations. If the stock-outs 
are too high we could repeat the process with, say, 700 simulations in Auto mode. 
If they are too low, we would repeat the process with, say, 300 simulations. This 
process can be continued until we have found a suitable range of trade-offs between 
overage and stock-out risk. 

 Computational performance of a simulator can be a bottleneck if supply chain 
policies are to be generated and tested on a large number of simulations for a large 
multi-site, multi-country, multi-depot, multi-dispensing trial. The simulator used 
for illustrative examples, CytelSupply, has been enabled for high performance par-
allel computing to benefi t from modern multiprocessor computers. It is able to run 
1,000 simulations in Auto mode of our Example 1 base case in less than 5 min on a 
standard quad-processor PC. Manual mode is slightly faster.  

15.5.2     Re-simulation During Execution of the Trial 

 Re-simulation can lead to substantial effi ciencies if we use accumulated data from 
the IVRS to update parameters that are major drivers of overage such as enrolment, 
screening failure, and dropout rates. We can subjectively do the updating or use a 
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Bayesian model to compute posterior distributions from prior values of these 
parameters. Abdelkafi  et al. ( 2009 ) describe deployment of a Bayesian model to 
re- evaluation of the supply strategy using accumulating data that becomes available 
as a clinical trial progresses. In Chap.   12     of this book, Danielson et. al. describe 
considerations of IVRS vendor capabilities for AD trial implementation. 

 Re-simulation is also very useful when new sites are added or protocol amend-
ments such as inclusion–exclusion criteria changes are made.  

15.5.3     Evaluating Design and Implementation 
Complexity Trade-Off 

 Ideally simulation of supply strategy and adaptive design should be performed hand 
in hand with simulation of the statistical design performed to obtain statistical oper-
ating characteristics. Designs such as Example 3 involve increased complexity in 
managing medical supplies and the increase in cost and risk due to this complexity 
has to be weighed against superior statistical performance. We have had experience 
with a consulting assignment where an adaptive design such as Example 3 was 
superior in terms of statistical operating characteristics to a design similar to 
Example 2. However, the latter design was preferred because of less complex sup-
ply management.   

15.6      Summary and Conclusions 

 In this chapter we have described how modelling and simulation can help in 
developing effi cient supply strategies for adaptive clinical trials while ensuring 
acceptable performance in terms of meeting demand at study sites. Traditional 
approaches that involve use of thumb rules from past experiences combined 
with spreadsheet models are inadequate as they do not quantitatively evaluate 
the impact of the various uncertainties inherent in adaptive trials. Since trial 
designs vary over a wide range of adaptive complexity we have used two case 
examples of adaptive trials. Both designs are among the most popular adaptive 
designs used in practice. The fi rst design uses the simple adaptive method of 
dropping arms. The second design employs the substantially more complex 
adaptive method of modifying randomization ratios adaptively depending on 
observed responses. 

 Since our focus has been on modelling and simulation we have not discussed 
important broader considerations to effectively supply adaptive trials. An excellent 
paper by the Drug Supply Subteam of the DIA Adaptive Design Scientifi c Working 
Group (Burnham et al.  2014 ) covers these aspects in detail with valuable checklists 
and suggestions on the processes, systems, and technologies for managing drug 
supply. Amongst their most important suggestions are:
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•    Establish a formal study team for joint strategy development and decision mak-
ing for drug supply to enable cross departmental collaboration between Supply 
Chain, Data Management, Clinical Science, Operations, Data Monitoring, 
Statistics and Programming functions.  

•   Determine requirement of the Active Pharmaceutical Ingredient (API) well in 
advance of the start of the trial since lead times for manufacture and release of 
API can be long (4–12 months).  

•   Consider using just-in-time packaging and labelling strategies instead of tradi-
tional approaches.  

•   To avoid the risk of unblinding, “scramble” packing lists so that packs are 
assigned in random order to avoid the risk of a pattern in the sequence of 
 dispensed pack numbers revealing the randomization arm being dispensed.        
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Abstract Accurate enrollment information is critical for timely decision-making 
and execution for clinical trials. Enrollment must be carefully planned and moni-
tored in order to maximize business benefit and to achieve study objectives. This is 
particularly true in adaptive designs (AD) trials, where too slow or too fast patient 
enrollment along with inaccurate enrollment prediction will imperil the timing of 
and/or invalidate the planned adaptations in AD trials. This chapter will discuss the 
key considerations for patient enrollment management and present and discuss dif-
ferent patient recruitment models.

Keywords Bayesian hierarchical models •Adaptive designs • Recruitment modeling •
Poisson-gammamodel •Enrollment timeprediction•Unconditionalmodel •Conditional
model • Monte Carlo Markov chain • Poisson-gamma model • Site initiation model •
Patient enrollment model • Individual model • Structure model • Transition model •
Shrinkage factor • Dynamic site ready time • Monte Carlo simulation

16.1  Introduction

Clinical demonstration of the safety and efficacy of new medicines is the most com-
plex and expensive step in the development of new human therapeutics. While many 
steps of clinical trial execution can be readily managed or predicted by trial 
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sponsors, the time taken to enroll the required patients remains the most variable 
and least predictable activity (Drennan 2002). Clinical trial enrollment is dependent
on multiple, highly variable parameters, from country regulatory approval, to site 
ethical IRB review, to competitive enrollment at a specific region and study site, and
to patient availability and willingness to participate. Ethical drivers also dictate that 
clinical studies are carried out with minimum numbers of subjects, to maximize 
knowledge gain while minimizing patient risk. The concept of adaptive design trials 
is in alignment with the ethical drivers to minimize number of patients in a study 
and to maximize clinical knowledge (Dragalin 2006; Gallo et al. 2006; PhRMA
Working Group on Adaptive Designs 2006). However, adaptive design trials often 
place added complexity to enrollment.
As mentioned in Chap. 15 on clinical supply, from implementation point of view 

adaptation schemes that may have impact on the logistics planning include sample 
size adjustments, changes to the randomization algorithm based on interim analy-
ses, such as dropping/adding of treatment arms/doses, changes to the allocation 
ratio/treatment assignment probabilities, or re-randomization of the same patients, 
as well as trials stopping early for either efficacy or futility. Accurate enrollment 
information is critical for timely decision-making and execution in AD studies. 
Enrollment must be carefully planned and monitored in order to maximize business 
benefit and to achieve study objectives. Slower or faster than the expected enroll-
ment rates along with inaccurate enrollment predictions will imperil the timing of 
and/or invalidate the planned adaptations in AD trials. Therefore, for adaptive 
design trials patient recruitment forecast is a critical piece in the clinical develop-
ment and affects clinical trial planning and execution on several levels. On the over-
all trial level, an imprecise enrollment forecast for the trial may lead to inaccurate or 
incorrect estimates of timeline projections for interim and final analyses. Each clini-
cal trial serves certain purposes in the overall clinical development paradigm. 
Inaccurate timeline projection for one trial may also necessitate the adjustment of
timeline and/or resource for other clinical studies, which may eventually translate 
into impact on the filing date and/or Net Present Value (NPV) projection for the
entire clinical development program. At country and study site level, clinical supply 
chain process relies heavily on recruitment and randomization processes, and 
imprecise enrollment forecast may result in drug supply wastage and/or stock out at 
study site level (He et al. 2012). As a result, patient recruitment management and 
forecast has become a well-recognized bottleneck for new drug development as 
randomness or uncertainty in recruitment process substantially affects all stages of 
study execution.

Efficient enrollment management requires cross-functional collaborations and 
should focus on three key areas: process, Infrastructure capability, and education (He
et al. 2012). A process is required and critical for a cross-functional team to follow 
in setting up an enrollment plan with the study sites, in getting real time enrollment 
data and tracking enrollment progress throughout a trial, and in making adjustment 
to enrollment projections as needed. Infrastructure capability speaks to the need for
system and technology support to capture enrollment information and monitor 
enrollment status. For adaptive design trials, it is often important to capture and track 
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multi-stage enrollment information and be able to drill down the information at the 
trial, country, and site levels, so that study teams can project the approximate timing 
for interim analyses. This can be accomplished by a combination of study track sys-
tems, such as SPECTRUM and customized IVRS web reports. Education is another
important aspect of enrollment management. For efficient implementation of enroll-
ment plan and enrollment management, it is crucial that study team members know 
the specific AD features of the trial to ensure optimal site selections and perfor-
mance. Furthermore, educating site personnel the specific AD features of a trial and 
how that may relate to the study design and enrollment management requirement 
will go a long way to ensure good relations, understanding, and a sustained interest 
in AD trials (He et al. 2012).

Another critical aspect of patient enrollment is enrollment forecast and predic-
tion. As is well known, Modeling and Simulation (M&S) is essential to determine
statistical operating characteristics of adaptive trial designs. However, these operat-
ing characteristics typically depend on the rate of patient enrollment. As such M&S
can be extended to include support of patient enrollment planning decisions. This 
chapter will focus on patient enrollment M&S, and where appropriate, discuss the
relevant applications to AD trials.

16.2  Literature Review of Existing Modeling Methods

Barnard et al. (2010) undertook a comprehensive search and review of literature 
pertaining to patient enrollment. Based on their review, they summarized the exist-
ing proposed models into five categories: the unconditional model, the conditional 
model, the Poissonmodel, Bayesian models, andMonte Carlo simulation ofMarkov
models. In their review, Barnard et al. found that one of the common means of esti-
mating trial enrollment time is simple linear models which assume constant enroll-
ment rates over the life of the trial (“unconditional” models), and that while simple 
and readily evaluated, they ignore center recruitment and other factors that may 
have impact on enrollment speed. A second class, “conditional” models (Carter
et al. 2005), allows enrollment rate to vary over the course of trial enrollment depen-
dent on multiple factors, such as number of sites recruiting, time of year, exhaustion 
of patient pools, etc. However, such models are simple to construct but difficult to 
verify: they vary in structure according to trial design and thus must be constructed 
anew for each trial. Several authors have modeled patient accrual as a Poisson pro-
cess (Carter et al. 2005; Anisimov and Fedorov 2007; Williford et al. 1987), where 
individual site enrollment events can be simulated as rates from a Poisson distribu-
tion with λ equal to the average enrollment rate. Notably Anisimov and Fedorov
(2007) derived a closed form solution for a model in which individual site enroll-
ment averages follow a gamma distribution, while enrollment at the sites within a 
given time interval follows a Poisson process (Poisson-Gamma). Two additional 
classes of models described in Barnard et al. (2010) include the Markov chains and
Bayesian models (Gajewski et al. 2008; Abbas et al. 2007; Haidich and Ioannidis
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2001). Markov chain Monte Carlo systems model a process as a series of mutually
exclusive and exhaustive states and the transition probabilities between states. 
Abbas et al. (2007) demonstrated a sophisticated application of this approach to 
patient enrollment modeling. However, while they demonstrated that such a model 
could readily handle such process complexities as variable length screening periods, 
the model was both complex and computationally intensive, even without incorpo-
rating center recruitment. Bayesian models start with a “prior” probability distribu-
tion for the value of interest based on previous knowledge and use new evidence as 
data accumulates to produce a “posterior” probability distribution. Bayesian models 
rely on data being available to establish prior probabilities of recruitment, which can 
be updated over the course of the study. This can limit precision at study onset and 
make them challenging to use for decision making during planning. Their strength 
is the ability to incorporate information as it accumulates, so recruitment projec-
tions become more accurate as more trial data becomes available.

As is clear to anyone who has examined trial enrollment data, the two primary 
drivers of patient accrual are the rate of clinical center activation, and the rate of 
patient enrollment per active center. Based on the review of existing methods, it 
becomes apparent that a recruitment model needs to possess one or more of the fol-
lowing features. First, it should be simple to use and understand. This was also a 
required criterion described in Barnard et al. (2010) for model evaluation. Next, it
should be able to accommodate different starting times for various centers as the 
time for country specific regulatory rules and IRB approval process may be different
for different regions, countries, and study sites. In addition, as most trials nowadays
are multi-center global trials, enrollment rates can be different from center to center. 
Moreover, within each center the enrollment rates may also vary over time.
Recruitment models that can allow such flexibility in recruitment rates would be
more desirable than the ones that can’t. Another important factor to consider in 
recruitment models is the local factors that influence a model’s parameters.
Examples would include delays in center start times caused by variations in local 
ethics and local governance approvals or the existence of trials competing for the 
same patient pool. Delays caused by governance processes could be estimated from 
the previous experience. Patient competition must be estimated from knowledge of 
ongoing or planned trials, potentially run or funded by other groups and estimates 
of those factors could be used to adjust the parameters used in the recruitment 
model—for example by reducing the expected number of patients recruited while a 
competitive trial is underway. Specifically to local factors, it may be important to
establish a set of important factors that have major impacts on recruitment, such as 
time from protocol approval to site readiness, time from site readiness to first patient 
enrolled, adaptation schemes for adaptive design trials, past performance of the 
sites, disease being investigated, and inclusion/exclusion criteria, to name a few. For 
adaptive design trials, it may not be a stretch to establish base case scenarios for 
enrollment patterns for different AD trial types in different disease areas by building 
a database to capture past AD trial enrollment patterns and exploring and discerning 
important factors that impact enrollment. Having outlined a few important factors to 
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consider for recruitment models, trialists need to be cautioned that the flexibility of
a recruitment model that is able to accommodate various and many aspects of 
enrollment regional variability needs to be balanced with the principle of simplicity 
and understandability of the model, as the applicability of a recruitment model may 
be rapidly decreased with increased complexity of the model.

The Poisson-gamma model Anisimov and Fedorov (2007) introduced took into 
account the variability in the recruitment rates across regions or study centers by 
considering the rates as Gamma random variables. In addition, their model also
allows for the incorporation of different sites initiation times. Zhang and Long 
(2010) proposed a nonhomogeneous Poisson process and modeled the underlying 
time- dependent accrual rate using cubic B-splines. Their intent was to propose a 
flexible model that handles recruitment rates that may not be constant over time
within study centers. Mijoule et al. (2012) investigated a Poisson-Pareto model for 
recruitment. They defined the model in the same way as the Poisson-Gamma model 
(Anisimov and Fedorov 2007; Anisimov 2011), but with a Pareto distribution of the 
rate instead of a Gamma one. These recruitment models (Anisimov and Fedorov 
2007; Zhang and Long 2010; Mijoule et al. 2012) possess many essential features 
we consider important and yet are practical to use in real applications.

When considering the applications of such recruitment models, at trial level, the 
chief interest is to obtain estimate of timeline of when a desired enrollment goal can 
be reached for a particular trial. This is especially important for adaptive design tri-
als, where interim analysis timelines may be achieved when a prespecified number 
of patients were enrolled or treated for a period of time, and can be predicted based 
on recruitment models. At program level, it would be of interest to obtain the time-
line estimates of when all planned trials can reach enrollment goals. At specific 
study site level for a particular trial, it is of interest to the clinical operation team and 
clinical supply personnel to know the projected patient enrollment and timeframe at 
the specific study site to facilitate clinical supply roll out and site preparation activi-
ties, although it is well recognized that site performance varies not only between 
trials but also within trials, making accurate enrollment prediction at site level 
extremely difficult.

For the rest of the chapter, we describe a recruitment modeling framework via 
Bayesian Hierarchical Models. The framework consists of two interconnecting
parts. The first part is to model the recruitment process and estimate model param-
eters based on historical clinical trial data. Once we obtain the estimates of the 
model parameters, we utilize the information to model and predict the enrollment 
time for a new clinical trial. We use the similar Poisson-Gamma model that was 
first introduced by Anisimov and Fedorov (2007). Where appropriate, we make 
certain extensions of Anisimov and Fedorov’s approach to incorporate key factors 
that are considered important features of recruitment models, while keeping in 
mind simplicity and understandability of these models. To assist trialists with 
enrollment planning and projection, we also derive a few important statistics for 
timeline projections. Applicability of the models to adaptive design trials is also 
discussed, where applicable.
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16.3  Recruitment Model Framework

Enrollment experience from past clinical trials reveals that enrollment time varies 
across different regions, especially the interval from protocol approval to site ready, 
due partly to country specific regulatory rules and IRB approval process. In addi-
tion, patient enrollment rate may differ among different study sites, countries, or 
regions. We define enrollment time Ti for site i into two time periods, Ti = T0i + T1i.

 

T0i is the time from protocol approval to site ready and we model it with a Gamma 
distribution based on historic information. If such historic information is missing
for a specific region, a uniform random site initiation time can be assumed, as 
described in Anisimov (2011). T1i is the patient enrollment time from site ready to 
the last screened patient. We model the patients' accrual as a Poisson process whose 
rate for site i follows a Gamma distribution, following Anisimov and Fedorov 
(2007). Since the enrollment rates rely largely on the geographic region of the site,
we allow a more flexible setting of Poisson-Gamma (P-G) model which takes into
account the sites' characteristics. The parameters in both site initiation model and 
patient enrollment model are estimated through Bayesian framework conditional on 
the historical data.

16.3.1  Site Initiation Model

Consider a multicenter clinical trial which recruits a total number of M patients 
from L sites spreading in J regions. Let T0i denotes the time from protocol approval 
to site ready for site i, then we assume the following Gamma model for T0i:
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Here, Γ(a, b) denotes the gamma distribution with shape a and rate b, with expec-
tation a b/  and variance a b/ 2. In the above Gamma model, we assume that the time
to site ready for each site follows Gamma distribution with mean initiation time λi. 
A covariate structure, including geographic region and any other possible covari-
ates, is further imposed on the mean parameter through a log link function. In the
above log-linear model, V1, …, Vv − 1 are additional covariates besides region that 
may have impact on site ready time. When v = 1 in the proposed model above, the 
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log-linear model only includes the region factor. Notice that if τ = 1, then T0i is an 
exponentially distributed random variable. In the above setting when v = 1, the mean 
initiation time for sites in the same region will be the same:

 
l aregion1 1= ( )exp ,

 

 
l a aregion j j j J= +( ) =exp , , , .1 2

 

The above provides a generic form of site initiation model with the flexibility of
incorporating any important local factors as covariates as needed. However, as men-
tioned in Sect. 16.2, any local factors that may have impact on recruitment need to 
be weighed in with model simplicity.

We adopt a Bayesian approach for estimating the parameters αj,  j = 1, …, J,  ϕp, 
p = 1, … v − 1 and τ. Choosing a noninformative prior for the parameters,
αj ~ N(0, 100), ϕp ~ N(0, 100) and τ ~ Γ(0.001,  0.001), the posterior samples can be 
drawn with Markov chain Monte Carlo (MCMC) approach using BRugs, an R
package calling OpenBUGS from R, whose current version (0.2–5) is only available
for Windows (Thomas et al. 2006). Details of the MCMC procedure are reported
elsewhere (Gelman et al. 1995; Gilks et al. 1995; Robert and Casella 1999).

16.3.2  Patient Enrollment Model

When study sites are ready to enroll, patients coming to the sites who pass the 
screening criteria will be enrolled into the study. Denote Mi(t) as the total number of 
subjects screened at site i from site ready up to time t and μi as the rate of subjects 
coming to site i for screening. Similar to Anisimov and Fedorov (2007), we assume 
that μi can be viewed as a sample from a gamma-distributed population and consider 
a competitive recruitment policy with no restrictions on the number of subjects 
being recruited to be screened by study centers. Since not all patients screened at the
site can be randomized into the study, let Ni(t) denote the number of subjects that are 
actually randomized into the treatment groups at site i at time t. We assume subjects 
come to each site as a Poisson process but with some probability 1 − p0 of being not 
randomized (screen failure) and suppose ti is the site specific enrollment time. We 
adopt a hierarchical model similar to the one proposed by Christiansen and Morris
(1997). Although we include the number of subjects who were screened in addition 
to the number of subject who were randomized, to allow for differential screen fail-
ure rates across different application settings, the model process can be easily sim-
plified to use directly the number of subjects who were randomized.
Similar to Christiansen and Morris (1997), the proposed hierarchical model, 

Level 1 “Individual Model,” assumes that the number of subjects coming to each
site follows a Poisson process with different rates μi which is then modeled to follow 
a conjugate gamma distribution. At Level 2 “Structure Model,” the individual site’s
mean rate is modeled as a linear combination of region and other factors, possibly 
different across sites, through a log link function. It should be cautioned, similar to
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Sect. 16.3.1, additional parameters may add extra errors in estimation and may 
reduce the quality of global prediction compared to simpler models with only a few 
parameters. Therefore, balance between the number of local factors to include and 
model simplicity must be considered. At Level 3 “Transition Model,” the number of
patients successfully randomized follows a binomial distribution.
Level 1: Individual Model:
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Level 2: Structure Model:
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Level 3: Transition Model
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In the above hierarchical model framework, ηi = E(μi) is the expected rate for 
each site and is a linear function of region and/or any other possible factors through 
a log link function. The rates μ1, …, μL are called the “individual parameters” by 
Christiansen and Morris (1997). The approximate distributions of these individual 
parameters must be estimated to make inferences about rate of enrollment. Often 
the individual parameters are predicted by r − 1 additional number of study site level 
covariates X1, …, Xr − 1 (e.g., time from site readiness to first patient enrolled, past 
performance of the sites, disease being investigated, and inclusion/exclusion crite-
ria) along with region factor through a log-linear model involving regression coef-
ficients, β1 … βj, γ1, …, γr − 1. When r = 1 in our proposed model above, the log-linear 
model only includes the region factor.

To make inference of the model parameters, we note that the marginal distribu-
tion of Mi(ti) has a negative binomial distribution,
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Mi(ti) ~ NB(θ, 1 − Bi), where B
ti
i i

=
+
q

h q
 is called the “shrinkage factor” 

and when θ is large, the negative binomial distribution is approximately Poisson 
distribution. Choosing a small value of θ allows for extra variance beyond the 
Poisson variation and could account for the over-dispersion problem.

W. He and X. Cao



307

To construct posterior distributions to make inference on model parameters, we 
note the following:

Level 4: Distributions on the model parameters. We consider the following prior 
distributions for the parameters β0, β1, …, βJ, γ1, …, γJ, θ and p0, assuming prior inde-
pendence of the parameters:
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To obtain inference from the hierarchical model, we employ MCMC to draw
samples from the posterior distribution. Once the posterior inference on the model 
parameters can be drawn using the available historical data for a specific disease 
category, we could make predictions on the site ready time and enrollment predic-
tion time for a new study at the planning stage with the obtained parameters' poste-
rior distribution in the next section.

16.4  Site Ready Time and Enrollment Time Prediction

As mentioned in Sect. 16.2, the utility of recruitment models lies with the interest of 
trialists in obtaining estimates of timeline for reaching various desired enrollment 
milestones. Specifically, it is of great interest to assess the following quantities to
assist with the planning and execution of a clinical study: (a) dynamic site ready 
time, measured as the time when a certain percent of the total sites are ready, (b) the 
length of time to enroll certain number of patients for interim analysis or the total 
length of enrollment time for a clinical trial, at study planning stage, and (c) the 
remaining enrollment time, both for a targeted number of patients for an interim 
analysis or for the entire study, while a study is ongoing. For any new studies, at the 
planning stage, information from historic trials of similar clinical setting, or planned 
recruitment data provided by study center coordinators, or information about 
patients’ availability from medical databases can be used as the starting point. This 
point will be further discussed in the last section of the chapter. Using the hierarchi-
cal model described in Sect. 16.3, we obtain the posterior distributions of the model 
parameters. The following sub-sections provide derivations for site ready time and 
enrollment time prediction based on the posterior estimates of model parameters.

16.4.1  Site Ready Time Prediction

When planning and executing a clinical study, the primary interest of the study team 
is to obtain an early projection on site ready time, e.g. the time when 25 %, 50 %, or 
80 % of the sites are ready. This will allow study teams plan timelines as well as 

16 Approaches for Patient Recruitment Modeling and Simulation



308

clinical operations and clinical supply activities ahead of time to meet the study 
start-up as well as study conduct needs. This is also important for adaptive design 
trials with regard to projecting the timeline for interim analysis, as site ready time is 
directly linked to total enrollment time.

Denote SRp as the time when 
p

100
100´ %  sites are ready. We derive the 

following:
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where I(T0i < t) indicates whether or not site i is ready and 
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number of sites that are ready by time point t. The above equation denotes that if 
SRp < t, then at time point t, at least pL sites are ready.

To calculate the probability of Pr
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distribution of 
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0 . Since I(T0i < t), i = 1, …, L are independent Bernoulli 

random variables with success probability pi = Pr(T0i < t), we can easily show that the 
random variables I(T0i < t), i = 1, …, L satisfy the Lyapunov condition (Ash and 
Doléans-Dade 1999) and by central limit theorem,
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Therefore, we establish the distribution function of SRp as,
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By utilizing historic information on site ready time, pi can be estimated through 

the cumulative distribution of G ( t t )ˆ ˆ ˆ, / li  up to time t. By plugging in p = 0.25, 0.5, 0.8 

or 1.00 (100 %) or any percentage of interest, we can obtain the median time along 
with the 95 % credible interval for the above site ready time.

16.4.2  Enrollment Time Prediction at Study Planning Stage

When planning and executing a clinical study, another indicator on enrollment time 
that study teams would be greatly interested in is the length of enrollment time for 
a planned clinical study or for a prespecified number of patients for planned interim 
analyses. Based on previous clinical study enrollment data, we can obtain the 
parameter estimates for the hierarchical models in Sect. 16.3.

To make a projection of the enrollment time for a new clinical trial, assuming 
that we need to recruit N patients from L sites, we denote the quantity as T(L, N). 
Suppose for any future time point t, the number of patients screened at each indi-
vidual site up to time t, Mi(t), follows a Poisson distribution with parameter 
μi(t − T0i)I(t > T0i). Here I(⋅) is the indicator function, T0i is the random variable of the 
individual site ready time and μi is the individual site screen rate as defined in 
Sect. 16.3. If the time point t is later than the site starting date T0i, the site has a 
screen rate of μi, otherwise the site has screen rate 0. Denote the total number 

of patients screened up to time t by all sites as 
i

L

iM t
=
å ( )

1

. The feature of Poisson 

distribution guarantees that the sum of independent Poisson random variables also 
follows a Poisson distribution. Hence
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Note that not all patients screened can be successfully randomized in the clinical
trial due to screen failures, and we assume for each site, Ni(t) is the actual number 
of patients who were randomized in the clinical trial and
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Since the sum of binomial random variables with the same success probability is
also a binomial random variable, we have
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assuming that the screen failure rate being the same across study sites for a single 
study.
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We derive the distribution function of the enrollment time T(L, N) as follows:

 

Pr( ) Pr

Pr

T L N t N t N

N t n

i

L

i

n

N

i

L

i

,( ) £ = ( ) ³æ

è
ç

ö

ø
÷

= - ( ) =æ
=

=

-

=

å

å å

1

0

1

1

1
èè
ç

ö

ø
÷

= - ( ) = ( ) =æ

è
ç

ö

ø
÷

=

-

=

¥

= = =
åå å å1

1

1

1 1n

N

m n i

L

i
i

L

i
i

N t n M t mPr | Pr
11

1 1 1

0

L

i

m i

L

i
i

L

i

M t m

N t M t m

å

å å å

( ) =æ

è
ç

ö

ø
÷

- ( ) = ( ) =æ

è
ç

ö

ø
÷

=

¥

= =

Pr | Pr
ii

L

iM t m
=
å ( ) =æ

è
ç

ö

ø
÷

1  

(16.1)

The marginal distribution of 
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and can be approximated by Monte Carlo simulation. For a given time point t, we 
first simulate T0i and μi from the previous model with the posterior samples of the 

parameters, then calculate the conditional probability Pr | ,
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any given integer m. Repeat the above procedure for a total of B iterations, we get,
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To calculate the probability in Eq. (16.1), some approximations are needed. As m 

increases and n fixed, Pr |
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 decreases rapidly. Thus finite 

sums can be used as a good approximation to the infinite sum. In addition, by using 
a large B in the Monte Carlo simulation, the error can be reduced significantly.

For application of the above enrollment time estimate to an adaptive design trial with a 
prespecified number of patients for interim analyses, similar derivations can be used, 
where the total number of patients N for the trial is replaced with the number of patients 
prespecified for the interim analyses. Other relevant parameters, such as the number of 
study sites L, can also be replaced with any appropriate number of study sites for an interim 
analysis, if not all study sites were up and running at the point of interim analysis.

16.4.3  Enrollment Time Prediction for an Ongoing Study

Sections 16.4.1 and 16.4.2 describe the prediction of site readiness and enrollment 
time at study planning stage of a new trial. It is often of equal importance to make
prediction of the remaining enrollment time at the interim stage of a trial, based on 
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more updated and realistic site ready, recruitment, and screen failure information. 
The approach we employ here is similar to Anisimov and Fedorov (2007) but with 
extension to more a general setting. Specifically, we estimate screening failure rate
and provide detailed solution to obtain the predicted enrollment time when incorpo-
rating different site initiation time. In addition, we predict the remaining enrollment
data of a study with the use of all available information, combining both historic 
study data and current study information.
Suppose t0 is the time of an interim study time where at least one site has started 

recruiting patients. Denote Mi(t0) as the number of patients screened at site i up to time 
t0 and Ni(t0) as the number of patients randomized in the study at site i up to time t0. 
Then the total number of patients screened and randomized at time t0 by all sites are 
M(t0) and N(t0) respectively. Bayesian framework is utilized in the derivation. Suppose
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and the enrollment rate μi follows a Gamma distribution G( ) q q hˆ ˆ ˆ, / i , where q̂  and 
ĥi  are the posterior estimates based on historical data. To incorporate not only the 
historic information but also the information accumulated in the current study at the 
interim, it can be easily implemented by using the same approach as described in 
Sect. 16.3.2 by treating the partial current study data as part of the historic information 
in order to obtain an updated estimates of 
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To update the enrollment rate of the sites which had started screening patients, 
we calculate its posterior distribution as
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The actual randomization rate can also be updated using Bayesian framework as 

follows:
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where the posterior distribution of p0 based on historical data can be used as a prior 
distribution:
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Thus the posterior distribution of p0 is calculated by combining the updated 
data as
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To predict the remaining enrollment time, we follow the same procedure 
as described in Sect. 16.4.2. At an interim time point of a study, we have already 
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randomized N(t0) patients in the study. We want to obtain an estimate of the remain-
ing time that N − N(t0) patients will be randomized from L sites. Thus the cumulative 
distribution of T(L, N − N(t0)) is,
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is similar and Monte

Carlo simulation is used. The difference is that we only need to generate T0i for the 
sites which are not ready yet, and generate μi for the sites that have started recruiting 
patients using the updated posterior distribution.
Similarly as in the discussion in Sect. 16.4.2, the application of the above enroll-

ment time estimate to an adaptive design trial with planned interim analyses is 
straightforward by using similar derivations with the use of prespecified number of 
subjects for the interim analyses, where the total number of patients N for the trial 
is replaced with the number of patients prespecified for the interim analyses. Other 
relevant parameters, such as the number of study sites L, can also be replaced with 
any appropriate number of study sites for an interim analysis, if not all study sites 
were up and running at the point of interim analyses.

16.5  Application

In this section, we apply the proposed hierarchical models and enrollment time
prediction to historic study data to obtain site ready and enrollment time prediction 
at study planning stage and while a study is ongoing. The historical data contains 
the site initiation and enrollment information for multicenter studies in 15 therapeu-
tic areas conducted in the company since 2006. Within each therapeutic area, we 
could fit the hierarchical model with the pooled data from all the studies under the 
same therapeutic area to get the posterior estimates of the parameters.

16.5.1  Model Fitting

Based on historic study site ready and enrollment data, we fit the Gamma model and 
the hierarchical Poisson-Gamma model for the site initiation and enrollment pro-
cess respectively. The data includes 11 multicenter studies within a total of 14 
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regions, which include Americas, Asia, Austrailia/Newzealand, Big Six (Germany,
Italy, Spain, United Kingdom, France, Canada), Central/Eastern Europe, India, Mid
Europe, Scandinavia, US, US (Area), US (Central), US (Eastern), US (K-Force),
and US (Western). Only region and therapeutic area were included as covariates in
the model because more variables may compromise the accuracy of the parameter 
estimates given the small number of studies available for this application. Regions
with similar characteristics can be pooled together to reduce the number of param-
eters. Table 16.1 presents the posterior estimates of the parameters in site initiation 
model and Table 16.2 shows the posterior estimates of the parameters in the enroll-
ment model. To check the fit of the model, we created a Quantile-Quantile (Q-Q) 
plot of the true quantile of the data and model-generated quantile using the data 
generated from the model based on the posterior samples. Figure 16.1 shows the 
Q-Q plot. The proposed model shows good fit of the data.

Table 16.1 Posterior estimates of parameters in the site initiation model

Mean Median SD
2.5 %  
percentile

97.5 %  
percentile Notes

Alpha[1] 5.339 5.341 0.0565 5.228 5.441 Americas (baseline)
Alpha[2] −0.394 −0.393 0.0731 −0.533 −0.251 Region effect of Asia
Alpha[3] −0.213 −0.213 0.103 −0.409 0.00625 Australia/New Zealand
Alpha[4] −0.288 −0.290 0.0766 −0.434 −0.131 Big Six
Alpha[5] 0.0907 0.0913 0.0883 −0.0840 0.268 Central/Eastern Europe
Alpha[6] −0.115 −0.116 0.183 −0.451 0.278 India
Alpha[7] −0.0885 −0.0952 0.119 −0.312 0.144 Mid Europe
Alpha[8] −0.217 −0.218 0.0854 −0.379 −0.0487 Scandinavia
Alpha[9] −0.603 −0.604 0.105 −0.801 −0.389 US
Alpha[10] −0.705 −0.704 0.0923 −0.878 −0.509 US (Area)
Alpha[11] −0.360 −0.362 0.0805 −0.513 −0.201 US (Central)
Alpha[12] −0.546 −0.547 0.0859 −0.718 −0.379 US (Eastern)
Alpha[13] −0.429 −0.431 0.0986 −0.615 −0.230 US (K-Force)
Alpha[14] −0.326 −0.329 0.0756 −0.472 −0.166 US (Western)
Lambda[1] 208.6 208.7 11.75 186.5 230.7 Americas
Lambda[2] 140.5 140.2 6.523 128.1 154.2 Asia
Lambda[3] 168.9 168.2 14.81 143.1 202.2 Australia/New Zealand
Lambda[4] 156.3 156.1 8.342 140.9 174.2 Big Six
Lambda[5] 228.6 228.4 16.25 199.3 260.3 Central/Eastern Europe
Lambda[6] 188.4 185.5 32.97 135.6 261.7 India
Lambda[7] 191.7 189.7 20.73 156 236.7 Mid Europe
Lambda[8] 168.0 167.8 10.81 148.3 190.6 Scandinavia
Lambda[9] 114.4 113.9 10.46 95.44 136.3 US
Lambda[10] 103.1 102.6 7.421 89.62 118.2 US (Area)
Lambda[11] 145.6 145.3 8.608 129.9 163.9 US (Central)
Lambda[12] 120.9 120.5 7.685 106.8 136.8 US (Eastern)
Lambda[13] 136.1 135.4 10.96 116.7 158.7 US (K-Force)
Lambda[14] 150.5 150.4 7.308 136.9 165.3 US (Western)
Tau 6.036 6.026 0.366 5.348 6.786 Shape parameter
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16.5.2  Site Ready Time Estimation

For a particular clinical study where the study team has a concrete plan for targeted 
regions for recruitment, the models as described in Sect. 16.3 can be fitted including 
only targeted regions based on historic data.

Based on the posterior samples from the site initiation model, we can obtain the 
estimates of time when a certain percent of sites are ready, e.g. SR80, measured by
the time when 80 % of the sites are ready. Figure 16.2 shows the estimated SR80
time along with a 95 % creditable interval with the true SR80 time for each thera-
peutic area. As can be seen, large variations exist in site ready time in different 
therapeutic areas. Since local factors may differ in different regions, we also
obtained estimates of SR80 for each region. Figure 16.3 shows the true SR80 time
in each region and the estimated SR80 with a 95 % creditable interval. When fitting

Table 16.2 Posterior estimates of parameters in the enrollment model

Mean Median SD val2.5pc val97.5pc Notes

Beta[1] −1.563 −1.568 0.104 −1.756 −1.355 Americas (baseline)
Beta[2] −0.0393 −0.0393 0.137 −0.310 0.247 Region effect of Asia
Beta[3] −0.288 −0.285 0.189 −0.657 0.0916 Australia/New Zealand
Beta[4] −0.0483 −0.0470 0.141 −0.321 0.224 Big Six
Beta[5] 0.247 0.252 0.158 −0.0659 0.537 Central/Eastern Europe
Beta[6] 0.1004 0.101 0.326 −0.514 0.757 India
Beta[7] −0.201 −0.208 0.218 −0.617 0.250 Mid Europe
Beta[8] −0.306 −0.305 0.168 −0.615 0.0355 Scandinavia
Beta[9] −0.317 −0.316 0.199 −0.722 0.0709 US
Beta[10] −0.308 −0.315 0.179 −0.662 0.0395 US (Area)
Beta[11] −0.316 −0.312 0.151 −0.626 −0.0273 US (Central)
Beta[12] −0.332 −0.330 0.159 −0.647 −0.0234 US (Eastern)
Beta[13] −0.126 −0.129 0.174 −0.460 0.216 US (K-Force)
Beta[14] −0.346 −0.342 0.136 −0.618 −0.0844 US (Western)
Eta[1] 0.210 0.208 0.0221 0.172 0.258 Americas
Eta[2] 0.202 0.201 0.0177 0.171 0.240 Asia
Eta[3] 0.159 0.157 0.0254 0.116 0.217 Australia/New Zealand
Eta[4] 0.200 0.199 0.0187 0.167 0.240 Big Six
Eta[5] 0.270 0.267 0.0324 0.213 0.345 Central/Eastern Europe
Eta[6] 0.243 0.231 0.0776 0.129 0.430 India
Eta[7] 0.174 0.170 0.0346 0.118 0.256 Mid Europe
Eta[8] 0.155 0.153 0.0203 0.121 0.198 Scandinavia
Eta[9] 0.154 0.150 0.0273 0.108 0.216 US
Eta[10] 0.155 0.153 0.0226 0.115 0.204 US (Area)
Eta[11] 0.153 0.152 0.0171 0.122 0.189 US (Central)
Eta[12] 0.151 0.150 0.0186 0.120 0.192 US (Eastern)
Eta[13] 0.186 0.184 0.0272 0.141 0.244 US (K-Force)
Eta[14] 0.148 0.147 0.0135 0.124 0.177 US (Western)
Theta 2.169 2.161 0.154 1.873 2.483 Shape parameter
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Fig. 16.1 QQ plot of the true quartile of the site initiation time vs. the quartile of the generated site 
initiation time from the model

Fig. 16.2 True SR80 time with the estimated SR80 time and a 95 % creditable interval. Black bar 
is the true SR80 time, and red circle with a vertical line is the estimated SR80 with 95 % creditable
interval
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the model, we first obtained the site ready time estimates by region without  adjusting 
for disease area. However, as evidenced by Fig. 16.2, large variations exist in site 
ready time in different therapeutic areas. As a result, the site ready time was under-
estimated in most regions. We then included the disease area as a covariate, shown 
as black dot and thick line. It appears that this model fits the data well. This better
fit can also be reflected by the DIC value, where the preferred model including dis-
ease area as covariates yield a DIC value of 72070 while the model pooling all dis-
ease area together has a larger DIC value of 73660.

16.5.3  Total Enrollment Time Estimation

We applied the enrollment model to one study in the area of Cardiovascular Disease.
The study enrolled 2,430 patients from 183 sites across 14 regions. Using the enroll-
ment model with parameters estimated from the historic study data, our estimated 
median enrollment time, T(183, 2,430), for this study was 274 days with the 95 % 
confidence interval of (262, 284) days. The true enrollment time was 279 days. 
It should be noted that due to the limited availability of historic data for this applica-
tion in cardiovascular disease area (only two historic studies were available), the 
95 % confidence interval for the above point estimate is artificially narrow. 
Additional discussions related to the importance of building an recruitment data-
base can be found in the last section.

Fig. 16.3 True SR80 time with the estimated SR80 time and a 95 % creditable interval. Black bar 
is the true SR80 time, circle with a thin vertical line is the estimated SR80 with 95 % creditable
interval without justifying therapeutic area and black dot with a thick vertical line is the estimated 
SR80 with 95 % confidence interval justifying the therapeutic area
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16.6  Discussion

In this chapter, we described a recruitment modeling framework via Bayesian hier-
archical models to predict site ready time and patient enrollment time. In building
our models, to the extent possible we proposed a general framework that is suffi-
ciently flexible to account for a number of factors that may have impact on enroll-
ment. By modeling two interconnecting parts of the total enrollment time separately, 
the proposed models are intuitive and easy to use. The general model framework 
accounts for different enrollment rate in different sites or regions and allows for 
inclusion in the models of extrinsic epidemiological and environmental factors that 
have impact on enrollment. Such modeling framework is easily applicable to adap-
tive design settings, where the number of subjects needed for a prespecified interim 
analysis is described in study protocols, and hence the same model framework and 
derivations can be used to project interim analysis timeline.
Regarding the extrinsic epidemiological and local environmental factors, we pro-

vided a general framework to incorporate these factors in the recruitment model. It is
important to establish a set of important variables or factors that have major impacts 
on recruitment, such as time from protocol approval to site readiness, time from site 
readiness to first patient enrolled, adaptation schemes for adaptive design trials, past 
performance of the sites, disease being investigated, and inclusion/exclusion criteria, 
to name a few. For adaptive design trials, it is not a stretch to establish base case 
scenarios for enrollment patterns for different AD trial types in different disease 
areas by building a database to capture past AD trial enrollment patterns and explor-
ing and discerning important factors that impact enrollment. During this research, we 
found that such database is lacking, and research is limited in discerning important 
epidemiological and/or local environmental factors that have impact on recruitment. 
This may in large part account for the deviations we observed between our projected 
site ready times versus the observed ones. Concerted efforts with cross-functional
contributions will be needed. It should also be noted that with the increase in the
number of epidemiological and/or local environmental factors in the model, the 
errors in estimation may increase. It is critical to evaluate the need and importance of
these factors versus the simplicity of the model. If warranted, sensitivity analyses
may be carried out to evaluate and discern the importance of these factors.

We described the use of historic information for the estimation of model param-
eters. Based on our experience in real clinical trials, regional or global patient 
recruitment specialists generally have recruitment planned data in specific disease 
areas and regions to guide the selection of appropriate historic trials for a new clini-
cal trial in a specific disease area and potential regions. This again speaks to a con-
certed effort with cross-functional contributions to enrollment planning and 
prediction. We suggest that a set of criteria for the selection of relevant historic trials 
be put in place prior to the actual selection by a cross-function team, not unlike the 
selection criteria put together prior to a meta-analysis.

Our proposed framework via Bayesian hierarchical models can be easily 
extended to allow for time-variant recruitment rates within a study site, following 
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the approach for a nonhomogeneous Poisson process as proposed by Zhang and 
Long (2010). Additionally, future research may include adding site capacity in the 
models. If data are available from historic trials, it would be of great interest to
assess and make inference on extrinsic epidemiological and/or environmental fac-
tors that have impact on recruitment in various regions. The information can then be 
used by trialists in their planning for clinical trial start-up activities.
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Abstract The use of adaptive designs in dose ranging studies can increase the 
 efficiency of drug development by improving our ability to efficiently learn about 
the dose–response and better determine whether to take a drug forward into confir-
matory phase testing and at what dose. This approach can maximize the ability to 
test a larger number of doses in a single trial while simultaneously increasing the 
efficiency of the trial in terms of making better go–no-go decisions about continuing 
the trial and/or the development of the drug for a specific indication.

We show in a real case study of a dose ranging trial in patients with acute 
 exacerbations of schizophrenia how such an adaptive design explicitly addresses 
multiple trial goals, adaptively allocates subjects according to ongoing information 
needs, and allows termination for both early success and futility.

Keywords Adaptive design • Adaptive dose ranging study • Allocation rule •
Longitudinal modeling • Data monitoring committee • Normal dynamic linear
model • Response-adaptive randomization • Stopping rule

17.1  Background

The development of drugs for psychiatric illnesses is complicated by limited knowl-
edge of the pathophysiology underlying the illnesses. The reliance on a cluster of 
clinical signs and symptoms alone to make the diagnosis, assess severity of the 
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disease and judge improvement over time contributes substantially to the problems 
associated with clinical trials on investigational drugs. The inclusion of patients just 
on the basis of clinical signs and symptoms decreases the signal to noise ratio such 
that it is difficult to consistently observe a clinical efficacy signal especially in a 
limited number of patients. Patient selection may be compromised by including 
patients who respond to placebo and others who do not respond to approved mar-
keted treatments. These problems may be further accentuated when trying to 
develop treatments that work by novel mechanisms of action, and are most pro-
nounced in the earliest stages up to proof of concept as only limited information 
may be available on optimal dose and dosing regimen of the investigational drug.

This chapter focuses on how adaptive designs may improve the efficiency of 
drug development in psychiatric disease by improving our ability to efficiently learn 
about the dose–response in a Phase II dose ranging study.

Adaptive clinical trial designs allow the use of accumulating data in real time to 
decide how to modify aspects of the study as it continues maintaining its integrity 
and validity of final results (Dragalin 2006). Adaptations can include stopping early 
either for futility or success, expanding the sample size due to greater than expected 
data variability, or allocating patients preferentially to treatment regimens with a 
better therapeutic index. This ultimately can benefit patients within the trial and in 
the future (Gallo et al. 2006; Krams et al. 2009; Orloff et al. 2009). The efficiency 
of the adaptive design is dependent on time to information (the earlier, the better)
and the recruitment speed relative to the readout of observations required to adapt. 
For a detailed discussion on planning and implementing adaptive dose-finding 
designs, see Fardipour et al. (2009a, b).
Bayesian modeling is used to estimate the dose–response relationship for the

primary endpoint, multiply impute missing outcome values based on early measure-
ments, and determine posterior probabilities. The proposed trial design uses 
response-adaptive randomization and Bayesian dose–response models to focus on
identifying the minimally effective dose (MED) and the dose with maximum effect
(MaxD). The trial may be terminated for futility at the end of stage 1 or during any
of interim analyses occurring in stage 2.

17.2  Study Design

This was a randomized, double-blind, placebo-controlled, comparator-referenced, 
multicenter, parallel-group trial using an adaptive study design in the treatment of 
adult subjects with acute exacerbations of schizophrenia. Seven active treatment
arms of Vabicaserin (50, 100, 150, 200, 300, 400, and 600 mg/day QD) may be
tested over the course of the trial. Risperidone 4 mg/day was the active comparator
used for assay sensitivity. Placebo was used as a control. The use of placebo as a 
control was necessary to provide reliable scientific evidence of safety, efficacy, and 
tolerability to ensure a reliable evaluation of the balance of benefits and risks. 
Subjects have an approximate 60%chance of receiving an active dose ofVabicaserin,
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an approximate 20 % chance of receiving placebo, and an approximate 20 % chance
of receiving Risperidone.

The adaptive study design consisted of multiple stages. In the first stage, subjects 
were equally randomized into 1 of 5 treatment arms: placebo, Risperidone, or 1 of
3 active doses of Vabicaserin. Interim analysis results were made available to an 
unblinded Data Monitoring Committee (DMC). The DMC evaluated the observed
real-time data on the total Positive and Negative Syndrome Scale (PANSS) score
between baseline and 4-weeks of treatment and other associated measurements. 
A statistical algorithm was applied to the data to adapt the treatment allocations of 
future subjects based on the response from previous subjects.

After the first interim analysis, enrollment to new dose groups of Vabicaserin 
was opened and weekly interim analyses were conducted and results provided to the 
DMC. The randomization scheme was modified at the end of each analysis until
enrollment was complete. The goal of such a response-adaptive allocation of sub-
jects was to find both the minimally effective dose that yields the desired effect 
(10-point difference in change (decrease) in the PANSS total score from baseline to
day 28) and the dose with the maximum effect, and to estimate the dose–response 
curve as precisely as possible.
The primary efficacy endpoint was the change in the PANSS total score from

baseline to the end of the double-blind treatment period (study day 28).The PANSS
total score was also assessed at day 7, 14, 21, and a longitudinal model was used to
incorporate these early measurements in the interim analyses to improve the preci-
sion of estimation of the primary endpoint. The PANSS score was assessed by the
principal investigator and a central rater.

17.3  Data Monitoring Committee

Four sponsor employees, a psychiatrist, a neurologist, a biostatistician, and a pro-
gramming expert who were neither part of the project team nor involved with the 
conduct of the trial constituted internal members of the core DMC. The core DMC
received weekly estimates of the dose–response relationship, key efficacy and safety 
data, and updates of the probability of the trial warranting termination for lack of 
benefit or for success. The core DMC also reviewed the performance of the com-
puter algorithm. The core DMC, enriched by five external experts, psychiatrists, and
internists, constituted the full DMC, to evaluate potential safety issues.
The randomization of the 100th, 200th, 300th, and 400th subject was to be used

as a trigger for meetings of the full DMC. The focus of these meetings was to
primarily review safety, but available efficacy data on the total PANSS score and the
Clinical Global Impression—Improvement scale (CGI-I) scores were also reviewed,
so an adequate risk–benefit determination of the compound could be made. Full 
Interim Reports, as laid out in the interim Statistical Analysis Plan (SAP), using all
currently available data were produced. During the conduct of the trial, it was the
responsibility of the DMC to advise study personnel regarding the continuing safety
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of study subjects as well as the continuing validity and scientific merit of the trial. 
The scope of the DMC’s responsibilities included endorsing or rejecting the weekly
updates from the adaptive algorithm on the proportion of patients to be allocated to 
the different treatment arms, and recommending to the Executive Steering
Committee (ESC) to stop treatment arms for safety or other reasons, or terminate
the study for safety, lack of benefit or for success.
The ESC was composed by four senior executives of the sponsor appropriately

removed from the conduct of the study. The ESC reviewed the DMC’s recommen-
dations, and either endorsed or amended them, and passed them on to the study 
team. For a more detailed description of trial committees for an adaptive clinical 
trial, see Fardipour et al. (2009a, b) and Antonijevic et al. (2013).

17.4  Overview of the Design

The primary efficacy endpoint was the change in the PANSS total score from base-
line to the end of the double-blind treatment period (study day 28). This study has
been designed to find the minimum dose that yields a 10-point difference in changes
on the PANSS total score over and above placebo. A 10-point difference on the
PANSS total score change was chosen because it was consistent with the magnitude
of effect seen in the previous Phase 2 study with this compound and represented a 
clinically meaningful difference with a standard deviation of 19.4 units.
A maximum of 450 subjects was planned for this study. It was expected to ran-

domize approximately 80 subjects to each of the placebo and Risperidone groups.
The remaining 290 subjects were supposed to be allocated to various Vabicaserin
dose groups based on the adaptive algorithm. Data from the previous phase II study
indicated that 80 subjects per group should be able to detect a 10-point mean differ-
ence between placebo and either of Vabicaserin groups in changes of PANSS total
score with 90 % power at the 0.05 level of significance assuming a common stan-
dard deviation of 19.4.
Subjects were randomized to different doses using an adaptive allocation rule.

The adaptive allocation rule was based on two goals. The first goal was to find the 
minimum effective dose (MED), the smallest dose that achieves the clinically sig-
nificant difference (CSD) of 10 points increase in the change in the total PANSS
score over the placebo. The second goal was to find the dose with the greatest 
change (MaxD) in PANSS score. The details for randomization are given below in
the Allocation Rule section. The trial stops when sufficient information is available, 
that is, when the drug has been shown to be sufficiently effective or that  continuation 
is futile. The trial stops for sufficient success when the MaxD dose is likely to be
better than the clinically significant difference of 10 units. The trial stops for futility
when the likelihood that each dose achieves the CSD is small. The details for stop-
ping are given in the Stopping Rule section below.
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17.4.1  Dose–Response Modeling

The relationship between dose and the change in the PANSS total score from
 baseline at day 28 is not necessarily believed to be monotonic and it is modeled 
using a normal dynamic linear model (NDLM). The NDLM is a convenient model
for describing the dose–response relationship of a drug and allows a great deal of 
flexibility in the shape and form of the response, assuming only that the response at 
each dose is normally distributed around a mean, and that the change in mean from 
one dose to another can be predicted using a simple linear model. The NDLM was
originally developed for the analysis and forecasting of time series data by West and 
Harrison (1997) and applied later in modeling dose–response relationship in many 
adaptive dose ranging studies, see for example Berry et al. (2002), Smith et al.
(2006), and Padmanabhan et al. (2012).

The label for the dose that subject i receives is di, where d = 1, …, 8. The respec-
tive amounts of active dose of Vabicaserin are 0 (placebo), 50, 100, 150, 200, 300,
400, and 600 mg QD, respectively. There is an active comparator (Risperidone),
which is labeled dose 9. The posterior distribution of the comparator response is
tracked separately from the dose–response modeling for Vabicaserin.

Let θd be the mean response for Yi when di = d. The following error structure is 
assumed for Y:

 
Y N ,i d~ ,q + ( )0 2s

 

where

 
q1 0

20~ ,N ,t( )  
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The “drift” parameter τ2 represents the “borrowing” from one dose to the neigh-
boring doses. This is the variance between responses at neighboring doses. The 
larger the value of τ2, the less borrowing from neighboring doses. The prior distribu-
tion for the “drift” parameter and the error term in the NDLM are

 
t 2 0 0011000~ . ,IG , ,( )  
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where IG is the inverse gamma distribution. These prior distributions carry little
weight, allowing the data to identify the dose–response relationship. They are 
slightly informative, however, and were selected with the goal of preventing improb-
able dose–response curves from having large posterior probabilities early in the 
study. The priors were selected for this purpose—to guide the trial early, but have
little effect later in the trial when the data are informative.
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An important calculation is the posterior probability that each dose has the 
 highest mean response for Y and the posterior probability that each dose is the 
MED. Likewise the posterior variance in the response at each dose plays a critical
role in the allocation of subjects.

17.4.2  Longitudinal Modeling

The change in total PANSS score from baseline is measured not only at 28 days but
after every week.

Let Xt be the change from baseline in total PANSS score at week t and Y be the 
final outcome at week 4. Let the dose group for the subject be d. We assume the 
following linear model:

 Y a bXd t= + +e  

where ε are independent identically distributed normal random variables with a 
mean of 0 and a standard deviation of λd. In this modeling the ad and λd are functions 
of dose d. The slope parameter b is assumed to be the same for each dose. So, for
each time period there is a separate intercept for each dose and a separate standard 
deviation for the error. The slope is assumed to be constant across all dose values. 
Distinct models are fit for each time period—there is no borrowing across time
periods. In the simulations study presented in the Simulations section, the prior 
distribution for b was N(0.80,0.252) and the prior distribution for each intercept was 
assumed to be ad ~ N(0, 102). The prior mean value for b was empirically established 
from data in the previous Phase 2a study, while the prior distribution for ad was 
intentionally chosen to be vague.

In determining the posterior distribution of the dose–response curve, we incorpo-
rated incomplete data using this longitudinal model, resulting in a natural Bayesian
imputation of the results for subjects having partial information. The Bayesian
approach treats the missing values as random variables, with distributions that 
depend on all available data, including those values that are known for the subject 
in question. Calculating the posterior distribution of the dose–response curve
required integrating over the distribution for each of the possible values for the 
missing observations but, using this Bayesian methodology, we were able to account
for the uncertainty associated with the missing observations.

The goal of the longitudinal modeling was to find the posterior distribution of the 
dose–response model. While the distributions of the missing values were not intrin-
sically important, their effect on the uncertainty in the dose–response model was 
critical. The Markov chain Monte Carlo (MCMC) approach used to sample from
the posterior of the dose–response curve, in the setting of missing values, proceeded 
as follows:

1. Using the current estimated dose–response model and the longitudinal model,
values for each missing value were randomly imputed.
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2. Using these imputed values to create a complete set of Y's, a single draw from the 
posterior of the dose–response curve was obtained.

3. Using the new dose–response curve and the longitudinal model, new values for
missing data were then imputed, as in step 1.

Steps 2 and 3 were repeated to create a collection of dose–response curves that
represented a sample from the posterior distribution. The known values of Y were 
held constant throughout this iterative simulation, but the missing values differed 
from one imputation to the next. This approach provided a posterior distribution for 
the dose–response curve that appropriately accounted for the uncertainty associated 
with the missing data, while taking into account the available information from 
every patient. The MCMC approach is standard, using Metropolis within Gibbs
sampler.

17.4.3  Allocation Rule

The adaptive allocation rule was motivated by two goals. The first goal was to find 
the dose with the greatest change (MaxD) in PANSS score. The second goal was to
find the minimum effective dose (MED), the smallest dose that achieves the clini-
cally significant difference (CSD) of 10 points decrease in the change in total
PANSS score over the placebo. Bayesian response-adaptive allocation rules (see for
example Berry 2004) alter the allocation probabilities based on posterior probabili-
ties Pr(d=d*) of each dose being the target dose d* or based on the posterior prob-
abilities weighted by the reduction in variance of the mean response θd expected 
from adding one more subject to that dose:

 
V d d d
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+
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where nd is the number of subjects at dose d at the interim analysis time. Thall and 
Wathen (2007) proposed a more flexible approach using Vc with c ≥0. Clearly c=0
corresponds to equal randomization and they recommend to use a dynamic value for 
c = n/2N, where n and N are the current and the total number of subjects planned in 
the study, respectively. We used a fixed c = 1/2 in this study.
For the goal of finding the MaxD the following vector of randomization proba-

bilities is used:
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where V1 corresponds to V for d* = MaxD. Similarly for the second goal of finding
the d* = MED the randomization vector q2 is created as follows:
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At each interim analysis the two vectors are calculated and they are combined 
(equally weighted) to form the updated randomization vector:
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The probability for placebo is assumed constant at 0.20. The same allocation
ratio 0.20 is assumed for the control arm. The remaining 0.60 proportion of subjects
is allocated to the Vabicaserin doses.

17.4.4  Stopping Rule

The study continues accruing until at least 125 subjects have been enrolled and at
least one of the following three conditions hold.

If the probability is at least C2=0.80 that the most likely MaxD (d*) improves 
over placebo by at least CSD=10 points and the probability that dose d* is the 
MaxD is at least C1=0.60 and the probability that the MED was identified is at least
C3=0.60, then the trial stops for success. Stop the trial for success if the following
three conditions are satisfied:

 
Pr |d MaxD data for somed=( ) > C1  

 
Pr |*qd C- >( ) >q1 2CSD data for theMaxD

 

 
Pr | .d MED data for somed=( ) > C3  

Stop for futility if all doses have at least five subjects and the probability that the
dose achieves the CSD of 10 points is smaller than C4=0.01, i.e.,

 
Pr | ,.., .q qd C d- >( ) < =1 4 2 8CSD data for all

 

If the sample size reaches the cap of 450 then the trial stops. In this case, the pre-
dictive probability that the MaxD dose can beat placebo in a new phase III clinical
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trial with 100 subjects per arm is calculated. If this predictive probability is greater
than C5=0.80, then we refer to this condition as Cap/Success, otherwise we call it
Cap/Futility.

17.5  Simulations

An essential step in the development and fine-tuning of an adaptive study design is 
the simulation of the design across a range of potential dose–response pattern sce-
narios. The appropriateness of the actual design was confirmed through these simu-
lations. In this section we provide additional details regarding the simulation 
methodology and describe some dose–response scenarios utilized in the fine-tuning 
the adaptive design of this trial. Then we present the observed operating character-
istics of this design across these scenarios.

The fine-tuning design parameters are the cutoffs C1–C5. After many simulations 
with different values of these control parameters we determined that values

 C1 2 3 4 50 60 0 80 0 60 0 01 0 80= = = = =. , . , . , . , .C C C C  

are the most appropriate for the purpose of this trial.

17.5.1  Simulation Scenarios

Simulations are created to summarize the operating characteristics of the proposed
adaptive design. In order to simulate the design, assumptions have to be made about 
how the data are generated. These assumptions do not affect the design or the analy-
sis, but they are necessary to simulate subject results. Subjects are accrued at a
constant rate of 40 subjects over a period of 28 days. However, in order to model
slower enrollment for the first 3 months in the study, we assume 10, 20, and 30
subjects per period for the first three periods, respectively. In the first stage, a total 
of approximately 50 subjects will be equally randomized into 1 of 5 treatment arms:
placebo, Risperidone, or 1 of 3 active doses of Vabicaserin 50, 150, and 300 mg.

The following assumptions are made to simulate subject results. A first week 
change from baseline value for the total PANSS score is simulated as:

 
Y N1 d~ q s, 2( )  

Because of the correlation through time the following weeks (t=2,3,4) are simu-
lated as follows:

 
Y N Yt d t d~ , ,q r q r s+ -( ) -( )( )-1 1 2 2
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which implies that the following week is normally distributed with the same mean 
for the dose, θd, and is correlated to the previous week’s value with correlation coef-
ficient ρ. In each of the simulations runs in this simulation study, the values ρ=0.70
and σ=20 are used.

The parameters θd determine the efficacy of the different doses. By varying these
parameters different scenarios are created. The following scenarios are used in the 
simulations (Table 17.1).
Scenario 1 is a null case, in which the treatment has no effect. The next scenario

is also a futile case because even if there is a trend with increasing the dose the 
maximum magnitude is only half of the required CSD. The third scenario is the
one with only the 600 mg dose achieving the CSD. Scenario 4 has dose 200 mg as
the MED and a moderate difference from the neighboring doses. Scenario 6 has a
strong difference from placebo across all doses. The next three scenarios are strong 
scenarios for the experimental drug. In each case there is a strong difference from 
placebo in total PANSS score and there is a strong difference between the doses.
The last scenario has the smallest dose 50 mg as MaxD.

17.5.2  Design Operating Characteristics

In this section the operating characteristics of the design are presented. In each sce-
nario 1,000 simulated trials are conducted and a summary of the operating charac-
teristics are presented. The control arm was not considered in the simulation study. 
Therefore, the mean sample sizes are only for the placebo and Vabicaserin treatment 
arms. Because about 80 subjects are required for the final comparison of the control
to placebo, the sample size cap in the simulation study was 370 subjects
(370+80=450, the maximum sample size for the trial).

The operating characteristics are reported in Table 17.2. The probabilities the 
design stops early for success are reported in the second column. The probability 
the trial stops at the cap is reported in the “Cap/Total” column. The probability the

Table 17.1 The mean changes from baseline for total PANSS score for each dose under different
scenarios

Scenarios

Mean change in the total PANNS score

0 50 100 150 200 300 400 600

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.5 1.0 2.0 3.0 4.0 5.0 5.0
3 0.0 1.0 2.0 3.0 4.0 5.0 7.0 10.0
4 0.0 4.0 7.0 7.0 10.0 7.0 7.0 4.0
5 0.0 7.0 10.0 10.0 12.5 12.5 12.5 12.5
6 0.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5
7 0.0 7.0 7.0 7.0 7.0 12.5 12.5 12.5
8 0.0 8.0 15.0 15.0 7.0 7.0 5.0 5.0
9 0.0 7.0 7.0 7.0 7.0 12.5 7.0 7.0
10 0.0 15.0 10.0 7.0 5.0 2.0 1.0 0.0
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trial stops at the cap but there is a dose with a 80 % chance of success in a phase III
trial with significance level 0.05 and 100 subjects per arm is reported in the “Pr(Cap)/
PIII” column. The mean sample size is reported in the “Mean Sample Size” column.
The allocation to different arms is shown in the top of the cell, the probability that 
the dose is selected as the MaxD is reported in the middle of the cell, and the prob-
ability that the dose is selected as the MED is reported at the bottom of the cell.
For Scenario 1, the probability of early stopping for futility or reaching the cap

and failing to achieve a 0.8 probability of success in Phase III is 0.981. The mean
sample size is only 229.8.
For Scenario 2, the probability of early stopping for futility is only 0.367, but still

the probability of claiming success is small 0.122.
Scenarios 3 and 4 have a single dose with CSD, 600 and 200 mg, respectively.

These doses receive maximum of subjects (about 59 subjects for Scenario 3 and
about 43 for Scenario 4) and the probability of reaching the cap is 0.817 and 0.786,
respectively.
For Scenario 5, the MED is dose 100 mg and the MaxD is dose 200 mg. The

MED is correctly identified with probability 0.255, the dose 50 mg with the true
response of 7 units was selected as MED with probability 0.389. The MaxD has
been selected as one of the doses 200–600 mg with probabilities 0.15–0.33. Notice
that all these doses have the total PANSS score 12.5 under this scenario.
For Scenario 6, the probability that the trial stops for early success is 0.472. The

trial runs to the cap 52.8 % of the time and never stops for futility. 50.9 % of the
trials ran to the cap, but a dose was found to be more than 80 % likely to beat pla-
cebo in a phase III study, the trial did not stop because it was not clear which dose 
was the MaxD. If we classify this outcome as a success along with the “Suc” out-
comes, then the power of this study is greater than 98 %. The likelihood that the
50 mg dose is found as the MED is 86.3 %.
Scenario 7 is similar to Scenario 6 but only the three higher doses are efficient.

Because two of these three doses are available only after the first stage, the mean
sample size is much higher than for the previous scenario.
In Scenario 8, the trial is stopped for sufficient positive information in 67.7 % of

the trials, with 31.7 % running to the cap and 30 % predicting success in Phase
III. The probability of (correctly) finding the 100 mg dose as the MED is 0.497.
Most of the subjects have been allocated to lower doses (up to 300 mg). Scenario 9
is a variation of Scenario 7 in which the top two doses have lower mean scores. The
probability of (correctly) finding the 250 mg as the MaxD is increased to 0.583 as
compared to only 0.25 for Scenario 7. Mean sample size for Scenario 10 is only
195.3 subjects. The MED is correctly identified in 99 % of the cases. Very few sub-
jects are allocated to higher doses where the mean total PANSS score is small.

17.6  Trial Results

Detailed results of this study have been reported previously in Shen et al. (2011). 
Here we focus mainly on the process of implementing the response adaptive design
during the actual trial. A total of 280 subjects were screened, and 202 subjects were

17 A Case Study for Adaptive Trial Design Consideration and Implementation
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randomized and treated between December 2007 and May 2008. Initially, subjects
were equally randomized to placebo, Risperidone and three doses of Vabicaserin:
50, 150, and 300 mg. The first interim analysis took place on March 7, 2008. At that
time, 69 subjects have been randomized and 29 of them completed the 28 days
double-blind treatment. The adaptive design recommended to open enrollment to 
other doses of Vabicaserin. At weekly interim analyses thereafter, the adaptive 
design engine was run using the accumulating data on subjects that completed the 
treatment as well as on those with partial data (based on the longitudinal model) to
determine treatment arm allocation probabilities for the next stage.
On April 24, 2008, the adaptive design algorithm first recommended to stop the

study for futility because the posterior probability of achieving CSD over placebo
on all Vabicaserin doses was smaller than 0.01. The primary driver for futility deci-
sion was high placebo response that was apparent from the start of the trial and 
persisted over subsequent interim analyses. Figure 17.1 shows the estimates of the 
dose–response as they were made available to the core DMC. The vertical axis
describes the change from baseline to day 28 on the total PANSS. The horizontal
axis lists the different treatment arms. The first number in [] behind the treatment 
arm indicates the total number of patients with some available data, as used by the 
model, while the second number indicates the number of patients with complete 
datasets. The modeled dose–response is shown in black (point estimate for mean
response, including 95 % confidence interval), and the dose–response curve is inter-
polated across all doses with available data. The observed (not model based) data is
shown in grey (point estimate for mean response, and 95 % confidence intervals),
and the dose–response curve is interpolated across doses only if there is final data 
available on at least one patient. The NDLM model indicated a monotonic dose–
response for Vabicaserin with the highest effect at the top dose 600 mg. However,
the posterior probability of achieving CSD over placebo on all Vabicaserin doses
was smaller than 0.01. Moreover, no separation between placebo and the active
control Risperidone was observed. The posterior probability of Risperidone achiev-
ing at least 5 points difference over placebo at the end of the trial was estimated to
be only 11 %. The DMC recommended to override the algorithm and to continue
recruiting into the trial and proposed to review the study status with the EXC peri-
odically thereafter. Interestingly, at the next interim analysis, the early stopping for 
futility was not satisfied because the posterior probability of achieving CSD over
placebo on the 600 mg dose of Vabicaserin was 0.017. However, the stopping rule
for futility was satisfied consequently at the following four weekly interim 
analyses.
OnMay 16, 2008, theDMC recommendationwas endorsed by the ESC and recruit-

ment into the study has been stopped for futility due to high placebo response. 
European centers would have been ready to include patients into the trial by July 2008.

Table 17.2 shows the results used by the DMC in their recommendation.
Figure 17.2 shows the estimates of the dose–response at that interim analysis that 
has the same format as Fig. 17.1 and Table 17.3.
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17.7  Discussion

In this study, real-time learning about the dose–response was deployed in a large, 
multicenter, international psychiatric study. The adaptive design allowed early 
determination of the failed nature of the study, i.e., the inability to separate the 
active control, Risperidone, from placebo. This led to significant conservation of
research resources: a non-adaptive approach would have involved enrolling over 
twice the number of patients (i.e., 450 vs. 202); the enrollment in the European
centers has not been even initiated. The adaptive approach exposed fewer patients to 
the unnecessary potential risk inherent in the study of an investigational compound. 
At the same time, the adaptive design allowed a more efficient learning about the 
dose–response of the investigational drug than would have been possible in a con-
ventional fixed dose study, in particular, the use of the NDLM model in this study
would have permitted the ability to assess for a potentially non-monotonic dose–
response curve.
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Fig. 17.1 Estimates of the dose–response based on the data available on April 25, 2008 when the
adaptive design recommended for the first time to stop the study for futility
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A common misunderstanding is the concern that the confidence in the findings 
on a given dose in an adaptive trial design such as this one is compromised by the 
small number of patients on any 1 of the 7 doses of investigational drug tested in this
study. However, the modeling approach of the adaptive design uses information
from all doses in estimating the dose–response curve rather than simply doing pair-
wise comparisons between study drug dose arms and placebo.
Allocation to placebo and Risperidone was fixed to 20 % each, i.e., 40 % of all

patients were used to generate reference points. Of note, the variability of the data
on placebo was nearly twice as great as the data on Risperidone. For this reason, it
might have been beneficial had the algorithm been enabled to increase the number 
of patients allocated to placebo or Risperidone beyond 20 %, conditioned on the
emerging data, to better estimate the mean response for placebo treated patients. 
This should be considered in doing future studies employing this methodology.
Running a trial with nine different treatment arms (i.e., Risperidone, placebo,

and seven doses of the investigational drug) was challenging, both conceptually and 
logistically. Population PK provided evidence for successful administration of the 
different doses across the dose range. For supply reasons, the study began with only 
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Fig. 17.2 Estimates of the dose–response based on the data available when the DMC made the
recommendation to stop the trial for futility due to high response on placebo
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three doses of the investigational drug and the other four doses were added when 
they became available at week 12 in the trial. The study design allowed for subse-
quent subjects to be preferentially assigned to these other doses to test their effec-
tiveness. Nevertheless, the recommendation for future studies would be to start with
all of the doses at the beginning.

To avoid excessive wastage of study drug, only three dose strengths were pro-
duced. To ensure complete blinding each dose was prepared by using four bottles 
and taking one capsule out of each. Compliance was less of a concern, given that
patients were hospitalized and medication was prepared for them by nursing staff. 
However, had this been an outpatient study, blistering study medication and prepar-
ing more dose strengths would have been beneficial.

The unanswered question with this study is: Why did it fail to separate the active 
comparator from placebo? No single prominent cause was identified, and a full
discussion is beyond the scope of this paper. However, here are some consider-
ations, with an emphasis on their impact on the adaptive design performance:

Adaptive designs assume exchangeability of patients, i.e., a patient entering the 
trial in one center early on should be exchangeable with another patient entering the 
trial in another center at a later stage. However, post hoc analyses revealed “study
center” as a factor contributing to the placebo response observed in the trial reported 
here. Quality control is of paramount importance to reduce variability within and
across study sites, at all times, starting with selecting the right study centers, provid-
ing appropriate education and monitoring study center work throughout the conduct 
of the trial to ensure that all aspects of the protocol are rigorously followed.

Table 17.3 The interim results at the time when the DMC made the recommendation to stop the
trial for futility due to high response on placebo

Treatment  
group

Randomized
Completed

Baseline  
mean (SD)

LS mean change  
to W4 (SE)

NDLM fitted
mean (SE)

Placebo 35
21

94.74 (11.18) −14.46 (3.11) −15.81 (3.19)

50 mg 18
13

95.44 (9.64) −6.40 (4.33) −6.41 (3.52)

100 mg  8
 3

97.25 (14.72) −2.44 (6.50) −8.73 (3.78)

150 mg 17
10

100.47 (12.83) −2.70 (4.51) −6.98 (3.72)

200 mg 16
11

93.06 (8.84) −11.76 (4.60) −9.66 (3.42)

300 mg 18
14

94.39 (8.73) −5.44 (4.33) −8.04 (3.15)

400 mg 12
9

92.83 (10.25) −14.51 (5.31) −9.58 (3.84)

600 mg 28
17

95.54 (12.46) −6.38 (3.47) −8.42 (3.33)

Risper 41
31

91.49 (10.96) −14.23 (2.89) −13.63 (3.18)
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In response-adaptive-designs there is an “optimal” recruitment speed to learn 
about the research question, and very fast recruitment may be suboptimal. In the trial 
reported here, enrollment was more rapid than anticipated, such that 202 patients
were recruited in less than 6 months, using 27 study sites in the USA. Recruitment
was particularly rapid early during the winter season. This also begs the question 
whether some sites may already have had a pool of patients to enroll. In hindsight it 
would have been beneficial to run even more extensive upfront simulations to 
explore the impact of different scenarios for exchangeability of patients (or lack
thereof) and recruitment speed onto the operating characteristics of the design.

Another issue is the assessment of the primary endpoint and associated rater 
variability: The adaptive algorithm and the initial decision whether a patient could 
be included in the trial used the PANSS total score as observed by investigators.
Interestingly the PANSS total score ratings from the investigational sites were on
average 10 points higher than the scores from the central rater, but the variability of
the observations was comparable.

The problem of failed trials is not unique to the study reported here and has been 
observed in other randomized clinical trials conducted in acute schizophrenia 
patients in recent years. On the one hand the adaptive design was beneficial in estab-
lishing the failed nature of the trial early on. On the other hand this case study high-
lights that jointly with designing an innovative design methodology, there has to be 
an emphasis on getting the fundamentals of the clinical trial right: choosing a patient 
population and the endpoint with a goal to optimize the ability to detect a treatment 
effect, avoiding confounding factors such as uncontrolled concomitant medication 
and an urge to recruit quickly at all cost. This is particularly relevant in CNS indica-
tions where disease and outcome are clinically described through subjective end-
point measures.

Although the investigational drug failed to demonstrate efficacy in this trial, we 
feel that the design and analytic approach performed well. The NDLM modeling
across dose groups, the longitudinal modeling, and the adaptive allocation to treat-
ment all facilitated efficient learning about the dose–response curve. The emerging 
dose–response estimates, together with the various posterior probability estimates 
associated with the model and the end-of-study predictions, provided the informa-
tion needed for decision-making.

In retrospect, we feel that the futility criterion was overly stringent. The motiva-
tion for the conservative rule was concern that one of the frequent interim looks 
would satisfy the futility criterion (even for an efficacious drug), thereby inflating
the type II error rate. In actuality, the consistency of the results over many weeks 
(always indicating little chance of a meaningful advantage over placebo) made the
DMC quite comfortable with the decision to terminate for futility. Further support
of this decision was provided through pharmacokinetic analyses.

Pre-study simulation work is critical to fine-tuning the decision rules and opti-
mizing the operating characteristics of an adaptive design. The futility criterion 
must be carefully assessed, recognizing that a less stringent rule increases the 
chance of a “quick kill” but at the risk of an increased type II error rate. To address 
the concern that multiple looks may lead to a spurious futility decision, we may 
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wish to require that the futility criterion be satisfied more than once before stopping 
the trial (e.g., at three consecutive interim analyses). Extensive simulation work is
necessary to assess the futility criterion and other design options, as we develop 
future applications of the present methodology that perform best across the range of 
potential response patterns.
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    Abstract     A new formulation of a test drug was to be studied in patients for the fi rst 
time. Preclinical studies yielded a wide range of effective doses across species, so 
there was a desire to include at least 6 doses in the dose-fi nding trial. Adaptive 
design was chosen to focus the dose assignments on those that yielded at least 75 % 
of maximal response (ED75). A 4-period crossover in which each of 68 patients 
received 3 doses of test drug and placebo was chosen since it optimized perfor-
mance characteristics. Frequent interim analyses were performed to optimally 
choose the 3 doses of test drug to maximize dose assignments to the doses estimated 
to be closest to ED75 based on analysis of study data accumulated up to each interim 
analysis time. The completed study yielded minimal assignment of doses away 
from ED75 and successfully identifi ed, and focused dose assignment around, the 
target dose. The table below shows the numbers of assignments to each dose and the 
respective observed mean responses.

    Dose1(Pbo)  Dose2  Dose3  Dose4  Dose5  Dose6  Dose7 

 N  67  42  0  30  66  25  36 
 Mean   3   7  n/a  13  10   9  12 

     Keywords     Frequent adaptation   •   Adaptive dose-fi nding cross-over   •   Isotonic 
regression  
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18.1         Description of the Problem 

 An informed decision on doses of a new formulation of a commonly used drug was 
needed for future studies to optimize chances of success of the drug development 
program. Little was known about the dose–response shape and dose range for the 
new formulation to guide dose selection. This information could not be obtained 
from PK/PD studies due to nature of formulation. Based on previous experience 
with the approved formulation, the dose–response curve was expected to be very 
steep, that is, increasing from minimum to maximum across narrow dose range. 
 Thus, it might be easy to miss the informative part of the dose range and encounter 
study failure unless some preliminary learning about the dose–response relation-
ship is accomplished in this trial . Failure would be especially costly since later trials 
might potentially include monotherapy and combination therapies, requiring rather 
large studies. A very wide potential dose range and a large number of doses (about 
6 or 7) needs to be studied in order to  properly  evaluate the dose-fi nding objectives 
of the trial. Not enough preliminary information was available to narrow the dose 
range to only 3 or 4 doses, and a limited budget was available. Thus, adaptive 
designs were considered to permit study of more doses than the usual 3–4 of a more 
traditional completely randomized design. 

 Study design logistics were favorable for adaptive design. In particular, the time 
from randomization to observation of the key response was a week. Enrolment was 
expected to occur over several months offering adequate time for interim analyses 
for adaptation. Additionally, there was a limited number of centers, making imple-
mentation of adaptations logistically feasible. 

 At the protocol concept stage, the following design options were considered. 
A 4-period crossover design with 44 subjects was the default option, i.e., the tradi-
tional non-adaptive design that would have been implemented if adaptive design 
was found infeasible or with no advantage. This design would include 3 active treat-
ment doses and placebo; hence, it would provide limited information about the 
overall dose–response curve. 

 In order to increase the number of doses, an incomplete block design with 88 
subjects was considered. It would include 6 doses of active treatment and placebo. 
However, there still would be limited information about the dose–response curve 
since estimation of treatment effects would be based on a combination of within- 
and between-subject variability. Also, if balance were not achieved due to dropouts, 
there would be confounding of dose–response effects with between-subject effects. 

 A seven-arm parallel design with 448 subjects was also considered. It would 
include 6 doses and placebo to provide more complete information about the dose–
response curve than the 3-dose 4-period crossover design. However, it would be 
much more costly due to the large number of subjects, and likely take longer to 
complete. 

 A 2-stage adaptive 3-period crossover design in 88 subjects was considered. 
Stage 1 in the fi rst 44 subjects would include placebo, a mid-dose, and a high dose. 
At the interim analysis, after Stage 1, 2 additional doses would be selected for 
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 inclusion in Stage 2 along with placebo. The remaining 44 subjects would comprise 
Stage 2. However, since only 4 active doses could be included in this trial, it would 
provide incomplete information about the dose–response curve. 

 The penultimate design considered was a frequent-adaptation Bayesian dose–
response modeling approach including 6 doses and placebo in 40 patients if cross-
over or 120 patients if parallel. This approach would provide information on the 
overall shape of the dose–response curve with emphasis on estimation of the dose 
with 75 % of maximal effi cacy (“ED75”). The only drawback of this approach is 
complexity of implementation. 

 The chosen design was a frequent-adaptation fi xed-algorithm-based 4-period 
crossover design in 64 subjects. Each subject was assigned 3 of 6 possible doses and 
placebo. This design, as did the Bayesian design, permitted evaluation of the widest 
range of doses and targeted estimation of ED75. It was much easier to implement, 
and easier to explain to clinicians; hence, it was chosen for implementation for the 
clinical trial. More detail on this design follows in the remaining sections of this 
chapter.  

18.2     Methods/Key Aspects of the Chosen Design 
and/or Operational Features Considered 

 The frequent adaptation fi xed algorithm 4-period crossover design was chosen. 
Although a formal interim analysis for the purpose of stopping the study early for 
futility or superior effi cacy was not performed, there were multiple unblinded evalu-
ations for the purpose of identifying the best doses for patient allocation. Unblinded 
data were evaluated by an unblinded statistician on a regular basis to determine 
patient-dose allocation. Study enrollment was going on at the time of these unblinded 
evaluations. Blinding to treatment assignment was maintained at all investigational 
sites. The results of unblinded evaluations were not shared with investigators or 
other SPONSOR personnel. Patient-level unblinding was restricted to an internal 
unblinded statistician performing the unblinded evaluations, who had no other 
responsibilities associated with the study. 

 The 3 initially selected doses (1, 4, and 6) were used at the start of the trial. At 
each adaptation time point, if the review of available responses suggested that using 
doses other than the 3 currently used doses would better identify the target dose 
yielding 75 % of maximal placebo-adjusted response (according to the specifi ed 
algorithm), then a new combination of 3 doses was used for subsequent patients, 
until the next adaptation took place. A score function was used during the adaptive 
process to identify the best doses (closest to the target dose yielding 75 % of maxi-
mal placebo-adjusted effi cacy). The score of a given combination of 3 active doses 
(i.e., a combination of 3 active doses that a given patient is randomized to receive 
during the study) was computed based on responses estimated at those 3 dose levels 
based on available data. A particular 3-dose combination was randomly selected 
from the set of three combinations with the highest scores. The performance and 
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operating characteristics of the algorithm were evaluated by extensive simulations 
under different scenarios. The adaptation algorithm can be described as a data- 
driven allocation. No formal inference was done at the review points because sam-
ple sizes were not large enough to provide high confi dence level statements. 

 Dose adaptation can be logically split into two parts:

•    Estimation of the underlying dose–response relationship from observed data  
•   Selection of the best allocation scheme (based on the estimated dose–response) 

that best meets the adaptation objective.    

 At each time point of adaptation, the algorithm described here will update the 
allocation scheme in use at the time of adaptation. The updated scheme will then be 
used for subject randomization from that time forward until the next adaptation is 
performed. The fi rst adaptation can be performed as soon as data are available from 
at least 21 responses as observed over at least 4 different dose levels. Adaptation can 
then be performed as often as the logistical constraints of data processing will per-
mit; the planned frequency of adaptation is twice weekly. 

18.2.1     Estimation of Dose–Response 

 The fi rst adaptation takes place when data from at least 4 dose levels are available. 
The estimates are obtained by means of isotonic regression under the assumption 
that the underling true dose–response relation is a monotonically non-decreasing 
function. For this study, the Pool Adjacent Violators Algorithm (PAVA) will be used 
(Barlow et al.  1972 ).

•     Algorithm input : Observed mean responses at the ordered dose level; available 
sample sizes are used to weight each dose level.  

•    Algorithm output : Least-squares error fi t to the observed mean responses at each 
dose level, weighted by sample sizes (and subject to monotonicity constraint); 
response estimates for dose levels where data are not available are obtained by 
linear interpolation    (Fig.  18.1 ).

18.2.2           Selection of the Optimal Dose Levels 

 Each subject is randomly assigned to one of four possible treatment sequences 
described in the protocol (sequence of 3 active dose strengths and placebo). Thus, 
the allocation scheme is completely defi ned by specifi cation of the 3 active dose 
levels. There are a total of 20 different combinations that include 3 active dose 
levels out of 6 possible dose levels (Doses2 through 7, with placebo as Dose1), as 
listed in order in Table  18.1 . Note that this translates into a total number of 
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20 × 4 = 80 different randomization sequences, but only 4 are used at a time once 
dose levels are selected.

   Each combination of 3 dose levels will be assessed by computing its score. Then, 
one 3-dose combination is randomly selected from the set of three combinations 
having the highest scores. This 3-dose combination is then used (i.e., these 3 active 
doses) for each patient until the next evaluation (and possible dose adaptation) is 
performed. 

 The score of a 3-dose combination is computed based on estimated responses at 
the dose levels contained in that combination, and calculated in the following way: 

 The score function ranks dose-level combinations according to proximity of their 
3 dose levels to the target dose ED 75. Let  r   1   , r   2    … r   7   be estimated responses via 
isotonic regression at placebo and 6 active dose levels, respectively. Compute 
 q   i    = (r   i    − r   1   )/(r   7    − r   1   )  for  i = 2 … 7 , which refl ect dose effectiveness relative to the 
maximum observed response adjusted for placebo. For each 3 dose combination, 
say  {A,B,C},  the score is  S(q   A   ) + S(q   B   ) + S(q   C   ).  The score function  S()  is presented by 
the plot in Fig.  18.2 . This score function was defi ned to yield maximum score for 
the target dose at ED75 and still yield high scores for doses near ED75, and decreas-
ing away from ED75. Obviously many such score functions exist, and this one was 
chosen arbitrarily.

   For example, suppose that the observed response means and estimated dose–
response curve are as presented in Fig.  18.1 . Then the scores for each of the 20 
three-dose combinations are presented in Table  18.2 .
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  Fig. 18.1    Example of PAVA fi t.  Red  stars are observed means       

    Table 18.1    Active dose combinations for crossover sequence assignments   

 Combination  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20 

 Dose A  2  2  2  2  2  2  2  2  2  2  3  3  3  3  3  3  4  4  4  5 
 Dose B  3  3  3  3  4  4  4  5  5  6  4  4  4  5  5  6  5  5  6  6 
 Dose C  4  5  6  7  5  6  7  6  7  7  5  6  7  6  7  7  6  7  7  7 
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   The dose combination to be used (until next adaptation) is randomly selected 
from among the 3-dose combinations with the three highest scores, which in this 
example (Fig.  18.1  and Table  18.2 ) are {3,4,5}, {3,4,6}, and {3,4,7}. If there are 
several combinations that have the same score, then ties are broken by using the 
lower combination number listed in the fi rst row of Table  18.1 .  

18.2.3     Simulation Setting 

18.2.3.1     Evaluation of the Design 

 The algorithm performance was evaluated by means of extensive simulations. 
Figure  18.3  displays the true underlying dose–response profi les (scenarios) that 
were used.

   The following entries were simulated for each trial:

•    For each calendar day the number of subjects that enter the trial is a random 
number that follows Poisson distribution. The start time of each subject is 
recorded. For each subject, time to next treatment is 7 days.  
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  Fig. 18.2    Score function       

Combin. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Dose A 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 5
Dose B 3 3 3 3 4 4 4 5 5 6 4 4 4 5 5 6 5 5 6 6
Dose C 4 5 6 7 5 6 7 6 7 7 5 6 7 6 7 7 6 7 7 7
Score 144 135 135 135 135 135 135 126 126 126 207 207 207 198 198 198 198 198 198 189

    Table 18.2    Score function values for active dose combinations       
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•   At each time point, there are four different treatment sequences with fi xed 3 
active dose levels and placebo. A subject is randomly assigned to one of the 
sequences.  

•   For each subject, the response is generated according to the underlying true 
dose–response at each dose level, imposing appropriate correlation structure 
regarding between- and within-subject variability. Only responses from the dose 
level corresponding to subject treatment sequence are used at the corresponding 
time points.  
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  Fig. 18.3    Dose–response scenarios       
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•   Predefi ned proportions of subjects who did not complete all treatment periods. 
These subjects are selected at random. After that, a treatment period starting 
from which (inclusively) subject dropped from a trial is randomly picked from 2, 
3, and 4 with equal probabilities.      

18.2.4     Parameters Used in Trial Simulation 

•     Number of possible dose levels = 7 (placebo and 6 active dose)

 –    Starting doses = 1 (Placebo), 2, 5, 7     

•   Number of subjects in each trial = 65 (adjusted for patient dropouts)

 –    Dropout rate = 8 % (proportion of patients not completing all treatment 
periods)     

•   Standard Deviation (SD)

 –    Within-subject SD = 13  
 –   Between-subject total SD = 18 (incorporates within-subject SD and subject 

random effect).     

•   Patient and data accrual

 –    Poisson accrual with rate = 0.5 (Example of the resulting number of subject 
per week: 4 4 4 1 5 1 0 1 3 2 3 5 3 2 5 2 4 6 5 3)  

 –   Delay in response = 1 day  
 –   Time between treatment periods = 4–7 days  
 –   Timing to perform Adaptation = every 3, 4 days     

•   No early stopping rule.     

18.2.5     Simulation Results 

 Simulation results are based on 5,000 simulations per dose–response scenario. 
Table  18.3  reports the proportion of the total sample size allocated to each dose level 
obtained by averaging across simulations. The actual allocation observed in the 
particular trial deviates from the presented value with a half interquantile range 
(0.5*IQR) equal to 3–7 %. Table  18.4  reports power for testing superiority of a dose 
level versus placebo (1-sided test at alpha level 2.5 %, without adjustment for 
multiplicity).

    Figures  18.4  and  18.5  graphically present information from Table  18.3  and pro-
vide information from Table  18.4  in the title of each plot. Also, each title includes 
the true dose–response scenario for which information is presented.
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18.2.6         Conclusions from Simulations 

 On average, as it can be seen from Table  18.3  and Figs.  18.4  and  18.5 , the algorithm 
allocates subject to the neighborhood of the effective and the highest sub-effective 
dose levels for the studied dose response scenarios. (Note that doses with the same 
level of response are assigned different proportions of patients; in particular, assign-
ment peaks at the left side of the plateau since emphasis of the scoring system for 
adaptation is at ED75.) This translates to a high power to declare those dose levels 
superior to placebo, see Table  18.4 . For reference, 43 subjects per treatment would 
be required for 80 % power to yield a statistically signifi cant (alpha = 0.025, 1-sided) 
difference from placebo via pairwise comparison using a traditional crossover 
design. Type I error rate is controlled well: refer to Tables  18.3  and  18.4  to the row 
which corresponds to scenario 1.   

      Table 18.3    Proportion of total sample size allocated to each dose   

 Scenario  Dose1  Dose2  Dose3  Dose4  Dose5  Dose6  Dose7 

  1  0.25  0.17  0.05  0.07  0.17  0.08  0.21 
  2  0.25  0.14  0.06  0.07  0.13  0.11  0.23 
  3  0.25  0.11  0.06  0.07  0.11  0.18  0.23 
  4  0.25  0.10  0.04  0.07  0.21  0.16  0.17 
  5  0.25  0.07  0.04  0.15  0.18  0.14  0.17 
  6  0.25  0.07  0.11  0.15  0.17  0.12  0.14 
  7  0.25  0.19  0.11  0.09  0.17  0.07  0.13 
  8  0.25  0.14  0.08  0.09  0.15  0.11  0.17 
  9  0.25  0.13  0.08  0.09  0.15  0.13  0.17 
 10  0.25  0.13  0.08  0.09  0.18  0.12  0.14 
 11  0.25  0.11  0.08  0.13  0.17  0.11  0.14 
 12  0.25  0.11  0.11  0.13  0.16  0.10  0.13 

      Table 18.4    Power for comparison of each dose versus placebo   

 Scenario  Dose1  Dose2  Dose3  Dose4  Dose5  Dose6  Dose7 

 1  NA  0.022  0.021  0.022  0.026  0.020  0.020 
 2  NA  0.018  0.021  0.018  0.024  0.026  0.906 
 3  NA  0.021  0.025  0.024  0.017  0.841  0.913 
 4  NA  0.017  0.019  0.018  0.876  0.840  0.866 
 5  NA  0.016  0.014  0.728  0.869  0.806  0.849 
 6  NA  0.016  0.548  0.763  0.843  0.756  0.786 
 7  NA  0.748  0.612  0.559  0.853  0.495  0.793 
 8  NA  0.263  0.206  0.234  0.308  0.266  0.804 
 9  NA  0.258  0.221  0.233  0.314  0.716  0.834 
 10  NA  0.250  0.208  0.233  0.846  0.742  0.795 
 11  NA  0.229  0.204  0.686  0.852  0.720  0.791 
 12  NA  0.224  0.615  0.702  0.835  0.691  0.754 
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18.3     Remarks on the Adaptive Study Design Chosen, 
in Comparison to Traditional Design Choices 

 The average number of subjects that completed all treatment is around 60. The 
adaptive design uses 60 × 4 = 240 total observations from 60 subjects. Depending on 
scenario the power of the adaptive design is around 80–91 %. A standard crossover 
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  Fig. 18.4    Average proportion of the total sample size at each dose level (Scenarios 1–6)       
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design will require about 47 subjects to yield similar power for the same effect sizes. 
That 4-period crossover would have 47 × 4 = 188 observations but it explores only 3 
dose-levels and placebo. So the adaptive design requires 28 % more observations 
than the traditional 3-dose, 4 period crossover because it explores 6 + 1 dose levels. 
On the other hand, a crossover design that explores 6 doses and placebo (a 7-period 
crossover design, which would not be feasible for this study), would have 47 × 7 = 329 
observations. So theoretically the adaptive design is 329/240 =  1.37     more effi cient 
than a standard 7-period crossover design. In addition, it provides a shorter study 
duration for each subject. At the end of the study, treatments are compared at each 
time point separately using a mixed effect model including terms for treatment, 
period, and baseline covariate. An unstructured variance/covariance matrix was uti-
lized to capture the correlation between repeated measurements within a patient.  
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18.4     Results from the Actual Clinical Trial and Conclusions 

 The 4-period crossover design was carried out. The clinical portion was similar to 
the usual approach for a pharmacodynamic crossover study of traditional design 
except that results were frequently reported to the unblinded statistician for interim 
analysis and determination of next doses. Those dose-determinations were e-mailed 
to the unblinded pharmacists at the respective sites so that they could prepare the 
appropriate test medications for the next set of subjects. 

 The fi nal study data was analyzed using a standard mixed effects model for a 
crossover study including fi xed effects for periods and treatments and random effect 
for subjects. Figure  18.6  displays the resultant lease squares (LS) mean change 
from baseline in the primary effi cacy response across the doses; Table  18.5  shows 
associated summary statistics. Note from these that the response appears to plateau 
at Dose4, and that Dose3 was not assigned since response at Dose2 was low and not 
much larger than that of placebo. Dose3 was never assigned since Dose4 was esti-
mated to be on the plateau, and Dose2 was estimated well below ED75; note that 
the outcome is most similar to simulated Scenario 11, and even in the simulations, 
Dose3 was rarely assigned. The outcome of the clinical trial was a case where 
Dose3 was not assigned. This aspect of the adaptive design performance was as 
intended. Furthermore, the maximum number of observations was at Dose5, which 
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  Fig. 18.6    LS mean response with 95 % CI. (Note: Dose3 was not assigned to any subject, so it 
does not appear)       
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approximates the ED75. However, since the maximum response was observed at 
Dose4, and the qualitative shape of the dose–response curve was non-monotonic, in 
hind sight it probably would have been better to have more observations on Dose4 
to investigate if it provides maximal response. Since the design was built assuming 
monotonicity, its performance could be interpreted to be suboptimal for an observed 
non-monotonic situation.

18.5         Discussion (What Worked Well and What 
Did not Work Well) 

18.5.1     Study Design 

 The consulting statisticians with special expertise in adaptive design contributed a 
lot to the design of the study. As at the time, very little was known about the dose–
response for the new formulation; the goal was to obtain information on the shape 
of the DR-curve. The consulting statisticians guided the team in selecting the most 
appropriate design. They did many simulations and developed the algorithm for 
dose assignments. The collaboration between them and the project statistician 
worked really well and was essential in getting the protocol in place.  

   Table 18.5    Summary statistics from analysis of primary endpoint responses from the completed 
trial      

 Baseline 
 Average 
over fi rst 4 h 

 Change from baseline 
Average over fi rst 4 h 

 Treatment  N  Mean (SD)  Mean (SD)  Mean (SD) 
 LS Mean 
(95 % CI) a  

 Dose1(Placebo)  67  245 (64)  245 (66)  1 (25)  3 (−3, 10) 
 Dose2  42  239 (64)  247 (72)  8 (29)  7 (0, 14) 
 Dose4  30  255 (68)  267 (73)  12 (19)  13 (6, 20) 
 Dose5  66  246 (64)  255 (69)  10 (26)  10 (4, 16) 
 Dose6  25  256 (61)  266 (66)  9 (24)  9 (1, 16) 
 Dose7  36  238 (59)  251 (69)  13 (34)  12 (5, 19) 

 Pairwise comparison 
 Difference in LS 
Means (95 % CI) a    p -Value a  

 Dose2 vs. Placebo  4 (−1, 8)  0.096 
 Dose4 vs. Placebo  10 (4, 15)  0.001 
 Dose5 vs. Placebo  6 (2, 11)  0.002 
 Dose6 vs. Placebo  5 (−1, 11)  0.081 
 Dose7 vs. Placebo  8 (4, 13)  0.001 

   a Based on mixed-effects model with terms for treatment, period, and baseline covariate  
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18.5.2     Planning for Study Execution 

 The design/protocol development stage took quite some time as the project 
 statistician and clinical team were not familiar with this type of adaptive designs and 
had to go through a learning curve. Getting the logistics for the study in place (allo-
cation schedules, drug supplies, etc.) was somewhat complex and required quite 
some discussion. It was important to take suffi cient time during that stage to ensure 
everything was properly in place.  

18.5.3     Study Execution 

 The study enrolled rather quickly and the team was using an internally developed 
spirometry system, not one by a vendor. The spirometry data was being constantly 
reviewed and any issues that were encountered were addressed with the site before 
data was uploaded to the database. There were issues with uploading to the database 
which were discovered after the study started. This is the reason that the unblinded 
statistician could not review the data in the database, but instead was reviewing in 
Excel format. 

 There were fewer interim looks than initially planned due to slower than expected 
data fl ow. The data fl ow from collection to the unblinded statistician was not fully 
set up before the fi rst actual data transfer, and there were fewer subjects’ data than 
expected at time of fi rst interim analysis. Thus, it is recommended to set up and test 
the data fl ow mechanism prior to the actual data fl ow, and to more closely monitor 
the accumulation of subjects’ data so the interim analyses occur with suffi cient 
amounts of subjects’ data as planned. 

 The study used an automated measurement device to obtain the primary endpoint 
readings from the subjects. It is possible that use of a vendor-developed system (to 
download information directly from the device to the database) may have alleviated 
some of the data issues, since the transfers would have been ironed out beforehand 
during UAT. For the internal data capture system, only the device was tested by 
users, not the data fl ow as a whole. There was no user testing environment to allow 
testing the upload from the data capture system to the database. If such user testing 
were possible, the data fl ow issues would have been discovered prior to study start 
and the unblinded statistician would have reviewed data in the database instead of 
in EXCEL spreadsheets. 

 Due to the limited amount of study drug and the fact that the doses might change, 
the team required the support of an unblinded Clinical Specialist (CS) and unblinded 
Clinical Research Associates (CRAs) to monitor the drug supply. The Allocation 
Numbers (ANs, with the treatment assignments) were sent to sites on an as needed 
basis. Initially, each site received 2 ANs, but subsequent numbers were sent only 
upon request and proof that they had patients in screening. This method permitted 
the team to be able to adapt the doses in near “real time.” Once the blinded  statistician 
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analyzed the data, he updated the allocation schedule and communicated the 
 schedule to the unblinded CS. The unblinded CS was then able to send out the 
updated ANs to sites upon request. Patients who were already on treatment did not 
have a change in dose, but completed the study with their original assignment. The 
CS sets up an “unblinded” restricted access eRoom for the unblinded team members 
since the information could not be placed on any share drives. This way the unblinded 
statistician and the unblinded CS could keep documents there and the information 
could be made available to anyone who would need to cover if needed. IVRS could 
have also helped with the execution of this part since it could turn arms on and off 
as needed by simply checking off the correct boxes for the treatments being used. 

 Given that the project team had really no idea where the dose–response curve 
would land, the data gave them useful information. The degree of “noise” in what 
was supposed to be the “fl at” part of the dose–response did raise questions for some 
people looking at the data.      

   Reference 
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Abstract We present a case study of a Phase 1 oncology dose-escalation trial utilizing 
modified Continual Reassessment Method (CRM). Learning about the dose–toxicity 
relationship and choosing the correct Maximum Tolerated Dose (MTD) to take 
f orward into Phase II is one of the most challenging research questions in Phase 1 
oncology trials. CRM is a Bayesian adaptive design targeting a specific Dose Limiting 
Toxicity (DLT) rate, e.g., 25 %. Similar to the traditional 3 + 3 designs used in oncol-
ogy Phase 1 trials, learning about drug’s toxicity profile with CRM occurs in real 
time. However, since CRM algorithm incorporates dose–toxicity modeling in the 
learning process, its ability to identify the correct Maximum Tolerated Dose is sub-
stantially improved, compared to the traditional 3 + 3 design. Such design also results 
in more patients being allocated to tolerable doses with therapeutic potential than 
would be the case in a more traditional 3 + 3 dose-escalation trial. This trial was 
designed and executed using a custom-developed and validated software package 
which helped to alleviate substantial increase in overhead cost typically associated 
with planning and implementation of such designs. We present the whole “story” of 
the trial from beginning to end, including selection of study design, assessment of its 
operating characteristics via simulations, execution, study results, and lessons learned.
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19.1  Introduction

Innovative statistical designs for Phase 1 dose-escalation studies have been gain-
ing popularity in recent years as an alternative to the traditional 3 + 3 design. 
Original methodology development for many of these designs goes back to almost 
two decades ago (see, for example, a comprehensive review by Rosenberger and 
Haines 2002) but they remained largely unpopular among clinical trialists until 
recently due to additional complexity, lack of software, and need for more exten-
sive statistical involvement. Perhaps one of the major catalysts of more general 
acceptance was FDA critical path initiative launched in 2004 and resulting surge
in interest in Adaptive Trials in general Woodcock and Woosley (2008). As a result, 
considerable changes were seen in Phase 1 oncology practice with both industry 
and academia embracing innovative methods on a routine basis. This case study is 
one example of this more general acceptance within the industry: it was the first 
CRM-type study designed and executed within Pfizer.

There are many alternative design methods (to 3 + 3) available for designing 
Phase 1 oncology trials today (see, for example a review Tourneau et al. 2009). 
Most of these methods share a common goal: improving the efficiency of traditional 
3 + 3 designs defined as increasing precision of Maximum Tolerated Dose (MTD) 
determination while maintaining trial sample size and exposure of patients to toxic 
doses as small as possible.

Continual Reassessment Method (CRM) is perhaps the oldest and most well- 
known method for oncology dose-escalation trials other than 3 + 3 design. Since 
the original manuscript by O’Quigly et al. (1990) was published, there were many 
follow- up developments including improvements of the original design to mini-
mize toxic exposure and, exploring various working models (Goodman et al. 
1995), incorporating efficacy endpoints (Braun 2002), extending method to Time-
to-Event Endpoint (Cheung and Chappell 2000), and two-dimensional extensions 
(Yuan and Yin 2008) to name a few. Some good recent reviews of the CRM meth-
odology with its multiple modifications and extension can be found in O’Quigly 
and Conaway (2010) and Cheung (2011). For our case study, we utilized a modi-
fied CRM procedure as described in Goodman et al. (1995) and Braun (2002). 
A brief overview of the procedure is given in Sect. 19.2. Other designs such 
as Up-and-Down (Gezmu and Flournoy 2006) and standard 3 + 3 design have 
been considered for this study as well, but CRM was chosen following careful 
evaluation of multiple methods.

Section 19.2 provides overview of study design including CRM methodology, 
Sect. 19.3 reviews simulation setup and key findings, and Sects. 19.4 and 19.5 pres-
ent study results and discussion, respectively.
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19.2  Study Design

This was a phase 1, open-label study of PF-05212384 administered once weekly as
an IV infusion to subjects with solid tumors. The study was conducted in two parts: 
Part 1 was the MTD estimation phase, and was open to subjects with any solid 
tumor; Part 2 was the MTD confirmation phase, and was open to subjects with 
select tumor types that, based on preclinical considerations, were thought to be 
sensitive to the PI3K pathway, including breast, nonsmall cell lung, ovarian, endo-
metrial, and colorectal cancer.

Part 1 of the study design utilized modified Continual Reassessment Method to 
determine the MaximumTolerated Dose (MTD) of PF-05212384 to be taken further
into confirmation part (Part 2). Target Dose Limiting Toxicity (DLT) rate was 25 %. 
The modified CRM algorithm utilized Bayesian methodology to consistently learn 
about dose–toxicity relationship after each cohort’s DLT status became available. 
The algorithm operated on fine discrete dose grid consisting of 22 distinct doses: 
10–319 mg in 20 % dose increments with two back-up doses of 6 and 8 mg in case 
of excessive toxicity at the starting 10 mg dose. The details of dose-escalation grid 
are given in Table 19.1. The algorithm was not allowed to skip more than three 

Table 19.1 Dose grid 
utilized by CRM algorithm

Dose (mg)

Increment from prior dose (%) 
if the number of skipped doses is

0 (%) 1 (%) 2a (%) 3a (%)

10
12 20
14 20 44
17 20 44 73
21 20 44 73 107
25 20 44 73 107
30 20 44 73 107
36 20 44 73 107
43 20 44 73 107
52 20 44 73 107
62 20 44 73 107
74 20 44 73 107
89 20 44 73 107
107 20 44 73 107
128 20 44 73 107
154 20 44 73 107
185 20 44 73 107
222 20 44 73 107
266 20 44 73 107
319 20 44 73 107
aThese dose escalations will not be allowed if 
two clinically significant grade 2 toxicities of the 
same type are seen in a cohort, or if one addi-
tional case of the same grade 2 toxicity or two 
other cases of clinically significant grade 2 tox-
icities of the same type are seen in the next cohort
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doses in a single dose-escalation step which would roughly translate into no more 
than a doubling of the highest previously studied dose. Additional restrictions based 
on non-DLT toxicities are noted in footnotes of Table 19.1.

The relationship between the probability of DLT and dose was modeled using a 
binary endpoint (Y = 1: if DLT and Y = 0: if no DLT) and a one-parameter modified 
CRM model:
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where the label for the dose that subject i receives is xi, probability of DLT given that 
dose is pi, and β is a parameter on which a prior distribution was placed at the begin-
ning of the trial and later updated into a posterior distribution as the trial progressed. 
The actual amounts of active PF-05212384 doses corresponding to xi′s were 6, 8, 
10, 12, …, and 319 mg , respectively, as listed in Table 19.1. But the dosage strength 
in mg is not what was actually used in Eq. (19.1). In the latter, xi refers to dose 
labels, i.e., the set of xi, i = 1, …, 22 obtained by solving (19.1) given β = 1 and user-
supplied vector of pi, i = 1, …, 22 representing the “best guesses” of anticipated 
probabilities of DLT at each dose. Note: this approach is similar to the prior elicita-
tion process of the original CRM method of Quigley et al. with the only difference 
that the function f in Eq. (19.1) was the power function (i.e., pi = xi

β) in the O’Quigly 
method. Since the user-supplied vector of pi, i = 1, … 22 “induces” the dose labels xi, 
i = 1…22 through the model (Eq. 19.1) relationship, this vector is often referred to 
as “skeleton” of the CRM reflecting that committing to it at the beginning of the trial 
is a fairly rigid assumption determining the shape of the model for the rest of trial, 
and consequently its performance.

The first cohort of patients was assigned to the starting dose of 10 mg. DLT assess-
ment was performed after ~4 weeks of dosing. After the first cohort’s DLT status 
update, the prior distribution of β was updated into a posterior distribution, defining a 
new set of toxicity probabilities pi in model (19.1). The labels xi, i = 1, …, 22 in the 
model Eq. (19.1), once calculated at the beginning, remained the same throughout the 

trial. The current estimate of MTD would be the dose corresponding to f - ( )1 0 25. , b̂ , 

given the posterior mean of β, and the next cohort dose assignment was chosen as the 
dose closest to this estimated MTD but not exceeding it. This process was iteratively 
continued until one of the stopping rules below was triggered:

 1. Maximum sample size of 50 patients in Part 1 has been reached.
 2. MTD has been identified with sufficient accuracy: 9 subjects have been accumu-

lated on a dose that is currently estimated to be the MTD and there are at least 12 
subjects overall enrolled in the trial.

3. Futility stop: all doses appear to be overly toxic (i.e., estimated Pr (DLT)>25% for
the smallest dose) and the MTD cannot be determined in the current trial setting.

Starting from the second cohort and until the end of study, the above described 
modified CRM algorithm constantly incorporated additional information about 
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dose–DLT relationship learned from the data via modeling and that was reflected on 
the projected MTD. By design, such dose allocation procedure was expected to clus-
ter dose assignments around the dose that yielded approximately 25 % DLT rate.

Like any Bayesian method, the CRM might be sensitive to prior distribution 
placed on the model parameter β at the beginning of the study and the choice of 
“skeleton” pi, i = 1, …, 22. However, as the study progressed and the DLT data accu-
mulated, it was expected to eventually overrule the prior information and the latter 
became less important. Furthermore, a non-informative prior distribution
β ∼ Unif[0, 3] was used in this study. Through simulation, “skeleton” pi, i = 1, …, 22, 
representing a cautiously pessimistic DLT profile, was selected for this study to 
make the dose escalation more conservative. This profile assumed a 25 % DLT rate 
occurring at as low as 30 mg dose further increasing to 64 % at 154 mg dose.

Part 2 of this study was intended to confirm the safety and tolerability of the dose 
selected in Part 1, while assessing the antitumor activity of PF-05212384 in patients
with solid tumors.

19.3  Overview of Simulation Setup and Results

Extensive simulations were performed to fine-tune the parameters of the modified 
CRM procedure and to study the operating characteristics of the chosen “best” 
CRM versus similar characteristics of the conventional 3 + 3 design. Those were 
summarized in detail in a study Simulation Report. Presenting all results and techni-
cal details here would not be feasible due to space limitation. We discuss only key 
setup features and findings.

The parameters explored to fine-tune the CRM included cohort size (2 or 3 sub-
jects), CRM dose–toxicity model (power, 1-parameter logistic or tanh), maximum 
allowed dose increment between cohorts (3 or 4 doses), number of subjects on MTD 
to stop for success (6, 9, or 12 subjects), and prior information on toxicity (pessimis-
tic vs. optimistic DLT profile).

Competing designs were evaluated against six different plausible scenarios of 
DLT profile varying in steepness of the dose–response curve and location of the true 
MTD within the dose range (Table 19.2). For each of the competing “variants” of
CRM design, the key operating characteristics assessed were:

 1. Precision of MTD selection: proportions of times when the dose selected as 
MTD had true DLT rate on-target, underestimated, overestimated, or NA were 
summarized. The four categories above were defined as follows:

• On-Target MTD: selected dose produces 18–33 % true DLT rate.
• Underestimated MTD: selected dose produces <18 % true DLT rate.
• Overestimated MTD: selected dose produces >33 % true DLT rate.
• N/A: trial stopped early for futility.

Note: the futility stop under the scenarios examined represents a false- negative 
decision because all six scenarios have at least one dose with Pr (DLT) ≤ 0.25.
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 2. Design “cost”: average trial duration (in weeks), average sample size, average 
number and proportion of subjects experiencing DLTs.

The two metrics of performance precision of MTD selection and design “cost” 
almost never pull the design choices in the same direction. More precision usually 
implies grater costs, so it is impossible to optimize the trial with respect to both. 
Conducting simulations and computing these metrics helped the team to quantify 
the trade-offs between precision of MTD selection and exposing more subjects to 
doses with higher toxicity levels, as well as trial duration. Competing variants of 
CRM design were chosen based on their performance with respect to the above 
operating characteristics under six scenarios in Table 19.2.

Among many design parameters examined, the stopping rule (number of sub-
jects on MTD) had the most impact on the design’s performance. As expected, 
increasing minimum number of subjects treated on MTD prior to stopping leads to 
a more precise MTD estimation; however this requirement would also lead to larger 
overall sample size, longer trial duration, and greater overall number of toxicities 

Table 19.2 Dose–toxicity scenarios used in simulations and their respective target dose ranges

Probability of DLT as a function of dose

Dose

Sc. 1:  
MTD = 
50 flat

Sc. 4:  
MTD = 
40 steep

Sc. 2:  
MTD = 
145 flat

Sc. 5:  
MTD = 
135 steep

Sc. 3:  
MTD = 
260 flat

Sc. 6:  
MTD = 
210 steep

10 mg 0.15 0.14 0.00 0.01 0.00 0.00
12 mg 0.15 0.15 0.00 0.01 0.00 0.00
14 mg 0.16 0.15 0.00 0.01 0.00 0.00
17 mg 0.16 0.17 0.00 0.01 0.00 0.00
21 mg 0.17 0.18 0.00 0.01 0.00 0.00
25 mg 0.19 0.20 0.00 0.01 0.00 0.00
30 mg 0.20 0.22 0.00 0.01 0.00 0.00
36 mg 0.22 0.26 0.00 0.02 0.00 0.00
43 mg 0.24 0.30 0.00 0.02 0.01 0.01
52 mg 0.27 0.35 0.00 0.03 0.01 0.01
62 mg 0.30 0.42 0.00 0.04 0.01 0.01
74 mg 0.34 0.50 0.01 0.05 0.01 0.01
89 mg 0.40 0.60 0.02 0.08 0.01 0.02
107 mg 0.46 0.69 0.04 0.13 0.02 0.03
128 mg 0.52 0.78 0.10 0.21 0.03 0.04
154 mg 0.58 0.84 0.26 0.37 0.05 0.08
185 mg 0.63 0.87 0.47 0.57 0.09 0.15
222 mg 0.66 0.89 0.58 0.76 0.15 0.31
266 mg 0.68 0.90 0.61 0.86 0.27 0.55
319 mg 0.69 0.90 0.61 0.89 0.42 0.77
aValues in bold represent doses which deliver “acceptable” (18–33 %) DLT rates
bScenarios are not named in consecutive order because initially only Scenarios 1–3 were considered. 
Their “steeper” version, i.e., Scenarios 4–6 were added later. For final results presentation it was
chosen to group the dose–toxicity scenario by MTD location (low, middle, high) rather than number
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(but not necessarily the proportion of toxicities). Stopping rules with 6, 9, and 12 
subjects on MTD were considered for this design and compared via simulations. 
Based on these results, it was decided that a stopping rule with nine subjects on the 
MTD provided the best trade-off between MTD precision and trial duration/toxici-
ties. Other parameters chosen for the final “best” CRM design variant were cohort 
size 3, tanh toxicity model, and pessimistic DLT profile. This particular CRM vari-
ant was also compared to the traditional 3 + 3 design via simulations using the same 
metrics. The 3 + 3 design used in simulations was similar to the one described in Ji 
and Wang (2013) as 3 + 3L design; the stopping rule of nine subjects on MTD was 
not implemented for the latter since the 3 + 3 design is not capable of accumulating 
that many subjects on any given dose by the way of its construction. Also, since the 
3 + 3 design is not capable of skipping doses, the dose grid for 3 + 3 design was 
modified to resemble the modified Fibonacci sequence rather than fine grid of CRM.
All dose–toxicity curves utilized in simulations were the same for both designs.

Based on these simulations, the selected “best” CRM variant provided, on aver-
age, a more accurate estimate of MTD than the 3 + 3 design, with comparable over-
all proportion of toxicities (<30 %). These results are presented in Table 19.3.

In all six scenarios, CRM identified MTD dose with target range of toxicity more 
frequently than the 3 + 3 design, with degree of “superiority” varying significantly 
depending on the scenario: best performance was 41 % advantage over 3 + 3 for 
Scenario 4 and the worst performance was for Scenario 6 with only 10 % advantage 

Table 19.3 Operating characteristics of the CRM design versus conventional 3 + 3 design

MTD dose selection  
decision (probability) Design “cost”

DLT sc. Design Correct Under Over NAa

Av. dur.  
(weeks)

Av. trial  
size Num tox Prop tox

1 3 + 3 0.330 0.393 0.089 0.187 23.0 17.3 3.7 0.25
CRM 0.557 0.235 0.102 0.106 38.0 28.5 6.4 0.3

4 3 + 3 0.234 0.464 0.129 0.302 21.8 16.4 3.7 0.26
CRM 0.643 0.185 0.082 0.089 38.7 29.0 7.0 0.3

2 3 + 3 0.352 0.601 0.048 0.000 48.9 36.7 3.8 0.10
CRM 0.547 0.271 0.182 0.000 43.6 32.7 6.3 0.2

5 3 + 3 0.322 0.554 0.122 0.124 45.5 34.2 4.0 0.12
CRM 0.468 0.289 0.244 0.000 44.4 33.3 6.4 0.2

3 3 + 3 0.257 0.692 0.000 0.050 55.9 41.9 2.9 0.07
CRM 0.543 0.434 0.024 0.000 38.1 28.6 3.1 0.1

6 3 + 3 0.244 0.735 0.020 0.000 54.5 40.9 3.7 0.1
CRM 0.349 0.588 0.063 0.000 40.6 30.4 4.8 0.2

aTrials with MTD not available (NA) were those where early “futility” stop was triggered (a false- 
negative conclusion) due to many toxicities observed at lower doses and trial not able to continue 
because all doses appeared to be overly toxic. This is more likely to occur in simulations due to 
high variability of binomial data with small samples rather than in real trial. In actual trial, the 
DLT data is collected rather than computer-generated; any extreme deviations from the expected 
values are examined on the basis of all safety information, so the trial is unlikely to be stopped 
based on DLT data alone
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over 3 + 3 design. Other scenarios had 14–29 % advantage of CRM over 3 + 3  design 
in percentage of identifying the MTD correctly. Poor performance of Scenario 6 
compared to Scenario 3 (both have similar profiles but one is steeper than the other) 
is probably due to the fact that the “true” MTD was at the end of the dose range and 
had toxicity rate 31 %: while still “acceptable” by the target range defined (i.e., 
18–33 %), it was dangerously close to the unacceptable 33 % level resulting in more 
toxicities and possibly pushing the estimated MTD to the dose immediately below 
the true MTD. This is reflected by higher proportion of toxicities observed in CRM 
design under Scenario 6 (20 %) versus those observed under Scenario 3 (10 %) and 
higher number of times the MTD was underestimated under Scenario 6 as compared 
to Scenario 3 (58 vs. 43 %, respectively).

The number/proportions of toxicities observed in simulated trials were consis-
tently slightly higher with CRM design (for all six scenarios) as compared to the 
3 + 3 design, although still clinically acceptable. This observation is closely related 
to the higher percentages of MTD underestimated with 3 + 3 design because the lat-
ter frequently stops at lower than MTD doses.

With respect to the number of subjects (and resulting trial duration), the advan-
tages of CRM became more prominent as the true MTD location moved from 
beginning of dose range to the end. For Scenarios 1 and 4 with “low” MTD loca-
tion, the CRM design actually required more subjects than 3 + 3 (but that’s the cost 
of added information). For Scenarios 2 and 5, the numbers of subjects were similar.
Finally, for Scenarios 3 and 6 (“high” MTD location), the CRM design showed
clear advantage over 3 + 3 design in average sample size to declare MTD. Scenarios 
1 and 4 had many “competing” MTD doses and had to do more work differentiating 
between them while some of these doses were not available to the 3 + 3 design due 
to modified dose space mentioned earlier. These differences faded out for scenarios 
with mid- and high-MTD location (2 and 5, 3, and 6). These “ competing doses” 
explain why CRM actually required more subjects than 3 + 3 in case of Scenarios 1 
and 4 (“low” MTD).

To further take advantage of flexibility of the CRM design, cohort sizes of two 
and four patients were allowed in the actual trial. The maximum sample size of 50 
was set for Part 1 of the study based on budgetary consideration as well as simulated 
average sample sizes from Table 19.3. The sample size of Part 2 was based on clini-
cal considerations rather than statistical rationale.

19.3.1  Model Change Mid-trial

At some point during the trial, six cohorts had been assigned to doses up to and 
including 266 mg. The observed toxicity of PF-05212384 appeared to be lower than
expected at the time of study design. Based on limited toxicity observed, it appeared 
quite likely that the algorithm would need to further escalate from 266 mg, raising 
a concern of potentially not having enough doses since 266 mg was already close to 
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the maximum dose of 319 mg. To address this concern, the CRM model was updated 
to include dosing beyond 319 mg and the study protocol was amended.

The new model dropped the lower doses of 6 and 8 mg (there was no data on it, 
the lowest dose studied was 10 mg) and added four doses above 319 mg in 20 % 
increments: 383, 460, 552, and 662 mg, resulting in new dose range consisting of 24 
doses: [10–662 mg]. The new model essentially assumed the same pessimistic DLT 
profile as the original model by utilizing the same “skeleton” of DLT probabilities 
pi, i = 1, …, 22 as the original model but shifted to the right. Specifically, the initial 
DLT rates for [6–319 mg] dose range in original model were shifted to become initial 
DLT rates for dose range [14–662 mg] in the new model. The remaining low doses 10 
and 12 mg were assumed very low toxicity rates under the new model. Other aspects 
of the new model were the same as the original model. A new set of simulations was 
run to evaluate performance of the new model; the results were acceptable.

19.4  Study Results

A total of 78 patients were enrolled in the study and 77 received treatment with 
PF-05212384 (Part 1 and Part 2 combined). The MTD determination was based on
45 evaluable patients in Part 1 and concluded with 154 mg dose declared to be the 
MTD. This data was presented in Tabernero et al. (2011). At the conclusion of Part 
1, additional 30 patients were enrolled in Part 2 to confirm tolerability and to per-
form preliminary efficacy assessment of the MTD found in Part 1 (i.e., 154 mg 
dose). We will refer to these additional 30 patients as a confirmation cohort. The 
size of confirmation cohort (30 patients) was driven not only by MTD confirmation 
objective, but also by a strong consideration for preliminary efficacy exploration. 
There were actually two cohorts in Part 2 for slightly different purposes: molecular 
selection cohort and tumor biopsy cohort; details of efficacy exploration are beyond 
the scope of this chapter. Twenty-eight out of 30 patients enrolled in confirmation 
cohort were evaluable for DLT at the end of Part 2. Because of the additional effi-
cacy objective of Part 2 (evaluating preliminary antitumor activity in patients with 
specific cancers), the population of confirmation cohort (specific cancers) was 
slightly different from that of the Part 1 (all-comers). The main purpose of having a 
Part 2 was to confirm findings of Part 1 with respect to tolerability of PF-05212384
and not to further adjust or “refine” the MTD found in Part 1.

A summary of the Part 1 dose-escalation progress including number of evaluable 
patients and observed toxicities is given in Table 19.4 and Fig. 19.1. Table 19.4 also 
reports MTD candidate dose as estimated by CRM model, CRM-recommended 
dose assignment and the actual dose assigned to the next cohort following clinical 
review of all data. The first five cohorts were evaluated using the original CRM 
model; the remaining data (cohorts 6–12) was analyzed using the revised CRM 
model (see Sect. 19.3.1 for model change rationale).
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Table 19.4 Part 1 dose recommendation and selection

Cohort Dose (mg)
Evaluable 
patients

Patients  
with DLTs

CRM- estimated 
MTD (mg)

Next dose 
recommended  
by CRM (mg)

Next dose 
assigned (mg)

1 10 4 0 222 21 21
2 21 4 0 266 43 43
3 43 3 0 266 89 89
4 89 4 0 266 185 154a

5 154 4 0 266 266 266b

6 266 4 1 383 383 319c

7 319 4 2 266 266 266
8 266 4 2 222 222 222
9 222 2 1 222 222 222
10 222 4 4 128 128 154d

11 154 4 0 154 154 154
12 154 4 1 154 154 NAe

aOut of caution: 154 mg was maximum allowed at the time
bModel switch occurred after this cohort
cOther (non-DLT) AE’s and investigators’ input
dBased on cohort 5 (154 mg) safety results
e154 mg declared MTD, part 1 concluded

Fig. 19.1 Part 1 allocation and toxicity
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19.4.1  Clean Versus Interim Data

The numbers of evaluable patients in Table 19.4 were based on communication with 
investigators at the time of review. After the study was completed and the data 
cleaned, the numbers of evaluable patients changed slightly. Specifically, the data-
base reported that there were 3 (instead of 4) and 5 (instead of 4) evaluable patients 
in cohorts 1 and 10, respectively. The number of DLTs in the above cohorts remained 
unchanged from interim to final study data. These slight differences were not unex-
pected, as it happens with many interim decisions based on not “perfectly clean 
data.” However, they did not affect the final MTD determination: additional sensi-
tivity analysis comparing the two dose-escalating paths between interim data versus 
final study data was performed. That analysis demonstrated that 154 mg still 
remained the final estimate of MTD following 12 cohorts, based on the clean data 
used (results not shown). For simplicity, we present only the results based on interim
data for Part 1, as it was done during the dose-escalation process. Cumulative study 
results (Part 1 and Part 2 combined) are based on the final clean study data.

19.4.2  CRM Progression Through Part 1

A detailed step-by-step illustration of how CRM model was performing dose assign-
ments in Part 1 is given in Figs. 19.2, 19.3, 19.4, 19.5, 19.6, and 19.7. At each step, 
a Bayesian model described in Sect. 19.2 was fitted to all data available at that point 

Fig. 19.2 Allocation and toxicity after cohort #4
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Fig. 19.4 Allocation and toxicity after cohort #6 (using new model)

Fig. 19.3 Allocation and toxicity after cohort #5
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Fig. 19.5 Allocation and toxicity after cohort #7

Fig. 19.6 Allocation and toxicity after cohort #10
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and the MTD was estimated according to that model. The next dose recommended 
was the one closest to the estimated MTD but below it. This is the dose reported in 
Table 19.4 as “CRM-estimated MTD.” The “below-MTD” restriction makes the 
CRM algorithm more conservative in terms of safety (albeit less precise in some 
cases) than the one aiming at the dose simply “closest to MTD.”

As can be seen from the early trial data (cohorts 1–5 in Table 19.4 and Figs. 19.2 
and 19.3), the model-based MTD estimates could be quite misleading when no tox-
icities are observed. In our trial, the first five cohorts resulted in an estimated MTD 
substantially above its true value as well as the current dose being studied. This is a 
well-known concern associated with the classical CRM procedure (i.e., unrestricted 
dose escalation). In such cases, the “4 steps maximum” rule of the modified CRM 
procedure (described in Sect. 19.2) was activated resulting in the recommended 
dose being no more than a double of the previously studied dose. This rule explains 
substantial differences between “estimated MTD” and “recommended dose” col-
umns of Table 19.4 for cohorts #1–5. In addition to the algorithm build-in “safety 
net” of maximum ~100 % dose increment mentioned above, the investigators and 
sponsor always had the option to override the CRM-recommended next dose sug-
gestion based on aggregate data safety review. This situation had occurred three 
times during Part 1 of the trial, as can be seen from footnotes in Table 19.1. Brief 
descriptions of dose assignment “override” and underlying reasons are given below:

 1. After cohort #4 (89 mg dose), there were no toxicities observed in the trial and the 
CRM-recommended dose for the next cohort was 185 mg. However, a dose one 
step below it—the 154 mg dose—was chosen out of caution based on sponsor’s 

Fig. 19.7 Allocation and toxicity after cohort # 12 (end of part 1)
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judgment and protocol criteria stating that 154 mg must be evaluated prior to 
assigning patients to higher doses. The 154 mg maximum dose restriction in the 
protocol was originally attributed to formulation impurity issue. The latter was 
cleared a long time before cohort #4 review was conducted, but the team felt that 
154 mg was close enough to the recommended 185 mg dose and more cautious 
dose assignment would be best in that situation since 185 mg was already quite 
high compared to the starting dose of 10 mg.

 2. After cohort #6 (266 mg dose) with one patient out of four experiencing DLT on 
the 266 mg dose, the CRM recommended the dose of 383 mg as the next cohort’s 
assignment. However, there were some grade 2 toxicities seen in cohort #6, which 
influenced the sponsors and investigators decision to override the algorithm’s 
recommendation and proceed with a lower dose of 319 mg for the next cohort.

 3. After cohort #10 (222 mg), with 4/4 DLTs experienced at the 222 mg dose, the 
CRM suggested 128 mg as the next dose assignment. This substantial dose 
reduction recommendation can be explained by high toxicity rates observed in 
the previous three cohorts, which reshaped the dose–toxicity model substantially, 
as can be seen from Fig. 19.6. Based on cumulative safety review, however, the 
sponsor and investigators felt that the dose 154 g would be more appropriate 
assignment than 128 mg since it was studied before with no DLTs observed and 
overall acceptable safety profile. This decision to implement a more aggressive 
dose escalation rather than the one suggested by CRM is rather unusual, espe-
cially in light of 100 % toxicity rate observed at the current dose (222 mg). At 
that point the trial was over 50 % of maximum planned enrollment (37 out of 50 
patients enrolled) with no good MTD candidate available: every dose with 
acceptable DLT rate had no more than four patients on it while, per protocol, a 
nine patient minimum was needed to declare a dose to be an MTD. At that point, 
selecting 154 mg—a dose one step above the recommended 128 mg and having 
good safety profile based on earlier cohort’s data—seemed a reasonable compro-
mise between following CRM’s recommendation and maximizing the trial’s 
chance to find the MTD without exceeding the maximum number of patients.

Following data review from cohort #10, four more patients were assigned to the
154 mg dose in cohort #11; there were no DLTs observed at that dose leading to the 
next dose assignment (cohort #12) to be the 154 mg dose again. One out of four 
DLTs were observed in cohort #12. At that point, the 154 mg dose had 12 patients 
(three cohorts) assigned to it with model-based estimated toxicity probability of 
0.225. This estimate was the closest to the target 0.25 but still below. The combina-
tion of toxicity estimate at 154 mg with three cohorts assigned to it had triggered a 
stopping rule described in Sect. 19.2 (at least nine subjects on dose estimated to be 
the MTD) and the CRM algorithm declared 154 mg as MTD. The total sample size 
at that point was 45 evaluable patients: just five patients short of the maximum 
planned trial size for Part 1. A decision was made to proceed with Part 2 of the trial.

At the end of Part 1, the raw proportion of toxicities observed at the MTD was 
only 0.083 (1/12 DLTs). The corresponding model-based estimate of DLT rate 
at MTD was 0.225 with 95 % Credible Interval of (0.112, 0.3892) (Fig. 19.7). 
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The higher model-based estimates reflect toxicities observed at doses above the MTD 
therefore adjusting the estimate upward from the raw observed toxicity rate. As can 
be also seen from Fig. 19.7, the overall fit of one-parameter CRM model to Part 1 
study data was quite poor, resulting in the credible interval at 154 mg not containing 
the empirical estimate. This property of 1-parameter CRM model is well known and 
not surprising, prompting a question of whether a richer model (e.g., a 2-parameter 
logistic model) should have been used. We will return to this discussion in Sect. 19.5.

19.4.3  Final Study Results (Part 1 and Part 2)

The toxicity data observed at 154 mg in Part 2 were generally consistent with the 
results of Part 1. There were 28 more patients treated at the MTD and evaluable for 
DLT in Part 2. One out of these patients experienced a DLT resulting in 0.036 esti-
mated probability of DLT at 154 mg based on Part 2 data. Since safety profiles of 
154 mg dose appeared generally consistent between Part 1 and Part 2 of the study, 
it was decided that it was appropriate to pool the Part 1 and confirmation cohort data 
to present the overall results.

The observed proportion of DLTs at 154 mg dose at the end of the trial was 0.050 
(2/40) with 95 % Confidence Interval of (0.014, 0.165) based on Wilson method. 
Details of the estimated probability of toxicity by dose are given in Table 19.5. Slight 
differences between number of evaluable patients in Tables 19.4 and 19.5 are attribut-
able to differences between interim and final study data. Both raw proportion of tox-
icity and model-based estimate of toxicity at the MTD consistently point out that the 
underlying true DLT rate at 154 mg dose is likely to be below the target rate of 
18–33 %. However, the next higher studied dose (i.e., 222 mg) had an alarmingly 
high raw DLT rate of 71 %. Despite the model-based estimate of 21.5 % DLT rate at 
that dose which takes into account the effect of an outlier, it is hard to ignore the 
actual observed toxicity rate almost twice as high as the 18–33 % range that clinicians 

Table 19.5 Number of dose-limiting toxicities by dose level based on final study data (parts 1 and 
2 combined)

Dose  
level (mg)

No. of 
patients

No. of DLT  
evaluable patients

No. of 
toxicities

Proportion  
of DLTs

Model-based 
probability of DLTs

10 4 3 0 0 0
21 4 4 0 0 0
43 4 3 0 0 0.010
89 4 4 0 0 0.054
154a 42 40 2 0.050 0.132
222 7 7 5 0.714 0.215
226 8 8 3 0.375 0.270
319 4 4 2 0.500 0.332
aThe numbers presented for 154 mg dose are comprised of 1/12 DLTs observed in part 1 and 1/28 
DLTs observed in part 2
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prespecified as “acceptable.” Although it is possible that the observation of 5/7 DLTs 
on 222 mg was an overestimate of the actual true underlying DLT rate, it is hard to 
imagine that a dose with such toxicity profile would be selected as MTD even if 
model-based estimates suggest such a decision (Table 19.5). Model-based analysis 
was never prespecified in the protocol for final decision making; it was meant only to 
guide the dose-escalation decisions. In fact, it should be noted that the fit of one-
parameter CRM model using the final study data is quite poor (Fig. 19.8), so any 
inferences based on that fit should be interpreted with caution. The poor fit issue is a 
well-known property of one-parameter CRM, so that finding is not surprising. These 
models are designed to “converge” to MTD, not to provide overall good description 
of dose–toxicity relationship. Based on all considerations above, no adjustment to 
MTD determination was made at the conclusion of Part 2 and 154 mg dose remained 
the final MTD estimate.

19.4.4  Sensitivity Analysis: Effects of Mid-trial CRM  
Model Adjustment

As was explained in Sect. 19.3.1, the CRM model had to be adjusted after cohort 5 
to allow the possibility of including doses above 319 mg. Even though, in retrospect, 
such adjustment could have been avoided, at the time of cohort 5 data review, the 

Fig. 19.8 Allocation and toxicity at the end of the study (part 1 and part 2 combined)
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algorithm appeared to be escalating doses quite rapidly. The dose had been doubled 
four times already with no DLT observed, cohort 6 had been assigned 266 mg, and 
there was no way to accurately predict how high a dose needs to be pushed in order 
to get into MTD proximity range. If no DLTs were observed at 266 mg in cohort 6, 
further dose escalation would have put the next cohort at 319 mg. And if that were in 
fact a true MTD, the CRM algorithms were known from simulation experience to 
perform suboptimally in such scenarios because it was never “allowed to look” above 
the MTD to accurately estimate it. So, based on partial trial data (cohorts 1–5) avail-
able at that time, it seemed unavoidable that the MTD would be closer to 266–319 mg 
range than originally believed, thus necessitating the model change with dose expan-
sion as a precaution. After the model change was implemented though (starting with 
cohort 6), the actual dose-escalation path never rose above 319 mg, prompting a 
natural question: what would have happened had we not adjusted the model?

Since the maximum dose studied in the trial was 319 mg, the trial data can still 
be fitted into the old CRM model as a sensitivity analysis. A comparison of dose- 
escalation paths between original versus adjusted models is given in Table 19.6. 
With a couple of exceptions, the impact of the new model on the dose-escalation 
path was minimal (as expected; the two models weren’t very different after all). 
This statement has some limitation since the data was “retrofitted” into the old CRM 
model, i.e., its dose assignment recommendation was not followed because a differ-
ent model was in place. Such comparison is furthermore confounded by presence of 
human oversight potentially overriding dose recommendations based on either 
model. So we may never know what would have truly happened had we not adjusted 
the model. We may only look at the final fit based on the two models and compare 
Part 1 MTD recommendations. This comparison is presented in Fig. 19.9 (original 
model—top, adjusted model—bottom); differences in available dose ranges reflect 
different dose spaces of each model. Note: because CRM model is highly dependent 
on the initial “skeleton” of doses, it cannot be easily extrapolated beyond the origi-
nally selected dose range, thus resulting in a “truncated” graph on top. For the 
purpose of looking at both plots under the same scale, the dose range for both plots 
was chosen to be 10–662 mg (adjusted model) but the original model plot can be 
populated with data only up to 319 mg dose.

Table 19.6 Sensitivity analysis: dose-escalation decisions based on 
original vs. adjusted models

Cohort Dose (mg)

Next dose recommended based on

Original CRM modela Adjusted CRM modelb

6 266 266 383
7 319 266 266
8 266 222 222
9 222 222 222
10 222 154 128
11 154 185 154
12 154 185 154
aPost hoc sensitivity analysis
bActually used during trial
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As can be seen from Table 19.6 and Fig. 19.9, the final MTD recommendation at 
the end of Part 1 based on the original CRM model would have been 185 mg dose, not 
154 mg dose. Perhaps having more data on 185 mg could provide additional insight 
into dose–DLT relationship and possibly yielded a MTD candidate dose with toxicity 
rate closer to 18–33 % target. But this was not pursued for a number of reasons.

Fig. 19.9 Model sensitivity analysis: comparison of fitted toxicity at the end of part 1 using old 
model vs. new model. Note: Top graph represents old model (original dose range); bottom graph 
represents new model (expanded dose range)
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At the time the MTD recommendation was made, the trial had reached nearly 
maximum sample size of 50 patients for Part 1. Considering a hypothetical scenario 
of overriding CRM’s MTD recommendation after cohort 12 and continuing the 
trial, only five patients would have been left to enroll in Part 1 at 185 mg according 
to the study protocol. DLT data based on five patients at 185 mg would have pro-
vided only a “candidate” MTD dose at best. Since that dose had not been studied 
before, at least three additional cohorts would be required to achieve a minimum of 
nine patients on MTD—a criterion used by CRM algorithm to provide a reliable 
estimate. We use “reliable” here in a relative sense: compared to six patients 
 necessary for the 3 + 3 design to declare MTD, nine patients provide more informa-
tion, but it is by nomeans a “rule of thumb” or a guarantee of precision. Furthermore,
in the light of extremely high toxicity rate observed at next higher dose (222 mg), 
more than nine patient data most likely would have been required to be collected at 
185 mg dose in order to potentially recommend it for Phase 2, even under the ideal 
case scenario of the empirical DLT rate estimate being within the target 18–33 % 
range (e.g., 2 out of 9 DLTs or 22 % rate observed at 185 mg). Having additional 
cohorts enrolled to properly study 185 mg would require extending Part 1 trial size 
beyond the originally planned 50 patients and would have pushed back the study 
timelines significantly. Continuing the trial with only five additional patients would 
raise a risk of having an inconclusive Part 1.

The proximity of potential MTD candidate doses (184 mg is a 20 % increment 
from 154 mg) coupled with concern of not having convincing data on 185 mg 
weighted against tight study timelines has led the study team to the decision to 
accept CRM’s recommendation for MTD after cohort #12 and to stop Part 1 of the 
study. This decision was consistent with study protocol (based on the adjusted 
model). This sensitivity analysis utilizing original model is presented here only as a 
post hoc assessment in order to gain more insight into how CRM worked. All trial 
conclusions are reported based on the adjusted model that was in place at the time 
the trial concluded.

19.5  Discussion

We have presented a story of an adaptive trial design and implementation for a first-
in- human dose-escalation application in oncology. This study was the first of its 
kind designed and implemented within the company. As with every pilot project, 
there was no prior experience with such trials. Extensive planning was undertaken 
prior to implementation of the protocol in an attempt to foresee all likely hurdles. 
Despite very extensive planning, unexpected surprises still emerged. The biggest 
one was the need to adjust the CRM model mid-way through the trial. This was 
precisely the situation that the design team was trying to avoid: since CRM algo-
rithm is known to be “inflexible” with respect to dose space changes, the very wide 
dose range of 10–319 mg was chosen for the original CRM model despite some 
internal critics saying that “it will never go as far as 319 mg.” No one could predict 

I. Perevozskaya et al.



377

at the design stage that a dose range increase would be necessary—otherwise the 
maximum dose would have been set higher. But in reality the DLT profile did not 
appear as planned. Even though, in retrospect, one could have stayed with the origi-
nal model, the latter option appeared to be too risky at the time model adjustment 
decision was made. Another surprising part was the sharp increase in the probability 
of DLT with dose in the actual DLT profile observed. Small number of patients 
studied at each dose (except for MTD) allows little opportunity to guess whether 
that was an artifact of random variability or true DLT profile. In either case, this was 
not planned for in the simulations.
For dose–toxicity scenarios with sharp rise in toxicity like this one, a different

type of model (e.g., 2-parameter logistic such as the one described in Neuenschwander 
et al. 2008) could have provided a better fit. The 2-parameter logistic model is more 
flexible and therefore capable of more realistic representation of the dose–toxicity 
relationship. It also allows for more accurate prediction of probability of overdose 
at the next dose assignment rather than relying on a purely empirical rule of restrict-
ing the number of steps that CRM can skip. With respect to overdosing, the method 
of Neuenschwander et al. (2008) is similar in spirit to Escalation with Overdose 
Control (EWOC) method of Babb et al (1998). They utilize a variation of Bayesian 
decision-theoretic approach (Whitehead and Brunier 1995; Haines et al. 2003) to 
target certain prespecified toxicity rate while the probability of overdosing is con-
trolled. One common reason why one-parameter CRM models like the one we used 
is preferred over more flexible models is its parsimony: intuitively, estimating one 
parameter requires less data than estimating two parameters resulting in a smaller 
faster trials (one would hope). This trial actually can serve as an example that this is 
not always the case. With limited CRM case studies available in literature to date, it 
is hard to say whether 2-parameter models should be used routinely instead of the 
original CRM model. But they definitely should be considered when evaluating 
candidate designs for Phase 1 oncology trials. The trade-off between parsimony and 
precision can be evaluated on a case-by-case basis.

19.5.1  Algorithmic Decisions Versus Human Oversight

At all times during the trial a joint oversight committee consisting of sponsor clini-
cians and statisticians was in place to monitor the dose-escalation process. Study 
investigator’s input was solicited on as-needed basis to support dose-escalation 
decisions. In three instances, the oversight committee had “overruled” the dose 
assigned by CRM to the next cohort. In 2 out of these 3 cases (cohort #4 and #6, i.e., 
relatively early in trial) the overrule decision was more conservative than CRM out 
of caution. In the third case of cohort #10, the “override” decision was rather 
unusual to implement a dose escalation slightly more aggressive than the one rec-
ommended by CRM algorithm. This was done because sufficient safety data had 
been accumulated at that point on the higher dose in question. All investigators 
supported that decision.
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The need for such human oversight and the situations where it disagrees with a 
computer-recommended dose are reflection of the fact that CRM model has its lim-
its on accurately predicting the MTD in all situations. CRM operates strictly based 
on binary data (DLT or no-DLT) and a rather restrictive one-parameter model. The 
latter is not well suited to describe all the complexities of dose–DLT relationships, 
not to mention more sophisticated dose–toxicity relationship incorporating multiple 
grades of adverse experiences, PK/PD information, etc. In other words, in all three 
situations of “deviation” described, the CRM method was essentially “blind” to 
additional safety info such as lower grade toxicities and PK/PD information. 
Without making the design’s mathematical model overly complicated, that kind of 
information could only be incorporated in dose-escalation decisions by a human 
review performed in conjunction with CRM recommendations.

While human oversight is necessary, it can also be a limiting factor in interpreting 
final study results: the rules of oversight cannot be simulated and, since the actually 
implemented CRM-with-oversight procedure tends to be more conservative than the 
“optimal “ CRM simulated, the advantages of CRM itself become less clear.

19.5.2  A Few Notes on Study logistics

A lot of research and planning were done prior to the protocol approval, contribut-
ing to approximately 2 months of additional development time. Most of that extra 
time was spent on designing the trial (including extensive simulations, fine-tuning 
the design through multiple iterations with team, and summarizing it all in the simu-
lation report). Considerable time was spent on educating study investigators and 
their sites about new methodology in order to secure Investigational Review Board 
approvals. Following the protocol approval, most of the study logistics remained the
same as for the 3 + 3 type of trials with perhaps the only overhead additional cost of 
custom-programming and User Acceptance Testing of the CRM allocation software 
(to perform actual dose assignments rather than simulations). Programming of the 
above software was contracted to the outside vendor (Tessella Inc). Tessella also 
co-developed Adaptive Design Explorer (ADE) software in collaboration with the 
sponsor. All simulations and graphs presented in this chapter were generated using 
ADE, which is an internal proprietary software within Pfizer. However, its core 
CRM algorithm (called BCRM (2005)) used for simulating this design is publicly 
available at MD Anderson Cancer center Software Download website: https://bio-
s t a t i s t i c s . m d a n d e r s o n . o r g / S o f t w a r e D ow n l o a d / S i n g l e S o f t w a r e .
aspx?Software_Id=15.

It is estimated that availability of such powerful computational tool capable not 
only of simulating the CRM algorithm (which is not a very complicated task to 
program by itself) but also of organizing multiple scenarios, design variants, out-
puts, etc. had considerably reduced the trial planning timelines. The authors believe 
that planning and executing future adaptive trials similar to this one will take con-
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siderably shorter time because of the experience gained in this trial. This applies not 
just to design development but internal company review cycles: as the teams gain 
more experience with adaptive Phase 1 dose-escalation trials, such trials are viewed 
as less and less “daunting.”

19.5.3  CRM Performance and Study Conclusions

At first glance, the final study results may look somewhat disappointing since the 
MTD appeared to be underestimated. When planning the very first adaptive trial it 
is only natural to hope for the outcome to be very much consistent with the “best 
case” scenario studied in simulations, i.e., deliver an MTD within 18–33 % range 
and possibly even close to 25 %. That’s what this trial was designed to do, after all. 
At the end of the day, though, it is important to remember that the broader trial’s 
objectives go beyond finding an MTD that delivers precisely 18–33 % DLT rate—
the latter is simply an agreed-upon criterion we used to evaluate simulated perfor-
mance. This trial was declared a success at the end because the MTD it found was 
very well tolerated and also showed some evidence of preliminary clinical activity. 
The PK/PD information (data not shown) was also supportive of 154 mg choice. By 
the time the confirmation cohort was completed, the MTD lower-than-targeted DLT 
rate became pretty evident. But because every dose above it had unacceptably high 
DLT rate (especially 222 mg—the next higher dose with 71 % observed DLT rate), 
there was really no choice other than to accept 154 mg as MTD or amend the proto-
col and continue the study beyond planned size to evaluate other intermediate doses. 
The latter was not considered to be a good option based on a trade-off of additional 
information/knowledge to be potentially gained versus additional resources invested.

The CRM algorithms seemed to do its job right, given the circumstances, but 
raised the question of whether the doses preplanned for the trial were right. In terms 
of the dose range, the answer to that question is probably “No,” as evidenced by the 
need to change the model midway through trial. As for the dose grid, the 20 % 
increments seemed to be adequate: anything less than that would not generate a suf-
ficiently different exposure from the PK/PD perspective. Looking at the final study 
data presented in Table 19.5, the most glaring difference in toxicity rates between 
two adjacent doses studied is between 154 and 222 mg (5 vs. 71.4 %, respectively). 
These two doses are separated by ~40 % increment. Had an intermediate dose of 
185 mg been studied (185 mg is a 20 % increment from 154 mg), the toxicity “gap” 
probably would not be so huge and the dose grid based on 20 % increments would 
be adequate. The reason 185 mg was not studied is likely to be attributed to mid-trial 
shift in the CRM model, which altered estimated toxicity probabilities at each dose 
for cohorts #6 and beyond.

Another important point we would like to highlight is the difference between a 
single clinical trial experiment and the simulation experiment. While planning the 
trial, we simulated 5,000 trials for each of the six “hypothetical” scenarios we had 
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to assume. The resulting choices of design parameters were based on the assumption 
that all six were equally likely. In reality we got a chance to run only one trial under 
the “true” scenario which may be different from what we hypothesized (we will 
never know for sure). One may hope that the results of this “one trial realization” of 
the simulation experiment will be consistent with “average “simulation perfor-
mance, but unfortunately it is an unrealistic expectation.

Looking back to simulation results in Table 19.3 in Sect. 19.3, six dose–toxicity 
scenarios were considered in simulations for the original model. The actual observed 
toxicity profile was somewhat similar to Sc. 3 and Sc. 6. For both scenarios, the
simulated chances of underestimating the MTD were pretty high: 43–59 % under 
the original model and 44–64 % under the new model. So what we are seeing in this 
trial is hardly a surprise considering the similarities between these scenarios and the 
observed data. In other words, the scenario observed was the least favorable for 
CRM among the six considered in a sense that CRM was least tailored to perform 
well in it.

Taking this into perspective, we would like to reiterate that when we perform 
simulations and evaluate their performance, we focus on a narrow set of criteria and 
rules to make the problem “manageable.” However, in real life, the “performance” 
means a complex set of parameters, variables, etc. to assess benefit and risk, which 
goes beyond precision of MTD estimation. While this design did not deliver an 
MTD with range of toxicity of 18–33 % (which it was designed to do), it did deliver 
a well-tolerated dose. The PK/PD information observed (data not shown) was sup-
portive of that choice as well. The overall proportion of toxicities in the trial was 
24 % (11/45)—well in line with what clinicians consider acceptable and demon-
strating that this “modified” version of the CRM is quite safe in protecting the 
patients from overly aggressive dose escalation. The precise dose–DLT relationship 
may never be known. The real measure of this trial’s performance will be the overall 
development program success/failure (i.e., how well the selected dose will perform 
in Phase 2 trials and whether Phase 1 dose selection played a role in that).
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Abstract In this chapter, we provide the details of an innovative two-stage, 
 seamless adaptive clinical trial called ADVENT. This trial was conducted as a “final 
phase 3” clinical trial to establish the safety and efficacy of a first-in-class antidiar-
rheal agent, crofelemer, for the symptomatic relief of diarrhea in HIV patients 
receiving anti-retroviral therapy. Given that this was a trial with two-stage design 
that included a dose selection, it was necessary to demonstrate the strong control of 
Type 1 error. This was accomplished with a close testing procedure applied to com-
bination tests that utilized the inverse normal combination function. We developed 
a one-sided significance testing procedure that ensures strong control of the Type 1 
error at level 0.025. Using appropriate statistical methodology for combining the 
results from the two stages, a statistically significant outcome was obtained for the 
primary efficacy endpoint and crofelemer received marketing approval based on the 
ADVENT trial. While the authors acknowledge the importance of statistical meth-
odology required to analyze the data from the ADVENT trial, this chapter also 
provides significant details on the clinical and regulatory challenges that were 
demanded for the conduct of this innovative, two-stage, adaptive clinical trial.
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20.1  Introduction

Drug development is a time- and cost-intensive endeavor with the average cost of 
bringing a new drug to the market ranging between $800 million and $2 billion over 
a period of 15 years or longer from the initiation of research efforts in a given thera-
peutic area (DiMasi et al. 2003). It has been postulated that novel approaches to 
clinical trial design could improve the success rates of drug development programs 
through the adoption of a more integrated clinical development paradigm that effi-
ciently uses the “knowledge” accumulated through the multiple years of drug devel-
opment, rather than the traditional sequential, distinct, and discrete milestone-driven 
drug development phases. Innovative clinical trial approaches would thus need to be 
adaptive, parallel, and data driven, to allow regulatory submissions to be designated 
as “exploratory” and “confirmatory.” An excellent review article on clinical trial 
design innovation was recently published that provides a broad overview of the 
innovative approaches in clinical trial design (Orloff et al. 2009).
One of the innovative clinical trial design approaches uses adaptive clinical trial

designs in which interim data from a trial is used to modify and improve the study 
design in a pre-planned manner without undermining the validity and integrity of 
the study. If designed and executed appropriately, during the “exploratory” phase 
adaptive clinical trials can assign a larger portion of patients to the treatment groups 
that are performing well, reduce the number of treatment groups that perform 
poorly, and investigate a larger dose range to effectively select the optimal dose(s)
for the “confirmatory” phase of the trial. As such, adaptive clinical trials would then 
allow judicious use of limited patient and capital resources as well as reduce unnec-
essary patient exposure to ineffective or poorly tolerated doses of drugs and lead to 
a “selection” of patient populations that are more likely to respond favorably to the 
treatment, leading to a maximized “benefit-to-risk” ratio. For example, Lawrence
et a. (2014) described the INHANCE trial that was successfully included as a piv-
otal study in regulatory submissions for indacaterol, a once-daily maintenance 
bronchodilator treatment of airflow obstruction in adult patients with chronic 
obstructive pulmonary disease (COPD).
Central to the concept of adaptive (or flexible) clinical trial design is the use of

accumulated data that can be used to modify various aspects of the clinical study, 
midstream, in a pre-planned manner without undermining the validity of the clinical 
study. Seamless adaptive designs improve the efficiency of clinical trials through
the ability to combine objectives of clinical trials that were traditionally addressed 
through the conduct of separate phase 2 and phase 3 clinical studies. Possible advan-
tages from conducting seamless adaptive clinical trials include the use of accumu-
lated data to make beneficial changes such as sample size adjustment, allocation of 
patients to different treatment groups, addition or deletion of treatment groups, and 
adjustment of statistical hypothesis.

There are several requirements for the successful design and execution of seamless 
adaptive clinical trials. These include the ability to collect and analyze clinical response 
data in a timely (and preferably “real-time”) basis and significant up-front statistical
work to model the “expected” dose-response curves through simulations. Many simu-
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lations are required to determine the best combinations of sample sizes, randomization 
ratios between placebo and treatment dose levels, as well as the number of doses that 
can be included in the trial. Furthermore, several logistical and regulatory criteria must
be fulfilled to avoid compromising the results from an adaptive clinical trial. Foremost
amongst these is the pre-specification of the algorithm that determines the adaptation 
to implement the trial. This is accomplished through the establishment of an indepen-
dent data monitoring committee (DMC) that is charged with the responsibility of per-
forming unblinded interim analysis and communicating appropriately with the 
requisite members of the clinical team executing the trial. Furthermore, it is imperative
that there be appropriate standard operating procedures (SOPs) to ensure the secrecy
and confidentiality of such an algorithm to prevent any bias in the trial, either from the 
sponsor or the study investigators. The restricted knowledge of the interim results 
from seamless adaptive trials needs to be ensured to avoid any compromise in the 
interpretation of the results from such clinical trials.

An “inferentially” seamless adaptive clinical trial, such as the one used to deter-
mine the efficacy and safety of crofelemer in the ADVENT trial (described below),
requires the use of data from both (exploratory and confirmatory) stages of the trial
and requires absolute secrecy and integrity of the data from the first stage of the 
trial. On the other hand an “operationally” seamless adaptive clinical trial uses only
the data from the second stage of the trial, after the dose selection has been made 
from the initial exploratory phase. Other important considerations for the conduct of
adaptive clinical trials include the determination of the appropriate primary (and
secondary) endpoints for the clinical trial. Modeling and simulations play a very
important role in assessing the specific details of the seamless adaptive trial designs 
such as per-group sample sizes in the two stages of the clinical trial to maintain the 
robustness of the clinical trial. The final analysis plan must use statistical methodol-
ogy that is appropriate for the clinical study design and “simple” comparisons of 
placebo vs. treatment groups are inappropriate from seamless adaptive trial designs.

In this chapter, we provide the details of an innovative two-stage, seamless adap-
tive clinical trial conducted as a “final phase 3” clinical trial to establish the safety 
and efficacy of a first-in-class antidiarrheal agent, crofelemer, for the symptomatic 
relief of diarrhea in HIV patients receiving anti-retroviral therapy. The details and 
results from this trial were recently presented (MacArthur et al. 2012). While the 
authors acknowledge the importance of statistical methodology required to analyze 
the data from the ADVENT trial, this chapter also provides significant details on the 
clinical and regulatory challenges that were demanded during the conduct of this 
innovative, two-stage, adaptive clinical trial design.

The ADVENT trial is to our knowledge the first phase 3 trial using this type of 
seamless adaptive clinical trial design that led to an FDA approval. Hence, in this
chapter we describe all clinical, regulatory, strategic, methodological, and opera-
tional aspects that led to its approval. In Sect. 20.2 we provide clinical background 
on secretory diarrhea in HIV patients and on the study drug crofelemer, and ratio-
nale for the ADVENT confirmatory clinical study. In Sect. 20.3 we describe regula-
tory interactions, including the Special Protocol Assessment (SPA) process.
Section 20.4 describes the details of theADVENT clinical trial design and Sect. 20.5 
describes design options and motivation for application of an adaptive design. 

20 Practical Considerations for a Two-Stage Confirmatory…



386

Section 20.6 provides details on the statistical methodology of the selected approach. 
Given that the initial design was rejected by the FDA, we will explain reasons why
the original design was rejected and what made the revised design acceptable. 
Section 20.7 describes implementation of this trial. This section also describes the 
data monitoring process, including (a) membership, (b) rule for dose selection, and
(c) how confidentiality on selected dose was maintained. Finally, Sect. 20.8 presents 
the final results and ultimate regulatory decision on the fate of crofelemer’s market-
ing approval.

20.2  Clinical Background

20.2.1  Secretory Diarrhea: A Clinical Unmet Need Resulting 
from Various Etiologies

Diarrhea is a clinical symptom that is characterized by the passage of one or more 
watery or unformed stools. Secretory diarrhea occurs when the secretion of fluid
and electrolytes in the intestinal lumen exceeds the absorption of water and electro-
lytes from the lumen. Secretory diarrhea is a significant global health issue and is a
leading cause of morbidity and mortality worldwide (Murray and Lopez 1996). If 
not treated in a timely manner, secretory diarrhea can lead to severe dehydration, 
electrolyte abnormalities, acute renal failure, hypovolemic shock, and death. 
Treatment of secretory diarrhea is usually supportive and includes replacement of 
intestinal fluid losses with oral rehydration salts (ORS).

The majority of the secretory diarrheas result from bacterial infections such as 
Vibrio cholerae and Escherichia coli and from viral pathogens such as norovirus, 
rotavirus, and human immunodeficiency virus (HIV) (Malago 2010). For diarrhea
resulting from infections, generally the enterotoxins from the pathogen bind to the 
mucosal cells and induce a dysfunction of the intestinal chloride channels such as 
cystic fibrosis transmembrane conductance regulator (CFTR) and/or calcium-
activated chloride channels (CaCC), as a consequence of increased cAMP, cGMP,
or 5-HT levels which enables the secretion of chloride and other ions accompanied 
by water into the gut lumen, resulting in diarrhea (Field 2003).

20.2.2  The Emergence of Noninfectious Diarrhea in HIV 
Patients Following Treatment with Highly Active  
Anti- retroviral Therapy (HAART)

The treatment of HIV patients with HAART has resulted in prolonged survival
of HIV patients. Drugs such as HIV protease inhibitors, a major component of 
HAART, also produce secretory diarrhea by a variety of mechanisms, includ-
ing increased calcium-dependent chloride conductance and cellular apoptosis, 
necrosis, and decreased proliferation of intestinal epithelial cells (Bode et al. 2005). 
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Protease inhibitors were also found to increase intestinal permeability suggesting a 
disrupted intestinal barrier function and/or altered small intestinal absorption, which
would produce diarrhea (Braga Neto et al. 2010).

20.2.3  Treatment and Management of HIV-Associated 
Diarrhea Remains a Challenge

An excellent review of the etiology and pharmacological management of noninfec-
tious diarrhea in HIV patients is provided by MacArthur and DuPont (2012). HIV 
patients receivingHAART therapy have noninfectious diarrhea as an adaptive response
to drugs. As such no treatments are available for the management of secretory nonin-
fectious diarrhea in HIV patients. Palliative therapies including the use of adsorbents 
such as attapulgite, bismuth subsalicylate, kaolin, and pectin and anti- motility agents 
such as diphenoxylate-atropine, loperamide, tincture of opium, and octreotide remain 
inadequate to treat secretory HIV diarrhea. Thus, there remains a large unmet clinical 
need for the treatment of secretory diarrhea to restore the physiological function of the 
intestinal ion channels that regulate fluid and electrolyte transport.

20.2.4  Crofelemer: A Novel Anti-secretory, Non-opiate,  
Non- antimicrobial Antidiarrheal Drug 
for the Treatment of Noninfectious Diarrhea  
in HIV Patients

Crofelemer (formerly known as SP-303, NP-303 or Provir), now marketed as
Fulyzaq, is a novel drug that was recently approved by the US FDA for the treat-
ment of watery diarrhea inHIV patients receiving anti-retroviral therapy. Crofelemer
is extracted and purified from the latex of Croton lechleri, a plant distributed 
throughout Western South America. The details of the extraction, purification, and
characterization of crofelemer have been described by Ubillas et al. (1994).

The anti-secretory mechanism of effect of crofelemer was first demonstrated 
in vitro in a cAMP-mediated chloride secretion model and in vivo in a cholera toxin
(CT)-induced fluid secretion mouse model by Gabriel et al. (1999). In Ussing cham-
ber studies, crofelemer had significant reductions on both basal current and 
forskolin- stimulated chloride current, coupled with increased resistance, suggesting 
an inhibitory effect on cAMP-mediated chloride ion and fluid secretion. In mice
treated with cholera toxin (CT), crofelemer reduced the fluid accumulation induced
by CT, with a half-maximal inhibitory dose of 10 mg/kg. These studies indicated
that crofelemer has broad spectrum anti-secretory antidiarrheal effects.
Crofelemer inhibited the cystic fibrosis transmembrane conductance regulator

(CFTR) chloride (Cl-) channel producing a voltage-independent block coupled with
the closed state of the CFTR chloride channel. Crofelemer’s effects on CFTR were
prolonged and it was also found to strongly inhibit the intestinal calcium-activated 
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chloride channel by a voltage-independent mechanism. The dual inhibitory effects 
of crofelemer on two structurally unrelated intestinal chloride channels are consid-
ered to account for the anti-secretory activity of crofelemer (Tradtrantip et al. 2010).

20.2.5  Crofelemer Has Demonstrated Excellent Antidiarrheal 
Effects in the Treatment of Secretory Diarrhea

Crofelemer is well tolerated and has demonstrated efficacy in the treatment of trav-
eler’s diarrhea as evidenced by the reduction in the duration of watery diarrhea 
(DiCesare et al. 2002). Crofelemer has also been well tolerated and shown excellent
efficacy in adult patients with acute infectious diarrhea in combination with fluid 
and electrolyte replacement without the use of antibiotics (Sharma et al. 2008).
Crofelemer has also been effective in the treatment of severe acute infectious

diarrhea in cholera patients when co-administered with fluid and electrolyte replace-
ment as well as an antibiotic (azithromycin) (Bardhan et al. 2008).
Crofelemer has been evaluated in a multicenter, double-blind, placebo-controlled

trial in adult men and women with diarrhea-predominant irritable bowel syndrome 
(d-IBS). Crofelemer was well tolerated and did not appear to have any significant
effects on stool consistency or stool frequency in these patients following oral dos-
ing for 3 months. Crofelemer showed significant improvements in the number of
abdominal pain- and discomfort-free days following oral administration in female 
d-IBS patients (Mangel and Chaturvedi 2008). Further studies are needed to evalu-
ate the use of crofelemer as a visceral analgesic.

Previous studies have been conducted with crofelemer in the treatment of diar-
rhea in HIV patients. A multicenter, randomized, double-blind, placebo-controlled 
study was conducted in HIV patients to evaluate the effects of 500 mg beads of 
crofelemer or placebo administered four times daily on stool weight and stool fre-
quency following oral dosing for 4 days. Crofelemer was well tolerated and showed
a significant reduction in stool weight and abnormal (watery) stool frequency fol-
lowing a daily measure analysis of these endpoints compared to placebo treatment 
(Holodniy et al. 1999). Primary analysis showed that there were larger decreases in 
stool weight from baseline to day 4 in the crofelemer group compared to placebo
(p=0.0354 by generalized linear model). The crofelemer-treated group also experi-
enced significantly greater improvements from baseline to day 4 in abnormal
(i.e., soft or watery) stool frequency, a secondary endpoint (p=0.0116).
Crofelemer was evaluated in a double-blind, placebo-controlled phase 3 study in

HIV patients for the treatment of diarrhea to evaluate its effects on stool weight and 
stool frequency following oral dosing for 7 days in an inpatient setting. This period
was followed by an additional 21-day period of crofelemer dosing in patients that 
were considered responders by the clinical investigator (Shaman Pharmaceuticals
Study 37554-210—unpublished results). Crofelemer was administered at dose regi-
mens of 250 mg tablets, 500 mg tablets, or 500 mg beads four times daily compared 
to a matching placebo. In the primary endpoint, there were significantly larger 
decreases in stool weight from baseline to day 7 in the 500 mg tablet group compared
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with placebo (p=0.0107). Significantly greater decreases were also observed in the
500 mg tablet group compared to placebo in stool frequency (p=0.0254) and in a
daily gastrointestinal (GI) symptom score which summed the mean scores for seven
symptoms (nausea, vomiting, abdominal pain, gas, urgency, tenesmus, and inconti-
nence) (p=0.0002).

The safety profile for crofelemer in these studies was consistent with the minimal 
systemic absorption of crofelemer. No significant differences were observed in the 
incidence of adverse events (AEs) between the crofelemer- and placebo-treated
groups of patients. The results of these two studies showed that crofelemer was well 
tolerated and was effective in reducing stool weight and soft/watery stool frequency
in HIV-associated diarrhea.

20.2.6  Rationale for the ADVENT Phase 3 Clinical Study 
for the Evaluation of Crofelemer for the Symptomatic 
Relief of Diarrhea in HIV Patients

The aforementioned discussion provided clear evidence that crofelemer is well tol-
erated and effective in the treatment of secretory diarrhea resulting from bacterial 
infections as well as in HIV patients receiving anti-retroviral therapy. However, 
these various studies evaluated different patient populations using different dose 
levels and dosing frequencies and different oral formulations of crofelemer. 
Consequently, the optimal dose regimen for crofelemer for the treatment diarrhea in
HIV patients remained unclear from these studies. Furthermore, the regulatory
requirements obligate the conduct of two adequate and well-controlled clinical 
studies to gain marketing approval for a new drug for the treatment of a disease or a 
condition. The design of the pivotal phase 3 study for crofelemer for the treatment 
of HIV-associated diarrhea was defined prospectively following discussions and 
agreement with the Food and Drug Administration (FDA) in accordance with a
special protocol assessment (SPA). The SPA process included consultation with the
Division of Gastrointestinal Products on key aspects of the study design, including, 
but not limited to, the criteria for selection and qualification of patients in the study, 
the choice of primary endpoint (i.e., clinical response), the appropriate methods for
confirming efficacy, and the interim analysis process for dose selection.

20.3  Regulatory Background

20.3.1  Sponsor-Regulatory Interactions Determined 
the Nature of the Trial Design for This Phase 3 Study

The sponsor of crofelemer (Napo Pharmaceuticals) conducted an end-of-phase 2
(EOP2) meeting with the FDA to obtain the agreement from the FDA on the con-
duct of an additional proposed phase 3 study to support the regulatory submission 
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of the New DrugApplication (NDA) for crofelemer. The sponsor initially proposed
conducting a multicenter, double-blind, placebo-controlled outpatient study for cro-
felemer in HIV patients at two different dosing regimens of crofelemer. The dosing 
period would include a placebo-controlled 4-week period and a placebo-free exten-
sion period of an additional 20 weeks (maintenance period) to provide long-term
tolerability and durability of effectiveness data on crofelemer’s effects in the symp-
tomatic relief of diarrhea in HIV patients.

The previous studies were conducted on symptomatic endpoints of diarrhea such 
as stool weight and stool frequency in an in-patient (controlled) setting. The regula-
tory agency as well as the HIV patient community requested the outpatient study to 
provide clear evidence of safety and efficacy of crofelemer in HIV patients under 
their “daily routine” setting. Hence, the sponsor had to design a primary endpoint 
that would define a clinical response and identify the “responders” to crofelemer 
treatment. Since the definition of diarrhea (passage of watery stools) was unambigu-
ous in the clinical setting (rather than defining normal bowel function), the sponsor
worked with the clinical and regulatory opinion leaders to obtain consensus on the 
definition of a clinical response.

20.3.2  The Special Protocol Assessment (SPA) Process 
for the Design of an Acceptable Clinical Protocol

The FDA agreed with the sponsor’s definition that a patient will be considered to
have diarrhea if the patient has at least one watery stool per day (i.e., seven or more
watery stools per week) at baseline. The FDA also agreed with the sponsor that a
clinical response would be achieved when a patient has less than or equal to two 
(≤2) watery stools per week. The FDA recommended that additional endpoints such
as frequency of bowel movements (watery and formed) and overall daily stool con-
sistency needed to be assessed at baseline along with the use of prescription as well 
as over-the-counter (OTC) medications. Furthermore, there was agreement on a
single-blind placebo-run-in period to ameliorate the high placebo response in the 
symptomatic relief of diarrhea in HIV patients.
Based on the guidance from the FDA, a new two-stage clinical study protocol was

submitted by the sponsor to the FDA under SPA to evaluate the safety and efficacy
of crofelemer in a randomized, double-blind, placebo-controlled study at dose levels 
of 125, 250, and 500 mg administered twice daily in HIV patients. The agency 
agreed with the sponsor’s request to include patients that had at least one watery 
stool on 5 of the 7 days in the screening period and urgency on at least 1 of the 7 days
during the screening period for this study. The agency did not agree with the overall 
design of the two-stage approach proposed initially by the sponsor or with their 
selection of a two-sided Type 1 error rate of 0.025. The initial suggestion from the 
FDA was to conduct two separate trials to better assess the dose-effect relationship
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for the three active doses proposed in the study. The FDA suggested doing a
“responder analysis” and the use of Dunnett’s procedure for multiple comparisons 
while accounting for the multiple comparisons. Furthermore, the regulatory authori-
ties also suggested the Dunnett’s approach as it would reduce the sample size require-
ments as compared to the use of Bonferroni adjustment for three possible pairwise 
comparisons between each active dose and placebo.
The FDA also had concerns about the decision making at the interim analysis for

the initial two-stage design proposed by the sponsor. Specifically, the FDA wanted
a confirmation that the interim analysis would only be used for selecting a dose that 
would be studied further and that the study would not be stopped for efficacy. Taking 
all the features of the trial design and in collaboration with the sponsor, the FDA
recommended that the sponsor consider using an adaptive trial design methodology 
instead of the proposed two-stage design by the sponsor. The FDA provided guid-
ance on several other key inclusion and exclusion criteria to be included in such a 
two-stage adaptive trial design and provided clear guidance on definitions of nonre-
sponders including those patients that either switched their anti-retroviral therapy 
regimens or used antidiarrheal agents or opiates for more than 3 days in this study.

20.4  The ADVENT Clinical Trial

The ADVENT (Anti-Diarrhea therapy in HIV disease—EmergiNg Treatment con-
cepts) trial was a randomized, double-blind, placebo-controlled two-stage adaptive 
clinical trial to assess the efficacy and safety of three doses of crofelemer (125, 250,
500 mg) taken orally twice daily. The trial consisted of three phases: a 10-day single- 
blind placebo screening phase, which enrolled the patients with a history of chronic 
diarrhea and were required to stop using antidiarrheal medications (ADM) upon
entering the trial. This was followed by randomization into the trial which comprised 
a 31-day, double-blind, placebo-controlled (PC) treatment phase and concluded 
with a 20-week placebo-free (PF) extension phase. The 31-day double- blind phase 
consisted of a 3-day placebo-run-in period and a 28-day efficacy assessment period. 
In the extension phase, patients who were on placebo in the first 4 weeks were ran-
domly assigned to one of the three crofelemer dose groups. The primary efficacy 
endpoint was evaluated at the end of the 4-week placebo-controlled phase. A subject
who experienced two or less watery bowel movements per week during at least 2 of 
the 4 weeks of the efficacy assessment period was classified as a clinical responder.
Details of the trial and its results have been recently presented elsewhere (MacArthur
et al. 2012). Figure 20.1 displays the different phases of the ADVENT trial.

The trial was conducted in two stages, with one interim analysis between stages, 
in order to evaluate efficacy and safety and to make a dose selection. Stage I was
activated in October 2007. During stage 1, subjects were randomized equally to the
four arms of the trial. After enrolling a total of 194 evaluable subjects, enrollment
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was temporarily halted in June 2009 and all enrolled subjects were followed in
order to assess their 4-week efficacy outcomes. In August 2009, after complete
4-week efficacy data had been obtained from all stage I subjects, an independent
Interim Analysis Committee (IAC) consisting of four physicians and a statistician
reviewed the results and selected the 125 mg dose for further testing against pla-
cebo. Thereupon enrollment was re-opened for stage II of the trial. Between August 
2009 and October 2010, 180 stage II patients were randomized between placebo
and the crofelemer selected (125 mg) dose. Using appropriate statistical methodol-
ogy for combining the results from the two stages, a statistically significant outcome 
(p=0.0096) was obtained for the primary efficacy endpoint (MacArthur et al. 2012). 
The two stages of the trial are displayed separately in Figs. 20.2 and 20.3, respec-
tively, and in Fig. 20.4 as one integrated trial.

Fig. 20.1 Phases of ADVENT trial

Fig. 20.2 Stage I of ADVENT trial
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20.5  Design Considerations

While crofelemer had previously been administered as 250 and 500 mg tablets 
administered daily, the optimal dose of crofelemer remained unclear. Both doses 
were well tolerated and were associated with decreases in stool frequency compared 
to matching placebo. Since a lower dose might also be efficacious, it was decided to
have three pairwise comparisons, of 125 mg, 250 mg, and 500 mg tablets, respec-
tively, to matching placebo. For this purpose, three design options were considered.
The first option was to design a four-arm study, perform three pairwise comparisons 

Fig. 20.3 Stage II of ADVENT trial

Fig. 20.4 Stages I and II of ADVENT trial
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at the end of the trial, and use Dunnett’s procedure to control for the multiple 
 comparisons. The second option was to conduct two separate trials, one for learning 
and the other for confirming. In this option one would start out with a learning trial 
that included all four treatment arms. At the end of the learning trial one of the three 
doses would be selected for further study in a two-arm confirmatory trial vs. placebo. 
As the data from the two trials were kept completely separate, it was permissible to 
perform the final analysis of the confirmatory trial at the full level α without any 
adjustment for multiplicity. The third option was to conduct an adaptive two-stage 
trial with a learning phase and a confirming phase. This option bore some resem-
blance to option 2 in that the learning phase would start out with all four treatment 
arms and end with a dose selection. This would be followed by a two-arm confirm-
ing phase that only included the selected dose and placebo. In this option, however, 
the data from the learning and confirming phases could be combined. Special statis-
tical methods would be required to control the Type 1 error which could potentially 
be inflated due to the dose selection at the end of the learning phase.
The primary endpoint was control of watery bowel movements over a 4-week

period. A patient who had less than two watery bowel movements per week over a 
4-week period was classified as a responder. Let j=0, 1, 2, 3 and denote the placebo,
125 mg, 250 mg, and 500 mg treatment arms, respectively. Let πj be the response rate 
of treatment j and denote by θj=πj − π0 the increase in response rate of treatment j over 
placebo. The design objective was to achieve 80 % power to detect a 20 % absolute 
improvement in response rate over placebo with at least one of the three doses. There 
are, of course, many configurations of the πj values that satisfy this requirement and 
the sample size requirements will differ amongst them. Based on past results the 
configuration π0=π1=π2=35%,π3=55% was targeted for 80 % power with a one-
sided multiplicity adjusted error rate of α=0.025. Since the placebo response rate
was expected to be much smaller than 35 %, this was a conservative assumption and 
diminished the risk of running an underpowered study. For each of the three options,
sample sizes meeting the above power and Type 1 error goals were determined by 
simulation. These simulation results, along with the statistical methodology for guar-
anteeing strong control of Type 1 error at level α=0.025, are given below.

20.5.1  Single Four-Arm Trial

In this approach patients are randomized equally to the four treatment arms. There 
is no interim analysis. At the end of the trial one tests the three null hypotheses 
H(j) : θj ≤0, for j=1, 2, 3, against one-sided alternatives of the form θj > 0. Define the 
Wald statistic for the jth test as
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where π̂j is the estimate of πj and nj is the corresponding sample size for treat-
ment j. Under the null hypothesis H(j) each Zj converges to the standard normal 

P.R. Chaturvedi et al.



395

distribution. For j=1, 2, 3, Dunnett’s test rejects H(j) if the corresponding Zj ≥ 2.358. 
This cutoff adjusts for the multiplicity induced by performing three hypothesis tests 
instead of one, and provides strong control of Type 1 error at the one-sided level 
α=0.025. In contrast, if only one hypothesis were to be tested the corresponding
level 0.025 cutoff would be 1.96. Simulations under the configuration
π0=π1=π2=35%,π3=55% were used to establish that at least one null hypothesis is
rejected with 80 % probability at the sample size n0=n1=n2=n3=125. Thus a single
four-arm trial achieves 80 % power at the specified configuration with a total sample 
size of 500 patients.

20.5.2  Two Independent Trials

This approach involves a four-arm learning trial followed by a two-arm confirming 
trial. The data from the learning trial are not combined with the data from the con-
firming trial. Therefore the hypothesis test to be performed at the end of the con-
firming trial can utilize the full level α without any Type 1 error inflation. The 
combined sample size over both trials that provides 80 % power to reject any H(j) 
under the configuration π0=π1=π2=35%,π3=55% is obtained by simulation.
Accordingly we simulated the two trials in succession. For the learning trial, 50
patients were randomized to each of the four treatment arms. The treatment arm 
with the highest observed response rate was selected, along with placebo, for the 
two-arm confirming trial. One hundred and eight subjects were randomized to each
treatment arm for the two-arm confirming trial. Let Zs

(2) denote the Wald statistic for 
the selected dose vs. placebo utilizing only the data from the confirming trial. Then 
H(s) is rejected by a level 0.025 test if Zs

(2) ≥1.96. The simulations revealed that with
50 subjects per treatment arm for the learning trial and 108 subjects per arm for the 
confirming trial the combined process has 80 % power to reject at least one hypoth-
esis. Thus a total of 416 patients are needed to achieve 80 % power at the specified
power using two independent trials. This is a saving of 84 patients compared to the
single four-arm trial based on Dunnett’s test. In this design the confirming trial pro-
ceeds immediately upon completion of the learning trial but the data from the two 
trials are not combined for the final inference. Hence this design is termed “opera-
tionally seamless” and the schematic for the trial is shown in Fig. 20.5.

20.5.3  An Integrated Two-Stage Trial

This approach was eventually selected for the crofelemer trial. It involved a two- 
stage adaptive design where the objective of the first stage was to select the dose for 
the second stage, and the objective of the second stage was to confirm the efficacy 
of the selected dose. Stage 1 enrolled 50 subjects per group for the three dose groups
(125, 250, 500 mg) plus placebo, while the stage 2 enrolled 75 additional subjects
per group for the selected dose group and placebo group. Subjects from stage 1 were
combined with stage 2 subjects for the final analysis of efficacy and safety. The final 
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hypothesis test for the primary efficacy endpoint was based on comparing all 125 
subjects enrolled in the placebo group with all 125 subjects enrolled in the group 
selected at the interim analysis.

After approximately 50 subjects were enrolled to each of the four treatment 
groups, the enrollment was stopped until all these subjects completed the placebo- 
controlled treatment period or terminated the study, and the interim analysis and deci-
sion for stage 2 were completed. Based upon an assessment of efficacy and safety, the 
sponsor selected one of the crofelemer doses to continue along with placebo into 
stage 2 (see Sect. 20.8.2.2 for details). The decision to perform an interim analysis 
after 50 subjects were assessed for the primary endpoint was based on clinical judg-
ment, not a power calculation. This timing also permitted the majority of subjects 
analyzed for efficacy to be randomized during the second stage of the trial. Detailed 
statistical methodology of this approach is presented in the next section. This design 
is termed inferentially seamless because the data from both stages of the trial were 
combined for the final inference and a schematic of such a trial is shown in Fig. 20.6.

20.6  Methodology

20.6.1  Determination of Sample Size

Sample size and power calculations for the evaluation of efficacy during the placebo-
controlled treatment phase utilized results from a previous phase 3 study (Protocol
37,554-210) in the HIV-positive patient population where a 20 % point improve-
ment in response was observed for the treatment arm relative to placebo. With 125 

Dose 1. (50 patients)

Dose 2. (50 patients) 

Dose 3. (50 patients)

Placebo. (50 patients) 

Selected Dose (108)

Placebo(108 patients)

Trial

Trial

Total Sample Size = 50x4 + 108x2 = 416

Fig. 20.5 Two separate trials (operationally seamless)
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subjects randomized to both treatment groups (one crofelemer arm and placebo), the
power of the study ranges from 71 % to over 91 % to detect a treatment difference
at a one-sided alpha of 0.025 when the underlying response rate of one or more of 
the crofelemer dose groups exceeds placebo by 20 %. The analysis utilized the tech-
nique of Posch et al. (2005), based on the original work of Bauer and Kieser (1999), 
which controls the experiment-wise error rate for this two-stage adaptive design at a 
one-sided α of 0.025. The clinical response of 20 % is based on an estimated 
response rate of 55 % in crofelemer and 35 % in placebo during the 4-week efficacy
assessment period. The size of the randomized population is described in Table 20.1.

Expecting that 33 % of subjects will fail screening, in order to obtain 350 random-
ized subjects, approximately 525 subjects must be screened. It is estimated that 
approximately 200 subjects will be randomized in stage 1 and 150 subjects in stage 2.

20.6.2  Strong Control of Type I Error

Given that this is a two-stage design that includes a dose selection, it is necessary to 
demonstrate the strong control of Type 1 error. This was accomplished with a close 
testing procedure applied to combination tests that utilized the inverse normal com-
bination function. Details are given below.
Let πj, j=0, 1, 2, 3 be the true response rates for the placebo and three treatment

groups, respectively. Define θj=πj − π0, j=1, 2, 3. The global null hypothesis is
H(1,2,3): θ1=θ2=θ3=0. There are however other null hypothesis besides the
global null, due to the presence of multiple treatment arms. Table 20.2 displays all 
possible null hypotheses and corresponding ways in which Type 1 error could arise.

Dose 1. (50 patients)

Dose 2. (50 patients) 

Dose 3. (50 patients) 

Placebo. (50 patients) 

Selected Dose (75 pts)

Placebo (75 patients)

Stage 1: 

Stage 2: 

Total Sample Size = 50x4 + 75x2 = 350

Fig. 20.6 Integrated trial (inferentially seamless)
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For a testing procedure to have strong control of Type 1 error at level α=0.025,
it must be the case that under any configuration from Table 20.2, the probability of 
making one or more false statements must not exceed 0.025.

20.6.3  Hypothesis Testing Procedure

Based on the paper (Posch et al. 2005) we developed a one-sided significance test-
ing procedure that ensures strong control of the Type 1 error at level 0.025. The 
method utilizes two principles:

1. Combine valid p-values from the two stages of the design with the inverse nor-
mal combination function. A valid p-value, p, under the null hypothesis H has 
the property that for any α
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Suppose p is a valid p-value from stage 1 and q is a valid p-value from stage 2.
Let n1 and n2 be the sample sizes of the two stages. Then the inverse normal 
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Table 20.1 ITT sample size by treatment and stage (total randomized n=350)

Stage Placebo
Crofelemer  
125 mg b.i.d.

Crofelemer  
250 mg b.i.d.

Crofelemer  
500 mg b.i.d.

I 50 50 50 50
II 75 0 75a 0
Total 125 50 125 50
aOne of the three crofelemer doses will be selected for stage II; this table arbitrarily depicts the
mid-dose as the one for stage II

Table 20.2 Null hypotheses and corresponding incorrect conclusions to be controlled at level 
α ≤ 0.025

Null hypotheses aType of incorrect conclusion

H(1,2,3): θ1=θ2=θ3=0 The selected treatment is declared superior to placebo
H(1,2): θ1=θ2=0, θ3 > 0 Treatment 1 or 2 is selected and is declared superior to placebo
H(1,3): θ1=θ3=0, θ2 > 0 Treatment 1 or 3 is selected and is declared superior to placebo
H(2,3): θ2=θ3=0, θ1 > 0 Treatment 2 or 3 is selected and is declared superior to placebo
H(1): θ1=0, θ2 > 0, θ3 > 0 Treatment 1 is selected and is declared superior to placebo
H(2): θ2=0, θ1 > 0, θ3 > 0 Treatment 2 is selected and is declared superior to placebo
H(3): θ3=0, θ1 > 0, θ2 > 0 Treatment 3 is selected and is declared superior to placebo
aConfigurations with any θj < 0 will also control corresponding incorrect conclusions at level 
α ≤ 0.025
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where Φ(.) is the left tail of the standard normal density, is a valid p-value for the
combined data from the two stages.

 2. Perform a closed test for the final analysis. To understand closed testing, suppose 
without loss of generality that dose 1 is selected at the interim analysis. To 
declare statistical significance for dose 1 with a closed test we must reject 
H(1) : θ(1) =0 with a level α test and in addition, we must reject every intersection 
hypothesis that contains H(1) with a level α test. To be specific:

• Must reject H(1,2) : θ1=θ2=0 at level α
• Must reject H(1,3) : θ1=θ3=0 at level α
• Must reject H(1,2,3) : θ1=θ2=θ3=0 at level α

We will now apply these two principles to the ADVENT trial. Let π̂ij be the 
 estimated response rate for treatment j based only on the nij observations obtained 
from stage i for treatment j, i=1, 2, j=0, 1, 2, 3. Let
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and the corresponding one-sided p-value
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for j=1, 2, 3. Assume, without loss of generality, that p(1) ≤ p(2) ≤ p(3). Therefore 
treatment 1 is selected for stage 2. At stage 2 we compute the Wald statistic:
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Define the following p-values from the stage 1 data:

p(1,2) =min(2p(1), p(2))
p(1,3) =min(2p(1), p(3))
p(1,2,3) =min(3p(1), 1.5p(2), p(3))

These p-values are based on Simes test (see Posch et al. 2005, Sect. 2.2.1). Since
only treatment 1 is selected at the end of stage 1, set q(1,2) =q(1,3) =q(1, 2, 3) =q(1). Now 
define the combination functions for the various intersection hypotheses as 
follows:
Reject H(1) if
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where n1 50=  and n2 75=  are the pre-specified sample sizes per treatment arm for 
the two stages. We will reject H(1) and conclude that dose group 1 is superior to 
placebo if

max{C(p(1), q(1)), C(p(1,2), q(1)), C(p(1,3), q(1)), C(p(1,2,3), q(1))} ≤ 0.025.

It is important to note that strong control of Type 1 error is maintained even when 
n ni ijp  as long as the values of ni  have been pre-specified, or at least have been 

specified prior to any unblinding of the data. Indeed, it is even permissible to alter 
the stage 2 sample sizes after observing the stage 1 data as long as the weights that 
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are used to combine the p-values from the two stages utilize ni  values that have 
been selected prior to unblinding the data.

20.6.4  Analysis of the Primary Efficacy Endpoint

The primary efficacy analysis was conducted on the ITT population and was based 
on the data from the 4-week efficacy assessment period of the placebo-controlled
treatment phase (MacArthur et al. 2012). The primary efficacy endpoint has a binary 
outcome, defined as two or less watery bowel movements per week during at least 
2 of the 4 weeks.

Imputations for clinical response were handled as follows: A subject’s data were 
evaluated for assessment of clinical response each week if at least five daily assess-
ments per 7-day weekly period were available; that is, if 0, 1, or 2 days’ data were
missing, there was no imputation. If less than 5 days of data were available, then the 
subject could not be classified as a responder for that week. Subjects who discontin-
ued prematurely (i.e., before scheduled visit 3) during the 4-week efficacy assess-
ment period were classified as nonresponders.
Subjects who used an antidiarrheal medication (ADM) or opiate pain medica-

tion, including any combination ofADM or opiate pain medication, for greater than
three consecutive or non-consecutive days during the 4-week efficacy assessment
period were permitted to remain in the study, but were classified as nonresponders.
For the purpose of convention, if the screening phase was extended or contracted

for any reason, visit 1 would still remain day 4 on the schedule of assessments.
Therefore, the run-in period remained days -3 to -1, the first day of the efficacy 
assessment period remained day 1, and the last day of the efficacy assessment period 
remained day 28. The efficacy assessment period for the purposes of the primary 
and secondary efficacy variables remained days 1–28 regardless of the actual day on 
which visit 3 (days 28–34) occurs.

Patients in ADVENT trial were male or female of at least 18 years of age and 
presented with a history of diarrhea. Diarrhea was defined as either persistent loose 
stools despite regular use of antidiarrheal medications (ADM) or one or more
watery stools per day without regular ADM use of at least 1-month duration, prior
to the screening period. During the baseline period, which comprised a single-blind, 
placebo screening phase lasting for at least 10 days, the diarrhea symptoms were 
measured using patient diaries in an interactive voice response system (IVRS). If a
subject had more than 7 days of baseline efficacy (IVRS) data, then the last 7 days
were used. Patients who reported at least one watery bowel movement per day on at 
least 5 of the last 7 days of the baseline screening period and urgency on at least 1
of the last 7 days were eligible for randomization into the double-blind, placebo-
controlled phase of the ADVENT trial.
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20.7  Data Monitoring and Study Implementation

20.7.1  Data Monitoring Committee Membership

The InterimAnalysis Committee (IAC) included three voting members, with medi-
cal experience in gastroenterology, HIV disease, and the conduct of clinical trials. 
Their primary responsibility was to implement the pre-specified dose selection cri-
teria. Each of the three IAC members carried equal votes for dose selection. A quo-
rum consisted of at least two of the three IAC members. In the case of a nonvoting
member or tie, or an absent member, the Chairperson would cast the tie-breaking
vote. The selected dose was revealed only to those personnel required to prepare and 
ship the study drug for stage 2.
The IAC was also responsible for ongoing safety monitoring by examination of

unblindedAE and SAE data. If a significant safety signal emerged, it would be com-
municated to the medical monitor of the study.
This study also had a consulting statistician (CS) as a nonvoting member of the

IAC. The CS played a dual role—preparing the data for presentation to the IAC
members, and explaining the fine points of adaptive design.

20.7.2  Dose Selection Criteria

The IAC Charter stipulated that selection of the dose of crofelemer for stage 2
should be based on the following criteria:

 1. The primary efficacy variable in the ITT population, concomitant with AE and 
SAE rates.

 2. Assuming that there are no safety issues, the crofelemer dose selected for stage 
2 is the one for which the primary efficacy variable in the ITT population is at 
least 2.0 % greater than the other crofelemer treatments. If there are safety issues, 
the decision as to dose selection is too complex to pre-specify.

 3. If two or three treatment groups’ percents are less than 2 % of each other, and 
there are no safety issues, the lowest of these doses will be selected for stage 2.

20.7.3  Interim Analysis

An interim analysis was to be performed when 50 subjects are randomized to each 
of the four treatment groups and completed the placebo-controlled treatment period 
or terminated the study (excluding the 14-daypost-dosing telephone call). Enrollment
was stopped at approximately 50 subjects per treatment group until the interim anal-
ysis and decision for stage 2 are completed. An analysis was conducted on the 
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primary efficacy endpoint in the ITT population and various safety parameters. 
Based upon an assessment of efficacy and safety, sponsor selected one of the cro-
felemer doses to continue along with placebo into stage 2. The interim analysis was 
not used to adjust the sample size or to stop the study early due to positive efficacy 
treatment results.

20.7.4  Duration of Interim Analysis Period

There are two particularly interesting items related to the conduct of this trial. The 
first one is that the enrollment paused during the interim analysis period. The second 
is that there was an internal agreement by the sponsor to be blinded to the selected 
dose. The decision of dose selection at the end of stage 1 and the time needed for 
statistical analysis were kept to a minimum to avoid selection bias. Enrollment in 
stage 1 was temporarily halted when approximately 50 subjects had been random-
ized to each of the four treatment groups (approximately 194 subjects total). The
time point at which the last of these subjects had completed the 28-day placebo-
controlled treatment period or terminated the study marked the start of the interim 
analysis period. The CS received cleaned interim data from the CRO, compiled the
necessary efficacy and safety tables and listings, prepared an electronic copy of the 
Interim Analysis Report, and convened a meeting of the IAC. Immediately upon
termination of the IAC meeting the CS prepared four notification memoranda, one
for the medical monitor, and three for the drug distribution vendors responsible, 
respectively, for quality assurance, clinical supply management, and IVRS. The
medical monitor was only notified that a dose had been selected without identifying 
the dose. The three drug distribution vendors were given the identity of the selected 
dose. This marked the end of the interim analysis period. Enrollment was resumed 
to the selected dose and placebo. The duration of interim analysis period was not to 
be kept longer than 8 weeks.

20.7.5  Maintaining Confidentiality

Very strict procedures were applied to prevent from the interim results leakage that 
would bias the stage 2. All analyses were prepared by the CS and entered into the
Interim Analysis Report. The CS was not a sponsor employee and had no direct
relationship to the CRO handling the site monitoring and data management. The
statistical software files used to prepare data tables and listings and electronic copy 
of the Interim Analysis Report were stored securely such that neither the sponsor
nor the CRO could access them. The randomization code was stored on a computer
that sponsor cannot access, and the selected dose was revealed only to those person-
nel required to prepare and ship the study drug for stage 2.
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20.8  Results

20.8.1  Disposition, Demographics, and Efficacy

A total of 376 patients were randomized in the ADVENT trial with 238 patients in
the crofelemer treatment groups and 138 patients in the placebo group. Of these 374
patients received drug (or placebo) and were included in the intent-to-treat (ITT)
population for the primary efficacy endpoint (see Fig. 20.7). More than 85 % of the
randomized patients completed the placebo-controlled (PC) treatment phase of the
trial. Eighteen patients in the crofelemer group and nine patients in the placebo 
group discontinued during the placebo-controlled (PC) phase of ADVENT. In the
placebo-free (PF) extension phase of the trial, 337 patients were treated with cro-
felemer at dose levels of 125 mg BID (n=220), 250 mg BID (n=67), or 500 mg
BID (n=50). Of the 337 patients, 126 patients had received placebo during the PC
phase of the trial.
Combined analysis of demographics indicated that most of the patients in the PC

phase (84 %) in each treatment group were male with a mean age of 45 years. By
race, Caucasians, African-Americans, and Hispanics constituted at least 98 % of the
patients randomized in the trial. The baseline diarrhea characteristics and symptom 
scores were similar across crofelemer and placebo groups in the ITT population. 
The HIV characteristics were balanced across the groups and most patients in each 
group (78 %) had an HIV viral load <400 copies/mL at baseline and more than 96 %
of the patients in each group reported the use of anti-retroviral therapy (ART).

Fig. 20.7 Primary efficacy results by study stage in the ADVENT trial
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Crofelemer demonstrated a statistically significant and clinically relevant treat-
ment effect for the primary endpoint of proportion of patients achieving a clinical 
response. Clinical response was defined as reduction of number of watery stools per
week of less than two (<2) for at least 2 out of the 4 weeks of the PC phase of the
trial. The significance of crofelemer efficacy on the primary endpoint was further 
supported by the treatment effects of crofelemer on the secondary endpoints that 
evaluated various diarrheal symptoms such as daily watery bowel movements as a 
measure of watery stool frequency and stool consistency. The efficacy of crofelemer 
was also sustained and in fact improved, during the PF phase of the 20-week period,
indicating the durability of the efficacy of crofelemer in the treatment of HIV- 
associated diarrhea.

A significantly larger proportion of patients treated with crofelemer at 125 mg 
BID group achieved clinical response compared to those treated with placebo (18 %
vs. 8 %; one-sided p=0.0096, adjusted for dose selection and multiplicity by the
Posch et al. (2005)) method in the ITT population. This result is statistically signifi-
cant at the one-sided 0.025 level. Details of the computations resulting in this 
adjusted p-value of 0.0096 are given below.

 

The weights for combining the data from the two stages were computed from the 
total sample sizes of the 125 mg and placebo arms prior to unblinding the results. 
Thus the stage 1 and stage 2 weights are, respectively,
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Since p1=0.0019, p2=0.0564, and p3=0.0024, the adjusted stage 1 p-values for
the various intersection hypotheses are obtained by Simes method as follows:
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The corresponding Simes-adjusted stage 2 p-values are

 q q q q1
12 13 123 0 1690= = = =( ) ( ) ( ) . .  

Thereupon the combined p-values from both stages are
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Since all these combined p-values are less than 0.025 we can claim, by the prin-
ciple of closed testing, that the 125 mg crofelemer dose is statistically superior to 
placebo at the overall significance level of 0.025. The multiplicity-adjusted overall 
p-value is then

 
max . , . , . , . .0 0067 0 0096 0 0077 0 0095 0 0096( ) =  

The efficacy of crofelemer on the primary endpoint was further substantiated by 
sensitivity analyses controlling for the impact of protocol deviations on the out-
come, using the per-protocol (PP) population and a Cochran-Mantel-Haenszel
(CMH) test (18 % vs. 8 %, p=0.0181). Additional analysis controlling for geo-
graphic region also demonstrated a significant crofelemer treatment effect (18 % vs.
8 %, p=0.0127).
Subgroup analyses showed that crofelemer treatment effect was more pro-

nounced in patients with a more clinically significant diarrhea at baseline and the 
clinical response endpoint was consistently correlated with other daily assessments 
of changes in diarrheal symptoms.

20.8.2  Review of Results

20.8.2.1  Stage 1

Crofelemer 125 mg BID and 500 mg BID dose levels performed similarly in stage
1 and one-sided treatment difference between crofelemer the placebo group was 
statistically significant for 125 mg BID (one-sided p=0.0019) and 500 mg BID
(one-sided p=0.0024). A statistical trend in favor of crofelemer was also observed
for the 250 mg BID dose group (one-sided p=0.0563) in the primary efficacy end-
point. A dose-response trend was observed in stage 1 responder analysis for the 
exploratory secondary endpoint of stool consistency (p=0.0039).
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Monthly response rates observed at the interim analysis were 20.5 % (9 out of 44),
9.3 % (5 out of 54), and 19.6 % (9 out of 46) in 125 mg, 250 mg, and 500 mg cro-
felemer doses, respectively, compared to 2 % (1 out of 50) in placebo arm.

20.8.2.2  Interim Analysis

Based on the criteria for dose selection outlined in the Interim Analysis Charter
(IAC), the lowest dose of 125 mg BID crofelemer was advanced by the independent
analysis committee for stage 2.

20.8.2.3  Stage 2

The low dose (125 mg) was selected to advance to stage 2, based on these results
and the pre-specified dose-selection criteria. Response rates in stage 2 were 16.3 %
(15 out of 92) in crofelemer 125 mg arm, compared to 11.4 % (10 out of 88) in
placebo arm. The proportion of responders in stage 2 did not result in a statistically 
significant treatment difference due to the higher proportion of responders in the 
placebo group (one-sided p=0.1690). An analysis of baseline diarrhea in placebo
patients between stages 1 and 2 showed a lower proportion of diarrhea in placebo 
patients in stage 2 (average daily watery bowel movements for stage 1 vs. stage 2
being 3.5 vs. 2.8, p=0.0443).
Per the defined StatisticalAnalysis Plan (SAP), the results from stage 1 and stage

2 were combined to evaluate the efficacy of crofelemer treatment using the Posch 
and Bauer method (Posch et al. 2005). Following the combination of the results
from the two stages, the clinical response rates were 17.6 % in crofelemer 125 mg
arm, and 8.0 % in the placebo arm (one-sided p-value=0.0096) (see Fig. 20.8).

20.8.3  Secondary Efficacy Endpoints (PC Phase)

Crofelemer produced a significant reduction in mean daily watery stool frequency
from baseline to end of treatment (p=0.0424). Similarly, crofelemer improved stool
consistency compared to placebo (p=0.0166). The secondary endpoints were
exploratory and data for these two endpoints were combined from stage I and stage 
II portions for the placebo and crofelemer 125 mg dose groups only.

20.8.4  Long-Term Efficacy of Crofelemer (PF Phase)

Placebo crossover patients who received 125 mg BID crofelemer during the PF
phase had significantly greater odds for achieving clinical response during each of 
the 5 months of the PF phase compared to their experience during the 1-month PC
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phase (36 % vs. 9 %, odds ratio 5.85, p<0.0001). The clinical response rates in this
group of patients ranged between 36 and 55%over the 5-month PF phase (p<0.0001
for each month).
Weekly and monthly responder analyses in PF phase demonstrated the durability

of crofelemer efficacy in HIV-associated diarrhea patients. The proportion of clini-
cal responders during the 20-week PF phase was higher than during the 4-week PC
phase when evaluated on a weekly or a monthly basis (see Fig. 20.9).

20.8.5  Crofelemer Safety

The safety profile of crofelemer in the ADVENT trial was comparable to that 
observed with placebo and consistent with an HIV-positive patient population. 
Crofelemer demonstrated a favorable safety profile for each dose group (125 mg
BID, 250 mg BID, and 500 mg BID) during the double-blind, placebo-controlled 
(PC) phase and during the 5-month PF phase. Treatment emergent adverse effects
(TEAEs) were observed in 27 % of crofelemer-treated patients compared to 33 % of
placebo-treated patients during the 1-month PC phase. The incidence of severe
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Fig. 20.8 Primary efficacy endpoint analysis from the ADVENT trial
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TEAEs was 1 % in the crofelemer-treated patients compared to 4 % in the placebo-
treated group. Severe adverse effects (SAEs) were lower in crofelemer-treated
group compared to placebo-treated group (1 % vs. 3 %) and TEAEs leading to drug
discontinuation was 0 % in the crofelemer-treated group compared to 3 % in the 
placebo group.
Most frequently reported TEAEs were infections (10 % in crofelemer and 11 %

in placebo groups) and gastrointestinal disorders (9 % in crofelemer- and 6 % in
placebo-treated groups). During the long-term PF phase, the TEAEs were similar to
the PC phase for crofelemer treatment. Most frequently reported TEAEs were upper
respiratory tract infections (4 %), cough, nasopharyngitis, bronchitis, nausea and
ALT elevation (3 % each) and AST increases, back pain, flatulence, gastroenteritis,
and headache and sinusitis (2 % each). There were no ECG signals suggesting any
cardiac safety risk with crofelemer treatment at any dose compared to placebo 
patients. Furthermore, crofelemer did not adversely affect the HIV status of the
patients or the efficacy of ART in the ADVENT trial.

20.8.6  Pharmacokinetic Analysis

Population pharmacokinetic analysis using the sparse sampling technique showed 
that crofelemer absorption was negligible in all the treated patients. About 15 % of 
patients from the highest dose group of crofelemer (500 mg BID) in the PC phase
had quantifiable crofelemer plasma concentrations exceeding 50 ng/mL. The dose
selected for stage 2 (125 mg BID), less than 1 % of the plasma samples, had quan-
tifiable crofelemer plasma concentrations.
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20.8.7  Regulatory Recommendation

The NDA was submitted to FDA in December 2011 and crofelemer got approved
for symptomatic treatment of HIV-related diarrhea on December 31, 2012. The drug 
is marketed as Fulyzaq.
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