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Preface

A great deal of progress has been made in the past couple of decades with regard to
research and publications focused on technical and methodological aspects of plan-
ning and analyzing adaptive design. The major impetus behind the interest in the
use of adaptive designs is the increased efficiency they offer, resulting in savings of
cost and time, ultimately getting drugs to patients sooner. However, the adoption of
adaptive designs in clinical development has been relatively low, approximately
20 % in recent years, according to a survey conducted by Tufts Center for the Study
of Drug Development. One of the chief reasons for this has been the increased com-
plexity of adaptive trials compared to traditional trials. Barriers, some perceived and
some real, to the use of clinical trials with adaptive features still persist, and these
may include, but are not limited to, the concerns about the integrity of study design
and conduct, the risk of regulatory acceptance, the need for an advanced infrastruc-
ture for complex randomization and clinical supply scenarios, change management
for process and behavior modifications, extensive resource requirements for the
planning and design of adaptive trials, and the potential to relegate key decision
makings to outside entities (such as Data Monitoring Committees). There have been
limited publications on practical considerations and recommendations on adaptive
trial designs and suggestions regarding best practices and solutions on implementa-
tion to address these real or perceived barriers.

This book aims to fill this publication void and serves as a resource for trialists
who wish to consider adaptive trials in their clinical development programs, pro-
viding them with guidance on practical considerations for adaptive trial design and
implementation. The target audience is anyone involved, or with an interest, in the
planning and execution of clinical trials, in particular, statisticians, clinicians,
pharmacometricians, clinical operation specialists, drug supply managers, infra-
structure providers working in academic or contract research organizations, gov-
ernment, and industry. Our goal for this book is to provide, to the extent possible,
a balanced and comprehensive coverage of practical considerations for adaptive
trial design and implementation.
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This book is comprised of three parts: Part I focuses on practical considerations
from a design perspective, Part II delineates practical considerations related to the
implementation of adaptive trials, and Part III presents a rich collection of practical
case studies.

Part I includes a total of ten chapters. Chapter 1 discusses the need for and the
future of adaptive designs in clinical development. Regulatory guidance documents
on adaptive designs have been released by the European Medicines Agency (EMA)
and US Food and Drug Administration (US FDA). Chapters 2 and 3 discuss key
points in these two guidance documents from industry and regulatory perspectives,
respectively. Improving clinical development efficiency starts at the program level.
To provide trialists with the tools to strategically consider their clinical development
plans, Chap. 4 describes adaptive program concepts and illustrates the efficiency of
complex strategies for clinical program development through a case study, while
Chap. 5 provides optimal Go/No Go decisions for clinical development. To provide
guidance to practitioners on key issues associated with interim analyses, Chap. 6
presents a comprehensive and balanced discussion on optimal timing and frequency
of interim analyses, including logistic and regulatory considerations. Adaptive
design approaches provide greater efficiency, as compared to traditional design
approaches, with regard to dose finding and optimal dose selection. The main statis-
tical methods available for planning and analysis of adaptive designs in Phase I, II,
and III are covered in Chap. 7. Chapter 8 provides a review of currently available
simulation software tools, discussing detailing their specific features. Often evalua-
tion of an adaptive design approach for a trial requires careful examination of ran-
domization needs. Randomization challenges in adaptive design trials, and
randomization techniques that help addressing these challenges, are described in
Chap. 9. Chapter 10 discusses response-adaptive randomization, including regula-
tory concerns and recommendations for the path forward.

As reported in the DIA Adaptive Design Scientific Working Group (ADSWG)
2012 survey, the key barriers for the broader adoption of adaptive trials in clinical
development include the lack of experience with and knowledge in the implementa-
tion of adaptive designs, along with a lack of appropriate processes and infrastruc-
ture to support efficient trial execution. Part II of the book deals with these issues in
Chaps. 11 through 16. Chapter 11 highlights operational challenges that must be
taken into consideration when conducting an adaptive trial and provides strategies
for efficient execution of an adaptive design trial. Similarly, Chap. 12 illustrates vari-
ous operational challenges via a case study, while Chap. 13 discusses logistic and
operational challenges with a focus on IT and infrastructure improvement. A particu-
larly critical issue for adaptive clinical trials, with potentially great impact on how
large a role this type of studies will play in confirmatory stages of clinical develop-
ment, involves the processes by which accruing data are collected and analyzed, and
adaptation decisions are made and implemented. Chapter 14 discusses who should
be involved in data review for adaptation decisions, how the data flow and access to
results should be controlled, and the specific role that Data Monitoring Committees
might play in this process. Drug supply and patient recruitment play critical roles in
the ultimate success of adaptive trial execution. Chapters 14, 15, and 16 cover,
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Preface vii

respectively, the roles that modeling and simulation may play in successfully plan-
ning and carrying out clinical supply and patient recruitment strategies.

Putting it all together, Part III, featuring Chaps. 17 through 20, presents four
illustrative case studies ranging from description and discussion of various specific
adaptive trial design considerations to the logistic and regulatory issues faced in trial
implementation. The solutions to practical challenges and recommended best prac-
tices, along with the rest of the chapters in the book, should equip clinical trialists
with the much needed toolkit to embark on their journey to efficient adaptive trial
design and implementation.

We would like to express our sincerest gratitude to all of the contributors who
made this book possible. They are the leading experts in adaptive trial design and
implementation from industry, regulatory and academia. Their in-depth discussions,
thought-provoking considerations, and abundant advice based on a wealth of expe-
rience make this book unique and valuable for a wide range of audiences. We hope
that you will find this book helpful as well. We would also like to thank Marc
Strauss of Springer Science and Business Media for giving us the idea for this book
and for providing us with the opportunity for publication. Thanks also go to Jonathan
Gurstelle and Hannah Bracken, both of Springer Science and Business Media, for
their patience and help in guiding us through the production phase of the book.
Finally, our immense thanks go out to our families for their unfailing support.

Rahway, NJ, USA Weili He
Raritan, NJ, USA José Pinheiro
Rahway, NJ, USA Olga M. Kuznetsova
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Chapter 1
The Need for and the Future of Adaptive

Designs in Clinical Development

Christy Chuang-Stein and Frank Bretz

Abstract There has been much progress in the development and implementation of
adaptive designs over the past 20 years. A major driver for this class of novel designs
is to increase the information value of clinical trial data to enable better decisions,
leading to more efficient drug development processes and improved late-stage suc-
cess rates. In this chapter, we review common types of adaptive designs that have
been developed and the frequently encountered challenges associated with their
implementations. We discuss reasons why, in our opinion, the interest in adaptive
designs will continue to rise. Furthermore, we describe what still needs to be done
to move adaptive designs into our standard toolbox of design options. We empha-
size the importance to implement adaptive designs with thorough upfront planning.
The business case mandates that we treat the opportunities offered by adaptive
designs carefully so that we can successfully foster a broad acceptance of properly
designed and executed adaptive designs, when they represent the best design options
based on their performance characteristics to address the need of a particular
situation.
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1.1 Introduction

The first decade of the twenty-first century saw a great interest in the research and
implementation of adaptive designs in clinical trials to support product develop-
ment. A major driver for this was the observation that the confirmatory trials were
failing at an alarmingly high rate. The rate was allegedly to be between 50 % and
60 %. While safety issues contributed to the high failure rate, a majority of the fail-
ures occurred because of the inability to demonstrate the benefit of the new treat-
ment over the comparator in a superiority trial setting (Milligan et al. 2013). The
finding prompted many to conduct root cause analyses and look for solutions to
reduce the failure rate. This effort led to the investigation of alternative designs that
may allow trialists to critically examine the design features, especially the assump-
tions underlying a design, and modify certain aspects of the design in a prespecified
manner while the trial is ongoing.

The desire for alternative designs led researchers to look beyond group sequen-
tial designs (GSD) which became popular for trials of mortality or major morbidity
endpoints in the 1990s (Jennison and Turnbull 2000). A GSD allows a study to be
stopped early for efficacy or lack thereof. A traditional GSD does not allow chang-
ing design features such as sample sizes or the primary study population once the
study is started.

Other than GSDs, the most noted early research on adaptive designs focused on
sample size re-estimation, both in a blinded (i.e., not using treatment assignment
information) and an unblinded (i.e., using treatment assignment information) man-
ner (Wittes and Brittain 1990; Cui et al. 1999; Gould 2001; Friede and Kieser 2001;
Kieser and Friede 2003; Proschan 2005; Chuang-Stein et al. 2006). The former is a
response to inaccurate assumptions on the variability associated with a continuous
endpoint or an assumed event rate for a binary endpoint among those who received
the control treatment in the enrolled population. By comparison, the unblinded sam-
ple size re-estimation is in response to an assumed treatment effect that is overly
optimistic judged by the interim data collected in the study. As a result, the trial
sponsor may wish to increase the sample size so that the study has a reasonable
chance to detect a smaller, and still clinically meaningful, treatment effect. The
resulting designs include proper statistical analysis that controls the overall type 1
error rate and addresses the estimation of the treatment effect.

Even early on, researchers of adaptive designs realized the importance of opera-
tional support needed to implement these designs. This is so because an adaptive
trial requires (1) availability of fit-for-use interim data in a timely manner to enable
adaptation decisions, (2) a committee to oversee the decision process for the pro-
posed adaptations, and (3) a proper communication channel by which major deci-
sions could be relayed back to the sponsor or the study team. The absence of a well
laid-out process with tight control could introduce operational bias to an adaptive
trial. These considerations have led many to propose procedures that focus on the
execution of adaptive trials (Gallo 2006a, b; Quinlan and Krams 2006; Gaydos et al.
2009; Antonijevic et al. 2013).
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The research on sample size re-estimation started the trend of using simulation
to thoroughly evaluate study designs for their performance characteristics. As
efforts to look for alternative designs gathered momentum, clinical trialists realized
that another major factor contributing to the high failure rate is the suboptimal
choice of dose(s) from the dose—response study in phase II (Antonijevic 2009).
A traditional dose-response study typically includes three doses with a concurrent
control. Patients are randomized to the four treatment groups in fixed ratios through-
out the study. At the end of the study, each dose is compared with the control to
decide if it is worthy of further testing in phase III trials. This practice depends criti-
cally on our ability to include relevant doses that are in the appropriate range of the
dose-response curve in the phase II dose-response study. Experience has shown
that this has not always been the case. In fact, many dose-response studies had to be
repeated with lower doses, a higher dose or doses between two previously chosen
doses. Realizing the value of a more quantitative product development process
(Kowalski et al. 2007), researchers began to advocate including more doses in a
dose-response study and conducting model-based analyses to identify the mini-
mum effective dose (Milligan et al. 2013).

Because dose-response studies focus more on estimation than testing, their
designs allow more flexibility in which methods to use and are less concerned with
type I error rate control. In fact, dose-response studies have proven to be the most
fertile ground for adaptive designs (Bornkamp et al. 2007; Pinheiro et al. 2010).
Proposed adaptations for these studies include modifying randomization ratio of
patients to doses based on interim results, introducing new doses or dropping exist-
ing doses. The analysis as well as the decision criteria for progressing the com-
pound to phase III development could be based on either the Bayesian or the
frequentist approaches.

The logical progression of innovation in study designs took another forward step
when researchers advocated the need to consider studies in the exploratory phase
together with those in the confirmatory phase in an integrated manner (Julious and
Swank 2005; Bretz et al. 2009a). They argued that while each study has its unique
role in supporting product development and approval, studies need to be planned
together so that the information produced by distinct studies fits together to tell a
complete story. This observation has motivated active research to assess adaptivity
at the program level. Metrics used to compare phase II designs under this new para-
digm include the probability of a successful phase III trial (Antonijevic et al. 2010)
and the expected net present value of the product (Patel et al. 2012).

Common interests among statisticians supporting clinical trials in adaptive
designs led to the formation of the Adaptive Designs Working Group (ADWG) in
the spring of 2005 under the auspices of the Pharmaceutical Research and
Manufactures of America (PhRMA). The initial objectives of the group were to
foster and facilitate wider usage and regulatory acceptance of adaptive designs to
enhance clinical development through fact-based evaluation of the benefits and
challenges associated with these designs (Gallo et al. 2006). Since 2005, ADWG
has sponsored workshops, presentations and publications. Members of the group
have also reached out to regulators to discuss best adaptive design practice and
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share experience from implementing adaptive designs (Enas et al. 2008;
Chuang-Stein et al. 2009). Early interactions with regulators for confirmatory trials
were considered especially important because regulatory buy-in was essential for
these trials. In addition, the increasing trend of conducting multiregional trials to
satisfy marketing authorization requirements in multiple regions implied that we
needed regulators to hold similar views on this new class of designs.

Since its inception, ADWG ran multiple workstreams concurrently. Some earlier
workstreams such as regulatory interactions and desirable features of software to
support modeling and simulation were sunset after the workstreams had completed
the planned activities. Other workstreams have spanned over many years. The most
noted long-running activity has been the monthly key opinion leader lecture series.
Early lectures focused on theory behind adaptive designs. Over time, the lectures
have moved to case studies of adaptive trials. The sponsorship of ADWG was offi-
cially transitioned from PhRMA to the Drug Information Association (DIA) in
2010. The name of the group was changed to Adaptive Design Scientific Working
Group (ADSWG) after the transition. ADSWG remained active with additional new
workstreams such as adaptive program, precision medicine and portfolio evalua-
tion. A survey workstream repeated a survey (Jorgens-Coburger 2012) previously
reported by Quinlan et al. (2010). The repeat survey showed the uptake in adaptive
designs, not just by pharmaceutical sponsors, but also by academic institutions. The
survey also showed a clear increase in the use of adaptive designs in all phases of
drug development.

The interest in adaptive trials has led the European Medicines Agency to issue a
reflection paper on adaptive designs in 2007 (CHMP 2007). In the US, the Food and
Drug Administration issued a draft guidance in February 2010 (US FDA 2010) for
the public to comment. EMA’s reflection paper focuses primarily on confirmatory
trials while FDA draft guidance covers trials in both the exploratory and the confir-
matory space. At the time this chapter was finalized (February 2014), the FDA has
yet to finalize its draft guidance on adaptive designs.

The advent of personalized medicine has offered another application of adaptive
designs because changing the primary patient population is an adaptive feature.
Research work supporting this aspect of adaptation has initially focused on oncol-
ogy trials (Wang et al. 2007; Brannath et al. 2009). It will undoubtedly expand to
other disorders where there are good clinical and biological rationales for choosing
specific subgroups. We will describe the role that adaptive designs can play in help-
ing deliver personalized medicine in Sect. 1.3.

In the next section, we will give a high-level overview of the advancements in
adaptive designs. In Sect. 1.3, we will argue why interest in adaptive designs will
continue to rise. While research on adaptive designs has made significant progress
in recent years (Bretz et al. 2009a; Gaydos et al. 2009), there remains much work to
do to turn theory into practice. We will describe such work in Sect. 1.4.

We have confidence that statisticians, with their expertise and collaborative
spirit, will take a leadership role in making adaptive designs part of the design arma-
mentarium for clinical trials in the twenty-first century.
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1.2 Advancements in Adaptive Designs

In this section we describe major types of adaptive designs used at different phases
of drug development and link them to topics covered in the various chapters of this
book. A detailed taxonomy of adaptive designs in the context of clinical develop-
ment is given in Dragalin (2006). An overview of applications of adaptive designs
throughout drug discovery and development is given by Bretz et al. (2009b). We
also discuss advancements in the implementation and tool development for adaptive
trials. We offer two examples of confirmatory adaptive trials.

1.2.1 Types of Adaptive Designs

1.2.1.1 Adaptive Randomization Designs

One of the earliest types of adaptive designs described in the literature is adaptive
randomization which allows changing the treatment randomization probabilities
during an ongoing study. Adaptive randomization can be grouped into four catego-
ries (Hu and Rosenberger 2006): (1) Restricted randomization, where the allocation
probability is conditional on past treatment assignments, such as the biased coin
design from Efron (1971); (2) covariate-adaptive randomization, where the alloca-
tion probability is conditional on past treatment assignments, covariates and the
covariate vector of the current patient, such as the minimization design from Pocock
and Simon (1975); (3) response-adaptive randomization, where the allocation
probability is conditional on past treatment assignments and responses, such as the
randomized play-the-winner rule from Wei and Durham (1978); and (4) covariate-
adjusted response-adaptive randomization that combines covariate-adaptive and
response-adaptive randomization. For a recent overview of adaptive randomization
we refer readers to Rosenberger et al. (2012).

To motivate the use of adaptive randomization techniques in clinical practice,
consider, for example, a clinical study with four important covariates: study site (20
centers), gender (male or female), age (<65 or >65), and prognosis (good, poor).
Applying stratified randomization one would have to balance treatment assignment
in each of 20x2 x2x2=160 strata, which is clearly infeasible in a study of moder-
ate size. However, if marginal balance is sufficient (i.e., balanced on the four covari-
ates individually), adaptive randomization techniques applied tothe 20+2 +2 +2=26
covariate levels are possible. Covariate-adaptive randomization approaches incor-
porate information on important patient baseline covariates into the randomization
design in order to prospectively balance prognostic profiles of patients in different
treatment groups while maintaining randomization. For a more general discussion
of randomization challenges in adaptive design studies, we refer readers to Chap. 9.
Chapter 10 focuses on response-adaptive randomization designs.
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1.2.1.2 Adaptive Dose—Response Designs

Another important application of adaptive designs occurs in phase I and II studies to
estimate dose—response and/or target doses of interest. This includes Bayesian adap-
tive dose-escalation designs, such as the continual reassessment method (CRM) pro-
posed by O’Quigley et al. (1990) to estimate the maximum tolerable dose in phase I
studies. The original CRM chooses the first dose level based on some assumed
dose-response model. After each cohort of patients, the model is updated. The
updated model is used to calculate the probability of dose-limiting toxicity (DLT) at
each dose of interest. The statistical dose recommendation for the next patient cohort
is communicated to the clinical team, who decides on the next dose based on the
statistical input as well as other relevant information (e.g., toxicities that do not
qualify for a DLT). The basic CRM has led to much research (Garrett-Mayer 2006)
and numerous extensions (Neuenschwander et al. 2008; Cheung 2011).

A challenge in selecting the right dose is the trade-off between desired and un-
wanted effects. A prerequisite for informed decision and dose selection at the end of
phase II is a solid characterization of the dose-response relationship. In the past,
phase II dose finding studies were often designed using a small number of doses and
a narrow dose-range, focusing on the upper end of the dose-response relationship.
Only in recent years has there been a noticeable shift towards investigating the full
dose-response range and estimating the minimum effective dose. This shift was
partially driven by the PARMA “Adaptive Dose-Ranging Studies” (ADRS) working
group. The objectives of this group were to develop and evaluate novel adaptive and
non-adaptive dose-ranging methods and to provide methodological recommenda-
tions for industry and regulatory agencies alike.

Extensive simulation work conducted by the ADRS working group showed that
no single type of clinical trial design or analysis is universally best, though novel
approaches outperform conventional designs in many plausible scenarios.
Simulations also showed that with current phase II trial sizes, even novel dose-
ranging approaches have non-negligible chance of making erroneous dose selec-
tion. It is clear that both the design and the amount of information to be generated
need careful consideration. The working group also concluded that the probability
of success was increased by including a wider range of doses in these trials. Despite
these findings, adaptive designs are not always optimal, and are not always feasible.
Trial sponsors should maximize their success rates by employing a “toolbox”
approach, selecting different designs for different experimental situations. Details
on adaptive dose-ranging designs can be found in the white papers from the ADRS
working group (Bornkamp et al. 2007; Pinheiro et al. 2010).

1.2.1.3 Group Sequential Designs
Although there is a vast literature on sequential designs, with initial ideas dating

back to the 1920s, for most clinical trials it is unrealistic to assess data after every
observation. This restriction has led to group sequential designs (GSDs) that include
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only a small number of interim analyses as groups of observations become available.
GSDs have been used for clinical trials since the 1970s (Pocock 1977; O’Brien and
Fleming 1979) and are now standard for many long-term trials because these trials
often include hundreds or thousands of patients and may last for several years.
Ethical and economic reasons often mandate the conduct of interim analyses for
these trials because: (1) patients should not be treated with a new therapy if the
ongoing trial gives no indication of a potential benefit associated with the new ther-
apy; (2) clinical trials should not be continued if a clear tendency favoring a particu-
lar treatment emerges. Thus, clinical trial designs that include the possibility for
early decisions may help reduce the overall costs and timelines of the development
while meeting the ethical obligation.

To properly control the type I error rate when interim analyses could result in
early declaration of efficacy, researchers have developed a variety of stopping pro-
cedures for different types of data (e.g., continuous, binary, survival). The theory of
GSDs is well described in, for example, the review paper by Emerson (2007) and
the books by Whitehead (1997), Jennison and Turnbull (2000), and Proschan et al.
(2006). GSDs have been implemented in software packages such as ADDPLAN,
EAST, PEST and S+SeqTrial (Wassmer and Vandemeulebroecke 2006). Some of
them are also described in Chap. 8.

Despite their popularity, GSDs have some limitations. For example, it is neces-
sary to prespecify the required sample size for a GSD in the study protocol. While
conceptually simple, choosing an appropriate sample size could be challenging due
to uncertainties around nuisance parameters or the definition of a clinically mean-
ingful treatment difference. GSDs address the latter issue by allowing the study to
stop early if the observed effect is larger or smaller than the effect for which the
study was powered to detect. However, modifying the sample size for future stages
of the trial based on the interim efficacy information is not allowed under the tradi-
tional GSDs.

1.2.1.4 Sample Size Re-estimation

Sample size re-estimation (SSR) methods have been developed since the 1990s. SSR
allows one to adjust the sample size of the trial based on emerging interim data of the
ongoing trial. SSR methods fall into two main categories, depending on whether the
treatment randomization information is used (unblinded SSR) or not (blinded SSR).
In the latter case, an SSR approach adjusts sample size that were calculated using
assumed nuisance parameters that are judged to be erroneous from blinded data at a
prespecified interim look. Wittes and Brittain (1990) first introduced this concept
and referred such designs as internal pilot study designs. They have found that such
designs can be used in large randomized clinical trials to assess key nuisance param-
eters (e.g., the error variance for continuous data, the response rate with binary data
in the control group, or the accrual rate with time-to-event data) and make appropri-
ate modifications to the sample size with little impact on the type I error rate.

In contrast, unblinded SSR is based on a revised estimate of treatment effect
using unblinded interim data. While using unblinded data could provide more
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accurate sample-size estimates, concerns exist over potential bias that may result
from knowledge of observed treatment effect at interim. External data monitoring
committees (i.e., external to the trial sponsor) are typically used to handle unblinded
SSR for registration trials. As the type I error rate might be affected when using
unblinded data to effectuate trial adaptations, care is necessary when conducting the
final analysis. Chapters 11 through 14 discuss blinding and unblinding issue associ-
ated with adaptive trials.

A common approach to control the type I error rate is the combination test prin-
ciple that combines stage-wise p-values using a prespecified combination function
(Bauer and Kohne 1994). The key idea is to calculate separate test statistics from the
samples at the different stages (e.g., before and after an interim analysis) and to
combine them in a prespecified way for the final decision. Examples of such p-value
combination functions include Fisher’s product test and the inverse normal method
(Lehmacher and Wassmer 1999; Cui et al. 1999). A closely related approach is
based on the conditional error principle, which computes the conditional type I error
rate based on the observed data at the interim analysis under the null hypothesis
(Proschan and Hunsberger 1995; Miiller and Schifer 2004). Chapter 6 discusses at
a strategic level the optimal timing of an interim analysis for futility and/or sample
size re-estimation. Additional discussions on sample size re-estimation can be
found in Chuang-Stein et al. (2006) and Friede and Kieser (2006).

1.2.1.5 Treatment Selection Designs

The p-value combination function approach and the conditional error rate princi-
ple can also be used for other types of adaptations such as changes in randomiza-
tion ratio, study population, or number of treatment arms with a strict type I error
rate control (Hommel 2001; Bretz et al. 2006). A particularly appealing applica-
tion occurs in phase III studies with treatment selection at interim. Consider, for
example, a phase III study that starts with several treatments and a control. At a
prespecified interim analysis, one (or more) treatment(s) would be selected
based on the available information, external information, and expert knowledge.
Recruitment would continue, but now patients will only be randomized to the
selected treatment(s) with a possibly reassessed sample size. The final analysis of
the selected treatment(s) consists of patients in both stages and is performed in
such a way that the overall type I error rate is controlled at a prespecified level,
thus providing confirmatory evidence of efficacy that is of the registration quality.
Chapter 7 includes a case study of a confirmatory treatment selection design.

1.2.2 Implementation of Adaptive Trials

The overall statistical methodology to implement confirmatory adaptive designs
seems to be reasonably developed (Bretz et al. 2009a). Strict type I error rate control
is mandatory for acceptable phase III adaptive designs. This implies that the
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experimental questions and hypotheses to be tested need to be clearly specified
upfront in the study protocol. The number of possible adaptations should be kept to
a minimum. Explorative, hypotheses-generating adaptive designs are not acceptable
for confirmatory trials.

While adaptive designs often increase the information value given the same
number of patients and lead to shorter overall development time and earlier access
to effective treatments by patients, their implementations are subject to several fac-
tors such as time needed to assess treatment response, recruitment speed, proce-
dures to protect trial integrity, and drug supply management. These factors may
hinder the smooth implementation of an adaptive trial. For example, when a trial has
the option to terminate treatment arms or change the allocation ratio of patients to a
set of dose groups, drug supply personnel needs to be ready to make the necessary
adjustments to study medications. Chapter 15 discusses drug supply issues associ-
ated with adaptive trials. Similarly, accurate prediction on patient enrollment is
critical for a timely decision because too slow or too fast patient enrollment may put
the planned adaptations at risk. Chapter 16 discusses different models to predict
patient recruitment patterns.

Increasingly, sponsors use interactive voice randomization systems (IVRS) to
manage treatment randomization. Prespecified algorithms could be built into the
system to allow minimum sponsor intervention. Such a system requires careful
upfront validation to ensure that the system is capable of handling the foreseeable
scenarios. Interim results for adaptive trials are generally assessed by data moni-
toring committees that are independent of the study teams. For confirmatory trials,
the data monitoring committees are typically external to the trial sponsors to avoid the
possibilities that the sponsors might subtly affect the trials if they are aware of
the comparative interim results. Chapter 14 discusses the planning, conduct and
monitoring of interim results. Considerations on other key operational challenges,
such as protecting trial integrity and minimizing operational bias, are further dis-
cussed in Chaps. 11-13.

1.2.3 Other Impact of Adaptive Designs

The endeavors of assessing adaptive designs over the last two decades have resulted
in a number of positive by-products. For one, the efforts have led to better integra-
tion of clinical, statistical, operational, and regulatory perspectives when designing
a trial. This is a topic of Chap. 4. Another important by-product is to expand the
focus from the trial to the program level. Focusing the clinical development strategy
at the program level means that an adaptive trial is of benefit only if it offers more
evidence to the overall development program than a non-adaptive counterpart.
Chapter 5 discusses making optimal Go/NoGo decisions that incorporate cost con-
siderations at different stages of drug development.

A third positive impact from the adaptive design evolution is the heavy use of
modeling and simulation techniques. In addition to adaptive designs, statisticians
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have begun to use modeling and simulations to assess a wide range of issues
associated with trial designs such as missing data and multiple comparison proce-
dures. The latter has started a shift towards model-based drug development and
more quantitative decision making.

In our opinion, recent advancements in adaptive designs and their by-products
have contributed substantially to the ultimate objective of employing more efficient
designs and analyses in support of product development.

1.2.4 Two Examples of Confirmatory Adaptive Trials

Adaptive designs are increasingly being used in both the exploratory and the confir-
matory settings. Bauer and Einfalt (2006) performed a literature review of clinical
trials employing adaptive designs that employed methods like p-value combination
functions or conditional error rate functions. Schmidli et al. (2006) provided appli-
cations and case studies of adaptive designs addressing more complex trial objec-
tives (e.g., treatment selection, population enrichment) from their experience.
Quinlan et al. (2010) and Jorgens-Coburger (2012) reported the results of cross-
industry surveys, which showed a clear increase in the use of adaptive designs in all
phases of clinical development during the time between the two surveys. In the
following, we illustrate this trend with two examples where adaptive trials provided
confirmatory evidence for product approval. Further case studies of adaptive trial
designs are presented in Chaps. 17-20.

The first example is an adaptive trial that compared latanoprost in combination
with timolol maleate against latanoprost alone in reducing intraocular pressure. An
unblinded sample size reestimation was planned when approximately 50 % of
patients were half-way through an 8-week treatment period. At this interim analysis,
conditional power to detect a difference between the combination and latanoprost
alone, based on the interim treatment effect estimate, will be calculated. If the
conditional power is >90 %, there will be no change in the sample size. If the con-
ditional power is >50 % but<90 %, the sample size will be increased to obtain a
conditional power as close as possible to 90 %, but the increase will be no greater
than 33 % of the originally targeted sample size. If the conditional power is <50 %,
there will be no change in the sample size and the study will continue to the sched-
uled end. This approach is based on the method in Chen et al. (2004). As stated in
Ando et al. (2011), sample size was not increased after the interim analysis in the
actual trial. The study was found to be positive, leading to the approval of the com-
bination of latanoprost and timolol for glaucoma and ocular hypertension.

The second example is a two-stage adaptive design with treatment selection at
interim. This trial is one of two pivotal trials to support Indicaterol for marketing
authorization for chronic obstructive pulmonary disease (COPD) (Barnes et al.
2011). The aim of the trial was to provide pivotal confirmation of efficacy, safety,
and tolerability of the selected Indicaterol doses, where the dose selection is done at
a prespecified interim analysis. In the first stage, patients were randomized to one of
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seven treatments arms (four different doses of Indicaterol, placebo and two active
control groups). Based on the observed interim data, two Indicaterol doses were
continued to the second stage, together with placebo and one of the two active con-
trols. The final analysis compared the two selected dose groups with placebo and
the continued active control on a prespecified sequence of primary and secondary
endpoints. Evidence from both stages was combined in the final analysis, using a
one-sided Bonferroni adjusted significance level of 0.025/4 for comparing each of
the two Indicaterol doses with the placebo in the final analysis since the study
started with four Indicaterol doses. More powerful approaches using, for example,
p-value combination functions or conditional error rates, could have been applied,
but were not chosen because of the complexity of the trial design and the desire to
test for both primary and some key secondary endpoints.

For the COPD study, different dose selection rules were extensively simulated in
order to understand the operating characteristics of the rules. It is worthwhile to
note that Bayesian decision tools or modeling approaches could have been used to
guide the interim decision without compromising the overall type I error rate. A set
of dose selection guidelines for a variety of possible interim scenarios was compiled
and included in the data monitoring committee charter. The charter, however,
allowed the data monitoring committee to deviate from these guidelines, if neces-
sary (mainly in case of unexpected results), and select doses on its own, possibly
after consultation with senior representatives of the sponsor. In the actual trial, the
intermediate two Indicaterol doses were selected for the second stage. Efficacy,
safety, and tolerability of both doses were confirmed in the final analysis of this two-
stage adaptive trial as well in the second parallel pivotal trial. This case study is
presented in more detail in Chap. 7; see also Lawrence et al. (2014).

1.3 Why Will the Interest in Adaptive Designs
Continue to Rise?

In this section, we will discuss reasons why, in our opinion, the interest in adaptive
designs or in adaptations more generally will continue to rise.

1.3.1 Responding to Emerging Scientific Knowledge
or Regulations

When developing products in diseases with emerging new knowledge or regula-
tions, a sponsor needs to be able to adjust to knowledge from both within a trial and
outside of the trial. While this flexibility may lead to a small reduction in trial design
efficiency measured by the expected sample size needed for the study (Tsiatis and
Mehta 2003), this trade-off is often considered worthwhile.


http://dx.doi.org/10.1007/978-1-4939-1100-4_7

14 C. Chuang-Stein and F. Bretz

For example, in Nov 2010, the US FDA issued a draft guidance for
hospital-acquired and ventilator-associated bacterial pneumonia (HABP and
VABP). The draft guidance sets the 28-day mortality rate as the primary endpoint.
The draft guidance targets a patient population with an approximately 20 % mortal-
ity rate and describes a 10 % non-inferiority margin for an active control trial. The
draft guidance also states that if the 28-day all-cause mortality rate in the active-
controlled group is lower than 20 %, a sponsor should consider using the odds ratio
metric as the measure for assessing treatment efficacy. In the latter case, the non-
inferiority margin expressed on the absolute difference scale will be a function of
the mortality rate in the control group.

Many groups submitted comments to the agency including the Society of Critical
Care Medicine whose comments were posted publicly on March 23rd 2011 (http://
www.regulations.gov/#!documentDetail;D=FDA-2010-D-0589-0015). The society
stated its ongoing efforts to reduce mortality in HABP/VABP patients and ques-
tioned the targeted 20 % mortality rate. They cited a study by Chastre et al. (2008)
that reports 28-day mortality rate of 10.8 % and 9.5 % in the two treatment groups.
The Society commented that this study was the largest clinical trial ever conducted
of an investigational drug for ventilator-associated pneumonia (VAP). The mortality
rate was much lower than that in prior studies, but the Society argued that it was
representative of current VAP mortality rates in Intensive Care Units. They expressed
a significant concern that should the enrollment be expanded to include more unsta-
ble patients to increase the mortality rate in a VABP trial, the mortality rate will
reflect the clinical and critical care management and not the efficacy of the antimi-
crobial being studied. The concern and uncertainty around the mortality rate and
study population expressed by the Society means that some form of adaptation is
necessary for a modern-day trial in HABP or VABP.

The need to respond to emerging information is equally compelling in areas of
unmet medical needs. Increasingly, efforts are directed towards disease-modifying
products. For example, with an aging population, it is highly desirable to have prod-
ucts that could delay the structural progression in osteoarthritis measured by joint
space narrowing (i.e., disease-modifying osteoarthritis drug, DMOAD). Despite the
existence of a pathway for a DMOAD indication, no DMOADs are currently avail-
able commercially. Similarly, many sponsors are interested in a disease-modifying
claim for the Alzheimer’s Disease (AD) even though no guidance yet exists for such
an indication path. In both cases, a sponsor needs to have information on the rate of
disease progression in the placebo group (which may be enriched through inclusion
criteria) since the treatment effect is likely measured in terms of % reduction in
disease progression. For AD, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI, http://adni.loni.ucla.edu/) and other groups have been collecting longitudi-
nal biomarker and clinical data in elderly normal subjects and patients at various
stages of AD. As the management of AD moves to possible interventions in popula-
tions with an early symptomatic stage of AD, but without dementia (Aisen et al.
2011), a sponsor will need data on the rate of disease progression in this new sub-
population using validated measurements judged to be sensitive to treatment effect
by the medical community. The latter often needs to come from the ongoing trial or
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arecently completed trial. When facing with this type of challenge, a sponsor needs
to stay agile in responding to emerging information, both from the internal and the
external source. Adaptive designs offer an answer to this need.

1.3.2 Allocating Resources to Support Multiple
Programs in a Portfolio

Some critics of adaptive designs have argued that trialists should design studies to
detect a minimum clinically important difference (MCID) and rely on early stop-
ping rules of a group sequential design to stop the study early if the treatment effect
is substantially higher than the MCID. While this strategy is a good one from the
expected sample size perspective, it also means that a large commitment is neces-
sary upfront to support the trial. This could be a challenge for many resource-
constrained enterprises where many trials are competing for the same funding pool.
Other than a few programs that are adequately funded, several programs need to
share the remaining budget. Since programs could be terminated early for either
safety or efficacy, programs that are suboptimally funded initially could have a
chance to receive additional funding later when resources allocated to terminated
programs are redirected. In other words, development decisions are often based on
efficiency together with other considerations. If one insists on efficiency and a
large upfront commitment for each program, many programs will not have a chance
to be initiated.

The need to optimize on resource allocation occurs at all levels of product devel-
opment. For example, a company may have a large exploratory portfolio. Experience
tells us that only a very small number of candidates would have an efficacy that
achieves or exceeds a target value. Limited resources would preclude one from pur-
suing a large study for every candidate to determine Go versus No Go with high
confidence. An alternative strategy is to utilize an early signal of efficacy design as
a screening tool to identify most failures and some clear winners (Brown et al.
2012). The few candidates with a superior efficacy profile could be identified
quickly because of the smaller sample size. This, in conjunction with some good
development planning, could enable acceleration to market. The obvious downside
is that compounds in the Go Slow category are likely to take longer to develop if
they are proven successful in a subsequent trial.

1.3.3 The Journey to Targeted Therapies

On December 14 2012, US FDA issued a draft guidance on “Enrichment Strategies
for Clinical Trials to Support Approval of Human Drugs and Biological Products”.
The draft guidance discusses a variety of strategies to select a subset of the general
population in which the effect of a drug, if it exists, can be more readily
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demonstrated. The strategies include investigating a new treatment in patients who
did not respond to another treatment, patients who could not tolerate another treat-
ment or patients who have a positive (or negative) response to a biomarker assay at
baseline. The selection of patients based on a pretreatment marker assay has become
increasingly frequent in our search of targeted therapies, particularly for cancer
patients where drugs block the growth and spread of cancer by interfering with
specific molecules (targets) involved in tumor growth and progression.

When treatment effect is suspected to vary as a function of a marker status, the
ideal situation is to have reasonable evidence for this association before conducting
a late-stage study to confirm a treatment effect in a subgroup defined by the marker
status. Unfortunately, this is not always possible for studies where assessing treat-
ment effect on a clinical outcome such as survival may take a long time. The draft
enrichment guidance acknowledges this challenge. It specifically states that entry
criteria or sample sizes can be modified for later stages of a trial if factors can be
identified that increase the event rate or treatment response (e.g., discovery that the
enrichment factor has a greater impact on response than anticipated or that the
patients without the enrichment factor have a very poor response).

One option to carry out mid-trial enrichment is to enroll all subjects regardless of
their marker status but collect samples for marker assessment. If a preplanned
interim analysis shows a strong treatment effect in marker-positive subjects and
little effect in the marker-negative subjects, the study may enroll only marker-
positive subjects for the rest of the trial and change the primary analysis population
to marker-positive subjects. It goes without saying that under such a design, the
study results need to be properly analyzed to control the type I error rate (Brannath
et al. 2009).

It is possible that a trial does not restrict enrollment but specifies multiple pri-
mary analysis populations in the final analyses, one of which being a genomic sub-
set. Research work in this scenario is reported in Wang et al. (2007, 2009). It is also
possible to use the same study to identify and confirm treatment effect in a sub-
group. Freidlin and Simon (2005) proposed an adaptive signature design that uses
genomic data collected on all randomized subjects to identify the subgroup. They
propose to divide the study into two parts. The primary final analyses consist of test-
ing the treatment effect in the overall population and also testing it based on data
collected in the second part of the study in a subgroup identified from data collected
in the first part. The allowed two-sided type-I error rate 0.05 is split so that the over-
all population is tested at the two-sided 0.04 level while the effect in the subgroup
is tested at the 0.01 level. Jiang et al. (2007) propose an extension where the sub-
group is defined by a threshold value on the biomarker measurement.

The approvals of targeted therapies such as crizotinib for patients with ALK-
positive advanced non-small-cell lung cancer and vemurafenib for late-stage (meta-
static) or un-resectable melanoma with the BRAF V600E mutation in 2011 by the
FDA in the US were examples of what are surely to come as we accelerate the
journey to personalized medicine. Information of these approvals is available at
FDA’s Web site on approved drugs and in the labels for these two products.
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1.3.4 Other Reasons

Identifying subgroups is important not only from the safety and efficacy perspective,
but also from the cost-effectiveness perspective. In countries that practice social
medicine, cost-effectiveness assessment often resulted in coverage decisions for
subpopulations of the population for which the product is indicated. Therefore, a
sponsor may want to conduct interim economics assessment during a phase III
study and consider restricting patients to subgroups for the remainder of the trial
based on cost-effectiveness considerations during the interim analysis.

For some confirmatory trials with a long-term clinical endpoints, dose selection
is often based on a short-term endpoint in a phase II study. Depending on the asso-
ciation between the short-term and long-term endpoints, adjustment to the doses
may be necessary in the confirmatory trial, based on early results on the long-term
endpoint within the trial.

1.4 What Is Still Needed to Support the Adaptive
Design Evolution?

There are many situations for which more efficient designs (compared to existing
standards) are available but are not yet widely used. Many senior leaders in pharma-
ceutical companies hold the belief that simple, conventional and tested designs
mean quicker development and regulatory approval. They fear that, if the proposed
trial designs and/or development strategies deviate from the standard approaches or
are perceived to be more complex, the proposals will face difficulty in receiving
regulatory endorsement even if the basis for decision-making is more robust.
Because of this fear, it is not unusual for senior leaders within these companies to
ask “Wouldn’t something simpler be better?”” when presented with adaptive designs
at internal review meetings.

We need to create a culture where clinical trial designs are selected based on
well-informed comparisons of operating characteristics of the designs, and not on
traditions. To effectuate this cultural change requires educating all parties involved
in clinical trial planning on the benefits of novel approaches, including adaptive
designs. Education helps increase awareness. In addition to the cultural hurdle, it
helps solve logistical hurdles for implementation because all parties are working
together towards a common goal. Furthermore, education stimulates the develop-
ment of software tools. While there are opportunities for further methodological
research for adaptive designs, the most pressing need currently is a greater aware-
ness of available methods and an expanded pool of expertise and software to facili-
tate their use.

In most companies, the key drivers for selecting a trial design are time, cost and
quality. Among these three, time and cost are often more influential than quality.
The current drug development strategy is often determined by the “shortest path to



18 C. Chuang-Stein and F. Bretz

market”. Whilst this may generate the greatest financial returns for a successful
development program, it also has a greater risk because of a higher failure rate in
most cases. Decisions in companies are typically made by scientists and project/
business managers. The latter are often more focused on meeting targets and mile-
stones measured in time and cost rather than quality. Balancing between minimizing
time to market and maximizing the probability of success requires rethinking by
clinical trial sponsors, in particular the pharmaceutical companies. As scientists, we
need to find ways to more effectively quantify risks and communicate them to the
senior leaders and non-statisticians in our respective organizations in languages
they can understand.

Clearer thinking is required to identify and formulate key questions to be
answered from a trial and then to select the trial design that is the most efficient in
providing data to answer the questions with sufficient precision. Innovative designs
and methods need “top-down” (key decision makers and budget holders) and
“bottom-up” (clinical teams and regulatory affairs colleagues) buy-in within organi-
zations for wide implementation. A culture operated in this fashion will promote
better decisions and lead to a lower late-stage failure rate. Such a culture is crucial
to a successful future for drug development.

At present, the capacity to efficiently assess trial designs is not widely available.
Some of the commercial software contain proprietary information and are not freely
available to the broader clinical trial community. Attempts have been made to initi-
ate cross-company and foster joint industry/academic collaborations (in the pre-
competitive space) to develop effective simulation tools to evaluate different clinical
trial scenarios. Such tools can help compare and present the performance character-
istics of different clinical trial design more effectively.

Clinical trial sponsors tend to use “standard” clinical trial designs when develop-
ing medicines. The number of designs that can be called “standard” is still arguably
too few. While some advances have been made as outlined in Sect. 1.2, the set of
commonly used designs need to be substantially expanded. To assist the latter, it
would be beneficial if sponsors would require their clinical development teams to
consider adaptive design as an option on a routine basis. Based on the authors’
experience, even where not selected, considering how to plan an adaptive trial has
led to more carefully developed plans being submitted for internal decisions. The
introduction of a culture where multiple designs are considered regularly and selec-
tions made on their comparative operating characteristics could have a positive
impact on the practice of using the most efficient designs.

It is generally agreed that improving the scope, conduct or efficiency of explor-
atory development trials can help us identify eventual “failures” earlier in the devel-
opment process. Unfortunately, the more sophisticated novel designs are not without
their challenges. Since these methods are not routinely used by sponsors, the num-
ber of sponsors (and their partners, consultants and contracted clinical research
organizations) who have the necessary expertise to implement them is limited.
Clinical key opinion leaders are often not in a good position to help either. This
problem extends to investigators who may be discouraged from participating
because the trial design seems complicated and unfamiliar. In recent years, there are
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workshops and short courses on adaptive designs. These venues help educate
trialists and clinical scientists on how to select the most appropriate design or series
of designs for trials, particularly those in the exploratory stage. Sharing and publish-
ing case studies of novel approaches is another way to increase the collective experi-
ence of the clinical trial community and help establish good practice for adaptive
designs.

One prevailing impression is that regulatory agencies are generally not recep-
tive to novel designs and methods. Our experience suggests that adaptive designs
that are well-justified, well-planned and well-executed have generally been
accepted by regulators. Similarly, our interactions with regulators suggest that
regulators welcome more and earlier discussions on scientific matters including
adaptive designs together with regulatory standards and requirements. Novel
designs should not be avoided for fear of regulatory rejections. All clinical trial
designs should be judged by their properties and design characteristics, and not by
whether or not they are novel. With proper planning and explanation a well formu-
lated adaptive design that does not compromise standards for making decisions or
protecting patient safety should not pose any particular difficulty to the regulators.
We need to work with internal decision makers to dispel the “regulators do not like
adaptive designs” myth.

Implementing adaptive designs for multi-regional clinical trials can be particu-
larly challenging when different regulatory agencies make different requests. That
is, a sponsor may receive conflicting scientific advice about a proposed adaptive
global trial from different regulatory agencies. If one agency disagrees with the trial
design, it may not be possible to rework the entire trial and resubmit to each of the
agencies for approval. When this happens, there is a tendency for a sponsor to default
to a standard design, hoping for a speedy acceptance by all regulatory agencies
involved. Thus, global harmony between regulatory attitudes is important. The latter,
in our experience, seems to be generally the case when it comes to the role, conduct
and interpretation of adaptive trials (Chuang-Stein et al. 2009; Laurie et al. 2008).
We would like to point out that when a multi-regional trial is planned, a sponsor
should consider seeking parallel scientific advice between EMA and FDA, which
may lead to greater collaborations between international regulatory authorities.

1.5 Final Remarks

Adaptive designs require careful planning to protect trial integrity and reduce pos-
sible operational bias. This applies to all designs with at least one interim analysis,
including group sequential design. Consider a group sequential design with bound-
aries to allow for early stopping for efficacy or futility. If the decision from an
interim analysis is to continue the trial, an astute individual familiar with the stop-
ping rules will know the range where the interim comparative results fall. The con-
cern for possible information breach led many pharmaceutical companies to develop
internal operating procedures to detail how interim results should be obtained,
shared and communicated.
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While many adaptive designs have been proposed, some of them might be more
of an intellectual interest with less appeal for practical applications. An elaborate
adaptive design, although may appear statistically sound, could encounter real chal-
lenges in implementation. Thus, focusing on those adaptations that are practically
feasible will result in the most successful implementation as the research enterprise
is collectively gaining experience with this new class of designs.

Incremental improvement is how we advance the field of clinical trial designs.
Research on adaptive designs and our collective experience from implementing
them contributes to the incremental improvement. Instead of letting our fear of
potential misuse prevent us from benefiting from adaptive designs, we should help
promote good practices for adaptive designs so that the designs are implemented
appropriately.

Even though we take much pride in the progress made on adaptive designs and
believe in the business needs for this class of innovative designs for both the explor-
atory and confirmatory trials, we want to emphasize that a critical consideration in
choosing the design for a trial is to choose the design that can best answer the
research questions at hand. In some situations, a fixed design may be the most
appropriate design to answer the research questions. In addition, we want to make it
clear that while we believe that adaptive designs could help increase the success rate
of our late stage trials, they are not the panacea to solve our late stage failure prob-
lem. The latter will require a holistic approach to product development, of which
smart designs are an important part, but not all of it.

Adaptive designs open many opportunities to make preplanned mid-trial adjust-
ments. We offer some examples on why we believe clinical trialists will continue to
welcome these opportunities. We want to emphasize that these opportunities should
be used with care. The last thing we want to do is to treat the opportunities offered
by adaptive designs haphazardly, which could result in rejected trials and lead to the
mistrust in these designs. The latter will delay broad acceptance of properly designed
and properly executed adaptive designs.
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Chapter 2
Regulatory Guidance Documents on Adaptive
Designs: An Industry Perspective

José Pinheiro

Abstract Adaptive designs have the potential to be a transformative methodology
in clinical drug development, but acceptance by regulatory agencies is a prerequisite
for their broader adoption and success, especially in the context of confirmatory
studies. Both FDA and EMA have published guidance documents focusing on adap-
tive designs, which have been neither discouraging nor clearly supportive of the
approach in their assessments and recommendations. As a result, the interpretation
of the regulatory position on adaptive designs also has been mixed, with some citing
the guidance documents as evidence that health authorities do not accept adaptive
designs, while others mentioning the same documents as indication that regulators
support their use in drug development, when properly planned, conducted, and
analyzed. This chapter reviews and discusses the two main regulatory documents on
adaptive designs issued by the time this book was published: the reflection paper by
EMA (Reflection paper on methodological issues in confirmatory clinical trials with
flexible design and analysis plan (draft CHMP/EWP/2459/02, 23-Mar-2006), 2007)
and the draft guidance by FDA (Adaptive design clinical trials for drug and biolog-
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2.1 Introduction

Adaptive designs (AD) have the potential to transform clinical drug development,
as discussed and illustrated throughout this book. The very reason that makes AD
attractive to drug developers, the opportunity to make pre-planned design and
analysis modifications to an ongoing clinical trial, also raises understandable con-
cerns from regulatory agencies (RA), especially when utilized in confirmatory
studies. The ultimate success, or failure, of AD in the context of drug develop-
ment hinges on their acceptance by RA around the world. This was recognized
early on by industry groups advocating the broader use of AD in drug develop-
ment, most notably the PARMA Adaptive Designs Working Group (ADWG).
Members of the ADWG engaged in early discussions on AD with RA in the USA
(FDA), Europe (EMA), and Japan (PMDA), emphasizing the importance of guid-
ance documents to provide a clear position with regard to regulatory acceptance,
or not, of AD.

Two guidance documents focusing on AD were issued, at least in part, as a result
of the advocacy efforts by industry groups: the EMEA reflection paper (EMEA/
CHMP 2007) and the FDA draft guidance (FDA 2010). The former is a relatively
short, high-level document, focusing almost entirely on confirmatory studies—
neither encouraging, nor ruling out the use of AD, from a regulatory perspective.
The FDA draft guidance is considerably more detailed, covering both exploratory
and confirmatory studies (but with greater emphasis on the latter), and providing not
only potential regulatory concerns about the use of AD but also recommendations
on how to circumvent them in drug development practice. Although its overall tone
is broadly supportive of adequately planned, executed, and analyzed AD, the FDA
draft guidance has been interpreted by some in the biopharmaceutical industry as
evidence that FDA does not favor the use of AD.

Both guidance documents elicited strong, mostly positive reactions from
industry groups, who provided many comments and suggestions during the
respective review periods. The EMA reflection paper incorporated some of the
suggestions received during the consultation period (and provided responses to
those which were not adopted) in the final version adopted by CHMP. The FDA
draft guidance was yet to be revised and finalized at the time of publication of
this book.

This chapter reviews both the EMA and FDA guidance documents on AD from
an industry perspective. Section 2.2 describes the FDA draft guidance, discussing
its impact on the biopharmaceutical industry. The EMA reflection paper is covered
in Sect. 2.3, being contrasted to the FDA draft guidance. The industry perspective
on both guidance documents and, more broadly, on the perceived regulatory posi-
tion on AD are discussed in Sect. 2.4, with a focus on comments and recommenda-
tions issued over time by the ADWG.
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2.2 US FDA Draft Guidance on Adaptive Designs

Even though the EMA reflection paper was issued prior to the FDA draft guidance,
the latter is presented and discussed first in this chapter, as it has a considerably
broader scope and has had more impact in industry than the former. The guidance
document on AD was a PDUFA IV commitment of FDA, originally scheduled to be
issued by October 2008 and finally published in March 2010. The inclusion of a
guidance document on AD as part of the PDUFA IV negotiations was a clear indica-
tion of the importance that the biopharmaceutical industry placed on this methodol-
ogy as a tool for modernizing and improving the efficiency of drug development, as
a well as a recognition that regulatory guidance was a critical prerequisite for its
successful utilization. The formation of the PhARMA ADWG in early 2005 also
provided clear indication of the industry support for and interest in AD. The ADWG
played a critical catalyzing role with regard to broad awareness, early adoption, and
regulatory engagement on AD. The ADWG went on to publish a series of highly
impactful white papers (Gallo et al. 2006; PhARMA 2006; Bornkamp et al. 2007;
Antonijevic et al. 2010; Gallo et al. 2010; Pinheiro et al. 2010), to engage in produc-
tive discussions on AD with RA around the world (FDA, in particular), and to dis-
seminate AD at scientific conferences. A good number of issues advocated by the
ADWG made their way into the FDA draft guidance, but many were left out.

The overall tone of the FDA draft guidance is encouraging of AD, but with
caution: the document states that FDA recognizes AD as having the potential to
improve the efficiency and success rate of drug development, but raises some con-
cerns about their use, mostly in the context of pivotal studies. It also acknowledges
that the main appeal of AD is to allow pre-planned midway corrections to ongoing
trials, revising design assumptions and research goals in light of observed data. Two
main regulatory concerns are expressed early on and throughout the guidance: the
potential for Type I error rate inflation and operational bias that could compromise
study integrity and the validity/interpretability of the final results. The cautionary
tone is pretty much consistent with regulatory guidance documents issued on other
topics, but it was perceived by some in industry as an indication that FDA would be
reluctant to accept AD, especially for confirmatory studies.

2.2.1 Description and Motivation for Adaptive Designs

The guidance defines AD as a clinical study that includes a prospectively planned
opportunity for modification of one or more aspects of its design and hypotheses,
based on analysis of data (usually interim data) from subjects in the study. This is
consistent with other references on AD, including the ADWG Executive Summary
(Gallo et al. 2006), which defines AD as a clinical study design that uses accumu-
lating data to decide how to modify aspects of the study as it continues, without
undermining the validity and integrity of the trial. By prospectively the guidance
means before any unblinded data analysis is performed, but the recommendation
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put forward in the guidance is that any adaptation be planned, described, and
evaluated before the study protocol is finalized. In addition, the timing of any adap-
tations should be pre-specified. The adaptations can be based on blinded or
unblinded data, and may or may not include statistical hypothesis testing. A number
of potential study design modifications that can be implemented in an AD are listed
in the guidance, including

* Study eligibility criteria

* Randomization procedure

» Treatment allocation (e.g., dose, schedule)

» Total sample size and/or study duration

* Concomitant medication

* Planned patient evaluation schedule

e Primary endpoint (e.g., single vs. composite)

* Secondary endpoints (selection and testing order)
* Analysis methods to evaluate endpoints

The two main types of adaptations discussed in the guidance are treatment
allocation and total sample size/study duration. Some of those potential adapta-
tions, like the primary analysis method, appear to be included in the guidance just
for completeness as they are declared as unlikely to be acceptable from a regulatory
perspective right after being listed.

FDA acknowledges the motivation for AD in the guidance, naming, in particular
the improvement in knowledge efficiency compared to conventional (i.e., nonadap-
tive) study designs (same information faster and/or cheaper; or more information
for the same investment and time). Additional potential advantages of AD also men-
tioned are the increased likelihood of success (via midtrial corrections), the reliable
early termination via futility rules, and the improved understanding of treatment
effects (e.g., better evaluation of dose-response profile or subgroup effects).

2.2.2  Study Types

The guidance differentiates between two types of studies for which AD can be
considered: adequate and well-controlled (A&WC) effectiveness studies intended
to support drug marketing and exploratory studies, which can be considered as the
complement of A&WC studies. From the point of view of AD, the main difference
between the two types of study is that for an A&WC study strict control of Type I
error rate is paramount, while for exploratory studies it is less critical. The focus of
the guidance is on AD in the context of A&WC, but AD in the context of explor-
atory studies are also discussed in the document.

From a methodological perspective, the main concern expressed in the guidance
about the utilization of AD with an A&WC study is the potential inflation of Type I
error rate, with possible bias in the estimation of treatment effects also being
mentioned, but somewhat downplayed. It is acknowledged that statistical methods
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have been developed to adequately control Type I error for a wide range of AD
based on unblinded data (there is less of a concern about Type I error inflation when
adaptations are based on blinded data), but it is emphasized that it is incumbent
upon sponsors to demonstrate, preferably analytically, that the proposed statistical
analysis methods will indeed control Type I error under the planned AD.

The other main concern related to AD in A&WC studies expressed in the guid-
ance is harder to pin down and ensure control over: potential for operational bias
due to leaking of unblinded results as the study is ongoing. If present, it could jeop-
ardize the scientific validity of study, making results difficult to interpret and accept.
Changes in patient population after an unblinded adaptation are cited as an example
of operational bias associated with AD. Of course, changes in patient population
during a clinical trial can, and do, also occur when no adaptations are used in the
study. They may be the result, for example, of different regions/sites starting recruit-
ment later in the trial. The recommendation, implicit in the guidance and expressed
by FDA representatives at conferences and public meetings following the publica-
tion of the draft guidance, is that sponsors should ensure, and document, “squeaky
clean” execution of AD to avoid any potential indication, real or perceived, that
access to unblinded data during the study led to operational bias. Since the publica-
tion of the draft guidance, different vendors have developed commercial software to
support the execution of AD that can be used to document the data access opera-
tional integrity of AD (see Chap. 8, on available software for AD).

The draft guidance explicitly encourages the use of AD in the context of
exploratory studies, stating that they provide a natural framework for learning about
dose-response, subgroup effects, etc. and have the potential to lead to substantial
gains in knowledge efficiency. It is also mentioned that exploratory studies provide
a natural framework for implementing and getting familiarity with unblinded adap-
tations currently included in the less well-understood category. That is, the guid-
ance suggests that utilization of (currently) less well-understood adaptive methods
in exploratory studies may pave the way for their future acceptance as well-under-
stood AD. One potential practical difficulty for the implementation of this recom-
mendation is that sponsors often design exploratory studies, especially in Phase 2,
as mini A&WC studies, in the hope that if great results are observed, the study may
be accepted by RA as one of the required pivotal studies. The guidance specifically
discourages this type of practice.

2.2.3 Well-Understood vs. Less Well-Understood
Adaptive Designs

Within the class of A&WC studies, the guidance introduces a classification of
well-understood and less well-understood types of adaptive designs. This has been
mistakenly interpreted by many in industry, most notably by some in regulatory
affairs groups, to mean that only AD of the well-understood type would be accept-
able to FDA. Even though it has been clarified by FDA representatives (involved
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in the writing of the draft guidance) at public meetings and conferences that the
categorization only referred to the state of regulatory knowledge of and familiarity
with different types of AD at the time the draft guidance was published, the misun-
derstanding persists till the time of publishing of this book. There is an expectation
that this issue will be addressed in the final version of guidance, when it is
published.

The set of well-understood AD identified in the draft guidance is composed
broadly of group sequential designs (with early termination for either demonstrated
efficacy or futility) and adaptations that do not involve post-baseline unblinded data.
Examples include adaption of study eligibility criteria based on baseline data, blinded
sample size or study duration re-estimation, and adaptations based on outcome unre-
lated to efficacy (though the guidance warns that this may be difficult to ascertain).
In general, adaptations based on blinded and/or baseline data (carried out by person-
nel without access to unblinded results) do not raise any regulatory concerns.

The fact that group sequential designs, though involving adaptations based on
unblinded data, are included in the well-understood category gives further indica-
tion that the classification is more based on regulatory familiarity than acceptance.
It also suggests that, as FDA is exposed to more AD trials involving unblinded
adaptations, some of the methods currently in the less well-understood category
may find their way into the well-understood group.

All designs involving adaptations based on unblinded post-baseline data, with the
exception of group sequential designs, fall into the less well-understood category.
Examples include unblinded sample size/study duration re-estimation, response-
adaptive randomization, adaptive subgroup and/or endpoint selection-based
observed treatment effects, and adaptive dose selection. With regard to the latter, the
guidance recognizes its potential value in the context of A&WC studies (to allow
some limited exploration of dose-response), provided strict control of Type I error
rate can be demonstrated. Within the category of less well-understood AD, the guid-
ance highlights designs with multiple types of adaptations and adaptations in non-
inferiority studies. With regard to the first, the guidance expresses concerns related
to the increasing complexity that results from combining different types of adapta-
tions in the same study, which could lead to difficulties in interpreting the final
results. The value of adaptations in the context of non-inferiority studies is acknowl-
edged, but the guidance points out that some of the design elements in non-inferior-
ity trials are not suitable for adaptation, most notably the non-inferiority margin.

Besides the usual concerns about potential Type I error rate inflation, bias in
treatment effect estimates, and operational bias in trial conduct, the guidance also
indicates the potential for Type II error rate increase in the context of less well-
understood AD, citing too liberal futility rules and suboptimal dose selection as
examples. Of course these are concerns that typically resonate and concern more
sponsors than regulators, so it is refreshing to see them mentioned in the guidance.
The discussion around less well-understood AD ends on a positive note, with the
guidance stating that cautious use of adaptive designs can advance overall develop-
ment programs. This is likely to be as supportive as one could expect to read in a
guidance document.
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2.2.4 Role of Trial Simulations

As well known among practitioners who have designed and/or implemented
adaptive designs, modeling and trial simulations play a central role in their evalua-
tion and the understanding of their operating characteristics. Even relatively simple
AD, such as blinded sample size re-estimation, require simulations to properly char-
acterize its performance under alternative scenarios (e.g., underlying effect and
variability) and design choices (e.g., when to conduct the interim analyses).
Modeling plays a central role in the characterization of alternative scenarios, such
as the recruitment and dropout processes, dose-response profiles, and correlation
between endpoints. The combination of modeling and trial simulation provides the
backbone for the evaluation and comparison of alternative designs, including adap-
tive ones, and the planning of a specific adaptive design (e.g., number and timing of
adaptations, impact on Type I error rate and power).

The guidance acknowledges the importance of trial simulations for the determi-
nation of operating characteristics of AD, the comparison of alternative designs to
justify the selection of a particular AD, and the understanding of inferential proper-
ties of an AD. In fact, the guidance states that the reporting of trial simulations
should be an important component of the documentation to be submitted to FDA
when a sponsor proposes the use of an AD in the development program. The guid-
ance goes further and indicates that the models, programs, and flow charts for pos-
sible adaptive pathways used in the simulations should also be included as part of
the submitted documentation. Among the inferential characteristics of the design
that can be investigated via simulation, the guidance names the impact on Type I
error rate, power, and bias in the estimation of treatment effects. The document goes
into some detail on the types of models that could be considered in the simulation-
based evaluation of AD, including withdrawal and dropout models, models for
selecting among multiple endpoints, and models characterizing the study endpoints
(e.g., longitudinal models). It also includes a list of which elements should be
included when reporting simulations used for AD evaluation, such as a listing of all
possible adaptation branches, the design features and assumptions, and calculation
of Type I error rate and power.

While discussing the importance and usefulness of trial simulations, the guidance
goes on a short detour to discuss how Bayesian methods can play a relevant role in
the context of AD. It indicates that Bayesian approaches provide a useful framework
for describing the various choices and decisions available in an AD, placing them in
a probabilistic context that is naturally handled under the Bayesian paradigm. The
guidance even goes as far as to state that Bayesian decision rules can be used to
guide adaptations while preserving the Type I error rate in a frequentist sense. It is
unclear, though, if such framework would be accepted by regulators in the context
of an A&WC study, or if it should have its use limited to exploratory studies.

On a side note that was disappointing to some, the guidance states that, though
trial simulations are acknowledged as useful, or even essential, for the understanding
of operating characteristics of an AD, their use to establish strict control of Type I
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error rate in an AD is controversial and not fully understood. Because many AD are
complex enough not to allow the analytical derivation of its Type I error rate, this
remark in the guidance has led to lively reactions from industry. In general, the
available analytical solutions rely on rather inefficient upper bounds for the Type I
error rate, in the sense that the true significance level is considerably smaller than
the upper bound, under a wide range of realistic scenarios. This leads to loss in
power, or increases in sample size to avert it (both of which, of course, are evaluated
via trial simulations).

2.2.5 Protocol and SAP for an Adaptive Design

Because of the heightened concerns about operational bias and trial integrity
surrounding AD, the prospective specification of all aspects of the study design and
planned analyses is of paramount importance. As frequently mentioned in the
ADWG publications and also highlighted in the draft guidance, to ensure the scien-
tific validity of an AD, any potential adaptations need to be pre-specified: adaptive
by design, as aptly stated in Gallo et al. (2006).

The protocol of an A&WC AD study, according to the draft guidance, typically
needs to be more detailed than for a conventional design. The protocol and its sup-
portive documentation (such as the simulation report) need to contain all critical
information to allow FDA to evaluate the AD. These should include

* Study rationale

* Justification of design features, including any proposed adaptations

* Operating characteristics of proposed design, such as Type I error rate and power

* Plans to ensure study integrity when unblinded interim analyses are planned

* Role of AD in overall clinical development strategy

* Objectives and design features of the AD, all possible adaptations envisioned,
assumptions, analysis methods, and quantitative justification for design choices
at planning stage (typically via simulations)

» Impact of adaptations on frequentist operating characteristics (e.g., Type I error
rate)

e Summary of models used in planning (e.g., disease progression, dropout,
dose-response)

* Analytical derivations to demonstrate strict control of Type I error rate, if
appropriate (e.g., A&WC studies)

* Charter of personnel involved in carrying out adaptations and study monitoring

It is acknowledged that data monitoring committee (DMC) charters will gener-
ally need to be more detailed for an AD compared to a more conventional design
involving interim analyses (e.g., group sequential design).

The extensive list of protocol elements for an AD mentioned in the draft guid-
ance has raised some concerns about the greater scrutiny that this type of design
may receive at FDA. In reality, most of the items in the guidance list apply equally
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to nonadaptive designs and should be part of the checklist of good design practice.
Adaptive designs have created greater awareness about the importance of proper
scenario evaluation via modeling and trial simulations, which should lead to better
design planning and justification across drug development, and not just for AD.

With regard to statistical analysis plans (SAP) for AD, the key message in the
guidance is prospective specification. The guidance encourages sponsors to have the
SAP finalized by the time of protocol finalization, a practice already adopted by
some, but certainly not the majority of biopharmaceutical companies. Specific ele-
ments that should be included in an AD SAP listed in the guidance are the
following:

» All prospectively planned adaptations

» Statistical methods to be used to implement adaptations (e.g., how to calculate a
potential increase in sample size or trial duration, rule used to select a dose)

 Justification of Type I error control

» Statistical approach to be used for appropriately estimating treatment effects

The overarching message in the guidance with regard to regulating AD is that
FDA understands that this type of design requires more in-depth regulatory review
and evaluations. Accordingly, it is expected that sponsors will provide documenta-
tion, such as protocols and SAP, with the level of detail necessary to allow the
proper regulatory oversight.

2.2.6 Interactions with FDA on Adaptive Designs

According to the guidance, it is anticipated that sponsors will need earlier and
more intense interactions with FDA to discuss and reach agreement on planned
AD. This will, of course, vary with the type of AD and the phase of development,
being more critical for less well-understood A&WC trials. The guidance is not
entirely clear on the type of meeting request that should be made for the discussion
of AD. For exploratory studies, it is recommended that either a Type C or an end of
Phase 2 (EOP2) meeting request be used. For an A&WC study, the guidance indi-
cates that, when appropriate, an EOP2 meeting request should be used, but
acknowledges that there will be instances in which this will not be adequate. The
guidance states that a special protocol assessment (SPA) meeting would not be
appropriate to discuss AD and discourages sponsors from submitting SPA requests
for that purpose. Further clarity on the type of meeting request that would be most
appropriate for engaging FDA in discussions on proposed AD would be useful to
sponsors. Perhaps a new type of meeting, or the extension of existing meeting
types, should be considered for AD.

The protection of study blind among trial personnel non-authorized to have
access to treatment assignment during the trial is a recurrent theme in the draft guid-
ance, identified as a critical issue to ensure the integrity and validity of an AD. The
guidance indicates that SOPs specific to AD should be put in place by sponsors,
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clearly indicating who will implement adaptations and how access to unblinded
data during the study will be controlled (in particular, when study personnel and
investigators may have access to unblinded results). The guidance highlights that an
independent group from the study personnel should be responsible for unblinded
interim analyses and adaptive decision making. The role can be assigned to an inde-
pendent DMC (IDMC) or some other group. There is still no consensus across the
biopharmaceutical industry, or among regulators on whether conventional IDMC
should have their role extended to also handle AD monitoring and decision making,
or if a new type of independent group should be formed for this type of study (see
Chap. 14, on DMC).

2.2.7 Final Remarks

The draft guidance concludes with some specific recommendations regarding the
report of the final results of an AD. There should be strict compliance with the pro-
spectively planned adaptation process and with the procedures for ensuring study
integrity, such as the preservation of treatment blinding. The final documentation
submitted to FDA should include a description of the processes and procedures
actually carried out in the trial, any records from deliberations of the IDMC and any
other groups involved in carrying out adaptations, interim results used for adapta-
tions, and an assessment of the adequacy of firewalls to prevent access to unblinded
results by unauthorized personnel. All analyses included in the final report should
strictly adhere to the SAP. Because of concerns about shifts in patient population
during the study, possibly induced by adaptations, the guidance recommends that
the consistency of estimated treatment effects across study stages (i.e., before and
after adaptations) should be explored and reported with the final results. If potential
shifts are observed, they are likely to become a review issue.

The overall message of the guidance is positive on AD while being cautious
about their proper planning, implementation, and reporting. The guidance recom-
mends that sponsors keep AD simple, avoiding too many or too complex adapta-
tions in the same trial. It encourages increased planning and early interactions with
FDA, especially for more complex A&WC studies. Assurance that treatment blind-
ing is preserved and adequately documented is paramount to regulatory acceptance
of the results from an AD.

2.3 EMEA Reflection Paper on Adaptive Designs

The EMEA reflection paper played a pioneering role with regard to regulatory
guidance on adaptive designs, being published at a time of active discussion on dif-
ferent aspects of adaptive designs, such as methodology, implementation, and regu-
latory acceptance. The EMEA document shed some critical light into the discussions
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taken place then and, in many ways, paved the way for the FDA draft guidance
published years later. The EMEA document is considerably narrower in scope and
less detailed than the FDA draft guidance. On the other hand, it emphasizes some
regulatory concerns about AD that are only tangentially discussed in the FDA docu-
ment, making it a useful complement to the latter with regard to regulatory thinking
on AD at the time this book was published. This section summarizes the key points
in the reflection paper, contrasting them to the FDA draft guidance and considering
them from an industry perspective.

The EMEA document focuses almost exclusively on confirmatory trials, or, in the
notation of the FDA draft guidance, A&WC studies. The overall tone of the docu-
ment is accepting of the potential utility of AD, but with clear concerns about their
adequate implementation in clinical trial practice. By comparison, the reflection
paper is less encouraging about AD than the FDA guidance, but it does not strike a
negative tone with regard to their utilization, when properly planned, conducted, and
analyzed. In its opening remarks, the EMEA reflection paper recognizes that AD
have the potential to speed up drug development and more efficiently allocate
resources, without compromising the scientific and regulatory standards, while high-
lighting that the basis for regulatory decision making will need to be improved to
allow AD to be fully embraced by regulators. A less encouraging comment in the
opening section of the document is that AD in the context of confirmatory trials is a
contradiction in terms, as one should not need to adapt what is to be just confirmed.
Of course this is too narrow a view of the regulatory dichotomization between the
exploratory and confirmatory phases of development, being toned down in later sec-
tions of the document. It is not the case in drug development practice that all is known
about a compound before it is taken into Phase 3 studies—development programs
would take substantially longer, and approved drugs would cost significantly more, if
this narrow interpretation of the regulatory process were to be followed to the letter.

An important and interesting difference between the EMEA reflection paper and
the FDA draft guidance is the focus of the former on the assessment of homogeneity
between stages of an AD. The issue is certainly discussed in the FDA draft guidance,
but with considerably less prominence than in the EMEA document, where it appears
to be central to the regulatory acceptance of AD. There are, of course, more similarities
than differences between the EMEA and FDA documents and certainly no disagree-
ment between them with regard to recommendations and regulatory requirements.

The EMEA reflection paper is less didactic than the FDA draft guidance, with no
attempts at classifying AD, like is done in the latter. A more formal definition of
adaptive designs is only included in the last page of document and it illustrates the
narrow view of the document: “a study design is called ‘adaptive’ if statistical meth-
odology allows the modification of a design element ... at an interim analysis with
full control the type I error.” It is clear from this definition that the main concern in
the document about the validity of an AD is the preservation of strict control of Type
I error rate in the presence of possible adaptations. The definition of AD presented
in the FDA draft guidance is much broader in scope and more in line with main-
stream publications in the field.

The concern about potential operational bias induced by an AD is shared between
the EMEA and FDA documents, though in the former such concern is almost
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exclusively associated with the possible change in patient population during the
study. The document states that if substantial differences are observed in patient
composition (e.g., demographics, baseline characteristics) and/or in trial results
before and after an adaptation then there would be serious regulatory concerns
about the validity of the final conclusions and the integrity of the study as a whole.
It is not clear, though, what would characterize a substantial difference in this con-
text, or whether it should be formally tested via a hypothesis test, or just explored
via summary statistics and estimated effects. There is a clear tone of discourage-
ment of unblinded interim analyses in the reflection paper, because of the perceived
risks of information leak resulting from them. The recommendation is that unblinded
interim analyses only should be used when there is a clear, justifiable need, should
be kept to a minimum number, and with the flow of unblinded information should
be carefully documented and controlled. One is left to wonder if the regulators who
produced the reflection paper would find the implementation of an AD as sufficient
reason to justify the inclusion of interim analyses in the study.

It is possible (and, one would hope, likely) that regulatory thinking at EMA has
evolved since the publication of the reflection paper and a more accepting view of
the ability of sponsors to preserve the blind in an AD and avoid the leaking of
unblinded results via appropriate processes and firewalls now prevails. If that is the
case, one would expect a more positive view of unblinded interim analyses, not only
in the context of AD, but in confirmatory trials, more broadly. Interestingly, the
reflection paper seems to be supportive, or at least not discouraging, of group
sequential designs, which, of course, require unblinded interim analyses.

A topic discussed in the EMA reflection paper but omitted from the FDA draft
guidance is that of overrunning, i.e., observed data on certain patients only becom-
ing available after a decision to stop the study at an interim analysis point was made.
This may be because overrunning is a topic that has been extensively discussed and
addressed in the context of group sequential designs, being less of an issue in AD
that do not include an early efficacy stopping rule. Of course, it is a nonissue in the
case of futility stopping.

Similarly to the FDA draft guidance, the EMEA reflection paper states that any
adaptation under consideration should be pre-planned, be properly justified in the con-
text of the development program, and have their number kept to the necessary mini-
mum. Strict control of Type I error rate is indicated as a prerequisite for the regulatory
acceptance of any AD, but appropriate statistical methods for treatment effect estima-
tion (point-wise and confidence intervals) in the context of an AD are also necessary.
The reflection paper stresses at various points that AD should not be used as a substitute
for good planning and thorough exploration in early phases of clinical development.

The reflection paper names and discusses a number of specific types of adapta-
tions, a subset of which are briefly summarized below.

* Sample size re-estimation: The blinded version should be used whenever possi-
ble, but the unblinded alternative can also be considered, when properly justified.
In either case, there should be good justification of why the use of this type of
adaptation is not an indication of just insufficient investigation in exploratory
studies.
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* Change or modification of primary endpoint: This would be very difficult to
justify in practice and would likely lead to difficulties in statistical inference if
one were to combine results from stages utilizing different endpoints (e.g., rejec-
tion of a global null hypothesis).

* Discontinuing treatment arms: Discontinuing the placebo arm after an interim
analysis is discouraged, as it may result in changes in patient population and lead
to inferential hurdles at the end of the study; unbalanced randomization favoring
active treatment over placebo throughout the study should be considered as an
alternative. Multiple comparison approaches are required to properly control the
Type I error rate.

* Phase 2/3 combinations: The reflection paper suggests that Phase 2/3AD are in
principle acceptable, but need to be properly justified (and with any AD men-
tioned in the document) and would not provide sufficient evidence of efficacy for
regulatory approval if it were the single pivotal study conducted in the program.
That would be the case even in indications in which a single Phase 3 study could
be accepted for approval. The use of two Phase 2/3AD studies is mentioned as a
possible path for approval, though it may be challenging to ensure that the same
decisions are reached in both trials. One assumes that the combination of one
Phase 2/3AD design with one conventional Phase 3 design would also provide
sufficient evidence of efficacy for regulatory approval. Single Phase 2/3AD stud-
ies could be considered for orphan indications.

The FDA draft guidance does not contradict any of the recommendations
included in the EMEA reflection paper, but it certainly strikes a more positive note
on the regulatory acceptability of and support for adaptive designs. One of the pos-
sible reasons explaining this difference in tone between the two regulatory docu-
ments is that the FDA document was crafted following innumerous discussions with
industry groups focused on AD at scientific meetings and through visitations to
FDA, as well as several white papers published by those same industry groups. The
EMEA reflection paper did not benefit from the same level of open dialog between
industry representatives and regulators on methodological and operational issues
related to AD, and may reflect a more one-sided view on AD.

2.4 Industry Reaction and Perspectives
on Guidance Documents

The biopharmaceutical industry, by and large, regards adaptive designs as a useful
tool for its ongoing effort to modernize and improve the efficiency of drug develop-
ment. Clear regulatory guidance on the acceptability, or not, of different types of
AD is a precondition for the effectiveness and viability of these methods in practice.
Therefore, both the EMEA reflection paper and the FDA draft guidance on AD were
well received by industry, despite the less than encouraging tone of the former and
the ambiguity of some elements in the latter. They were perceived as an encouraging
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sign of regulatory agency acknowledgement of the potential benefits of AD while
providing some level of guidance on how to possibly address regulatory concerns
about their use in clinical development practice.

Following the release of the regulatory documents, industry groups were orga-
nized and collated their concerns and suggestions on the guidance documents, sub-
mitting them during the corresponding comment periods. Some of those suggestions
have been implemented in the published version of the EMEA reflection paper. The
final version of the FDA draft guidance had yet to be released at the time of publish-
ing of this book, being unclear on which, if any, of the industry suggestions would
be incorporated in the revised document. We review here the comments and sugges-
tions collated for each of the documents by PARMA industry groups, following the
same order used previously in the paper, namely starting with the FDA draft guid-
ance, followed by the EMEA reflection paper.

2.4.1 FDA Draft Guidance

By the time the draft guidance was released, the ADWG was no longer affiliated
with PhARMA, so a new group needed to be formed to review and produce the
PhRMA response to the document. However, the majority of the PARMA review
team was composed of former members of the ADWG, so a certain level of continu-
ity was achieved in the response to the FDA draft guidance submitted by PhARMA.

The overall reaction of the PhARMA review team (and industry as a whole) to the
draft guidance was positive, with the group acknowledging that the document was
quite helpful in clarifying FDA’s position on and concerns about AD, and with the
expectation that the guidance would positively impact the broader acceptance and
proper utilization of AD in clinical drug development. There were also a number of
comments, concerns, and suggestions for improvement put forward by the PhARMA
review team, summarized below.

The main concern was the categorization of adaptive designs for A&WC studies
into well understood and less well understood. The team indicated the fear that less
well understood would be misunderstood as not-to-be-used by many in industry,
which unfortunately turned out to be the case. A suggestion was made for FDA to
clarify in the final version of the guidance that, when properly planned, implemented
and analyzed, less well-understood AD were also acceptable for A&WC studies.
Furthermore, one would expect that as FDA became more familiar with the appro-
priate utilization of those AD, they would be moved to the well-understood category
in possible future revisions of the guidance. One point raised by the review team was
that many of the cautions indicated in the guidance for less well-understood AD
(e.g., potential for operational bias after unblinded interim analyses) also apply to
well-understood AD (e.g., group sequential designs) and even conventional, non-
adaptive designs. Adaptive designs may have motivated greater awareness and dis-
cussion around such issues, but they are not exclusive, or even more prevalent in AD.

While the draft guidance is clearly encouraging of the use of AD in explor-
atory studies, the message is somewhat ambiguous with regard to A&WC studies.
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The many references to bias in the context of AD for A&WC studies (operational,
estimation, and in hypothesis testing) go beyond cautionary to strike a somewhat
negative tone. The PhARMA review team suggested that the final guidance included
a clear message of FDA’s willingness to consider AD both for exploratory and
A&WC studies.

The lack of clarity in the guidance about which type of meeting request would be
appropriate for discussion and review of AD with FDA was another important point
raised by the PhARMA review team. The group suggested that there should be greater
clarity in the final version of the guidance on how sponsors should seek input from
FDA on AD with different degrees of complexity and the circumstances under
which an SPA would be the appropriate type of meeting for such interactions.

The Biotechnology Industry Organization (BIO) also formed a review team that
produced an industry response to the FDA draft guidance. The comments and sug-
gestions submitted by the BIO review team were broadly similar to those of the
PhRMA group, with a few noteworthy additions. The BIO group made the recom-
mendation that, to avoid potential confusion, methods and statistical and logistical
consideration for AD be separately described in the guidance for exploratory and
A&WC studies. In addition, the review team suggested that there should be better
balance between exploratory and A&WC AD studies in the document—the draft
guidance focuses mostly on the latter (which is understandable, from a regulatory
perspective).

2.4.2 EMEA Refilection Paper

The PhRMA response to the reflection paper was mostly driven by the ADWG,
which was still affiliated with the trade association at the time the document was
released. The comments from the PhARMA team were more directly targeted at
defending certain types of AD and related implementation practices, compared to
what was included in the PARMA response to the FDA draft guidance. This reflects
the less positive tone of the reflection paper on adaptive designs and practices.
Adaptive seamless Phase 2/3 designs were prominently discussed in the PARMA
response, reflecting the industry mindset at that time. The naming of this type of
design has changed since, to avoid the explicit reference to combining exploratory
and confirmatory phases in one study (though the essence of the AD remains very
much present in clinical development). Regulators expressed concern about having
exploratory elements (i.e., Phase 2) in a study intended to be confirmatory. An
example of new naming for this type of design is adaptive A&WC study with dose/
subgroup selection. In their response, the PARMA review team lists the benefits of
this type of AD, including increased information on doses and efficacy prior to trig-
gering the confirmatory stage, reduced development timelines and costs (compared
to running separate Phase 2 and Phase 3 studies), more safety information, and
increased chance of treating patients in the trial with efficacious and safe drugs (see
Chap. 20 for an example of a successful seamless two-stage design). The response
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also included a discussion of possible regulatory strategies for including an adaptive
seamless Phase 2/3 trial as one of the pivotal studies in a submission. Some of the
suggestions were incorporated in the final version of the reflection paper published
by CHMP.

The PhRMA review team defended the opportunity for limited sponsor involve-
ment in interim decision making during an AD, pointing out that IDMC members
may not be prepared, or willing, to make decisions that have important commercial
implications to sponsors. Processes and safeguards that would allow this type of
limited sponsor involvement to take place while protecting the integrity of the study
are proposed in the team’s response (and have been presented and discussed in
white papers published by the ADWG, such as Gallo et al. 2010; see also Chap. 14
for more recent thinking on DMC for AD).

The potential for operational bias as a result of a poorly planned and/or imple-
mented AD was acknowledged by the PhARMA review team, but they pointed out
that this risk is also present with classic group sequential designs and has long been
successfully addressed by sponsors. The team suggested that the potential for oper-
ational bias in an AD should be prospectively mitigated via design and implementa-
tion safeguards discussed and agreed upon with regulators prior to the start of the
study, and not via post-trial assessment of changes in patient population during the
study (which may occur irrespective of and unrelated to adaptations).

The response from the PhARMA review team included a suggestion to have AD
for confirmatory studies classified into two categories of regulatory support: accept-
able and possible. Blinded sample size re-estimation and subgroup selection were
cited as examples of regulatory acceptable AD, while unblinded sample size
re-estimation was mentioned in the possible category. The intention of the sugges-
tion, at the time, was to request clear regulatory guidance on what types of AD were
endorsed by EMA and which would require further justification and discussions
with regulators. Even though this suggestion was not implemented in the final ver-
sion of the reflection paper, it possibly provided the seed for the classification of AD
A&WC studies into well understood and less well understood. In hindsight, the
suggestion may not have the most beneficial for advancing the broader use of AD,
from an industry perspective.

Additional comments and recommendations on the reflection paper put forward
by the PhRMA review team were related to adaptive dose-finding designs (use of
parsimonious modeling), unblinded sample size re-estimation (should not be ruled
out as a valid AD), and Bayesian approaches (to be included in the reflection paper
and have its potential use in AD discussed).

2.5 Concluding Remarks

The regulatory guidance documents on AD published to date have had a critical
impact on the acceptance and utilization of AD by the biopharmaceutical industry.
Both documents, in particular the FDA draft guidance, have helped clarify the
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regulatory position and concerns on AD, which by itself is quite useful. However,
the cautionary tone of both documents and the classification of some AD for A&WC
studies as less well understood in the FDA guidance have caused some negative
reaction in industry with regard to regulatory acceptance of AD, more generally. As
a result, the increased utilization of AD that was expected after the release of the
FDA draft guidance never materialized.

One important change that has occurred from the time prior to the release of the
FDA draft guidance is that the ADWG is no longer affiliated to PARMA and, per-
haps for this reason, no longer active with regard to scientific advocacy for adaptive
designs. The publication of the final version of the FDA guidance which addressed
the key industry concerns listed in Sect. 2.4.1 would go a long way toward increas-
ing the acceptance and utilization of AD in industry. We hope that FDA will be able
to provide industry advocates of AD with this valuable support soon.
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Chapter 3

A Commentary on the U.S. FDA Adaptive
Design Draft Guidance and EMA Reflection
Paper from a Regulatory Perspective

and Regulatory Experiences

Sue-Jane Wang

Keywords Adequate and well controlled ¢ Bias ¢ Consistency ¢ Difficult
experimental situations * Exploratory adaptive design trial * Less well-understood
* One trial one studywise type I error rate * Rare disease * Regulatory submission *
Simulated type I error

3.1 Historical Landscape

Fixed design confirmatory trials rely on emerging and reliable prior data and
knowledge to provide necessary assumptions about the key design parameters
including nuisance parameters. Traditionally, a fixed design has been the gold stan-
dard for its simplicity, validity, and ability to provide an unbiased estimate of the
treatment effect. To allow for pre-specified flexibility in an ongoing trial, a simple
two-arm controlled trial with a single primary efficacy endpoint, the repeated sig-
nificance testing involving multiplicity adjustment becomes more complex than a
fixed design approach. The repeated significance testing recognized in group
sequential design and analysis was proposed as early as the randomization ratio
adaptation in late 1960s (Zelen 1969), e.g., Armitage et al. (1969).

In a broader sense, is a group sequential design controversial in the context of
confirmatory trials? It may be possible to judge if a study design is controversial by
examining the design features on whether the null hypothesis and the statistical
information (i.e., sample size or number of clinical events initially planned for)
remain unchanged. In group sequential designs, neither the initial null hypothesis nor
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the maximum statistical information, e.g., the number of clinical events in an event-
driven trial, is changed. Although the only and critical concern with group sequential
design seems to be the potential maneuvers caused by unblinding that occurs in an
interim analysis, we have gone a long way from adhering to fixed designs to adopting
group sequential designs and such proposals have been considered by regulatory
health authorities for medical product developments and licensures.

The conference on the practical issues with data monitoring of clinical trials held
in 1992 (Ellenberg et al. 1993) signifies the milestones embracing group sequential
designs in clinical trial practice following the public debates among experts involved
in design and analysis of clinical trials, and the general recognition among clinical
trialists, academia, and regulators. To maintain the integrity of a trial, the data moni-
toring committee (DMC) or data and safety monitoring committee (DSMC) previ-
ously known as the data and safety monitoring board (DSMB) was instituted to
serve as an independent third party to communicate the only necessary information
to drug sponsors.

Furthermore, the additional flexibility to modifying the multiple design aspects,
e.g., adapting to some specific dose hypotheses with the potential to increase sam-
ple size in an interim analysis, has been proposed. The overwhelming interests in
proposing adaptive designs in lieu of group sequential designs in regulatory sub-
missions since mid-2000 allow the clinical trial community to experiment alterna-
tive trial designs beyond those fairly understood fixed designs and group sequential
designs. In this chapter, regulatory guidance and reflection paper from health
authorities on adaptive design will be briefly introduced. Their similarities and dif-
ferences in emphasis will be highlighted. Key additions to the European Medicines
Agency (EMA) reflection paper (European Medicines Agency 2007) described in
United States Food and Drug Administration (US FDA) draft guidance (FDA 2010)
will be bulleted. In addition, adaptive design proposals submitted to the US FDA
both before and following publication of the draft guidance will be briefly summa-
rized. Some of the challenges observed in implementing adaptive design confirma-
tory trials will be shared. Regulatory perspectives on statistical considerations for
use of adaptive designs will be articulated based on current thinking, and a sum-
mary will follow.

3.2 Regulatory Guidance Documents

Shortly after Dr. Robert O’Neill, the former Director of Office of Biostatistics,
Center for Drug Evaluation and Research, US Food and Drug Administration
(FDA), instituted the regulatory roles in preparation of FDA regulatory review func-
tions on adaptive design submissions, the EMA (the European counterpart) had
drafted the reflection paper on methodological issues in confirmatory clinical trials
planned with an adaptive design, agreed by the Efficacy Working Party (EWP) of
Committee for Medical Products for Human use (CHMP) on January 11, 2006
(European Medicines Agency 2007). With oversights of regulatory submissions and
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their experience building since late 2005, the US FDA draft guidance for industry
on adaptive design clinical trials for drugs and biologics was released for public
comment on February 26, 2010 (FDA 2010).

The term “adaptive” and the rationales behind the regulatory guidance may not
be quite the same between the two continents as the term “flexible” (e.g., Bauer
et al. 2001; Hung et al. 2006) was also used until the term “adaptive” was eventually
adopted in the two regulatory guidance documents (European Medicines Agency
2007; FDA 2010). Earlier, the greater interests in applying adaptive design beyond
group sequential design were from Europe with its majority in Germany due to the
fact that the broad early research on the newer adaptive design topics that combine
stages from a single trial was performed in the Europe region, see (Bauer 1989;
Bauer and Kohne 1994). Such interests gradually emerged and received enthusiastic
attention in U.S. As a result, the development of the US FDA draft guidance for
industry on adaptive design clinical trials for drugs and biologics (FDA 2010) was
necessary to define the boundaries of adaptive designs regarding what are flexible,
what are exploratory and what are adequate and well controlled (A&WC) (FDA
2002a) for clinical trials aiming for drug and biologics development.

3.2.1 EMA Reflection Paper on Methodological Issues
in Confirmatory Clinical Trials Planned
with an Adaptive Design

The EMA reflection paper on methodological issues in confirmatory clinical trials
planned with an adaptive design (European Medicines Agency 2007) adopted by
EMA/CHMP in October 2007 is a 10-page document. The EMA reflection paper is
structured into four sections. The main body of the texts is in section 4, which out-
lines general considerations for studies incorporating interim analyses that are pre-
planned (4.1), followed by a set of minimal requirements for interim analysis with
design modifications that must be fulfilled whenever confirmatory clinical trials are
planned with an adaptive design (4.2).

More specifically, in section 4.1, three topics on interim analyses for general
considerations are discussed in details. They are (1) the importance of confidential-
ity of interim results, (2) considerations about stopping trials early for efficacy, and
(3) overrunning. Specific design modifications that have been proposed in the rele-
vant literature on (1) sample size reassessment, (2) change or modification of the
primary end-point, (3) discontinuing treatment arms, (4) switching between superi-
ority and noninferiority, (5) randomization ratio, (6) phase II/phase III combina-
tions, applications with one pivotal trial and the independent replication of findings,
(7) substantial changes of trial design, and (8) futility stopping in late phase II or
phase III clinical trials are commented in section 4.2. See Appendix 1 for table of
contents of the EMA reflection paper (European Medicines Agency 2007).
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3.2.2 FDA Draft Guidance for Industry on Adaptive
Design Clinical Trials for Drugs and Biologics

The US FDA draft guidance for industry on adaptive design clinical trials for drugs
and biologics (FDA 2010) targets multidisciplinary readers directly or indirectly
involved in designing, planning, performing, monitoring, and analyzing clinical tri-
als for drug development including, e.g., external experts/consultants. This draft
guidance is a 50-page document structured into 12 sections. The earlier sections of
the document give (1) description of and motivation for adaptive designs, and (2)
general concerns associated with use of adaptive design in drug development. The
mid-sections of the document elaborate extensively on (1) generally well-understood
adaptive designs with valid approaches to implementation, (2) adaptive study
designs whose properties are less well understood, (3) statistical considerations for
less well-understood adaptive design methods, and (4) safety consideration in adap-
tive design trials.

The later sections of the document provide details on the processes, procedures,
and documentations needed to maintain the integrity of the trial and its results when
planning and implementing an adaptive design clinical trial. Specifically, these sec-
tions discuss (1) contents of an adaptive design protocol, (2) interactions with US
FDA when planning and conducting an adaptive design, (3) documentation and
practices to protect study blinding and information sharing for adaptive designs, and
(4) evaluating and reporting a completed study. See Appendix 2 for table of contents
of the FDA draft guidance (FDA 2010).

3.3 Basic Premises/Definitions

In discussing the guidance document of FDA (FDA 2010) and the reflection paper
of EMA (European Medicines Agency 2007), one should keep in mind that each
document has its own objectives. I begin by extracting the basic premises and their
definitions of adaptive designs in clinical trials.

3.3.1 Basic Premises

The word “should” in the FDA draft guidance means that something is suggested or
recommended, but, not required. Such concept is specific to FDA guidances. This is
because guidances describe the Agency’s current thinking on a topic and should be
viewed only as recommendations, unless specific regulatory or statutory require-
ments are cited. There are two such requirements cited in the FDA draft guidance
on adaptive design clinical trials for drugs and biologics (FDA 2010). One is “The
major focus of this guidance is adequate and well-controlled effectiveness (A&WC)
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studies intended to provide substantial evidence of effectiveness required by law to
support a conclusion that a drug is effective (see 21 CFR 314.126 (FDA 2002a)).”
The other is “In addition to the full documentation required for a study protocol (21
CFR 312.23(a) (FDA 2002b)), there should be comprehensive and prospective writ-
ten standard operating procedures (SOPs) ...” In this spirit, when the FDA adaptive
design draft guidance is finalized, a sponsor can use an alternative approach if the
approach satisfies the requirement of the applicable statutes and regulations.

Instead of regulatory or statutory requirements cited in the FDA draft guidance
(FDA 2010), the EMA reflection paper (European Medicines Agency 2007), focus-
ing on the learning and thinking via reflection, gives a list of minimal requirements
on adaptation of design specifications with interim analyses anticipated in a confir-
matory clinical trial. They are highlighted below.

It requires pre-planning and a clear justification

e The number of design modifications should be limited

* It requires the control of the pre-specified Type I error, pre-specification of the
corresponding methods to estimate the size of the treatment effect and to provide
confidence intervals with pre-specified coverage probability in addition to the
presentation of the p-value

* A measure for the treatment effect that is readily interpretable for clinicians
should be preferred when the effect can be measured on different scales

* From a regulatory point of view, whenever trials are planned to incorporate
design modifications based on the results of an interim analysis, the applicant
must pre-plan methods to ensure that results from different stages of the trial can
be justifiably combined.

* Depending on the nature of the design modification, the simple rejection of a
global null hypothesis across all stages of the trial may not be sufficient to estab-
lish a convincing treatment effect

* The involvement of sponsor personnel in interim decision making remain contro-
versial, which introduces an additional risk when the credibility of the trial
results is challenged, since it would be more difficult to argue that importantly
different results from different stages are only due to chance.

The following key points are also emphasized in the EMA reflection paper
(European Medicines Agency 2007).

* The body of evidence justifying the final treatment recommendation must be
discussed.

* The EMA reflection paper focuses on the opportunities for interim trial design
modifications, and the prerequisites, problems and pitfalls that must be consid-
ered as soon as any kind of flexibility is introduced into a confirmatory clinical
trial intended to provide evidence of efficacy.

* A set of minimal requirements is outlined that must be fulfilled whenever confir-
matory clinical trials are planned with an adaptive design.

* Analysis methods that control the Type I error must be pre-specified.

» Effects must always be attributable to specific endpoints to clarify the capabilities
of the drug treatment in a confirmatory setting.
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3.3.2 Definitions

The EMA reflection paper (European Medicines Agency 2007) defines ‘A study
design is called “adaptive” if statistical methodology allows the modification of a
design element (e.g., sample-size, randomization ratio, number of treatment arms)
at an interim analysis with full control of the Type I error.” In this definition, a clini-
cal trial with “adaptive” design may not be a group sequential trial, although this
document begins with general considerations for studies incorporating interim
analyses.

In contrast, a more extensive definition can be found in the FDA draft guidance
(FDA 2010), which contains three components. That is, “an adaptive design clinical
study is (1) a study that includes a prospectively planned opportunity for modifica-
tion of one or more specified aspects of the study design and hypotheses based on
analysis of data (usually interim data) from subjects in the study. (2) Analyses of the
accumulating study data are performed at prospectively planned timepoints within
the study, (3) can be performed in a fully blinded manner or in an unblinded manner,
and can occur with or without formal statistical hypothesis testing.” FDA definition
of adaptive design includes group sequential design. This distinction will be elabo-
rated later in Sect. 3.5 of this chapter.

3.4 Similarities

There are several similar concepts and principles between the FDA regulatory guid-
ance and the EMA reflection paper for adaptive studies designed as confirmatory
trials. We highlight a few in this section.

* Prospectively planned adaptation and its justification

ICH E9 (ICH 1998) emphasizes the concept of prospective planning of a confir-
matory clinical. This concept is repeatedly stated in the FDA definition of adaptive
design shown as italic phrases in Sect. 3.3.2. Although the definition of adaptive in
the EMA reflection paper did not mention the concept of pre-planning, it is the first
bullet in the list of minimal requirements summarized in Sect. 3.3.1. In fact, the
EMA reflection paper does not recommend unplanned changes to the design of an
ongoing confirmatory trial, even though such changes could be introduced with full
control of the Type I error (p. 5 of European Medicines Agency 2007).

As for the need of justification for why pursuing an adaptive design, it is stated
in the EMA reflection paper that “In all instances the interim analysis and the type
of the anticipated design modification (change of sample size, discontinuation of
treatment arms, etc.) would need to be described and justified in the study protocol.”
(European Medicines Agency 2007) Similarly, the FDA draft guidance states that
document should include the rationale for the design, justification of design features,
evaluation of the performance characteristics of the selected design (particularly
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less well-understood features), and plans to assure study integrity when unblinded
analyses are involved, see the subsection A on “A&WC Adaptive Design Studies”
of Section IX of the FDA draft guidance (FDA 2010).

» Control of pre-specified type I error

Both documents stress the need to control the pre-specified Type I error in adap-
tive design confirmatory trials or A&WC trials. The term “Type I error” occurs 11
times in the EMA reflection paper (European Medicines Agency 2007) and 52 times
in the FDA draft guidance (FDA 2010). From the EMA reflection paper (European
Medicines Agency 2007), a minimal prerequisite for statistical methods to be
accepted in the regulatory setting is the control of the pre-specified Type I error,
which is used as an abbreviation for “the control of the family-wise Type I error in
the strong sense, i.e., there is control on the probability to reject at least one true null
hypothesis, regardless which subset of null hypotheses happens to be true”, see page 2
of CHMP Point to Consider on multiplicity issues in clinical trials (European
Medicines Agency 2002). The importance of “controlling study-wide Type I error
rate” can be found in Section VII, which is elaborated under subsection “A” of the
FDA draft guidance (FDA 2010). This draft guidance further states that using
Bayesian predictive probability may aid in deciding which adaptation should be
selected, while the study design is still able to maintain statistical control of the
Type I error rate in the frequentist design. The Type I error rate control here refers
to the hybrid setting where adaptive design relies on the frequentist analysis and
incorporates Bayesian predictive probability tool for the purpose of adaptation
decision.

» Sample size re-estimation

There has been a great interest to preplan the possibility of modifying the study
sample size or statistical information based on interim unblinded treatment effect
estimate, e.g., (Gao et al. 2008) on the methodological relationship of the many
references cited therein. However, both guidance documents encourage blinded
methods for sample size re-estimation. The EMA reflection paper (European
Medicines Agency 2007) states that whenever possible, methods for blinded sample
size reassessment that properly control the Type I error should be used, especially if
the sole aim of the interim analysis is the re-calculation of sample size. In cases
where sample size needs to be reassessed based on unblinded data, sufficient justi-
fication should be made.

The similar concepts flow in the FDA draft guidance (FDA 2010) as such “sam-
ple size adjustment using blinded methods to maintain desired study power should
generally be considered for most studies.” The FDA draft guidance elaborates on
the blinded interim analyses used to make decisions to increase the sample size and
discourages it to decrease the sample size “because of the chance of making a poor
choice caused by the high variability of the effect size and event rate or variance
estimates early in the study.”
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e Sponsor personnel involvement in interim adaptive process and decision
making

The concerns with the involvement of sponsor-affiliated personnel in interim
adaptive decision making have been articulated in detail in the FDA guidance for
clinical trial sponsors on establishment and operation of clinical trial data monitor-
ing committees released in 20006, see section 6.4 Statisticians conducting the interim
analyses (FDA 20006). A key concern is the conflicting nature between the sponsor-
affiliated statistician and the sponsor regarding the ability to ensure the sponsor is
unaware of the interim comparative data. This can be seriously questioned when the
primary trial statistician or sponsor affiliated statistician is (extremely) knowledge-
able about the study or is involved in regard to making decisions about design
modifications.

In a similar vein, the EMA reflection paper (European Medicines Agency 2007)
acknowledges that decision in certain types of adaptive trials are more complicated
to set into an algorithm for independent interpretation than, for example, a sample
size re-estimation problem or group-sequential stopping guidelines. Nevertheless,
sponsor involvement introduces an additional risk when the credibility of the trial
results is challenged as such with sponsor involvement it would be more difficult to
argue that importantly different results from different stages are only due to chance.
Therefore, “it remains controversial if the sponsor-affiliated personnel is involved in
interim adaptive decision making.” (European Medicines Agency 2007)

*  When a number of design aspects need modification

In the section describing the minimal requirements, the EMA reflection paper
(European Medicines Agency 2007) notes that “the need to modify a number of
design aspects, e.g., re-assess sample size, change inclusion or exclusion criteria,
change dosing, treatment duration, model of application, allow for alternative co-
medications, may change the emphasis from a confirmatory trial to a hypothesis
generating, or exploratory trial.”

To articulate, the FDA draft guidance (FDA 2010) devotes a subsection VLF to
addressing “adaptation of multiple-study design features in a single study.” The
concerns include that the study will become increasingly complex and difficult to
plan and increased difficulty in interpreting the study result. In addition, if there are
interactions between the changes in study features, multiple adaptations can be
counterproductive and lead to failure of the study to meet its goals. Because of these
concerns, the draft guidance highlights that “an A&WC study should limit the num-
ber of adaptations and recommends exploratory studies may be better suited to cir-
cumstances when multiple adaptations are warranted.” (FDA 2010)

* Investigate more than one dose in confirmatory clinical trials

The EMA reflection paper (European Medicines Agency 2007) notes that even
after a carefully conducted phase II program, in some instances, some doubts about
the most preferable dose for phase III may still exist and recommends that “investi-
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gators may wish to further investigate more than one dose of the experimental
treatment in phase III”. Similarly, the FDA draft guidance (FDA 2010) states that
“fully evaluating more than one dose in the larger A&WC studies is almost always
advisable whenever feasible.”

3.5 Differences in Emphasis

Some of the emphases differ between the FDA draft guidance (FDA 2010) and the
EMA reflection paper (European Medicines Agency 2007). Below, I comment on a
few key aspects.

e A&WC versus confirmatory

The EMA reflection paper (European Medicines Agency 2007) focuses on
confirmatory trials citing ICH E9 (ICH 1998) that a confirmatory trial is an ade-
quately controlled trial in which the hypotheses are stated in advance and evaluated.
As a rule, confirmatory trials are necessary to provide firm evidence of efficacy
or safety.

Instead of using “confirmatory trials”, the FDA draft guidance (FDA 2010) dis-
tinguishes between A&WC studies (used here to refer only to effectiveness studies)
and other studies, termed exploratory studies. In US, Section 314.126 in Code of
Federal Regulations (CFR) defines in details on what are adequate and well-
controlled (A&WC) studies (FDA 2002a). From CFR 314.126, the key characteris-
tics of an A&WC study includes (1) a clear statement of the objectives of the
investigation and a summary of the proposed or actual methods of analysis in the
protocol for the study and in the report of its results, (2) uses a design that permits a
valid comparison with a control to provide a quantitative assessment of drug effect,
(3) the method of selection of subjects provides adequate assurance that they have
the disease or condition being studied, or evidence of susceptibility and exposure to
the condition against which prophylaxis is directed, (4) the method of assigning
patients to treatment and control groups minimizes bias and is intended to assure
comparability of the groups with respect to pertinent variables such as age, sex,
severity of disease, duration of disease, and use of drugs or thereby other than the
test drug, (5) adequate measures are taken to minimize bias on the part of the sub-
jects, observers, and analysts of the data, (6) the methods of assessment of subjects’
response are well defined and reliable, (7) an analysis of the results of the study
adequate to assess the effects of the drug.

The distinction between A&WC and exploratory adaptive design clinical trials
stated in the FDA draft guidance has major implications. The rationales of this dis-
tinction are summarized in the second bullet of section 6 on “Additions”, as such an
exploratory adaptive design trial as designed cannot be converted to an A&WC
adaptive design trial. The regulatory and statistical requirements will be demanded
for A&WC adaptive design trials, which may not be the case for exploratory adap-
tive design trials. To build on practical experiences with use of more complex adap-
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tations, the FDA draft guidance encourages sponsors to gain experience with the
less well-understood methods in the exploratory study setting (FDA 2010).

e Interim analysis

The term “interim analysis” is not further explained, other than to note that
adaptive design involves design modifications based on the results of an interim
analysis in the EMA reflection paper (European Medicines Agency 2007). Interim
analysis is defined in the ICH E9 (ICH 1998) as “any analysis intended to compare
treatment arms with respect to efficacy or safety at any time prior to the formal
completion of a trial.” However, the FDA draft guidance (FDA 2010) gives a foot-
note specifically to explain its broader meaning for interim analysis than those
defined in ICH E9 (ICH 1998) to accommodate the broader range of analyses of
accumulated data that can be used to determine study adaptations at an intermedi-
ate point in the study. For instance, an interim analysis in this broader definition
may include a pre-planned analysis of accumulating data without performing a
formal statistical hypothesis test, but may make the decision to increase statistical
information, e.g., sample size, event count (or study duration in certain circum-
stances), in an ongoing trial.

e Blinded versus unblinded interim analysis

In addition to “Routinely breaking the blind should be avoided ...”, general
statements on whether interim unblinded data can be protected or when blind can-
not be maintained in an interim analysis and use of blinded sample size reassess-
ment are mentioned using group sequential design as the backbone in the EMA
reflection paper (European Medicines Agency 2007). In contrast, the FDA draft
guidance (FDA 2010) devotes four subsections in the generally well-understood
adaptive designs session. This includes (1) V.A. on adaptation of study eligibility
criteria based on analysis of pretreatment (baseline) data, (2) V.B. on adaptations to
maintain study power based on blinded interim analyses of aggregate data, (3) V.C.
on adaptations based on interim results of an outcome unrelated to efficacy, and (4)
V.E. on adaptations in the data analysis plan not dependent on within study, between-
group outcome differences. Note on the unblinded interim analysis in FDA draft
guidance (FDA 2010) can be found under the bullet “Well-understood versus less
well-understood” below.

Those described in V.A. are relatively commonly known. For V.B., it may
include, e.g., blinded enrichment modification, blinded interim analysis to upsizing
for power improvement in a noninferiority trial. For V.C., it may be in a situation
where if an unexpected serious toxicity is observed in safety monitoring, dropping
the dose groups early with excessive toxicity would be an outcome unrelated to
efficacy. Examples of where V.E. may be useful to include situations in which the
observed data violate prospective assumptions regarding the distribution of the data
or where data transformations or use of a covariate is called for in the analysis to
achieve adequate conformity with the method’s assumptions, e.g., (Wang and Hung
2005). These subsections involve interim analyses that are used in a broader sense
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than those defined in ICH E9 (ICH 1998), i.e., blinded interim analyses not for early
efficacy or futility stopping.

» Phase II/III or phase 2/3 or seamless

In statistical literature, the term “seamless Phase II/III” was getting popular, e.g.,
(Schmidli et al. 2006; Friede et al. 2011), during and after the development of the
EMA reflection paper (European Medicines Agency 2007). Section 4.2.7 of the
EMA reflection paper (European Medicines Agency 2007) is devoted to “Phase II/
Phase III combinations, applications with one pivotal trial and the independent rep-
lication of findings”. This section further elucidates what criteria should be consid-
ered as a basis for drug licensing in Europe.

Since “phase 2/3” or “seamless” used to describe an adaptive design confirma-
tory trial introduces confusion on whether a study is initially designed to be ade-
quate and well-controlled, and ultimately demonstrate effectiveness, they also do
not add to understanding of the design beyond the already inclusive term “adap-
tive”. The FDA draft guidance (FDA 2010) therefore acknowledges these terms
citing statistical literature, but, uses the terms exploratory study versus A&WC
study (FDA 2002a), each can be an adaptive trial in itself.

¢ Well-understood versus less well-understood

In the EMA reflection paper (European Medicines Agency 2007), there is no
distinction made on whether certain types of adaptive designs would be well or less
well understood. Interestingly, specific adaptive designs sub-bulleted for special
considerations listed in section 2.1 mostly involve unblinded interim analysis. In
their discussion, the document distinguishes between group sequential trials and
adaptive designs.

Whilst, group sequential trials is a type of A&WC adaptive design clinical trials
described in the FDA draft guidance (FDA 2010) as whose properties are well
understood. In addition, those A&WC adaptive design clinical trials adopting
blinded approaches listed in section V also belong to the well-understood category.
The blinded approaches in the comparative studies do not make use of the treatment
codes in their pre-specified interim adaptation(s). As for A&WC adaptive design
clinical trials whose properties are less well-understood, the adaptive design meth-
ods are all based on unblinded interim analyses that estimate the treatment effect(s).

* Consistency of and bias in treatment effect estimates

The EMA reflection paper (European Medicines Agency 2007) repeatedly
reminds of the importance and the need to check for consistency of treatment effect
estimates before and after the interim analysis in an adaptive design trial with a
preplanned method, but only notes once about the bias as “assessment of results
from clinical trials involves, amongst other issues, a full discussion of potential
sources of bias.”
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In contrast, the FDA draft guidance (FDA 2010) repeatedly articulates and cau-
tions regarding the bias issue induced by adoption of an adaptive design in lieu of a
fixed design. Here, the biases include both the statistical bias embedded in the
design, analysis, and interpretation of study finding and the operational bias caused
by the conduct of an adaptive design trial mostly resulting from unblinded adapta-
tion. The term “bias” occurs around 70 times but only twice regarding the consis-
tency of treatment effect estimates.

 Situations or settings for encouraging adaptive design use

The ideal setting to utilize adaptive designs, explained by the EMA reflection
paper (European Medicines Agency 2007), is using it as a tool for planning clinical
trials in areas where it is necessary to cope with “difficult experimental situations”
in confirmatory trials. It goes on to state “In all instances the interim analysis and
the type of the anticipated design modification (change of sample size, discontinua-
tion of treatment arms, etc.) would need to be described and justified in the study
protocol. Adaptations to confirmatory trials introduced without proper planning will
render the trial to be considered exploratory”.

Here, “difficult experimental situations” refer to diseases, indications, or
patient populations, where it is common knowledge that clinical trials will be dif-
ficult to perform (European Medicines Agency 2007). Three examples given as
difficult experimental situations are (1) placebo response is difficult to predict,
even in situations where criteria for inclusion and exclusion of patients to trials
are well defined, (2) small populations or orphan diseases with constraints to the
maximum amount of evidence that can be provided, and (3) ethical constraints to
experimentation.

In contrast, the FDA draft guidance (FDA 2010) acknowledges the greatest inter-
est in adaptive design clinical trials has been in the adequate and well-controlled
study setting intended to support marketing a drug. Because these studies have the
greatest regulatory impact, it is critical to avoid increased rates of false positive
study results and to minimize introducing bias. The FDA draft guidance also notes
that many adaptive methods are also applicable to exploratory studies and encour-
ages sponsors to gain experience with the less well-understood methods in the
exploratory study setting (FDA 2010).

3.6 Additions

It is noticeable that the FDA draft guidance (FDA 2010) is much more extensive
than the EMA reflection paper (European Medicines Agency 2007). Instead of dis-
cussing specific statistical methods, the EMA reflection paper (European Medicines
Agency 2007) focuses on the opportunities for interim trial design modifications,
and the prerequisites, problems and pitfalls that must be considered as soon as any
kind of flexibility is introduced into a confirmatory clinical trial intended to provide
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evidence of efficacy. A few key additions described or discussed in the FDA draft
guidance (FDA 2010) are listed below.

Comprehensively describing the rationales, motivations, and clinical contexts in
drug development that should also be understandable to non-statisticians.
Rationally articulating “adaptive design exploratory studies are usually different
in multiple aspects of design rigor from A&WC studies so that design revisions
while the study is underway will usually not be sufficient to convert the study
into an A&WC study. As such studies that are intended to provide substantial
evidence of effectiveness should not be designed as exploratory studies, but
rather as A&WC studies at initial planning.” With this theme, safety consider-
ations in adaptive design trials are mostly exploratory studies.

Extensively elaborating on the roles of clinical trial simulation in adaptive design
planning and evaluation. This includes, but are not limited to, reliance on statisti-
cal models for the disease or the drug, use of modeling and simulation strategies
with either a Bayesian or a frequentist approach, comparison of the design per-
formance characteristics among competing designs under different scenarios
mostly in situations where multiple factors will be simultaneously considered in
the adaptive process, but, with little analytical solution on the strong control of
study-wide Type I error.

Mindfully recommending an elaborate standard operating procedure (SOP) for
an adaptive design study in the less well-understood category, in addition to what
has been in place for traditional group sequential trials, such as, how adaptation
decision will be made, actual interim analysis results and a snapshot of the data-
bases used for that interim analysis and adaptation decision should also be
retained in a secure manner, acknowledging these SOPs will be related to the
type of adaptation and the potential for impairing study integrity.

Cautiously stipulating two types of trial logistics/adaptive monitoring models:
one is the typical DMC model with procedures in place to ensure certain kinds of
information with possibly unblinded analyses do not become available outside of
the committee. Alternatively, a model with two separate committees with a DMC
delegated only the more standard roles (e.g., ongoing assessment of critical
safety information) and a separate adaptation committee used to examine the
interim analysis and make adaptation recommendations. In either case, the spe-
cific duties and procedures of the committees should be fully and prospectively
documented.

Extensively detailing the content of an adaptive design protocol, processes in the
interactions with FDA when planning and conducting an adaptive design clinical
trial for a drug development or drug developments, documentation, and practices
to protect study blinding and information sharing for adaptive designs, and eval-
uating and reporting a completed study
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3.7 Regulatory Submissions and Statistical Considerations

The FDA draft guidance (FDA 2010) offers an opportunity to take a fresh look of
fixed designs, group sequential designs, and a broader class of adaptive designs.
While the draft guidance pinpoints important differences among these designs,
adaptive designs may be considered with care for improving the efficiency of a
clinical development program, but it is necessary, at the minimum, to distinguish if
a trial is designed at the outset an exploratory trial or a confirmatory trial (Wang
2010a).

3.7.1 Regulatory Submissions

The overwhelming interests in pursuing an adaptive design clinical trial appears to
be where it has most regulatory impacts for its potential in gaining regulatory licen-
sure, namely, adaptive design confirmatory trials by the EMA reflection paper
(European Medicines Agency 2007) or adaptive design A&WC trials by legal stat-
utes and regulations stated in the FDA draft guidance (FDA 2010).

In 2005, the results of CDER’s preliminary survey to capture any interest in
adaptive/flexible design strategy up to September 2002 were published (Wang et al.
2005). Of the 46 study cases reported involving any flavor of adaptive/flexible
designs irrespective of methodological validity, approximately 80 % were investiga-
tional new drugs (INDs) and 20 % were new drug applications (NDAs). In this
preliminary survey, the most frequently considered adaptation was the sample size
re-estimation (43 %) where blinded and unblinded approaches were proposed.
Twenty-two percent of submissions considered dropping at least one treatment dose
arm and 20 % considered study objective change from superiority to non-inferiority
and vice versa. About 9 % involved adaptation on primary endpoint, 4 % on primary
statistical analysis method and 2 % on multiplicity adjustment method.

The newer adaptive designs attempt to combine data in the first stage with data
in the second stage for statistical inference in a two stage adaptive design trial. The
germane question is what is the study-wise Type I error rate when data from both
stages are combined. If the adaptive design trial as proposed is an exploratory trial,
the study objectives aim at learning; therefore, study-wise Type I error rate control
standard may not be the focus. In contrast, if the adaptive design trial is proposed as
a confirmatory trial, the study-wise Type I error rate would be at issue.

Since 2005, a part of the newer topics for adaptive/flexible design consideration
geared towards pharmacogenomics trials due to overwhelming interests in person-
alized medicine drug development (Wang 2006, 2007). Other newer topics attempted
to pursue a learn-and-confirm approach (Wang 2010a), which prompted regulatory
research to investigating the impact of family-wise Type I error rate in the context
of learning-free in Stage 1 that combines data from both stages for statistical infer-
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ence (Wang et al. 2010). Gradually, the learn-and-confirm approach was recognized
for its suitability in exploratory trials to demonstrate preliminary early evidence,
which can serve as a priori knowledge for planning confirmatory trials that can
employ fixed design or adaptive design.

We have since received many two-stage adaptive design clinical trial submis-
sions that are either exploratory (such as, proof of concept studies) or A&WC (FDA
2002a). Often, we see Bayesian approaches are proposed in exploratory adaptive
design clinical trials including early dose escalation or tolerability studies.
Interestingly, the majority of the adaptive design proposals are still in the domain of
sample size or statistical information adaptive design that adapt either statistical
information alone (Wang et al. 2012) or in conjunction with adaptive selection
(Wang et al. 2013).

Traditionally, the proof of concept studies and dose-ranging studies are mostly
fixed design trials. To enhance the flexibility and consistent with the recommenda-
tion from FDA draft guidance (FDA 2010), we are seeing an increase in two-stage
adaptive design proof of concept trial proposals seeking preliminary data informa-
tion prior to launching A&WC clinical trials. We have also received submissions
proposing a two-stage adaptive design dose ranging exploratory trial based on
short-term endpoints.

Recent regulatory experiences on adaptive design A&WC trials leading to even-
tual drug approval identified a number of challenges, though efficacy evidence sup-
ported by statistical significance may not be critically challenged. In a few
incidences, the treatment effect estimates before and after adaptation can easily be
argued to be inconsistent but with unclear causes or may be speculated to be due to
patient heterogeneity or baseline imbalance between stages (Wang et al. 2013). Fast
accrual results in a haphazard adaptation on statistical information (Wang and Hung
2013a), interim selection of treatment arm may have been impacted by market com-
petition on efficacy benefit when safety risks are not well understood (Wang 2009).

It can be questioned that interim data used for interim adaptation can be subop-
timal if data quality at interim time can be of concern possibly due to timing for data
cleaning versus for interim analysis to make adaptation recommendation and adap-
tation decision. We believe regulatory learning curve will continue, especially on
challenges that may evolve from more regulatory reviews of the less well-understood
completed adaptive design confirmatory trials. The accumulating experiences from
overseeing the range of trial logistics models for interim analysis, recommendation,
and decision to adapt may facilitate future development of good adaptive design
implementation practices in those less well-understood adaptive design trials aim-
ing for A&WC investigation.
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3.7.2 Statistical Considerations

In discussing the evidential standards for a confirmatory or A&WC clinical trial, the
term “family-wise” in (European Medicines Agency 2002) is referenced in the
EMA reflection paper (European Medicines Agency 2007) and the term “study-
wide” is used in the FDA draft guidance (FDA 2010). For commentary, I will use

LLINT3

the term “study-wise” to refer to the various terms: “family-wise”, “experiment-
b1 9

wise”, “study-wise”, “overall” seen in the statistical literature regarding multiplicity
in a study, a family, or an experiment.

* One trial one study-wise Type I error rate

Multiplicity issues may arise in a single hypothesis adaptive design clinical trial
if (1) there is adaptation of a design feature, e.g., sample size reassessment based on
the interim observed treatment effect estimate, or (2) there is adaptation of an analy-
sis feature, e.g., repeated significance testing using independent incremental data
information for potential early rejection of the same null hypothesis at an interim
analysis, or (3) both (Bauer and Kieser 1999). For the newer adaptive designs
intended to perform unblinded interim evaluations for adapting statistical informa-
tion or adaptive selection, either the initial null hypothesis and/or the initial alterna-
tive hypothesis may have been modified (Wang et al. 201 1a).

A minimum requirement for a statistically valid A&WC trial is the strong control
of the study-wise (family-wise) Type I error rate (European Medicines Agency
2002). An adaptive design clinical trial to be considered A&WC should be sub-
jected to the same requirement in addition to prospective specification of the adapta-
tion criteria. In this spirit, the study-wise error rate control of an adaptive design
clinical trial can be achieved, for example, using p-value combination tests or
weighted Z-tests; see the literature such as (Bauer and Kohne 1994; Bauer and
Kieser 1999; Posch et al. 2005; Bretz et al. 2009; Wang et al. 2007, 2009) and some
articles cited therein. The principle of strong control of the study-wise Type I error
rate is also adopted in the EMA reflection paper (European Medicines Agency
2007).

However, methodologies that do not require pre-specification of what to adapt
after an interim unblinded analysis exit, and yet these approaches can control the
pre-specified overall Type I error by controlling the conditional Type I error, e.g.,
control of conditional Type I error (Proschan and Hunsberger 1995; Schéfer and
Miiller 2001), recursive combination tests (Brannath et al. 2002). With this flexibil-
ity feature, it is possible that at any (unscheduled) time the remainder of the pre-
planned design, say, group sequential design, can be replaced by an “adaptive design
which preserves the conditional type I error rate” (Miiller and Schéfer 2004). As
noted by Bauer (2006) “such designs can be looked at as perfect tool to deal with
the unexpected. The price to be paid for such a wide field of flexibility is mainly
known.”

It should be obvious that such approaches to control the study-wise Type I error
may be controversial in the context of an adaptive A&WC trial that has wide flexi-
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bility without the need for pre-specification (Wang 2010a; Wang et al. 2010, 201 1a).
Not only there is no pre-specified adaptation, the elements to adapt can also be wide
and flexible. These features would be inconsistent with the principles laid out in
both regulatory guidance documents. In fact, both Koch (2006) and Hung et al.
(2006) hinted similar concerns and only commented directly on the logistical chal-
lenges cited by Bauer (2006). These three commentaries were published prior to the
release of either regulatory document.

For a while, several regulatory submissions using an adaptive design clinical trial
aiming for an A&WC consideration propose to adjust for multiplicity only on the
selected hypotheses based on the stage 1 data when data from both stages are to be
combined for final statistical inference, referred to as a learn-and-confirm adaptive
design clinical trial (Wang et al. 2011a). The Type I error rate in a learn-and-confirm
adaptive design trial has recently been coined as learning-free Type I error rate by
Wang et al. (2010). In the learn-and-confirm framework without increasing the total
sample size, the learning free Type I error rate in a confirmatory trial has been shown
to be liberal. Depending on the particular adaptation scenarios, the Type I error rate
inflation can increase substantially beyond the intended significance level, such as
the conventional one-sided 0.025 or two-sided 0.05 level, see (Wang et al. 2010).

Wang et al. (2010) note that in the scenario of selecting the better dose regimen
between two doses in stage 1, the simulation studies show that the learning-free
Type I error rate control requires use of an extremely stringent criterion for an ad-
hoc adaptive dose selection if necessary multiplicity adjustment is ignored. That is,
the perceived minimum multiplicity adjustment due to only two hypotheses without
adjusting for interim adaptation may not be as straightforward as one would expect.
This is because the selection between one of the two dose regimens, if the criteria
are not carefully considered, can lean toward random selection as such either dose
regimen has equal probability of being chosen without adjusting for all sources of
multiplicity.

» Simulated Type I error rate aiming at an A&WC investigation

An adaptive design clinical trial to be counted toward one of the registration tri-
als but without an analytical solution to the study-wise Type I error rate control
signals the complexity of the design and the complexity of the inter-relationship
among the design elements desired for potential adaptation. Simulation tools have
been highly recommended to consider aspects of modernizing drug development
via clinical scenario planning and evaluation (Benda et al. 2009). Recently, the sim-
ulation studies with or without modeling have received wide acceptance to critically
assess the utility of adaptive design in terms of the study power, bias, mean square
error, and the sample size.

In simple setting, analytical solutions of Type I error probability are available,
e.g., sample size reassessment. However, the assessment of study-wise Type I error
rate via (modeling) simulations in the context of an adaptive design clinical trial
where no analytical solution is available and the adaptive design trial is intended to
be considered as A&WC has been debated; see, for example, (Posch et al. 2011) and
views by Brannath in (Wang and Bretz 2010).
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In principle, if the statistical behavior of the test statistic is mathematically trac-
table, using simulation to find the critical value or performing numerical integration
can be well understood. In general, simulation studies should be routinely per-
formed for power assessment when clinical scenarios are to be compared at the
planning stage with adaptive design in mind. This will demand people who plan the
trials to think about what are likely adaptive design clinical scenarios for power
assessment. The drug sponsors are always encouraged to use simulation to assess
the statistical efficiency of a trial design. However, it can be very risky if the study-
wise Type I error in a complex adaptive design trial aimed for confirmatory evi-
dences has to depend on the unknown mathematical models with no good pilot data.

¢ Bias

For all practical purposes, the bias associated with adaptations can come in
several forms into a study. This includes study design, study conduct, analysis and
interpretation of the study results, and can be grouped into statistical bias and opera-
tional bias, e.g., ICH E9 (ICH 1998; Wang and Nevius 2005). The statistical bias in
the treatment effect estimate can be induced by design due to interim adaptive
selection; see, for example, (Bauer et al. 2010; Bretz and Wang 2010; Hung et al.
2010). Statistical bias induced by design can be adjusted for, e.g., median unbiased
estimates (Posch et al. 2005; Brannath et al. 2006), or mean unbiased estimates
(Lawrence and Hung 2003) for sample size re-estimation, and (Bowden and Glimm
2008) for selected treatment means in two-stage adaptive design clinical trials.

The operational bias causing inaccurate treatment effect estimates can be the
results of changes in trial conduct due to interim adaptive decision, in trial imple-
mentation due to adaptive monitoring by the unblinded parties who either have sci-
entific interests or financial interests among other factors impacted by interim
unblinding. To minimize the operational bias, it is often questioned to what degree
a sponsor should be involved in making the adaptive decision based on interim
unblinded data information (Benda et al. 2010; Wang et al. 2011b).

» Consistency of treatment effects before and after adaptation

In the section articulating the importance of confidentiality of interim results in
the EMA reflection paper (European Medicines Agency 2007), checking for consis-
tency of treatment effect estimates from the data collected before and after the
interim analysis is highlighted for interpretable conclusions in studies planned with
an adaptive design. The document notes its greater importance if treatments cannot
be fully blinded, if it is suspected that the observed discrepancies are a consequence
of (intentional or unintentional) dissemination of the interim results, or if the assess-
ment of results incorporates some subjective elements.

Viewing it as an integral part of the adaptive design proposal for regulatory con-
siderations, Koch (2006) notes that it is essential to pre-specify the approaches to
evaluating consistency of treatment effects to avoid post-hoc discussions whenever
observed data may only indicate that combination of results from different stages is
questionable. Following this plea, some methods are proposed in statistical litera-
ture, e.g., (Wang et al. 2013; Friede and Herderson 2009; Wang and Hung 2013b).
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3.8 Difficult Experimental Situations

Should an A&WC adaptive design clinical trial be best utilized as a tool for plan-
ning clinical trials in areas where it is necessary to cope with difficult experimental
situations noted in EMA reflection paper (European Medicines Agency 2007) or
experimentation in exploratory trials with the less well-understood methods encour-
aged by US FDA (FDA 2010) or both? In an editorial, Wang (2010b) commented
that a well-understood experimental situation refers to a well-understood primary
endpoint, patient population, likely range of treatment effect size based on a plau-
sible dose regimen or regimens, etc. An A&WC adaptive design trial can then be
used to design a study to deal with the remaining uncertainty, such as the variability
of the effect size or limited uncertainty on the magnitude of effect size, and to avoid
falling short of statistical significance, such as a p-value slightly greater than the
pre-specified significance level when the completed trial is analyzed (Wang and
Hung 2013b).

3.8.1 Some Philosophy in EMA Reflection Paper

Best use of adaptive design in difficult experimental situations appears to bear a dif-
ferent philosophy. Rather than dealing with the limited uncertainties, the common
theme of those examples cited in the EMA reflection paper (European Medicines
Agency 2007) is ‘difficult’. In one situation, it is difficult to predict placebo response
though inclusion and exclusion of patients are well defined, such as in pain medica-
tion development. In other situations, ethical constraints may make it difficult to
experiment, e.g., not feasible to pursue a superiority trial in an active controlled trial
but a statistical non-inferiority margin may not be readily available. Or, orphan or
rare diseases may make it difficult to plan and conduct sufficiently powered trials
due to limited number of patients and consequently poses constraints on the maxi-
mum amount of evidence that can be provided.

3.8.2 Types of Adaptive Design and Study Endpoint

Should different standards be considered in difficult experimental situations? For
instance, should learn-and-confirm adaptive design (Wang 2010a) be an acceptable
design choice for establishing regulatory evidence of efficacy in difficult experi-
mental situations? It would be challenging if the only confirmatory trial for evi-
dence setting relies only on a single learn-and-confirm adaptive design trial that
does not have a clear intent of being adequate and well controlled. Such learn-and-
confirm adaptive design does not consider strong control of the study-wise Type I
error rate (Wang 2010a).
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Should the less well-understood adaptive design approach proposed to be A&WC
be viewed as A&WC? The less well-understood adaptive design trial would be sci-
entifically sound if it follows an A&WC investigation (FDA 1998, 2002a). In the
case that a second trial is not feasible, US FDA Moderization Act released in 1997
may consider data from one A&WC clinical investigation and confirmatory evi-
dence of substantial evidence (FDA 1997). In such cases, one trial one study-wise
Type I error rate (Wang et al. 2010) should ideally be the statistical criterion for the
only feasible adaptive design clinical trial, in addition to meeting the criteria on the
characteristics of an A&WC trial.

Can a shorter-term endpoint be acceptable in place of the long-term clinical ben-
efit endpoint? The effect size of a shorter-term endpoint measuring biological activ-
ity, especially if the endpoint is a continuous measurement, is generally not small.
In the spirit of adaptation acknowledging upfront the risks and uncertainties one has
to bear, it may be pragmatically plausible to plan with an adaptive design clinical
trial based on a shorter-term endpoint. Would it be public health sound for benefiting
patients in a near term when there may not have sufficient plausible prior data to
expect the shorter-term endpoint’s likelihood of predicting a long-term clinical ben-
efit/risk endpoint in difficult experimental situations?

For instance, can allowing pre-specified adaptation on statistical information
and/or adaptive selection, early futility stopping, and possibly early efficacy stop-
ping based on a shorter-term endpoint meet the challenges of ethical constraints
given the limited patient population in orphan or rare diseases? Consequently, the
ultimate clinical endpoint benefit risk assessment may take years to unravel the
uncertainty. Learning will be a big part in such an adaptive design trial applied in
difficult experimental situations.

3.9 Summary

In summary, based on my review of both regulatory guidance documents as well as
my experience with US regulatory submissions, the criteria for an A&WC adaptive
design clinical trial should possess, at a minimum, the following characteristics:

» Pre-specification of all hypotheses and adaptation elements at the planning stage
based on clinical scenario planning with simulation studies to justify the ‘adapta-
tion’ value

» Provision of the background information on what data information have been
gathered thus far and where the particularly proposed adaptive design clinical
trial is positioned within its own drug development program

e Use of a valid study-wise Type I error rate control method

e Utility of drawing strength from external trials, but, caution the credibility of
external evidence when they are anecdotal, preliminary, or limited
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* Careful use of “learning” for “confirming” in a single adaptive design trial by
distinguishing whether the primary study objectives are confirmatory or explor-
atory at the planning stage

* Necessary interim communication firewalls on adaptive monitoring and for
properly handling the adaptive design trial logistics via adequate standard oper-
ating procedures and charters

* Consideration of a valid point estimate and its corresponding interval estimates

The last bullet point may be subject to debate given that regulators have not
required a properly adjusted point estimate and the corresponding interval estimates
in a confirmatory or A&WC trial with a group sequential design. However, these
estimates are critical for future study planning, especially for defining the non-
inferiority margin in designing non-inferiority active-controlled clinical trials. Note
that the inability to mask in open-label studies can confound many operational and
logistic factors. In general, a double-blind adaptive design clinical study is
preferred.

Traditionally, statistical efficiency discussed is at an individual trial level. But
this consideration may not be sufficient in the context of adaptive design that aims
to incorporate design efficiency considerations into the entire development pro-
gram. Setting the efficiency debate aside, what could be the benefit of using an
adaptive design in any disease indication, if the experimental treatment may not be
effective or only minimally effective? Perhaps, the early futility stopping is a major
advantage to minimize the loss in drug developments and would be ethical so as not
to expose more patients than necessary to an experimental treatment, particularly
when the experimental treatment is also toxic.
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Chapter 4

Considerations and Optimization of Adaptive
Trial Design in Clinical Development
Programs

Michael Krams and Vladimir Dragalin

Abstract Although the efficiency of adaptive design on the trial level is well
recognized, its impact is even greater when applied at the program or portfolio level.
Besides its simplest form of sample size reestimation or early stopping in a given
trial, the adaptive design achieves efficiency by combining in a single trial objec-
tives that are usually addressed in two separate conventional studies. Another feature
of adaptive design is population enrichment where drug response can be optimized
to specific patient subpopulations that respond better to treatment. More complex
adaptive strategies integrate the development of several compounds and/or indica-
tions into one process. We provide an overview of these types of adaptive designs
and illustrate their value added in a case study of an adaptive “compound” finder
that investigates several compounds in Alzheimer’s disease area simultaneously
approaching the proof-of-concept stage.

Keywords Adaptive compound finder * Adaptive compound/population finder
Adaptive design ¢ Adaptive dose finder * Adaptive indication finder  Adaptive
population finder ¢ Allocation rule * Longitudinal modeling * Seamless design
Stopping rule

M. Krams (P<)

Janssen Pharmaceutical Research and Development,

1125 Trenton Harbourton Road, Titusville, NJ 08560, USA
e-mail: mkrams @its.jnj.com

V. Dragalin

Janssen Pharmaceutical Research and Development, 1400 McKean Rd, Spring House,
PA 19477, USA

e-mail: vdragali @its.jnj.com

W. He et al. (eds.), Practical Considerations for Adaptive Trial Design 69
and Implementation, Statistics for Biology and Health,
DOI 10.1007/978-1-4939-1100-4_4, © Springer Science+Business Media New York 2014


mailto:mkrams@its.jnj.com
mailto:vdragali@its.jnj.com

70 M. Krams and V. Dragalin
4.1 Background

The adoption of an adaptive design strategy across the product development
process brings a number of important benefits. These include increased R&D effi-
ciency, increased R&D productivity, and importantly increased probability of suc-
cess at phase III. We are all too familiar with the worrying industry statistic that
50 % of phase III studies fail and in some therapeutic areas such as oncology or
Alzheimer’s disease the failure rate is even higher. Innovative adaptive design trials
offer the potential to change this industry statistic and dramatically increase the
ability of pharmaceutical companies to successfully bring more effective treat-
ments to the market.

Adaptive designs enhance development efficiency by mitigating the need to
repeat trials that just miss their clinical endpoint or fail to identify the effective
dose—response at the first attempt. By avoiding the need to run these trials again,
significant cost and time savings are achieved. This is possible through use of
adaptive designs that enable additional patients to be added to achieve statistical
significance the first time around or by allowing a wider dose range to be studied
and a better understanding of the dose—response relationship. In addition, early
stopping of development programs because a product is ineffective enables scarce
resources to be redeployed in additional trials which may show more promise.
Early stopping of a trial for efficacy is also possible. All of these factors increase
development efficiency.

Adaptive design increases development productivity by enabling more accurate
definition of the effective dose in a phase II trial which enables better design of the
pivotal phase III program, which in turn increases the probability of success of this
trial. A number of phase III trials fail because the dose is either too high and causes
unwanted safety issues or too low to show sufficient efficacy. Adaptive design
enables optimized dose selection before the pivotal trial is initiated.

Another feature of adaptive design is population enrichment where drug response
can be optimized to specific patient subpopulations that respond better to treatment.
Many phase III studies fail because the overall efficacy of treatment is diluted as a
consequence of the drug being evaluated in the full population rather than in the
specific subset where the drug works best. Adaptive design enables early selection
of the appropriate patient population and increases the probability of success.

Phases I and II are critical steps in the product development process as this is
where important information about the product has to be generated and assessed,
before the decision is taken to commit to expensive phase III pivotal studies. This
early phase of development is known as the “learn phase” and the data that has to be
generated relates to the effective dose—response, the safety profile and therapeutic
index, appropriate endpoints, and the population of patients that will benefit best
from the product under evaluation.

Choosing which development candidate to back when there is a large portfolio of
products competing for a fixed level of investment can be a difficult and complex
process. The adoption of an adaptive design strategy at the portfolio level can
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provide significant value to the critical decision making required to deliver an
optimized pipeline of products.
Adaptive design can:

* Increase the value of the pipeline by maximizing the probability of success and
reducing the cost of development

» Enable better management of resources across a pipeline of products

* Optimize investment decision making

* Increase portfolio value

In its simplest form adaptive design enables early termination of trials in which
the product just does not work and as a consequence enables redeployment of fund-
ing and resources to more promising programs. Another type of adaptive design,
applied on the program level of a compound, is achieving efficiency by combining
in a single trial objectives that are usually addressed in two separate conventional
studies. Such a strategy provides the obvious benefit of reducing the timeline by
running the two studies seamlessly under a single protocol with the same clinical
team and the same centers and achieves trial efficiency by combining the informa-
tion from subjects in both studies in the final analysis. Examples are:

* Combining a conventional multiple ascending dose escalation in patients and
proof of concept (POC) in a single trial

* Combining the proof of concept with the dose-ranging study, by starting the
study with equal randomization of patients to the top dose and placebo and then
opening enrollment to other doses of the compound only if a futility rule is
overpassed

» Seamless phase II/III adaptive designs, by starting a confirmatory trial with cou-
ple of doses of the new compound with a pre-planned option of selecting the
“best” dose for the second stage of the trial

Furthermore, such adaptive designs optimize the benefit/risk balance for partici-
pating subjects via improved efficiency of decision making in relation to the doses
of the new drug studied. They minimize the number of subjects that are exposed to
ineffective doses of the drug while simultaneously focusing subjects to doses that
are most informative for accurate dose selection for subsequent stages of compound
development.

More complex adaptive strategies integrate the development of several com-
pounds and/or indications into one process. The principle is to keep one or more
aspects of the trial fixed and pre-plan for several adaptation options that will be
applied during the conduct of the study. Examples are:

* Adaptive “population” finder: The fixed aspect of the trial is the indication (e.g.,
breast cancer) and the treatment (e.g., epidermal growth factor receptor inhibi-
tor). The design aims to establish which subset of the population benefits most.

* Adaptive “compound” finder: The fixed aspects of the trial are the indication
(e.g., Alzheimer’s disease), the patient population (e.g., mild to moderate), and
the gold standard treatment we are comparing ourselves against (currently
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available best standard of care). The competing options are three different
compounds for the same indication. The adaptive design aims to identify the
compound with the most impressive therapeutic index to pursue in the further
development. See the case study in the next section.

* Adaptive “indication” finder: The fixed aspect of the trial is the compound (e.g.,
a cytostatic treatment). The competing options are different indications (e.g., dif-
ferent tumor histologies). The design aims to establish which of the indications
show therapeutic benefit.

* Adaptive “compound/population” finder: The fixed aspect is the population, but
its heterogeneity is recognized from the outset. Multiple development candidates
are assessed in parallel and matched with biomarker signatures of different sub-
populations. The design aims to dynamically change the allocation of new
patients with a given signature to different compounds, graduating successful
compound/biomarker pairs to small, focused, more successful confirmatory
phase, as is the case with breast cancer in the well-publicized ISPY-2 trial (Barker
et al. 2009); see also BATTLE trial in lung cancer (Zhou et al. 2008).

These approaches assist in and enhance the decision on which product to be
developed. However, adaptive design offers much more than selecting the right can-
didate to develop. It enables more effective decision making throughout the whole
development process by increasing the quality of information generated at each
stage of a trial. This increases development efficiency, productivity, and the proba-
bility of success at phase III, and ultimately contributes to the success of the overall
portfolio.

All these factors contribute to a decrease in the cost of the portfolio and an
increase in portfolio success which culminates in increased portfolio value.
Adopting an adaptive design strategy at the portfolio level will significantly increase
the return on the investment in several areas including new product development,
lifecycle decision making, and product repurposing.

In the next section, we illustrate the efficiency of such complex strategies in
clinical development programs in a case study of an adaptive “compound” finder.

4.2 Case Study

The sponsor has up to three compounds simultaneously approaching the POC stage
in the same therapeutic area—Alzheimer’s disease (AD). A conventional develop-
ment strategy is to investigate these three compounds in a sequential manner, one
after another in separate trials. The conventional design of each of such study is a
multicenter, randomized, double-blind, placebo-controlled trial with two active
arms (low, high) and placebo in a 1:1:1 randomization, all as adjunctive to back-
ground therapy.

This conventional development strategy is compared and contrasted with an
adaptive compound finder proof-of-concept study design that investigates several
compounds in a single trial. The objective is to find with high probability the
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“best” compound using adaptive allocation of subjects to competing treatments.
The primary endpoint for comparing the efficacy of the compounds is the change
from baseline at 12 months in ADAS-Cog. A maximum sample size of 450 sub-
jects is utilized to adaptively allocate to six active treatments (low and high doses
for each compound), all as adjunctive to background therapy, and a placebo
(standard of care). An early stopping for efficacy or futility is utilized.

The comparison of these two design strategies is done through intensive simula-
tions. Response data is simulated under a dozen of possible scenarios and the two
strategies are compared on different operating characteristics: the average number
of subjects, the average study duration, and probability of correctly identifying the
“best” compound.

4.2.1 Treatment Duration

To decide on the treatment duration of the trial, different time courses of the change
from baseline in ADAS-Cog have been considered. In Pfizer’s comprehensive meta-
analysis (Ito et al. 2010) of public data sources from 1990 to 2008, as well as clini-
cal studies that evaluated the rate of deterioration of AD patients, a model describing
the time course of the change from baseline in ADAS-Cog for mild- to moderate-
severity AD patients was developed. The model was used to investigate the required
number of subjects per arm for a conventional parallel-group study design with a
two-sample #-test at a two-sided significance level of 0.05. It is assumed that the
standard deviation (SD) for the change from baseline in ADAS-Cog is 6 points for
each treatment and at each time point. Treatment durations of 12, 26, 40, and
52 weeks are considered. Figure 4.1 plots the mean difference in change from base-
line on ADAS-Cog between the active treatment and placebo, for the three drugs
investigated in Ito et al. (2010): donepezil, galantamine, and rivastigmine. The dots
show the mean difference used in the sample size calculation in Table 4.1.

It can be seen that the donepezil treatment effect is around —2 points and is
almost constant starting at week 12. Therefore for drugs like donepezil the duration
of treatment is not so important. However, the treatment effect of galantamine
depends very much on treatment duration and changes from —2.3 at week 12 to —3.9
at week 52. For the rivastigmine, the treatment effect is small overall (only —1.36 at
week 52), so the time course is also not very pronounced. As a result, the effect on
the required sample size is different for different drugs. For donepezil, the range is
140-118 subjects per arm for 80 % power. In contrast, for the galantamine the range
is from 105 to 39 for the same 80 % power. For the rivastigmine, because the treat-
ment effect is so small the required number of subjects is more than doubled when
considering 12-week treatment period versus 52-week period.

Because at this stage there is no information what might be the time course of
treatment effect for these three drugs, the recommended treatment duration will be
52 weeks.
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Fig. 4.1 Time course of mean difference in change from baseline in ADAS-Cog between an active
drug and placebo

Table 4.1 Sample size per arm for a conventional parallel-group design with fixed sample size:
Two-sample r-test at a two-sided significance level of 0.05, SD =6 units

Donepezil Galantamine Rivastigmine
Time point Power 80 % Power 90 % Power 80 % Power 90 % Power 80 % Power 90 %
12 weeks 140 187 105 140 702 940
26 weeks 124 165 52 70 395 528
40 weeks 120 160 43 57 338 452
52 weeks 118 158 39 51 309 413

4.2.2 Conventional Development Strategy

Each compound is investigated in a separate clinical trial. The primary endpoint is
the change from baseline at 12 months in ADAS-Cog. A parallel-group design with
two active treatment arms (low dose and high dose) and placebo is considered.

Literature review of studies with subjects treated with standard of care provides
the following rates of decline over 12 months in the ADAS-Cog (Table 4.2):
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Table 4.2 Rates of decline over 12 months in the ADAS-Cog in subjects treated with standard
of care

Mean change

Study Sample size in ADAS-Cog (SD) Monthly decline
Reines et al. (2004) 327 5.4 (NA) 0.45
Thal et al. (1996) 211 7.0 (7.8) 0.58
Aisen et al. (2003) 111 5.7 (8.2) 0.48
Thal et al. (2000) 102 7.5 (8.0) 0.63
Aisen et al. (2000) 69 6.3 (6.4) 0.53

Table 4.3 Sample size per arm for a conventional parallel group design with fixed sample size:
Two-sample #-test at a two-sided significance level of 0.05

Difference in mean change from baseline/SD

Power -2/6 =2/7 -2.5/6 =2.5/7 -3/6 =3/7 -4/6 —4/7
80 % 143 194 92 125 64 87 37 50
90 % 191 259 123 166 86 116 49 66

A meta-analysis of 14 studies (Hansen et al. 2008) reported the mean change in
ADAS-Cog from baseline to endpoint for active treatment (donepezil, galantamine,
and rivastigmine) compared with placebo in subjects with mild-to-moderate demen-
tia in a range of [-3.90, —1.60]. The pooled weighted mean difference in change
between active treatment and placebo was —2.67 (95 % CI (-3.28,-2.06)) for done-
pezil, =2.76 (95 % CI (-3.17,-2.34)) for galantamine, and -3.01 (95 % CI
(—-3.80,-2.21)) for rivastigmine.

To calculate the required sample size for a given power, we use different standard
deviations (SD) for the change from baseline in ADAS-Cog (6 and 7 points) and
different treatment effects measured as the difference in mean change from baseline
between active treatment and placebo (-2, -3, —4 points).

Table 4.3 provides the sample size per arm for a conventional trial assuming dif-
ferent treatment effects and required power. A two-sample #-test at a two-sided sig-
nificance level 0.05 is assumed for comparing each dose with placebo with no
adjustment for multiplicity.

The required number of subjects per group for 80 % power and a minimum treat-
ment effect of —2 units is 143 (assuming SD=6). This might be too large for a
proof-of-concept study; therefore we will assume that the expected treatment effect
is =3 that results in 64 subjects per group for 80 % power. We will use this setup as
the benchmark in our comparison with the adaptive design trial.

4.2.3 Adaptive Design Trial Structure

The structure of the adaptive trial is as follows.
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Design: There is an initial burn-in period of 50 subjects equally allocated to each of
the seven treatments. After this first look, additional interim analyses are conducted
after every 50 subjects enrolled. If there are at least 100 subjects in the trial then the
trial can stop for efficacy or futility. If the trial does not stop at an interim analysis
then the trial continues with adaptive interim looks until 450 subjects have been
randomized.

Allocation rule: Any active treatment with the posterior probability of being better
than placebo Pr(T beats Plbo)<0.4 will be dropped for further allocations; that is,
no new subjects will be allocated to this treatment. However, the subjects already
allocated to this treatment will be followed up for their endpoint at 52 weeks. The
new subjects will be equally allocated to the remaining active treatments and
placebo.

Stopping rule: If there are at least 100 subjects in the trial, a decision is made at each
interim analysis whether to stop the trial for success or futility.

* Early success: The trial is stopped for success if the active treatment group with
the highest posterior probability of having the maximum effect has at least a 0.80
probability of achieving the clinical significant difference (CSD) of 3 points in
ADAS-Cog change from baseline compared to placebo, Pr(CSD | T=Max) >0.80.
If the condition is satisfied, the enrollment is stopped and the last subject is
followed up for the endpoint at 52 weeks.

* Early futility: The trial is defined as futile if Pr(CSD | T=Max)<0.05. If the
condition is satisfied, the enrollment is stopped and the last subject is followed
up for the endpoint at 52 weeks.

Decisions at trial completion: At the conclusion of the trial, at full 52-week follow-
up for the last subject enrolled, the trial is defined as follows:

* Late success: The trial is defined as a success if the active treatment group with
the highest posterior probability of having the maximum effect has at least a 0.95
probability of being better than placebo, Pr(T beats Plbol T=Max)>0.95 and has
at least 0.25 probability of achieving the clinical significant difference, Pr(CSD |
T=Max)>0.25.

» Late futility: Otherwise, the trial is defined as futile.

There is a possibility that the trial is stopped early (either for success or futility),
but after the last subject is followed up for 52 weeks, the terminal decision is
reversed. In the simulation study, this is counted as a “flip-flop” outcome.

Statistical hierarchical model: A Bayesian hierarchical model is used as the analysis
working model. The change from baseline at 52 weeks in the ADAS-Cog score for
each treatment 7=0,1,...,6 (=0 means placebo arm) arm is modeled as normal
distribution with mean y, and variance ¢*:

Y, ~N(ut,62).
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The mean responses 1, of the experimental treatments (¢=1,...,6) are assumed to
follow a normal distribution with a common mean pt (p=-5 is used) and variance t*:

u, ~ N(u,rz).

The prior distribution for the variance components is inverse-gamma:

o> ~IG 2,2—/25 and t° ~ IG 2,2—/25 ,
276 26

that is equivalent to assuming 5 observations with differences between observa-
tions of 6.

Longitudinal modeling: The primary endpoint is the ADAS-Cog score. The change
from baseline for the ADAS-Cog is observed at 12, 26, 40, and 52 weeks. These
measurements will be used to inform the primary endpoint for subjects with partial
information.

The early measurements of ADAS-Cog are modeled using a linear regression
model:

Y, ~ N(a, + By, A ) for k=12,26,40 and t=0.1,...6,

where y;, is the ADAS-Cog change from baseline at week k and Y, is the change

from baseline at 52 weeks. Therefore, it is a piecewise linear model. Separate linear

models are used for modeling the placebo (#=0) and the other treatments (t=1,...,6).
The prior distributions are

0, = N(-51). = N(-05). 5 = 16{ 2 212,

The model helps guide the adaptive algorithm in allocating subjects and possibly
stopping early for efficacy or futility. However, these longitudinal models do not
affect the final conclusion when the final endpoint for a subject is known.

This piecewise linear longitudinal model is flexible enough to accommodate
more complex ADAS-Cog time profiles investigated in the literature. For example,
in a recent model-based analysis (Ito et al. 2010) of 52 literature sources consisting
of 576 mean values of ADAS-Cog at each visit from approximately 20,000 subjects,
the time profile models have been developed for both the placebo and active
treatments (donepezil, galantamine, and rivastigmine). Figure 4.2 shows the time
course of ADAS-Cog for these four treatments. It is easy to see that these nonlinear
time courses can be well approximated by two or three piecewise linear segments.
In our simulation study we will be generating the longitudinal time profile similar
to the donepezil (the top-right panel), while the fitting longitudinal model will be
the piecewise linear model described in this section.
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Fig. 4.2 Time course of mean change from baseline in ADAS-Cog on active drugs

4.3 Simulations

In order to evaluate the operating characteristics of the adaptive design, several
simulation scenarios are created. In these simulations, virtual subjects with pre-
specified distribution of the primary clinical endpoint (ADAS-Cog) are gener-
ated and their results simulated. These simulated subjects and the simulations
have no bearing on the actual trial, but merely evaluate the characteristics of the
described design.

In each simulation scenario presented in this section we assume that the standard
deviation for the primary clinical endpoint ADAS-Cog is 6 points. The weekly
accrual rate is assumed to be three subjects. Therefore, if the trial enrolls to the
maximum number of subjects 450 without early stopping, the duration of the study
will be 202 weeks (150-week accrual period plus 52-week follow-up).

The results of the simulations are described in the next section.
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Table 4.4 Simulation scenarios: Assumed change from baseline in ADAS-Cog at week 52

Assumed change from baseline in ADAS-Cog at week 52

Scenario name 0 1 2 3 4 5 6
Flat 5 5 5 5 5 5 5
Equal 4pts 5 1 1 1 1 1 1
Nugget 4pts 5 4 4 4 1 4 4
2nuggets 4pts 5 4 4 4 1 4 1
2nuggets 3pts 5 4 4 4 2 4 2
Nugget 3pts 5 4 4 4 2 4 4

4.3.1 Operating Characteristics

This section presents the operating characteristics of the design under six different
scenarios. For each scenario, assumptions about the change from baseline in ADAS-
Cog at week 52 for each treatment, including placebo, are made. They are presented
in Table 4.4. The treatments are numbered from O to 6, 0 being placebo, followed by
low and high doses of each of the three active treatments.

The first scenario, called “flat,” assumes that all treatments, including placebo,
have the same change from baseline in ADAS-Cog of 5 points. The 5 points decline
at week 52 in ADAS-Cog is consistent with the placebo effect derived by the model-
ing approach in Ito et al. (2010), and it is smaller than the annual rates of decline
reported in Table 4.1, but close to the one (5.4 points) reported in the largest study
(Reines et al. 2004).

The second scenario assumes that all active treatments are equally effective with
the change from baseline in ADAS-Cog of 1 point compared to 5 points on placebo.
Therefore, all treatments are very effective with a mean change difference of —4
points, a treatment effect that is greater than the 95 % CI reported in the meta-
analysis by Hansen et al. (2008): (-3.28,-2.06) for donepezil, (-3.17,-2.34) for
galantamine, and (-3.80,-2.21) for rivastigmine.

The third scenario, called “nugget 4pts,” assumes that only one treatment
(treatment 4) is highly effective (nugget effect); all the others have just 1 point mean
difference from placebo.

The fourth scenario assumes that there are two nuggets, treatment 4 and 6. The
fifth scenario assumes also that there are two nuggets, but the magnitude of the
effect is only 3 points mean difference. The last scenario assumes the same magni-
tude but only for treatment 4.

For each scenario, 1,000 simulation runs have been conducted and the following
operating characteristics are reported in Table 4.5:

* Average sample size

* Average study duration

* Probability of early stopping for success
* Probability of early stopping for futility
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Table 4.5 Operating characteristics of the adaptive design

Mean Mean Prob. Prob. Prob. Prob.

number trial ofearly ofearly of late of late  Prob.
Scenario name  subjects  duration  success futility success futility  of flip-flop
Flat 370.75 176 0.021 0.499 0.045 0.425 0.010
Equal 4pts 257.40 138 0.915 0.000 0.084 0.000 0.001
Nugget 4pts 361.60 173 0.506 0.011 0.436 0.037 0.010
2nuggets 4pts 328.40 162 0.659 0.003 0.318 0.013 0.007
2nuggets 3pts 377.15 178 0.389 0.024 0.475 0.100 0.011
Nugget 3pts 400.80 186 0.238 0.050 0.501 0.198 0.013

Table 4.6 Average number of subjects allocated to each treatment

Treatment allocation

Scenario name 0 1 2 3 4 5 6

Flat 71.886 49.401 48.845 49.737 49.29 48.706 52.885
Equal 4pts 37.682 36.627 36.465 36.322 36.95 36.635 36.719
Nugget 4pts 62.716 47711 47.294 47.801 59.833 48.410 47.835

2nuggets 4pts 52.949 42.633 42.427 43.722 51.902 43.488 51.279
2nuggets 3pts 62.207 49.296 49.479 49.486 58.325 49.049 59.308
Nugget 3pts 66.971 54.371 54.830 54.695 63.081 53.469 53.383

* Probability of late success
» Probability of late futility
* Probability of “flip-flop”

Across all six scenarios the mean number of subjects required by the adaptive
design is smaller than 401. The smallest mean number of subjects (257.4) is required
under scenario “equal 4pts” when all active treatments are very effective. The larg-
est mean sample size (400.8) is required under scenario “nugget 3pts” when only
one treatment achieves the mean change difference of 3 points.

The “flat” scenario is used here to quantify the false-positive rate of the adaptive
design. It can be seen that the probability of wrongly claiming success under this
scenario is only 0.045.

Probability of early futility is about 0.50, which means that in about 50 % of the
simulations the trial did not enroll to the maximum of 450 subjects.

On the other hand, for “good” scenarios, the probability of early futility is well
under 0.05. Under scenario “equal 4pts,” the trial stops early for success in 91.5 %
of cases. This is a good property of the design because in such situation it is good to
find at least one good treatment as soon as possible to proceed to further development
stage. In the case of only one treatment with effect of mean change difference of 3
points (scenario “nugget 3pts”), the trial requires about 400 subjects and the prob-
ability of early success is only 0.238. But overall, the probability of futility is only
0.25. As can be seen from Table 4.6, the average number of subjects allocated to
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Table 4.7 Probability of being selected as treatment with the maximum effect

Probability of being selected as treatment with the maximum effect

Scenario name 1 2 3 4 5 6

Flat 0.155 0.163 0.171 0.188 0.149 0.174
Equal 4pts 0.160 0.148 0.140 0.185 0.176 0.191
Nugget 4pts 0.005 0.004 0.005 0.974 0.005 0.007
2nuggets 4pts 0.004 0.001 0.003 0.488 0.002 0.502
2nuggets 3pts 0.015 0.012 0.009 0.452 0.011 0.501
Nugget 3pts 0.032 0.029 0.030 0.863 0.029 0.017

placebo and the “nugget” treatment 4 is 67 and 63, respectively. This can be
expected, because according to the sample size calculations in Table 4.3, 64 subjects
per arm are required in such case for 80 % power.

In contrast, for the more effective scenario “nugget 4pts,” the corresponding
numbers of subjects on placebo and treatment 4 are only about 63 and 60, respec-
tively, and the overall number of subjects is 361.6. Moreover, the probability of
futility is reduced to 0.048. Therefore, in a situation of a single treatment effect with
very effective mean difference of 4 units, the adaptive design reduces the false-
negative rate by 20 % in comparison with the case of only 3 points difference, and
achieves that also by reducing the overall number of subjects by about 40.

Under scenario “equal 4pts,” the average number of subjects allocated to each
dose is approximately 37, which is exactly the required number of subjects per arm
for such situation (see Table 4.3, column 6). For scenario “nugget 4pts,” most sub-
jects are allocated to placebo and treatment 4. Similarly, for the other scenarios, the
placebo and the treatments that have higher efficacy get more subjects allocated.

Another important operating characteristic is the probability of being selected as
the treatment with the maximum effect that is presented in Table 4.7. The numbers
in boldface correspond to treatments that are indeed the true treatments with the
maximum treatment effect. For scenarios with a single nugget, the probability of
correctly selecting it is very high, 0.974 and 0.863 for scenarios “nugget 4pts” and
“nugget 3pts,” respectively. For the scenarios with two nuggets, the probabilities of
selecting them are split almost evenly, but overall the probabilities of correctly
selecting either one are 0.99 and 0.95, respectively.

For each scenario two figures are presented to highlight specific operating char-
acteristics; see Figs. 4.3,4.4,4.5, 4.6, 4.7, and 4.8. For each scenario, the top figure
presents the box plots for the sample size per treatment. The bottom figure shows
the probability each treatment is selected as the most likely treatment with the maxi-
mum effect (Max).

Table 4.8 presents the bias in estimating the primary endpoint at each treatment,
including placebo. The bias is smallest at the treatments that are selected, which is
very important, because the response at that treatment will be used for planning the
future development.
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Fig. 4.3 Scenario “flat”: Subject allocation to each treatment and selected treatment

4.3.2 Comparison to a Conventional Development Strategy

In this section the adaptive design is compared to a conventional development
strategy, defined as follows. Each trial enrolls 192 subjects equally allocated (64 per
group) to placebo, low, and high dose of the corresponding active treatment. From
Table 4.3, this guarantees a power of 80 % to detect a mean difference of 3 points
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with the assumed standard deviation of 6 points. Assuming the same accrual rate of
3 subjects per week, the trial duration is 116 weeks (64-week enrollment plus
52-week follow-up). Because the conventional strategy will run the three trials one
after another, the total number of subjects will be 576 and the total duration of the
program 348 weeks. These are both much larger than the maximum number of
subjects required by the adaptive strategy: 450 subjects and 202 weeks. Therefore,
the net benefit of the adaptive strategy versus the conventional one is total saving of
126 subjects and 146 weeks in POC study duration.
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Fig. 4.5 Scenario “nugget 4pts”: Subject allocation to each treatment and selected treatment

However, the adaptive design strategy provides additional efficiency by incorpo-
rating early stopping and dropping treatment arm options. On the other hand, the
conventional strategy may also stop the program after finding an effective treatment.
The comparison of this modified conventional strategy with the adaptive one is
given in Table 4.9 that presents the mean number of subjects and average duration
of the study for the two strategies under different scenarios. For the conventional
strategy, three situations are considered for the order in which the trials will be run.
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For example, “12 — 34 — 56” means that the low and high dose of the first active
treatment will be run against placebo, followed if not successful by the low and high
dose of the second active treatment against placebo, and then followed if not
successful by the low and high dose of the third treatment against placebo.

Under “flat” scenario, the adaptive design is a clear winner, requiring on average
370.75 subjects and the average study duration of 176 weeks. The conventional
strategy requires an additional 178 subjects and prolongs the study duration by
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Subject allocation to each treatment
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Fig. 4.7 Scenario “2nuggets 3pts”: Subject allocation to each treatment and selected treatment

155 weeks. Under “equal 4pts” scenario, the situation is reversed because the
conventional strategy stops with high probability (0.998) after the first trial.

The comparison results for the remaining scenarios depend on the order in which
the conventional strategy will run the three trials. The situation “34 — 12 — 56" is
the best, giving the treatment 4 the high chance of being selected after the first trial.
The situation “12 — 56 — 34” is the worst, running the trial with the nugget treat-
ment 4 only in the third trial. The situation “12 — 34 — 56” is in the middle, running
the treatment 4 in the second trial.
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Subject allocation to each treatment
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Fig. 4.8 Scenario “nugget 3pts”: Subject allocation to each treatment and selected treatment

Although the conventional strategy may require smaller number of subjects (see,
e.g., scenario “nugget 4pts” under first situation: 335.44 vs. 361.60), the duration of
the study is greater than that of the adaptive strategy. Moreover, under the first and
third situations, the study duration is greater than 202 weeks which is the maximum
study duration for the adaptive strategy, irrespective of the scenario.

Notice that in the conventional strategy each patient has a 1/2 chance to be
allocated to placebo, compared to 1/7 in the adaptive strategy trial.
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Table 4.8 Bias in ADAS-Cog at week 52 estimate
Bias in ADAS-Cog at week 52 estimate

Scenario name 0 1 2 3 4 5 6

Flat -0.0414 0.1889 0.1565 0.1543 0.0965 0.1810 0.1268
Equal 4pts 0.1114 0.1085 0.1546  0.1283 0.0735 0.1103 0.0657
Nugget 4pts 0.2020 0.1184  0.1686  0.1286 —-0.0008 0.1153 0.1023
2nuggets 4pts 0.1605  0.1330  0.1087  0.0821 0.0404  0.1194 0.0602
2nuggets 3pts 0.1302 0.0854  0.1254  0.1577 0.0559 0.1327 -0.0083
Nugget 3pts 0.0780 0.1122  0.0538 0.0660 0.0312 0.1228 0.1240

Table 4.9 Comparison of adaptive and conventional strategies on the number of subjects (N Subj)
and study duration (S Dur)

Conventional strategy

Adaptive strategy 1234 —-56 34-12-56 12-556—-34
Scenarioname N Subj SDur NSubj SDur NSubj SDur NSubj SDur
Flat 370.75 176 548.03  331.1 548.03  331.1 548.03  331.1
Equal 4pts 25740 138 192.31 116.2 19231 116.2 19231 116.2

Nugget 4pts 361.60 173 33544 2027 20324 122.8 43095 2604
2nuggets 4pts 32840 162 33544 2027 20324  122.8 33544  202.7
2nuggets 3pts 377.15 178 35430 2141 24822  150.0 35430 214.1
Nugget 3pts 400.80 186 35430 2141 24822  150.0 43095 2604

Another important point to be made is the fact that the adaptive strategy gives
each treatment a chance to be investigated and the treatment is dropped only if it
shows a low chance of being effective, while the conventional strategy may very
well never reach the point of investigating a given treatment.

The “white space” between closing a trial and starting another one was ignored
in previous comparison, but this time may be considerable in practice.

4.4 Discussion

Although enormous progress has been made in recent years in understanding the
pathophysiology of Alzheimer’s disease, this progress has not yet translated into
new treatments. The high cost and low success rate of drug development in
Alzheimer’s disease can be attributed, in large part, to late-stage clinical trial fail-
ures. Thus, identifying in “learn” phase drugs that are likely to fail could have a
dramatic impact on the costs associated with developing new drugs.

In the case study, we illustrated the novel adaptive screening strategy of several
compounds for treatment of mild-to-moderate Alzheimer’s patients in the portfolio
of a single company. However, the methodology can be applied in the setting of
testing several candidate drugs from different sponsors simultaneously.
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The Executive Director of the Innovative Medicines Initiative (IMI) Michel
Goldman mentioned recently that “[T]he challenge of developing new treatments
for Alzheimer’s disease is too great for any single organisation, country or company
to tackle alone. What is needed is an unprecedented, international, collaborative
approach bringing together all stakeholders involved in the development of new
treatments for Alzheimer’s.”

On December 11, 2013, the IMI launched a major new project that will pioneer
anovel adaptive approach to clinical trials of drugs designed to prevent Alzheimer’s
disease, which is expected to affect 100 million people worldwide by 2050. The
project will focus its efforts on speeding up drug development and patient access to
the latest treatments by testing several candidate drugs from different sponsors
simultaneously.

Furthermore, this novel “adaptive” trial design can allow researchers to consider
patients with different stages of Alzheimer’s disease and adapt the trial design in
response to emerging results. For example, if a compound appears to be particularly
effective in only early (the so-called prodromal) Alzheimer’s disease patients, then
assignment of that compound can be preferentially directed to those patients to
confirm this finding and perhaps “promote” that compound to a confirmatory
clinical trial. Similarly, new candidate drugs can be added to the trial and the ones
that turn out to be ineffective can be dropped.

The strategy has already proved effective in the I-SPY 2 trial of new treatments
for breast cancer. The adaptive trial design enabled two experimental breast-cancer
drugs to deliver promising results after just 6 months of testing, far shorter than the
typical length of a clinical trial. Researchers assessed the results while the trial was
in process and found that cancer had been eradicated in more than half of one group
of patients, a particularly favorable outcome.
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Chapter 5
Optimal Cost-Effective Go—No Go Decisions
in Clinical Development

Cong Chen, Robert A. Beckman, and Linda Z. Sun

Abstract In late-stage drug development, drug developers have to make two
critical Go—No Go decisions. The first one is whether to proceed to the definitive
Phase III investigation after a Phase II proof-of-concept (POC) trial. The second one
is whether to stop a Phase III confirmatory trial for futility after an interim analysis
of the data. In practice, the two decisions are heuristically made with limited statisti-
cal input, usually amounting to statistical characterization of proposed options. We
propose to find the optimal decisions by explicitly maximizing a benefit—cost ratio
function, which is often the implicit objective in an otherwise qualitative decision-
making process. The numerator of the function represents the benefit (proportional
to the expected number of truly active drugs identified for Phase III development in
the POC setting; proportional to the expected power for successful completion of
Phase III in the interim analysis setting), and the denominator represents the
expected total late-stage development cost. The method is easy to explain and sim-
ple to implement. The optimal design parameters provide a rational starting point
for decision makers to consider. As an illustration, the method developed herein is
applied to examples from the oncology therapeutic area including an adaptive seam-
less Phase II/IIT design. The same idea is applicable to any disease area where cost-
effectiveness of a Go—No Go decision is a major concern.
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5.1 Introduction

This chapter addresses two Go—No Go decision issues in late-stage drug develop-
ment, followed by a real example of seamless Phase II/III design. As an illustration,
the method developed herein is applied to examples from the oncology therapeutic
area. The same idea is applicable to any disease area where cost-effectiveness of a
Go-No Go decision is a major concern. The first issue comes from Phase II proof-
of-concept (POC) trials. A POC trial is defined as a trial which provides the critical
information about drug activity or lack thereof in a patient population for deciding
whether to proceed to definitive Phase III investigation. The phenomenal expansion
of our knowledge in the molecular biology in the last decade has led to an unprec-
edented number of exciting new targets, which in turn lead to numerous opportuni-
ties for POC. These opportunities are often of similar interest given the difficulty in
picking the likely winners based on preclinical and early clinical data alone. Because
the total resource budget is often capped, drug developers must decide how many
POC trials to move forward, how large each trial should be and how to set the cor-
responding Go—No Go decision criterion to Phase III. The second issue comes from
the Phase III confirmation trial. Historically, the majority of Phase III oncology tri-
als fail in spite of strong efficacy signals observed in POC trials. One way to reduce
the consequences of failure in Phase III is to conduct an interim futility analysis of
the data to reduce resource expenditure on therapies that appear unlikely to succeed.
However, it remains a challenging issue when to perform the futility analysis and
how to set the futility boundary.

At the center of each of these issues is how to appropriately balance benefit and
cost. The balance of benefit and cost is particularly important when there is a fixed
maximum resource budget (number of patients, or financial costs) which does not
allow us to adequately investigate all possible drugs, schedules, and indications of
interest. A fixed maximum total research budget is a common reality in both private
and public sector drug development. In the face of a fixed maximum budget, maxi-
mization of the benefit—cost ratio will maximize benefit.

In the literature, there are two quantitative approaches to finding the optimal bal-
ance between benefit and cost. The first approach is to find optimal design parame-
ters that minimize patient exposure (a surrogate to trial cost) at fixed type I/II error
rates, e.g., under null as in Simon (1989) or under any prior distribution for treat-
ment effect as in Anderson (2006). This approach (hereafter referred to as sample
size minimization approach) is appealing to statisticians because it is parsimonious
and avoids assumptions that could be controversial such as the overall benefit of the
study drug. As a result, numerous publications have been generated in the statistical
literature. However, this approach has limitations when the choice of type I/II error
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rates itself is an issue and when the benefit of the study drug has to be taken into
account. The second approach is a decision-theoretic approach that applies Bayesian
decision analysis techniques to find the optimal design parameters by directly maxi-
mizing the net return (i.e., benefit—cost). It is used for determination of optimal
sample size for Phase III trials subject to budget constraints (Patel and Ankolekar
2007) as well as for determination of Phase II sample sizes (Stallard 1998 and
Stallard 2003). Relevant work can also be found in Stallard et al. (2005) and
O’Hagen et al. (2005). This approach is appropriate when benefit can be quantified
upfront and the parameter space for decision-making is very well defined. When
benefit is overestimated, which occurs often in practice, such analyses tend to rec-
ommend a low bar for a Go decision, making it hardly acceptable to stakeholders
(Leung and Wang 2001).

We proposed a new simple-to-apply decision-theoretic approach with unique
advantages (Chen and Beckman 2009a, b; Chen and Beckman 2014). The idea is to
find optimal cost-effective parameters by maximizing a benefit—cost ratio function
(a direct measure of expected benefit per expected resource unit expended). The
numerator of the function is the probability-of-success (POS) and Type II error
adjusted benefit, as given by the expected number of truly active drugs correctly
identified for Phase III development (in the proof of concept application) or the
expected power for successful completion of Phase III (Phase III interim analysis
application), each multiplied by the benefit per drug if applicable, and the denomi-
nator is the expected total late-stage development cost, including that resulting from
both Type I and Type II errors. From a high-level perspective, the sample size mini-
mization approach is equivalent to the use of our denominator as a utility function
while assuming a constant numerator. The decision-theoretic approach is equivalent
to the use of the difference between our numerator and denominator as a utility
function. One major difference among the three approaches resides on the way the
intrinsic benefit of a study drug, denoted by B in Sects. 5.1-5.3 in this chapter, is
handled. Our approach acknowledges the fact that variations in benefit, POS, and
Type II error may be important, and therefore incorporates them into the utility
function in contrast to the sample size minimization approach which simply attempts
to minimize cost. However, in contrast to the decision-theoretic approach, our
approach is less sensitive to small errors in estimation of benefit (and cost). When
only one trial is considered, the optimal design is independent of the benefit; when
more than one trial are considered, the optimal designs depend only on the relative
benefit which is considerably easier to assess than the absolute benefits that the
decision-theoretic approach relies on.

Our proposed approach is similar to the decision theoretic approach in its han-
dling of POS (denoted by p in Sects. 5.1-5.3 in this chapter), the probability of the
study drug being truly active in the study population. The probability of no treat-
ment effect is then 1-POS (as can be seen in Sect. 5.2.3 in this chapter our proposed
approach can accommodate a general distribution for treatment effect). For our
illustrative purposes, the POS for an oncology study drug is assumed to be 0.1-0.3
before POC or is 0.3—0.7 after passing POC. The estimate seems reasonable or pos-
sibly generous from historical data. Prior information on POS as such, be it
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subjective or objective, is frequently cited by relevant decision makers in a drug
development program. However, the information is rarely fully accounted for in the
actual (mostly qualitative) decision-making process. It is not the focus of this chap-
ter to estimate prior POS, or update posterior POS after data from the POC trial or
the interim analysis becomes available. Our focus is how to properly use the same
information for making quantitative decisions at the design stage, rather than as a
data analysis tool. We assume data from the trial will be analyzed using a Frequentist
approach.

To demonstrate the power and the flexibility of our proposed approach, we will
address the two decision issues with several examples in the next two sections. We
will further illustrate with a real example that shows how to apply the method to a
complicated Phase II/III seamless design (Sun and Chen 2012). There are many
ways to extend our proposed approach in both method and application. We briefly
touch upon some of them without supplying full details.

5.2 Optimal Designs for POC Trials

Consider a typical POC trial with two arms (study drug or placebo, or more typi-
cally in oncology, standard of care plus study drug or standard of care plus placebo).
Denote by A (>0) the standardized effect size (treatment effect divided by standard
deviation) of clinical interest with respect to an endpoint, which is typically a sur-
rogate marker to overall survival in oncology. Denote by («, ) the doublet of one-
sided Type I error rate and Type II error rate of the trial. The total sample size for
the trial is approximately

N=4(z_,+2,) /& (5.1)

where Z, denotes the respective quantile of the standard normal distribution. When
a time-to-event variable is the primary endpoint of interest, A refers to logarithm of
hazard ratio (placebo vs. study drug) and N refers to number of events. While total-
ity of data will be looked at closely, a Go decision to continue the program for later
development in a Phase III confirmatory trial is generally made if the one-sided
p-value from the POC trial is less than o favoring the study drug. Notice that the
standard error for estimate of the treatment difference is 2/+/N which is equal to
A/(Z,_q+Z,_p) from the sample size formula, the cutoff point for the minimum
empirical treatment difference (empirical bar) relative to A in a Go decision (i.e.,
corresponding to one-sided p-value <) is Z,_./(Z,_,+Z,_p). Clearly, the empirical
bar increases when Type I error rate decreases or when Type II error rate increases.
It is >0.5 when o< f§ and >1 when $>50 %.

In the oncology therapeutic area, a single confirmatory trial accompanied with a
supportive POC trial usually meet the minimum requirements for regulatory regis-
tration purposes. Denote by C, the cost for a POC trial and by C; the cost for the



5 Optimal Cost-Effective Go—No Go Decisions in Clinical Development 95

future Phase III confirmation trial in the same population. In the first line lung
cancer setting, a typical POC trial with (o, )=(0.1, 0.2) for the detection of a 40 %
hazard reduction in terms of progression-free-survival may need 100-150 patients
with a minimum follow-up of 4—6 months. A confirmatory trial in the same setting
with (o, $)=(0.025,0.1) for the detection of a 25 % hazard reduction in terms of
overall survival may need 600-800 patients with a minimum follow-up of 8-10
months. When cost is proportional to sample size, the relative cost of a POC trial to
a confirmatory trial (i.e., C,/C3) is around 20 % in this setting. The Phase II to Phase
III cost-ratio may be different in different settings. For simplicity, we consider C; to
be fixed, i.e., design of the Phase III trial is independent of strength of signal from
the POC trial. We leave the extension on non-fixed C; to Chap. 5, Sect. 5.2.3.

5.2.1 Design of a Single POC Trial

Let us start with a simple question. Given a fixed budget for conducting a typical
POC trial with (a, B)=(0.1, 0.2) as described above, what is the optimal (a, ) to be
most cost-effective? There are infinitely many ways to choose (a, ) as long as the
choice satisfies the sample size constraint below.

Z ,+ Zl—ﬁ =Z g+ 72, (5.2)

Each choice corresponds to a different Go—No Go criterion to confirmatory trial.
A self-evident choice is (0.2, 0.1) by the equivalence of (f, &) to (a, p) in Eq. (5.1).
However, a Type I error rate of 20 % or indeed any number for this matter could
easily be challenged. Many clinical researchers (Rubinstein et al. 2005; Simon et al.
2001; Estey and Thall 2003; Korn et al. 2001) have provided qualitative guidance
for how to properly size POC trials and make Go—No Go decisions. Here we pro-
vide quantitative guidance. To answer the above question, let us assume that the true
standardized effect size 0 has a binary distribution in that the probability is p for
0=A and 1 —p for 8=0, and consider the following benefit—cost ratio function that
involves design parameters (p, o, B, B, C,, Cs):

Bp(1-B)

R, = 5.3
C,+C,[p(1-B)+(1-p)a] ©-

The numerator represents the benefit adjusted with probability-of-success (POS)
and Type II error (the benefit of a truly inactive drug is assumed to be zero). It rep-
resents the expected number of active drugs correctly identified by the POC study,
multiplied by the benefit per drug, and thus is a simple surrogate for overall benefit.
The denominator represents the summation of the cost for the POC trial and the
expected cost for the Phase III trial multiplied by the probability of a positive out-
come, true or false, from the POC trial. Thus the denominator represents the total
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Table 5.1 Optimal designs of a POC trial with fixed sample size under («, p)=(0.1, 0.2)

Empirical bar

POS (p) C,/C; Optimal o (%) Optimal p (%) relative to A
0.1 0.2 6.7 26.7 0.71
0.1 0.3 8.8 22.0 0.64
0.1 0.4 10.7 18.9 0.59
0.2 0.2 7.2 25.3 0.69
0.2 0.3 9.6 20.7 0.62
0.2 0.4 11.5 17.8 0.56
0.3 0.2 8.0 23.7 0.66
0.3 0.3 10.4 19.3 0.59
0.3 0.4 12.6 16.4 0.54

expected cost of the overall late development program, where the Phase III trial
happens if and only if the POC trial gives a true positive or a false positive outcome.
Hence, the ratio-function defined in Eq. (5.3) directly measures the cost-effectiveness
of the design. Maximization of R, is equivalent to maximizing of the return in benefit
in the face of limited resources, rendering the design strategy the most cost-effective
one from a portfolio management standpoint. When B is unknown (likely the case
for most of the oncology drugs because it is driven by the drug activity that is hard to
predict based on preclinical and early clinical data), it does not have any impact on
optimization, making our proposed approach more robust to uncertainties in benefit
assessment, in contrast to the decision-theoretic approach. In our illustration, we
assume that C,/C; is known so that the optimal choice of (a, ) can be easily obtained
by maximizing R, subject to the sample size constraint (5.2) for fixed (p, C,/C;).
In practice, actual values of (B, C,, C;) are relevant if the R, value is used for choosing
which trials to conduct among many opportunities. Apparently, a minimum require-
ment for a trial to be included in a portfolio of trials is R;>1 when B, C2, and C3 are
determined reasonably accurately and expressed in comparable units.

Table 5.1 provides optimal design parameters for a typical POC with fixed sam-
ple size under (a, p)=(0.1, 0.2) for different POS levels and C,/C; values. As
expected, the empirical bar associated with optimal (a, ) decreases with increasing
POS and C,/C;. In the first line lung cancer setting where C, /C; is around 0.2, the
optimal empirical bars are in the range of 0.66A to 0.71A, the optimal o levels are
in the range of 6.7-8.0 % (one-sided) and the optimal p levels are in the range of
23.7-26.7 %. As a comparison, the starting point of (o, f)=(0.1, 0.2) would be
approximately optimal at C,/C;=0.3 when POS is 30 %, and the associated optimal
empirical bar for a Go decision would be lower at 0.60A.

5.2.2 Design of Multiple POC Trials

Let us consider a more complicated problem. Suppose that there is a fixed budget
for conducting a certain number of POC trials with (a, )=(0.1, 0.2). But there are
more trials with different POS and benefit that are of similar interest. What is the



5 Optimal Cost-Effective Go—No Go Decisions in Clinical Development 97

optimal resource allocation strategy and optimal design parameters? These POC
trials may be for the same drug or for different drugs. Let (p;, o;, B, B;, Co;, Cs;) be
the design parameters associated with the i-th trial (i=1,...,k). Consider the follow-
ing general version of the benefit—cost ratio function to Eq. (5.3)

k

ZBipi (1 - Bi )

R, =~ =l 5.4)
{Czi +Cy |:pi (I_Bi)+(1_pi)ai:|}

i

From the expression of R,, it is clear that only relative benefit is needed for opti-
mization. When the actual values of (p;, B;, Cy;, Cs;) for all indications are available,
the optimal (a;, ;) are obtained by maximizing in R, in Eq. (5.4). Let us illustrate
under the simplified assumption that cost structure and treatment effect for detec-
tion are the same for the k POC trials. We further assume that the costs for the
corresponding Phase III trials are also the same and fixed, i.e., C3;=C; (i=1,...,k).
After the simplification, the optimal Type I/II error rates (o, ;) and resource alloca-
tion ratio (C,/C,) only depend on relative benefit B;, probabilities of success p;, and
the ratio of total POC trial resources to cost of a single Phase III trial, C,/C;. They
are solved by maximizing Eq. (5.4) subject to the following constraints (i=1,...,k)

Zl—a, +ZI—B, =G, /G, (Zl—o.l +Z1_0_2) (5.5)
¢, =C, (5.6)

Once optimal Type I/II error rates are obtained, optimal empirical bars follow
immediately.

In the first example, we assume that there is a budget for one typical POC trial
under (o, B)=(0.1, 0.2) but there are two POC trials with p;=0.3 and p,=0.2 as well as
B,=B, of interest. Figure 5.1 presents the optimal resource allocation ratio and empiri-
cal bar for the two POC trials as a function of C,/C;. Just as in the single-trial case, the
empirical bar associated with optimal (a, ) decreases with increasing POS and C/Cs.
The figure shows that if the budget for the POC trials is around 20 % that of a confir-
matory trial as in the first line lung cancer setting both POC trials should be conducted
with approximately 60 % of the resource allocated to the one with 30 % POS and the
remaining 40 % of the resource to the one with 20 % POS. The corresponding (o, B) is
(10 %, 32 %) for the trial with 30 % POS and is (5 %, 68 %) for the one with 20 %
POS. This analysis suggests more and smaller trials with higher empirical bars to be
more cost-effective in this setting. The cutoff point in terms of C,/C; value for deciding
whether to conduct one or two trials is at about 17 % (the cutoff point would be con-
siderably lower if the two trials had the same POS level—results are not shown here).
If the budget is lower than that, it is more cost-effective to just conduct the trial with
higher POS. The results are sensible and consistent with intuition. However, intuition
alone will not be able to pinpoint the optimal decision points.
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Fig. 5.1 Optimal resource allocation (left panel) and empirical bars for a Go decision (right
panel) for two POC trials of different POS when there is budget for a typical POC trial under (o,
B)=(0.1, 0.2). C, represents the cost for a POC trial and C; represents the cost for a Phase III trial

In the second example, we assume that there is a budget for two typical POC
trials under (a, $)=(0.1, 0.2) but there are four trials with p;=0.4, p,=p;=0.3 and
ps=0.2 as well as B;=B,=B;=1 and B,=2 of interest. This represents a more com-
plex situation than the first example. Figure 5.2 presents optimal resource alloca-
tion ratio and empirical bar for the four POC trials as a function of C,/C;. It shows
that when the budget for two POC trials is over 40 % that of a single confirmatory
trial as for the first line lung cancer setting, all four POC trials should be conducted.
The trial with lowest POS (20 %) but highest benefit takes the largest share of
resource at approximately 33 %. The trial with highest POS (40 %) is second at
approximately 29 %. The remaining two trials with 30 % POS enjoy approximately
19 % each. In terms of empirical bar for a Go decision, it is highest for the two trials
with 30 % POS followed by the trial with 20 % POS and the one with 40 %
POS. Optimal number of trials and corresponding Go—No Go criteria depending on
the C,/C; value. When it is above approximately 18 %, all 4 trials should be con-
ducted; when it is between approximately 12 and 18 %, the two trials with 40 %
POS and 20 % should be conducted; otherwise, only the trial with 20 % POS (but
highest benefit) should be conducted.
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Fig. 5.2 Optimal resource allocation (left panel) and empirical bars for a Go decision (right
panel) for four POC trials of different POS and benefit when there is budget for two typical POC
trials under (a, $)=(0.1, 0.2). The benefit for the trial with lowest POS (p,=0.2) is twice as high as

for any of the three other trials. C, represents the cost for two POC trials and C; represents the cost
for a single Phase III trial

5.2.3 Extensions

The proposed design strategy for POC trials can be easily extended to account for
more complicated settings that may arise in oncology and other therapeutic areas.
We show a few of them by considering the single-trial case as in Chap. 5, Sect. 5.2.1.
Extensions to the multiple-trial case as in Chap. 5, Sect. 5.2.2 follow immediately.

General distribution for treatment effect: Instead of assuming that the true standard-
ized effect size (0) has a binary distribution, we may assume that it has a general
distribution function, say f(0), which might be estimated from previous trials on
same drug or drugs with same mechanism of action. We may also assume the cor-
responding benefit to be B(0). Observe that B(A)=B and B(0)=0 for R, in Eq. (5.3).
In this setup, a generalized version of R, is

o [B(0)£(0)r(0)a0
L G+Gr(0)r(0)d0

(5.7)
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where y(6) is the probability to Go when the treatment effect of the study drug is ©.
Under the same assumption that the POC trial is sized at (a, )=(0.1, 0.2) for an
effect size A, y(0) satisfies

(ZM +Z«,<e))/ 0=(Z o, +Z0,)/ A (5.8)

from the sample size formula in Eq. (5.1). Notice that y(A)=1-f under the binary
distribution. For ease of computation in practice, in absence of an objective continu-
ous estimate for f(0) we may assume a multinomial distribution which takes values
at a set of discrete points, e.g., 0, 0.4A, 0.6A, 0.8A and 1.2A.

Adaptive design: Another extension is to adaptively size the Phase III trial based on
the outcome from the POC trial. For example, the Go—No Go decision may be
revised so that a Phase III trial at cost of C; will be conducted if the p-value from the
POC trial is less than a but greater than o’ (o’ <ar). But a smaller trial at cost of Cs'
will be conducted if the p-value is less than o’ (study drug is more active than ini-
tially expected). If the assumed benefit is B for p-value between o’ and o, and B’ for
p-value less than o', the corresponding benefit—cost ratio function would be

[B'(1-p')+B(p'-B)]p
C+C[p[3 —B)+(1-p)(a- oc]+C’[p1B’ )+(1 p)a’}

’”
1

(5.9)

Notice that both (a, f) and (o', f’) satisfy the sample size formula. One may find
the optimal o and o’ (i.e., Go—No Go criteria) for fixed C; and C;'.

Multiple arms or endpoints: Some POC trials may have multiple arms for dose
selection purpose or may have more than one endpoint (Sun et al. 2009). As long as
the decision rule is quantifiable, our proposed approach can be applied with mini-
mal modifications. Take a dose-selection POC study with two active arms and a
placebo arm (1:1:1 randomization) for example. Let Z, and Z, be the two statistics
for testing the treatment effect against placebo of the two dose levels with positive
values corresponding to favorable outcomes for the study drug. Observe that Z, are
Z, are normal variables with correlation 0.5. The decision rule is to carry the dose
level with maximum Z-statistics (play the winner) to Phase III if it satisfies that
Pr(max{Z,, Z,}>0)<o*. Let p* be the Type II error rate corresponding to the maxi-
mum Z-statistics under a given alternative hypothesis. It has a more complex rela-
tionship with o* under the sample size constraint. The optimization problem is
more difficult than in Eq. (5.2) but certainly tractable.

Flexible budget: In the previous sections, a 2-arm trial under (a, )=(0.1, 0.2) is
used as reference for standard cost of a POC trial. Standardization of cost structure
as such is a common practice in portfolio management. But the reference trial may
use a different set of (, ) in practice. Optimal designs will change accordingly. The
changes will be more drastic when the budget for a POC trial is not fixed upfront and
needs to be optimized. Chap. 4, Sect. 5.2.2 discussed the related example of allocat-
ing POC resources among competing programs. Details and associated program
codes have been previously published (Chen and Beckman 2009a).
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5.3 Optimal Futility Analysis Strategies

After a drug has passed POC evaluation, a natural follow-up is to conduct a Phase
IIT confirmatory trial in the same population. Phase III oncology trials usually
implement a group sequential design with a survival endpoint (Jennison and
Turnbull 2000). To mitigate failure rate, a confirmatory trial has at least one futility
interim analysis. The study prior to the interim analysis is sometimes called a Phase
II part and the one afterwards a Phase III part, making the trial a Phase II/III combi-
nation trial. The Phase II part may involve dose selection, population selection and
other conventional Phase II characteristics. In our discussion below, we consider a
straight Phase III confirmatory trial without such Phase II features, which will be
discussed in Chap. 4, Sect. 5.5. The example trial has one interim analysis and the
endpoint for deciding whether to continue or not after the interim analysis is the
same as the primary endpoint for the overall trial. The trial is designed for detecting
a survival benefit of interest (e.g., 25 % hazard reduction in the first line lung cancer
setting) at Type I error rate of 2.5 % (one-sided) and Type Il error rate of 10 % (90 %
power) prior to futility adjustment. The futility boundary is assumed to only impact
the Type II error rate but not the Type I error rate (non-binding), a common assump-
tion in the drug registration environment. As before, it is assumed that the Phase I11
trial costs C; if it runs to completion.

5.3.1 Futility Analysis of a Single Trial

Suppose that after cost Cy, is spent at the interim look, t fraction of survival informa-
tion (proportion of events observed at interim analysis) is available for analysis. A
Go decision will be made if the one-sided p-value from the analysis is less than o
favoring the study drug and a No Go decision will be made otherwise (a is referred
to be the futility boundary in p-value scale). Denote by B the Type II error rate spent
at the interim analysis. How to appropriately choose (a, ) to make the Go—No Go
decision the most cost-effective? Consider the following benefit—cost ratio
function

Bp(1-p*)
CIA +(C3 _CIA)[p(l_B)+(1_p)a:|

R, = (5.10)

where B* is the overall Type II error rate, i.e., 1 —f* is the actual overall power
after taking the futility analysis into account. This ratio function has similar if not
identical interpretation as Eq. (5.3). Just as in the previous sections, the benefit
term B is fixed and does not have an impact on the optimal choice of (a, ). Observe
that the test statistics at information fraction t (denoted by X,) and at final analysis
(denoted by X) have correlation Jt . The unconditional probability for X, to cross
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Table 5.2 Optimal futility boundaries at interim analysis after 50 % of budget is spent

Information  Fautility boundary Empirical futility =~ Beta- Overall
POS (p) fraction in p-value (%) bar relative to A spent (%) power (%)
0.3 0.15 45.0 0.10 13.0 80.2
0.3 0.20 36.8 0.23 13.3 80.3
0.3 0.25 30.9 0.31 13.1 80.8
0.5 0.15 51.6 -0.03 9.8 82.8
0.5 0.20 42.5 0.13 10.4 82.6
0.5 0.25 35.5 0.23 10.6 82.8
0.7 0.15 61.6 -0.23 6.1 85.7
0.7 0.20 51.3 -0.02 6.9 85.3
0.7 0.25 43.2 0.11 7.4 85.2

the interim futility bar is 1 —-f and for X to demonstrate statistical significance at
the final analysis is 90 %. The overall Type II error rate f* for the trial satisfies the
following relationship

Pr(X, > 7y, X>Z,,)=1-p' (5.11)
From the sample (event) size formula, (a, p) satisfies
Z ,+ ZI—B = ‘/¥(217vo25 +Z,, ) (5.12)

Maximization of R; in Eq. (5.10) with respect to (a, ) subject to the constraints
(5.11) and (5.12) yields the optimal design parameters for the futility analysis. As
before, the empirical futility bar relative to A in a Go decision is Z; _o/(Z,_o+Z,_p).
The conditional power for a positive trial after successfully passing the futility anal-
ysis is

Pr(X>2Z,,|X, >Z,)=(1-p")/(1-p) (5.13)

The first example illustrates how optimal futility boundaries change with infor-
mation fraction and POS after 50 % of the budget is spent, i.e., C;4=0.5C; (Table 5.2).
The empirical futility bar decreases with increasing POS level, rightfully reflecting
the impact of prior information as expected. It increases with increasing information
fraction, suggesting that a more definite decision can be made when more informa-
tion becomes available. For trials of low POS, a mild to moderate positive trend in
effect size should be observed before moving forward. But for trials with high POS
level, even a slight negative trend could trigger the same decision. The optimal over-
all power ranges from 80-81 % at p=0.3 to 82-83 % at p=0.5 to 85-86 % at p=0.7
after accounting for the futility analysis. As a comparison, although the aforemen-
tioned sample size minimization approach may be able to find the optimal futility
boundaries under a prespecified level of Type II error rate (or overall power), it
cannot be used to decide which level to start with. This is something our proposed
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approach can naturally address. However, the sample size minimization approach is
appropriate if it is the intention of the trial to maintain the overall Type II error rate
at a prespecified level. Notice that, although the optimal overall power decreased by
4-10 % it can be easily seen from Eq. (5.13) that the conditional power for a positive
trial after the futility analysis is generally higher than 90 %.

5.3.2 Futility Analyses for Multiple Trials

In a portfolio management of multiple confirmatory trials with different benefit and
POS, how should one appropriately prespecify their futility boundaries? To answer
this question, consider the following general version of the benefit—cost ratio func-
tion analogous to Eq. (5.10)

R = ZL Bp; (1 —Bf) (5.14)
4 zikzl{CTAi +(C3i _CIAi)[pi (1—l3i)+(1—pi)ai :I}

where subscript i is used to indicate the design parameters for the i-th trial.
Maximization of R, with respect to (a;, ;) subject to same constraint as in Eq. (5.11)
and (5.12) yields the optimal solution. The timing for each trial at the futility analy-
sis can be totally different from each other.

Consider two Phase III trials with same total cost (i.e., C;;=Cs,) but different
benefit and POS. The first trial has lower POS but has a benefit twice as high as the
second one. An interim futility analysis occurs after 50 % of the budget is spent, just
as in the first example of Chap. 4, Sect. 5.3.1. Table 5.3 shows the optimal futility

Table 5.3 Optimal futility boundaries at interim analyses for two POC trials after 50 % of budget
is spent for each when the benefit ratio is 2:1 between the two (p; vs. p)

Trial with POS=p, Trial with POS=p,
Futility Empirical Futility Futility boundary
Information  boundary futility bar boundary in empirical bar
POS (pi/p,)  fraction in p-value (%) relativeto A in p-value (%) relative to A
0.3/0.5 0.15 50.8 -0.02 493 0.01
0.3/0.5 0.20 42.0 0.14 404 0.17
0.3/0.5 0.25 35.3 0.23 33.8 0.26
0.3/0.7 0.15 45.8 0.08 65.2 -0.31
0.3/0.7 0.20 37.9 0.21 553 -0.07
0.3/0.7 0.25 32.0 0.29 45.6 0.07
0.5/0.7 0.15 60.4 -0.21 55.4 -0.09
0.5/0.7 0.20 50.4 -0.01 45.7 0.09

0.5/0.7 0.25 42.7 0.11 37.3 0.20
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boundaries for each trial at common information fraction under different POS
assumptions. Just as in Table 5.2, the empirical futility bar generally increases with
increasing information fraction but decreases with increasing POS level. The bars
are comparable between the two trials when the POS is 30 % for the first one and
50 % for the second one. The bars become higher for the first one and lower for the
second one when POS for the second trial is changed to 70 %, i.e., the benefit-POS
balance favors the second one. The balance shifts back to the first one when its
POS is changed to 50 %. This example provides important insight into the dynamic
impact of POS and benefit on the cost-effectiveness of a Go—No Go decision in
futility analysis.

5.3.3 Extensions

We have used the time-to-event survival endpoint (typical endpoint in oncology) for
illustration, but the approach can be easily extended to any type of endpoint (e.g.,
continuous or binary endpoint in other therapeutic areas). We used 10 % for Type II
error rate for illustration purpose. The approach can be easily revised to account for
a different Type II error rate. The same extension as for POC trials can be made by
assuming a general distribution function for true treatment effect as well as one for
benefit. Observe that information on the survival endpoint is often collected in the
POC trial preceding the Phase III trial. It provides an objective estimate of the dis-
tribution function for the true treatment. A similar adaptive design can be imple-
mented by adopting a multitier decision rule (i.e., sample size and cost for the
remaining trial is dependent upon the interim outcome). Further extensions specific
to a Phase III trial may include the following.

Optimal timing of futility analysis: Optimal timing for futility analysis is a less
explored topic in literature. Gould (2005) discusses this topic in the context of POC
trials. Our proposed approach allows evaluation of timing. By comparing optimal
R; or R, values at different time points of practical relevance, optimal timing for
interim analysis can be determined. However, caution must be exercised in such
analysis because timing is driven by other practical considerations as well. Moreover,
if the curve of the efficiency function is broad and flat near the optimum, any choice
within the range may be reasonable.

Multiple futility analyses: When there is a need (and it is feasible) to have more than
one futility analyses, similar cost-effectiveness evaluation can be conducted for
comparison of different futility boundaries. It becomes more complicated if an
intermediate endpoint is used for an early futility analysis. However, it is tractable
if the relationship between the intermediate endpoint and the clinical endpoint can
be properly estimated.
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5.4 Application to a Seamless Phase II/III Design

5.4.1 Study Design of the Motivating Example

The motivating example comes from the development of a drug candidate for
platinum resistant ovarian cancer patients. By the time this test drug’s MTD was
defined, several competing drug candidates in the same class had completed single
arm Phase II studies. To become commercially viable, a seamless Phase II/III design
was considered to accelerate the program in that two doses will be studied in Phase
II and only one will be carried to Phase III. The primary hypothesis of the pivotal
trial is that:

e The test drug is non-inferior to the comparator (chemotherapy) in terms of
overall survival (OS) at the 1.1 hazard ratio margin (and superior to the compara-
tor in terms of safety profile).

* OR the test drug is superior to the comparator in terms of OS.

Hierarchy testing procedure will be used to control the type I error rate. That is,
the non-inferiority will be tested first, and once passed, the superiority will be tested.

There are two types of seamless designs, inferentially seamless and operationally
seamless. The inferentially seamless designs (Stallard and Todd 2003; Posch et al
2005) combine Phase II data and Phase III data with some multiplicity adjustment to
control type I error rate in the final analysis. Although statistically valid, such designs
are deemed to be less well understood adaptive designs by regulatory agencies.
Operationally seamless designs only use Phase III data in the final analysis, but the
enrollment is seamless between Phase II and Phase III. In addition to acceptance by
regulatory agencies, several other factors led the development team to choose the
operationally seamless Phase II/III design. One factor is the difficulty of using sur-
rogate biomarker, in this case progression-free survival (PFS), to make GNG deci-
sion while the Phase III endpoint is OS. Another factor is about which decision body
to make the dose selection based on Phase II data. If the inferentially seamless design
is chosen, the dose selection has to be made by an external data monitoring commit-
tee (eDMC), because otherwise the Phase II data may be unblinded and cannot be
utilized in the final analysis. Dose selection is usually a complicated decision. Even
though the guidelines for dose selection can be prespecified in the study protocol,
not all scenarios can be foreseen or simulated. Therefore, the development team
preferred to make the dose selection by a joint effort of internal and external experts
and chose an operationally seamless design over an inferentially seamless design.

The final design of the motivating example is shown schematically in Fig. 5.3
with GNG bars derived below. In the Phase II portion, patients will be randomized
to three treatment groups with equal allocation: test drug at high dose, test drug at
low dose, and control. The primary endpoint for Phase II is PFS. Phase II enrolls
about 210 patients and completes after 135 PFS events have been observed to have
sufficient power for each dose of the test drug to demonstrate superiority to the
control in terms of PFS. The primary endpoint of Phase III is OS. Phase III enrolls
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Fig. 5.3 Flowchart of the seamless Phase II/III study in platinum resistant ovarian cancer patients

about 720 patients and completes after 508 deaths have been observed to have
sufficient power to demonstrate that the test drug is non-inferior to the control drug.
This sample size also provides sufficient power (>95 %) to demonstrate that the test
drug is superior to the control in terms of event rate for a safety endpoint.

In order to realize seamless transition, an interim analysis will be conducted in
Phase II. The enrollment of Phase II will close when it is predicted that approxi-
mately 4 months after this time point there will be 135 PFS events. The interim
analysis will take place approximately one month before the accrual completion.
The purpose of this interim analysis is to determine whether Phase III enrollment
can be initiated before final data of Phase II is available. If a Go decision is made,
one arm of the test drug along with the control arm will be carried to Phase III. If a
Go decision cannot be made at the interim analysis, Phase III will be on hold and a
final decision will be made at end of Phase II. The Go criterion at this interim analy-
sis is to have at least 80 % conditional power (as a team consensus) to make a Go
decision at the final analysis of Phase II. Since it will take about one month to con-
duct the interim analysis and make a decision, the timing of this interim analysis is
chosen so that Phase III accrual will potentially start seamlessly when Phase 11
accrual completes.

5.4.2 Incorporating Surrogate Biomarker Data
in Go—No Go (GNG) Decision Making

The GNG decision for a drug candidate to move from Phase II to Phase III is a
major decision in drug development. Ideally the decision should be made based on
the data from the same endpoint which will be the primary endpoint of Phase III
(i.e., OS in oncology or a composite cardiovascular event in cardiovascular disease).
Since it usually takes long time to observe the clinical endpoint data, a common
practice in drug development is to make GNG decision only based on the surrogate



5 Optimal Cost-Effective Go—No Go Decisions in Clinical Development 107

biomarker (i.e., PFS in oncology or blood pressure and glucose level in cardiovas-
cular disease). However this approach often causes heated debate within the devel-
opment team as what role the (limited) clinical endpoint data plays. In oncology,
this often leads to a vague conditional requirement of “positive OS trend” before a
Go decision can be made. In Chen and Sun (2011), it is proposed to combine the
PFS data and OS data for decision making so that no information is wasted and a
decision rule can be prespecified without ambiguity. Before we explain how to com-
bine PFS and OS data, we first discuss how to use PFS data from Phase II to esti-
mate OS treatment effect.

The relative effect size (y) between a clinical endpoint and a surrogate endpoint
in general holds the key in such estimation. Estimation of y should be based on
proper meta-analysis. In our motivating example, the ratio between OS and PFS (in
log-hazard-ratio scale) is estimated to be 0.6 (Chen et al. 2013, Sun and Chen 2012).
It implies that the treatment effect in OS is 60 % of the treatment effect in PFS,
which represents a reasonable estimate based on published data of a variety of solid
tumor in recent years. For example, if a drug has a treatment effect of hazard ratio
(HR)=0.8 in OS it is expected to have a treatment effect of HR=0.69 in PFS. In
other words, if the treatment effect in PFS is 31 % hazard reduction in Phase II, it
implies that the treatment effect in OS is 20 % hazard reduction. Most GNG deci-
sions between Phase II and Phase III in oncology drug development were made this
way, even though often times the relative effect size were implicitly used and the
decision makers may not even realize it. Is the translation from effect size in PFS to
effect size in OS always a one-to-one translation? The answer is no. To adequately
account for the uncertainty in effect size translation, we assume that the relative
effect size (y) has a normal distribution with mean of 0.6 and standard deviation of
0.2. This assumption covers a wide range of effect size ratio seen in the literature.
With this variability, a 0.69 hazard ratio in PFS may translate into a range of hazard
ratio in OS, and 95 % confidence interval of the estimated HR in OS fall between
0.69 and 0.93.

We then used a weighted method to combine the OS effect predicted from the
observed PFS effect (yAprs) and the observed OS effect OS (4,;), both in log-
hazard-ratio scale, using the formula below (Chen and Sun (2011).

S =—(Whgs +(1=w)7A ) (5.15)

With minus sign on the right-hand side, S is an approximate measure of hazard
reduction, a parameter clinical researchers are more familiar with. Since the number of
OS events in Phase II is relatively small compared to the number of PFS events, a
weight of 0.15 (i.e., w=0.15) is given to the observed OS effect in Phase II, and a
weight of 0.85 is given to the predicted OS effect. This weight approximately mini-
mizes the variance of S when the true treatment effect is in the parameter space of inter-
est while the actual numbers of PFS and OS events are reasonably close to the target.
The correlation between Aprs and A o, and the variance of y are all incorporated into the
variance estimate of S. (See Chen and Sun 2011 and Sun and Chen 2012 for technical
details of the characteristics of the test statistics.)
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In the next section, we will discuss what value of S will constitute a GNG crite-
rion between Phase II and Phase III using the same technique as developed in previ-
ous sections.

5.4.3 A Benefit-Cost Effective GNG Criterion

We denote the Go criterion from Phase II to Phase III to be S>C, where S is given
in Eq. (5.15) and C is a critical value to be solved so that the return on investment
can be maximized. P(§> C) is the probability of Go from Phase II to Phase III.

We assume that the treatment effect has a discrete prior distribution, with 7z,
probability of being superior the control with HR =0.8, 7, probability being equiva-
lent to the control with HR=1, and (1 —z, —x,) probability of being inferior to the
control with HR=1.1. We used 7;=7,=1/3 in our example, i.e., the test drug is
assumed to have equal chance of being superior, equivalent, and inferior to the con-
trol drug. In this example, the Phase III is successful in two scenarios: (1) Superiority
in efficacy is demonstrated; (2) Only non-inferiority is demonstrated. The regula-
tory approvability and benefits are different in these two scenarios. We incorporated
this consideration into our benefit calculation. In our example, stakeholders and
experts believe the relative approvability from health authority is 2:1 for scenario 1
vs. scenario 2, and the corresponding relative benefit is 5:1. Let V be the relative
value of the two scenarios, then V=2x5=10.

With the above setup, let B be the predictive POS adjusted benefit of the program
in the motivating example,

2

B=M, zﬂipi (Vqs,i +qu,i) (5.16)

i=1

where

— Mj is an unknown constant. It is the overall benefit of the test drug when only
non-inferiority in efficacy is demonstrated. Just like most of the oncology proj-
ects, it is extremely difficult to predict the benefit including commercial value.
Fortunately, it does not have any impact on our analysis.

— 7 is the probability mass of the discrete prior distribution for the treatment effect
(HR), i=1, 2, 3. m;+ 7 +m;=1. Because there is no value of the test drug when it
is inferior to the control, we do not include ;=3 in the benefit calculation.

— piis the probability of Go from Phase II to Phase III under the ith value of HR in
the discrete prior distribution. For example, p, is P(S>C) under HR=0.8.

— Vis the relative value of demonstrating superiority in efficacy vs. demonstrating
non-inferiority in efficacy and superiority in safety, and it is 10 in our case.

— gs, 1s the probability of demonstrating superiority in Phase III under the ith value
of HR in the discrete prior distribution.

— gy, 1s the probability of only demonstrating non-inferiority in Phase III under the
ith value of HR in the discrete prior distribution.
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— Let D be the cost of the development program for Phase II and Phase III
portion.

D=M, [R+Zz:7ripl) (5.17)

i=l1

where

— M is a constant. It is the cost of the Phase III study, which just like Mj does not
have any impact on our analysis.

— R is the relative cost of Phase II portion to Phase III portion. In the motivating
example, the operation team’s estimate of R is 0.4 including Phase III trial initia-
tion and various other factors.

With the above setup, the optimal GNG bar C is obtained by maximizing the
benefit—cost ratio B/D with respect to C whereas B and D are provided in Egs.
(5.16) and (5.17), respectively. The input variables that we need to give before
solving for C are: the discrete prior distribution of treatment effect, the relative
benefit of the superiority vs. non-inferiority Phase III results which is considerably
easier to assess than the absolute benefits, and the relative cost of the Phase II por-
tion vs. the Phase III portion. For the values of the input variables that we used in
the motivating example, the optimal bar is C=0.09. Roughly speaking, this cor-
responds to a 9 % hazard reduction based on the joint estimate of the OS (S). The
solid line in Fig. 5.4 illustrates how the benefit—cost ratio changes with C, which
decreases when it moves farther away from the optimal value. This is typical in a
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Fig. 5.4 Tllustration of how the benefit—cost ratio (B/D) changes with the GNG Ceriterion (C) in the
Phase II/I1I study in platinum resistant ovarian cancer patients
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benefit—cost ratio analysis; the optimal design is unique and optimality is mathe-
matically global.

When using the surrogate biomarker PFS data in decision making, we made an
assumption about the relative effect size of PFS and OS. At the end of Phase II, to
mitigate the risk of using a wrong assumption, we should check the relative effect
size observed in Phase II. If the observed OS effect is smaller than the lower bound
of the 95 % confidence interval (CI) for the predicted OS effect from PFS effect
(yAprs), we would be concerned because it indicates that the observed OS effect is
much smaller than the predicted effect from PFS data using the historical relation-
ship of relative effect size. Therefore, our proposed GNG criteria at the end of Phase
IT are (1) the estimated OS effect (S) is greater than the optimal bar (~9 % hazard
reduction based on benefit—cost ratio analysis); (2) the observed OS effect is greater
than the lower bound of the 95 % CI for the predicted OS effect (to mitigate the risk
of a wrong assumption on historical relationship of relative effect size). The dotted
line in Fig. 5.5 shows the boundary for criterion (5.2). Overall, it is a Go decision if
the observed PFS effect and OS effect from Phase II falls below both solid and dot-
ted lines, and is a No Go decision otherwise.

Now we have the optimal GNG bar for the end of Phase II data, we can
back-calculate the bar for the interim analysis (IA) in Phase II which gives 80 %
conditional probability that the Go bar will be passed at the end of Phase II. The
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Fig. 5.5 Optimal GNG Ceriteria at the end of Phase II in the Phase II/III study in platinum resistant
ovarian cancer patients. The lower bound of the 95 % CI of predicted OS effect is the upper bound
of the 95 % CI in hazard ratio scale (test vs. control). The higher the HR the smaller the treatment
effect
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Fig. 5.6 Criteria at interim analysis of Phase II to trigger Phase III enrollment in the Phase II/III
study in platinum resistant ovarian cancer patients. The lower bound of the 95 % CI of predicted
OS effect is the upper bound of the 95 % CI in hazard ratio scale (test vs. control). The higher the
HR the smaller the treatment effect

calculation shows that a seamless Phase III enrollment will be triggered if the
following criteria are met for the interim analysis data.

(a) The estimated OS effect (S) is greater than 0.16 (~16 % hazard reduction).
(b) The observed OS effect at IA is greater than the lower bound of the 95 % CI for
the predicted OS effect based on observed PFS effect at TA.

Figure 5.6 shows the boundaries for criterion (a) and (b). If the observed OS
effect and PFS effect at IA fall below both solid and dotted lines, Phase III enroll-
ment will be triggered while waiting for the Phase II data to become mature.

5.5 Conclusions

In this chapter, we have defined a benefit—cost ratio function for measuring effi-
ciency of two Go—No Go decisions (Phase II POC to Phase III transition and futil-
ity analysis of a Phase III trial). Maximization of the benefit—cost ratio function
leads to optimal cost-effective decisions. Both decision issues are complex in
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nature and each merits a separate treatment. They are bundled together in this
chapter to demonstrate the broad applications of our proposed approach so that
readers have a comprehensive appreciation. Some of the extensions mentioned in
the chapter are being worked in greater depth and results will be presented in sepa-
rate publications.

Our approach to the two decision issues is most appropriate when resources
saved from a No Go decision after a POC trial or from early termination of a Phase
III confirmation trial can be immediately redeployed to emerging projects of higher
interest. Therefore, one major application of this approach is in, but certainly not
limited to, portfolio management of a large and steady flow of drug candidates
under fixed resource constraints. If the condition of an excess of development
opportunities beyond available resources is not met, our designs may not be opti-
mal. However, when there are not enough drug candidates lined up for develop-
ment, our proposed approach helps set an upper limit on how high the cutoff point
for a Go—No Go decision should be. Our approach is suitable when absolute benefit
of drug candidates cannot be well assessed. Otherwise, the decision-theoretic
approach may represent a viable alternative solution. As with any optimization
problem, the curve for a utility function may be relatively flat at the optimum. When
applying our method, practitioners need to make sure that the mathematically opti-
mal solutions are also of practical relevance. Although we have used a prior POS
estimate, we did not take a fully Bayesian approach to the decision issues. This is
consistent with common practice in the drug development environment, and avoids
complexity in presentation. Interested readers may consult Berry (2004) for possi-
ble Bayesian expansion.

The general method is simple to implement and easy to understand. It provides
statisticians working in the late-stage development environment with a quantitative,
objective approach to key clinical program design issues. The extensions discussed
in previous sections may inspire expanded applications of this method.

In this chapter, we also used a motivating example in oncology to discuss and
address a few challenging aspects in Phase II/III drug development: (1) How to use
seamless design to accelerate development timeline? (2) How to explicitly incorpo-
rate surrogate biomarker data in decision making? (3) How to make objective GNG
decision from Phase II to Phase III by maximizing the benefit—cost ratio? The exam-
ple shows that the benefit of a seamless design can be fully realized in practice after
proper risk mitigation.

Although our work is motivated by oncology drug development where cost-
effectiveness of a Go—No Go decision is a major concern, the general method pro-
posed in this chapter should be equally applicable to therapeutic areas with the same
concern or to similar decision issues at any stage of drug development. These may
include transition from earlier phases to Phase II, incorporation of a subpopulation
(e.g., defined by a gene signature) hypothesis in a confirmatory trial, optimal alpha
split between a full population and a subpopulation hypothesis in a confirmatory
trial (Chen and Beckman 2009c), and many other possibilities.
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Chapter 6
Timing and Frequency of Interim Analyses
in Confirmatory Trials

Keaven M. Anderson

Abstract In many pivotal clinical trials, timing and frequency of interim analyses
are important for ethical treatment of patients and for practical and regulatory pur-
poses. It is often desirable to evaluate a large trial of a new treatment that has some
safety risk in order to stop or modify the trial based on the emerging risk—benefit
profile compared to control treatment. Statistical considerations would suggest not
stopping too soon in order to avoid large Type I or Type II error or basing a decision
on inadequate data. Regulators often prefer to minimize interim analyses of efficacy
due to presumed bias created by early stopping and an inability to adequately evaluate
important secondary efficacy endpoints, safety, or the general risk—benefit profile
for the new treatment. For practical purposes, analyses must be done soon enough
to have a meaningful impact on the trial. For the same reason, limiting enrollment
rates and ensuring prompt collection and analysis of data are important. We discuss
tradeoffs between these factors in deciding when to perform interim analyses.
In addition to formal evaluations for early positive efficacy findings, there are different
considerations for trials early in the development process, for safety monitoring
during a trial, and for futility analyses. We consider logistical and regulatory issues
throughout.
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6.1 Introduction

There are a variety of unknown factors at the time of study design that can make it
highly important to evaluate the risk—benefit of a new treatment during the course
of a clinical trial. Patient safety is the most important of these factors, but safety
monitoring is often done in a statistically informal way due to the lack of knowl-
edge of what type of safety issues may arise or the frequency with which they may
appear. More formal procedures are often set up for efficacy evaluation and many
issues arise:

» Lack of knowledge of the treatment effect for efficacy of the new treatment under
study.

» Lack of precise knowledge of the outcome distribution in the control group.

» Regulatory concerns of stopping a trial early for a positive efficacy finding or for
doing multiple interim efficacy analyses.

» The ability to collect, enter, and analyze data in a timely fashion.

* Enrollment rates that allow interim analysis that is meaningful well before a trial
is completed.

e Primary endpoints that are too far out in time to be evaluated at interim
analyses.

» Use of surrogate endpoints for interim analyses.

* Ensuring that Type I error and Type II error associated with an interim analysis
are adequately controlled. Other statistical properties such as the observed treat-
ment effect required to stop a trial or a conditional power evaluation may also be
considered.

» For more adaptive trials, selecting treatment arms to continue or adapting sample
size can be challenging objectives.

We will discuss the above items largely through a series of examples. There is no
pretense at completeness as there are many situations that have presented and will
potentially present themselves. However, we hope the examples may provide a use-
ful point of reference for many readers. Many of the examples are based on the
practical experience of the author as opposed to, or in addition to, theoretical con-
siderations. The organization of the chapter begins with a section on when strategies
with frequent interim analyses might be used, followed by sections on interim anal-
yses for futility and efficacy, and ending with a brief discussion.

6.2 Frequent Interim Analyses

In early development and in some cases in later development, frequent interim
analyses may prove useful. Safety monitoring tends to be an ongoing process as a
drug is first being studied. We will focus on more formal approaches where analyses
are frequent. The FDA draft guidance on adaptive designs encourages more
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frequent adaptation and more innovative methods in early studies in development
(Center for Drug Evaluation and Research and Center for Biologics Evaluation and
Research 2010). Most typical are dose-finding trials with continuous or very fre-
quent modeling. While these are addressed in other chapters, we mention a couple
of specific approaches here.

For safety in oncology trials, the “3+3” design has a long history, but is often
noted to have limitations in terms of accurately identifying a dose with a target toxic-
ity level. Other approaches with frequent monitoring such as the continual reassess-
ment method (CRM; O’Quigley et al. 1990) or variations such as the (modified)
toxicity probability interval (Ji et al. 2010) can provide a more accurate method of
dose-finding. These methods can formally adapt doses over longer sequences of
patients, adapting to collect a suitable amount of data. The CRM method can some-
times be criticized as a ‘black box’” where the dose adaptations are not completely
obvious. The mTPI is essentially a CRM method that has table that fully identifies
the dose-adaptation rules, meaning that no computer program is required once the
trial is enrolling. The speed of enrollment can be based on how close to an adaptation
boundary the trial is at any point in time. That is, for lower-risk groups it may be
possible to accelerate enrollment somewhat when not close to a toxicity bound.

For larger trials, including very large trials with rare, important safety events
such as rotavirus vaccine trials evaluating intussusception (The REST Study Group
2006) or cardiovascular trials with intracranial hemmorhage risk, fully sequential
methods can be useful. While group sequential methods are discussed elsewhere,
fully sequential methods such as the sequential probability ratio test (SPRT, Wald
1945) or related methods (Siegmund 1985) are what we refer to here. For these
examples, a formal evaluation of safety risk can be performed at the occurrence of
each event. This has the advantage of stopping a trial as soon as a safety risk is reli-
ably identified. For important risks identified prior to trial start, this formal approach
can avoid an inappropriate early stop due to informal stopping decisions without
evaluable operating characteristics.

Another early development area where adaptation is common is in Phase II, single
arm efficacy evaluations of response rates. The Simon two-stage (Simon 1989)
design provides a simple futility rule for an early stop in such trials. If this hurdle is
passed, a fixed additional number of patients are evaluated. Without much change in
operating characteristics, fully sequential monitoring can be performed with con-
tinuous monitoring to allow more flexibility in terms of when early decisions can be
made between some minimum and maximum targeted number of observations
using a truncated version of the SPRT (Wald 1945); this is implemented using the
binomialSPRT routine in the gsDesign R package (Anderson 2014). Delaying
the first analysis until some minimum sample size has been tested, consistent with
the start of a Simon two-stage design, can reassure investigators that a trial will not be
stopped too early. The continuous monitoring can reassure a sponsor that a formal
futility stop or accelerated go to a next study can be adopted as soon as reasonably
reliable conclusions can be made. Another alternative with more flexible timing
based on Bayesian decision-making was developed by Lee and Liu (2008).
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6.3 Futility Analyses

Futility analyses are interim analyses to consider stopping a trial early by examining
signals for patient harm or lack of efficacy benefit. This can be considered the most
effective way to save costs in a large portfolio of clinical trials typical in a large
pharmaceutical company. The strategy may be less appealing to smaller companies
with smaller product portfolios; it is also often unappealing to a ‘product team’
within a larger company which may have a large personal investment in a project.
We will consider the topic of futility somewhat broadly in this discussion, including
safety and risk—benefit considerations as well as efficacy. We will also briefly
discuss the role of futility analyses in practical aspects of treatment selection.

Clearly, one of the most important aspects of early interim analyses is to monitor
patient safety. In the previous section, we discussed the importance of ongoing
safety monitoring. Another important type of safety interim analysis is to collect
and analyze a uniform and systematic early review of safety to examine less obvious
potential issues than those captured through ongoing safety monitoring. When there
are potential safety issues, it is important to consider the risk—benefit tradeoff both
for patients in the trial and for future patients who may receive benefit or harm from
a new treatment. Some of these issues can only be addressed after a large trial is
completed and will be discussed further in the following section. Others can be
assessed for a tradeoff with potential positive efficacy findings during the course of
a trial. The potential for more severe safety findings may drive an earlier interim
analysis, while having more data for a careful tradeoff with efficacy benefit may
suggest a delay in timing for any interim futility analysis. Often analyses of this
nature are performed on a regular calendar basis, say every 3 or 6 months. Which of
these analyses include efficacy analyses and to what extent is important for the
control of Type I error will be discussed in the next section.

As noted by Bauer et al. (2010), a trial with an objective of treatment selection
among multiple arms has a basic conflict between a desire to collect as much data as
possible on a final treatment arm selected versus wanting as much data as possible to
select between treatment arms. One issue this author has seen is an adaptive design
where efficacy analysis of discontinued arms changes before a trial is completed
since some patients on discontinued arms may not have had complete data at the time
of an interim analysis. In the particular case of interest, in retrospect, a non-adaptive
trial may have been preferable since the cost was not a major prohibition in Phase II,
but having to reconsider multiple arms in Phase III was a major cost. That said,
selecting between treatment groups at interim analyses is challenging in the absence
of large differences in safety or efficacy, leading to a personal bias for this author to
leave arms in a trial in absence of large differences. Another approach occasionally
referred to by the FDA is to simply choose the highest dose that is safe at an interim
analysis, along the lines of the Phase III (The PURSUIT Investigators 1998) trial of
platelet inhibition in acute coronary syndromes. This allowed an analysis of a sub-
stantial number of patients to address a challenging dose selection question while not
requiring completion of the entire the trial with two experimental arms.



6 Timing and Frequency of Interim Analyses in Confirmatory Trials 119

The FDA draft guidance on adaptive design (Center for Drug Evaluation and
Research and Center for Biologics Evaluation and Research 2010) provides only
basic, general recommendations for futility analyses. While not directly commented
on as a futility analysis, there are comments on monitoring enrollment and what
criteria may be preventing timely enrollment of a trial. If this is done on a blinded
basis, changes to enrollment criteria to speed timely completion may be considered.
It is probably best to do this relatively early in the trial to ensure the majority of the
trial is performed as uniformly as possible. Among the first considerations in per-
forming an early futility analysis for efficacy is the tradeoffs between (1) setting a
meaningful bound for clinical efficacy, (2) controlling the probability of stopping a
trial for a drug that is truly useful (Type II error), and (3) performing any futility
analysis at a time where stopping the trial or an arm in the trial can have a meaningful
impact on the trial. We will discuss each of these topics separately, as well as the
conflicts between these objectives.

We begin with the timing question as a futility analysis performed late in a trial
may have a minimal impact on study costs relative to the impact it has on the simple
interpretation of trial results achieved by running a trial to completion. The rates of
enrollment versus collection of essential assessment data makes it impossible to
perform interim futility analysis in many cases. If interim futility analyses are incor-
porated in such cases regardless of these considerations, it may mean that trial
enrollment has to be halted prior to the futility being performed in order for the
analysis to have an impact on the number of patients exposed to treatment. This can
lead to many sites abandoning a trial in favor of other, actively enrolling trials—
leading to the potential for substantial patient population differences before and
after the interim analyses. If enrollment is not paused in these trials with fast enroll-
ment relative to assessment, then the trial may be nearly completely enrolled prior
to being able to actually perform the interim analysis. One consideration is to limit
the number of sites enrolling patients until a futility analysis is performed; this can
have a substantial impact on completing the trial. One could also consider perform-
ing a smaller trial initially to get a preliminary indication of efficacy, although a
common reaction to this is that running two separate trials would substantially delay
any possibility of bringing forward a new, potentially beneficial treatment to
patients. The reader can see that tradeoffs are difficult under this type of scenario.

Next, we consider setting a clinically meaningful futility bound and control of
Type Il error. By “a clinically meaningful futility bound” we mean a bound that cor-
responds to requiring some positive indication of efficacy. With very little efficacy
data, the estimate of treatment effect is highly variable and setting a clinically mean-
ingful treatment bound results in substantial Type II error. Given the issues just noted
with late interim futility analysis, finding the right tradeoff can be challenging.
Generally, considering timing at 25-50 % of data seems potentially useful. The earlier
timing provides the potential of larger savings while requiring a “low clinical benefit
bar” in order to avoid a steep power loss. The later timing requires particularly careful
assessment of whether or not the interim analysis can be performed at a time when it
has a meaningful impact on the trial. Another strategy that may be worth considering
is lowering the desired power from a typical 90 % (or more) to 85 % or 80 %, with the
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thought the most of the power loss will ‘pay for’ the ability to perform a meaningful
early futility analysis. This also limits the increase in sample size that accompanies a
strategy of a futility analysis with a stringent futility bar and high power.

All of the above reinforce the careful consideration of the tradeoffs between clini-
cally meaningful futility bounds, meaningful timing for decisions and minimizing
Type II error. One thing that makes this easier is if only substantial harm is considered
sufficient justification for early futility stopping. If a futility analysis requiring some
indication of clinical benefit cannot be performed, a futility analysis to react to harm
in terms of the primary efficacy endpoint can still be highly important.

In order to try to get around some of the above tradeoffs, surrogate endpoints for
the primary endpoint of interest are sometimes used for futility decisions. For many
trials with longitudinal measures of an efficacy endpoint, it might be expected that
efficacy at an early follow-up time point would be necessary for efficacy to exist at
a later timepoint. For oncology trials, an early futility analysis based on progression
free survival may be performed in a trial with an ultimate objective of showing a
mortality benefit. While the impact of these strategies on power for the true end-
point of interest is difficult to assess, these are potentially important methods of
realizing considerable savings in the conduct of a potentially large and expensive
clinical trial.

Finally, we wish to mention that prior information on treatment effectiveness and
risk—benefit has a substantial impact on consideration of a futility analysis. A drug
that has a reasonably well-established safety and efficacy profile and is being stud-
ied in multiple related scenarios may not be an attractive candidate for futility analy-
ses. As an example, an effective diabetes drug in Phase II may be studied in many
Phase III indications and it may be desirable to get a complete assessment in each
of the indications. In situations where a futility bar provides a first assessment of
efficacy for any clinical indication for a compound, a futility bar may be considered
more important, especially when the first indication studied is considered likely to
provide the most promising population for the compound.

6.4 Efficacy Analyses

We begin this section with some regulatory considerations, followed by a discussion
of study bounds and a discussion of calendar and information-based group sequen-
tial designs. We end with a brief discussion of blinded sample size re-estimation.
Early stopping for a positive efficacy finding can be a controversial topic. There
may be pressures on a pharmaceutical company to bring a drug to market as soon as
possible, making early establishment of efficacy attractive. These pressures can come
not only from shareholders, but also from patient advocacy groups. However, the
general regulatory and other societal perspectives require a careful assessment of the
risk and benefit of a new drug before it is approved for human use (see, for example,
ICH E9 or CFR312). As noted by Paul Canner in a review of interim monitoring of
the coronary drug project (The Coronary Drug Project Research Group 1981), ...
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decision making in clinical trials is complicated and often protracted...no single
statistical decision rule or procedure can take the place of the well-reasoned consid-
eration of all aspects of the data by a group of concerned, competent, and experi-
enced persons with a wide range of scientific backgrounds and points of view.”
The FDA (CFR 312 part 21) notes that “Phase 3 studies. . .are intended to gather the
additional information about effectiveness and safety that is needed to evaluate the
overall benefit-risk relationship of the drug and to provide an adequate basis for
physician labeling.” These needs suggest that interim stopping criteria must go
beyond any simple efficacy rule provided by, say, a carefully designed group sequen-
tial trial. My recent experience with FDA oncology regulators suggested no interim
efficacy analyses until after 50 % of efficacy data have been collected. This runs
counter to some previous experience where large treatment effects were observed
early (e.g., EPILOG Investigators 1996; Demetri et al. 2006). The EPILOG trial
(EPILOG Investigators 1996) may have been an exception since the drug studied was
previously approved, the efficacy benefit was twice that observed in a previous trial,
and previous safety concerns were substantially reduced; also, while the interim
analysis was early in terms of the planned final information, there was already a large
number of patients treated. In any case, the case for changing the prevalent treatment
paradigm was compelling. In addition to FDA suggestions to limit early efficacy
analyses, the European Medicines Agency (EMA) has also strongly suggested limit-
ing the number of interim efficacy analyses.

Along with timing recommendations, the FDA sometimes suggests (e.g., Center
for Drug Evaluation and Research and Center for Biologics Evaluation and Research
2010) O’Brien—Fleming-like criteria (O’Brien and Fleming 1979; Lan and DeMets
1983) for early stopping. While these are generally considered conservative criteria
for stopping, we wish to note here that at 60 % of the final sample size for a group
sequential trial designed with 90% power and 2.5% Type I error, 1 sided, the
approximate treatment effect required to stop the trial early is approximately 1.04
times the treatment effect for which the trial is powered. Thus, even more stringent
interim bounds may be desirable if there are substantial risk—benefit considerations
beyond the primary endpoint. For instance, in an oncology trial with a primary
progression free survival endpoint, as complete assessment as possible of overall
survival can be an essential part of the evaluation of benefit; in this situation early
stopping for efficacy should be done cautiously. For treatments of chronic condi-
tions where evaluation of safety is particularly important for assessing risk—benefit
tradeoffs, early stopping should consider the sample size needed for risk—benefit
evaluation.

As discussed in the section on frequent interim analyses, calendar-based timing
of analyses may be of use in efficacy evaluations for a drug. It is not uncommon for
enrollment rates or event rates that vary from those used to plan a trial. If events
occur slower than expected, there may be a much longer gap between planned
efficacy analyses. If events occur faster than expected, the anticipated time between
planned interim analyses can largely disappear. Information-based group sequential
trials (Jennison and Turnbull 2000; Mehta and Tsiatis 2001; Scharfstein et al. 1997,
Tsiatis 2006) adapt interim and final analysis boundaries based on the amount of
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statistical information available at an interim analysis. This is most commonly
achieved through the use of error spending functions to establish and modify group
sequential bounds (Lan and DeMets 1983). In these cases, a gap of more than 1 year or
less than, say, 6 months, may be considered too long and too short of a time, respec-
tively, between an evaluation of risk—benefit that includes an efficacy evaluation.
For many trials, planning interim analyses at least partially on a calendar basis using
a spending function approach can be essential to having an appropriate number of
and timing of interim analyses.

6.5 Discussion

We have provided some considerations for timing and number of interim analyses that
run from continuous analysis of important safety outcomes or early efficacy findings
to a very limited number of efficacy evaluations in pivotal trials. All possibilities exist
depending on the needs of a trial, and there are many statistical methods to deal with
the many interim analysis issues that need to be addressed in a trial (Dragalin 2006).
The general summary of timing and number of interim analyses is:

» Safety monitoring should be ongoing during a trial, often with systematic reviews
of safety at interim analyses carried out at regular calendar intervals. Formal
safety stopping rules may be considered for endpoints that are anticipated to
potentially demonstrate a drug safety issue.

* Trials in early development may benefit from frequent analyses that allow altering
or stopping a trial; this is actually encouraged by the FDA (Center for Drug
Evaluation and Research and Center for Biologics Evaluation and Research 2010).

e Interim analyses for futility should carefully consider tradeoffs between the
impact on power, the ability to stop a trial at a meaningful time and the approxi-
mate clinical benefit required to pass a futility bound. Earlier futility analyses
can be meaningless in terms of establishing some sign of efficacy or can have a
substantial power impact if made too stringent. Late interim analyses can minimize
the ability to meaningfully impact the conduct of a trial.

» Efficacy interim analyses are often required to be very stringent, reasonably well
into a trial, and infrequent. Careful risk—benefit evaluation should be considered
in addition to any formal efficacy stopping bound.
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Chapter 7
Approaches for Optimal Dose Selection
for Adaptive Design Trials

David Lawrence and Frank Bretz

Abstract Adaptive designs use accumulating data to modify in a prospectively
planned manner certain design aspects of a clinical study without undermining its
validity and integrity. The aim of this chapter is to review adaptive design approaches
for dose finding and optimal dose selection and to demonstrate that adaptivity is a
fundamentally important concept, which can be applied to dose selection in different
stages of clinical development. We review the major statistical methods available for
planning and analyzing adaptive designs in Phase I, II, and III. To illustrate the ideas,
we refer to examples and case studies from the literature, where available.

Keywords Dose selection * Maximum tolerated dose * Minimum effective dose
* MCP-Mod ¢ Dose limiting toxicity

7.1 Introduction

As outlined in Chap. 1 of this book, a major driver for adaptive designs is to increase
the information value of clinical trial data to enable better decisions, leading to more
efficient drug development processes and improved late-stage success rates. This is
particularly true for optimal dose selection: A well-known problem of failed Phase
III programs is often believed to be poor dose selection resulting from inappropriate
knowledge of the dose-response relationship (efficacy and safety) at the end of
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the learning phase of drug development, i.e., Phase II. Selection of a dose (or doses)
to carry into confirmatory Phase III trials is among the most difficult decisions in
drug development. Although the exact numbers are unknown, it is believed that the
high attrition rate plaguing the pharmaceutical industry in Phase III studies are due,
at least in part, to inadequate dose selection for confirming safety and efficacy in the
intended patient population—doses that are too low to achieve adequate benefit, as
well as doses that are too high and lead to dose-related safety events. There is also
evidence that, even after registration, dose adjustments in the label continue to be
required with some frequency (Cross et al. 2002; Heerdink et al. 2002). Given this
context it is no surprise that dose finding has been described as “difficult, essential
and often badly done” (Senn 1997). This chapter illustrates, with examples, some of
the adaptive dose finding options that exist across the phases of drug development
and may aid us in our understanding of the dose—response relationship and improve
the probability of selecting the correct dose, or doses, to take to market.

7.2 Current Issues with Dose Ranging and Issues
to Consider for Adaptive Dose Ranging

The basic difficulty in getting the right dose is the trade-off between wanted and
unwanted effects. In the past, dose finding studies were often designed using a
small number of doses and a narrow dose range, often focused on the upper end of
the dose—response relationship. Only in recent years has there been a noticeable
shift towards investigating the full dose—response relationship and estimating
the so-called minimum effective dose (MED). The MED denotes the smallest dose
achieving a prespecified clinical treatment effect. Knowing the MED is important,
because it defines a lower bound for therapeutically useful doses.

One of the main issues with dose response is that many different profiles are pos-
sible. Figure 7.1 displays a non-exhaustive set of possible profiles that are often seen
in clinical dose finding studies, together with the associated MED. In this example the
MED occurs at an expected treatment effect of approximately 250 units implying that
the threshold for clinical relevance is an improvement of 200 units over the placebo
response (where the placebo, dose 0, response is approximately 50 points). As seen
from Fig. 7.1, the MED depends quite strongly on the true, underlying dose response
profile and can vary between 50 (for the emax1 model) and 350 (for the linear model).

An indication of the importance of properly conducted (and informative) dose
response studies is the early publication of the ICH E4 guideline (ICH 1994), which
is the primary source of regulatory guidance in this area. The guideline gets very
specific already in the introduction when it motivates the importance of dose
response information:

Historically, drugs have often been initially marketed at what were later recognized as
excessive doses ... This situation has been improved by attempts to find the smallest dose
with a discernible useful effect or a maximum dose beyond which no further beneficial
effects is seen...
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Fig. 7.1 Example dose response profiles often seen in clinical dose finding studies. Open dots
indicate the expected responses at selected dose levels. The minimum effective dose (MED) is
defined as the smallest dose achieving a prespecified clinical treatment

It becomes transparent from this quote, and the remainder of the ICH E4 guide-
line, that regulatory agencies recognize the need to obtain appropriate dose response
information as a critical part of clinical drug development. But even if it is generally
agreed that understanding the relationships among administered dose, drug-
concentration in blood, and clinical response is important, setting the objectives for
an actual trial may be subject to much debate and different questions might be of
interest: (1) detecting a dose response signal, (2) identifying a predefined clinically
relevant response within the observed dose range provided that a dose response
signal has been established, (3) selecting a target dose to be further studied in late
phase trials, and (4) estimating the dose response profile within the observed dose
range (Bornkamp et al. 2007).

Typically, dose selection in a clinical program begins with the drug being first
studied in man as single ascending doses, followed by multiple ascending doses in
healthy volunteers. Initially we wish to establish both a “no effect” dose and a dose
where subjects begin to experience “symptom-limiting” adverse events (the so-
called maximum tolerable dose, MTD). This can then be followed by evidence that
the drug has an effect on the disease being studied, often conducted by a dedicated
proof-of-concept (PoC) study. Once PoC has been declared, dose ranging will be
performed in a study containing multiple doses to identify the dose response shape
and estimate the MED or other target doses of interest. The result of the dose
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response study will be used to inform the dose, or doses, to be taken forward into
Phase IIT and ultimately to market. However, in many cases only a small amount of
clinically-derived data are available to justify the dose selection and that data may
be being used in a suboptimal fashion.

In contrast to standard dose finding, in adaptive dose finding prespecified adapta-
tions allow modifications to the original study design as dose response information
accrues. This information can be used to answer one or more of the four questions
outlined above. Generally speaking, adaptive designs use accumulating data to
modify aspects of the study in a prospectively planned manner without undermining
the validity and integrity of the trial (Gallo et al. 2006). Validity involves the statisti-
cal properties of the trial related to inference and estimation, i.e., providing correct
statistical inference by, for example, ensuring control of the Type 1 error rate, and
the calculation of adjusted p-values, estimates, and confidence intervals, assuring
consistency between different stages of the study and minimizing statistical bias.
Trial integrity is primarily about transparency and trial conduct acceptable to the
intended external audience, i.e., providing convincing results to a broader scientific
community, by, for example, preplanning as much as possible, basing any study
design changes on intended adaptations and maintaining confidentiality of data
while the study is ongoing.

The majority of adaptive dose finding studies take place in Phase I and II and,
thus, regulatory concerns often associated with adaptive trials in the confirmatory
setting (Phase III) are less of an issue here. Adaptive dose finding designs should be
considered as an effective learning paradigm for drug development where the risks
of missing an accurate assessment of the true underlying dose response profile of an
investigational treatment are borne by the sponsor. These plans would not require
special approval from regulatory agencies. While trial designs for early phase drug
development are under the purview of the sponsoring company as long as strict
compliance to regulations around potential human risk and safety is maintained, a
successful dose ranging trial brings major evidence to regulatory discussions such
as End-of-Phase Ila or IIb meetings. It is also possible for investigation of dose to
continue into Phase III and then there is additional regulatory concern. These issues
will be discussed in Sect. 7.5. Nevertheless, to ensure the validity of the trial results,
there has to be an implicit assumption that demographic and other relevant charac-
teristics of the patients enrolled in the study remain relatively constant over time.
As with any adaptive design, it is assumed that the efficacy response being measured
is available in a sufficiently rapid time frame (relative to the enrollment period and the
duration of the study) to allow for meaningful adaptations to occur. It is very com-
mon for an adaptive dose finding trial to use an endpoint different from the endpoint
used in the confirmatory trial for regulatory approval because, for example, the reg-
istration endpoint takes too long to measure (e.g., a survival endpoint). In such situ-
ations, a validated biomarker with shorter duration may be introduced for the
purpose of either proof-of-concept or adaptive randomization of patients. Lastly, it
is assumed that the transmission of relevant information to the data analysis group
is sufficiently rapid to allow adaptations to occur according to the prescribed meth-
odology. Additional points to consider when designing an adaptive dose ranging
study would be to ideally run the study in a small number of centers to limit issues
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with drug supply management. Of course the ability to produce enough dose levels
(i.e., no manufacturing problems) must be present. Issues such as these must be
taken into consideration before embarking on any adaptive dose finding study.

7.3 Phasel

When evaluating a new experimental treatment, the purpose of first-in-human stud-
ies is to identify the MTD. Phase I trials are typically adaptive whether they involve
single or multiple ascending doses. In general, cohorts of healthy volunteers (e.g.,
six subjects on active and two on placebo) will enter the study and decisions will be
made after each cohort on whether to initiate the next dose or possibly stop the trial
altogether. These decisions will be based on safety, tolerability, pharmacokinetics,
and pharmacodynamics.

The need for and acceptance of adaptive dose escalation designs is particularly
well established in the area of Oncology. Here, MTD finding studies in Phase I fre-
quently classify a patient’s toxicity (safety) data into one of two levels: dose limiting
toxicity or not. The purpose of MTD finding studies is then to estimate the dose
which achieves a probability of toxicity close to a targeted level, frequently in the
order of 25-35 %, although the actual level will be situational dependent. Adaptive
dose escalation designs to estimate the MTD then allocate small cohorts of patients
(typically of size 3) to a selected dose based on the available cumulative toxicity
data, that is, the dose that is anticipated to achieve a degree of toxicity closest to the
targeted level. The dose selection mechanism is therefore response adaptive: the
cumulative knowledge is used to inform the actual dose allocated to the (future)
next cohort of patients. This allocation can be informed by a number of methods,
including Bayesian adaptive dose escalation designs, such as the continual reassess-
ment method (CRM) proposed by O’Quigley et al. (1990). The original CRM
chooses the first dose level based on some assumed dose response model. After each
cohort of patients, the model is updated. The updated model is used to calculate the
probability of dose limiting toxicity (DLT) at each dose of interest. The statistical
dose recommendation for the next patient cohort is communicated to the clinical
team, who decides on the next dose based on the statistical input as well as other
relevant information (e.g., toxicities that do not qualify for a DLT). The basic CRM
has led to much research (Garrett-Mayer 2006) and numerous extensions
(Neuenschwander et al. 2008; Cheung 2011).

7.4 Phase I1a/IIb

The advantages of an adaptive dose ranging design in Phase II may be illustrated by
an example of a combined Phase Ila/b study in dental pain (Vandemeulebroecke et al.
2010). The compound was developed as an analgesic for the treatment of chronic
pain. In order to provide a scientific rationale for the clinical development in such a
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chronic indication, the potential benefit of the compound was first investigated in a
proof-of-concept study for an acute pain indication. More specifically, a dental pain
study was developed which looked for proof of analgesic efficacy after molar teeth
were removed. In view of this clinical development plan and the possibility to apply
the compound as a multiple dose therapy for chronic pain indications, it was impera-
tive to collect conclusive dose response information for both efficacy and safety in the
intended dental pain PoC study. More specifically, there was a need to determine:

* A safe dose range for testing in patients.

* Whether the efficacy signal observed was large enough to support further
development.

* The dose-response relationship in order to select one or more doses for larger,
later stage trials.

To aid these decisions and to accelerate the outlined development plan, the dental
pain study considered here prospectively combined Phase Ila and Phase IIb by
bridging PoC and dose finding into a single, adaptive study. The PoC part looked for
proof of analgesic efficacy after molar teeth were removed. If PoC could be estab-
lished, the study would seamlessly continue into a dose finding part, to provide dose
ranging information for the further development of the compound in the chronic
pain indication.

Accordingly, this dental pain study consisted of three parts A, B and C, see
Fig. 7.2. Part A consisted of the first administration of the compound in patients. Its
goal was to determine two safe doses for Part B (Low & High dose). Part B
investigated PoC. It compared Low and High dose of the compound against placebo
for PoC declaration, based on patients from Parts A and B. Only if PoC was declared,
would the study continue with dose finding in Part C. The complete data from Parts
A and B is used to optimize the design of Part C. The aim of Part C was to establish
dose response information for both efficacy and safety. For example, it would be
used to determine the MED, i.e., the smallest dose that achieves a clinically relevant
effect. The final analysis would use the MCP-Mod approach (Bretz et al. 2005;

Combined Phase lla/b Study

Part A Part B Part C
Safety PoC Dose Finding

Low dose Low 24 pts 4 -5 doses in total

6 pts on Low High 24 pts Approx. 20 pts/dose

2 pts on Placebo || Placebo 12 pts
High dose

6 pts on High

2 pts on Placebo ‘poc'[/

Fig. 7.2 Combined Phase Ila/b study bridging proof-of-concept and dose finding (pts =patients)
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CHMP 2013), based on all data from Part A, B, and C. The MCP-Mod approach
combines principles of Multiple Comparisons Procedures with Modeling tech-
niques to overcome some of the shortcomings of applying either approach alone.
More specifically, it provides an efficient statistical methodology for model-based
design and analysis of Phase II dose finding studies acknowledging model uncer-
tainty through the following steps: (1) testing for the presence of a dose response
signal, (2) selecting the best dose response model for the observed data out of a
pre-specified set of candidate models, and (3) estimating target doses of interest
(e.g., the minimum effect dose, MED) via modeling.

In a traditional drug development program, Parts B and C would be run as two
separate studies. However, in this study design it was decided to use an adaptive
design prospectively combining, PoC and dose finding, to more efficiently use the
accumulating data across the three seamless parts of the study. It is an adaptive
design because between Part B and C an interim analysis is performed to (1) assess
PoC and possibly terminate the study early for futility, and (2) use the complete data
from Parts A and B to optimize the design of Part C. The application of such an
adaptive design was possible because of:

* The availability of a fast readout for a clinically relevant endpoint (reduction in
pain intensity 72 h after removing the molar teeth).

* The possibility to conduct this study in very few centers, thus avoiding potential
drug supply management issues.

» The ability to produce small enough dose levels (no manufacturing issues).

e The availability of a clinical team bridging Early and Full Development to
prospectively plan an integrated PoC and dose finding study.

This trial design was well accepted by regulatory agencies and this case study
shows how dose response information can be sequentially built up by combining
PoC and dose finding in an adaptive manner and how this information may be used
to select doses to be tested in later development stages.

7.5 Phase IIl

Although it would be preferable to learn about dose in early phase studies when
decision making comes under the heading of “sponsor’s risk,” in certain situations
it may be necessary to further investigate dose in Phase III. This is possible using a
pivotal two-stage adaptive design with dose selection at interim. Such a design aims
at addressing two objectives by a single, uninterrupted study conducted in two
stages, which otherwise would have been addressed by two separate studies. Under
the adaptive design, one (or more) dose level(s) are selected using data from the first
stage reviewed at an interim analysis. These dose(s) are then carried forward to the
second stage. The final analysis of the selected dose(s) includes data from both
stages, and is performed in such a way that the validity of the conclusions is main-
tained (Bretz et al. 2009).
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As this type of study is used for pivotal confirmation of efficacy and safety, it will
be submitted to regulatory agencies. Regulatory agencies are more cautious about
adaptive designs for confirmatory trials than for exploratory trials (CHMP 2007;
FDA 2010). This arises from concerns over trial validity and integrity, for example
due to potential information leak (i.e., unblinding of patients or investigators to
study results before final database lock) due to the ensuing adaptations, introducing
operational bias and therefore compromising trial integrity (Gallo 2006). This cau-
tion is understandable, since confirmatory trials assume a considerable body of pre-
existing information and limit sponsor options in dealing with uncertainties. The
adverse impact of moving forward (i.e., approval) with an ineffective or unsafe
product is much greater at this stage than at earlier stages of drug development. As
a result, regulators want scientific assurance that the proposed adaptive design has
the desirable property of a confirmatory trial and is not proposed purely to save trial
cost and time at the possible expense of scientific rigor. Both the European Medicines
Agency (EMA) and the US Food and Drug Administration (FDA) have produced
guidances on adaptive designs (CHMP 2007; FDA 2010) and are aligned with clear
common areas for attention: Type I error rate control, rigorous planning, data
confidentiality at interim analyses, as well as a limited number and frequency of
adaptations (preferably limited to only one type of adaptation in a confirmatory trial).
In the confirmatory setting, hypotheses about the potential beneficial effect for a
new therapy have to be prespecified in the study protocol and need to be confirmed
at the study end using proper statistical analysis methods (Bretz et al. 2009).

One example of a Phase III two-stage adaptive design is the INHANCE study
(Donohue et al. 2010). Other examples of two-stage adaptive clinical trials with
dose selection at the end of stage 1 are described in (Heritier et al. 201 1; Chaturvedi
et al. 2014). INHANCE was a multinational, multicenter, double-blind, double
dummy, adaptive, parallel group study design with blinded formoterol and open
label tiotropium as active controls in patients with chronic obstructive pulmonary
disease (COPD). The study was split into two stages. In the first stage two of four
indacaterol doses were selected at an interim analysis (based on data from the first
14 days of treatment, i.e., an early readout of the efficacy endpoints) to continue into
a second stage where efficacy, safety, and tolerability of the two selected doses
could be confirmed in comparison to active and placebo comparators over a total of
26 weeks. It was one of the pivotal trials used to support registration of indacaterol.
The study design is shown in Fig. 7.3, where the two selected indacaterol doses in
stage 2 (which could be any two of the four indacaterol doses from stage 1) are
denoted as A and B.

A Data Monitoring Committee (DMC) of recognized experts in the respiratory
and statistical field appointed by the sponsor but independent of study conduct
reviewed efficacy and safety data at the interim analysis. Dose selection was primar-
ily based on predefined criteria comparing the efficacy of indacaterol with placebo
and the active controls. One of the most important issues in adaptive designs for
confirmatory clinical trials is an adequate separation of the decision making com-
mittee (in this case, the DMC) from the project team, i.e., there should be no spon-
sor involvement in the decisions made at the end of stage 1 of a confirmatory
two-stage adaptive design. Therefore, there is a need to prespecify the process by
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STAGE 1 STAGE 2

ilndacateroi 75ug o.d.
 Indacaterol 150pg o.d.i
t Indacaterol 300ug 0.d.|
Indacaterol 600ug 0.d.i
! Placebo

Indacaterol dose A

Indacaterol dose B

Placebo

| Formoterol 12ug b.i.d.
: Tiotropium 18pg o.d.

screening Dose Ranging Interim Efficacy and Safety
Period (22 weeks) | Analysis Assessment (26 weeks)

b.i.d=bis in die (twice a day)

Tiotropium 18pg o.d.

Fig. 7.3 INHANCE—a Phase III two-stage adaptive design with dose selection (adapted from
Lawrence et al. 2014)

which any decision will be made by this external, independent DMC, with an
algorithm for determining the adaptation specified and agreed in advance. For the
INHANCE study, a set of dose selection guidelines for a variety of possible interim
analysis scenarios was compiled and included in the DMC charter. The DMC was
asked to select two adjacent doses (i.e., either 75 pg and 150 pg, 150 pg and 300 pg,
or 300 pg and 600 pg) based on trough Forced Expiratory Volume in 1 s (FEV,) and
FEV, area under curve (AUC y;, 4y)) after two weeks of treatment. Safety data was
also presented to the DMC to include in its deliberations.

In the confirmatory setting there are two key issues that are fundamental to the
acceptability of an adaptive design: Type I error rate control and sponsor access to
interim data. In the INHANCE study the final analysis consisted of comparing the
two selected dose groups with placebo and tiotropium on a prespecified sequence of
the primary, key and important secondary endpoints. Evidence from both stages was
combined in arigid statistical hypothesis-testing framework. In this study, a Bonferroni
adjustment with a significance level a/4 was used for comparing each of the two dose
groups against placebo, since the study started with four indacaterol doses. Here, o
denotes the usual study-wise Type I error rate acceptable for confirmatory trials (i.e.,
a=0.05 for two-sided or «=0.025 for one-sided hypotheses testing). The primary,
key, and important study objectives were tested sequentially at level o/4 in the
prespecified hierarchy for each of the two selected doses (Maurer et al. 1995).

Current regulatory guidance in more traditional monitoring settings, such as
group sequential designs, specifies that sponsors should not have access to interim
data while trials are ongoing. One concern in the context of adaptive designs is that
unanticipated complexities might not fit a prespecified algorithm, such as unex-
pected safety signals, lack of monotone dose response or potential stop for futility.
Additionally, the interim decision could have major impacts on the sponsor’s busi-
ness, and it is therefore in the sponsor’s interest to have some limited role pre-
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planned in the DMC charter. For the INHANCE study, the proposed interim decision
rules were included in the DMC charter with the understanding that the DMC had
the discretion to deviate from them as necessary. If the DMC were confronted with
data that would result in a deviation from the dose selection guidelines, the DMC
were able to confidentially discuss unblinded results with two senior members of
the sponsor (who were identified by role in the company in the charter and were not
otherwise involved in the study) to reach consensus on the doses chosen. If the con-
sensus deviated from the guidelines, the DMC would document an explanation of
the decision making for possible future reference by regulatory agencies, but that
was to remain confidential while the trial was ongoing.

The results of the interim analysis of INHANCE have been published in full
(Barnes et al 2010), as have those of the final analysis (Donohue et al. 2010). More
details on the methodology employed in this trial can be found in Lawrence et al.
(2014). INHANCE was included as a pivotal study in submissions to regulatory
agencies globally and indacaterol is now approved in all major markets globally for
once-daily maintenance bronchodilator treatment of airflow obstruction in adult
patients with COPD. This example illustrates that in certain specific situations dose
selection in Phase III is possible using adequate adaptive methods.

7.6 Discussion

Adaptive designs have a potential role in optimal dose selection. Integrating proof-
of-concept and dose selection or the dose selection and confirmatory phases of drug
development has a number of advantages, most obviously in the lack of delay
between two subsequent phases and a faster overall drug development process.
Adaptive designs make efficient use of resources by reducing patients’ exposure to
potentially less effective or unnecessarily high doses. For the selected doses, the
data from both study stages contribute to the analysis of the overall study.

In areview of the PhARMA working group there was broad agreement that model-
based adaptive designs in “Learn” phase have the potential to greatly improve the
efficiency of learning about the dose response, thus leading to more reliable dose
selection for Phase III (Krams et al. 2007). The PhARMA working group on adaptive
dose ranging studies clearly indicated the superiority of adaptive methods. There is
a consensus that detecting dose response is considerably easier than estimating it, or
identifying the target dose to bring into the confirmatory phase. Sample sizes used
for dose ranging studies based on power calculations to detect the presence of dose
response, are likely to be inadequate for dose selection and actual dose response
estimation. Adaptive dose ranging designs and methods clearly lead to gains in
power to detect dose response and in precision to select target dose(s) and to esti-
mate the dose response (Bornkamp et al. 2007). Clinical trials are not designed in a
financial vacuum, so there may be resource constraints for Phase II programs that
mean more than one dose may need to be brought forward to the next phase of
development. Two-stage adaptive trials in Phase III may provide an opportunity to
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further refine the choice of dose, although these trials should be considered to
belong in the realm of “Confirm.” As such their applicability requires case-by-case
consideration and discussion with regulatory agencies.

The advantages of adaptive dose ranging studies do not come without cost and
one should balance the potential gains associated with adaptive dose finding designs
against their greater methodological and operational complexity. Adaptive dose
finding designs require substantial planning, using existing knowledge, and careful
assessments of the properties of interim decisions and the related risks. They are
likely to require additional resources during the planning phase. Additionally, the
initial dose finding period needs to be long enough for a thorough evaluation of the
treatment effects.

The adequacy of the interim dose selection procedure/PoC criterion is critical to
the success of any such adaptive trial. Ideally, the endpoint(s) used at the interim
analysis should be the same as or shown to be strongly correlated with the final
study primary endpoint, and should be recognized and accepted (Chow and Chang
2008). As dose is a critical aspect and the knowledge generated from an adaptive
dose ranging trial is crucial in taking the drug to approval even when the trial usu-
ally occurs in the early phase of the drug development it is important to include
potential regulatory concerns as a part of the trial design considerations. The timing
of initiating these regulatory discussions is also very important. Depending on the
design features, it could occur as early as a pre-IND meeting if a Phase Ila/b seam-
less adaptive dose ranging trial is planned. Early discussion would have the further
advantage of triggering much earlier internal discussion and potentially provoking
more thorough modeling and simulation initiatives looking at many possible devel-
opment options. This is likely to improve the quality of a development program
whether an adaptive design is ultimately used or not.

7.7 Conclusions

It is seven years since the PARMA white paper on innovative approaches for design-
ing and analyzing adaptive dose ranging trials. This paper made clear that better dose
response learning approaches exist and can produce substantial knowledge gains.
However, while there is evidence that learning about dose has improved dose response
still remains a difficult subject. Unfortunately there is no silver bullet approach to the
dose finding conundrum. No design/method uniformly is best: relative performance
depends on the specific scenario and assumptions made along with the learning pri-
orities of the trial, e.g., dose selection vs. dose response characterization. Sample size
calculations need to take account of these differing priorities and should also take
into account the precision of estimated dose required. Adaptive designs have a major
role to play in dose selection but it is not always best/necessary to use adaptive
designs. Simulations should be used for protocol design to investigate the most
appropriate approach in specific situations (adaptive, model-based, Bayesian, opti-
mal design, etc). The most appropriate place to use adaptive designs in dose selection
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would appear to be in the early phases of drug development and combining proof-of-
concept and dose selection into one seamless trial seems a learning space where
major learning gains can be made. In certain situations it may be valid to select more
than one dose for Phase III and couple this with an adaptive design.

Stephen Senn’s observation that dose finding is “difficult, essential” remains true
but with the use of model based approaches and adaptive designs we have the potential
tools to make sure it is not “badly done.”
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Chapter 8
A Review of Available Software
and Capabilities for Adaptive Designs

Yevgen Tymofyeyev

Abstract This chapter provides a brief review of methodologies and software
solutions for several types of adaptive designs: the traditional and adaptive group
sequential designs including sample size reestimation, multistage adaptive designs
with arm and subpopulation selection at interim analyses, and adaptive designs for
dose-finding studies.

Keywords Adaptive design software * Simulations ® Group sequential * Many-to-one
comparison * Arm selection ¢ Population enrichment * Dose-ranging

Novel statistical methods for design and analysis of clinical trials seek to address
the growing complexity of development programs for new drugs and devices and to
improve study efficiency in general. Adaptive designs (AD) often present computa-
tional challenges which result in the need for robust software implementation. For
example, group sequential methods require efficient numerical integration to define
a study design. There are many cases where planning a trial using statistical simula-
tions is the only feasible way to evaluate operating characteristics of the design
under different scenarios. This chapter is intended to provide a review of the avail-
able AD software and their capabilities. Our focus is primarily on the methods for
Phase 2 and Phase 3 clinical studies. The description of the AD methodologies is
intrinsic for the presentation of the implementations’ capabilities and uses. So a fair
amount of the material presented in this chapter is a concise overview of how a
particular method works and what it does. The intent was to highlight the working
principles and paradigms. Software that would be referred to as an implementation
of a particular method or procedure typically contains very extensive manuals,
sometimes thousands pages long. Some software packages are very comprehensive,
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so listing their capabilities and features would be beyond the scope of this chapter.
We are going to use a method-centric way of material arrangement without provid-
ing a qualitative comparison of the various software packages. Whenever some
comparison is presented, it serves as an example of the evaluation process that a
designer might want to consider.

Section 8.1 describes the traditional and adaptive group sequential designs along
with implementations for a single hypothesis test framework. Adaptive study
designs with multiple hypotheses either due to several treatment arms or subpopula-
tions are considered in Sect. 8.2. Section 8.3 contains a review of methods and soft-
ware for adaptive dose-finding studies. The chapter concludes with a discussion of
the current state of available AD implementations and future trend

8.1 Traditional and Adaptive Group Sequential Designs

Group sequential designs are well-established methods that are commonly used in
clinical trials where repeated significance testing is done during interim analyses
(IA) of an ongoing study. Numerical computations for the methods are primarily
based on application of recursive integration techniques by Armitage et al. (1969),
originally developed for the sequential testing procedure. The applicability of group
sequential methods is very broad because the methodology covers practically all
possible statistical testing situations resulting from different trial designs and analy-
sis types. We refer the reader to the excellent textbook by Jennison and Turnbull
(2000) for a comprehensive review of this topic. The following canonical form of
the group sequential testing framework is used to embed a wide variety of designs,
at least asymptotically. Throughout this section we consider methods that are known
to control the Type I error rate based on theoretical justifications.

Consider the hypothesis testing problem for the parameter of interest § and
assume that the joint distribution of the test statistics Z;, Z,, ..., Zg at the K planned
analyses (interim and final) follows the multivariate normal distribution with the
increasing sequence of statistical information denoted by {I,, I, ..., Ix} such that

1. E(Z)=0/I,
2. Cow(Z,Z) = =\/I/\I, I <i<j<K.

The statistical information about € is proportional to the sample size (or to the
number of events for time-to-event data) and is the reciprocal of the variance of the
6 estimate.

The landmark tests of Pocock and O’Brien-Fleming introduced in the 1970s were
originally developed for a fixed number of equally spaced information levels.
Although there are techniques that extend the traditional “fixed” boundary group
sequential designs to cases with unequal and different than originally planned incre-
ments of information, (see Emerson and Fleming (1989) and Pampallona and Tsiatis
(1994)), the practical popularity of the group sequential methods is probably due to
the error spending function approach proposed by Lan and DeMets (1983) and Kim
and DeMets (1987). This approach allows flexibility for the number and timing of
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interim analyses. It can accommodate irregular and unplanned analyses provided
that future analyses do not depend on previous estimates of 8, and the maximum
statistical information about 6 is fixed upfront. This is different for adaptive group
sequential designs, where future analyses are flexible and can be data-driven. In
particular, the future analyses can be determined using the unblinded treatment
effect. Originally introduced by Bauer (1989), the adaptive designs approach has
received considerable attention in the literature (e.g., refer to Bauer et al. (2001) and
Posch et al. (2003)).

Here, we discuss software solutions available for the group sequential designs
including the adaptive aspect just described. We restrict our attention to the two
stand-alone commercial implementations—EAST™ 6.2 by Cytel Inc. and
ADDPLAN™ v6.0 by Aptive Solution Company. We also consider the implementa-
tion programmed as a module within the R programming language, called the gsDe-
sign package (available from CRAN; http://www.cran.r-projects.org). The gsDesign
package comes with the simple graphical user interface program called gsDesing-
Explore. Many other solutions are available (e.g., PASS 11 and SAS v9.2
SEQDESIGN). Recent reviews that the author is aware of are manuscripts by
Wassmer and Vandemeulebroecke (2006) and Zhu et al. (2011).

The early versions of EAST handled the traditional group sequential method.
Starting from version 5, the adaptive group sequential design module was offered.
ADDPLAN software has a somewhat different paradigm as it is based on
the weighted combination test principle of Lehmacher and Wassmer (1999). It is
similar to the method proposed by Cui et al. (1999) to control the type I error rate
when adaptive sample size reestimation is performed at the interim analysis.
The combination test is defined in terms of the stage-wise p-values from the K
stages by p(p, ...,px) = 2 5w, @~ !(1 - p;), where ®!(.) is the inverse of the standard
normal cumulative density function, and ) % ,w?=1. The recursive integration
framework is also valid for this formulation, and the critical values for the tradi-
tional fixed information group sequential designs can be computed (including the
alpha spending function method) by adjusting the stage weights to

w; = ,/n/. (n1 +.ny )71, where n; is the planned sample size (information) at stage

J» j=1,...K. The predefined and fixed weights ensure the control of the Type I
error rate even in the presence of data-driven adaptations, provided that stage-wise
p-values are stochastically independent under the null hypothesis. For example, this
condition holds if the stage-wise p-values are computed from separate subject
cohorts that constitute study stages. For trials with a survival endpoint, the study
stages are formed by the calendar time. Wassmer (2006) showed that the inverse
normal combination method is also applicable for censored survival endpoints.

Both ADDPLAN and EAST support the adaptive design methodology based on
(a) the weighted combination method and (b) the conditional type I error approach
by Muller and Schafer (2001) and Brannath et al. (2002), also referred to as “the
recursive combination approach” in the literature. The latter method is very general.
It allows for data-driven change of an entire design, e.g., study size, timing of IA,
spending functions, and population enrichment. It can be applied recursively mul-
tiple times during the study.
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The core functionality of the R package gsDesing by K. Anderson is the quantification
of group sequential design boundaries and properties. The package also includes use-
ful utility routines for binary and time-to-event study planning. It has a very rich
preprogrammed collection of the spending functions and provides an excellent plat-
form to optimize study design with respect to a- and PB-spending functions (see
Anderson (2007)). Anderson and Clark (2010) showed examples where the study
design requirements are better met by considering the spending functions’ families
with more than one parameter (which is not available in EAST or ADDPLAN).

Zhu et al. (2011) provided a detailed side-by-side comparison of the capabilities of
East v.5.2, ADDPLAN v5.0, gsDesign R package, and SAS v9.2 SEQDESIGN and
SEQTEST implementations for traditional group sequential methods. Although there
are some differences in capabilities and features, it would be fair to say that all plat-
forms provide functionalities that are adequate to cover most practical situations.

Programming language environments like SAS or R are highly customizable for
performing design simulations and actual analyses during study monitoring and
final reporting. It is interesting that EAST opened a door for additional customiza-
tions through calls to user written routines in the R language. Also, design features
like the lag in subjects’ response, accrual, and dropout were added for normal and
binary endpoints to facilitate the quantification of potential resource savings due to
early stopping of AD studies. This is useful for comparison of the traditional and
adaptive group sequential designs, as the benefits of early stopping with the tradi-
tional group sequential methods are reduced by the so-called the “pipeline” effect
(when subjects are already enrolled by not evaluable for analysis).

ADDPLAN 6.0 and EAST 6.2 software have benefits due to the graphical user
interface (GUI) and the extensive collections of step-by-step wizard navigations for
many testing problems that cover normal, binomial, survival data types. Also, tools
for the creation, review and comparison of multiple design scenarios are provided.
EAST 6.2 provides a richer collection of features and capabilities in the opinion of
the author. In addition to design and simulation modules, ADDPLAN and EAST are
equipped with the analysis GUI for study monitoring and calculation of confidence
intervals and p-values. Nevertheless, execution of interim analysis outside of a fully
automated system like SAS is undesirable as manual data transfer prompts potential
errors. A remark regarding challenges of an analysis execution is that, if an adaptive
design method requires stage-wise data analysis, one needs to plan on how subjects
with partial data at the time of the IA are handled, e.g., in trials where there are
multiple observations per subject.

The decisions to stop early in group sequential trials are defined by the stopping
boundaries that can be expressed in different scales, e.g., Z-, p-, and B-values. One
scale, the conditional power (CP) value, deserves special attention because it
requires assumptions about the future data (see Lachin (2005)). The conditional
power is the probability of getting statistically significant positive results in the
ongoing study given the interim analysis data. CP often serves as the main criterion
for the sample size reestimation. Depending on the assumptions about the future
data, CP would have a very different numerical value for the same observed at the
interim data. EAST, ADDPLAN, and gsDesign allow for relatively easy translation
of one boundary scale to another including the observed IA effect size scale, which
is useful for communication purposes. Besides different boundary scales, it is
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important to consider how the interim decision rules would play out under different
scenarios for the true parameter . An example is the evaluation of the probability
to increase the sample size in an AD study, if the true value of @ is half of what has
been originally used to power the fixed sample size design study.

Next, we move to the setup when an additional level of complexity is
considered—multiple hypotheses due to the presence of several treatment arms or
several subpopulations in the study.

8.2 Confirmatory Adaptive Multistage Designs
with Multiple Hypotheses

This section focuses on confirmatory multistage designs, specifically, the adaptive
seamless designs (ASDs) that integrate Phase II and Phase III trials into one trial,
the so-called seamless Phase II/III design. One example of the seamless Phase II/I11
design is when doses are selected at A after the completion of the Phase II portion,
and, after that, subjects are randomized only to the selected doses and the control
arm in the confirmatory Phase III portion of the trial. The final comparison of the
selected doses to the control includes data before and after dose selection. The
adaptive multistage procedure for the just described “many-to-one” comparison
setting is extensively studied in the literature (e.g., refer to Bretz et al. (2009) for an
overview). Another important application of ASDs is referred to as the patient
enrichment or population enrichment design (see Temple (1994, 2005)). There, at
an interim adaptation point, some selection of patient subpopulations (typically
based on a predictive model of response) is done, and the enrollment is limited to
the selected subpopulations in the remainder of the trial. In both examples, proper
control of the type I error is required to adjust for multiple hypotheses testing and
adaptive treatment arms (subgroups) selection at IA. Often, ASDs also incorporate
early stopping for efficacy or futility as well as sample size reestimation. Statistical
methodologies need to account for all potential sources of the Type I error rate
inflation in such designs.

Due to the complex nature of ADs with multiple hypotheses involved, it is diffi-
cult to derive operating characteristics of such methods analytically. Instead, simula-
tions are typically used to investigate and optimize design properties. The typical
objectives of a trial simulation include: (a) computation of the essential operating
characteristics such as power to demonstrate that the design adequately meets
requirements; (b) comparison of alternative designs, in particular, the conventional
design where Phase II and Phase III studies are done separately; (c) identification of
the optimal design parameters such as sample sizes, timing of interim analyses, anal-
ysis methods, and rules that drive selection and early stopping at adaptation points.

The commercial software implementation for the multistage adaptive seamless
designs is provided by ADDPLAN™ 6.0 in two modules—MC and PE. The latter
module covers patient enrichment designs and the former is for multiple comparisons
in multistage studies. The R package we are aware of is called “asd” (available from
CRAN; http://www.cran.r-projects.org) described in Parsons et al. (2012).

We briefly review the statistical methodology of ASDs next.
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8.2.1 Classical Multiplicity Adjustment Method

A simple approach is to adjust for the original number of hypotheses involved using
the conventional multiplicity adjustments, although just a subset of these hypothe-
ses would be tested at the final analysis as some hypotheses were unselected at
interim. The closure test principle by Marcus et al. (1976) is a fundamental method
used to control the family-wise Type I error rate in many-to-one comparisons. An
individual null hypothesis is rejected at the global level a only if all intersection
hypotheses from the closed system that involve the individual hypothesis are
rejected by a local a-level test. There is flexibility as for the choice of a method to
be used for testing the intersection hypotheses (e.g., the commonly used tests are
Dunnett, Sidak, Simes, and Bonferroni procedures). Koenig et al. (2008) described
how conventional methods could be modified to account for the treatment selection
procedure. Note that this simple method does not allow for adaptations other than
arm selection (i.e., no early stopping or sample size recomputation).

8.2.2 Adaptive Dunnett Test Procedure

Proschan and Hunsberger (1995) proposed the adaptive two stage test for a single
null hypothesis based on the conditional error function. This concept was general-
ized in Muller and Schafer (2001). The method is based on preserving the condi-
tional Type I error rate. The null hypothesis H can be rejected at the final analysis
controlling the Type I error at « if the p-value from the second stage, p,, is less than
A(p;), where p; is the p-value from the first stage, and A is any non-increasing func-
tion such that [A(p)dp=a.

Koenig et al. (2008) developed the adaptive two stage test in the context of many-
to-one treatment arm comparison where the conditional type I error is computed for
the Dunnett test (this is known as the Adaptive Dunnett Test Procedure). For this
procedure the variance is assumed to be known, so it should be used in studies with
a large sample size in order for the approximation to be valid. No formal early stop-
ping rules are developed within this procedure, so it can be used only for treatment
selection and sample size reestimation for a single interim analysis.

8.2.3 Design Based on Combination Test Approach

The approach based on a combination test function applied together with the closed
test principle described above provides plenty of flexibility for ASDs while control-
ling Type I in a strong sense. Several authors suggested this approach for the
adaptive treatment arm selection design (refer to Bauer and Kieser (1999); Kieser
et al. (1999); Posch et al. (2005)). Using this framework, the multistage adaptive
study selection process of multiple arms (subpopulations) at an interim time can
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also incorporate the adaptive early stopping and sample size reestimation.
Furthermore, the selection rule is very flexible; in particular, the number of arms
selected after interim analyses does not have to be prespecified. The statistical meth-
odology for the adaptive enrichment design where prespecified subpopulations or
the full population is selected at the interim analysis is similar to the arm selection
case (see Brannath et al. (2009) and Wang et al. (2009)).

Friede and Stallard (2008) compared performance of the three methods described
above and the method proposed by Stallard and Friede (2008) for treatment selec-
tion. For the latter method, the critical value is derived from the test statistic which
is the sum of the largest test statistics based on the data from each stage of the trial.
Therefore, the number of treatment arms present in the trial at each stage needs to
be prespecified. Their results suggested similar power properties for the three adap-
tive design methods.

ADDPLAN 6.0 software provides a comprehensive simulation platform for the
multi-armed seamless designs and adaptive population enrichment designs in the
MC and PE modules, respectively. There are many common features and function-
alities between the MC and PE modules, but some aspects, such as the specification
of subpopulations and logical structure among hypotheses, (e.g., the concept of the
full population in the enrichment designs), segregate the modules. The R package
asd implements only the adaptive selection of arms at the single interim analyses
using the combination function approach applied together with Dunnett’s proce-
dure. An interesting feature of the package is that the selection could be based either
on the actual primary endpoint of interest or the early outcome correlated with the
primary endpoint (see Friede et al. (2011)). Among others, both software solutions
implement the following selection rules: the best performing arm; several best arms;
all arms with the response no worse than a given threshold difference from the best
arm; and all arms with the response greater than a given absolute response.

In general, the choice of an optimal design is likely to depend on the specifics of
a particular study and in many circumstances the methods have similar power. The
following table aggregates some rules of thumb features of the considered methods.

Method Advantages Disadvantages
Adaptive dunnett Good power properties. Allows No early stopping; applicable for large
for sample size reestimation sample sizes (assumes response
(SSR) and arbitrary arm variance is known); complex;
selection rules requires special software
Combination test applied Good power; flexible methods ~ Complex; requires special software;
together with closed (early stoppings, SSR, Inference is based on weighted
testing principle selection rules) test statistics, not usual sufficient
test statistics
Classical multiplicity Simple conservative approach; Less powerful in cases when
adjustment, e.g., no special software is the sample size for stage 1
Dunnet procedure required is small
Separate phase 2/3 Simple approach Substantial drop in power if sample

size for stage 1 is large
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Method Advantages Disadvantages
Group sequential Good power; Inference is based No SSR; need to prespecify
based on the sum of on the usual sufficient test number of arms present at stages;
stage-wise maximum statistics (cutoff values are no commercial software is
of tests, by Stallard prespecified) currently available
and Friede (2008)

8.3 Adaptive Designs for Dose-Ranging Studies

In this section we consider designs and implementation software for adaptive dose-
ranging studies. We will differentiate between the ADR design with a few interim
analyses and the designs from the large class of methods that utilizes the so-called
frequent adaptation scheme. For this class, it is typically assumed that time to
observed response is short relative to the whole trial duration; therefore, changes in
subject allocation ratio could appear after observing responses from each small
cohort of subjects. In cases where time to observed response is relatively long, lon-
gitudinal modeling to predict final response based on early readouts can be consid-
ered. There is a wide variety of designs that fall into this framework available in the
literature. Bornkamp et al. (2007) and Dragalin et al. (2010) report on the two evalu-
ation studies done by the PhARMA Working Group on Adaptive Dose-Ranging
Studies to compare different approaches.
The general algorithm utilized in ADR designs is the following:

¢ Fit a model using all available data at an adaptation point.

* Based on the fitted model, optimize allocation for the next cohort of subjects to
maximize some utility function, for example, information at the target dose or
the minimal dose that provides the specified response relative to placebo.

e Repeat above steps at each adaptation point using accumulating subject
responses.

The ADR designs can incorporate other types of adaptation, e.g., early dose
(study) stopping or arm selection. Therefore, the considerations provided in
Sects. 8.1 and 8.2 are applicable here as well. We briefly describe several adaptive
design methods next.

8.3.1 Bayesian Parametric Designs

The Bayesian parametric designs assume that responses follow some functional model
which captures potential dose—response profiles. For example, consider the four
parameter logistic model specified by the equation for the expected response value,
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E(Y|D)=ﬁ+%1+exp((9—D)/T))

b}

where D is a dose level and Y is the response. For the continuous response, the
observational error is assumed to be normally distributed with mean 0 and variance
o2 For the binary case, Y= 1 indicates a “response” and Y =0 indicates “no response.”
Here 3 is the absolute range of values of the response Y, p is the minimum or maxi-
mum value of the response depending on whether & is positive or negative, respec-
tively, O is the value of dose D that achieves half of & (i.e., the dose that gives an
expected response that is midway between the minimum and maximum responses),
and 7 is proportional to the slope of the dose response curve at D=0. The restriction
that ©>0 is necessary for unique identification of the parameters. The four param-
eters P, 8, 0, and t (and o for the continuous case) are treated as random variables
with user-specified prior distributions. Once responses are measured on a cohort,
the posterior distribution of the parameters is calculated and used in an allocation
(decision) rule. For example, the rule that seeks to minimize a weighted average of
the posterior response variance at prespecified percentiles of the dose—response
curve. There is no closed form solution for the posterior distributions, so computa-
tionally intensive Bayesian techniques are employed.

Alternate parameterizations of the above model or models with fewer parameters
can be used.

8.3.2 Normal Dynamic Linear Models

Berry et al. (2002) proposed using Normal Dynamic Linear Models (NDLM) in the
dose-response setting. A dynamic linear model is typically defined in terms of a
system of equations specifying how observations of a process are stochastically
dependent on the current process state and by how the process parameters evolve in
time (refer to West and Harrison (1997)). In the dose-response setting, the role of
time is played by the dose variable. NDLM does not require a monotonic dose—
response relationship assumption; only the assumption about dose ordering is nec-
essary. This allows flexibility in the shape and form of the response. NDLM can be
viewed as a smoothing technique that is applied to estimate the response at each
dose level by sharing information across doses. The degree of smoothing is con-
trolled by a parameter, and its misspecification might result in an inadequate fit. At
extreme values of the smoothing parameter, the NDLM estimate approaches the
simple mean estimate. Note that as with any smoothing technique, an NDLM fit
results in some bias in the response estimate at a dose level.

As an example, consider the following simple model formulated in terms of a set
of equations where the doses are indexed by j and subjects are indexed by k:
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Y, |doseZ, =0, +v,, v, ~N(O,c72)
0,=0,,+5_+w, w ~N(0Wc")
§,=6,,+¢, 8j~N(0,W0'2)

In this model, the parameter W defines smoothness, and can be estimated from
the data if some assumption is made regarding its relationship with the observation
error 6. Different NDLM implementations might vary with respect to how to con-
trol the smoothness.

At each adaption point, an NDLM is fitted using all available data, and the
posterior probability of the response is computed. Based on the fit, randomization
of subjects to treatments (including placebo) is done sequentially in cohorts by
optimizing some utility function defined according to study objectives. The Bayesian
formulation is useful in the interim analysis decision making process. For example,
the posterior probability that response exceeds some threshold can drive an early
dose or study stopping decision.

8.3.3 “Up-and-Down’ Designs

The so-called “up-and-down” methods belong to the class of model-free adaptive
designs for dose-finding. This methodology has broad application. It often used in
early phase toxicity clinical trials. A comprehensive review of the topic is given by
Ivanova (2006). Suppose that the goal of the study is to estimate a dose that provides
the targeted prespecified probability of response. Cohorts of subjects are treated
sequentially during the study. The subsequent cohort receives the next lower or next
higher dose (if available) than the previous cohort depending on responses observed
thus far. Up-and-down designs are easy to understand, as intuitively it is clear that
the assigned doses migrate to and cluster around the target dose of interest. The
design minimizes observations at doses that are too low or too high in comparison
to a completely randomized design. These designs can be used in the combined
proof-of-concept and dose-finding trials. There are modifications of the up-and-
down designs that use information from all previous cohorts of subjects, not only
the most recent cohort (see the t-statistic design by Ivanova et al. (2008)).

8.3.4 Fixed Dose Ranging Design

It is important to compare performance characteristics of an adaptive design relative
to the fixed-sample design. The latter are typically easier to implement than adap-
tive designs. Usually, equal allocation is used, but it worth considering unequal
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allocation when optimizing power of test procedures. The following two fixed
design analysis approaches are often adopted.

8.3.4.1 ANOVA Method

* Compare each dose to placebo using some adjustment for multiplicity (e.g., the
Dunnett (1955) procedure). If there is at least one significant difference from
placebo, conclude that dose response is established.

* The smallest significant dose that meets the minimal clinical effect requirement
is selected as the target dose.

* The dose-response relationship can be modeled as just a simple estimation of
means at each dose, by isotonic regression, or by other model fitting
techniques.

For details on the estimates based on isotonic regression refer to Robertson et al.
(1988). The isotonic estimators are the maximum likelihood estimates under the
assumption of monotonicity of response. No particular parametric model is neces-
sary, only the response ordering assumption is required. In many situations it is
natural to restrict attention to the monotonic (or unimodal) dose-response relation-
ship to improve mean square errors of the estimators compared to the simple mean
estimates.

8.3.4.2 MCPmod Approach

Bretz et al. (2005) proposed the procedure that utilizes both multiple comparisons
and modeling techniques, hence the name MCPMod, for use in the dose-finding
study design and analysis. First, the set of plausible dose-response profiles, (e.g.,
“Emax,” exponential or quadratic models) needs to be identified as the candidate
models. After that, the optimal contrast tests and the corresponding critical value,
which takes into account correlation among tests, are computed to handle multiplic-
ity in establishing the dose-response. This is similar to the trend test analysis intro-
duced by Tukey et al. (1985). Next, to estimate the target dose or the minimum
efficacious dose, the model that best fits the data (based on the AIC or BIC criteria)
is selected. Alternatively, the model corresponding to the most extreme contrast test
statistic can be used as well. The precision of the dose estimation can be assed using
bootstrapping techniques. This methodology is implemented in the R package
“DoseFinding” (refer to Bornkamp et al. (2009)). Also, the ADDPLAN™ DF mod-
ular provides a standalone software implementation.
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8.3.5 Two Stage (Multistage) Adaptive Design

The methods discussed in Sect. 8.2 (implemented in ADDPLAN 6 MC) are clearly
applicable in the dose-ranging studies as well. For that, each dose is viewed as a
separate treatment arm. In principle, dose-response modeling can be used for a dose
selection rule and COMPASS™ software has such functionality.

Another example is the MCPmod method extended to the adaptive design frame-
work by Bornkamp et al. (2011). The adaptive version of this approach incorporates
determination of the optimal design that aims to change subject allocation depend-
ing on responses observed at interim analyses. Interestingly, it was noted by the
authors that most benefits from the adaptations in terms of improved operating char-
acteristics would come within just a few interim analyses. The results from the
Bornkamp et al. (2007) and the Dragalin et al. (2010) simulation studies also seemed
to be in concordance with this remark. The same conclusion can be drawn from the
example of the simulation study presented in the subsection below.

The designs with few interim analyses for dose selection are common in practice.
Also, a reasonably large sample size for the initial stage is usually recommended for
the adaptive designs with the frequent adaptation scheme described above in order
to reduce “wandering” on the dose levels adjusting for early noisy data.

When the trial execution complexity is weighted against the benefits from interim
adaptations, the designs with a single or few IAs can be a good middle-ground
approach between the fixed-sample design and the designs with frequent changes to
the allocation ratio during the trial.

8.3.6 Implementation Software, a Simple Example
of the Simulation Study for the Designs Comparison

As an example of the simulation study that one might need to conduct in order to
decide on the most appropriate method for a particular trial, consider the following
evaluation strategy. We restrict attention to some methods described above and with
implementations available in commercial software by COMPASS™ by Cytel Inc.
and FACTS™ by Tessella and Berry Consultants. The point of this exercise is not
to identify the best procedure or implementation but rather to demonstrate the evalu-
ation practice. We are not optimizing the tuning parameter for each method here,
nor are we using the full capability of simulation features (e.g., longitudinal response
modeling, early stopping etc.). In a particular clinical trial, these choices should be
made by balancing on relative priorities and importance of specific dose-finding
objectives on the basis of operating characteristics.

The designs’ performances were explored under two sets of conditions: (1) mod-
erate or large number of dose levels in a trial; (2) different numbers of equally
spaced interim analysis (adaptations) conducted during a trial. The true underlying
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Dose-Response Profiles
0 2 4 6 8

Emax.sigm

explicit exponential

Dose

Fig. 8.1 Dose-response models used in the simulation example

dose-response curves used to simulate data are presented in Fig. 8.1. We consider
the following methods and implementation versions:

1. Fixed-sample design (implemented in R)

(a) Equal allocation to all doses and placebo (dose 0)
(b) Placebo skewed allocation (about twice as many subjects on placebo than on
each dose)

2. FACTS software

(a) Normal Dynamic Linear Model (NDLM)
(b) No model (simple mean estimates at each dose level)
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Probabilities of identifying clinical relevant dose

Fig. 8.2 An example of the side-by-side method comparison by looking at the probability of iden-
tifying clinical relevance



8 A Review of Available Software and Capabilities for Adaptive Designs 153

(c) Bayesian parametric model (“Emax” curve with four parameters)
3. COMPASS software

(a) Bayesian parametric model (four parameter logistic curve)

(b) NDLM considering Bayesian modeling, isotonic regression or the least
square error fit (LSF) based on four parameter logistic model

(c) T-statistic design (“up-and-down’)

Figure 8.2 reports the probability of identifying clinical relevance defined as the
probability of finding a dose with the effect size greater than or equal to the target
response after establishing POC (proof-of-concept) where different methods are
compared side-by-side for different configurations of the number of active doses
and number of interim analyses in the trial. The figure was generated in R by load-
ing saved simulation results, so the comparison could be done across two platforms.
Both software platforms have convenient GUI to set up simulations and process
results from different scenarios and design versions covering a very extensive list of
capabilities and methods. The reader is referred to http://www.cytel.com/software/
compass for the details on COMPASS design software. More information about
FACTS can be found at http://www.smarterclinicaltrials.com/what-we-offer/facts/ .

8.4 Discussion

The current state of available commercial implementations of adaptive designs
covers substantial practical needs. Furthermore, there is the dynamic ongoing devel-
opment of tools and methodologies to close the gaps that still remain. One example
of a gap is the implementation of the adaptive arm selection based on an endpoint
different from the endpoint planned for the final analysis (e.g., an early readout for
the primary endpoint). On the other hand, there are also practical situations where a
need exists for custom-made programming to satisfy requirements and special fea-
tures of a particular study or program. Such cases are hard to envision up-front in
order to warrant a commercial off-the-shelf tool. An example could be a study with
multiple doses of the active drug, multiple comparators and several primary end-
points, where the corresponding multiple tests can be organized into some logical
structure resolved by the application of a gatekeeping-type of procedure (e.g., see
Dmitrienko and Tamhane (2009)), to address the multiple testing problem. Adding
adaptive aspects to this type of study will likely require new implementation solu-
tions. Still, the already available off-the-shelf tools can be useful to get a sense of
potential problems. Judging from the software development history, one might pre-
dict that future commercial programs are heading in the direction of providing con-
solidated solutions on a single platform (perhaps formed by a union of multiple
modules that share common functionality). While this chapter deals with adaptive
designs, the tools discussed are very useful in planning fixed design studies.
Furthermore, fixed design studies can benefit from statistical simulations as well.
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Chapter 9
Randomization Challenges in Adaptive
Design Studies

Olga M. Kuznetsova

Abstract Adaptive design studies often face randomization challenges. Adaptive
dose-ranging studies require randomization techniques that, in a small cohort,
approximate reasonably well an inconveniently skewed allocation ratio to several
treatment arms. When a small interim analysis sample needs to be balanced in sev-
eral important predictors, dynamic allocation might be required to achieve this
goal. Accelerated drug development often necessitates a large number of centers to
speed up the study enrollment. When the drug is limited or costly, as is often the
case with adaptive design studies conducted early in drug development, advanced
randomization techniques are needed to efficiently manage the drug supplies in
multicenter trials. In open-label adaptive design trials randomization procedures
less predictable than permuted block randomization help reduce potential for selec-
tion bias. Randomization techniques developed for equal allocation to several treat-
ment arms help dealing with the randomization challenges in equal allocation
adaptive design studies. When these techniques are expanded to unequal allocation
common to adaptive designs, care should be taken to preserve the allocation ratio at
every allocation step. In this chapter we review randomization techniques useful in
adaptive design studies, including those developed in recent years to specifically
address the needs above.
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randomization ¢ Selection bias * Dynamic allocation * Variations in allocation ratio
* Expansion of allocation procedure to unequal allocation ¢ Central randomization ®
Forced allocation * Randomization in multicenter trials * Divergence of the drug ID
sequences * Double-permuted drug codes ¢ Scrambled drug codes

9.1 Introduction

Widespread adaptive design trials revealed the need to address a number of unre-
solved randomization issues. In recent years, solutions for many of these issues have
been found and implemented.

In the settings of adaptive dose-ranging studies randomization techniques that, in
a small sample of subjects, approximate reasonably well an unbalanced allocation
ratio to several treatment arms were lacking. Sophisticated methods are employed
to derive the allocation ratio for the next cohort of subjects that works best for the
specified goals of the dose-finding (Chap. 17). However, after the best allocation
ratio is derived, patients are commonly randomized to multiple dose arms indepen-
dently or using a permuted block schedule with a block size far exceeding the size
of the cohort. As a result, the observed allocation ratio in the next cohort of subjects
might differ a lot from the targeted one.

Kuznetsova and Tymofyeyev (2009, 2011a) offered a way to generate a small
allocation sequence that keeps the allocation ratio close to the targeted one through-
out the enrollment. They called their restricted randomization procedure the Brick
Tunnel Randomization. This procedure can be used with a cohort of any size—an
important requirement for adaptive dose-ranging studies where cohorts could vary
in size depending on the screening pattern. The important property of the brick tun-
nel randomization is that the allocation ratio is the same for every allocated subject,
regardless of his place in the allocation sequence. The allocation sequence can be
generated automatically and made a part of the algorithm that derives the allocation
ratio and the sequence of treatment assignments.

In adaptive design studies with an interim analysis performed on a small sample,
an imbalance in a strong predictor of the response among the treatment groups
makes the study results hard to interpret. When balance in several important predic-
tors is required, the best if not the only randomization solution involves some form
of dynamic allocation (Rosenberger and Lachin 2002; Taves 1974; Pocock and
Simon 1975; Heritier et al. 2005; Signorini et al. 1993; Morrissey et al. 2010).

Dynamic allocation techniques might also be needed in multicenter adaptive
design studies to efficiently manage limited or expensive at an early stage of devel-
opment drug supplies. Accelerated drug development often requires studies with
large number of centers which might be impossible to adequately supply for central
randomization to multiple treatment arms.

The use of dynamic allocation techniques when coupled with the frequent need
for unequal allocation in adaptive design studies presented theoretical challenges.
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The problem was first identified by Proschan et al. (2011) who pointed out that in
certain examples of minimization expansion to unequal allocation the
re-randomization difference in the treatment group means is shifted away from O.
Kuznetsova and Tymofyeyev (2012) explained this phenomenon by changes in the
allocation ratio from allocation to allocation in the described expansion of minimi-
zation to unequal allocation as well as in other examples of unequal allocation (Han
et al. 2009). They derived the asymptotic value of the shift in the re-randomization
difference in the treatment group means through the sequence of allocation proba-
bilities at the i-th allocation (i=1, 2, ...). They also showed that the asymptotic shift
is 0 for procedures that preserve the allocation ratio at every allocation step.
Avoiding variations in allocation ratio from allocation to allocation is also important
because such variations can lead to selection and observer’s bias even in double-
blind studies; they can also lead to an accidental bias.

Kuznetsova and Tymofyeyev offered an easy way to expand any dynamic alloca-
tion procedure to unequal allocation while preserving the allocation ratio at every
allocation step (Kuznetsova and Tymofyeyev 2011b, c, 2012). They applied their
approach to expand a range of dynamic allocation procedures needed in adaptive
design studies: those that provide balance in baseline covariates (minimization
(Taves 1974; Pocock and Simon 1975; Kuznetsova and Tymofyeyev 2012), dynamic
hierarchical schemes (Heritier et al. 2005; Signorini et al. 1993; Kuznetsova and
Tymofyeyev 2011a, 2014b)), those that lead to efficient drug use in multicenter
studies (modified Zelen’s approach and dynamic allocation with partial blocks sent
to centers (Morrissey et al. 2010; Kuznetsova and Tymofyeyev 2011b, ¢) and hybrid
procedures that combine within-center balancing with balancing on important base-
line predictors (Akazawa et al. 1991; Nishi and Takaishi 2003; Kuznetsova and
Tymofyeyev 2014b).

Some adaptive design studies conducted early in drug development are open-label
and thus require allocation procedures that reduce potential for selection bias. While
anumber of such allocation techniques are available for studies with equal allocation,
they were lacking for studies with unequal allocation. Kuznetsova and Tymofyeyev
offered a solution to his problem called Wide Brick Tunnel randomization (Kuznetsova
and Tymofyeyev 2013b, 2014a) that preserves the allocation ratio at every step while
keeping the allocation ratio close to the targeted one, but not as close as with the
Brick Tunnel randomization to reduce the predictability of the next assignment.

In addition, often special precautions have to be taken in adaptive design studies
when implementing an allocation or generating drug packaging codes. In a seam-
less Phase II/Phase III study the decision to drop a treatment arm will become
apparent if the allocation numbers that correspond to this treatment arm remain
unassigned on the allocation schedule generated at study initiation. In other exam-
ples, gaps in the original allocation schedule can unblind the study personnel to the
actual treatment assignments. The sequences of the drug codes could be also
unblinding with regard to treatment assignments when the drug use ratio changes
across the study—which can be helped by using scrambled sequences of drug codes
(Kuznetsova 2001; Lang et al. 2005).
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In this chapter, we describe randomization challenges in adaptive design studies
and solutions developed to overcome those. In Sect. 9.2 we describe Brick Tunnel
randomization that keeps an allocation ratio close to the targeted one in a small cohort
of subjects. In Sect. 9.3 we discuss the expansion of the covariate-adaptive proce-
dures to unequal allocation that preserves the allocation ratio at every step. Section 9.4
is dedicated to the allocation procedures (fixed as well as dynamic) that facilitate
efficient drug use in multicenter studies. In Sect. 9.5 we describe the techniques that
help reduce potential for selection bias in open-label studies, including those with
unequal allocation. In Sect. 9.6 we discuss implementation techniques that prevent
unblinding with respect to adaptive decisions or treatment assignments through the
sequence of allocation numbers or drug codes. Discussion concludes the chapter.

Response-adaptive allocation used in adaptive design studies is described in
Chap. 10 of this book and is not discussed in present chapter. The only link to
response-adaptive allocation is the description of the technique that implements the
randomization in the adaptive design dose-ranging studies (Sect. 9.2).

9.2 Approximating Inconvenient Allocation Ratio in a Small
Cohort with Brick Tunnel Randomization

In adaptive design dose-finding studies (Gaydos et al. 2006), small cohorts of sub-
jects are typically randomized to several doses of the experimental treatment and
placebo. The allocation ratio for the next cohort is determined by the performance
of the doses in the earlier cohorts and desired distribution of subjects across the
doses at the end of the study. In some studies, the cohort size is fixed, while in other
studies the cohort sizes can vary.

The methods employed to derive the best ratio for the next cohort often result in
an inconvenient allocation ratio, for example, 20:0:19:22:31:8 allocation to placebo
and five doses of the experimental drug. Permuted block randomization will not
match the target allocation well in a small cohort of subjects when the required
block size is large (as 100 in the example above). In fact, permuted block allocation
in this example will not be much better than independent allocation (complete ran-
domization) often used in dose-ranging studies.

In studies where the cohort size is fixed at M subjects, the allocation ratio can be
optimized over the range of the allocation ratios that can in fact be achieved in a
cohort of M subjects. This approach will not work for studies where the size of the
next cohort is not known in advance.

In studies where placebo arm is assigned to the same fraction of subjects in all
cohorts, the allocation ratio to placebo vs. experimental drug can be better targeted
with partial blocking (Parke 2008). It works in such a way that if the permuted block
size is 20 and Placebo should be assigned to 20 % of subjects, one placebo alloca-
tion is randomly selected within each of the four consecutive sub-blocks of five
subjects. This method ensures that placebo allocations are spread evenly across the
block of 20 subjects; however, it does not help to approximate the targeted allocation
among the doses of the experimental treatment.
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Fig. 9.1 The allowed space A
for the 19:22:31 Brick -
Tunnel randomization to
Treatment 1, Treatment 2,
and Treatment 3, pictured
within the allowed space for
19:22:31 permuted block
randomization
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Kuznetsova and Tymofyeyev (2009, 2011a, b, ¢) introduced Brick Tunnel ran-
domization that executes allocation to K>?2 treatment groups in C;:C,:..:C; ratio
while keeping the allocation ratio close to the targeted one throughout the enroll-
ment—in particular, in small cohorts of subjects.

To describe this procedure, it is helpful to visualize the allocation sequence in a
study with K treatment groups as a path along the integer grid in the K-dimensional
space where each of the axes represents one of the treatment groups. The allocation
path starts at the origin and with each allocation moves one unit along the axis that
corresponds to the assigned treatment (Berger et al. 2003). In a study with permuted
block allocation to K> 2 treatment groups G, ..., G in a C;:...:C; ratio (where C,
..., C, are integers that have no common to all of them divisor), at the end of each
permuted block the allocation path returns to the allocation ray AR=(C,u, Cu, ...,
Ciu), u >0, that represents the exact allocation ratio. Within the block, the allocation
path can venture anywhere within the k-dimensional parallelepiped with the sides
C,;, Cy, ..., C,—which could be too far from the allocation ray for a small cohort.

The Brick Tunnel randomization restricts the allocation space by requiring the
allocation path to be confined to the set of the k-dimensional unitary cubes pierced
by the allocation ray AR=(Cu, Cyu, ..., Ciu), u>0 (the “brick tunnel”). The impor-
tant property of the Brick Tunnel randomization is that the transition probabilities at
each node within the tunnel are defined in such a way that the allocation ratio is the
same for every allocation step (Kuznetsova and Tymofyeyev 2009, 2011a).

Figure 9.1 illustrates the advantage of the Brick Tunnel randomization over the
permuted block randomization in the example of the allocation in 19:22:31 ratio to
Treatment 1, Treatment 2, and Treatment 3. Instead of occupying the whole paral-
lelepiped of 19x22x31 as is the case with permuted block randomization, alloca-
tion sequences are constrained to a chain of unitary cubes along the allocation ray
AR =(19u, 22u, 31u) when the Brick Tunnel randomization is used. Thus, even a
short cohort of 10-15 subjects allocated along such sequence will have an observed
allocation ratio reasonably close to 19:22:31.
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For two groups, the allocation space for C;:C, Brick Tunnel randomization
(C,>C)) consists of the allocation sequences contained within the strip + bgy in
height around the allocation ray AR=(Cu, C,u), u>0, where by;=(C,—1)/C;+1.
Thus, in the two-group case the set of the Brick Tunnel allocation sequences is the
same as the set of allowed sequences in Salama et al. (2008) expansion of the maxi-
mum procedure to unequal allocation that covers the strip + b in height around the
allocation ray, with b=bgy. However, in Salama et al. expansion all allowed sequences
are assigned equal probabilities, which leads to variations in the allocation ratio
from allocation to allocation (Kuznetsova and Tymofyeyev 2009, 2011a). In con-
trast, the Brick Tunnel randomization preserves the allocation ratio at every step and
its allocation sequences are not equiprobable.

The transition probabilities for the two-group Brick Tunnel randomization are
uniquely determined, while for more than two treatment groups the Brick Tunnel
allocation sequences could be made to stay closer to the targeted allocation ratio or
allowed to deviate more from it while still contained within the brick tunnel.

The algorithm to generate the Brick Tunnel allocation sequences could be pro-
grammed—easily in the case of the 2-group studies and with more complex deriva-
tions for K>2 treatments. The generation of the Brick Tunnel allocation sequence
can be incorporated into a module that analyzes the dose—response data, derives the
allocation ratio, and generates the allocation schedule for the next cohort.

While adaptive dose-ranging studies with common to them inconvenient alloca-
tion ratio and small cohorts provide the most direct use for the Brick Tunnel random-
ization, unequal allocation arises in other types of adaptive studies. Multi-arm studies
with sample size reestimation and two-stage studies where the second stage alloca-
tion ratio differs for new arms and old arms may also end up with an inconvenient
allocation ratio and thus a large block size. BT randomization can be used in these
studies to better approximate the targeted allocation ratio at the end of enrollment
and make the allocation more balanced in time and thus less prone to an accidental
bias associated with a time trend.

9.3 Covariate-Adaptive Allocation That Balances Treatment
Groups in Important Baseline Covariates at the Interim
Analysis

In adaptive design studies, the interim analysis is often performed on a moderate
size sample. An imbalance in a strong predictor at the interim stage might lead to
biased or unconvincing results and because of that to an incorrect interim decision.
In a moderate size sample, randomization that does not explicitly enforce balance in
known predictors might lead to an undesirable imbalance in some of them. Thus,
the incentives to balance randomization on important predictors in adaptive design
studies are strong.
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While balance in a small number of predictors (1-3) could be typically achieved
with stratified randomization (Zelen 1974; Rosenberger and Lachin 2002), with a
large number of predictors stratification often fails to provide desired balance due
to a large number of incomplete blocks (Therneau 1993). Dynamic allocation pro-
cedures, such as minimization (Taves 1974; Pocock and Simon 1975) or dynamic
hierarchical schemes (Heritier et al. 2005; Signorini et al. 1993) can be success-
fully used to balance the treatment groups in a large number of predictors even in
a small study (Therneau 1993; Scott et al. 2002; McEntegart 2003; Rosenberger
and Lachin 2002). Usually the versions of these procedures that include a random
element are recommended over largely deterministic versions (ICH 1998; CPMP
2003; Kuznetsova 2010).

Often the need to balance randomization within centers—either because of
expected differences across centers or to efficiently manage the drug supplies—
excludes stratification as a balancing tool since the strata become too small.
Covariate-adaptive procedures that provide balance within study centers with or
without balancing on other baseline predictors will be discussed in more detail in
Sect. 9.3.

However, in studies with unequal allocation common for adaptive design studies,
a proper expansion of dynamic allocation procedures to unequal allocation should
be used. If the naive expansion is undertaken, as in minimization examples consid-
ered in (Proschan et al. 2011) or version of unequal allocation minimization pro-
posed by (Han et al. 2009), the allocation ratio varies from allocation to allocation
(Kuznetsova and Tymofyeyev 2009, 2011a, b, ¢, 2012). This provides potential for
accidental bias (especially in studies with allocation stratified by center) as well as
selection and evaluation bias (even in double-blind studies).

Proschan et al. (2011) considered expansion of the biased coin randomization
and minimization to 1:2 allocation where variations in allocation probabilities were
confounded with a temporal trend so that one treatment had a higher probability to
be assigned at the positions where patients were healthier. As a result, the Type 1
error of the Z-test was inflated. This type I error inflation is a direct consequence of
the variations in the allocation ratio and would not happen with unequal allocation
procedures that preserve the allocation ratio at every allocation.

Additionally, Proschan et al. (2011) pointed out that in the considered examples
of minimization expansion to two-group unequal allocation the re-randomization
difference in the treatment group means is shifted away from 0. The shift in the re-
randomization distribution lowers the power of the randomization test.

Kuznetsova and Tymofyeyev (2012) showed that the shift phenomenon is not
peculiar to minimization or dynamic allocation, but instead is common to all unequal
allocation procedures, fixed or dynamic, that have changes in the allocation ratio
from allocation to allocation. They derived the asymptotic value of the shift in the
re-randomization difference in the treatment group means through the sequence of
allocation probabilities at the i-th allocation (i=1, 2, ...). They also showed that the
asymptotic shift is 0 for procedures that preserve the allocation ratio at every
allocation step. More on the randomization test with allocation procedures that do
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not preserve the allocation ratio at every step can be found in (Kaiser 2012; Han
et al. 2013; Kuznetsova and Tymofyeyev 2013a; Kuznetsova 2012).

Kuznetsova and Tymofyeyev offered an easy way to expand any allocation pro-
cedure (fixed or dynamic) defined for equal allocation to several treatment arms, to
unequal allocation while preserving the allocation ratio at every allocation step
(Kuznetsova and Tymofyeyev 2011b, c, 2012).

Suppose the expansion of the allocation procedure to allocation to K > 2 treatment

First, an equal allocation to § “fake” treatment arms F, F», ..., F is executed fol-
lowing the algorithm defined for equal allocation to S arms. Then the first C; “fake”
treatment arms F, — F, are mapped to Treatment G;; the next C, “fake” treatment
arms F , — F;, . are mapped to Treatment G»; and finally, the last C; “fake” treat-
ment arms F, —F are mapped to Treatment G,. Due to symmetry, such

Ci+..+Cp +1
procedure will provide equal allocation to S “fake” treatment arms F, F», ..., F; at
every allocation. Thus, it would automatically provide C;:C:...:C, allocation ratio
to treatment groups G, [ =1, ..., K, at every allocation step.

This approach was applied by Kuznetsova and Tymofyeyev to expand to unequal
allocation fixed and dynamic allocation procedures, such as biased coin randomiza-
tion, minimization (Kuznetsova and Tymofyeyev 2012), modified Zelen’s approach
and dynamic allocation with partial block supplies sent to centers introduced for
equal allocation by Morrissey et al. (2010) (Kuznetsova and Tymofyeyev (2011b, c)),
and hierarchical allocation procedures that incorporate modified Zelen’s approach
at center level (Kuznetsova and Tymofyeyev 2014b). This approach works well
when the block size is small—for example for 1:2, 1:3, or 2:3 allocation ratios com-
mon in clinical trials.

However, when the block size is large, such as 60 in the 14:21:25 allocation exam-
ple considered in the section on the BT, the balance in treatment assignments overall
or within a level of a covariate will not be better than the one provided with the per-
muted block randomization. In this case, other approaches can be used. For proce-
dures based on modified Zelen’s approach, modified Zelen’s approach can be replaced
with the dynamic allocation based on partial block supplies sent to the centers.

For biased coin randomization with C;:C, (or with probabilities p; and p,, p; <p»)
allocation to treatment groups G, and G, the allocation ratio can be made constant
in the following way. We will consider allocation to G, a preferred allocation after i
allocations if

N, >N, xC,/C,

Let us fix the probability to assign G; when it is a non-preferred treatment for all
allocations at p,,.,,.-<p;. Let us denote by S; the probability that after i allocations
G, is the preferred treatment for the (i + 1)-th allocation. Then the probability
Diis1)_prer 10 @ssign G, at (i + 1)-th allocation when it is a preferred treatment is derived
from the equation

Si p([+1)7pref + (1 - Si )pnnnpref = pl :
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With this choice of pj;,;) s the probability to assign treatment G, at (i + 1)-th
allocation is preserved at p,. The probabilities p. s are calculated iteratively.
With increasing i, the S; and p; ,.; sequences converge to a periodic pattern with
period C;+ C,. LOWET P,y results in higher variations in p; ,.r across the alloca-
tions. Similar approach, with increased complexity, can be used for C;:C, minimiza-
tion with large block size.

Extensive simulations show that covariate-adaptive procedures provide good
balance in several factors in small and moderate size studies (Taves 1974; Pocock
and Simon 1975; Therneau 1993; Begg and Iglewicz 1980; Birkett 1985; Zielhuis
et al. 1990; Weir and Lees 2003; Kuznetsova and Tymofyeyev 2012) and thus, meet
the needs of adaptive designs.

Likelihood-based methods can be used in the analyses of the data from trials
with covariate-adaptive randomization (Rosenberger and Lachin 2002; Rosenberger
and Sverdlov 2008). It is recommended to include the factors that randomization
balances on in the analysis model to preserve the Type 1 error (Kalish and Begg
1985, 1987); however, it might not be practical when the number of factors is large.
In the past, the Type I error rates with covariate-adaptive procedures and the impact
of omitting the covariates from the analysis model were studies through simula-
tions. Forsythe (1987) and Weir and Lees (2003) demonstrated that Type I error is
preserved when the covariates are included in the analysis of covariance model; for
linear models, omission of covariates was shown to lead to conservative Type I
errors (Birkett 1985; Weir and Lees 2003).

Recently, important theoretical developments were made by Shao et al. (2010)
who established that a test procedure valid for simple randomization is valid for
covariate-adaptive randomization provided that the model is specified correctly and
includes the covariates used in the randomization procedure. Moreover, they proved
that the two-sample z-test (test with omitted covariates) is conservative with
covariate-adaptive biased coin randomization and derived bootstrap test that pre-
serves the Type I error with this randomization procedure. Shao and Yu (2013)
further advanced the statistical theory of inference with covariate-adaptive random-
ization by establishing asymptotic results for covariate-adaptive biased coin ran-
domization under generalized linear models with possibly unknown link functions.
They showed that for these models the #-test is conservative and constructed a valid
test using bootstrap. They illustrated the theory with the examples of binary
responses and event counts under the Poisson model as well as exponentially dis-
tributed continuous responses.

Furthermore, Ma and Hu (2013) showed that for a large class of covariate-
adaptive designs the hypothesis testing is usually conservative and more powerful
than with complete randomization.

Excellent review of the latest theoretical developments in the field of covariate-
adaptive allocation is provided in Hu et al. (2014).

With advancing understanding of validity of covariate-adaptive allocation, these
techniques can find a wider use in adaptive design trials when balance in several
important predictors is needed for an accurate interim analysis decision.



166 O.M. Kuznetsova

9.4 Randomization Techniques That Promote Efficient Drug
Use in Multicenter Trials and Better Approximate
Targeted Allocation Ratio Within Centers

Adaptive designs are often used early in the drug development, when the drug sup-
plies are scarce or expensive. At the same time, accelerated drug development often
necessitates large number of centers to speed up the enrollment in the study. Each
center requires its own initial stock of drug supplies to start randomization and addi-
tional drug shipments to replenish the drug supplies as subjects continue to be ran-
domized. Thus, the allocation techniques that facilitate economical drug use in the
multicenter trials can be very useful in adaptive design trials.

9.4.1 Stratified by Center Fixed Allocation

Stratified by center fixed allocation, where an allocation schedule (typically, a per-
muted block sequence) is predefined for each center provides full predictability of
the required drug supplies. With predictable treatment assignments, each center
needs the drug supplies only for the next few subjects on its own allocation sched-
ule, while without such predictability each center needs the drug supplies for all
possible combinations of the treatment assignments the next few subjects can get.
For example, if in a study with equal allocation to six treatment arms a center
requires drug supplies for the next three subjects, with predictable allocation the
center needs three randomization drug kits at any point of enrollment compared to
3x6=18 drug kits for unpredictable allocation. This leads to large savings in drug
supplies, especially in studies with multiple treatment arms, studies with unequal
allocation, and studies where randomization visit drug supplies cannot be reused for
later visits and thus are wasted at the end of enrollment.

Stratifying randomization by center might also be required when centers are
expected to vary in response due to differences in subject population, medical prac-
tice, experience or other reasons.

However, stratified by center allocation becomes problematic if centers are small
(which is common at the time of the interim analysis) and the block size is large
(due to a large number of arms or unequal allocation common in adaptive design
studies). In this case most of the blocks on the randomization schedule have just a
couple of subjects at the time of the interim analysis and the treatment group totals
might be out of balance for equal allocation studies or deviate from the targeted
totals for unequal allocation studies. Incomplete blocks cause even a bigger problem
when the randomization needs to be stratified by other baseline factors, thus break-
ing each center into several strata.

Balance in treatment assignments in studies with large number of centers can be
improved if the center-specific permuted blocks are balanced across the centers
(Kuznetsova and Ivanova 2006; Song and Kuznetsova 2003; Kuznetsova 2008;
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Morrissey et al. 2010). Specifically, in a study with equal allocation to K treatment
arms, K x K Latin squares with columns representing permuted blocks of K alloca-
tions are randomly generated. The columns of the first Latin square are sent to the
first K centers (centers 1 through K) as the center-specific allocation schedules for
the first K subjects enrolled at a center; the columns of the second Latin square are
sent to centers (K+ 1) to 2K, and so on. When the first K centers have each at least
Jj subjects enrolled, there will be a balance in treatment assignments across the filled
rows of the Latin square, that is across the subjects allocated first, second, ..., and
Jj-th in their respective centers. Thus, when all center-specific permuted blocks are
barely filled, the balance in treatment assignments is improved through balancing
across the centers more than through the balancing within the centers.

Balancing of permuted blocks across centers can be done for unequal allocation
as well. When unequal allocation leads to a large block size, constrained permuted
blocks (Youden 1964, 1972; Kuznetsova and Ivanova 2006; Song and Kuznetsova
2003; Kuznetsova 2008) that provide a better approximation of the targeted alloca-
tion ratio among the first few allocations can be used as the columns of the Latin
squares. The task of constructing an unequal allocation Latin square with con-
strained permuted block columns can be very taxing on a statistician. An easier
solution can be found in balancing the center-specific incomplete blocks across cen-
ters (Kuznetsova and Ivanova 2006; Song and Kuznetsova 2003; Kuznetsova 2008).

Consider an example of a 6-group study with a 2:3:3:4:4:4 allocation to groups
A, B, C, D, E, and F (block size of 20) where the allocation needs to be stratified by
center. The centers are expected to enroll up to 20 subjects each and an interim
analysis is expected to include on average five subjects per center. Thus, each center
needs a block of 20 allocations. To keep an allocation ratio among the first five sub-
jects at a center close to the targeted allocation ratio, the block of 20 allocations is
broken into four reasonably balanced incomplete blocks of 5 allocations of the fol-
lowing types: Type 1=ABDEF, Type 2=ACDEF, Type 3=BCDEF, and Type
4=BCDEF. Next, a random 4 x4 Latin square that determines the sequence of four
Types of incomplete blocks for each of the first 4 centers is randomly generated.
Random permutation of the five treatment assignments within each incomplete
block completes the generation of the 20-allocation permuted block schedules for
each of the first four centers. Together, the allocations of the first 5 subjects in each
of the first 4 centers comprise a complete block of 20. The procedure is repeated for
the next four centers and so on. Thus, for studies with a large block size building an
allocation schedule of incomplete permuted blocks balanced across centers keeps a
within-center allocation ratio close to the targeted one and better approximates the
overall allocation ratio at the time of the interim analysis compared to a regular
stratified by center permuted block allocation.

Another option of dealing with a large block size in a multicenter study with small
centers is the partial block center stratification described for studies with equal alloca-
tion to several treatment arms in (Morrissey et al. 2010). With this technique, the
allocation schedule is cut into segments smaller than the block size that are distrib-
uted across centers at the study initiation. When a center is known to soon approach
the end of its first allocation segment, the next segment is assigned to the center.



168 O.M. Kuznetsova

When all initial segments are filled, the allocation ratio among the subjects allocated
using the initial segments is very close to the targeted one. As a result, even when
subsequent segments are only partially filled, the overall balance in treatment assign-
ments improves compared to regular stratified by center randomization. When applied
to studies with unequal allocation, this technique will result in an overall balance
similar to the one achieved with incomplete blocks balanced across centers, but will
not necessarily provide a good within-center balance in treatment assignments.

Although these fixed allocation techniques help to improve balance in multi-
center studies with stratified by center allocation, they do not provide an exact bal-
ance in smaller studies (or at the interim stage) and cannot accommodate several
other stratification factors.

9.4.2 Central Randomization

Central randomization where subjects are allocated along the same allocation
sequence regardless of their center, provides an excellent balance in treatment assign-
ments and can be stratified by several factors. Central randomization is routinely
used in adaptive design dose-ranging studies, where the cohorts are small and strati-
fication by center is hardly an option, and is the most common randomization choice
in other types of adaptive design studies. However, it generally demands larger
stocks at the sites and might result in within-center imbalance in treatment assign-
ments. When the drug is scarce, automatic support of resupplies through standard
triggers (Chap. 15) is often supplemented by micro-management of limited supplies
with close stock monitoring and manual shipment orders for faster enrolling sites.

The drug volume required to support central allocation can be reduced if, when
a center is out of the drug that a subject is supposed to be allocated to, a subject is
allocated to the next treatment on the schedule available at the center [forced alloca-
tion (McEntegart 2002)]. This option is offered by all IVRS providers and is often
used in clinical trials. When forced allocation is allowed, the sites are stocked and
resupplied with enough drug to result in a small percentage of forced allocations. In
more complicated cases, the required stock levels and resupply trigger parameters
are estimated through simulations (Chap. 15). Allowing small percentage of forced
allocations considerably reduces the drug volume in an adaptive design study.

Forced allocation performed automatically by IVRS and concealed from anyone
involved in the study prevents possible unblinding at the sites that might happen
when the site learns that the subject cannot be allocated because the assigned drug
is not available at the site. Additionally, forced allocation allows dealing with
unforeseen delays in getting the drug to the sites, lost shipments, drug spoilage, and
other problems. It is essential that the sites promptly acknowledge the drug ship-
ments they receive, or else IVRS might unnecessarily force allocate subjects. For
example, if the randomization visit shipment is not acknowledged at the site that has
a large stock of placebo run-in supplies, IVRS might force allocate several subjects
in a row to the placebo arm at that center.
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There are no theoretical grounds to justify “maximum allowed” percentage of
forced allocations. Although the practice of using forced allocation is widespread
and it is believed that small percentage of forced allocations is acceptable to regula-
tory agencies (McEntegart 2002), there is no clear regulatory guidance on this very
helpful for adaptive design studies technique.

Labeling of the drug supplies with central randomization in a study that uses
unequal allocation has to be carefully considered when the sites are stocked with
drug kits in a ratio different from the allocation ratio. In this case, the double-
permuted drug kit labeling (not universally available) must be used as otherwise the
partial unblinding of the treatment assignments through divergence in the drug ID
labels could arise (Kuznetsova 2001; Lang et al. 2005; Byrom et al. 2011; He et al.
2012). This issue will be considered in more detail in Sect. 9.5.

9.4.3 Dynamic Allocation Procedures That Provide Within-
Center Balance, Promote Balance in Other Covariates,
and Reduce the Required Volume of Drug Supplies

Where non-dynamic allocation techniques fail to provide required balance in impor-
tant baseline predictors (that might include center) or cannot support central ran-
domization in a multicenter study with limited drug supplies, dynamic allocation
procedures can be used to fulfil these needs.

Modified Zelen’s approach described for studies with equal allocation in (Zelen
1974; McEntegart 2008; Morrissey et al. 2010) is the dynamic allocation that pro-
vides an excellent within-center balance and overall balance in treatment assign-
ments. It can be stratified by other baseline factors (Zelen 1974) or incorporated in
covariate-adaptive (Akazawa et al. 1991; Nishi and Takaishi 2003) or hierarchical
allocation procedures (Kuznetsova and Tymofyeyev 2011b, c, 2014b) to provide
balance in covariates other than center.

In studies with equal allocation to several treatment arms the simplest version of
the modified Zelen’s approach works in the following way. At study initiation a full
block of treatment assignments is made available for allocation at each center;
accordingly, a full block of randomization drug supplies is sent to each center. If a
center is expected to enroll more than one block of subjects, the second block of
allocations (and respective randomization drug supplies) will be later provided to the
center. However, the second block of treatment assignments will not be made avail-
able for randomization at the center until the first block of randomization assign-
ments is completely used. The central allocation schedule is prepared for the study
and the subjects are allocated to the first unused treatment assignment on the central
schedule available for randomization at their center. The gaps on the allocation
schedule formed when a center cannot allocate a subject to the next treatment on the
randomization sequence are filled in by the subjects allocated later at other centers.
Thus, at the time of the interim analysis the randomization schedule will mostly
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consist of filled blocks providing an excellent balance in treatment assignments
(Morrissey et al. 2010) even when centers have just one or two subjects each.

When stratification by baseline factors is required, a separate central allocation
schedule is prepared for each stratum and subjects are allocated to the first unused
treatment assignment on the schedule for their stratum available for randomization
at their center.

The logistics or drug resupplies with this version of modified Zelen’s approach
is very simple, as the resupplies are sent in complete blocks regardless of what was
used in the center.

With the described version of the modified Zelen’s approach the sequence of
treatment assignments at any given center is a permuted block sequence; however,
this sequence is not prespecified in advance, but is instead determined by the order
of subjects’ entry into the study and the central randomization schedule. In studies
with equal allocation to two arms or open-label studies, a permuted block sequence
with the smallest block size S might be considered to have too many predictable
allocations. In this case, one can use the version of the modified Zelen’s approach
where the imbalance in treatments assignments at a center (the range of the within-
center treatment totals) is allowed to exceed 1, but is not allowed to exceed a pre-
specified threshold M. This version requires larger volume of drug in circulation as
M blocks of treatment assignments are available for allocation at any time. Thus, M
blocks of randomization drug kits are sent to every center at study initiation. The
(M +1)-th block of allocations is made available at a center when the first block of
M allocations is completely used; by that time, the (M + 1)-th block of randomiza-
tion drug supplies should be received by the center.

When in a study with equal allocation the number of treatment arms is large and
the centers are small, sending a whole block of supplies to each center could be
wasteful. To reduce the drug waste, Morrissey et al. (2010) proposed to use a
dynamic allocation procedure with partial block of supplies sent to the centers. This
procedure is similar to modified Zelen’s approach, except that partial blocks and not
complete blocks of allocations are assigned to the centers. For example, in a study
with seven arms where most centers are expected to enroll two to three subjects,
partial blocks of three will be assigned to the centers. The subjects will then be
allocated along the central allocation schedule—to the first treatment available for
allocation at their center. As Goodale and McEntegart (2013) point out, this tech-
nique generally reduces the potential for selection bias as the contents of the incom-
plete blocks is unknown at the site.

These dynamic allocation procedures developed for studies with equal allocation
could be even more useful in studies with unequal allocation where drug supplies
issues are especially challenging. However, similar to minimization, these proce-
dures need to be expanded to unequal allocation in a way that preserves the alloca-
tion ratio at every allocation (Kuznetsova and Tymofyeyev 201 1b, ¢). If the modified
Zelen’s approach is naively generalized by making a permuted block of allocations
(and drug kits) available at the study centers [as in (Frane 1998)], the achieved allo-
cation ratio will vary depending on the order of allocation within a center. In the
example of 2:1 allocation to Active and Control treatments, the probability of
Control allocation will exceed 1/3 for the first and third allocations in center-specific
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blocks of three subjects, and will be below 1/3 in the second allocation in the block
(Kuznetsova and Tymofyeyev 2011b, c). This problem is also observed with naive
expansion of the dynamic allocation with partial block supplies sent to the centers
(Kuznetsova and Tymofyeyev 2011b, c).

Kuznetsova and Tymofyeyev (201 1b, c) expanded these dynamic allocation pro-
cedures to unequal allocation following the allocation ratio preserving approach
described in Sect. 9.2. For the partial block dynamic allocation an extra step is
required: to define acceptable partial blocks of the drug supplies that preserve the
symmetry with respect to the S fake treatments. A way to define such blocks is
described in detail in (Kuznetsova and Tymofyeyev 2011b, c).

Using the partial block dynamic allocation in adaptive design dose-finding stud-
ies might reduce the amount of drug required to support the unknown allocation
ratio in the next cohort. Indeed, this approach will not require all treatments to be
available at every site. However, a valid drug resupply strategy for such studies and
implementation aspects of this approach in dose-finding studies need to be further
developed.

When randomization needs to be balanced on more baseline factors than strati-
fied modified Zelen’s approach can handle, modified Zelen approach at a center
level can be successfully incorporated in a minimization-type covariate-adaptive
procedure (Akazawa et al. 1991; Nishi and Takaishi 2003) or a hierarchical dynamic
balancing scheme (Kuznetsova and Tymofyeyev 2011b, c, 2014b). For studies with
unequal allocation, an expansion that preserves the allocation ratio at every alloca-
tion should be used.

Overall, a variety of advanced allocation techniques can be used in adaptive
design multicenter studies to help reduce the required volume of drug while provid-
ing a good balance in treatment assignments in a small interim sample. When the
within-center balance as well as balance in several important baseline covariates is
required, dynamic allocation techniques based on modified Zelen’s approach or par-
tial blocks of supplies sent to the centers often perform much better than fixed alloca-
tion procedures, especially in studies with several treatment arms or large block size.

9.5 Allocation in Open-Label Adaptive Design Studies

Some randomized adaptive design studies conducted early in drug development are
open-label—often because blinding is very difficult and thus is not considered prac-
tical in a non-pivotal study. Predictability of upcoming treatment assignments is a
problem in open-label studies (mostly, in single-center studies or multicenter stud-
ies with randomization stratified by center where the investigator knows the com-
plete sequence of treatment assignments) and might lead to a selection bias.
Permuted block randomization commonly used in clinical trials is partially predict-
able because the allocation sequence is known to achieve the exactly targeted allo-
cation ratio at the end of each block. Thus, the allocation procedures less predictable
than permuted block randomization help reduce the potential for selection bias in
open-label studies.
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A number of allocation procedures that do not require reaching the exact allocation
ratio at any point of randomization were developed for two-group studies with 1:1
allocation. Complete randomization (Rosenberger and Lachin 2002), where each
subject is allocated independently in 1:1 ratio, is absolutely unpredictable, but can
result in a notable imbalance in treatment group totals, especially in smaller studies.
Biased Coin randomization where a subject is allocated with higher probability to
the underrepresented group (Efron 1971) generally provides a good balance in treat-
ment assignments throughout the enrollment. However, there exists a small proba-
bility that it will result in a relatively large imbalance in a small sample (Markaryan
and Rosenberger 2010).

When the imbalance in treatment totals in a two-arm study with equal allocation
needs to be tightly controlled, one of the allocation procedures that limit the imbalance
in treatment assignments at a prespecified level can be used. Among these procedures
are the replacement randomization (Pocock 1979), modified replacement randomiza-
tion (Abel 1987), maximal procedure (Berger et al. 2003), Soares and Wu (1983) big
stick design, Chen’s biased coin design with imbalance tolerance (Chen 1999),
Ehrenfest urn design (Chen 2000), and Baldi Antognini and Giovagnolli’s (2004)
adjustable biased coin design (with limited allowed imbalance). These procedures
restrict the set of allowed allocation sequences to those for which the absolute imbal-
ance in assignments to Treatments A and B after i allocations does not exceed pre-
specified threshold b: INy; — Ny; |<b, i=1, 2, .... Here N,; and Np; are the numbers of
subjects allocated to treatments A and B, respectively, within the first i allocations. The
procedures above differ in how they assign the probabilities to the allowed sequences.

In spite of being well described and studied in statistical literature, these proce-
dures remain under-used in open-label studies, as they are typically not included in
the standard randomization tool kit.

In most cases, these procedures can be easily expanded to an equal allocation to
K>2 treatment arms, with the imbalance in treatment totals across K arms after i
allocations defined as the range of the treatment totals N, j=1,.., K. Expanding
these procedures to unequal allocation is a different matter.

For C,:C, (C,# C,) allocation to Treatments A and B the absolute imbalance in
treatment assignments after i allocations is commonly defined as INp; — Ny;x C/Cl
(or proportional to this difference) (Salama et al. 2008; Han et al. 2009). Until
recently, the problem of designing an unequal allocation procedure that includes all
sequences that comply with a prespecified imbalance threshold [N, — Ny;x C/Ci1 < b
and preserve the allocation ratio at every allocation was not resolved. Existing allo-
cation procedures either did not preserve the allocation ratio at every allocation
(Salama et al. 2008) or did not include all allocation sequences that comply with the
prespecified imbalance threshold (Zhao and Weng 2011).

Kuznetsova and Tymofyeyev offered a solution to this problem: the Wide Brick
Tunnel randomization for C;:C, (C;#C,) allocation to Treatments A and B
(Kuznetsova and Tymofyeyev 2014a). The procedure starts with the Brick Tunnel
randomization which represents the sets of sequences that comply with the smallest
possible imbalance threshold bg;=(C,—1)/C;+ 1. Then selected pairs of consecu-
tive treatment assignments of the Brick Tunnel sequences are switched places with
probability 0<d< 1, thus expanding the set of allowed allocation sequences. The
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switches proceed until the set of allowed sequences includes all sequences that sat-
isfy the imbalance requirement INy;—N,;x C/C;1<b. The implementation details
are described in (Kuznetsova and Tymofyeyev 2014a). Since Brick Tunnel random-
ization preserves the allocation ratio at every step and adding a random switch of
consecutive allocations to this procedure leaves the allocation ratio intact, the Wide
Brick Tunnel allocation keeps the allocation ratio constant at all allocations.

The main application of the Wide Brick Tunnel allocation is in two-arm open-
label studies with unequal allocation. When the block size is large, the Wide Brick
Tunnel randomization keeps the allocation ratio reasonably close to the targeted
allocation (much closer than the permuted block schedule but not as close as the BT
schedule), while reducing predictability compared to the Brick Tunnel randomiza-
tion. Wide Brick Tunnel randomization might also be used to construct a random-
ization procedure for an unequal allocation in an open-label study with >2 arms [see
examples in (Kuznetsova and Tymofyeyev 2014a)].

The switch technique could be used on its own to reduce the selection bias, in
particular, in studies with equal allocation to >2 treatment arms. Often an adaptive
design dose-finding study starts with an equal allocation to all arms to accumulate
response information before the adaptive allocation begins. As the number of treat-
ment arms is typically large—for example, placebo, active control, and six active
doses—the permuted block schedule with the smallest block size S (§=8 in our
example) is used to allocate subjects. Due to a large number of arms, most of the
treatment assignments in an open-label study are not fully predictable—except the
treatment assignments at the ends of the permuted blocks. The switch of the mS-th
and the (mS+ 1)-th treatment assignments on a permuted block schedule (the last
treatment in the m-th block and the first treatment in the (m + 1)-th block) with prob-
ability 0<8<1 makes the last assignment in the m-th block unpredictable. The
switch could be executed for all permuted blocks on the schedule.

To reduce the potential for selection bias in open-label adaptive design trials with
equal or unequal allocation, permuted block randomization can be replaced with
one of the less predictable allocation procedures.

9.6 Avoiding Unblinding of the Adaptive Decisions
or Treatment Assignments Through Allocation
Numbers or Drug Codes

9.6.1 Avoiding Unblinding of the Adaptive Decisions Through
Allocation Numbers

A common adaptive two-stage design includes Stage I with a large number of arms
followed by Stage II where some of the treatment arms, for example, less efficacious
doses of the experimental treatment, might be discontinued (Chaps. 4 and 14). If a
common allocation schedule is prepared for both stages with the option to cross out
the dropped arms for Stage II randomization, the possibility to unblind the adaptive
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decision through the allocation schedule arises (Byrom et al. 2011). Indeed, anyone
with access to Stage II sequence of allocation numbers will see what fraction of
allocation numbers remains unfilled on the Stage II schedule and deduce how many
arms were dropped in reversed engineering (see Chap. 14). Moreover, if Stage I
schedule had unequal allocation, it might be possible to identify the dropped arms.

The adaptive decision could be easily disguised by generating a separate sched-
ule for Stage II. It could also be disguised with a single schedule for both Stages if
the allocation numbers are kept blinded until the data base lock and the subjects are
followed by their baseline numbers. Alternatively, subjects could be assigned
sequential allocation numbers in order of randomization (as with a dynamic alloca-
tion) or scrambled (non-sequential) allocation numbers. Byrom et al. (2011), how-
ever, warn of other pitfalls of modifications to the original schedule.

9.6.2 Unblinding Through the Divergence of the Drug ID
Sequences

Adaptive design studies with changes to the allocation ratio across randomization
cohorts provide potential for partial unblinding of the treatment assignments through
the drug kit labels. Indeed, if the drug ID codes are generated using a common per-
muted block schedule, the sequences of the drug IDs diverge with time (Kuznetsova
2001; Lang et al. 2005; Byrom et al. 2011, He et al. 2012). In some cases, all types
of drug could be identified late in the study.

A simple solution is to randomly permute the sequence of drug codes within
each drug type (Kuznetsova 2001; Lang et al. 2005), a technique often referred to as
"double-randomized" or “double-permuted” or “scrambled” drug codes. Byrom
et al. (2011) note that leaving the gaps in the drug code schedule allows one to use
the reserved codes to introduce new treatments. Double-permuted drug IDs could
also be used to package the drug supplies shareable across several studies with the
same product. Sharing the drug supplies across the studies allows pursuing several
indications with limited drug supplies early in the drug development, where Phase
ITa/TIb adaptive design studies would fit.

However, drug management with double-permuted drug codes is not uniformly
available and often costly, thus the need for it should be evaluated during the study
design. Below we will consider several examples of the adaptive design studies
where unblinding through divergence in drug IDs can occur and describe the extent
of such unblinding.

9.6.2.1 Adaptive Design Dose-Finding Study with a Single Image
or a Double-Dummy Masking Strategy

A typical example of an adaptive design study with changes to the allocation ratio is
an adaptive design dose-finding study. In such studies the allocation ratio for the next
cohort is determined by the performance of the dose arms in the previous cohorts
and is not known in advance. The allocation algorithm is designed to allocate more
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subjects to the doses of most interest. The placebo arm is commonly allocated at the
same ratio in all cohorts. The allocation schedule for the next cohort is prepared
when the required allocation ratio becomes known.

When a study uses the same image tablets for all doses and placebo (a single
image masking), typically a common permuted block drug ID schedule is prepared
for all doses. Since the placebo arm is allocated at the same ratio in all cohorts, its
drug IDs will increase at a steady pace. However, the drug IDs for the doses that
enroll more subjects in the later cohorts will grow faster than the placebo ID, while
the drug IDs for less used doses will grow slowly.

In some cases, the pattern of divergent drug IDs allows personnel to link the drug
IDs to specific treatment arms. For example, consider a study where four doses of the
experimental drug and placebo have the same image tablets. The drug ID schedule is
prepared in equal ratio with the block size 5. Subjects are randomized in cohorts of
20; in each cohort placebo is assigned to exactly 20 % of subjects (four subjects). If
the study design allows stopping enrollment in one or two lowest doses should they
be found inefficient, one will know if one or both doses were stopped by the number
of drug IDs left unused in each block as the randomization proceeds. The CIDs will
also reveal if there is a group that performs better than others (and thus, has more
subjects enrolled into it) and how many such groups there are. When the drug ID
sequences diverge, the groups of subjects randomized to the same arm will be easily
identified. In some cases, it will be possible to identify the arms—for example, pla-
cebo arm, or the high dose arm when the dose response is known to be monotone.

When in a dose-finding study tablets of different doses have different images, the
double-dummy strategy is often employed to mask the treatment. To that end, a
matching image tablet is prepared for each of the doses; each subject gets an active
tablet for the dose he is allocated and a placebo tablet for each of the remaining
doses. Typically, a separate drug ID schedule is prepared for each pair of tablets—
an active tablet and a placebo tablet—corresponding to the same dose.

Consider the same example of the dose-ranging study with four active doses of
the experimental drug and the placebo arm that now employs a double dummy strat-
egy. Since each subject will receive one active tablet for the dose he is allocated to
and three placebo tablets for the remaining doses, three times more placebo tablets
than active tablets are packaged for each dose. Four separate drug ID schedules are
prepared in 1:3 (Active to Placebo) ratio for each of the four doses.

With double-dummy blinding and separate schedules for each dose, stopping
enrollment into a certain dose will be immediately obvious. Indeed, the placebo
drug IDs on that dose schedule will continue to grow, while the gaps in the schedule
corresponding to the Active tablets will remain unfilled. The arm with low enroll-
ment will be manifested by having 3% of the drug IDs in the blocks growing fast
(Placebo drug IDs), while the remaining % of the drug IDs (Active drug IDs) will
lag behind and fill in at a slower pace. Similarly, the arm with high enrollment will
have Y of its drug IDs (Active) filling in fast, and the rest of the drug IDs (Placebo)
lagging behind. Thus, if there is a dose-response, the double-dummy blinding strat-
egy with separate drug ID schedules for each dose will eventually unblind the per-
formance of each dose through divergent drug IDs of active and placebo drug types.
The individual allocations of the subjects in later cohorts will also be unblinded.

The problem remains if a single schedule is used for all doses.
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9.6.2.2 Two-Stage Study with Stage II Allocation Ratio Unknown
in Advance

Another potentially unblinding scenario common for adaptive design studies is
when the allocation ratio is constant throughout a stage of the study, but is unknown
in advance. For example, in two-stage trials with new doses included in Stage II, the
allocation ratio for Stage II is often unequal as it differs for the old doses included
in Stage I and the new doses added in Stage II. In addition, this ratio might depend
on the actual numbers of subjects enrolled in Stage I arms before the randomization
into Stage I was stopped. As the Stage II drug needs to be packaged before the exact
allocation ratio for Stage II becomes known, the drug ID schedule is generated in
the drug ratio somewhere in the middle of the possible range. Discrepancy between
the actual allocation ratio and the drug packaging ratio provides a potential for par-
tial, and in some cases, full unblinding.

9.6.2.3 Multicenter Study Where Drug Supplies Are Packaged
in a Ratio Different from the Allocation Ratio

Divergence of drug IDs can also occur in an adaptive design multicenter study with
unequal allocation ratio even when the allocation ratio remains constant throughout
the study. Often in a multicenter study with a skewed allocation ratio and central
allocation the drug supplies are packaged in a ratio different from the allocation
ratio. This is done to provide the sites with enough of the “low ratio” treatment kits
to minimize the chance of a site running out of these kits in the event a few “low
ratio” treatment assignments in a row are made at the site. This typically results in
the smaller groups being overstocked and the bigger groups being understocked in
the set of supplies sent to the sites initially and maintained at the sites. This leads to
a more “balanced” drug ratio of the site stocks, and thus, the packaged drugs, com-
pared to the allocation ratio.

For example, in a 200-center study with 7:3:1 allocation to Experimental Drug,
Active Control, and Placebo, where centers are expected to enroll about 6 subjects
each, the initial pack might include four Experimental, three Active Control, and
two Placebo drug kits. Most likely, this drug packaging ratio would be derived
through informal considerations along the following lines. If a block of 7+3+1
drug kits is sent to each site, there is a chance that at one of the sites the first two
subjects are both allocated to Placebo. To avoid drug shortage in this case, two pla-
cebo Kkits instead of one are sent to each site. Also, there is no need to send seven
Experimental drug kits to each site: four Experimental drug kits are sufficient as
there will be enough time to send in replacement kits for the first couple of subjects
before the fifth subject is allocated to Experimental Drug at the site. Formal consid-
erations to justify this approach can be based on the acceptable probabilities of a
stock-out for the resupply strategy used in the trial.

However, packaging the drug in 4:3:2 ratio will lead to the divergence of the drug
ID sequences. Indeed, suppose a permuted block drug ID schedule was prepared in
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4:3:2 ratio (block size 9). The randomization schedule, nevertheless, is a permuted
block schedule with the allocation ratio of 7:3:1 (block size 11). At the study start, a
block of nine drug kits is sent to each center and maintained through resupplies.
A total of 200 blocks are sent out at study initiation. Thus, when randomization
starts, the resupplies from blocks 201 and above on the drug ID schedule are sent out.

When the first 55 subjects are randomized into the study (5 blocks of 11), there are
35 subjects allocated to Experimental Drug, 15 subjects allocated to Active Control,
and 5 subjects allocated to Placebo. That far into randomization, it is clear that the
replacement drug kits sent to the sites are coming from different blocks on the replace-
ment part of the drug ID schedule. If the 56th subject is allocated to Experimental
Drug, the replacement drug ID will come from block 209 on the drug ID schedule; if
he is allocated to Active Control the replacement drug ID will come from block 206;
if he is allocated to Placebo the replacement drug ID will come from block 203.

Thus, if the drug IDs are not scrambled, the drug IDs for replacement kits will
allow one to distinguish kits for arms A, B, and C very early in randomization.
Someone with access to the complete sequence of the drug IDs received by all
centers will be able to identify the treatment groups corresponding to the replace-
ment kits in the considered example. In other examples, when some of the treatment
arms have the same allocation ratios (as in 2:2:5:5 allocation), such observer will be
able to differentiate large groups from the small ones, but not to distinguish between
the two groups with the same ratio.

Study personnel that have access only to the drug IDs at their own site might or
might not be unblinded or biased through the drug IDs they see.

In addition to considered examples, differences in the dropout rates among the
treatment groups as well as up- or down- titration for efficacy or safety reasons can
also provide the potential for unblinding through drug codes.

9.7 Discussion

There is a wide opportunity for the use of advanced randomization techniques in
adaptive design studies. In dose-ranging studies, an inconvenient allocation ratio in
a small cohort is better targeted with the Brick Tunnel randomization than with
permuted block or complete randomization. In open-label adaptive design studies
the allocation techniques less predictable than permuted block randomization help
reduce the selection bias.

Dynamic allocation techniques are often required in adaptive design trials.
Covariate-adaptive allocation can ensure balance in a large number of important
predictors in a small interim analysis sample and thus reduce the risk of biased
results leading to a wrong interim decision. In multicenter adaptive design trials,
dynamic allocation methods provide within-center balance in treatment assign-
ments and, if needed, balance in other important predictors. They also help effi-
ciently manage limited and expensive drug supplies and reduce the required volume
of drug supplies and the number of resupplies shipments.
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In adaptive design studies IVRS that governs the complicated trial logistics is
already in place (Chap. 12). Many IVRS providers have solid experience using
dynamic allocation techniques, with all quality control steps [validation, testing as
described in (Downs et al. 2010)] in place. Nevertheless, dynamic allocation remains
underused in adaptive design studies in the pharmaceutical industry, even when it is
clearly advantageous. As a result, the examples of studies with imbalance in one of
the known important predictors large enough to question the study results are not
uncommon (Rosenberger and Sverdlov 2008; Pond et al. 2010).

The major reason for reluctance to use dynamic allocation techniques is the
uncertainty of regulatory acceptance of such techniques. While ICH Guidelines list
covariate-adaptive allocation among other accepted allocation methods, its use was
discouraged by the Points to Consider on Adjustment for Baseline Covariates
(EAEMP CPMP 2003). This opinion was much debated in the literature (see
Rosenberger and Sverdlov 2008; Buyse and McEntegart 2004) and the language
that discouraged the use of dynamic allocation was removed from the latest Draft
Guideline on Adjustment for Baseline Covariates (EMA CHMP 2013).

More positive regulatory views and better understanding of dynamic allocation
due to recent advances in theory of inference following covariate-adaptive random-
ization (Shao et al. 2010; Shao and Yu 2013; Ma and Hu 2013; Hu et al. 2014) are
likely to lead to a wider use of these procedures in adaptive design trials.

References

Abel U (1987) Modified replacement randomization. Stat Med 6:127-135

Akazawa K, Odaka T, Sakamoto M, Ohtsuki S, Shimada M, Kamakura T, Nose Y (1991) A random
allocation system with the minimization method for multi-institutional clinical trials. J Med
Syst 15(4):311-319

Antognini AB, Giovagnoli A (2004) A new ‘biased coin design’ for the sequential allocation of two
treatments. J Roy Stat Soc C 53:651-664

Begg CB, Iglewicz B (1980) A treatment allocation procedure for sequential clinical trials.
Biometrics 36:81-90

Berger VW, Ivanova A, Knoll M (2003) Minimizing predictability while retaining balance through
the use of less restrictive randomization procedures. Stat Med 22:3017-3028. doi:10.1002/
sim.1538

Birkett NJ (1985) Adaptive allocation in randomized controlled trials. Control Clin Trials 6:146—155

Buyse M, McEntegart D (2004) Achieving balance in clinical trials: an unbalanced view from EU
regulators. Appl Clin Trials 13:36-40

Byrom B, McEntegart D, Nicholls G (2011) Adaptive infrastructure. In: Pong A, Chow S-C (eds)
Handbook of adaptive designs in pharmaceutical and clinical development. Taylor and Francis
Group, London, pp 20-1-20-25

Chen YP (1999) Biased coin design with imbalance tolerance. Comm Stat Stoch Model 15:953-975

Chen YP (2000) Which design is better? Ehrenfest urn versus biased coin. Adv Appl Probab
32:738-749

Committee for Proprietary Medicinal Products (CPMP) (2003) Points to consider on adjustment
for baseline covariates. European Medicines Agency, London

Downs M, Tucker K, Christ-Schmidt H, Wittes J (2010) Some practical problems in implementing
randomization. Clin Trials 7:235-245


http://dx.doi.org/10.1007/978-1-4939-1100-4_12
http://dx.doi.org/10.1002/sim.1538
http://dx.doi.org/10.1002/sim.1538

9 Randomization Challenges in Adaptive Design Studies 179

Efron B (1971) Forcing a sequential experiment to be balanced. Biometrika 58:403-417

EMA Committee for Medicinal Products for Human Use. Guideline on adjustment for baseline
covariates. Draft. 26 Apr 2013

Forsythe AB (1987) Validity and power of tests when groups have been balanced for prognostic
factors. Comput Stat Data Anal 5:193-200

Frane JW (1998) A method of biased coin randomization, its implementation, and its validation.
Drug Inf J 32:423-432, 0092-8615/98

Gaydos B, Krams M, Perevozskaya I, Bretz F, Liu Q, Gallo P (2006) PhRMA working group on
adaptive designs: adaptive dose—response studies. Drug Inf J 40:451-461

Goodale H, McEntegart D (2013) The role of technology in avoiding bias in the design and execu-
tion of clinical trials. Open Access J Clin Trials 5:13-21

Han B, Enas NH, McEntegart D (2009) Randomization by minimization for unbalanced treatment
allocation. Stat Med 28:3329-3346. doi:10.1002/sim.3710

Han B, Yu M, McEntegart D (2013) Weighted re-randomization tests for minimization with unbal-
anced allocation. Pharm Stat 12:243-253. doi:10.1002/pst.1577

He W, Kuznetsova OM, Harmer MA, Leahy CJ, Anderson KM, Dossin DN, Li L, Bolognese JA,
Tymofyeyev Y, Schindler JS (2012) Practical considerations and strategies for executing
adaptive clinical trials. Drug Inf J 46:160—174. doi:10.1177/0092861512436580

Heritier S, Gebski V, Pillai A (2005) Dynamic balancing randomization in controlled clinical trials.
Stat Med 24:3729-3741. doi:10.1002/sim.2421

Hu F.,, HuY, Ma Z, Rosenberger WF (2014) Adaptive randomization for balancing over covariates.
Wiley Interdisciplinary Reviews: Computational Statistics, 6, 288-303

ICH (1998) ICH Topic E9: statistical principles for clinical trials, available at http://www.ich.org/
LOB/media/MEDIA485.pdf

Kaiser LD (2012) Dynamic randomization and a randomization model for clinical trials data. Stat
Med 31:3858-3873. doi:10.1002/sim.5448

Kalish LA, Begg CB (1985) Treatment allocation methods in clinical trials: a review. Stat Med
4:129-144

Kalish LA, Begg CB (1987) The impact of treatment allocation procedures on nominal signifi-
cance levels and bias. Control Clin Trials 8:121-135

Kuznetsova OM (2001) Why permutation is even more important in IVRS drug codes schedule
generation than in patient randomization schedule generation. Control Clin Trials 22:69-71,
Letter to the Editor

Kuznetsova OM (2008) Randomization schedule. In: D’ Agostino R, Sullivan L, Massaro J (eds)
Wiley encyclopedia of clinical trials. Wiley, Hoboken, NJ. doi:10.1002/9780471462422.
eoct314, Published Online: 19 Sep 2008

Kuznetsova OM (2010) On the second role of the random element in minimization. Short com-
munication regarding the short communication by D. Taves on “The Use of Minimization in
Clinical Trials”. Contemp Clin Trials 31:587-588. doi:10.1016/j.cct.2010.07.010

Kuznetsova OM (2012) Considerations in the paper by Proschan, Brittain, and Kammerman are
not an argument against minimization. In response to Vance W Berger ‘Minimization: not all
it’s cracked up to be’, Clin Trials 2011; 8: 443. Clin Trials 9:370

Kuznetsova OM, Ivanova A (2006) Allocation in randomized clinical trials. In: Dmitrienko A,
Chuang-Stein C, D’Agostino R (eds) Pharmaceutical statistics using SAS. SAS Press, Cary,
NC, pp 213-236

Kuznetsova OM, Tymofyeyev Y (2009) Brick tunnel randomization—a way to accommodate a
problematic allocation ratio in adaptive design dose finding studies. ASA proceedings of the
joint statistical meetings. American Statistical Association, Alexandria, VA, pp 1356-1367

Kuznetsova OM, Tymofyeyev Y (2011a) Brick tunnel randomization for unequal allocation to two
or more treatment groups. Stat Med 30:812-824. doi:10.1002/sim.4167

Kuznetsova OM, Tymofyeyev Y (2011b) Expansion of the modified Zelen’s approach randomiza-
tion and dynamic randomization with partial block supplies at the centers to unequal allocation.
ASA proceedings of the joint statistical meetings. American Statistical Association, Miami
Beach, FL.


http://dx.doi.org/10.1002/sim.3710
http://dx.doi.org/10.1002/pst.1577
http://dx.doi.org/10.1177/0092861512436580
http://dx.doi.org/10.1002/sim.2421
http://dx.doi.org/10.1002/sim.5448
http://dx.doi.org/10.1002/sim.5448
http://dx.doi.org/10.1002/sim.5448
http://dx.doi.org/10.1002/9780471462422.eoct314
http://dx.doi.org/10.1002/9780471462422.eoct314
http://dx.doi.org/10.1016/j.cct.2010.07.010
http://dx.doi.org/10.1002/sim.4167

180 O.M. Kuznetsova

Kuznetsova OM, Tymofyeyev Y (201 1c) Expansion of the modified Zelen’s approach randomization
and dynamic randomization with partial block supplies at the centers to unequal allocation.
Contemp Clin Trials 32:962-972. doi:10.1016/j.cct.2011.08.006

Kuznetsova OM, Tymofyeyev Y (2012) Preserving the allocation ratio at every allocation with
biased coin randomization and minimization in studies with unequal allocation. Stat Med
31:701-723. doi: 10.1002/sim.4447

Kuznetsova OM, Tymofyeyev Y (2013a) Shift in re-randomization distribution with conditional
randomization test. Pharmaceut Stat 12:82-91. doi:10.1002/pst.1556

Kuznetsova OM, Tymofyeyev Y (2013b) Expanding brick tunnel randomization to allow for larger
imbalance in treatment totals in studies with unequal allocation. Proceedings of the joint statis-
tical association 2013 meetings, Montreal, QC, Canada, 4-8 Aug 2013

Kuznetsova OM, Tymofyeyev Y (2014a) Wide Brick tunnel randomization—an unequal allocation
procedure that limits the imbalance in treatment totals. Stat Med 33:1514-1530. doi:10.1002/
sim.6051

Kuznetsova OM, Tymofyeyev Y (2014b) Hierarchical dynamic allocation procedures based on
modified Zelen’s approach in multi-regional studies with unequal allocation. J Biopharm Stat
24:1-17

Lang M, Wood R, McEntegart D (2005) Protecting the blind. GCPj p. 10 Nov 2005 14/11/05
3:39 pm

Ma W, Hu F (2013) Hypothesis testing of covariate-adaptive randomized clinical trials under gen-
eralized linear models. Paper presented at Joint Statistical Association 2013 Meetings,
Montreal, Canada, 4-8 Aug 2013

Markaryan T, Rosenberger WF (2010) Exact properties of Efron’s biased coin randomization pro-
cedure. Ann Stat 38:1546—1567. doi:10.1214/09-A0S758

McEntegart D (2002) Forced randomization when using interactive voice response systems. Appl
Clin Trials 12(10):2-10

McEntegart D (2003) The pursuit of balance using stratified and dynamic randomization tech-
niques: an overview. Drug Inf J 37:293-308

McEntegart D (2008) Blocked randomization. In: D’Agostino R, Sullivan L, Massaro J (eds)
Wiley encyclopedia of clinical trials. Wiley, Hoboken. DOI:10.1002/9780471462422.eoct301.
Accessed 13 June 2008

Morrissey M, McEntegart D, Lang M (2010) Randomisation in double-blind multicentre trials
with many treatments. Contemp Clin Trials 31:381-391. doi:10.1016./j/cct/2010.05.002

Nishi T, Takaishi A (2003) An extended minimization method to assure similar means of continu-
ous prognostic variable between treatment groups. Jpn J Biomet 24:43-55

Parke T (2008) Adaptive clinical trials in the real world. Paper presented at Massachusetts
Biotechnology Council, 23 Apr 2008, Cambridge, MA

Pocock SJ (1979) Allocation of patients to treatment in clinical trials. Biometrics 35:183—-197

Pocock SJ, Simon R (1975) Sequential treatment assignment with balancing for prognostic factors
in the controlled clinical trial. Biometrics 31:103-115

Pond GR, Tang PA, Welch SA, Chen EX (2010) Trends in the application of dynamic allocation
methods in multi-arm cancer clinical trials. Clin Trials 7(3):227-234

Proschan M, Brittain E, Kammerman L (2011) Minimize the use of minimization with unequal
allocation. Biometrics 67(3):1135-1141. doi:10.1111/j.1541-0420.2010.01545.x

Rosenberger WF, Lachin JM (2002) Randomization in clinical trials. Wiley, New York, NY

Rosenberger WF, Sverdlov O (2008) Handling covariates in the design of clinical trials. Stat Sci
23:404-419

Salama I, Ivanova A, Qagqish B (2008) Efficient generation of constrained block allocation
sequences. Stat Med 27:1421-1428. doi:10.1002/sim3014

Scott NW, McPherson GC, Ramsay CR, Campbell MK (2002) The method of minimization for
allocation to clinical trials: a review. Control Clin Trials 23:662-674

Shao J, Yu X (2013) Validity of tests under covariate-adaptive biased coin randomization and gen-
eralized linear models. Biometrics 69:960-969. doi:10.1111/biom.12062


http://dx.doi.org/10.1016/j.cct.2011.08.006
http://dx.doi.org/10.1002/sim.4447
http://dx.doi.org/10.1002/pst.1556
http://dx.doi.org/10.1002/sim.6051
http://dx.doi.org/10.1002/sim.6051
http://dx.doi.org/10.1214/09-AOS758
http://dx.doi.org/10.1016/j/cct/2010.05.002
http://dx.doi.org/10.1111/j.1541-0420.2010.01545.x
http://dx.doi.org/10.1002/sim3014
http://dx.doi.org/10.1111/biom.12062

9 Randomization Challenges in Adaptive Design Studies 181

Shao J, Yu X, Zhong B (2010) A theory of testing hypotheses under covariate adaptive randomization.
Biometrika 97:347-360

Signorini DF, Leung O, Simes RJ, Beller E, Gebski VJ (1993) Dynamic balanced randomisation
for clinical trials. Stat Med 12:2343-2350

Soares JF, Wu CF (1983) Some restricted randomization rules in sequential designs. Comm Stat
Theor Meth 12:2017-2034

Song C, Kuznetsova OM (2003) Implementing Constrained or Balanced Across the Centers
Randomization with SAS v8 Procedure PLAN, PharmaSUG 2003 proceedings, Miami, FL,
pp- 473-479. Accessed 4-7 May 2003

Taves D (1974) Minimization: a new method of assigning subjects to treatment and control groups.
Clin Pharmacol Ther 15:443-453

Therneau TM (1993) How many stratification factors are “too many” to use in a randomization
plan? Control Clin Trials 14(2):98-108

Weir CJ, Lees KR (2003) Comparison of stratification and adaptive methods for treatment alloca-
tion in an acute stroke clinical trial. Stat Med 22:705-726

Youden WJ (1964) Inadmissible random assignments. Technometrics 6:103—104

Youden WJ (1972) Randomization and experimentation. Technometrics 14:13-22

Zelen M (1974) The randomization and stratification of patients to clinical trials. J Chronic Dis
27:365-375

Zhao W, Weng Y (2011) Block urn design—a new randomization algorithm for sequential trials
with two or more treatments and balanced or unbalanced allocation. Contemp Clin Trials
32(6):953-961

Zielhuis GA, Straatman H, van’T Hof-Grootenboer AE, van Lier HJJ, Rach GH, van den Broek P
(1990) The choice of a balanced allocation method for a clinical trial in otitis media with effu-
sion. Stat Med 9:237-246



Chapter 10
Response-Adaptive Randomization
for Clinical Trials

Lanju Zhang and William F. Rosenberger

Abstract Response-adaptive randomization in clinical trials uses accumulated
patient response data to adjust the allocation probability for the next patient, so that
a particular objective, for example, more patients assigned to the better performing
treatment arm, can be achieved. This ethically appealing randomization procedure
has gained significant attention in academia, regulatory agencies, and industry in
light of widespread of adaptive clinical trial designs with the FDA’s Critical Path
Initiative (FDA: Innovation or stagnation: challenge and opportunity on the critical
path to new medical products, 2004). However, this procedure has also generated
unmatched controversy since its first application in the ECMO trial (Bartlett et al.,
Pediatrics 76:479-487, 1985). In this chapter, we will describe response-adaptive
randomization procedures from both frequentist and Bayesian perspectives and pro-
vide a comprehensive assessment on situations where such procedures should be
applied.
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10.1 Introduction

Most clinical trials are comparative studies where two or more treatments (or placebo)
are administered to human subjects and their effectiveness is evaluated and compared.
For instance, one may want to compare an investigational drug A to standard of care
drug B in terms of blood pressure reduction in hypertensive patients. An ideal exper-
iment or trial for this comparison is one in which all patients are exactly the same in
all aspects except that they may have received different treatments, thus creating a
state of ““all other things being equal.” Then the treatment effect, or the difference in
blood pressure reduction between two groups of patients, can be evaluated without
bias and attributed only to the treatment difference. However, such an ideal experi-
ment will never happen in practice and randomization is used to design a trial or
experiment so that it is as close to the ideal as possible.

Randomization as an experimental design principle did not originate in medical
research. Its application was pioneered in 1920s by Ronald Fisher while he was
working at Rothamsted Experimental Station, and popularized by his book (Fisher
1935). As mentioned above, the ideal state of “all other things being equal” cannot
be achieved in practice; however, randomization can help to average out effect of
factors between two treatment groups that may confound the treatment effect, and
thus make a close to ideal comparison. On the other hand, statistical analysis of the
experimental results usually demands that experimental outcomes are indepen-
dently distributed. This assumption cannot be verified statistically; instead, it can
only be substantiated through random sampling procedure (through randomiza-
tion). Because of its role in reducing bias and providing valid basis for statistical
analysis, randomization has become the cornerstone of experimental design.

10.1.1 Randomization in Clinical Trials

In clinical trials, the same principles apply and are well recognized in regulatory
guidelines. For example, it is stated in ICH guidance E9 (ICH 1998) that, “The most
important design techniques for avoiding bias in clinical trials are blinding and ran-
domization, and these should be normal features of most controlled clinical trials
intended to be included in a marketing application.” However, clinical trials, as
experiments on human subjects, introduce a heated debate on the ethical concern of
randomization. The central question is whether one should use equal randomization
(1:1) throughout the recruitment. The proponents of the application of equal ran-
domization in clinical trials maintain that a state of equipoise underlies the very
need of conducting a clinical trial and it is retained throughout the trial until the final
analysis is conducted and result is known. On the other hand, opponents think that
the initial equipoise can be tipped as accrued data point to one treatment better than
the other and it is therefore not ethical to use equal randomization throughout.
Response-adaptive randomization, in which the randomization probability is
changed or updated based on accrued data and is very likely not equal between
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treatments, is the middle ground where the benefit of randomization is retained
while the ethical concern is mitigated when more patients are randomized to the
better performing treatment arm. It is this ethical appeal that has motivated the
research and application of response-adaptive randomization.

10.1.2 Response-Adaptive Randomization in Clinical Trials

Early response-adaptive allocation methods rooted in the exploration of sequential
designs, pioneered by Wald (1947). In Robbins’ seminal paper (1952), he not only
proposed the famous play-the-winner rule, which assigns the next patient to the
same treatment of the current patient or to the other treatment depending on whether
the current patient has a success or not, but also declared with amazing prescience
that “enough is visible to justify a prediction that future results in the theory of
sequential design will be of the greatest importance to mathematical statistics and to
science as a whole.” The blooming research and application of adaptive designs in
clinical trials in the past two to three decades precisely ratified his prediction. The
play-the-winner rule is a foundational proposal; however, it is deterministic, in the
sense that the next patient is assigned to a treatment with a probability of one or
zero. A randomized version was proposed by Wei and Durham (1978), now known
as the “randomized play the winner rule,” which randomizes the next patient to a
winning treatment with a probability between one and zero. We will discuss this
procedure in Sect. 10.3. Many different approaches have emerged, including two
books (Rosenberger and Lachin 2002; Hu and Rosenberger 2006) with frequentist
approaches and a book with Bayesian approaches (Berry et al. 2010) in addition to
hundreds of papers in the top statistics and biostatistics journals.

For our purpose we define response-adaptive randomization as any randomiza-
tion procedure that changes randomization probability between treatment arms
based on the accrued data in the course of recruitment. This includes fully adaptive
randomization where the randomization probability is updated each time a new
patient response is available, group sequential adaptive randomization where ran-
domization probability is updated at an interim analysis of a group sequential
design, and anything in between. However, in this paper, our discussion will be
focused on fully adaptive randomization.

This chapter is not intended to be a technical survey of statistical methodologies
for response-adaptive randomization. Instead we will give a quick scan of different
approaches to response-adaptive randomization, and then provide a thorough
assessment of practical applicability of such procedures. More specifically, in Sect.
10.2 we will introduce a template that characterizes the relationship between effi-
ciency and degree of skewing to a treatment arm through response-adaptive ran-
domization. Section 10.3 categorizes available randomization procedures into two
types, heuristic procedures and optimal procedures, with some typical examples for
each type. In Sect. 10.4, we discuss regulatory concerns and most often encountered
views against application of response-adaptive randomization procedures. We con-
clude in Sect. 10.5 with some recommendations for a sensible path forward.
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10.2 The Fundamental Question of Response-Adaptive
Randomization

Clinical trials are usually multiple objective studies, with some of them competing
with each other. For example, cost and ethical concerns demand a trial using as few
patients as possible. On the other hand, a large sample size is needed to power a trial
to be conclusive. Response-adaptive randomization faces similar challenges to bal-
ance different objectives. For instance, through response adaptation, more patients
may be randomized to a better performing treatment arm, which is beneficial from
ethical point of view. However, this creates an imbalance between treatment arms,
and potentially can lead to significant loss of power. To maintain the same power, a
larger sample size is called for, which in turn can result in more patients assigned to
an inferior treatment arm. Such conflicting objectives require a systematic approach
to select the best response-adaptive randomization procedure.

A response-adaptive procedure has two components. The first we call the limit-
ing allocation proportion, which is the proportion of all patients randomized to a
treatment arm if N, the total sample size of the trial, tends to infinity. Very often, a
limiting allocation proportion depends on parameters that describe treatment end-
points. For example, in case of two treatments A and B with binary responses, a
limiting allocation proportion may be ¢,/(q, +4,), known as urn allocation pro-
portion, where ¢, =1-0,,i = A,B with §; the probability of success for a patient
assigned to treatment i. In other words, the number of patients randomized to a
treatment is inversely proportional to the failure rate of that treatment, ensuring that
more patients will be assigned to the treatment arm with a smaller failure rate. The
second component we call the randomization method, which is a process that
defines how to update or change randomization probability after new patient
response(s) is available. Some randomization methods, for example urn models as
described in the next section, always lead to the same limiting allocation proportion;
whereas other randomization methods, for example the doubly adaptive biased coin
design (DBCD) described in the next section, can target a chosen limiting allocation
proportion.

In Hu and Rosenberger (2006), they ask a fundamental question about
response-adaptive randomization, can we develop a response-adaptive random-
ization procedure that results in fewer failures without loss of power? Here the
power loss is compared to nonadaptive randomization procedure. The question
can be addressed using a formal evaluation template by Hu and Rosenberger
(2003), which decomposes the expected noncentrality parameter of Z-test for two
proportions into three parts, with the first part determined by the limiting alloca-
tion proportion of a response-adaptive randomization procedure, the second part
determined by the difference between the empirical allocation proportion and limit-
ing allocation proportion, and third part determined by the variance of mean square
error of the empirical allocation proportion. Interestingly, the first part is dependent
on the limiting allocation proportion only and will be maximized when the limiting
allocation proportion is the Neyman allocation proportion, which gives rise to
the largest power given the total sample size and is to be derived in Sect. 10.3.2.
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The second part vanishes if the empirical allocation proportion approaches to the
limiting allocation fast and the third part is a function of the variance of the
empirical allocation proportion (we call the variance of the randomization
method) and is always negative. For a technical treatment of this template, refer
to Hu and Rosenberger (2003). This template therefore presents an explicit link
between power of the test, the limiting allocation proportion, and the variance of
the randomization method. An ethically desirable response-adaptive randomiza-
tion procedure should choose an appropriate limiting allocation proportion that
reduces the number of failures without much deviation from the Neyman alloca-
tion proportion, and should choose an appropriate randomization method leading
to the limiting allocation proportion with as small variance as possible.

The same template can be built for other scenarios. For example, Zhang and
Rosenberger (2006) gave a similar template for continuous responses. Also note
that although the fundamental question by Hu and Rosenberger (2006) is concerned
about the ethics and efficiency, it can be generalized as, “Can we develop a response-
adaptive randomization procedure that assigns more patients to a treatment arm(s)
to achieve a particular objective without loss of power?” The particular objective
can be an ethical one, as mentioned above, or quick identification of the best dose
in dose finding studies. Then the template can be used to quantify the tradeoff
between skewing allocation proportion for a particular objective and efficiency of
the statistical test.

10.3 Response-Adaptive Randomization Procedures

Many response-adaptive randomization procedures have been proposed. Some pro-
cedures are heuristic while others are based on a formal optimization approach. In
this section, we introduce some of these procedures.

10.3.1 Heuristic Procedures

10.3.1.1 Urn Models

The most famous response-adaptive randomization procedure is the aforementioned
randomized play-the-winner rule. The rule can be best described as an urn model. An
urn contains a balls representing treatment A and «a balls representing treatment B.
A ball is drawn, say, representing A, and a patient is then assigned to treatment A. If
the patient has a success, then add f balls to the urn representing treatment A.
Otherwise, if the patient has a failure, then add f balls to the urn representing B. So the
urn composition is updated once a patient’s response is known, and skewed to the bet-
ter performing arm at the time. The properties of the randomized play-the-winner rule
have been studied intensively (see, for example, Rosenberger 1999).
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Other urn models have been proposed, e.g., drop the loser rule (Ivanova 2003)
with smallest asymptotic variance among all randomization methods that target the
urn limiting allocation proportion (Hu et al. 2007). Interestingly, all these urn mod-
els lead to the same limiting allocation proportion, but their variances are different.
According to the template, if one wants to choose an urn model, the one with the
least variability is desired.

For more details on urn models, readers are referred to Chap. 10 of Rosenberger
and Lachin (2002) and Chap. 4 of Hu and Rosenberger (2006).

10.3.1.2 Treatment Effect Mappings

An intuitive method to determine the limiting allocation proportion is to map the
treatment effect into a function between 0 and 1. Such a treatment effect mapping
method appeared first in Rosenberger (1993). Bandyopadhyay and Biswas (2001)
proposed a treatment effect mapping for continuous responses. Consider a trial
comparing two treatments with patient responses normally distributed with mean y;,
i=A,B. They defined the limiting allocation proportion as

@(”A_#Bj’
T

where @(-) is the cumulative distribution function of the standard normal distribu-
tion and T is a tuning parameter. It has been shown that this allocation proportion
leads to significant loss of power due to its significant deviation from Neyman allo-
cation (Zhang and Rosenberger 2006).

10.3.1.3 Bayesian Response-Adaptive Randomization

The Bayesian approach is a natural way to incorporate available data as a prior for
decision making and therefore is advocated in response-adaptive randomization for
clinical trials (Biswas et al. 2009). However, because of emphasis of regulatory
agencies on controlling type I error rate, this method is often discouraged as a deci-
sion making tool for confirmatory trials in drug approval applications. In this sec-
tion, we consider the Bayesian approach for Phase II trials where a better dose of a
treatment needs to be identified in dose ranging studies or a treatment is compared
to a control in proof of concept studies.

Thall and Wathen (2007) is an excellent introductory reference for why and how
the Bayesian approach is used in response-adaptive randomization. We shall pro-
ceed with our introduction following their paradigm. The general procedure for
Bayesian response-adaptive randomization:

1. Choose a prior distribution for the parameters in the response variables, usually
noninformative at the beginning and ideally a conjugate distribution to that of the
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response variable. For example, if the response variable has a binomial distribution,
a conjugate prior distribution will be a beta distribution.

2. Determine the posterior distribution each time a patient’s response becomes
available.

3. By comparing posterior distributions or means of different arms, update the
randomization probability for each treatment arm.

4. Randomize the next patient and go back to step 2.

5. Repeat steps 2—4 until some stopping rule is satisfied or until the maximum
sample size is attained.

In the following, we illustrate this idea by considering a trial comparing two
treatments with binary responses and a maximum sample size N. Suppose responses
of patients assigned to treatments A and B have a Bernoulli distribution with param-
eters 6, and 6, respectively. We follow the steps listed above. Step 1 is to choose a
prior distribution and a conjugate prior in this situation is a beta distribution. Since
we assume there is no information to compare these two treatments at the begin-
ning, a noninformative prior of Beta distribution with parameters 0.5 and 0.5 or
Beta(0.5, 0.5) is used for both treatment arms. In step 2, suppose N, and N patients
have been assigned to treatments A and B with s, and s successes, respectively. It is
straightforward to determine that the posterior distributions for 6, and 6 are
Beta(s,+0.5,N,—s,+0.5) and Beta(s, +0.5,N; —s,+0.5). In Step 3, we need
to generate a metric representing the treatment difference using the two posterior
distributions. An intuitive metric, as in Thall and Wathen (2007) and traced back to
Thompson (1933), is Prob(6,>63), denoted by P,.p. Although this metric is not
necessarily the optimal one, as will be commented shortly, we will use it in the fol-
lowing discussion for demonstration. The randomization probability for the next
patient to treatment A, py, is defined by

_ (Prs)
Py= B c
(PA>B) +(1_PA>B)

(10.1)

where ¢ is a tuning constant, with ¢=0 for equal randomization and c=1 for
pa=Pa. . Based on their simulation (Thall and Wathen 2007), ¢ = (N, + N,)/(2N)
leads to a randomization procedure with the least variability. Again there are many
ways to construct randomization probability in (10.1). In Step 5, a stopping rule is
implemented in Thall and Wathen (2007) to select treatment A as better if P,.3>0.99
and to select B as better if P,.5<0.01. Otherwise, the trial proceeds until all N
patients have been randomized.

Several comments are in order for this Bayesian response-adaptive randomiza-
tion procedure. Firstly, this procedure can be readily generalized to more than two
arms. For example, in the case of three treatments A, B, and C, the metric in Step 2
can be generalized to be Prob(P,> Py, P> P), denoted by PA. Then Eq. (10.1) can
be modified to

PA°
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Fig. 10.1 Probability of posterior of A larger than posterior of B and proportion of patients
assigned to A

Another way to generalize to more than two treatment arms is to use as a metric
Prob (P, > P) where P is the average of P,, Py and P, as in Lee et al. (2012).

Secondly, p, is not stabilized even when N is very large, which results in signifi-
cant variability of this procedure. Figure 10.1 depicts posterior Prob(6,>65) (line
with squares) and proportion of patients assigned to treatment A (line with solid
circles) when true 6, =0.25, 8, =0.30 and no stopping rule is included. Note that
even when N tends to 1,000, both P, and p, remain decreasing, although the latter
decreases more slowly since ¢=(N,+N,)/2/N approaches to 1/2 as N gets
large. In fact, we can reasonably infer that the limiting allocation proportion of this
procedure is zero. In other words, the limiting proportion to treatment A is 0 as long
as 6, <05, which leads to an undesirable deterministic procedure.

Using the template, it is very easy to understand why this Bayesian response-
adaptive randomization procedure will have loss of power. The limiting allocation
proportion, 0, deviates significantly from Neyman allocation proportion. This leads
to a significant reduction in the first part of the decomposition in the template, there-
fore a significant loss of power no matter what randomization procedure is used.
Response-adaptive randomization procedures based on the frequentist approach
will suffer from the same problem if an inappropriate limiting allocation proportion
is chosen, as will be seen in the following section.
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10.3.2 Optimal Allocation Procedures

Based on the template, a desirable response-adaptive randomization procedure must
select an appropriate limiting allocation proportion that balances ethical consider-
ation and preservation of power, and use a randomization method to target this pro-
portion with a small variability. In this section, we describe the optimal allocation
approach to derive limiting allocation proportions that can preserve power, and a
family of randomization methods targeting the proportions with small variance. In
the following we again use a trial comparing two treatments with binary responses
to demonstrate the optimal allocation approach.
Suppose we use the following Z-test to compare two treatments.

0.-0s

>

éA(1—éA)+éB(1—éB)

n, Ny

where n; is the number of patients randomized to treatment i and n,+n, = N . To
derive a limiting allocation proportion that balances ethical consideration and power
preservation, we use the following optimal problem,

min n,(1-0,)+n,(1-6,)

0,(-0,)  9,(1-6,) (10.2)

subject to = constant,

n, Ny

which minimizes the expected total number of failures with the constraint that the
denominator of the test statistic is held constant. Solving this problem, we have

n, o,
ny B,

or equivalently, the proportion to treatment A, p,, is given by

B

This optimal allocation appeared first in Rosenberger et al. (2001) and has been
called RSIHR proportion (acronym of authors’ initials). This optimal allocation
proportion does not deviate much from Neyman allocation, which is the solution to
(10.2) when the objective function is replaced with n, + ng, and proved to offer a
desirable tradeoff between minimization of total failures and preservation of power
after extensive comparison to other proportions (Rosenberger and Lachin 2002).
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Now since we have an appropriate limiting allocation proportion, next we
consider a randomization method that targets this proportion. We recommend two
methods, the DBCD method (Hu and Zhang 2004) and the efficient randomized
adaptive designs (ERADE) (Hu et al. 2009). We start with the DBCD method,
which is defined by the following allocation function.

yyA-x)T1
My(A-x)] +1=»)xA- T’

g(x,y)=

where y is a tuning parameter with y= oo defining a deterministic allocation method
and y =0 defining the sequential estimation method (Melfi et al. 2001). Usually y=2
is recommended and is used in the following discussion. During randomization,
after j patients have been randomized, x will be replaced with N,(j)j, the empirical
proportion of j patients to treatment A, and y will be replaced with an estimate of p,,
P, » based on responses of j patients. Then g(N,(j)/ j,p,) is the randomization
probability of the next patient to treatment A.
The ERADE method uses a discrete allocation function, defined by,

ny if x>y
glx,y) =y if x=y
I-nl-y) if x<y

where 0<#x<1 is a tuning parameter reflecting the degree of randomization and a
value between 0.4 and 0.7 is recommended. The allocation function was developed
based on Efron’s biased coin design (Efron 1971), which can be obtained by forcing
y=1/2 and n =2/3, an adaptive randomization method intended to assign equal
number of patients to each treatment. The implementation of the ERADE method is
the same as the DBCD method.

Figure 10.2 depicts the allocation functions of both methods when y=0.7 with
tuning parameters y=2 and 1 =2/3. Note that for both methods, when x<0.7,
then g(x,0.7)>0.7; when x>0.7, g(x,0.7)<0.7; when x=0.7, g(x,0.7)=0.7. In
other words, based on j patients’ responses, if N,(j)j is larger than p ,, then next
patient will be randomized to treatment A with a probability larger than p . On the
other hand, if N,(j)j is smaller than the estimate of p,, then next patient will be
randomized.to treatment A with a probability smaller than p , . In the long run, both
N,(jyjand p, will converge to p,, the desired proportion to treatment A. However,
these two functions are different in that the function for the DBCD is continuous
whereas that of ERADE is discrete. This difference proves to be fundamental. By
taking only three different values, the ERADE method is less variable than the
DBCD method. In fact, it has been shown that the ERADE method is asymptoti-
cally best, which means that the method has the least possible asymptotic variance
of all response-adaptive randomization methods that target the same limiting allo-
cation proportion.
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Fig. 10.2 The allocation functions of the DBCD and ERADE methods when y=0.7

Extensive simulations have showed that these two randomization methods perform
very well with finite sample size (Hu and Rosenberger 2006). They are versatile in
that they can target any limiting allocation proportions, for example, the limiting
allocation proportion of urn models.

Recently, Flournoy et al. (2013) conducted a comprehensive comparison of dif-
ferent response-adaptive randomization procedures, including the ones we dis-
cussed in this section, with recommendations on choice of randomization procedures
for binary outcomes and continuous outcomes.

10.4 Benefit—Risk Assessment

The major motivation for using response-adaptive randomization is initially for ethi-
cal considerations in that more patients can be randomized to a better performing
treatment dictated by accumulated data. The application of such procedures has met
significant resistance from major clinical trial stakeholders, such as statisticians,
clinicians, and regulators, after the first ECMO trial using randomized play-the-
winner rule (Bartlett et al. 1985) that gave rise to a controversial design with ten out
of total eleven patients allocated to the winning treatment arm. Although Bayesian
response-adaptive randomization procedures have recently gained some momen-
tum, strong opposing voices still are heard frequently to challenge the value of
response-adaptive randomization procedures (Chevret 2012; Korn and Freidlin
2011). In this section, we conduct a comprehensive benefit-risk assessment of using
response-adaptive randomization and point out situations where such procedures
can be applied with the most net benefit.
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10.4.1 Regulatory Considerations

In February 2010, the Food and Drug Administration (FDA) released a draft guidance
(FDA 2010) on adaptive design clinical trials for drugs and biologics. According to
the guidance, trials are categorized into adequate and well-controlled (A&WC)
studies (usually Phase III trials) and exploratory studies (usually Phase II trials)
and the FDA has different perspectives on adaptive randomization for these two
types of studies.

In the guidance, response-adaptive randomization is labeled as “Adaptive study
designs whose properties are less well understood,” and “should be used cautiously
in A&WC studies, as the analysis is not as easily interpretable as when fixed ran-
domization probabilities are used. Particular attention should be paid to avoiding
bias and controlling type I error rate.” Since response-adaptive randomization aims
to assign more patients to a treatment arm, thus creating a possible “poor balance in
patient characteristics between the groups at the end of the study,” introducing bias
into treatment effect estimate, the guidance concludes that “such poor balance in
important characteristics could be a very significant problem for an A&WC study.”
We think that the regulatory concern about potential bias due to imbalance treat-
ment assignment is sensible and we will address this concern later. However, their
concern on controlling type I error rate is ungrounded, since there is adequate
research by theory or by simulation showing optimal response-adaptive randomiza-
tion procedure controls type I error rate very well (Hu and Rosenberger 2006). Even
for trials using Bayesian response-adaptive randomization, the frequentist frame-
work has been proposed for data analysis that strongly controls type I error rate
(Gaydos et al. 2012). Also there is vast literature that analysis of data from trials
using response-adaptive randomization is as straightforward as when fixed designs
are used, either following the standard methods based on normality or nonparamet-
ric methods based on linear rank test (Zhang and Rosenberger 2012). There is no
difference in how to interpret the analysis results compared to fixed designs.

For exploratory studies (e.g., Phase II trials), the guidance in fact encourages
companies to use adaptive designs, including response-adaptive randomization.
According to the guidance, “Outcome dependent adaptive randomization is particu-
larly valuable for exploratory studies because it can make practical an increase in
the number of tested treatment options (increased breadth to the range of doses
tested/and/or decreased step size between doses) explored for the drug’s activity and
facilitate estimation of the dose-response relationship, and hypothesis testing is not
the objective.” The authors agree with the guidance and think that more research is
needed for optimal response-adaptive randomization procedures for Phase II trials.
As shown in last section, the Bayesian procedure, though being easy to understand,
has very large variability compared to the optimal procedure. The optimal procedure
proposed in the literature mostly focuses on balancing ethical concerns and preser-
vation of power. In general, regulatory agencies have not emphasized concerns
about the ethics of randomization and a scan through the FDA’s guidances, EMA’s
guidances and ICH guidances on clinical trials suggests no texts discussing about
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allocating more patients to a treatment arm based on ethical consideration. In fact,
the regulatory agencies are more concerned about potential bias due to treatment
assignment imbalance and in the FDA guidance on adaptive design, “to address the
concern regarding patient characteristics, we recommend that sponsors maintain
randomization to the placebo group to ensure that sufficient patients are enrolled
into the placebo group along the entire duration of the study.” Therefore, an optimal
procedure for Phase II trials should be using a different objective function instead of
one based on ethics. For example, one can minimize the total variances of parameter
estimate if a parametric dose response model is specified and to be characterized.
Such response-adaptive randomization procedures based on optimal properties
should yield smaller variability and therefore either use fewer patients for a particu-
lar power or larger power given the number of patients.

In summary, although regulatory agencies labeled response-adaptive randomiza-
tion as “less well understood” adaptive designs and are cautious of using such pro-
cedures in A&WC trials, they are in general open or encourage companies to use
response-adaptive randomization in exploratory studies. We also want to emphasize
that by “less well understood” adaptive designs, the FDA intends to think these are
designs that lack of regulatory experiences, rather than designs that are too biased
to be valid, too difficult to understand, or too complex to implement. With accruing
knowledge and experiences with response-adaptive randomization, the regulatory
agencies may become confident for its use in A&WC trials, in addition to explor-
atory studies.

10.4.2 Benefit—Risk Assessment of Using Response-Adaptive
Randomization Procedures

Response-adaptive randomization was initially proposed to assign more patients to
the better performing treatment by changing randomization probability based on
accruing data. This ethical orientation has created significant controversies. The
central question is, “does the benefit of response-adaptive randomization justifies
the associated risk?” In this section, we will review most frequently cited drawbacks
of response-adaptive randomization and present situations where such designs can
be justifiably applied.

We start with the purpose of response-adaptive randomization. As mentioned
above, the initial intention was on ethical considerations. As noted in the FDA guid-
ance, “this randomization method had been used in placebo controlled studies
chiefly to place more patients into the group with better outcomes.” However, we
strongly remind the readers that the ethical appeal is not the only reason for using
response-adaptive randomization. Instead, we would point out that the purpose of
response-adaptive randomization is to achieve a particular trial objective by chang-
ing randomization probabilities in the middle of patient recruitment. The ethical
consideration is only one of such objectives. Another objective may be, as men-
tioned in the FDA guidance, “...to suit the objective of dose response evaluation,”
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because “response adaptive randomization appears to have the potential to obtain a
more precise description of the dose response relationship by starting with a broader
range of doses...” Another objective may be to maximize the power of a statistical
test with a given total sample size and response-adaptive randomization with
Neyman allocation (Zhang and Rosenberger 2006) can achieve the goal.

With this in mind, next we will examine many views in the literature against
using response-adaptive randomization.

Response-adaptive randomization can only assign negligibly more patients to
the better performing treatment. A typical example is a recent article (Korn and
Freidlin 2011), “Outcome-adaptive randomization: Is it useful?” in which the
authors conclude that “Adaptive randomization is inferior to 1:1 randomization in
terms of acquiring information for the general clinical community and offers
modest-to-no benefits to the patients on the trial, even assuming the best-case sce-
nario of an immediate binary outcome.” First, we note that the magnitude of benefit
is a judgment call. For example, if a trial using the adaptive randomization with the
same number of patients obtains the same analysis conclusion as using the fixed
design, but causing five less patient deaths, is this benefit modest or large? Different
people may have different opinions. Secondly, usually binary outcomes are used to
demonstrate response-adaptive randomization, just as we did in previous sections.
However, response-adaptive randomization in trials with other outcomes can pro-
duce larger benefits (e.g., continuous outcomes, Zhang and Rosenberger 2006 and
survival outcomes, Zhang and Rosenberger 2007). Third, the purpose of response-
adaptive randomization is not necessarily ethically oriented, and therefore it can
still be used to achieve other objectives.

“...these trials [Bayesian adaptive randomization] are complex to design
because there is a lot of flexibility in the selection of data sampling rules, allocation
rules, early stopping rules, dose selection rules, models (doseresponse and longitu-
dinal) and prior definitions. These are also among the most difficult approaches to
implement well.” (Gaydos et al. 2012). First, non-Bayesian adaptive randomization
procedures are available which do not require prior definitions. Second, these
designs do not necessarily have stopping rules and dose selection rules and if they
do, they are no more difficult than other adaptive designs with similar rules. Third,
for companies that run such trials the first time, some challenges exist. However,
with the advance of technology, for example, the central data monitoring, interac-
tive voice response services (IVRS) and interactive web response service (IWRS),
the added complexity in implementation of such trials is eased and becomes man-
ageable, with sufficient blinding like fixed designs. In fact, many clinical research
organizations can facilitate such randomization procedures.

Poor balance in patient characteristics can cause significant treatment effect esti-
mate bias. This is also a great regulatory concern, as mentioned in previous sections.
One remedy may be to use block adaptive randomization and block adjusted analy-
sis (Korn and Freidlin 2011) for large or long-term trials. Another remedy is to use
covariate adjusted response-adaptive randomization (Hu and Rosenberger 2006).
We agree that careful consideration should be taken to avoid bias.
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“The statistical inference is complicated because the treatment assignments and
the responses are correlated; as a consequence, rerandomization tests must be used
instead of traditional likelihood-based tests.” (Buyse 2012). We agree that the
response-adaptive randomization generates correlated patient responses and a re-
randomization test can (not must) be used for data analysis. However, it is well
established that under moderate regularity conditions (satisfied in most trial set-
tings), traditional likelihood based tests can be used for inference with well-
controlled type I error rate (Hu and Rosenberger 2006).

“Adaptive randomization can cause accrual bias (if patients wait for the prob-
ability of receiving the better treatment to increase) and/or selection bias (if patients
are aware of the emerging difference among the treatment groups).” (Buyse 2012).
The accrual bias, coined by Rosenberger (1996), can be avoided by using a double
blind strategy and the selection bias mentioned can be avoided under most trials
settings where patients are not usually aware of the treatment effect difference.

More simulations are needed to understand the operating characteristics of
such trials and more interactions are needed with the regulatory agencies. In gen-
eral, all adaptive designs, including well-understood adaptations according to the
FDA guidance, need more simulations than traditional designs. However, with
more experiences gained by all stakeholders, such simulations will help improve
clinical trial design and understanding response-adaptive randomization will
become a routine.

Of course, we cannot exhaust the list of all objections to response-adaptive ran-
domization, but we want to emphasize that as any type of study design, response-
adaptive randomization cannot be applied with significant net benefit in all situations.
We believe that a path forward will be to use such procedures in exploratory studies
first. As more experiences are gained by industry and regulatory agencies, response-
adaptive randomization may become “well understood” and applied in general set-
tings including the A&WC trials.

10.5 Conclusions

In this paper, we introduced response-adaptive randomization procedures that can
help achieve a specific objective or balancing conflicting objectives by skewing
randomization probability during the course of recruitment. The objective can be a
traditional one as assigning more patients to a better performing treatment arm, or
to get a more precise estimate of dose response relationship. Although the FDA
guidance labels such adaptive randomization procedures as “less well-understood,”
it in fact means these procedures, like sample size adaptation based on interim effect
size, are not widely applied in practice. “This guidance encourages sponsors to gain
experience with the less well-understood methods in the exploratory study setting.”
As more experiences are accumulated, we believe response-adaptive randomization
can find its best niche in clinical research.
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Many misconceptions about response-adaptive randomization are ungrounded as
addressed in the last section. Another misconception we want to address here is
concerning the Bayesian procedure and optimal procedure. It seems that the
Bayesian procedure has been most applied in Phase II trials and the optimal proce-
dure has been proposed toward A&WC trials. In essence, these two types of proce-
dures can be applied in both scenarios. Which procedure should be used in a
particular scenario depends only on which procedure can achieve the desired objec-
tive more efficiently. In this regard, more research should be conducted on using
optimal response-adaptive randomization procedures in exploratory studies or Phase
II trials and on type I error rate control of Bayesian procedures in A&WC trials.
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Chapter 11
Implementing Adaptive Designs: Operational
Considerations, Putting It All Together

Olga Marchenko and Christy Nolan

Abstract The use of adaptive clinical trial designs for a drug development program
has clear advantages over traditional methods, given the ability to identify optimal
clinical benefits and make informed decisions regarding safety and efficacy earlier in
the clinical trial process. However, operational execution can be challenging due to
the added complexities of implementing adaptive designs. These complexities
deserve additional attention. Key operational challenges occur in several areas: avail-
ability of statistical simulation tools for clinical trial modeling at the planning stage;
the use of trial simulation modeling approaches to ensure that the trial is meeting
expected outcomes; and challenges regarding rapid data collection, clinical monitor-
ing, resourcing, minimization of data leakage, IVRS, drug supply management, and
systems integration. The purpose of this chapter is to highlight several operational
challenges that must be taken into consideration in conducting an adaptive clinical
trial. Adaptive design implementation strategies are also discussed in this chapter.
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11.1 Introduction

Execution at the operational level can be challenging given the additional complexi-
ties found when implementing adaptive designs; however, there are clear approaches
to operational conduct that can be utilized successfully across each unique adaptive
design method.

The successful conduct of any clinical trial requires cross-departmental coordi-
nation. Implementation of an adaptive design requires far greater integration from
all functional teams which include biostatistics, data management, clinical opera-
tions, clinical research, regulatory, interactive randomization system (IVR system),
and drug supply. Although this level of integration can provide operational com-
plexities, it can also allow for a unique opportunity to optimize the methods for
which we work, thereby improving clinical trial execution by requiring highly effi-
cient and fully integrated processes from study design to final project delivery.

The logistical infrastructure required to support the conduct of an adaptive design
must reflect the unique elements of the final design. The long and successful tradi-
tion of “non-flexible” double-blind randomized parallel group designs has led to the
development of our current systems, tools, and processes as they are now estab-
lished across the industry. Supporting adaptive designs with the currently available
infrastructure although not impossible may be viewed as challenging. Adaptive
designs stray from the traditional development models as they benefit from building
(1) the capability for high-speed data acquisition, analysis, and integrated reporting
into the trial supporting infrastructure; (2) focused real-time remote clinical monitor-
ing efforts for specified critical safety and efficacy data elements; and (3) increased
flexibility to implement the required adaptation.

Given the unique operational needs for adaptive designs, the implementation of
integrated systems and processes with enhanced flexibility and speed will clearly
act as enablers for execution of adaptive designs; however, it is not an absolute
requirement. This needs to be highlighted, to avoid misperceptions that adaptive
design implementation is only possible in an advanced technology environment.
Nevertheless, it should be acknowledged that advances in technology will hold the
key to realizing transformational change in the clinical development paradigm. It is
from within this environment that we anticipate that adaptive designs will move
from being a minor player, as they are today, to becoming a major player from
exploratory- through confirmatory-phase clinical development programs, ultimately
leading to significant advances in drug development.

As technology improves, it is conceivable that informatics platforms will be
available that allow for real-time data capture, interoperability with electronic medi-
cal records (EMR), reduced dependencies on source verification, and the provision
of fully integrated statistical analysis tools that will trigger patient randomization,
monitor and dispense drug supplies, and utilize decision support methodologies to
facilitate pre-planned adaptations and futility analysis, all of which will be invisible
to the investigator, study teams, and sponsor. However, use of existing systems
available today, along with integrated process methodologies and approaches,
allows for conduct of an adaptive clinical trial.
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Given the preceding remarks, the following sections discuss some of the key
operational considerations and challenges when implementing an adaptive design.
Adaptive design implementation should not be a daunting experience, as there are
consistent best practices that can be applied at the operational level regardless of a
design method. The key to a successful trial execution will require the application
of each of the principles that will be discussed in the following section, along with
an in-depth planning stage taken place prior to study initiation. The planning stage
is a critical component for adaptive design studies and will set the stage for project
success.

11.2 Planning Stage

The planning stages for an adaptive clinical trial must be completed prior to final-
izing the decision to proceed. Adaptive designs should be considered only if they
add benefit to the overall drug development process, allow for effective operational
implementation, and provide efficiency gains, thus ensuring increased probability of
success for a given compound. Adaptive designs are not a one-size-fits-all approach
and should be carefully considered prior to implementation. Adequate planning can
take 3 to 12 months, depending on clinical trial complexities. We recommend that
the planning stage consist of three components—statistical design simulations, and
operational simulation, followed by systems integration approaches—to ensure that
all specified design requirements can be executed at the operational level. The plan-
ning and design phase requires cross-functional collaboration and should include
areas such as clinical research, biostatistics, pharmacology, regulatory, and clinical
operations. Planning and executing an adaptive design study challenges the tradi-
tional approach to clinical trial conduct and requires a fully integrated team, nontra-
ditional resourcing, and integrated informatics approaches.

There are common operational approaches that can be applied across all adaptive
design methodologies; therefore, the operational teams would benefit from under-
standing the basic types of adaptive designs that are commonly used today.

11.2.1 Adaptive Designs

An adaptive design is defined as “a multistage study design that uses accumulating
data to decide how to modify aspects of the study without undermining the validity
and integrity of the trial” (Dragalin 2006). To maintain study validity means provid-
ing correct statistical inference and minimizing operational bias, and to maintain
study integrity means providing convincing results, pre-planning, and maintaining
the blind of interim analysis results.

Flexibility does not mean that the trial can be modified any time. Modification
and adaptations must be pre-planned and should be based on data collected during
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the course of the study. Accordingly, the draft guidance of the US Food and Drug
Administration (FDA) for industry on adaptive design clinical trials defines an
adaptive design clinical trial as “a study that includes a prospectively planned
opportunity for modification of one or more specified aspects of the study design
and hypotheses based on analysis of data (usually interim data) from subjects in the
study FDA (2010).” Analyses of the accumulating study data are performed at pre-
planned time points within the study, with or without formal statistical hypothesis
testing. Ad hoc, unplanned adaptations may increase the chance of misuse or abuse
of an adaptive design trial and should therefore be avoided FDA (2010, 2012) and
EMA.CHMP (2007).

Operational teams must have a general understanding of adaptive design meth-
ods to proceed to the planning and design stage. To support this process, we have
listed six commonly used adaptive design types:

* Adaptive randomization designs. Here, alterations in the randomization schedule
are allowed depending upon the varied or the unequal probabilities of treatment
assignment. Adaptive randomization categories include restricted randomiza-
tion, covariate-adaptive randomization, response-adaptive (or outcome-adaptive)
randomization, and covariate-adjusted response-adaptive randomization.
Restricted randomization procedures are preferred for many clinical trials
because it is often desirable to allocate equal number of patients to each treat-
ment. This is usually achieved by changing the probability of randomization to a
treatment according to the number of patients that have already been assigned.
Covariate-adaptive randomization is used to ensure the balance between treat-
ments with respect to certain known covariates. Response-adaptive randomiza-
tion is used when ethical considerations make it undesirable to have an equal
number of patients assigned to each treatment. Adaptive assessment is made
sequentially, updating the randomization for the next single patient or a cohort of
patients using treatment estimates calculated from all available patient data
received so far. In this situation, it should be feasible to identify the “better”
treatment; the “better” treatment should not be associated with any potential
severe toxicity; and delay in response should be moderate allowing the adapta-
tion to take place. Covariate-adjusted response-adaptive randomization com-
bines covariate-adaptive and response-adaptive randomization. These
randomization categories and methods are reviewed by Rosenberger and Lachin
(2002) and by Hu and Rosenberger (2006). Response-adaptive randomization is
the most difficult in the execution due to its frequent update and the need of the
clean data for the randomization decisions. Chapter 10 of this book provides an
overview of the response-adaptive randomization methods and challenges.

* Adaptive dose-ranging designs. Insufficient exploration of a dose-response rela-
tionship often leads to a poor choice of the optimal dose used in the confirmatory
trial, and may subsequently lead to the failure of the trial and the clinical pro-
gram. Understanding of a dose-response relationship with regard to efficacy
and safety prior to entering the confirmatory stage is a necessary step in
drug development. During an early development phase, limited knowledge about
the compound opens more opportunities for adaptive design consideration.
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Adaptive dose-finding designs allow fuller and more efficient characterization of
the dose—response by facilitating iterative learning and decision making during
the trial. Adaptive dose-ranging designs can have several objectives. For exam-
ple, they can be used to establish the overall dose-response relationship for an
efficacy parameter or efficacy and safety parameters, estimate the therapeutic
window, or help with the selection of a single target dose. The allocation of sub-
jects to the dose currently believed to give best results, or to doses close to the
best one, has become very popular in clinical dose-finding studies—for example,
when the intention is to identify the maximum tolerated dose (MTD), the mini-
mum efficacious dose (MED), or the most efficacious dose. Examples are cited
by Lai and Robbins (1978), O’Quigley et al. (1990), and Thall and Cook (2004)
and Chevret (2006). More rigorous approaches are based on the introduction of
utility functions, which quantify the “effectiveness” of a particular dose, and
penalty functions, which quantify potential harm due to exposure to toxic or non-
efficacious doses. Examples are provided by Li et al. (1995) and Fedorov and
Leonov (2013) and Marchenko et al. (2014). Chapter 7 of this book discusses
different statistical approaches for dose selection in adaptive trials.

One of the appeals of early development adaptive designs such as adaptive
dose-ranging designs is their greater acceptance by regulatory agencies. In fact,
the FDA draft guidance on Adaptive Design Clinical Trials for Drugs and
Biologics encourages sponsors to utilize adaptive designs in early development,
to improve the efficiency of exploratory studies, as well as to gain experience
with the use of adaptive approaches.

Adaptive group sequential designs. Here, a trial can be stopped prematurely due
to efficacy or futility at the interim analysis. The total number of stages (the
number of interim analyses plus a final analysis) and stopping criterion to reject
or accept the null hypothesis at each interim stage is defined, in addition to criti-
cal data values and sample size estimates for each planned interim stage of the
trial. At each interim stage, all the data are collected up to the interim data cutoff
time point. Data are then analyzed to confirm whether the trial should be stopped
or continued. Staged interim analyses are pre-planned during the course of the
trial and must be carefully managed by the operational teams. The opportunity to
stop the trial early and claim efficacy increases the probability of an erroneous
conclusion regarding the new treatment (Type I error). For this reason, it is
important to choose the significance levels for interim and final analyses care-
fully so that the overall Type I error rate is controlled at the pre-specified level.
The stopping rules can be based on rejection boundaries, a conditional power, or
a predictive power/predictive probability in a Bayesian setting. The boundaries
determine how conclusions will be drawn following the interim and final analy-
ses, and it is important to pre-specify which type of boundary and spending func-
tion (if applicable) will be employed. The conditional power approach is based
on an appealing idea of predicting the likelihood of a statistically significant
outcome at the end of the trial, given the data observed at the interim and some
assumption of the treatment effect. If the conditional power is extremely low, it
is wise to stop the trial early for both ethical and financial reasons. While it is
possible to stop the trial and claim efficacy if the conditional power is extremely
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high, the conditional power is mostly used to conclude futility. The choice of
statistical approach and the type of boundaries should depend on the objectives
of the trial and the role of the trial in a clinical program. The timing and the num-
ber of interim analyses should be carefully considered as well. While by increas-
ing the number of analyses, the chance of stopping prior to the end of the trial
increases, many analyses during the trial might not be practical or even possible
due to the fast enrollment or financial constraints. Chapter 6 of this book gives
more detailed description of interim analyses and the suggested timing of analy-
ses. While considering stopping for the overwhelming efficacy, one should keep
in mind the implication of stopping early on the safety profile of the drug. More
details on sequential designs can be found in Jennison and Turnbull (2000) and
Proshan et al. (20006).

* Sample size re-estimation designs. These types of designs allow for sample size
adjustment or re-estimation based on observed data at an interim time point(s)
for which statistical analysis may be conducted in either blinded or unblinded
manner, based on the criteria of treatment effect size, conditional power, and/or
reproducibility probability. Sample size re-estimation can improve the outcome
of the trial if the information used to calculate the original sample size was unre-
liable; if the change is necessary due to new or additional information from an
ongoing or a finished trial; or if recent research in the therapeutic area has led to
new requirements or standards. Although the flexibility to adjust the sample size
of a trial during an interim analysis is appealing when information is limited at
the design stage, it does not come without a price. When the adjustment is made,
it is important to take steps to preserve the Type I error rate. Bretz et al. (2009)
review the adaptive design methodology including sample size reassessment in
confirmatory clinical trials. Sample size re-estimation is an adaptive design fea-
ture mostly used in confirmatory trials, and usually it is used to increase the
sample size (not to decrease). Implementation of adaptive procedures for confir-
matory trials needs to be carefully planned and executed. Similar to adaptive
group sequential designs, the number and the timing of sample size re-estimation
require additional considerations. While it is possible to perform the sample size
re-estimation multiple times, it is not recommended to perform it more than once
during the study. Careful consideration must be given to the total sample size
utilized for decision making at the planning stage and the processes that mini-
mize potential bias which may result from knowing an interim observed treat-
ment effect. In the case of unblinded sample size re-estimation, special attention
should be given to the management of Data Monitoring Committees (DMC) and
the control of the result dissemination. Chapter 14 of this book provides more
information on consideration for planning interim analyses and DMCs.

* Biomarker adaptive designs. This type of design allows for adaptation using bio-
marker information. Modifications can be made to an ongoing trial based on the
response of a biomarker that can predict a primary endpoint outcome, or one that
helps select or change a treatment. Biomarkers can be used to select a
subpopulation with an enhanced benefit from the study treatment. Wang et al.
(2007) describe approaches to evaluation of treatment effect in randomized trials
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with a genomic subset. Designs that can be used to perform the subgroup search
and identifications based on biomarkers are discussed in Lipkovich et al. (2011)
and Lipkovich and Dmitrienko (2014). Stallard (2010) describes a seamless
phase II/III design based on a selection using a short-term endpoint; Jenkins et al.
(2011) present an adaptive seamless phase II/III design with subpopulation selec-
tion using correlated endpoints; and Friede et al. (2012) introduce a conditional
error function approach for subgroup selection. Statistical designs that are used
to screen biomarkers, validate biomarkers, and enrich the study population based
on a biomarker or several biomarkers are of great interest to our industry and
society. It should be kept in mind that there is still a gap in clinical development
between identifying biomarkers associated with clinical outcomes and establish-
ing a predictive model between relevant biomarkers and clinical outcomes.

* Adaptive seamless phase II/IIl designs. Seamless phase II/III designs have
become more popular in drug development. Such designs aim to reduce the over-
all sample size by allowing the data from phase II patients to be used in phase III
analysis (inferentially seamless) and/or eliminating the time between phases,
which results in a shorter total drug development time (operationally seamless).
An adaptive seamless phase II/III design is a two-stage design consisting of the
so-called learning stage (phase II) and a confirmatory stage (phase III). Just as
there are a number of phase II designs, there are a number of corresponding
phase II/IIT designs. Seamless designs pose a lot of challenges as the time for
planning a confirmatory trial is eliminated or rather combined with the planning
time of phase II when the information is limited and the uncertainties of the treat-
ment are bigger. A sufficient benefit should be expected from the combined
phase II/III trial as compared to the strategy with a phase II trial followed by a
separate phase III trial. In order to retain the validity, a Type I error control is
important for the inferentially seamless designs. Approaches based on the com-
bination test principle that combines the stagewise p-values using a pre-specified
combination function or on the conditional error principle which computes the
Type I error under the null hypothesis conditional on the observed data at interim
are used to control Type I error rate. Bretz et al. (2009) provide a comprehensive
review of the methods and offer practical considerations.

More details and references on types of adaptive designs can be found in Chap. 1
of this book.

11.2.2 Trial Design and Planning

The design planning session is a critical element of the initial planning phase, for
which several design sessions may be required until the design is finalized. Design
sessions should include representation from key functional areas. The power of
visualization tools cannot be underestimated and is strongly recommended during
the planning and design stage. Computer-assisted simulation modeling, traditional
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business process modeling (BPM) techniques, and other software tools should be
used during this stage to support the project teams’ understanding, development,
and optimization of the proposed trial, the critical data elements for collection, and
predicted data flow during the course of the trial. Business process modeling is an
activity that allows for the representation and documentation of key clinical trial
activities, so that proposed operational processes may be analyzed and optimized.
In this capacity, business process modeling is a useful tool that allows for the opti-
mization of complex operational processes that are critical to the successful execu-
tion of an adaptive design. Simulations and business modeling diagrams should
map all operational activities from study start-up, through patient recruitment and
corresponding data collection, and to all pre-specified interim time points for data
analysis and decision making, allowing the team to assess the impact of the desired
design on clinical operations (e.g., drug supply, treatment assignment, sample size
re-estimation). Simulations and diagrams will thereby permit optimization of clini-
cal trial operations and finalization of the design. In addition, access to metadata to
address many of the design and operational questions will assist in finalizing the
clinical development and implementation plan.

The planning team should have an understanding of the drug candidate, mecha-
nism of action, target product profile (TPP), and commercialization requirements in
addition to the existing and future competitive landscape. Such understanding facil-
itates 