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Preface

This volume contains the proceedings of the 5th International Conference on
Mathematical Knowledge Management (MKM 2006) held August 10-12, 2006 in
Wokingham, UK. Previous international MKM conferences were at Hagenburg,
Austria (September 2001), Bertinoro, Italy (February 2003), Bia�lowieża, Poland
(September 2004), and Bremen, Germany (July 2005).

Mathematical knowledge management (MKM) is an emerging interdisci-
plinary field of research in the intersection of mathematics, computer science,
library science, and scientific publishing. Its main objective is to develop new
and better ways of managing mathematical knowledge using sophisticated soft-
ware tools. Two other important aims are to obtain a better understanding of
the nature of mathematical knowledge and to investigate new modes of con-
suming and producing mathematical knowledge. The MKM conferences bring
together mathematicians, software developers, users of mathematics, librarians,
publishers, and educators who are interested in advancing the management of
mathematical knowledge.

MKM 2006 received 22 submissions. Of these, 20 were reviewed by three Pro-
gram Committee members or external reviewers and two were reviewed by two.
The reviews were exceptionally positive, and as a result, the Program Committee
decided to accept 20 papers for presentation at the conference and publication
in this proceedings volume.

We would like to thank Gregory J. Chaitin and Abdou Youssef for agree-
ing to give invited talks at MKM 2006. This volume includes an abstract of
Dr. Chaitin’s talk and a full written version of Dr. Youssef’s talk. We are also
grateful to the Program Committee and the external reviewers for their review of
the submissions and to the Conference Chairs, Andrew Adams and Paul Cairn,
for taking care of the local arrangements. We used the EasyChair conference
management system, developed by Andrei Voronkov, to facilitate the paper sub-
mission, the review process, and the preparation of the proceedings. EasyChair
performed beautifully and saved us a huge amount of time.

June 2006 Jonathan M. Borwein
William M. Farmer
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The Omega Number:
Irreducible Complexity in Pure Math

Gregory J. Chaitin

IBM Research, Yorktown Heights, NY 10598, USA
chaitin@us.ibm.com

Abstract. We discuss the halting probability Ω, whose bits are irre-
ducible mathematical facts, that is, facts which cannot be derived from
any principles simpler than they are. In other words, you need a math-
ematical theory with N bits of axioms in order to be able to determine
N bits of Ω. This pathological property of Ω is difficult to reconcile with
traditional philosophies of mathematics and with traditional views of the
nature of mathematical proof and of mathematical knowledge. Instead Ω
suggests a quasi-empirical view of math that emphasizes the similarities
between mathematics and physics rather than the differences.

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, p. 1, 2006.



Roles of Math Search in Mathematics�

Abdou Youssef ��

Department of Computer Science, The George Washington University,
Washington DC 20052, USA

ayoussef@gwu.edu
http://www.seas.gwu.edu/~ayoussef/

Abstract. Math-aware fine-grain search is expected to be widely avail-
able. A key question is what roles it can play in mathematics. It will
be argued that, besides finding information, math search can help ad-
vance and manage mathematical knowledge. This paper will present the
short-term goals and state of the art of math-aware fine-grain search.
Afterwards, it will focus on how math search can help advance and
manage mathematical knowledge, and discuss what needs to be done to
fulfill those roles, emphasizing two key components. The first is similarity
search, and how it applies to (1) discovering and drawing upon connec-
tions between different fields, and (2) proof development. The second
is math metadata, which math search will surely encourage and benefit
from, and which will be pivotal to mathematical knowledge management.

1 Introduction

Since the advent of the Worldwide Web, serious efforts have been undertaken
to create digital libraries of mathematical contents, and to develop languages,
tools, and systems for faster dissemination and processing of such contents
[1,3,5,11,12,13,14,16,20,21,28,31,32,33,36,21,22]. For digital libraries of mathe-
matics to serve their purpose fully, users need to be able to search easily and ef-
fectively, especially for equations, functions, structures, proof patterns, and other
kinds of fine-grained mathematical constructs. Although text search has reached
a high level of maturity [38,34], mathematical expressions are highly symbolic
and structured, and are not curreently searchable by the available text-search
systems.

Field-based search systems are now widely deployed in several mathematics
databases and by many mathematical content providers, such as Zentralblatt’s
ZMATH and MathDi [40,23], the Jahrbuch Database [15], AMS’s MathSCiNet
[2], and various professional mathematical socities. These systems afford users
more targeted search, such as search by author, subject, title, abstract, journal,
series, reviewer, review text, and the like. Standard subject classifications, such

� This work was supported in part by The National Foundation Grant No. 0208818.
�� Some of the work was done as part of the DLMF Project at the National Institute

of Standards and Technology, USA.

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, pp. 2–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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as MSC 2000 [30], helps to a considerable extent in focusing the search. Neverth-
less, like text-search systems, the current field-based search systems are neither
meant nor able to provide access to fine-grained mathematical data.

It will probably be much more useful to the mathematical and scientific com-
munities to have math-aware fine-grain search systems. The author has been
conducting research and development on that kind of search [29,39]; much of
that effort is part of the Digital Library of Mathematical Functions (DLMF)
project [18,19,29]. The immediate goal of the research on math search is to cre-
ate math-aware systems that (1) enable users to search not only for text, but
also for fine-grain mathematical data, such as equations, functions, and struc-
tures; and (2) allow users to express math queries naturally and easily, using the
notation and idiom of mathematicians and scientists.

Math-aware fine-grain search holds considerable promise for the short term
and the long term. For the short term, it will help users fulfill momentary in-
formation needs. Whenever a user needs information about a specific mathe-
matical item, s/he formulates and submits a query to the search system, which
processes the query and returns a number of matching hits, ranked by relevance
(or by some other user-specified criteria). The user will then browse through
the returned hits, looking for the truly relevant ones which satify the need that
prompted the search. At times, the user may have to refine their queries and
repeat the search cycle. However, it is expected that the math-awareness of the
search system is likely to identify much more relevant matches, and the fine-grain
nature of the search leads to hits that point to small-size units of information.
These two outcomes will greatly reduce the amount of time a user spends on
searching and browsing through hits to find what is needed, and thus enable the
user to return quickly to the main task at hand.

For the long term, math-aware fine-grain search holds promises that have
potentially broader scope and greater impact. Specifically, it will be argued in
this paper that such a search capability can contribute to the advancement and
management of mathematical knowledge. For example, math-aware search can
be used to find similarities between a piece of mathematics being developed,
on the one hand, and proved theorems and well-developed theories in the same
or different fields of mathematics, on the other hand, thus pointing the mathe-
matician to fruitful methodological directions and interesting connections (note:
two expressions or patterns are similar if some appropriately defined distance
between their structures is below a certain threshold). Furthermore, through
similarity search, it is possible to provide interactive computer-aided proving
(CAP), either as a standalone system or as a complement to proof planning
systems (e.g., λClam [6,9] and Omega [4,26,27]). In the standalone mode, a
CAP system can, by constant monitoring of an evolving proof or at the prompt-
ing of a user, automatically search for similar proof patterns, and thus peri-
odically suggest to the mathematician relevant strategies, tactics, and/or logic
rules that can be applied to further the proof. In the other mode, as a compo-
nent of a proof planning system (PPS), math-aware fine-grain search can help
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the user first find initial plans of proof (of “similar” theorems), and later in the
proof process find refinement tactics, all through ongoing search for similar plans
and tactics against either a standalone knowledge base or Web-accessible math
repositories of appropriately marked up contents and proof patterns. These and
other potentialities of math-aware fine-grain search will be discussed later in the
paper.

With regard to contributing to mathematical knowledge management, math-
aware fine-grain search can help classify manuscripts. The search, in a semi-
or fully-automated classification environment, can be used to find similarities
and associations between different manuscripts. Using the similarities and asso-
ciations, a librarian or a system can classify and characterize (with metadata)
a previously uncategorized document, by borrowing the classes and descriptive
metadata of the search-discovered similar documents. Furthermore, in a radical
departure from current practices, this process of classification and metadata-
enrichment can and sould be done at fine ganularity — at the level of equations,
functions, structures, proof patterns, and the like. This can be done by and for
math-aware fine-grain search.

It is evident from the above that similarity-search and metadata are funda-
mental to those envisioned long-term roles of math search, and to the symbiotic
relationship between search, management, and advancement of mathematical
knowledge. Similarity-search, a fairly developed area in data mining applica-
tions [37], is a new area in math search, and will be discussed later in this paper.
As for metadata, international, professional, and academic efforts towards de-
veloping math metadata have been initiated, such as the MathNet project in
Germany [25], and the activities of the International Mathematics Metadata
Task Force (and its affiliated American task force) [24]. The planned metadata
of those efforts seem to be at a coarse-grained level: at the level of books, articles
and manuscripts. The benefits of such efforts towards improved access, dissemi-
nation, and management of mathematical knowledge, will be considerable. They
will be even greater if the metadata is at a fine-grain level. Of course, providing
metadata at any level, but especially at a fine-grain level, is a daunting task.
Therefore, automatic generation of metadata is indispensable.

This paper will address the short-term and long-term objectives, roles and
capabilities of math-aware fine-grain search. Specifically, the paper will identify
the main aspects and pertinent issues, present the state of the art, and, where
possible, outline approaches to follow.

2 Math-Aware Fine-Grain Search

This section will address the basic objectives, and issues, and state of the art of
math-aware fine-grain search.

As a result of the work on and experience with the development of math search
on the DLMF, the author has identified some key objectives that math search
systems ought to meet, at least to a significant extent. The next subsection
describes those objectives.
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2.1 Basic Objectives of Math Search

1. Math-awareness: Much of the mathematical knowledge is embodied in
mathematical symbols, elaborate notations, and structures of various lev-
els of complexity. So for math-search systems to be effective, they have to
recognize mathematical symbols and structures.

2. A natural math-query language: A math search system must provide
an intuitive yet expressive math query language. Users in the mathematical
and scientific communities should be able to express their queries in the
same way as they would write other mathematical expressions, such as in a
Latex-like syntax. Table 2.1 shows several examples of queries and describes
the corresponding matching records.

3. Fine granularity of searchable and retrievable information units:
With the vast and fast-increasing amount of mathematical knowledge avail-
able for electronic access, it is desirable to search for the most targeted
information, be it an equation, an integral, a differential equation, a Fourier
transform of a function, a definition, a graph, a theorem, a proof technique,
etc. If such is the size (granularity) of what a user needs in a given situation,
it would be a waste of the user’s precious time to provide him/her a larger
amount of information and expect him/her to sift through it to locate the
relatively tiny piece of interest. Therefore, an important objective of math
search is to aford users the ability to search for and retrieve fine-grain tar-
gets. (A target or record is any searchable and retrievable information unit
in a database.)

4. Perfect recall: Recall is a standard metric in all search systems; the recall
per query is defined to be the ratio of the number of relevant hits to the
total number of relevant targets in the database. It is a universal objective
of search to maximize recall. That is, every target that matches a query must
be included in the hitlist.

5. Perfect precision: Like recall, precision is another performance metric of
all search systems; the precision per query is defined to be the ratio of the
number of relevant hits to the number of hits in the hitlist. Every attempt
should be made to maximize precision. That is, every hit in the hitlist must
match the query; the hitlist should not contain any false hits.

6. Perfect relevance-ranking: Ideally, if hit A is more relevant than hit
B, then A should appear before B in the hitlist. In particular, the most
relvant hit(s) must appear on top of the hitlist, or at least near the top.
This objective is particularly pressing because of the very large and ever
increasing number of potentials hits.

7. Useful highlighting: Highlighting within a retrieved target should be done
in a way that informs and justifies to the user why the target matched,
and which specific parts matched. For very fine-grained targets, such as an
equation or a graph, highlighting is not so critical, but for large-grained
targets such as an article or manuscript, highlighting is very desirable to
help the user identify quickly the more relevant parts of the hit.

8. Minimum hit-redundancy: In systems where targets at different levels of
granularity are available, some targets may be subsets of other targets, such
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as a separately accessible equation that is a part of a separately accessible
section. In such environments, redundant hits are possible. For example, if
target A is a subset of target B, and if B matches a query only because A
matches the query, then presenting both A and B as two separate hits in the
hitlist constitutes redundancy. Hit A should be presented, and B should be
left out. The objective is to eliminate redundancy. If that is too costly, an
attempt must be made to reduce the effect of redundancy; for example, have
hit B appear much later than hit A in the hitlist. Note that if the targets are
disjoint, no redundancy should arise; redundant hits would be a reflection of
poor system design.

Table 1. Examples of Queries

Query Matching Records

sinˆ2 x+cosˆ2 x Those containing the expression sin2 x + cos2 x
J_n(z)= Those containing the fragment “Jn(z) =”
Gamma(1/2)= Those containing “Γ( 1

2 ) =”, for the values of Γ( 1
2 )

sqrt(Aiˆ2+Biˆ2) Those containing the expression
√

Ai2 + Bi2

ˆ(x+2) Those containing x + 2 as an exponent
intˆinfinity Those containing

� ∞

int (sin x)/x dx Those containing
� sin x

x
dx

DeMoivre and cos (n theta) Those containing both “DeMoivre” and cos(nθ)
“Fourier transform” and Those showing Fourier transforms of spheroidal

spheroidal functions, in addition to those containing
the terms “Fourier transform” and “spheroidal”

Ai and Bessel Those showing connections between Airy Ai
and Bessel functions, in addition to those
containing the terms “Ai” and “Bessel”

Ai = BesselK Ideally, those containing equations expressing the
Airy Ai function in terms of the Bessel function K

2.2 Issues and Policy Decisions

In meeting those objectives, several fundamental issues must be faced and some
policies for resolving them must be implemented. Here are some of the more
important issues and challenging policy decisions that have to be handled.

– Target definition and granularity: The designer must define what should
be a searchable and retrievable target, and decide on the appropriate gran-
ularities of targets.

– Literal vs. abstract understanding and weighting of query terms:
Mathematics is rife with abstraction and levels of abstraction. As a simple
example, the name of a function argument is not to be taken literally, whereas
the standard name of an elementary function or a special function should be
taken literally. Another aspect is whether users can characterize rather than
specify the terms that must occur in the matching targets. For example,
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can users enter “trigonometric” to stand for any term that is the name of a
trigonometric function?

– Whether to return mathematically equivalent hits, and to what
extent: Many a mathematical concept or expression can be expressed in
several equivalent forms. The question is whether or not documents that do
not contain a literal match of a query expression but contain an equivalent ex-
pression should be returned as hits. If the search is for “sin(π

2 −x)”, should the
system return documents containing the equivalent expression “cosx”? How
about if the query is “ 1

x” and a document contains “x−1”? Some equivalences
are so commonplace that users may wish them to be detected and matched
in search, while other less familiar equivalences would cause confusion if
detected and matched. The extent of equivalence-awareness in search is a se-
rious design decision. Of course, the implementatioin of “deep-equivalence”
awareness is a major task that requires sophisticated mathematical reasoning
algorithms.

– Determination of the intented meaning of a user’s query: There is
considerable “overloading” of names and notation, i.e., the same symbol re-
ferring to different things in different contexts. For example, the zeta symbol
(ζ) can refer to the Jacobi zeta function, the Weierstrass zeta function, the
Riemann zeta function, or a generic symbol with no specific denotation. If a
user includes zeta in a query and has a specific context in mind (e.g., number
theory) but that context is not communicated in the query, the system will
have no way of determining which zeta occurrences to match, or how best
to rank the hits, creating a likely situation of high user dissatisfaction with
the results.

All but the first point above involve the extremely challenging problem of de-
termining the user’s intent and wishes, without soliciting too much information
per query from the user. Decision policies are needed in order to make ”edu-
cated guesses” about the user’s intent and wishes from the limited information
provided in the query, and, accordingly, to determine what targets are truly rel-
evant and how to relevance-rank the various hits. For more accurate assessment
of relevance, the context of the search must be determined, such as the user’s
field and level of expertise, and the area of interest at the time of the search. It
is worth noting that relevance is a relatively old, open question in the general
field of text information retrieval (IR) [35], and the issue of context-based search
is a current research topic with considerable interest in the IR community [17].

2.3 State of the Art of Math-Aware Fine-Grain Search

As mentioned in the Introduction, all search systems deployed by the current
mathematics databases and mathematical content providers are conventional
coarse-grain field-based text search systems with little math-awareness. In math-
aware search, some work has started to appear. Recently, Guidi et al published
papers on a math query language MathQL [12] and related searching techniques
[11], both of which are for RDF metadata repositories, where RDF is the XML-
based metadata markup language standard. The MathQL syntax is a markup



8 A. Youssef

style that is advanced in its expressive power, and requires the users to be ad-
vanced mathematicians. An earlier effort in math-aware fine-grain search is the
work by Einwohner and Fateman [10], which was limited to integral-lookup.

The most recent work on math-aware fine-grain search is the work on the
DLMF search [29,39]. All the eight objectives presented in Subsection 2.1 have
been met to a large extent. The resulting system, to be deployed in the near
future, is fully math-aware and supports search and access to fine-grain targets
such as equations, figures, tables, definitions, and named rules/theorems. It al-
lows users to submit queries with Latex-like syntax. It achieves perfect precision
and recall as far as term-occurrence search is concerned; also, through meta-
data enrichment, additional relevant hits are matched beyond literal occurence
of terms. Relevance ranking is satisfactory, and is being improved. Small-grain
targets (such as equations and figures) are highlighted when displayed within
larger documents (such as sections). Finally, redundancy is greatly minimized,
and when users restrict the search results to a specific type (such as equations
or figures), no redundancy arises.

3 Objectives and Roles of Math Search in the Long Term

Beyond the conventional search for documents, it is envisioned that math search
can fullfil higher-level and farther-reaching roles. This section will discuss some
of those roles.

3.1 Discovery of Similarities Between Fields

Research in an evolving new field (or sub-field) may discover preliminary pat-
terns and laws that happen to be similar to those in older, more established
fields. Early discovery of such similarities may suggest new patterns, laws, and
properties, which are well-established in the older fields, to explore in the context
of the new field. Also, proven useful methodologies in the older fields may ap-
ply to the new field fruitfully. The bridging and borrowing apply to both broad
methodologies and specific proof techniques & patterns.

Math search can help in the discovery of such similarities — as long as the
content repositories are well-formatted, adequately marked up, and accessible.
Section 4 will discuss methods of discovering and measuring mathematical simi-
larities. (Recall from the Introduction that two expressions or patterns are similar
if some appropriately defined distance between their structures is below a certain
threshold. That is, the two expressions/patterns are similar if their structures
are identical or near-identical.)

Suffice it to say at this point that a search-driven technology of similarity-
discovery is likely to increase productive interdisciplinary activities, not only
between mathematicians of different specialties, but also between mathemati-
cians and researchers in the natural and even social sciences. Indeed, it is often
the case that scientists, who are in other disciplines than Mathematics and hap-
pen to be engaged in some mathematical work related to their disciplines, need
to know what mathematical theories and knowledge can help them advance their
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fields, and which mathematicians are doing such work and can thus be invalu-
able collaborators. A math-similarity search capability can help such scientists
locate relevant mathematical work and potential collaborators.

3.2 Computer-Aided Proving

A second major role that math-aware fine-grain search can play is computer-
aided proving (CAP). That can take at least two shapes: (1) a straightforward
online computer-aided proving (O-CAP) role, and (2) a more elaborate interac-
tive real-time computer-aided-proving (R-CAP) role. Both are discussed next.

Online computer-aided-proving. A user engaged in developing a proof for a
theorem can, at various junctures of the proof development, submit expressions
and Logical patterns (from the evolving proof) as queries. Matches may contain
“identical” or similar proofs that are complete and valid; such proofs can then
be mimicked, or learned from, to complete the proof at hand in an analogy-
driven fashion. Also, atomic entities, expressions, and possible patterns from
the premises (or conclusions) of the to-be-proved theorem can be submitted as
queries, to search for similar theorems; the corresponding proofs may serve as
a good aid to the proof at hand. Note that this O-CAP functionality is easy to
have and use, for it is nothing more than straightforward math-aware fine-grain
search.

Real-time computer-aided-proving. This is similar to O-CAP except that
no explicit queries need be formulated and submitted by the user. Instead,
a software system will, in the background and during the course of a proof-
development, carry out the following steps:

1. monitor the evolving proof;
2. formulate&submit queries (from the expressions and logical patterns present

in the partial proof);
3. search for similar expressions and logical patterns
4. evaluate, rank, and distill the returned matches; the distilling involves

– identifying the known properties of entities (e.g., functions and opera-
tors) and of the premises/hypotheses; the entities and premises are those
that are in the theorem or in the emerging proof.

– identifying intermediate theorems/lemmas, as when the query consists
of premises (from the original theorem or the emerging proof), and the
matching hit is a theorem with the same premises; the conclusions of
those matching theorems, and possibly their proofs, as well as biblio-
graphic references to them, will be among the distilled materials pre-
sented to the user.

5. report the distilled results in real time as suggested directions (tactics) and
intermediate sub-conclusions to the mathematician that is developing the
proof;

6. repeat this cycle (steps 1-5) throughout the proof development, until the end
of proof.
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Note that in Step 3 of the R-CAP cycle, as well as in O-CAP, the search
can be conducted not only against a local knowledge base, but also against all
kinds of math repositories. For this to work, the math repositories must be well-
formatted, adequately marked up, and indexed for searching. Such repositories
are growing in size and number. They include: the DLMF [18,19,29]; MBase [16];
Mizar (at mizar.org); and so on.

An R-CAP implementation can be very much like integrated development
environments (IDEs), which are very widely used by software developers in the
computer science community. (Good Latex editors are small instances of IDEs).
In an IDE, static and locational dynamic menus are available. The static menus
offer fixed services and functionalities. Dynamic menus are menus whose items
change depending on the context, and are populated by search systems working
in the background; those menus pop up when the user mouses over certain words
or commands in the file, or when the user types up the first few characters of
certain patterns. An R-CAP IDE can behave in similar ways by popping up
dynamic menus containing suggestions for new logical patterns/tactics/rules to
follow, and those suggestions vary depending on where in the proof the user is,
and what premises and intermediate conclusions have been put in the proof.
The suggestions in the dynamic menus will be constantly gathered and updated
by the R-CAP math search, which is working in the background. The search
items that populate the dynamic menus in typical IDEs are usually obtained
from search against an internal database as well as against the opened file. In
an R-CAP IDE, however, the search can be extended beyond a local knowledge
base (KB) and the opened file, to include Web-accessible knowledge bases; the
user of the IDE would also have the configuration option of specifying which
specific external KBs to make use of.

CAP as presented above bears a strong relation to proof assistants and proof
planning systems in particular. Proof planning was introduced by Alan Bundy
for inductive theorem proving [6,7], and was implemented in the systems Clam
λClam, and IsaPlaner [8]. The Omega system [4,26,27] extended Clam’s proof-
planning paradigm to knowledge-based proof planning. Proof planning systems
start with an abstract-level proof plan, and then ”carry out” the abstract-level
plan, interactively (with the user) and recursively when needed, by expanding
the steps into concrete sequences of logical steps.

Therefore, the proof-planning approach (of Omega and Clam) to proving is
primarily top down: from an abstract proof-plan to a final detailed proof. The
search-driven R-CAP approach, described above, is fundamentally an incremen-
tal, bottom-up approach, driven mainly by the direction that the mathematician
is taking in the proof, but at the same time helping the mathematician to further
that direction along, or suggesting alternative tactics and patterns as a result of
similarity search.

3.3 Learning Aid

In addition to its research-furthering roles, math search can be used by math
& science educators and students for educational purposes: finding what they
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need, and learning from what they find. It is an obvious and natural role of any
search system.

In the context of math education, however, some issues arise. One important
issue is the relationship between the granularity of the retrieved information, on
the one hand, and the information need and the educational level of the user, on
the other hand. For example, if a physicist is seeking the value of an integral or the
general solution to a specific differential equation, the search results should be at
the level of an equation, rather than the title of a book about the subject. Likewise,
if a novice wishes to learn about number theory, the search results should be books
and perhaps articles about the subject, rather than stand-alone equations about
the Riemann ζ function or the Euler ϕ function. The notions of relevance and
context-based search mentioned earlier are pertinent here.

Another issue is how best to integrate math-aware search into math learning
systems in a synergistic fashion. Like many of the ideas discussed in this paper,
this integration topic is in its infancy, and will require considerable research.

3.4 Routing

Routing is the process of informing users (or subscribers) of the latest infor-
mation that match a pre-determined query specified by the user, as soon as
the information becomes available. Math search can be used to stream to a
mathematician all articles and manuscripts that match the mathematician’s pre-
specified query (or queries) whenever and as soon as the information becomes
available. The source of the information can be professional societies, publish-
ers, or researchers posting their manuscripts on their institutions’s Web sites.
The system(s) to do the routing can be centralized systems on the information
providers’ Web servers, or federated systems that periodically ”crawl” the Web
(or at least certain specific sites) searching for newly posted information. Either
way, math search must be a central component of the routing system, and the
posted information must be formatted and marked up adequately, and indexed,
in order for the background searching to take place and the search results to
be routed to the appropriate users, each according to his or her pre-specified
queries.

4 Methods for Discovering and Measuring Similarity

As seen throughtout the paper, similarity search is useful in many contexts. It
is referred to sometimes as approximate search or fuzzy search. Before one can
proceed further, a formal definition of similarity is called for.

Definition 1. Given a distance metric d in the “space” of mathematical expres-
sions or patterns, and given a threshold h, two expressions or patterns E1 and
E2 are said to be h-similar if d(E1, E2) < h.

Two remarks must be made. First, the distance d need not be a distance in
the strict topological sense, nor the “space” of expressions or patterns need
necessarily be a topological space. Rather, d should satisfy the two properties
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d(E1, E2) ⇔ E1 = E2,

d(E1, E2) = d(E2, E1)

But the triangle inequality is not essential.
Second, the actual definition of the distance d must capture, to the extent

possible, the intuitive subjective notion of (dis)similarity between expressions
or patterns. For example, x2 + y2 and cos2 θ + sin2 θ are intuitively similar ex-
pressions, whereas x2 + y2 and

∫
xdx are quite dissimilar. Also, d must capture

comparative information about similarity, that is, if E1 is more similar to E2
than F1 is to F2, then we should have d(E1, E2) < d(F1, F2). For example, one
would expect that d(x2 + y2, u2 + v2) < d(x2 + y2, x2 + y).

Ideally, the distance d should be sensitive to the notion of different levels of ab-
straction. Specifically, if an expression E is an abstraction of another expression
F , and F is in turn an abstraction of G, then one should have:

d(E, F ) < d(E, G), and d(F, G) < d(E, G).

Furthermore, if E and F are mathematically equivalent expressions but have
different structures, as is the case for the two expressions (x+1)2 and x2+2x+1,
then one would expect that d(E, F ) = 0. This expectation, however, assumes
that the similarity system incorporates the detection of logical equivalence and
value-equavalence, which is a rather difficult problem of symbolic computation
and automated mathematical reasoning. Therefore, for pragmatic reasons, one
may wish to leave out the requirement that d(E, F ) = 0 ⇔ E ≡ F , although
preserving it can lead to much more interesting similarity results, at the cost of
much more computationally intensive similarity measurement.

With all those considerations in mind, one approach to quantifying similar-
ity (or distance) between mathematical expressions and patterns is by modeling
expressions as parse trees with node labels that represent the names of func-
tions/operators in the expression. Similarity (or distance) can then be defined
using the structures and node labels of the trees. The more nodes with like-
labels in the two trees, the more similar the trees. Also, the more sub-trees
of identical structures that the two trees share in common, the more similar-
ity there is. Similarity between the internal (non-leaf) nodes in the two trees
is more important than similarity between the labels of the leaves in the two
trees, because leaves often represent arbitrary variable names, while non-leaves
represent essential operational and structural information of a math expression.
Also, structural and label similarities higher up the two trees are often more im-
portant than those further down the trees, because the ”fundamental” structure
of a formula/expression is reflected more near the root of the parse tree. These
differences in importance suggest weighted measures of similarity, where higher
nodes and higher subtrees are assigned more weight than the lower ones.

The precise development of those ideas of quantifuing similarity, and the de-
velopment of algorithms for measuring similarity (or distance), are subjects of
ongoing research in the author’s research group.

One final note is that once one has an adequate definition of similarity
(or distance) and a good algorithm for computing the distance between two
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expressions/patterns, it is straightforward to incoporate the distance and its
algorithm into math-aware fine-grain search systems for performing similarity
search, at whatever level of desirable similarity (as specified by the threshold h).

5 Approaches for Generating Fine-Grained Metadata

In most application, metadata is generated manually. In fact, in many instances,
metadata is extrinsic to the object being described, such as the date and journal
of a publication; therefore, such metadata cannot be derived in any other way but
manually. Fortunately, extrinsic metadata is small in size, and need be enetered
at the coarse-grain level (i.e., at the level of books, articles and manuscripts). In
the case when the metadata describes something intrinsic, such as the properties
of a certain function, the properties may be so complex and intricate that only
the author or a domain expert is in a position to unearth them and state them
explicitly. For the sake of fine-grain search, the metadata will have to be entered
at the level of equations, definitions, functions, proof patterns, and the like. The
metadata must also to be marked up properly so search systems can make use
of them. Both the metadata generation & entry, and the marking up, are time-
intensive tasks that few authors would be willing to do. Therefore, it is preferable
to automate the math-metadata generation process.

Most mathematical functions and concepts enjoy many properties and fall un-
der a hierarchy of mathematical categories. To illustrate, assume that an equa-
tion (or math file) E has the cosine function ”cos” in it. This function falls in
the category of trigonometric functions, which is a subcategory of elementary
functions, which in turn is a subcategory of special functions. It also enjoys the
property of periodicity, among other things. Recall from earlier discussions that
such properties are desirable to have as metadata. A user may wish to search
for equations that have, among other things, periodic functions (or trigono-
metric functions, etc.). Clearly, even if the equation/file E does not contain
explicitly any of those terms or phrases (”periodic functions” or ”trigonometric
functions”), E is a relevant object and should be returned as a hit. But without
metadata, this is not possible.

We have developed a knowledge-based approach to generating metadata.
First, a knowledge base was compiled, consisting of standard math functions and
operators, on the one hand, and associated metadata on the other hand. Specifi-
cally, for every function and operator in the KB, the corresponding metadata is a
set of descriptive phrases that name the properties that the function/construct
enjoys, and the mathematical categories that the function/construct falls un-
der. Afterwards, we developed algorithms that, for each equation and math ex-
pression, generate from the KB a combined list of the descriptive phrases of
all the functions and constructs that occur in that equation/expression, and
treat that combined list as metadata for that equation/expression. The ap-
proach was enhanced further through using the context of a math expression
to derive additional metadata phrases. Specifically, the titles of the containing
sections/subsections, the captions of the containing tables, and similar headers,
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can be used as sources of additional metadata. However, care must be taken
when using context information, because every item of information in the con-
text applies to every equation or expression in that context. For example, if the
title of a subsection is ”Fourier and Laplace Transforms”, and the subsection
contains several equations, some being Fourier transforms, and others Laplace
trasnforms, then latching the entire title of the subsection to each equation in
the subsection leads to inaccuaries.

A more powerfull approach to automated fine-grain-metadata generation de-
rives ”higher-order” metadata from the structure of an equation/expression, not
just from the functions and constructs that occur in it. For example, the Fourier
transform has a recognizable expression structure; an algorithm can be writ-
ten to search for such structures in equations and expressions, and wherever
found, associate the metadata phrase ”Fourier transform” with the contain-
ing equations/expressions. This higher-order metadata generation requires (1)
defining structural patterns (and their characteristics) for a number of mathe-
matical constructs, such as the Fourier transform, the Laplace transform, (par-
tial/ordinary) differential equations, recurrence relations, and so on; and (2)
developing algorithms for recognizing such structural patterns in math expres-
sions so corresponding metadata can be associated with them. One method for
expression-structure recognition is to use expression parse trees, specifically their
structures and the internal (i.e., operation) node labels, as templates for pattern
recognition & classification.
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Abstract. Isabelle/Isar is a generic framework for human-readable formal proof
documents, based on higher-order natural deduction. The Isar proof language pro-
vides general principles that may be instantiated to particular object-logics and
applications. We discuss specific Isar language elements that support complex
induction patterns of practical importance. Despite the additional bookkeeping
required for induction with local facts and parameters, definitions, simultaneous
goals and multiple rules, the resulting Isar proof texts turn out well-structured
and readable. Our techniques can be applied to non-standard variants of induc-
tion as well, such as co-induction and nominal induction. This demonstrates that
Isar provides a viable platform for building domain-specific tools that support
fully-formal mathematical proof composition.

1 Motivation

1.1 The Isar Philosophy

Isabelle/Isar [15, 16, 7, 17] is intended as a generic framework for developing formal
mathematical documents with full proof checking. The Isabelle/Isar system is well inte-
grated with existing theorem prover interface technology [1] and document preparation
based on PDF-LATEX.1 The main objective is the design of a human-readable structured
proof language, which is called the “primary proof format” in Isar terminology.

Such a primary proof language is somewhere in the middle between the extremes of
primitive proof objects and actual natural language. In this respect, Isar is a bit more
formalistic than Mizar [12, 10], using explicit logical connectives for certain reasoning
schemes where Mizar would prefer English words; see [19, 18] for further compar-
isons of these systems. We argue that any effort of building a library of formalized
mathematics heavily depends on a reasonable notion of structured proofs — the Mizar
Mathematical Library [6] provides some empirical evidence for this.

So Isar challenges the traditional way of recording informal proofs in mathematical
prose, as well as the common tendency to see fully formal proofs directly as objects of
some logical calculus (e.g. λ-terms in a version of type theory). In fact, Isar is better
understood as an interpreter of a simple block-structured language for describing data
flow of local facts and goals, interspersed with occasional invocations of proof methods.
Everything is reduced to logical inferences internally, but these steps are somewhat
marginal compared to the overall bookkeeping of the interpretation process. Thanks to

1 In fact, the present paper has been prepared as an Isabelle/Isar theory document, which means
that the proofs and proof outlines encountered here have been checked by the system.

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, pp. 17–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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careful design of the syntax and semantics of Isar language elements, a formal record
of Isar instructions may actually appear as an intelligible text to the attentive reader.

Consuming well-structured Isar proofs is less demanding than producing them in the
first place. The main effort is to get started with new formalizations, while modifying
existing proofs is much easier. With sufficient background material available, a proof
author will first consume previous developments, and then produce some derivative
work. This general procedure is taken for granted in science, but is not quite estab-
lished yet in formal theory development — despite the relative success of the Mizar
Mathematical Library.

1.2 Generic Natural Deduction

Isabelle/Isar is based on the existing logical framework of Isabelle/Pure [9], which pro-
vides a generic platform for higher-order natural deduction. The generic approach of
Pure inference systems is extended by Isar towards actual proof texts. Applications re-
quire another intermediate layer: an object-logic. Presently Isabelle/HOL [8] (simply-
typed higher-order logic) is being used most of the time. Isabelle/ZF is less extensively
developed, although it would probably fit better for classical mathematics.

The Isar proof language offers various common principles that are parameterized by
entities of the object-logic and application context, including plug-in proof methods.
The most basic method is called rule and refers to a generic natural deduction step of
the underlying framework (essentially combined forward-backward chaining). The ap-
plication context provides declarations of canonical introduction and elimination rules
for various kinds of connectives and derived operations, covering the object-logic ∧,
∨, ∀ , ∃ , . . . , set-theory ∩, ∪,

⋂
,
⋃

, . . . , and any application specific notions such
as operators of lattice theory, topology, etc. With reasonable rule declarations in the
context, proofs involving common elements of discourse proceed in an implicit man-
ner, where rules are determined by the structure of propositions stated explicitly. For
example:

assume x ∈ A and x ∈ B
then have x ∈ A ∩ B by rule

Abbreviations like “..” for “by rule” make this less formalistic. Similarly proof . . . qed
already initiates a certain reasoning pattern from the context, unless an alternative is
named explicitly. Note that beyond selecting single rules by the syntactic structure of
goals and facts, which works by means of higher-order unification, Isabelle/Isar never
appeals to hidden automated reasoning. Any such proof tools need to be invoked ex-
plicitly, usually in terminal position such as “by simp”.

The subsequent example performs basic natural deduction with an explicit rule ap-
plied in a purely backwards manner; the arising sub-proofs are completed accordingly.

fix n :: nat
have P n
proof (rule nat-induct)

show P 0 〈proof 〉
next
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fix n
assume P n
show P (Suc n) 〈proof 〉

qed

This is already a structured induction proof in Isabelle/Isar, so in theory we could con-
clude the present paper just now. In practice, though, various issues arise in presenting
an inductive statement P n properly — slightly annoying auxiliary structure can occur
here. We shall introduce a significantly improved version of the Isar induct method that
enables extraneous logical bookkeeping to be suppressed from the proof text.

1.3 Case-Study: Complete Induction with Local Definitions

Consider the following problem of recreational mathematics: “Given some function f
on natural numbers, such that f (f n) < f (n + 1) for all n, show that f is the identity.”
Here we formalize only the easier part: n ≤ f n for arbitrary n. The proof is by complete
induction on f n, along the < relation on natural numbers.

We shall work in Isabelle/HOL, which uses fairly standard mathematical notation.
Special attention needs to be paid to the “three arrows” ⇒/

∧
/=⇒ of Isabelle/Pure

(cf. §2.1), which occur whenever abstract syntax or inference rules of the logical frame-
work need to be introduced explicitly. Note that Isar proofs may reference previous facts
either by name (e.g. asm) or proposition (e.g. 〈n = m + 1〉). Furthermore “.” stands for
“by this”, i.e. immediate composition of facts without any rule in between.

lemma example:1

fixes f :: nat ⇒ nat2

assumes asm:
�

n. f (f n) < f (n + 1)3

shows n ≤ f n4

proof (induct k = f n fixing: n rule: less-induct)5

case (less k)6

then have IH:
�

m. f m < f n =⇒ m ≤ f m by simp7

show ?case8

proof cases9

assume n = 010

then show ?thesis by simp11

next12

assume n �= 013

then obtain m where n = m + 1 by (cases n) simp-all14

from asm have f (f m) < f n unfolding 〈n = m + 1〉 .15

with IH have f m ≤ f (f m) .16

also note 〈f (f m) < f n〉17

finally have f m < f n .18

with IH have m ≤ f m .19

also note 〈f m < f n〉20

finally have m < f n .21

then show n ≤ f n using 〈n = m + 1〉 by simp22

qed23

qed24
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The general structure of our proof is as follows: (i) the main statement (lines 1–4),
(ii) initiating the induction (lines 5–8), (iii) splitting the proof body into two cases and
solving the trivial one (lines 9–12), (iv) finish the interesting second case with two appeals
to the induction hypothesis (lines 13–23).

Part (i) already starts the proof by giving a structured Isar statement, which consists
of several proof context elements (fixes, assumes) followed by the main conclusion
(shows). Thus we may commence the actual reasoning immediately, without decom-
posing the problem into its constituent parts first. The final result will be extracted from
the initial statement as a closed formula, namely (

∧
n. f (f n) < f (n + 1)) =⇒ n ≤ f n.

Part (ii) shall be our main technical concern. We have used the induct method, pro-
viding some additional information about the precise mode of reasoning to be per-
formed. The arguments include the induction variable k, which is locally defined as k =
f n. We also fix n as an auxiliary induction parameter now, because the induction step
will require different instances of f n. We further need to specify the underlying induc-
tion principle less-induct, because the default rule for natural numbers would merely
consider zero and immediate successor cases. The subsequent case element augments
the proof context by additional parameters and assumptions stemming from the induc-
tion step (rule less-induct has only one such case, namely less). From this we conclude
the induction hypothesis IH in a convenient form — the raw hypothesis would still
mention the local definition of k = f n, but we prefer the expanded version here. Then
we are ready to work on the inductive conclusion: “show ?case” (the abbreviation of
?case for the recurrent proposition n ≤ f n also stems from the less context).

Part (iii) is not very special, but note that the cases method applies tertium-non-datur.
Part (iv) is most interesting from the mathematical viewpoint. Technically, we merely

conduct a few steps of calculational reasoning [3] in Isar (with “glue statements” also
and finally), while results are composed in a mostly trivial manner; we rarely invoke
automated reasoning support here. In line 14, syntactic case analysis converts between
m + 1 and Suc m, which is the preferred representation in the Isabelle/HOL library.

In informal mathematical practice, one would probably just present the main body
of part (iv), and include some hints about the induction. Compared to that, our proof
is almost twice as long. In particular, part (ii) requires further investigation: the 4 lines
being spent here are not that bad, as we shall see now.

The following version performs the induction without any specific support. In order
to present the problem as a closed inductive proposition, the local definition and variable
generalization is simulated within the object-logic as ∀ n. k = f n −→ n ≤ f n.

lemma example:1

fixes f :: nat ⇒ nat2

assumes asm:
�

n. f (f n) < f (n + 1)3

shows n ≤ f n4

proof −5

{ fix k have ∀ n. k = f n −→ n ≤ f n6

proof (rule less-induct)7

fix k assume less:
�

m. m < k =⇒ ∀ n. m = f n −→ n ≤ f n8

show ∀ n. k = f n −→ n ≤ f n9

proof10
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fix n11

show k = f n −→ n ≤ f n12

proof13

assume k = f n14

with less have IH:
�

m. f m < f n =⇒ m ≤ f m by simp15

show n ≤ f n 〈proof 〉16

qed17

qed18

qed19

} then show ?thesis by simp20

qed21

Here we have spent 21 lines without doing anything useful, since the proof of n ≤ f n
in line 16 has been left out! (Lines 9–23 of the previous version may be pasted here.)

Dealing with compound formulas such as ∀ n. k = f n −→ n ≤ f n imposes extra in-
conveniences in our framework, because the object-language needs to be decomposed
into Pure first. Even worse, this extra work is multiplied in induction proofs: (i) refor-
mulate the original problem (line 6), (ii) decompose both the induction hypothesis and
conclusion in the proof body (lines 8–15), (iii) apply the modified result to solve the
main problem (line 20). Some parts have been automated in an ad-hoc fashion using
“by simp”.

One could argue now that Isar should not insist on Pure rule composition, but let
the user transform the logical structure of a pending problem more directly. This would
approximate the Mizar language, with separate language elements to dig into connec-
tives of first-order logic. On the other hand, it would not really solve the problem at
hand. Turning n ≤ f n into ∀ n. k = f n −→ n ≤ f n already demands efforts that are
irrelevant to the application. Since interactive proof development usually requires some
experimentation to figure out the induction parameters in the first place, we would like
to reduce logical clutter as much as possible.

As a rule of thumb, Mizar is better at decomposing statements of first-order logic,
but Isar does not require any such decomposition, if we manage to represent a problem
in Pure form. The basic idea of our enhanced induct method is to make complex induc-
tion proof patterns appear as a native part of the Isar framework. This is achieved by
internalizing portions of Isar proof context into the object-logic, and reverse the effect
before handing over to the user to finish the induction cases.

Subsequently, we shall present further details of the Isar framework in §2, describe
the induct method in §3, and review common induction patterns in §4.

2 Foundations

Isabelle/Isar consists of three main layers: The Isabelle/Pure framework for primitive
natural deduction, Isar proof contexts for managing various kinds of local parameters,
assumptions, facts, abbreviations etc., and the Isar/VM (“virtual machine”) interpreter
that implements an incremental model of structured proof composition.
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2.1 The Pure Framework

The Pure logic [9] is an intuitionistic fragment of higher-order logic. In type-theoretic
parlance, there are three levels of λ-calculus with corresponding arrows: ⇒ for syntac-
tic function space (terms depending on terms),

∧
for universal quantification (proofs

depending on terms), and =⇒ for implication (proofs depending on proofs).
Term syntax provides explicit notation for abstraction λx :: α. b(x) and application t

u, while types are usually implicit thanks to type-inference; terms of type prop are called
propositions. Logical statements are composed via

∧
x :: α. B(x) and A =⇒ B. Primitive

reasoning operates on judgments of the form Γ � ϕ, with standard introduction and
elimination rules for

∧
and =⇒ that refer to fixed parameters x1, . . ., xm and hypotheses

A1, . . ., An from the context Γ . The corresponding proof terms are left implicit.
An object-logic introduces another layer: type o for object propositions, term con-

stants Tr :: o ⇒ prop as (implicit) object-truth judgment and connectives like ∧ :: o ⇒
o ⇒ o or ∀ :: (α ⇒ o) ⇒ o, and axioms for object rules such as conj-I: A =⇒ B =⇒
A ∧ B or all-I: (

∧
x. B x) =⇒ ∀ x. B x. Derived object rules are represented as theorems

of Pure.
Since Pure propositions may be nested arbitrarily, the resulting natural deduction

framework extends Gentzen’s version [5] such that rules may take arbitrary rules as
assumptions [11]. For example, the induction rules P 0 =⇒ (

∧
n. P n =⇒ P (Suc n))

=⇒ P n and (
∧

n. (
∧

m. m < n =⇒ P m) =⇒ P n) =⇒ P n both fit nicely into this
framework.

2.2 Isar Proof Contexts

In judgments Γ � ϕ of the primitive framework, Γ essentially acts like a proof context.
Isar elaborates this idea towards a higher-level notion, with separate information for
type-inference, term abbreviations, local facts, and generic hypotheses parameterized
by discharge rules. For example, the context element assumes A introduces a hypothesis
with =⇒ introduction as discharge rule; notes a = b defines local facts; defines x = a
and fixes x :: α introduce local terms.

Top-level theorem statements may refer directly to such Isar elements to establish a
conclusion shows B within a certain context; the final result will be in discharged form.
There are separate Isar commands to build contexts within a proof body, notably fix,
assume, obtain etc. Using Isar proof notation, we can explain the latter three formally:

{
fix x
have B x 〈proof 〉

}
note 〈

�
x. B x〉

{
assume A
have B 〈proof 〉

}
note 〈A =⇒ B〉

{
obtain x where A x 〈proof 〉
have B 〈proof 〉

}
note 〈B〉

Here note is used to indicate the fact resulting from each proof block. The obtain above
involves a proof of

∧
C. (

∧
x. A x =⇒ C) =⇒ C, which happens to be the body of ∃

elimination in first-order logic; it then acts like fix x assume A x using that discharge
rule. See [16, §5.3] for more on generalized elimination in Isar.
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Isar also supports named context segments called cases: the language element case c
expands to fix x1 . . . xm assume A1 . . . An according to a given definition of c in the con-
text; the variant case (c y1 . . . yk) specifies explicit names for fixed variables introduced
here. Cases may also provide term abbreviations, typically ?case for the conclusion. Isar
proof methods are entitled to define cases for the current proof body.

2.3 Isar/VM Transitions

A structured Isar proof text consists of a sequence of proof commands, which are inter-
preted as transitions of the Isar virtual machine. The basic idea is analogous to evaluat-
ing algebraic expressions on a stack machine: (a + b) · c then corresponds to a sequence
of single transitions for each symbol (, a, +, b, ), ·, c. In Isar the algebraic values are
local facts or goals, and the operations are logical inferences.

The Isar/VM state maintains a stack of nodes, each node contains the local proof
context, an optional pending goal, and the linguistic mode. The latter determines the
type of transition that may be performed next, it essentially alternates between for-
ward and backward reasoning. For example, in state mode Isar acts like a mathemati-
cal scratch-pad, which accepts various context declarations like fix, assume, and goal
statements like have and show. A goal changes the mode to prove, which means that
we may now refine the problem via unfolding or proof. Then we are again in state
mode of a proof body, which may issue show statements to solve pending subgoals. A
concluding qed will return to the original state mode one level upwards. Isar provides
convenient abbreviations, such as “by meth1 meth2” (terminal proof) for “proof meth1
qed meth2”.

In the following sequence of Isar/VM transitions we indicate block structure and
mode:

have A −→ B
proof

assume A
show B

〈proof 〉
qed

open

open
close
close

state → prove
prove → state

state → prove
prove → state

In structured Isar proof texts, state mode is active most of the time, while prove mode
is left immediately after 1 or 2 refinement steps steps (say to unfold a definition and
apply a standard rule). In contrast, unstructured tactic scripts would stay in prove mode
indefinitely, applying more and more backward refinements until the goal is solved.

3 The induct Proof Method

The induct proof method of Isar is a sophisticated wrapper for the basic rule method.
Arguments provided in the proof text are interpreted as directions for local modifica-
tions of the proof context, induction rule, and goal, culminating in the actual logical
refinement step. The resulting proof body will contain several subgoals corresponding
to the inductive cases of the instantiated rule after refinement, together with named cases
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to enable abbreviations case c show ?case for each induction step, instead of explicit
fix x1 . . . xm assume A1 . . . An show B. The general method invocation looks like this:

facts
(induct insts fixing: vars rule: rule)

Here facts refers to the implicit facts being passed to any Isar method according to the
proof structure, as indicated by then or using in the text; insts is a list of instantiations,
either x (variable) or x = a (defined variable); vars refers to a list of fixed variables; rule
refers to the underlying induction principle.

Any of these arguments are optional, and there are sensible defaults. For example,
giving n :: nat as insts determines the rule nat.induct; giving � x ∈ A as facts determines
both the instantiation x and rule A.induct (for some inductively defined set A in the
context). Since mutual induction is also supported, arguments insts, vars, rule may be
repeated, using the separator and. For example, (induct t :: term and ts :: term list)
could refer to the mutual induction principle stemming from a nested datatype in HOL.

3.1 Generic Induction Rules

We support a variety of induction rules, with minimal assumptions about the logical
presentation. Following canonical Pure formulas, rules represent the outermost

∧
prefix

as schematic variables. The remainder is an iterated implication =⇒, with arbitrary
“major premises” in front, followed by the inductive cases, concluded by some predicate
expression Tr (P x1 . . . xm); recall that the object judgment Tr is usually implicit.

The inductive cases may not introduce further schematic variables, apart from those
already present in the major premise and the conclusion. Thus inductive cases are fully
determined after instantiating the other parts of the rule. Occurrences of the predicate
in the cases is restricted to Tr (P a1 . . . am) for arbitrary term arguments, but with the
outer object judgment still intact. In other words, P a1 . . . am needs to be surrounded
by

∧
/=⇒ connectives. Thus the predicate may essentially represent object rules.

For example, (
∧

n. (
∧

m. m < n =⇒ P m) =⇒ P n) =⇒ P n seen before quali-
fies as induction rule. The equivalent version (

∧
n. ∀ m<n. P m =⇒ P n) =⇒ P n in

Isabelle/HOL does not work, because ∀ m < n. P m hides the predicate inside a closed
object-formula. A rule for some inductive set A looks like x ∈ A =⇒ cases =⇒ P x, but
not cases =⇒ ∀ x ∈ A. P x as is occasionally seen in set-theory texts. Here the restricted
conclusion has been split to exhibit the major premise x ∈ A in frontmost position.

The object-logic and application context already declare common rules for inductive
sets and types in proper form, so the user only needs to take care in unusual situations.

3.2 Internal Operations

Assume for the moment that only one goal and one induction rule is involved. Then the
induct method performs operations on the proof context, rule, and goal as follows:

1. context: declare local defs for any defined induction variables x = a
2. rule: apply insts according to the positions in the inductive predicate P x1 . . . xn

3. rule: expand defs in major premises (accommodate the original statement, which
mentions the expanded expressions)
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4. rule: consume a prefix of facts according to the number of major premises (the
remainder is a pure induction rule cases =⇒ P x1 . . . xn)

5. goal: strengthen by inserting the remaining facts, and all defs
6. goal: strengthen by fixing vars, using rule (

∧
x. B x) =⇒ B a of the framework

7. goal: internalize
∧

/=⇒ into the object-logic, using (
∧

x. Tr (B x)) ≡ Tr (∀ x. B x)
and (Tr A =⇒ Tr B) ≡ Tr (A −→ B) of the framework

8. rule: unify conclusion against goal (absorb any internalized auxiliary structure, in-
cluding defs; result is a fully-instantiated induction rule)

9. rule: carefully recover internalized
∧

/=⇒ structure in the inductive cases, using
the above rules backwards

10. context: extract inductive cases from rule (enable case abbreviations in the proof
body; cases consist of elements stemming from both the rule and the goal)

11. context: discharge defs
12. goal: apply the fully instantiated rule

Simultaneous induction may involve both multiple goals and multiple rules (e.g. from
mutually inductive sets or types). Isar already supports simultaneous goal statements,
e.g. shows A and B. The induct method is able to pass this structure through the induc-
tive process, using a local version of Pure conjunction A & B internally.

Mutual induction uses packs of rules that share common inductive cases, but deviate
in the major premises and conclusion. The rule preparations above essentially work the
same with parallel copies of method arguments insts and vars given for each rule. The
pack is joined by & introduction before unifying against the goal. The inner conjunctive
structure of the goal is internalized using (Tr A & Tr B) ≡ Tr (A ∧ B). The reverse step
shuffles & outermost and eliminates it via (A & B =⇒ C) ≡ (A =⇒ B =⇒ C). Extracted
cases consist of a shared context (from the rule) and separate sub-cases (from the goals).

4 Common Induction Patterns

We briefly review common proof patterns supported by our generic induct method,
using the induction rule of Peano natural numbers as representative example. The proof
outlines illustrate augmented contexts via literal facts, e.g. note 〈

∧
x. A n x =⇒ P n x〉.

In practice, these facts would just be used in their proper place without further notice.

4.1 Local Facts and Parameters

Augmenting a problem by additional facts and locally fixed variables is a bread-and-
butter method in many applications. This is where unwieldy object-level ∀ and −→
used to occur in the past. Now we are able to use primary means of the language,
notably using in the proof text and fixing in the method specification.

lemma
fixes n :: nat and x :: ′a
assumes A n x
shows P n x using 〈A n x〉

proof (induct n fixing: x)
case 0



26 M. Wenzel

note prem = 〈A 0 x〉

show P 0 x 〈proof 〉
next

case (Suc n)
note hyp = 〈

�
x. A n x =⇒ P n x〉

and prem = 〈A (Suc n) x〉

show P (Suc n) x 〈proof 〉
qed

4.2 Local Definitions

Here the idea is to turn sub-expressions of the problem into a defined induction variable.
This is often accompanied with fixing of auxiliary parameters in the original expression,
otherwise the induction step would refer invariably to particular entities. This combina-
tion essentially expresses a partially abstracted representation of inductive expressions.

lemma
fixes a :: ′a ⇒ nat
assumes A (a x)
shows P (a x) using 〈A (a x)〉

proof (induct n = a x fixing: x)
case 0
note prem = 〈A (a x)〉

and def = 〈0 = a x〉

show P (a x) 〈proof 〉
next

case (Suc n)
note hyp = 〈

�
x. A (a x) =⇒ n = a x =⇒ P (a x)〉

and prem = 〈A (a x)〉

and def = 〈Suc n = a x〉

show P (a x) 〈proof 〉
qed

Observe how the local definition n = a x recurs in the inductive cases as 0 = a x and
Suc n = a x, according to underlying induction rule. Here we cannot apply definitional
expansions immediately, in contrast to the purer induction rule encountered in §1.3.

4.3 Simple Simultaneous Goals

The most basic simultaneous induction operates on several goals one-by-one, where
each case refers to induction hypotheses that are duplicated according to the number of
conclusions.

lemma
fixes n :: nat
shows P n and Q n

proof (induct n)
case 0 case 1
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show P 0 〈proof 〉
next

case 0 case 2
show Q 0 〈proof 〉

next
case (Suc n) case 1
note hyps = 〈P n〉 〈Q n〉

show P (Suc n) 〈proof 〉
next

case (Suc n) case 2
note hyps = 〈P n〉 〈Q n〉

show Q (Suc n) 〈proof 〉
qed

Note that induction with mutual rules is usually even simpler than this, because the
collection of simultaneous goals will be consumed by the given pack of rules. The
resulting proof body will not require additional nesting or duplication of cases, although
separate projections of the mutual induction predicates may be mentioned.

4.4 Compound Simultaneous Goals

The following pattern illustrates the slightly more complex situation of simultaneous
goals with individual local assumptions. In compound simultaneous statements like this,
local assumptions need to be included into each goal, using =⇒ of the Pure framework.
In contrast, local parameters do not require separate

∧
prefixes here, but may be moved

into the common context of the whole statement.2

lemma
fixes n :: nat

and x :: ′a and y :: ′b
shows A n x =⇒ P n x

and B n y =⇒ Q n y
proof (induct n fixing: x y)

case 0
{ case 1

note prem = 〈A 0 x〉

show P 0 x 〈proof 〉 }
{ case 2

note prem = 〈B 0 y〉

show Q 0 y 〈proof 〉 }
next

case (Suc n)
note hyps = 〈

�
x. A n x =⇒ P n x〉 〈

�
y. B n y =⇒ Q n y〉

then have some-intermediate-result 〈proof 〉
{ case 1

note prem = 〈A (Suc n) x〉

2 Vacuous quantification does not impose any restriction in the Pure framework — unlike more
complex versions of dependent type-theory.
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show P (Suc n) x 〈proof 〉 }
{ case 2

note prem = 〈B (Suc n) y〉

show Q (Suc n) y 〈proof 〉 }
qed

Here induct provides again nested cases with numbered sub-cases. Unlike the flattened
version of §4.3, we are more careful here to share common parts of the body context. In
typical applications, there could be a long intermediate proof of general consequences
of the induction hypotheses, before finishing each conclusion separately.

5 Conclusion and Related Work

The present infrastructure for structured induction proofs has emerged from experi-
ence with applications of Isabelle/HOL, involving non-trivial reasoning about inductive
types, sets and functions. Many Isar proofs in the Isabelle library benefit from this al-
ready (in post-2005 development versions). The method implementation provides suf-
ficiently general building blocks to support non-standard variants of induction as well.

Co-induction is the logical dual of induction, and is both like and unlike standard in-
duction in practical use. Instead of introducing a conclusion P n, co-induction
eliminates a fact � P n (often written as set-membership). Our technique for fixing
inductive parameters, essentially universal elimination applied backwards, becomes ex-
istential introduction applied forwards. Then the method invocation (coinduct n fixing:
x) would correspond to the common technique in co-induction proofs to single-out cer-
tain expressions as existential parameters, which then recur in the co-induction step
in eliminated form. The present coinduct method of Isabelle/Isar does not yet imple-
ment this elaborate scheme, but there are some examples available in HOL/Library/
Coinductive-List of the Isabelle distribution that illustrate common proof techniques.

Nominal induction [14, 13] augments traditional structural induction by specific
means to reason about datatypes involving local binders (e.g. λ-calculus, Π-calculus,
functional programming languages). The corresponding induction rules involve a
“freshness context” as additional parameter for the inductive predicate. This fits well
into our infrastructure for producing complex induction predicates conveniently. We
merely need to support an additional “avoiding” argument, similar to the present “fix-
ing”. The resulting nominal-induct method has been used by Urban for some key in-
duction proofs of the POPLmark challenge3. The complex pattern of §4.4 reflects the
structure of a key induction proof in this application.

Other interactive provers provide surprisingly little support for complex inductions.
In Mizar [12, 10], induction is performed as a forward step, using basic “scheme”

application. Thus the inductive cases need to be spelled out beforehand in full detail.
(Isar is able to produce symbolic case elements due to backward refinement of a known
statement and rule.) Mizar lacks specific support for compound inductive predicates.

In Coq [2], the default induct tactic passes all of the current proof context through the
inductive process. Thus users may have to prune unwanted parts first. This corresponds

3 http://fling-l.seas.upenn.edu/∼plclub/cgi-bin/poplmark
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to our internal treatment of
∧

/=⇒, only that Isar specifies wanted elements positively,
instead of unwanted ones negatively. Coq lacks any further induction support beyond
that, e.g. the user needs to encode defined inductive entities manually.

Other tactical provers, notably Isabelle/HOL [8], have traditionally avoided too elab-
orate induction tactics, because the exact portion of context to participate here is hard to
delimit in unstructured goal states. Even worse, automated tools easily fail due to overly
general induction hypotheses. Users are asked to present their problem in object-logic
form, and manage the additional logical connectives by means of ad-hoc automation.

Isabelle/Isar provides a framework for checking structured proof documents, but the
user needs to produce such texts manually. Proof planning techniques have recently
been applied as additional means to assist proof authors in this process. The “proof-
centric approach” of [4] aims to automate Isar proof construction, while preserving the
ability of the author to intervene. The resulting IsaPlanner system focuses on induction
and rippling, although it uses a less sophisticated version of Isar induction so far.
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Abstract. The generic proof assistant Isabelle provides a landscape of specifica-
tion contexts that is considerably richer than that of most other provers. Theories
are the level of specification where object-logics are axiomatised. Isabelle’s proof
language Isar enables local exploration in contexts generated in the course of nat-
ural deduction proofs. Finally, locales, which may be seen as detached proof con-
texts, offer an intermediate level of specification geared towards reuse. All three
kinds of contexts are structured, to different extents. We analyse the “topology” of
Isabelle’s landscape of specification contexts, by means of development graphs,
in order to establish what kinds of reuse are possible.

1 Introduction

Locales are Isabelle’s [12] emerging mechanism to support abstract reasoning. They
are modules whose specification and theorems can be transported to other contexts by
either import or interpretation. Thus specification and/or theorems can be reused.

Three kinds of contexts can be distinguished in Isabelle. These are theories, locales
and proofs. Theories are the outermost level of specification, at which object-logics
like HOL (Higher-Order Logic) and ZF (Zermelo-Fränkel Set Theory) are axiomatised.
Locales provide a setting for specifications within these logics. Compared to theories,
locales are more restricted but provide more flexible means of reuse. The third kind of
contexts are the contexts of Isabelle’s proof language Isar. Currently, theories are the
setting of numerous formalisations, which range from abstract, like lattice theory, to
concrete, like models for Java-like languages. With the facilities of locales improving
— for example, packages for the definition of inductive sets and recursive functions
becoming available — it is to be expected that many of these developments will move
to locales in future.

Interpretation of locales in locales is the topic of [3]. There we have argued that, in
order to support interactive proof, a network of import and interpretation relations need
to be maintained explicitly, so that newly proved theorems can be propagated. This can
be achieved with development graphs [7]. In the present paper we discuss the extension
of these mechanisms to theories and proofs.

Type constructors may only be declared in theories, not locales. Interpretation of
locales in theories enables to map theorems valid relative to an abstract locale specifi-
cation onto concrete types of a theory. For example, the type of natural numbers can be
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uniformly endowed with lattice theorems, which are proved in the context of a locale
for lattices, for both the lattice induced by the order relation “≤” and the lattice induced
by the divisibility relation “|”. This cannot be achieved with type classes, because there
the operations are fixed [16].

Interpretation in proofs is more interesting. This is a true extension of the proof
language. It can raise the level of abstraction in proofs, for it enables to reason at the
level of concepts rather than theorems inside a proof itself. It is also an extension of
the facilities of locales since it enables to employ locales for reasoning about arbitrary
families of structures, say groups. The inheritance mechanisms of locales themselves
only enable to combine specifications in a finitary way — for example, by importing
the specification of groups twice to the specification of group homomorphisms.

2 Development Graphs

Development graphs were introduced by Hutter to manage dependencies between
theories in verification settings where theories are repeatedly modified, and postulated
relations between theories needs to be maintained — that is, formally proved, see
[7]. Development graphs can reduce the number of proof obligations caused by such
changes by carefully keeping track of dependencies in the development. The following
exposition of development graphs follows [7], but takes into account that in locales they
are also used to propagate proved theorems. This concept was introduced in [3].

Definition 1. A consequence relation is a pair (S, �) where S is a set of sentences and
� ⊆ Fin(S)×S, where Fin(S) denotes the set of finite subsets of S, is a binary relation
such that

{φ} � φ, (reflexivity)

Δ � φ and {φ} ∪ Δ′ � ψ implies Δ ∪ Δ′ � ψ and (transitivity)

Δ � ψ implies {φ} ∪ Δ � ψ. (weakening)

A consequence relation induces a closure operation on sets of sentences Φ ⊆ S defined
by Φ� = {φ | Δ � φ for some finite Δ ⊆ Φ}. This is the set of all sentences derivable
from Φ.

Definition 2. A morphism of consequence relations from (S1, �1) to (S2, �2) is a func-
tion σ : S1 → S2 such that Δ �1 φ implies σ(Δ) �2 σ(φ).

Labelled directed graphs will be used to represent known dependencies between mod-
ules. A graph G = (N, L) consists of nodes n ∈ N , which are module names, and links
n

σ−→ m ∈ L, which are labelled with consequence morphisms. There may be several
links between from one node to another node, provided the morphisms are different.

As usual, reachability in graphs is defined along paths. The relation is enriched by
the consequence morphism obtained from composing the labels along the path.

Definition 3. Let G = (N, L) be a labelled directed graph, where each link n
σ−→ m ∈

L is labelled with a consequence morphism σ. A node m is reachable from n via a
consequence morphism σ, n

σ−→∗ m ∈ G for short, if n = m and σ is the identity
morphism id, or there is a n

τ−→ k ∈ L, and k
ρ−→∗ m ∈ G, with σ = ρ ◦ τ .
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We will sometimes denote a graph by its set of links and write n
σ−→∗ m ∈ L. The set of

nodes will then be clear from the context. Likewise, we will write n
σ−→ m ∈ G instead

of n
σ−→ m ∈ L.

A development graph represents the import hierarchy of modules. Its links are called
definition links and denote import relations.

Definition 4. A development graph G is a finite labelled directed acyclic graph (N, L).
Each node n has an associated consequence relation (SG(n), �n

G), and finite sets of
sentences AG(n), FG(n) ⊆ SG(n). For each node n ∈ N , AG(n) is the set of local
axioms of n and FG(n) the set of local proved theorems in n. Links in L are called def-
inition links and are denoted n

σ−→D m. The label σ is a morphism of the consequence
relations from (SG(n), �n

G) to (SG(m), �m
G ).

The sets of proved theorems are not present in Hutter’s definition. They are needed to
model the propagation of theorems and the control information attached to them.

The proof theoretic semantics of a development graph is given by the sentences
derivable at each module node.

Definition 5. Let G be a development graph and n be a module node. The sets of global
axioms A∗

G(n) and global proved theorems F∗
G(n) of n wrt. to G are defined by

A∗
G(n) =

⋃

k
σ−→∗n∈G

σ(AG(k)) and F∗
G(n) =

⋃

k
σ−→∗n∈G

σ(FG(k)).

The theory ThG(n) of n is the set of all sentences derivable from the global axioms;
ThG(n) = A∗

G(n)�
n
G .

The theory of a node depends on its local axioms and of the axioms of imported nodes.
Import is transitive. Proved theorems need to be derivable. We extend the definition of
development graphs and demand that FG(n) ⊆ ThG(n) for all n ∈ N in a development
graph (N, L). This implies that F∗

G(n) ⊆ ThG(n).
Interpretation relations between modules are consequences of a development graph.

They are modelled by means of theorem links.

Definition 6. Let G be a development graph and n and m be nodes in G. The graph
implies a global theorem link, denoted G � n

σ−→T m, if ThG(m) �m
G σ(φ) for all φ ∈

ThG(n). It implies a local theorem link, denoted G � n
σ−→t m, if ThG(m) �m

G σ(φ)
for all φ ∈ AG(n).

Theorem links are properties of the development graph. We will use phrases like “a
theorem link has been proven” or “established” to indicate that it is implied by the
development graph under consideration.

Global theorem links require the image of the entire theory of the source node to be
derivable. By transitivity of the consequence relation it is sufficient if the global axioms
of the source node are derivable. Local theorem links only require the local axioms to be
derivable. We observe that a development graph with definition link n

σ−→D m implies
the global theorem link n

σ−→T m. This, in turn, implies the local theorem link n
σ−→t m.

The following lemma, which is due to Hutter, says how a global theorem link can be
decomposed into a set of local theorem links.
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Lemma 1. Let G be a development graph. Then G � n
σ−→T m if and only if G �

k
σ◦τ−−→t m for all k and τ with k

τ−→∗ n ∈ G.

When an interpretation — that is, a global theorem link — is asserted by the user,
proof obligations are generated, and it is analysed which of these follow from import or
existing interpretations. The lemma enables this analysis to be at the level of links, not
sentences.

3 Isabelle: Theories, Proofs and Locales

Isabelle’s meta-logic is based on an intuitionistic fragment of higher-order logic with
polymorphic types. The polymorphism is schematic — that is, the type system is a
quantifier-free first-order language. Terms of a special type prop are called proposi-
tions. These involve connectives for universal quantification and implication:

∧
x. φ

and φ =⇒ ψ. Theorems are judgements of the form

{φ1, . . . , φn} � φ,

where φ, φ1, . . . , φn are propositions. The φi are called meta-assumptions. We abbre-
viate a judgement without meta-assumptions by � φ. In Isabelle and some of the re-
lated literature the judgements are written in reverse notation: φ [φ1, . . . , φn]. Isabelle’s
kernel contains functions that implement the rules of a natural deduction calculus on
theorems; see [14] for details. We denote the resulting derivability relation by �. This
is a consequence relation on the set of theorems. The rules of the calculus imply that
also � is a consequence relation, on propositions.

The difference between both relations is subtle and rooted in the nature of schematic
polymorphism. Let φ be a proposition containing a type variable α. One may obtain
φ[τ/α] by substituting a type τ for α in φ. While (� φ) � (� φ[τ/α]) holds for
theorems, the direct statement on propositions φ � φ[τ/α] does not hold in general.
On the other hand, the canonical map from propositions to theorems, ι : φ 
→ (� φ),
is a consequence morphism from � to �. Well-typed substitutions are consequence
endomorphisms for both � and �.

3.1 Theories

Theories encompass declarations of language, namely constants and type constructors
with their syntax, and theorems over that language. Theorems are either declared or
derived, and the former are axioms of the theory. Theories may import other theories.
They are not parametric, and import is literal. Constants and type constructors cannot
be renamed. Instead, a system of qualified names resolves name conflicts by prefixing
with the theory name, which must be unique. Theorems (including axioms) in theories
have no meta-assumptions.

The import hierarchy of theories is a development graph G = (N, L) where N is
the set of theory nodes. The consequence relation of each node n ∈ N is �; more
precisely, the subrelation on theorems of the form � φ. All definition links in L are
embeddings.
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Theorems in theories may be named, and name spaces are also relevant to these
names. In addition, theorems may be decorated with attributes. These encode hints that
control the automatic use of theorems. For example, the attribute [simp] makes the the-
orem a rewrite rule automatically used by the simplifier, [simp del] removes a theorem
from the rewrite rules, and [induct set: S] declares an induction rule for the inductively
defined set S.

3.2 Proofs

Isar is Isabelle’s language of human-readable formal proof documents. It was devel-
oped by Wenzel [17,18] and is radically different from tactic scripts. It is based on the
principle that every object referred to in the proof text must have been introduced pre-
viously. It is not possible to refer to objects in the proof state that were generated by
tactic applications, and whose meaning can only be understood by replaying the proof.

A full introduction to Isar is beyond the scope of this paper. Interested readers may
consult the tutorial [11]. Here, we are only concerned with proof contexts. A theorem
{φ1, . . . , φn} � φ of the meta-logic can be seen as defining a context for the propo-
sition φ. This context is given by parameters x1, . . . , xm, which are the free variables
occurring in the assumptions, and the assumptions φ1, . . . , φn themselves. Isar refines
this idea. Its proof contexts contain, in particular, proved local propositions as addi-
tional information, and decorate assumptions by discharge rules that are applied when
leaving a context. Commands for the explicit construction of contexts within a proof
are provided: fix x introduces a new parameter, which is discharged by

∧
-introduction,

and assume φ introduces a new assumption with =⇒-introduction as discharge rule.
The following illustrate the main building blocks of Isar texts. The resulting proposi-

tions are displayed underneath. Note that these may depend on parameters and assump-
tions of surrounding contexts.

{
fix x
have B x <proof>

}
∧

x. B x

{
assume A
have B <proof>

}

A =⇒ B

The keyword have introduces a local goal and is followed by a proof. It yields a lo-
cal proposition — more precisely, a theorem with meta-assumptions from the context.
Local propositions may be named and have attributes. It is, for example, possible to
declare local rewrite rules — that is, the proof context maintains, for example, a set of
rewrite rules. A {· · · } block can be seen as a local kind of theory. Intermediate propo-
sitions may be proved and referred to in proofs. As already indicated, blocks may be
nested, and they may be used to discharge complex goals involving

∧
and =⇒. In such

blocks show is used instead of have for the final inner goal. Isar then ensures that the
block matches the proposition of the surrounding goal.1

1 In fact, Isar is more liberal: higher-order unification takes place here.
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3.3 Locales

Locales were designed by Kammüller [8,9] as a sectioning concept for tactic-based
proofs. In Wenzel’s reimplementation of locales for Isar [2] the focus has shifted, and
there is now a stronger emphasis on locales as parametric theory modules, which are
distinct from Isabelle’s theories.

Locales may be seen as detached proof contexts with fixed sets of parameters and
assumptions. These are identified by name. Assumptions are the module axioms. Is-
abelle’s judgement operator � is a consequence relation. The set of theorems of the
meta-logic is closed under substitution of types and terms for type and term variables.
That is, well-typed substitutions are endomorphisms of the consequence relation. This
enables to maintain locales in a structured way. A development graph G = (N, L)
represents the import relations between locales. (This is distinct from the graph of the-
ories, but to simplify notation, we do not distinguish this for the moment.) The nodes
n ∈ N are locale nodes, and their consequence relations are � on the set of proposi-
tions. Locale parameters may have mixfix syntax. The list of parameters of locale n is
denoted with P∗(n). Parameters are typed; T∗(n) denotes the type environment that
maps the parameters of n to their types. Type variables occurring in T∗(n) are the type
parameters of n.

Consistent with notation introduced in Section 2, AG(n) denotes the local axioms
(also called assumptions) and FG(n) the local proved theorems (which are propositions)
of locale n. The global assumptions are A∗

G(n). Interpretation relations between locales
may be declared (and, of course, must be proved). A set of global theorem links T is
maintained. The extended set of proved theorems of a locale

F∗
G,T (n) =

⋃

k
σ−→∗n∈L∪T

σ(FG(k)).

is obtained by accumulating proved theorems through any conceivable path of definition
and theorem links. In [3] we have shown that this set is finite if consequence morphisms
are restricted to renamings of term parameters.

4 Interpretation in Theories

Many formalisations in Isabelle are concerned with properties of objects that live in the-
ories. In the object-logic Isabelle/HOL, in particular, many of these objects are types.
Many share algebraic properties, and in order to facilitate reuse of theorems, axiomatic
type classes were introduced to Isabelle [16]. These are restricted to algebraic structures
with a single type parameter, and constants are shared, that is, overloaded. Locales per-
mit more flexible forms of reuse since they may have an arbitrary number of parameters
and type parameters. In addition, locales are useful in all object-logics while axiomatic
classes are not.

In order to enable reuse of locale theorems in theories, we distinguish disjoint sets
of theory nodes NT and locale nodes NL in the development graph. Likewise, the defi-
nition links in LT are between theory nodes, and the links in LL between locale nodes.
The set TL is a set of global theorem links implied by the locale development subgraph
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(NL, LL). On the other hand, Isabelle’s theory module does not support interpretations
between theories, hence there are no theorem links in the theory development subgraph
(NT, LT).

The canonical morphism ι : φ 
→ (� φ) enables to introduce theorem links from the
locale development graph to the theory development graph. This is the set TT, which is
a set of local theorems links. The reason for this will become apparent in Section 4.2.
The command

interpretation l : n [p1 . . . pi] <proof>

declares a global theorem link from locale n to the current theory.2 The arguments
p1, . . . , pi are terms over the language of the theory and determine the morphism of the
theorem link: the kth parameter of n, which is the kth entry of P∗(n) is mapped to pk.
The substitution of type parameters is inferred. By means of Lemma 1 proof obligations
are generated for local theorem links that are not implied by the development graph and
existing theorem links. These are discharged by the user. Interpreted theorems are then
added to the theory — but only those related to new local theorem links. This avoids
unnecessary duplications. The label l is an optional theorem name prefix. It may be
used to disambiguate theorems from different interpretations.

Maintaining development graph and theorem links is not only instrumental in dis-
charging proof obligations. It also enables to propagate newly proved theorems of lo-
cales to theories that “subscribe” — that is, interpret — the locale.

4.1 Examples

A few examples are in order. The declarations below are of locales for partial orders,
semi-lattices and linear orders; partial order is imported by both semi lattice and lin-
ear order. The keyword fixes indicates parameters, assumes indicates axioms. Theo-
rems may be added to these locales by a version of the theorem command.

locale partial order =
fixes le (infixl � 50)
assumes refl: x � x

and anti sym: x � y ∧ y � x =⇒ x = y
and trans: x � y ∧ y � z =⇒ x � z

locale semi lattice = partial order +
fixes meet (infixl  70)
assumes le1: x  y � x and le2: x  y � y

and least: x � y ∧ x � z =⇒ x � y  z

locale linear order = partial order +
assumes linear: x � y ∨ y � x

2 The implementation of the command permits a locale expression e in place of n. This is
analogous to the interpretation of locales in locales with the command interpretation m ⊆
e <proof>. See [3].
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Table 1. Some interpretations of locales in theories

Locale Morphism Theory
semi lattice α �→ int le �→ | meet �→ gcd Integer
semi lattice α �→ int le �→ ≤ meet �→ min Integer
linear order α �→ int le �→ ≤ Integer
semi lattice α �→ α set le �→ ⊆ meet �→ ∩ Set
semi lattice α �→ α set le �→ λxy. y ⊆ x meet �→ ∪ Set
linear order α �→ unit set le �→ ⊆ Set

Theorems of these locales may be reused in a theory Integer that declares a type int
of integers. The upper half of Table 1 shows examples. The type is a semi-lattice via
divisibility relation “|” and greatest common divisor. It is also a semi-lattice via “≤” and
minimum. Assume that these interpretations have been asserted and proved. Adding the
interpretation that int is a linear order via “≤” does not require to reprove that it is a
partial order, since this information is stored in the set TT of theorem links. Neither are
the theorems of partial order added to Integer in duplicate.

4.2 Subsumption

Lemma 1 is a general characterisation of the decomposition of global theorem links into
local ones with respect to a development graph. The required notion of consequence
morphism — that is, substitution — is now analysed further.

The lower half of Table 1 shows interpretations of the order and lattice locales in
a theory Set, which introduces a type constructor set with the usual operations. Set
inclusion “⊆” and intersection “∩” form a semi-lattice. So does reversed set inclusion
and union “∪”. Standard formalisations of anti-symmetric relations in Isabelle do not
provide a connective for the reversed relation. This is also the case for set inclusion. A
second connective “⊇” would increase redundancy without increasing expressiveness.
Since Isabelle is a higher-order framework, the reverse inclusion can be specified by
λxy. y ⊆ x. Application of a consequence morphism is modulo β- and η-reduction —
that is, λ-terms are normalised after applying the substitution.

The last line of the table interprets set of a particular type, while the other two inter-
pretations map the parameter type to a polymorphic set type. The type unit is the type
with a single element. This is trivially a linear order.3 If the previous interpretations
have been established before then partial order

α�→α set−−−−−→t Set ∈ TT. This obviously

subsumes partial order
α�→unit set−−−−−−→t Set ∈ TT, which need not be reproved. On the other

hand, the local theorem link linear order
α�→unit set−−−−−−→t Set ∈ TT, is not subsumed. For

this reason, global theorem links are decomposed into local ones in TT.
In summary, the calculus based on Lemma 1 that infers which local theorem links

of a new interpretation are implied by existing ones is over higher-order terms, and
subsumption testing is required. Higher-order unification is not decidable in general,

3 The example is indeed not a particularly interesting one in terms of the interpretation. However,
it serves well as an example of a subtype occurring in an interpretation. Examples of useful
subtypes occur with axiomatic type classes.
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but unification of higher-order patterns, which are λ-terms where the arguments of free
variables occurring in the term are η-equivalent to bound variables. See [10]. This im-
plies that restricting consequence morphisms to substitutions that replace term variables
by higher-order patterns rather than arbitrary λ-terms ensures decidability of the calcu-
lus. We have not encountered examples in practice where full λ-terms would have been
required.

5 Interpretation in Proofs

Interpretation raises the level of abstraction in formal developments. It is an operation
at the level of concepts (mathematical theories, or — in our case — locales) rather than
theorems. The idea is also found in paper proofs and follows this pattern: an object is
constructed in some context, and properties of it are proved. It may turn out that the
object is an instance of groups, say. It is then common to refer to theorems from that
mathematical theory in the sequel of the proof, or to apply proof techniques from that
theory.

This is a form of interpretation and is used by mathematicians informally — that
is, without ever referring to it as interpretation. It is desirable to add this to the proof
language, and Isar’s proof contexts enable to do so.

5.1 Proofs as Development Graphs

Isar proofs are built in a top-down manner by continuous refinement of goals to subgoals
until eventually a goals are solved. Each subgoal is reflected explicitly as a context
in the proof text. The proof is a development graph (NP, LP), distinct from previous
developments graphs for locales and theories, whose nodes are the nested contexts. The
graph is in fact a tree, since it reflects the structure of the proof. Its root represents
the goal statement. Definition links point from contexts of one level to the contexts of
the next level. The consequence relation of the nodes is uniformly �. The assumptions
of the goal statement are the axioms of the root node. Along each path, contexts are
only lever extended, by parameters and/or assumptions. The morphisms attached to the
definition links are thus embeddings. Additional assumptions introduced in a context are
the local axioms of that node. The local theorems are the propositions that are proved
in the context.

Consider as an example the proof of the theorem that the subgroups of a group are a
complete lattice. This has been formalised in Isabelle/HOL, and is available on the au-
thor’s web page at http://www4.in.tum.de/˜ballarin/isabelle/SubgrpLattice.thy. We will
analyse a branch of the proof tree in more detail. The statement can be formalised as
follows:

∧
G. group G =⇒ complete lattice (|carrier = {H. subgroupH G}, �= subgrp G|)

(1)
Thick parentheses (|· · ·|) denote records. The lattice (|carrier = {H. subgroupH G},
�= subgrp G|) will be abbreviated by L in the sequel.
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submagma

submonoid

subgroup

(1)

(2)

(3)

H �→
T

A

G �→ G

H �→ H
G �→ G

group G

A ⊆ carrier L ∧ A �= {}

H ∈ A

Fig. 1. Locale hierarchy and a proof that interprets subgroup locales

The context of this statement is given by parameter G and assumption groupG. One
proof of the statement involves showing the existence of a greatest lower bound (infi-
mum) of each non-empty subset A of the carrier {H. subgroupH G}. The subgoal is:

∧
A. A ⊆ carrier L ∧ A �= {} =⇒ ∃I. greatest L I (Lower L A) (2)

Note that this is relative to the context of the previous goal. The proof of this goal
requires, amongst others, that the intersection of the groups in A is a subgroup of each
H ∈ A:

∧
H. H ∈ A =⇒

⋂
A �L H (3)

The path of the development graph corresponding to Subgoals (1) to (3) is depicted
in Figure 1. To the right of the nodes, assumptions of the goals are displayed. In devel-
opment graph terminology these are local axioms. Note that by Definition 5 they have
to be read incrementally.

Completing the proof of (3) requires to show that
⋂

A is a subgroup of H in G.
This follows, because both

⋂
A and H are subgroups of G. An Isar proof of this is

reproduced in Figure 2(a). It is required to show that the set
⋂

A is closed with respect
to group operations of G. The proof is complicated considerably, because the notion of
H being a subgroup of G is specified incrementally through the hierarchy of locales
shown in Figure 1 on the left. It is a realistic assumption that an algebraic library is
structured in that way.

5.2 Theorem Links

Interpretation enables to abstract away from these library structure details in the proof
text. The command

interpret l : n [p1 . . . pi] <proof>

is analogous to the corresponding command for interpretation in theories, but is avail-
able in proofs.4 It maintains a set of local theorem links TP from the locale development
subgraph to the proof development subgraph. Links are persistent in the scope of the
proof only. They facilitate reuse of interpretations, for example if a hierarchy of locales
is interpreted incrementally.

4 The name is different because this is required, for technical reasons, by the front end of the
proof assistant.



Interpretation of Locales in Isabelle: Theories and Proof Contexts 41

show
�

A �L H
proof (simp, rule tac subgrpI)

show H ⊆ carrier G
by (rule submagma.subset [OF subgroup.is submagma, OF subgroupH])

next
show

�
xy. x ∈

�
A ∧ y ∈

�
A =⇒ x ⊗ y ∈

�
A

by (rule submagma.m closed [OF subgroup.is submagma, OF Int subgroup])
next

show 1 ∈
�

A
by (rule submonoid.one closed [OF subgroup.is submonoid, OF Int subgroup])

next
show

�
x. x ∈

�
A =⇒ inv x ∈

�
A

by (rule subgroup.m inv closed [OF Int subgroup])
qed

(a) Proof without interpretation.

show
�

A �L H
proof (simp, rule tac subgrpI)

show H ⊆ carrier G by (rule H.subset)
next

show
�

xy. x ∈
�

A ∧ y ∈
�

A =⇒ x ⊗ y ∈
�

A by (rule Int.m closed)
next

show 1 ∈
�

A by (rule Int.one closed)
next

show
�

x. x ∈
�

A =⇒ inv x ∈
�

A by (rule Int.m inv closed)
qed

(b) Proof with interpretation.

show
�

A �L H by (auto intro: subgrpI)
(c) Interpretation makes a more concise proof possible.

Fig. 2. Comparison of proofs without and with interpretation

In the proof described in the previous section, interpretation can be applied fruitfully
twice.

In Proof Context (2): interpret Int: subgroup [
⋂

A G] <proof>
In Proof Context (3): interpret H: subgroup [H G] <proof>

The result is a simpler proof of Goal (3), which is shown in Figure 2(b). This is
much cleaner, because manual interpretations of theorems by means of “[OF . . . ]” are
no longer necessary. If, finally, the corresponding locale theorems were declared as
rewrite rules with the attribute [simp] in the locale, the proof can be collapsed to a
single line. See Figure 2(c).

6 Conclusion

The facilities for the interpretation of locales in theories and proofs described here have
been implemented in Isabelle and are available with the release of Isabelle 2005. More
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information on the commands interpretation and interpret can be found in the corre-
sponding Isar Reference Manual [15].

Interpretation is implemented in a hand full of provers, namely IMPS [6], PVS [13]
and Coq [5], and development graphs are implemented in the development graph man-
ager Maya [1]. In these systems only a single notion of context prevails, namely that of
a theory. A comparison of the facilities of these systems and locales was given in our
paper on interpretation of locales in locales [3].

The present work goes beyond that in that interpretation is extended to other contexts.
Development graphs provide a framework making it possible to describe all three kinds
of contexts available in Isabelle, namely theories, proofs and locales, in a uniform way.
The result is a development graph where theory nodes, proof nodes and locale nodes
are distinguished, and where theorem links, which represent interpretations, may only
start from locale nodes but may point to any kind of node.

The distinction of theories and locales is rooted both in Isabelle being a framework
for the specification of logics, and in types not being first-class citizens of higher-order
logic. Interpretation of type constructors, which can be declared in theories but not in
locales, would either require to apply context morphisms to proof objects, or to give up
the concept of an LCF-style kernel. Given this distinction, the interpretation of locales
in theories is useful. Maintaining theorem links explicitly makes it possible for theories
to subscribe to locales, so that theorems become available there, whenever added to
locales.

Interpretation in proof contexts is most exciting in combination with human-readable
proofs. It enables proof writers to mimic a technique common in mathematical texts,
namely to insert theorems from different mathematical theories in a proof as required.
We have implemented interpretation in Isar proofs. Our experiment, a proof that the
subgroups of a group form a complete lattice, shows that this can make proofs consid-
erably more concise. The experiment also shows how locales can be applied to a family
of objects, here the family of subgroups of a group, within a proof, while structured
specifications cannot deal with that directly.

Consequence morphisms may map parameters to higher-order terms. By restricting
these to higher-order patterns, the problem whether new interpretations are implied by
existing ones can be shown to be decidable for interpretations in theories and proofs.

References

1. S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The development graph manager
Maya. In H. Kirchner and C. Ringeissen, editors, Algebraic Methodology and Software Tech-
nology, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France, LNCS 2422, pages
495–501. Springer, 2002.

2. C. Ballarin. Locales and locale expressions in Isabelle/Isar. In Berardi et al. [4], pages 34–50.
3. C. Ballarin. Interpretation of locales in Isabelle: Managing dependencies between locales.

Technical Report TUM-I0607, Technische Universität München, 2006.
4. S. Berardi, M. Coppo, and F. Damiani, editors. Types for Proofs and Programs, TYPES 2003,

Torino, Italy, LNCS 3085. Springer, 2004.
5. J. Chrzaszcz. Modules in Coq are and will be correct. In Berardi et al. [4], pages 130–136.



Interpretation of Locales in Isabelle: Theories and Proof Contexts 43

6. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In D. Kapur, editor, Automated
deduction, CADE-11: Saratoga Springs, NY, USA, LNCS 607, pages 567–581. Springer-
Verlag, 1992.

7. D. Hutter. Management of change in structured verification. In Automated Software Engi-
neering, ASE 2000, Grenoble, France, pages 23–31. IEEE Computer Society, 2000.

8. F. Kammüller. Modular Reasoning in Isabelle. PhD thesis, University of Cambridge, Com-
puter Laboratory, Aug. 1999. Also Technical Report No. 470.

9. F. Kammüller, M. Wenzel, and L. C. Paulson. Locales: A sectioning concept for Isabelle.
In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving
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Abstract. Proofs contain important mathematical knowledge and for
mathematical knowledge management it is important to represent them
adequately. They can be given at different levels of abstraction and writ-
ing a proof is typically a compromise between two extremes. On the one
hand it should be in full detail so that it can be checked without using
any intelligence, on the other hand it should be concise and informative.
Making everything fully explicit is not adequate for most mathematical
fields since easy parts do not need any communication. In particular in
traditional proofs, computations are typically not made explicit, but a
reader is expected to check them for him- or herself. Barendregt for-
mulated a principle, the Poincaré Principle, which allows to separate
reasoning and computation. However, should any computation be hid-
den? Or only easy computations? What is easy? How can we be sure
that computations are correct? In this contribution, relevant notions are
discussed and a principle is introduced which allows for checkable proofs
which give a choice to see on request two different types of argument.
The first type of argument states why any computation of this kind is
correct. The second type states a (typically lengthy) detailed low-level
proof of a trace of the computation.

1 Introduction

Proof is a multicoloured concept which plays an important role in mathematics at
least back to the days of Aristotle (384BC–322BC), who can be considered as the
father of logic, and Euclid (325BC–265BC), who advanced the field of geometry
by achieving a rigour which was unattained before and was not surpassed in two
thousand years.

Why are proofs so important in mathematics? Leibniz answered this question
in 1686 as follows:

I’ve noticed that the reason why we get it so often wrong outside of
mathematics and the [mathematicians] are so lucky with their conclu-
sions, is only that in geometry and other fields of abstract mathematics
it is possible to carry through . . . proofs, not only about the final state-
ment, but also for each and every moment and for every step which is
done starting from the premisses . . .

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, pp. 44–53, 2006.
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The only means to improve our conclusions is to make them as evident
as those of the mathematicians are . . . and when there is a dispute one
needs only say: “Let’s calculate.”

[12, p.16]

Leibniz’ idea was most influential in the rapid development of logic which started
around 200 years later in the mid 1850ies by Boole in An Investigation of The
Laws of Thought [4] and by others. However, it turned out later that there is
an important difference between proof and computation. We will come back to
that in the next section.

Frege distinguished the way how we detect a mathematical theorem and how
we establish it by proof. He claims that the first is an individual process while
the latter is best done in a more definite form through a logical proof.

In apprehending a scientific truth we pass, as a rule, through various de-
grees of certitude. Perhaps first conjectured on the basis of an insufficient
number of particular cases, a general proposition comes to be more and
more securely established by being connected with other truths through
chains of inferences, whether consequences are derived from it that are
confirmed in some other way or whether, conversely, it is seen to be a
consequence of propositions already established. Hence we can inquire,
on the one hand, how we have gradually arrived at a given proposition
and, on the other, how we can finally provide it with the most secure
foundation. The first question may have to be answered differently for
different persons; the second is more definite, and the answer to it is con-
nected with the inner nature of the propositions considered. The most
reliable way of carrying out a proof, obviously, is to follow pure logic . . .

Everything necessary for a correct inference is expressed in full . . . noth-
ing is left to guesswork.

[6] quoted from [8, p.6f].

In this contribution, we are interested only in the question how to convey a proof
and not how to find it in the first place. We will argue, however, that even this
may be answered differently for different persons. While traditionally – using a
passive medium such as paper – an author of a proof has to commit to a partic-
ular proof well-suited for a particular audience, the technological development
makes it possible to adapt proofs and give choices to a reader as well.

Of course, there is a tension between “Everything necessary for a correct
inference is expressed in full . . . nothing is left to guesswork” and the need to be
concise.

While rarely any mathematician, who is not very interested in the logical
foundations of mathematics (and many mathematicians seem not to be too con-
cerned about the foundations of mathematics), gives very precise proofs which
are fully explicit, the arrival of proof development environments changed this
picture. Suddenly it became possible (and necessary) to be fully precise in order
to get a machine checkable proof and de Bruijn re-shaped Leibniz’ old dream:
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As a kind of dream I played (in 1968) with the idea of a future where
every mathematician would have a machine on his desk, all for himself,
on which he would write mathematics and which would verify his work.
But, by lack of experience in such matters, I expected that such machines
would be available in 5 years from then. But now, 23 years later, we are
not that far yet.

N.G. de Bruijn in [13, p.210]

De Bruijn’s idea can be viewed as a programme and manifesto for a whole field.
As he says progress was slower than anticipated. This is partly due to the fact
that things are in practice not as simple as Leibniz, Frege, Hilbert, and de Bruijn
thought. In particular there is a need to be concise. One way to achieve this is
to separate proof and computation. We will discuss this in the next section in
more detail.

2 The Poincaré Principle

The invention of a tactic and tactical theorem proving was a great advance
compared to proof checkers which do not use tactics, since tactics allow to reduce
the number of user interactions in the generation of proofs. However, they do
not reduce the length of the proof which is to be checked by a proof checker
or by a human being, since each tactic has to be expanded to a low level proof
which makes use only of calculus level rules.

If we expand a proof which is generated from a tactic, we typically do not get
a proof which mathematicians would enjoy checking. There are proofs, which
are concise and a pleasure to read, and there are proofs, which are lengthy,
tedious and boring. Some theorems have proofs of the latter kind only (see [10]),
however, whenever there is a shorter proof the advice of Hardy [7, p.29] would
be very clear:

In both theorems [– the existence of an infinity of prime numbers and
the irrationality of

√
2 –] (and in the theorems, of course, I include the

proofs) there is a very high degree of unexpectedness, combined with
inevitability and economy. The arguments take so odd and surprising a
form; the weapons used seem so childishly simple when compared with
the far-reaching results; but there is no escape from the conclusions.
There are no complications of detail—one line of attack is enough in
each case; and this is true too of the proofs of many much more difficult
theorems, the full appreciation of which demands quite a high degree of
technical proficiency. We do not want many ‘variations’ in the proof of
a mathematical theorem: ‘enumeration of cases’, indeed, is one of the
duller forms of mathematical argument. A mathematical proof should
resemble a simple and clear-cut constellation, not a scattered cluster in
the Milky Way.

In one important aspect all these proofs are equivalent: They establish the theo-
rem. However, in another they are not. Typically the more concise a proof is the
more intelligence on part of the reader is required. How often is the “as easily
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can be seen” not so easy after all? Fully explicit proofs, however, require a lot of
endurance. Human readers, in particular mathematically skilled ones, typically
prefer the challenge over the boredom. This is different when we build computer
systems which should check proofs. It is much easier to write systems which do
the duller type of checking.

It is an important aspect of making proofs interesting to free them from
computation by adding for each computable function f an expression F (x) and
postulate axiomatically that for arbitrary expressions t, f(t) can be evaluated by
applying F to the evaluation of t. Since the idea goes back to Poincaré it is called
the Poincaré Principle in [2]. Barendregt and Cohen discuss it in detail in [3]:

Since computing is important for proving, one would like that if f is a
computable function (on a freely generated algebra A), then there is a
formal expression F (x) such that for all a, b ∈ A

f(a) = b ⇔ � F (a) = b, (1)

for some representation a �→ a of elements of A in the theory.
The most efficient way (from the point of proving) to ensure (1) is to
add for each computable function f an expression F (x) and postulate
axiomatically that for arbitrary a ∈ A

� F (a) = f(a). (2)

The Poincaré Principle is in conflict with another principle which Barendregt
and Cohen state as an important property of proof checkers, the de Bruijn
principle [3]: “A proof assistant satisfies the de Bruijn criterion if it has a proof
checker that is small enough to be verified by hand. Proof assistants that have
proof objects that are stored have the advantage of the possibility of independent
checking.” The principle is important since a skeptical reader of a proof can take
full control by checking the checker.

Let us assume that addition on natural numbers is defined inductively as
∀n n + 0 = n and ∀n, m n + s(m) = s(n + m) and we want to prove that
P (3 + 1) and ¬P (4) are contradictory. There is first a representational issue. 1,
3, and 4 can be represented as successors of 0, that is, as s(0), s(s(s(0))), and
s(s(s(s(0)))), respectively. Without a Poincaré principle a proof would be:

1. ∀n n + 0 = n premise
2. ∀n, m n + s(m) = s(n + m) premise
3. P (s(s(s(0))) + s(0)) premise
4. ¬P (s(s(s(s(0))))) premise
5. ∀m s(s(s(0))) + s(m) = s(s(s(s(0))) + m) ∀e[n �→ s(s(s(0)))] 2
6. s(s(s(0))) + s(0) = s(s(s(s(0))) + 0) ∀e[m �→ 0] 5
7. s(s(s(0))) + 0 = s(s(s(0))) ∀e[n �→ s(s(s(0)))] 1
8. s(s(s(0))) + s(0) = s(s(s(s(0)))) =subst 7, 6
9. P (s(s(s(s(0))))) =subst 8, 3

10. ⊥ ¬e 9, 4
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A similar logical level proof would have to be much longer if we wanted to
make a similar argument for P (1,000,000 + 1,000,000) and ¬P (2,000,000). Such
a trivial computation would take more than a million proof steps in a formal en-
vironment if one followed a näıve approach. This is not appropriate, in particular
since it is easy to construct examples which are way beyond any computation
power of a simple proof checker. This is not only extremely inconvenient for
proof presentation, but can also be disastrous for proof construction. Since these
steps are clearly unwanted in a proof, they should be excluded. Surely nobody
would want to see a proof with more than a million steps, in particular, not
for establishing a relationship which he or she is convinced to be true anyway.
Typically nobody would want to see a proof with any sort of trivial computation
included, since the trivial computations are taken for granted and are in some
way outside of the argument. In order to make this formal, Barendregt has in-
troduced the Poincaré principle, which allows to take computations out of the
reasoning process and the proofs.

The argument above should be abbreviated to something like (indiscrimi-
nately of whether we compute 3 + 1 or 1,000,000 + 1,000,000):

1. P (3 + 1) premise
2. ¬P (4) premise
3. P (4) calculation 1
4. ⊥ ¬e 3, 2

or even
1. P (3 + 1) premise
2. ¬P (4) premise
3. ⊥ ¬ecalculation 1, 2

The computations used in this example are very simple, but in real mathematics
they may be much more advanced, for instance, involving the computations of
integrals such

∫
sin2(x)dx, or checking a tautology by a decision procedure.

The Poincaré principle is important since no one wants to be bored by an un-
informative proof, which contains almost no information. Furthermore it is ap-
propriate since it takes steps out of the reasoning which human mathematicians
would not consider part of a proof. Computations are assumed to be correct,
algorithmic and checking them is on a different level than following a proof ar-
gument. That is, the Poincaré principle makes it possible to provide a guarantee
for the correctness of a theorem at the appropriate level.

In a significant point, the Poincaré principle as presented in this section is ad
hoc, however, since it assumes a fixed notion of what is “trivial” and what needs
an explicit argument. While computations can be assumed to be trivial, in many
aspects they are not always. While the sum of 1,000,000 and 1,000,000 is trivial
for most people, the differentiation of desin(

√
x)

dx may require some explanation,
although computer algebra systems typically do not provide any.
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Furthermore the notion what is “trivial” and what not is different for be-
ginners and experts. Such a balanced view is, however, not possible assuming a
fixed notion of what requires an argument and what not. In order to remedy this
shortcoming of the Poincaré principle it is made dynamic in the next section by
an explicit notion of reason for the validity of a computation.

3 A Dynamic Poincaré Principle

The Poincaré Principle is adequate for a fixed set of functional procedures for
which the correctness can be checked once and for all. It can be postulated
axiomatically to hold henceforth. In this section we propose a principle, called
Dynamic Poincaré Principle, which is a generalization of the Poincaré Principle,
since it allows a high-level explanation of proofs, in which inessential parts are
omitted, but the computations are not postulated axiomatically, but can be
checked to be correct by a skeptical reader in two fundamentally different ways.

The first expansion is a general argument as to why this type of step is cor-
rect, that is, in case of a computation, a proof that the computation algorithm is
correct (in case of a tactic, a proof that the tactic is correct). The second expan-
sion gives a detailed argument for the correctness of the particular argument,
which – in case of a computation – corresponds directly to a detailed trace of the
computation. Each of the arguments is sound and only one is needed. However,
each amounts to a different type of understanding.

As Ayer pointed out [1, p.85f]

The power of logic and mathematics to surprise us depends, like their
usefulness, on the limitations of our reason. A being whose intellect was
infinitely powerful would take no interest in logic and mathematics. For
he would be able to see at a glance everything that his definitions im-
plied, and, accordingly could never learn anything from logical inference
which he was not fully conscious of already. But our intellects are not of
this order. It is only a minute proportion of the consequences of our defi-
nitions that we are able to detect at a glance. Even so simple a tautology
as “91 × 79 = 7189” is beyond the scope of our immediate apprehen-
sion. To assure ourselves that “7189” is synonymous with “91 × 79” we
have to resort to calculation, which is simply a process of tautological
transformation – that is, a process by which we change the form of ex-
pressions without altering their significance. The multiplication tables
are rules for carrying out this process in arithmetic, just as the laws of
logic are rules for the tautological transformation of sentences expressed
in logical symbolism or in ordinary language.

While for a being with an infinitely powerful intellect there is no need for
any reasoning at all, the intellectual capabilities and experiences of individuals
vary (in absolute terms and with particular mathematical fields). Somebody very
familiar with a particular type of argument (such as mathematical induction) will
understand many particular instances without any explanation, while a beginner
will need a detailed argument.
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This difference is true also for computational or algorithmic parts of a proof.
Let us first look at a simple computation example in form of a division algo-
rithm, DIV, which is supposed to compute the integer part of a simple division.
Concretely, let us assume that two number x and y are given, the program is to
calculate the quotient a and rest b of the division of x by y. If only the algorithm
is given then it will produce a result but no argument which could be checked in
order to convince us that the result is actually correct (you cannot ask a pocket
calculator why 15 divided by 3 is 5). The argument why an algorithm is correct
is typically on a level different from the logical level.1

The program can be given in any type of programming language such as
Java for programs like integer division, or advanced specialized systems such
as computer algebra systems for specialized computations like differentiation or
indefinite integration. Note that in any of these cases it is important to state a
semantic relationship between the function symbols in the reasoning system and
the corresponding functions in the programming language. For instance, addition
for natural numbers corresponds closely to addition in computer algebra systems,
but not to addition in Java, which corresponds to addition in Z/pZ. Note, that
for a rigorous argument, we need to have a correctness proof of the program.

One possible way to specify programs is given by Hoare logic through so-called
Hoare triples. In the concrete example this can be done by proving the validity
of

{x ≥ 0 ∧ y > 0}DIV{a · y + b = x ∧ 0 ≤ b < y}.
The Hoare calculus allows to prove properties of programs formally. If for

instance DIV is given by

a := 0 ;
b := x ;
while b >= y do

b := b - y;
a := a + 1

end

the correctness can be shown by a suitable loop invariant and the sequence rule.
Note that even if we have a correctness proof, the correctness of the computation
still depends on the correctness of the compiler with respect to the primitives
used in the program (that is, here +, −, and ≥).

If we want to prove

Hyp P (6/3) Hyp
Thm P (2) ???
then there is mainly one standard argument. Namely we argue that we use a
calculation to compute 6/3.
1 There are systems based on constructive logic (as, for instance, Nuprl [5] or Coq [9])

which allow to write internal algorithms which can be written and used in a verified
way. While this is a particularly nice usage of the system for achieving correctness
on different levels, conceptually the argument why an algorithm is correct, is a priori
on a different level.
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Hyp P (6/3) Hyp
Thm P (2) calculation

Since ‘calculation’ is not a primitive explanation, it must be possible to expand it
(that is, to ask why it is correct). For this expansion there are now two standard
explanations. First, we can present a correctness proof of the algorithm (for
instance, in form of a Hoare calculus proof as discussed above). This option would
be preferred if, for instance, we had to compute something like 1,000,000/2.
Alternatively, we can present an argument why the concrete computation is
correct, an argument which is relatively easy in the case of 6/3 = 2. The latter
can in principle be generated from a trace protocol of the computation.

Different proofs have different advantages. A high-level proof will capture the
essential parts, it is more concise and may be easily generalized. On this level,
the proof

Hyp P (6/3) Hyp
Thm P (2) calculation

is the same as the proof

Hyp P (1,000,000/2) Hyp
Thm P (500,000) calculation

while the explicit descriptions on a low logical level are quite different (for in-
stance, they have significantly different lengths).

As described in [11], it is possible to decorate algorithms in a way that they
produce tactics which explain concrete computations. This would be for a com-
putation such as 6/3 = 2 a tactic level proof:

Hyp P (6/3) Hyp
1 6/3 = s((6 − 3)/3) DefDiv
3 6/3 = s(s(((6 − 3) − 3)/3)) DefDiv
2 6/3 = s(s((3 − 3)/3)) DefMinus
4 6/3 = s(s(0/3)) DefMinus
5 6/3 = s(s(0)) DefDiv
Thm P (2) Subst=

This is not a logic level proof yet, since the tactics DefDiv and DefMinus may
be further expanded.

The Dynamic Poincaré Principle frees up proofs from computations, not with
a fixed a priori notion of what constitutes a computation, but in an extensible
flexible way. It can be stated as follows. A proof follows the Dynamic Poincaré
Principle if:

At any point in a proof it is possible to introduce an argument “calcu-
lation”, which a reader can deal with in three different ways:

– Believe that the computation is correct.
– Check a proof that the algorithm performing the computation is

correct.
– Check that a trace of the concrete computation is correct.
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The Dynamic Poincaré Principle is an extension of the Poincaré Principle,
since it adds flexibility for the writer of proofs by extending the notion of com-
putation, and adds flexibility for the reader of proofs since it allows for skepticism
in proof reading without enforcing it.

The Dynamic Poincaré Principle has been presented here to deal appropri-
ately with computations in logical arguments. It should, however, be useful more
broadly such as in the re-representation of mathematical expressions, for in-
stance, in the transition from ((a+b)+((−b)+(−a)))+a = c to a+b−b−a+a = c
for an associative operator +.

4 Conclusion

We propose in this contribution a new principle, the Dynamic Poincaré Principle
which allows to build and check proofs at an appropriate level. A main advantage
of the Dynamic Poincaré Principle is that proofs can be represented in a concise
form. Computations are not assumed to be axiomatically correct, but they can be
expanded. A human reader of the proof can decide whether he or she believes the
computation, wants to see an argument why the computation is always correct,
or wants to get an expansion of a computation. An expansion of the computation
has the advantage that it can be checked by standard proof checkers. This is,
however, potentially at the price that the proof is prohibitively long. A general
argument why the computation is correct requires still some trust that the actual
computation has been performed correctly (for instance, that the compiler works
perfectly and that the hardware did not fail). This seems for many types of
computations acceptable.
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Abstract. Tactics and tacticals, programs that represent and execute
several steps of deduction, are fundamental to theorem provers providing
automated tools for creating proofs quickly and easily. The language
used for tactics is usually a full-scale programming language, separate
from the language used to represent proofs. Consequently, there is also a
separation between the use of theorems in proofs and the use of tactics.
Our goal is to represent tactics in a way that allows them to be treated
at the same level as proofs and theorems. We also want a representation
that allows us to formally translate tactics into the proof steps they
represent. We extend a system presented in [1,2] to represent tactics at
the same level as theorems and move freely from tactics to proof steps
and provide an example of its usefulness.

1 Introduction

Theorem provers such as Coq, NuPRL, and Isabelle provide extensive tools for
users to create proofs quickly with automated methods. Fundamental to these
systems is the use of tactics and tacticals, programs that represent and execute
several steps of deduction. The language used for tactics is typically a full-scale
programming language, separate from the language used to represent proofs.
Consequently, there is also a separation between the use of theorems in proofs
and the use of tactics.

Giunchiglia and Traverso succinctly state the properties desired for a tactic
language: the tactics should be expressions of a logical language in order to fa-
cilitate reasoning about them; and, there should be a correspondence between
the tactics as represented in this logical language and the programs that imple-
ment the tactics [3]. Syme calls the correspondence justifications, hints about
the proof manually specified for the automated tactics [4].

The ML-like languages for tactics in Coq, NuPRL, and Isabelle are generally
well suited to this task [5,6,7]. The tactics found in these systems are built from
basic inference rules into complex programs that can apply rules, choose between
tactics to apply, and analyze the current structure of a proof. These powerful
constructs can automate a great deal of the theorem proving process.

Appel and Felty have looked at implementing tactics in higher-order logic
programming languages such as Lambda Prolog and Twelf [8,9]. They use the
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power of backtracking in these systems to facilitate the creation and execution
of tactics.

All of these approaches share one thing in common: they implement tactics
at a system level that is separate from the level of proofs and theorems. The
system-level implementation allows the tactics to be more powerful than the
underlying logic. The power is particularly important in the automated search
for proofs, where the user creates tactics and tacticals so that a theorem prover
can complete a proof with little or no interaction. In fact, it is this desire for
automation that drives the decision to separate tactics from proofs.

Despite being implemented at different levels, theorems and tactics have much
in common. Both store and repeat proof steps. They represent generalized prov-
ing techniques used often within the theory in which they exist. Moreover, both
provide guidance and hints to a user regarding the completion of a proof; proofs
that share a few tactics or theorems are likely to share more. Nevertheless, work
in the area of tactics and tacticals focuses on developing automated proof steps
at the system level, separate from the underlying logic in which they work.

The power of the separate tactics language comes at a price, as explained
by Delahaye [10]. Separating the two languages requires a user to learn two lan-
guages when creating proofs and the developer to create a separate infrastructure
for debugging and validating tactics.

The separation between tactics and theorems also inhibits our flexibility in
proof representation. While tactics may be used to automate proof steps, they
are not represented in the completed proof; the tactics merely apply a sequence
of elementary inference rules that a user would perform manually without the
tactics. There are times when formally representing the tactics at the same level
as proofs can be useful, particularly when transferring a proof to a paper. If a
step in the proof is repeated several times by a tactic, we may want to perform
the step explicitly the first time and then say that the step is “repeated several
times in the same way.” We want to be able to represent such a statement
formally in the proof itself.

Our goal is to represent tactics in a way that allows them to be treated
at the same formal level as proofs and theorems, independent of their system-
level implementation. Many very useful tactics on commonly used algebras only
require simple constructs that can be represented easily in the same way as
theorems, not needing Turing-complete languages used in theorem provers. For
example, a tactic for substitution of equals for equals require congruence rules for
each operation in the algebra, the ability to iterate through several steps of using
different congruence rules, and the ability choose the appropriate congruence rule
at each step.

We also want a representation that allows us to easily translate tactics into the
proof steps they represent using proof-theoretic, formal rules. Such a represen-
tation gives us the flexibility to make proofs more general by using the tactics in
the representation or more specific by using some or all of the individual proofs
steps.
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Finally, the representation should be independent of search techniques and
algorithms used to implement automated proof search. While these issues are
important for a theorem prover, they are system-level decisions orthogonal to
the choices made in representing tactics.

In this paper, we propose such a representation. We extend a system presented
in [1,2] to represent tactics at the same level as theorems and move freely from
tactics to proof steps. We formalize several common tactics and propose a way
to represent them in our proof system. We then provide formal rules for creating
and manipulating tactics and their use in proofs. Finally, we provide an extended
example for creating a simple tactic and using it.

2 A Motivating Example

Consider reasoning about a Boolean algebra (B, ∨, ∧, ¬, 0, 1). Boolean algebra
is an equational theory, thus contains the axioms of equality:

ref : ∀x. x = x (1)
sym : ∀x, y. x = y → y = x (2)

trans : ∀x, y, z. x = y → y = z → x = z (3)
cong∧ : ∀x, y, z. x = y → (z∧x) = (z∧y) (4)
cong∨ : ∀x, y, z. x = y → (z∨x) = (z∨y) (5)
cong¬ : ∀x, y, z. x = y → ¬x = ¬y (6)

idemp∧ : ∀x. x∧x = x (7)

Let us look at a particular form of tactic. It is easy to see that the axiom
idemp∧ allows us to prove

∀a. a∧a∧a = a (8)

Once we have the proof of (8), we can use it to prove

∀a. a∧a∧a∧a = a (9)

in the following way. From (8) and cong∧ with the substitution [x/a ∧ a ∧
a, y/a, z/a], we can deduce

a∧a∧a∧a = a∧a (10)

We then use idemp∧ to get
a∧a = a (11)

Finally, we apply trans to (10) and (11) with the substitution [x/a∧a∧a∧
a, y/a∧a, z/a] to conclude

a∧a∧a∧a = a

which is true for arbitrary a, yielding our desired conclusion (9). We can continue
to prove a theorem like this for n + 1 occurrences of a using the proof for n
occurrences of a.
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The form of this proof is typical: an inductive argument where we use the
result from one proof to prove a step in the next proof. We wish to generalize
this kind of proof as a tactic that allows one to represent the execution of several
steps of the proof either with the tactic itself or with the individual proof steps.

The need to recover the steps is important, particularly for presentation. Imag-
ine one proves a theorem such as (9). Given that the proof steps are similar and
repeated, one may wish to state the proof step explicitly once and then capture
the rest of the iterations with one statement.

3 Tactic Representation

For representing tactics, we extend a proof representation system designed to
create, remember, and reuse proofs from [1,2]. The papers present a publish-
cite system, which uses proof rules with an explicit library to formalize the
representation and reuse of theorems and lemmas. The system uses universal
Horn equational logic, and we do as well, since it is a good vehicle for illustrating
the organization and reuse of theorems. There is no inherent limitation in the
system that requires the use of this logic; it could be extended to work with
more complex deductive systems.

We build theorems from terms and equations. Consider a set of individual
variables X = {x, y, . . .} and a first-order signature Σ = {f, g, . . .}. An individual
term s, t, . . . is either a variable x ∈ X or an expression ft1 . . . tn, where f is
an n-ary function symbol in Σ and t1 . . . tn are individual terms. An equation
d, e, . . . is between two individual terms, such as s = t.

A theorem is a universally quantified Horn formula of the form

∀x1, . . . xm. ϕ1 → ϕ2 → · · · → ϕn → ψ (12)

where the ϕi are equations representing premises, ψ is an equation represent-
ing the conclusion, and x1 . . . xm are the variables that occur in the equations
ϕ1, . . . , ϕn, ψ. A formula may have zero or more premises. These universally
quantified formulas allow arbitrary specialization through term substitution. An
example of this is the use of cong∧ with substitutions to get (10).

Next, we must define a proof term. For simplicity, we use the model presented
in [1]. Let P be a set of proof variables p, q, . . .. A proof of a theorem is a λ-term
abstracted over both the proof variables for each premise of a theorem proven
by the proof and the individual terms that appear in the proof. A proof term is:

– a variable p ∈ P
– a constant, referring to the name of a theorem
– an application πτ , where π and τ are proof terms
– an application πt, where π is a proof term and t is an individual term
– an abstraction λp.τ , where p is proof variable and τ is a proof term
– an abstraction λx.τ , where x is an individual variable and τ is a proof term

When creating proof terms, we have the typing rules seen in Table 1. These
typing rules are what one would expect for a simply-typed λ-calculus. The
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Table 1. Typing rules for proof terms

Γ, p : e � p : e Γ, c : ϕ � c : ϕ

Γ � π : e → ϕ Γ � τ : e

Γ � π τ : ϕ

Γ � π : ∀x.ϕ

Γ � π t : ϕ[x/t]

Γ, p : e � τ : ϕ

Γ � λp.τ : e → ϕ

Γ � τ : ϕ

Γ � λx.τ : ∀x.ϕ

typing environment Γ maps variables and constants to types. According to the
Curry-Howard Isomorphism, the type of a well-typed λ-term corresponds to a
theorem in constructive logic and the λ-term itself is the proof of that theorem
[11]. For example, a theorem such as (12) viewed as a type would be realized by
a proof term representing a function that takes an arbitrary substitution for the
variables xi and proofs of the premises ϕi and returns a proof of the conclusion ψ.

We use the following notation throughout the rest of the paper:

– x is a set of elements {x1, . . . , xn}.
– ϕ[x/t] means for all i, replace xi ∈ x in ϕ with ti ∈ t.
– π : ϕ is the list of proof term typing statements π1 : ϕ1, . . . , πn : ϕn.

In order to use tactics, we introduce a few new proof terms:

– A case statement,
case δ of =ϕ1 ⇒ π1

. . .
=ϕn ⇒ πn

ψ1 ⇒ τ1
. . .
ψm ⇒ τm

where δ, ϕ1, . . . , ϕn, ψ1, . . . , ψm are formulas and π1, . . . , πn, τ1, . . . , τm are
proof terms. The case statement is very similar to the one in Standard ML.
We look at the structure of δ and match it against the types in the body
of the statement. There are two kinds of matches that can occur. We can
exactly match the type δ with a type ϕi, signified by the =, or we match
a type δ against a possible unification, ψj . The difference is that a type δ
matches a case =ϕi if δ = ϕi, whereas it matches a case ψj if there exists a
substitution such that δ = ψj [x/t]. The proof to the right of the ⇒ of the
matched case is a proof of the type δ, as enforced by the type system.

We use the notation =ϕ ⇒ π to represent =ϕ1 ⇒ π1 . . . =ϕn ⇒ πn and
ψ ⇒ τ to represent ψ1 ⇒ τ1 . . . ψn ⇒ τm.

– A formula variable X , representing a quantified or unquantified formula
– A formula abstraction λX.π, where X is a formula variable and π is a proof

term. We need this proof term in order to abstract over the δ found in the
case statement.
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To support tactics, we extend formulas with recursive types [12],[13, Ch. 20].
We require the addition of three types:

– A formula variable X .
– A recursive formula μX.ϕ, where X is a formula variable and ϕ is a formula.
– A sum formula {δ : =ϕ1 + . . . + =ϕn + ψ1 + . . . + ψm} where

δ,ϕ1, . . . , ϕn,ψ1, . . . , ψm are formulas. We use the notation {δ : =ϕ + ψ} to
represent {δ : =ϕ1 + . . . + =ϕn + ψ1 + . . . + ψm}. The sum formula
is closely related to the case statement, as will be apparent when examining
the typing rules. In fact, we refer to an individual =ϕi or ψj in a sum formula
as a case.

The typing rules for the new proof terms are in Table 2. With the presence
of abstraction over type variables, we need to type the formulas with kinds
[13, Ch. 29]. The kinds primarily provide information for matching a formula
with a case in a sum formula. Kinds are built from a base kind ∗ and the
first-order signature Σ = {f, g, . . .}. A kind term s∗, t∗ is a base kind ∗ or an
expression f t1∗ . . . tn∗ where f is an n-ary function symbol in Σ and t1∗, . . . , tn∗
are kind terms. A kind equation d∗, e∗ is between two kind terms, such as s∗ = t∗.

For the most part, kind information is implicit; the kind s∗ = t∗ of an equation
s = t is formed by replacing all variables in s and t with ∗. However, we may
want to be explicit about kind information when the kind is more specific than
the type. For example, the type x = y implicitly has the kind ∗ = ∗. If we
mean for it to represent a more specific kind, say, ∗∨∗ = ∗∧∗ in our Boolean
algebra example, we would have to specify the kind explicitly with the notation
(x = y : ∗∨∗ = ∗∧∗). A type’s explicit kind can never be less specific than its
implicit kind, i.e., x∧y = y cannot have the kind ∗ = ∗. We use the explicit kinds
to match formulas with cases in the sum formula.

Table 2. Typing rules for new proof terms

Γ � π1 : ϕ1 . . . Γ � πn : ϕn Γ � τ1 : ψ1 . . . Γ � τm : ψm

Γ � case X of =ϕ ⇒ π, ψ ⇒ τ : {X : ϕ + ψ}

Γ � π : {δ : =ϕ + ψ}
Γ � π : δ

ϕi = δ

Γ � π : {δ : =ϕ + ψ}
Γ � π : δ

ψi[x/t] = δ or
δ : e∗, ψi : e∗

Γ � π : ψ

Γ � λX.π : ∀X.ψ

Γ � π : ∀X.ψ

Γ � π ϕ : ψ[X/ϕ]

Γ � λp.π : μX.ϕ

Γ � π[p/λp.π] : μX.ϕ

Γ � π[p/λp.π] : μX.ϕ

Γ � λp.π : μX.ϕ
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The type of a case statement with a formula variable X is the sum formula
formed from the types of the proofs in the body of the statement. The second
and third typing rules allow us to be more specific about a proof with a sum
formula type. The type of a proof with a formula δ is δ if either δ is equal to one
of the ϕi or δ unifies with or has the same kind as one of the ψi.

The type of the formula abstraction is the universal quantification over that
formula. It is important to note that this is not the same as an abstraction over
a proof variable p with the type ϕ. A term λp : ϕ.π would have the type ϕ → ψ,
where ψ is the type of π. When typing the application of a formula abstraction,
the replacement of X with ϕ requires us to use the kind information. The only
place such type variables appear is in case statements.

Finally, we have typing rules for proof terms with recursive types. The two
typing rules correspond to unfolding and folding the proof term. We take an equi-
recursive approach to the recursive types. In other words, μX.ϕ is equivalent to
ϕ[X/μX.ϕ].

From the standpoint of an automated theorem prover, it is our type system
that does most of the work of finding the correct steps to apply from a tactic.
Most of this work is in choosing the correct case when applying a case statement
to a type δ. Without any restrictions, δ may match several cases, requiring the
type system to search though an exponential number of possible proofs. It is
this search problem that makes implementing theorem prover tactics difficult.
We regard the search problem as an implementation issue separate from the
issue of formally representing tactics that we deal with in this paper. For the
sake of this paper, we assume that when matching a type against possible cases
in a case statement, we only explore the first match found, which removes the
need for search at all.

We provide several rules for creating and manipulating proofs. The rules allow
one to build proofs constructively. They manipulate a structure of the form L; T ,
where

– L is the library of theorems, T1 = π1, . . . , Tn = πn

– T is a list of annotated proof tasks of the form A 	 π : ϕ, where A is a list
of assumptions, π is a proof term, and ϕ is a formula.

The proof rules can easily be extended to handle theorem scoping as in [2].
In Table 3, we present the rules for basic proof manipulation. The rules are

very similar to the ones in [1]. One difference is that the (ident) and (assume)
rules allow one to introduce assumptions with formula types and not just equa-
tions. We also add the (inst) rule, which allows us to instantiate variables over
which a proof term is abstracted. Before, this was handled by the (cite) rule,
but new rules give us the ability to have term abstractions in proof tasks, so we
need to instantiate explicitly.

We also have (normt) and (normp) rules for performing β-reduction on ap-
plications of λ-abstractions over terms and proofs, respectively. It is important
to note that the (normt) rule does not replace x in a proof in a case of a case
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Table 3. Proof Rules for Basic Theorem Manipulation

(assume)
L ; T , A � τ : ψ

L ; T , A, p : ϕ � τ : ψ

(ident)
L ; T
L ; T , p : ϕ � p : ϕ

(mp)
L ; T , A � π : ϕ → ψ A � τ : ϕ

L ; T , A � π τ : ψ

(discharge)
L ; T , A, p : e � τ : ψ

L ; T , A � λp.τ : e → ψ

(publish)
L ; T , � π : ϕ

L, T = λx.π : ∀x.ϕ ; T

(cite)
L1, T = π : ϕ, L2 ; T
L1, T = π : ϕ, L2 ; T , � π : ϕ

(inst)
L ; T , A � λx.π : ∀x.ϕ

L ; T , A � π t : ϕ[x/t]

(normt)
L ; T A � (λx.π) t

L ; T A � π[x/t] : ϕ

(normp)
L ; T A � (λp.π) τ

L ; T A � π[p/τ ] : ϕ

(forget)
L1, T = π : ϕ, L2 ; T
L1, L2[T/π] ; T [T/π]

statement where we perform unification if x occurs in the type for that case. In
other words, for the proof term

case X of =ϕ ⇒ π, ψ ⇒ τ : {X : =ϕ + ψ}

we do not replace x in τi if it occurs in ψi. We do, however, replace x in any of the
πi and ϕi in which they occur. This behavior is not unlike the case statement in
Standard-ML. The (forget) rule allows us to remove a theorem from the library.
With the possibility of recursive proof terms, the (forget) rule must perform its
replacement of T with π and normalization repeatedly until T no longer appears.

In Table 4, we introduce the proof rules to create, use, and manipulate the-
orems and tactics. The (case) rule combines existing proof tasks into a case
statement. The types variable X can be unified with one of the types ϕ1, . . . , ϕn

or matched exactly with one of types of the assumptions p1, . . . , pm. These types
must be equations. The (decase=) and (decase) allow us to determine which
case the type δ matches and replace the case statement with the proof term for
that specific case.

The rules (fold) and (unfold) are standard rules one would expect for deal-
ing with recursive types. The (publishr) rule allows us to publish recursive
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Table 4. Proof Rules for Tactics

(case)
L ; T , A, p : e � π1 : ϕ1 . . . A, p : e � πn : ϕn

L ; T , � case X of =e ⇒ p, ϕ ⇒ π : {X : =e + ϕ}

(decase=)
L ; T , A � case δ of =ϕ ⇒ π, ψ ⇒ τ : δ

L ; T , A � πi : δ
ϕi = δ

(decase)
L ; T , A � case δ of =ϕ ⇒ π, ψ ⇒ τ : δ

L ; T , A � τi[x/t] : δ
ψi[x/t] = δ

(fold)
L ; T , A � π[p/λp.π] : μX.ϕ

L ; T , A � λp.π : μX.ϕ

(unfold)
L ; T , A � λp.π : μX.ϕ

L ; T , A � π[p/λp.π] : μX.ϕ

(publishr)
L ; T , p : μX.ψ � π : ϕ

L, p = λx.λp.π : ∀x.μXϕ ; T
μX.ψ = ∀x.μXϕ

(forget1)
L1, T = π : ϕ, L2 ; T , A � T τ : ψ

L1, T = π : ϕ, L2 ; T , A � π τ : ψ

(normf)
L ; T A � (λX.π) ψ

L ; T A � π[X/ψ] : ϕ

proof terms. In other words, these are tactics that use themselves in the proof.
Recursion of this nature is very important for tactics; we want to be able to
repeat proof steps several times, such as in our example in Section 2. The rule
takes a proof task with a single assumption of a recursive type and moves it to
the library. The name assigned to the theorem is the same as the proof variable
in the assumption. It is also necessary that the type of the proof variable and
the type of the proof term added to the library are equivalent.

We add the (forget1) rule, which functions much like (forget), except we re-
place a theorem name with the proof of that theorem in only a single application
in a single proof task and we do not remove the theorem from the library. This
rule allows us to make explicit one step in the application of a tactic. Finally,
the (normf) rule performs β-reduction on applications of λ-abstractions over
formulas.

The steps in creating a tactic with several cases that recursively call the tactic
would be as follows:

1. Use the (assume) and (ident) rules to add a proof variable with the type
of the tactic to be created.

2. Create the proof terms for the cases of the tactic, using the assumption
added in step 1 for the recursive calls.

3. Use the (case) rule to combine the proof terms created in step 2 into a single
case statement.

4. Use the (publishr) rule to publish the new tactic.
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4 A Constructive Example

We can provide a tactic for our example in Section 2. First, we give a general
description of the proof steps in our tactic. For a given x and a, if we want to
prove x∧a = a, we use a recursive tactic that is quantified over an equation Y .
If Y is of the form x = x, then we use ref to prove the equation true. If Y is of
the form x∧a = a, then it suffices to apply trans to proofs of x∧a = a∧a and
a∧a = a. The latter follows directly from idemp∧. For the former, we use cong∧
on a proof of x = a, which we obtain by recursively calling the tactic.

Let
ϕR = μX.∀x.∀a.∀Y. X → {Y : x = x + x∧a = a}

First, we use (ident) to create a proof task

R : ϕR 	 R : ϕR (13)

Next, let us create the cases of our tactic. We first create what will be the “base
case” for our recursion. We use (cite), (inst), and (assume) to get the proof
task

R : ϕR 	 ref x : x = x (14)

For the recursive case, we use (inst) on (13) and the fact that we use equi-
recursive types to get

R : ϕR 	 R x a (x = a : ∗∧∗ = ∗)
: ϕR → {(x = a : ∗∧∗ = ∗) : x = x + x∧a = a}

(15)

We have made the kind of x = a explicit in order to make sure it matches the
x∧a = a case in our sum formula type in ϕR. Next, we use (mp) on (15) and
(13) to get

R : ϕR 	 R x a (x = a : ∗∧∗ = ∗) R : (x = a : ∗∧∗ = ∗) (16)

For the rest of the example, we do not show the kind of x = a for readability.
To use congruence of ∧, we use (cite), (inst), and (assume) to add the task

R : ϕR 	 cong∧ x a a : x = a → x∧a = a∧a (17)

We combine (17) and (16) using (mp) to get

R : ϕR 	 cong∧ x a a (R x a (x = a) R) : x∧a = a∧a (18)

For the proof of a∧a = a, we use (cite), (inst), and (assume) to add the proof
task

R : ϕR 	 idemp∧ a : a∧a = a (19)
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We introduce transitivity with (cite), (inst), and (assume)

R : ϕR 	 trans (x∧a) (a∧a) a : x∧a = a∧a
→ a∧a = a
→ x∧a = a

(20)

Two applications of (mp) with (20),(18), and (19) give the completed recursive
case for our tactic:

R : ϕR 	 trans (x∧a) (a∧a) a
(cong∧ x a a (R x a (x = a) R))
(idemp∧ a)

: x∧a = a (21)

Now we use the (case) rule to combine (14) and (21) for our tactic:

R : ϕR 	 case Y of
(x = x) ⇒ ref x
(x∧a = a) ⇒ trans (x∧a) (a∧a) a

(cong∧ x a a
(R x a (x = a) R))

(idemp∧ a)

: {Y : x = x + x∧a = a}

Finally, we use the (publishr) rule to publish the tactic as

R = λx.λa.λY.λR. case Y of
(x = x) ⇒ ref x
(x∧a = a) ⇒ trans (x∧a) (a∧a) a

(cong∧ x a a (R x a (x = a) R))
(idemp∧ a)

The type of this tactic is

∀x.∀a.∀Y. ϕR → {Y : x = x + x∧a = a}

Notice that ∀x.∀a.∀Y. ϕR → {Y : x = x + x∧a = a} is equal to ϕR, which
is necessary for applying the rule.

We now have a tactic that given an x of the form a∧. . .∧a will provide a proof
of a∧. . .∧a = a. If applied to a term that is not of this form, the tactic will not
have a type.

We can now apply the tactic to create a new proof. We use the (cite) and
(inst) rules just as we do on theorems to create the proof task

	 R (b∧b∧b) b (b∧b∧b∧b = b) : ϕR → b∧b∧b∧b = b

We then use (cite) and (mp) to get the conclusion we desire.

	 R (b∧b∧b) b (b∧b∧b∧b = b) R : b∧b∧b∧b = b (22)

We may want to make one step of the application of the tactic R explicit. First,
we use the (forget1) rule on (22) to replace the name of the tactic with its body
and then use the normalize rules to perform β-reduction to get
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	 case (b∧b∧b∧b = b) of
(x = x) ⇒ ref x
(x∧a = a) ⇒ trans (x∧a) (a∧a) a

(cong∧ x a a (R x a (x = a) R))
(idemp∧ a)

: b∧b∧b∧b = b (23)

We can then use (decase) to replace the case statement with the specific case
that is matched, where b∧b∧b∧b = b unifies with x∧a = a under the substitution
[x/b∧b∧b, a/b].

	 trans (b∧b∧b∧b) (b∧b) b
(cong∧ (b∧b∧b) b b
(R (b∧b∧b) b (b∧b∧b = b) R))

(idemp∧ b)

: b∧b∧b∧b = b (24)

Now one of the steps of the proof is explicit while the others are implicitly
captured in the application of the tactic R.

5 Conclusion

We have presented a proof-theoretic approach in which tactics are treated at the
same level as theorems and proofs. The proof rules allow us to create, manipulate,
and apply tactics in a way that is completely formal and independent of system-
level decisions regarding proof search. Many important tactics can be represented
in the relatively simple system we have demonstrated, particularly in algebras
such as our Boolean example.

Representing tactics at this level has several advantages for automated the-
orem provers, from both a user perspective and a developer perspective. For
users, powerful tactics can be created without needing to learn a separate tactics
language. However, the power of the language used to implement the theorem
prover can be harnessed to make proof search as complete and efficient as de-
sired. Additionally, when combined with the work in [2], tactics can be put into
a local scope and abstractions can be manipulated just as we can with theorems,
a powerful ability lacking from current theorem provers.

In the future, we plan to have a full implementation of tactics added to the
Java implementation mentioned in [2] for Kleene algebra with tests [14]. We
can then investigate the ability of the system to discover repeated citations in
proofs that can be abstracted out at lemmas. Given the structure of tactics
and theorems, detecting similar subproofs is a form of common subexpression
elimination, a process we call proof refactorization. With this system, one could
easily use tactics with a strong underlying formalism guiding their manipulation.
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Abstract. We consider an extension of OMDoc proofs with alterna-
tive sub-proofs and proofs at different level of detail, and an affine non-
deterministic fragment of the λμμ̃-calculus seen as a proof format. We
provide explanations in pseudo-natural language of proofs in both for-
mats, and a formal correspondence between the two by means of two
mutually inverse encodings of one format in the other one.

1 Introduction

Proofs play a major role in mathematics and their representation is a key issue in
mathematical knowledge management. Proofs of all kinds need to be stored and
retrieved in repositories of formalized mathematics and communicated across
system and logic boundaries, for instance to be assembled to larger proofs in the
context of computer assisted mathematical theorem proving or to be explained
on an adaptive level of granularity in tutor systems for teaching mathematics.

In [1] the first author and his colleagues presented a data structure for the
representation of proof attempts (proof data structure or PDS ). The two main
features of a PDS are the possibility of representing proofs at different levels
of granularity and that of representing alternative, possibly incomplete, sub-
proofs. A PDS is quite complex, being a directed graph with nodes representing
proof goals, arcs justifying a proof goal with some subgoals via a calculus rule,
high-level proof method or a proof sketch and hierarchical arcs that represent
transitions between granularity levels. There can be more than one justifica-
tion for each node, which are at different levels of granularity if connected by
hierarchical arcs and alternative subproofs otherwise. A PDS maintains simulta-
neously all proofs at different levels of granularity as well as all alternative proofs
of some subgoals, which are useful features during interactive or automatic proof
construction, and also for proof explanation, for instance in a tutorial setting.
Selection of a specific level of granularity is supported by views on a PDS. In
this paper we consider views to also include the selection of exactly one alter-
native subproof for each goal. To store and communicate the proofs and proof
plans contained in a PDS, a PDS can be serialized to a proof format, that can
be OMDoc [3]. However, OMDoc is currently unable to represent alternative
subproofs.

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, pp. 67–81, 2006.
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Both PDSs and OMDoc documents claim to be adequate representation for-
malisms for mathematical proofs. However, they lack a semantics specification
and are so generic that any structured document can be embedded into them. To
make more precise the semantics of OMDoc and other proof formats, the second
author has started the investigation of the λμμ̃ calculus as a proof format in [4].
The calculus, that is Curry-Howard isomorphic to classical sequent calculus, has
very remarkable properties per se and also as a proof format. In particular, as
explained in [4], its intuitionistic (and deterministic) fragment can be equipped
with a straightforward translation to pseudo-natural language, and proofs in the
classical fragment can be easily translated to the intuitionistic fragment. What
was so far unclear is whether the non-deterministic classical fragment of the
calculus (or sub-fragments of it) is necessary to fully exploit the calculus as a
proof format. In this paper we answer positively the question by proposing an
extension of OMDoc with alternative proofs (inspired by PDSs) and an encod-
ing of the extension in a fragment of the λμμ̃-calculus. The encoding provides
naturally a semantics for a view: a view on a proof is obtained by reducing the
corresponding proof term according to the non-deterministic rules of the calcu-
lus. The non determinism dynamically selects just one of the alternative proofs
for each choice. The encoding is particularly informative for two reasons. First
of all it provides a clear semantics for OMDoc (and, indirectly, for the corre-
sponding PDSs). Secondly it tries to respect the rendering semantics associated
to OMDoc and to the λμμ̃-calculus. A rendering semantics is the function that
translates the term to its pseudo-natural language rendering.

2 λμμ̃-Calculus

Table 1 shows the syntax of the λμμ̃-calculus, proposed by Curien and Herbelin
in [2]. Its rendering semantics can be found in [4]. In the rest of the paper we
assume the reader to be familiar with the latter paper, while knowledge of the
first one is not necessary.

The intuitionistic fragment of the calculus is obtained by restricting the set of
continuation variables (ranged over by Greek letters) to a singleton (whose only
element is conventionally the � symbol). This way every time a continuation is
bound by the μ binder the previous bound continuation goes out of scope. The

Table 1. Syntax of the λμμ̃-calculus & λμμ̃-calculus reduction rules

Terms
v ::= x

| λx : T.v
| μα : T.c

Environments
E ::= α

| v ◦ E
| μ̃x : T.c

Commands
c ::= 〈v||E〉

Reduction rules :
〈μα : T.c||E〉 � c{E/α}
〈v||μ̃x : T.c〉 � c{v/x}
〈λx : T.v1||v2 ◦ E〉 � 〈v2||μ̃x : T.v1 ◦ E〉

η-like rules:
μ-expansion: v ⇒ μα : T.〈v||α〉
μ̃-expansion: E ⇒ μ̃x : T.〈x||E〉
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rendering semantics in [4] provides an easy intuition: every time we state that
we are going to prove something we are obliged to conclude it; in other words,
subproofs must be well-nested. The intuitionistic fragment is Curry-Howard iso-
morphic to Gentzen LJ sequent calculus.

A term that is not in the intuitionistic fragment is said to be in the classical
fragment of the calculus. In this fragment it is possible to bound a continuation,
but later on give control to another continuation bound less recently in the past.
The rendering semantics in [4] provides an easy intuition, but the result is not
at all natural: we can state that we are going to prove something, but later
on we can escape to an outer proof and conclude it instead. In doing this we
can exploit the additional hypotheses we collected in the inner (and unfinished)
proof. Since subproofs are not well-nested in this fragment, the pseudo-natural
language obtained is not natural nor easy to understand. For this reason in [4] we
apply the rendering semantics only to the intuitionistic fragment and provide a
translation from the classical fragment to the intuitionistic fragment augmented
with classical axioms that state excluded middle at each type. The intuitionistic
fragment is Curry-Howard isomorphic to Gentzen LK sequent calculus.

Table 1 shows the reduction rules of the calculus, according to [2]. The first
two rules may form a critical pair. Consistently solving the critical pair by giving
priority to one of the two rules leads to a call-by-value (respectively call-by-name)
strategy, that this way are shown to be perfectly dual. The classical fragment of
the calculus is not deterministic, since for a critical pair there may be no common
reduct to form a diamond. However, the intuitionistic fragment is deterministic
and it is a closed subset with respect to reduction. The λμμ̃-calculus typing rules
and its principal meta-theoretical properties can be found in [2].

3 Representing Alternatives in Proofs in the
λμμ̃-Calculus

We are now interested in representing alternatives proofs and views in the
λμμ̃-calculus. Moreover, we want to avoid the addition to the calculus of new
constructs and we also want to exploit a fragment as close as possible to the intu-
itionistic one. The latter requirement is necessary to preserve the good behavior
of our rendering semantics that gives natural results only on that fragment.

The main idea underlying our encoding is that of seeing a view over a proof
term just as reduced forms of the proof term (according to the reduction rules
of the calculus). For each pair of alternative proofs in the calculus we have two
possible set of views: one that picks the first view and one that picks the opposite
one. Thus a proof term with an alternative must reduce non deterministically
in two possible ways. This suggests that we must encode a pair of alternative
proofs as a critical pair.

The λμμ̃-calculus typing rules and the previous requirement suggest the fol-
lowing minimal encoding of a pair of alternative terms t1 and t2 that prove T :

altT
r (t1, t2) := μ� : T.〈μ : T.〈t1||�〉||μ̃ : T.〈t2||�〉〉
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By duality we can also provide a continuation that embeds two alternative con-
tinuations E1 and E2 of type T . However, we will not need it in this paper and
we consider as future work the study of fragments of the calculus that include it.

In the definition of altTr (t1, t2) we have used the notation μ : T (μ̃ : T ) to
remark that the bound term (continuation) will not occur in its scope. We also
say that this occurrence of the binder is affine.

As requested, the term altTr (t1, t2) is subject to the following non determin-
istic reduction rules: altTr (t1, t2) � μ� : T.〈t1||�〉 and altTr (t1, t2) � μ� : T.〈t2||�〉.
Notice that both right hand sides are μ-expanded forms respectively of t1 and
t2 and thus they are extensionally equivalent to t1 and t2. Notice also that
if t1 and t2 are both terms in the intuitionistic fragment then altTr (t1, t2) re-
duces only to terms in the intuitionistic fragment. Unfortunately, when the term
is plugged into a command, it is also subject to the following reduction rule:

〈altTr (t1, t2)||E〉 � 〈μ : T.〈t1||E〉||μ̃ : T.〈t2||E〉〉
The right hand side of the reduction rule is basically equivalent to the left hand
side and it will enjoy all its interesting properties. However, the environment E
is duplicated. According to our rendering semantics, the left hand side represents
a large proof with two alternative subproofs. The right hand side represents two
alternative large proofs that have duplicated parts. Thus we will be interested in
preventing this form of reduction. Notice that we can easily syntactically detect
the redexes we do not want to reduce. They are the redexes of the form:

〈μ� : T.〈μ : T ′.c1||μ̃ : T ′′.c2〉||E〉
Finally, the reader can check the following typing derivation for our encoding

according to the typing rules given in [2]:

Γ � t1 : T |� : T ;Δ Γ |� : T � � : T ;Δ
〈t1||�〉 : Γ � � : T ;Δ

Γ � μ : T.〈t1||�〉 : T |� : T ; Δ

Γ � t2 : T |� : T ; Δ Γ |� : T � � : T ; Δ
〈t2||�〉 : Γ � � : T ; Δ

Γ |μ̃ : T.〈t2||�〉 : T � � : T ; Δ
〈μ : T.〈t1||�〉||μ̃ : T.〈t2||�〉〉 : Γ � � : T ;Δ

Γ � μ� : T.〈μ : T.〈t1||�〉||μ̃ : T.〈t2||�〉〉 : T |Δ

The typing derivation shows a few peculiarities we are now going to analyze.
First of all, when introducing affine binders we have not added the variables
bound by an affine binder to the premises of the introduction rule. This is con-
sistent with the original typing rules since the missing premise cannot play any
role in the derivation because it is not referenced in the term.

Thanks to the previous observation, we notice that the continuation context
Δ plays a passive role in the derivation, being simply propagated from the root
to the leaves of the tree. As a consequence the derivation holds also when Δ
is empty. In the latter case the continuation context has always exactly one
declaration, and the two premises of the tree become

Γ � t1 : T |� : T and Γ � t2 : T |� : T
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If t1 and t2 are terms in the intuitionistic fragment, then the continuation �
declared in the context cannot occur in any of them. Thus it can be dropped
from the typing judgment.

To summarize, if t1 and t2 are terms in the intuitionistic fragment, then the
following “morally intuitionistic” derived rule applies for altTr (t1, t2):

Γ � t1 : T |∅ Γ � t2 : T |∅
Γ � altT

r (t1, t2) : T |∅
By structural induction on the typing derivation, the same derivation holds

for t1 and t2 in the intuitionistic fragment extended with alt−r (−, −).
Following a similar line of reasoning, we will also admit the environment

altTl (t1, t2) := μ̃x : T.〈μ : T.〈t1||�〉||μ̃ : T.〈t2||�〉〉

and more generally commands of the form c ::= 〈v||E〉 | 〈μ : T.c||μ̃ : T.c〉

Excursus: the affine fragment of the λμμ̃-calculus is the fragment where each μ̃-
binder is either affine or binds the continuation variable �. The affine fragment
is a superset of the one we adopt for encoding alternative proofs.

It is interesting to ask whether the whole affine fragment is a natural candidate
for being a proof fragment. For the fragment we use this is a consequence of
being essentially intuitionistic. Thus we can ask if the whole affine fragment
is essentially intuitionistic or if it is inherently classical and does not admit a
natural explanation of its proofs in pseudo-natural language.

According to the syntax of the λμμ̃-calculus, an affine binder can occur only in
two positions: as the first subterm of a command, possibly prefixed by lambda-
abstractions (〈λx1 : T1. . . . λxn : Tn.μ : T.c||E〉) — called a spine position —
and as the first subterm of a “cons” environment, possibly prefixed by lambda-
abstractions (λx1 : T1. . . . λxn : Tn.μ : T.c ◦ E) — called an argument position.
Since we are supposed to analyze an extension of an essentially intuitionistic
fragment, we suppose that continuation variables range over the singleton {�}.
We show how to prove without assuming any axiom and in two different ways
the classical statement (A ⇒ C) ⇒ ((A ⇒ B) ⇒ C) ⇒ C. As far as we know,
both proofs do not admit a reasonable translation to natural language.

The first proof exploits an affine binder in argument position:

λH1 : A ⇒ C.λH2 : (A ⇒ B) ⇒ C.μ� : C.〈H2||(λx : A.μ : B.〈H1||x ◦ �〉) ◦ �〉

The classical core of the proof is represented by the term λx : A.μ : B.〈H1||x◦�〉.
The term has type A ⇒ B, but it does not conclude B under the hypothesis A.
As soon as A is known by hypothesis, the hypothesis is used in conjunction with
H1 to jump to the outer proof and conclude C. In the intuitionistic fragment
this would be prevented by the μ binder that starts the proof of B binding �
and hiding the previous declaration of �. In the affine fragment, however, the
μ binder can bind no variable, without hiding �. As far as we know, there is
no structural way of providing a natural explanation of the proof term above in
natural language.
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The second proof, that exploits an affine binder in spine position, μ̃-reduces
to the first proof:

λH1 : A ⇒ C.λH2 : (A ⇒ B) ⇒ C.
μ� : C.〈(λx : A.μ : B.〈H1)||x ◦ �〉||μ̃y : A ⇒ B.〈H2||y ◦ �〉〉

We conclude that the affine fragment is too large to be directly useful as
a proof format. The restriction obtained by allowing affine binders only if not
prefixed by lambda-abstractions is essentially intuitionistic, but does not seem to
add much expressive power with respect to the intuitionistic fragment extended
with the affine binders that occur in alt−l (−, −) only.

Natural language rendering of alternative proofs. We equip the affine fragment
considered to encode alternative proofs with the following fully compositional
rendering semantics (according to [4]):

�〈μ : T.c1||μ̃ : T.c2〉� = we provide two alternative proofs
first proof: ↪→

�c1�
alternative proof: ↪→

�c2�

The semantics is fully compositional since �ti� occurs in output before �tj�
every time ti occurs before tj in the term. This is an important property since
it allows one to translate a proof back and forth without any need to rearrange
the subterms; in other words the translator can be implemented as a stream
processor and a human being can easily understand a proof term running the
translation in his head without need to take notes.

Views for alternative proofs, in the sense of [1], are produced from a proof (or a
PDS) by picking just one alternative proof in each set of alternative choices. In
the λμμ̃-calculus we are considering, a view is obtained by reducing one of the
two competing redexes of each critical pair in the proof term. This definition of
a view is more informative than the corresponding one over PDSs and provides
an effective guideline for extensions to more refined form of views.

4 Abstract Syntax for OMDoc Proofs

An extended OMDoc proof consists of hypothetical proof steps and proof steps
that derive a new fact. These two proof steps correspond to the formal OMDoc
proofs. In order to deal with alternative proof attempts, we add a third language
construct marking the start of alternative proofs. The full grammar rules for
proofs is given in Table 2. In Appendix A we present an adequate extension of
the OMDoc document type definition to accommodate alternative proofs.

More specifically, hyp L:F;PROOF denotes the start of a hypothetical proof,
where scope of the hypothesis F with label L reaches until the end of the rest
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Table 2. Abstract Syntax for Formal OMDoc Proofs

PROOF := hyp L:F;PROOF
| alt(PROOF1 | PROOF2)
| derive L : F JUST;PROOF
| derive : F JUST

ARG := L | (F PROOF)

JUST := method M(ARG1 . . .ARGn) OPTEXP

| plan(ARG1 . . .ARGn) (F PROOF)

| sketch(ARG1 . . .ARGn)

OPTEXP := nil | (F PROOF)

(where L are the labels of formulas, F the formulas, and M the references to methods.)

of the proof PROOF. Alternative subproofs are represented by alt(PROOF1 |
PROOF2). The derive proof steps are the most complex and of the general form

derive L : F JUST

Such a step states that we can derive the fact F by using the justification JUST.
We allow three kinds of justifications JUST for derive-steps: It can either be
a sketch(ARG1 . . .ARGn) in the sense proof sketches in [5] (called “gap steps”
in [3]) or it is a reference to a method M(ARG1 . . .ARGn) or it is the description
of a subproof plan(ARG1 . . .ARGn). In all cases the ARGi are either premises or
facts and associated proofs. Premises are referenced by their label L and a fact
and its proof are represented by (F PROOF). If there is at least one fact and
subproof, then this is a top-down proof step; otherwise it is a pure bottom-up
proof step. A method can be calculus rule, but also a rule at some lower level of
granularity which is associated with a proof at some higher-level of granularity.
This accommodates the simultaneous representation of proofs for F at different
levels of granularity that is necessary to encode the PDS [1]. In case the derive-
step is the last step of a proof we require the labels Li of the derived formulas
to be undefined, which is indicated by in the grammar. Note that derive-steps
are the only means to terminate a proof.

Further differences of the extended OMDoc proofs and the standard [3] are:
(1) we consider only hypothesis and derivation steps that have exactly one formal
formula (FMP) and (2) we do not allow for local declarations and definitions.
The latter could easily be added and translated to λμμ̃, but we omitted them for
sake of simplicity. The first restriction is due to the fuzzy semantics of OMDoc
proofs with several conclusions, that does not admit in the current state an
explanation in λμμ̃. Fixing the semantics of OMDoc will require also syntactic
changes; we plan to do that in a future work, providing a correspondence with
an already known extension of λμμ̃ with primitive multiplicative conjunction.

The rendering semantics for extended OMDoc proofs is given in Table 3 where
�P � denotes the rendering of the proof P . Due to the lack of space, we have
omitted the explicit introduction of newlines. The rendering rules are straight-
forward: the difference between a derive-step being the final and thus concluding
step of a proof or not is acknowledged by using the past tense “. . . we proved. . . ”
instead of the present tense “. . . we prove. . . ” (for method application and proof
descriptions) and “. . . we show. . . ” (for proof sketches).
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Table 3. Rendering Semantics for Abstract OMDoc

�hyp L:F;PROOF� := “Assume F (L)�PROOF�”
�derive L : F method M(ARG1, . . . ,ARGk) OPTEXP;PROOF′�

:= “By M �(ARG1, . . . , ARGk)�al �OPTEXP�o we prove F (L); �PROOF′�”
�derive L : F plan(ARG1, . . . ,ARGk) (F ′ PROOF);PROOF′�

:= “We prove F (L) �(ARG1, . . . , ARGk)�al �(F’ PROOF)�o; �PROOF′�”
�derive L : F sketch(ARG1, . . . ,ARGk);PROOF′�

:= “We show F (L �(ARG1, . . . ,ARGk)�al; �PROOF′�”
�derive :F method M(ARG1, . . . ,ARGk) OPTEXP�

:= “By M �(ARG1, . . . , ARGk)�al �OPTEXP�o we proved F; ←↩ ”

�derive :F plan(ARG1, . . . ,ARGk) (F’ PROOF) �

:= “We proved F �(ARG1, . . . ,ARGk)�al �(F’ PROOF)�o; ←↩ ”
�derive :F sketch(ARG1, . . . ,ARGk)�

:= “We can obtain F �(ARG1, . . . ,ARGk)�al; ←↩ ”
�alt(PROOF1 | PROOF2)� := “Either ↪→ �PROOF1�

or ↪→ �PROOF2�”
�()�al := “” �(ARG1, . . . ,ARGk)�al := “from �ARG1�

a, . . . , and �ARGk�a”
�nil�o := “” �(F PROOF)�a := “F (proved by �PROOF�)”

�L�a := “L” � (F PROOF) �o := “(In detail: �PROOF�)”

5 Encoding OMDoc in λμμ̃ and the Other Way Around

Tables 5 and 6 show forward and backward translations between OMDoc proofs
in the full fragment and λμμ̃-terms in the affine fragment of Table 4. The latter
table also provides a rendering semantics for the fragment that is slightly more
refined than the one given for the whole calculus.

Notice that the grammar of the fragment can be simplified, for instance by
identifying the Term and ComplexArg productions, that are kept distinct to
the benefit of the presentation of the rendering semantics.

Indeed, the reader can check that the only intuitionistic terms of the calculus
that are not in the fragment are x in spine position and λx1 : T1. . . . λxn : Tn.x
both in spine and argument position. In both cases a simple η-like μ-expansion
can give an equivalent term in the fragment: x is expanded to μ� : T.〈x||�〉 and
λx1 : T1. . . . λxn : Tn.x to λx1 : T1. . . . λxn : Tn.μ� : T.〈x||�〉.

The new term “?” that can only occur as the first argument of a command is
a linear placeholder for a missing term of the expected type.

By induction over OMDoc proof (respectively λμμ̃-term) structure, it is pos-
sible to prove that the two translations behave as almost inverse functions. In
particular �−�t

F (in the first translation) is almost inverse of �−� (in the sec-
ond one); �−�j

1 and �−�j
2 considered together are inverse of �−�m; the two �−�a

functions are inverse one of the other. The functions behave as inverse on every
proof/term but

derive L : F JUST PROOF1; HYP L′ : F′;PROOF2
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Table 4. A λμμ̃-fragment with its rendering semantics

Commands
c ::= 〈v′||E〉 �v′��E�

| 〈μ : T.c1

||μ̃ : T.c2〉 we provide two alternative proofs
first proof: ↪→

�c1�
alternative proof: ↪→

�c2�

Environments
E ::= � ←↩ done

| μ̃x : T.c we proved T (x)
�c�

| a ◦ E and �a�
�E�

ComplexArguments
a′ ::= μ� : T.c a proof of T ↪→

�c�
| λx : T.a′ under hypothesis T (x)

�a′�

Arguments
a ::= x by x

| a′ �a′�

SpineTerms
v′ ::= x by x

| ? by a conjecture
| v if v = μ� : T.〈v′||μ̃x : T.〈x||�〉〉 then

by x (that proves T as follows ↪→
�〈v′||�〉�

else
by some proof (in detail ↪→

�〈v′||�〉�

Terms
v ::= λx : T.v suppose T (x)

�v�
| μ� : T.c we need to prove T

↪→ �c�

Table 5. OMDoc to λμμ̃

�hyp L:F;PROOF�t
F →F ′ = λL : F.�PROOF�t

F ′

�derive :F JUST�t
F = μ� : F.〈�JUST�j

1||�JUST�j
2(�)〉

�derive L:F JUST;PROOF�t
F ′ = μ� : F ′.〈�JUST�j

1||�JUST�j
2(μ̃L : F.〈�PROOF�t

F ′ ||�〉)〉
�alt(PROOF1 | PROOF2)�t

F = altF
r (�PROOF1�

t
F , �PROOF2�

t
F )

�sketch(ARG1 . . .ARGn)�j
1 =?

�sketch(ARG1 . . .ARGn)�j
2(E) = �ARG1�

a ◦ · · · ◦ �ARGn�a ◦ E

�plan(ARG1 . . .ARGn) (F PROOF) �j
1 = �PROOF�t

F

�plan(ARG1 . . .ARGn) (F PROOF) �j
2(E) = �ARG1�

a ◦ · · · ◦ �ARGn�a ◦ E

�method M(ARG1 . . .ARGn) (F PROOF) �j
1 = μ� : F.〈�PROOF�t

F ||μ̃M : F.〈M ||�〉〉

�method M(ARG1 . . .ARGn) (F PROOF) �j
2(E) = �ARG1�

a ◦ · · · ◦ �ARGn�a ◦ E

�method M(ARG1 . . .ARGn) nil�j
1 = M

�method M(ARG1 . . .ARGn) nil�j
2(E) = �ARG1�

a ◦ · · · ◦ �ARGn�a ◦ E
�L�a = L
�(F PROOF)�a = �PROOF�t

F

After the translation, underlined μ-redexes of the form 〈μ� : T.c||�〉 (also comprising
the case μ� : T.c ≡ altT

r (v1, v2)) must be μ-reduced to c. Underlining of the remaining
commands must be removed.
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Table 6. λμμ̃ to OMDoc

�λx : T.v� = hyp x : T;�v�
�μ� : T.〈v||v1 ◦ · · · ◦ vn ◦ �〉� = derive :T �v�m(�v1�

a, . . . , �vn�a)
�μ� : T.〈v||v1 ◦ · · · ◦ vn ◦ μ̃x : T ′.c〉� = derive x:T′ �v�m(�v1�

a, . . . , �vn�a);�μ� : T.c�
† �x� = ruled out

�altT
r (v1, v2)� = alt(�v1� | �v2�)

�x�m(ARG1, . . . , ARGn) = method x(ARG1 . . .ARGn)
�?�m(ARG1, . . . ,ARGn) = sketch(ARG1, . . . ,ARGn)

◦ �μ� : T.〈v||μ̃x : T.〈x||�〉〉�m(ARG1, . . . ,ARGn) = method x(ARG1 . . .ARGn) �v�

�v�m(ARG1, . . . ,ARGn) = plan(ARG1 . . .ARGn) �v� for v /∈ {x, ?, μ� : T.〈v||μ̃x : T.〈x||�〉〉}
�x�a = x
�μ� : T.c�a = (T �μ� : T.c�)
�altT

r (v1, v2)�a = (T �altT
r (v1, v2)�

�λx1 : T1. . . . λxn : Tn.μ� : T.c�a = (T1 ⇒ · · · ⇒ Tn ⇒ T �λx1 : T1. . . . λxn : Tn.μ� : T.c�)
�λx1 : T1. . . . λxn : Tn.altT

r (v1, v2)�a = (T1 ⇒ · · · ⇒ Tn ⇒ T �λx1 : T1. . . . λxn : Tn.altT
r (v1, v2)�

† �λx1 : T1. . . . λxn : Tn.x�a = ruled out

The rule marked with ◦ is necessary to make this translation inverse of the translation
from OMDoc to λμμ̃ (Table 5). The (error) rules marked with † are never applied when
translating terms generated from OMDoc.

that, translated to the λμμ̃-calculus and back, becomes the richer term

derive L : F JUST PROOF1; derive:F′′ plan() (F′′ HYP L′ : F′;PROOF2)

that states explicitly what the hypothetical proof proves. The reader can check
the rendering semantics associated to the two OMDoc proofs.

We illustrate the semantics provided to our abstract OMDoc proofs with the
following abstract and partial proof of the irrationality of

√
12:

1. The proof is by contradiction
2. We assume rat(

√
12);

3. We show there are n, m, such that int(n) ∧ int(m) ∧ ¬commondiv(n, m) ∧√
12 = n

m ;
4. By Lemma

√
z = x

y ⇒ z × y2 = x2 we know 12 × m2 = n2;
5. We show commondiv(n, m);
6. We have a contradiction.

In this proof, the proof steps (3.) and (5.) are only descriptions of more com-
plicated proofs which are made explicit in the encoding of this proof given in
Fig. 1. Note further that the expansion of proof step (5.) contains alternative
proofs for the shown statement1 .

More specifically, we illustrate the semantics by showing (1) the rendering
of that proof using the rendering semantics from Table 3, (2) the λμμ̃ resulting

1 Note that the second alternative of using the prime divisor 2 basically comes back
to use the prime divisor 3. So it is a proof with detour, but it is a proof.
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derive : ¬rat(
√

12)
method ProofByContradiction ((rat(

√
12) ⇒ ⊥

hyp L0 : rat(
√

12);
derive L1 : int(n) ∧ int(m) ∧ ¬commondiv(n, m) ∧

√
12 = n

m

plan(L0) (rat(
√

12) ⇒ int(n) ∧ int(m) ∧ ¬commondiv(n, m) ∧
√

12 = n
m

hyp L10 : rat(
√

12); derive L11 : ∃y:int, z:int
√

12 = y
z

∧ ¬commondiv(y, z)
method ApplyLemma(Rat-Criterion, L10) ;

derive : int(n) ∧ int(m) ∧ ¬commondiv(n, m) ∧
√

12 = n
m

method decomposition(L11))

derive L2 : 12 × m2 = n2 method ApplyLemma(
√

z = x
y

⇒ z × y2 = x2,L1) ;
derive L3 : commondiv(n, m)

plan(L2) (12 × m2 = n2 ⇒ commondiv(n, m)
hyp L30 : 12 × m2 = n2

alt ( derive L31 : div(n, 3) ∧ div(m, 3)
method and-I (div(n, 3) . . . ) (div(m, 3) . . . ); . . .

| derive L34 : div(n, 2) ∧ div(m, 2)
method and-I (div(n, 2) . . . ) (div(m, 2) . . . ); . . . );

derive : ⊥ method Contradiction(L1, L3)))

Fig. 1. Part of a Proof of the irrationality of
√

12

from the translation of that proof and (3) the rendering of that λμμ̃-term using
the λμμ̃-rendering semantics from Table 4.

The rendering of the OMDoc proof from Fig. 1 is the following:

Proof: By ProofByContradiction from rat(
√

12) ⇒ ⊥
(proved by: Assume rat(

√
12) (L0)

We prove int(n) ∧ int(m) ∧ ¬commondiv(n, m) ∧
√

12 = n
m (L1) from L0

(In details: Assume rat(
√

12) (L10) By ApplyLemma from Rat-Criterion
and L10 we prove ∃y:int, z:int

√
12 = y

z ∧ ¬commondiv(y, z) (L11)
By decomposition from L11 we proved int(n) ∧ int(m) ∧

√
12 = n

m ∧
¬commondiv(n, m));

By ApplyLemma from
√

z = x
y ⇒ z×y2 = x2 and L1 we prove 12×m2 = n2

(L2);
We prove commondiv(n, m) (L3) from L2

(In details:
Assume 12 × m2 = n2 (L30)
Either by and-I from div(n, 3) (proved by �. . .�) and div(m, 3) (proved
by �. . .�) we proved div(n, 3) ∧ div(m, 3) (L31); . . .
Or by and-I from div(n, 2) (proved by �. . .�) and div(m, 2) (proved by
�. . .�) we proved div(n, 2) ∧ div(m, 2) (L34); . . . )

By Contradiction from L1 and L3 we proved ⊥)
we proved ¬rat(

√
12)

The λμμ̃-term obtained by translation using the rules Table 5 after μ-reduction
of the underlined μ-redexes of the form 〈μ� : T.〈μ : T ′.c1||μ̃ : T ′′.c2〉||E〉 is
shown in Fig. 2.

The rendering of the λμμ̃-proof from Fig. 2 according to Table 4 yields:
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μ� : ¬rat
√

12.
〈ProofByContradiction

‖ λL0 : rat(
√

12).

μ� : ⊥. 〈 μ� : rat(
√

12) ⇒ int(n) ∧ int(m) ∧ ¬commondiv(n, m) ∧
√

12 = n
m

.

λL10 : rat(
√

12).
〈ApplyLemma ‖

Rat-Criterion ◦ L10 ◦ μ̃L11 : ∃y:int, z:int
√

12 = y
z

∧ ¬commondiv(y, z).
〈decomposition ‖ L11 ◦ �〉〉

‖ L0 ◦ μ̃L1 : int(n) ∧ int(m) ∧ ¬commondiv(n, m) ∧
√

12 = n
m

.
〈ApplyLemma ‖

�
√

z = x
y

⇒ z × y2 = x2� ◦ L1

◦μ̃L2 : 12 × m2 = n2.

〈 λL30 : 12 × m2 = n2.
altr(μ� : commondiv(n, m).

〈and-I ‖ �(div(n, 3) . . .)� ◦ �(div(m, 3) . . .)�◦
μ̃L31 : div(n, 3) ∧ div(m, 3).〈�. . .�, ‖ �〉〉,

μ� : commondiv(n, m).
〈and-I ‖ �(div(n, 2) . . .)� ◦ �(div(m, 2) . . .)�◦

μ̃L34 : div(n, 2) ∧ div(m, 2).〈�. . .�, ‖ �〉〉)
‖ L2 ◦ μ̃L3 : commondiv(n, m).

〈Contradiction ‖ L1 ◦ L3 ◦ �〉〉 ◦ �〉〉〉

Fig. 2. λμμ̃-Proof obtained by translation and after reduction of μ-redexes

Proof: we need to prove ¬rat(
√

12)
by ProofByContradiction and the hypothesis rat(

√
12) (L0) a proof of ⊥

by some proof
(in detail: we need to prove rat(

√
12) ⇒ int(n) ∧ int(m) ∧

¬commondiv(n, m)∧
√

12 = n
m : Suppose rat(

√
12) (L10); By Ap-

plyLemma and Rat-Criterion and L0 we proved ∃y:int, z:int
√

12 =
y
z ∧¬commondiv(y, z) (L11). By decomposition and L11. Done)

and L0 we proved int(n) ∧ int(m) ∧ ¬commondiv(n, m) ∧
√

12 = n
m ;

By ApplyLemma and
√

z = x
y ⇒ z×y2 = x2 and L1 we proved 12×m2 =

n2 (L2);
By some proof

(in detail: Suppose 12 × m2 = n2 (L30); we provide two alternative
proofs:
First proof: we need to prove commondiv(n, m): By and-I and

�(div(n, 3) . . .)� �(div(m, 3) . . .)� we proved div(n, 3) ∧ div(m, 3);
�. . .� Done.

Second proof: we need to prove commondiv(n, m): By and-I and
�(div(n, 2) . . .)� �(div(m, 2) . . .)� we proved div(n, 2) ∧ div(m, 2);
�. . .� Done.)

and L2 we have proved commondiv(n, m) (L3);
By Contradiction and L1 and L3 done.

Done.
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The informative content of the natural language explanation obtained from
OMDoc and that obtained from the corresponding λμμ̃-calculus encoding are
clearly almost equivalent. The two main differences are omission of repetitions
of the thesis: (1) in the two alternative proofs the local thesis is restated in the
λμμ̃-calculus, but not in OMDoc; (2) at the end of the first expanded proof
OMDoc states again what has been proved while the λμμ̃-calculus does not. It
would certainly be possible as a future work to change one or both renderings
to obtain two syntactically closer texts. However, the interest would be limited,
since we are already convinced that the informative content is equivalent and
since neither of the two is really more readable or natural than the other.

6 Conclusion

In this paper we have continued the investigation of the λμμ̃-calculus as a proof
format, including the representation of alternative proofs and proofs at differ-
ent level of details. Alternative proofs can be easily accommodated in a non
deterministic fragment of the calculus that remains essentially intuitionistic, ad-
mitting proof explanation in a pseudo-natural language.

We have also demonstrated how it is possible to establish a tight correspon-
dence between OMDoc and the λμμ̃-calculus, that imposes a clear understanding
of OMDoc proofs (and, indirectly, for the corresponding PDSs) in terms of proofs
in a given logic. It is now possible to speak, for instance, of cut elimination for
OMDoc, considering the operation inherited by the formal correspondence.

The pseudo natural language generation considered in this paper is to be
understood as a textual representation of the proof that allows to understand
it in all its details. It is not meant to be a nice or natural description of the
proof – that we leave to experts in linguistics. However, it is important to pro-
vide it to further constrain the translation between the two proof formats: only
a translation that essentially preserves the two independently given rendering
semantics is acceptable, pruning out irrelevant embeddings between mathemat-
ically unrelated formats that can represent anything (like Lisp S-expressions or
plain XML).

Finally, a few difficulties we have faced in establishing the correspondence
could be understood as flaws in the OMDoc recommendation and could guide
the future development of the language. For instance, the fact that hypothet-
ical proof steps that follow derive steps when translated to λμμ̃-calculus and
read back are enriched with the statement the hypothetical step is proving.
Concretely, the abstract syntax for OMDoc proofs we have considered already
represents an extension of OMDoc that clarifies the role of proofs at different
levels of detail and that adds alternative proofs.

As a future work we plan to continue the study of the correspondence between
the two languages and their natural language renderings, in order to improve
OMDoc and to unveil other remarkable properties of bigger and bigger fragments
of the λμμ̃-calculus used as a proof format.
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A DTD Extension for OMDoc with Alternative Proofs

<!--
An XML DTD for Open Mathematical documents (OMDoc 1.2) Module PF

SYSTEM http://www.mathweb.org/omdoc/dtd/omdocpf.mod
PUBLIC -//OMDoc//ELEMENTS OMDoc PF V1.2//EN

See the documentation and examples at http://www.mathweb.org/omdoc
(c) 1999-2003 Michael Kohlhase, released under the GNU Public

License (GPL)

-- Added element <alt> for alternative proofs
(Serge Autexier & Claudio Sacerdoti-Coen (Mai 2006))

-->

<!-- qnames for omdoc statements -->
<!ENTITY % omdocpf.metacomment.qname "%omdoc.pfx;metacomment">
<!ENTITY % omdocpf.derive.qname "%omdoc.pfx;derive">
<!ENTITY % omdocpf.hypothesis.qname "%omdoc.pfx;hypothesis">
<!ENTITY % omdocpf.method.qname "%omdoc.pfx;method">
<!ENTITY % omdocpf.premise.qname "%omdoc.pfx;premise">
<!ENTITY % omdocpf.alternatives.qname "%omdoc.pfx;alt">

<!ELEMENT %omdocpf.proof.qname;
(%omdocdoc.meta.content;
(%ss;|%omdocmtxt.omtext.qname;

|%omdocst.symbol.qname;
|%omdocst.definition.qname;
|%omdocpf.derive.qname;
|%omdocpf.hypothesis.qname;

)*
(%omdocpf.alternatives.qname;)?
)>
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<!ATTLIST %omdocpf.proof.qname;
%omdoc.common.attribs;
%omdoc.toplevel.attribs;
%fori.attrib;>

<!ELEMENT %omdocpf.proofobject.qname;
(%omdocdoc.meta.content;(%omdocmobj.class;))>

<!ATTLIST %omdocpf.proofobject.qname;
%omdoc.common.attribs;
%omdoc.toplevel.attribs;
%fori.attrib;>

<!ELEMENT %omdocpf.derive.qname;
(%omdocmtxt.MCF.content;,(%ss;|%omdocpf.method.qname;)?)>

<!ATTLIST %omdocpf.derive.qname;
%omdoc.common.attribs;
type CDATA #IMPLIED
%id.attrib;>

<!ELEMENT %omdocpf.hypothesis.qname; (%omdocmtxt.MCFS.content;)>
<!ATTLIST %omdocpf.hypothesis.qname;

%omdoc.common.attribs;
%id.attrib;
inductive (yes|no) #IMPLIED>

<!ELEMENT %omdocpf.alternatives.qname;
(%omdocpf.proof.qname;
(%omdocpf.proof.qname;)+
)>

<!ATTLIST %omdocpf.alternatives.qname;
%omdoc.common.attribs;
%id.attrib;
>

<!ELEMENT %omdocpf.method.qname;
(%omdocmobj.class;|%omdocpf.premise.qname;
|%omdocpf.proof.qname;|%omdocpf.proofobject.qname;)*>

<!ATTLIST %omdocpf.method.qname; %omdoc.common.attribs; %xrefi.attrib;>
<!-- ’xref’ is a pointer to the element defining the method -->

<!ELEMENT %omdocpf.premise.qname; EMPTY>
<!ATTLIST %omdocpf.premise.qname; %omdoc.common.attribs;

%xref.attrib; rank CDATA "0">
<!-- The rank of a premise specifies its importance in the

inference rule. Rank 0 (the default) is a real premise,
whereas positive rank signifies sideconditions of
varying degree. -->
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Abstract. Cut-elimination is the most prominent form of proof trans-
formation in logic. The elimination of cuts in formal proofs corresponds
to the removal of intermediate statements (lemmas) in mathematical
proofs. The cut-elimination method CERES (cut-elimination by resolu-
tion) works by constructing a set of clauses from a proof with cuts. Any
resolution refutation of this set then serves as a skeleton of an LK-proof
with only atomic cuts.

In this paper we present an extension of CERES to a calculus LKDe
which is stronger than the Gentzen calculus LK (it contains rules for
introduction of definitions and equality rules). This extension makes it
much easier to formalize mathematical proofs and increases the perfor-
mance of the cut-elimination method. The system CERES already proved
efficient in handling very large proofs.

1 Introduction

Proof analysis is a central mathematical activity which has proved crucial to the
development of mathematics. Many mathematical concepts such as the notion
of group or the notion of probability were introduced by analyzing existing ar-
guments. In some sense the analysis and synthesis of proofs form the very core
of mathematical progress[13,14].

Cut-elimination introduced by Gentzen [9] is the most prominent form of proof
transformation in logic and plays an important role in automating the analysis
of mathematical proofs. The removal of cuts corresponds to the elimination of
intermediate statements (lemmas), resulting in a proof which is analytic in the
sense, that all statements in the proof are subformulas of the result. Therefore,
the proof of a combinatorial statement is converted into a purely combinatorial
proof. Cut-elimination is therefore an essential tool for the analysis of proofs,
especially to make implicit parameters explicit. In particular, cut free derivations
allow for:
� Supported by the Austrian Science Fund (project no. P17995-N12).

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, pp. 82–93, 2006.
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– the extraction of Herbrand disjunctions, which can be used to establish
bounds on existential quantifiers (e.g. Luckhardt’s analysis of the Theorem
of Roth [11]),

– the construction of interpolants, which allow the replacement of implicit
definitions by explicit ones according to Beth’s Theorem,

– the calculation of generalized variants of the end formula.

In a formal sense Girard’s analysis of van der Waerden’s theorem [10] is the
application of cut-elimination to the proof of Fürstenberg/Weiss with the “per-
spective” of obtaining van der Waerden’s proof. Indeed an application of a
complex proof transformation like cut-elimination by humans requires a goal
oriented strategy. In contrast, such a transformation can be done purely au-
tomatically, which also might result in unexpected and interesting results [3].
Note that cut-elimination is non-unique, i.e. there is no single cut-free proof
which represents the analytic version of a proof with lemmas. Indeed, it is
non-uniqueness which makes computational experiments with cut-elimination
interesting. The experiments can be considered as a source for a base of proofs
in formal format which provide different mathematical and computational
information.

CERES [6] is a cut-elimination method that is based on resolution. The
method roughly works as follows: The structure of the proof containing cuts
is mapped to a clause term which evaluates to an unsatisfiable set of clauses C
(the characteristic clause set). A resolution refutation of C, which is obtained
using a first-order theorem prover, serves as a skeleton for the new proof which
contains only atomic cuts. In a final step also these atomic cuts can be elimi-
nated, provided the (atomic) axioms are valid sequents; but this step is of minor
mathematical interest only. In the system CERES1 this method of cut-elimination
has been implemented. The system is capable of dealing with formal proofs in
LK, among them also very large ones.

The extension of CERES to a calculus containing definition-introduction and
equality rules moves the system closer to real mathematical proofs. By its high
efficiency (the core of the method is first-order theorem proving by resolution and
paramodulation) CERES might become a strong tool in automated proof mining
and contribute to an experimental culture of computer-aided proof analysis in
mathematics.

2 Extensions of Gentzen’s LK

Gentzen’s LK is the original calculus for which cut-elimination was defined.
The original version of CERES in based on LK and several variants of it
(we just refer to [6] and [7]). In formalizing mathematical proofs it turns out that
LK (and also natural deduction) are not sufficiently close to real mathemati-
cal inference. First of all, the calculus LK lacks an efficient handling of equality

1 Available at http://www.logic.at/ceres/
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(in fact equality axioms have to be added to the end-sequent). Due to the im-
portance of equality this defect was apparent to proof theorists; e.g. Takeuti [15]
gave an extension of LK to a calculus LKe, adding atomic equality axioms to
the standard axioms of the form A � A. The advantage of LKe over LK is that
no new axioms have to be added to the end-sequent; on the other hand, in pres-
ence of the equality axioms, full cut-elimination is no longer possible, but merely
reduction to atomic cut. But still LKe uses the same rules as LK as equality
is axiomatized. On the other hand, in formalizing mathematical proofs, using
equality as a rule is much more natural and concise. For this reason we choose
the most natural equality rule, which is strongly related to paramodulation in au-
tomated theorem proving. Our approach differs from this in [17], where a unary
equality rule is used (which does not directly correspond to paramodulation).
The equality rules are:

Γ1 � Δ1, s = t A[s]Λ, Γ2 � Δ2

A[t]Λ, Γ1, Γ2 � Δ1, Δ2
=: l1

Γ1 � Δ1, t = s A[s]Λ, Γ2 � Δ2

A[t]Λ, Γ1, Γ2 � Δ1, Δ2
=: l2

for inference on the left and

Γ1 � Δ1, s = t Γ2 � Δ2, A[s]Λ
Γ1, Γ2 � Δ1, Δ2, A[t]Λ

=: r1
Γ1 � Δ1, t = s Γ2 � Δ2, A[s]Λ

Γ1, Γ2 � Δ1, Δ2, A[t]Λ
=: r2

on the right, where Λ denotes a set of positions of subterms where replacement
of s by t has to be performed. We call s = t the active equation of the rules.

In CERES it is crucial that all nonlogical rules (which also work on atomic
sequents) correspond to clausal inference rules in automated deduction. While
cut and contraction correspond to resolution (and factoring, dependent on the
version of resolution), the equality rules =: l1, =: l2, =: r1, =: r2 correspond to
paramodulation, which is the most efficient equality rule in automated deduc-
tion [12]. Indeed, when we compute the most general unifiers and apply them
to the paramodulation rule, then it becomes one of the rules =: l1, =: l2,
=: r1, =: r2.

Perhaps the most significant tool in structuring mathematical proofs is the
introduction of new concepts (formally definition-introduction). Though the use
of definition introductions can be simulated by cuts, this simulation is rather
unnatural and has a negative effect on the CERES-algorithm as will be ex-
plained in section 3 (definition introduction is a unary rule, while cut is a
binary one).

The definition rules directly correspond to the extension principle (see [8])
in predicate logic. It simply consists in introducing new predicate- and func-
tion symbols as abbreviations for formulas and terms. Let A be a first-order
formula with the free variables x1, . . . , xk (denoted by A(x1, . . . , xk)) and P
be a new k-ary predicate symbol (corresponding to the formula A). Then the
rules are:

A(t1, . . . , tk), Γ � Δ

P (t1, . . . , tk), Γ � Δ
defP : l

Γ � Δ, A(t1, . . . , tk)
Γ � Δ, P (t1, . . . , tk)

defP : r
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for arbitrary sequences of terms t1, . . . , tk. Definition introduction is a simple
and very powerful tool in mathematical practice. Note that the introduction of
important concepts and notations like groups, integrals etc. can be formally de-
scribed by introduction of new symbols. There are also definition introduction
rules for new function symbols which are of similar type.

The axiom system for LKDe may be an arbitrary set of atomic sequents
containing the sequents A � A (for atomic formulas A) which is closed under
substitution. The only axioms which have to be added for equality are � s = s
where s is an arbitrary term. So every axiom system has to contain the axioms
A � A and � s = s.

The calculus LKDe is LK extended by the equality rules and by the (infinite
set of) definition-introduction rules. Clearly these extensions do not increase the
logical expressivity of the calculus, but they make him much more compact and
natural. To illustrate the rules defined above we give a simple example. The aim
is to prove the (obvious) theorem that a number divides the square of a number
b if it divides b itself. In the formalization below a and b are constant symbols
and the predicate symbol D stands for “divides” and is defined by

D(x, y) ↔ ∃z.x ∗ z = y.

The active equations are written in boldface.

� (a ∗ z0) ∗ b = a ∗ (z0 ∗ b)
a ∗ z0 = b � a ∗ z0 = b � b ∗ b = b ∗ b

a ∗ z0 = b � (a ∗ z0) ∗ b = b ∗ b
=: r2

a ∗ z0 = b � a ∗ (z0 ∗ b) = b ∗ b
=: r1

a ∗ z0 = b � ∃z.a ∗ z = b ∗ b
∃r

∃z.a ∗ z = b � ∃z.a ∗ z = b ∗ b
∃: l

∃z.a ∗ z = b � D(a, b ∗ b)
defD: r

D(a, b) � D(a, b ∗ b)
defD: l

� D(a, b) → D(a, b ∗ b)
→: r

The axioms of the proof are: (1) an instance of the associativity law, (2) the
equational axiom � b ∗ b = b ∗ b and the tautological standard axiom a ∗ z0 = b �
a ∗ z0 = b.

3 CERES on LKDe

3.1 Definitions and Results

Though CERES has been defined for LK originally, the method is very flexible
and can be applied to virtually any sequent calculus for classical logic. Indeed,
the extensions defined above, can easily built in without affecting the clarity
and efficiency of the method. The central idea of CERES consists in analyzing
the proof first, extracting a so-called characteristic clause set from the proof,
and then using a resolution refutation of this set to obtain a proof with only
atomic cuts. We consider the proofs in LKDe as directed trees with nodes
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which are labelled by sequents, where the root is labelled by the end-sequent.
According to the inference rules, we distinguish binary and unary nodes. In an
inference

ν1: S1 ν2: S2

ν: S
x

where ν is labelled by S, ν1 by S1 and ν2 by S2, we call ν1, ν2 predecessors
of ν. Similarly ν′ is predecessor of ν in a unary rule if ν′ labels the premiss
and ν the consequent. Then the predecessor relation is defined as the reflex-
ive and transitive closure of the relation above. Every node is predecessor of
the root, and the axioms have only themselves as predecessors. For a formal
definition of the concepts we refer to [6] and [7]. A similar relation holds be-
tween formula occurrences in sequents. Instead of a formal definition we give an
example.

Consider the rule:

∀x.P (x) � P (a) ∀x.P (x) � P (b)
∀x.P (x) � P (a) ∧ P (b)

∧: r

The occurrences of P (a) and P (b) in the premiss are ancestors of the occurrence
of P (a)∧P (b) in the consequent. P (a) and P (b) are called auxiliary formulas of
the inference, and P (a) ∧ P (b) the main formula. ∀x.P (x) in the premisses are
ancestors of ∀x.P (x) in the consequent. Again the ancestor relation is defined
by reflexive transitive closure.

Let Ω be the set of all occurrences of cut-formulas in sequents of an LKDe-
proof ϕ. The cut- formulas are not ancestors of the formulas in the end-sequent,
but they might have ancestors in the axioms (if the cuts are not generated
by weakening only). The construction of the characteristic clause set is based
on the ancestors of the cuts in the axioms. Note that clauses are just de-
fined as atomic sequents. We define a set of clauses Cν for every node ν in ϕ
inductively:

– If ν is an occurrence of an axiom sequent S(ν), and S′ is the subsequent of
S(ν) containing only the ancestors of Ω then Cν = {S′}.

– Let ν′ be the predecessor of ν in a unary inference then Cν = Cν′ .
– Let ν1, ν2 be the predecessors of ν in a binary inference. We distinguish two

cases
(a) The auxiliary formulas of ν1, ν2 are ancestors of Ω. Then

Cν = Cν1 ∪ Cν2 .

(b) The auxiliary formulas of ν1, ν2 are not ancestors of Ω. Then

Cν = Cν1 × Cν2 .

where C × D = {C ◦ D | C ∈ C, D ∈ D} and C ◦ D is the merge of the
clauses C and D.
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The characteristic clause set CL(ϕ) of ϕ is defined as Cν0 , where ν0 is the root.
The definition of CL(ϕ) is the same as the one used for LK since both they
contain only unary and binary rules. Note that unary rules have no effect on the
characteristic clause set.

Theorem 1. Let ϕ be a proof in LKDe. Then the clause set CL(ϕ) is equa-
tionally unsatisfiable.

Remark 1. A clause set C is equationally unsatisfiable if C does not have a model
where = is interpreted as equality over a domain.

Proof. The proof is essentially the same as in [6]. Let ν be a node in ϕ and S′(ν)
the subsequent of S(ν) which consists of the ancestors of Ω (i.e. of a cut). It is
shown by induction that S′(ν) is LKDe-derivable from Cν . If ν0 is the root then,
clearly, S′(ν0) = � and the empty sequent � is LKDe-derivable from the axiom
set Cν0 , which is just CL(ϕ). As all inferences in LKDe are sound over equational
interpretations (where new symbols introduced by definition introduction have
to be interpreted according to the defining equivalence), CL(ϕ) is equationally
unsatisfiable. Note that, without the rules =: l and =: r, the set CL(ϕ) is just
unsatisfiable. Clearly the rules =: l and =: r are sound only over equational
interpretations. �

Note that, for proving Theorem 1, we just need the soundness of LKDe not its
completeness.

The next steps in CERES are

(1) the computation of the proof projections ϕ[C] w.r.t. clauses C ∈ CL(ϕ),
(2) the refutation of the set CL(ϕ), resulting in an RP-tree γ, i.e. in a deduction

tree defined by the inferences of resolution and paramodulation, and
(3) “inserting” the projections ϕ[C] into the leaves of γ.

Step (1) is done like in CERES for LK, i.e. we skip in ϕ all inferences where the
auxiliary resp. main formulas are ancestors of a cut. Instead of the end-sequent
S we get S ◦ C for a C ∈ CL(ϕ). The construction does not differ from this in
[6] as the form of the rules do not matter.
Step (2) consists in ordinary theorem proving by resolution and paramodulation
(which is equationally complete). For refuting CL(ϕ) any first-order prover like
Vampire 2, SPASS 3 or Otter 4 can be used. By the completeness of the methods
we find a refutation tree γ as CL(ϕ) is unsatisfiable by Theorem 1.
Step (3) makes use of the fact that, after computation of the simultaneous most
general unifier of the inferences in γ, the resulting tree γ′ is actually a derivation
in LKDe! Indeed, after computation of the simultaneous unifier, paramodula-
tion becomes =: l and =: r and resolution becomes cut in LKDe. Note that the
definition rules, like the logical rules, do not appear in γ′. Now for every leaf

2 http://www.vampire.fm/
3 http://spass.mpi-sb.mpg.de/
4 http://www-unix.mcs.anl.gov/AR/otter/
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ν in γ′, which is labelled by a clause C′ (an instance of a clause C ∈ CL(ϕ))
we insert the proof projection ϕ[C′]. The result is a proof with only atomic
cuts.

The proof projection is only sound if the proof ϕ is skolemized, i.e. there are
no strong quantifiers (i.e. quantifiers with eigenvariable conditions) in the end-
sequent. If ϕ is not skolemized a priori it can be transformed into a skolemized
proof ϕ′ in polynomial (at most quadratic) time; for details see [5].

3.2 An Example

The example below is taken from [16]; it was formalized in LK and analyzed by a
former version of CERES in the paper [3]. Here we use the extensions by equality
rules and definition-introduction to give a simpler formalization and analysis of
the proof. The end-sequent formalizes the statement: on a tape with infinitely
many cells which are all labelled by 0 or by 1 there are two cells labelled by the
same number. f(x) = 0 expresses that the cell nr. x is labelled by 0. Indexing of
cells is done by number terms defined over 0, 1 and +. The proof ϕ below uses
two lemmas: (1) there are infinitely many cells labelled by 0 and (2) there are
infinitely many cells labelled by 1. These lemmas are eliminated by CERES and
a more direct argument is obtained in the resulting proof ϕ′. Ancestors of the
cuts in ϕ are indicated in boldface.

Let ϕ be the proof

(τ )
A � I0, I1

(ε0)
I0 � ∃p∃q(p �= q ∧ f(p) = f(q))

A � ∃p∃q(p �= q ∧ f(p) = f(q)), I1
cut (ε1)

I1 � ∃p∃q(p �= q ∧ f(p) = f(q))
A � ∃p∃q(p �= q ∧ f(p) = f(q))

cut

where τ =

(τ ′)
f(n0 + n1) = 0 ∨ f(n0 + n1) = 1 � f(n0 + n1) = 0, f(n1 + n0) = 1

∀x(f(x) = 0 ∨ f(x) = 1) � f(n0 + n1) = 0, f(n1 + n0) = 1
∀: l

A � f(n0 + n1) = 0, f(n1 + n0) = 1
defA: l

A � f(n0 + n1) = 0, ∃k.f(n1 + k) = 1
∃r

A � ∃k.f(n0 + k) = 0, ∃k.f(n1 + k) = 1
∃r

A � ∃k.f(n0 + k) = 0, ∀n∃k.f(n + k) = 1
∀: r

A � ∀n∃k.f(n + k) = 0, ∀n∃k.f(n + k) = 1
∀: r

A � I0, ∀n∃k.f(n + k) = 1
defI0 : r

A � I0, I1
defI1 : r

For τ ′ =

f(n0 + n1) = 0 � f(n0 + n1) = 0

(Axiom)
� n1 + n0 = n0 + n1 f(n1 + n0) = 1 � f(n1 + n0) = 1

f(n0 + n1) = 1 � f(n1 + n0) = 1
=: l1

f(n0 + n1) = 0 ∨ f(n0 + n1) = 1 � f(n0 + n1) = 0, f(n1 + n0) = 1
∨: l
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And for i = 1, 2 we define the proofs εi =

ψ ηi

f(s) = i, f(t) = i � s �= t ∧ f(s) = f(t)
∧: r

f(s) = i, f(t) = i � ∃q(s �= q ∧ f(s) = f(q)) ∃: r

f(s) = i, f(t) = i � ∃p∃q(p �= q ∧ f(p) = f(q)) ∃: r

f(n0 + k0) = i, ∃k.f(((n0 + k0) + 1) + k) = i � ∃p∃q(p �= q ∧ f(p) = f(q)) ∃: l

f(n0 + k0) = i, ∀n∃k.f(n + k) = i � ∃p∃q(p �= q ∧ f(p) = f(q)) ∀: l

∃k.f(n0 + k) = i, ∀n∃k.f(n + k) = i � ∃p∃q(p �= q ∧ f(p) = f(q)) ∃: l

∀n∃k.f(n + k) = i, ∀n∃k.f(n + k) = i � ∃p∃q(p �= q ∧ f(p) = f(q)) ∀: l

∀n∃k.f(n + k) = i � ∃p∃q(p �= q ∧ f(p) = f(q)) c: l

Ii � ∃p∃q(p �= q ∧ f(p) = f(q))
defIi : l

for s = n0 + k0, t = ((n0 + k0) + 1) + k1, and the proofs

(axiom)
� (n0 + k0) + (1 + k1) = ((n0 + k0) + 1) + k1

(axiom)
n0 + k0 = (n0 + k0) + (1 + k1) �

n0 + k0 = ((n0 + k0) + 1) + k1 � =: l1

� n0 + k0 �= ((n0 + k0) + 1) + k1
¬: r

and ηi =

f(s) = i � f(s) = i

f(t) = i � f(t) = i
(axiom)
� i = i

f(t) = i � i = f(t)
=: r2

f(s) = i, f(t) = i � f(s) = f(t)
=: r2

The characteristic clause set is (after variable renaming)

CL(ϕ) = {� f(x + y) = 0, f(y + x) = 1; (C1)

f(x + y) = 0, f(((x + y) + 1) + z) = 0 �; (C2)

f(x + y) = 1, f(((x + y) + 1) + z) = 1 �} (C3).

The axioms used for the proof are the standard axioms of type A � A and
instances of � x = x, of commutativity � x + y = y + x, of associativity �
(x + y) + z = x + (y + z), and of the axiom

x = x + (1 + y) �,

expressing that x + (1 + y) �= x for all natural numbers x, y.
The comparison with the analysis of Urban’s proof formulated in LK (with-

out equality) [3] shows that this one is much more transparent. In fact the
set of characteristic clauses contains only 3 clauses (instead of 5), which are also



90 M. Baaz et al.

simpler. This also facilitates the refutation of the clause set and makes the output
proof simpler and more transparent. On the other hand, the analysis below
shows that the mathematical argument obtained by cut-elimination is the same
as in [3].

The program Otter found the following refutation of CL(ϕ) (based on hyper-
resolution only – without equality inference):

The first hyperesolvent, based on the clash sequence (C2; C1, C1), is

C4 = � f(y + x) = 1, f(z + ((x + y) + 1)) = 1, with the intermediary clause
D1 = f(((x + y) + 1) + z) = 0 � f(y + x) = 1.

The next clash is sequence is (C3; C4, C4) which gives C5 with intermediary
clause D2, where:

C5 = � f(v′ + u′) = 1, f(v + u) = 1,

D2 = f(x + y) = 1 � f(v + u) = 1.

Factoring C5 gives C6: � f(v + u) = 1 (which roughly expresses that all fields
are labelled by 1). The final clash sequence (C3; C6, C6) obviously results in the
empty clause � with intermediary clause D3: f(((x + y) + 1) + z) = 1 �. The
hyperresolution proof ψ3 in form of a tree can be obtained from the following
resolution trees, where C′ and ψ′ stand for renamed variants of C and of ψ,
respectively:

C1 C2

D1
res

C′
1

ψ1: C4
res

C′
3 ψ1

D2
res

ψ′
1

C5
res

ψ2: C6
factor

ψ2 C′′
3

D3
res

ψ′
2

ψ3: � res

Instantiation of ψ3 by the uniform most general unifier σ of all resolutions gives a
deduction tree ψ3σ in LKDe; indeed, after application of σ, resolution becomes
cut and factoring becomes contraction. The proof ψ3σ is the skeleton of an
LKDe-proof of the end-sequent with only atomic cuts. Then the leaves of the
tree ψ3σ have to be replaced by the proof projections. E.g., the clause C1 is
replaced by the proof ϕ[C1], where s = n0 + n1 and t = n1 + n0:

f(s) = 0 � f(s) = 0

(Axiom)
� t = s f(t) = 1 � f(t) = 1

f(s) = 1 � f(t) = 1 =: l1

f(s) = 0 ∨ f(s) = 1 � f(s) = 0, f(t) = 1 ∨: l

∀x(f(x) = 0 ∨ f(x) = 1) � f(s) = 0, f(t) = 1 ∀: l

A � f(s) = 0, f(t) = 1
defA: l

A � ∃p∃q(p �= q ∧ f(p) = f(q)), f(s) = 0, f(t) = 1
w: r
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Furthermore C2 is replaced by the projection ϕ[C2] and C3 by ϕ[C3], where
(for i = 0, 1) ϕ[C2+i] =

ψ ηi

f(s) = i, f(t) = i � s �= t ∧ f(s) = f(t)
∧: r

f(s) = i, f(t) = i � ∃q(s �= q ∧ f(s) = f(q)) ∃: r

f(s) = i, f(t) = i � ∃p∃q(p �= q ∧ f(p) = f(q)) ∃: r

f(s) = i, f(t) = i, A � ∃p∃q(p �= q ∧ f(p) = f(q)) w: l

Note that ψ, η0, η1 are the same as in the definition of ε0, ε1 above.
By inserting the σ-instances of the projections into the resolution proof ψ3σ

and performing some additional contractions, we eventually obtain the desired
proof ϕ′ of the end-sequent

A � ∃p∃q(p �= q ∧ f(p) = f(q))

with only atomic cuts. ϕ′ no longer uses the lemmas that infinitely many cells
are labelled by 0 and by 1, respectively.

4 The System CERES

The cut-elimination system CERES is written in ANSI-C++. There are two main
tasks. On one hand, to compute an unsatisfiable set of clauses characterizing the
cut formulas. This is done by automatically extracting the so-called characteristic
clause term from a proof ϕ and computing the resulting characteristic clause set
CL(ϕ). On the other hand, to generate a resolution refutation of CL(ϕ) by an
external theorem prover5, and to compute the necessary projection schemes of
ϕ w.r.t. the clauses in CL(ϕ) actually used for the refutation. The properly
instantiated projection schemes are concatenated, using the refutation obtained
by the theorem prover as a skeleton of a proof with only atomic cuts.

Concerning the extension of LK to LKDe, equality rules appearing within
the input proof are propagated to the projection schemes as any other binary
rules. During theorem proving equality is treated by paramodulation (which is
closely related to the equality rules in LKDe); its application within the final
clausal refutation is then transformed to the appropriate equality rules in LKDe.
The definition introductions do not require any other special treatment within
CERES than all other unary rules; in particular, they have no influence on the
theorem proving part.

Since the restriction to skolemized proofs is crucial to the CERES-method,
the system also performs skolemization (according to Andrew’s method [2]) on
the input proof.

The system CERES expects an LKDe proof of a sequent S and a set of ax-
ioms as input, and computes a proof of S containing at most non atomic-cuts.
5 The current version of CERES uses the automated theorem prover Otter (see
http://www-unix.mcs.anl.gov/AR/otter/), but any refutational theorem prover
based on resolution and paramodulation may be used.



92 M. Baaz et al.

Input and output are formatted using the well known data representation lan-
guage XML. This allows the use of arbitrary and well known utilities for editing,
transformation and presentation and standardized programming libraries. To
increase the performance and avoid redundancy, most parts of the proofs are
internally represented as directed acyclic graphs. This representation turns out
to be very handy, also for the internal unification algorithms.

The formal analysis of mathematical proofs (especially by a mathematician
as a pre- and post-“processor”) relies on a suitable format for the input and
output of proofs, and on an appropriate aid in dealing with them. We developed
an intermediary proof language connecting the language of mathematical proofs
with LKDe. Furthermore we implemented a proof viewer and proof editor with
a graphical user interface, allowing a convenient input and analysis of the out-
put of CERES. Thereby the integration of definition- and equality-rules into the
underlying calculus plays an essential role in overlooking, understanding and
analyzing complex mathematical proofs by humans.

5 Future Work

We plan to develop the following extensions of CERES:

– As the cut-free proofs are often very large and difficult to interpret, we
intend to provide the possibility to analyze certain characteristics of the cut-
free proof (which are simpler than the proof itself). An important example
are Herbrand sequents which may serve to extract bounds from proofs (see
e.g. [11]). We plan to develop algorithms for extracting Herbrand sequents
(also from proofs of nonprenex sequents as indicated in [4]) and for comput-
ing interpolants.

– A great challenge in the formal analysis of mathematical proofs lies in pro-
viding a suitable format for the input and output of proofs. We plan to
improve our intermediary proof language and to move closer to the “natu-
ral” language of mathematical proofs.

– In the present version CERES eliminates all cuts at once. But — for the
application to real mathematical proofs — only interesting cuts (i.e. lemmas)
deserve to be eliminated, others should simply remain or be integrated as
additional axioms.

– As CERES requires the skolemization of the end-sequent the original proof
must be transformed to skolem form. We plan to develop an efficient de-
skolemization-algorithm, which transforms the theorem to be proved into its
original form.

To demonstrate the abilities of CERES and the feasibility of formalizing and
analyzing complex proofs of mathematical relevance, we currently investigate a
well known proof of the infinity of primes using topology (which may be found
in [1]). Our aim is to eliminate the topological concepts from the proof by means
of CERES, breaking it down to a proof solely based on elementary number
arithmetic.
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Abstract. In this paper we investigate how to extract proof procedu-
ral information contained in declarative representations of mathematical
knowledge, such as axioms, definitions, lemmas and theorems (collec-
tively called assertions) and how to effectively include it into automated
proof search techniques. In the context of the proof planner Multi and
the agent-based reasoning system Ω-Ants, we present techniques to au-
tomatically synthesize proof planning methods and Ω-Ants-agents from
assertions such that they can be actively used by these systems. This in
turn enables a user to effectively use these systems without having to
know the peculiarities of coding methods and agents.

1 Introduction

The development of the proof assistant system Ωmega is one of the major at-
tempts to build an all encompassing assistance tool for the working mathemati-
cian or for the formal work of a software engineer. It is a representative of systems
in the paradigm of proof planning and combines interactive and automated proof
construction for domains with rich and well-structured mathematical knowledge.
The search for a proof is usually conducted at a high level of granularity defined
by tactics and methods. Automation of proof search at this ’abstract’ level is re-
alized in two components: The multi-strategy proof planner Multi [13] and the
resource-guided agent-based reasoning system Ω-Ants [4,15]. Multi integrates
a basic set of algorithms parameterized over strategic information. Among oth-
ers, it includes a best-first proof planning algorithm that is parameterized over
methods and control rules and which searches through the space of applicable
methods by using the heuristic function defined by the provided control knowl-
edge. The Ω-Ants-system is based on encapsulations of calculus rules, tactics,
external system calls and methods into pro-active agents which automatically
check for their own applicability. Each of these agents is associated with a set
of argument agents for formal arguments of the encapsulated procedure that
compute possible instantiations for the associated formal argument subject to
existing instantiations for other formal arguments.

The tactics and methods encode specific proof knowledge, such as, for instance,
when and how to perform a proof by case analysis, to use a diagonalization
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argument, to call a computer algebra system or an automated theorem prover,
but also axioms, lemmas or theorems. The latter are typically contained in the
mathematical theories but needed to be reformulated manually as tactics, meth-
ods and agents in order to enable Multi and Ω-Ants to actively use them
during proof search. Hence a human user has to know the peculiarities of coding
tactics, methods and agents for these systems in order to be able to make ef-
fective use of their automated proof search capabilities. In this paper we aim at
remedying this situation. Based on a notion of inferences integrating the so far
separated notions of tactics and methods, (1) we propose a technique to synthe-
size inferences from axioms, lemmas and theorems, (2) we define proof planning
directly at the level of arbitrary, i.e. both the synthesized and the user-defined
inferences, and (3) provide a mechanism to automatically generate an optimal
set of argument agents from inferences.

The paper is organized as follows: In Sec. 2 we set the context of this work by
describing the tactics, methods and Ω-Ants-agents of the old Ωmega system. In
Sec. 3 we introduce inferences as one major means for proof construction of the
so-called task layer in the new Ωmega-system. In Sec. 4 we present a technique to
synthesize inferences from axioms, definitions, lemmas, and theorems contained
in mathematical theories. A procedure to determine the possible directions in
which an inference can be applied is presented in Sec. 5 and the computation of
optimal sets of Ω-Ants-agents is given in Sec. 6. We discuss related works in
Sec. 7 before concluding the paper with a summary of the results in Sec. 8.

2 Tactics, Methods, Ω-Ants

We briefly describe the context of the work presented in this paper by intro-
ducing tactics, methods and Ω-Ants as they exist in the old Ωmega system.
Throughout this section by Ωmega we mean the old Ωmega system [5].

Tactics. Ωmega provides the definition of tactics as a means for proof construc-
tion at an abstract level. These tactics are comparable to standard LCF-style tac-
tics [12], that encode repeatedly occurring sequences of calculus steps combined
by so-called tacticals such as repeat, then, or. Intuitively we can see a tactic as a
program which performs a certain task. It is executed when the tactic is invoked
and returns a verifiable proof object if it terminates. In Ωmega a tactic requires
certain assumptions and open goals to be present in the current proof state in
order to be applicable: these are, respectively, the premises P1, . . . , Pk and con-
clusions C1, . . . , Cn of the tactic. In practice, however, there are classes of tactics
which essentially coincide, and only slightly differ in the premises and conclusions
they require. The reason for this is that a tactic with input P1, . . . , Pn, C1, . . . , Ck

can often also be applied with input P1, . . . , Pn−1, C1, . . . , Ck only, but then in-
troduces Pn as additional subgoal. It is clear that all these cases could in principle
be combined in one tactic, but this was to cumbersome to do in Ωmega’s tactics
specification formalism and hence was never done.

Methods. A method is a declarative specification of a tactic that describes how
an application of the tactic modifies a given proof state. The underlying idea is to
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be able to transform a proof state without the need to execute the tactic. Given
such a specification, it must contain information stating which premises and
conclusions are to be added to the proof state and which are to be removed during
method application. In Ωmega premises and conclusions can be annotated with
flags ⊕ and �: those annotated with ⊕ will be added when applying the method,
those annotate with � shall be removed and those without annotations must be
present before and after application of the method.

In general there is no guarantee that the specification really describes the
tactic to which it belongs; hence methods can be unsound. To check the validity
of a method proof step, the method must be expanded, that is the tactic attached
to the method must be executed and return a verifiable proof object. Proof
search using methods is called proof planning [6]. In contrast to other proof
planning systems, such as λ-Clam [14], Ωmega methods do not contain heuristic
knowledge which could also be encoded in the specification.

Ω-Ants. The Ω-Ants-system was originally developed to support a user in an
interactive theorem proving environment by distributively searching via agents
for possible next proof steps [4,15] and was later extended to a fully automated
system. Conceptually the system consists of two kinds of agents: command agents
and argument agents. Each command agent is associated to a tactic, method or
calculus rule, uniformly called rule, and orders suggestions for the associated
rule according to some heuristics. These suggestions are generated by a society
of argument agents which are assigned to a command agent. From the perspective
of this paper we are only interested in finding suggestions for a particular rule
and thus only describe argument agents in more detail.

The goal of a society of argument agents consists of generating suggestions
of how a particular rule can be applied in the current proof situation. Such a
rule consists of premises, conclusions and a set of additional parameters, called
arguments. Starting from the situation in which no argument is instantiated,
the agents instantiate these arguments stepwise, resulting in so-called partial
argument instantiations. If sufficiently many arguments are instantiated, the
rule can be applied. Intuitively an argument agent is responsible for one or more
specific arguments – stored in the goal set. Given a set of already computed
partial argument instantiations it checks whether it can add an instance for those
arguments in its goal set. Usually an argument agent requires that certain formal
arguments are already specified. These are stored in the so-called dependency set.

Discussion. Whereas in principle it is beneficial to have tools for interactive and
automated proof search which can be combined to find a proof, for a Ωmega

user this means that before starting a proof he has the burden of specifying
tactics for interactive proof construction, corresponding methods for the proof
planner Multi and corresponding agents for proof construction with the Ω-

Ants-system. In particular he had to separately specify very similar tactics (and
thus methods) as described above. Usually an essential subset of these tactics
was a formulation of an axiom of the theory in which a proof was constructed.
In this paper we show how the workload of a user can be drastically reduced:
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First, we introduce the notion of an inference which unifies the previously sep-
arated notions of tactics and methods. In particular we develop a mechanism
to synthesize inferences from axioms, lemmas and theorems. Furthermore we
present mechanisms to generate from individual inferences all tactics within a
tactic class and an optimal set of argument agents for each tactic.

3 Task Layer

The Ωmega-system is currently under re-development where, among others,
the underlying natural deduction calculus is being replaced with the CoRe-
calculus [1]. The task layer [7] is an instance of the new proof datastructure
(PDS) [2] and is the uniform proof construction interface used by both the
human user and the automated proof search procedures Multi and Ω-Ants.
The nodes of the PDS are annotated with tasks, which are Gentzen-style multi-
conclusion sequents augmented by means to define multiple foci of attention
on subformulas that are maintained during the proof. Each task is reduced to
a possibly empty set of subtasks by one of the following proof construction
steps: (1) the introduction of a proof sketch [17]1, (2) deep structural rules for
weakening and decomposition of subformulas, (3) the application of a lemma
that can be postulated on the fly, (4) the substitution of meta-variables, and (5)
the application of an inference.

Due to the presence of meta-variables, substitutions and alternative proof
steps, the task layer extends the PDS from [2] by a mechanism to deal with sub-
stitutions of the same meta-variable in alternative subproofs (see [7] for details).

The logic used in Ωmega is a simply-typed higher-order logic with arbitrarily
many base types, the usual β-reduction and η-expansion rules and we consider
all terms to be always in βη long normal form, which is unique up to renaming
of bound variables (α-equal) (see [3] for details).

For the purposes of this paper we assume TXΣ,V are the terms built over a
signature Σ, typed variables V and typed meta-variables X (V ∩ X = ∅) and
wffXΣ,V is the set of terms of boolean type, also denoted as formulas: as usual
quantifiers and λ-binders can only bind variables and we require the formulas
from wffXΣ,V to contain no free variables.

Each subterm of a term t can be uniquely qualified by its position π in the
term which we denote by t|π. The type compliant replacement of a subterm t|π
by a term s is denoted by t|π←s. The set of all positions is denoted by POS and
POS(t) denotes the set of all valid positions of the term t.

A substitution is a type preserving and idempotent function σ : V ∪X → TXΣ,V
that is the identity function but for finitely many elements from V ∪ X . This
allows for a finite representation of σ as {σ(x1)/x1, . . . , σ(xn)/xn} where σ(y) =
y if ∀1 ≤ i ≤ n, y 
= xi. The domain of σ is dom(σ) := {x ∈ V | σ(x) 
= x} and we
denote by meta-variable substitution those substitutions σ where dom(σ) ⊂ X .
As usual we do not distinguish between a substitution and its homomorphic
extension to terms.
1 In the old Ωmega system this was realized by using so-called Island -methods.
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Each subformula occurs either negatively or positively in a formula and we
can assign a positive or negative polarity to the subformula subject to the po-
larity of the entire formula. Following [10], polarized propositional formulas can
be classified into α-type and β-type formulas. We say that two subformulas F
and G of some polarized formula are α-related (resp. β-related), if the smallest
subformula containing both F and G is of type α (resp. β).

For the purpose of this paper we consider tasks as multi-conclusion sequents
F1, . . . , Fk  G1, . . . , Gl, where Fi and Gj are from wffXΣ,V . The notions of sub-
stitution and positions of formulas carry over to sequents in the obvious way,
and we define the Fi to have negative polarity and the Gj to have positive
polarity.

3.1 Inferences

Intuitively, an inference is a proof step with multiple premises and conclusions
augmented by (1) a possibly empty set of hypotheses for each premise, (2) a set
of application conditions that must be fulfilled upon inference application, (3) a
set of outline functions that can compute the values of premises and conclusions
from values of other premises and conclusions, and (4) an expansion function
that refines the abstract inference step. Each premise and conclusion consists
of a unique name and a formula scheme from wffXΣ,V . Note that we employ the
term inference in its general meaning; Taken in that sense, an inference can be
either valid or invalid in contrast to the formal logic notion of an inference rule.

Additional information needed in the application conditions or the outline
functions, such as, for instance, the position of a subterm or the instance of
some non-boolean meta-variable, can be specified by additional parameters to
the inference. Since this can be arbitrary information, we refrain from a formal
definition, but assume that we can check the admissibility of a substitution of
the formal parameters. The parameters of an inference, the names of premises
and conclusions and the meta-variables that occur in the associated formulas
form the variables of the inference.

Definition 1 (Inference Variables & Inference Substitutions). The pair-
wise disjoint sets P of parameter variables, N of names for premises and con-
clusions and X of meta-variables are the inference variables. Let further Val
denote the possible values for parameters and T be a task. An inference substi-
tution wrt. T is a triple σ := 〈σP , σN , σX 〉, where (1) σP : P → Val ∪ {⊥} is
an admissible parameter substitution, (2) σN : N → POS(T )∪ wffXΣ,V ∪ {⊥} is
a name substitution, and (3) σX is a meta-variable substitution.

The domain of the parameter substitutions dom(σP ) is the largest subset of P
on which the value of σP is not ⊥. We define dom(σN ) analogously and define
dom(σ) := dom(σP )∪dom(σN )∪dom(σX ). Furthermore, we define σ# to denote
the function which returns σ#(i) := σX (T|σN (i)) if i ∈ N and σN (i) ∈ POS(T ),
and otherwise behaves like σ.

We say that an inference substitution 〈σP , σN , σX 〉 is more general than the
inference substitution 〈τP , τN , τX 〉, iff (1) there exists a substitution ρ such that
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[Hyp(p1)]
...

p1 : FS(p1) . . .

[Hyp(pk)]
...

pk : FS(pk)
c1 : FS(c1) . . . cm : FS(cm)

Name(ω1, . . . , ωn)

Appl. Cond.: P (i0k)
Outline: 〈i1, f1(i1j1)〉 . . . 〈il, f l(il

jl
)〉

Fig. 1. Graphical representation of an Inference

τX = ρ ◦ σX , (2) for all ω ∈ dom(σP ) it holds τP(ω) = σP (ω), and (3) for all
I ∈ dom(σN ) it holds σN (I) = τN (I) and τ#

N (I) = ρ(σ#
N (I)).

Application conditions are predicates on the values of inference variables and
outline functions compute values for specific inference variables out of values of
other inference variables.

Definition 2 (Application Conditions & Outline Functions). Assume the
inference variables i0, . . . , in ⊂ P ∪ N ∪ X , P a predicate and f a function on
POS ∪ Val, and σ an inference substitution wrt. some task T . An expression
P (i1, . . . , in) is an application condition which holds for σ iff {i1, . . . , in} ⊂
dom(σ) and P (σ#(i1), . . . , σ#(in)) holds. An outline function is an expression
〈i0, f(i1, . . . , in)〉 if the values computed by f are admissible for i0. The outline
function is applicable, iff {i1, . . . , in} ⊂ dom(σ) and i0 
∈ dom(σ). The extended
inference substitution computed by the outline function 〈i0, f(i1, . . . , in)〉 appli-
cable for σ is σ ⊕ 〈i0, f(i1, . . . , in)〉 defined by

σ ⊕ 〈i0, f(i1, . . . , in)〉(x) :=
{

f(σ#(i1), . . . , σ#(in)) if x = i0
σ(x) otherwise

Note that the operator ⊕ associates to the left and is only defined if the outline
function is applicable. We now formally define inferences and we use P(N) to
denote the power set of the set N .

Definition 3 (Inference). Let P = {p1, . . . , pk}, C = {c1, . . . , cm} be disjoint
sets of names, Hyp : P → P(wffXΣ,V) a function which associates a set of hypothe-
ses to each premise, FS : P ∪ C → wffXΣ,V the function that associates a formula
scheme to each premise and conclusion, Ω = {ω1, . . . , ωl} be a set of parameters,
P (i0k) an application condition and OF = {〈i1, f1(i1j1)〉, . . . , 〈il, f l(il

jl
)〉} outline

functions, and Exp an expansion function. Then 〈P, C, Hyp, FS, Ω, P (i0k),OF,
Exp〉 is an inference.

The graphical representation of an inference is given in Fig. 1. Note that there
can be more than one outline function for the same inference variable. We say
that P ∪C are the formal arguments of I and the variables of I are the elements
of P ∪ C ∪ Ω and the meta-variables occurring in the formula and hypotheses
associated with the formal arguments.

An instance of an inference is given in Fig. 2. The inference subst-m has two
premises p1,p2 with formula schemes F and U = V respectively, one conclusion
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p1 : F p2 : U = V

c : G
subst-m(π)

Appl. Cond.: (F |π = U ∧ G|π←V = F ) ∨ (G|π = U ∧ F |π←V = G)
Outline: 〈c, compute-subst-m(p1, p2, π)〉

〈p1, compute-subst-m(p2, c, π)〉
〈π, compute-pos (p1, p2)〉
〈π, compute-pos (p2, c)〉

Fig. 2. Inference subst-m

c with formula scheme G, and one parameter π. It represents the deduction step
that if we are given a formula F in which at position π the term U occurs and
we are given that U = V , then we can deduce the formula G which equals F
except that U is replaced by V . The outline functions can be used to compute
the conclusion formula c, given p1, p2, and π or to compute the formula p1, given
c, p2, and π, or to compute the position π at which the replacement can be
performed. Note that there are two outline functions for computing π.

Definition 4 (Admissible and Fully Specified Inference Substitutions).
Assume an inference I := 〈P, C, Hyp, FS, Ω, P (i0k),OF, Exp〉, an inference sub-
stitution σ wrt. some task T . We say that σ is admissible for I and T iff (1)
for all p ∈ P and c ∈ C such that σ(p), σ(c) ∈ POS(T ) σ(p) and σ(c) are α-
related positions in T , (2) for all c, c′ ∈ C such that σ(c), σ(c′) ∈ POS(T ) σ(c)
and σ(c′) are β-related positions in T (3) for all i ∈ (P ∪ C) ∩ dom(σ) it holds
(3.1) if i ∈ P and σ(i) ∈ POS(T ) then σ(i) is a negative position in T ; (3.2)
if i ∈ C and σ(i) ∈ POS(T ) then σ(i) must be a positive position in T ; (3.3) if
σ(i) ∈ wffXΣ,V , then σ(i) = σ(FS(i)) must hold.

We say that σ is fully specified for I and T iff it is admissible for I and T
and P ∪ C ⊆ dom(σ). Otherwise we say σ is partial.

4 Synthesizing Inferences from Mathematical Knowledge

In the old Ωmega-system the knowledge contained in the mathematical theories
was not automatically available to the proof planner or the Ω-Ants-system. In
order to make them available for these systems, they had to be specified manually
as methods or tactics and agents. In this section we present a mechanism that
allows the computation of a set of inferences for arbitrary formulas. The intuition
is as follows: Given the following axiom which is a part of the definition of
addition on natural numbers

∀x, y y > 0 ⇒ x + y = s(x + p(y)) (1)

where s and p are the successor the predecessor functions from natural numbers
respectively. We want it to result in the inference rules
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R � C; Γ �R A ⇔ B

R � C; Γ �R A ⇒ B � C; Γ �R B ⇒ A
⇔E

R � C; Γ �R s = t

R � C; Γ �R X(s) ⇒ X(t) � C; Γ �R X(t) ⇒ X(s)
where X new wrt. C; Γ �R s = t

=E

R � C; Γ �R A ⇒ B

R � C; Γ, []A �R B
⇒E

R � C; Γ �R A ∧ B

R � C; Γ �R A � C; Γ �R B
∧E

R � C; Γ �R ∀xA

R � C; Γ �R A[X/x]
where X new wrt. C; Γ �R ∀xA

∀E

R � C; Γ �R ∃xA

R � C, c �∈ Γ, ∃xA;Γ �R A[c/x]
∃E

R � C; Γ, [Δ]A ⇒ B �R F

R � C; Γ, [Δ, A]B �R F
⇒I

R � C;Γ, [Δ]A ∧ B �R F

R � C; Γ, [Δ]A, [Δ]B �R F
∧I

R � C;Γ, [Δ]A ∨ B �R F

R � C; Γ, [Δ]A �R F � C; Γ, [Δ]B �R F
∨I

R � C; Γ, [Δ]∀xA �R F

R � C, c �∈ [Δ]∀xA;Γ, [Δ]A[c/x] �R F
∀I

R � C; Γ, [Δ]∃xA �R F

R � C; Γ, [Δ]A[X/x] �R F
where X new wrt. C; Γ, [Δ]∃xA �R F

∃I

R � C; Γ, [Δ, A ∧ B]G �R F

R � C; Γ, [Δ, A, B]G �R F
∧H

E

Fig. 3. Sets of Rules to compute conclusions & premises

P1 : Y > 0 P2 : H(X + Y )
C : H(s(X + p(Y )))

Application Condition: −

P1 : Y > 0 P2 : H(s(X + p(Y )))
C : H(X + Y )

Application Condition: −
(2)

where H, X, Y are meta-variables. Similarly, the following direction of the equiv-
alence of the definition of the limit of a function

∀f, a, l.∀ε.ε > 0 ⇒ ∃δ.δ > 0 ⇒ ∀x.(0 <| x − a | ∧ | x − a |< δ) ⇒| f(x) − l |< ε
⇒ lima f = l

(3)
should give us the inference

[ε > 0, D > 0, 0 <| x − A |, | x − A |< D]
...

P :| F (x) − L |< ε

C : lim
A

F = L

Application Condition: EV(ε, {F, A, L}) ∧ EV(x, {F, A, L, D})
Parameters: ε, x

(4)

where F, A, L, D are meta-variables, ε and x are parameters to the rule and
EV(x, {F, A, L, D}) is the application condition requiring that the parameter x
should not occur in the instances of {F, A, L, D}.

Our mechanism is inspired by the generalized natural deduction procedure
proposed by Wack [16]. It determines the application directions of formulas by
following the introduction and elimination rule structure of a natural deduction
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(ND) calculus [11]. Given a formula, in a first phase the ND elimination rules
are exhaustively applied to that formula and where we eliminate equivalences in
the obvious way and handle equality via Leibniz’ definition of equality. While
applying the rules, we collect the Eigenvariable conditions which results in a set
of inference descriptions with Eigenvariable conditions. In a second phase the
premises of the inference descriptions are simplified by exhaustively applying
ND introduction rules to the premises as well as to possible hypotheses obtained
for the premises in that phase. The two sets of rules are given in Fig. 3: We use
R � x to denote R ∪ {x} and the notation C; Γ R C for inference descriptions
stating that the conclusion C can be derived from the hypotheses in Γ if the con-
ditions in C are respected. The premises in Γ are of the form [H]P stating that
in order to show the premise P we can assume the hypotheses H. The Eigen-
variable conditions collected in C are of the form “y new wrt. S”, where y is the
Eigenvariable and S is a list of constants and meta-variables in which y shall
not occur (including the symbols in the meta-variable substitutions). Check-
ing these conditions by using the predicate EV(y, S) s, an inference description
EV(y1, S1), . . . , EV(ym, Sm); [H1]P1, . . . , [Hn]Pn R C gives rise to the inference

[H1]
...

P1 . . .

[Hn]
...

Pn

C
Parameters (y1, . . . , yn)

Application Condition: EV(y1, S1) ∧ . . . ∧ EV(ym, Sm)

The elimination rules for decomposition of the conclusions in the first phase
are on the left-hand side and the introduction rules for the premises and the
single elimination rule for the hypotheses are on the right-hand side.

It is obvious to see that both sets of rules are terminating and confluent
(up to the ordering of the premises and their hypotheses, and the renaming of
introduced Eigenvariables and meta-variables). We illustrate the procedure by
considering the axioms (1) and (3): For (1) the initial inference description is
.; . R ∀x, y y 
= 0 ⇒ x + y = s(x + p(y)) and saturation using the elimina-
tion rules yields the sets {.; []Y > 0, []H(X + Y ) R H(s(X + p(Y ))).; []Y >
0, []H(s(X + p(Y ))) R H(X + Y )}. None of the rules from the second set of
rules is applicable and hence we obtain the two inferences from (2).

The initial inference description for (3) is .; . R ∀f, a, l.(∀ε.ε > 0 ⇒ ∃δ.δ >
0 ⇒ ∀x.(0 <| x − a | ∧ | x − a |< δ) ⇒| f(x) − l |< ε) ⇒ lima f = l and the
elimination rules yield the singleton {.; []∀ε.ε > 0 ⇒ ∃δ.δ > 0 ⇒ ∀x.(0 <| x− A |
∧ | x−A |< δ) ⇒| F (x)−L |< ε R limA F = L}. The second set of rules yields
the singleton set

{
EV(ε, {F, A, L}), EV(x, {F, A, L, D});
[ε > 0, D > 0, 0 <| x − A |, | x − A |< D] | F (x) − L |< ε R limA F = L

}
.

from which we obtain the inference (4).
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5 Partial Argument Instantiations

The problem of determining the different possibilities to apply a given inference
on some task consists of finding all fully specified inference substitution. Typi-
cally, some of the parameters of the inference are instantiated as well as possibly
some of the formal arguments. Hence, the process starts with a partial inference
substitution and we have to find the values for the non-instantiated variables of
the inference. During the process these variables are assigned either an position
of the task or a formula. In order to make the stages of the process explicit, we
define the notion of partial argument instantiation, which is an adaptation of the
notion from [4,15] to the new inferences presented here.

Definition 5 (Partial Argument Instantiation). Let I be an inference with
formal arguments a1, . . . , an and T a task. Any inference substitution PAIT

I :=
〈σP , σN , σX 〉 admissible for I and T is a partial argument instantiation (PAI).
A PAI PAIT

I is called empty, iff dom(PAIT
I ) = ∅; it is called initial iff for all

1 ≤ j ≤ n holds σN (aj) 
∈ wffXΣ,V and for all p ∈ P holds σP(p) = ⊥; finally we
say it is complete iff there is sequence of outline functions 〈Vl, f(Ik

kl
), 0 ≤ k ≤ m

such that PAIT
I ⊕ 〈v1, f(i1k1

)〉 ⊕ . . . ⊕ 〈vm, f(im
km

)〉 is a fully specified inference
substitution wrt. I and T .

Example 1. Let us reconsider the inference subst-m from Fig. 2, which we want
to apply to the task T : 2 ∗ 3 = 6  2 ∗ 3 < 7. Then the substitution pai1 =
〈∅, {c �→ (10)}, ∅〉 is a PAI for the inference subst-m, where (10) denotes the
position of 2 ∗ 3 < 7 in the task. As no outline function has been invoked so far
pai1 is initial. It is not complete as there are no outline functions to compute π
given only c; thus p1, p2 can also not be computed.

The extension of a partial argument instantiation PAIT
I consists of an assign-

ment of values to variables of the inference that are not in the domain of PAIT
I .

We are only interested in those extensions where at least one not yet instantiated
formal argument is assigned a new value.

Definition 6 (Partial Argument Instantiation Update). Let I be an in-
ference, T be a task, PAIT

I , PAI ′I
T be partial argument instantiations for I with

respect to T . Then PAI ′I
T is a partial argument update of PAIT

I iff (1) PAIT
I

is more general than PAI ′I
T and (2) there is at least one formal argument of I

in dom(PAI ′I
T ) \ dom(PAIT

I ).

There are two possibilities to perform a partial argument instantiation update:
(1) assigning a task position to a formal argument or (2) assigning a term to a
formal argument. The first kind of update involves searching for possible posi-
tions in the task while respecting already introduced bindings. The second kind
of updates involves no search in practice and is performed by using the outline
functions which require that some arguments are already instantiated.

Thus we can divide the updating process into two phases: In the first phase
we allow only updates of the first kind and in the second phase only updates



104 S. Autexier and D. Dietrich

of the second kind. The underlying idea is that we try to use as much derived
knowledge as possible and then decide whether this knowledge suffices for the
inference to be applied. The knowledge in an initial PAI suffices for the outline
functions to compute all other values, if the initial PAI is complete. Each initial
and complete PAI determines one way the inference can be applied.

Example 2. If we add an instantiation for the argument p2 in pai1 we obtain a
new PAI pai2 = 〈∅, {p2 �→ (00), c �→ (10)}, ∅〉, where (00) denotes the position
of the formula 2 ∗ 3 = 6 in our task T . p2 is a PAI-update of p1. It is complete,
as we can invoke the outline functions to first obtain π and then to obtain p1.
Note that this does not mean that we have to invoke the outline functions, but
we can try to instantiate further arguments by formulas of our task.

Abstracting from the concrete values the formal parameters are instantiated by
these PAIs, we obtain a general descriptions of the application directions of the
inferences.

The determination of the application direction in turn can be used (1) for
planning as we know what the possible effects of an inference application are,
and (2) for generating agents as it is reasonable that the agents must be able to
construct partial argument instantiations for all application directions.

In the remainder of this section we formalize the notion of application direction
by defining PAI-statuses that represent the status of a PAI rather than the
concrete values.

Definition 7 (PAI-Status, PAI-Status defined by a PAI). Let I be an
inference with formal arguments A and T a task. A PAI-status SI of I is a
function SI : A → {TERM, POS, ⊥}. Its domain is dom(SI) := {a | SI(a) 
=
⊥}. A PAI PAIT

I of I belongs to some PAI-status SI iff for all a ∈ A it
holds (⊥) if PAIT

I (a) = ⊥ then SI(a) = ⊥, (POS) if PAIT
I (a) ∈ POS then

SI(a) = POS, or (TERM) if PAIT
I ∈ wffXΣ,V then SI(a) = TERM .

We say that two PAIs are equivalent, written PAI
(T )
I ∼ PAI

′(T ′)
I , if they belong

to the same PAI status.

Example 3. As an example consider the PAI pai2. The status defined by this PAI
is a function f : {p1, p2, c} → {TERM, POS, ⊥} with f(p1) = ⊥, f(p2) = POS,
and f(c) = POS. Suppose we are given another task T2 : 2 + 2 = 4  A ⊂
B, 2+2 = 1+1+1+1 with a PAI for subst-m pai3 = 〈∅, {p1 �→ (00), c �→ (11)}, ∅〉.
Then pai3 and pai2 have the same status.

The notions of updating a PAI, as well as initial and complete PAIs carry over
to PAI-statuses in a straightforward manner:

Definition 8 (PAI-Status Update). Let S, S′ be PAI-statuses of an infer-
ence I. S′ is called PAI-status-update iff (1) ∀x ∈ dom(S) S′(x) = S(x) and
(2) there occurs at least one formal argument of I in dom(S′) \ dom(S′).

Note that the PAI-status update relationship is a partial order on PAI-statuses,
which we denote by <S.

Consequently, the status of pai2 is a PAI-status update of the status of pai1.
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Definition 9 (Initial, Empty, Complete, and Full PAI-Statuses). Let S
be a PAI-status of an inference I with formal arguments A. Let further S−1

denote the inverse image of S defined by S−1(x) := {a ∈ A | S(a) = x}. We
say that S is (1) initial iff S−1(TERM) = ∅, (2) it is empty iff S−1(POS) =
S−1(TERM) = ∅, (3) it is complete iff there exists a complete PAI PAI

(T )
I ∈

SI, and (4) it is full iff there exists a full PAI PAI
(T )
I ∈ SI.

Notational Convention. Given an inference I, the empty PAI-status of I is
denoted by S∅. We agree to denote an initial PAI-status S where S−1(POS) =
{a1, . . . , an} by 〈a1, . . . , an〉.

Definition 10 (Application Directions). Let I be an inference. The initial
and complete PAI-statuses of I are the application directions ADI of I.

Example 4. As an example consider again the inference subst-m: it has the 3
application directions 〈p1, p2, c〉, 〈p1, p2〉, and 〈p2, c〉.

To check whether or not an initial S is an application direction, i.e. is complete,
we construct a so-called PAI-status completion tree for the S we want to test.
Each node of the tree is labeled with a PAI-status and we add an edge from a
PAI-status S′ to some S ′′, if there is an outline function of := 〈v, f(i1, . . . , in)〉
which is applicable on S, i.e. {i1, . . . , in} ⊆ dom(S) and S(v) = ⊥. We recur-
sively construct that tree starting with the given S, and finally check if there
is at least one full PAI-status among the leaf-nodes of the tree. If so, then S
is complete, i.e. is an application direction, and otherwise not. If S−1(a) =
TERM , a is annotated with ⊕, otherwise if a ∈ C with �, if a ∈ P it remains
unannotated.

6 Generating Agents

Given a specification of an inference, we want to create a set of argument agents
for the Ω-Ants-system which provide the user with suggestions of how the for-
mal arguments of the inference can be instantiated. As the agents must cooperate
to find instantiations, the benefit of a single agent cannot be assessed, rather we
have to see the agents as a unit. These units are “fragile” in the sense that
removing one agent can result in a non-operational unit that cannot produce
useful suggestions or any suggestions at all. Hence we must choose a sufficiently
large set of agents such that for each agent there is another agent which produces
partial argument instantiations required by the agent. On the other hand each
agent consumes runtime. If we created all possible agents the system perfor-
mance would deteriorate, as it would take too much time to create a suggestion.
Hence we have to construct a set of agents which forms an operational unit and
is as small as possible.

Intuitively a unit of agents for an inference reads partial argument instantia-
tions from a blackboard. If a single agent realizes that it can perform an update,
it performs that update and writes the new partial argument instantiation onto
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the blackboard, such that it can be further updated by the other agents of the
unit. We aim at a unit of agents that is able to find all application directions of
an inference, provided instances of these application directions can be built with
respect to the task to which the agents are applied.

Agent Creation Graph. The agent creation graph is composed of nodes labeled
with initial PAI-statuses and edges between these nodes, representing PAI-
status updates. We only encode updates in the graph which update exactly one
formal argument.

Definition 11 (Agent Creation Graph). Let I be an inference and N =
{S1

I , . . . , Sn
I } be the set of all initial PAI-statuses of I. Let (Si

I , S
j
I ) ∈ E iff Sj

I is
a PAI status update of Si

I and |dom(Si
I)| + 1 = |dom(Sj

I )|. Then G = 〈N, E〉 is
called agent creation graph where each edge is labeled with ⊕A, where A is the
formal argument additionally instantiated in Sj

I .

An argument agent A consists of a dependency set DA of formal arguments
and a goal set GA of formal arguments. Hence each edge in an agent creation
graph corresponds to exactly one argument agent whose dependency set contains
those formal arguments instantiated in the source PAI-status and whose goal
set contain that formal argument which is additionally instantiated in the target
PAI-status. Hence we can associate to a given set of argument agents K that
subgraph of the agent creation graph covered by these argument agents. This
graph is called actual agent graph.

Definition 12 (Actual Agent Graph). Let G = 〈N, E〉 be an agent creation
graph and K a set of agents. The smallest subgraph of G that contains for each
A ∈ K an edge (S, S′) such that dom(S) = DA and dom(S′) \ dom(S) = GA is
the actual agent graph of K.

In an agent creation graph, those PAI-statuses which are complete are those
which must be reachable from the root node of the graph, since they are the
states which can be transformed into a fully specified PAI-status, in which the
associated inference is applicable. In order to have a minimal set of agents K
we require that in the actual agent graph of K there is exactly one path from
the root node to each complete PAI-status. From this we can easily derive the
following algorithm to create agent units for a given inference.

Algorithm to Create an Agent Unit. Given an inference I and the complete initial
PAI-statuses partially ordered wrt. <S (Def. 8). The algorithm creates a unit
of argument agents for I such that the given complete PAI-statuses are all
reachable from the empty PAI-status.

Initially, the set of agents is empty and the actual agent graph contains only
the empty PAI-status. The algorithm recurses over the given list of complete
PAI-statuses and in each iteration selects the first element S of the list of PAI-
statuses. Since they are ordered by <S , S is not yet reachable in the actual
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∅

⊕P1 〈P1〉
⊕C 〈P1, C〉 ⊕P2

⊕P2

⊕P2 〈P2〉
⊕P1 〈P1, P2〉 ⊕C 〈P1, P2, C〉

⊕C

⊕C 〈C〉

⊕P2 〈C, P2〉 ⊕P1

⊕P1

Fig. 4. Agent Creation Graph

agent graph. It then calculates the shortest paths2 in the agent creation graph
to S from all PAI-statuses that are already in the actual agent graph. It selects
a path that has minimal distance to S and adds agents for each edge on that
path to the set of agents. As the list of statuses is ordered and the minimal path
is always added the algorithm produces an optimal set of agents.

Figure 4 shows an agent creation graph for an inference I which has two
premises P1 and P2 and one conclusion C. Suppose that the complete PAI-
statuses of I are 〈C〉, 〈C, P2〉, 〈P1, P2〉, 〈P1, C〉, and 〈P1, P2, C〉. The complete
PAI-statuses are indicated in gray and the actual agent graph constructed by
our algorithm is indicated by the bold edges and nodes. It illustrates that the
agents optimally cooperate to find partial argument instantiations. A comparison
in [7] of some automatically generated units of argument agents with manually
specified argument agents shows that they are almost identical.

7 Related Work

Closest to the presented style of operationalizing mathematical knowledge are
the macetes in the Imps-system [9] and the replacement rules of the CoRe-
calculus [1]. Macetes only work with pure universal formulas in prenex normal-
form and require the formulas to be given in the right format; the conditions
are not further decomposed and equations (and equivalences) are only applied
from left to right. Our mechanism in turn is less flexible than the synthesis
of replacement rules: our rules require that negations occur only on atoms in-
side the formulas in order to have only literals as premises while the CoRe

mechanisms would not require this restricted format. Adding this feature to our
rules would pose no difficulty, but we refrained from doing so, because in the
cases exploiting that feature it would be difficult for a human user the recognize
the original formula from the generated inferences. Consider as an example the
formula ¬(A ∧ (B ⇒ C)) and the then generated inferences .; []A R B and
.; []A R ¬C. Furthermore, the result of the synthesis must meet the format of
inferences and, hence, except for conjunctions, we cannot allow for rules that
further decompose the hypotheses of premises.

2 Using, for instance, Dijkstra’s algorithm [8].
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8 Conclusion

We have presented an approach to extract proof procedural information from
declarative representations of mathematical knowledge. It is based on a new
notion of an inference and techniques to determine all sensible application di-
rections and argument agents of inferences. We adapted a mechanism from [16]
to automatically synthesize inferences from assertions, which enables the proof-
planner Multi and the agent-based reasoning system Ω-Ants to actively use
knowledge contained in mathematical theories and to effectively assist the user
even if he does not know the peculiarities of how to condition knowledge for
these systems.
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Abstract. Many textbook proofs are essentially human-readable repre-
sentations of natural deduction proofs. Terms in dependent type theory
provide formally checkable representations of natural deduction proofs.
We show how the new mathematical assistant system Scunak can be
used to verify a textbook proof by translating the LATEX version into a
proof term in a dependent type theory. We also show how Scunak can
give interesting output upon failure.

1 Introduction

We use the new mathematical assistant system Scunak to analyze different ver-
sions of a textbook proof. We explain how Scunak can transform a LATEX version
of the proof into a formally checkable proof term. Furthermore, in some cases,
Scunak can signal an error and reject the proof. We use this case study to il-
lustrate and discuss various issues related to the formalization of mathematics.
For instance, in a textbook proof, how do we recognize if an assumption is “cor-
rect”? Also, how do we determine when an eigenvariable or hypothesis has been
discharged? As we shall see, Scunak offers potential answers to such questions.

2 What is Scunak?

Scunak is like Automath [16] or Twelf [13] in the sense that the user creates a
dependently typed signature of constants (corresponding to basic concepts and
axioms) and definitions (corresponding to defined concepts and theorems with
proofs). Scunak is like Coq [3] in that one can interactively create proof objects
using commands corresponding to natural deduction in addition to applying
previously proven facts. The type theory of Scunak is different from (and in
most respects more restricted than) the type theories of Twelf, Automath and
especially Coq. In particular, Scunak excludes (all forms of) polymorphism, and
restricts to a fixed number of basic type families and second-order types. Also,
though one is free to declare constants and definitions for whatever mathematical
foundations one wants, Scunak does include built in support for signatures which
include certain set theoretic concepts. So, Scunak is unlike Automath or Twelf
in that set theory signatures have direct support in the system.

Scunak is also similar to Mizar [15] in many respects. Scunak currently uses
a form of untyped set theory (Mac Lane set theory with Universes). The type
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theory allows the user to treat any class (relative to the set theory) like a type.
Mizar supports a different form of set theory (Tarski-Groethendieck), but this
is not relevant here. Mizar has a type structure, but prohibits empty types.
This difference is best illustrated by the “class” {x|x ∈ A} where A is a set.
In Mizar, the type Element of A represents this class, unless A is empty, in
which case Element of A consists of the empty set [4]. In Scunak, the corre-
sponding class type class (in A) is empty if A is empty. (We usually simply
write A for class (in A) and let the parser determine it is the class type of
A.) There are pros and cons of allowing empty types which we do not discuss
here. Another important distinction between Scunak and Mizar is that Scunak
currently has a library of about 300 theorems whereas Mizar has a library of
about 40, 000 theorems [4]. It is important to point out that neither Scunak nor
Mizar is irrevocably tied to the particular set theory in which the mathematics
is represented (as discussed in [15]).

Four goals were the most important in the design of Scunak:

1. Naturality: The mathematics should be represented in a natural way, sim-
ilar (up to isomorphism) to what appears in mathematics texts.

2. Formal Correctness: The proofs should be formally checkable.
3. Retrievability: Retrieving theorems by content rather than by name must

be possible.
4. Automation: Some reasonable degree of automated reasoning for proving

theorems in the logic should be available.

We will illustrate the first three points in this paper by considering the for-
malization of a simple textbook proof from [2] (also considered in [1]). We will
explain how Scunak can read the LATEX representation of the proof, verify the
proof, and construct a corresponding checkable proof term. During this process,
Scunak must sometimes use facts in the signature in order to justify steps in the
proof. We will also demonstrate how Scunak can read mutilated LATEX versions
of the proof and identify the error. We do not claim, however, Scunak is an “in-
dustrial strength” proofreader for mathematical proofs in LATEX. The example
is a vehicle for discussing various issues related to formalizing mathematics and
for introducing Scunak as a tool for working with formalized mathematics.

3 A Simple Textbook Proof

We consider the first proof given in the introductory analysis book [2]. The proof
(shown in Figure 1) is of the distributive law A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
(the first equation in part (d) of Theorem 1.1.4 in [2]). This proof was also
considered in [1] (which was the source for the LATEX version of the proof). The
only difference between the LATEX source of the proof in [1] and the LATEX source
discussed here is that the version in [1] used macros \union and \inter where
the version checked by Scunak uses the standard macros \cup and \cap.

We begin by considering the structure of this proof. The first sentence states
the intention to prove the distributive law. Scunak finds no pattern in this sen-
tence with mathematical or proof content and so ignores the sentence. (Any text
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In order to give a sample proof, we shall prove the first equation in (d). Let x
be an element of A ∩ (B ∪ C), then x ∈ A and x ∈ B ∪ C. This means that
x ∈ A, and either x ∈ B or x ∈ C. Hence we either have (i) x ∈ A and x ∈ B,
or we have (ii) x ∈ A and x ∈ C. Therefore, either x ∈ A ∩ B or x ∈ A ∩ C, so
x ∈ (A∩B)∪(A∩C). This shows that A∩(B∪C) is a subset of (A∩B)∪(A∩C).

Conversely, let y be an element of (A ∩ B) ∪ (A∩ C). Then, either (iii) y ∈ A ∩ B,
or (iv) y ∈ A ∩ C. It follows that y ∈ A, and either y ∈ B or y ∈ C. Therefore,
y ∈ A and y ∈ B ∪ C so that y ∈ A ∩ (B ∪ C). Hence (A ∩ B) ∪ (A ∩ C) is a
subset of A ∩ (B ∪ C).

In view of Definition 1.1.1, we conclude that the sets A ∩ (B ∪ C) and (A ∩ B) ∪
(A ∩ C) are equal.

Fig. 1. Textbook Proof

which matches no rule in the proofreader’s context-free grammar is ignored.) The
second sentence introduces x ∈ A ∩ (B ∪ C). Why? A reader of the proof (say,
R) is aware of the goal of proving the sets A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C)
are equal. R should also know a common technique for proving such sets equal
is to prove the two subset inclusions (relying on set extensionality, which is the
content Definition 1.1.1 in [2]). Given this information, R can conclude that
the author of the proof is introducing the eigenvariable x and hypothesis that
x ∈ A ∩ (B ∪ C) holds in order to prove x ∈ (A ∩ B) ∪ (A ∩ C) and thus con-
clude A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C). Thus R expects to read a proof of
the goal x ∈ (A ∩ B) ∪ (A ∩ C) and then read a proof of the other inclusion
(A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). The mathematical content of the remainder
of paragraph one, until the last sentence, outlines a series of facts which should
follow from the previous facts and assumptions. The last sentence concludes
A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C). Note that sentence does not explicitly say, “we
discharge x and the hypothesis that x ∈ A ∩ (B ∪ C) in order to conclude...,”
though this is clearly the logical structure.

The second paragraph introduces a new eigenvariable y and assumption y ∈
(A ∩ B) ∪ (A ∩ C). R should be expecting a proof of (A ∩ B) ∪ (A ∩ C) ⊆ A ∩
(B ∪C) and so such an assumption is warranted. Upon reading the assumption,
R expects a proof that y ∈ A∩ (B ∪C), which is exactly the content of the next
three sentences. The last sentence implicitly discharges the y and corresponding
assumption. The last sentence of the proof simply acknowledges that the proof
is finished. We ignore the reference to “Definition 1.1.1.” Instead of ignoring this
reference, a superior system would recognize “Definition 1.1.1” corresponds to
particular facts or rules (such as the rule named setextsub discussed later) and
ensure that such a rule is used in the justification.

The explanation above gives an intuitive idea of the behavior of Scunak upon
reading the proof in Figure 1. Before giving a more detailed explanation, along
with examples of proofs with errors, we consider the Scunak type theory and set
theory in which the content will be formally represented.
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4 The Scunak Type Theory and Set Theory

The “logic” of Scunak is a modified version of the type theory LF as implemented
in Twelf [13]. The meta-theory of LF is developed in [5]. The type theory of
Scunak incorporates proof irrelevance for proof types. A more general framework
for proof irrelevance is developed in [12] and [14]. A more thorough investigation
of the Scunak type theory is planned for future work. Here we only sketch the
type theory.

In the Scunak type theory, we restrict to three basic types:

– obj is the type of all (untyped) mathematical objects. Since we will be mainly
interested in set theory, obj will be a synonym for set.

– prop is the type of mathematical propositions.
– pf P is a type whenever P is of type prop (in a context).

Such a restriction is not in the LF-tradition. The Scunak type theory is in-
tended to model mathematical foundations instead of general logical and com-
putational systems, so the restriction seems warranted.

One reason to insist on a single type of all mathematical objects is to avoid
problems with polymorphism. However, sometimes one wants to consider a
“typed” object. For this reason, we allow “class types.” class φ is a type when-
ever φ is a predicate (i.e., a function from obj to prop). Members of class φ
are pairs 〈x, p〉 where x has type obj and p has type pf (φp)↓, where (φp)↓ is
a normal form of (φp). Intuitively, class φ consists of objects x along with a
proof that x satisfies φ. Since we do not want different proofs of the property to
correspond to different elements of class φ, we include proof irrelevance in the
type theory. In particular, if M and N are of type pf P , then M and N are the
same in pf P .

All other types are function types constructed using the the Π dependent
type constructor.

We now describe the syntax in more detail. We use x, y, z, x1, X, Y, . . . to
denote variables and c, d, c1, . . . to denote constants. We define terms and types
as follows:
Terms M, N, P, Q, R, φ, . . . := x|c|(λx.M)|(M N)|〈M, N〉|π1(M)|π2(M)
Types A, B, C, . . . := obj|prop|(pf P )|(class φ)|(Πx : A.B)

As usual we use (A → B) to denote (Πx : A.B) when x does not occur free in B.
Also, we identify terms and types up to α-conversion. We assume all the usual
notions of λ-calculus: substitution, β-reduction, η-reduction and the following
pairing reductions:

(π1) : π1(〈M, N〉) →π1 M (π2) : π2(〈M, N〉) →π2 N
(π) : 〈π1(M), π2(M)〉 →π M

We say a term or type is normal if it contains no redexes. We write W ↓ for
the normal form of W , if a unique normal form of W exists. In practice we will
only consider terms which are typable using simple types (in the Curry style [6]).
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This guarantees strong normalization and the Church-Rosser property whenever
necessary, so that we can assume W ↓ exists uniquely.

In Scunak, terms and types are always given in βπ1π2-normal form, so that
the types of λ-abstractions and pairs can be inferred from the given intended
type. We do not consider η-long (or π-long) forms. Instead, the rules for the
typing judgments η- or π-expand on demand.

A signature Σ is a list of distinct constants associated with types. A type
context Γ is a list of distinct variables associated with types. When Γ is z1 :
A1,. . ., zn : An, we may write λΓM for λz1· · ·λznM and (MΓ ) for (Mz1· · ·zn).

We list the main typing judgments below, but omit the rules for space reasons.

• “	 Σ sig” Intuitively, Σ is a valid signature. The idea is to ensure 	Σ A :
Type before adding c : A to Σ.

• “	Σ Γ ctx” Intuitively, Γ is a valid context. The idea is to ensure Γ 	Σ A :
Type holds before adding x : A to Γ .

• “Γ 	Σ M ∼ N ↑ A” Intuitively, M can be checked to be A-related to N .
• “Γ 	Σ M ∼ N ↓ A” Intuitively, the type A can be extracted as a type in

which M is A-related to N .
• “Γ 	Σ A : Type” In words, A is a valid type.

We say M has type A in context Γ if Γ 	 M ∼ M ↑ A or Γ 	 M ∼ M ↓ A
holds. (The difference between extracting and checking types is a form of “bi-
directional” algorithmic typing.) We usually omit the dependence on Σ in the
judgments.

The Scunak type theory is further restricted to second-order. We consider
obj, prop, pf P and class φ to be first-order types. For all x : B ∈ Γ , we
insist B is a second-order type, i.e., of the form Πx1 : C1 · · ·Πxn : Cn.Cn+1

where each Ci is a first-order type. For all c : A ∈ Σ, A must be a third-order
type of the form Πx1 : B1 · · · Πxn : Bn.C where each Bi is a second-order type
and C is a first-order type.

The set theory is implemented in Scunak in the same spirit as the formal
systems in [17]. In fact, the fact that many signatures in [17] are second-order
was a motivation for considering that a second-order logical framework might
be sufficient for representing mathematics.

The particular set theory is a form of Mac Lane set theory with universes
which we will denote by MU. The kernel for this set theory is contained in a
signature ΣMU. This signature currently contains 482 constants and abbrevi-
ations which includes the basic constructions and theorems leading to sets of
functions. Of these 482 signature elements, 29 are constants entered by the user,
339 are abbreviations entered by the user, and 114 are constants for folding and
unfolding definitions. These 114 constants are automatically generated by Scu-
nak when the abbreviations are given. If one assumes δ-reduction during type
checking, the 114 generated constants are definable. (Due to proof irrelevance,
one never needs to fold or unfold definitions returning a proof type. For this rea-
son, constants for folding and unfolding such definitions are not generated.) We
only present enough details of the signature for the formalization of the textbook
proof to make sense.
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Two constants in ΣMU are eq and in, both of type obj → obj → prop. As
concrete syntax, Scunak allows infix notation (A==B) for (eq A B) and (x::A)
for (in A x). Note that (in A x) means x ∈ A. The reason for this choice is so
that the η-short form (in A) corresponds to the class determined by the set A.
In concrete syntax, we can use a set A as a type, though this is technically the
class type class (in A). Likewise, we can indicate this class type as (in A). As
noted earlier, if A is empty, this class type is empty.

There are abbreviations in ΣMU corresponding to conjunction, disjunction,
subset, binary union, and binary intersection. We use infix notations &, |, <=,
\cup, and \cap as concrete syntax for these notions. When convenient, we may
also display <=, \cup and \cap as ⊆, ∪ and ∩, respectively.

There are also abbreviations corresponding to facts about these concepts.
Consider the following two abbreviations (we only give the types):

• setextsub : ΠA : obj.ΠB : obj.Πu : pf (A<=B).Πv : pf (B<=A). pf
(A==B). This constant can be used to form a proof that A equals B given
two sets A and B, a proof of A ⊆ B and a proof of B ⊆ A.

• subsetI1 : ΠA : obj.ΠB : obj.Πu : (Πx : class (in A).pf (in B π1(x))).
pf (A<=B). We can conclude A ⊆ B given two sets A and B and a function
taking any x in the class type determined by A to a proof that the untyped
part of x is an element of B.

In the concrete syntax when x is in a class type such as class (in A), we can
write (x::B) for (in B π1(x)) since this can only be well-typed if we apply π1
to take x from being a member of a class type to being of type obj. Likewise, we
need never explicitly write π2(x) since the type constraints determine when x is
being used as a proof type. Essentially, the π1 and π2 operators are reconstructed
during parsing and the reconstructed term is type checked. Thus in any particular
occurrence of a term M of class type, M may be used as a member of this class
type, as an untyped object, or as a proof that the untyped object is in the class.

5 Verifying the Simple Textbook Proof

Following [8,7], one can formalize a textbook proof via a three stage “formal-
ization path.” First, translate from text to weak type theory (WTT). Second,
translate this to a type theory with open terms (OTT). Third, instiate the meta-
variables in open terms.

We follow an approach similar to [8,7], though we do not work in stages.
Instead, we extract certain commands from the text (LATEX) and these com-
mands are executed by Scunak to affect the current proof state. At any point,
the proof state corresponds to an open term with a stack of remaining tasks.
In the end, the proof is completed if there are no remaining tasks (hence no
remaining free variables). All this is performed when a user invokes the Scunak
command proofread with a filename containing the LATEX source and a Scunak
term corresponding to the formal version of the theorem which is to be proved.

Figure 2 shows the 14 Scunak commands extracted from the text in
Figure 1 by the Scunak proofreader. These commands are in principle hidden
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from the user and are immediately executed upon being extracted from the text.
The method of extracting these commands from the LATEX source is simple. A
context-free grammar describes certain linguistic patterns which correspond to
commands. For example, the rule

PROOF1 :: LET $MATHV ARIABLE$ be A ATTRIBUTION

is used to generate the first command in Figure 2. In this rule, LET may con-
cretely be Let or let, and A may concretely be a or an. Note that we do not,
for example, consider the parts-of-speech of the components of the sentences in
the proof. We consider it an open question whether the mathematical content of
texts can be better extracted using a large collection of specific rules such as the
one above or using more sophisticated natural language processing techniques.
The MathLang approach described in [9] appears to be somewhere in between
the two extremes. In the end, experience with a large number of texts will de-
termine the best way to extract the content automatically. Nothing significant
with respect to language processing should be concluded from the simple proof
in Figure 1.

1. let x:(in (A \cap (B \cup C))).
2. hence ((x::A) & (x::(B \cup C))).
3. hence ((x::A) & ((x::B) | (x::C))).
4. clearly (((x::A) & (x::B)) | ((x::A) & (x::C))).
5. hence ((x::(A \cap B)) | (x::(A \cap C))).
6. hence (x::((A \cap B) \cup (A \cap C))).
7. hence ((A \cap (B \cup C)) <= ((A \cap B) \cup (A \cap C))).
8. let y:(in ((A \cap B) \cup (A \cap C))).
9. clearly ((y::(A \cap B)) | (y::(A \cap C))).
10. hence ((y::A) & ((y::B) | (y::C))).
11. hence ((y::A) & (y::(B \cup C))).
12. hence (y::(A \cap (B \cup C))).
13. hence (((A \cap B) \cup (A \cap C)) <= (A \cap (B \cup C))).
14. clearly ((A \cap (B \cup C))==((A \cap B) \cup (A \cap C))

Fig. 2. Extracted Commands

The sequence of commands in Figure 2 can be fruitfully compared to the
structured representation of the proof shown in Figure 3 of [1]. If one deletes the
last line “4. Trivial” from Figure 3 of [1], then in both cases we have 14 lines
corresponding to the same moves in the proof. However, [1] explicitly represents
the scope of the assumptions x ∈ A ∩ (B ∪ C) and y ∈ (A ∩ B) ∪ (A ∩ C). This
information is not explicit in our representation. Note also that [1] is intended
to be general with respect to formulas and terms, while we are using a concrete
syntax for formulas and terms. The similarity between the two representations is
not a coincidence. A close examination of the language in [1] (and its successors)
inspired the parsing rules mentioned above.
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One could use the parser to generate annotated text in the form of the lan-
guage in [1], MathLang [9] or OMDoc [10]. However, this is a process indepen-
dent of correctness of the proofs. In particular, the mutilated “proofs” described
in Section 6 can be parsed and Scunak commands can be generated. Likewise,
an annotated form of the mutilated “proofs” can be generated, even though the
proofs may be technically incorrect. One can only judge correctness of proofs
once one has a formal representation of the proposed proof and some formal
notion of correctness. The Scunak type theory provides such a representation
and such a notion of correctness. One could, of course, generate annotated text,
then extract the Scunak commands for checking correctness from such annotated
text. However, on such a simple proof there seems to be no motivation for using
annotated text. One can simply regenerate the Scunak commands directly from
the unannotated LATEX source.

The Scunak proofreader keeps a set of alternative states of the (open) formal
proof. Each command in Figure 2 is evaluated with respect to each alternative
proof state giving a set of alternative proof states as a result. If there are no
resulting proof states after the command is executed, then a “verification failure”
is reported, along with a message indicating where the failure occurred (in the
LATEX source) and a general message indicating a reason for the failure.

An open task is 〈X, Γ, G〉 where X is a variable, Γ is a type context, and G
is a type containing no free variables outside of the context Γ . Intuitively, we
wish to instantiate X with a closed term M such that (MΓ )↓ has type G in
context Γ . A closed task is 〈Γ, G〉 where Γ is a type context, and G is a type
containing no free variables outside of the context Γ . As we shall see, a closed
task can be used for bookkeeping with respect to discharging eigenvariables and
hypotheses. A task is either an open task or a closed task. A proof state S is an
open proof term P with free variables X1, . . . , Xn and a list of tasks, where each
free variable corresponds to an open task.

There are certain global variables which control the behavior of the Scunak
proofreader. These include two subsets of the signature ΣMU. One subset Σu

consists of signature elements corresponding to rules which can be used to try
to justify steps in the proof. In analogy with first-order theorem proving, we say
Σu is the usable set. Another subset Σe is a set of signature elements corre-
sponding to rules which can be eagerly applied in the backwards direction. Only
the elements in Σe can be used to apply a backwards step which introduces two
new subgoals. The two sets Σu and Σe represent a model of the knowledge of
the intended reader. Of course, to claim the proofreader is fully automatic, Scu-
nak should choose the sets Σu and Σe. The proofreader is not fully automatic
in this sense. We will consider different options for Σu, but we will explicitly
restrict to the case where Σe contains only the rule setextsub. This rule is used
to prove an equation between two sets by proving the two inclusions, and must
be applied eagerly before Scunak begins to read the proof. The choice of Σe is
arguably where the user is supplying the most explicit information about how
the proof should proceed.
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We initialize the Scunak proofreader with a claim corresponding to the goal
A∩ (B ∪C) = (A∩B)∪ (A∩C) in the context Γ where A, B, and C are of type
obj (equivalently, set). Let G be the type pf ((A∩(B∪C)==(A∩B)∪(A∩C)))
of proofs of this proposition. Scunak creates a variable X of type ΠA : obj.ΠB :
obj.ΠC : obj.G and an open task 〈X, Γ, G〉.

One initial proof state consists of the open proof X and the single task
〈X, Γ, G〉. Using setextsub ∈ Σe, Scunak creates an open proof term

N := (λAλBλC(setextsub · · · (Y ABC)(ZABC)))

with new variables Y and Z corresponding to proofs of the two inclusions. Scu-
nak creates four more proof states, all of which correspond to the open proof
term N , but differ in the list of tasks. One alternative is to have two tasks cor-
responding to instantiating Y by proving (A ∩ (B ∪ C)) ⊆ ((A ∩ B) ∪ (A ∩ C))
and then instantiating Z by proving the other inclusion. A second alternative
is to instantiate Z first by proving ((A ∩ B) ∪ (A ∩ C)) ⊆ (A ∩ (B ∪ C))) and
then instantiating Y . The third and fourth alternatives are the same as the first
and second, except we include a third task: the closed task 〈Γ, G〉. As we shall
see, this closed task must be included to check the final sentence of the proof of
Figure 1. On the other hand, the proof in Figure 1 is valid if the final sentence is
deleted, in which case the closed task should not be included. Hence we include
alternatives with and without the closed task. In Figure 3, we show the five task
stacks corresponding to the five initial proof states.

Let Γ be A : obj, B : obj, C : obj.
Let G be pf ((A ∩ (B ∪ C))==((A ∩ B) ∪ (A ∩ C))).
Let G1 be pf ((A ∩ (B ∪ C)) ⊆ ((A ∩ B) ∪ (A ∩ C))).
Let G2 be pf (((A ∩ B) ∪ (A ∩ C)) ⊆ (A ∩ (B ∪ C))).

〈Y, Γ, G1〉 〈Z, Γ, G2〉
〈Y, Γ, G1〉 〈Z, Γ, G2〉 〈Z, Γ, G2〉 〈Y, Γ, G1〉

〈X, Γ, G〉 〈Z, Γ, G2〉 〈Y, Γ, G1〉 〈Γ, G〉 〈Γ, G〉

Fig. 3. Task Stacks of Initial Proof States

Scunak evaluates the first command in Figure 2 with the five alternative proof
states described above (see Figure 3). The command corresponds to the text
“Let x be an element of A ∩ (B ∪ C)” in Figure 1. In order to evaluate this let
command, the next task in the proof state should be an open task, and there must
be some rule which introduces an eigenvariable of class type A∩(B∪C) and which
can be used to conclude the corresponding goal. For two alternatives, the current
task is to instantiate Y by proving (A∩(B∪C)) ⊆ ((A∩B)∪(A∩C)). Assuming
the signature element subsetI1 is in the usable set Σu, this element is found to
have the appropriate type. For these alternatives, Scunak can imitate subsetI1
for Y and create new alternatives. In each of the new alternatives, we create a
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version with a closed task corresponding to (A∩ (B ∪C)) ⊆ ((A∩B)∪ (A∩C))
and a version without such a closed task. For the other three initial alternatives,
there are no corresponding rules in Σu ⊆ ΣMU, so the alternatives have no
successors after the command is executed. In particular, if the current goal is to
prove ((A∩B)∪ (A∩C)) ⊆ (A∩ (B ∪C)), then introducing x ∈ (A∩ (B ∪C)) is
clearly inappropriate. Hence we see that Scunak can determine when making an
assumption (or introducing an eigenvariable) is a “correct” step. After the first
command, it becomes clear that we are first proving the inclusion (A∩(B∪C)) ⊆
((A ∩ B) ∪ (A ∩ C)) by proving x ∈ ((A ∩ B) ∪ (A ∩ C)).

Let Γ be A : obj, B : obj, C : obj.
Let Γ ′ be A : obj, B : obj, C : obj, x : (A ∩ (B ∪ C)).
Let G be pf ((A ∩ (B ∪ C))==((A ∩ B) ∪ (A ∩ C))).
Let G1 be pf ((A ∩ (B ∪ C)) ⊆ ((A ∩ B) ∪ (A ∩ C))).
Let G2 be pf (((A ∩ B) ∪ (A ∩ C)) ⊆ (A ∩ (B ∪ C))).
Let G3 be pf (x ∈ ((A ∩ B) ∪ (A ∩ C))).

〈W,Γ ′, G3〉
〈W,Γ ′, G3〉 〈W,Γ ′, G3〉 〈Γ, G1〉

〈W, Γ ′, G3〉 〈Γ, G1〉 〈Z, Γ, G2〉 〈Z, Γ, G2〉
〈Z, Γ, G2〉 〈Z, Γ, G2〉 〈Γ, G〉 〈Γ, G〉

Fig. 4. Task Stacks of Proof States after First Command

After the first command is evaluated, there are four alternatives. All four
have a proof term corresponding to using setextsub and subsetI1, but differ
in the inclusion or exclusion of closed tasks. In all four cases, the next task is an
open task corresponding to proving x ∈ ((A ∩ B) ∪ (A ∩ C)) in a context with
x : (A ∩ (B ∪ C)) (i.e., x in the class type determined by (A ∩ (B ∪ C))). We
display the task stacks for these alternative proof states in Figure 4, using W
for the new variable.

The second command in Figure 2 is a hence command. A command hence
P can be interpreted in two different ways, depending on whether the next task
is open or closed. If the next task is closed and the closed task has type pf P ,
then a new proof state is created by removing this closed task from the list.
(Commands 7, 13, and 14 in Figure 2 provide examples of this behavior.) On the
other hand, if the next task is an open task 〈X ′, Γ ′, G′〉, then Scunak attempts
to justify the fact by providing a closed term of type pf P . In order to justify
this fact, some propositional reasoning is applied (removing some conjunctions
and disjunctions) and then searching the usable set Σu for signature elements
which can fill remaining gaps (without introducing new gaps). Suppose the gap is
filled with a term Q. In the new proof state, X ′ is instantiated with λΓ (X ′′ΓQ)
where X ′′ is a new variable and the task 〈X ′, Γ ′, G′〉 is replaced by the task
〈X ′′, Γ ′′, G′〉. where Γ ′′ is Γ ′, w : pf P . The idea is that we still have the goal
of showing G′, but now we have (a proof of) P in the context of this goal.
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In our particular example, the fact that x ∈ A and x ∈ (B ∪ C) holds fol-
lows by propositional reasoning (conjunction introduction) along with two rules
binintersectEL and binintersectER which take x ∈ (A ∩ (B ∪ C)) to x ∈ A
and x ∈ (B ∪ C). Note that these rules must be in the usable set in order for
the proofreader to justify this step.

Commands 3-6 in Figure 2 are all used to conclude a certain fact, as with
the second command. (The only difference between clearly and hence is that
hence indicates that particular attention should be paid to the last fact added
to the context.)

After the sixth command is executed, there are several alternatives. For some
of these alternatives, the next task is a closed task corresponding to (A ∩ (B ∪
C))) ⊆ ((A ∩ B) ∪ (A ∩ C)). Command 7 in Figure 2 creates proof states by
removing this closed task. Note that this has the effect of discharging the x and
the hypothesis that x is in (A∩ (B ∪C)). The other alternatives disappear after
the seventh command is executed.

Commands 8-12 correspond to proving the other inclusion and follow a similar
pattern as commands 1-6. As with command 7, command 13 simply notes the
end of this part of the proof (technically by deleting a closed task). Finally,
command 14 notes the end of the proof by deleting the last closed task.

Since the closed tasks can be included or excluded, one can delete some of
the sentences in the textbook proof (those corresponding to commands 7, 13,
and 14) and Scunak can still verify the proof. Also, one sentence in the first
paragraph (corresponding to command 4) can be deleted since this is only in-
volves propositional reasoning. The shortened proof is shown in Figure 5. One
could say that the proof in Figure 5 is at an appropriate level of granularity
for Scunak. (This shortened version can be contrasted to the longer “patched”
version in Figure 6 of [1].)

In order for Scunak to verify the proof, the usable set Σu must contain at least
the rule for introducing subset and rules for introducing and eliminating binary
unions and intersections. We ran the Scunak proofreader with three possible
settings of Σu. First, with Σu

0 equal to eight elements corresponding to the rules
we require about subset, binary union and binary intersection. Second, with Σu

1
containing all 79 rules which mention subset, binary union or binary intersection.
Third, with Σu

2 containing all 435 rules in the MU-kernel. In the table below, we
show the time (in seconds) taken to verify the two proofs using each usable set.
From these results, it is clear that the usable set makes a significant difference.

Let x be an element of A ∩ (B ∪ C), then x ∈ A and x ∈ B ∪ C. This means that
x ∈ A, and either x ∈ B or x ∈ C. Therefore, either x ∈ A ∩ B or x ∈ A ∩ C, so
x ∈ (A ∩ B) ∪ (A ∩ C).

Conversely, let y be an element of (A ∩ B) ∪ (A∩ C). Then, either (iii) y ∈ A ∩ B,
or (iv) y ∈ A ∩ C. It follows that y ∈ A, and either y ∈ B or y ∈ C. Therefore,
y ∈ A and y ∈ B ∪ C so that y ∈ A ∩ (B ∪ C).

Fig. 5. Shortened Textbook Proof
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Σu
0 Σu

1 Σu
2

Fig 1 Proof 2 62 457
Fig 5 Proof 3 20 251

Upon completing the verification, Scunak outputs the proof term. This proof
term can be easily type-checked without any need for search.

6 Finding Bugs in Textbook Proofs

For the purpose of building a mathematical library, the most interesting proofs
are correct proofs which give new facts for the formal library. On the other hand,
when proofreading, one is usually searching for mistakes. We briefly consider
eight erroneous “proofs” obtained by mutilating the proof in Figure 1. Instead
of repeating the entire proof, we indicate the change introducing the error and
describe the output of the Scunak proofreader. Computing a “reason” for the
error can be problematic because the “reason” may be different in different
alternative proof states. Scunak simply collects reasons and outputs the one
which occurs the most often.

1. Change the first sentence so “then x ∈ A and x ∈ B ∪C” reads “then x ∈ B
and x ∈ B ∪ C.” Scunak indicates that “x ∈ B and x ∈ B ∪ C” may not
follow.

2. Change “Therefore, either x ∈ A∩B or x ∈ A∩C,” to be “Therefore, either
x ∈ A ∩ B or x ∈ A ∪ C,” in fifth sentence. In this case, Scunak indicates
that the statement following the mutilated statement cannot be verified.
In particular, Scunak can verify the mutilated statement “x ∈ A ∩ B or
x ∈ A ∪ C,” but cannot afterwards verify “so x ∈ (A ∩ B) ∪ (A ∩ C).”

3. Change the conclusion of the first paragraph to be “This shows that A ∩
(B ∪ C) is a subset of (A ∪ C) ∩ (B ∪ C).” Scunak indicates that we have
not shown this conclusion.

4. In the second paragraph, change “(iii) y ∈ A ∩ B” to be “(iii) x ∈ A ∩ B.”
Scunak signals that “Then, either (iii) x ∈ A ∩ B, or (iv) y ∈ A ∩ C” is not
obvious. (Signalling that x is out of context would be preferable.)

5. Change the conclusion of the last sentence to read “A∩(B∪C) and (A∩ B)∪
(C ∩ A) are equal” (commuting A and C). Scunak signals that the last
sentence does not follow.

6. In the second sentence, change “Let x be an element of A ∩ (B ∪ C)” to be
“Let x be an element of A ∪ (B ∩ C)” to corrupt the assumption about x.
Scunak indicates that the type given for x does not seem to be correct.

7. Change the first sentence of the second paragraph to read “Conversely, let
y be an element of (A∩ C)∪ (B ∩C).” Scunak indicates that the type given
for y does not seem to be correct.

8. Remove the sentence “This means that x ∈ A, and either x ∈ B or x ∈ C.”
The resulting proof is, in a sense, missing a step. Scunak indicates that the
next sentence is not obvious.
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We can also consider incomplete proofs. In such a case, the Scunak proofreader
will not contain a complete proof upon termination, and will simply output a
message indicating that the proof is not complete. Of course, an incomplete
proof may also contain an error, in which case Scunak will signal the error
before signalling that the proof is incomplete. One need not have a complete
proof before invoking the proofreader.

7 Conclusion

Scunak can be used to proofread a simple mathematical proof written in LATEX.
For Scunak to proofread the proof the basic rules must be part of the usable
subset of the full signature. More work on improving unification and indexing is
required to handle the case when the usable set is large.

Because the proof of distributivity is so simple, it can act as a first touchstone
for proposed approaches to checking proofs in texts. Any reasonable approach for
verifying mathematical text should be able not only to verify this proof, but also
find the errors in the mutilated versions of the proof. Then different approaches
can be compared on a common, easy-to-understand problem.

The example also makes it clear when approaches are not intended to verify
mathematical text. That is, any system which can read the proof in its mutilated
forms without signalling an error is not intended to verify the proof content of
mathematical text. Such a distinction is obviously important for understanding
the intention of different systems.

Acknowledgements. Thanks to Magdalena Wolska and Alberto Gonźalez for help-
ful discussions about parsing natural language.
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Abstract. Capturing and understanding mathematics from print form
is an important task in translating written mathematical knowledge into
electronic form. While the problem of syntactically recognising mathe-
matical formulas from scanned images has received attention, very little
work has been done on semantic validation and correction of recognised
formulas. We present a first step towards such an integrated system by
combining the Infty system with a semantic analyser for matrix expres-
sions. We applied the combined system in experiments on the semantic
analysis of matrix images scanned from textbooks. While the first results
are encouraging, they also demonstrate many ambiguities one has to deal
with when analysing matrix expressions in different contexts. We give a
detailed overview of the problems we encountered that motivate further
research into semantic validation of mathematical formula recognition.

1 Introduction

Since much of mathematics is still only available in printed, or at best in digital
image, form, the automatic recognition and proper interpretation of mathemati-
cal texts would greatly enhance the extent of mathematical knowledge available
electronically. Research in this area has mainly concentrated on the syntactic
recognition of mathematical objects from images of texts or handwritten mathe-
matics. This has led to systems capable of analysing scanned images of such texts
to recognise the glyphs involved and identify their correct positional relationship
to each other with quite high levels of accuracy [1,2,3,7,8,14]. The results of such
an analysis can be used to print high quality versions of the scanned input or to
provide access to printed mathematics for the visually impaired.

On the other hand, there has been little research on the problems of analysing
specialist mathematical expressions (a) to provide feedback to inform the recog-
nition process to obtain greater accuracy, (b) to provide higher level functions
such as input into symbolic manipulation, mathematical assistant and theorem
proving systems, and (c) to support mathematical knowledge management fea-
tures such as domain specific search and storage systems.
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As a first step in this direction we have concentrated on the syntactic and
semantic capturing of one particular type of mathematical expression, namely
on matrices as they commonly appear in textbooks. Such matrices often contain
omissions, marked by a series of (usually) three dots called an ellipsis1. To this
end we have connected the matrix recognition engine of the Infty system [13]
with the algorithmic tools for the semantic analysis and computational treatment
of underspecified matrix structures [10,11,12] implemented in the Computer Al-
gebra system Maple [5].

The general idea is to capture matrix expressions from scanned documents
and to find a proper semantics for them. If no semantics can be computed imme-
diately, failure information can feed back into a more refined syntactic analysis
of the expression. Once a semantics is computed, the matrix can be further
utilised for computational purposes as well as for formal mathematical knowl-
edge management. A proper and reliable recognition and automatic understand-
ing of matrix structures can then be used as a basis for automated analysis of
other mathematical expressions that are also constructed using ellipses such as
equation systems, sequences and series or category diagrams.

Consider a matrix expression, as it might appear in a mathematical text:

A =

⎛
⎜⎜⎜⎝

a1 b · · · b

0
. . .

. . .
...

...
. . .

. . . b
0 · · · 0 an

⎞
⎟⎟⎟⎠ (1)

Infty can recognise the expression and all its components and arrange them on a
rectangular grid in order to produce a high-quality reprint. This structure then
serves as an input to the semantic engine that analyses the well-formedness of
the ellipses and the regions of the matrix defined by the ellipses.

First experiments with the combination have led to the enhancement of both
systems separately as well as enabling us to identify a number of issues that need
to be addressed in a fully automated feedback process. In this paper we present
the technicalities of the combination as well as the first results of this work.

The paper is structured as follows: We first give an overview of the two systems
involved, the Infty system that performs the syntactic analysis of the matrix struc-
tures (Sec. 2) and the Maple algorithms for the semantic analysis (Sec. 3). We dis-
cuss the issues involved in combining the systems inSec. 4and illustrate theworking
combination with an example in Sec. 5. We then present the preliminary results in
Sec. 6 and in particular discuss the issues we have identified so far that need to be
addressed in future research on that subject, before concluding in Sec. 7.

2 Syntactic Analysis

Infty is an integrated OCR system for scientific documents that contain math-
ematical expressions, developed mainly at the Suzuki Laboratory of Kyushu
University. Infty has a number of novel and distinctive features:
1 Not to be confused with the geometrical ellipse, although the plural form ellipses is

the same for both.
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Fig. 1. The matrix elements are put on a 5 × 5 grid and saved as a matrix structure

– Infty’s character recognition engine can identify more than 500 kinds of char-
acters and symbols (i.e. English and Greek alphabets, numerals, operators,
parentheses, etc.).

– Segmentation of plain text from mathematical expressions is performed dur-
ing character recognition while using recognition results for contextual in-
formation.

– Structural analysis is based on an optimisation framework and is stable in the
face of both character/symbol recognition errors and structural ambiguity
in the mathematical expressions.

Infty recognises scanned page images and analyses the structure of certain
mathematical expressions, including Abstract Matrices, contained in the doc-
ument. It can return the results of the recognition process in its own IML
markup language (see Sec. 2.1), and in other formats including LATEX and
MathML.

From Infty’s point of view, recognising a matrix structure means constructing
an internal model of the matrix described by the input image, which consists
of a rectangular grid containing all terms and ellipses of the matrix. The result
is sufficient for producing a clean, high quality, formatted output version of
the matrix, including ellipses, but does not contain the semantic information
necessary to work mathematically with the matrix.

The most complex step in this process is to determine the minimal rectangular
grid compatible with a properly formatted version of the matrix. This is done by
constructing a network of cells of the matrix, extracting horizontal and vertical
projections from this network, constructing equations from these projections that
capture the relative numbers of rows and columns required in the grid to represent
the individual ellipses, and solving these equations to identify the grid dimensions
and cell positions (Fig. 1). This results in a rectangular format that is convenient
as input to the subsequent semantic analysis process. For details see [7,8].

2.1 IML

Infty outputs its recognition results in its own XML format. This format contains
all the information about layout analysis, character recognition, mathematical
structure analysis, and so on. The IML format is a cleaned up version of the
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original output that only contains the information necessary for actually render-
ing the document. Its format for normal text is based on HTML, but the format
for the mathematical part is defined as follows:

– A symbol (or a character) is given within <munit>...</munit> tags, and all
symbols on the same horizontal level are disassembled into separate units.
For example, n − 1 results in:
<munit>n</munit><munit>-</munit><munit>1</munit>.

– If a symbol has a sub- or superscript, or an upper or lower limit, the <munit>
for the character contains a child element <mlink>. For example, λ2

i is rep-
resented as:
<munit>lambda

<mlink type="rsub"><munit>i</munit></mlink>
<mlink type="rsup"><munit>2</munit></mlink>

</munit>.

Here the character is given as “lambda” based on the corresponding LATEX
command. The <mlink> type attributes, ‘rsub’ and ‘rsup’, indicate that the
following munits are on a right subscript and superscript position of its
parent respectively. This representation for a mathematical structure is one
of the differences to MathML. The expressions ... , · · · and . . . , are indicated
by “vdots”, “cdots” and “ddots”.

– A matrix is indicated by <marray>, which has its rows as a list of melems. In
each melem, columns are distinguished by a <munit>Tab</munit> delimiter.
For example, a matrix row of the form [xy, z, x] is represented as:
<melem>

<munit>x</munit><munit>y</munit>
<munit>Tab<munit><munit>z</munit>
<munit>Tab<munit><munit>x</munit>

</melem>.

3 Semantic Analysis

The semantic analysis is realised via a dedicated data type called an Abstract
Matrix, implemented in the computer algebra system Maple [5].

We have introduced abstract matrices in the context of document analysis
in [11] and as a tool for interpreting and representing textbook style matrices
as lambda expressions in the context of mathematical knowledge management
in [12]. Full details of the algorithms involved are presented in [10]. In this
section we give a brief overview of the algorithm and concentrate in particular
on the features and restrictions of the input syntax that are necessary to lead to
meaningful interpretations.

3.1 Syntax of Abstract Matrices

The input for an Abstract Matrix analysis is a rectangular arrangement of sym-
bols in rows and columns, written in a Maple matrix expression, where each
symbol is either
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1. a concrete term, defined by not being one of the other types below.
2. a vertical, horizontal, diagonal, or anti-diagonal ellipsis
3. a single dot, or
4. a fill term.

Ellipses of type 2 are the ordinary suspension points ... , · · · , . . . or . .
. . Every

ellipsis must be terminated at both ends by a concrete term within the confines
of the input matrix. Furthermore, the line of ellipsis symbols separating the two
terminating concrete terms of an ellipsis must all be the same and compatible
with the direction of the said line (e.g., a set of horizontal ellipsis suspension
points could not be followed directly by those of a vertical ellipsis). Any diagonal
or anti-diagonal ellipsis must be instantiated to a sequence of cells which have
the same vertical and horizontal extent.

As example matrices that conform to the input syntax allowed for our seman-
tic analysis consider matrix (1) in Sec. 1 as well as the following three matrices:

a1 b
. . .

0 an

(2)

1 · · · · · · 1
... . .

.
0

... . .
.

. .
. ...

1 0 · · · 0

(3)

1 · · · · · · 1
... 0 . .

.
0

... . .
.

. .
. ...

1 0 · · · 0

(4)

Matrix (2) represents the same abstract matrix as (1) in Sec. 1. However, in
this case, the triangular regions above and below the diagonal are described by
fill terms, that is the enlarged b and 0. A fill term specifies that a certain region
in a matrix contains only this particular term as elements. Fill terms can fill
entire regions without explicit boundaries or can fill a region that is bounded by
terms dissimilar to the fill term as in matrix (4). It is illegal to have two different
fill terms within the same region.

Note also that matrix (3) differs from matrix (4) in that the upper triangle
of the former contains only values, in this case the term 1, which can be inter-
polated from the terms on the surrounding boundary. This is indicated by the
empty cell within the triangle. As we require our input to be a matrix struc-
ture where no cell can be empty, we translate such an empty cell into a single
dot symbol in our input syntax. A single dot can occur in exactly two different
situations:

1. Inside a closed polyline of ellipses and concrete terms it signifies that the re-
gion is filled in a manner consistent with the terms specified on the boundary
of that region.

2. If it occurs next to a fill term or if there is a connected path of cells, each
edge of which is a horizontal or vertical adjacent pair of cells containing dot
or fill terms, connecting this dot term to a fill term, then it denotes the
expansion of that fill term into the region occupied by the dot.

As concrete input for the Maple implementation of the semantic analyser the
above three matrices would actually look like this:

[[a(1) ,dot ,fill(b)],
[dot ,ddots,dot ],
[fill(0),dot ,a(n) ] ]

[[1 ,hdots,hdots,1 ],
[vdots,dot ,adots,0 ],
[vdots,adots,adots,vdots],
[1 ,0 ,hdots,0 ] ]

[[1 ,hdots ,hdots,1 ],
[vdots,fill(0),adots,0 ],
[vdots,adots ,adots,vdots],
[1 ,0 ,hdots,0 ] ]
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Following Maple’s convention for matrix expressions, subscript indices are
translated into function applications, e.g. a1 becomes a(1).

Our approach to semantic analysis is based on interpreting abstract matrices
as templates for the whole class of matrices of a particular shape. For instance,
matrix (1), and likewise (2), can be interpreted as the class of all square matrices
containing elements ai on the diagonal, 0 below and b above the diagonal. For
n > 1 we would get an ascending sequence of ai elements on the diagonal. How-
ever, there are a number of subtleties in the interpretation of partially specified
matrices. For example, some matrix expressions that appear in the literature
have ellipses that are intended to instantiate into descending sequences of index
values such as a−1, a−2 . . .. To accommodate those cases we also have to allow
for descending sequences in (1) if n < 1 and, in the case of n = 1, it would even
be possible that the diagonal contains constant elements a1 and that the size of
the matrix is independent of the value of n altogether.

While mathematically there may be no problem with allowing any arbitrary
integer sequence for ellipsis indices, it is extremely rare to find anything other
than simple increment or decrement by one for matrix ellipsis sequences in math-
ematical texts. For this reason, we impose the simplifying restriction that all
ellipsis index variables may only change by -1, 0, or +1 between neighbouring
cells. Furthermore we assume that every ellipsis is either vertical, horizontal,
diagonal or anti-diagonal and that, for the latter two cases, their vertical and
horizontal lengths must be equal. Thus a matrix with a diagonal ellipsis from its
top left to its bottom right cells can be deduced to be square. Non-square matri-
ces can be specified simply by omitting the diagonal ellipsis to get a rectangular
region.

3.2 Parsing Abstract Matrices

The semantic interpretation of abstract matrices consists of three phases: (1)
extracting ellipsis length constraints, (2) identifying regions in the matrix, and
(3) extracting information on the content of each region.

Ellipsis Length Constraints: Ellipses in a matrix represent an expandable
sequence of entries. However they cannot grow or shrink entirely independently
of each other. We therefore represent lengths of ellipses as integer variables and
use a weighted graph to capture their mutual relationships as a set of additive
integer constraint equations, which we call structural constraints. This set can
be simplified using standard simultaneous equation reduction techniques. If it
can be fully solved then we call the matrix concrete, in which case a normal,
fully specified matrix without any ellipses or fill terms can be generated from
the abstract matrix.

Identifying Regions: A region is essentially a minimal cyclic path in the input
matrix whose edges consist of concrete terms or ellipses. We define a region as a
closed polyline of generalised positions of those boundary concrete terms, where
a generalised position is a pair of expressions over integers, ellipsis length and
dimension variables that defines the row and column position index of the cell in
terms of the ellipsis length variables. Generalised positions can be computed by
analysing the graph produced as part of the ellipsis length analysis. Once we have
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obtained the required generalised positions, we use a path-following algorithm
for boundary detection on the input matrix to find the minimal ellipsis cycles
and a flood-fill algorithm to find the interior of a region.

Extracting Meaning from Terms: In order to determine the correct content
of a region we extract information from the concrete elements on its boundary.
We use an anti-unification algorithm to construct a generalised term that can be
unified with each concrete term on the region boundary. Each region must have
associated with it a single generalised term. Furthermore, it must be possible to
instantiate a region of variable position and extent in an abstract matrix to a
region of fully determined position and extent for any consistent instantiations
of the ellipsis lengths. This means that, for all positions within a region, we must
be able to interpolate values for the unification variables of the generalised term
based on the instantiation values of the boundary terms and the positions of
those terms. We use a plane fitting algorithm to interpolate the values indepen-
dently for each unification variable of the generalised term. When concretising an
abstract matrix it must then be possible to compute integer values for unification
variable for each element the region at least for some instantiations of the ellipsis
length variables. Solving this problem adds more linear constraints — so-called
sub-term constraints — to the system of linear ellipsis length constraints.
A semantic analysis of an input matrix can fail for a number of reasons:

1. The input syntax may be incorrect. For example the ellipses may not be
terminated by concrete terms, a sequence of ellipses may not have the correct
orientation etc. Such inputs are immediately rejected. On the other hand, if
the inputs are correct, then it is guaranteed that the structural constraints,
which involve only ellipsis lengths and constants, are satisfiable.

2. Next the anti-unifier may fail to find a suitable generalised term. For example
no generalised term can be found for an ellipsis a1,n . . . am.

3. Even if suitable generalised terms can be found for all regions, the resulting
subterm constraints may be inconsistent. For example consider a1,n . . . an,0:
no possible instantiation of n would satisfy the resulting system.

4. Finally, even if the subterm constraints are satisfiable, there may be no
interpolation across the region possible where the unification variables can
be bound to integers in each of the cells contained in a region and still match
the appropriate values for the concrete boundary terms.

4 Combining the Systems

In this section we briefly sketch how we interface the two systems by explain-
ing how the major components of IML expressions are transformed to the input
syntax of the semantic analysis. We point out the handling of some special cases,
which corresponds to injecting mathematical knowledge into the parsing itself.

As described in Sec. 2, the IML expression representing an input matrix is a
collection of rows enclosed by melem tags, where each row consists of a collec-
tion of elements enclosed by munit tags. Single munit cells do not necessarily
constitute a single column element in the matrix. Rather we have Tab units that
describe separations between cells of different columns, but that can also de-
note empty cells in a column. Thus our transformation algorithm makes a first
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<munit>delta
<mlink type="rsup">

<munit>n</munit>
<munit>minus</munit>
<munit>1</munit>

</mlink>
</munit>
<munit>t

<mlink type="rsub">
<munit>1</munit>
<munit>n</munit>

</mlink>
</munit>

Fig. 2. A matrix from [4], page 28, and the IML description of its upper right term

pass for each row and translates the content of each munit. In a second pass
it then combines the elements of the row to proper matrix cells and removes
Tab elements that are column separators while leaving intact those that actu-
ally mark empty cells. We outline the two steps of the transformation algorithm
considering as example the matrix given in Fig. 2.

In the first round of the transformation algorithm, the matrix is broken up
into 5 rows and, for each row, each unit (i.e., an element enclosed in munit tags)
is processed separately. In our matrix, cells such as the top right cell δn−1t1n

are recognised as two separate units and thus the first row contains 12 but the
last row only 5 units. The concrete IML code for the δn−1t1n is given on the
right in Fig. 2. The first unit contains an additional link indicating an attached
superscript term, and the second unit contains a subscript attachment. Both
links are again composed of single units, which have to be assembled. Here we
have to take a first decision on how to combine the expressions of single units.
By default we combine the cells in superscripts using multiplication and those in
subscript cells as separate indices. However we allow for certain exceptions; thus
we treat arithmetic operators (e.g., +,-,*) and certain standard mathematical
functions like trigonometric or logarithmic functions separately. For example, the
single elements of the expression ‘n, -, 1’ in our example will not be combined
by multiplication but rather translated into ‘n-1’. If two units are separated by
a comma, we always regard them as two separate index functions as in tn−1,n.
After the first pass of the transformation algorithm, all the units of a row are
translated and the resulting matrix will look like this:
[[lambda(1), Tab, delta, t(1,2), Tab, delta, t(1,3), Tab,

cdots, Tab, delta^(n-1), t(1,n)],
[Tab, lambda(2), Tab, delta, t(2,3), Tab, cdots, Tab,

delta^(n-2), t(2,n)],
[Tab, Tab, ddots, Tab, Tab, vdots],
[Tab, Tab, Tab, lambda(n-1), Tab, delta, t(n-1,n)],
[Tab, Tab, Tab, Tab, lambda(n)]]
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Obviously it is not yet in rectangular form. This is achieved by the second pass
of the algorithm, in which each row is traversed once more in order to assemble
the proper cells of the matrix. Adjacent cells that do not contain Tab, such
as ‘delta^(n-1) , t(1,n)’ above, are combined. Again we have to make a
decision on how to combine the expressions. We essentially employ the same
approach we have taken for superscript expressions. That is, unless there is an
explicit arithmetic or otherwise recognised function symbol given, we combine
two expressions by multiplication. While this approach at handling separated
expressions and their sub- and superscripts works well for the case at hand and
yields ‘delta^(n-1)*t(1,n)’ as the resulting expression, it does not necessarily
work in all cases, as we will discuss in Sec. 6.

In addition to combining elements, we also erase all the Tab cells that actu-
ally represent column separators. That is, a Tab is removed if it is in between
two non-Tab cells, or if it is between a non-Tab and a Tab cell and there are
still non-Tab cells in the remainder of the row. This, in particular, ensures that
sequences of empty cells at the beginning or end of rows are kept intact. All the
remaining Tab’s are replaced by the dot symbols used as the empty cell indica-
tor for semantic analysis, and, similarly, Infty’s cdots elements are replaced by
hdots. For our example matrix this yields the matrix below, which can now be
processed by the semantic analyser.

[[lambda(1), delta*t(1,2), delta*t(1,3), hdots , delta^(n-1)*t(1,n)],
[dot , lambda(2) , delta*t(2,3), hdots , delta^(n-2)*t(2,n)],
[dot , dot , ddots , dot , vdots],
[dot , dot , dot , lambda(n-1), delta*t(n-1,n)],
[dot , dot , dot , dot , lambda(n)]]

Unfortunately, we cannot generate a valid semantics for the above expression
directly, since the lower triangular region does not contain any fill term, and
therefore no valid content for the region can be determined. We will discuss
this and other problems revealed by the semantic analyser and possible ways to
overcome them in Sec. 6. However, we will first present two examples of matrices
the analyser can actually assign a proper semantics to in the next section.

5 Examples

In this section we present two examples of matrices from [6] for which the se-
mantic analysis of the input matrices succeeds. Note that we will only give the
semantic description informally; for a more formal description of the Maple al-
gorithms and their output we refer the reader to [10].

Figure 3 contains the two example matrices in the top row and their respective
intermediate representations directly below them. Observe that the right matrix
contains two fill terms. Infty recognises fill terms and indicates them in its IML
output with an additional attribute “fill” for the munit. This is then parsed into
the representation suitable for the semantic analyser, i.e. fill(0).

The semantic analysis determines that the matrix consists of 7 regions: (a) Two
regions containing a single cell only: a11 and a21, (b) Three single ellipses: e0:
a32 . . . an,n−1, e1: a22 . . . an,n, e2: a12 . . . an−1,n and (c) two fill regions, each
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[[a(1) ,a(2) ,hdots,hdots,a(n) ],
[a(n) ,a(1) ,a(2) ,hdots,a(n-1)],
[a(n-1),a(n) ,a(1) ,hdots,a(n-2)],
[vdots ,vdots,ddots,ddots,vdots ],
[a(2) ,a(3) ,hdots,a(n) ,a(1) ] ]

[[a(1,1) ,a(1,2),dot ,dot ,fill(0) ],
[a(2,1) ,a(2,2),ddots,dot ,dot ],
[dot ,a(3,2),ddots,ddots ,dot ],
[dot ,dot ,ddots,ddots ,a(n-1,n)],
[fill(0),dot ,dot ,a(n,n-1),a(n,n) ] ]

Fig. 3. Two example matrices from [6], pages 26 and 28

containing the term 0. The analysis also confirms that the ellipses are compati-
ble, in that their mutual constraints are not inconsistent. In detail, we get that
e1 = e2 = e0 + 1 and that the boundaries of the fill region are of length e0 + 1.
This means that if we determine the length of any one ellipsis we automatically
determine the length of all ellipses. The analysis further determines that the
boundary terms of the regions (i.e., the end points of the ellipses in our case)
can be anti-unified and that the ellipses can indeed be interpolated, for at least
some values of n, with sequences of integer values that decrease or increase by
one or that remain constant.

For the example matrix on the left in Fig. 3 we get a very similar result. This
time we have 3 single cell regions, 3 single ellipses, and two triangular regions,
which are, however, not simple fill regions. First, observe that the vertical and
diagonal ellipses of these triangles are in columns that also contain single ele-
ments. But since these elements are not single cell regions and instead belong
to flexible regions (i.e., regions with ellipses) they do not determine the length
of the ellipses in question and thus the triangles. Second, note that all ellipses
in the matrix are of equal length, say q, (with the exception of the horizon-
tal ellipsis in the top row, which is of length q + 1) and thus the regions are
isosceles with sides of length q. Finally, the boundary terms can be antiunified,
with antiunifier aα, where α is a unification variable. Given this information the
semantic analysis can compute valid interpolation functions for the respective
regions.

We demonstrate this for only one of the regions, which is given below together
with its interpolation function:

p(i, j) = −3j − 3i − q + 1 − nj + ni

q − 1

a1 . . . an−2
. . .

...
a1

Here p(i, j) is a function in the matrix positions i and j, n is the index variable
referred to in the upper right term, and q is the ellipsis length as before. Thus,
if q = 3, possible values for n would be 5 for the subscript of a to increase as one
proceeds from left to right along the top row of the triangle, 3 to stay constant
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and 1 to decrease. q is crucial in determining the positions of the corners of the
region. While the upper a1 is at position (3, 3) in the matrix, an−2 is at position
(3, q + 2), which corresponds to the end point of the horizontal ellipses between
the terms. This, in particular, takes into account the case where the ellipsis is only
of length 1 and results only in term a1 (in fact, the system correctly handles the
case when the length is 0, and the triangle collapses to nothing). Similarly, the
lower a1 is at position (q + 2, q + 2), which defines the lower right corner of
the matrix.

6 Preliminary Results

We have worked with a set of 29 matrices from three different textbooks [4,6,9].
This is not a random sample of matrix expressions as we explicitly chose a
number that had interesting or unusual features as well as some more standard
ones. Of those, Infty failed to syntactically parse only one. This was due to
its current lack of support for antidiagonal ellipses. From the remaining 28,
12 could be successfully converted into a semantic representation immediately.
After modifying the semantic analyser to inject fill symbols with a zero term
to incomplete boundary regions (see below), an additional 4 matrices could be
semantically parsed. An analysis of the failure to assign a proper semantics to
the remaining 12 matrices has yielded several issues that have implications both
for the syntactic and semantic analyses. We will summarise and illustrate those
issues here and, for some, present a possible solution.

Incomplete regions: These are ones which are not fully enclosed by a closed
polyline of ellipses and concrete terms (i.e., they extend up to the boundary
of the matrix expression itself), and for whom no explicit fill term has been
specified. There are three possibilities:

1. A fill term may have appeared in the expression but was not distinctive
enough for the syntactic analyser to identify as such. This occurs in ma-
trix (9), where the off-diagonal zeros were not distinguishable from normal
concrete terms. A possible solution would be to identify concrete terms on
the boundary or interior of the incomplete region that are not end terms of
any ellipsis. Such terms are prime candidates for being mis-recognised fill
terms and Infty could be queried to explicitly test this hypothesis.

2. The original expression that was scanned simply left the reader to interpret
the incomplete region by context. An example of this can be seen in ma-
trix (10), where there is no clear indication of what should appear on the
upper right and lower left, although the writer almost certainly intended all
such values to be zero. In this case, we can inject a zero fill term, i.e., assume
that any incomplete regions has an implied zero fill term. However, this is
not always desirable. For example, it may be difficult to distinguish whether
this or the next situation is the true one. Nonetheless, adding this operation
as a default behaviour allows four more of the matrices to be correctly and
fully semantically parsed and there were two further matrices that had this
problem among others.
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(5) (6)

(7) (8)

(9) (10)

Fig. 4. Examples of matrices for which no proper semantics could be computed

3. There may be a missing boundary ellipsis. Matrix (7) demonstrates this
issue. The right edge of the matrix needs an ellipsis to complete the bound-
ary region. Injecting a zero fill term here instead would give an incorrect
interpretation.

Missing ellipses: Ellipses other than boundary ones may be missing. Matri-
ces (6) and (7) both show examples involving a sub-diagonal ellipse of zeros
which is missing. Detection of the problem occurs only on checking that inter-
polation across a region is compatible with the concrete terms on its boundary,
as even without the missing ellipsis, there is a complete region boundary.

Ellipsis connections: The semantic analysis input function requires that all
ellipses extend from one concrete term to another, with the direction of the ellip-
sis dots being oriented appropriately. Matrix (7) has a horizontal ellipsis on the
bottom row which is adjacent to an empty cell. Although this does not match the
semantic analyser’s input requirements, it does not cause any problems because
Infty helpfully expands such ellipses in the appropriate direction.

More seriously, matrix (5) has a row of horizontal ellipses that are terminated
at both ends by vertical ellipses. While there are some special cases that we
could easily modify our code to handle, such as the one in this matrix where
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the horizontal ellipsis extends the full width of the matrix except for the vertical
ellipses at the outer edges, the general case remains an open problem.

Bridging region cells: There is another problem in matrix (5). The ellipsis on
the bottom row, a3 . . . an, occupies 3 adjacent cells in the input matrix. On the
row above and the column in the middle of the ellipsis, there is the an term.
This cell is diagonally adjacent to (i.e., it touches) both the terminal cells of the
bottom row ellipsis. The end result, when the paths are calculated, is to force
the bottom row ellipsis to be precisely 3 cells wide. This was almost certainly
not intended by the author. The two concrete terms a2, in cell (2, 3) and an−1
in cell (1, 4) of the same matrix demonstrate the same problem.

Block ellipses: Matrix (10) has an ellipsis, the lower right one, that is intended
to indicate that a whole 2 × 2 cell block of the matrix should be the element of
iteration along the ellipsis. Currently the semantic analyser cannot handle such
block matrix ellipses.

Open ended ellipses: We cannot handle ellipses that are not delimited by con-
crete terms at both ends. These types of ellipses might nevertheless be meaning-
ful in a matrix representation and indeed do occur in textbooks. As an example
consider the following matrices:

�
�

a11 · · · a1n

· · ·
an1 · · · ann

�
� ,

�
�����

a11 a12 · · ·

a21 a22
. . .

...
. . .

. . .

�
�����

In principle, modifying the analyser to deal with this pattern of open ended
ellipses does not appear to be very difficult, although there may be subtle inter-
actions with possible error cases involving incomplete boundaries.

Badly constructed ellipses: Matrix (6) has an ellipsis that vertically connects
0 to 1. The semantic analyser will interpret that as an ellipsis that increments
in steps of 1 starting at 0 and ending at 1, i.e., an ellipsis containing precisely 2
cells. Not only is this the wrong interpretation here, but the region to the left
of this ellipsis is not satisfiable. To see this, note that the boundary cells of the
region, reading from the 1 on the bottom row in a clockwise direction, are 1, up
left to 1, up to 0, right to 0, down to 0 and back down to 1. The interpolation for
terms within a region requires fitting a plane to the concrete boundary points of
the region where the ellipsis index values of the concrete terms fit on the plane.
No such plane fitting is possible in this case. It is not clear what can be done to
recover this situation.

Increment other than by 1: In matrix (8), the diagonal ellipsis index increases
in steps of 2, instead of 1. Since we make the simplifying assumption that ellipses
always increment or decrement in steps of 1, or stay constant, we can not cur-
rently handle this situation. The reason for the simplifying assumption was the
impossibility of dealing with arbitrary sequences, which, anyway, do not appear
in the literature (or so we thought). Clearly we now have a reasonable concrete
example to the contrary and we should relax this restriction at least slightly.
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Index multiplication and function application: Also in matrix (8), we
have an issue to do with the fact that the bottom right index is 2n. Our system
currently recognises this as a double index, a2,n, as that is a locally valid in-
terpretation. A related problem is that of function applications which omit the
application brackets such as the cos θ in matrix (10). This type of problem was
discussed in Sec. 4. There are a number of ways that a semantic analyser can
deal with it. Here the obvious correction is based on the construction of the anti-
unifier that must find a generalised term for the two terminal concrete terms of
this ellipsis. Clearly this would only be possible in this case if the 2n were inter-
preted as a multiplication. However, there are other, more subtle, cases, where
an ambiguity may remain. In such cases, more than one anti-unifier is possible.
For example, an ellipsis of the form apq . . . ars has two possible interpretations:
where a has a single or a double index. Further context information may be able
to help in some such cases.

7 Conclusion

We have presented a first approach at a semantic validation of syntactically
recognised mathematical expressions. While our current system is restricted
to matrices, we believe that the techniques we develop will be applicable in
other mathematical contexts. In particular, matrices exhibit many features that
are widely used in many mathematical expressions, such as ellipses, sub- and
superscripts, multiple indices, two-dimensional layout, etc. The experiments
we have conducted so far have already led to some improvements in both
systems.

Our failure analysis of the matrices we cannot handle yet identifies paths for
improvement on several layers: (1) The semantic analyser can be enhanced to
handle more cases, such as block matrices, as well as to exploit failure informa-
tion internally. For instance, failure information from the anti-unifier could lead
to correction of the input matrix without the need to consult Infty again. For
example, we could then solve the problem where a2n was translated as a double
index instead of the index 2 × n. (2) While the failure messages of the analyser
already gives us information abut what has gone wrong, no feedback is gener-
ated yet that can be directly used by Infty to improve its recognition. Direct
feedback could be used to clarify the nature of certain terms, to correct possible
errors of the recognition, to give alternative interpretations of the input, or to
give an element of validation when batch processing large collections of docu-
ments. (3) Finally, it has become apparent that there are some problems that
can only be disambiguated by using additional context information that is not
given in the matrix expression alone. Examples where additional information is
necessary are, for instance, treating particular function symbols introduced in
a text correctly or determining the correct terms for a region left empty if the
default instantiation of a 0 fill term fails.

All this not only suggests that there is significant scope for research into
semantic analysis of single expressions, but also that better techniques for ex-
tracting and handling important information from mathematical texts in general
are needed.
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Abstract. For the transfer of mathematical knowledge from paper to
electronic form, the reliable automatic analysis and understanding of
mathematical texts is crucial. A robust system for this task needs to com-
bine low level character recognition with higher level structural analysis
of mathematical formulas. We present progress towards this goal by ex-
tending a database-driven optical character recognition system for math-
ematics with two high level analysis features. One extends and enhances
the traditional approach of projection profile cutting. The second aims
at integrating the recognition process with graph grammar rewriting by
giving support to the interactive construction and validation of gram-
mar rules. Both approaches can be successfully employed to enhance
the capabilities of our system to recognise and reconstruct compound
mathematical expressions.

1 Introduction

Automatic document analysis of mathematical texts is highly desirable to fur-
ther the electronic distribution of their content. Having more mathematical texts,
especially the large back catalogues of mathematical journals, available in rich
electronic form could greatly ease the dissemination and retrieval of mathe-
matical knowledge. To build a robust system with high accuracy in correctly
analysing mathematical texts, it is necessary to combine an effective optical
character recognition (OCR) system with higher level syntactic and semantic
analysis. However, while this is fairly routine for ordinary document analysis,
when dealing with mathematics the particularities of mathematical notations
and the often two dimensional nature of mathematical expressions have to be
taken into account. Therefore, to date there are only very few systems available
to integrate both processes. (The Infty system is a notable exception [6, 11].)

In [10] we presented a novel approach to OCR for scientific and mathemati-
cal texts. It is based on a large database of glyphs1 together with a recognition
algorithm that employs features computed from recursive geometric moment in-
variants [1, 4]. The approach is well suited for recognising subtle differences in
� The authors’ work was supported by EPSRC grant EP/D036925/1.
1 A glyph is a single, connected, shape of pixels. Characters are often composed of

more than one glyph, e.g. “j” contains two glyphs and “≡” contains three.

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, pp. 139–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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characters such as different fonts and sizes, which are especially important in a
mathematical context. The result of the recognition process is, for each recog-
nised glyph, its best match from the database together with a LATEX command
that produces the glyph. The commands can then be used to reproduce an ap-
proximation of the input document by placing them at the original position of
the recognised glyphs. We are currently extending this recogniser with higher
level features that will enable both a more informed recognition process by gen-
erating feedback for the OCR as well as more advanced document analysis by
recognising compound mathematical formulas and translating them into proper
LATEX expressions.

In this paper we present two higher level features we have recently inte-
grated into our OCR system. The first feature, presented in Sec. 3, uses a well
known technique from the document analysis literature, Projection Profile Cut-
ting (PPC) [7, 12], and employs it in an innovative way. While the technique is
traditionally used as a preprocessing step to segment mathematical formulas be-
fore an OCR step, we use it as a postprocessing step to our OCR system in order
to reassemble the original structure of more complex mathematical expressions.
This has three advantages:

1. With the information on size and position of glyphs in an expression, gained
from the character recognition step, we can simply compute profile cuts
rather then search for them as in the original technique.

2. Our recogniser is explicitly designed to be a glyph recogniser rather than a
character recogniser. This is because problems of character segmentation and
problems of character layout and decoration are often difficult to distinguish.
The former are usually dealt with in a character recognition phase and the
latter in a structural analysis phase. By using a glyph recogniser, these two,
often conflicting, issues can be dealt with together during structural analysis.
Thus we use PPC to treat character reconstruction from glyphs as just more
structural analysis of the same form as reconstructing entire formulas.

3. The knowledge of the recognised glyphs and their original position gives us a
uniform handle to overcome the old problem of PPC, namely that it cannot
deal in a uniform way with enclosed characters.

The second higher level feature, described in Sec. 4, explores graph grammar
rewriting [2, 5] approaches to the structural analysis of mathematical formulas.
A graph is constructed where the nodes are the recognised glyphs of the formula
and the edges record the spatial relationships between the nodes. A set of graph
rewriting rules record subgraph patterns which, when matched, can be rewritten
to non-terminal nodes which record the recognised formula sub-expression. The
resulting graph can be further rewritten until, finally, the graph consists of a
single node containing the fully recognised formula.

Such an approach depends critically on having a database of rewrite rules
that describe the graphical grammar of mathematical formulas. This database
is unlikely ever to be complete, given not only the huge range of mathematical
conventions currently in use but also mathematicians’ propensity to invent new
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ones. Furthermore developing graph grammar rules is notoriously subtle and
error-prone. Therefore, there is a need to be able to quickly and easily create
new rules and to visualise the graph rewriting process of rule sets on actual
graphs of mathematical formulas. We describe our first steps in developing a
tool to interactively and easily create such rules from an analysis of images of
formulas and to explore the operation of graph rewriting with these rules.

2 Database-Driven Mathematical OCR

In [10] we have presented a database-driven approach to mathematical OCR by
integrating a recogniser with a large database of LATEX symbols in order to anal-
yse images of mathematical texts and to reassemble them as LATEX documents.
The recogniser itself is based on a novel application of geometric moments that
is particularly sensitive to subtle but often crucial differences in font faces while
still providing good general recognition of symbols that are similar to, but not
exactly the same as, some element in the database. The moment functions them-
selves are standard, but rather than being applied just to a whole glyph or to
tiles in a grid decomposition of a glyph, they are computed in every stage of a
recursive binary decomposition of the glyph. All values computed at each level
of the decomposition are retained in the feature vector. The result is that the
feature vector contains a spectrum of features from global but indistinct at the
high levels of the decomposition to local but precise at the lower levels. This
provides robustness to distortion because of the contribution of the high level
features, but good discrimination power from those of the low levels.

Since the recogniser matches glyphs by computing metric distances to given
templates, a database of symbols is required to provide them. We have devel-
oped a large database of symbols, which has been extracted from a specially
fabricated document containing approximately 5300 different mathematical and
textual characters. This document is originally based on [8] and has been ex-
tended to cover all mathematical and textual alphabets and characters currently
freely available in LATEX. It enumerates all the symbols and homogenises their
relative positions and sizes with the help of horizontal and vertical calibrators.
The single symbols are then extracted by recognising all the glyphs that a symbol
consists of, as well as their relative positions to each other and to the calibrators.
Each entry in the database thus consists of a collection of one or more glyphs to-
gether with the relative positions and the code for the actual LATEX symbol they
comprise. The basic database of symbols is augmented with the precomputed
feature vectors employed by the recogniser.

The recogniser returns all the glyphs it encounters on the input document and
for each glyph, a sequence of alternative characters in diminishing order of quality
of visual match. In addition it provides information on the coordinates of the
original glyph in the input document and on the size of this glyph by specifying
its bounding box. The latter information is particularly useful in determining
the actual size of a character in question in order to find the matching font size
or scaling factor for the database match. The former information is exploited
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for reproducing the input document. As previously we had no semantic analysis
or syntactic parsing of the results to provide feedback or context information
to assist the recognition, we could only reconstruct a document by composing a
LATEX picture environment that explicitly places, for each recognised character,
the appropriate LATEX command in its correct location.

3 Projection Profile Cutting

Projection profile cutting (PPC) is a technique that is widely used in different
areas of document analysis. For the analysis of mathematical expressions it was
introduced by Okamoto et al [7] for the case of printed mathematics and by
Faure and Wang [12] for the case of handwritten mathematics. Other work that
uses related techniques is, for instance, reported in [3]. All these projects have in
common that they apply the PPC as a preprocessing step for the actual character
recognition step to gain information on the formula structure and thereby to ease
the recognition as well as, possibly, to correct symbols. In our case the aims and
sequence of operations are rather different: We have already performed the glyph
recognition of a mathematical text or expression. Thus we have, for each glyph in
the text, its position on the page and the size of its bounding box together with
a priority list of glyphs from our database that has been computed as the best
matches by the recogniser. We now want to use PPC (1) to support the correct
recognition and reassembling of multiglyph characters, and (2) to recursively
assemble single characters to larger compound expressions that eventually can
be expressed in a meaningful LATEX command. One advantage of our approach is
that we can deal uniformly and effectively with formulas that are both vertically
and horizontally enclosed. These are generally inaccessible to traditional PPC
techniques, where only some cases can be dealt with by including specialised
rules. In the remainder of this section we will first introduce the technique in
general and present the advantages of our approach by handling an expression
containing a square root.

3.1 Basic Technique

The basic idea of PPC is to put straight projection lines in between components
of an expression in order to separate the expression into elements that do not
overlap. We start first with a vertical projection and then perform, on the result-
ing components, a horizontal projection. If no horizontal projection is possible
we have obtained an atomic component of the expression, otherwise we proceed
recursively until all the atomic components are found.

The fundamental element of PPC is the task of grouping the symbols by find-
ing out which symbols overlap. We can define vertical overlap of two symbols
as the situation where we cannot find a straight vertical projection that passes
between the two symbols. Analogously, we can define horizontal overlap when
we cannot perform a horizontal projection. To illustrate this consider Fig. 1:
A symbol is essentially given by the height and width of its bounding box, as
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Fig. 1. Bounding box coordinates and overlap of symbols

displayed by the character ‘y’ on the left hand side. Now if the characters are
arranged in a way that the bounding boxes overlap on a vertical line or a hori-
zontal line one cannot perform the respective projection. The two possible cases
of vertical overlap are, for instance, given on the right hand side in the figure.

Two symbols don’t need to overlap directly for them to be classed as over-
lapping, they can overlap indirectly via a third symbol. Consider, for example,
the expression in Fig. 2(a). The ‘a’ and the ‘z’ do not overlap but because the
‘a’ overlaps with the large divide sign and the ‘z’ also overlaps with the large
divide sign then the ‘a’ and ‘z’ are classed as overlapping and are therefore
grouped together in a sub-expression. To successfully group the symbols in the
right subexpressions the order in which the symbols are checked for overlap
is vital. We therefore sort the symbols in descending order by their width for
vertical projections, and by their height for horizontal projections. This would
mean the first two symbols to be checked for overlap would be the two divide
signs for vertical projection. Since they indeed overlap, they will be grouped in
the same subexpression together with all other symbols that overlap with them.
Observe that this approach cuts out the search for the projection lines that is
necessary in the traditional approach when segmentation is applied before the
recognition process. In our approach we can simply compute overlaps using the
bounding box information of each glyph and thus group the characters without
search.

The entire PPC for the expression in Fig. 2(a) is given in the remainder of
Fig. 2. Since we have the data from the OCR of the expression we already know
exactly the position and sizes of the bounding boxes for the single glyphs, which
simplifies the projection phase considerably. The first vertical projection, given
in 2(b), then yields six different components. For components ① and ③–⑤ no
horizontal projections are possible and we have atomic components. In fact, it
is not necessary to test this explicitly since we can infer this already from the
OCR data. Component ② on the other hand can be split again by the horizontal
projection given in 2(c) to yield two atomic components. For the fraction in
component ⑥ we need several recursive projection steps to fully analyse the
expression. The first horizontal projection results in three components where
only the fraction bar is atomic. While the denominator can be fully decomposed
in another vertical projection (2(g)), the vertical projection on the enumerator
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(a) Original expression. (b) First vertical projection.

(c) Horizontal projection on ②. (d) Horizontal projection on ⑥.

(e) Second vertical projection on ①. (f) Second horizontal projection on ④.

(g) Second vertical projection on ③. (h) The final parse tree for the expression.

Fig. 2. Recursive PPC example

(2(e)) yields another embedded fraction as non-atomic component. This one can
finally be decomposed in another horizontal projection (2(f)).

The result of the PPC is a parse tree that details the subcomponent rela-
tionship of the single glyphs in the expression (see Fig. 2(h)) This tree can now
be used to assemble the resulting LATEX expression that reproduces the original
input expression. It is worth noting that fraction bars in the expression can be
determined as the LATEX \frac command with the help of the OCR output. The
resulting LATEX expression is then of the form:

y = 53 + \frac{x + (\frac{a}{b})}{z - 5}
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Observe that for clarity and to preserve space, we have omitted a \mathrm ar-
gument that actually embeds each of the alpha characters. Another noteworthy
character in the above expression is the equality sign, whose reconstruction is
necessary from the glyphs identified by the recognition engine. The next section
explains how the combined ‘=’ is obtained.

3.2 Recognising Multi-glyph Characters

During the OCR process each glyph is recognised separately and matched against
the glyphs in the database. This yields a priority list of matching glyphs, with the
best matches coming first. Thus, for reasons of noise, distortions due to scaling,
artifacts of the scanning process etc., a glyph belonging to a character that is
composed of multiple glyphs, might not have, as its identified closest match in
the glyph database, the corresponding glyph of the appropriate character. For
instance, the best match for a single bar of the equality sign could be a minus
sign or the ‘·’ of a character ‘j’ might be best matched with dots from any one
of multiple other symbols.

We can now exploit the results of the PPC to choose from the list of best
matches for each glyph returned by the recogniser and reconstruct the correct
character. When we find several atomic components in a single subexpression
that are not separated by any non-atomic subexpression and that are within a
certain distance threshold, the program parsing the expression tree attempts to
find a single multi-glyph character that might match exactly with the compo-
nents. It thereby considers a fixed number of multi-glyph characters it finds in
the list of best matches given by the OCR program.

For example, for the equality sign it would take the two horizontal bars of the
subexpression and find, in the matches list, the symbol ‘=’, which indeed contains
two bars with the right gap. For the character ‘j’, the OCR system returns ‘·’
and ‘j’ (i.e., the LATEX commands \cdot and \jmath) as best matches. But
since the ‘·’ of the ‘j’ overlaps vertically with the lower part of the ‘j’ they are
grouped together in a vertical projection, which allows the program to identify
the complete symbol ‘j’ which is in the list of best matches.

3.3 Handling Enclosed Expressions

PPC is a very effective tool for determining the spatial relationships between
symbols in mathematical expressions. However, the method fails if symbols in
an expression are both horizontally and vertically enclosed. Then neither ver-
tical nor horizontal projection can penetrate the expression to extract all com-
ponents of the formula. The classical example of a mathematical symbol that
is impenetrable is the root symbol. However, there are various other example
of symbols that fence expressions from several sides, or even contain them en-
tirely, in Mathematics and, particularly, in Logics. For our discussion consider
the following expression: √

a +
√

b + c
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Fig. 3. Descending and assembling an expression with partially enclosed terms

Obviously, first vertical and then horizontal projection will yield no decompo-
sition at all. However, from the information given by the OCR, we know that
the expression consists of several non-connected glyphs and thus the projections
should yield several atomic components. The program now further exploits the
given information on the bounding boxes of the single glyphs to realise that
there are indeed some glyphs fully contained in the bounding boxes of other
glyphs. The leftmost expression in Fig. 3 shows the situation that presents it-
self to the program at this point. Before carrying on with the ordinary PPC,
the algorithm first descends into the expression and extracts those components
that are contained inside another glyph’s bounding box. Thus in a first step it
would extract a +

√
b + c from within the outer root symbol and in a second

step b + c from the inner root symbol. For this expression the regular projection
algorithm will take over again and disassemble it into its components. Once the
innermost atomic components have been been found the program will recombine
those with the enclosing expression, that is the root symbol, and carry on doing
so until it reaches again the top layer and the entire expression is analysed. The
single steps of this process are depicted in Fig. 3. With the component tree con-
structed during the entire projection, we can then assemble the corresponding
LATEX command \sqrt{a+\sqrt{b+c}}. Again we have omitted the \mathrm{}
around the ‘a’, ‘b’ and ‘c’.

4 Graph Grammar Rewriting

Graph grammar rewriting [2, 5] is a very powerful technique that generalises
string rewriting from standard string parsing to a graph parsing model. Rules
specify a (possibly terminal) graph fragment to match and a non-terminal graph
fragment to replace it with. Most such systems, when used for mathematical
formula recognition, restrict the replacement fragment to be a simple node.

There are two major differences between our starting position and those of
other projects using this technique. First, instead of using a character recogniser,
we are using a glyph recogniser as discussed in Sec 2. Thus, part of our aim is to
reconstruct characters from glyphs in the rewriter. The point of this is that the
perennial problem of segmenting characters, which are sometimes broken, some-
times touching other characters, can often only be resolved with contextual, and
sometimes semantic information. It is difficult to provide the necessary range
of such information to a character recogniser, as that information is generally
discovered by the structural analyser. Transferring responsibility for character
assembly from the optical recogniser to the structural analyser provides a more
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modular structure that allows simpler interactions between the recogniser and
the structural analyser. This in turn allows easier development of more sophis-
ticated techniques for applying structural and contextual information to the
identification of characters.

Second, our intention is to provide a test framework for exploring different
rule sets, and, eventually, different types of graph rewriting, rather than, at this
point, a definitive graph rewriting system and a definitive set of rules for math-
ematical formula recognition. The tool we built to do this provides assistance
for matching graph grammar rules to graphs, identifying conflicting rules, choos-
ing and applying a subset of those rules and visualising, graphically, the entire
process. The idea is that providing a very convenient way to manually parse
the formulas and graphically add new rules dynamically, provides an excellent
environment in which to design and develop large and complex rule sets.

4.1 Constructing the Graph

A critical factor in any graph grammar rewriting approach is how to build the
initial graph. If too many edges are generated then the resulting graph matching
and parsing complexity may be too high. Too few edges mean that important
connections between glyphs are overlooked and the formulas cannot be recog-
nised. Lavirotte and Pottier construct their graph using compass point directions
from each character [5]. While they report good success with this decision, our
situation where we also need to reconstruct characters from glyphs may require
finer distinctions. Also they do not report that they can handle enclosing con-
structs such as square roots.

Our graph is created initially with the best matching glyphs from the database
for the image being analysed as the nodes. We could generate the complete
graph in order to construct the edges but that would add considerably to the
computational cost of the graph submatching algorithm. Also, it would not, we
believe, add practical matching options to the system as the rewrite rules tend
to work locally in the graph: neighbouring sets of nodes are rewritten into single
nodes in a bottom up fashion. Hence connections between nodes corresponding to
glyphs that are spatially distant in the image are unlikely to be useful. Therefore
we chose to build our edges on a line of sight basis. Thus we create an edge
between the nodes for two glyphs if there is a direct line between a pixel of one
and a pixel of the other that is not obscured by any other glyph. In our current
implementation, for performance reasons, we simplify that to a line from the
bounding box centre of one to any point in the bounding box of the other.
The edges are annotated with the centre point distances and relative directions
which can be easily generalised to fuzzy distances and directions. This approach
supports enclosures in a direct and simple way.

4.2 Rules

The rewrite rules identify a principal node (or principal for brevity) around
which the rewrite will take place. Each rule has a name. Terminal glyph nodes
are named based on their glyph identifier, non-terminal nodes are named by
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the rules that created them. Rules contain constraint information about rela-
tionships between neighbouring nodes in the graph that must exist before the
rule can be triggered. A number of attributes can be set for each connection
required by a rule and are used to control the conditions that must be met for
the rule to trigger. The system currently supports the following rule connection
attributes:

Higher. Top of the destination, but not the bottom, is higher than the principal.
Lower. Bottom of the destination, but not the top, is lower than the principal.
TopLower. Top of the destination is lower than the top of the principal.
BotLower. Bottom of the destination is lower than the bottom of the principal.
Above. Bottom of the destination is above the top of the principal.
Below. Top of the destination is lower than the bottom of the principal.
Left. Right edge of the destination is left of the left edge of the principal.
Right. Left edge of the destination is right of the right edge of the principal.
PartLeft. Destination is not left, but left edge is more left than the left edge

of the principal.
PartRight. Destination is not right, but right edge is more right than the right

edge of the principal.

All these attributes can be set to values indicating that the specified condition
must be met by this connection, must not be met or can be ignored. An extra
tag attribute is used to identify the nodes that must be found at the end of
the connection. This can be an individual node name, a list of possible glyphs
or a pattern of node names. Other than the qualitative constraints provided by
the above attributes, quantitative constraints can also be specified controlling
relative size of the principal and destination nodes (based on height, width or
bounding box area) and length of the connection relative to the dimensions of
the principal.

4.3 Subgraph Matcher

Our current matcher is simple and intended to provide us with a working test
framework within which to explore graph grammar rule sets, visualisation of
graph parsing and rule extraction tools before we proceed to a more sophisticated
matching algorithm such as that of Rekers and Schürr [9].

The matcher takes the set of rules and systematically applies them to every
glyph within the formula, taking the current glyph as the principal. All connec-
tions are first filtered by the destination tag and then all resulting combinations
are checked. On a successful match the matching glyphs are placed in a collec-
tion ready for further analysis. In the event that a principal finds more than one
object which match the results of a certain definition, all matches are returned.
For example, for the formula w′ ∈ W, we could have, for a näıve implementation
of the rule handling set membership, the following potential matches returned:
“w element in set W”, and “Prime element in set W”. These, of course, conflict
with the appropriate rule in this case which would also be returned; namely that
for matching the “w′”. They conflict because every pair of these three rules have
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Fig. 4. Formula reader with the rule matcher in operation

at least one node in common that they consume in order to rewrite the subgraph.
Of course, only a rewrite of the w′ rule will eventually result in a successful parse
of the expression.

The ability to identify and explore sets of rules that conflict is an essential
aspect of the design, debugging and development of rule sets. We say that two
rules conflict if the intersection of the set of objects that they match is non-
empty. A conflicting rule set is defined inductively as follows:

1. If rules r, r′ conflict then {r, r′} is a conflicting rule set.
2. If C is a conflicting rule set and r is a rule that conflicts with a rule r′ ∈ C,

then {r} ∪ C is a conflicting rule set.

A conflicting rule set C ⊆ A is maximal in A if every r ∈ A \ C does not
conflict with any element of C.

Once the matcher has run on all rules, it partitions the set of matching rules
into a set of maximal conflicting rule sets. All single element rule sets can be
safely applied without conflicting with any other rule in the set of matching rules
and are collected together in a non-conflict group of rules. Each other maximal
conflicting rule set is recorded as a conflict group.

Once this phase is complete, the matcher attempts to resolve all the conflicts
by finding a sequence of rule applications, one from each of the conflict groups,
which will terminate with the least number of un-consumed vertices. This results
in the most complete parse compatible with the rule set and is executed by
applying each rule in turn and then recursively running the match process again
until no further rewrites or matches are possible. In the event that multiple
sequences may lead to the same resulting formula, the rule with the highest
precedence within the rule set is identified.

The matcher is embedded in a rule visualisation and exploration tool called
the Formula Reader. An example of this tool running on an expression is shown
in Fig. 4. The main pane shows the formula under analysis at a point part
way through an analysis. At this stage many of the lowest level rules have been



150 A. Raja et al.

Fig. 5. Rule builder in operation

applied and the graph has been rewritten to a significantly smaller number of
non-terminals and remaining terminal nodes. Bounding boxes are drawn around
each node as well as the sub-nodes that have previously been consumed. Edges
are drawn between nodes that have not yet been consumed in the rewriting. All
edges and nodes are colour coded to help the user identify appropriate parts
of the formula. The current set of nodes in the graph is shown in the tree
list in the upper left. One can drill down to see the internal structure of the
node. Clicking on a node in the tree list highlights the corresponding node(s)
in the main pane and vice versa. The small pane to the bottom left lists the
current groups of non-conflicting or conflicting rules (in this case there is only
one such group, which is a non-conflicting one). To the bottom right the set of
rules in the group is shown and the user can choose which of them to apply.
By selecting an individual rule, the corresponding nodes and edges in the main
pane are highlighted to help visualise the current state of the process. Com-
mitting the choices will apply the rules and set the system up to run the next
round of the matcher. The whole system allows quick and easy visualisation and
testing of individual rules, interactions between rules and operation of entire
rule sets.

Rules can be created and added to a rule set using the rule builder facility.
Fig. 5 shows an example. When working on a formula, a user can select a group
of nodes from which to construct a new rule. A principal node must be chosen
and then rules for each connected node can be added specifying the appropriate
relationships for each one. The ability to add new rules dynamically during the
process of a manual parse of an equation significantly reduces the difficulties of
constructing large and complex rule sets.

5 Conclusion

We have presented an extension to our database-driven mathematical OCR sys-
tem by adding two higher-level analysis features.



Towards a Parser for Mathematical Formula Recognition 151

First we have combined the well-known projection profile cutting method
with our approach to OCR and improved the ability of our recogniser to find
proper matching multiglyph characters and added the ability to compose com-
plex mathematical expressions as compound LATEX commands. But this work
has also yielded a new and robust solution to one of the major flaws of the PPC
technique: that of penetrating enclosed expressions. This new approach works
uniformly for all enclosing symbols and does not rely on special cases for certain
symbols.

Second we have developed a first version of an interactive graphical tool that
significantly assists in the visualisation, analysis and development of graph gram-
mar rule sets — one of the major barriers to the study and use of this powerful
technology in mathematical formula recognition. This will enable us to develop
graph grammar based approaches to the structural analysis of mathematical
texts.
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Abstract. In this paper, we address the problem of automatic key-
words assignment to scientific publications. The idea to use textual traces
learned from training data in a supervised manner to identify appropri-
ate keywords is considered. We introduce the transparent concept of
identification cloud as a means to represent the semantics of scientific
terms. This concept is mathematically defined by models of scientific
terms stochastic distributions over publication texts. Characteristics of
models as well as procedures for both non-parametric and parametric
estimation of probability distributions are presented.

1 Introduction

During the last few decades e-publishing has been rapidly replacing conventional
paper-based publishing making traditional means of classifying and indexing
(manual assignment of keyphrases or category numbers from a subject classifi-
cation system like MSC2000) unsatisfactory. Due to different requirements and
constraints (depending on date, on a particular journal, etc.) and authors’ in-
dividuality it is impossible to treat keyphrases from different publications in an
uniform way. Nevertheless, everyday-growing collections of online mathematical
knowledge have to be managed as efficiently as possible. Therefore new auto-
matic online tools designed for indexing and classifying as well as retrieving
relevant information are highly appreciated by those in the field.

Automatic assignment of a few scientific terms from controlled list (of so-
called keywords and keyphrases) is one of the possible ways to manage the
knowledge contained in publications. It may be viewed both as classifying and
indexing routine depending on the nature of these terms as well as on the way of
performing the assignment, e.g., the number of terms. Even more, the traditional
keyword list serves either role — it is not as strictly classifying as the list of
subject classifiers and not as exhaustive as the index would supposed to be.
Having this mentioned we will further treat our problem as a classification one or
more precisely — as a problem of automatic classification by means of statistical
analysis of term–context relations over corpus.

We build on the idea of an identification cloud ([6], [7]) which is roughly
described as a list of words and phrases (scientific terms) that are likely to be
found in a text that is highly relevant to a certain scientific term (the so-called
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”owner” of the identification cloud). A fragment of the identification cloud in
a chunk of text suggests the dominant term which is possibly relevant to that
chunk and can be treated as a candidate to be a keyword.

The idea of a contextual track of a certain keyword is not a new one, in fact
it is a common concept which lies in the background of almost every one of the
text classification methods. However, term–context relations are often hidden
from user in the state–of–the–art plain text classification algorithms meanwhile
our approach is based on the explicit representation of these relations. The mo-
tivation of doing that is a practical one: identification clouds may well be used
not only for automatic classification but also for solving many other problems
related to scientific text processing ([6], [7]): estimation of the growth rate of a
scientific field ([8]), identification and reconstruction of misspelled or incomplete
phrases, construction of dialogue-mediated information retrieval engines, evalu-
ation of distances in information spaces, sense disambiguation, text slicing, etc.
On the other hand, these clouds are of great value themselves as they present
some meta-knowledge of scientific field expressed in the language of the field.
The reasoning above motivates and justifies this approach over the straight-
forward application of problem–specific methods, even though we realize that
specific methods are always more efficient than the general ones. We also do get
clear signals that such general methods and tools would be highly appreciated
by those involved in e–publishing and related fields.

A substantial amount of researches related to our problem (classification by
means of statistical term–context relations learned from corpus) have been con-
ducted since early 1990s though in rather different fields including automatic
translation, word sense disambiguation, information retrieval, document index-
ing and clustering, etc. The two main approaches differing in the manner of
learning are used. The first one relies on the unsupervised learning (learning over
unlabelled data) of distributional patterns of co-occurring data ([4], [9], [1]). In
1990 Deerwester et al. ([4]) proposed the Latent Semantic Analysis (LSA) ap-
proach which performs Singular Value Decomposition of feature–document ma-
trix to retrieve latent factors claimed to represent common underlying concepts.
In 1999 Hofmann ([9]) presented the Probabilistic Latent Semantic Analysis
(pLSA) approach which had a strong statistical foundation as opposed to the
work by Deerwester et al. In his paper, he introduced a probabilistic genera-
tive model of documents treating them as a mixture of latent topics represented
by distributions over words. Finally, in 2003 Blei et al. ([1]) presented yet an-
other approach — the Latent Dirichlet Allocation (LDA) which models corpus
as a collection of documents represented as random mixtures over latent top-
ics where each topic is described by a distribution over words. The pLSA and
LDA present the generative approach rather than a discriminative one therefore
statistical inference relies on model fitting to data using maximum likelihood
or Bayesian methods. The reported experimental results confirm high efficiency
and usability of these methods.

The unsupervised learning approach has a substantial advantage over super-
vised one as there is no need for labelled data and the concepts are identified by
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co-occurrence analysis. However, such methods deal with latent topics that are
represented by distributions of words ([1], [9]) or linear combinations of words
([4]) learned from data and there may be some problems with interpretation of
these topics. On the other hand, these topics should be somehow mapped to the
predefined classes (keywords in our case) used for classification. That implies
that the technique of latent analysis may well be used for clustering of docu-
ments, for indexing or feature space dimensionality reduction but at least some
additional work has to be done in order to use it for classification.

The other approach builds on so called supervised learning, i.e., learning over
pre-labelled corpus. The algorithms perform by analysing positive and nega-
tive examples of classes or categories and building discriminative rules so that
they classify learning data as correct as possible. There are a few state-of-the-art
methods that gained high popularity and are widely used ([13]). One of the most
simple ones is the naive Bayes approach which builds on the assumption of word
independence over the text and makes use of Bayes rule to compute scores for
classes. Instance based algorithms such like k–nearest neighbours ([15]) skip the
phase of learning and make decisions by analysing expert decisions of documents
closest to the one to be classified. Kernel based algorithms like Support Vector
Machines (SVM) ([14], [10]) or linear regression based Linear Least Squares
Fit (LLSF) ([17]) represent much more sophisticated yet computationally com-
plex approaches. There is a great number of other methods that could also be
mentioned including genetic algorithms, neural nets, decision trees but we limit
ourselves to only those we are going to compare our proposed algorithms to.

The identification clouds are constructed by learning in a supervised manner
over corpus containing labelled documents. In that way our approach is similar to
the well-known machine learning based automatic text categorization algorithms
[13] as opposed to the unsupervised learning based approaches. The mathemat-
ical interpretation of identification cloud is somewhere in between generalized
mutual information ([12]) and ’salience’ of salient word ([16]) and it presents a
quantitive estimation of amount of discriminative information that certain chunk
of text contains about a scientific term. That is the second meaning of phrase
’identification cloud’ first being the heuristic definition given by M. Hazewinkel
([6], [7]). There is also a third one defined by the part ’Parametric Estimation’
of this paper where non-informative (from the point of discriminative power)
elements are virtually removed and the empirical estimates are fitted to some
parametric model.

In this paper, we focus on the introduction, definition and mathematical for-
malization of the concept of identification cloud as well as on algorithms of a
model statistical identification and procedures of classification. The results are
partially published in [2].

2 Definition of an Identification Cloud

According to the publications [6], [7] where this concept is introduced and used,
an identification cloud of a scientific term or phrase w is heuristically described
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as a set of words or short phrases with a functional defined on this set whose
values are interpreted as weights. The weight of an element v of the identification
cloud w is proportional to the chances that a text containing v also has the
keyword w.

We first introduce a set of identification cloud owners — possible keywords.
It is clear that assigning keywords to a certain text is up to a point equivalent to
classifying that text. Let K denote some classification system of scientific pub-
lications which is identified with a set of all possible keywords in that system.
A keyword is described as a scientific term or a group of terms which uniquely
defines the class of a text fragment with that keyword assigned in the classifica-
tion system K. For each w ∈ K the class of all texts that are characterized by
this keyword is also denoted by w.

Let V be a set of terms of a certain scientific field such that the results of
classification of a text (in system K) depends on frequencies and positions of
these terms in the text. We assume that the classification of a certain article
a depends only on these words from the article that belong to the set V . The
chronologically numerated vector of article’s a elements (lower index for the word
which is read earlier) (a1, . . . , ad), d = d(a), where ai ∈ V and not necessarily
ai �= aj is called the projection of the article a.

Remark 1. It is obvious that by extracting only scientific terms from the text
we lose some valuable information — non–term words, punctuations, structural
information, etc. A part of this information could be used to improve algorithms
that are proposed further in this paper. A very simple generalization of the
projection of an article could be to use a vector of pairs ((a1, λ1), . . . , (ad, λd))
where λi ∈ R is a value of some measure of distance between the terms ai−1 and
ai in the text. The distance may be taken into consideration when estimating
the strength of relation between terms in the text.

Sometimes it is convenient to identify the projection of an article a with an
infinite sequence (a1, a2, . . .), where ai = 0 for all i > d(a). Here 0 ∈ V denotes an
additional zero term which does not exist in reality. Let A be a set of projections
of all articles or other publications from a certain scientific field.

In what follows we omit the word ”projection” and a ∈ A is called just an
article. From the point of view of classification an article is not necessarily a
homogenous piece of text — in the general case, it consists of q = q(a) ≥ 1
continuous homogenous parts which are classified as different in system K. Non-
intersecting intervals of indices Ij(a) ⊂ {1, 2, . . . , d(a)} def

= N(a) and keywords
wj(a) ∈ K, j = 1, . . . , q correspond to these parts. Here

⋃q
j=1 Ij(a) = N(a)

and wj �= wj−1, j = 2, q: if two adjacent parts of the text are attributed to the
same class they must be joined into one.

Remark 2. The assumption that the text consists of several non-intersecting con-
tinuous chunks relevant to different keywords may seem a bit doubtful. However,
at the moment we put no constraints on the length of these chunks while the
assumption gives a justification and motivation for implementing quite simple
iterative step-by-step text slicing procedures when classifying.
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Now we get back to the heuristic definition of the identification cloud of a key-
word w ∈ K. We describe the identification cloud in terms of probability distri-
butions related to classification of a random text. Let N be the set of natural
numbers. An article a ∈ A and a set of indices I ⊂ N are chosen randomly so that
the part of an article {(aτ , τ), τ ∈ I} is homogenous: I ⊂ Iν(a), ν ∈ {1, . . . , q}.
This part is attributed to the class η = wν(a) in the system K. A common
problem of classification is to determine the unknown keyword η using the ob-
served vector aI = (aτ , τ ∈ I) (e.g. classify the introduction of an article, using
only the first page of the introduction). Since (a, I, η) is the result of a random
experiment, the probability distribution in the set K is defined by

Q(w) = IP{η = w}, w ∈ K . (1)

In classification theory Q(w) is called an a priori probability that the random
text belongs to the class w. Let Y be a set of all possible values of aI . In the set
Y the following conditional probability distributions are defined:

P (y) = IP{aI = y
∣
∣ |I| = d(y)} , (2)

P (y|w) = IP{aI = y
∣
∣ |I| = d(y), η = w}, w ∈ K , (3)

where d(y) = dim y, |I| = card I.
If η and |I| are independent, after observing aI , the a posteriori probability

of the random event {η = w} is determined by the equality

Q(w|aI) = Q(w) · ψw(aI) , (4)

where
ψw(y) = P (y|w)/P (y), y ∈ Y . (5)

The functional ψw mathematically describes the concept of an identification
cloud of the keyword w. It reflects how the probability for the random text to
belong to the class w depends on the frequency of terms in the text as well as on
their positions. It is easy to see that ψw also depends on distribution of the pair
(a, I); therefore the most general definition of the identification cloud would be
a family of functionals Ψw = {ψw(·|H), H ⊂ N}, defined on the set Y , where
ψw(y|H) is defined analogously to ψw(y) under the condition I = H . In what
follows we assume the distribution of (a, I) fixed.

Using the distributions, described in (1) and (3), we can define a Bayes clas-
sifier which minimizes mean classification losses. Let l(w, v) be the amount of
loss when a text from the class v is assigned to the class w. As always, l(·) ≥ 0
and l(w, w) = 0. If the classification is performed using the observation aI , the
Bayes classification rule is defined by the equality

η̂ = arg min
w∈K

∑

v∈K

P (aI |v)Q(v)l(w, v) . (6)
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In case the loss function is trivial, i.e.,

l(w, v) =
{

c, w �= v

0, w = v,

where c > 0, it follows from (6) that

η̂ = argmax
w∈K

P (aI |w)Q(w) . (7)

In equalities (6) and (7), ψ(·)(aI) can be substituted for P (aI |·).

3 Discriminant Analysis

While solving applied text classification problems it is unlikely that the distri-
butions P and Q, used in (6) and (7), are known. The plug-in method which
substitutes statistical estimates calculated from the learning samples for un-
known distributions may be used. In this section, we discuss possible ways of
obtaining these estimates.

Suppose that we know keywords of n homogeneous texts and also have ob-
servations of some parts of these texts. For simplicity, we call these texts just
articles and assume that their observed parts are continuous and their beginnings
coincide with beginnings of the corresponding articles. Thus, the sample X is
composed of n pairs, X = (y(1), η(1)), . . . , (y(n), η(n)), where η(i) ∈ K, y(i) ∈ Y .
Here Y = {y = (y1, . . . , yd) : yi ∈ V, d ∈ N}.

3.1 Non-parametric Estimation of Distributions

First we discuss non-parametric estimation of the functionals, defined in equal-
ities (1) and (5). The empirical analogue of Q(w) is determined by the equality

Q̂(w) =
1
n

n∑

j=1

1{η(j)=w} . (8)

It is much more difficult to estimate ψw(y), where y ∈ Y, w ∈ K. The k-nearest
neighbours method could be used. First we define a measure of dissimilarity of
elements from Y : let, for all y, z ∈ Y , ρ(y, z) be a non-negative functional whose
values are called a pseudo-distance from element z to element y. For a fixed
y ∈ Y , we choose k ”nearest neighbours” from the sample. Let J(y) ⊂ {1, . . . , n}
be a set of k indices of observations y(1), . . . , y(n), for which the pseudo-distance
to y the smallest ones. The estimate of ψw(y) is determined by the equality

ψ̂w(y) =
1

Q̂(w) · k

∑

j∈J(y)

1{η(j)=w} . (9)

Here 0/0 = 1. The variable k = k(n) depends on the size of the sample and
conditions k → ∞, k/n → 0, as n → ∞ hold.
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It is natural to define the pseudo-distance between the articles y and z as
to take into consideration both the frequencies and positions of scientific terms
in ones. A simple example of such a pseudo-distance is the following. For each
y = (y1, . . . , yd) ∈ Y and v ∈ V , let

αy(v) =
1
d

d∑

i=1

1{yi=v} ,

βy(v) =
1

αy(v)d2

d∑

i=1

i · 1{yi=v} . (10)

Here αy(v) is the frequency of the term v and βy(v) ∈ [0, 1] is the standardised
centre of gravity of v positions in the text.

Let
ρ(y, z) =

∑

v∈V

[|αy(v) − αz(v)| + c|βy(v) − βz(v)|] , (11)

where c ≥ 0 is the weight of the functional β.
Any other measure of distributional similarity ([11]) could also be used instead

of (11).
By substituting estimates (8) and (9) for Q(w) and ψw(·) in (7) we get the well

known k–nearest neighbours method of classification [15]. However, it is difficult
or even impossible to preserve the explicitness and compactness of identification
clouds unless dimension of y is equal to 1.

3.2 Restrictions to the Model

Non-parametric estimation of distributions is highly sensitive to the size of learn-
ing samples. If the samples are relatively small, the estimates will be unreliable
when using the k–nearest neighbours or any other non-parametric method of
estimation (e.g., kernel based approach). So now we discuss the parametric esti-
mation of these distributions and first of all we introduce some definitions and
notation.

Let the same assumptions as in section 2 (on the random character of (a, I, η))
hold and let the index τ ∈ I be a random variable.

The distribution on set V is defined by

P (v) = IP{aτ = v} (12)

and the corresponding conditional distribution is given by

P (v|w) = IP{aτ = v|η = w}, w ∈ K . (13)

It is easy to see that (12) and (13) are simplified cases of (2) and (3) which
are obtained in case y ∈ Y is scalar.
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Assumption 1 (conditional stationarity and independence). Let for all
y ∈ Y and w ∈ K the following equality hold

P (y|w) =
d∏

i=1

P (yi|w) , (14)

where d = d(y) as before is the dimension of the vector y. Now the definition
of the identification cloud (5) can be changed to

ψw(v) = P (v|w)/P (v), v ∈ V, w ∈ K , (15)

while the Bayes classification rule for classifying the observed aI ((6), (7)) is
determined now by the equalities

η̂ = arg min
w∈K

∑

v∈K

[

Q(v)l(w, v)
∏

τ∈I

P (aτ |v)

]

, (16)

η̂ = argmax
w∈K

[

Q(w)
∏

τ∈I

P (aτ |w)

]

. (17)

In (16) and (17), ψ(·)(aτ ) can be substituted for P (aτ |·).
Once more we arrive at the analogue of a well known algorithm of classification

of plain text — a so called naive Bayes approach which is known to be not highly
efficient but on the other hand very simple in implementation. It is obvious that
the assumption of conditional independence of the terms (14) is quite optimistic
and does not hold in reality.

Remark 3. Numerous papers have shown that complexification of this assump-
tion usually does not yield significant improvements in results of classification.
Even more, Domingos and Pazzani in [5] showed that under certain conditions
the violation of the assumption of independence does not harm the quality of
classification.

The definition of the identification cloud based on this assumption (15) ignores
information that can be derived from the order of the terms in the text. Thus,
we introduce a weaker assumption.

Assumption 2 (conditional stationarity and Markovian property). Let
for all y ∈ Y and w ∈ K the following equality hold

P (y|w) = P (y1|w)
d−1∏

i=1

[P (yi, yi+1|w)/P (yi|w)] , (18)

where P (v, u|w) = IP{aτ = v, aτ+1 = u|η = w}.
So aI is a Markov chain taking values from V .



160 R. Rudzkis, V. Balys, and M. Hazewinkel

In this case, the identification cloud is described by two functionals: ψw(v)
defined in (15) and

ψw(v, u) = P (v, u|w)/P (v, u), v, u ∈ V , (19)

where P (v, u) = IP{aτ = v, aτ+1 = u}.
Let I = {r, r + 1, . . . , m}, then the Bayes rule of classification is obtained by

substituting the corresponding right-hand side of (18) for P (aI |v) in (6) and (7):

η̂ = arg min
w∈K

∑

v∈K

[

Q(v)l(w, v)P (ar |v)
m−1∏

i=r

[P (ai, ai+1|v)/P (ai|v)]

]

, (20)

η̂ = arg max
w∈K

[

Q(w)P (ar|w)
m−1∏

i=r

[P (ai, ai+1|w)/P (ai|w)]

]

. (21)

Here ψ(·)(v) and ψ(·)(v, u) can be substituted for P (v|·) and P (v, u|·):

η̂ = argmax
w∈K

[

Q(w)ψw(ar)
m−1∏

i=r

[ψw(ai, ai+1)/ψw(ai)]

]

. (22)

We can analogously introduce more general assumptions with 3, 4 and more
neighbouring text elements taken into account. Even more, we could use some
kind of adaptive choosing (depending on distances between terms) of neighbour-
ing text elements if using a richer representation of an article (see Remark 1).

3.3 Parametric Estimation of Distributions

Suppose we have the same earlier defined sample X . Let d(j) denote a dimension
of an observed vector y(j). We discuss one of the simpliest ways of parametric
estimation of the statistical distributions.

First we calculate empirical estimates of the probabilities P (·), P (·, ·), P (·|·)
and P (·, ·|·):

P̃ (v) =
n∑

j=1

d(j)∑

k=1

1{yk(j)=v}/
n∑

j=1

d(j) , (23)

P̃ (v, u) =
n∑

j=1

d(j)−1∑

k=1

1{yk(j)=v,yk+1(j)=u}/
n∑

j=1

(d(j) − 1) , (24)

P̃ (v|w) =
n∑

j=1

d(j)∑

k=1

1{yk(j)=v,η(j)=w}/
n∑

j=1

d(j)1{η(j)=w} , (25)

P̃ (v, u|w) =
n∑

j=1

d(j)−1∑

k=1

1{yk(j)=v,yk+1(j)=u,η(j)=w}/
n∑

j=1

(d(j) − 1)1{η(j)=w} . (26)
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We obtain empirical identification clouds ψ̃w(v) and ψ̃w(v, u) if we substitute
the estimates just described for the corresponding probabilities in (15) and (19).

First of all we modify the values of ψ̃w(y) that were obtained by using too
little observations. Let ν(v) denote the number of observations of the term v in
the sample X and μ ∈ N denote the minimal value of one required for calculating
ψ̃w(v). Let

Vw = {v : ν(v) ≥ μ, νw(v) �= 0} , (27)

ψ
w

= min
v∈Vw

ψ̃w(v) , (28)

ψw = max
v∈Vw

ψ̃w(v) . (29)

The functional
ψ̃∗

w(v) = (ψ̃w(v) ∨ ψ
w
) ∧ ψw (30)

will be used instead of ψ̃w(v) for the parametric estimation of ψw(v). Here ∨
and ∧ denote the maximum and minimum operators. Further in this paper by
writing ψ̃w(·) we mean the modified one ψ̃∗

w(·).
The functionals ψw(·) and ψw(·, ·) determine the arrangements of set V for

every w ∈ K and every pair (w, v), v ∈ V : V (w) = (v1, . . . , vh) and V (w, v) =
(u1, . . . , uh), where h = card V and the following conditions hold:

ψw(v1) ≥ ψw(v2) ≥ . . . ≥ ψw(vh) (31)

and
ψw(v, u1) ≥ ψw(v, u2) ≥ . . . ≥ ψw(v, uh) . (32)

We use these arrangements for the construction of parametric models of the
functionals ψw(·) and ψw(v, ·). Let the condition that, for all w ∈ K the following
equalities are valid, be fulfilled

ψw(vk) = g1(k, θ), θ = θ(w) (33)

and
ψw(v, uk) = g2(k, λ), λ = λ(w, v) . (34)

Here gi(·) are some chosen functions, θ and λ are unknown parameters (generally
multidimensional) to be estimated.

We discuss the procedure of estimation only for ψw(·), because ψw(v, ·) can
be estimated analogously. First of all, we arrange set V the way it is described
in (31) with estimate ψ̃w substituted for ψw. As the value of h can be very high,
while the size of samples is usually not so large, only a part of terms is used for
the parametric estimation of the identification cloud of word w:

ψ̂w(vk) = 1, if s < k < h − l . (35)

The identification cloud includes terms v1, . . . , vs and vh−l, . . . , vh, — only
those terms v ∈ V for which the value of ψ̃w(v) highly differs from 1. First of
all, we discuss finding of the values of s and l. Consider the hypothesis
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H0 : ψw(v) = 1 (36)

as opposed to the alternative

H1 : ψw(v) > 1 (37)

and let α(v) denote a p–value. The value of s is determined by the equality

s = max{k : α(vk) < α} , (38)

where α is the chosen level of significance, for example, α = 0.1. Analogously

l = max{k : α(vh−k) < α} , (39)

where α(v) denotes a p–value for the alternative

H1 : ψw(v) < 1 . (40)

Assume that H0 holds and the indicators 1{aτ=v}, τ = 1, 2, . . . , d are condi-
tionally independent and identically distributed taking value 1 with probability
P (v)

def
= p, if the condition η = w is fulfilled. Then the conditional distribution

of empirical probability P̃ (v|w) under the condition
∑n

j=1 d(j) · 1{η(j)=w} = m
is a binomial distribution and the critical level of significance α(v) is determined
by the equality

α(v) =
∑

m0≤k≤m

(
k

m

)

pk(1 − p)m−k , (41)

where m0 =
∑n

j=1
∑d(j)

k=1 1{y(j)k=v,η(j)=w}. Analogously α(v) is determined by
the equality

α(v) =
∑

0≤k≤m0

(
k

m

)

pk(1 − p)m−k . (42)

The value of p is often unknown therefore it may be substituted by P̃ (v) in
equations (41) and (42). In order to estimate ψw(v), we choose a certain class of
parametric functions: let

γ(k, θ) = θ0 + θ1k
−θ2, θ = (θ0, θ1, θ2) . (43)

Then

log ψw(vk) =
{

γ(k, θ), 1 ≤ k ≤ s,
γ(k, θ∗), h − l ≤ k ≤ h.

(44)

Estimates of the parameters θj and θ∗j , j = 0, 1, 2 are found by the equalities

θ̂ = arg min
θ

s∑

k=1

∣
∣
∣log ψ̃w(vk) − γ(k, θ)

∣
∣
∣
β

, (45)

θ̂∗ = arg min
θ

h∑

k=h−l

∣
∣
∣log ψ̃w(vk) − γ(k, θ)

∣
∣
∣
β

, (46)

where β = 2 or β = 1.
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In case β = 2, we have a common least squares (LS) method, for which pro-
cedures for calculating estimates (also weighted ones) are usually implemented
in any larger statistical package. Unfortunately, LS estimates are very sensi-
tive to the empirical distribution log ψ̃w(·) declinations from the theoretical ones
γ(k, θ), therefore a more robastic median method (β = 1) is worth considering.
If an appropriate procedure is not implemented in the statistical package being
used, then a simple iterative algorithm for estimating θ can be used:

θ̂(j + 1) = arg min
θ

δ∑

k=1

(log ψ̃w(vk) − γ(k, θ))2

| log ψ̃w(vk) − γ(k, θ̂(j))|
, j = 0, 1, . . . . (47)

Here θ̂(j) is the LS estimate. The estimate of θ∗ is calculated analogously.

4 Discussion and Conclusions

In this paper, we introduce stochastic models for identification clouds which can
be used in solving problem of keyphrase assignment to scientific publications.
The models present various levels of restrictions on the arrangement of scientific
terms in a text, including the most general one with no restrictions (equiva-
lent to word n-gram model), as well as the models with structural relations of
some kind among terms. The latter ones may not necessarily represent reality
very well but they suit better for applications due to a relative simplicity of
calculations. Such restrictions on relations include a naive assumption on the
conditional independence of terms (unigram model or bag of words approach)
and a more general assumption on the Markovian property of dependence (two-
gram model). It must be mentioned that some issues have not been addressed
in this paper and they are to be discussed thoroughly in the following papers.
That includes iterative procedure of homogenous parts identification, questions
related to quantitive estimation of efficiency, and also questions related to prac-
tical aspects of identification clouds.

Practical experiments on real data are needed to evaluate the performance of
proposed algorithms. For such experiments to be performed, constructive proce-
dures, practical recommendations and data arrays of a certain size are needed.
Along with the analysis of effectiveness of the proposed methods in classifying,
it is also natural to compare these methods to other popular state–of–the–art
methods which are highly effective and represent quite different ideas — SVM, k–
nearest neighbours, LLSF, etc. The unsupervised learning approach (LSA, pLSA,
LDA) based algorithms must also be considered both as stand-alone methods as
well as feature space dimensionality reduction methods.

Although some investigations have been completed, their results should not
be treated as highly significant because they were conducted on the basis of
really poor data bases. The new database kindly provided by IMS (Institute of
Mathematical Statistics) and VTEX Ltd is being prepared to run tests on. It
consists of approximately 14000 full text articles from the field of probability
theory and mathematical statistics with keywords and MSC classifiers assigned
to. The results of experiments are to be presented soon.
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Abstract. We present a content markup language for physics realized
by extending the OMDoc format by an infrastructure for the princi-
pal concepts of physics: observables, physical systems, and experiments.
The formalization of the description of physics observables follows the
structural essence of the operational theory of physics measurements.
The representational infrastructure for systems and experiments allow
to capture the distinctive practice of physics: natural laws are supported
by evidence from experiments which are described, disseminated and
reproduced by others.

1 Introduction

The distributivity of information and services over the Internet has changed all
aspects of life, and science is not an exception. We anticipate that the systems
currently investigated in the community will eventually change scientific prac-
tice and that they will have a strong societal impact, provided that they can
inter-operate to cover the whole work-flow of scientific research, education and
application.

Scientific
Method

The  

Testing/
Experiment

Predictions

Theory−
Exploration

Hypothesis
Formation

Concept
Formation

Observation

Com−

Publication

Edu−
cation

Application

munication

Fig. 1. The Scientific Method

To further this vision we need
to develop, implement, and provide
semantic-based and context-aware
techniques for acquiring, organiz-
ing, processing, sharing and using
knowledge in science.

Our starting point is the view
of the scientific method as a spiral
(see Fig. 1), where we have our fo-
cus on physics here. In this view,
scientific research in physics moves
in a spiral trajectory from origi-
nal ideas to results and even ap-
plications. Ideas pass through the
processes of observation of natural
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processes, then of concept formulation to describe these. These allow scientists
to express initial theories about (quantitative laws of nature governing) them,
which are then explored (what are the consequences of the model assumptions)
leading to predictions about processes that can be verified or falsified (to a
certain degree) experimentally. These experiments usually lead to new observa-
tions, starting the next round in the spiral until a quantitative (mathematically
formulated) theory predicting exclusively correct results from experiments is
formulated. Observables in physics have to be suitably found such that they
can be physically measured, their algebraic counterparts being then candidates
for building stones of a theory. The semantics of mathematics as such is more
confined, searching for logically correct sets of rules.

At the moment, most of the steps in Fig. 1 are separately supported by
software systems, e.g. literature searches in Google Scholar or WikiPedia,
theory exploration in computer algebra systems like Mathematica, and ex-
periments in simulation systems. But the systems are, by and large, not able
to inter-operate since they use differing data formats, make differing model
assumptions, and are bound to an implicitly given context that is only docu-
mented in publications about the systems. For instance, copy-and-paste from
Google Scholar or WikiPedia to Mathematica or a simulation system
is impossible because of this format problem. Moreover, where possible, copy
and paste can be very dangerous, since computer algebra systems make dif-
fering assumptions on the Computercode-libraries, the simulation systems are
based on1.

We are set here to arrive at a content markup format for physics. Early con-
cept discussions and visions [Hil05a, ERH05, HMS03, Hil05b] have not led to
a realization in terms of an encoding, since the problem was attacked from
the ground up. In this paper we will build the bridge from vision to a usable
markup language by extending the OMDoc (Open Mathematical Documents)
format [Koh06b] by an infrastructure for (physical) systems, observables and ex-
periments and call this new module and the extended system PhysML (Physics
Markup Language). Since we can now share all the infrastructure — in partic-
ular the theory and statement levels — with mathematics, the language design
for PhysML becomes feasible.

2 Desiderata for a Physics Markup Language

The design of a semantic markup language for a learned field is more sophisti-
cated than it might seem. The reason is that, in order to be useful it has to map
the way research is organized. This leads to language designs centered around
the principal objects of the respective research field. In chemistry, the Chemical
1 A simple example, where the lack of explicit context led to a very expensive failure

was the September 1999 loss of a $125 million Mars orbiter, which crashed on Mars.
The cause was that NASA used for its specifications metric units, but the Lockheed
Martin engineers misinterpreted the data assuming they were given using Imperial
units of measurement.
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Markup Language CML [CML05] was designed with the name of a molecule as
principal object, to which properties and its chemical reactions are attached as
properties2.

In mathematics, the earliest discipline to have a dedicated markup language,
we have MathML and OpenMath as markup formalisms that take mathema-
tical objects as principal objects. The OMDoc format [Koh06b] extends them
with content markup for statements (like definitions, axioms, theorems, and
proofs) and theories (conceived as principal objects on a higher level).

In physics, since the times of Galilei (‘Experimental results are the highest
authority’), the young Einstein (‘A theory is to be accepted if it describes and
predicts all possible experiments,— independent of the feelings and ‘intuition’ of
the scientist ’ [EB72]), and most important of P. Bridgeman [Bri27], who elu-
cidated first the logical steps of physics learning, by analyzing the operational
steps in doing research, it is now consensus [Mit70, Fal70b, Fal70a, Sak93] that
research is accepted as physics if it does physical experiments with apparatuses
which represent physical observables. This simple sounding requirement will be
the entry point for us to design a specific Physics Markup Language, a construc-
tion which tries to mirror the way physicists operationally think.

2.1 Physics as a Science of Measurements

We start the same way as a physicist would enter a new field: by operationally
following the consecutive steps:

DP1. Decide to work on a specific field, and gather ’pre-scientific’ available
knowledge.3

DP2. Define an observable; In physics this has to be done by constructing a
physical device4, called an apparatus, with which measurements can be made
giving real valued numbers5 depending on the specific experimental setup.6

DP3. Set an iterative operational construction rule to refine stepwise the design
of the apparatus such that (just as in ‘proof by induction’) by applying the
rule iteratively, it will be accepted that successively more precise apparatuses
can be built in principle.7

2 We think that an alternative approach would have had more merits, to designate
chemical reactions as the principal objects — the principal action, a chemist does.

3 By this we concentrate on fields of interest, where we at least assume that by prepar-
ing physical experiments we may gain new knowledge.

4 Historically, in the 1960s, there has been a long debate, whether in classical Mechan-
ics, in contrast to all other fields, instead of building a physical device, already the
description of how to build that device is sufficient [Mit70].

5 In the modern Theory of Measurements observed numbers are to be mapped to
Eigenstates of a Hermitian Operator, which is the mathematical image of the physical
apparatus.

6 This rule separates physics from other fields, such as mathematics.
7 This absolutely essential rule assures that we stay with doable physics experiments.

The condition that the rule has not to depend on the status of actual refinement
assures that the limit (see next rule) to a virtual ideal mathematical counterpart of
the observable will be secure and correct.
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DP4. Take this construction to its limit , and define the virtual outcome of
such an ‘ideal device’ as the physical observable, which then can directly
be related (mapped) to the respective mathematics.8 By this mapping to
mathematical objects and their algebra, theoretical physics can be done with
the aim to reproduce all previously conducted experiments and correctly
predict any doable experiment in the field within the construction-dependent
uncertainties of the apparatuses.

DP5. Do a set of experiments, map to theory, check with the predictions — if all
are borne out we have a new natural law (Otherwise the set of assumptions
and results are called ‘model ’).

DP6. Distribute the results in a way so that the experiments and calculations
can be repeated by others in the world . Physics results (relations between
observables) are independent of representations chosen for the mathematical
objects needed, and independent of where and when (space and time chosen).
They should be repeatable by other physicists at other laboratories in the
world. Therefore the actual spreading of the information on the findings to
other laboratories in the world is part of the operational procedure to gain
physics insight.

To strengthen our intuition about the crucial step DP3, let us consider an
example: Assume we want to measure the position in space of a physical object in
classical mechanics. First we design a physically constructible ‘detector’ covering
a finite space area (xi, Δxi) which can distinguish whether the object is inside the
detector area or not. Then we buy very many of these detectors and plaster (non-
overlapping, touching detectors) the physical space. By checking all of them we
learn in which detector (xi, Δxi) the object is to the precision Δxi. Repeating the
experiment but with (may be a more expensive) detector set with finitely smaller
detector space, say Δxi+1 = Δxi/2 will give a better precision of the experiment.
Repeating the application of the rule, which is obviously independent of the
absolute value of precision gained in a certain step, would give us the ideal
physics result. However we cannot experimentally do or pay for many refinement
steps, and have to fear that the correctness of the experiment will break down if
we physically go too far. That is why the limit process for the physical observable
is done by virtually, not physically, going to the limit and mapping the result to a
mathematical object as the mathematical representative of the observable. Each
of the assumed algebraic properties has then to be tested by respective physical
experiments. Thus only after experimental testing e. g. all commutative algebra

8 A Hilbert operator for the ideal apparatus, a Hilbert State for its actual physical
momentary realization, and eigenvalues for its measurement results. We confess that
in practice, most scientists use real continuous variables for convenience, say for
the position in space of a classical mechanical object, but with the strategy given
here, we assure that we arrive at the correct quantum mechanics first and gain the
classical mechanics statement by averaging over space from there using the standard
Ehrenfest principle. The price for the convenience is high: we have to use Banach
spaces instead of Hilbert space, any proof has to be done by iterating back to Hilbert
space, use of distribution theory instead of functions, etc.
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properties of the mathematical representative of the space position observable
we can identify it with a vector in Euclidian space.

In short, we need the process given in the DP steps to ensure the choice of the
related mathematical object and to get the best strategy for a semantic encoding
of physics in a markup language. But how does this formal operational definition
fit to the actual practical fixing of physics observables by international commit-
tees, e.g. the CGPM (Conference Generale des Poids and Measures), CODATA,
IUPAP (International Union of Pure and Applied Physics), and SUNAMCO
(Standards, Units and Nomenclature, Atomic Masses and Fundamental Con-
stants)? This question is the domain of Metrology, an active research field of its
own (see [Pen06] for a recent summary). The international metrologic commis-
sions dwell on the next step of fixing observables once the operational definition
has been set, focusing on

Precise measurement procedures extending the practical measurement of
observables to very large and very small scales is achieved (for the length
scale from cosmological to subatomic).

Determining physical constants by finding quantitative natural laws which
connect real observations and thus can be reformulated to define a physical
constant which is given by a physical process (such as the gravitational
constant, the speed of light, etc.). Examples are: the scale for the time is set
to be the second fixed as 9.192.631.770 periods of the hyperfine split light
radiation of the atom Cesium. The metre is the length of the path traveled
by light in vacuum during a time interval of 1/299.792.458 of a second, thus
replacing the Ur-metre at Paris measured by a length ruler.

Hunting for higher precision which is especially necessary when long time
unique series of measurements of given observables have to be trusted such
as in geophysics, astrophysics.

2.2 Principal Objects for a Physics Markup Language

Given the above, we have to model the following principal concepts in a con-
tent/context markup language for physics.

Observables. As described, an observable is defined by the operational descrip-
tion of the defining apparatus, an iterative refinement rule, and properties
such as dimension, scale, and attached algebraic object. The relations in
which this observable occurs, etc. can be represented in OMDoc.

Experiments. Physics is distinct from other sciences by strictly sticking to re-
producible experiments’ outcomes as the source of knowledge. Reproducible
means: to be able to tell others about the experiment so that they can
reproduce it. This is in contrast to other sciences such as meteorology, his-
tory, or biology, which have records (data recorded over time) as principal
source.

Apparatuses. Experimental measurements are done using apparatuses. An ap-
paratus A is defined by a detailed description on how to build it, so that
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others may redo the experiment. Alternatively an apparatus can be fully
described by all its simultaneously measurable observables9. A set of given
values for all its properties defines a State |ai〉, i = 1, 2, 3, . . . of A. An ex-
periment is conducted by bringing A into contact with another apparatus B.
The logical asymmetry of a typical experiment comes only with the mind of
the observer, the experimentalist. She uses B to get information about the
state of A.

Again, an example is in order: Assume we have an apparatus gas-filled bot-
tle, with a set of observables such as density of gas , size, color , and material ,
and one thermostatic observable, the temperature. We choose B to be a device
which mostly has the same observables, such that if brought into thermal con-
tact with A it does not affect the properties of A significantly but adapts its
temperature to that of A. We call B a thermometer and A a system in this case.
Our interest here is on the value shown by the thermometer as a result of the
value of the temperature of the apparatus. We neglect the (inevitable) changes
of other observable’s values, both of the system and the measurement device:
such idealizations of experiments are common in physics.

3 Extending OMDoc for Physics

In this section we will extend the OMDoc format10 by an infrastructure for
(physical) systems, observables and experiments.

With the existing representational infrastructure in OMDoc we can already
represent structured collections of interrelated concepts and statements about
them via OMDoc theory11 contexts. One of the central concepts in physics,
the theory of measurable quantities can be set up in this way using OMDoc

symbols.
We start with a simple example, the dimensions of the SI units.

9 We note that in physics the list of properties of an apparatus is either finite or
countably infinite (in contrast to e.g. biological systems). This assures a Hilbert
space of states and real numbered values for the observables as the eigenvalues of
the Hermitean Operator representing the Observable. This restriction to at most
countable infinite property list is absolutely essential for physics. Only by that we
get, after mapping to the formal mathematical context the correct observation that
in all physics experiments measured numbers are real, as assured by the Hilbert state
space and the Hermitean Operators therein.

10 Due to space restrictions we cannot introduce the format here; we refer the reader
to [Koh06b] for the language definition and examples.

11 The nomenclature in mathematics, which gave rise to the element names in OMDoc

and the naming conventions in physics clash here. In physics a set of assumptions
about the physical world are called a “model” until they are generally accepted, only
then are they called a “theory” (e.g. the Nuclear shell-model; however: quantum
theory, general relativity theory).
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Element Attributes Content
Req. Optional

observable name algebra, xref metadata?, opdef, refinement, type?
refinement xml:id, xref metadata?, CMP*, FMP*
opdef xml:id, xerf metadata?, CMP*, FMP*

system xml:id, xref metadata?, realization?, observable*,
preparation?, state?

realization xml:id metadata?, CMP*, FMP*
preparation xml:id metadata?, CMP*, FMP*
state of xml:id, xref metadata?, value*
value for xml:id, xref 〈〈mobj〉〉
experiment xml:id, xref metadata?, CMP*, FMP*, measurement*
measurement xml:id, xref metadata?, state, state
evidence for, type xml:id, metadata? CMP*, FMP*,interpretation
interpretation xml:id metadata?, CMP*, FMP*
where metadata, CMP, FMP and type are OMDoc elements described in [Koh06b] and
where 〈〈mobj〉〉 is (OMOBJ |m:math |legacy)

Fig. 2. The Structure of PhysML Elements

Listing 1.3. Introducing Basic Concepts in a OMDoc Theory

<theory xml:id=”dimensions”>
<symbol name=”mass”/><symbol name=”length”/><symbol name=”time”/>
<symbol name=”charge”/><symbol name=”temperature”/>
<symbol name=”volume”/>

<definition for=”volume” type=”simple”> length3 </definition>

</theory>

We can introduce derived dimensions like the dimension for volume as defined
concepts. Note that all of the symbol declarations make the concepts available for
the use in OpenMath-encoded formulae via OMS elements and for the markup
of technical terms via the OMDoc term element. Both identify a concept by
its name and home theory (called a content dictionary; hence the attribute cd).
Here as in the following, we use mathematical notation in boxes to abbreviate
the OpenMath objects in the listings to save space.

We will use these dimensions as a type system for quantities, and introduce
the units as constructors for the dimensions (note that we introduce the symbols
with a type12).

Listing 1.4. A Theory of SI Units

<theory xml:id=”units”>

<symbol name=”gram”><type system=”dimensions”> mass </type></symbol>

12 In the example, we have not executed this, but it is possible to extend the type system
to model ranges of numerical values in quantities in this type system: Instead of sim-
ply specifying that the unit K is of type \temperature we give K the complex type
〈temperature,R∗〉 and adjust the dimension-types of the arithmetic operators, so that
they check for range admissibility. This puts a considerably higher load on the type
checking algorithm, but gives more control and quality assurance. As OMDoc encod-
ing tolerates multiple type systems, we need not even choose one, but can accumulate
the knowledge in the representations and use the one appropriate to the task at hand.
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<symbol name=”Kelvin”><type system=”dimensions”> temperature </type></symbol>
<presentation for=”Kelvin”>K</presentation>

<symbol name=”Celsius”><type system=”dimensions”> temperature </type></symbol>
<presentation for=”Celsius”>◦C</presentation>

<definition for=”Celsius” type=”implicit”> ∀x �= 0.K = (x − 273.15)◦C </definition>

</theory>

As usual, we can define the intended notation of a concept via presentation
elements (see section 4) and we can introduce derived units via definitions. With
this machinery, we can also state natural laws:

Listing 1.5. A Natural Law Expressed as an OMDoc axiom

<axiom xml:id=”force mass acceleration” type=”natural law”>
<CMP>Force is mass times acceleration.</CMP>

<FMP> F = m · a </FMP>

</axiom>

Note that in OMDoc terminology we are dealing with an axiom, i.e. with an
assertion that cannot be mathematically proven13 but has to be assumed about
the world. In physics a relation between observables has to be supported by sets
of experiments, with no counter-evidence within the range of the variables of the
involved observables.

3.1 Observables

Above we have determined the notion of an observable as a primary object of
physics. As any observable — e.g. the temperature, or velocity — of a given
physical system can be used in formulae describing the system, we need to ex-
tend the OMDoc format by a new statement-level language element that is
definition-like. The observable element introduced by the PhysML module in
OMDoc (see Figure 2 for an overview) has three relevant children14 opdef,
refinement, and type, to model the properties of observables we have iden-
tified in Section 2. The opdef and refinement elements contain mathematical
vernacular , i.e. structured text interspersed with mathematical formulae. Math-
ematical vernacular is represented in OMDoc by a multilingual group of CMP
(commented mathematical property) elements with mathematical text, and (pos-
sibly) a multi-system group of FMP elements with formalizations of the properties
expressed in the CMPs. The opdef element is used for describing the operational
definition of the observable, i.e. the defining process of measurement, whereas

13 There may be physical evidence that supports it though.
14 Here and in the following, we will not explicitly describe the metadata element,

which is used in OMDoc to accommodate bibliographic and administrative meta-
data, specifying titles, digital rights, licensing, authorship, timestamping, etc. or the
xml:id attribute which is used for identification. Details can be found in the OMDoc

specification [Koh06b].
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the refinement element is used to specify the rule of iterative refinement that
takes the measurement process to its (idealized) limit.

The dimension of the observable is specified as a type element. Here we
can directly use the type system for dimensions we have introduced in the last
section. In our example in Listing 1.6 this is just the temperature.

The observable element carries a name attribute, which is used by OM-

Doc to introduce a symbol that can be referenced by an OMS element just like
the symbol element. Furthermore, it carries an optional algebra attribute that
contains a pointer to an OMDoc representation to the mathematical object
introduced by this observable.

All of these elements also carry an optional xref attribute that allows to refer
to an already existing representation of the same element via an URI reference;
the effect is that the referred object is virtually copied in to the place of the
referring one.

Listing 1.6. An Observable for the Temperature

<observable name=”temperature”>
<opdef><CMP>Measure with a thermometer.</CMP></opdef>
<refinement><CMP>Make the thermometer stepwise smaller.</CMP></refinement>
<type system=”dimensions”> temperature </type>

</observable>

3.2 Physical Systems and Their States

One of the basic building block of PhysML is the system element that is used to
represent a physical system. The system is described via the mathematical vernac-
ular in a realization element which is the first relevant child. As we have seen
above, a physical system can be characterized by a (in practice very finite) set of
observables, i.e. physical variables that can be measured independently. These are
represented by a non-empty set15 of observable children. Listing 1.7 shows a very
simple system, which we will use as a concrete measuring apparatus later.

Listing 1.7. A Simple Physical System

<system xml:id=”thermometer”>
<realization><CMP>A thin glass tube with mercury in it.</CMP></realization>
<observable xref=”#temperature”/>

</system>

15 Enjoy the special cases: By use of an apparatus, which cannot measure anything (that
is: has no observable) one cannot learn anything. The respective mathematical oper-
ator would be the identity. Less trivial is the case, where we prepare a system in state
|a〉, then try a measurement ‘is the system in state |a〉’ ? If it is already in that state,
one does not learn anything new, and that is: no-one can decide whether the experi-
ment took place or not. Example: heat a system and a thermal measuring device to 40
deg. Then measure the temperature of the system by the device: Your result 40 deg
can by no means be distinguished from the suspicion you did not do the experiment.
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In this setup, we have represented only the observable we are interested in: all
other physical traits of the apparatus are irrelevant for our current purposes. If
other physical properties also matter, then we can add other observables. How-
ever, we have to make sure that we fix the states of all of the observables that
we do not want to measure. This can be done informally in mathematical ver-
nacular in the optional preparation element, which may follow the observable
elements, and more formally in a state element. A state element specifies a set
of values for observables in the system it refers to (either its parent system or
the system specified to in the optional of attribute) via a set of value children.
A value element specifies the observable it refers to by referring to it’s name
in the required for attribute. Its content is a representation of a physical quan-
tity as an OpenMath, content MathML, or OMDoc legacy element. In the
example below, we have (somewhat arbitrarily) prepared a gas cylinder for an
experiment by making it red.

Listing 1.8. A Physical System Prepared for an Experiment

<system xml:id=”gas cylinder”>
<realization><CMP>A gas−tight wooden cylinder</CMP></realization>
<observable xref=”#pressure.obs”/>
<observable xref=”#density.obs”/>
<observable xref=”#color.obs”/>
<preparation><CMP>We make the cylinder red!</CMP></preparation>

<state><value for=”color”> red </value></value>

</state>
</system>

3.3 Experiments

Physical experiments are represented by the experiment element in PhysML.
The body of this element consists of two system elements followed by a set16 of
measurement elements. The first child represents the system which is measured,
the second the measuring device. The measurement elements contain two state
elements as described above which correlate the state of the system on which the
measurement is performed with the state of the system of the measuring device.
In the following example, we represent the result of measuring the temperature
of a gas cylinder with varying density and pressure.

Listing 1.9. Experiment: measuring the temp. of a gas cylinder

<experiment xml:id=”ex pressure vs temp”>
<CMP>Measuring the pressure vs. temperature of a compressed gas cylinder</CMP>
<system xref=”#gas cylinder”/>
<system xref=”#thermometer”/>
<measurement xml:id=”m 213”>

<state of=”#gas cylinder”>

<value for=”pressure”> 332.49586psi </value>

16 We explicitly allow an empty set of measurements here in order to describe future,
planned or failed experiments that have not yielded measurements (yet).
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<value for=”density”> 19g/l </value>

</state>

<state of=”#thermometer”><value for=”temperature”> 17.52K </value></state>
</measurement>

</experiment>

Note that this only represents the raw data from an experiment. We can link
experiments and natural laws, such as the one stated in Listing 1.5 via the
evidence element. The main insight here is that as we cannot “prove” natural
laws, but only observe them. We can only keep on experimenting in physics
and collect evidence or counter-evidence for any relations between observables.
The evidence element contains a non-empty set of experiments followed by
an interpretation element that allows to detail any interpretative steps, e.g.
an account how the data was fitted to a curve, etc. Its for attribute specifies
the relation it concerns, and the type attribute specifies whether the evidence
supports it (value for) or falsifies it (value against).

In reality one is left with a residual ambiguity because physical experiments
are conducted with real apparata, while the physics law gives a mathematical
relation between the idealized quantities of the physical observables and apparata
obtained as the (virtual) limit of the stepwise refinement iteration rule.

4 Reading, Writing and Arithmetic with PhysML

Documents

Of course, the XML-based PhysML format presented here is not directly suited
for humans to read and write. And indeed it is not intended to be; humans
should use adaptive presentations for reading and invasive editors [KK04] for
manipulating PhysML documents.

The OMDoc style sheets have been extended appropriately for the PhysML-
specific elements. With these, PhysML documents can be converted to XHTML
documents with MathML formulae that can be displayed in a browser or to PDF
documents for printing via the LATEX formatter.

PhysML inherits a well-established notation declaration language and pre-
sentation system from the OMDoc format: for new concepts that are intro-
duced via symbol elements notation information can be specified via OMDoc

presentation elements: In the presence of the following declaration,

<presentation for=”#Celsius”>
<use format=”html|pmml”>&#x000B0;C</use>
<use format=”TeX”>{}ˆ{\circ}C</use>

</presentation>

The OpenMath object representing the temperature in of the thermometer in
Listing 1.9 will indeed look like the visualization in the box.

To write PhysML documents, we have concentrated on the LATEX workflow
that is well-established in physics. Concretely, we have extended the semantic
TEX system STEX [Koh06a] by PhysML functionality.
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Listing 1.10. Writing the PhysML for Listing 1.4 in STEX

\begin{module}[id=units,uses=dimensions]
\symdef[type=$\mass$]{gram}{g}
\symdef[type=$\temperature$]{Kelvin}{K}
\symdef[type=$\temperature$]{Celsius}{{}ˆ{\circ}C}
\begin{definition}[ for=Celsius]

$\allcdot{x>0}{x\Kelvin=(x−273.15)\Celsius}$
\end{definition}

\end{module}

For more choice in invasive editors, we will extend the OMDoc wiki system
[LK06] and the PowerPoint plugin for OMDoc [KK04] to PhysML.

The explicit, and standardized content representations for physical documents
in PhysML will allow us to offer added-value services that cannot be offered on
conventional representations. Examples are the dimension check comparing the
physical dimensions, and the units used in an equation presented in a paper. If
the dimensions on both sides of an equation do not match (say kg on one side, and
meter on the other, the equation is physically openly wrong, if different units for
the same dimensions were used on both sides this is called ‘unlawful sloppiness’
(say K on one side, ◦C on the other). Other checks will include the algebraic
matching of both sides of an equation (say if vector on one side and coaxial
vector on the other, this equation is bluntly incorrect). But more intelligent codes
could also read the semantics delivered and offer mapping of algebraic results in
different representation (say: integral instead of differential formulation, vector
vs. vector-component or exterior form, etc.) thus directly assisting the reader to
not having to read clumsy formulations of theoretical results from old times, but
get it in the present used representations and notations.

5 Conclusion and Further Work

We have demonstrated that a Markup Language for the content of physics can be
designed by extending the content and context markup format OMDoc with a
representational infrastructure for the principal objects of physics: observables,
systems, and experiments. The resulting language PhysML is able to catch
the logical and operational structure specific to physics, differentiating this field
from others. The extension presented in this paper is part of the ongoing enter-
prise to extend the OMDoc format to the STEM fields (Sciences, Technology,
Engineering and Mathematics).

The next step is now to evaluate the language by marking up a larger body
of knowledge in physics in PhysML. We have started work on the technically
ubiquitous and basic field of thermostatics. This should give us a clear indi-
cation whether PhysML is adequate for all of physics, or pinpoint the nec-
essary changes to the language design. An international collaboration on the
further development of PhysML is looked for, including experts from theo-
retical and applied physics and related fields, in particular mathematics and
chemistry.
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New and powerful services can be implemented once the scientific content
can be semantically encoded, retrieved, and reused digitally. In physics, these
include the search for other experiments on the same observables, dimension and
algebraic checking of mathematical equations, mapping to other mathematical
representations of the same theoretical physical expression, etc.

Using the approach of analyzing the operational and logical practices of a
scientific discipline field, and map this to field-specific modules extending the se-
mantic markup language OMDoc will allow to spread semantic content markup
to other scientific fields.

With authors to increasingly make use of markup languages, and retrieval
engines following suit to offer intelligent search algorithms making use of the
known markup languages, users will gain effective tools to increase the reachout
of their scientific work, having the content , not just the text, of the work of
others at their fingertips.
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Abstract. We explore the social context of mathematical knowledge:
Even though, the community of mathematicians may look homogeneous
from the outside, it is actually structured into various sub-communities
that differ in preferred notations, the choice of basic assumptions, or e.g.
in the choice of motivating examples. We contend that we cannot manage
mathematical knowledge for human recipients if we do not take these
factors into account. As a basis for a future extension of MKM systems,
we analyze the social context of information in terms of Communities of
Practice (CoP; a concept from learning theory) and present a concrete
extensional model for CoPs in mathematics.

People don’t learn to become [... mathematicians] by memorizing for-
mulas; rather it’s the implicit practices that matter most. Indeed,
knowing only the explicit, mouthing the formulas, is exactly what
gives an outsider away. Insiders know more. By coming to inhabit
the relevant community, they get to know not just the “standard”
answers, but the real questions, sensibilities, and aesthetics, and why
they matter. John Seely Brown in [Bro05]

1 Introduction

In mathematics the production of knowledge is as dependent on social factors as
in any other scientific discipline — even though this is not always realized from
within, since mathematicians as a group can more easily agree or disagree on
statements than other comparable groups. They use Georg Pólya’s technique of
“plausible deduction” that serves to differentiate between reasonable hypotheses
and less reasonable ones (for a revealing ethnographic perspective on mathe-
matics see [Hei00, 144]). Their objects of research have typically no important
referent in day-to-day life, so that “truth” or “reason” is not a question of pas-
sion but of logic. At the core of mathematical identity is the concept of a proof as
a process which ascertains reason [Hei00, 210]. Therefore, at first glance mathe-
maticians build a huge, unified community and for outsiders, they seem to have
the same practices all over the world. Indeed, these practices of formalization
and proving can be easily distinguished from e.g. the one of experimentation by
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botanists. A closer look however reveals differences inside the field as well. For
instance, the research objects, proof methods, proof evaluation methods, and the
respective language about it differ quite dramatically even between subgroups as
large as geometers and number theorists. We can discern communities of applied
and pure mathematicians, which differ in the research motivation or analyticists
and algebraicists, which use different mathematical tools and reasoning styles.
Even on a very fine-grained level, there are communities that share or reject dis-
tinct practices, so that they can be rather small or short-lived: E.g. any research
collaboration team might develop special notations (see 4.1) for their object of
study and a pool of pertinent examples that are always ready at hand to test con-
jectures. Other examples of small, short-lived social units include the “students
of a particular course”.

In this paper we want to focus on the relevance of the social context for
mathematical knowledge management (MKM). In particular, we want to apply
the concept of “Community of Practice” (CoP) to the field of mathematics and
draw consequences for the design of MKM technologies. We need to acknowledge
that the context of mathematical knowledge is not only the intrinsic logical
context that we model by MKM formats up to now, but also the social context.
MKM can learn from this — after all, communities of mathematicians are quite
efficient “mathematical knowledge management systems” and mathematicians
insist that the core of mathematics lies as much in “doing” as in knowing (see
e.g. [Bar02, 221]). In short — we contend that to understand mathematical
knowledge management, we will have to understand its social aspects and hence
to model CoPs in our systems. Otherwise we run e.g. the risk of inscribing our
own CoPs into the systems, turning off users with differing practices.

2 Mathematical Communities of Practice

In 1991, Jean Lave and Etienne Wenger introduced the concept of “Communi-
ties of Practice” as the context in which learning takes place and knowledge is
produced1. By now it is a well-established analysis tool in various fields and has
experienced several extensions like “Communities of Innovation” (e.g. [Sch05,
43]) or “Communities of Knowledge” (e.g. [DP98, 66]).

2.1 Defining Communities of Practice

In order to adapt it for the field of MKM, we will now introduce the basic idea of
Communities of Practice (CoP), recall its definition, and argue for its rele-
vance in MKM by interpreting Wenger’s introduction of the term in [Wen99, 45]2:

1 They reacted with this situated learning approach against the dominant AI scheme
of human intelligence as a complex computer program.

2 In [KK05] we chose to introduce the concept via the learning object itself, mutating
from raw data to information to a knowledge object within a community of practice
(based on [BD00] and [PRR97]).
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”Being alive as human beings means that we are constantly engaged in
the pursuit of enterprises of all kinds, from ensuring our physical sur-
vival to seeking the most lofty pleasures. As we define these enterprises
and engage in their pursuit together, we interact with each other and
with the world and we tune our relations with each other and with the
world accordingly, we learn. [...] Over time, this collective learning re-
sults in practices that reflect both the pursuit of our enterprises and the
attendant social relations. These practices are thus the property of a kind
of community created over time by the sustained pursuit of a shared en-
terprise. It makes sense, therefore, to call these kinds of communities
communities of practice.”

2.2 Mathematical CoPs as Social Context for MKM

Unsurprisingly, mathematicians are as human as any other scientific species and
as such we define and engage in common grounds, we interact and tune the rela-
tions among us and others. By doing this we produce and acquire mathematical
knowledge. The interesting point that Wenger indicates here consists in his dic-
tum “we learn”. Even though MKM is concerned with knowledge, i.e. the prod-
uct of the learning process, it seems to be interested in learning more in the form
of e-learning systems as an application that be supported by MKM techniques
than as a process that leads to mathematical knowledge and has to be under-
stood for successful MKM. Learning is defined e.g. in Wikipedia as “the process
of acquiring knowledge, skills, attitudes, or values, through study, experience, or
teaching, that causes a change of behavior that is persistent, measurable, and
specified or allows an individual to formulate a new mental construct or revise
a prior mental construct (conceptual knowledge such as attitudes or values)”. In
this sense “knowledge” is a set of learned objects in an individual. Obviously,
knowledge is very subjective: it depends on the learning subject. This begs the
question how knowledge can become “objective” i.e. commonly accepted and
understood, which is one of the central assumptions in the MKM community. In
particular, how can human beings share a knowledge context? Not to drift off
into philosophy, we just mention that the phenomenological concept of “inter-
subjectivity”, i.e. the “mundane” social agreement on meaning, plays a decisive
role in this process (for more information we suggest [Dou03, 99-126]).

Wenger continues that collective learning results in specific practices that dif-
fer with the respective community in which the knowledge was built up. Note
that the term practice does not refer to a practical engagement in opposition
to a theoretical engagement: “Even when it produces theory, practice is prac-
tice” [Wen99, 49]. Such communities of practice exist in mathematics as well (as
mentioned above) even though — as they are rather informal — they don’t tend
to come into focus of the MKM community. We argue that in order to manage
mathematical knowledge we have to pay attention to the context of production
of knowledge objects. “Captured knowledge” in data bases was not only written
by an author but also produced in a community of practice. Moreover, it shall be
made use of by users who could be members of different communities of practice.
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The supposed “common sense” or even “truth” of statements is worked out in
the (social) context of CoPs3.

2.3 What Constitutes Practice?

Etienne Wenger states that meaning must be negotiated between the interlocu-
tors within a CoP and identifies two main, inter-operating processes in this:
participation (action and connection) and reification (objectification and
evaluation). In [Wen99, 63] he states “in their complementarity, participation
and reification can make up for their respective limitations”. Participation alone
is too loose and confusing to establish coherent and consistent practice — there-
fore we e.g. take minutes in meetings. On the other hand, reified practices quickly
become too inflexible to guide practice through everyday challenges hence we
need to hire judges to interpret our laws.

2.4 Mathematical Practice

In MKM, we seem to have focused on just one of those processes: reification.
We manage knowledge about mathematical objects via their reifications, in the
same way as we have to use language objects to communicate about certain con-
tents. At most the agreement on form can be viewed as a form of participation
e.g. as valid substance equivalences. In [KK05] we present the Mathematical
Knowledge Space (MKS), which we can now interpret under a CoP perspec-
tive. Wenger explicates that any ”community of practice produces abstractions,
symbols, stories, terms, and concepts that reify something of that practice in a
congealed form” [Wen99, 59]. In the following we try to uncover the congealed
practices.

Let us clarify this with an example: a mathematician at work. Typically, as a
main part of her working life she will work by herself at her desk. She will review
and evaluate what she already knows, what was said on a recent conference, or
in a published journal. She might set up hypotheses and prove, postpone or
drop them. Then she will elaborate on her results by writing a paper. Inbetween
she will talk to colleagues, attend colloquia and conferences. Even though she
works essentially by herself, she participates in the practice of mathematicians
by basing her efforts on the results and values of her experience and doing it
along the established (though informal) ways of the community.

2.5 Artifacts of Mathematical Practice as Living CoP Object

Clearly, authoring and studying documents are important mathematical prac-
tices. Hence, we can consider these documents as artifacts of mathematical prac-
tice. Documents result from the reification process of a practice. But similarly
and at the same time documents are part of the participation process of this

3 Remember the very controversial discussion about Hilbert’s formalism versus
Brouwer’s intuitionism at the beginning of the 20th century (see [Hei93] or [Bar02]).
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practice, especially if they have been produced collaboratively. Documents are
geared for the CoP-public and are a token of engagement with the specific CoP.
Moreover, newcomers use these artifacts to become e.g. a mathematician, i.e. as
John Seely Brown puts it in [Bro05] to “inhabit the relevant community, they
get to know not just the ’standard’ answers, but the real questions, sensibilities,
and aesthetics, and why they matter”. Thus, it is noticeable that reification as
well as participation are inscribed into the working documents of the field. This
property prompts us to center a CoP model around the collection of documents
(in which the respective CoP practices result). In particular, we can consider it
as a living CoP object in which many of the CoP essentials are contained and
might be mined. Note that the judgmental characteristics of a CoP described by
Brown blur the boundaries of such communities to be intersecting and rather
fuzzy which we will make use of later on.

Now, we need to take an even closer look at the practices of a community for
the modeling process.

2.6 Dynamics in Mathematical Practices

According to Wenger [Wen99, 4,49] the internal dynamics of a CoP are deter-
mined by the (interdependent) emergent characteristics of practice “meaning”,
“learning”, “community”, and “boundary”, which we will now exemplify by de-
scribing them in terms of mathematical practice.

– Practice as social negotiation of meaning: Even though our mathematician
works essentially by herself, she actively participates in the community by
accepting the reifications of knowledge of her colleagues (in research docu-
ments) and sharing her own whenever possible. By this practice mathemati-
cal language can be understood among the members of the math community.

– Practice as learning: She works along the established (though informal) ways
of the community, i.e. she reads and writes journal articles, conference pa-
pers, or listens to and speaks about colloquia talks. She takes into account
the knowledge of the past in this CoP by basing her efforts on it and con-
tinuing it.

– Practice as community: She uses and establishes the coherence within the
CoP by her engagement in the community, by working on a joint enterprise,
and using a shared repertoire.

– Practice as boundary: She feels herself as a member of the community of
mathematicians and will identify herself as such in a professional frame.
But her practices will also set her apart from other communities with other
common features.4

4 Note that boundaries are subjective. For example, scientists in the humanities and
social sciences discern CoPs of “techies” and “people people”. From that perspective
the current paper would certainly place the authors in the “techie” spot. In the MKM
community we also have a division (maybe less pronounced) into corresponding
CoPs. But from this standpoint the same paper positions the authors in the “human
factor” CoP.
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At the end we want to arrive at a model that is explicit enough to be im-
plemented in MKM systems and that provides a basis to offer new services
that support more of these aspects than the systems can currently offer (see
section 4).

3 Modeling CoPs for MKM

In the attempt to model CoPs for Mathematical Knowledge Management we
encounter the problem of a community’s dynamics as the modeling process itself
zeroes in on petrification. Therefore, the first question we have to deal with
is: how can we get a handle on (mathematical) CoPs without inscribing the
status quo — disregarding the fluid movements in a CoP? We might argue
that a snapshot of the present context in the document itself is at least a first
approximation. Unfortunately, this essentially yields a reduction of the idea of
“living documents” to mere static (e.g. paper) documents.

3.1 Document Collections as CoP Models

Here, our approach is based on the idea that the identity of a scientific CoP is
inscribed in the collection of documents this community produces. In contrast
to the static characteristics of a single document, a collection of documents,
i.e. a developing set that is structured by the respective CoP’s participating
members, maintains dynamic properties as the participation part of practice is
involved, even embedded. From the perspective of a document in a collection, we
speak e.g. of a “life cycle” of a document. Scientific developments and changing
paradigms influence not only the content and form of new documents, but also
the evaluation of older documents. We can even discern dynamics within a single
document from this standpoint e.g. notational conventions that hold for some
time but might change at any given time. Mathematical proofs serve as another
example: the state of the art is not only determined by its content (search for new
theorems), but also by its form (search for new proofs). If we consider a proof as
combination of guarantee and explanation (see [Zin04, 4]), the explanation part
is exactly the collection point of view.

In short, document collections seem to be a good starting point for modeling
CoPs in MKM. Concretely, if we can assign CoP characteristics to its collection
of documents, then the collection can be viewed as a dynamic, living CoP object ,
that can change without destroying the captured properties. Another advantage
is that we do not need to make all properties about a collection explicit, building
on the emergent effect of the composition of the documents.

3.2 Fuzzy Document Collections

Before we can start the search for CoP-characteristics in a document collec-
tion, we need to address another potential problem: CoPs do not have clear-cut
boundaries , but a set of documents does. We take refuge in a standard idea
from knowledge engineering that generalizes “sets” to “fuzzy sets”, where set
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membership is generalized to a real-valued function (with values in [0, 1]) rather
than a binary predicate. Following [Zad65] we interpret the fuzzy set member-
ship function as an evaluation function indicating the degree of membership in
a CoP-defining collection, or in other words of the value of the particular doc-
ument to the respective community. It seems dubious that a one-dimensional
value function will suffice to express the delineation of a CoP.

Moreover, the granularity of this multidimensional value function seems to
be too coarse if we only evaluate entire documents. Sometimes only specific
chapters in a book, or even a single definition carry value for a specific CoP.
Therefore we will identify values on “knowledge entities” or “micro-content”,
i.e. document fragments that make sense as a (possibly compound) unit of
knowledge.

In our approach we make use of the fact that an individual person usually does
not have a crisp delineation of which documents are relevant. We will take value
judgments on documents to open up the boundary of a set. In particular, we use
the concept of “value judgments” to define a CoP-determining document collec-
tion as a fuzzy set. Note that this set will be fuzzy in multiple dimensions, and
we will use this multi-dimensionality to support various mathematical practices
in section 4.

3.3 A Multi-dimensional Value Judgment Scheme

A natural first approach to capture such a value judgment scheme consists in
using evaluation schemes that are already used regularly for peer review at con-
ferences or journals. These should mean something for the respective community,
otherwise they wouldn’t ask reviewers to give feedback on these points. We will
attempt to model communities of practice for mathematical knowledge man-
agement by a set of value judgments on knowledge items in documents that a
community endorses.

Concretely, we will model a community of practice as a semantically closed set
of documents with judgment statements on its knowledge elements5. A judg-
ment consists of one of the following dimensions d, a reference to a knowl-
edge element o, and a numerical value v that expresses to which degree o has
dimension d.

Relevance: Is the knowledge expressed in this knowledge element relevant to
the CoP?

Soundness: Are the assertions conveyed here consistent with the assumptions
made by the CoP? As a special case: are they internally consistent?

Presentation: Is the presentation (not all knowledge is expressed formally)
likely to be understood by the CoP members?

Originality: Does the element contain new ideas?
Significance: Will the knowledge have an impact in the community?

5 We will specialize this when we apply our model to a concrete knowledge represen-
tation format in section 4.
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The dimension of “relevance” is arguably the most important (and generic) one.
It determines the mathematical knowledge endorsed by the CoP. Note that we
assume that the relevance judgment is semantically closed, i.e. if an element S se-
mantically references an element T (e.g. if S belongs to a theory that imports T ),
then T must be relevant to the CoP as well6. Note that not all properties apply
to all kinds of knowledge elements, e.g. for notation declarations only the rel-
evance property makes sense, it is used to prioritize diverse possible notations
(see section 4.1). Originality is a value judgment that takes the dynamics of the
knowledge creation process into account. Research-oriented CoPs usually value
original ideas higher than re-iterations. The significance judgment can be used
as an interim estimate or preview of actual CoP-relevance for newly contributed
material.

3.4 Capturing Value Judgments for Documents

The simplest way to determine actual values for the various dimensions of a judg-
ment consists in authoring the necessary value judgments manually; this may be
suitable for an explicitly administered CoP like the aforementioned community
of the students of a given lecture. Here the teacher may chose to supply not only
the course materials, but also the (intended) value judgments.7

Another way to obtain the necessary value judgments would be to mine ex-
isting resources, e.g. from the scientific refereeing process: We already have an
established process for passing value judgments on mathematical documents
there. For a CoP that is centered around a particular conference (e.g. the MKM
community around the annual conference on Mathematical Knowledge Manage-
ment, published in this volume), we could mine the referee reports to update the
CoP representation for the newly published knowledge. We imagine that referee
comments would be anonymized (possibly weighted by the referee’s standing in
the CoP and competence). We want to point out that the judgmental dimensions
above naturally coincide with those commonly used in conferences.

3.5 An Extensional Model for Mathematical CoPs

Note that the approach of identifying mathematical CoPs by the collection of
documents and value judgments about it only gives us an extensional model , i.e.
a basis for modeling certain behaviors of the community (or its members). In
particular, the model does not say anything about the internal structure of the
specific CoP, how membership is established or revoked, or about motivations

6 Mathematical documents inscribe the (universal) assumption that a statement can
only be accepted as reasonable, if it and all statements it depends on have been
checked (i.e no “proof by authority”). Therefore we feel it is justified to inscribe
semantic closure into the definition of mathematical CoPs. For other disciplines,
this condition may have to be liberalized.

7 The students may of course form a distinct CoP with their own value judgments
that may or may not coincide with the teacher’s.
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for membership. All of these concerns are important questions8, but currently
lie outside the focus of this enterprise. Only note that since the extensional
model does not address the intensional level, it does not preclude anything, and
therefore may very well form the basis of future modeling efforts.

It is legitimate to ask what benefits MKM might reap from this approach, and
we will answer this question in the next section by specifying some important
aspects of mathematical practice that cannot currently be supported by MKM
systems, since we do not have a representation of CoPs. This also shows that in
the model at hand mathematical CoPs are more than mere groups of people, but
a cultural phenomenon that is determined by joint practices, which determine
CoP membership as a secondary aspect. Thus the model conforms to Lave and
Wenger’s original theory of communities of practice [Wen99].

4 Added-Value Support for Mathematical Practices

In order to evaluate, whether the implementation of the CoP model adds value
to the services MKM technology can offer, we will now consider support ser-
vices for mathematical practices afforded by this model from the perspectives of
“meaning”, “learning”, “community”, and “boundary” introduced above.

As we are considering concrete practices that derive from the CoP model,
we need to set it in a concrete MKM representation format. The OMDoc for-
mat [Koh06] is a good basis for this, since it already contains an infrastructure
for some of the mathematical practices that we want: a structured notion of
theory context and an infrastructure for notation definitions. Any other format
that covers these would do just as well for our purposes.

All of the applications of the CoP model we present here are related to the
presentation of mathematical knowledge to humans at different levels: from no-
tation flexibility over intra-document and inter-document discourse optimization
up to the social level . That is to be expected, since the communication practices
of a CoP are essential to its existence.

4.1 Meaning: CoP-Specific Notation

One of the most immediate practices in mathematics is the creation of CoP-
specific languages which are represented as mathematical formulae. Their nota-
tion is one of the most visible components of mathematical documents. OMDoc

represents them as objects in the OpenMath format. For instance, the equation

(n

k

)
=

n!
k!(n − k)!

(1)

would be represented as the following string in the OpenMath XML encoding:

8 Especially if we want to increase the participation of authors in MKM projects,
see [KK04, KK05] for a discussion.
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Listing 1.1. Content Markup for (1) in OpenMath

<OMOBJ>
<OMA><OMS cd=”relation1” name=”eq”/>

<OMA><OMS cd=”combinat1” name=”binomial/>
<OMV name=”n”/><OMV name=”k”/>

</OMA>
<OMA><OMS cd=”arith1” name=”divide”/>

<OMA><OMS cd=”combinat1” name=”factorial/><OMV name=”n”/></OMA>
<OMA><OMS cd=”arith1” name=”times”/>

<OMA><OMS cd=”combinat1” name=”factorial/><OMV name=”k”/></OMA>
<OMA><OMS cd=”combinat1” name=”factorial/>

<OMA><OMS cd=”arith1” name=”minus”/>
<OMV name=”n”/><OMV name=”k”/>

</OMA>
</OMA>

</OMA>
</OMA>

</OMA>
</OMOBJ>

Unfortunately, the machine-oriented OpenMath syntax in (1.1) is painful for
humans to read, therefore it is transformed to a more human-readable form,
e.g. that in (1). Note that there are varied “standard notations” for binomial
coefficients:

(
n
k

)
, nCk, Cn

k , and Ck
n, that are specific to the third notation various

CoPs. The third one is used by French mathematicians, whereas the last one is
the Russian one.

Listing 1.2. Two Notation Declarations for Binomial Coefficients

<presentation for=”binomial” role=”applied” fixity=”infix”>
<use format=”TeX” lbrack=”\left(” rbrack=”\right)”>\atop</use>

</presentation>

<presentation for=”binomial” role=”applied” xml:lang=”fr”>
<style format=”TeX”>

<text>{\cal C}ˆ{</text>
<recurse select=”∗[2]”/><text>} {</text><recurse select=”∗[3]”/>
<text>}</text>

</style>
</presentation>

In OMDoc, we can define notations by embedding one of the XML frag-
ments in Listing 1.2 into the document that defines binomial coefficients. These
declarations then inform the OMDoc presentation engine which notation to
generate.

Note that with a notation declaration infrastructure (see [Nay02, MLUM05]
for other proposals), we can represent notational diversity in the OMDoc for-
mat, but not manage it. The attempt at a management interface manifest in the
xml:lang attribute on the presentation element is a first step that allows to
adapt the notation to the primary language of the document. But what about a
situation, where a French mathematician writes a paper for a Russian journal,
or a German professor giving a class to French students based on a Russian
textbook? In such situations, OMDoc proposes to fine-tune the notation via a
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class attribute on the OpenMath OMS element that selects the corresponding
presentation element.

In the model, which identifies CoPs by the collection of documents, we can
generate document presentations for arbitrary CoPs instead of having to rely
on target languages. Instead of embedding the notations from Listing 1.2 into
the defining documents, we could have a document containing one of them in a
CoP-specific notation declaration document, which would be used to generate
the relevant CoP-specific style sheets used in the production of the document
presentations.9

Note that a similar account also holds for natural language names for mathe-
matical concepts, which behave somewhat like notations. For instance, a “ring”
can be an algebraic structure for algebraicists, a subset of R

2 that is bounded
by two concentric circles for geometers and something you wear on your finger
for everybody else.

4.2 Learning: CoP-Specific Discourse Building

Content-oriented MKM formats like OMDoc separate content and presentation
of mathematical knowledge allowing to generate latter from the former based on
general (didactic) principles and user preferences. In the last section we have
seen how an explicit representation of CoPs can help manage notation choice
at a formula level. At the discourse level, we also have a distinction between
content and presentation: In the current view of MKM (see for instance [Far04]),
mathematical knowledge is organized into a richly structured network of theories,
which define mathematical objects and concepts, prove properties about them,
and store examples for them. This content is then organized into discourse-
level presentations — documents that contain narrative text interleaved with
the content elements, and that are tailored to a particular CoP.

Applications that automate the discourse-level presentation, like the Active-

Math system [MAF+01] that generates individually geared math courses, have
to make choices which parts of the material to present. Here the CoP data about
the micro-content together with a user’s CoP membership data can be used to
make informed choices. For instance, we often have multiple examples to choose
from that illustrate a given construct. These will usually come from theories
that are different from the theory that contains the concept to be exemplified.
Of course, the examples that come from documents that are highly relevant to
the reader’s CoP are especially familiar and therefore have a high didactic value.
The learning effect will be especially great, if a concept can be explained with
an example from another CoP the reader is a member of.

4.3 Community: CoP-Specific Reference Network

Just as a we can use the CoP information to optimize the choice of material
presented to a reader for intra-document discourse optimization, we can optimize
9 Thus a CoP-defining document collection is a principled resting place for notation

declarations, which previously had a somewhat problematic status in OMDoc doc-
uments.
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the presentation of the relations of the document to the others, i.e. for inter-
document discourse optimization. Each document usually refers to several other
documents. If a single document is cited a lot, its importance for the discipline
is supposed to be very high. In particular, its content is central for the CoP - its
presence, its past, and its future even though the value judgment about it might
shift over time. The practice of referencing reveals this shift.

Using the CoP value judgments we can e.g. weigh bibliographic references by
their CoP “relevance” value. Less relevant references might be made less visible
or left out altogether. To improve this further, we need to distinguish linkages
in documents. In OMDoc we distinguish between semantic links (usually given
as theory inclusions or theory inheritance relations), bibliographic references,
and ordinary hyper-references. All of these should react differently to the CoP
value judgments. To obtain the reference network data for the CoP model, we
might rely on algorithms for citation relevance e.g. used in CiteSeer [cit] or
GoogleScholar [Goo05].

4.4 Boundary: CoP-Specific Value Judgments

For the management of more informal CoPs we imagine to adapt techniques from
social bookmarking , an increasingly popular way to locate, classify, rank, and
share Internet resources through the use of shared lists of user-created Internet
bookmarks. The reported effect of the practice of social bookmarking consists in
the engaging latitude of individual tagging and the socially informed inference
drawing process based on mass data. At this point we don’t want to judge the
pros and contras of this approach, we just draw on the emergent dynamics of
this new technology (see e.g. [Wei05] for a discussion). If such tags are visualized
e.g. via tag clouds then a user obtains a feeling of belonging and participation,
i.e. we can integrate the boundary effects for MKM technologies.

We envision that (in analogy to general social tagging systems like “delicio.us”
for documents or “flickr” for photos, or scientific ones like “Connotea”) CoP
members store value judgments of knowledge items and make these lists publicly
accessible. The value judgments necessary for representing a CoP can then simply
be computed from the harvested value judgment lists of the members. This way
the developmental cycles of a CoP are mirrored in the CoP model as well.

5 Conclusion, Related and Further Work

We have argued that the MKM community is still turning a blind eye towards
the “social life” of knowledge and is thus missing out on valuable chances to
offer personalized added-value services: mathematical knowledge does not live
in a social vacuum, and neglecting that will rob MKM systems of the flexibil-
ity to scale up to larger and thus more diverse user communities. We cast the
discussion in terms of “Communities of Practice”, which we adapt to the con-
text of mathematical knowledge, and propose a simple extensional model that
is very well-integrated into MKM practice. We have shown the usefulness of this
model by exhibiting knowledge management applications that feed on CoPs thus
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modeled and use the information to tailor the presentation process to the (CoP
of the) user.

Unfortunately, we have not yet covered a very important practice in mathe-
matics from the CoP angle of view: mathematical proofs. Of course, mathemat-
ical documents contain proofs, and as such they are encompassed by our model,
but questions like proof style, or their peculiar status as a communicative acts
between guarantee and explanation (see [Zin04, 4]) will merit further study.

Our work here is related to user modeling and community building work in
other MKM systems. For instance, the OMDoc-based ActiveMath [MAF+01]
system employs a user modeling component to infer the prior knowledge of a
reader and employs it for the user-adaptive generation of narrative documents
leading up to a chosen concept. Compared with our model, the user model is
more detailed (it contains graded assumptions about “knowledge”, “understand-
ing” and “application”), and less comprehensive (for instance it does not contain
information about notation preferences and “user models” for groups of users are
not envisioned). But the ActiveMath user model could be viewed as the rep-
resentation of a one-person CoP, e.g. by interpreting the “knowledge” property
as “relevance”. On the other hand, CoPs could be used to prime the user model
in ActiveMath by assuming that a CoP-member knows, understands and can
apply concepts proportional to their relevance. This would allow the user to
simply identify her (pre-existing) CoP rather than giving confidence values for
a large set of mathematical concepts.

Some MKM systems try to increase author involvement by providing commu-
nity features (as e.g. this is what drives the runaway success of the WikiPedia).
For instance the Connexions project [CNX06] has recently added “community
pages” to their namesake system [CNX05] and plans to use a community-driven
post-publication system called “lenses” for quality assurance. The former offer
communities a forum for discussions and a way to identify a collection of relevant
course modules. The lenses in Connexions are rating systems allow communi-
ties and institutions to endorse certain course modules. However, as the CNXML
system can model less “practices” than OMDoc, its reach is limited to document
selection.

The next step in our research enterprise will be to implement the CoP model
presented in Section 3 and the added-value services sketched in Section 4 in
an MKM system. We hope that by offering added-value services we will en-
tice users to enter value judgments that can be used to represent and identify
CoPs (extensionally). A feedback/rating system with an interface like the ones
used in amazon.com, Slashdot or ebay, could turn an MKM system into a data
collection tool for studying CoPs of mathematicians — although the necessary
preselection of mathematicians who are willing to use MKM systems will prob-
ably introduce a strong bias.

To this effect we are currently extending the Connexions system to cope
with OMDoc knowledge. We plan to build on its existing community features
and extend them with this CoP model. As the system is used quite heavily
for E-Learning in diverse communities ranging from music theory to electrical
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engineering, we hope to gain valuable insights into the inner workings of CoPs
and their relation to value judgments. Another direction we would like to pursue
is the extension of the OMDoc format that it can represent more mathematical
practices, not just notation declarations, and the specification of technical terms.

All in all, we view the requirements coming from CoPs as essential guide-
lines for the further development of MKM formats. From an analysis concerning
the relations between knowledge and practice, we can deduce the relevance of
mathematical practices for MKM technologies as Osterlund and Carlile con-
clude that “the relational core of a knowledge sharing theory easily falters. [...]
We end up instead with a perspective that focuses on the storage and retrieval
of explicit knowledge represented in information systems. Knowledge becomes an
object shared within and across community boundaries without consequence
for the community in which it originated.” [OC03, 18].
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Abstract. Mathematical notation is a structured, open, and ambiguous
language. In order to support mathematical notation in MKM applica-
tions one must necessarily take into account presentational as well as
semantic aspects. The former are required to create a familiar, comfort-
able, and usable interface to interact with. The latter are necessary in
order to process the information meaningfully.

In this paper we investigate a framework for dealing with mathemat-
ical notation in a meaningful, extensible way, and we show an effective
instantiation of its architecture to the field of interactive theorem prov-
ing. The framework builds upon well-known concepts and widely-used
technologies and it can be easily adopted by other MKM applications.

1 Introduction

Mathematical formulae can be encoded at different levels of human and machine
understandability [1]. Formulae at the notational level are encoded on the basis
of their rendering, in the same spirit of the MathML Presentation markup lan-
guage [8]. Interaction with the user happens on formulae at this level: the user
feeds the application with formulae in some notation, the system renders the
formulae in some notation.

Formulae at the semantic level are those which the application has the deep-
est understanding of and on which it can better perform computations. In the
fields of Computer Algebra Systems and theorem provers, examples of such com-
putations include evaluation, simplification, automatic (dis-)proving, and type-
checking. This level is intrinsically application-specific.

In between is an intermediate level, which we call content level, whose aim
is to encode the structure and, to a limited extent, the semantics of mathemat-
ical formulae. MathML Content and OpenMath [14] are examples of markup
languages that encode formulae at this level. The content level is the most ef-
fective vehicle of interoperability across MKM applications not sharing semantic
foundations.

A framework that deals with meaningful mathematical notation has a nat-
urally layered architecture where the same mathematical object is encoded in
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different ways according to the activities it is subjected to. The layers are con-
nected with each other, and the encodings must be kept synchronized accord-
ingly. In this sense we distinguish notation, which is a purely presentational tool,
from meaningful notation that blends together both presentational and semantic
aspects. From the perspective of the framework’s designer, the fact that nota-
tion is extensible is a source of considerable additional complexity. It means that
the layers cannot be fully described a priori, and that their connections must
be updated dynamically as the system is enriched with new notation and new
mathematical objects. It should be noted that a system supporting extensible
notation in an exclusively presentational fashion is much simpler but also of
limited use.

We consider the following features as characterizing such framework:

Extensibility: The framework must permit its users to define their own nota-
tion in an incremental way, using a basic set of primitive constructs along
with all the notation has been defined earlier.

Remote control: Notation should provide handles for enabling indirect ma-
nipulation of the (possibly hidden) information encoded at the content and
semantic levels.

Ambiguity: The framework must tolerate (and encourage) ambiguity, which is
common practice in traditional mathematical artifacts.

Interoperability: The framework must not hinder communication with other
software.

In this paper we show how a framework supporting extensible, meaningful
notation can be designed, and we demonstrate the effectiveness of our approach

Fig. 1. Architecture of the notational framework
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in the context of a theorem proving application. Figure 1 depicts the framework’s
architecture at work, where a first order logic formula is encoded at the three
levels, the classical notational level on the left and the corresponding semantic
encoding in the Calculus of (Co)Inductive Constructions [15] on the right. In the
figure we use Helm [2] URIs as object references.

Transformations among the levels (horizontal solid arrows) are initiated by
the need of interaction between the user and the application. When the need
is to input a formula, abstraction brings the formula to the content level and
disambiguation recovers a fully semantic encoding of the formula. When the
need is to output a formula, ambiguation strips the formula of any application-
specific semantic information and rendering creates a familiar representation.
The transformations are driven by sets of bidirectional rules: a set of notational
equations drives abstraction and rendering, while a set of interpretations drives
disambiguation and ambiguation. The extensibility is pictorially represented as
changes to these sets.

Cross references and hyperlinks account for remote control. Cross references
relate corresponding pieces of information across the different encodings, so that
the rendering engine can feature semantically driven forms of selection, cut and
paste, and editing. Hyperlinks are one-to-many mappings from atomic objects
to resources. Typically they link objects to their definitions.

Relevance to MKM and contribution. This paper complements [13] by investi-
gating the technical issues related to the design of a user-extensible, interactive
environment for the development and the management of mathematical knowl-
edge in a semantically driven way. In particular, it proposes an architecture that
has proven effective in mixing presentational as well as semantic aspect of the
processed information. This is an improvement with respect to the currently
available tools related to MKM which typically focus on one, but not both, of
these equally important aspects.

Previous work [2] describing a similar architecture to that discussed in this
paper did not address the issues related to extensible input support, and it only
described informally how hyperlinks and cross references were propagated from
the semantic to the presentation level. In this paper we describe these important
features in a more abstract, but also more formal way, hoping to provide useful
guidelines for future implementations.

Paper organization. The rest of the paper is organized as follows: in Section 2 we
give a definition of notation by showing the relevant pieces of information that are
affected by the notational equations. We do so by modelling levels with terms
and transformations with functions on these terms. In Section 3 we complete
the architecture by instantiating the semantic level in the particular case of a
theorem proving application. Section 4 shows all the aspects of the framework at
work on a concrete example. Section 5 discusses some related work and Section 6
concludes with some considerations about our implementation of the framework
and some possible extensions.
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2 Syntax and Semantics of Notation

In order to define precisely what notation is and how the information it con-
veys is processed during abstraction and rendering, we need a description of the
languages encoding formulae at the notational and content levels.

Table 1. Syntax of presentation (Ep) and content (Ec) expressions

Ep ::=
x (identifier)

| l@H (literal)
| A{Ep} (annotation)
| L[Ep

1, . . . , E
p
n] (layout)

| B[Ep
1 · · · Ep

n] (box)
| α (variable)

Ec ::=
x (identifier)

| s@H (symbol)
| A{Ec} (references)
| C[Ec

1, . . . , E
c
n] (constructor)

| α (variable)

Table 1 shows the grammars for two streamlines languages of presentation
and content expressions capturing the essence of notation. The two grammars
are parametric in the following sets: a set of layout schemata L representing basic
constructs of mathematical notation such as fractions, square roots, vectors, and
so on; a set of box schemata B for annotating presentation expressions with line-
breaking hints; a set of identifiers x, a set of literals l representing characters,
numbers; a set of symbols s representing the basic elements in the ontology
language of the content level (in MathML Content this set is predefined, in
OpenMath it is completely unspecified, in either case it is open-ended and can
be extended at will); a set of constructors C of the content level for building
compound objects such as sets, lists, functions, relations. Literals and symbols
are annotated with sets of hyperlinks H . We write l and s for l@∅ and s@∅
respectively. Both presentation and content expressions may be annotated with
sets of cross references A. We omit the annotations p and c when it is clear that
we are talking about presentation and content expressions, respectively.

A well-formed presentation pattern is a presentation expression E without
identifiers, hyperlinks and cross references and such that any variable in E occurs
exactly once. A presentation term is a presentation expression without variables.
Content patterns and terms are defined similarly from content expressions.

A notational equation is a pair of well-formed patterns

P p ⇐⇒ P c

that simultaneously defines (1) an abstraction from the notational level to the
content level, and (2) a rendering from the content level to the notational level.

Example 1. The notational equation

α = β ⇐⇒ apply[eq, α, β]
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defines a notation for the infix, binary operator = which is represented at the
content level as an apply constructor whose first child is the eq symbol followed
by the two operands in order. ��

2.1 Abstraction

Abstraction is the process of instantiating the content term corresponding to a
presentation term. Conceptually this is done in two steps: first, the presenta-
tion term is parsed according to the notation that is available where the term
occurs and its parsing tree is determined. Then, the tree is navigated and a
corresponding content tree is instantiated in a bottom-up fashion.

Let us discuss parsing first. Let G0 be the grammar that defines the built-
in notation of the framework and let T be the grammar nonterminal symbol
producing terms. The definition of new notation causes G0 to be extended incre-
mentally as follows:

G0
P p

0 ⇐⇒ P c
0−−−−−−−→ G1

P p
1 ⇐⇒ P c

1−−−−−−−→ G2
P p

2 ⇐⇒ P c
2−−−−−−−→ · · ·

P p
k
⇐⇒ P c

k−−−−−−−→ Gk

where each grammar Gi+1 results from Gi by the addition of a the production for
T derived from P p

i ⇐⇒ P c
i and P c

i is a content pattern parsed with Gi (this way
notation can be defined incrementally on top of previously defined notation). In
particular, the added production is T → exp(P p) where the function exp(P )
converts a presentation pattern into a sequence of terminal and nonterminal
grammar symbols as follows:

exp(l) = l
exp(α) = T

exp(B[P1 · · · Pn]) = exp(P1) · · · exp(Pn)
exp(L[P1, . . . , Pn]) = L[exp(P1), . . . , exp(Pn)]

Note that boxes are discarded in the expansion process as they play no role in
the parsing phase and their content is juxtaposed.

A delicate technical problem related to grammars is ambiguity. An ambiguous
grammar is one such that there may be multiple parse trees for the same term.
In the most common cases ambiguity can be resolved by declaring precedence
and associativity of productions. Thus, the language may provide additional
constructs (see Section 4) so that the user can specify, for instance, that the
symbol * has precedence over + and that * is left-associative. The remaining
cases of ambiguity can be treated as errors (and the notation causing the am-
biguity could be rejected or ignored), or they may be admitted provided that
the implementation accommodates a form of content validation that can dis-
criminate, among the various content terms that can be built starting from the
very same presentation term, which ones are semantically meaningful. This val-
idation phase usually entails a deeper understanding of content terms than it
is available at the content level, thus some cooperation with the semantic level
becomes fundamental for settling structural ambiguities.
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Now we take care of the instantiation step. Given a presentation term t,
the parser yields a parsing tree for t which we denote with t̂. In particular, it
determines a pattern P p

i and a substitution σ that associates variables occurring
in P p

i with subterms of t̂ such that P p
i σ = t̂ (equality here is considered up to

cross references and hyperlinks). We abbreviate this writing t ∈ P p
i � σ.

Example 2. assuming that the + operator has precedence over =, we have that

1 + 2 = 3 ∈ (α = β) � [α 	→ (1 + 2), β 	→ 3]

where we use parentheses to indicate a generic box schema. ��

Abstraction is a function A(·) defined as follows:

A(t) = P c
i σ′ where t ∈ P p

i � σ and σ′(α) =
{

A(σ(α)) if α ∈ dom(σ)
undefined otherwise

The function A(t) is well-defined as long as the terms in the image of σ are all
proper subterms of t̂.

2.2 Rendering

Rendering creates a presentation term from a content term. Like abstraction,
we can think of this as a two-step transformation: during the first phase the
structure of the content term t is inspected for finding those parts of the term
matching the right-hand side of a notation P p

i ⇐⇒ P c
i . Then, the left-hand

side is instantiated accordingly. Unlike abstraction annotations and hyperlinks
must be propagated to the presentation term and this is what makes rendering
tricky. Table 2 shows the pattern matching of a content term t against a content
pattern P as a system of inference rules. We use the notation

t ∈ P �A σ, A′, H

meaning that given an initial set of cross references A, the matching of the term
t against a pattern P yields a substitution σ, a final set of cross references A′,
and a set H of hyperlinks harvested from the symbols in t.

We define the rendering function R(·) as

R(t) = A{IH
σ (P p

i )} where t ∈ P c
i �∅ σ, A, H

and the instantiation function IH
σ (·) as

IH
σ (l) = l@H

IH
σ (L[P1, . . . , Pn]) = L[IH

σ (P1), . . . , IH
σ (Pn)]

IH
σ (B[P1, . . . , Pn]) = B[IH

σ (P1), . . . , IH
σ (Pn)]

IH
σ (α) = R(σ(α))

In the process rendering a content term t annotations of subterms of t are
preserved only in two occasions: either when they are found at the top level of t,
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Table 2. Pattern matching of content terms

(Symbol)

s@H ∈ s �A ε, A, H

(Variable)

t ∈ α �A [α �→ A{t}], ∅, ∅

(Annotation)

t ∈ P �A∪A′ σ, A′′, H

A{t} ∈ P �A′ σ, A′′, H

(Constructor)

(ti ∈ Pi �∅ σi, A
′
i, Hi)i∈1..n

C[t1, . . . , tn] ∈ C[P1, . . . , Pn] �A σ1 · · · σn, A, H1 ∪ · · · ∪ Hn

in which case they become annotations for the resulting presentation term, or
when they wrap proper subterms of t that have been bound by variables, in which
case they will wrap the rendered subterms. As there is no obvious way of relating
the other annotations, they are simply discarded (see the (Constructor) rule
in Table 2). Hyperlinks, on the other hand, are handled pattern-wise. All the
hyperlinks found in the part of a term matched by a content pattern are gath-
ered together and sprinkled over the literals of the corresponding presentation
pattern. That is to say, any visible part of the term is considered the concrete
rendering of its symbols and should thus be linked to their definitions.

The definition of R(·) omits two secondary details: (1) the function R(·) must
provide appropriate rendering for all the built-in notation defined in G0; (2)
precedence and associativity of the productions are used to spot the subterms
that must be protected by fences, in order to guarantee a presentation term that
is consistent with the structure of the content term.

Example 3. Consider the notational equation

α ≠ β ⇐⇒ apply[not, α = β]

where we assume that the notation for the equality = has been given as in
Example 1. The content term

t = i1{apply[i2{not@h1}, i3{apply[i4{eq@h2}, i5{1@h3}, i6{2@h4}]}}

represents the inequality 1 
= 2 where the two constants 1 and 2 are located at h3
and h4 and are identified by i5 and i6 respectively. The whole term has reference
i1, the symbol not has reference i2 and is located at h1, while the symbol eq has
reference i4 and is located at h2. The term t would be rendered as

i1{i5{1@h3} ≠@{h1, h2} i6{2@h4}}

where we note that the reference of the whole term is preserved, whereas the
references of the not and eq symbols have been lost (there is no natural rendered
subterm corresponding to them). There are two links associated with the ≠ literal
corresponding to the locations of the not and eq symbols. Finally, the symbols
1 and 2 have been rendered with all the information preserved (in the rendering
we have omitted explicit box schemata for simplicity). ��
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3 Handling Ambiguity in matita

Since disambiguation and ambiguation (the transformations from content to
semantics and back) inherit the quality of being application-specific from the
semantic level, we cannot give a fully general recipe for handling them. We will
therefore present their instantiation in the context of matita,1 a document-
centric proof assistant being developed at the University of Bologna. Never-
theless, as we will see shortly, we only require the semantic language to be
compositional, as most structured languages are.

In matita the semantic language is the Calculus of (Co)Inductive Construc-
tions [15] (CIC for short), a typed λ-calculus enriched with inductive data types.
In this setting, an interpretation is a pair

s α1 · · ·αn ⇐⇒ t[α1, . . . , αn]

where s is a content symbol of arity n ≥ 0 and t[α1, . . . , αn] is a CIC term with n
holes labelled α1, . . . , αn. The intention is to give one of the possible meanings
for the symbol s when applied to n content terms t1, . . . , tn, in terms of the CIC
term t in which the hole αi has been replaced by the meaning of ti. The “one
of” is to remark that there can be multiple interpretations for the same symbol
s, not necessarily having the same arity.

3.1 Disambiguation

Of the two transformations dealing with the semantic level, disambiguation is
the most challenging, since it has to resolve the ambiguity of content terms with
respect to semantic terms.

When the semantic level is CIC, the ambiguity is induced by the one-to-many
mapping of symbols to CIC term, which in turn is induced by overloading of
operators and missing information at the notational level.2 Consider the content
level expression obtained after the abstraction of Example 2. Its ambiguity with
respect to CIC derives from the overloading of + (two different plus do exists
in the standard library of matita), and from the missing type argument of =,
which is needed by the CIC encoding of Leibniz’s equality.

Example 4. The following interpretations taken from the matita standard li-
brary show this ambiguity:

interpretation "natural plus" ’plus x y =
(cic:/matita/nat/plus/plus.con x y).
interpretation "integer plus" ’plus x y =
(cic:/matita/Z/plus/Zplus.con x y).
interpretation "Leibniz’s equality" ’eq x y =
(cic:/matita/logic/equality/eq.ind#xpointer(1/1) _ x y).

1 http://matita.cs.unibo.it/
2 Numbers and unbound identifiers also induce ambiguity. For the sake of brevity in

this paper we treat them as 0-ary symbols for which the appropriate interpretations
have been given.
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The first two provide for overloading of +, the last uses an implicit CIC term ( )
to represent the missing argument. ��

Intuitively, disambiguation is a two phase process. In the first phase all possible
CIC terms corresponding to a content term, according to the current set of
interpretations, are built. In the second phase they are filtered by means of an
oracle able to decide whether a term is valid or not. Such an oracle for CIC is
the refiner described in [12]. The actual disambiguation algorithm implemented
in matita exploits the type inference capabilities of the refiner and is far more
efficient than the naive algorithm entailed by this intuition. The interested reader
can find a detailed description of the disambiguation algorithm, as well as a
discussion on its computational complexity, in [13].

3.2 Ambiguation

We call ambiguation the reverse transformation that creates a content term
from a CIC term. It is simpler than disambiguation since the mappings from
CIC to content are not ambiguous (they may be non-injective though). This
step resembles rendering in many ways: ambiguation works by pattern match-
ing on CIC terms, and it instantiates content terms according to the matching
interpretations. As usual, the system provides a finite set of built-in mappings
for transforming uninterpreted CIC terms to the corresponding content terms.
Propagation of cross references and hyperlinks can be implemented in exactly
the same way as described in Section 2.2, the URIs appearing in interpretations
are the original sources of hyperlinks.

4 A Full-Scale Example

In this section we provide a complete example of notation in use in the matita

proof assistant: existential quantification. The purpose of the example is twofold.
On one hand it presents all together the aspects of notation from presentation
to semantics. On the other hand, it allows us to glance at some features of the
notational framework offered to the user for describing notational equations and
interpretations that we had to omit from Sections 2 and 3 due to lack of space.

The existential quantifier is not built-in in CIC, but it is defined as an in-
ductive data type in the logic/connectives module of the matita standard
library. Its notation is given thus:

notation "hvbox(\exists ident i opt (: ty) break . p)"
right associative with precedence 20
for @{ ’exists ${ default
@{ \lambda ${ident i} : $ty. $p }
@{ \lambda ${ident i} . $p }
}}.

The presentation pattern is enclosed in double quotes. It consists of
variables (i, p, and ty) that stand for arbitrary CIC sub-terms, and literals
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(\exists, :, and .) assembled together in a box schema. The special keyword
break indicates the breaking point and the box schema hvbox indicates a hori-
zontal or vertical layout, according to the available space for the rendering. The
opt indicates a meta-operator that surrounds an optional part in the presenta-
tion pattern. Given this presentation pattern, matita’s input syntax is extended
so that, for example, \exists x:nat. x \le y is a valid presentation term. Be-
cause of the opt meta-operator, the type annotation :nat can be omitted, the
resulting term still being syntactically valid.

The line beginning with right associative. . . is self explicative: it speci-
fies associativity and precedence of the notation, thus determining the binding
strength of the existential quantifier during parsing and giving the renderer ap-
propriate information for inserting parentheses when needed.

The content pattern begins right after the for keyword and extends to the
end of the declaration. Parts of the pattern surrounded by @{. . . } denote verba-
tim content fragments, those surrounded by ${. . . } denote meta-operators and
meta-variables (for example $ty) referring to the meta-variables occurring in
the presentation pattern. The content pattern of the example defines the appli-
cation of the content symbol exists to a λ-abstraction. In this case there are
two possibilities according to the presence or absence of the type annotation
in the presentation term that matched the pattern. For this reason there is a
corresponding meta-operator at the content level, named default, that has two
branches which are chosen depending on the matching of the optional subexpres-
sion. In the example this is used to account for the optionality of type annotation
on the quantified name, since its type can be inferred during disambiguation.
Thus, if the type is given, the content term created after parsing has the form
’exists (\lambda x:nat.(x \le y)). Otherwise, the resulting content term
has the form ’exists (\lambda x.(x \le y)).

Our notational language supports additional meta-operators for dealing with
variable-size terms having a regular structure: the list operator, which can
be used for describing sequences of presentation terms and literals, has a cor-
responding fold operator, which describes trees at the content level. Like for
opt and default, list and fold together express a bi-directional relationship
between the presentation and the content level.

In matita, the interpretation of the exists symbol is as follows:

interpretation "exists" ’exists \eta.x =
(cic:/matita/logic/connectives/ex.ind#xpointer(1/1) _ x).

where the word "exists" enclosed in double quotes is an informal comment
that can be used for keyword-based searching. In this interpretation the exists
symbol has arity 1 and its only argument is required to be a function. This is
expressed by the variable x being annotated with \eta.. Indeed, the content
pattern shown previously regarding the exists symbol matches only when the
symbol’s argument is a function. Since this is not guaranteed at the CIC level,
an η-abstraction is performed when necessary: if the CIC term matching x is not
a λ-abstraction, a content term will be created for λfresh .(x fresh) instead.
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The following statement can now be used to start a new proof

theorem increasing_to_le:
\forall f:nat \to nat. increasing f \to
\forall m:nat. \exists i. m \le f i.

and the initial sequent of the proof is rendered as shown on the left of Figure 2.
Notice that when entering a formula in the system the user is allowed to use
a TEX-like concrete syntax, and the system can render the formula both on
a textual terminal in the same concrete syntax, or in a graphical canvas like
that of Figure 2 where the layout schemata of the formula have been properly
encoded using MathML Presentation markup. This second view offers a more
familiar rendering and it also enables point-and-click functionalities, like those
for remote control. In this particular example the system figures that i must
have type nat. In case more than one interpretation for the entered formula is
feasible, the system lists them in a dialog box and asks the user to pick the
desired one.

Remote control is exploited in matita in two ways: the first is hypertextual
browsing of objects in the library. As can be seen on the left of Figure 2, the URI
of the "exists" interpretation flowed through the levels reaching the literal ∃ as
an hyperlink, which can be recognized at the bottom of the figure, in the status
bar of the application. By clicking on the literal, the corresponding object from
the library is shown to the user. If multiple hyperlinks are associated with the
same symbol, a pop-up window appears and the user decides which one to follow.
Incidentally, this gives the user some information about how a mathematical
construct is encoded at the CIC level.

The second form of remote control, semantic selection, exploits cross refer-
ences to constraint the selection on the presentation markup to CIC subterms.
On the right of Figure 2 for instance, the GUI inhibits the selection of ∀m : nat
despite it corresponds to a proper subterm at the presentation level, since it has
no corresponding subterm at the semantic level. Contextual semantic actions
can then be safely offered to the user: the pop up menu in the figure shows

Fig. 2. Remote control in action: hyperlinks on the left hand side, semantic selection
and contextual actions on the right hand side
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actions for type-checking, reducing, and using the term as a parameter for the
next reasoning step. A classical copy operation to copy the subterm into the
clipboard is also available.

5 Related Work

The layered architecture that we have proposed is similar in structure to that
of previous projects in which notation played a major role. In [2,9] ambiguation
and rendering are implemented by XSLT stylesheets [16] and they can only
be extended by adding XSLT templates. Support for further notation is thus
limited to the system designers. From the point of view of maintenance of the
transformations, an improvement is the introduction of meta-stylesheet [7] that
generate XSLT templates starting from a slightly higher-level specification. A
somehow similar approach is proposed by Naylor and Watt [10] for supporting
alternative notations. In any case, all the solutions mentioned are one-way only
and cannot be inverted, both because XSLT is a very general transformation
language, and also because the reverse path must reconstruct information that
is not always available.

Our transformation language is not as general as XSLT but has been carefully
designed so as to guarantee invertibility (the meta-operators mentioned in Sec-
tion 4 are all invertible). Furthermore, it has a purely declarative style and is thus
more appropriate for users who do not have any programming experience. The
notational level consists of a finite set of layout schemata, basically those that
are found in MathML Presentation [8] and TEX, box schemata for line-breaking
inspired by previous work on pretty-printers [5], and a few meta-operators (like
opt and list) inspired to the constructs of BNF grammars. The content level is
an internal version of MathML Content and OpenMath [14], with the addition
of meta-operators corresponding to those of the notational level.

The Coq proof assistant [4] provides a similar language for extending nota-
tion, with two main differences: it does not supply a content level and it does
not deal directly with remote control. Our language represents a more open
and interoperable solution, and the implementation shows that remote control
can be achieved effectively even when notation is extensible, limiting built-in
transformations to a bare minimum.

6 Conclusions and Future Work

In this paper we have characterized meaningful mathematical notation as a tool
that necessarily mixes presentational as well as semantic aspects. We have iden-
tified a set of requirements that any MKM application supporting meaningful
notation should fulfill and we have proposed an adequate architecture that builds
upon the three well-known levels of formulae encoding: notation, content, and
semantics. As an assessment of the generality of the architecture, we have given
a formal dressing to the concept of notation which makes a minimum set of
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assumptions, and we have described an instantiation of its application-specific
parts to the matita proof assistant.

The described architecture has been fully implemented in matita. The actual
code has been written in OCaml3 reusing components of the matita code base,
most notably the code for disambiguation [13] and transformation from CIC to
content and from content to MathML Presentation. Ambiguation and render-
ing have been implemented efficiently using a variant of the pattern matching
algorithm in functional languages [3,6], which has been enriched with more ex-
pressive backtracking capabilities for dealing with meta-operators. Abstraction
has been implemented using Camlp4, an extensible top-down parser with lim-
ited support for ambiguous grammars. This choice does not allow us to deal with
structural ambiguity, that is with presentation terms admitting more than one
corresponding content term. We plan to relax this constraint by implementing
one of the several extensible parser generators that can be found in the literature
(see [11] for an example).

Remarkably the proposed architecture does not deal with numbers in a prac-
tically useful way, since it assumes that there exists an infinite set of interpre-
tations for them. In the Coq proof assistant, which basically shares the same
semantic language used in matita, support for numbers is hard-coded in the
application and thus it cannot be easily extended. We are currently investigat-
ing a declarative, finite interpretation scheme for numbers in matita, exploiting
the regularity of their encoding in CIC, but it is still not clear whether this
scheme is sufficiently general to make sense in different settings as well.

A major extension that we are considering is support for local notation, that is
notation associated with content level binders that is in effect only in their scope.
Local notation is a frequently asked feature in the formalization of algebraic
theories, where quantification over notational symbols (as in “let � be a binary
operation over. . . ”) is a common mathematical practice. Since local notation
requires an even tighter cooperation between the notational and the content
levels, this could be a challenging test bench for verifying the scalability of our
framework.
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Abstract. Much work in MKM depends on the application of formal
logic to mathematics. However, much mathematical knowledge is infor-
mal. Luckily, formal logic only represents one tradition in logic, specifi-
cally the modeling of inference in terms of logical form. Many inferences
cannot be captured in this manner. The study of such inferences is still
within the domain of logic, and is sometimes called informal logic. This
paper explores some of the benefits informal logic may have for the man-
agement of informal mathematical knowledge.

1 Informal Mathematical Knowledge

What sort of mathematical knowledge does mathematical knowledge manage-
ment manage? A distinction between knowledge that and knowledge how is
frequently deployed in epistemology. In mathematics this corresponds to the
distinction between knowing mathematical propositions and knowing how to
conduct mathematical proofs, that is being acquainted with mathematical prac-
tice. Each of these two sorts of knowledge may be related to a problem for MKM.
In the first case, the problem may be expressed as ‘How can a computer repre-
sent the truths of mathematics?’. In recent years this problem has been tackled
with increasing success. In the second case, the problem may be expressed as
‘How can a computer represent the proofs of mathematics?’. If this question is
understood as ‘How can a computer perform the proofs of mathematics?’, then
the progress in automated theorem proving provides a ready answer. However,
this would be to misunderstand the original question, which did not ask how
mathematics could be done by a machine, but how it is and has been done by
mathematicians.

The traditions of formalization and automated theorem proving upon which
much work in MKM has been based are heavily indebted to the methods of
formal logic. However, formal logic is a poor guide to mathematical practice,
as mathematicians seldom use it to write proofs. Although most mathematical
proofs may in principle be formalized, the process is often arduous and can
dramatically reduce intelligibility. For this reason such formalization is rarely
attempted, and most mathematicians regard formal logic as of little relevance to
their work. Moreover, a great deal of important mathematical communication
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does not even aspire to be formalizable in principle. Why? Because it contains
substantial gaps, or even contradictions.

At first glance, it may seem that such mathematics would be no great loss.
However, there are several areas of mathematical practice to which it is indispens-
able. The first of these is the history of mathematics. Little if any mathematical
work conducted before the twentieth century meets modern standards of rigour.
An historian engaged in a diachronic study of a mathematical theory needs to
marshal a considerable body of mathematical inference, much of it unsound.
Salvaging the sound parts and restating them with modern rigour may be good
practice for textbook writers, but is not acceptable for historians.

Contemporary mathematics can also give rise to similar problems. The refer-
eed journal article is not the only form of mathematical communication. Math-
ematicians with shared interests can often communicate complex ideas with
considerable brevity and absence of formal rigour. Moreover, collaborators often
profit from sharing their work in an unpolished, and perhaps mistaken, form.
The famous English mathematicians G. H. Hardy and J. E. Littlewood appar-
ently ran their long-standing and successful collaboration in accordance with a
set of ‘axioms’. The first of these ‘said that when one wrote to the other (they
often preferred to exchange thoughts in writing instead of orally), it was com-
pletely indifferent whether what they said was right or wrong. As Hardy put it,
otherwise they could not write completely as they pleased, but would have to
feel a certain responsibility thereby.’ (from a lecture by Harald Bohr, cited in
Littlewood, 1986, p. 10).

That sort of communication may be inadvertently contradictory, but some
mathematicians have gone further, to find heuristic insight in ‘the idea . . . that
a proof can be respectable without being flawless’ (Lakatos, 1976, p. 139). Con-
sider, for example, the following remarks of Fields medallist Vaughan Jones:

I used to dislike intensely, but have come to appreciate and even search
for . . . the situation where one has two, watertight well-designed argu-
ments that lead inexorably to opposite conclusions. . . . Remember that
research in mathematics involves a foray into the unknown. We may not
know which of the two conclusions is correct or even have any feeling or
guess. Proof at this point is our only arbiter. And it seems to have let us
down. I have known myself to be in this situation for months on end. It
induces obsessive and anti-social behaviour. Perhaps we have found an
inconsistency in mathematics. But no, eventually a crack is found in one
of the arguments and it begins to look more and more shaky. Eventually
we kick ourselves for being so utterly stupid and life goes on. But it was
no tool of logic that saved us. The search for a chink in the armour often
involved many tricks including elaborate thought experiments and per-
haps computer calculations. Much structural understanding is created,
which is why I now so value this process. One’s feeling of having obtained
truth at the end is approaching the absolute. Though I should add that
I have been forced to reverse the conclusion on occasions (Jones, 1998,
pp. 208 f., emphasis added).
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The situation which Jones describes, a deeper mathematical understanding
derived from the analysis of apparently rebutted proofs, is central to the math-
ematical methodology espoused by the Hungarian philosopher of mathematics
Imre Lakatos. His ‘method of proofs and refutations’ was inspired by the at-
tempts of several generations of mathematicians to rescue the Descartes-Euler
Conjecture from numerous apparent rebuttals. He summarizes the method as
follows:

Rule 1. If you have a conjecture, set out to prove it and to refute it.
Inspect the proof carefully to prepare a list of non-trivial lemmas
(proof-analysis); find counterexamples both to the conjecture (global
counterexamples) and to the suspect lemmas (local counterexam-
ples).

Rule 2. If you have a global counterexample discard your conjecture,
add to your proof-analysis a suitable lemma that will be refuted
by the counterexample, and replace the discarded conjecture by an
improved one that incorporates the lemma as a condition. Do not
allow a refutation to be dismissed as a monster. Try to make all
‘hidden lemmas’ explicit.

Rule 3. If you have a local counterexample, check to see whether it is
also a global counterexample. If it is you can easily apply Rule 2.
(Lakatos, 1976, p. 50).

Rule 4. If you have a counterexample which is local but not global, try
to improve your proof analysis by replacing the refuted lemma by an
unfalsified one. (Lakatos, 1976, p. 58).

Rule 5. If you have counterexamples of any type, try to find, by deduc-
tive guessing, a deeper theorem to which they are counterexamples
no longer. (Lakatos, 1976, p. 76).

The mathematician described by Lakatos’s method accrues mathematical beliefs,
but many of them are tentative, changeable, and quite possibly wrong. But if
Lakatos is right, and Jones’s experience suggests that he is, this is nevertheless
one of the most successful strategies for acquiring mathematical knowledge.

2 Informal Logic

2.1 What Is Informal Logic?

To speak of informal logic is not to contradict oneself but to acknowl-
edge what should be obvious: that the understanding of natural argu-
ments requires substantive knowledge and insights not captured in the
axiomatized rules of formal logic. (Govier, 1987, p. 204).

The distinction between formal and informal logic has been stated in a variety
of different ways. Much of the confusion arises from the ambiguity of ‘formal’
(Johnson, 1996, p. 45). Informal logic does not exclude the pursuit of precise and
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Fig. 1. Toulmin layouts

normative principles by which arguments may be analyzed and evaluated. Rather
it concerns itself with arguments which cannot reliably be represented purely
in terms of the logical form of the component propositions. Characteristically,
these are arguments expressed in natural language. However, as the last section
suggests, some arguments in mathematics may also have this quality.1

2.2 The Toulmin Layout

One of the most influential attempts to analyze the structure of arguments with-
out appealing to the logical form of their propositions was developed in the 1950s
by Stephen Toulmin. His ‘layout’ can represent deductive inference, but encom-
passes many other species of argument besides. The arguments it analyzes may
vary considerably in strength: in particular, they may be defeasible—Toulmin
was one of the first philosophers to use this term. Toulmin’s layout continues to
be an important focus for contemporary work in informal logic.

In its simplest form, shown in Fig. 1(a), the layout represents the derivation
of a Claim (C), from Data (D), in accordance with a Warrant (W ). This DWC
pattern may appear to resemble a deductive inference rule, such as modus po-
nens, but it can be used to represent many other, looser inferential steps. The
differences between these types of inference are made explicit by the additional
elements of the full layout shown in Fig. 1(b). The warrant is justified by its
dependence on Backing (B), possible exceptions or Rebuttals (R) are allowed
for, and the resultant force of the argument is stated in the Qualifier (Q). Hence
the full layout may be understood as ‘Given that D, we can Q claim that C,
since W (on account of B), unless R’. For example: ‘Given that Harry was born
in Bermuda, we can presumably claim that he is British, since anyone born in
Bermuda will generally be British (on account of various statutes . . . ), unless
his parents were aliens, say’.2

Toulmin’s focus is on argumentation in natural language, not mathematics,
although he is satisfied that the layout applies there as well. However, his only
1 For a more substantial defence of the applicability of informal logic to mathematics,

see Aberdein (2006).
2 A frequently used example, derived from (Toulmin, 1958, p. 104).
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In the tetrahedron the faces join-
ing at each vertex are 3 equilat-
eral triangles, with angles totaling
3 × 60◦ = 180◦; in the octahe-
dron 4 equilateral triangles, total-
ing 4 × 60◦ = 240◦; in the icosahe-
dron, 5, totaling 5 × 60◦ = 300◦. In
the cube they are 3 squares, with
angles totaling 3× 90◦ = 270◦, and
in the dodecahedron, they are 3 pen-
tagons totaling 3×108◦ = 324◦. No
other set of equal angles at the ver-
tex of a solid adds up to less than
360◦.

So,

Any regular convex solid has equilateral plane
figures as its faces, and the angles at any ver-
tex will add up to less than 360◦.

Given the axioms, postulates, and definitions
of three-dimensional Euclidean geometry,

with strict
geometrical
necessity,

There are five and
only five regular
convex solids.

No rebuttals or exceptions
available within the bounds of
Euclidean geometry.

D

Q C

R

W

B

Fig. 2. Toulmin’s analysis of Theaetetus’s proof that the platonic solids are exactly
five in number (Toulmin & al., 1979, Fig. 7.4, p. 89)

developed mathematical example is the proof from Euclid reproduced here as
Fig. 2. One substantial shortcoming that this proof has as a model for how
Toulmin’s layout may be applied more generally is that it has only one step.
Most mathematical proofs have many. Moreover, the number of steps a proof
possesses is a function of the detail with which it is presented. In the next section
I develop an extension of Toulmin’s system which permits the presentation of
multi-step proofs and also exhibits the relationship between presentations of
differing depths of detail. Before doing so, I shall pause briefly to discuss an
idiosyncrasy of Toulmin’s approach: its highly visual nature.

2.3 The Pros and Cons of Visual Presentation

There are clear benefits to be gained from the visual presentation of argument,
as a growing body of research acknowledges (see Kirschner & al., 2003, for exam-
ple). A shared visual presentation can significantly facilitate communication of
complex ideas, whether collaborative or pedagogic. The Toulmin layout, which
is usually represented graphically, is a good example of this. However, visual pre-
sentation also has its drawbacks. Diagrams can be time-consuming to produce
and frustrating to update, comment upon or integrate with other systems. As
the diagrams grow in complexity these problems escalate.

At least two responses may be made to these difficulties. Firstly, these prob-
lems can largely be eliminated through the use of suitable software. Several



Managing Informal Mathematical Knowledge 213

programs are now available which, to a greater or lesser extent, automate the
process of argument diagraming. Some of these programs (such as Araucaria: see
Reed & Rowe, 2005) can be adapted to represent Toulmin layouts. Secondly, the
convention of representing Toulmin layouts diagrammatically aids understand-
ing, but is not essential. The basic layout may be thought of as a triple, 〈D, W, C〉.
The greater generality of the enhanced layout may be brought to bear by asso-
ciating a further triple 〈B, Q, R〉 with the warrant. We can therefore represent
a full Toulmin layout as 〈D, W 〈B, Q, R〉, C〉, where each component represents
a set of propositions, except for Q, a single term.

3 Combining Basic Layouts

3.1 Four Principles for Combining Layouts

Various proposals have been made to extend Toulmin’s layout (for example,
Newman & Marshall, 1992, pp. 15 f.). Many of these are concerned with appli-
cations of the layout to types of argument unlikely to occur in mathematical
proof. I propose the following principles for combining mathematical layouts:

I Treat data and claim as the nodes in a graph or network.
II Allow nodes to contain multiple propositions.

III Any node may function as the data or claim of a new layout.
IV The whole network may be treated as data in a new layout.

Principle I: I shall not consider ways of extending the layout by adding links to
components other than the data or claim. This often seems to duplicate existing
features of the layout. For example, making the warrant of one layout the claim
of a second duplicates the role of backing, albeit with more structure. Where such
extensions are original, as in Newman & Marshall’s (1992, p. 24) attachment of
data and warrant to a rebuttal, they frequently seem more appropriate for other
contexts, such as the legal argumentation for which this extension was devised.

Further to the argument in Sect. 2.3, we may observe that although graphs
are frequently set out diagrammatically, this is not essential. Strictly speaking,
a directed graph comprises a finite set of vertices, or nodes, and a finite multiset
of edges, or ordered pairs of vertices. Each simple layout within a compound
layout will correspond to such an ordered pair. Hence, in a network of layouts
〈Di, Wi〈Bi, Qi, Ri〉, Ci〉, Di and Ci label the vertices, and Wi and the other
components label the edges.

Principle II: Toulmin already permits multiple data: consider the data in Fig. 2.
This allows him to capture the linked argument structure represented as Fig.3(a).
We shall go beyond Toulmin in permitting multiple propositions within a node
to be distinguished as separate nodes (represented graphically by nested boxes).
However, this is unnecessary unless the propositions are individually attached
to other nodes.

In practice, we will still treat claims as singular. There may be some economy
of exposition to be gained in permitting multiple claims to function as implicit
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Fig. 3. Five ways of combining layouts

disjunctions, in the manner of multiple conclusion sequent calculi. However, since
nodes may function as both data and claim, this would risk unnecessary confusion.

Principle III: This principle allows us to construct sequential, convergent and
divergent arguments, represented in Fig. 3(b)–(d). Sequential layouts are briefly
considered in (Toulmin & al., 1979, p. 79); convergent and divergent arguments
do not seem to be addressed. Strict adherence to Principle III prevents the
occurrence of circuits, that is nodes which may be reached by two separate
paths. (So the graphs we produce are actually trees.) Circuits are inferentially
benign, provided they are acyclic—that is non-question-begging. However, they
represent a redundancy of derivation which is seldom found in mathematical
proofs. We could modify the principle to include acyclic circuits, but at the cost
of complicating the folding rules introduced in Section 3.2.

Principle IV: This is our most radical departure from Toulmin, but we shall
see that it is essential in order to capture some of the most pervasive forms of
mathematical argument. Indeed, the reification of proofs as objects within larger
proofs was a fundamental step in the development of mathematics. It is rather
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less common in ordinary discourse, making this situation dual to those we set
aside in discussion of Principle I.

Principle IV does not allow embedding of a network into the claim of a new
layout. The effect of such a step would be that the data and warrant of the
new layout justified the derivation contained in the embedded network, placing
them more naturally within the backing of (the individual steps of) the latter
network. Principle III does permit data containing an embedded network to be
treated as the claim of a new layout. However, in practice we shall avoid this
move, restricting embedding to initial data.

Figure 4 exhibits how these principles may be used to reproduce some of the
most common techniques in mathematical proof. Adjunction, Fig. 4(a), is just
an instance of the linked layout, Fig. 3(a). Proof by contradiction, Fig. 4(b),
combines divergent, Fig. 3(d), and embedded, Fig. 3(e), layouts. Representing
each leg of the divergent layout separately would produce a logically equivalent
presentation of this argument as a combination of linked and embedded layouts.
This is the combination employed in both proof by cases, Fig. 4(c), and induction,
Fig. 4(d).

3.2 Folding Compound Layouts into a Single Layout

Is it possible to ‘fold’ the steps of a compound layout into a single layout?
This process may obscure much of the detail of a proof, but should preserve
soundness. That is, the folded proof should be no less sound than the unfolded
proof: depending on its qualifiers, this may not itself be sound.

To see how this may be done, we will first observe that any network satisfying
Principles I–IV must have at least one node of in-degree zero, which is not
derived from anything, and at least one node of out-degree zero, from which
nothing is derived. We shall call the former nodes initial, the latter final, and
all other nodes intermediate. The folded layout should exhibit the dependency
of the final nodes on the initial nodes; the intermediate nodes may be ignored.
To preserve soundness, the warrant of the folded layout must be sufficient to
justify each step of the unfolded proof. For networks following Principles I–III
only, that is without embedding, a folded layout which meets these requirements
may be defined as follows:〈 ⋃

in(Di)=0

Di,
∧
i

Wi,
∧

out(Ci)=0

Ci

〉
(1)

The warrant, W , of the folded layout is thus defined as the conjunction of every
warrant, Wi, in the unfolded layout. This guarantees the inferential resources
necessary to carry out the proof, although in practice a more concise warrant
may suffice. The minimal requirement is that W ⇒ Wi for all Wi, where ‘⇒’
represents an appropriate account of derivation, which at this point we are as-
suming is used indifferently throughout the proof.

To deal with Principle IV, start with the most deeply embedded network(s)
and reduce each to a simple layout, as in (1). There may be multiple layouts



216 A. Aberdein

D1 ∧ D2
D1

D2

Adjunction
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W1

(a) Adjunction

C1

C2W2

∼ C2W3

D1 ∼ C1

RAA W1

(b) Proof by Contradiction

CnD1

W1

CnDn−1

Wn−1

Dn Cn

D1 ∨ . . . ∨ Dn−1

...

Wn

(c) Proof by Cases

P (b)

P (k + 1)P (k), k ≥ b

W2 P (n), n ≥ b

InductionD1

D3

W3

C3

C2D2

(d) (Weak) Induction

Fig. 4. Some common proof methods
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embedded in the same box, as in Fig. 4(c): see the next section for a worked
example. Then replace each embedded layout with a new data node D#

j defined
as Dj ⇒ Cj , where Dj and Cj are the data and claim of the embedded layout(s).
Finally, conjoin the warrant(s), Wj , of each embedded layout to that of the layout
in which it was embedded, Wk. The following simple layout will result:〈⋃

j

(Dj ⇒ Cj), Wk ∧
∧
j

Wj , Ck

〉
(2)

In representing the embedded layout propositionally, we are again assuming that
a single account of derivation is in use throughout the proof.

By applying these rules recursively, it is possible to reduce a compound layout
of arbitrary complexity to a simple layout. Of course, such a reduction will
omit much detail, but it will preserve soundness. As a simple example, consider
the representation of proof by contradiction in Fig. 4(b). Applying (1) to the
embedded argument produces a simple layout 〈C1, W2 ∧ W3, C2∧ ∼ C2〉. We
may then use (2) to produce a single layout representing the whole argument,
〈C1 ⇒ (C2∧∼ C2), W1 ∧ W2 ∧ W3, ∼ C1〉.

3.3 An Extended Example

Figure 5 shows how the techniques introduced above may be applied to a real
example, in this case the proof that every natural number greater than one has
a prime factorization. The proof is by induction, in this case strong induction,
rather than the weak induction exhibited in Fig. 4(d), since all the preceding
cases are included in the antecedent of the inductive step. Moreover, the induc-
tive step is itself a proof by cases, so we have more than one level of embedding.
I have indicated the nested boxes in the network as (i)–(iii). However, box (i)
is not a case of embedding, but rather a sequential pair of layouts in which new
data is added at the intermediate stage. This network, and the simple layout
above it are the two cases which constitute the proof of the inductive step. As
such they are embedded in the data of that step, here indicated as (ii). Together

P (2)

P (k + 1)k + 1 is prime

Def. of P

P (k + 1)
k + 1 = mn s.t. 2 ≤
m, n ≤ k

Def. of P

k + 1 is not
prime

Def. of P

P (2), . . . , P (k)

P (k + 1)

n ∈ N is
prime or
not

P (n),
n ≥ 2

Induction

(i)
(ii) (iii)

Fig. 5. Proof that every natural number greater than one has a prime factorization
(P (n) abbreviates ‘n has a prime factorization’.)
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with the base step, P (2), the inductive step is itself embedded in the data (iii)
of the outermost layout.

By applying the folding rules from Section 3.2, we may fold the whole proof
into a single layout,

〈{P (2), {k + 1 is prime ⇒ P (k + 1),
{k + 1 is not prime, P (2), . . . , P (k)} ⇒ P (k + 1)} ⇒ P (k + 1)},

Def. of P ∧ n ∈ N is prime or not ∧ Induction,

P (n) for n ≥ 2〉. (3)

This just says that the desired result follows from the base case and the induc-
tive step, in accordance with induction and the warrants for the inductive step.
Clearly, if the unfolded proof is sound, the folded proof must be too.

4 Enhanced Layouts

For the sake of simplicity I have so far only considered combinations of layouts
which lack backing, qualifiers or rebuttals. It is reasonable to omit these from
analyses of the steps of a proof when they are identical in every step. This is true
of many mathematical proofs. However, in some of the most interesting cases
it is not. The folding rules from Sect. 3.2 may be augmented to include these
additional components as follows:〈 ⋃

in(Di)=0

Di,
∧
i

Wi

〈∧
i

Bi, lub
⋃
i

Qi,
∨
i

Ri

〉
,

∧
out(Ci)=0

Ci

〉
(4)

〈⋃
j

(Dj ⇒Qj Cj), Wk∧
∧
j

Wj

〈
Bk∧

∧
j

Bj , lub{Qk∪
⋃
j

Qj}, Rk∨
∨
j

Rj

〉
, Ck

〉
(5)

These rules are conservative of those for the more primitive components, with
one exception. Once we permit differently qualified steps in the same proof we
may no longer assume that all derivations have equal force. The univocal concept
of derivation used in (2) is therefore indexed to the prevailing qualifier in (5).

The justification of the rules for backing and rebuttals is straightforward. We
treat backing identically to warrants, by conjoining all the individual backings
to ensure a common backing sufficient for the folded layout. Since the rebuttal of
a single step is enough to rebut the entire proof, the compound rebuttal is just
the disjunction of all the individual rebuttals. Combining qualifiers takes a little
more care. To do so we need to make some preliminary assumptions. Firstly, that
all qualifiers occurring more than once in a derivation are non-cumulative. We
shall describe a qualifier Q as non-cumulative iff it holds of a compound layout
of n steps, each with qualifier Q itself. Typically qualifiers indicating dependence
on some axiom or assumption are non-cumulative, whereas qualifiers indicating
likelihood are cumulative. However, for small values of n, qualifiers indicating
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high, but not absolute, levels of confidence may be treated as non-cumulative,
since multiplying the possibility of error by the number of steps would still yield
a very low number.3 Secondly, we must assume that the different qualifiers Qi

may be given a partial ordering, such that Qj ≤ Qk iff every Qj-qualified step is a
Qk-qualified step. For example, every constructively valid step is also classically
valid, so ‘constructively’ ≤ ‘classically’. Finally, we shall assume that every pair
of qualifiers has a least upper bound (lub). Note that this qualifier need not itself
be attached to any step of the proof.

The qualifier of the compound layout may then be defined as the least upper
bound of the qualifiers of the individual steps. In some pathological cases the dif-
ferent steps of a proof may appeal to mutually inconsistent standards of rigour,
for instance classical and Brouwerian intuitionistic mathematics. Here the least
upper bound of the two qualifiers will be something falling far short of mathe-
matical rigour (of either kind), such as ‘perhaps’, since the proof must be invalid.

The use of qualifiers (and backing) in a layout can make explicit the different
assumptions and standards of rigour underlying different steps of the proof. We
can see this in the classically but not constructively valid proof of the Inter-
mediate Value Theorem laid out in Fig. 6. This proof has several steps which
are constructively (and therefore also classically) valid, here folded together into
the first step. However, there is at least one step with the qualifier ‘classically’,
hence ‘classically’ must also be the compound qualifier, since it is the least upper
bound of ‘constructively’ and ‘classically’.

f : R �→ R;
f is continuous;
f(u) < m < f(v);
u < v.

So,

u ∈ X = {x ∈ R : x < v ∧ f(x) < m};
R is complete; If f is continuous at w then
f(w) < m implies w is not an upper bound
for X and f(w) > m implies w is not a least
upper bound for X.

Constructive
mathematics

Constructively

X has a lub w s.t.
u < w < v and
f(w) 
< m, f(w) 
>
m.

So,

Trichotomy: If x, y ∈ R then
x < y, x = y or x > y.

Classical logic
(specifically LEM)

Classically
f(w) = m for
some w s.t.
u < w < v.

D1

W1

B1

Q1

C1 (or D2)

W2

B2

Q2

C2

Fig. 6. Classical proof of the Intermediate Value Theorem

5 Rebuttals

The system developed above is a potentially powerful tool for the rational re-
construction of mathematical proofs. It bears some similarity to projects such
3 A number representing an upper bound on the possibility of error of the whole

layout, since the sources of error associated with each step need not be independent.
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as Leslie Lamport’s ‘structured proofs’ (1995) or Michael Kohlhase’s OMDoc

(2000). In particular, the derive steps which comprise the OMDoc proof envi-
ronment correspond fairly closely to basic Toulmin layouts. However, these steps
lack any analogue to either the qualifier or the rebuttal component of a full lay-
out. In this respect OMDoc (and structured proofs) are fit to their primary
purpose: to facilitate greater formalization of proofs. Conversely, my approach
is primarily intended to respect the level of (in)formality with which the proof
was originally framed. Central to this pursuit is the rebuttal component. In this
final section I explore how it may enrich our understanding of mathematical
proof.

Ostensibly, Toulmin denies that mathematical arguments can ever be rebut-
ted: observe the place holder for rebuttal in Fig. 2. He does accept that mathe-
matical arguments are open to criticism, but only by challenging their ‘standards
of rational adequacy’ (Toulmin & al., 1979, p. 133). Individual proofs may be
undermined by wide-ranging shifts in mathematical rigour, but they are not
subject to more specific rebuttal. But this is just to say that Toulmin’s focus
is on formal, not informal, mathematics. His is an entirely reasonable attitude
to take to settled and formalized mathematical results. However, in the con-
text of informal mathematics, it is equally reasonable to admit the possibility of
rebuttal.

The ease with which Lakatos’s rules lend themselves to translation into the
idiom developed in this paper helps to confirm its usefulness in the analysis of
informal mathematics. In the first rule, the conjecture corresponds to the (fi-
nal) claim of a network of Toulmin layouts representing the proof. The lemmas
are the initial data, the global counterexamples rebuttals of the final step in
the proof, and the local counterexamples rebuttals to earlier steps. The second
rule, Lakatos’s technique of lemma incorporation, may then be understood as
a transformation on a Toulmin layout, as represented in Fig. 7. Here we would
generally expect Q′ ≤ Q, since removing the rebuttal should have strengthened
the argument. It is also likely that W ′ = W and B′ = B, since the only addi-
tional support required for the new layout is a valid inference in most systems of
logic (∼ L |= L ⇒ C). With Lakatos’s Rule 4 we see a genuine dividend in the

QD C

R

W

B

Q′D,
R ⇒∼ L

L ⇒ C

W ′

B′

�

Fig. 7. Lemma incorporation
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new idiom: whereas Lakatos’s focus is propositional, Toulmin’s is on the process
of argument. Lakatos’s account of this move only permits the replacement of one
proposition, ‘the refuted lemma’, with another; our model permits the replace-
ment of a rebutted section of a proof network, including not just data, but also
warrants, backing, qualifiers, and rebuttals.
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Abstract. OpenMath is a widely recognised approach to the semantic markup
of mathematics that is often used for communication between OpenMath com-
pliant systems. The Aldor language has a sophisticated category-based type sys-
tem that was specifically developed for the purpose of modelling mathematical
structures, while the system itself supports the creation of small-footprint appli-
cations suitable for deployment as web services. In this paper we present our
first results of how one may perform translations from generic OpenMath ob-
jects into values in specific Aldor domains, describing how the Aldor interface
domain ExpressionTree is used to achieve this. We outline our Aldor im-
plementation of an OpenMath translator, and describe an efficient extension of
this to the Parser category. In addition, the Aldor service creation and invocation
mechanism are explained. Thus we are in a position to develop and deploy math-
ematical web services whose descriptions may be directly derived from Aldor’s
rich type language.

1 Introduction

Mathematical web services are becoming an important feature in the web of today and
it will likely be more so in the future. Computer algebra systems are one of the major
technologies that can be used to support a certain class of mathematical web services.
Here we show how the Aldor computer algebra system with its sophisticated type sys-
tem, can be used both as a mathematical web service constructor and as a back end for
mathematical web services. Several requirements fed the design and development of
Aldor, amongst them being:

– Interoperability, so that integrating programs written in different languages is
more straightforward and in particular, this makes it more amenable than most for
writing mathematical web services due to the relative ease of integration with the
inevitable Java

– Strong typing Aldor has a sophisticated two-level type structure based on domains
of computation, that we will refer to as domains and categories. The type system is
a direct descendant of that developed over many years in the line from Scratchpad
through to Axiom, where the objective was to have a type language that was suf-
ficiently tractable for checking—but not inference—yet rich enough to be able to
capture the structure of mathematics. In Aldor, a domain is an environment provid-
ing a collection of exported constants including functions—analogous to a class in
Java—while a category is used to specify information about a domain, in terms of a

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, pp. 222–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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collection of exports that the domain in question is required to provide—analogous
to an interface in Java. Domains and categories in Aldor may be dependant on other
Aldor objects that may be members of domains, domains themselves or categories;
that is both domains and categories may be parameterized by other Aldor objects.

– Efficiency—both in speed and space—which is why Aldor provides a good basis
for mathematical services, because Aldor programs may be compiled to provide ex-
ecutables with execution speeds comparable to that of C++. This allows services to
be compiled prior to deployment and invoked with little overhead. Since the incep-
tion of Aldor—it was originally developed as a compiler language for the Axiom
[2] computer algebra system in the early 1990s, however it has developed separately
since—a number of stand-alone libraries have been developed, and specifically the
algebra library [4] which provides a number of the domains and categories utilised
by the work detailed in this paper.

A web service is not unlike a (remote) procedure in that the user must supply some
inputs (arguments) and in return should receive some outputs (results). These input and
output values will be represented in some communication language that it is desirable
should not be system specific, because web services, so it is implied, should make no
assumption about the context of the clients of the service. OpenMath1 is our chosen lan-
guage for the representation of mathematical objects for input to and output from the
mathematical web services. OpenMath adopts a novel, but also historically enforced,
solution to the unambiguous identification of objects, in that rather than using name-
spaces, which did not exist when OpenMath was first conceived, attributes indicate
the referenced content dictionary and element. Thus <OMS cd = "linalg2" name =

"matrix"/> in the example below identifies the matrix object in the linalg2 con-
tent dictionary. The definitions are organised using Content Dictionaries (CDs) which
may be stored in standard libraries, for example those maintained by the OpenMath so-
ciety [12], or shared between applications. OpenMath may be represented in a number
of ways but the accepted representation, especially as far as communication over the
Internet is concerned, is in an XML (eXtensible Markup Language) [16] format.

Example 1. The matrix

(
1 3
2 4

)
may be represented in OpenMath markup as:

<OMA>
<OMS cd = "linalg2" name = "matrix"/>
<OMA>
<OMS cd = "linalg2" name = "matrixrow"/>
<OMI>1</OMI> <OMI>3</OMI>

</OMA>
<OMA>
<OMS cd = "linalg2" name = "matrixrow"/>
<OMI>2</OMI> <OMI>4</OMI>

</OMA>
</OMA>

where linalg2 is the second linear algebra content dictionary, defining the matrix
and matrixrow concepts, OMA identifies an application (of a constructor in each of

1 We refer to OpenMath 1.0 in this paper as it is forward compatible and we do not require any
of the improved features of the newer versions.
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the three cases here), OMS identifies a symbol with attribute name in the given CD and
OMI identifies an integer.

The purpose of this paper is to demonstrate how the categories and domains of Aldor’s
type system can be used to advantage in the creation of mathematical web services and
specifically, how it may be used to capture accurately the semantics of OpenMath input
and subsequently how it assists in turning outputs back into OpenMath for communi-
cation to other OpenMath-aware applications.

We now outline the structure of the rest of the paper. In section 2 we describe the ar-
chitecture of our service manager, discussing details of the problems that arose from
the philosophical mismatch of Aldor’s strong-typing and OpenMath’s type agnosti-
cism, and how we have overcome this by means of the ExpressionTree domain.
In section 3 we discuss both the theoretical—from a type system point of view—and
practical limitations of the approach we describe. In section 4 we give specific details
of the service manager, how the services must be wrapped in order that they can com-
municate over the Internet and demonstrate how a service is invoked via Axis. Finally
in section 5 we give an example of our service manager, demonstrating deployment of
a service right through to service invocation and receiving OpenMath results over axis,
which may then be converted via style-sheets to presentation MathML, which may sub-
sequently be displayed by the browser.

2 Design of the Service Constructor Service

If a service is to be usefully deployed on the Internet, it must receive parameters, or
input from the external world. It must also return the results of the computation to
the external world. We utilise the conventional solution of a wrapper around the code
that implements a service to provide the function of processing OpenMath received
over an Input Stream. Consequently the OpenMath is converted into the internal Aldor
representation that may then be processed by the service. On successful completion the
service will produce results which are then converted to OpenMath and fed to an Output
Stream. The input stream and output stream referred to in this description originate from
a java class listening to and writing to an axis-created SOAP connection.

The first step in making Aldor OpenMath aware was the definition of an OpenMath
domain. Fortunately, since there are already a set of domains implementing XML-
DOM [17,10] it was relatively straightforward to adapt these for the purpose. These
domains take a domain-valued parameter that must have a Category of character, such
as UTF8Char. This expresses the constraint that there are a number of functions spec-
ified in the Category that the domains must export. UTF8Char is the character domain
which we use in this presentation, it being a full implementation of the Unicode UTF-8
encoding [15]. It is written to supply the full functionality of the character encoding and
utilises the lowest level operations available in Aldor to ensure high efficiency.

2.1 Interface Typing Problems and Our Solution

One of the major problems encountered when performing translations between Open-
Math and Aldor is that to a large extent OpenMath is type agnostic. That is to say that
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the objects appearing in OpenMath markup have no type information attributed to them;
it is possible to give type information by means of OMATTR elements, however their use
is not mandated by the standard and therefore we can not assume that received Open-
Math markup will contain such attributes. Aldor values however are strongly typed.
This means that all values, including those supplied as parameters to a function, must
belong to a specific domain (or type), additionally the return value from a function must
be of a specific type.

The service code supplied by its author specifies that its parameters and its return
value are of specific types, and the parameters received over the input stream and the
return value to be sent to the output stream have to be expressed in OpenMath. This re-
quires that there is some translation mechanism between the heterogeneous type struc-
ture of Aldor and the single OpenMath domain. Furthermore, in order that the wrapper
generator is well-structured and extensible, it is necessary to present the functionality
via a carefully-defined API. We propose a solution to this problem in section 2.4 and
have built a service generator based on it, which is detailed in section 4. There are a
number of Categories and domains which are central to our solution which we shall
detail below.

2.2 ExpressionTree

The purpose of this section is to explain how to translate between Aldor internal ob-
jects and other (external) representations. The key to the translation process is the Ex-
pressionTree domain, which acts as a gateway to a number of external representations,
e.g. TeX, C, Fortran, lisp or maple, and specific Aldor domains. Most of the domains in
Aldor satisfy the ExpressionType Category2, that is they export a function with the
following signature:

extree : % -> ExpressionTree;

This should be read as meaning that the domain exports a function with name extree,
which takes a parameter of type % (the domain in question) and returns a value of type
ExpressionTree.

Example 2. The Aldor domain DenseMatrix(R) represents matrices of elements of
type R in a dense format, R is a type which has both the Categories ArithmeticType
(meaning one can perform arithmetic operations on its elements), andExpressionType
(one can make ExpressionTreeobjects from its elements). The domainDenseMatrix
is of the ExpressionType Category, this means that it has an extree function which
can construct ExpressionTree objects from its objects, as seen in the following Aldor
interpreter snippet:

%1 >> mat:DenseMatrix(Integer) := [[1,2],[3,4]]
matrix [[1,3],[2,4]] @ DenseMatrix(AldorInteger)

%2 >> exmat := extree(mat)
(matrix 2 2 1 3 2 4) @ ExpressionTree

2 The categories ExpressionType, Parser and Parsable actually require exportation of
additional functions, however we are only concerned with the ones mentioned.
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the presentation given after the second interpreter statement should be read as: (i) The
first value indicates the type of object represented, (ii) The second two values are the
dimensions of the matrix and (iii) the rest are the values in the matrix. One also notes
that the type AldorInteger is also of Category ExpressionType. Now that we have
an ExpressionTree version of our DenseMatrix objects, we are in a position where
we can transform them into a number of external formats, as follows:

%3 >> axiom(stdout,exmat) -- Axiom format
matrix [[1,3],[2,4]] () @ TextWriter

%4 >> maple(stdout,exmat) -- maple format
linalg[matrix](2,2,[1,3,2,4]) () @ TextWriter

%5 >> tex(stdout,exmat) -- tex format
\pmatrix{
1 & 3 \cr
2 & 4\cr } () @ TextWriter

The above deals with converting values from a specific Aldor type into a generic Aldor
type, which may then be converted into a number of different external types. For our
needs we must convert to the OpenMath type. We may achieve this by extending the
ExpressionTree domain with a function which has signature:

openmath: (TextWriter, %) -> TextWriter

Which performs the task of converting ExpressionTree objects into OpenMath. This
enables Aldor to communicate Aldor values to the external world in an unambiguous
machine processable manner.

To communicate in the opposite direction, it is necessary to: (i) convert from the ex-
ternal markup to ExpressionTree, in our case from OpenMath to ExpressionTree,
then (ii) from ExpressionTree to the specific Aldor domain. Implementation of step
i) involves extending the OpenMath domain with the Parser category that is described
in more detail in section 2.3. Step ii) requires that the target domain must be of category
Parsable, which means that the domain must export the function with signature:

eval: ExpressionTree -> Partial(%)

This should be read as meaning that the domain exports a function eval which takes an
ExpressionTree argument and returns a value of type Partial(%), which is Aldor’s
name for lifted domains, that is domains extended by ⊥. Aldor’s name for ⊥ is failed,
indicating that the expression tree does not represent an object from the domain referred
to by % (i.e. the domain in question), or it may be a value from the domain referred to
by %. In the later case a value of type % may be obtained using the function retract

exported by the Partial(%) domain.

Example 3. We shall continue example 2, and show how we can reconstruct the ma-
trix from the ExpressionTree representation. (N.B. during execution of a service the
ExpressionTree objects to be evaluated will originate from OpenMath objects.)

First we translate from ExpressionTree to Partial(DenseMatrix(Integer))

using the eval function, available from the DenseMatrix domain since this domain is
of Category Parsable.
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%6 >> pmat:Partial(DenseMatrix(AldorInteger)) := eval(exmat)
[F matrix [[1,3],[2,4]]] @ Partial(DenseMatrix(AldorInteger))

Finally we translate from the Partial( · · ·) domain to the specific domain:

%7 > retract(pmat)
matrix [[1,3],[2,4]] @ DenseMatrix(AldorInteger)

2.3 Parsing OpenMath in Aldor

In this section we describe the approach we have taken in extending the OpenMath do-
main with the Parser category. In order that the OpenMath domain satisfies the Parser
category, it is necessary that the OpenMath domain exports a function with signature:

parse! : % -> ExpressionTree

that is, export the function parse! which takes an OpenMath value (the specialisation
of % in this case) and returns the ExpressionTree equivalent. The naı̈ve approach
might simply traverse a table of OpenMath classes, associating one class of OpenMath
objects with its ExpressionTree equivalent. Although, this approach would certainly
work, the complexity would depend on the size of the table which would be large. The
complexity would become worse as the number of OpenMath objects handled became
large (i.e. it would not scale well). The algorithmic complexity of this process would
be O(nm) where n is the number of elements in the document and m is the number of
different classes of OpenMath objects handled.

The approach that we have taken is to build up a hash table associating strings char-
acterising OpenMath objects with functions taking an OpenMath object as parameter
and returning Partial(ExpressionTree) objects. The functions may be extracted
from the hash table dynamically and applied during a recursive descent of the Open-
Math XML tree. The algorithmic complexity of this operation will be O(n) where n is
the number of child elements in the document.

Example 4. If we are translating the OpenMath element: <OMI>10</OMI> into Aldor,
the tag-name “OMI”, is used as the key to the hash table; this is associated with a func-
tion which takes an OpenMath object as parameter and returns an ExpressionTree.
This particular function takes the content of the OMI element (10 in this case), and
returns its ExpressionTree representation.

Example 5. If we are translating the OpenMath application element:

<OMA>
<OMS cd="set" name="set1"/>
...

</OMA>

elements are members of the set being constructed. To characterise this element we
concatenate the values of the cd and name attributes with an “@” separator, to obtain
“set@set1”3 in this case. The value obtained from the hash table will be a function
which we apply to the OpenMath object. The body of this function recursively performs
a parse! application on all the children, bar the first, of its argument to obtain their

3 The characterisation used is implementation specific, we report the one that we have used.
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values as ExpressionTree objects. Consequently, we are in a position to build an
ExpressionTree set and return this as the return value of the function.

2.4 Solving the Type Translation Problem

Summarising our solution to the type translation problem, our method performs the
following steps:

1. Read characters from the input stream (this is assumed to be OpenMath XML, if
not an error will be returned to the client),

2. Convert the input stream to internal Aldor OpenMath objects,
3. Convert the OpenMath objects to ExpressionTree objects via the technique de-

tailed in section 2.3,
4. Parse the ExpressionTree objects to be of type Partial(S) where S is the

specific type of the particular parameter, for this step to be possible the parameter
type must be of the category Parsable,

5. The Partial(S) object so obtained must now be retracted to the type S, in which
format it may be processed by the functions provided by the service author,

After the service code has been executed, a return value will be generated with a
single return type, this must be converted to OpenMath, in order that it may be sent
back to the client over axis.

vi) The return type must be of category ExpressionType; this implies that the rele-
vant domain exports the extree function which implements the transformation to
ExpressionTree,

vii) Call the openmath function with which the ExpressionTree domain has been
extended, in order to convert the ExpressionTree to OpenMath format and write
it to the standard output.

3 Theoretical and Practical Limitations

Both the Aldor system and the OpenMath markup language are extensible. This means
that one may define new domains in the former allowing one to construct novel objects
to interact with the rest of the system. We may then write new OpenMath Content
Dictionaries, which define new symbols allowing one to represent these objects. This
extensibility has its advantages and drawbacks. On the one hand this means that if a
service is utilising objects that are not handled by the system, there is a possibility that
the system may be extended to deal with them, however fundamental limitations surely
exist and we must determine the limitations on the scope of the system. In this section
we consider the limitations on the system.

3.1 Theoretical Limitations

The basic limitations on the types of objects which may be accepted by the services are
that it must be possible to perform the required translations. These limitations naturally
fall into the following partitions:



From Untyped to Polymorphically Typed Objects in Mathematical Web Services 229

Category Considerations: The type of the parameters must have the Category
Parsable, in order that the parameter objects may be obtained from their Expression
Tree formats. This is in order that step 4) in section 2.4 may be performed. The return
type must be of Category ExpressionType in order that an ExpressionTree object
may be obtained from the return value (step vi), section 2.4). If any of these domains
do not have the required Category this may be rectified using Aldor’s extend facility,
which allows extra functions to be exported by a domain.

Translation from OpenMath to ExpressionTree: To effect the translation from
OpenMathobjects to ExpressionTreeobjects, we use the technique detailed in section
2.3. TheHashTablewhich it utilises must be loaded with the correct functions, otherwise
there is no information to specify how the transformation is to take place. In our current
prototype, the set of translation methods is fixed. Clearly this is not practical for the longer
term, due to the extensible nature of OpenMath which means that new CDs will be written
and new translation methods will be required. We are currently considering how this may
be made more flexible within the constraints and capabilities of Aldor.

Function Objects: Greater problems arise with translation to and from function objects
and the remainder of this section is on-going work. In Aldor function objects are treated
as first class objects which may be assigned to variables, passed as parameters and
returned from functions. In OpenMath abstract functions may be represented using a
λ-binding notation:

Example 6. The function which a mathematician might write as: λ x · x2 could be
represented in OpenMath as

<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR><OMV name="x"/></OMBVAR>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMI>2</OMI>

</OMA>
</OMBIND>

Here are some of the issues this matter raises:

– The first problem is that function objects are not members of domains, and so the
extend mechanism referred to earlier can not be used. It is envisaged that a special
purpose package would be written to translate from objects of the OpenMath do-
main to objects of ExpressionTree, and thence to the primitive function objects.

– A second problem becomes apparent with this approach: it appears that the
ExpressionTree framework does not supply a rich enough descriptive mecha-
nism to describe function objects. It is hoped that this framework could be extended
in some way. A different approach might be to translate directly from OpenMath to
the primitive function objects.

– A third and apparently intractable problem is arises from the translation from Aldor
to OpenMath, since this would imply decomposing the function objects into their
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constituent parts. Currently no tools exist in Aldor to do this and we must leave this
as future work.

– However, there is some hope: if the OpenMath input were to contain fully anno-
tated types—this is not the normal practice—this information could be propagated
through the process and potentially re-exported when needed. Indeed, annotation
is probably the only way forward, given the computational intractability of type
inference for type systems such as that in Aldor.

A number of the objects which exist in the algebra library have function objects as
part of their representation, e.g. DenseUnivariateTaylorSeries, it is not possible
to represent these objects without using functions. For the above reasons we are not
currently able to translate between these objects and OpenMath.

4 Building and Using Aldor Web Services

We have built a web service manager which supports the construction and deployment
of Aldor-based web services and is achieved via a set of JSP pages. One of the func-
tionalities of the manager is to assist users in the deployment of services by writing the
generic web services code automatically. The user simply supplies the code that imple-
ments the service and the web service manager sends this code as a string through Axis
to a wrapper service. We built a similar system earlier as part of the MONET project
[9,6] for the deployment of Maple functions as web services.

4.1 The Wrapper Service

The purpose of this wrapper service is to convert the function or functions which imple-
ment a service into a set of functions which take their parameters as OpenMath objects
from an input stream and convert them into the required type for the function, similarly
it will translate the return value of the function into OpenMath and write that to the out-
put stream. To do this we must translate the code submitted by the service implementer
into code to perform the actions outlined in Algorithm 1.

Construction of wrapped services is performed dynamically as the service code is
received, since the specific details of the wrapped code will depend on the type of the
arguments and return values of the code. We perform this service wrapper creation using
a java program which implements the actions detailed in Algorithm 2.

4.2 Service Invocation

The service manager also allows invocation of the wrapped web services as follows:

1. The client selects which service they wish to invoke,
2. The client is prompted for the requisite number of parameters of the required types,
3. The client supplies these parameters in OpenMath format. It would be possible to

perform type checking at this stage,
4. The request is made via a SOAP [14] engine, for example Axis,
5. The wrapped service, as described in section 4, is invoked and supplied with the

OpenMath parameters,
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Algorithm 1. Service Wrapper
serviceWrap():() == {

{x1, · · · , xn} ← read OpenMath arguments from the default Input Stream
{E1, · · · , En} ← convert {x1, · · · , xn} to ExpressionTree
ret:R ← service_code(E1, · · · , En) —- R is the return type of the service code
return openmath(stdout,extree(ret))

}

service_code(E1 : ExpressionTree, · · · , En : ExpressionTree):R == {
import from Partial(D1) · · · Partial(Dn) and D1 · · · Dn,where D1 · · · Dn are
the arguments to the service code.
{e1, · · · , en} ← convert the ExpressionTree objects into objects of the specific

types.
the rest of the service code

Algorithm 2. Wrapper Creation
input: prog – The service code
Extract the arguments and their types from the interface function of prog.
if The argument types are not of category Parsable then

throw a TypeNonParsable exception, whose detail records the types which are not of cate-
gory Parsable(see note below).

end if
Extract the return type of the interface function of prog.
if The return type is not of category ExpressionType then

throw a TypeNonParsable exception
end if
Build the program detailed in Algorithm 1 where the arguments are those given as the param-
eters of prog
Compile the constructed program, and store the executable in the service database.

Note: The type information recorded by the exception may be useful to the implementers of the
service manager, as they will then be given information about extensions required by service
implementer clients.

6. The service does the required processing and transmits OpenMath results which
are returned (over Axis),

7. The client receives the OpenMath results, it may do further processing, e.g., trans-
lation to Presentation MathML using XSLT style-sheets.

4.3 Automatic MSDL Generation

After a service has been created, it is necessary to construct its advertisement as a web
service that may be stored in a UDDI-like repository and subsequently found by service
brokers. A straight Web Service Description Language description is relatively unhelp-
ful since it only contains the information necessary to invoke the service. Extended
UDDI registries contain textual descriptions, but these too are of little use for soft-
ware clients. These deficiencies were essentially the motivations behind the MONET
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1 <monet:definitions
2 targetNamespace= "http://monet.nag.co.uk/problems/">
3 <monet:problem name ="AntiTranspose">
4 <monet:header>
5 <monet:taxonomy taxonomy= "http://gams.nist.gov" code="GamsD1b"/>
6 </monet:header>
7 <monet:body>
8 <monet:input name ="M">
9 <monet:signature>

10 <om:OMOBJ>
11 <om:OMA>
12 <om:OMS cd ="sts2" name ="matrix"/>
13 <om:OMS cd="setname1" name="Z"/>
14 </om:OMA>
15 </om:OMOBJ>
16 </monet:signature>
17 </monet:input>
18 <monet:output name ="A">
19 <monet:signature>
20 <om:OMOBJ>
21 <om:OMA>
22 <om:OMS cd ="sts2" name ="matrix"/>
23 <om:OMS cd="setname1" name="Z"/>
24 </om:OMA>
25 </om:OMOBJ>
26 </monet:signature>
27 </monet:output>
28 <monet:pre-condition>
29 <om:OMOBJ>
30 OpenMath for the number of columns in A = the number of rows in A

31 </om:OMOBJ>
32 </monet:pre-condition>
33 <monet:post-condition>
34 <om:OMOBJ>
35 OpenMath for Arc = Mlen−c+1,len−r+1 where len is the size of the matrix
36 </om:OMOBJ>
37 </monet:post-condition>
38 </monet:body>
39 </monet:problem>
40 </monet:definitions>

Fig. 1. MSDL generated from the antiTranspose example (see Section 5)

project’s development of Mathematical Service Description Language (MSDL) [5] that
takes some inspiration from its contemporary DAML and DAML-S by describing a
service in terms of pre-conditions and post-conditions. In the XML markup used to
represent the MSDL document these are represented by the following elements:

– input elements, the signatures of the input parameters,
– output elements, the signatures of the return values,
– pre-condition elements, conditions which must hold prior to service execution

and
– post-condition elements, conditions which must hold after the service has exe-

cuted

In both MONET and GENSS4, it has been necessary to construct the MSDL descrip-
tions mostly by hand, which is an arduous and error-prone task. A particular benefit of
the capacity to translate between OpenMath and Aldor’s type system is that it is possi-
ble to generate, as a side-effect of Algorithm 2, the types of the arguments to the service
and the type of the return value. These values may be used to create automatically the
input and output elements respectively and also some of the basic constraints for
the pre- and post-conditions. The association of this information with a service is im-
portant not only for service advertisement [11], but also in checking the correctness of
parameters during a service invocation.

4 GENSS is a follow-on project to MONET; see http://genss.cs.bath.ac.uk
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5 Example

We assume that an Aldor service has been deployed through Axis. The service we
demonstrate is one that calculates the Anti-diagonal of a matrix viz. the matrix obtained
by reflection about the anti-diagonal of the matrix. The code to implement calculation
of the anti-diagonal:

antitran(m:DenseMatrix(Integer)):DenseMatrix(Integer) == {
import from MachineInteger,Integer;
ret := copy m;
len:MachineInteger := numberOfColumns m;
for c in 1..numberOfColumns m repeat {

for r in 1..numberOfRows m repeat {
ret(r,c) := m(len-c+1,len-r+1);

}
}
ret

Fig. 2. Submission of Code to the service manager
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INTERACTING WITH AN ALDOR WEB SERVICE

When invoking a service, the interface first invites the user to select a service from the list of
services which the manager has in its database. In order to deal with the case where different
instances of a service have been deployed, with or without the same implementation, the service
manager associates a unique identification number with each service.

For this naı̈ve implementation of the manager, we use a string representation of the OpenMath
parameters. A more user friendly approach would be to offer several alternative representations,
e.g. Aldor, Mathematica, Maple format then issue a call to a translation service which would
translate the parameters to OpenMath, This is a trivial extension, but is outside the scope of the
current work. Returning to the example, the parameter supplied is the matrix

„
1 3
2 4

«

The service is then invoked over Axis. This in turn invokes the Aldor executable created as out-
lined in section 4.1. The OpenMath parameters are sent to the service by a Java method over and
Output Stream. This same method receives the input from the executable on an Input Streams
as OpenMath, which is transmitted by axis back to the client, where the JSP page converts the
OpenMath to Presentation MathML, and the following page results:

Fig. 3. Phases of interaction with the Aldor-based web service
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may be submitted to the service manager via the JSP page shown in figure 2. Additional
information, apart from the code, which must be associated with the service are its
description for the purpose of service advertisement, discovery etc.. The details of the
interaction is shown in Fig 3.

6 Related Work

The work detailed in this paper utilises a similar architecture as that used by the service
manager used in the GENSS project [8]. The services created as part of GENSS were
based on the Maple computer algebra system. Conversion from OpenMath to Maple
is less problematic then conversion between OpenMath and Aldor, due to the fact that
Maple, being a latent-typed language, can better accommodate OpenMath’s type agnos-
ticism. This conversion however is performed by procedures written in the Maple inter-
preted language [13] with the relatively high overhead involved in constructing a new
Maple instance every time a service is invoked. Indeed, it was the time taken in launch-
ing Maple and loading all the necessary library code that drove us to seek an alternative
solution, resulting in the application of Aldor reported here. The GENSS project was
a follow-on project from the EU funded MONET project under which the MSDL [5]
and OpenMath based ontologies which are the underlying communication languages
for these projects where developed. The Maple based service manager created in the
GENSS project followed a similar method to that described by Dewar et al. [7] where
the service manager developed at the University of Western Ontario is described, along
with associated technologies. The MathBroker I and MathBroker II projects have fo-
cused on mathematical service brokerage [3], apparently using taxonomic information
to perform service categorization and selection. It would be interesting to investigate
how the MathBroker software might be used as advertisement agencies for Aldor-based
services.

7 Conclusions

We have described how the Aldor language, and in particular its type system, can be used
to advantage in the creation and publication of mathematical web services. By creating
translators between OpenMath and Aldor objects for (a subset of) the Aldor type system,
and vice-versa, we are able to deploy Aldor-based web services that accept OpenMath as
input and generate OpenMath as output, through the use of wrapper service code. Both
the wrapper code and the service code may be compiled and stored in a repository. A
particular challenge of the work has been accommodation of the tension between Open-
Math’s absence of need for type information and Aldor’s sophisticated strong typing
scheme, but by using the ExpressionTree domain, and an efficient, linear time algo-
rithm for the translation of OpenMath objects to Aldor objects, it is possible to handle
the different Aldor objects that may have very different procedures for providing this
translation. Furthermore the correspondence between Aldor types and OpenMath that
has thus been established can now be applied to the signature of the service procedure
and used to generate some of the necessary information to go in the MSDL description
that might subsequently enable a broker to identify the service as useful.
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Abstract. The HR system forms scientific theories, and has found par-
ticularly successful application in domains of pure mathematics. Starting
with only the axioms of an algebraic system, HR can generate dozens
of example algebras, hundreds of concepts and thousands of conjectures,
many of which have first order proofs. Given the overwhelming amount
of knowledge produced, we have provided HR with sophisticated tools
for handling this data. We present here the first full description of these
management tools. Moreover, we describe how careful analysis of the
theories produced by HR – which is enabled by the management tools
– has led us to make interesting discoveries in algebraic domains. We
demonstrate this with some illustrative results from HR’s theories about
an algebra of one axiom. The results fueled further developments, and
led us to discover and prove a fundamental theorem about this domain.

1 Introduction

Automating the formation of mathematical theories has occupied Artificial In-
telligence researchers for nearly 40 years. This fascination began with Lenat’s
inspirational – but ultimately flawed1 – approach to mathematical concept for-
mation via the AM and Eurisko programs [15], which formed concepts in set and
number theory. Following these early attempts, methods for theory formation in
particular domains were implemented, e.g., plane geometry [2], number systems
(such as Conway numbers) [21] and non-associative algebras [12]. Particular at-
tention has been paid to graph theory, with Epstein’s GT program [8] providing
a generic model for theory formation, and Fajtlowicz’s Graffiti program [9] pro-
ducing many conjectures, the proofs/disproofs of which have led to publication
in the mathematical literature. More recent approaches to theory formation in-
clude further application to graph theory [19] and the approach by Pease et. al
[18] to modeling the philosophy of mathematics championed by Lakatos [14].

1 See [1], [20] and chapter 13 of [3] for criticisms of this work.
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Our contribution to mathematical theory formation has been to develop a
novel descriptive machine learning algorithm, known as automated theory for-
mation [3], and to apply this to discovery tasks in domains of pure mathematics,
such as group theory, graph theory and number theory. Our first implementa-
tion of this technique (in the HR1 program) was written in Prolog and allowed
us to investigate various concept formation and conjecture making mechanisms
at a fundamental level. Our second implementation (in the HR2 program) was
written in Java and addressed various disadvantages of the Prolog model. One
drawback to the Prolog implementation was the lack of functionality to prop-
erly manage and present the large amounts of mathematical knowledge that was
produced. In particular, we found it very difficult to extract the most interesting
and important aspects of the theories produced. Hence, we have paid particular
attention to implementing knowledge management tools, and HR2 boasts some
fairly sophisticated ways of extracting and presenting information requested by
the user. While these methods have been developed organically to meet demands
from new applications, we have followed four basic principles:

• The tools implemented should be modular, hence developers should be able
to augment them easily.

• The tools should enable identification of the most interesting material, even
if the user’s interests only come to light during or after a theory has been
formed.

• Extraction of information should enable us to produce results in markup
languages such as HTML, XML and LaTeX, in order to use appropriate
viewers.

• The theory produced should be available for query while it is being formed.

We present here the first full description of the knowledge management tech-
niques implemented in HR2 (hereafter referred to as simply HR). In §2, we
describe the nature of the material produced by HR. We then describe the tools
in HR’s user interface which enable quick access of information (§3), and the
more sophisticated report generation methods HR possesses (§4). We propose
the hypothesis that careful use of HR’s knowledge management tools enables
us to extract relevant material from the theory which can lead to mathemat-
ical discovery. To add support to this hypothesis, in §5 we present the results
of a series of recent sessions with HR which have led us to make some discov-
eries about a (relatively) little-studied algebraic domain. In §6, we summarise
the management tools available in HR, and we propose improvements for future
implementations of automated theory formation tools.

We will use group theory – a well known algebraic system with one operator
[11] – as a running example. The operator in groups is usually denoted ∗, and
this multiplies pairs of elements, x and y of a set, G, to produce a third element,
x∗y in such a way that: (i) ∗ is associative, i.e., ∀ x, y ∈ G (x∗(y∗z) = (x∗y)∗z),
(ii) there is an identity element id, such that ∀ x ∈ G (x∗id = id∗x = x), and (iii)
each element has an inverse with respect to the identity, i.e., ∀ x ∈ G, ∃ x−1 ∈
G s.t. x ∗ x−1 = x−1 ∗ x = id.
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2 Theory Constituents

The HR system has many modes of operation, depending on the requirements
of the user and the background information available. We focus here on two
modes commonly used for forming theories about algebraic domains: (m1) the
user provides only the axioms of an algebra, and (m2) the user extracts certain
results from previous sessions formed using mode (m1), most importantly the
example algebras produced (which we call the objects of interest), and provides
these as background information in new sessions. HR has two main activities
which add material to the theory being produced. Firstly, HR introduces new
concepts by using one of 17 production rules to take a single old concept – or two
old concepts – and produce a new one. In mode m2, the initial set of concepts is
supplied by the user, whereas in mode m1, the concepts are extracted from the
axioms supplied. The production rules are described in detail in [5] and chapter
6 of [3]. To give a flavour of how they operate and the concepts they produce,
we describe how HR can construct the concept of commutative groups. It begins
by constructing the concept of commutative pairs of elements by composing
the background concept of group multiplication with itself. That is, given this
background concept:

1.[a, b, c, d] : b, c, d ∈ a ∧ b ∗ c = d
HR produces the following new concept using the compose production rule:
2.[a, b, c, d] : b, c, d ∈ a ∧ b ∗ c = d ∧ c ∗ b = d
HR then uses the exists production rule to generalise concept 2 further:
3.[a, b, c] : b, c ∈ a ∧ ∃ d s.t. (b ∗ c = d ∧ c ∗ b = d)
Finally, HR uses its forall rule to produce the concept of commutative groups:
4.[a] : ∀ b, c (b, c ∈ a → ∃ d s.t. (b ∗ c = d ∧ c ∗ b = d))

This construction highlights the fundamental information that HR records
about concepts, namely the concept identification number, the scope of the con-
cept, i.e., the tuple in square brackets which represents objects to which the
concept applies, and the definition of the concept which tuples must satisfy.
HR also records a plethora of other information about each concept produced.
This includes (a) the ground instances of tuples which satisfy the concept def-
inition, i.e., the success set of the definition (b) the construction history of the
concept (c) the way in which the concept categorises the examples, and (d) var-
ious numerical values which measure how interesting the concept is, e.g., the
applicability of a concept calculates the proportion of objects of interest which
appear in the concept’s success set, and the novelty of a concept calculates the
reciprocal of the number of times the categorisation of examples afforded by that
concept is also the categorisation for another concept. As discussed in [6], while
the measures of interestingness drive HR’s heuristic search, they are also useful
for sorting and pruning the concepts it produces. In particular, we often find
that concepts which score highly for novelty are the most interesting in a theory.

HR’s second main activity is to make conjectures about the concepts. It does
this empirically, by noticing patterns in the success sets of the concepts. For
instance, if HR invents a new concept with exactly the same examples as a
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previous one, it makes the conjecture that the definitions of the two concepts are
equivalent. Moreover, whenever a new concept is added to the theory, HR checks
to see whether the new concept’s examples are a subset or superset of the exam-
ples of a previous concept, and makes implication conjectures accordingly. Given
an empirically formed conjecture, HR extracts simpler conjectures from it, i.e.,
from an equivalence conjecture, it extracts two implication conjectures, from an
implication conjecture, it extracts Horn clause implicates (where a conjunction
of premises implies a single goal), and from Horn clause implicates, it extracts
prime implicates, where no proper subset of the premises implies the goal. In ad-
dition, HR uses the Otter theorem prover [16] and the Mace model generator [17]
to prove/disprove conjectures. Otter therefore introduces a third type of theory
constituent, namely proofs, and Mace introduces a fourth, namely new objects
of interest (e.g., groups) which act as a counterexample to a non-theorem.

HR’s conjecture making functionality is described in detail in [4]. As an il-
lustration, in mode m1, HR is given no example groups, so it first forms the
conjecture that there are actually no groups. Mace disproves this by supplying
the trivial group as a counterexample. HR then conjectures that the only ele-
ment in a group is the identity element and Mace supplies the cyclic group of
order two as a counterexample. Later on, HR invents the concept of idempotent
elements, i.e., elements, x, for which x ∗x = x. Given that the success set of this
concept is exactly the same as that for the background concept of identity ele-
ments, HR makes this conjecture: ∀ G, ∀ b ∈ G (b ∗ b = b ↔ b = id). Otter proves
this easily, and HR extracts the two obvious implication conjectures, which are
already prime implicates, so no further processing is performed.

In summary, theories produced by HR include (a) objects of interest, which
are introduced by the user or as counterexamples produced by a model generator
(b) concepts which categorise the objects of interest (c) conjectures which relate
the concepts, and (d) proofs of the conjectures. We see that there is a high
degree of cross referencing between the different types of theory constituent. In
addition, the volume of this material is quite large. For instance, in a mode m1
session, S, of 5000 theory formation steps lasting 7163 seconds in group theory,
HR produced 9 objects of interest (groups), 306 concepts and 3017 conjectures,
of which 2941 were supplied with Otter proofs. In the next two sections, we
describe how HR manages this information.

3 Front-End Management Utilities

The graphical user interface to HR is extensive, consisting of more than 300
widgets (check boxes, buttons, lists, text fields, etc.,) spread over 20 screens.
Nine of these screens enable the user to set up HR at the start of a theory
formation session, and ten screens enable the user to probe the theory during
(as HR is multi-threaded) and after theory formation. The final screen enables
the user to record changes to any of the other screens into text (macro) files.
Running one of these macro files enables the widget changes and button clicks
to be repeated at the start of a new session, which is a useful tool. Of the
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ten theory-probing screens, three are devoted to directly presenting information
about the theory constituents, i.e., there is a separate screen for the objects of
interest, the concepts and the conjectures in the theory. There is no separate
screen for the proofs, as these are attached to the conjectures which they prove.

In each of the three theory constituents screens, there is a main text area
where information about a chosen theory constituent is displayed. There are also
four lists which enable the user to be specific about the information presented.
These lists are: (a) the constituent list, which enables the user to choose which
constituent to look at (b) the details list, which enables the user to turn on and off
various pieces of information about the chosen constituent (c) the pruning list,
which enables the user to temporarily hide constituents which do not satisfy
certain criteria, and (d) the sorting list, which enables the user to order the
constituents according to various measures of interestingness. In combination,
these lists enable quite specific pinpointing of aspects of the knowledge HR
generates. For instance, in the concept-probing screen, there are 59 details to
choose from, 23 ways to prune the concepts and 19 ways to sort the concepts. HR
also provides many ways to cross reference the theory constituents, for instance
by providing the list of conjectures which involve a concept in the details for
that concept. HR also provides a number of other tools for probing the theory
constituents directly, e.g., a text search facility in the concepts screen. HR can
present concept definitions and conjecture statements in plain text, in Otter
format, in Prolog format, and in TPTP format [22]. It also has an ability to
simplify concept definitions, e.g., it would simplify the Otter-style definition of
commutative groups from §2 above to: 4.[a] : ∀ b, c ∈ G (b∗c = c∗d). In addition,
HR uses Dot [13] to present graphical construction histories of concepts and
conjectures.

To illustrate usage of these screens, after the theory formation in session S
described in §2 above, we looked at the conjectures, narrowed down our view to
just proved equivalences, and sorted them by the length of the proof produced
by Otter. We identified this conjecture as having the longest proof (68 steps):

∀bcd ((b∗c = d∧c∗d = b∧b−1 = d) ↔ (b∗b = c∧c∗b = d∧c∗d = b∧(∃ e (e∗c = d))))

algebra003 [a, b, c, d] : b*c=d

g13_0 [a, b, c, d] : b*c=d, c*d=b

[algebra003 algebra003,compose,[1, 4, 2, 3]] [algebra003 algebra003,compose,[1, 4, 2, 3]]

g77_0 [A, B, C, D] : b*c=d, c*d=b, inv(b)=d

[g13_0 algebra005,compose,[1, 2, 0, 3]]

algebra005 [a, b, c]) : inv(b)=c

[g13_0 algebra005,compose,[1, 2, 0, 3]]

Fig. 1. Construction history for the group theory concept appearing in the theorem
with the longest Otter proof
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We cross referenced the left hand concept of this equivalence conjecture and
found that it had a normalised novelty value of 0.83 (hence it was quite novel).
We also generated the construction history graph for the concept, as shown in
figure 1. We noted that it was constructed using only the compose production
rule.

4 Report Generation Techniques

An advantage of the HR1 Prolog implementation was being in an interpreted
environment where bespoke queries could be constructed. This functionality is
crucial, because theory formation can take many hours, and often the exact
criteria which we need to pinpoint the theory constituents of interest only become
clear on consideration of the formed theory. One possibility to enable bespoke
queries at run-time would be to output the theory to a database, and use SQL to
query it. Another possibility would be to output a Prolog representation of the
theory (which HR can do) and query it using Prolog. Another possibility would
be to write and compile bespoke Java classes and use class-loading at run-time.

Our solution offers, we believe, more flexibility than any of these alterna-
tives. We have implemented a Java interpreter which uses the Java reflection
mechanism to execute scripts supplied by the user at run-time. Each script is
supplied with pointers to certain objects, in particular to the theory object that
HR has produced. In effect, this enables the user to write a script to query in
any way, any aspect of the theory. At present, the interpreter is able to han-
dle simple arithmetic and string manipulation, for-loops, if-statements, and to
call any public method or access any public field of any class, including those
imported from the core Java API (which enables, amongst many other things,
file input/output). As an example, the script in figure 2 prints to the standard
output an XML file with the definition of each concept along with the sum of
the concept’s applicability and novelty values.

We take full advantage of the ability to execute scripts at run-time. In addition
to a screen where the user can write scripts with the output directed to a text

Vector concepts = theory.concepts;
for (int c_num = 0; c_num < concepts.size(); c_num++){
Concept concept = concepts.elementAt(c_num);
System.out.println("<concept>");
System.out.println(" <definition>");
System.out.println(concept.writeDefinition("otter");
System.out.println(" </definition>");
System.out.println(concept.write(" <sum>"));
System.out.println(concept.applicability + concept.novelty);
System.out.println(concept.write(" </sum>"));
System.out.println("</concept>")

};

Fig. 2. Example script for producing XML output
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area, there are also text boxes on the concepts, conjectures and objects of interest
screens described above, which enable the user to type in Java code to act on
the theory constituent being examined. Also, the macros described in section
3 above can be embellished with Java code. Moreover, we use the interpreter
inside the reports, statistics and react screens, as described below.

The report screen provides more support to the user in writing report gener-
ating scripts such as those in figure 2 above. In particular, the screen allows the
user to write and save report scripts, to choose one or more scripts to run si-
multaneously, to run reports during/after theory formation, and to dictate after
how many new theory formation steps the reports should be run. Each script is
passed the theory object, and the user must specify which theory constituents
(concepts, equivalences, implications, implicates, objects of interest, etc.) the
script will report on. Looping through the constituents is organised internally,
so the user only needs to supply Java code for outputting information either
to the screen or to a file. The user can also dictate how many times the loop
is performed, and can specify code to be run at the start/middle/end of each
loop. This allows cumulative values to be calculated – e.g., the average appli-
cability of concepts – and reported. We have written fairly sophisticated scripts
which produce hyper-linked web pages. For example, one script lists the proved
prime implicates present in the theory, with each one hyper-linked to further
information, including the proof of the prime implicate.

In the statistics screen, the user is able to tabulate numerical and textual
information about the theory constituents. In particular, there are three lists,
from which the user can choose: the set of theory constituents to tabulate infor-
mation for; the public fields for those constituents; and the public methods to
be run for the constituents. There is also a text box into which the user can type
Java code to apply to each of the constituents. Moreover, HR can interface with
the GnuPlot program to plot information on a graph. For instance, in figure 3,
we plot the average novelty of concepts as the theory progresses. Note that the
graph exhibits a saw-tooth behaviour, with peaks whenever a highly novel con-
cept is formed which decline as the concept loses its novelty. We have found such
analyses to be very useful during theory formation. The user can also choose to
see run-time statistics, in order to identify bottlenecks in the theory formation
process.

In the react screen, the user can write scripts to be run at one of seven key
points during a theory formation step (e.g., after a new concept has been added
to the theory). Often, this functionality is used to alter the search according to
the results of the step. However, we have often inserted report generation scripts
which react to certain events, e.g., to notify us of certain highly interesting
concepts as soon as they are formed.

5 Enabling Mathematical Discovery - Illustrative Results

We demonstrate here how study of the three major theory constituents (objects
of interest, concepts and conjectures/theorems) that HR produces can lead to
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Fig. 3. Average Novelty of Concepts during Theory Formation

novel discoveries in pure mathematics. We look at a (relatively) little-studied
algebraic structure which we refer to as star algebras.2 These algebras have a
single axiom, which resembles associativity: ∀ x, y, z ((x ∗ y) ∗ z = y ∗ (z ∗ x)).

5.1 Identity Results

We first formed a theory in mode m1 (from the axioms alone) which enabled HR
to generate 39 star algebras. These were then extracted and used in later theory
formation sessions (mode m2). We then looked at the proved prime implicates
generated by HR and we discovered some results about left and right identities.
In particular, HR highlighted the fact that: ∀ a, b (b ∗ a = a → a ∗ b = a).
Paraphrased, this states that, in star algebras, any element which is a left identity
for another element is also a right identity for that element. We also used the
first order generic production rule [23] to specify closure under multiplication
as interesting to study. Using this, HR conjectured – and Otter proved – that
the elements which have a left identity are closed under multiplication, i.e., the
product of two elements which both have a left identity is also an element which
has a left identity.

This result also holds for elements with a right identity. However, on looking
at the sub-star algebras produced by taking all elements with a right identity, we
noticed that they were always the trivial algebra. Note that HR’s embed-algebra
2 Initial conversations with J.D. Phillips inspired our study of this domain. Unfortu-

nately, we have not been able to ascertain why they are called star algebras.
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production rule enabled us to look at the sub-algebras. This led us to form the
incorrect hypothesis that right-identity sub-algebras are always trivial. Given
that we had evidence of non-trivial left-identity sub-algebras, our hypothesis is
false, as, if we take any star-algebra S and produce S′ by writing b ∗ a in place
of a∗ b in the multiplication table, then S′ is still a star algebra (proof omitted).
Clearly, left identities in S are right identities in S′, hence there are non-trivial
right-identity sub-algebras.

5.2 Idempotency Results

HR also used the first order generic production rule to discover and prove that
idempotent elements (such that x ∗ x = x) are closed under multiplication. We
cross-referenced concepts from this conjecture, and narrowed our attention to
star algebras which specialise the domain. In particular, we examined the concept
of idempotent star algebras (i.e., star algebras for which ∀ x (x ∗ x = x)). We
cross-referenced this further by looking at some of the examples which satisfied
the specialisation. Their multiplication tables were as follows:

0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

0 1 2 3
0 0 0 0 0
1 0 1 0 0
2 0 0 2 0
3 0 0 0 3

0 1 2 3 4
0 0 0 0 0 0
1 0 1 0 0 0
2 0 0 2 0 0
3 0 0 0 3 0
4 0 0 0 0 4

We found that, in all the examples of the idempotent concept, all the non-
diagonal entries on the multiplication table were the same element (zero). Given
this, we hypothesised and proved that all similar constructions (of any size)
produce star algebras (proof omitted). Note that we used Mace to disprove the
hypothesis that such star algebras are the only idempotent ones. We used the
classification system described in [7] to prove that idempotent star algebras for
which all the non-diagonal entries are the same element (not necessarily zero)
form an isomorphism class for sizes 6, 7 and 8. This gave us good empirical evi-
dence and the confidence to prove that these specialisations characterise a family
of star algebras, i.e., for every order n, these star algebras form an isomorphism
class (c.f., cyclic groups in group theory, etc.).

5.3 Canonical Examples

In a separate set of experiments, we concerned ourselves with finding canonical
examples of star algebras. Broadly speaking, we were looking for star algebras
with certain properties which were not bestowed upon them by the fact that
they satisfied another axiom set. For instance, many properties of certain star
algebras are true purely because they are commutative and/or associative. Hence
we were more interested in looking at non-associative, non-commutative star-
algebras. We generalised this notion of canonical examples, and wrote a new
measure of interestingness with respect to the objects of interest, called ImpOut
(shorthand for implication outlier), as described below.
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Given concepts p(a1, . . . , an) and q(a1, . . . , an), HR makes an implication con-
jecture p → q whenever the set of examples for concept p is a subset of the set of
examples for q. Hence, any example satisfying the definition of p will also satisfy
the definition of q. The ImpOut measure was designed to capture the idea of
objects of interest which which are examples of concept q but not by virtue of
being examples of concept p. More rigorously, ImpOut is a function associating
a real number in the interval [0, 1] to each object of interest in the theory. The
corresponding ImpOut value for object of interest E is computed by considering
an enumeration of all HR implication conjectures {pi → qi}i and dividing the
number of those implications for which E satisfies qi but not pi by the number
of implications for which E satisfies qi.

When using the ImpOut measure to sort the 39 star algebras in the theory, we
noticed that the least interesting with respect to this measure were those which
had a repeated row or column, such as examples A and B below, and the most
interesting had no repetition, such as examples C and D below:

A 0 1
0 0 0
1 0 0

B 0 1 2 3
0 3 3 1 3
1 3 3 3 3
2 3 3 1 3
3 3 3 3 3

C 0 1 2
0 1 2 0
1 2 0 1
2 0 1 2

D 0 1 2 3
0 3 2 1 0
1 2 0 3 1
2 1 3 0 2
3 0 1 2 3

In addition, we ran another theory formation session in mode m2, where we
specialised the axioms to non-commutative, non-associative star algebras. HR
generated 5 examples, and in each one, we noticed a repeated row. Analysis
of these and other results led us to the following hypothesis: the only non-
associative, non-commutative star algebras are those with a repeated row or
column in their multiplication table. We tried to prove this using the Vampire,
Otter and E provers, but each failed to prove it within 72 hours of processing.
We also used the Mace and Finder model generators to exhaust the search for
counterexamples up to size 10, but we found none. This fueled our interest, and
we eventually proved a more general result by hand, as shown below.

Definition
An algebra is said to be k-nice if the product of any k elements is the same
regardless of bracketing or the order of the elements in the product. (This def-
inition is taken from [10]). For instance, commutative, associative algebras are
3-nice, because multiplying a triple of elements in any way always produces the
same product.

Definition
An algebra is said to be redundant if there exist two distinct elements x and y
in S, such that, for every e in S, we have: x ∗ e = y ∗ e and e ∗ x = e ∗ y.

Theorem
For k > 3, every k-nice non-commutative algebra S is redundant.
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Proof
Given a pair of elements (α, β) from S, we define the following recursive algo-
rithm: if it is possible to find an element x of S such that x ∗ α 	= x ∗ β, then
recurse with the pair (x ∗α, x ∗ β). Otherwise, if it is possible to find an element
y of S such that α∗y 	= β ∗y, then recurse with the pair (α∗y, β ∗y). Otherwise,
output the pair (α, β) and stop.

The first point to notice is that, if we let α = a ∗ b and β = b ∗ a for some
a, b ∈ S, then the algorithm will terminate. To see this, we note that the algo-
rithm simply multiplies both elements of the pair by some other element at each
recursion. Therefore, if the algorithm hasn’t already terminated by recursion
number k − 1, then both elements in the pair will be representable as the same
set of k − 1 elements multiplied together, albeit in a different order (because of
the reversal of the a and b in α and β). By definition of S being k-nice, if we
multiply both elements in the pair by the same element (either on the right or
left), then the product – of k elements – will be the same. Hence, we will not be
able to find an element which multiplies on the left or right of the pair to give
distinct elements, and the algorithm will terminate.

The second point to notice is that, if α 	= β, then the output of the algorithm
will likewise be a pair of distinct elements. This is by definition of the algorithm:
at each recursion, the next pair is constructed specifically to be distinct, and the
output of the algorithm is just the input to the final recursion.

Now, given that S is non-commutative, we can find x, y ∈ S such that x ∗
y 	= y ∗ x. As shown above, if we input (x ∗ y, y ∗ x) to the algorithm, it will
terminate and output a distinct pair of elements (x′, y′). These will be such that
∀e ∈ S, (e ∗ x′ = e ∗ y′ ∧ x′ ∗ e = y′ ∗ e). Hence, S is redundant. �

Corollary
The set of non-redundant star algebras is exactly the set of non-redundant com-
mutative and associative algebras.

Proof
In [10], Hentzel et. al. prove that star algebras are 5-nice. Therefore, the theorem
above implies that non-commutative star algebras are redundant. Taking the
converse, we conclude that any non-redundant star algebra, S, is commutative.
S will also be associative because ∀ a, b ∈ S((a∗b)∗c

com= c∗(a∗b) star= (b∗c)∗a
com=

a ∗ (b ∗ c)). In addition, as commutative, associative algebras are 3-nice, they
clearly satisfy the star-algebra axiom. �

Returning to the question of canonical examples of star algebras, we can now
conclude that the only non-associative, non-commutative star-algebras are those
with repeated rows and columns, as the data from HR suggested. Indeed, the set
of non-redundant star-algebras is the set of associative, commutative algebras,
hence non-redundant star-algebras are not worthy of further study. Moreover,
given that the theorem above states that non-commutative star algebras have the
same pair of rows and columns repeated, we can define the following reduction
algorithm which will transform a redundant star-algebra into a non-redundant
one.
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Reduction Algorithm
Suppose (S, ∗) is a redundant algebra with distinct α and β satisfying the re-
dundancy condition ∀e (αe = βe ∧ eα = eβ). We define the reduction of (S, ∗)
with respect to (α, β), denoted ρ(α,β)(S, ∗), as the algebra (S\{β}, ∗′), where ∗′
is defined for all a, b ∈ S\{β} as

a ∗′ b =
{

α if a ∗ b = β
a ∗ b otherwise .

while( (S, ∗) is redundant )
find (α, β) such that α 	= β ∧ ∀e (αe = βe ∧ eα = eβ)
(S, ∗) ← ρ(α,β)(S, ∗)

end

Hence, we see that the only canonical examples worth studying are trivially
reducible to commutative, associative algebras, which largely draws a line under
this avenue of investigation.

6 Conclusions and Future Work

We have presented the knowledge management tools implemented in the HR
system which enable us to cherry pick and cross-reference the most interest-
ing information from the theories it forms. These tools have been developed
according to four principles. Firstly, as HR is multi-threaded, the user is able
to query the theory as it is being produced, and can stop or alter the search
accordingly. Secondly, due to the Java interpreter in HR, the user can construct
bespoke queries and generate novel types of report during and after a theory has
been formed. Thirdly, the tools are modular, as demonstrated by our addition
of the ImpOut measure of interestingness. Fourthly, thanks to the embedding of
the interpreter in various screens, and HR’s ability to write concept definitions
and conjecture statements in a variety of syntaxes, the tools are able to output
information in LaTeX, XML, HTML, Prolog, TPTP etc., format, enabling the
usage of appropriate viewers, in addition to the output of graphical summaries of
the theory and of individual theory constituents. In future implementations, we
intend to build on the Java interpreter, report generator and cross-referencing
of material between screens, as we have found these the most useful of HR’s
knowledge management tools.

We have demonstrated the flexibility and utility of the knowledge manage-
ment tools during an investigation which led to some interesting mathematical
results. In one sense, the investigation of star algebras from the perspective of
canonical examples led to a negative result. That is, we have proved that any
star algebra which is non-associative and non-commutative (properties which a
canonical example should have), has these properties purely by virtue of having
a redundant row and column. However, the investigation led to a more general –
and surprising – result: that any k-nice non-commutative algebraic structure has
redundancy. While HR and it’s knowledge management tools cannot take credit
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for the discovery and proof of this result, it is clear that they played their part in
this investigation. We believe that such interactive use of mathematical theory
formation systems can enhance mathematical research, and we plan to make our
techniques more powerful, and our interfaces and knowledge management tools
more flexible to appeal to research mathematicians.
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Abstract. Within the LeActiveMath project, a collection of OMDoc

files and supporting material has been realized. This content covers the
derivative side of calculus and is being used by students in the LeAc-

tiveMath learning environment. LeAM-calculus is the first collection
trying to make use of most of the features of the learning environment
including advanced usages of OpenMath and OMDoc. It has been writ-
ten in OQMath, a readable xml-syntax.

This paper describes the tools to produce it, how they were used and
combined, the resulting content and the experience gained. It argues
that the declaration of new OpenMath symbols is a requirement and
explains challenges of authoring semantic mathematical content. Finally,
it presents the management activities to support the authoring process.

Introduction

This paper is an experience report on a field yet little experimented with: the
creation of semantic mathematical documents for use in an integrated learning
environment. It is organized as follows: first we describe the expected deliver-
able of the authoring activity, and its ingredients. Third-party tools that could
answer these missions are covered. We provide a description of the tools used
to fulfill the mission. The collection is, then, depicted in numbers and charac-
teristics. Challenges met during the authoring activity are then described with
a description of tools realized to (partially) answer them. A special accent is
put on the management of mathematical knowledge. Finally, open challenges
are described with a hint to future work.

1 The Mission

Among the goals of the LeActiveMath project is to prove the learning-efficiency
and acceptance of the tools developed within the research project based on usage
within real educational settings. For this to happen, a large content collection was
to be written. This content should showcase the usage of the advanced features of
the learning environment:

– It should support the semantic mathematical approach used in the Open-

Math [3] encoding which makes it possible to export formulæ to such tools
as computer-algebra systems for exercise evaluation [4] or to search for them.

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, pp. 251–265, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– It should support the macro-level semantics of mathematical documents as
proposed by OMDoc and extended in the ActiveMath [11] and LeAc-

tiveMath projects where the domain knowledge is represented using com-
petencies inspired by the Pisa study [13]

– It should provide a sufficient amount of learning content for the adaptivity
to be realized. LeActiveMath’s adaptivity is realized, mostly, using the
tutorial component [15] which selects content elements from a wide choice
using founded pedagogical strategies.

– It should make proper use of the tools developed in the LeActiveMath

project such as the concept-mapping exercise and cognitive-support tool [10],
the copy-and-paste facility, ...

– It should be available at least in German, English, and Spanish to demon-
strate the language adaptivity of the learning environment.

– The content should be presented with a high-quality formula rendering within
web-browsers using the presentation architecture and notation system [9].

The authors of the content should be experts in both pedagogy and math-
ematics and will be trained in the features of the learning environment and in
the usage of the authoring tools to write such content. The authors are to stay
in close contact with tool developers in order to ensure that their expectations,
as educationalists and mathematicians, are met and in order for them to take
advantage of the evolving features.

1.1 Elements of OMDoc Authoring

The content in LeActiveMath is encoded with the OMDoc language [7]: this
language extends the OpenMath standard [3] by a formalism for mathematical
documents. In turn this language has been enriched to support more pedagogical
metadata [11]. The content to be input is made of textual or conceptual items
which have a mathematical role, e.g. a proof, a definition, or an exercise. Each
item has an identifier and can be served individually.

The items are annotated with knowledge to present it (e.g., titles, authorship),
and for it to be inspected by the tutorial component or learner model (such as
the educational context it is aimed at, its difficulty, or the competencies and
concepts it is intended to). These annotations, grouped in an element called
metadata, also contain relations between the items, e.g., the relation between
an exercise and the concepts that are trained in this exercise, or the relation
between a theorem and its proof(s) and corollaries. The input of these relations
requires an author to know well the content or be able to browse through it
easily.

The items unless purely conceptual will be presented to learners. Their content
is written using text mixed with mathematical formulæ in OpenMath. This
plain text is enriched with a small amount of markup such as the links to items
or the embedding of resources such as pictures or applets. Each textual fragment
is flagged with a language which makes it possible for the content’s organization
in items to be multilingual.
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Many references are expected to be input by the author. They include explicit
links on a piece of text, relations in the metadata, transitions in response to
exercise evaluations, inclusion of an item in a book, as well as OpenMath symbol
references in the form of OMS elements.

2 Other Approaches

In this section we describe existing approaches in the direction of authoring
semantic mathematical content or content for adaptive hypermedia.

2.1 Authoring of Mathematical Semantic Content

Semantic mathematical documents to be played on the web are not, yet, com-
monly authored, especially with the requirements of a macro-structure slicing
items with mathematical roles and metadata as well as that of an extensible
set of mathematical symbols. To our knowledge the following tools work with
the same requirements and they all work on OMDoc: STEX [8] a LATEX-macro
package which can produce OMDoc, CPoint [6] an extension to PowerPoint
to support annotations of slides with OMDoc metadata, and QMath which
we shall describe later. To all of these approaches we can at least state two
missing wishes: error reporting about the produced OMDoc seems not possible
or considered and support to suggest possible insertions while editing may be
missing.

The Connexions project [5] aims at the development of an open-source com-
mons for scholarly content. The content with formulæ is expected to be authored
in xml-source form. Connexions relies on MathML-content for mathematical
formulæ with little for structuring parts of the content-modules. Because of this,
the project lacks features such as authorable notations or the context needed to
provide definitions and supporting material around the introduction of a math-
ematical symbol as a conceptual entity.

Many other approaches exist to help in the publication of mathematical docu-
ments on the web. For most of them the ability to define items and metadata and
the support for semantic mathematical objects is less important. They include
LATEX exporters, extended word-processors, mathematical assessment systems,
or computer algebra systems. Only the two latter categories do export semantic
mathematics and, in their case, this export is not easily extensible to support
the addition of new symbols. Mathematical assessment systems, e.g. as presented
at the WebALT conference1, are still mostly centered on fixed computer alge-
bra system whose input-syntax and formula rendering is used. An export to
semantically encoded documents is rarely available.

We insist on the fact that, as has been shown in [11], the effort of authoring
semantic mathematical formulæ pays on the long run. An example is the in-
ternational character of the expressions which becomes language-specific when
1 The WebALT conference took place at the beginning of the year 2006, see
http://webalt.math.helsinki.fi/webalt2006 for the programme and access to
most papers.
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presented (e.g. presents “ggT” or “gcd”). Such an expression authored in a non-
semantic way would require different expressions for each language. Semantic
formulæ are also the basis of most added value to a formula display such as
the possibility to click to see definitions of a symbol or to copy-and-paste an
expression.

2.2 Authoring Content for Adaptive Environments

The field of authoring tools for adaptive environments, or more generally for Ad-
vanced Technology Learning Environments is rich and diverse. It aims at solving
mostly the input of the knowledge that provides the adaptivity or pedagogical
intelligence along with the more static content. A summary and reference model
has been proposed in [12] which also provides general recommendations to de-
signers of such authoring tools. Our approach differs in that jEditOQMath is
based on source editing whereas the usage the WYSIWYG (what you see is what
you get) paradigm is most recommended for micro-level content: the content of
LeActiveMath being semantic, its result is multi-faceted and only relying on
a browser-like view would neglect the several other perspectives under which to
look at the content (in other words to get it). In exchange, fast test-run cycles
are provided which allow to proof (or get) the content under any perspective
the learners may be encountering. Relying on the source-and-build paradigm,
jEditOQMath does also follow a classical authoring paradigm of mathemati-
cal content. Finally, as also recommended by [12], the ontology of mathematical
conceptual and content items of OMDoc by their name and xml element names
provides a reification that mathematicians can understand well.

Under the view of [2] providing an overview of authoring tools for adaptive
hypermedia systems, LeActiveMath is among the multiple indexing systems.
Adaptivity in LeActiveMath is mainly within the process of selecting items,
within the tutorial component. LeActiveMath is more tight to the mathemat-
ical semantic of the macro-structure of items as opposed to the free fragment
slicing described in [2]. This can be viewed as a limitation but, at the same
time, provides a structure vocabulary that is easy to work with and is more
realistic.

3 The Authoring Environment

The content collection is made of source OMDoc files and static resources. In
order to create the OMDoc files the authors are provided with a plain-text editor
and they write and read very readable xml sources. The formulæ are input with
a more compact format. After input authors can verify resulting views to the
content in short edit-and-test cycles.

The current authoring environment of ActiveMath has grown out of the
practice of manual editing OMDoc files by developers. The first experience was
to edit complete OMDoc files by hand. One realized quickly, though, that Open-

Math expressions are much too verbose to be manually input. The approach
taken by the current environment, called jEditOQMath is thus to process the



Authoring LeActiveMath Calculus Content 255

<definition id="def_exp" for="transc1/exp">
<metadata>
<Title xml:lang="de">Definition der (natürlichen) Exponentialfunktion </Title>
<Title xml:lang="en">Definition of the (natural) exponential function</Title>
<extradata>
<relation type="domain_prerequisite"><ref xref="powerseries_symbols/powerser"/></relation>
<learningcontext value="university_first_year"/>
<typicallearningtime value="00:00:30"/>
<representation value="verbal"/><representation value="symbolic"/>
<abstractness value="abstract"/>

</extradata>
</metadata>
<CMP xml:lang="de">

      Die (natürliche) Exponentialfunktion $exp$ ist definiert als der Limes folgender 
<textref xref="powerseries_symbols/powerser">Potenzreihe</textref>:
<p style="cm">$exp(x)  = sum (0._.  ,lambda(n,x^n/n!))

             = 1+ x+ (x^2/2) + (x^3/6) + (x^4/24) + (x^5/120) + (x^6/720)+ dots$ 
        für jedes $x in bR$ (oder $x in bC$) </p>
    </CMP>

<CMP xml:lang="en">
      The (natural) exponential function $exp$ is defined to be the limit of the following 

<textref xref="powerseries_symbols/powerser">power series</textref>:
<p style="cm">$exp(x)  = sum (0._.  ,lambda(n,x^n/n!))

             = 1+ x+ (x^2/2) + (x^3/6) + (x^4/24) + (x^5/120) + (x^6/720)+ dots$ 
        for any $x in bR$ (or $x in bC$)</p>

</CMP>
</definition>

Fig. 1. A OQMath source being edited, the rendering of which is in Figure 2

Fig. 2. LeActiveMath with the example content from Figure 1, presented in English,
resp., German (manually added)

formulæ using QMath and let the authors continue editing OMDoc files except
for the formulæ.

3.1 QMath and OQMath

Using QMath
2 allows a highly readable syntax to be used for the formulæ. The

syntax of QMath can even be more readable than that of TEX since QMath

supports the whole range of Unicode characters. An example of input used
2

QMath is an open-source project written in C++ and Bison by Alberto Gonzáles
Palomo. More information from http://www.matracas.org/.
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in the project is depicted in the formula in figure 1. The input of such Unicode
characters is non-trivial on most keyboards but is made possible by the definition
of abbreviations which expand to these characters; because of the common-usage
of the TEX language, the abbreviations where taken from it. The mathematical
input syntax can be extended by authors by the definition of new notations
wrapped in files called contexts. Since QMath was written for complete OMDoc

documents, a wrapper has been developed around it called OQMath, which
extracts the context-declarations and the formulæ and replaces them by their
OpenMath translation thus creating complete OMDoc documents.

The OQMath file format is using this processor and the OMDoc DTD. This
allows it to be very readable and still be valid xml files. Many editors exist to
edit such files, with ample support provided by grammars such as a document
type definition (DTD, see [1]).

3.2 jEdit and jEditOQMath

The jEdit text editor is such an editor.3 Its facilities for xml-editing include
on-the-fly validation, supported input of child elements and their attributes, and
visual folding of sub-trees. jEdit also supports well the Unicode character set,
its encodings, display, and input.

As most text-editors, find-and-replace commands are supported, locally and
globally. This feature has proven quite important in an ongoing development
process where syntax and child elements are changed from time to time.

jEdit was extended to become jEditOQMath by allowing the start-up at
the click of a link and the rapid opening and linking of an item through the usage
of the drag-and-drop paradigm: the link to an item dropped in jEdit creates,
depending on where it is dropped, an OMDoc ref element, a link, or opens the
source-document of this item.

Content Packaging and Publication. In LeActiveMath, the content is orga-
nized as a series of content-collections, each with a set of OMDoc files, a set of
static resources such as pictures, and a content-descriptor. LeActiveMath uses
the descriptor to load the OMDoc file in content-store and identify the books.
Once loaded in the content-store, items’ content can be accessed individually.

jEditOQMath complements the content-collections with an OQMath di-
rectory and build-file. The latter is a script to perform the publishing tasks to
a running server: the build first applies the OQMath process which outputs
OMDoc-files, then sends a reload command to the content-store, finally, inval-
idates the cache in the author’s LeActiveMath.

The OQMath process may complain about parsing errors in the formulæ
and the content-store reload process is responsible to resolve all links and check
them. Each of these steps may report errors: being part of a build script, error-
reporting is done in a similar way as compilers with a quick access to the line
of the document where the error is suspected. These errors are added to the
3 jEdit is an open-source Java-based text-editor running on contemporary platforms.

More information from http://www.jedit.org/.
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xml-validity errors. They are presented with a link allowing an author to go
the location to fix the error in one click. This error-reporting activity forms an
important management tool which allows permanent control of the consistency of
the overall content loaded in the current author’s LeActiveMath installation.

3.3 Other Tools Used for LeAM-calculus

The realization of the collection required a few other tools which we briefly sketch
here:

Multimedia Elements were created by third-party using classical tools such
as Adobe Illustrator for graphics or the NetBeans IDE for graphical design of
applets. Their embedding is done in a similar way as the embedding of a picture
in an html-page.

Because of the text nature of the biggest part of the authored material, a
versioning system with text-difference abilities, the classical CVS system, was
put to use and has enabled the five persons working on the content to keep in
synchronization and to publish their content in demo-servers of the LeActive-

Math project. Conflicts sometimes produced by CVS merge operations were not
an issue to deal with since the source files were manipulated by authors.

4 Learning to Author

In order to become familiar with the LeActiveMath learning environment as
well as to start authoring, a training session was organized. Four authors took
part and members of the developers’ group held the session.

The first challenges came with the installation requirements for LeActive-

Math (Mozilla, a recent Java, Jess, ...) then the configuration of the environment
with playable content. The editor was then introduced. The primary experience
that authors had with source editing approaches was the TEX typesetting system:
this is often done with very simple editors, in comparison to general purpose ed-
itors with their numerous functions. For most authors, this session is also where
they first wrote an xml-document. The support of jEdit for it turned out to be
helpful. Once the usage of the editor, xml editing and the usage of the publica-
tion scripts were acquired, the reference mechanism in theories and imports of
OMDoc was explained and the error report experimented with.

The input of expressions in QMath syntax that produce OpenMath is then
taught: such a lesson starts with the discovery of OpenMath along with ex-
amples of the OpenMath content-dictionaries directly from its web-site and
continues with an explanation of the QMath notation-context files. It ends with
an experience of the symbol-reference resolution and rendering of OpenMath

expressions in LeActiveMath.
Discovery of the elements possible to input at each point is done, in

jEditOQMath, using the xml-grammar described by the DTD, and with the
usage of templates which provide pre-filled elements with blanks that authors
are expected to fill resembling a from.
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The training was followed by an introduction into multi-steps exercises [4].
The exercise system was, then, in a very young condition and updates of the
grammar were needed to allow correct checking of the syntax. This could easily
be done as it only required a few files to be copied.

4.1 Other Authoring Experiences

After the training, the jEditOQMath tutorial was written as an easy introduc-
tion for starter authors. Other authoring experiences have been made. In 2004,
a mathematics teacher with no experience TEX, or html was introduced using
the tutorial. After a day, he could do all basic steps. After a week, his input of
semantic mathematical formulæ was mature enough to define new symbols. This
author has, since then, created large quantities of material in OQMath.

In 2006, the jEditOQMath tutorial was followed by a classroom of computer
science students. It took less than 3 hours to get the installations running and
their first content be written.

5 The Content Collection

Since this training, the second author of this article has produced 86 percent of
the content for the LeAM-calculus collection. Within the last two years (and
approximately 2000 hours) he has authored 185 symbol declarations, 138 defini-
tions, 241 assertions (i.e., theorems, lemmas, propositions, corollaries), 207 proofs,
148 texts (introductions, motivations, notes, etc.), 308 examples, and 268 exer-
cises, where the latter comprise fill-in-blank exercises, multiple-choice-questions,
and open exercises, also some search and concept-mapping exercises, as well as
multiple-steps exercises consisting of up to 2500 lines of source code. He has en-
riched the content with more than 23.000 textual links. When converted to a pdf

form using LATEX, the collection is about 450 pages long in German, English, and
Spanish. The content covers (nearly) the whole calculus material on differentia-
tion in one variable. As demo material for the adaptivity of LeActiveMath, it
is intended for various users in multiple learning contexts, ranging from collective
work on pre-recorded books in a grade 11 classroom (about 16 years old) followed
by individual homework repetitions up to first year University students who want
to rehearse their knowledge in calculus.

Meanwhile we received feedback on the content from university students and
lecturers, as well as from high school students and their teachers. In general, this
feedback was very positive, most of the users were impressed by the extent of
the content. Suggestions for improvement, e.g., demands for additional content,
have been incorporated by the authors. In a first field study, approx. 80 grade 11
students have been working with the content in their classrooms and homework
repetitions, a picture of which is at Fig 3. According to the online questionnaires
they filled in, they were most impressed by the pictures and exercises, as well as
by the presentation of the mathematical formulae. On the other hand, they also
stated a need for improvement of the exercise hints, which is only natural since of
all the scaffolded hints authored for each exercise — ranging from a first, general
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Fig. 3. LeAM-calculus content being used in the evaluations

hint over more detailed tips and partial results up to the complete solution — the
software only presented the first one, a bug that is meanwhile fixed.

6 Management Activities of the Collection

As the content was being written it was tested, organized, adapted, retested,
discussed, analysed, criticized, searched, ... we consider all these activities as
management activities since they often require a holistic view at the content
collection and how it is used.

Quality Checks. One of the first impression authors may have is that the au-
thoring activity has nothing to do with an artistic creation but is much closer
to programming. The source editing and build-process both contribute to this
impression but the main reason is probably that authors are considered final re-
cipients of the software which means that only when their content is integrated
can a complete test be done.

The following facets of the content, used in the software, should be tested by
authors using both their mathematicians’ and pedagogues’ eyes:

– The presentation of the textual content interleaved with formulæ, graphics,
and other multimedia elements. The correct presentation of formulæ on the
web is particularly challenging. The checks must be done for all languages
and in the three supported output media and may be stained with platform
and browser dependencies.

– The links that are clickable in the presented content, including authored
links and symbol references.

– The disposition of books for the planned learning scenarios.
– The correct interpretation of the knowledge about each item encoded in

its metadata. Ideally, checking this interpretation should include tests with
the learner-model where the knowledge is used to build a domain-map and
propagate the beliefs in the learner’s mastery or the tutorial component
where the knowledge is used to select the items.

– The correct behaviour of interactive exercises including the evaluation of
users’ input and chosen feedback elements.
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This testing activity is typically done in small write-publish-test cycles which
are greatly helped by a fast publication mechanism. The fact that this process
is enriched with elementary reference and grammar validation is an important
safeguard.

In such a research project as LeActiveMath, the authors are among the
first users of the software. As a result, quality monitoring is even more important
and it has not been rare that authors contribute to the design of the tools by
providing early feedback to features.

Exchanging About Content Pieces. In order for members of the project to ex-
change about available content-pieces, care had to be made in the design of the
learning environment so that individual items can be addressed by a direct URL.
The identifiers of each content fragment can be inserted in such communication
forms as e-mails or electronic forums.

The display’s possible dependency on browsers and platforms did not prevent
exchanges of screen-shots to show the current situation an author was experi-
encing. The reproduction of such situations was, sometimes a difficult task.

One of the types of interactions where no good solution was found for its
description, and where even screenshots have sometimes proved useless, are paths
of interactive exercises: one could only describe sequences of inputs which were
not includable in e-mails if done in OpenMath using the input-editor.

Since developers are, all, working with mathematical objects in OpenMath,
advice to authors was made in OpenMath. Very often, however, authors did
communicate with QMath expressions. Such messages took much longer to be
interpreted.

Keeping an Overview. The content collection is large already but still reflects
only a part of the normal calculus curriculum (e.g., topics about integration were
completely left out). Tools to help authors and others assessing the content in
obtaining an overview of the content are needed:

– The first of these is the automated production of a LeActiveMath book
where each page contains the content of each file. This allows quick access
to the content being created. The maintenance of other books is done as
xml-source editing, relying, among others, on the ability to drag-and-drop
a content item within a book’s table-of-contents’ source.

– Moreover, in order to have an eye on the coverage of the possible target
learners and competencies, a catalogue of exercises accessible along their
characteristics was done.

– Finally, when writing new notations for the tools of [9], the set of prototype
expressions and their associated presentations for all the symbols stored in
a LeActiveMath installation are presented. The comparative overview of
the symbols, their notations, and argument priorities is presented.

Overall the tools provided to manage content collections of content are blended
within the learning environment. This empowers the authors, and probably other
expert user, with methods to verify the quality of the content played within the



Authoring LeActiveMath Calculus Content 261

learning environment. As principles of these tools are the fast test-and-edit cycles
as well as the one click edition of content under the eyes.

7 Challenges of Authoring Semantic Mathematics

In this section we cover the difficult task of inputting semantic mathematical
formulæ. This input is critical to guarantee interoperability with other systems,
long term preservation, as well as advanced functions of the learning environ-
ment. The tools that we have described above apply to most mathematical con-
tent that can easily be input as simple text, which is the case of the majority
formulæ in classical mathematics. Let us recall that we expect authors to pro-
duce all their formulæ in OpenMath in a conformant fashion.

Authoring Formulæ. When first starting to input formulæ, an author needs to
find typical patterns of input. This is often found in OpenMath content dictio-
naries. From these patterns, he can find ways and possibly define input-notations
so as to enter such expressions in QMath syntax. Finding these patterns is done
by crawling through the content dictionaries and finding the input-notations is
done by crawling through QMath context-files. This browsing activity is not
comfortable and an integrated search would certainly be helpful. Built-in sup-
port for the input of elementary symbols of the formulæ within the editor is also
wished. Contemporary integrated development environments provide examples
of such support. The process-oriented nature of QMath and OQMath does not
offer suitable introspection mechanism for such a support; other parsing facilities
have to be provided.

Normal mathematicians conceive their mathematical objects with a good deal
of semantics but they are mostly used to write them as presentation. The need
to write it semantically is challenging and is made more difficult by the great
wealth of mathematical notations.

A typical example that surprises an author during his first authoring expe-
rience is the need to use the lambda construct: in the case of the sin function
used in a limit, for example: the notation λ.x sin(x) is needed, or, as better un-
derstood by mathematicians, x �→ sin(x).

A classical example where semantics encoding is almost at the limit is the
usage of ellipsis patterns. Partial results are incorporated in the collection such
as the notation i = 1, . . . , k but a general formalism and interpretation of ellipses
is ongoing research as proved in [14].

Declaring new symbols. Fortunately, OpenMath has been designed to be ex-
tensible and the declaration of new symbols is possible and even well supported
by the OMDoc structure. The declaration of a new symbol goes, as follows:

– First the author defines a symbol element, with a name.
– This symbol can then be defined in a single or in several definitions.
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– The QMath context files are enriched with notations for this.
– Using them in a QMath expression yields OMS elements which are now

rendered with default (prefix) notation. One has, then, to define presentation
notations.

Refining this presentation is done by the definition of a few notation elements
associating patterns of OpenMath terms with MathML presentation. These
notations are used by the symbol-presentation engine presented in [9]. Being
based on OpenMath patterns, they are simple to author and to manage and
allow to approach the wealth of notations of the mathematicians. Being based
on MathML, they can approach the quality of layout of TEX which is often
expected.

Finally, this symbol may be either a mild extension or a completely new
concept. If a mild extension, rephrase rules can be authored which can trans-
late expressions using these symbols to expressions in more widespread content-
dictionaries-groups.

Why new symbols. The introduction of a new symbol can be seen as breaking
interoperability since the semantic of this symbol may not be shared by external
recipients of them. The introduction of the rephrase-rules allows at least symbols
to be introduced for purely presentational reasons or with the intent of a semantic
refinement (e.g. to clarify the ambiguity of the symbol times of arith1 CD). An
example of such is the declaration, in LeAM-calculus, of the unary-plus sign.
This sign actually has no real semantic and was not introduced in the arith1
content-dictionary. It is, however, important for the presentation as well as for
pedagogical reasons. Similarly, R+ the set of positive real numbers is missing.
Experience has proved that many of these symbols are actually translatable in
expressions using symbols of the MathML CD-group as defined in [3] which is
expected to be supported by many applications..

Publishing new symbols for others to use. New symbols may also take a com-
pletely new semantic, for example the ray [PQ[ has been introduced. Often a
publication of this symbol is wished so that others use it. The publication on
the web of OMDoc files might be considered sufficient. The OpenMath society
has, however, maintained a growing catalogue of content dictionaries on their
web-site and this is a recognized central place to discover content dictionaries.

A tool to produce content dictionaries out of OMDoc symbol and example
elements is being realized. This conversion is, however, impossible in full general-
ity. Several features of OMDoc are incompatible with the OpenMath content-
dictionary format. This includes the multilingual textual fragments as well as
the ability to mix text, links, and formulæ in them. The usage of a renderer
of formulæ to text may make the creation of OCD files possible in the future.
However, a revision of the OCD format to allow links and multilingual texts
might be needed.
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8 Other Challenges Encountered

Grammar Specification and Documentation. A long requested feature by au-
thors is a complete reference documentation of the set of elements that can be
input and their use. Because of the evolving knowledge representation, especially
within research projects where software, knowledge representation, and content
evolve together, we believe it is needed to have such a documentation bound to
the knowledge representation.

The xml DTD of OMDoc can be directly read for this, or can be read with
a helper. DTDs are not, however, designed to be enriched with documentation
and hence DTD-documentations are very poor.

Using an xml-schema instead of a DTD may be a good solution as this stan-
dard has good support and tools for embedded documentation. The migration
to such a technology may, however, make the xml-syntax much less readable
bringing to the surface, for example, the various namespaces used in OMDoc

documents for LeActiveMath. Such an impact may turn out intolerable for
the readability of the source files which is a basis of our work.

Input and Testing of Complex Exercises. One of the challenges of realizing
LeAM-calculus is the input of content for multiple-steps exercises. Multiple-
steps exercises form, conceptually a large set of nodes connected by transitions
triggered by inputs of the learner. The amount of such nodes, including the diag-
nostic oriented metadata of each node, has yielded exercises that can be larger
than 2000 lines of code where the sole large-scale structure is the interaction
graph. Keeping an overview through it is difficult, testing all paths of such is
even more difficult especially since, thus far, little indication is provided to a
tester as to which condition has been evaluated. For this reason, a graph-based
authoring tool is being developed based on the spirit of authoring by doing.

Scalability and Distribution of Content. The current LeAM-calculus collec-
tion is already challenging the content store of LeActiveMath and more con-
tent is actually expected. A more elaborate distribution strategy is needed which
should allow content collections to be distributed anywhere on the web and be
used by the drop of a URL.

9 Conclusion

The realization of the LeAM-calculus collection has proven that a large con-
tent collection using tools around jEditOQMath can be written and that a
readable xml-syntax has provided the right language level for authors to edit
and as basis of the discussion between authors and developers in an evolving
software like the one developed in the EU project LeActiveMath.

Other experiences of authoring content for the learning environment using the
same tools have proved that even persons with no TEX or html capabilities can,
within a week or two, be authoring significant content.
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The source form of editing may appear primitive to many and, indeed, we
received many recommendations to provide a visual authoring tool. The usage of
a visual software to edit content would have needed the software to be much more
engineered so as to guarantee the trust of authors, an unconditional requirement.
Moreover, the evolutionary needs of the project would have required such a visual
tool to be permanently adapted to reflect the changing knowledge organization.
Moreover, observation of the mathematicians’ practices reveals a strong bias, at
University level, towards the TEX composition system hence a broad acceptance
of the source and build paradigm.

Finally, this paradigm proved very useful as the requirement to track errors
raised more and more important. It has been experienced in this project that ig-
norance of errors reported by the content store yielded easily erroneous behaviour
of the latter which triggered buggy error reports of producers or consumers of
the content.

The error reporting paradigm proved itself useful and more automated checks
are being investigated in order to approach, for example, the completeness in the
educational targets’ coverage, or the consistency ofmathematicalmacro-structure.
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Abstract. Mizar, a proof-checking system, is used to build the Mizar

Mathematical Library (MML). MML Query is a semantics-based tool for
managing the mathematical knowledge in Mizar including searching,
browsing and presentation of the evolving MML content. The tool is be-
coming widely used as an aid for Mizar authors and plays an essential
role in the ongoing reorganization of MML. We present new features of
MML Query implemented in the third release and describe the possibil-
ities offered by them.

1 Introduction

The Mizar language is a language used for such a formalization of mathemat-
ics that is close to the vernacular used in mathematical publications. An im-
plemented Mizar verifier is available for checking correctness of Mizar texts.
The perpetual development of the Mizar system (see [11]) has resulted in the
Mizar Mathematical Library (MML)—a centrally maintained library of formal-
ized mathematics. Contributions to MML have been the main activity of the
Mizar project since the late 1980’s. MML is organized as an interrelated collec-
tion of Mizar articles. At this moment—February 2006—there are 937 articles
in MML, occupying 66354 kB, containing 42150 theorems and 7926 definitions.
The most important facts included in MML are

– Jordan Curve Theorem (JCT), [10],
– Gödel Completeness Theorem (GCT), [6],
– Fundamental Theorem of Algebra (FTA), [12]
– Reflection Theorem, [2]

JCT is a substantial achievement of the project and is the result of a long lasting
cooperation between Shinshu University and the University of Bia�lystok which
was initiated by Yatsuka Nakamura in 1992 and has involved 16 people. About
70 articles1 from the MML are devoted, directly or indirectly, to the JCT project.

Another large project within MML, called the CCL project [1,3], is aimed at
formalization of the theory of continuous lattices as presented in [8]. 58 Mizar

� Partially supported by COST Action 282.
1 These articles are not devoted only to JCT but also to Brouwer Theorem, Urysohn

Theorem, Tietze Theorem, etc.

J.M. Borwein and W.M. Farmer (Eds.): MKM 2006, LNAI 4108, pp. 266–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Information Retrieval and Rendering with MML Query 267

articles written by 16 authors cover about 65% of the main course of the book
at the moment.

Notwithstanding the above, MML’s coverage of mathematical knowledge is
still minuscule. Even so, information retrieval in MML became a burning issue a
long time ago. The lack of searching tools, which would be more advanced than
some grep-based utilities, had delayed work in the CCL project when several
authors formalized interrelated parts of the theory using various and barely
compatible formalizations from the MML. This prompted in 2000 efforts aiming
at development of a semantics-based searching tool for MML [1] and it was
the origin of the MML Query system [4]. The first release was completed in 2001
and included basic queries enabling semantic searching of library items only. The
second release completed in 2002 is described in [4]. It introduced a number of
searchable resources and a variety of queries enabling more advanced searching.
Additionally, beginnings of semantic presentation of MML were available in this
release.

The third release developed in 2004-2005 was inspired by the works aimed at
presentation of the content of MML for different purposes:

– an application of MML Query in the Trial-Solution project [7] to generate
semantically linked slicing of Mizar articles,

– translation of MML into the OMDoc format [9],
– semantic browsing in Emacs [5].

These investigations as well as continual development of the web interface to the
MML Query system resulted in a text transformation processor MMLQT2 which
is able to interpret MML Query language. The language in third release was im-
proved itself to satisfy requirements of MMLQT (ordered queries, version queries,
and metadata queries) and to make searching with MML Query somewhat easier
(non-expert searching, rough queries).

Currently, MML Query provides the following functionalities coinciding with
the MKM’s objective: semantic searching, semantic browsing, semantic presen-
tation, collection of MML statistics,3 and assistance for authoring Mizar articles
with Josef Urban’s Mizar mode for Emacs [14]. In consequence, the tool facil-
itates individual authoring as well as collaborative work in larger projects by
enabling adequate serching and uniform and unambiguous presentation. Espe-
cially, MML Query provides possibility to make monographs–the uniform ordered
semantic presentation of a specified piece of a theory which may be spread over
the MML. These features of MML Query are also used in ongoing reorganization
of MML into the Encyclopedia of Mathematics in Mizar.

2 Background

A Mizar article accepted into MML gets a unique identifier which is later used
to identify MML Query elements extracted from the article, see [4]. The first
2 MML Query Templates or MML Query Transformation.
3 Accessible via the World Wide Web at http://mmlquery.mizar.org/
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Table 1. Homonyms

Symbol Numbers Examples
* 110/184/185 multiplication, composition

strict 105/105/105 strict
+ 79/113/117 addition
- 79/117/119 subtraction
@ 49/50/50 different castings
Sum 32/34/35 sum of numbers, vectors
" 29/44/45 reverse image
*’ 28/35/36 limited multiplication
. 26/176/176 application
.: 26/54/56 image

Numbers: meanings/constructors/notations

step of the extraction process is to recognize MML Query elements in the article
and to generate their unambiguous representation as dli items (dli stands for
decoded library item). Dli item is a tree and is stored in dli format which is just
the tree written in prefix order with commas and brackets ‘(’ and ‘)’. We hope
that pretty soon this format will be changed to XML thanks to Josef Urban’s
great job [16] in making Mizar processes XML-based.

Dli items are expressed in terms of constructors. Constructors may be under-
stood as representations (variants) of the meaning that symbols of operation,
predicate, adjective, or of type have in the context their occurrence. In other
words, a constructor is a pointer (hyperlink) to an appropriate definition or redef-
inition. Definitions introduce meanings and redefinitions introduce variants of a
meaning. For example, the symbol ‘*’ is used in the definition of the multiplication
of complex mumbers (x ∗ y) which is also a complex number. This meaning of the
symbol ‘*’ has 9 another variants (constructors) introduced by redefinitions like

definition
let x,y be Real;
redefine func x * y -> Real;
coherence ....

end;

The symbol ‘*’ is also used to denote the composition of relations (R ∗ Q), the
set of all finite sequences of a given set (X∗), etc.

Constructors in dli items resolve overloading of symbols (and formats) which
is heavily used in Mizar. Overloading of symbols means that one symbol may
have more than one meaning. Even the number of left and right arguments
can be the same (overloading of formats). Homonyms, symbols (and formats)
with multiple meanings, are the first hindrance in text based searching in MML;
Table 1 presents the most homonymous symbols (in MML there are 13 sym-
bols with at least 20 meanings, 54 symbols with at least 10 meanings, and 196
symbols with at least 5 meanings). The second hindrance concerns the opposite
situation—synonyms, some presented in Table 2. Mizar allows one to introduce
synonymous notations for one constructor and the use of constructors in dli items
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Table 2. Synonyms

Constructor Numbers Symbols (synonyms and antonyms)
≤ 9 / 12 ’<’, <, <=, <R, <R=, >, >=, >R, >R=
� 6 / 7 <<=, <=, >=, >>=, ~<=, ~>=
⊆ 5 / 19 <=, <=‘, c=, is a prefix of, is preposition of

non-empty 5 / 9 being not 0, is not 0, non-empty, with zero,
without zero

Numbers: symbols / meanings

glues these synonymous notations together. The reconstruction of lexical context
of a fragment of Mizar text which affects tokenization is the third hindrance.
The tokenization does not concerns dli items as they are made after tokenization.

In dli items, all information hidden from the surface of a Mizar text is made
explicit, i.e.
– all hidden arguments are reconstructed,
– all variables are explicitly qualified,
– all constructors are identified,
– all adjectives in types are listed,
– all quantifiers and their order are presented.

MML Query uses its own data base which in essence is a set of named binary
relations called basic relations. The relations express dependences between MML
Query elements. The names of basic relations are single words (abbreviations)
or two word phrases which are intended to be meaningful to Mizar users. The
fundamental one is relation ref of pairs (i, c) such that element i refers to con-
structor c. In other words, c occurs in dli item i and the relation opposite to ref
is denoted by occur. Other examples of basic relations are given in Table 3. The
full list of basic relation is available on the web4.

The second step in extraction of MML Query from Mizar articles is the com-
putation of several basic relations. The input to this process is: dli items, Mizar

Table 3. Basic relations

Relation Description of (x, y) in the relation
by ref x refers to y in the proof (in the proof of x there is a step

justified by y)
positive ref x refers positively to y (y occurs in dli item of x in positive

context5)
negative occur x occurs negatively in y (x occurs in dli item of y in negative

context)
definition x is defined by y (y is the definitional theorem of x)
notation constructor x is denoted by y or

symbol x is used in notation y (y uses x)
constructor x denotes y (y is denoted by x)
author x is written by y (y is an author (a coauthor) of article x)

4 http://mmlquery.mizar.org/syntax.html
5 Positive context means a place in a formula under even number of negations.
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articles, bibliographic files, and data base of translation patterns from the jour-
nal Formalized Mathematics (ISSN 1426-2630). The journal publishes positively
reviewed articles from MML. The postscript rendition of articles is obtained
through mechanical translation based on systematically developed translation
patterns for expressions introduced in MML. Reuse of these patterns in MML
Query gives a possibility for querying with (FM) keywords which often carry
more appeal than MML symbols (at least to a casual user), e.g., MML symbol
VectSp is translated into vector space.

3 Basic Syntax and Semantics of the MML Query
Language

(The full syntax and semantics of MML Query language is available on the web4.)
The MML Query name for an MML item is built as follows:

Article-name:Kind-name Number

where Article-name is the unique MML identifier of the source article, Kind-name
is the abbreviation of the item kind (th - theorem, def - definitional theorem,
etc.), and Number is the serial number of the item. In the case of theorems,
Kind-name may be omitted (JTC is named JORDAN:107 and JORDAN:th 107).
A MML Query name for a symbol includes the qualifier symbol and the symbol
itself which may be taken in single or double quotes, e.g., symbol ’+’. Examples
of basic queries are given below.

JORDAN:107 ref (1)
{JORDAN:107, GOEDELCP:35, POLYNOM5:75, ZF REFLE:29} (2)

list of th from WAYBEL26 (3)
JORDAN:107 ref butnot list of constr from JORDAN (4)

list of th from YELLOW19 | ref (5)
YELLOW19:def 5 ref & occur (6)

list of th where [ref | filter struct] (7)
list of constr where notation > 1 (8)

list of th where positive ref <= negative ref (9)

The queries (4)–(9) might be written with additional brackets (which do not
change the meaning):

(JORDAN:107 ref) butnot (list of constr from JORDAN)

(list of th from YELLOW19) | ref

(YELLOW19:def 5 ref) & occur

(list of th) where [ref | filter struct]

(list of constr) where notation > 1

(list of th) where positive ref <= negative ref
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The query (2) consists of four important theorems: JCT, GCT, FTA, and Re-
flection Theorem. Other queries listed above may be read as follows: (1) all
constructors appearing in JCT, (3) all theorems from article WAYBEL26, (4) all
constructors from JCT defined in articles other than JORDAN, (5) all constructors
appearing in any theorem from article YELLOW19, (6) all items which refer to all

Table 4. Semantics of basic queries

[[{x1, . . . , xn}]]v = {x1, . . . , xn} (10)

[[A and B]]v = [[A]]v ∩ [[B]]v (11)

[[A or B]]v = [[A]]v ∪ [[B]]v (12)

[[A butnot B]]v = [[A]]v \ [[B]]v (13)

[[xR]]v = {y : x[[R]]vy} (14)

[[x in R]]v = {y : y[[R]]vx} (15)

[[A | R]]v = {y : ∃x∈[[A]]vx[[R]]vy} =
�

x∈[[A]]v

[[xR]]v (16)

[[A & R]]v = ∅ if [[A]]v = ∅ otherwise (17)

[[A & R]]v = {y : ∀x∈[[A]]vx[[R]]vy} =
�

x∈[[A]]v

[[xR]]v (18)

[[A where R]]v = {x ∈ [[A]]v : [[xR]]v �= ∅} (19)

[[A where R = n]]v = {x ∈ [[A]]v : card([[xR]]v) = n} (20)

(>, >=, <=, <) (>, ≥, ≤, <)

[[A where R = Q]]v = {x ∈ [[A]]v : card([[xR]]v) = card([[xQ]]v)} (21)

[[x [not R]]]v = ∅ if [[xR]]v �= ∅ (22)

[[x [not R]]]v = {x} if [[xR]]v = ∅ (23)

[[x [R and Q]]]v = {y : x[[R]]vy ∧ x[[Q]]vy} = [[xR]]v ∩ [[xQ]]v (24)

[[x [R or Q]]]v = {y : x[[R]]vy ∨ x[[Q]]vy} = [[xR]]v ∪ [[xQ]]v (25)

[[x [R butnot Q]]]v = {y : x[[R]]vy ∧ ¬(x[[Q]]vy)} = [[xR]]v \ [[xQ]]v (26)

x [R | Q] = (xR) | Q (27)

x [R & Q] = (xR) & Q (28)

[[x filter K]]v = {x} if x is K (29)

[[x filter K]]v = ∅ if x is not K (30)

[[x from(A)]]v = {x} if x ∈ [[A]]v (31)

[[x from(A)]]v = ∅ if x �∈[[A]]v (32)

[[x const(A)]]v = [[A]]v (33)

[[x id]]v = {x} (34)

[[x = y]]v = {x} if x = y (35)

[[x = y]]v = {} if x �= y (36)
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constructors appearing in definitional theorem no 5 in article YELLOW19, (7) all
theorems concerning structures, (8) all constructors with more than one nota-
tion, (9) all theorems that refer positively to a bigger number of constructors
than they refer negatively.

Atomic queries are built by application of a relation to an element (1) or by
listing elements explicitly (2) or implicitly (3). Compound queries are obtained
by the use of binary connectives and, or, and butnot (4) and by use of filters
and conditions. A filter query is an application of a relation to a query with ‘|’
(5) or with ‘&’ filter (6). A conditional query applies also a relation to a query
(7) or, in more useful cases, either a relation and a number6 (8) or two relations
(9). Grouping in compound queries is done with the round brackets.

It is natural that in conditional queries more complex relations than the basic
relations should be allowed; it is presented in (7). Compound relations are built
similarly to queries with and, or, butnot, |, &, and the square brackets for
grouping. Moreover, not is used for negation (see (22) in Table 4), in for making
inverse relations to basic relations (15), and filter for making filtering relations
from resource codes (29), (30). E.g., in ref and occur are synonyms and also
in occur and ref are.

The semantics of queries depends on the version v of MML. Table 4 gives for-
malized semantics of basic queries. In the table x and y denote arbitrary MML
Query elements, A and B - arbitrary queries, R and Q - arbitrary relations, and
K denotes a MML Query resource. The answer to a query A and the interpre-
tation of a relation R in the version v is written as [[A]]v and [[R]]v, respectively.

4 The MMLQT Processor

MMLQT is a text processor used for rendering MML content when browsing
MML Query results, making MML statistics, or generating semantically linked
abstracts [5]. For example, Table 1 was produced with MMLQT processor run
over the template:

1| \begin{tabular}{|c|c|l|}
2| \hline
3| Symbol & Numbers & Examples\\
4| \hline
5| <mmlq type="foreach" query="list of symbol
6| ordered by number of [notation|constructor|origin] reversed
7| select 0-9">
8| <mmlq type="value" style="-q"/> &
9| <mmlq type="count" relation="notation|constructor|origin"/> /
10| <mmlq type="count" relation="notation|constructor"/> /
11| <mmlq type="count" relation="notation"/> & .... \\
12| </mmlq>
13| \hline
14| \end{tabular}

6 (7) is equivalent to ‘list of th where [ref | filter struct] > 0’.
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When filling in the template the processor is rewriting lines 1-4, processing the
loop in lines 5-12, and rewriting lines 13-14. The loop is done for 10 elements
(symbols) satisfying the query in lines 5-7. For each symbol the processor writes
the symbol itself (line 8) and 3 numbers: the number of meanings of the symbol
(line 9), the number of constructors denoted with the symbol (line 10), and the
number of notations using the symbol (line 11). Dots ‘....’ in line 11 stand for
examples which must be completed by hand.

The MMLQT processor is available with Template Maker at a web page.7

4.1 The <mmlq> Element and Its Type Attribute

The key role in MMLQT templates is played by the XML element <mmlq> which
indicates tasks to the processor. Actually, the processor uses an XML parser only
for occurrences of <mmlq> and does not count any other XML elements. The text
outside <mmlq> element is simply rewritten. Other behavior of the processor is
controlled by the XML attribute type of <mmlq>. The value of the attribute
determines the task to be performed. In Table 5 some tasks controlled by the
attribute type are given.

Table 5. MMLQT tasks

type Other attributes Description
author the author(s) of argument is(are) displayed (argument

must be an article)
change subject argument is changed to subject

changever version the focus to MML version is changed to version
count query or relation the query query or argument relation is computed

and the number of elements in the result is returned
explain the meaning of argument is rendered
fillin template the template template is filled in
foreach query or relation the query query or argument relation is computed

and the text inside <mmlq> is filled in with new
argument for each computed element

if query or relation the query query or argument relation is computed
and if the result is non empty then the text inside
<mmlq> is filled in (without change of argument)

template name the template name is defined
title the title of argument is displayed (for articles)
var name, value the variable name is set to the value value

version focused MML version is displayed

The environment of the MMLQT processor includes the variable argument
which keeps the MML Query name of the subject (current argument). By de-
fault, when starting to browse the result of a query, the variable argument is set
to the element browsed. Its value is changed dynamically according to type’s

7 http://mmlquery.mizar.org/template-maker.php
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control when filling in templates. The value may be rendered with <mmlq type=
"value"/> or with curly braces {mmlq:argument}. The variable argument is
used when the <mmlq> element includes the attribute relation. Then the pro-
cessor computes the query obtained by application of relation to argument.
User defined variables are also allowed. They may be set with <mmlq type="var"
name="foo" value="..."/> and the value is rendered with {mmlq:foo}.

The meaning of the current argument may be rendered with <mmlq type=
"explain"/> and the rendition may include semantic linking. When rendering,
the uniform human-readable presentation independent from the original form as
in a Mizar article is used.

4.2 Ordered Queries

The presentation of the result of a query is usually expected to be ordered and
shown in reasonable chunks. This may be achieved with ordered query:

A ordered by r1, . . . , rk select s1, . . . , sn

where A is a query, r1, . . . , rk are ordering rules and s1, . . . , sn are selections
by positions (from a number to a number). If the ordering is omitted, then the
lexical order is assumed which is also added by default as rule rk+1. Rules r1,
. . . , rk may only partially order MML Query elements and using a total ordering
is necessary. To reverse the order the word reversed is used at the end of a
rule.

Among others, there are the following kinds of ordering rules:

– lexical order - strings are ordered lexically and numbers are ordered ac-
cording to their values,

ABCMIZ 0:th 7 < JORDAN:th 107
ABCMIZ 0:th 7 < ABCMIZ 0:th 17

– processing order - almost chronologically,
– value of R - by the results of applications of the relation R,
– number of R - by the number of elements in the results of applications of

the relation R,
– expression e - by the values of the expression e.

In the collection of MML statistics3 there are the following examples of order-
ing (and selection):

– latest 30 articles

list of article ordered by processing order select 0-29

– authors by contribution to MML

list of article | author ordered by expression
12*articles1+6*articles2+4*articles3+3*articles4 reversed

where articles i is the basic relation which gives for an author a number
of articles co-authored together with i − 1 others.
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– the 50 most popular theorems

list of thdef ordered by number of in by ref reversed
select 0-49

– 50 items with the hardest proofs

list of item ordered by number of by ref reversed select 0-49

5 New Features

In the third release of MML Query system new features were introduced to make
searching with MML Query easier. The most important among them are rough
queries and non-expert searching.

5.1 Rough Queries

Group queries, i.e., queries at least, at most, and exactly, were available in
non-rough variants in the first release. The new rough variant of at least query

at least minus n (c1, . . . , ck)

gives all items which refer to all constructors c1, . . . , ck excluding at most n of
them. Similarly, at most query

at most plus n (c1, . . . , ck)

gives all items which refer to constructors c1, . . . , ck and to at most n more
other constructors. exactly query combines at least and at most queries. An
extended form of a group query is a rough query which takes a number of queries
q1, . . . , qk and two numbers n and m standing for minimum and maximum,

Table 6. Semantics of rough queries

[[at least minus n (c1, . . . , ck)]]v =
�

I∈I
k−n
k

�
i∈I

[[ci]]v (37)

[[at most plus n (c1, . . . , ck)]]v =

�
x ∈

k�
i=1

[[ci]]v : N(x) ≤ n

�
(38)

[[exactly plus n minus m (c1, . . . , ck)]]v =

�
x ∈

�
I∈J

�
i∈I

[[ci]]v : N(x) ≤ n

�
(39)

[[at least minus n ∗ (A)]]v = [[at least minus n (c1, . . . , ck)]]v (40)

where {c1, . . . , ck} = [[A | [filter constr or filter number]]]v

[[rough n-m (q1, . . . , qk)]]v =

�
x ∈

k�
i=1

[[qi]]v : n ≤ F (x) ≤ m

�
(41)
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respectively. The result of the query is the set of all elements which are in the
results of at least n and at most m queries. The formal semantics is given in
Table 6.

In Table (6), [[c]]v = [[c occur]]v is the set of all elements which refer to c,

I
n
k = {I ∈ 2{1,...,k} : card(I) = n}

is the set of all n-element subsets of {1, . . . , k}, J = I
k−m
k ,

N(x) = card([[x ref]]v \ {c1, . . . , ck})

is the number of constructors occurring in x and different from c1, . . . , ck, and

F (x) = card ({i : x ∈ [[qi]]v ∧ i ∈ {1, . . . , k}})

is the number of queries from q1, . . . , qk for which x is in the result.
If only one number is presented in rough query, e.g., rough n (q1, . . . , qk),

then n is the minimum and the maximum is equal to k. Instead of numbers
it is possible to use words count and max to denote, respectively, k and the
maximal number of queries in conjunction with non-empty result. In particular,
the query rough (q1, . . . , qk) which is the shortcut for rough max (q1, . . . , qk)
gives all elements fulfilling the biggest number of queries.

5.2 Non-expert Querying

The simplest queries consist of querying only symbols. It means that a user
without a deeper knowledge is able to do some searching by writing only symbols
(like in Google with words).

The Mizar formula query8 provides such functionality

Mizar (s1 s2 . . . sn) (42)

It is computed as follows. For each recognized symbol si a query qi of all possible
occurrences of si is generated. Then a query

q1 and . . . and qn

is tested and if the result is not empty it is the result of (42). If the result is
empty, then a rough query

rough (q1, . . . , qn)

is applied.
Mizar formula query has also some additional functionality which is available

by the use of some Mizar reserved words. For example, with words theorem,
scheme, definition, and cluster one limits the result of Mizar formula query
to the elements of the indicated kind. On the other hand, the query

Mizar (s1 . . . sn implies s′1 . . . s′m)
8 The query is intended to fully recognize Mizar formulae (including recognition of

formula patterns) and is partially implemented at this time.
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is computed for positive occurrences of s1, . . . , sn and negative occurrences of
s′1, . . . , s′m. This functionality is a step towards recognition of formula patterns
(ϕ implies ψ) and turns out to be quite satisfactory. Namely, a few symbols in
the query are enough to yield appropriate theorems from current MML. More
adequate searching by formula patterns may be realized with a sequence query
which concerns the tree structure of dli items. This feature is under construction
and requires much more experience with using (so, it is not a non-expert query).

5.3 Versions

MML is being continually developed and revised. Revisions cause disappearance
or displacement of theorems and definitions. As a result an author of an article
which is not yet submitted to MML may run into some problems. It happens
when the author using a version of MML makes a reference to a theorem and
while still working on the article switches to a newer version of MML, where
the theorem has been removed or moved to another place. In both cases author
must find a theorem in the newer version with meaning similar to the theorem
from the older version. This task can be done with version queries. For example,
theorem FUNCT 2:74 after a number of revisions became identical to FUNCT 2:23
and disappeared between version 4.50.934 and 4.53.937. The author may try to
find a substitute of FUNCT 2:74 using the query

version 4.53.937 exactly * (version 4.50.934 FUNCT 2:74 ref)

and it returns theorem FUNCT 2:23.
Version queries allow one to list all theorems from version v1 which are absent

in version v2:

(version v1 list of th) butnot (version v2 list of th) (43)

and list all versions in which theorem, e.g., JORDAN:107, existed:

list of version where interpretation(JORDAN : 107) (44)

6 Conclusions and Further Work

We have presented new features of MML Query which improve the capabilities
of the system and allow for easier start of querying for non-experts (as well as
for experts). The web interface with a semantical browser helps with performing
more advanced and adequate queries, starting from MML symbols or FM key-
words. As a result, MML Query is becoming widely used as an aid for Mizar

authors.
Further improvement of the system should concern the XML format of Mizar

articles. Dli items can include exportable data only when the XML format in-
cludes the semantic form of a full article, e.g., when proofs are included. More-
over, Josef Urban’s experiments [16] with the XQuery language on XML-ized
MML show new convenient functionalities which are not accessible or hardly
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accessible in MML Query (advanced searching concerning the tree structure is
already available, but it is not flexible enough and it is too slow).

Another direction may concern the use of theorem provers and data mining
techniques developed by Josef Urban in MoMM [15] and Mizar Proof Adviser.9

Internal lemmas extracted from MML and hints for a proof of an arbitrary Mizar

formula are obtained with them and should be made available to users of MML
Query.
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Abstract. The axiomatic presentation of geometry fills the gap between
formal logic and our spatial intuition. The study of geometry is, and will
always be, very important for a mathematical practitioner. GCLCprover,
an automatic theorem prover (ATP) integrated with dynamic geometry
software (DGS) gives its user a tool to bridge his/her spatial intuition
with formal, Euclidean geometry proofs. GeoThms, a system consisting
of the mentioned programs and a database geoDB, provides a frame-
work for exploring geometrical knowledge. A GeoThms user can browse
through a list of available geometric problems, their statements, illustra-
tions, and proofs. He/she can also interactively produce new geometrical
constructions, theorems, and proofs and add new results to the exist-
ing ones. GeoThms framework provides an environment suitable for new
ways of studying and teaching geometry at different levels. GeoThms
also provides a system for storing mathematical knowledge (in a ex-
plicit, declarative form) — not only theorem statements, but also their
(automatically generated) proofs and corresponding illustrations.

1 Introduction

The axiomatic presentation of geometry fills the gap between formal logic and
our spatial intuition. The study of geometry is, and will always be, very im-
portant for a mathematical practitioner. Geometry and geometrical proofs al-
ways were, and still are, exemplary mathematical contents. In history they often
served for guiding development of foundations of mathematics, and today they
serve in mathematical education, aimed at acquiring mathematical rigour. Com-
puter technologies give new ways for dealing with geometry: they are used for
visualisation of geometrical objects, but also for exploring/testing geometrical
conjectures and, finally, for automated proving of geometrical theorems. Inte-
grating these ways of dealing with geometry brings new forms in communicating
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mathematical (geometrical, in this case) information — theorems, figures, and
proofs. In this way, the deductive nature of geometrical conjectures and proofs
is linked to the semantic nature of models of geometry and also, to human in-
tuition and to geometrical visualisations. In order to explore such mathematical
knowledge, a framework where one can browse through known results and seek
for new ones is needed. In this paper, we present a tightly integrated framework
that we developed, consisting of a repository of constructive geometry theorems
(and proofs), a geometry theorem prover, and dynamic geometry software (as
final applications). This complex framework provides an environment suitable
for new ways of studying and teaching geometry at different levels and bridging
spatial intuition with formal, axiomatic, Euclidean geometry proofs. The user
can browse through a list of geometric problems, their statements, illustration,
and proofs. He/she can also interactively use geometry software (GCLC, or Eu-
kleides), to describe new geometric constructions (and corresponding figures),
and GCLCprover to (try to) prove new conjectures, adding new results to the
existing ones. In addition, this framework provides an environment for storing
mathematical knowledge (in explicit, declarative way) — about geometrical con-
structions, proofs, and illustrations. (in this context, geometrical illustrations are
not stored as images, but as their formal, explicit descriptions; while mathemat-
ical illustrations may carry information, the original message cannot always be
reproduced from the illustration itself; mathematical/geometrical images stored
via formal descriptions are easy to maintain, understand, modify, and process in
different ways — including for producing images.)

In this paper we present our framework consisting of dynamic geometry soft-
ware, automated theorem provers, and the repository of constructive geometry
conjectures. All constructions and conjectures are stored in formal, declarative
representation that can be used as a description of a construction, a description
of a figure, and also as a formal description of a conjecture that can be attempted
to be proved by the developed theorem prover.

Paper overview. Section 2, briefly discusses geometric constructions, the do-
main of our integrated framework; Section 3 talks about parts of our framework,
with §3.1 about dynamic geometry software, especially GCLC and Eukleides,
§3.2 about automated theorem proving in geometry and especially the prover
GCLCprover, based on the area method, and §3.3 about geoDB, a repository of
constructive geometric theorems and proofs. Section 4 is about our integrated
geometry framework and its features, and Section 5 presents the whole system
through a step-by-step example. Section 7 discusses further work and the issue of
standards for mathematical (geometrical, in this case) contents; Section 8 draws
final conclusions.

2 Geometry Constructions

For hundreds, or even thousands, of years geometric construction problems have
been one of the most attractive parts of geometry and mathematics. A geometric
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construction is a sequence of specific, primitive construction steps. These primi-
tive construction steps (also called elementary constructions) are based on using
a ruler (or a straightedge1) and a compass, and they are:

– construction (with a ruler) of a line such that two given points belong to it;
– construction of a point which is an intersection of two lines (if such a point

exists);
– construction (with a compass) of a circle such that its centre is one given

point and such that the second given point belongs to it;
– construction of a segment connecting two points;
– construction of intersections between a given line and a given circle (if such

points exist).

By using the set of primitive constructions, one can define more complex con-
structions (e.g., the construction of a right angle, a construction of the midpoint
of a line segment, etc.).

Abstract (i.e., formal, axiomatic) nature of geometric objects have to be dis-
tinguished from their usual interpretations. A geometric construction is a proce-
dure consisting of abstract steps and it is not a picture, but for each construction
there is its counterpart in the standard Cartesian model.

Construction problems are often studied (in schools and universities) be-
cause they require rigour, but are in the same time intuitive (since they re-
quire effective procedures and since the level of abstraction is higher than the
level of geometry axioms). The study of geometry and construction problems
also represents a suitable field for interactive teaching supported by software
tools.

3 Building Blocks

In this section, we present the building blocks of our geometry framework.

3.1 Dynamic Geometry Software, GCLC and Eukleides

Dynamic geometry software (e.g., Cinderella, Geometer’s Sketchpad, Cabri2) vi-
sualise geometric objects and link formal, axiomatic nature of geometry (most
often — Euclidean) with its standard models (e.g., Cartesian model) and cor-
responding illustrations. The common experience is that dynamic geometry
software significantly help students to acquire knowledge about geometric
objects.

GCLC [6,8] is a tool for teaching and studying mathematics, especially geome-
try and geometric constructions, and also for storing descriptions of mathematical

1 The term “straightedge” is sometimes used instead of “ruler” in order to emphasise
there are no markings which could be used to make measurements.

2 See http://www.cinderella.de, http://www.keypress.com/sketchpad/,
http://www.cabri.com
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figures and producing digital illustrations of high quality.3 GCLC provides support
for a range of geometric constructions and isometric transformations. Although
its primary initial goal is describing formal geometric constructions, GCLC also
provides a support for some non-constructible objects too. In GCLC there is also
support for symbolic expressions, second order curves, parametric curves, while-
loops, etc. Thus, GCLC is more than a geometry tool.

GCLC is based on the idea that constructions are formal procedures, rather
than drawings. Thus, in GCLC, producing mathematical illustrations is based
on “describing figures” rather than of “drawing figures” (in a sense, this system
is in spirit close to the LATEX system [10], with its logical design of texts). All
mathematical figures (not only geometric ones) are described in this spirit, in GC
language. These descriptions directly reflect meaning of mathematical objects to
be presented, and are easily understandable to mathematicians. In that sense,
this language is more a high-level language than a script language.

WinGCLC is the Windows version of GCLC, with a rich graphical interface
and provides a range of additional functionalities to GCLC. It supports interac-
tive work, animations, traces, “watch window” for monitoring values of selected
objects (“geometry calculator”) etc. [8].

Eukleides4 [14,16] is an Euclidean geometry drawing language. Two pro-
grams are related to it. First, eukleides, a compiler for typesetting geomet-
ric figures within a (La)TeX document. It can also convert such figures to
EPS format or to various other vector graphic formats. Second, xeukleides,
a GUI front-end for creating interactive geometric figures. This program can
also be used for editing and tuning Eukleides code. Eukleides, like GCLC has
been designed to be close to the traditional language of elementary Euclidean
geometry. In many cases, it is possible to completely avoid the use of Cartesian
coordinates.

We have developed a tool euktogclcprover, that converts Eukleides files to
GCLCprover files, enabling the prover to be used with geometric constructions
described within Eukleides.

3.2 Automated Theorem Proving in Geometry and GCLCprover

Automated theorem proving in geometry has two major lines of research: syn-
thetic proof style and algebraic proof style (see, for instance, [12] for a survey).
Algebraic proof style methods are based on reducing geometry properties to al-
gebraic properties expressed in terms of Cartesian coordinates. These methods

3 GCLC package is freely available from www.matf.bg.ac.yu/~janicic/gclc/. The
mirrored version is available from emis (The European Mathematical Information Ser-
vice) www.emis.de/misc/index.html. There are command-line version and graphic
interface versions of GCLC for Windows, while there is only a command-line version
of GCLC for Linux.

4 Eukleides is available from http://www.eukleides.org, There are versions
for a number of languages. The first author of this paper is responsi-
ble for the Portuguese version of Eukleides: EukleidesPT is available from
http://gentzen.mat.uc.pt/~EukleidesPT/
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are usually very efficient, but the proofs they produce do not reflect the geom-
etry nature of the problem and they give only a yes/no conclusion. Synthetic
methods attempt to automate traditional geometry proof methods that produce
human-readable proofs.

We have extended GCLC, with a theorem prover that allows formal deductive
reasoning about constructions made in the (main) drawing module. The built-in
prover, GCLCprover, is based on the area method [3,4,13]. It produces proofs
that are human-readable, and with a clear justification for every proof step. The
prover can be used in conjunction with other dynamic geometry software, which
demonstrate the flexibility of the developed deduction module.

The area method is a synthetic method providing traditional (not coordinate-
based), human-readable proofs. The proofs are expressed in terms of higher-level
geometric lemmas and expression simplifications. The main idea of the method
is to express hypotheses of a theorem using a set of constructive statements,
each of them introducing a new point, and to express a conclusion by an equal-
ity of expressions in some geometric quantities (e.g., signed area of a triangle),
without referring to Cartesian coordinates. The proof is then based on elimi-
nating (in reverse order) the points introduced before, using for that purpose a
set of appropriate lemmas. After eliminating all introduced points, the current
goal becomes an equality between two expressions in quantities over independent
points. If it is trivially true, then the original conjecture was proved valid, if it is
trivially false, then the conjecture was proved invalid, otherwise, the conjecture
has been neither proved nor disproved. In all stages, different simplifications are
applied to the current goal. The method does not have any branching, which
makes it very efficient for many non-trivial geometry theorems. The method can
transform a conjecture given as a geometry quantity of degree d, involving n
constructed points, to a rational expression not involving constructed points,
and with a degree at most 5d35n [3].

The area method is applicable to a wide range of constructions and a wide
range of geometric conjectures. For this fragment of geometry, the area method
gives a decision procedure: a terminating, sound, and complete procedure, i.e., a
procedure that can prove any geometry theorem involving only points introduced
by using supported constructions, and expressed in terms of geometric quantities.
For details of the method, correctness proofs for all simplification steps, and for
details about our implementation see [15].

GCLCprover is tightly integrated with geometry software. This means that
one can use the prover to reason about a (say) GCLC construction (i.e., about
objects introduced in it), without changing and adapting it for the deduction
process — the user only needs to add the conclusion he/she wants to prove.
The geometric constructions made within GCLC are internally transformed into
primitive constructions of the area method, and in some cases, some auxiliary
points are introduced.

GCLCprover was implemented in C++ (as GCLC) and is very efficient. The
theorem prover produces proofs in LATEX form and a report about the proving
process: whether the conjecture was proved or disproved, CPU time spent, and
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number of proof steps performed. For each proof step, there is a justification, and
(optionally) its semantics counterpart (the semantic information is not used in
the proof itself, but it can be used for testing conjectures). The prover can prove
many complex geometric problems in milliseconds, producing readable proofs.

3.3 The geoDB Database

The geoDB database gives support to the other programs, keeping the infor-
mation, and allowing for its fast retrieving whenever necessary. The database is
organised in the following form (see the entity-relationship diagram for details –
Figure 1):
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Fig. 1. geoDB — Entity-relationship diagram

Theorems — statements of theorems, in natural-language form, formatted in
LATEX;

Figures — descriptions of geometrical constructions, in DGS’s code (GCLC,
Eukleides, or other drawing software), they can be used for producing the
corresponding figures;

Proofs — geometrical constructions with conjectures in ATP’s code (GCLC
prover, or other provers), they are used for producing the corresponding
proofs;

A geometric theorem can have different figures and/or proofs, made by dif-
ferent software, made by different users. This fact is expressed by the 1 to n
relationships between the entities “theorems” and the other two entities (see
Figure 1).



286 P. Quaresma and P. Janičić

The database also has the following auxiliary entities:

Bibrefs — bibliographic references, in BIBTEX format;
Drawers & Provers — information about the programs whose code is kept in

the database, and with which the user can interact;
Authors — information about the authors of the programs;
Users — information about registered users.
Computer — information about the computer used as the test bench.

The codeTmp and codeTmpProver tables are used to store temporary infor-
mation, deleted after each session, for the interactive section of GeoThms.

The geoDB database is implemented in MySQL, with InnoDB transition safe
type of tables, and with foreign key constraints.

4 The Framework

GeoThms5, is a framework that links dynamic geometry software (GCLC, Euk-
leides), geometry theorem provers (GCLCprover), and a repository of geometry
problems (geoDB) (see Figure 2).

Forms

(insert/update data)

Interaction
module

statement

LaTeX
+

auxiliary tools

statements

construction
geometric

geometric
construction

with
conjecture

Repository

contributerscontributers

Reports

(listings/technical reports)

(GCLC,Eukleides,...)

DGS

(provers/drawers/...)

contributers
regular users

regular users

figures

(GCLCprover,...)

ATP

proofs

Fig. 2. The GeoThms framework

5 GeoThms is accessible from http://hilbert.mat.uc.pt/~geothms



Integrating Dynamic Geometry Software 287

Fig. 3. GeoThms screenshot - Theorem Report

GeoThms provides a Web workbench in the field of constructive problems
in Euclidean geometry. Its tight integration with dynamic geometry software
and automatic theorem provers (GCLC, Eukleides, and GCLCprover, for the
moment) and its repository of theorems, figures and proofs, give the user the
possibility to easily browse through the list of geometric problems, their state-
ments, illustrations and proofs, and also to interactively use the drawing and
proving programs (See Figure 3).

The structure of the web interface has two main levels of interaction (see
Figure 4). The entry level, accessible to all web-users, has some basic informa-
tion about GeoThms, including documents about the GeoThms Framework, and
about the GCLCprover and the Area Method. This level offers the possibility
of registration to anyone interested in using GeoThms, and it gives access to
the other levels. A (registered) regular user has access to a second level where
he/she can browse the data from the database (in a formatted, or in a plain
textual form) and use the drawing/proof programs in an interactive way.

A regular user can apply to the status of contributer in which case he/she will
have the possibility to insert new data, and/or to update the data he/she had
inserted previously.

Constructions are described and stored in declarative languages of dynamic
geometry software such as GCLC and Eukleides. Figures are generated directly
on the basis of descriptions of constructions, by GCLC and Eukleides and stored
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FormsWorkbenchReports

Regular User

Registration/Login Help

GeoThms

Contributers

all the info together

Statements
Figures
Proofs

Provers
Drawers
Authors
BibRefs

Drawing tools
Provers Statements

Figures
Proofs

Provers
Drawers
Authors
BibRefs

Listings of: Interaction with Insert/Update info

Geometric Theorems Geometric Theorems

Fig. 4. GeoThms — Web Interface

as JPEG files. Conjectures are described and stored in a a form that extends
descriptions of constructions. Descriptions of conjectures is used (directly or via
a converter) by GCLCprover. Proofs are generated by GCLCprover and stored as
PDF files (after beeing processed by LATEX, using a specific layout, gclc proof
style).

The framework can be simply augmented by other dynamic geometry software
and other geometry theorem provers.

GeoThms gives the user a complex framework suitable for new ways of com-
municating mathematical (geometrical, in this case) knowledge. It provides an
open system where one can learn from the existing knowledge base and seek
for new results. GeoThms also provides a system for storing mathematical
knowledge (in a strict, declarative form) — not only theorem statements, but
also their (automatically generated) proofs and corresponding figures, i.e.,
visualisations.

5 Geothms by Example

In this section we describe GeoThms framework through a step-by-step example.
The circumcircle of a triangle is the unique circle on which all its three vertices

lie. Its center can be constructed as the intersection of any two out of the three
perpendicular side bisectors. The crucial point is: do the three perpendicular
side bisectors meet in a single point?

We can use GeoThms to answer this question, by describing the construction
and proving the property. Using the interactive part of GeoThms, a user can
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begin by the construction, proceed attempting to prove the conjecture and, if all
went as expected, insert all this information, along with the new result statement,
in the database.

5.1 Describing the Construction

The constructive specification of the figure has to define: three points A, B, C
(the vertices of the triangle); three side bisectors; points O1 and O2 defined as
the pairwise intersections of these lines. Apart from the construction steps, the
figure description also provides the coordinates of the points A, B, and C, and
all the “drawing” commands. Note that all these commands are irrelevant for
the theorem prover, but are relevant for producing figures (see Figure 5).

Fig. 5. Circumcircle of a triangle — Interaction with the DGS

The construction shown in Figure 5 was made using GCLC, but the user can
also use Eukleides for describing the construction, by instructions very similar
to the given ones.

5.2 Testing the Conjecture

Having described the construction of the figure, now we have to add the con-
jecture. The property to be proved can be expressed in the following way: the
points O1 and O2 are identical. The user must express this condition within
the command prove, and using the geometrical quantities supported by the
area method, in this case — via the Pythagoras difference geometric quantity
(for more details, see [15]).

All the commands used in the construction of the figure are internally (within
the prover) transformed into primitive constructions of the area method. The
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GCLC’s code can be submitted to GCLCprover without modifications, the Eu-
kleides’ code needs to be converted with the euktogclcprover tool. As shown
in Figure 6, the proof status and the measures of efficiency are accessible, the
proof is given as a PDF file. Figure 7 shows the last steps of the proof made by
GCLCprover. The proof was generated in 0.03 seconds.6

Fig. 6. Circumcircle of a triangle — Interaction with the ATP
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Fig. 7. Last steps of the proof of the Circumcircle theorem

6 Many complex geometry theorems can be proved by the system in only milliseconds.
For instance: theorems by Ceva (0.001s), Gauss (0.029s), Thales (0.001s), Menelaus
(0.002s), Pappus’ Hexagon (0.040s), midpoint theorem (0.002s), ratio of areas of
parallelograms (0.190s), etc.
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Fig. 8. Circumcircle of a triangle — Insertion Form

5.3 Inserting a Result in the Database

The user (with the status of contributer) can select the “Forms” section in order
to insert a statement for the new result and the corresponding figure and proof
(see Figure 8). The statement is kept in the database in LATEX format and in
declarative ATP’s code7, the figure description is kept in DGS’s code and also in
JPEG format, the proof is kept in PDF format. For these last two, this means
that the DGSs and ATPs are called before the actual insertion is made, validating
the code. The JPEG and PDF files are kept in order to avoid the re-evaluation
of the code each time a user wants to consult the database.

After inserting, this new result became available for all users, not only in the
“Reports” section, but also in the “Interaction” section. In all cases the user has
access to the code allowing him/her to use it for inclusion in mathematical texts,
for testing further results, etc. (see Figure 3).

6 Related Systems

There are, to our knowledge, the following systems, similar to the system presented
in this paper: Geometry Expert (GEX)8; Ludi Geometrici (geometriagon)9;
7 ATP’s code share most of DGS’s code, the only difference is the conjecture itself,

which does not appear in DGS’s code.
8 GEX tool: http://woody.cs.wichita.edu/gex/7-10/gex.html
9 geometriagon: http://www.polarprof.net/geometriagon/
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Cinderella [9]; Discover [2]; and GeoView [1]. The GEX program (new version
currently under development) is a DGS with a web interface; it incorporates an
ATP, but, unlike GCLCprover, the GEX prover implements an algebraic proof
method, and the user can only select one from a limited number of conclusions
(e.g., are three selected point collinear?). The GEX tool does not have an acces-
sible database of problems, and does not provide a formatted output for images
and proofs. The geometriagon has an already vast repository of problems in the
area of classical constructive (ruler and compass only) Euclidean geometry, a
registered user can access/edit all problems and solutions. It does not provide
an ATP. The user can perform only valid steps in the construction, using only a
limited set of tools, and in this way the system is capable to recognise whenever
a user has reach a solution of a problem. The geometriagon does not provide
any formatted output. Cinderella uses randomise theorem checking to analyse
its users actions and to react properly; it does not provide a proof for a given
construction in any form. Discover is a DGS that can communicate with Mathe-
matica10, using the symbolic capabilities of the latter to implement the Gröebner
bases method, hence, it is necessary to translate the geometric construction to an
algebraic form and back, from the conclusion in algebraic form to its geometric
counterpart. No proof in any form is provided. The Geoview software combines
the Coq11 ATP and the GeoplanJ12 DGS into a system where it is possible to
edit statements of geometrical theorems, and to visualise the statement using
the DGS. The proofs are not accessible. None of this last three systems have a
database of problems easily accessible to its users.

7 Further Work

Automated theorem provers, applications, and repository of problems are often
developed separately. In some cases, joint efforts of numbers of researchers led
to standards such as DIMACS (for propositional logic) [5] and SMT (for satis-
fiability modulo theory) [17] and repositories of problems such as SAT-lib (for
propositional logic) [7], TPTP (for predicate logic) [18], SMT-lib (for satisfiabil-
ity modulo theory) [17] etc. Such efforts, standards, and libraries are fruitful for
easier exchange of problems, ideas, and even program code. However, this is often
very demanding and there are no many systems smoothly integrating libraries of
problems, theorem provers, and real-world applications. In the previous sections,
we presented a tightly integrated system consisting of a library of geometry con-
struction problems, dynamic geometry software, and a geometry theorem prover.
This system can serve as a good starting point for defining open repository of
geometry problems. Currently, geometry conjectures are stored within the de-
scription of constructions, in GCLC or in Eukleides language (with additional,
natural-language descriptions). This representation is formal, declarative and
precise. The strict description of the notion of geometrical constructions and
10 http://www.wolfram.com
11 http://coq.inria.fr/
12 http://erathostene.math.univ-montp2.fr/SPIP/De-Geoplan-Geospace-a-GeoplanJ
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also our experience with GCLC, Eukleides and other similar programs show
that different languages are very close to each other (primarily dealing with
elementary constructions and isometric transformations, but also with dealing
with scaling of figures, labelling components of figures, etc.). We believe that de-
scriptions in all these languages can be normalised, i.e., transformed to a single
description. We have already developed the converter from Eukleides to GCLC,
but similar converters can be made for other pairs of languages. We propose
defining such a normal, referent form, and making a repository usable by all
geometry programs. Such language should have a XML version (in a similar way
as for SMT-LIB [11]), closer to wide relevant mathematical initiatives such as
MathML.13 That way, it would be possible to store descriptions of constructions
in a quality form that provides both formal mathematical contents and visual
contents. Moreover, the generic XML validation mechanism could be used for
verifying whether a given construction is legal.

8 Conclusions

In this paper we presented our framework GeoThms consisting of dynamic ge-
ometry software GCLC and Eukleides, automated theorem prover GCLCprover,
and the repository of constructive geometry conjectures geoDB, all accessible
through a web interface.

This complex framework provides an environment suitable for new ways of
studying and teaching geometry at different levels. In addition, this framework
provides an environment for storing mathematical knowledge (in explicit, declar-
ative way) — about geometrical constructions, proofs, and illustrations. We hope
that support from interested parties will make GeoThms growing and widely
used repository.

We are planning to link additional geometry programs and additional theorem
provers to our framework and to further develop the web interface. We are also
considering developing a referent geometry language that can be linked to all
geometry programs dealing with Euclidean constructions.
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15. Pedro Quaresma and Predrag Janičić. Framework for constructive geometry (based

on the area method). Technical Report 2006/001, Centre for Informatics and
Systems of the University of Coimbra, 2006.

16. Pedro Quaresma and Ana Pereira. Visualização de construções geométricas. Gazeta
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