
PrestaShop 
Recipes

A Problem-Solution Approach
—
Arnaldo Pérez Castaño



PrestaShop Recipes
A Problem-Solution Approach

Arnaldo Pérez Castaño



PrestaShop Recipes: A Problem-Solution Approach

Arnaldo Pérez Castaño    
Havana, Cuba   

ISBN-13 (pbk): 978-1-4842-2573-8  ISBN-13 (electronic): 978-1-4842-2574-5
DOI 10.1007/978-1-4842-2574-5

Library of Congress Control Number: 2017934221

Copyright © 2017 by Arnaldo Pérez Castaño

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Nancy Chen
Copy Editor: Ann Dickson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member 
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a 
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions. 

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book's product page, located at www.apress.com/9781484225738. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484225738
http://www.apress.com/source-code


To my mother, my father, my family, and friends; thanks for being there for me.



v

Contents at a Glance

About the Author ����������������������������������������������������������������������������������������������������xix

About the Technical Reviewer ��������������������������������������������������������������������������������xxi

Introduction ����������������������������������������������������������������������������������������������������������xxiii

 ■Chapter 1: Installation and Configuration ������������������������������������������������������������� 1

 ■Chapter 2: Module Development ������������������������������������������������������������������������� 35

 ■Chapter 3: Theme Development ��������������������������������������������������������������������������� 63

 ■Chapter 4: Classes and Controllers ������������������������������������������������������������������� 125

 ■Chapter 5: Booking System ������������������������������������������������������������������������������� 157

 ■Chapter 6: Events-Based System ���������������������������������������������������������������������� 179

 ■Chapter 7: SEO ��������������������������������������������������������������������������������������������������� 187

 ■Chapter 8: Maintenance ������������������������������������������������������������������������������������ 209

Index ��������������������������������������������������������������������������������������������������������������������� 215



vii

Contents

About the Author ����������������������������������������������������������������������������������������������������xix

About the Technical Reviewer ��������������������������������������������������������������������������������xxi

Introduction ����������������������������������������������������������������������������������������������������������xxiii

 ■Chapter 1: Installation and Configuration ������������������������������������������������������������� 1

1-1. Installing PrestaShop ................................................................................................ 2

Problem .................................................................................................................................................. 2

Solution................................................................................................................................................... 2

How It Works ........................................................................................................................................... 2

1-2. Installing Your Local Server for PS .......................................................................... 10

Problem ................................................................................................................................................ 10

Solution................................................................................................................................................. 10

How It Works ......................................................................................................................................... 10

1-3. Changing Your Domain Name in the Database ....................................................... 14

Problem ................................................................................................................................................ 14

Solution................................................................................................................................................. 14

How It Works ......................................................................................................................................... 14

1-4. Backing Up and Restoring Your Database ............................................................... 17

Problem ................................................................................................................................................ 17

Solution................................................................................................................................................. 17

How It Works ......................................................................................................................................... 17

1-5. Migrating from One Server to Another .................................................................... 19

Problem ................................................................................................................................................ 19

Solution................................................................................................................................................. 19

How It Works ......................................................................................................................................... 20



 ■ Contents

viii

1-6. Enabling SSL in your Local Server .......................................................................... 20

Problem ................................................................................................................................................ 20

Solution................................................................................................................................................. 20

How It Works ......................................................................................................................................... 21

1-7. Enabling SSL in PrestaShop .................................................................................... 24

Problem ................................................................................................................................................ 24

Solution................................................................................................................................................. 24

How It Works ......................................................................................................................................... 25

1-8. Sharing Customers in a Network of PrestaShop WebSites .............................................26

Problem ................................................................................................................................................ 26

Solution................................................................................................................................................. 26

How It Works ......................................................................................................................................... 26

1-9. Selling Services instead of Products ...................................................................... 30

Problem ................................................................................................................................................ 30

Solution................................................................................................................................................. 31

How It Works ......................................................................................................................................... 31

1-10. Disabling Shipping ................................................................................................ 31

Problem ................................................................................................................................................ 31

Solution................................................................................................................................................. 31

How It Works ......................................................................................................................................... 32

Summary ........................................................................................................................ 34

 ■Chapter 2: Module Development ������������������������������������������������������������������������� 35

2-1. Create a Hello World PS Module Displayed at the Header ...................................... 36

Problem ................................................................................................................................................ 36

Solution................................................................................................................................................. 36

How It Works ......................................................................................................................................... 36

2-2. Positioning Your Module ......................................................................................... 41

Problem ................................................................................................................................................ 41

Solution................................................................................................................................................. 41

How It Works ......................................................................................................................................... 41



 ■ Contents

ix

2-3. Transplanting Your Module ...................................................................................... 42

Problem ................................................................................................................................................ 42

Solution................................................................................................................................................. 42

How It Works ......................................................................................................................................... 42

2-4. Creating Your Own Hook ......................................................................................... 43

Problem ................................................................................................................................................ 43

Solution................................................................................................................................................. 43

How It Works ......................................................................................................................................... 44

2-5. Adding a Configuration Link to Your Module ........................................................... 47

Problem ................................................................................................................................................ 47

Solution................................................................................................................................................. 47

How It Works ......................................................................................................................................... 47

2-6. Creating a YouTube Module..................................................................................... 50

Problem ................................................................................................................................................ 50

Solution................................................................................................................................................. 50

How It Works ......................................................................................................................................... 51

2-7. Configuring Your PS Site Using SQL Queries during Module Installation ................ 54

Problem ................................................................................................................................................ 54

Solution................................................................................................................................................. 54

How It Works ......................................................................................................................................... 54

2-8. Module for Sending E-mail Notifications after Order Confirmation ........................ 56

Problem ................................................................................................................................................ 56

Solution................................................................................................................................................. 57

How It Works ......................................................................................................................................... 57

2-9. Adding More Information to Order E-mail Notifications .......................................... 59

Problem ................................................................................................................................................ 59

Solution................................................................................................................................................. 59

How It Works ......................................................................................................................................... 59



 ■ Contents

x

2-10. Changing CSS Styles through a Module ............................................................... 60

Problem ................................................................................................................................................ 60

Solution................................................................................................................................................. 60

How It Works ......................................................................................................................................... 61

Summary ........................................................................................................................ 61

 ■Chapter 3: Theme Development ��������������������������������������������������������������������������� 63

3-1. How to Create a PS Theme ..................................................................................... 64

Problem ................................................................................................................................................ 64

Solution................................................................................................................................................. 64

How It Works ......................................................................................................................................... 66

3-2. Creating a Welcome Text in Your PS Home Page .................................................... 68

Problem ................................................................................................................................................ 68

Solution................................................................................................................................................. 69

How It Works ......................................................................................................................................... 69

3-3. Image Slider at Full Width ....................................................................................... 71

Problem ................................................................................................................................................ 71

Solution................................................................................................................................................. 72

How It Works ......................................................................................................................................... 73

3-4. Adding a Datetimepicker to Your Product Page ...................................................... 77

Problem ................................................................................................................................................ 77

Solution................................................................................................................................................. 77

How It Works ......................................................................................................................................... 79

3-5. Saving Custom Fields When Clicking the Add to Cart Button .................................. 84

Problem ................................................................................................................................................ 84

Solution................................................................................................................................................. 84

How It Works ......................................................................................................................................... 84

3-6. Changing the Font of Your PS Theme ...................................................................... 87

Problem ................................................................................................................................................ 87

Solution................................................................................................................................................. 87

How It Works ......................................................................................................................................... 88



 ■ Contents

xi

3-7. Testimonials Module ............................................................................................... 89

Problem ................................................................................................................................................ 89

Solution................................................................................................................................................. 89

How It Works ......................................................................................................................................... 90

3-8. Showing a Header in Product Page Depending on Product Category ..................... 99

Problem ................................................................................................................................................ 99

Solution................................................................................................................................................. 99

How It Works ......................................................................................................................................... 99

3-9. Customizing E-mail Templates .............................................................................. 100

Problem .............................................................................................................................................. 100

Solution............................................................................................................................................... 100

How It Works ....................................................................................................................................... 101

3-10. Adding New Variables to E-mail Templates......................................................... 103

Problem .............................................................................................................................................. 103

Solution............................................................................................................................................... 103

How It Works ....................................................................................................................................... 103

3-11. Modifying the Social Networking Module to Add a TripAdvisor Link ................... 105

Problem .............................................................................................................................................. 105

Solution............................................................................................................................................... 105

How It Works ....................................................................................................................................... 107

3-12. Modifying the MyAccount Footer Module to Display Links of Interest List ......... 114

Problem .............................................................................................................................................. 114

Solution............................................................................................................................................... 114

How It Works ....................................................................................................................................... 114

3-13. Generating Product Attributes by Adding Product Combinations ........................ 117

Problem .............................................................................................................................................. 117

Solution............................................................................................................................................... 117

How It Works ....................................................................................................................................... 117



 ■ Contents

xii

3-14. Associating Attributes to Products without Combining ....................................... 118

Problem .............................................................................................................................................. 118

Solution............................................................................................................................................... 118

How It Works ....................................................................................................................................... 119

Summary ...................................................................................................................... 123

 ■Chapter 4: Classes and Controllers ������������������������������������������������������������������� 125

4-1. Adding a View Field to the Product Class.............................................................. 126

Problem .............................................................................................................................................. 126

Solution............................................................................................................................................... 126

How It Works ....................................................................................................................................... 126

4-2. Adding a New Tab to Product Edit Page in PS Back Office ................................... 130

Problem .............................................................................................................................................. 130

Solution............................................................................................................................................... 130

How It Works ....................................................................................................................................... 130

4-3. Adding a New Tab to the Product Edit Page in Back Office Using a Module ......... 134

Problem .............................................................................................................................................. 134

Solution............................................................................................................................................... 135

4-4. Displaying a New Product Field on the Product Page ........................................... 137

Problem .............................................................................................................................................. 137

Solution............................................................................................................................................... 137

How It Works ....................................................................................................................................... 138

4-5. Enabling Combinations for Virtual Products.......................................................... 140

Problem .............................................................................................................................................. 140

Solution............................................................................................................................................... 140

How It Works ....................................................................................................................................... 140

4-6. Sending Order Confirmation Message to Various Recipients ............................... 147

Problem .............................................................................................................................................. 147

Solution............................................................................................................................................... 147

How It Works ....................................................................................................................................... 148



 ■ Contents

xiii

4-7. Getting a Product Price ......................................................................................... 150

Problem .............................................................................................................................................. 150

Solution............................................................................................................................................... 150

How It Works ....................................................................................................................................... 150

4-8. Getting Product Name and Quantity ..................................................................... 152

Problem .............................................................................................................................................. 152

Solution............................................................................................................................................... 152

How It Works ....................................................................................................................................... 152

4-9. Getting Product Categories and Features ............................................................. 153

Problem .............................................................................................................................................. 153

Solution............................................................................................................................................... 154

How It Works ....................................................................................................................................... 154

4-10. Getting Order Total .............................................................................................. 155

Problem .............................................................................................................................................. 155

Solution............................................................................................................................................... 155

How It Works ....................................................................................................................................... 155

Summary ...................................................................................................................... 156

 ■Chapter 5: Booking System ������������������������������������������������������������������������������� 157

5-1. Include a Deposit Payment for Booking Products ................................................. 158

Problem .............................................................................................................................................. 158

Solution............................................................................................................................................... 158

How It Works ....................................................................................................................................... 159

5-2. Changing the Product View to Display Deposit Payment ...................................... 160

Problem .............................................................................................................................................. 160

Solution............................................................................................................................................... 160

How It Works ....................................................................................................................................... 160

5-3. Calculating the Deposit Value in the Cart .............................................................. 162

Problem .............................................................................................................................................. 162

Solution............................................................................................................................................... 162

How It Works ....................................................................................................................................... 163



 ■ Contents

xiv

5-4. Calculating the Balance Due Value in the Cart ...................................................... 165

Problem .............................................................................................................................................. 165

Solution............................................................................................................................................... 166

How It Works ....................................................................................................................................... 166

5-5. Obtaining Deposit Payment Plus Balance Due ...................................................... 169

Problem .............................................................................................................................................. 169

Solution............................................................................................................................................... 169

How It Works ....................................................................................................................................... 169

5-6. Getting Deposit and Balance Due Values into Cart Summary ............................... 170

Problem .............................................................................................................................................. 170

Solution............................................................................................................................................... 170

How It Works ....................................................................................................................................... 170

5-7. Displaying Deposit Payment and Balance Due in the Cart Summary ................... 171

Problem .............................................................................................................................................. 171

Solution............................................................................................................................................... 171

How It Works ....................................................................................................................................... 172

5-8. Detailing Balance Due in Order Confirmation E-mail ............................................ 177

Problem .............................................................................................................................................. 177

Solution............................................................................................................................................... 177

How It Works ....................................................................................................................................... 177

Summary ...................................................................................................................... 178

 ■Chapter 6: Events-Based System ���������������������������������������������������������������������� 179

6-1. Creating and Associating a Date Attribute for Your Events products .................... 179

Problem .............................................................................................................................................. 179

Solution............................................................................................................................................... 179

How It Works ....................................................................................................................................... 180

6-2. Selling Tickets ....................................................................................................... 182

Problem .............................................................................................................................................. 182

Solution............................................................................................................................................... 182

How It Works ....................................................................................................................................... 182



 ■ Contents

xv

6-3. Selling Unlimited Tickets ...................................................................................... 184

Problem .............................................................................................................................................. 184

Solution............................................................................................................................................... 184

How It Works ....................................................................................................................................... 184

Summary ...................................................................................................................... 185

 ■Chapter 7: SEO ��������������������������������������������������������������������������������������������������� 187

7-1. How to Activate Friendly URLs in PS ..................................................................... 188

Problem .............................................................................................................................................. 188

Solution............................................................................................................................................... 188

How It Works ....................................................................................................................................... 188

7-2. Changing the Pattern of Your Links ....................................................................... 190

Problem .............................................................................................................................................. 190

Solution............................................................................................................................................... 190

How It Works ....................................................................................................................................... 190

7-3. Improving SEO by Starting a Blog Related to Your Products and Services ........... 192

Problem .............................................................................................................................................. 192

Solution............................................................................................................................................... 192

How It Works ....................................................................................................................................... 192

7-4. Defining SEO for Your Categories in PS................................................................. 193

Problem .............................................................................................................................................. 193

Solution............................................................................................................................................... 193

How It Works ....................................................................................................................................... 194

7-5. Defining SEO for Your Products in PS ................................................................... 195

Problem .............................................................................................................................................. 195

Solution............................................................................................................................................... 195

How It Works ....................................................................................................................................... 195

7-6. Generating robots.txt File ..................................................................................... 196

Problem .............................................................................................................................................. 196

Solution............................................................................................................................................... 196

How It Works ....................................................................................................................................... 196



 ■ Contents

xvi

7-7. Linking to Social Networks ................................................................................... 198

Problem .............................................................................................................................................. 198

Solution............................................................................................................................................... 198

How It Works ....................................................................................................................................... 199

7-8. Speeding Up PS to Improve SEO ........................................................................... 201

Problem .............................................................................................................................................. 201

Solution............................................................................................................................................... 201

How It Works ....................................................................................................................................... 201

7-9. Improving Your SEO by Having a Responsive Theme ............................................ 203

Problem .............................................................................................................................................. 203

Solution............................................................................................................................................... 203

How It Works ....................................................................................................................................... 203

7-10. Selecting the Appropriate Domain Name ............................................................ 204

Problem .............................................................................................................................................. 204

Solution............................................................................................................................................... 204

How It Works ....................................................................................................................................... 204

7-11. Generating the Sitemap of Your PS Site .............................................................. 204

Problem .............................................................................................................................................. 204

Solution............................................................................................................................................... 204

How It Works ....................................................................................................................................... 205

7-12. Increasing the Number of Links Pointing at Your WebSite .................................. 206

Problem .............................................................................................................................................. 206

Solution............................................................................................................................................... 207

How It Works ....................................................................................................................................... 207

Summary ...................................................................................................................... 207

 ■Chapter 8: Maintenance ������������������������������������������������������������������������������������ 209

8-1. Set PS in Maintenance Mode ................................................................................ 209

Problem .............................................................................................................................................. 209

Solution............................................................................................................................................... 209

How It Works ....................................................................................................................................... 210



 ■ Contents

xvii

8-2. Edit the Text Displayed in Maintenance Mode ...................................................... 211

Problem .............................................................................................................................................. 211

Solution............................................................................................................................................... 211

How It Works ....................................................................................................................................... 211

8-3. Edit the Image Displayed in Maintenance Mode ................................................... 213

Problem .............................................................................................................................................. 213

Solution............................................................................................................................................... 213

How It Works ....................................................................................................................................... 213

Summary ...................................................................................................................... 214

Index ��������������������������������������������������������������������������������������������������������������������� 215



xix

About the Author

Arnaldo Pérez Castaño is a computer scientist based in Cuba. He’s the 
author of a series of programming books—JavaScript Fácil, HTML y CSS 
Fácil, and Python Fácil (Marcombo S.A.)—and writes for MSDN Magazine, 
VisualStudioMagazine.com, and Smashing Magazine. He is one of the 
co-founders of Havana Digital Enterprises and the creator of their first 
websites, www.havanaclassiccartour.com and www.havanadanceclass.com.  
His expertise includes Visual Basic, C#, .NET Framework, and artificial 
intelligence. He offers his services through freelancer.com. Cinema and 
music are two of his passions.

http://www.havanaclassiccartour.com/
http://www.havanadanceclass.com/


xxi

About the Technical Reviewer

Massimo Nardone has more than 22 years of experiences in security and 
web/mobile development, cloud computing, and IT architecture. His 
true IT passions are security and Android. He has been programming and 
teaching how to program with Android, Perl, PHP, Java, VB, Python,  
C/C++, and MySQL for more than 20 years.

He holds a Master of Science degree in computing science from the 
University of Salerno, Italy.

He has worked as a project manager, software engineer, research 
engineer, chief security architect, information security manager,  
PCI/SCADA auditor, and senior lead IT security/cloud/SCADA 
architect for many years. His technical skills include security, Android, 
cloud computing, Java, MySQL, Drupal, Cobol, Perl, web and mobile 
development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, 
Pro Rails, Django CMS, Jekyll, and Scratch.

He currently works as chief information security office (CISO) for 
CargotecOyj.

He worked as visiting lecturer and supervisor for exercises at the networking laboratory of the Helsinki 
University of Technology (Aalto University). He holds four international patents (PKI, SIP, SAML, and Proxy 
areas).

Massimo has reviewed more than 40 IT books for different publishing company and he is the co-author 
of Pro Android Games (Apress, 2015).



xxiii

Introduction

This book is intended for all PrestaShop (PS) users and developers who would like to acquire a better 
understanding of this amazing content management system (CMS). It contains easy-to-follow recipes that 
will help you achieve various customizations on your website in simple, clear steps. These recipes will 
not only aid you in solving specific problems, but they will also provide you with the necessary tools and 
knowledge to develop any similar customization that’s not included in the book.

Chapter 1 presents different recipes for showing you how to install and configure your PrestaShop 
website. Chapter 2 introduces the interesting topic of modules—the best alternative for providing 
extensibility and inject modified behavior into the system. Chapter 3 is a large chapter that demonstrates 
how to solve many front-end issues that you may come across someday. Chapter 4 explains how to find 
solutions for many of the problems related to core files of the CMS; those files are the classes and controllers. 
Chapters 5 and 6 are unique and extremely interesting chapters that will show you how to transform PS into 
a booking system and an events-based system. Chapter 7 treats the topic of SEO in PrestaShop and finally, 
Chapter 8, the simplest of all, explains how to solve maintenance-related problems.

The possibilities with this CMS are infinite and, by reading this book, you’ll see that converting PS into 
a booking or events-based system is not the last frontier; much more can be achieved if the CMS is properly 
studied.

http://dx.doi.org/10.1007/978-1-4842-2574-5_1
http://dx.doi.org/10.1007/978-1-4842-2574-5_2
http://dx.doi.org/10.1007/978-1-4842-2574-5_3
http://dx.doi.org/10.1007/978-1-4842-2574-5_4
http://dx.doi.org/10.1007/978-1-4842-2574-5_5
http://dx.doi.org/10.1007/978-1-4842-2574-5_6
http://dx.doi.org/10.1007/978-1-4842-2574-5_7
http://dx.doi.org/10.1007/978-1-4842-2574-5_8


1© Arnaldo Pérez Castaño 2017 
A. P. Castaño, PrestaShop Recipes, DOI 10.1007/978-1-4842-2574-5_1

CHAPTER 1

Installation and Configuration

Since its creation in 2005, PrestaShop (PS) has been evolving into one of the most competitive e-commerce 
solutions ever conceived. Nowadays there are over 250,000 online stores powered by this amazing Content 
Management System (CMS), and the number keeps on growing. What is it that makes PS so attractive and 
applicable to start online businesses for people all around the world? To start answering this question, we 
may visit http://demo.prestashop.com/, a URL devoted for users who want to try this incredible CMS 
without any need to install it. Also, the purpose of this chapter will be to answer the previous question by 
demonstrating the following:

•	 How easy it is to install PS

•	 How to set your own local server for PS

•	 How to change your domain name by modifying database entries

•	 How to back up and restore your database

•	 How to migrate PS from one server to another

•	 How to enable SSL in your local server

•	 How to enable SSL in PrestaShop

•	 How to share customers in a network of PS websites

•	 How to sell services instead of tangible products

•	 How to disable shipping

 ■ Note The shop configuration information can be found in the PrestaShop back panel following the path 
Advanced Parameters -> Configuration Information. There you can get a glance of server, database, and 
store information. In the near future, the latest PHP version supported by PrestaShop will be 5.4; therefore, it 
would be advisable to make sure your server is running under an equal or higher version.

http://demo.prestashop.com/


CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

2

1-1. Installing PrestaShop
Problem
You want to install PrestaShop in your server.

Solution
Installing PrestaShop can be extremely easy if you are using the appropriate hosting service. I personally 
recommend hosting on www.godaddy.com. I’ve hosted web applications with them before, and their server  
is exceptionally well optimized. Also, they have a CPanel with several tools for managing (for example,  
cloning) your websites as well as the possibility to install various CMSs on a given domain, which 
includes PrestaShop. Their installation process is very simple; some steps are hidden from customers and 
automatically handled by GoDaddy’s machinery. This would be solution number one if you were looking for 
alternatives to install PS; of course, the decision ultimately depends on your conditions.

Solution number two would be to leave the entire installation process on your shoulders.

How It Works
Following the second alternative, we’d need to start by downloading the official PrestaShop package  
(www.prestashop.com/en/download). The result should be a .zip containing all PS files as shown in 
Figure 1-1.

http://www.godaddy.com/
http://www.prestashop.com/en/download


CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

3

Figure 1-1. PrestaShop package in .zip file



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

4

Using an FTP client like FileZilla (Figure 1-2), we can upload or move the contents from the PS .zip to 
the folder that matches our domain in the server.

Figure 1-2. The FTP client FileZilla can be used to upload files to the server.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

5

After uploading all files and having accessed our shop’s URL, we can start the PrestaShop installation 
process, which consists of six steps as shown in Figure 1-3.

Steps 1–4 are form pages requesting basic information to initiate your online business. Therefore, we 
will skip them and move on to Step 5 in Figure 1-4, where we need to fill in details regarding our database.

Figure 1-3. PrestaShop installation page



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

6

Every CMS requires a database to operate (save customer information, orders, products, and so on). 
We must indicate our database during PS installation; its creation could be handled in two different ways:

 1. Through the MySQL command line

 2. Using phpMyAdmin, a web interface for managing databases, which acts as a 
middle layer and ultimately operates on the MySQL command line level

In the first scenario, assuming MySQL is installed, we will be dealing with SQL statements, syntax, and a 
MySQL console similar to the one shown in the Figure 1-5.

Figure 1-4. Database details

Figure 1-5. MySQL console



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

7

To create a database, we simply type the command “create database db_name” where db_name is the 
name we want to give to our database, as shown in Figure 1-6.

Figure 1-6. Database creation command

Figure 1-7. phpMyAdmin home panel

To delete a database, we use the command “drop database db_name” where again db_name is the name 
of our database.

 ■ Note every command defined in the MySQl console should end with a semicolon (;) or \g. If you press 
enter without having typed one of the previous symbols, you’ll get into a multiline statement.

The second alternative is to use phpMyAdmin, available in most hosting services as seen in Figure 1-7.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

8

To create a database, we go to the Databases tab on the top menu, type the name we want to give our 
database in the Create New Database field, and click the Create button (Figure 1-8).

Figure 1-8. Creating database in phpMyAdmin

Figure 1-9. Store being installed

Once the database has been created, either by applying alternative one or two, the next step is to 
complete the System Configuration form on the installation page. The Database login and Database 
password fields are usually provided by your hosting service. If these are unknown at the moment, 
contact their support team. If you are using a local server, your login should be “root” and the password 
the empty string.

In a concluding step shown in Figure 1-9, the store is finally installed.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

9

Now you can access the Front and Back ends. To access the PS Back Office, you need to delete the 
install folder that remains in the package folder. Afterward, it will be accessible providing the user/password 
combination specified during the installation process.

 ■ Note  The Back office url is always determined by a folder whose name is given when the PS installation 
has been completed. If the folder name is admin1234, then you can access the Back office through the url 
www.mydomain.com/admin1234. This folder contains all code files for the administration sections (figure 1-10).

Figure 1-10. Back Office entry point

Now the store is visible when someone types the URL on the browser and the installation process has 
been completed. It’s time to start perusing the Back Office and creating, deleting, updating your products, 
categories, and so on.

http://www.mydomain.com/admin1234


CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

10

1-2. Installing Your Local Server for PS
Problem
You want to install a server in your PC to manage, develop, test, customize your store, or simply try 
PrestaShop without the need to pay for a hosting service.

Solution
To understand the features that we’ll demand from the server, we must first examine PrestaShop 
requirements.

PS was developed using PHP as programming language in its pure form, and it follows a three-layer 
architecture that resembles the MVC (Model View Controller) design pattern. PS developers decided not 
to use any PHP framework so as to obtain the highest performance and code legibility. Some of its most 
important features are the following.

 – It is easy to install.
 – User interface is relatively friendly.
 – It supports features such as e-mail follow-up automation, SEO, and so on.
 – It has high flexibility in configuration.

The web server commonly used for interacting with PHP dynamic pages is Apache, without any doubt 
the most popular and successful web server in the market for the last 20 years. Apache has a modular 
architecture; its modules provide extended functionality that you can activate or deactivate at will.  
The mod_rewrite module, for instance, is generally applied to convert dynamic PHP pages into static  
HTML pages seeking to hide the code from visitors and search engines.

The Database Management System (DBMS) used is MySQL, the relational, multithread, multiuser 
system with the top number of web installations these days. Companies like Amazon, Craigslist, NASA, 
and Google all use MySQL. Many developers choose it because it’s simple and decently powerful; thus, the 
balance between simplicity and power in MySQL is almost perfect for the Web.

Fortunately for us, several web infrastructures have been created that encompass all of the previous 
technologies in one single global solution, among these it would be worth mentioning the following:

 1. XAMPP (X = any operating System, A = Apache, M = MySQL, PP = PHP and Perl)

 2. LAMP (L = Linux, A = Apache, M = MySQL, P = PHP)

 3. MAMP (M = Mac, A = Apache, M = MySQL, P = PHP)

 4. WAMP (W = Windows, A = Apache, M = MySQL, P = PHP)

WAMP, for example, can be installed in any PC running Microsoft Windows; it incorporates Apache as 
web server, MySQL as DBMS, and PHP as programming language. It also includes phpMyAdmin.

How It Works
The WAMP solution is actually a medium-size server. It comes with the basic modules and extensions that 
we need to execute our web applications. It’s not a giant, but it will do perfectly for our purpose.

 ■ Note  WaMP can be downloaded from its official page, www.wampserver.com.

http://www.wampserver.com/


CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

11

The version we are installing is packed not only with phpMyAdmin, but also with SqlBuddy, WebGrind, 
and XDebug. The last one is a PHP extension that allows for code debugging.

Once the setup has been completed, we’ll be able to see an icon on the task bar representing a daemon 
process from WAMP. After clicking on that icon, a dialog should pop up (Figure 1-12).

Figure 1-11. WAMP server setup

To install WAMP, we simply click the executable (.exe), the one we should get after download (Figure 1-11).



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

12

Starting all services and browsing to the local host URL will take us to WAMP home page, as shown in 
Figure 1-13.

Figure 1-12. Dialog after clicking WAMP daemon icon



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

13

Figure 1-13. WAMP home page

Note that WAMP presents us a list of all web applications under path/www, where path is a folder 
specified during installation by default C:/wamp.

The www folder is the place where we need to copy and paste the PrestaShop package and, in general, 
any folder containing a website that we wish to include in our server. After copying the package, a link with 
the name of its folder should appear on the previous list. If we click this link, we’ll be taken to the shop.

 ■ Note  If WaMP starts all services correctly, the daemon icon turns green . If there’s an error, the 
daemon will display yellow or red; in that case, check that each service is running. apache, for instance, might 
not be running because the port on which it is supposed to start may be occupied by another process. 
Therefore, you’d need to edit the http.conf file and change its port.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

14

1-3. Changing Your Domain Name in the Database
Problem
You want to change your shop’s domain in the PS database.

Solution
Changing the shop’s URL can be accomplished in the Back Office, visiting section Preferences->SEO & URLs, 
as seen in Figure 1-14.

Figure 1-14. Panel in the Back Office for changing your shop's domain

In multiple scenarios, you may find the situation where the shop’s domain needs to be changed and 
the Back Office is inaccessible. Migrating your website from one hosting account to another could be such a 
scenario. In this case, the solution is to change the shop’s URL in the database.

How It Works
Let’s assume we have installed PS in our local server and it’s running under localhost/prestashop 
(Figure 1-15). By modifying entries in the database, we’ll change it from localhost/prestashop to 
localhost:8181/prestashop. These entries we’ll be altered using phpMyAdmin.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

15

Figure 1-15. PS running at localhost

In phpMyAdmin home page, let’s find the Databases section on the top menu and eventually select our 
PS database, as shown in Figure 1-16.

Figure 1-16. Databases shown at phpMyAdmin



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

16

 ■ Note  In case you don’t know what database PS was using, the information can be found by opening the 
file config/ settings.inc.php with any text editor and locating the line define('_DB_NAME_', X). In this 
case, X should be the name of your PS database.

Once you clicked your database, a new page will display giving detailed information on PS tables 
(Figure 1-17).

Figure 1-17. PS tables displayed at phpMyAdmin

Figure 1-18. PS variables to modify

Now, to change our shop’s domain, we follow the next steps.
Find the ps_configuration table and in the name column, locate PS_SHOP_DOMAIN and PS_SHOP_

DOMAIN_SSL (Figure 1-18). Edit both entries, altering their values from localhost to localhost:8181.

Find the ps_shop_url table and edit the domain, domain_ssl columns, and change their values from 
localhost to localhost:8181. The physical_uri column defines the physical location of your shop within 
the server. For instance, if your domain is www.havanaclassiccartour.com and your website is located 
inside a folder named prestashop in the entry point to your domain, then you will access your shop from 
www.havanaclassiccartour.com/prestashop, thus, in that case, physical_uri = /prestashop.

Since we are doing all of these changes in our local server, we also need to edit the Apache http.conf 
file to modify the server’s domain. Edit that file and locate the line ServerName 127.0.0.1 and modify it to 
ServerName 127.0.0.1:8181. Now we can access our shop from the new domain as seen in Figure 1-19.

http://www.havanaclassiccartour.com/
http://www.havanaclassiccartour.com/prestashop


CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

17

Finally, we solved the problem assuming the shop was installed on a local server and accessible via 
localhost (127.0.0.1). This strategy is easily translatable to a shop with a real domain by simply exchanging 
localhost with your domain (www.yourdomain.com) in the previous pages.

1-4. Backing Up and Restoring Your Database
Problem
You want to back up your PrestaShop database to prevent information losses, to migrate your website, and 
so on. Eventually, you also want to restore your database from that backup.

Solution
To back up your database, you have two alternatives; you can do it via the PS Back Office or with 
phpMyAdmin.

How It Works
If you visit the Back Office and go to Advanced Parameters->DB Backup, you’ll find the PS tool for backing 
up your database (Figure 1-20).

Figure 1-19. Shop's domain modified

http://www.yourdomain.com/


CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

18

The backup consists of a .gz compressing an .sql file that contains all SQL statements to recreate the 
database.

The second alternative would be to use phpMyAdmin directly, selecting the database we want and 
going to the Export tab as shown in Figure 1-21.

Figure 1-20. Database backup

Figure 1-21. Exporting database in phpMyAdmin



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

19

Following this approach, we would need to select the desired format (usually .sql) and click Go.
Button (Figure 1-22).

Figure 1-22. Restoring or importing database in phpMyAdmin

To restore a database, we visit the Import tab and browse through our .sql (or similar) backup files. 
After selecting one, we click the Go button (Figure 1-22).

It’s recommended that you keep daily backups of your databases. There are different MySQL tools, such 
as Navicat (www.navicat.com) ,that will allow you to automatically set this up.

 ■ Note Backing up in dBMS is the process by which the complete structure of a database, including its data, 
is stored in the form of sql statements as to avoid information losses or to create restoration points.

1-5. Migrating from One Server to Another
Problem
You want to migrate your PS website from one hosting account or server to another.

Solution
In this case, the solution lies in the set of recipes we have seen so far.

http://www.navicat.com/


CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

20

How It Works
The migration can be accomplished following the next steps:

 1. Back up your database in the old server (Recipe 1-4).

 2. Create a new database with the same name as the old one and restore the 
previous backup in the new server (Recipe 1-4).

 3. Copy and paste your entire PS folder from the old server to the new one via FTP.

 4. If necessary, change the shop’s URL by modifying the corresponding entries in 
the new server’s database (Recipe 1-3).

If you follow these steps correctly, the migration process should be completed successfully.

 ■ Note If you are using friendly urls in the old PS and you migrate to a new server, change them to  
non-friendly urls to update the database. otherwise, images and other elements may not display correctly.

1-6. Enabling SSL in your Local Server
Problem
You want to enable SSL in your local server to have secured connections.

Solution
The Hypertext Transfer Protocol Secure (HTTPS) represents the secured version of the Hypertext Transfer 
Protocol (HTTP). It’s commonly used by financial entities such as banks and online stores to send sensitive 
information (private records, passwords) over the Web. It uses a cyphering based on SSL to create a channel 
where an encrypted stream is sent from sender to receiver (both having a key to decrypt it), and any attack in 
the middle will be useless since the attacker should be incapable of decrypting that stream.

In the Web environment, the encrypted stream translates into an encrypted link, the receiver to a web 
server and sender to a browser.

Creating an SSL connection requires an SSL Certificate for the server. When you choose to activate SSL, 
you will have to complete a number of questions about the identity of your website and company. The web 
server then creates two cryptographic keys, a Private and a Public Key.

SSL uses a type of cryptography known as Public Key Cryptography, or Two-Key Cryptography, where 
two actors, sender and receiver, own Public and Private Keys. The Public one can be delivered to anyone 
and the latter must be kept inaccessible. Cryptographic methods guarantee that the Public-Private Key pair 
generated is unique so it never occurs that two different individuals share the same pair.

The main branches of Public Key Cryptography are Public Key Encryption (PKE) and Digital 
Signatures (DS).

In PKE, the sender uses the receiver’s Public Key to encrypt the message. once encrypted, only the 
receiver can decrypt it using its own Private Key. Remember the receiver is the only one with access to it. 
Confidentiality is achieved in this manner; no one but receiver can decrypt the message.

In DS, the sender uses his or her Private Key to encrypt the message so it can be later decrypted by 
receiver. The identification-authenticity of the sender gets verified this way because the sender is the only 
one who could have encrypted the message with its Private Key.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

21

Habitually, an SSL Certificate includes your domain name, your company name, your address, your 
city, your state, and your country. It also contains the expiration date of the Certificate as well as details of 
the Certification Authority responsible for issuing the Certificate. When a browser connects to a secure site, 
it will retrieve the site’s SSL Certificate and check that it has not expired, it has been issued by a Certification 
Authority the browser trusts, and that it is being used by the website for which it has been issued. If it fails on 
any one of these checks, the browser will display a warning to the user letting him or her know that the site is 
not secured by SSL.

The Public Key is placed into a Certificate Signing Request (CSR), which is a data file also containing 
your details. You should then submit the CSR. During the SSL Certificate application process, the 
Certification Authority will validate your details and issue an SSL Certificate containing your details, 
allowing you to use SSL. Your web server will match your issued SSL Certificate to your Private Key. Then it 
will be able to establish an encrypted link between the website and your customer’s web browser.

 ■ Note In the oSI (open System Interconnection, ISo/IeC 7498-1) model, HTTPS belongs to the application 
layer where several protocols for exchanging data between applications are defined. among these protocols we 
can find HTTP, HTTPS, PoP, SMTP, fTP, and so on.

How It Works
Enabling SSL in WAMP requires us to create an SSL certificate. For this purpose, we will install 
Win32OpenSSL_Light-1_1_0.exe, which can be downloaded from http://slproweb.com/download/
Win32OpenSSL_Light-1_1_0.exe and can be used to create certificates.

Once we’ve installed the program, we go to My PC->Preferences->Advanced System Configuration-> 
Environment Variables and add the environment variable OPENSSL_CONF, setting its value to the path of the 
openssl.conf file; in my case, it’s C:\wamp\bin\apache\Apache2.2.21\conf\openssl.conf. This is a very 
sensitive file that must be configured properly with a lot of information.

Then we create the SSL certificate and its associated key. First, open the command line and type 
openssl; it should change to the OpenSSL console (Figure 1-23). Then execute the following steps.

Figure 1-23. OpenSSL console online

 ■ Note If the command line does not recognize the openssl command, edit the Path system environment 
variable adding a semicolon at the end followed by the path to the openssl executable. In my case, it is  
C:\OpenSSL-Win32\bin.

http://slproweb.com/download/Win32OpenSSL_Light-1_1_0.exe
http://slproweb.com/download/Win32OpenSSL_Light-1_1_0.exe


CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

22

 1. Type the following command to generate a private key:

genrsa -des3 -out localhost.key 1024

It will ask you for a pass phrase (Figure 1-24); do not forget it.

Figure 1-24. Pass phrase request

Figure 1-25. Removing the pass phrase

 2. To remove the pass phrase and create a new copy, type these commands:

copy localhost.key localhost.key.org
rsa -in localhost.key.org -out localhost.key

In Figure 1-25, notice that in the first line we are using a MS-DOS command; 
thus, we’ll need to exit the openssl console to execute it. Type q to exit. Re-enter 
later to type the last command.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

23

 3. Create a certificate from the generated key by typing the following (see Figure 1-26):

req -new -x509 -nodes -sha1 -days 365 -key localhost.key -out localhost.crt 
-config C:\wamp\bin\apache\Apache2.2.21\conf\openssl.cnf

Figure 1-26. Creating a certificate

Note that your openssl.cnf path may be different; modify it if necessary.

 4. To put some order (always important), let’s create a folder named OpenSSL in 
the root of our WAMP server, by default it is C:/wamp/, so the final path to the new 
folder would be C:/wamp/OpenSSL. Inside, we’ll create the subfolders certs and 
private.

 5. In the path where you started the OpenSSL console, C:\Users\Skywalker in my 
case, find the files localhost.crt and localhost.key and move/copy them to 
the newly created certs folder. Then move the localhost.key.org file to the private 
folder.

 6. After having created our certificate and private key and located them in a nice 
spot, it’s time to link them to Apache. To establish this link, we need to edit the 
http.conf Apache file, which can be open from the WAMP daemon panel or, in 
my case, accessing C:\wamp\bin\apache\Apache2.2.21\conf\.

 7. Uncomment the following three lines:

LoadModule ssl_module modules/mod_ssl.so

LoadModule setenvif_module modules/mod_setenvif.so

Include conf/extra/httpd-ssl.conf

 8. Now open C:\wamp\bin\apache\Apache2.2.21\conf\extra\httpd-ssl.conf.

 9. Change and uncomment (if necessary) the following lines:

ServerName www.example.com:443 to ServerName localhost:443

SSLCertificateFile c:/Apache2/conf/server-dsa.crt to SSLCertificateFile  
c:/wamp/OpenSSL/certs/localhost.crt

SSLCertificateKeyFile c:/Apache2/conf/server-dsa.key to 
SSLCertificateKeyFile c:/wamp/OpenSSL/certs/localhost.key

http://www.example.com:443/
http://www.example.com:443/


CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

24

 10. It’s important that you update all paths written in the httpd-ssl.conf file 
because some may be incorrect, pointing to C:/Apache2 instead of your WAMP 
Apache folder. Check that out.

 11. Finally, in the WAMP daemon panel, go to PHP->php.ini and uncomment the 
next line by removing the leading semicolon:

;extension=php_openssl.dll

After executing these steps, SSL should be available in your WAMP server and the Apache service 
should start without any problem.

To verify that all files are syntactically correct, you can drag the C:\wamp\bin\apache\Apache2.2.21\
bin\httpd.exe executable into any MS-DOS window followed by the text -t. If the resulting text is Syntax 
OK, then all files are syntactically correct.

 ■ Note  If your apache server is not starting, you can always check the logs file located at your 
corresponding C:\wamp\bin\apache\Apache2.2.21\logs or C:\wamp\logs paths.

1-7. Enabling SSL in PrestaShop
Problem
You want to enable SSL in your PS website.

Solution
Assuming your sever supports SSL connections and you want to enable it in PrestaShop, you must access 
the Back Office and activate the Enable SSL link found under Preferences->General (Figure 1-27).

Figure 1-27. Link to activate SSL in PS



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

25

How It Works
If you are using a self-signed certificate like the one we used in the previous recipe, then we’ll probably get a 
warning message (Figure 1-28) that would depend on the browser being used.

Figure 1-28. Warning message issued by Firefox

Since we are in a testing environment, we add the exception and move forward. To avoid such warning, 
you would need a certificate from a trusted third-party organization. When activating SSL, you will see the 
HTTPS protocol displayed in the browser’s bar (Figure 1-29).

Figure 1-29. SSL activated



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

26

Using a self-signed certificate, you are telling the browser “I’m OK, trust me,” but he’s obviously not 
buying that. Using a third-party certificate (issued by a trusted organization) would be like having them 
telling the browser “Trust him, he is OK.” Depending on how well-known this organization is, he may trust 
you. Organizations like GeoTrust or Symantec are all devoted to providing these digital certificates.

1-8. Sharing Customers in a Network of PrestaShop WebSites
Problem
You want to create a network of shops where customers have a single account and, after signing up in one 
site, they become customers of the entire network and can access any site at will.

Solution
The solution to our problem lies in the multistore feature, which PrestaShop has incorporated since version 1.5. 
You can enable or disable this feature in the Back Office following the path Preferences->General->Enable 
MultiStore.

How It Works
Once you enable the multistore feature, a new tab named Multistore will appear on the left panel under 
Advanced Parameters (Figure 1-30).

Figure 1-30. Multistore area

In this tab, we’ll create a new shop group named HDE and activate the Share Customers feature for 
it. To create a new group, click the Add a new Shop Group button on the upper right corner and then 
fill out the Shop group name field as shown in Figure 1-31. The new group will now appear on the Shop 
group list.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

27

Now that we have created the shop group representing our network, we can complete it with new 
shops (Figure 1-32).

Figure 1-31. HDE shop group being created

Figure 1-32. Shop group added

 ■ Note  PS allows to share not only customers between different stores but also quantities and orders.  
The notion of shop group permits the partition of your shop into different shops, each with unique attributes.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

28

To add a new shop to the HDE group, click the Add new shop button on the upper right corner. In 
Figure 1-33, the Havana Classic Car Tour shop has been created.

Figure 1-33. Havana Classic Car Tour shop created

Figure 1-34. Newly created shop in multistore tree

Fill out the necessary information and set the Import Data field to Yes state. Importing data from one 
store to the other will give us access to several PS tables. We’ll also set different themes for each shop seeking 
a distinction between them.

Now we see the newly created shop on the multistore tree (Figure 1-34). Click it to go to the shops table.
In the shops table, we find the Havana Classic Car Tour row. Click the Main URL for this shop column to 

define a URL as shown in Figure 1-35.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

29

Remember, in this example, we are working from a local server; therefore, our domain will be 
localhost. The Virtual URL field provides the opportunity of setting a virtual URL, that is, a URL that doesn’t 
really exist in the server—in this case, havanaclassiccartour; this can be seen in Figure 1-36.

Figure 1-35. Shops table

Figure 1-36. Defining URL for the newly created shop

To finish, we just need to edit the other shop, fill out the Virtual URL field with the prestashop text, select 
a different theme, and move it from the Default group to HDE (Figure 1-37).

Figure 1-37. HDE group fully created



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

30

If we visit both stores, we will notice immediately a bunch of visual differences resulting from the 
application of different themes for each store. In Figure 1-38, we can see the theme applied to the Havana 
Classic Car Tour shop.

Figure 1-38. Theme applied to Havana Classic Car Tour shop

You can also verify that your customers can create an account in one of your shops and they will have 
access indistinctively from any store. In the end, you can have as many shops as you want, each selling 
a different set of products (remember categories are selected prior to shop creation in multistore) and 
conforming a network of websites with common credentials for customers.

 ■ Note  The multistore feature allows you to manage multiple stores at the same time. for each one, you can 
define which modules are enabled/disabled and you can select theme, products, and so on. The Back office 
incorporates a drop-down box on the upper left corner when you choose the shop or shop group that you wish 
to configure at present time.

1-9. Selling Services instead of Products
Problem
You want to sell services instead of tangible products.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

31

Solution
A service does not require a warehouse, quantities defined, or a shipping process. It’s something that you 
sell and is intangible; therefore, PS treats it as a virtual product. In the product creation page, you can set a 
product as virtual (Figure 1-39).

Figure 1-39. Product creation page

Virtual products are usually services, bookings, or anything that does not involve a physical presence.

How It Works
When you set a product as virtual, the shipping tab on the left panel disappears. This is what you would 
expect from a product that is a service, booking, or anything similar.

The problem is that the combinations tab also disappears and combinations provide the possibility of 
changing a product’s price dependent on the subset of attributes selected. For instance, you may have a tour 
on an American Classic Car through Havana product for $60 and attributes place, time, guided service, 
and so on. You want to increase the price to $75 if the customer selects the guided service attribute. In that 
scenario, you would need the combinations tab.

A better alternative for working with services, booking products, and other similar items is to create them 
as standard products, disable their shipping, build your own PS theme (erasing all trace of shipping), and 
modify the necessary e-mail templates. In this book, we’ll see how to accomplish this task recipe by recipe.

 ■ Note Selecting the Virtual Product option also activates a Virtual Product tab on the left panel where you 
can upload a file associated with that product.

1-10. Disabling Shipping
Problem
You want to disable shipping for your standard products.

Solution
If you have a standard product that can’t be shipped, maybe a booking service or something similar, you can 
disable shipping by creating a Free Shipping carrier and defining it as the only carrier for that product.



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

32

How It Works
To create a carrier, you need to access the PS Back Office, go to Shipping->Carriers (Figure 1-40) on the 
right upper corner, and click Add new carrier. In case none of your products includes shipping, you could 
leave a single carrier named Free.

Figure 1-40. Add new carrier

Figure 1-41. Multiform to configure your new custom carrier

Our goal is to add a custom carrier, so we click the Add new carrier button, and it will take us to a 
multiform where we’ll input every detail regarding our new carrier (Figure 1-41).



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

33

We name our new carrier Free Shipping and set its Transit time value to Free, leaving the remaining 
fields empty, as shown in Figure 1-42. In the second form, we activate the Free Shipping option.

Figure 1-42. Free shipping activated for new carrier

In Step 2, we click the Finish button and our free custom carrier is created. We don’t need to move 
forward since the last two steps demand the configuration of fields associated with shipping costs.

We can set our free carrier as the default carrier if we go to Shipping->Preferences and select it from 
the Default Carrier drop-down list (Figure 1-43).

Figure 1-43. Defining carrier for a product



CHaPTer 1 ■ InSTallaTIon and ConfIguraTIon

34

In case you want a subset of your products to have free shipping, you can always edit those products, go 
to the Shipping panel, and define the carrier you want for them.

Summary
Throughout this chapter, we examined several recipes that show us how to appropriately install and 
configure PrestaShop. In the following chapter, we will start diving into the world of module development, a 
feature that allows PS extensibility and customization.



35© Arnaldo Pérez Castaño 2017 
A. P. Castaño, PrestaShop Recipes, DOI 10.1007/978-1-4842-2574-5_2

CHAPTER 2

Module Development

Modules represent the manner in which PrestaShop allows us to alter or add functionality to our websites. 
We can find modules to complete online payments (Stripe, PayPal, and so on), enhance or change front-end 
features like the slider and top menu, or completely transform the original PS idea and turn it into a booking 
site, a travel agency, and so forth. On the PrestaShop home page, most components you see (slider, search 
box, top menu, popular products list, and so on) are modules that can be customized, enabled or disabled.

When you are in need of adding certain functionalities to your PS website, you usually encounter two 
alternatives. You can locate and buy the module that provides the required functionality or you can develop 
it yourself. In this chapter, we'll describe various recipes that will allow you to do the following:

•	 Create a Hello World PS module displayed at the header

•	 Position your module

•	 Transplant your module

•	 Create your own hook

•	 Add a configuration link to your module

•	 Create a YouTube module

•	 Configure your PS site using SQL queries during module installation

•	 Create a module for sending e-mail notifications after order confirmation

•	 Add more information to order e-mail notifications

•	 Change CSS styles through a module

 ■ Note  If you want to change the way a module looks on your PS site, you can edit the .tpl Smarty files 
associated with your current theme folder following the path theme_folder/modules/your_module.



ChaPter 2 ■ Module develoPMent

36

2-1. Create a Hello World PS Module Displayed at the Header
Problem
You want to create a module that displays the Hello World on the header when installed.

Solution
All modules are located in a folder named modules at the root of your PrestaShop package. They are 
composed of various files all contained within their folder in the path modules/your_module_name, where all 
their files should be. Every module must include these three files:

 1. config.xml: the cache configuration file

 2. logo.png (for PS 1.5+), logo.jpg, or logo.gif (up to PS 1.4): icon file that 
represents the module in the Back Office. If the module is operational for both 
1.4 and 1.5+, then logo.png and logo.gif must be included. Dimensions should 
be 16x16 pixels.

 3. your_module_name.php: the main PHP file. It must have the same name as the 
module's folder and it handles most processing.

The config file is automatically generated by PS when installing the module, so you don’t really need to 
worry about it. This leaves us with two files that must be created or included on module development.

How It Works
To start, let’s create a helloworld folder inside the modules directory at the root of your PS package. Next, we 
create the main PHP file (helloworld.php) and the module’s logo (logo.gif), as shown in Figure 2-1.

Figure 2-1. Files of the helloworld module

All modules start with a simple constant test, which verifies the existence of PrestaShop as CMS 
handling files (Listing 2-1); this prevents malicious visitors from loading them directly and eventually getting 
access to the code.

Listing 2-1. Checking for PS Constant

<?php
if(!defined('PS_VERSION_'))
        exit;



ChaPter 2 ■ Module develoPMent

37

The module itself is a PHP class that extends from the PS Module class (Listing 2-2); the name must be 
written in CamelCase and it must be the same as the folder’s name. In general, your module can inherit from 
the Module class or from any of its specialized descendants (PaymentModule, ModuleGraph, and so on).

Listing 2-2. Declaring the Module’s Class

<?php
if(!defined('_PS_VERSION_'))
        exit;

class HelloWorld extends Module {
}

 ■ Note  the name of the module’s folder is the same as the module and cannot include any spaces—only 
alphanumerical characters, the hyphen, and underscore (all lowercase).

Now it’s time to start filling the HelloWorld class. We start by creating the constructor (Listing 2-3).

Listing 2-3. Class Constructor

class HelloWorld extends Module {

public function __construct()
{
               $this->name = 'helloworld';
               $this->tab = 'front_office_features';
               $this->version = '1.0.0';
               $this->author = 'Arnaldo Perez Castano';
               $this->need_instance = 0;
               $this->ps_versions_compliancy = array('min' => '1.6', 'max' => _PS_VERSION_);
               $this->bootstrap = true;

               parent::__construct();

               $this->displayName = $this->l('Hello World');
               $this->description = $this->l('Display Hello World text');

               $this->confirmUninstall = $this->l('Are you sure you want to uninstall?');

               if (!Configuration::get('HELLOWORLD_NAME'))
                 $this->warning = $this->l('No name provided');
}
}



ChaPter 2 ■ Module develoPMent

38

In the constructor, we define values for several attributes of the Module class.

•	 Name: must be the same as the module’s folder name, in lowercase and following the 
same rules

•	 Tab: the section in the Back Office->Modules that will contain this module. Since 
we are creating a front-end module, our tab is front_office_features.

•	 Version: the module’s version, as a string

•	 Author: the module’s author, as a string

•	 Need_instance: indicates whether the module’s class needs to be loaded when 
displaying the Modules page in the Back Office. A value of 0 turns it off; a value of 1 
turns it on. It’s usually turned on for modules that must display a warning message 
in the Modules page; leaving it like that unjustified could lead to higher time 
consumptions when loading the Modules page.

•	 Ps_versions_compliancy: indicates what versions of PrestaShop are compatible 
with the module

•	 BootStrap: indicates whether template files correspond to PrestaShop 1.6’s 
bootstrap or not

The module should be visible now in the Modules page on PS Back Office as illustrated in Figure 2-2. 
We continue the development process by making a call to the parent’s constructor (Module class). This call 
must be done after creating the $this->name variable and before calling the translation method $this->l().

Figure 2-2. Helloworld module on Back Office



ChaPter 2 ■ Module develoPMent

39

After calling the parent’s constructor, we set a group of strings that will be use for messages or simply 
displaying text in PrestaShop.

•	 displayName: the name displayed in the module’s list in the Back Office

•	 description: a description of the module, shown in the module’s list in the  
Back Office

•	 confirmUninstall: a message that appears before uninstalling the module

To be able to install our module from the module’s list, we need to define the install() and 
uninstall() methods at the same level as the class constructor. Through these Boolean methods, we can 
determine what happens when the administrator installs or uninstalls some module. We’ll keep it simple for 
now, just incorporating a call to the parent’s install, uninstall method and registering it to the top hook 
in the first case (Listing 2-4). If something fails, the module will not be installed.

Listing 2-4. Install and Uninstall Methods

public function install() {
        if (!parent::install() ||
               !$this->registerHook('top'))
               return false;
        return true;
}

public function uninstall() {
        if (!parent::uninstall())
                return false;
        return true;
}

We’ll see more on PS hooks throughout this chapter. For the moment, we just need to know that having 
your module hooked up is equivalent to having a channel to insert some code in your site at a certain 
moment or location; it could be when displaying the header (top), when loading the left column, at the 
center of your homepage, and so on.

Taking into account that we have already attached our module to the top hook, we just need to define 
the code to be executed when the module is enabled (Listing 2-5).

Listing 2-5. Top Hook Method

public function hookTop($params){
global $smarty;
return $this->display(__FILE__, 'helloworld.tpl');
}

The name of a hooking method starts with the hook prefix followed by the name of the hook itself, top in 
this case. PrestaShop uses the Smarty web template system for adding logic, loops, and variables in .tpl files 
that are eventually rendered as HTML pages. In order to interact with Smarty, we define the global variable 
$smarty. The display method then returns the content of the template file helloworld.tpl representing the 
visuality of the module (Listing 2-6).



ChaPter 2 ■ Module develoPMent

40

Listing 2-6. Helloworld.tpl Smarty File

<div class="col-sm-3">
        <h2> Hello World </h2><br>
        <h4> havanaclassicartour.com </h4>
</div>

Now we can proceed with the module’s installation by clicking the Install button as seen in Figure 2-3.

Once we click the Install button, we’ll be prompted with a warning message asking us to confirm that 
the module can be trusted. According to PrestaShop, the only trusted modules are those from their official 
market place (addons.prestashop.com) or from one of their partner’s market place. Since we are developing 
this module and we know it’s reliable, we’ll click the Proceed with the Installation button and get the module 
installed (Figure 2-4).

After the installation has been completed, we can see the module displayed on the header as illustrated 
in Figure 2-5.

In this recipe, we learned how to create a simple module that displays the “Hello World” text on the 
header. Modules allow us to add functionality and configure PS without the need to modify any core files, 
thus making our stores more flexible and easier to extend.

Figure 2-4. Module installed

Figure 2-5. Module displayed on header

Figure 2-3. Button to install module



ChaPter 2 ■ Module develoPMent

41

2-2. Positioning Your Module
Problem
You want to change the position or order in which your modules are being displayed.

Solution
To alter the order in which your modules are being displayed, you need to visit PS Back Office and then go 
to (Modules and Services)->Positions. To exemplify, let’s try to move the Hello World module we just 
created on the last recipe from one position to another.

How It Works
On the Positions page, we input “top” in the “Search for a hook” text field to the right. Remember that’s the 
hook where we attached our module. Once you have located it, drag it up and put it under the Cart Block 
module (Figure 2-6).

Now you can reload your PS home page and see how the “Hello World” text is shown elsewhere as 
depicted in Figure 2-7.

Modules are arranged in a linear form so you can imagine them line up and have the predecessor and 
successor of your module defining its position over that line. In the previous case, we set the Hello World 
module after the Cart Block module and before the Top Horizontal Menu. That’s exactly where it lies on the 
header—after the Reservations button (Cart) and before the Top Menu.

Figure 2-6. Locating the Hello World module on Positions page

Figure 2-7. Module after changing its position



ChaPter 2 ■ Module develoPMent

42

Visually the Cart Block appears to be after the Hello World module, but that’s not really the case. The 
imaginary line of modules in the top hook starts with the logo and continues with the Contact/User Info 
module, the Cart Block module, the Hello World module, and finally the Top Menu Module.

2-3. Transplanting Your Module
Problem
You want to transplant a module to attach it to another hook.

Solution
Transplanting a module is the process by which you move it from one hook to another. Accomplishing this 
task requires you to unhook your module and attach it to the new hook.

How It Works
First, we need to unhook the module we want to transplant (Figure 2-8). We can do this in the Back Office 
following (Modules and services)->Positions and then searching for our module and editing the entry 
that corresponds to it.

Once you have unhooked the module, you click the Transplant module button on the upper right 
corner of the Positions page, as shown in Figure 2-9.

Figure 2-8. Unhooking a module

Figure 2-9. Transplant a module button



ChaPter 2 ■ Module develoPMent

43

On the Transplant page, we find the module that we want to transplant (Figure 2-10), Hello World in our 
case, and indicate the hook to which we need it attached.

On this page, you also have the option of specifying a comma separated list of files for which you don’t 
want the module selected to be displayed, as seen in Figure 2-11.

After clicking the Save button, we’ll see that our Hello World is back to the hook it was attached and the 
transplantation process has been completed.

2-4. Creating Your Own Hook
Problem
You want to create your own hook so modules can attach to it.

Solution
Hooks can be divided into two main categories—the visual hooks and the action hooks.

Figure 2-10. Transplanting the Hello World module in the top hook

Figure 2-11. Specifying files for which the module will not be displayed



ChaPter 2 ■ Module develoPMent

44

When “hooked up” to a visual hook, you can display content in the location where that hook was 
declared in your templates. The top hook, for instance, that we used in the Hello World module is tied to a 
variable $HOOK_TOP declared on the page header so its visual content is displayed there (Listing 2-7).

Listing 2-7. Fragment of the header.tpl Template File Where the Top Hook Is Declared

{if isset($HOOK_TOP)}
{$HOOK_TOP}
{/if}

Action hooks on the other side merely run module’s code at certain moments during PS execution. 
These types of hooks are usually included in controllers and classes to manipulate any data they might 
return. The cart hook, for example, is executed in the Cart.php class right after a cart is updated or created, 
and the createAccount hook in authentication.php is called right after the client account is created.

How It Works
The hookExec() function in the Module class is the one in charge of executing hooks and specifically the 
hookNameofHook() functions we create. If we have a visual hook, then a Smarty variable named $HOOK_
NAMEOFHOOK will contain the template code for it (Listing 2-8); we’ll use it later in .tpl files to display the 
module.

Listing 2-8. Assigning Smarty Variable HOOK_NAMEOFTHEHOOK

$this->context->smarty->assign(array('HOOK_NAMEOFTHEHOOK'=>Hook::exec('nameofthehook')));

Now, let’s start developing a hook that will allow us to display modules in the home page at a position 
defined in index.tpl. The first step would be to install our new hook.

The installation process will be incorporated in the Hello World module and it consists of including a 
method that adds a row into the Hook Table in PS database. The method for executing this task is addHook(), 
inherited from the Module class (Listing 2-9).

Listing 2-9. Function Where Hook Is Added in Database

protected function addHook() {
        // Checking the module does not exist
        $exists = Db::getInstance()->getRow('
                        SELECT name
                        FROM '._DB_PREFIX_.'hook
                        WHERE name = "homepage"
                        ');
        // If it does not exist
        if (!$exists) {
                 $query = "INSERT INTO "._DB_PREFIX_."hook (`name`, `title`, `description`) 

VALUES ('homepage', 'HomePage', 'Hooks in the homepage');";
                if(Db::getInstance()->Execute($query))
                        return true;
                else
                        return false;
        }
        else return true;
}



ChaPter 2 ■ Module develoPMent

45

The method checks that no module with the same name exists; if that's the case, then an insert 
statement in an SQL query adds the module to the database.

 ■ Note  If you have the hello World module already installed from the previous recipe, you need to uninstall it 
and then install it again so the addHook() function is executed and the hook created on database.

Now we need to define the method that will be executed when our new hook is called (Listing 2-10).

Listing 2-10. Method Attached to Our New Hook

public function hookHomePage($params)
{
        global $smarty;
        return $this->display(__FILE__, 'helloworld.tpl');
}

Then we need to override the IndexController located at controllers/front/. We modify the 
initContent() method assigning the Smarty variable $HOOK_HOMEPAGE (Listing 2-11).

 ■ Note  overriding is the process by which PS substitutes a core file by another placed in the override folder 
on your package root. the path to such file must recreate the same structure that the original file possesses. 
For instance, the IndexController.php file would be override in the folder override\controllers\front.

Listing 2-11. initContent() Method with Smarty Variable Assigned

public function initContent()
{
parent::initContent();
$this->addJS(_THEME_JS_DIR_.'index.js');

$this->context->smarty->assign(array('HOOK_HOME'=> Hook::exec('displayHome'),
'HOOK_HOME_TAB' => Hook::exec('displayHomeTab'),
'HOOK_HOME_TAB_CONTENT' => Hook::exec('displayHomeTabContent'),
'HOOK_HOMEPAGE' => Hook::exec('homepage'),
));

$this->setTemplate(_PS_THEME_DIR_.'index.tpl');
}

Finally, we just need to define the place where we’ll put our Smarty variable in the index.tpl template 
file. In our case, we set it near the footer as shown in Listing 2-12. The result on the front end is shown in 
Figure 2-12.



ChaPter 2 ■ Module develoPMent

46

Listing 2-12. Index.tpl template File

<div class="row" style="padding:15px">
<iframe width="100%" height="500"
src="http://www.youtube.com/embed/LlXAznDIRvo">
</iframe>
{$HOOK_HOMEPAGE}
</div></div>
{if isset($HOOK_HOME) && $HOOK_HOME|trim}
        <div class="clearfix pre-footer">
                <div class="container">
                {$HOOK_HOME}
                </div>
        </div>
{/if}

In this recipe, we showed how to create a new hook from scratch. Notice that the hook could have been 
added to the database without any need for an intermediary module, using phpMyAdmin and the INSERT 
SQL statement applied in the addHook() function.

 ■ Note  If you have any problem displaying the module, go to Preferences->Performance and clear the 
cache; also try reinstalling the module.

Figure 2-12. Module tied to our new hook in the home page



ChaPter 2 ■ Module develoPMent

47

2-5. Adding a Configuration Link to Your Module
Problem
You want to add a Configure link to your module allowing users to customize it.

Solution
At some point, you have probably seen the Configure link located in the right side of each row on the module 
list. If you would like to add that link to your module, then you need to implement the getContent() method 
in your main class. In this recipe, we’ll modify the Hello World module code so the text it shows can be 
customized in the Back Office when the user presses the Configure link.

How It Works
First, we’ll add a text variable in the constructor of the HelloWorld class; we’ll use it as the name of the field 
that will hold the text of the module in the database (Listing 2-13).

Listing 2-13. Constructor with New Text Variable

public function __construct()
{
               $this->name = 'helloworld';
               $this->tab = 'front_office_features';
               $this->version = '1.0.0';
               $this->text = 'mod_text';
               $this->author = 'Arnaldo Perez Castano';
               $this->need_instance = 0;
               $this->ps_versions_compliancy = array('min' => '1.6', 'max' => _PS_VERSION_);
               $this->bootstrap = true;

               parent::__construct();

               $this->displayName = $this->l('Hello World');
               $this->description = $this->l('Display Hello World text');

               $this->confirmUninstall = $this->l('Are you sure you want to uninstall?');
        }

Next, we define the getContent() method (Listing 2-14).

Listing 2-14. The getContent() Method

public function getContent()
{
if (Tools::isSubmit('submit'))
{
Configuration::updateValue($this->text, Tools::getValue('our_message'));
}
$this->displayForm();
return $this->_html;
}



ChaPter 2 ■ Module develoPMent

48

After having defined the getContent() method, we are able to see the Configure link on the right side of 
our module’s row in the module’s list (Figure 2-13).

The getContent() method is the first to be called when we click the Configure link. Consequently, it’s 
the correct place to update any value that might have been submitted through a form in the configuration 
page.

This is the purpose of the if statement inside the method. Check whether a submit is in place and, if 
that’s the case, update the value on the database with the value of a field named our_message on a form we’ll 
present shortly.

The displayForm() method is shown in Listing 2-15.

Listing 2-15. The displayForm() Method

private function displayForm()
{
        $this->_html .= '
        <form action="'.$_SERVER['REQUEST_URI'].'" method="post">
                <label>'.$this->l('Hello World Message').'</label>
                <div class="margin-form">
                        <input type="text" name="our_message" />
                </div><br>
                 <input type="submit" name="submit" value="'.$this->l('Update').'" 

class="button" />
        </form>';
}

If we now click the Configure link, we’ll be taken to the configuration page of our Hello World module, 
as illustrated in Figure 2-14.

 ■ Note  the Configuration object is a PrestaShop native object incorporated as a middle layer between 
the developer and database. It interacts with the ps_configuration table and eases the module settings 
management by storing settings in PS databases using different methods and eliminating the need to write SQl 
queries.

Figure 2-13. Module with Configure link



ChaPter 2 ■ Module develoPMent

49

To get the value saved in the module’s configuration page, we need to link it to the file template through 
the hookTop method using a Smarty variable. The modification is shown in Listing 2-16.

Listing 2-16. Modification to the hookTop Method

public function hookTop($params)
       {
                global $smarty;

                $smarty->assign(
                               array(
                                   'msg' => Configuration::get($this->text.'_message'),
                            )
                     );
              return $this->display(__FILE__, 'helloworld.tpl');
       }

We’ll also need to modify the helloworld.tpl file to display the $msg Smarty variable containing the 
value obtained from the database (Listing 2-17).

Listing 2-17. Modification to helloworld.tpl File

<div class="col-sm-3">
       <h2> {$msg} </h2><br>
       <h4> havanaclassicartour.com </h4>
</div>

Figure 2-14. Configuration page for Hello World module



ChaPter 2 ■ Module develoPMent

50

To conclude, we test our new configuration page by saving the text “Hello Arnaldo, HDE and HCCT 
(Havana Classic Car Tour)” and verifying that it’s later displayed on the home page as shown in Figure 2-15.

 ■ Note  the Configuration::get('variable') method retrieves a value from the database identified by 
“variable”. the Configuration::updateValue('variable', $v) updates an existing database variable with 
the $v value. If the variable doesn’t exist, it’s created with $v as its value.

2-6. Creating a YouTube Module
Problem
You want to create a module that allows you to show YouTube videos on your home page and define which 
video is displayed.

Solution
If you are starting your own business, then most likely you have created a YouTube channel with multiple 
videos related to your services or products. It’s a usual practice to create such a channel and add videos that 
will help get people interested in your business. To create the YouTube module, we’ll make use of the set of 
skills acquired in prior recipes (create module, configure link, own hook).

Figure 2-15. Configuration page for Hello World module



ChaPter 2 ■ Module develoPMent

51

How It Works
In order to simplify the development process, we’ll copy and paste the helloworld folder of the module we 
just created and rename it “youtube”, transforming it into the module we need by changing any HelloWorld 
references to YouTube. Its file structure should resemble Figure 2-16.

The code of the main PHP class is shown in Listing 2-18.

Listing 2-18. YouTube Module Main Class

class YouTube extends Module {

        public function __construct()
        {
               $this->name = 'youtube';
               $this->tab = 'front_office_features';
               $this->version = '1.0.0';
               $this->author = 'Arnaldo Perez Castano';
               $this->need_instance = 0;
               $this->ps_versions_compliancy = array('min' => '1.6', 'max' => _PS_VERSION_);
               $this->bootstrap = true;

               parent::__construct();

               $this->displayName = $this->l('YouTube');
               $this->description = $this->l('Display YouTube videos');

               $this->confirmUninstall = $this->l('Are you sure you want to uninstall?');
        }

        public function install()
        {
                if (!parent::install() ||
                       !$this->registerHook('homepage'))
                       return false;
               return true;
        }

Figure 2-16. File structure of YouTube module



ChaPter 2 ■ Module develoPMent

52

        public function uninstall()
        {
                if (!parent::uninstall())
                        return false;
                return true;
        }

        public function hookHomePage($params)
        {
                global $smarty;

                $smarty->assign(
                               array(
                                        'link' => Configuration::get('youtube_link'),
                                )
                        );
                return $this->display(__FILE__, 'youtube.tpl');
        }

        protected function addHook() {
                // Checking the module does not exist
                $exists = Db::getInstance()->getRow('
                              SELECT name
                              FROM '._DB_PREFIX_.'hook
                              WHERE name = "homepage"
                              ');
                // If it does not exist
                if (!$exists) {
                        $query = "INSERT INTO "._DB_PREFIX_."hook (`name`, `title`, 

`description`) VALUES ('homepage', 'HomePage', 'Hooks in the 
homepage');";

                       if(Db::getInstance()->Execute($query))
                              return true;
                       else
                              return false;
               }
               else return true;
        }

        public function getContent()
        {
                if (Tools::isSubmit('submit'))
                {
                         Configuration::updateValue('youtube_link', Tools::getValue 

('our_link'));
                }
                $this->displayForm();
                return $this->_html;
        }



ChaPter 2 ■ Module develoPMent

53

        private function displayForm()
        {
                $this->_html .= '
                <form action="'.$_SERVER['REQUEST_URI'].'" method="post">
                <label>'.$this->l('YouTube video link').'</label>
                <div class="margin-form">
                        <input type="text" name="our_link" />
                </div><br>
                 <input type="submit" name="submit" value="'.$this->l('Save').'" 

class="button" />
                </form>';
        }
}

The template file will add an iframe HTML tag where the $link Smarty variable will be used to set the 
link to our YouTube video (Listing 2-19).

Listing 2-19. Template File for YouTube Module

<div class="row">
        <h2> YouTube Video </h2>
        <iframe width="100%" height="500"
                src="{$link}">
        </iframe>
</div>

Now we can proceed with the installation of our YouTube module by clicking the Install button 
(Figure 2-17). Remember we didn’t explicitly mention anything regarding the home page hook to which we 
are hooking our module, but be aware that you need to define where you’ll put the $HOMEPAGE Smarty hook 
variable for linking the visual content to PrestaShop. In our case, we defined this variable in the index.tpl 
file, near the footer.

Figure 2-17. YouTube module installed



ChaPter 2 ■ Module develoPMent

54

We set the link we want in the module’s configuration page as illustrated in Figure 2-18.

Finally, we can see our video being displayed on the home page.

 ■ Note  If your module is attached to the top hook instead of the home page hook, you can always transplant 
it using recipe 2-3 and moving it to the right place.

2-7. Configuring Your PS Site Using SQL Queries during 
Module Installation
Problem
You want to execute SQL queries in your module during its installation process.

Solution
To implement this behavior, we’ll select any of the modules we have seen so far and modify their install() 
method. We’ll also add a constant variable in the main PHP class to refer to an .sql file holding all of our 
queries.

How It Works
First, we create a constant variable by simply adding the next line as a class attribute:

const INSTALL_SQL_FILE = 'install.sql';

Figure 2-18. Setting YouTube link video on configuration page



ChaPter 2 ■ Module develoPMent

55

This variable will hold the name of the SQL file where all our queries will be contained; in this case, the 
file name is install.sql (Figure 2-19).

The install.sql file contains a set of queries consisting of configurations to PS. The first statement 
creates a specific price rule named Deposit, the second sets the order process type as One Page Check Out, 
the third sets the registration process as only Account Creation, the forth allows ordering products out of 
stock, and the last one indicates PS to not display products quantities (Listing 2-20).

Listing 2-20. Configuration Queries in install.sql file

INSERT INTO `DBNAME_`.`PREFIX_specific_price_rule` (`id_specific_price_rule`, `name`, 
`id_shop`, `id_currency`, `id_country`, `id_group`, `from_quantity`, `price`, `reduction`, 
`reduction_type`, `from`, `to`)
VALUES (NULL, 'Deposit', '1', '0', '0', '0', '1', -1.00, '50.00', 'percentage', '', '');
UPDATE `DBNAME_`.`PREFIX_configuration` SET `value` = '1' WHERE `PREFIX_
configuration`.`name` = 'PS_ORDER_PROCESS_TYPE';
UPDATE `DBNAME_`.`PREFIX_configuration` SET `value` = '0' WHERE `PREFIX_
configuration`.`name` = 'PS_REGISTRATION_PROCESS_TYPE';
UPDATE `DBNAME_`.`PREFIX_configuration` SET `value` = '1' WHERE `PREFIX_
configuration`.`name` = 'PS_ORDER_OUT_OF_STOCK';
UPDATE `DBNAME_`.`PREFIX_configuration` SET `value` = '0' WHERE `PREFIX_
configuration`.`name` = 'PS_DISPLAY_QTIES';
UPDATE `DBNAME_`.`PREFIX_configuration` SET `value` = '0' WHERE `PREFIX_
configuration`.`name` = 'PS_CONDITIONS';
UPDATE `DBNAME_`.`PREFIX_configuration` SET `value` = '0' WHERE `PREFIX_
configuration`.`name` = 'PS_SHIPPING_HANDLING';

In this manner, we can configure PS without any real need to access the Back Office by simply surfing 
through the database and making the necessary alterations; evidently the Back Office is friendlier.

 ■ Note  the, configuration object can also be used to configure your PrestaShop site. variables can be 
accessed using the get method, in other words, Configuration::get('PS_SHOP_EMAIL') gives you the main 
contact e-mail address.

Figure 2-19. The SQL file must be at the same level as the logo



ChaPter 2 ■ Module develoPMent

56

Finally, the install() method where the .sql file is loaded and all its queries executed is shown in 
Listing 2-21.

Listing 2-21. Install() Method

public function install()
        {
                if (!file_exists(dirname(__FILE__).'/'.self::INSTALL_SQL_FILE))
                        return false;
                 else if (!$sql = Tools::file_get_contents(dirname(__FILE__).'/'.

self::INSTALL_SQL_FILE))
                        return false;

                 $sql = str_replace(array('PREFIX_',  'DBNAME_'), array 
(_DB_PREFIX_, _DB_NAME_), $sql);

                $sql = preg_split("/;\s*[\r\n]+/", $sql);

        foreach ($sql as $query) {
                if ($query) {
                        if (!Db::getInstance()->execute(trim($query)))
                        return false;
                }
        }

        if (!parent::install())
                return false;
                return true;
        }

The method starts by checking if the install.sql file exists in the module's root folder; if it does exist, it 
checks whether the file is not empty and puts its content in the $sql variable.

Every PREFIX_ or DBNAME_ string in the file is substituted by _DB_PREFIX_, _DB_NAME_ respectively in the 
$sql variable.

 ■ Note  the _DB_PREFIX variable refers to the PS database table prefix, usually ps and the _DB_NAME_ to the 
PS database name. these values can be defined in the settings.inc.php file located in the config folder at the 
PS package root.

We split the $sql string into different substrings using characters ("/;\s*[\r\n]+/") as separators. 
Lastly, every query is executed and, in the end, the parent's install method is called as it's the usual practice.

2-8. Module for Sending E-mail Notifications after Order 
Confirmation
Problem
You want to create a module that notifies you and others via e-mail when an order has been confirmed.



ChaPter 2 ■ Module develoPMent

57

Solution
The solution we offer to this problem is to create an Order Email module that can be configured by adding 
the appropriate e-mail addresses as recipients and attach it to the displayOrderConfirmation hook.

How It Works
We'll start by duplicating the same module structure we have been recreating in this chapter (Figure 2-20).

The class name and its constructor can be seen in Listing 2-22.

Listing 2-22. Class Constructor

class OrderEmail extends Module {

        public function __construct()
        {
               $this->name = 'orderemail';
               $this->tab = 'emailing';
               $this->version = '1.0.0';
               $this->author = 'Arnaldo Perez Castano';
               $this->need_instance = 0;
               $this->ps_versions_compliancy = array('min' => '1.6', 'max' => _PS_VERSION_);
               $this->bootstrap = true;

               parent::__construct();

               $this->displayName = $this->l('Order Email');
                $this->description = $this->l('Send email notifications after order 

confirmation');

               $this->confirmUninstall = $this->l('Are you sure you want to uninstall?');
        }

Notice that in Listing 2-22 we changed the tab to which our module belongs in the Back Office; so far we 
have used front features and now we switched to e-mailing. Thus, the module will appear in the E-mailing & 
SMS section.

Figure 2-20. Module file structure



ChaPter 2 ■ Module develoPMent

58

In the install() method, we now register to the displayOrderConfirmation hook (Listing 2-23).

Listing 2-23. Install Method

public function install()
{
               if (!parent::install() ||
                       !$this->registerHook('displayOrderConfirmation'))
                       return false;
               return true;
}

In order to configure our module, we implement the getContent() and displayForm() methods 
(Listing 2-24).

Listing 2-24. getContent() and displayForm() Methods

public function getContent()
        {
               if (Tools::isSubmit('submit'))
               {
                        Configuration::updateValue('emails', Tools::getValue('csv'));
               }
               $this->displayForm();
               return $this->_html;
        }

        private function displayForm()
        {
               $this->_html .= '
               <form action="'.$_SERVER['REQUEST_URI'].'" method="post">
               <label>'.$this->l('Email addresses to send notification email').'</label>
               <div class="margin-form">
                        <input type="text" name="csv" />
               </div><br>
                <input type="submit" name="submit" value="'.$this->l('Save').'" 

class="button" />
               </form>';
        }

We are proposing that the text field containing all e-mail addresses be a Comma Separated Values (CSV) 
type of string (for example, arnaldo.skywalker@gmail.com, michael@yahoo.com, and luis@gmx.com).  
By doing so, we make our module more general. To keep it simple, we will assume that only one e-mail 
address will be submitted via the Back Office; the generalization is left to the reader as exercise (Listing 2-25).

Listing 2-25. hookdisplayOrderConfirmation() Method

public function hookdisplayOrderConfirmation($params)
        {
                $email = Configuration::get('emails');
                mail ($email , 'New Order' , 'HCCT order');
        }



ChaPter 2 ■ Module develoPMent

59

In the last method, we get the e-mail address saved in the module’s configuration page and use the PHP 
mail function to send a message to $email with subject “New Order” and body “HCCT order”.

 ■ Note  If you would like to check the e-mail configuration of your PS site, follow the path Advanced 
Parameters->E-mail in the Back office. there you can send a test e-mail to an address provided.

2-9. Adding More Information to Order E-mail Notifications
Problem
You want to add more information (total to be paid, customer name) on e-mail notifications that are 
received after order confirmations.

Solution
In the last recipe, we learned how to create a module that would notify us about order confirmations. Even 
though this could come in handy, in general you would like to receive more detailed information about the 
order that has been confirmed. The solution to offering a more detailed description lies on the $params input 
variable of the hookdisplayOrderConfirmation() method.

How It Works
So far, we have seen hooks methods without paying attention at the input variables that they incorporate.  
To get to know the contents of these variables, we need to look at the file where the hook is defined.

The displayOrderConfirmation hook, for instance, is defined in the OrderConfirmationController.php 
file located at /controllers/front/. At the end of the file, you can find the code from Listing 2-26.

Listing 2-26. displayOrderConfirmation() Method in OrderConfirmationController.php File

/**
     * Execute the hook displayOrderConfirmation
     */
    public function displayOrderConfirmation()
    {
        if (Validate::isUnsignedId($this->id_order)) {
            $params = array();
            $order = new Order($this->id_order);
            $currency = new Currency($order->id_currency);

            if (Validate::isLoadedObject($order)) {
                $params['total_to_pay'] = $order->getOrdersTotalPaid();
                $params['currency'] = $currency->sign;
                $params['objOrder'] = $order;
                $params['currencyObj'] = $currency;



ChaPter 2 ■ Module develoPMent

60

                return Hook::exec('displayOrderConfirmation', $params);
            }
        }
        return false;
    }

In the method, we can see the contents of the $params array variable being defined. For example, to 
get the total amount to be paid, we access $params['total_to_pay'], and to get the currency, we access 
$params['currency'].

There are two objects in place here, Order and Currency; their classes can be found in /classes/order 
and classes/ respectively.

The only adjustment we'll make to the Order E-mail module (created in the last recipe) will be in the 
hookdisplayOrderConfirmation() method. As you can see from Listing 2-27, the modification is quite 
simple—just change the message body to now show the total to be paid.

Listing 2-27. Modification on displayOrderConfirmation() Hook

public function hookdisplayOrderConfirmation($params)
        {
                $email = Configuration::get('emails');
                mail ($email , 'New Order' , 'HCCT order Total: '.$params['total_to_pay']);
        }

 ■ Note  If you need to add more entries to the $params array, read through the Order and Currency classes 
to discover their methods and attributes and incorporate them by making the appropriate call. You should also 
override the OrderConfirmationController.php file to carry out this modification.

2-10. Changing CSS Styles through a Module
Problem
You want to change the CSS styles of your PrestaShop website in the Back Office without any need to  
interact directly with .css files.

Solution
The easiest solution to this problem is to install the CSS Editing module that you can find in the next link 
https://dh42.com/wp-content/uploads/2015/05/cssmodule.zip. Once you have installed (Figure 2-21) 
this free module, you can use it to edit any CSS styles of your PS site.

Figure 2-21. CSS Editing module installed

https://dh42.com/wp-content/uploads/2015/05/cssmodule.zip


ChaPter 2 ■ Module develoPMent

61

How It Works
Once you have downloaded and installed the module, click the Configure link and a text area will appear 
where you can define the styles of your store, as illustrated in Figure 2-22.

Clicking the Save button finalizes the style definition process.

 ■ Note  another option for editing your CSS styles is to edit the globe.css file located in the css folder of 
your current theme.

Summary
Throughout this chapter, we have presented several recipes for creating, positioning, and transplanting 
modules; we have described the creation of hooks and the creation of configuration pages for a module. We 
have also demonstrated how to create singular modules like the YouTube module. In the next chapter, we 
will examine recipes for customizing PrestaShop front-end features and providing a richer UI.

Figure 2-22. Editing styles



63© Arnaldo Pérez Castaño 2017 
A. P. Castaño, PrestaShop Recipes, DOI 10.1007/978-1-4842-2574-5_3

CHAPTER 3

Theme Development

Having a decent web design is something we all need in our web pages today; customers appreciate and are 
often captivated by a modern, refined, and elegant design. PrestaShop offers the possibility of changing your 
design through the use of themes.

A theme is basically a folder containing CSS, JS, images, and Smarty template files (those with .tpl 
extension) that, when put together, represent a certain web design. You can find themes oriented toward 
different types of businesses: clothing, fine art, publishing, automobiles, travel, and so on. PS allows you to 
choose the theme that fits your needs and products. Hence, if you are selling auto parts, you will probably go 
for an automobile theme. If you have a booking service, you might want to go for a travel theme.

In this chapter, we’ll be examining various recipes for creating and customizing your PrestaShop 
themes. We’ll explain the relation between PS theming and terms such as JQuery, AJAX, CSS, HTML, Smarty, 
and more. You will learn the following:

•	 How to create a PS theme

•	 How to create a welcome text in your PS home page

•	 How to set the image slider at full width

•	 How to add a datetimepicker to your product page

•	 How to save custom fields when clicking Add to Cart button

•	 How to change the font of your PS theme

•	 How to create a Testimonials module

•	 How to show a header in product page depending on product category

•	 How to customize e-mail templates

•	 How to add new variables to e-mail templates

•	 How to modify the Social Networking module to add a TripAdvisor link

•	 How to modify the MyAccount Footer module to display Links of Interest list.

•	 How to generate product attributes by adding product combinations

•	 How to associate attributes to products without combining



Chapter 3 ■ theme Development

64

 ■ Note prestaShop uses the Smarty engine template to separate the visual part of the application (html, 
CSS, JS) from the logical part (php). In this manner, web designers can work independently on the Smarty, CSS, 
and JS files (.tpl, .css, and .js extensions, respectively) while web programmers work on the php files (.php 
extension).

3-1. How to Create a PS Theme
Problem
You want to create a custom layout/design for your PS site.

Solution
To create a custom layout or design, we need to create a custom theme. We can do it in the Back Office 
following the path Preferences->Themes (Figure 3-1).

In the Themes section, we can select the header logo for our theme as well as the logos for e-mail, 
invoice, mobile version, and so forth. To create a new theme, we click the Add New Theme button in the 
upper right corner.

Figure 3-1. Themes section in PS Back Office



Chapter 3 ■ theme Development

65

Then we’ll be taken to a page where we can choose among various options to add a new theme to our 
PS site, as shown in Figure 3-2.

 1. Import from your computer: It allows us to import a PS theme from our PC in the 
form of a .zip file.

 2. Import from the Web: It is the same as the previous option but assumes the file is 
on the Web; you will need to indicate an URL, in this case, that ends in a .zip file.

 3. Import from FTP: It assumes a .zip has been copied in the Themes folder of your 
PS package and allows you to select one.

 4. Create a new theme: It duplicates an existing theme for later customization or 
allows you to create a new theme from scratch.

Figure 3-2. Various ways to incorporate a new theme to PS



Chapter 3 ■ theme Development

66

We select the last option, which will permit us to create a new theme; this is illustrated in Figure 3-3.

Again, at this point we have two choices: We can either create our theme from zero, or we can use an 
existing theme as a foundation base. The recommendation is always to take advantage of a founding father 
by copying missing files from the default-bootstrap theme. PrestaShop is an e-commerce website and 
requires multiples views (.tpl files) for all the features it includes; thus, it’s better to include them using a 
base theme.

Once we click the Save button, a new folder with the theme’s directory name will be created in the 
Themes folder.

 ■ Note When creating a new theme, the “Default left column” and “Default right column” fields indicate 
whether the LEFT_COLUMN and RIGHT_COLUMN hooks will be included in the theme, consequently displaying the 
modules that are attached to them.

How It Works
After creating the theme, we can go to the Themes folder at the root of our PS package and locate a folder 
with the theme’s directory name (Figure 3-4).

Figure 3-3. Creating a new theme



Chapter 3 ■ theme Development

67

Even though we have created a new theme, PS still has the old theme set as the current for your shop; 
we need to update to the new one.

Under Preferences->Themes in the Back Office we can find, at the bottom, a list of available themes for 
your PS site, as shown in Figure 3-5.

To conclude, we set the one we just created (Havana Dance Class) by clicking the Use this Theme 
button, which appears when you pass the cursor over the theme’s box. If you go to your FTP account and 
visit your themes folder, you will see the files of your new theme, as shown in Figure 3-6.

Figure 3-4. Havana Dance Class theme in the Themes folder

Figure 3-5. Selecting your theme in PS Back Office



Chapter 3 ■ theme Development

68

 ■ Note the image that represents your theme is named preview.jpg, and you can overwrite it to change it; 
it’s located at the root of your theme’s folder.

3-2. Creating a Welcome Text in Your PS Home Page
Problem
You want to add a welcome message in your PS home page and perhaps also detail some of the benefits of 
buying or booking products and services through your website.

Figure 3-6. Files from the new theme Havana Dance Class



Chapter 3 ■ theme Development

69

Solution
The template file (.tpl) that corresponds to our home page content is index.tpl, so first we need to find 
that file in our active theme (Figure 3-7).

Once we have located the template, we can edit it with any text editor. Notepad could do the trick.

How It Works
Inside index.tpl you will find a bunch of code that corresponds to the visual elements found between the 
header and footer. The content starts with the lines in Listing 3-1.

Listing 3-1. Refactoring the Directory Digest

{*
* 2007-2016 PrestaShop
*
* NOTICE OF LICENSE
*
* This source file is subject to the Academic Free License (AFL 3.0)
* that is bundled with this package in the file LICENSE.txt.
* It is also available through the world-wide-web at this URL:
* http://opensource.org/licenses/afl-3.0.php
* If you did not receive a copy of the license and are unable to
* obtain it through the world-wide-web, please send an email
* to license@prestashop.com so we can send you a copy immediately.
*
* DISCLAIMER
*
* Do not edit or add to this file if you wish to upgrade PrestaShop to newer
* versions in the future. If you wish to customize PrestaShop for your
* needs please refer to http://www.prestashop.com for more information.
*
*  @author PrestaShop SA <contact@prestashop.com>
*  @copyright  2007-2016 PrestaShop SA
*  @license    http://opensource.org/licenses/afl-3.0.php  Academic Free License (AFL 3.0)
*  International Registered Trademark & Property of PrestaShop SA
*}

Figure 3-7. Index.tpl file



Chapter 3 ■ theme Development

70

In a Smarty template everything enclosed in {* ... *} are comments, meaning the text shown 
above is never displayed on the browser. Right below these comments we can write any HTML 
code that would represent the welcome, benefits section to be included.

<div class="row text-center">
        <h2 class="home-welcome">
               Welcome To Havana Classic Car Tours (HCCT)
        </h2>
        <h4 class="home-text">
         Today <span class="blue-text">Havana</span> is still a mysterious tropical paradise. 

More than 50 years of isolation from the rest of the world has forced the city to 
seem frozen in time. When people visit Havana they feel as if they have traveled 
back in time to the 40's or 50's. This marvellous journey will be unforgettable when 
you take a ride in a <span class="blue-text">Classic American Car</span>.

        <br><br>
         We will be instrumental in transporting you back in time for this once in a lifetime 

<span class="blue-text">AMAZING EXPERIENCE!!!</span>
                <br><br>
        </h4>
        <div class="content_scene_cat img-divisor"></div>
        <img alt="" src="{$img_dir}front-car.png" />
        <h4 class="home-text home-list">
         <img alt="" src="{$img_dir}icon/form-ok.png" />  We have predesigned <span 

class="blue-text">City Tours</span> created from our <span class="blue-text">Local 
Knowledge</span> of the city and it's most popular attractions. Our service can be 
flexible if you have something specific that you would like to add to your tour 
(additional charges may apply - ask your driver).

        </h4>
        <h4 class="home-text home-list">
<img alt="" src="{$img_dir}icon/form-ok.png" /> Pick up can be arranged at almost any place 
in Havana, including hotels, private houses (Casa Particular), restaurants or paladars, just 
<span class="blue-text">provide a specific and complete address</span> when booking your 
tour.
        </h4>
        <h4 class="home-text home-list">
         <img alt="" src="{$img_dir}icon/form-ok.png" /> A <span class="blue-text">Guided 

Tour Service</span> in English is also available. Your driver is knowledgable and 
may offer a limited guide service in SPANGLISH, but he will be focused on driving 
and many details of the tour will be missed. Please select to add that service when 
booking your tour.

        </h4>
</div>

The previous code plus some CSS styles have the result shown in Figure 3-8 in our PS installation.



Chapter 3 ■ theme Development

71

The $img_dir variable is a PrestaShop variable that indicates the path to the img folder in the active 
theme, that is, ps_package/themes/your_theme_name/img/.

 ■ Note every content you add at the beginning of the index.tpl file will be displayed after the image 
slider and before the homeFeatured module. that's a perfect spot for placing information sections about your 
business: welcome message, why book with us, and so on.

3-3. Image Slider at Full Width
Problem
You want to have the image slider on the home page shown at full width and not limited to a certain width, 
as it is PS default.

Figure 3-8. Result of including welcome message in index.tpl file



Chapter 3 ■ theme Development

72

Solution
By default the image slider, which is a module, is not displayed at full width (Figure 3-9).

If we want to display the slider at 100% width, then a layout modification is required because the slider 
is contained within a div HTML element that restricts its width to a maximum width. We can inspect the 
page using our browser's inspector and check the default layout as shown in Figure 3-10.

Figure 3-9. Image slider in a fresh PS installation



Chapter 3 ■ theme Development

73

 ■ Note most web browsers today provide developers tools for debugging and inspecting the code of your 
web pages. If we see the console shown in Figure 3-10, we’ll noticed a max-width restriction imposed on a div 
html element.

How It Works
In order to set up the image slider at 100% width, we must get rid of the two images that are next to it. 
Therefore, we’ll go to the Modules section in the PS Back Office, find the Theme Configurator module, and 
click its Configure button; we’ll be taken to a page that contains Figure 3-11.

Figure 3-10. Inspecting PS home page in Mozilla Firefox by clicking Q button



Chapter 3 ■ theme Development

74

At the bottom of the configuration page, we’ll see the two images attached to the Top hook. Simply 
delete them by clicking the Delete item in the drop-down box located in the right side of each image row.

Now we’ll see the slider centered in the homepage (Figure 3-12) so the remaining tasks are to get it out 
of its enclosing div HTML element and make it wider.

Figure 3-11. Configuration page for Theme Configurator



Chapter 3 ■ theme Development

75

If we inspect the code, we’ll notice the div HTML element with id top_column as the immediate parent 
of another div with id homepage_slider, which is the container of our image slider. Now the first div  
(top_column) is enclosed in a third div element with id slider_row, as can be seen in Figure 3-13.

This is the div element we’ll need to find in the file themes/your_theme/header.tpl, as seen in Listing 3-2.

Listing 3-2. Fragment of header.tpl file

<div id="columns" class="container">
        {if $page_name !='index' && $page_name !='pagenotfound'}
        {include file="$tpl_dir./breadcrumb.tpl"}
        {/if}
        <div id="slider_row" class="row">
                <divid="top_column" class="center_column col-xs-12 col-sm-12">
{hook h="displayTopColumn"}
</div>
        </div>

Figure 3-12. Slider centered

Figure 3-13. Div element enclosing the slider



Chapter 3 ■ theme Development

76

We’ll now take the slider_row div out of the columns div.

Listing 3-3. Moving Slider Div out of top_column Div

<div class="columns-container">
               <div id="slider_row" class="row">
                        <div id="top_column" class="center_column col-xs-12 col-sm-12">{hook 

h="displayTopColumn"}</div>
               </div>
               <div id="columns" class="container">
                       {if $page_name !='index' && $page_name !='pagenotfound'}
                       {include file="$tpl_dir./breadcrumb.tpl"}
                       {/if}

We now go back to the PS Back Office, find the Image Slider module, and click its Configure button. In 
the Settings section, we set the Max Width field to zero and save it. This will indicate that we don’t want to 
have a max width for the slider (Figure 3-14).

Finally, we delete all PS default images and replace them with images of a really big width; making the 
image occupy the full width is recommended to avoid having to mess with the width and height properties of 
the img HTML tag itself and preventing the loose of the appropriate image proportions (Figure 3-15).

Figure 3-14. Setting max width to zero



Chapter 3 ■ theme Development

77

In the configuration page of the Image Slider module, you can now adjust transition speed according to 
your needs.

3-4. Adding a Datetimepicker to Your Product Page
Problem
You need a datetimepicker field on your product page to specify delivery or booking service date/time.

Solution
In order to solve this problem, we’ll incorporate a JQuery calendar to our PS product page to give customers 
the possibility of selecting the date/time of their service (Figure 3-16).

Figure 3-15. Image slider at full width



Chapter 3 ■ theme Development

78

PrestaShop includes a date/time picker that uses different pages in the Back Office. You can find it by 
going to the Stats section and clicking the From or To textbox fields, as shown in Figure 3-17. To simplify the 
task, we’ll reuse this calendar to solve our problem.

The solution can be discomposed in three main parts. First, we need to define a text field that will act as 
container of the date/time specified. Second, we include the necessary scripts and style sheets links in the 
product page for the datetimepicker to work. Lastly, we include in the product.tpl file a script that makes 
the datetimepicker functional.

Figure 3-16. JQuery datetimepicker

Figure 3-17. Datetimepicker in Stats section



Chapter 3 ■ theme Development

79

How It Works
The first part of the solution will consist in adding a Customization field for the product page that requires a 
date specification. For this purpose, we visit the PS Back Office, follow the path Catalog->Products, select 
the product we want to add (the date field), and click its Customization tab, as illustrated in Figure 3-18.

There we create a text field labeled Date (or any other label you may find appropriate) and click the Save 
button. If we now visit the product page, we’ll notice a new Product Customization section (Figure 3-19).

Figure 3-18. Adding custom field date

Figure 3-19. Product Customization on product page



Chapter 3 ■ theme Development

80

Once we have created the container for the datetimepicker, we need to add links to every necessary CSS 
and JS files in the product.tpl header. In order to complete this task, we’ll copy the ProductController.php 
file located in /controllers/front and paste it in override/controllers/front. Let’s edit the setMedia() 
function on the ProductController.php file we just copied and pasted, as seen in Listing 3-4.

Listing 3-4. Modification to setMedia() function

public function setMedia()
    {
        parent::setMedia();
        if (count($this->errors)) {
            return;
        }

        if (!$this->useMobileTheme()) {
            $this->addCSS(_THEME_CSS_DIR_.'product.css');
            $this->addCSS(_THEME_CSS_DIR_.'print.css', 'print');
             $this->addJqueryPlugin(array('fancybox', 'idTabs', 'scrollTo', 'serialScroll', 

'bxslider'));
            $this->addJS(array(
                _THEME_JS_DIR_.'tools.js',  // retro compat themes 1.5
                _THEME_JS_DIR_.'product.js'
            ));
        } else {
            $this->addJqueryPlugin(array('scrollTo', 'serialScroll'));
            $this->addJS(array(
                _THEME_JS_DIR_.'tools.js',  // retro compat themes 1.5
                _THEME_MOBILE_JS_DIR_.'product.js',
                _THEME_MOBILE_JS_DIR_.'jquery.touch-gallery.js'
            ));
        }

if (Configuration::get('PS_DISPLAY_JQZOOM') == 1) {
            $this->addJqueryPlugin('jqzoom');
        }

        // New lines where links to CSS, JS files are added.
                $this->addCSS(array(_PS_JS_DIR_.'jquery/plugins/timepicker/jquery-ui-

timepicker-addon.css'));

               $this->addJqueryUI(array(
                        'ui.widget',
                        'ui.slider',
                        'ui.datepicker'
               ));

               $this->addJS(array(
                        _PS_JS_DIR_.'jquery/plugins/timepicker/jquery-ui-timepicker-addon.js',
               ));
    }



Chapter 3 ■ theme Development

81

The last lines added to the function represent the modification and add the necessary links to CSS and 
JS files.

 ■ Note the addCSS() and addJS() functions, respectively, add CSS and JS files to the page header. the 
addJqueryUI() does the same but adds scripts from a specific folder in the pS package (js/jquery/ui).

Even though we created a container for the datepicker in product.tpl, that container is by default a 
textarea HTML element and we need it to be an input element. Thus, we delete the textarea element shown 
in Listing 3-5.

Listing 3-5. Fragment of Code Belonging to product.tpl

<ul id="text_fields">
        {counter start=0 assign='customizationField'}
         {foreach from=$customizationFields item='field' name='customizationFields'}
               {if $field.type == 1}
                        <li class="customizationUploadLine{if $field.required}  

required{/if}">
                       <label for ="textField{$customizationField}">
                               {assign var='key' value='textFields_'|cat:$product-
>id|cat:'_'|cat:$field.id_customization_field}
                                      {if !empty($field.name)}
                                              {$field.name}
                                      {/if}
                                      {if $field.required}<sup>*</sup>{/if}
                       </label>
                        <textarea name="textField{$field.id_customization_field}" 

class="form-control customization_block_input"  
id="textField{$customizationField}" rows="3" cols="20">

{strip}
                       {if isset($textFields.$key)}
                               {$textFields.$key|stripslashes}
                       {/if}
               {/strip}</textarea>
        </li>
        {counter}
{/if}
{/foreach}
</ul>

In its place, we put the input element shown in Listing 3-6.

Listing 3-6. Input Element Replacing Textarea Element in product.tpl File

<input type="text" name="textField{$field.id_customization_field}" class="custom_datepicker 
form-control customization_block_input" id="textField{$customizationField}"

                value="{if isset($textFields.$key)}{$textFields.$key|stripslashes}{/if}" >



Chapter 3 ■ theme Development

82

Note that we defined the custom_datepicker class in the input; we’ll need it for the last part of our 
solution, which consists of writing the JavaScript code for activating the datepicker. This code can be 
inserted after the closing (</ul>) list element in Listing 3-6. (See Listing 3-7.)

Listing 3-7. Script to Activate datepicker

<script type="text/javascript">

       $(document).ready( function() {

                     $('.custom_datepicker').datepicker({

                              prevText: '',

                              nextText: '',

                              dateFormat: 'yy-mm-dd',

                              firstDay:0,

                              currentText: 'Now',

                              closeText: 'Done',

                              constrainInput: true

                     });
});
       </script>

Finally, we can see our datepicker in action by clicking the input element previously added as can be 
seen in Figure 3-20.



Chapter 3 ■ theme Development

83

If you want to include a timepicker, all you have to do is change the datepicker function in the script to 
datetimepicker. (See Listing 3-8.)

Listing 3-8. Changing Function Signature to datetimepicker

$('.custom_datepicker').datetimepicker({

Now the resulting calendar (Figure 3-21) will include date and time specified in hours and minutes.

Figure 3-20. Datepicker displayed

Figure 3-21. Datetimepicker displayed



Chapter 3 ■ theme Development

84

The datepicker included in PS has many options that allow you to customize the control. In Listing 3-7, 
we can see some of these options. The dateformat option, for instance, gives you the possibility of specifying 
the format you want for your date. firstday indicates the day you want to display as the first day of the week, 
being Sunday number 0. You can explore these options in the URL https://jqueryui.com/datepicker and 
adjust your datepicker to your needs.

 ■ Note to save custom fields values, you must click the Save button located at the bottom of the product 
Customization section.

3-5. Saving Custom Fields When Clicking the Add to  
Cart Button
Problem
You want to save custom field values when a customer clicks the Add to Cart button instead of having the 
middle step of saving them first.

Solution
To solve this problem, we need to modify several PS files whose code represents part of the “Add to cart” 
operation. The first file we need to modify is themes/your_theme/js/modules/blockcart/ajax-cart.js, a 
JavaScript file that handles all the AJAX-cart-related mechanisms you see when you interact with the page. 
We need to modify it in order to get the value from the front end (product.tpl) sent to the back end. In a 
second step, we would need to modify the override/controllers/front/ProductController.php file so it 
can receive data sent by the AJAX file and handle its processing; this is the back-end component.

How It Works
First, we’ll add some lines to the code in Listing 3-9, located in ajax-cart.js file, near line 280.

Listing 3-9. Fragment of Function That Handles Product Addition to Cart

// add a product in the cart via ajax
add : function(idProduct, idCombination, addedFromProductPage, callerElement, quantity, 
whishlist){

               if (addedFromProductPage && !checkCustomizations())
               {
                       if (contentOnly)
                       {
                              var productUrl = window.document.location.href + '';
                              var data = productUrl.replace('content_only=1', '');
                              window.parent.document.location.href = data;
                              return;
                       }

https://jqueryui.com/datepicker


Chapter 3 ■ theme Development

85

                       if (!!$.prototype.fancybox)
                              $.fancybox.open([
                                      {
                                              type: 'inline',
                                              autoScale: true,
                                              minHeight: 30,
                                               content: '<p class="fancybox-error">' + 

fieldRequired + '</p>'
                                      }
                               ], {
                                      padding: 0
                               });
                       else
                               alert(fieldRequired);
                       return;
                }

The lines of code in Listing 3-9 correspond to a JS function that is executed when you click the Add to 
Cart button and only if you have the AJAX mode available in the cart module configuration. Before the first 
if statement, we’ll insert the next code shown in Listing 3-10.

Listing 3-10. Code to Be Inserted

// Product Box Custom Form
$('#quantityBackup').val($('#quantity_wanted').val());
customAction = $('#customizationForm').attr('action');
$('body select[id^="group_"]').each(function() {
                customAction = customAction.replace(new RegExp(this.id + '=\\d+'),  

this.id +'=' + this.value);
});

// ajax to product page with custom action
var customization_entries = $('#customizationForm').serialize();
$.ajax({
               async:false,
               type: 'POST',
               data: customization_entries+ '&ajax=1',
               dataType: 'json',
               url: customAction,
               success: function(data){
               if(typeof(data.errors) !== 'undefined'){
                       alert('Error while saving customization data');
                       return;
               }
       }
})

In the first part of this code, we capture the URL defined in the action attribute of the customization 
form “#customizationForm” (the one containing our custom fields) and add the id/value pair of every field 
in the product box as part of it. In the second part, we post the URL with all necessary data as defined in 
customization_entries (serialization of the customization form) to a method in the ProductController for 



Chapter 3 ■ theme Development

86

further processing. Now we add the function in Listing 3-11 to the override of the ProductControllerCore 
class located in the ProductController.php file.

Listing 3-11. Function to Be Inserted in ProductControllerCore Class

public function postProcess()
        {
               if (Tools::getValue('ajax') && Tools::isSubmit('submitCustomizedDatas'))
               {
// If cart has not been saved, we need to do it so that customization fields can have an 
id_cart
                // We check that the cookie exists first to avoid ghost carts
                        if (!$this->context->cart->id && isset($_COOKIE[$this-> 

context->cookie->getName()]))
                       {
                              $this->context->cart->add();
                              $this->context->cookie->id_cart = (int)$this->context->cart->id;
                       }

                       $this->pictureUpload();
                       $this->textRecord();
                       $this->formTargetFormat();

                       if($this->errors)
                       {
                               $error_list = implode('; ', $this->errors);
                               die(Tools::jsonEncode(array('errors' => $error_list)));
                       } else
                               die(Tools::jsonEncode(array('success' => true)));

               }
       }

The built-in method postProcess() handles post data in PS. We start by checking that the form 
posted refers to a customization form being saved; such checking is accomplished by verifying the form 
is submitted via a “submitCustomizedDatas” button. We also check that it corresponds to an AJAX call. 
The block of code within the outer if statement is exactly the code PS uses when submitting a regular 
customization form, and you can find it in ProductController.php at the initContent() method. We move 
to the Summary page to see that everything went well (Figure 3-22).



Chapter 3 ■ theme Development

87

After defining a date in the product page and clicking the Save button, we’ll see that the custom field is 
saved and added to the product’s description in the cart, which completes this recipe.

 ■ Note Serialization relates to the process of encoding data structures or objects into strings or other formats 
that can be stored on a file or transmitted through network connections and later reconstructed in the same or 
another environment.

3-6. Changing the Font of Your PS Theme
Problem
You want to change the font of your PS theme.

Solution
In the web world, fonts are commonly added to web pages via CSS rules. To solve this problem we’ll first 
copy the files that correspond to our fonts in themes/your_theme/fonts/. Then we’ll link this font to the site 
using CSS rules and the CSS Editing module presented in Chapter 2.

Figure 3-22. Custom date field added to product description

https://en.wikipedia.org/wiki/Data_structure#Data structure
https://en.wikipedia.org/wiki/Object_(computer_science)#Object (computer science)
https://en.wikipedia.org/wiki/Computer_network#Computer network
http://dx.doi.org/10.1007/978-1-4842-2574-5_2


Chapter 3 ■ theme Development

88

How It Works
In this case, we’ll add the Corbel font to our website. Let’s start by copying the files to the directory themes/
your_theme/fonts/, as shown in Figure 3-23.

Now that we have the font files in place, we just need to link them to our website. For that purpose, we’ll 
go to the Back Office, visit the Modules and Services section, and locate the CSS Editing Module. Then we’ll 
add the lines in Listing 3-12. The result can be seen in Figure 3-24.

Listing 3-12. Font Added Using CSS Rule

@font-face {
  font-family: 'Corbel';
src: url("your_domain/themes/your_theme/fonts/CORBEL.TTF");
}

Figure 3-23. Corbel font files



Chapter 3 ■ theme Development

89

In this case, we are using an absolute path to the font file, but we can also use a relative path if we  
define the same rule in the file themes/your_theme/css/global.css. In that case, the URL will change to 
url("../fonts/CORBEL.TTF").

3-7. Testimonials Module
Problem
You want to include customer testimonials in your home page and be able to configure them through a PS 
module.

Solution
In order to solve this problem, we’ll create a module that encompasses all testimonials functionalities, that 
is, setting name, text, and image of a testimony (Figure 3-25).

Figure 3-24. Corbel font being used in top menu



Chapter 3 ■ theme Development

90

To get a quick start, we will copy and paste the YouTube module we created in Chapter 2 and change the 
name of its folder to “testimonials” and also the name of the .tpl and .php files.

How It Works
Let’s start with the testimonials.php file where we’ll define the different methods for configuring our 
module. Furthermore, we’ll define a new hook named testimonials and set it up on the home page. In the 
code in Listing 3-13, we can see the beginning of the Testimonials class and its constructor.

Listing 3-13. Constructor Testimonials Class

class Testimonials extends Module {

       public function __construct()
{
               $this->name = 'testimonials';
               $this->tab = 'front_office_features';
               $this->version = '1.0.0';
               $this->author = 'Arnaldo Perez Castano';
               $this->need_instance = 0;
               $this->ps_versions_compliancy = array('min' => '1.6', 'max' => _PS_VERSION_);
               $this->bootstrap = true;

               parent::__construct();

               $this->displayName = $this->l('Testimonials');
               $this->description = $this->l('Display testimonials on homepage');

               $this->confirmUninstall = $this->l('Are you sure you want to uninstall?');
       }

This module constructor is basically what we have seen so far—information details of your module. 
Now, to register and add a new hook to PS database we incorporate the install() and addHook() functions 
to the class, as shown in Listing 3-14.

Figure 3-25. Files from Testimonials module

http://dx.doi.org/10.1007/978-1-4842-2574-5_2


Chapter 3 ■ theme Development

91

Listing 3-14. Adding and Registering the testimonials Hook

public function install()
        {
                if (!parent::install() ||
                        !$this->registerHook('testimonials'))
                        return false;
                return true;
        }

public function uninstall()
        {
                if (!parent::uninstall())
                        return false;
                return true;
        }

        protected function addHook()
        {
                // Checking the module does not exist
                $exists = Db::getInstance()->getRow('
                                SELECT name
                                FROM '._DB_PREFIX_.'hook
                                WHERE name = "testimonials"
                                ');
                // If it does not exist
                if (!$exists) {
                         $query = "INSERT INTO "._DB_PREFIX_."hook (`name`, `title`, 

`description`) VALUES ('testimonials', 'Testimonials',  
'Hooks in the homepage');";

                        if(Db::getInstance()->Execute($query))
                                return true;
                        else
                                return false;
                }
                else return true;
        }

Once we install the module, the new testimonials hook will be added to the database, so it’s time to 
define the hookTestimonials() method. (Listing 3-15)

Listing 3-15. Adding and Registering the testimonials Hook

public function hookTestimonials($params)
        {
                global $smarty;
                // Set path to testimonials.css file
                Tools::addCSS($this->_path.'testimonials.css', 'all');



Chapter 3 ■ theme Development

92

                $smarty->assign(
                                array(
                                        'testimonial_1' => Configuration::get('testimonial_1'),
                                        'testimonial_2' => Configuration::get('testimonial_2'),
                                        'testimonial_3' => Configuration::get('testimonial_3'),
                                      'name_1' => Configuration::get('name_1'),
                                      'name_2' => Configuration::get('name_2'),
                                      'name_3' => Configuration::get('name_3'),
                                      'image_1' => Configuration::get('image_1'),
                                      'image_2' => Configuration::get('image_2'),
                                      'image_3' => Configuration::get('image_3'),
                               )
                        );

               return $this->display(__FILE__, 'testimonials.tpl');
       }

Again we are using the PS Configuration object to save variables related to configuration issues. Every 
Smarty variable refers to a given testimonial. Thus, we will have a total of three testimonials all set in one 
row, and they will include a name, testimony, and image.

In order to customize our three testimonials, we will add a Configure link to the module. As we know 
from Chapter 2, this can be achieved by developing the getContent() method. (Listing 3-16)

Listing 3-16. getContent() and displayForm() Methods

public function getContent()
        {
                if (Tools::isSubmit('submit'))
                {
                         Configuration::updateValue('testimonial_1', Tools::getValue('testim

onial_1'));
                         Configuration::updateValue('testimonial_2', Tools::getValue('testim

onial_2'));
                         Configuration::updateValue('testimonial_3', Tools::getValue('testim

onial_3'));
                        Configuration::updateValue('name_1', Tools::getValue('name_1'));
                        Configuration::updateValue('name_2', Tools::getValue('name_2'));
                        Configuration::updateValue('name_3', Tools::getValue('name_3'));

                        $image_1 = $_FILES['image_1'];
                        $image_2 = $_FILES['image_2'];
                        $image_3 = $_FILES['image_3'];

               $this->imageCheck($image_1);
                        $this->imageCheck($image_2);
                        $this->imageCheck($image_3);

                        Configuration::updateValue('image_1', $_FILES['image_1']['name']);
                        Configuration::updateValue('image_2', $_FILES['image_2']['name']);
                        Configuration::updateValue('image_3', $_FILES['image_3']['name']);
               }

http://dx.doi.org/10.1007/978-1-4842-2574-5_2


Chapter 3 ■ theme Development

93

               $this->displayForm();
               return $this->_html;
        }

        private function displayForm()
    {
               $this->_html .= '
                <form action="'.$_SERVER['REQUEST_URI'].'" method="post"  

enctype="multipart/form-data">
               <label>'.$this->l('Testimonial #1').'</label>
               <div class="margin-form">
                        <textarea name="testimonial_1"></textarea>
               </div><br>
               <label>'.$this->l('Name #1').'</label>
               <div class="margin-form">
                        <input type="text" name="name_1" />
                        <input type="file" name="image_1" />
               </div>
               <br>
               <div class="margin-form">
                        <textarea name="testimonial_2"></textarea>
               </div><br>
               <label>'.$this->l('Name #2').'</label>
               <div class="margin-form">
                        <input type="text" name="name_2" />
                        <input type="file" name="image_2" />
               </div>
               <br>
               <div class="margin-form">
                        <textarea name="testimonial_3"></textarea>
               </div><br>
               <label>'.$this->l('Name #3').'</label>
               <div class="margin-form">
                        <input type="text" name="name_3" />
                        <input type="file" name="image_3" />
               </div>
               <br>
                <input type="submit" name="submit" value="'.$this->l('Save').'" 

class="button" />
               </form>';
    }

The displayForm() method will contain the form being displayed after clicking the Configure link. Once 
this form is submitted, the getContent() method will save each name, testimony text using the Configuration 
object and it will also save the specified image on the upload folder at PS root.



Chapter 3 ■ theme Development

94

 ■ Note the configuration form of the testimonials module must include the enctype="multipart/form-
data" attribute to allow saving files when submitting data. the $_FILES variable contains every file submitted 
and can be accessed by means of indexing.

The function where images are saved is imageCheck(). (Listing 3-17)

Listing 3-17. imageCheck() Method

private function imageCheck($image)
        {
        //Check the image exists
if ($image['name'] != "" )
{
// Allowed image formats
$allowed = array('image/gif', 'image/jpeg', 'image/jpg', 'image/png');

// Verify the image has a valid format
if (in_array($image['type'], $allowed))
{
$path = '../upload/';

// Check the image does not exist already
 if(!move_uploaded_file($image['tmp_name'], $path.$image['name']) )
{
$output .= $this->displayError( $path.$image['name'] );
return $output.$this->displayForm();
}
}
else
            {
                $output .= $this->displayError( $this->l('Invalid image format.') );
                return $output.$this->displayForm();
            }
        }
        }

In the imageCheck() function, we first check that the image object supplied as argument is not empty. 
Later, we check that the image format is one of the allowed formats (JPG, JPEG, PNG). Finally, we save the 
image to the upload folder and, in case there’s a problem during the previous operations, an error message is 
displayed.

A final step is required to make our Testimonials module visible. Remember it’s attached to a hook that 
we created that is not part of the PS native hooks, so we need to define a place for the $HOOK_TESTIMONIALS 
variable. In our case, that place will be on the home page. Therefore, we’ll edit the index.tpl file in the 
current theme and add {$HOOK_TESTIMONIALS}.



Chapter 3 ■ theme Development

95

Another task is still pending; we need to associate the $HOOK_TESTIMONIALS variable with the value 
resulting of the hook’s execution. This can be done in the IndexController.php file. We’ll create an override 
(copy and paste original file to override/controllers/front/) and edit the initContent() method as 
shown in Listing 3-18.

Listing 3-18. Adding HOOK_TESTIMONIALS Smarty Variable

public function initContent()
    {
        parent::initContent();
        $this->addJS(_THEME_JS_DIR_.'index.js');

        $this->context->smarty->assign(array('HOOK_HOME' => Hook::exec('displayHome'),
            'HOOK_HOME_TAB' => Hook::exec('displayHomeTab'),
            'HOOK_HOME_TAB_CONTENT' => Hook::exec('displayHomeTabContent'),
         'HOOK_TESTIMONIALS' => Hook::exec('testimonials')
        ));
        $this->setTemplate(_PS_THEME_DIR_.'index.tpl');
    }

To conclude, let us install the module (Figure 3-26).

Click the Configure link and start defining some testimonials, as illustrated in Figure 3-27.

Figure 3-26. Testimonial module installed



Chapter 3 ■ theme Development

96

After clicking the Save button, we'll be able to see the result on the home page where we defined the 
$HOOK_TESTIMONIALS variable (Figure 3-28).

Figure 3-27. Defining new testimonials

Figure 3-28. Testimonials in PS home page



Chapter 3 ■ theme Development

97

If you are curious about the template or CSS files, these are presented in Listing 3-19.

Listing 3-19. Contents of testimonials.tpl File

<div class="row">
<div class="col-md-4">
<div class="testimonials">
        <div class="active item">
<blockquote><p>{$testimonial_1}</p></blockquote>
<div class="carousel-info">
<img alt="" src="{$pic_dir}/{$image_1}" class="pull-left">
<div class="pull-left">
<span class="testimonials-name">{$name_1}</span>
<span class="testimonials-post"></span>
</div>
</div>
</div>
</div>
</div>
               <div class="col-md-4">
<div class="testimonials">
        <div class="active item">
<blockquote><p>{$testimonial_2}</p></blockquote>
<div class="carousel-info">
<img alt="" src="{$pic_dir}/{$image_2}" class="pull-left">
<div class="pull-left">
<span class="testimonials-name">{$name_2}</span>
<span class="testimonials-post"></span>
</div>
</div>
</div>
</div>
</div>
                <div class="col-md-4">
<div class="testimonials">
        <div class="active item">
<blockquote><p>{$testimonial_3}</p></blockquote>
<div class="carousel-info">
<img alt="" src="{$pic_dir}/{$image_3}" class="pull-left">
<div class="pull-left">
<span class="testimonials-name">{$name_3}</span>
<span class="testimonials-post"></span>
</div>
</div>
</div>
</div>
</div>
</div>



Chapter 3 ■ theme Development

98

The testimonials.css file would contain the lines in Listing 3-20.

Listing 3-20. Contents of testimonials.css File

.testimonials blockquote {
    background: #D9EFF2 none repeat scroll 0 0;
    border: medium none;
    color: #666;
    display: block;
    font-size: 14px;
    line-height: 20px;
    padding: 15px;
    position: relative;
}
.testimonials blockquote::before {
    width: 0;
    height: 0;
        right: 0;
        bottom: 0;
        content: " ";
        display: block;
        position: absolute;
    border-bottom: 20px solid #fff;
        border-right: 0 solid transparent;
        border-left: 15px solid transparent;
        border-left-style: inset; /*FF fixes*/
        border-bottom-style: inset; /*FF fixes*/
}
.testimonials blockquote::after {
    width: 0;
    height: 0;
    right: 0;
    bottom: 0;
    content: " ";
    display: block;
position: absolute;
    border-style: solid;
border-width: 20px 20px 0 0;
    border-color: #0F83B9 transparent transparent transparent;
}
.testimonials .carousel-info img {
border: 1px solid #f5f5f5;
    border-radius: 150px !important;
height: 75px;
    padding: 3px;
    width: 75px;
}
.testimonials .carousel-info {
    overflow: hidden;
}



Chapter 3 ■ theme Development

99

.testimonials .carousel-info img {
    margin-right: 15px;
}
.testimonials .carousel-info span {
    display: block;
}
.testimonials span.testimonials-name {
font-size: 15px;
    font-weight: 500;
margin: 23px 0px 7px;
    color: #012;
}
.testimonials span.testimonials-post {
    color: #656565;
    font-size: 12px;
}

Now that you have all the elements for creating a Testimonials module, you can go ahead and customize 
it to your needs, perhaps adding a fourth testimonial or changing its layout or styles.

3-8. Showing a Header in Product Page Depending on 
Product Category
Problem
You want to show different header texts depending on the product category.

Solution
To solve this problem, we'll edit the product.tpl file where the product header is displayed and add the 
necessary logic to control whether one text or the other will be shown depending on product category.

How It Works
In the product.tpl file of your active theme, locate a div HTML element with class page-product-heading 
and edit its contents as shown in Listing 3-21.

Listing 3-21. Fragment of Modified product.tpl File

<h3 class="page-product-heading">
        {if $product->category == 'tours'}
               {l s='TOUR DETAILS'}
        {else}
               {l s='DETAILS'}
        {/if}
</h3>



Chapter 3 ■ theme Development

100

Using the category attribute of the product object, we can know the category of the current product. 
Thus, applying a simple 'if' logic in Smarty language, we can display one text or the other depending on the 
value of the previously mentioned attribute (Figure 3-29).

In case you have more than two independents categories, you can create a Smarty if statement with 
multiples {elseif} clauses within its body, that is, between {if} … {/if} and controlling the logic for 
different categories and texts associated.

3-9. Customizing E-mail Templates
Problem
You want to customize your e-mail templates to show new data.

Solution
In order to customize e-mail templates, we need to go to PS Back Office and follow the path Localization-> 
Translations, as shown in Figure 3-30.

Figure 3-29. Product header text according to product category



Chapter 3 ■ theme Development

101

After selecting “Email templates translations,” your current theme, and language, click the Modify 
button and a list of all e-mail templates will appear.

How It Works
Once in the e-mail templates page, click Core Emails and a list of the most important templates will show up, 
as seen in Figure 3-31.

Figure 3-30. Translations page in PS Back Office



Chapter 3 ■ theme Development

102

If we now click the account link and edit the HTML version, we’ll see that we can easily change text, 
insert image and links, or add and remove columns and rows by executing a right-click the edition panel 
(Figure 3-32).

Figure 3-31. Core emails



Chapter 3 ■ theme Development

103

Every text enclosed in {text} represents variables that are supplied to e-mail templates. Consequently, 
{email}, {passwd}, and {shop_name} are all variables for the account e-mail template.

3-10. Adding New Variables to E-mail Templates
Problem
You want to add new variables to e-mail templates to display additional information.

Solution
In the first stage, we’ll assume we want to add a new variable to the account e-mail template. Later, we’ll 
focus on adding a new variable to the order confirmation e-mail template. To solve the first case, we’ll edit 
the AuthController.php file so let’s start by copying it to the override/controllers/front folder.

How It Works
In the AuthController.php file, at the end, locate the sendConfirmationMail() method. (Listing 3-22)

Listing 3-22. Method for Sending Confirmation E-mail after Customer Registration

protected function sendConfirmationMail(Customer $customer)
    {
        if (!Configuration::get('PS_CUSTOMER_CREATION_EMAIL')) {
            return true;
        }

        return Mail::Send(
            $this->context->language->id,
            'account',
            Mail::l('Welcome!'),

Figure 3-32. Editing e-mail template



Chapter 3 ■ theme Development

104

            array(
                '{firstname}' => $customer->firstname,
                '{lastname}' => $customer->lastname,
                '{email}' => $customer->email,
                '{passwd}' => Tools::getValue('passwd')),
            $customer->email,
            $customer->firstname.' '.$customer->lastname
        );
    }

The Send() static method of the Mail class has the following signature:

public static function Send($id_lang, $template, $subject, $template_vars, $to,
$to_name = null, $from = null, $from_name = null, $file_attachment = null, $mode_smtp = 
null,$template_path = _PS_MAIL_DIR_, $die = false, $id_shop = null, $bcc = null, $reply_to = 
null)

The second argument indicates the template to be used; in this case, the “account” template. Only the 
first five arguments are mandatory; the fourth should be an array of variables to be included in the e-mail 
template. If we need to add the customer company field to the template, we just need to make the next 
modification to the method shown in Listing 3-22. (Listing 3-23)

Listing 3-23. Method for Sending Confirmation E-mail Adding Customer Company as New Variable

protected function sendConfirmationMail(Customer $customer)
    {
        if (!Configuration::get('PS_CUSTOMER_CREATION_EMAIL')) {
            return true;
        }

        return Mail::Send(
            $this->context->language->id,
            'account',
            Mail::l('Welcome!'),
            array(
'{company}' => $customer->company,
                '{firstname}' => $customer->firstname,
                '{lastname}' => $customer->lastname,
                '{email}' => $customer->email,
                '{passwd}' => Tools::getValue('passwd')),
            $customer->email,
            $customer->firstname.' '.$customer->lastname
        );
    }

The modification basically consists in adding the new company variable to the variables array.
Now we just need to go to PS Back Office, follow the path Localization->Translations, and edit the 

Account e-mail template to add the company variable to the template (Figure 3-33).



Chapter 3 ■ theme Development

105

Let’s focus now on the second part of this recipe: adding a new variable to the order confirmation 
e-mail.

Order confirmation e-mails are usually issued by payment modules, and most payment modules 
derived from the PaymentModule class found in the file of the same name located in the classes folder in the 
PS package.

If we open PaymentModule.php, we’ll find a method called validateOrder(), whose signature is the 
following:

public function validateOrder($id_cart, $id_order_state, $amount_paid, $payment_method = 
'Unknown', $message = null, $extra_vars = array(), $currency_special = null, $dont_touch_
amount = false, $secure_key = false, Shop $shop = null)

The $extra_vars variable is an array where you can specify new variables that can be passed on to the 
“order” e-mail template. Since most payment modules inherit from the PaymentModule class, this method is 
available in all of them.

Another way to add new variables to the template would be to find the Mail::Send() function within 
the validateOrder() function and add the extra data as we did in the previous case, that is, submitting data 
in an array that is later specified as the four argument of the function.

3-11. Modifying the Social Networking Module to Add a 
TripAdvisor Link
Problem
You want to modify the Social Links module to add your TripAdvisor link or any other social account link to 
the footer.

Solution
If we look at the upper right corner of our PrestaShop’s footer, we’ll see a list of social links that bind our site 
to social profiles in various networks as shown in Figure 3-34.

Figure 3-33. Adding company variable to e-mail template



Chapter 3 ■ theme Development

106

These links can be set in the PS Back Office by configuring the Social Networking module (Figure 3-35).

The configuration page of this module is depicted in Figure 3-36.

Figure 3-34. Social links

Figure 3-35. Social Networking module

Figure 3-36. Configuration page of Social Networking module



Chapter 3 ■ theme Development

107

As we can see, it allows us to define links for some of the most popular social networks. Notice some 
of the important ones are missing, TripAdvisor for example. Thus, in order to add the TripAdvisor URL or 
any other social network URL (this recipe can be easily generalized), we’ll edit and customize the Social 
Networking module.

How It Works
The first thing we must do is guarantee our FontAwesome font package contains the TripAdvisor icon. The 
easiest way to achieve this is by downloading and replacing the current package with the latest. In this case, 
we used FontAwesome 4.7.0 and replaced every file in it with its corresponding match on themes/your_
theme/fonts and themes/your_theme/css/font-awesome.

 ■ Note to update your Fontawesome font package, you need to replace every .eot, .svg, .ttf, .otf, .woff, 
and .woff2 files in your theme with files from the new package. You also need to replace the font-awesome.
css file.

Now that we have everything in place, it’s time to edit the Social Networking module. We’ll start with the 
blocksocial.php file, so let’s locate its install() method. (Listing 3-24)

Listing 3-24. Install() Method in blocksocial.php File

public function install()
        {
        return(parent::install()AND Configuration::updateValue('BLOCKSOCIAL_FACEBOOK', '') &&
                       Configuration::updateValue('BLOCKSOCIAL_TWITTER', '') &&
                       Configuration::updateValue('BLOCKSOCIAL_RSS', '') &&
                       Configuration::updateValue('BLOCKSOCIAL_YOUTUBE', '') &&
                       Configuration::updateValue('BLOCKSOCIAL_GOOGLE_PLUS', '')&&
                       Configuration::updateValue('BLOCKSOCIAL_PINTEREST', '') &&
                       Configuration::updateValue('BLOCKSOCIAL_VIMEO', '') &&
                       Configuration::updateValue('BLOCKSOCIAL_INSTAGRAM', '') &&
                       $this->registerHook('displayHeader') &&
                       $this->registerHook('displayFooter'));
        }

Using the Configuration object, various configurations variables are saved into database. Thus, we’ll 
need to add a TripAdvisor variable to consider this social network in future configuration and once we 
reinstall our module. Let's modify the previous code to contemplate a new BLOCKSOCIAL_TRIPADVISOR 
variable. (Listing 3-25)

Listing 3-25. Install() Method after Adding BLOCKSOCIAL_TRIPADVISOR Variable

public function install()
        {
        return (parent::install()AND
                     Configuration::updateValue('BLOCKSOCIAL_FACEBOOK', '') &&
                     Configuration::updateValue('BLOCKSOCIAL_TWITTER', '') &&
                     Configuration::updateValue('BLOCKSOCIAL_RSS', '') &&



Chapter 3 ■ theme Development

108

                     Configuration::updateValue('BLOCKSOCIAL_YOUTUBE', '') &&
                     Configuration::updateValue('BLOCKSOCIAL_GOOGLE_PLUS', '')&&
                     Configuration::updateValue('BLOCKSOCIAL_PINTEREST', '') &&
                     Configuration::updateValue('BLOCKSOCIAL_VIMEO', '') &&
                     Configuration::updateValue('BLOCKSOCIAL_INSTAGRAM', '') &&
                     Configuration::updateValue('BLOCKSOCIAL_TRIPADVISOR', '') &&
                       $this->registerHook('displayHeader') &&
                       $this->registerHook('displayFooter'));
        }

In the uninstall() method, we’ll also need to add a line for deleting the BLOCKSOCIAL_TRIPADVISOR 
configuration variable. (Listing 3-26)

Listing 3-26. Uninstall() Method after Adding Line to Delete BLOCKSOCIAL_TRIPADVISOR Variable

public function uninstall()
        {
                //Delete configuration
                return (Configuration::deleteByName('BLOCKSOCIAL_FACEBOOK') AND
                        Configuration::deleteByName('BLOCKSOCIAL_TWITTER') AND
                        Configuration::deleteByName('BLOCKSOCIAL_RSS') AND
                        Configuration::deleteByName('BLOCKSOCIAL_YOUTUBE') AND
                        Configuration::deleteByName('BLOCKSOCIAL_GOOGLE_PLUS') AND
                        Configuration::deleteByName('BLOCKSOCIAL_PINTEREST') AND

                        Configuration::deleteByName('BLOCKSOCIAL_TRIPADVISOR') AND
                        Configuration::deleteByName('BLOCKSOCIAL_VIMEO') AND
                        Configuration::deleteByName('BLOCKSOCIAL_INSTAGRAM') AND
                        parent::uninstall());
        }

Next we need to modify the getContent() method. Remember this is the method responsible for 
updating any configuration variable shown on the PS Back Office, so this method will be triggered when we 
click the Configure button of any module. (Listing 3-27)

Listing 3-27. getContent() Method Modified

public function getContent()
       {
               // If we try to update the settings
               $output = '';
               if (Tools::isSubmit('submitModule'))
               {
                        Configuration::updateValue('BLOCKSOCIAL_FACEBOOK', 

Tools::getValue('blocksocial_facebook', ''));
                        Configuration::updateValue('BLOCKSOCIAL_TWITTER', 

Tools::getValue('blocksocial_twitter', ''));
                        Configuration::updateValue('BLOCKSOCIAL_RSS', 

Tools::getValue('blocksocial_rss', ''));
                        Configuration::updateValue('BLOCKSOCIAL_YOUTUBE', 

Tools::getValue('blocksocial_youtube', ''));



Chapter 3 ■ theme Development

109

                        Configuration::updateValue('BLOCKSOCIAL_GOOGLE_PLUS', 
Tools::getValue('blocksocial_google_plus', ''));

                        Configuration::updateValue('BLOCKSOCIAL_PINTEREST', 
Tools::getValue('blocksocial_pinterest', ''));

                        Configuration::updateValue('BLOCKSOCIAL_VIMEO', 
Tools::getValue('blocksocial_vimeo', ''));

                        Configuration::updateValue('BLOCKSOCIAL_INSTAGRAM', 
Tools::getValue('blocksocial_instagram', ''));

                        Configuration::updateValue('BLOCKSOCIAL_TRIPADVISOR', 
Tools::getValue('blocksocial_tripadvisor', ''));

                       $this->_clearCache('blocksocial.tpl');
                        Tools::redirectAdmin($this->context->link->getAdminLink 

('AdminModules').'&configure='.$this->name.'&tab_module='.$this-> 
tab.'&conf=4&module_name='.$this->name);

               }

               return $output.$this->renderForm();
         }

We must also modify the hookDisplayFooter() method to contemplate a new TripAdvisor link. This is 
the method responsible for rendering content when the displayFooter hook is executed on the footer and 
in your .tpl files. (Listing 3-28)

Listing 3-28. hookDisplayFooter() Method Modified

public function hookDisplayFooter()
        {
                if (!$this->isCached('blocksocial.tpl', $this->getCacheId()))
                       $this->smarty->assign(array(
                               'facebook_url' => Configuration::get('BLOCKSOCIAL_FACEBOOK'),
                              'twitter_url' => Configuration::get('BLOCKSOCIAL_TWITTER'),
                              'rss_url' => Configuration::get('BLOCKSOCIAL_RSS'),
                              'youtube_url' => Configuration::get('BLOCKSOCIAL_YOUTUBE'),
                               'google_plus_url' => Configuration::get('BLOCKSOCIAL_GOOGLE_

PLUS'),
                               'pinterest_url' => Configuration::get('BLOCKSOCIAL_

PINTEREST'),
                              'vimeo_url' => Configuration::get('BLOCKSOCIAL_VIMEO'),
                               'instagram_url' => Configuration::get('BLOCKSOCIAL_

INSTAGRAM'),
                                                            'tripadvisor_url' => 

Configuration::get('BLOCKSOCIAL_
TRIPADVISOR'),

                       ));

                return $this->display(__FILE__, 'blocksocial.tpl', $this->getCacheId());
        }

To show the textbox allowing us to define the URL for our TripAdvisor account, we need to add that 
field to the form presented on the module's configuration page; we can do this by editing the $fields_form 
variable of the renderForm() method as shown in Listing 3-29.



Chapter 3 ■ theme Development

110

Listing 3-29. Adding TripAdvisor Field to $fields_form Variable in renderForm() Method

$fields_form = array(
                       'form' => array(
                               'legend' => array(
                                       'title' => $this->l('Settings'),
                                       'icon' => 'icon-cogs'
                               ),
                               'input' => array(
                                       array(
                                               'type' => 'text',
                                               'label' => $this->l('Facebook URL'),
                                               'name' => 'blocksocial_facebook',
                                               'desc' => $this->l('Your Facebook fan page.'),
                                       ),
                                       array(
                                               'type' => 'text',
                                               'label' => $this->l('Twitter URL'),
                                               'name' => 'blocksocial_twitter',
                                                'desc' => $this->l('Your official Twitter 

account.'),
                                       ),
                                       array(
                                               'type' => 'text',
                                               'label' => $this->l('RSS URL'),
                                               'name' => 'blocksocial_rss',
                                                'desc' => $this->l('The RSS feed of your 

choice (your blog, your store, etc.).'),
                                       ),
                                       array(
                                               'type' => 'text',
                                               'label' => $this->l('YouTube URL'),
                                               'name' => 'blocksocial_youtube',
                                                'desc' => $this->l('Your official YouTube 

account.'),
                                       ),
                                       array(
                                               'type' => 'text',
                                               'label' => $this->l('Google+ URL:'),
                                               'name' => 'blocksocial_google_plus',
                                                'desc' => $this->l('Your official Google+ 

page.'),
                                       ),
                                       array(
                                               'type' => 'text',
                                               'label' => $this->l('Pinterest URL:'),
                                               'name' => 'blocksocial_pinterest',
                                                'desc' => $this->l('Your official Pinterest 

account.'),
                                       ),



Chapter 3 ■ theme Development

111

                                       array(
                                               'type' => 'text',
                                               'label' => $this->l('Vimeo URL:'),
                                               'name' => 'blocksocial_vimeo',
                                                'desc' => $this->l('Your official Vimeo 

account.'),
                                       ),
                                       array(
                                               'type' => 'text',
                                               'label' => $this->l('Instagram URL:'),
                                               'name' => 'blocksocial_instagram',
                                                'desc' => $this->l('Your official Instagram 

account.'),
                                       ),
                                       array(
                                                'type' => 'text',
                        'label' => $this->l('TripAdvisor URL:'),
                        'name' => 'blocksocial_tripadvisor',
                'desc' => $this->l('Your official Instagram account.'),

                                       ),
                                ),
                                'submit' => array(
                                        'title' => $this->l('Save'),
                                )
                        ),
                );

Finally, to be able to see in the Configuration page the values we previously set for each social link, we 
edit the getConfigFieldsValues() method adding the TripAdvisor reference. (Listing 3-30)

Listing 3-30. getConfigFieldsValues () Method Modified

public function getConfigFieldsValues()
        {
                return array(
                         'blocksocial_facebook' => Tools::getValue('blocksocial_facebook', 

Configuration::get('BLOCKSOCIAL_FACEBOOK')),
                         'blocksocial_twitter' => Tools::getValue('blocksocial_twitter', 

Configuration::get('BLOCKSOCIAL_TWITTER')),
                         'blocksocial_rss' => Tools::getValue('blocksocial_rss', 

Configuration::get('BLOCKSOCIAL_RSS')),
                         'blocksocial_youtube' => Tools::getValue('blocksocial_youtube', 

Configuration::get('BLOCKSOCIAL_YOUTUBE')),
                         'blocksocial_google_plus' => Tools::getValue('blocksocial_google_

plus', Configuration::get('BLOCKSOCIAL_GOOGLE_PLUS')),
                         'blocksocial_pinterest' => Tools::getValue('blocksocial_pinterest', 

Configuration::get('BLOCKSOCIAL_PINTEREST')),
                         'blocksocial_vimeo' => Tools::getValue('blocksocial_vimeo', 

Configuration::get('BLOCKSOCIAL_VIMEO')),
                         'blocksocial_instagram' => Tools::getValue('blocksocial_instagram', 

Configuration::get('BLOCKSOCIAL_INSTAGRAM')),



Chapter 3 ■ theme Development

112

                         'blocksocial_tripadvisor' => Tools::getValue('blocksocial_
tripadvisor', Configuration::get('BLOCKSOCIAL_TRIPADVISOR')),

                );
        }

Now that we have completely edited the blocksocial.php file, it’s time to modify the front-end  
piece of the module. Go to themes/your_theme/modules/blocksocial and open the file blocksocial.tpl. 
(Listing 3-31)

Listing 3-31. blocksocial.tpl File of Your Theme Modified

<div id="social_block">
        <h4 class="title_block">{l s='Follow us' mod='blocksocial'}</h4>
        <ul>
                 {if $facebook_url != ''}<li class="facebook"><a class="_blank" 

href="{$facebook_url|escape:html:'UTF-8'}">{l s='Facebook' 
mod='blocksocial'}</a></li>{/if}

                 {if $twitter_url != ''}<li class="twitter"><a class="_blank" 
href="{$twitter_url|escape:html:'UTF-8'}">{l s='Twitter' 
mod='blocksocial'}</a></li>{/if}

                 {if $rss_url != ''}<li class="rss"><a class="_blank" href="{$rss_
url|escape:html:'UTF-8'}">{l s='RSS' mod='blocksocial'}</a></li>{/if}

                 {if $youtube_url != ''}<li class="youtube"><a class="_blank" 
href="{$youtube_url|escape:html:'UTF-8'}">{l s='YouTube' 
mod='blocksocial'}</a></li>{/if}

                 {if $google_plus_url != ''}<li class="google_plus"><a class="_blank" 
href="{$google_plus_url|escape:html:'UTF-8'}" rel="publisher">{l s='Google+' 
mod='blocksocial'}</a></li>{/if}

                 {if $pinterest_url != ''}<li class="pinterest"><a class="_blank" 
href="{$pinterest_url|escape:html:'UTF-8'}">{l s='Pinterest' 
mod='blocksocial'}</a></li>{/if}

                 {if $vimeo_url != ''}<li class="vimeo"><a href="{$vimeo_
url|escape:html:'UTF-8'}">{l s='Vimeo' mod='blocksocial'}</a></li>{/if}

                 {if $instagram_url != ''}<li class="instagram"><a class="_blank" 
href="{$instagram_url|escape:html:'UTF-8'}">{l s='Instagram' 
mod='blocksocial'}</a></li>{/if}

                 {if $tripadvisor_url != ''}<li class="tripadvisor"><a class="_blank" 
href="{$tripadvisor_url|escape:html:'UTF-8'}">{l s='TripAdvisor' 
mod='blocksocial'}</a></li>{/if}

        </ul>
</div>

The modification to the Smarty template rendered on the displayFooter hook is very simple; we just 
add one final li HTML element in case the TripAdvisor URL has been set in the Back Office.

A final step is required to make our new TripAdvisor link work; we need to define a CSS rule that would 
load the TripAdvisor icon from our newly uploaded FontAwesome font package. For this purpose, we'll edit 
the global.css file found in themes/your_theme/css adding the rule in Listing 3-32.

Listing 3-32. CSS Rule to Show TripAdvisor Icon

.footer-container #footer #social_block ul li.tripadvisor a:before {
            content: "\f262"; }



Chapter 3 ■ theme Development

113

Having everything edited, we can visit the PS Back Office, find the Social Networking module, and add 
our TripAdvisor link as seen in Figure 3-37.

At last, we can now see the TripAdvisor link in our footer along with the rest of social links (Figure 3-38).

Even though we modified the Social Networking module to contemplate a TripAdvisor link, we could 
also have done the same with any other social network simply by changing the content attribute described in 
the CSS rule added to the global.css file.

Figure 3-37. Defining the TripAdvisor link in the Configuration page of Social Networking module

Figure 3-38. TripAdvisor link in footer



Chapter 3 ■ theme Development

114

 ■ Note the content property is used to insert generated content with the :before and :after pseudo 
elements. In listing 3-32, content contains the code for the tripadvisor glyphicon. You can try to change the 
code and find some new icons.

3-12. Modifying the MyAccount Footer Module to Display 
Links of Interest List
Problem
You want to add a static list of Links of Interest for your business or website that will be displayed within the 
MyAccount module in the footer.

Solution
To solve this problem, we will edit the blockmyaccountfooter.tpl file in the modules/blockmyaccountfooter/ 
directory as shown in Figure 3-39.

The idea would be to place the list of links between the MyAccount module and the Contact Infos 
module as shown in figure 3-39.

How It Works
This is the content of the blockmyaccountfooter.tpl file located in themes/your_theme/modules/
blockmyaccountfooter. (Listing 3-33)

Listing 3-33. Blockmyaccountfooter.tpl File in themes/your_theme/modules/blockmyaccountfooter

<section class="footer-block col-xs-12 col-sm-4">
         <h4><a href="{$link->getPageLink('my-account', true)|escape:'html':'UTF-8'}" 

title="{l s='Manage my customer account' mod='blockmyaccountfooter'}" 
rel="nofollow">{l s='My account' mod='blockmyaccountfooter'}</a></h4>

        <div class="block_content toggle-footer">
                <ul class="bullet">

Figure 3-39. Place to add the Links of Interests list



Chapter 3 ■ theme Development

115

                         <li><a href="{$link->getPageLink('history', true)|escape:'html':'UTF-8'}" 
title="{l s='My orders' mod='blockmyaccountfooter'}" rel="nofollow">{l 
s='My orders' mod='blockmyaccountfooter'}</a></li>

                         {if $returnAllowed}<li><a href="{$link->getPageLink('order-follow', 
true)|escape:'html':'UTF-8'}" title="{l s='My merchandise returns' 
mod='blockmyaccountfooter'}" rel="nofollow">{l s='My merchandise 
returns' mod='blockmyaccountfooter'}</a></li>{/if}

                         <li><a href="{$link->getPageLink('order-slip', 
true)|escape:'html':'UTF-8'}" title="{l s='My credit slips' 
mod='blockmyaccountfooter'}" rel="nofollow">{l s='My credit slips' 
mod='blockmyaccountfooter'}</a></li>

                         <li><a href="{$link->getPageLink('addresses', 
true)|escape:'html':'UTF-8'}" title="{l s='My addresses' 
mod='blockmyaccountfooter'}" rel="nofollow">{l s='My addresses' 
mod='blockmyaccountfooter'}</a></li>

                         <li><a href="{$link->getPageLink('identity', 
true)|escape:'html':'UTF-8'}" title="{l s='Manage my personal 
information' mod='blockmyaccountfooter'}" rel="nofollow">{l s='My 
personal info' mod='blockmyaccountfooter'}</a></li>

                         {if $voucherAllowed}<li><a href="{$link->getPageLink('discount', 
true)|escape:'html':'UTF-8'}" title="{l s='My vouchers' 
mod='blockmyaccountfooter'}" rel="nofollow">{l s='My vouchers' 
mod='blockmyaccountfooter'}</a></li>{/if}

                         {$HOOK_BLOCK_MY_ACCOUNT}
             {if $is_logged}<li><a href="{$link->getPageLink('index')}?mylogout" title="{l 

s='Sign out' mod='blockmyaccountfooter'}" rel="nofollow">{l s='Sign out' 
mod='blockmyaccountfooter'}</a></li>{/if}

                </ul>
        </div>
</section>

We'll copy and paste the section HTML element and change the col-sm-4 class to col-sm-2 to split the 
space occupied by the MyAccount module in two equal parts. (Listing 3-34)

Listing 3-34. Blockmyaccountfooter.tpl File in themes/your_theme/modules/blockmyaccountfooter 
Modified

<!-- Block myaccount module -->
<section class="footer-block col-xs-12 col-sm-2">
         <h4><a href="{$link->getPageLink('my-account', true)|escape:'html':'UTF-8'}" 

title="{l s='Manage my customer account' mod='blockmyaccountfooter'}" 
rel="nofollow">{l s='My account' mod='blockmyaccountfooter'}</a></h4>

        <div class="block_content toggle-footer">
                <ul class="bullet">
                        <li><a href="{$link->getPageLink('history', 

true)|escape:'html':'UTF-8'}" title="{l s='My orders' 
mod='blockmyaccountfooter'}" rel="nofollow">{l s='My orders' 
mod='blockmyaccountfooter'}</a></li>

                        {if $returnAllowed}<li><a href="{$link->getPageLink('order-follow', 
true)|escape:'html':'UTF-8'}" title="{l s='My merchandise returns' 
mod='blockmyaccountfooter'}" rel="nofollow">{l s='My merchandise 
returns' mod='blockmyaccountfooter'}</a></li>{/if}



Chapter 3 ■ theme Development

116

                        <li><a href="{$link->getPageLink('order-slip', 
true)|escape:'html':'UTF-8'}" title="{l s='My credit slips' 
mod='blockmyaccountfooter'}" rel="nofollow">{l s='My credit slips' 
mod='blockmyaccountfooter'}</a></li>

                        <li><a href="{$link->getPageLink('addresses', 
true)|escape:'html':'UTF-8'}" title="{l s='My addresses' 
mod='blockmyaccountfooter'}" rel="nofollow">{l s='My addresses' 
mod='blockmyaccountfooter'}</a></li>

                        <li><a href="{$link->getPageLink('identity', 
true)|escape:'html':'UTF-8'}" title="{l s='Manage my personal 
information' mod='blockmyaccountfooter'}" rel="nofollow">{l s='My 
personal info' mod='blockmyaccountfooter'}</a></li>

                        {if $voucherAllowed}<li><a href="{$link->getPageLink('discount', 
true)|escape:'html':'UTF-8'}" title="{l s='My vouchers' 
mod='blockmyaccountfooter'}" rel="nofollow">{l s='My vouchers' 
mod='blockmyaccountfooter'}</a></li>{/if}

                       {$HOOK_BLOCK_MY_ACCOUNT}
             {if $is_logged}<li><a href="{$link->getPageLink('index')}?mylogout" title="{l 

s='Sign out' mod='blockmyaccountfooter'}" rel="nofollow">{l s='Sign out' 
mod='blockmyaccountfooter'}</a></li>{/if}

                </ul>
        </div>
</section>
<section class="footer-block col-xs-12 col-sm-2">
        <h4>Links of Interest</h4>
        <div class="block_content toggle-footer">
                <ul class="bullet">
                       <li><a href="http://www.internations.com">Internations</a></li>
                       <li><a href="http://www.tripadvisor.com">Trip Advisor</a></li>
                </ul>
        </div>
</section>
<!-- /Block myaccount module -->

We can now see the new links section next to the MyAccount list as illustrated in Figure 3-40.

Figure 3-40. Links of Interest list displayed in the footer

In summary, the modification shown in this recipe consisted simply of changing the layout of the 
template by adding the new section and adjusting its size. In general, this is a very naïve approach for solving 
the problem at hand; a better, more elegant solution can be achieved if we create a module like we did in 
previous recipes that offers the possibility of setting the URL for each link of interest.



Chapter 3 ■ theme Development

117

3-13. Generating Product Attributes by Adding Product 
Combinations
Problem
You want to define a set of attributes for your products.

Solution
Product attributes in PrestaShop are defined through combinations. To define attributes for one of 
your products, visit PS Back Office, go to Catalog->Products, and select one for editing; you'll see the 
Combinations tab on the left panel afterward.

How It Works
If we have an attribute A with values A1, A2, A3, and a second attribute B with values B1 and B2, then all 
combinations of these attributes would be A1-B1, A1-B2, A2-B1, A2-B2, A3-B1, and A3-B2. Generating all 
combinations by hand, especially when you have a large number of attributes, can be very difficult; for this 
reason, PS offers a tool known as Product Combination Generator (Figure 3-41).

Figure 3-41. Combinations section



Chapter 3 ■ theme Development

118

To use this tool, we first locate the Product Combinations Generator link on top of the Combinations tab 
and click it. This operation will take us to the Attributes generator seen in Figure 3-42.

The attribute generator allows us to select the attribute values that we want on the left panel to combine 
and assign price impacts on those values. For instance, if you have an attribute named Guided Service and 
values Yes, No associated with it, you might want to assign a price increment impact of $10 for the Yes value.

Finally, to generate combinations, click the Generate these Combinations button at the bottom; your 
product attributes will be displayed in the product page. If you defined any price impact, you’ll see the 
product price changing depending on the attribute value selected.

3-14. Associating Attributes to Products without Combining
Problem
You want to assign attributes to your products without the need to assign every attribute as part of a 
combination.

Solution
When you have a lot of attributes, generating every possible combination for them can be very expensive in terms 
of computational time. In such cases, you might not be able to generate all possible combinations and a timeout 
or resource limits error might raise every time you try to do it. A PrestaShop customization could be made to solve 
this problem and create the possibility of associating only one attribute to a product. This customization will 
require us to edit the ajax-cart.js, product.js files located in the themes/your_theme/js folder.

Figure 3-42. Attributes generator



Chapter 3 ■ theme Development

119

How It Works
Let’s assume we have a clothes-related product and we want to associate it to the Model attribute we’ll 
shortly create, which has a lot of possible values.

We must first create the attribute and its values in the PS Back Office following path Catalog->Product 
Attributes and then clicking Add new attribute in the upper right corner (Figure 3-43).

The values we will add for this attribute will simply be A and B. Now, let us go to the Combinations tab of 
the clothes-related product and add the A value from the Model attribute. Click the New combination button in 
the lower right corner of the Combinations section and then select the Model attribute. In the dialog that shows 
up, select the A value, click Add, and to conclude the process click Save and Stay (Figure 3-44).

Figure 3-44. Adding Model attribute as a combination of a single attribute

Figure 3-43. Adding Model attribute



Chapter 3 ■ theme Development

120

We’ll now be able to see the Model attribute listed in the combinations page as shown in Figure 3-45.

Depending on your PS version, the effect that this operation would have on the product page would be 
different. In older versions, the attribute will be apparently accepted, but after adding the product to cart the 
Cart Summary will not display the attribute’s value, so in the end it will not be accepted. In recent versions, 
a message with the following text: “This combination does not exist for this product. Please select another 
combination.” (Figure 3-46) will be displayed when you have a single attribute combination or when you 
have a combination that does not relate to the rest of attributes combinations.

It’s time to make the necessary modifications to our PS site, so any “independent” combination can 
be added to products and listed on the Cart Summary. We'll start by editing the themes/your_theme/js/
product.js file.

To avoid getting the “This combination does not exist for this product. Please select another combination.” 
Message, we’ll edit the findCombinations() function located in the product.js file. (Listing 3-35)

Listing 3-35. First Lines of findCombinations() Method in product.js File

// search the combinations' case of attributes and update displaying of availability, 
prices, ecotax, and image
function findCombination()
{
        $('#minimal_quantity_wanted_p').fadeOut();
         if (typeof $('#minimal_quantity_label').text() === 'undefined' || $('#minimal_

quantity_label').html() > 1)
                $('#quantity_wanted').val(1);

        //create a temporary 'choice' array containing the choices of the customer
        var choice = [];

Figure 3-45. Model attribute added

Figure 3-46. Message displayed when product combination does not exist



Chapter 3 ■ theme Development

121

        var radio_inputs = parseInt($('#attributes .checked > input[type=radio]').length);
        if (radio_inputs)
                radio_inputs = '#attributes .checked > input[type=radio]';
        else
                radio_inputs = '#attributes input[type=radio]:checked';

         $('#attributes select, #attributes input[type=hidden], ' + radio_inputs).
each(function(){

                choice.push(parseInt($(this).val()));
});

The choice array in the previous code contains all attribute value selections made by the customer on 
the product page. We’ll skip adding the value of our independent attributes. That way we won’t receive any 
message and the Add to Cart button will be displayed. The modification is shown in Listing 3-36.

Listing 3-36. Modified Fragment of findCombinations() Method in product.js File

$('#attributes select, #attributes input[type=hidden], ' + radio_inputs).each(function(){
                if (!$(this).attr('model')) {
                        choice.push(parseInt($(this).val()));
                }
        });

Now, we will create a Custom field (also named Model) to contain the value selected for the Model 
attribute. When the customer clicks the Add to Cart button, the content of the Model attribute will be saved 
in the Model Custom field. Thus, it will be saved and listed in the Cart Summary, precisely our goal at this 
point.

Finally, we’ll edit the themes/your_theme/js/modules/blockcart/ajax-cart.js file; near line 270 
locate the code in Listing 3-37.

Listing 3-37. First Lines of Add Function in ajax-cart.js File

add : function(idProduct, idCombination, addedFromProductPage, callerElement, quantity, 
whishlist){
                if (addedFromProductPage && !checkCustomizations())
                {
                        if (contentOnly)
                        {
                               var productUrl = window.document.location.href + '';
                               var data = productUrl.replace('content_only=1', '');
                               window.parent.document.location.href = data;
                               return;
                        }

We'll assume you already read and implemented Recipe 3-5; it is a prerequisite for this recipe and part 
of its code.

The modification to the ajax-cart.js file is shown in Listing 3-38.



Chapter 3 ■ theme Development

122

Listing 3-38. Modification to ajax-cart.js File

              // Getting value from model attribute in product box
                var model = $("#group_4 option:selected").text();
                // Getting value from model attribute in product box
$(".customization_block_input").val(model);

                // Code for saving custom fields
                // Product Box Custom Form
                $('#quantityBackup').val($('#quantity_wanted').val());
                        customAction = $('#customizationForm').attr('action');
                        $('body select[id^="group_"]').each(function() {
                                 customAction = customAction.replace(new RegExp(this.id + 

'=\\d+'), this.id +'=' + this.value);
                        });

                // ajax to product page with custom action
                var customization_entries = $('#customizationForm').serialize();

                $.ajax({
                                async:false,
                                type: 'POST',
                                data: customization_entries+ '&ajax=1',
                                dataType: 'json',
                                url: customAction
                })

                if (addedFromProductPage && !checkCustomizations())
                {

First, we get the model attribute value. That's the $("#group_4 option:selected").text() line. 
#group_4 is the id that PS assigns to that field and it can be easily seen by inspecting the page (pressing Ctrl 
+ Shift + I in Chrome or Q in Firefox). Second, we assign that value to the Model custom field; again, the 
.customization_block_input class can be seen using the page inspector most browsers today include. The 
rest of the code corresponds to saving custom fields.

After clicking the Add to Cart button, we will now see the Model attribute associated to the product in 
the Cart Summary (Figure 3-47).



Chapter 3 ■ theme Development

123

Figure 3-47. Model attribute added to product and to Cart Summary

For better esthetics, you can hide the entire customization form using the CSS Editing module;. In this 
manner, customers will not see the form on the product page and the entire process will seem cleaner for 
them.

Summary
In this chapter, we described various recipes that allow us to transform PS front end to many of our possible 
needs. We created a Testimonials module and we changed the layout of the page and the slider to make it 
more modern and sophisticated. We also customized the e-mail templates. In chapter 5, we will dive into the 
interesting topic of classes and controllers in PS.

http://dx.doi.org/10.1007/978-1-4842-2574-5_5


125© Arnaldo Pérez Castaño 2017 
A. P. Castaño, PrestaShop Recipes, DOI 10.1007/978-1-4842-2574-5_4

CHAPTER 4

Classes and Controllers

The concept of class comes from the Object Oriented Programming (OOP) paradigm. In OOP the concepts 
of object and class are highly related. Objects are the main elements of this paradigm and they try to find 
correspondence with “real-life” objects. We could have an object named Dog that tries to represent a real-life 
dog incorporating many of its attributes (color, height, and so on) and its functionalities (bark, eat, sleep, and 
so on). To be able to create the Dog object, we would need a “blueprint” to follow or a “model” to build from; 
this blueprint or model is the class.

The class describes how the object will be in terms of attributes and functionalities. The object is the 
realization of such class. The object is tangible, whereas the class is more of a description of what the object 
is. PrestaShop was developed using PHP, an Object Oriented Programming language that incorporates the 
notions of class, objects, inheritance, and so on.

Inheritance is another concept associated with the OOP paradigm. It refers to the ability of one class to 
inherit from some other class, obtaining all of its methods and attributes. We’ll check all of these concepts as 
we progress through the chapter in different recipes.

Controllers embody one of the main components of the MVC (Model-View-Controller) paradigm of 
which PrestaShop is a clear representative. In this paradigm, applications are commonly divided into three 
layers: the Model, related to database operations; the View, related to templates and everything we see on 
the browser (CSS, JS, and so on); and the Controller, related to the logic executed after the user requests a 
URL from your shop.

In this chapter, we’ll examine various recipes for customizing your PrestaShop classes and controller. In 
many cases, these customizations will extend PS functionalities and behavior. You will learn the following:

•	 How to add a new field to the Product class

•	 How to add a new tab to the product edit page in PS Back Office

•	 How to add a new tab to the product edit page in Back Office using a module

•	 How to display a new product field on the product page

•	 How to enable combinations for virtual products

•	 How to send Order Confirmation messages to various recipients

•	 How to get a product price

•	 How to get product name and quantity

•	 How to get product categories and features

•	 How to get order total



Chapter 4 ■ Classes and Controllers

126

 ■ Note  prestashop classes can be found in the “classes” folder at the root of the ps package. Controllers 
can be found in the “controllers” folder also at the ps package root. each controller file ends with the 
Controller suffix.

4-1. Adding a View Field to the Product Class
Problem
You want to add new fields to products of your PS site.

Solution
Let’s assume we want to add a “booking dates” field to our PS products, perhaps to be able to know when 
a certain product/service has been booked or bought from our website. This field will be visible from the 
product edit page in the Back Office.

To achieve this customization, we’ll change the product and product_shop tables in the PS database. 
We’ll also change the Product class located in the classes/Product.php file and the informations.tpl 
template file located in your_admin_folder/themes/default/template/controllers/products.

 ■ Note  remember your_admin_folder is the “admin” folder that is originally in the ps package and is 
renamed when you install ps; it contains all files of the Back office.

How It Works
To start, we’ll copy the classes/Product.php file to the override/classes folder. Then we’ll edit the Product 
class it contains by changing its name to “Product” and making it inherit from ProductCore. (Listing 4-1)

Listing 4-1. Renaming Class in override/classes/Product.php

class Product extends ProductCore {
      ...
}

Next, we’ll add the $booking_dates variable, which will represent the new field of our PS products. We’ll 
add it after the $available_now field variable, as shown in Listing 4-2.

Listing 4-2. Fragment of Product Class Where We Added the $booking_dates Variable

class ProductCore extends ObjectModel
{
    /** @var string Tax name */
    public $tax_name;

    /** @var string Tax rate */
    public $tax_rate;



Chapter 4 ■ Classes and Controllers

127

    /** @var int Manufacturer id */
    public $id_manufacturer;

    /** @var int Supplier id */
    public $id_supplier;

    /** @var int default Category id */
    public $id_category_default;

    /** @var int default Shop id */
    public $id_shop_default;

    /** @var string Manufacturer name */
    public $manufacturer_name;

    /** @var string Supplier name */
    public $supplier_name;

    /** @var string Name */
    public $name;

    /** @var string Long description */
    public $description;

    /** @var string Short description */
    public $description_short;

    /** @var int Quantity available */
    public $quantity = 0;

    /** @var int Minimal quantity for add to cart */
    public $minimal_quantity = 1;

    /** @var string available_now */
    public $available_now;

/** @var string available_now */
public $booking_dates;

    /** @var string available_later */
    public $available_later;

To finalize the edits to the Product class, we need to add it to the $definition array defining its type 
(STRING) and the way it will be validated. (Listing 4-3)

Listing 4-3. Fragment of $definition Array in Product Class Where We Added the booking_dates Field

public static $definition = array(
        'table' => 'product',
        'primary' => 'id_product',
        'multilang' => true,
        'multilang_shop' => true,



Chapter 4 ■ Classes and Controllers

128

        'fields' => array(
            /* Classic fields */
            'id_shop_default' =>             array('type' => self::TYPE_INT, 'validate' => 

'isUnsignedId'),
            'id_manufacturer' =>             array('type' => self::TYPE_INT, 'validate' => 

'isUnsignedId'),
            'id_supplier' =>                 array('type' => self::TYPE_INT, 'validate' => 

'isUnsignedId'),
                'booking_dates' => array('type' => self::TYPE_STRING, 'shop' => true, 

'validate' => 'isGenericName'),
         ...

After making these modifications to the Product class, it’s time to reflect them also in the PS database. 
For that purpose, we’ll access phpMyAdmin and add a new booking_dates column to the product and 
product_shop tables.

Once you have accessed phpMyAdmin, select your PS database. In the top menu, click the Structure 
tab. Add the new column after the available_now column and as a varchar of length 255, accepting the Null 
value (Figure 4-1).

Figure 4-1. Defining new column booking_dates for product and product_shop tables



Chapter 4 ■ Classes and Controllers

129

To conclude, we’ll edit the your_admin_folder/themes/default/template/controllers/products/
informations.tpl file. This is the template file that displays the product edit page in the Back Office; let’s 
add a new div HTML element after the product-pack-container div. (Listing 4-4)

Listing 4-4. Fragment Added to informations.tpl template File

<div id="product-pack-container" {if $product_type != Product::PTYPE_PACK}
style="display:none"{/if}></div>
       <hr />
       {* Div element added *}
       <div class="form-group">
                <label class="control-label col-lg-3" for="youtube">
                        <span class="label-tooltip" data-toggle="tooltip"
                          title="{l s='Booking Dates'}">
                  {l s='Booking Dates'}
                        </span>
                </label>
                <div class="col-lg-5">
                 <input type="text" id="booking_dates" name="booking_dates" value="{$product-

>booking_dates|htmlentitiesUTF8}"/>
                </div>
        </div>

Now we can go to the Back Office, edit a product, and see our new field available as depicted in Figure 4-2.

Figure 4-2. Product page in PS Back Office with new booking dates field



Chapter 4 ■ Classes and Controllers

130

In this recipe, we showed how to create a new field to products in PS. In future recipes, we'll examine 
how to create new tabs for PS products.

4-2. Adding a New Tab to Product Edit Page in PS Back Office
Problem
You want to add a new tab to the product edit page in your PS Back Office, perhaps to show additional 
product fields or additional product information.

Solution
In this book, we'll present two solutions for adding a new tab to the product edit page in PS Back Office. 
The first one will be presented in this recipe and consist of directly modifying or overriding PrestaShop 
files to accomplish the desired customization; the second one consists of achieving the customization by 
developing and installing a module with the desired functionality (adding a new tab). This approach will be 
demonstrated in Recipe 4-3.

How It Works
In order to add a new tab, we’ll need to edit the controllers/admin/AdminProductsController.php file. 
Once you have opened the file, locate the _construct() method, find the $this->available_tabs_lang and 
$this->available_tabs assignments, and add your new tab there as shown Listing 4-5.

Listing 4-5. Editing _construct() Method to Add New Bookings Tab

$this->available_tabs_lang = array(
            'Informations' => $this->l('Information'),
            'Pack' => $this->l('Pack'),
            'VirtualProduct' => $this->l('Virtual Product'),
            'Prices' => $this->l('Prices'),
            'Seo' => $this->l('SEO'),
            'Images' => $this->l('Images'),
            'Associations' => $this->l('Associations'),
            'Shipping' => $this->l('Shipping'),
            'Combinations' => $this->l('Combinations'),
            'Features' => $this->l('Features'),
            'Customization' => $this->l('Customization'),
            'Attachments' => $this->l('Attachments'),
            'Quantities' => $this->l('Quantities'),
            'Suppliers' => $this->l('Suppliers'),
            'Warehouses' => $this->l('Warehouses'),
            'Bookings' => $this->l('Bookings'),
        );



Chapter 4 ■ Classes and Controllers

131

        $this->available_tabs = array('Quantities' => 6, 'Warehouses' => 14);
        if ($this->context->shop->getContext() != Shop::CONTEXT_GROUP) {
            $this->available_tabs = array_merge($this->available_tabs, array(
                'Informations' => 0,
                'Pack' => 7,
                'VirtualProduct' => 8,
                'Prices' => 1,
                'Seo' => 2,
                'Associations' => 3,
                'Images' => 9,
                'Shipping' => 4,
                'Combinations' => 5,
                'Features' => 10,
                'Customization' => 11,
                'Attachments' => 12,
                'Suppliers' => 13,
                'Bookings' => 15
            ));
        }

For this example and following the approach introduced in Recipe 4-1, we’ll create a bookings-related 
tab and we’ll make use of the booking field added to products in Recipe 4-1.

The first array shown in Listing 4-5 allows us to indicate a translation string for every tab, and in the 
second one we define the name of each tab.

 ■ Note  In the available_tabs array, we define each tab name associated with a value that indicates 
its position in the left panel containing every tab. Consequently, changing or exchanging these numbers will 
change the order in which tabs are displayed on the product page.

Once we execute these simple edits, the new Bookings tab should be visible in the Back Office as 
illustrated in Figure 4-3.



Chapter 4 ■ Classes and Controllers

132

If we click the tab now, we’ll notice it is empty; it displays no content. How do we make it display a form 
showing a Booking Dates text field like the one we added in Recipe 4-1?

To display something on the tab, we need to create a .tpl file named exactly as the tab, in lowercase 
letters, and have it located at your_admin_folder/themes/default/template/controllers/products. 
In this case, the file would be your_admin_folder/themes/default/template/controllers/products/
bookings.tpl (Figure 4-4).

Figure 4-3. Bookings tab in product editing page in PS Back Office



Chapter 4 ■ Classes and Controllers

133

This is the content added to the bookings.tpl file. Part of it was obtained from the informations.tpl 
template. (Listing 4-6)

Listing 4-6. Content of bookings.tpl File

<div id="product-bookings" class="panel product-tab">
        <input type="hidden" name="submitted_tabs[]" value="Bookings" />
        <h3 class="tab"><i class="icon-info"></i> {l s='Booking'}</h3>

        <div class="form-group">
                <label class="control-label col-lg-3" for="booking_dates">
                        <span class="label-tooltip" data-toggle="tooltip"
                          title="{l s='Booking Dates'}">
                  {l s='Booking Dates'}
                        </span>
                </label>
                <div class="col-lg-5">
                 <input type="text" id="booking_dates" name="booking_dates" value="{$product-

>booking_dates|htmlentitiesUTF8}"/>
                </div>
        </div>

Figure 4-4. your_admin_folder/themes/default/template/controllers/products folder showing the bookings.
tpl template file



Chapter 4 ■ Classes and Controllers

134

        <div class="panel-footer">
                 <a href="{$link->getAdminLink('AdminProducts')|escape:'html':'UTF-8'} 

{if isset($smarty.request.page) && $smarty.request.page > 1}&amp;submitFil
terproduct={$smarty.request.page|intval}{/if}" class="btn btn-default"><i 
class="process-icon-cancel"></i> {l s='Cancel'}</a>

                 <button type="submit" name="submitAddproduct" class="btn btn-default  
pull-right" disabled="disabled"><i class="process-icon-loading"></i>  
{l s='Save'}</button>

                 <button type="submit" name="submitAddproductAndStay" class="btn btn-default 
pull-right" disabled="disabled"><i class="process-icon-loading"></i>  
{l s='Save and stay'}</button>

        </div>
</div>

The “form-group” div element code is the same we used in Recipe 4-1. The “panel-footer” div element 
defines the lower part division found in most sections of the Back Office where you have the Save and Save 
and Stay buttons, or both as it’s in the product edit page.

Now we can see some content in the Bookings tab as shown in Figure 4-5.

In the next section, we’ll see how to accomplish the same result by using a module instead of overriding 
or directly editing PS files.

4-3. Adding a New Tab to the Product Edit Page in Back 
Office Using a Module
Problem
You want to add a new tab to the product edit page in your PS Back Office, perhaps to show additional 
product fields or additional product information, and you want that addition to occur through a module.

Figure 4-5. Bookings section on product edit page



Chapter 4 ■ Classes and Controllers

135

Solution
In order to solve this problem, we’ll start by building the essential pieces of a module (.php and .tpl files) 
like we already know how to do from previous chapters. As we did in Recipe 4-2, we’ll demonstrate how to 
add a new tab to the product edit page, creating a module related to bookings.

First, we create a bookings folder in the modules folder and then we add the files that we need for 
the moment; those are bookings.php and logo.png or logo.gif. The initial lines of the PHP main file 
(bookings.php) should look like Listing 4-7.

Listing 4-7. __construct() Method of Bookings Module

<?php
if(!defined('_PS_VERSION_'))
        exit;

class Bookings extends Module {

        public function __construct()
   {
                $this->name = 'bookings';
                $this->tab = 'front_office_features';
                $this->version = '1.0.0';
                $this->author = 'Arnaldo Perez Castano';
                $this->need_instance = 0;
                 $this->ps_versions_compliancy = array('min' => '1.6', 'max' => _PS_

VERSION_);
                $this->bootstrap = true;

                parent::__construct();

                $this->displayName = $this->l('Bookings');
                $this->description = $this->l('Add Bookings Tab to product edit page');

                $this->confirmUninstall = $this->l('Are you sure you want to uninstall?');
        }

That should be enough to get our new module displayed in PS Back Office under the Modules and 
Services section, as illustrated in Figure 4-6.

Figure 4-6. Bookings module displayed on module list in PS Back Office



Chapter 4 ■ Classes and Controllers

136

Let’s take a look at the install() and uninstall() methods for this module in Listing 4-8.

Listing 4-8. Install() and uninstall() Methods for Bookings Module

        public function install()
        {
                if (!parent::install() ||
                        !$this->registerHook('displayAdminProductsExtra'))
                        return false;
                return true;
        }

        public function uninstall()
        {
                if (!parent::uninstall())
                        return false;
                return true;
        }

Notice we are registering two hooks that we haven’t studied yet. The displayAdminProductsExtra hook 
will allow us to add new tabs to product edit page, as shown in Listing 4-9.

Listing 4-9. hookdisplayAdminProductsExtra() Method

public function hookdisplayAdminProductsExtra($params)
        {
                $product = new Product((int)Tools::getValue('id_product'));
                if (Validate::isLoadedObject($product))
                {
                    $this->context->smarty->assign(array(
                     'bookings' => $product->booking_dates
                                        ));

                        return $this->display(__FILE__, 'bookings.tpl');
                }
        }

In the displayAdminProductsExtra() method, we use the isLoadedObject() method of the Validate 
class to check whether the object has been correctly loaded. If it has, we assign the “bookings” Smarty 
variable and display the bookings.tpl template as seen in Figure 4-7.



Chapter 4 ■ Classes and Controllers

137

As we can see in Figure 4-7, the result obtained is exactly the same achieved in Recipe 4-2. Also notice 
that in this recipe, as in Recipe 4-2, we assumed that the bookings_date field had already been added to the 
Product class and PS database.

 ■ Note  a hook that you may find useful when creating a new tab through a module is the 
actionProductUpdate hook, which is called when the product is changed and allows us to fetch data from our 
tab and process it.

4-4. Displaying a New Product Field on the Product Page
Problem
You have already created a new product column in the PS database and the corresponding new field in the 
Product class. Now you want to display that new field in the product page.

Solution
Maintaining the line we have been following throughout this chapter, let’s assume we have a booking_dates field 
created on the PS database, specifically in the products table and the corresponding field in the Product class.

To display this new field on the product page, we just need to edit the product.tpl template file. In case 
we need to add some extra information or maybe make the code on the template file more legible, we could 
also edit the ProductController.php file.

Figure 4-7. Result after installing the module



Chapter 4 ■ Classes and Controllers

138

How It Works
Recalling the new product field created in Recipe 4-1 and in case we are looking to add the new field to 
product page in its purest form, we simply need to add the code in Listing 4-10 (not considering HTML 
elements) in the place we feel appropriate in themes/your_theme/product.tpl.

Listing 4-10. Booking_dates Product Field Added to product.tpl

<h3> Booking {$product->booking_dates}</h3>

As we can see in Figure 4-8, the booking_dates field value will be now visible on the product page.

If we would like to do something more complex than just the booking_dates field, maybe a pre-
processing stage, we could add a new Smarty variable in the controllers/front/ProductController.php 
file that would encapsulate the result of this pre-processing stage.

Edit or override the ProductController.php file and locate the initContent() method. Almost at the 
end, you will see the code in Listing 4-11.

Listing 4-11. Smarty Variables Being Assigned in initContent() Method of ProductController Class

$this->context->smarty->assign(array(
                'stock_management' => Configuration::get('PS_STOCK_MANAGEMENT'),
                'customizationFields' => $customization_fields,
                'id_customization' =>  empty($customization_datas) ? null : $customization_

datas[0]['id_customization'],
                'accessories' => $accessories,
                'return_link' => $return_link,
                'product' => $this->product,
                                'booking' =>  $this->product->booking_dates,
                'product_manufacturer' =>  new Manufacturer((int)$this->product->id_

manufacturer, $this->context->language->id),
                'token' => Tools::getToken(false),
                'features' => $this->product->getFrontFeatures($this->context->language->id),
                'attachments' =>  (($this->product->cache_has_attachments) ? $this->product 

->getAttachments($this->context->language->id) : array()),
                'allow_oosp' =>  $this->product->isAvailableWhenOutOfStock((int)$this-

>product->out_of_stock),
                'last_qties' =>  (int)Configuration::get('PS_LAST_QTIES'),

Figure 4-8. Value of booking_dates field displayed on product page



Chapter 4 ■ Classes and Controllers

139

                'HOOK_EXTRA_LEFT' => Hook::exec('displayLeftColumnProduct'),
                'HOOK_EXTRA_RIGHT' => Hook::exec('displayRightColumnProduct'),
                'HOOK_PRODUCT_OOS' =>  Hook::exec('actionProductOutOfStock', array('product' 

=> $this->product)),
                'HOOK_PRODUCT_ACTIONS' =>  Hook::exec('displayProductButtons', 

array('product' => $this->product)),
                'HOOK_PRODUCT_TAB' =>   Hook::exec('displayProductTab', array('product' => 

$this->product)),
                'HOOK_PRODUCT_TAB_CONTENT' =>   Hook::exec('displayProductTabContent', 

array('product' => $this->product)),
                'HOOK_PRODUCT_CONTENT' =>   Hook::exec('displayProductContent', 

array('product' => $this->product)),
                'display_qties' => (int)Configuration::get('PS_DISPLAY_QTIES'),
                'display_ht' => !Tax::excludeTaxeOption(),
                'jqZoomEnabled' => Configuration::get('PS_DISPLAY_JQZOOM'),
                'ENT_NOQUOTES' => ENT_NOQUOTES,
                'outOfStockAllowed' => (int)Configuration::get('PS_ORDER_OUT_OF_STOCK'),
                'errors' => $this->errors,
                'body_classes' => array(
                    $this->php_self.'-'.$this->product->id,
                    $this->php_self.'-'.$this->product->link_rewrite,
                    'category-'.(isset($this->category) ? $this->category->id : ''),
                     'category-'.(isset($this->category) ? $this->category->getFieldByLang 

('link_rewrite') : '')
                ),
                'display_discount_price' => Configuration::get('PS_DISPLAY_DISCOUNT_PRICE'),
            ));

Insert in the previous array the name for your Smarty variable, followed by its content. it could be 
something like Listing 4-12.

Listing 4-12. Booking Smarty Variable

'booking' => 'Booking Dates are: '.$this->product->booking_dates

Then in the product.tpl file, you would just need to add the code in Listing 4-13.

Listing 4-13. Booking Smarty Variable Added to h3 Tag in product.tpl

<h3> {$booking}</h3>

As we can see, the result of the last code will be the text ‘Booking Dates are: havanadanceclass.com’.

 ■ Note  Up to this moment, we have associated common strings as values for the booking_dates field.  
We could force to save only date strings by implementing some validation before the field is saved in the Back 
office and the front end.



Chapter 4 ■ Classes and Controllers

140

4-5. Enabling Combinations for Virtual Products
Problem
You want to enable the Combinations tab for virtual products.

Solution
In order to solve this problem, we’ll need to edit the files controllers/admin/AdminProductsController.
php and your_admin_folder/themes/default/template/controllers/products/combinations.tpl and 
js/admin/products.js.

How It Works
First, let’s edit the controllers/admin/AdminProductsController.php file and locate the 
initFormAttributes() method, as seen in Listing 4-14.

Listing 4-14. First Lines of initFormAttributes() Method

public function initFormAttributes($product)
    {
        $data = $this->createTemplate($this->tpl_form);
        if (!Combination::isFeatureActive()) {
            $this->displayWarning($this->l('This feature has been disabled. ').
                 '<a href="index.php?tab=AdminPerformance&token='.Tools::getAdminTokenLite('A

dminPerformance').'#featuresDetachables">'.$this->l('Performances').'</a>');
        } elseif (Validate::isLoadedObject($product)) {
            if ($this->product_exists_in_shop) {
                if ($product->is_virtual) {
                    $data->assign('product', $product);
                     $this->displayWarning($this->l('A virtual product cannot have 

combinations.'));
                } else {
                    $attribute_js = array();
                    $attributes = Attribute::getAttributes($this->context->language->id, true);
                    foreach ($attributes as $k => $attribute) {
                         $attribute_js[$attribute['id_attribute_group']][$attribute 

['id_attribute']] = $attribute['name'];
                        natsort($attribute_js[$attribute['id_attribute_group']]);
                    }

                    $currency = $this->context->currency;

$data->assign('attributeJs', $attribute_js);
$data->assign('attributes_groups', AttributeGroup::getAttributesGroups($this->context-
>language->id));

                    $data->assign('currency', $currency);



Chapter 4 ■ Classes and Controllers

141

                    $images = Image::getImages($this->context->language->id, $product->id);

                    $data->assign('tax_exclude_option', Tax::excludeTaxeOption());
                    $data->assign('ps_weight_unit', Configuration::get('PS_WEIGHT_UNIT'));

                    $data->assign('ps_use_ecotax', Configuration::get('PS_USE_ECOTAX'));
                     $data->assign('field_value_unity', $this->getFieldValue 

($product, 'unity'));

                     $data->assign('reasons', $reasons = StockMvtReason::getStockMvtReasons($
this->context->language->id));

                     $data->assign('ps_stock_mvt_reason_default', $ps_stock_mvt_reason_
default = Configuration::get('PS_STOCK_MVT_REASON_DEFAULT'));

                     $data->assign('minimal_quantity', $this->getFieldValue($product, 'minimal_
quantity') ? $this->getFieldValue($product, 'minimal_quantity') : 1);

                     $data->assign('available_date', ($this->getFieldValue($product, 
'available_date') != 0) ? stripslashes(htmlentities($this-
>getFieldValue($product, 'available_date'), $this->context-> 
language->id)) : '0000-00-00');

                    $i = 0;
                    $type = ImageType::getByNameNType('%', 'products', 'height');
                    if (isset($type['name'])) {
                        $data->assign('imageType', $type['name']);
                    } else {
                        $data->assign('imageType', ImageType::getFormatedName('small'));
                    }
                     $data->assign('imageWidth', (isset($image_type['width']) ? (int) 

($image_type['width']) : 64) + 25);
                    foreach ($images as $k => $image) {
                        $images[$k]['obj'] = new Image($image['id_image']);
                        ++$i;
                    }
                    $data->assign('images', $images);

                    $data->assign($this->tpl_form_vars);
                    $data->assign(array(
                        'list' => $this->renderListAttributes($product, $currency),
                        'product' => $product,
                        'id_category' => $product->getDefaultCategory(),
                         'token_generator' => Tools::getAdminTokenLite 

('AdminAttributeGenerator'),
                         'combination_exists' => (Shop::isFeatureActive() && 

(Shop::getContextShopGroup()->share_stock) && count 
(AttributeGroup::getAttributesGroups($this->context->language->id)) 
> 0 && $product->hasAttributes())

                    ));
                }
            }



Chapter 4 ■ Classes and Controllers

142

Now let's get rid of the following if statement, as shown in Listing 4-15.

Listing 4-15. If Statement to Get Rid Of

if ($product->is_virtual) {
body-if
}
else {
body-else
}

Body-if and body-else represent the code within the if and else statements respectively. We maintain 
the bodies and eliminate the rest of the code so instead of having the lines shown in Listing 4-15, we would 
end up with the code in Listing 4-16.

Listing 4-16. Maintaining Bodies of if and else Statements

body-if
body-else

The final code would look like Listing 4-17.

Listing 4-17. initFormAttributes() Method Already Modified

public function initFormAttributes($product)
    {
        $data = $this->createTemplate($this->tpl_form);
        if (!Combination::isFeatureActive()) {
            $this->displayWarning($this->l('This feature has been disabled. ').
                 ' <a href="index.php?tab=AdminPerformance&token='.Tools::getAdminTokenLite('A

dminPerformance').'#featuresDetachables">'.$this->l('Performances').'</a>');
        } elseif (Validate::isLoadedObject($product)) {
            if ($this->product_exists_in_shop) {
                    $attribute_js = array();
                    $attributes = Attribute::getAttributes($this->context->language->id, true);
                    foreach ($attributes as $k => $attribute) {
                         $attribute_js[$attribute['id_attribute_group']][$attribute 

['id_attribute']] = $attribute['name'];
natsort($attribute_js[$attribute['id_attribute_group']]);
}

                    $currency = $this->context->currency;

$data->assign('attributeJs', $attribute_js);
$data->assign('attributes_groups', AttributeGroup::getAttributesGroups 
($this->context->language->id));

                    $data->assign('currency', $currency);



Chapter 4 ■ Classes and Controllers

143

                    $images = Image::getImages($this->context->language->id, $product->id);

                    $data->assign('tax_exclude_option', Tax::excludeTaxeOption());
                    $data->assign('ps_weight_unit', Configuration::get('PS_WEIGHT_UNIT'));

                    $data->assign('ps_use_ecotax', Configuration::get('PS_USE_ECOTAX'));
                    $data->assign('field_value_unity', $this->getFieldValue($product, 'unity'));

                     $data->assign('reasons', $reasons = StockMvtReason::getStockMvtReasons 
($this->context->language->id));

                     $data->assign('ps_stock_mvt_reason_default', $ps_stock_mvt_reason_
default = Configuration::get('PS_STOCK_MVT_REASON_DEFAULT'));

                     $data->assign('minimal_quantity', $this->getFieldValue($product, 'minimal_
quantity') ? $this->getFieldValue($product, 'minimal_quantity') : 1);

                     $data->assign('available_date', ($this->getFieldValue($product, 
'available_date') != 0) ? stripslashes(htmlentities 
($this->getFieldValue($product, 'available_date'), $this-> 
context->language->id)) : '0000-00-00');

                    $i = 0;
                    $type = ImageType::getByNameNType('%', 'products', 'height');
                    if (isset($type['name'])) {
                        $data->assign('imageType', $type['name']);
                    } else {
                        $data->assign('imageType', ImageType::getFormatedName('small'));
                    }
                     $data->assign('imageWidth', (isset($image_type['width']) ? (int) 

($image_type['width']) : 64) + 25);
                    foreach ($images as $k => $image) {
                        $images[$k]['obj'] = new Image($image['id_image']);
                        ++$i;
                    }
                    $data->assign('images', $images);

                    $data->assign($this->tpl_form_vars);
                    $data->assign(array(
                        'list' => $this->renderListAttributes($product, $currency),
                        'product' => $product,
                        'id_category' => $product->getDefaultCategory(),
                         'token_generator' => Tools::getAdminTokenLite('AdminAttribute 

Generator'),
                         'combination_exists' => (Shop::isFeatureActive() && 

(Shop::getContextShopGroup()->share_stock) && count(Attribute 
Group::getAttributesGroups($this->context->language->id)) > 0 && 
$product->hasAttributes())

                    ));

            }



Chapter 4 ■ Classes and Controllers

144

Next, we’ll edit the your_admin_folder/themes/default/template/controllers/products/
combinations.tpl file. The first code line of this file is shown in Listing 4-18.

Listing 4-18. First Line of Code from combinations.tpl File

{if isset($product->id) && !$product->is_virtual}

We’ll remove the !product->is_virtual condition to guarantee that combinations will be visible for 
virtual products.

Finally, we’ll edit the js/admin/products.js file; this is the file responsible for hiding the 
Combinations tab when you click Virtual Product in the Informations tab. In this file, locate the function/
piece of code shown in Listing 4-19. It should be around line number 1080.

Listing 4-19. switchProductType Function in products.js

this.switchProductType = function(){
                if (product_type == product_type_pack)
                {
                        $('#pack_product').attr('checked', true);
                }
                else if (product_type == product_type_virtual)
                {
                        $('#virtual_product').attr('checked', true);
                        $('#condition').attr('disabled', true);
                        $('#condition option[value=new]').attr('selected', true);
                }
                else
                {
                        $('#simple_product').attr('checked', true);
                }

                $('input[name="type_product"]').on('click', function(e)
                {
                        // Reset settings
                        $('a[id*="VirtualProduct"]').hide();

                        $('#product-pack-container').hide();

                        $('div.is_virtual_good').hide();
                        $('#is_virtual').val(0);
                        tabs_manager.onLoad('VirtualProduct', function(){
                                $('#is_virtual_good').removeAttr('checked');
                        });

                        product_type = $(this).val();
                        $('#warn_virtual_combinations').hide();
                        $('#warn_pack_combinations').hide();
                        // until a product is added in the pack
                        // if product is PTYPE_PACK, save buttons will be disabled
                        if (product_type == product_type_pack)
                        {
                                if (has_combinations)



Chapter 4 ■ Classes and Controllers

145

                                {
                                        $('#simple_product').attr('checked', true);
                                        $('#warn_pack_combinations').show();
                                }
                                else
                                {
                                        $('#product-pack-container').show();
                                         // If the pack tab has not finished loaded the 

changes will be made when the loading event is 
triggered

                                         $("#product-tab-content-Pack").bind('loaded', 
function(){

                                                $('#ppack').val(1).attr('checked', true).
attr('disabled', true);

                                        });
                                         $("#product-tab-content-Quantities").bind('loaded', 

function(){
                                               $('.stockForVirtualProduct').show();
                                        });

                                        $('a[id*="Combinations"]').hide();
                                        $('a[id*="Shipping"]').show();

                                        $('#condition').removeAttr('disabled');
                                        $('#condition option[value=new]').removeAttr('selected');
                                        $('.stockForVirtualProduct').show();
                                         // if pack is enabled, if you choose pack, 

automatically switch to pack page
                                }
                        }
                   // Else If to be modified -->
                        else if (product_type == product_type_virtual)
                        {
                                if (has_combinations)
                                {
                                        $('#simple_product').attr('checked', true);
                                        $('#warn_virtual_combinations').show();
                                }
                                else
                                {
                                        $('a[id*="VirtualProduct"]').show();
                                        $('#is_virtual').val(1);

                                        tabs_manager.onLoad('VirtualProduct', function(){
                                               $('#is_virtual_good').attr('checked', true);
                                               $('#virtual_good').show();
                                        });

                                        tabs_manager.onLoad('Quantities', function(){
                                               $('.stockForVirtualProduct').hide();
                                        });



Chapter 4 ■ Classes and Controllers

146

                               // Line to be modified
                                        $('a[id*="Combinations"]').hide();
                                        $('a[id*="Shipping"]').hide();

                                        tabs_manager.onLoad('Informations', function(){
                                                $('#condition').attr('disabled', true);
                                                $('#condition option[value=refurbished]').

removeAttr('selected');
                                                $('#condition option[value=used]').

removeAttr('selected');
                                       });
                                }
                        }
                        else
                        {
                                // 3rd case : product_type is PTYPE_SIMPLE (0)
                                $('a[id*="Combinations"]').show();
                                $('a[id*="Shipping"]').show();
                                $('#condition').removeAttr('disabled');
                                $('#condition option[value=new]').removeAttr('selected');
                                $('.stockForVirtualProduct').show();
                        }
                        // this handle the save button displays and warnings
                        handleSaveButtons();
                });
        };

We added a comment above the else if statement that needs to be modified. Naturally it is the one 
with the product_type == product_type_virtual condition. In its body, we’ll find the line that needs to be 
edited as shown in Listing 4-20.

Listing 4-20. Line to Be Edited in switchProductType Function

$('a[id*="Combinations"]').hide();

Because we want the Combinations to be visible for virtual products, we switch the hide() method to 
show(), as shown in Listing 4-21.

Listing 4-21. Line Edited in switchProductType Function

$('a[id*="Combinations"]').show();

If we now try to create a new product in PS Back Office and select the Virtual Product option, we’ll see 
that the Combinations tab is enabled (Figure 4-9).



Chapter 4 ■ Classes and Controllers

147

In this recipe, we edited .tpl, .js, and .php files to solve our problem and we can now manipulate 
combinations on virtual products.

 ■ Note  sometimes we present the entire body of functions seeking to provide readers with an easy way of 
searching for the code that needs editing. thus, the goal of this approach is to facilitate the resolution of the 
problem proposed.

4-6. Sending Order Confirmation Message to Various 
Recipients
Problem
You want to send Order Confirmation e-mails, which are received by customers after purchasing on your PS 
website, to different recipients.

Solution
If you want to receive notifications on your e-mail inbox regarding new orders executed on your PS website, 
you have different alternatives. First, you can install the Mail Alerts module, which is free. This module can 
be configured to dispatch notifications triggered by certain events to various e-mail addresses; one of these 
notifications is triggered when a new order is made on the website.

Figure 4-9. Virtual product with Combinations tab enabled



Chapter 4 ■ Classes and Controllers

148

It uses is own e-mail template so if you configure the Order Confirmation template (Figure 4-10) that PS 
includes by default, you could be missing some information on the final message received.

The other alternative is to send the PS default Order Confirmation e-mail template to the customer and 
other recipients (you) by editing the classes/PaymentModule.php file.

How It Works
As always, the recommendation is to override the PaymentModule.php file by copying it in override/
classes.

This file contains the PaymentModule class of which most payment modules inherit. There we’ll find the 
validateOrder() method with the signature shown in Listing 4-22.

Listing 4-22. validateOrder() Method Signature

public function validateOrder($id_cart, $id_order_state, $amount_paid, $payment_method = 
'Unknown', $message = null, $extra_vars = array(), $currency_special = null, $dont_touch_
amount = false, $secure_key = false, Shop $shop = null)

This is the method in charge of validating orders on databases and sending confirmation e-mails. 
Therefore, it’s the method that we need to edit in order to add extra recipients to the Order Confirmation 
e-mail.

Figure 4-10. Order Confirmation e-mail template in PS Back Office



Chapter 4 ■ Classes and Controllers

149

Around line 777, we should find the code in Listing 4-23.

Listing 4-23. Code around Line 777 in validateOrder() Method

if (Validate::isEmail($this->context->customer->email)) {
             Mail::Send((int)$order->id_lang,
'order_conf',
                         Mail::l('Order confirmation', (int)$order->id_lang),
                       $data,
                       $this->context->customer->email,
                         $this->context->customer->firstname.' '.$this->context-> 

customer->lastname,
                       null,
                       null,
$file_attachement,
                       null, _PS_MAIL_DIR_, false, (int)$order->id_shop
       );

Validate is a PS class that can be found in the classes folder and incorporates, as the name suggests, 
different static methods for validating e-mails, names, images attributes, an so on. The isEmail() method 
validates whether a given e-mail is actually valid.

The Mail class, which can be also found in the classes folder, is intended to work as the mail object used 
by PrestaShop. It includes one singular static method, Send(). Its signature is shown in Listing 4-24.

Listing 4-24. Send() Function on Mail.php File

public static function Send($id_lang, $template, $subject, $template_vars, $to,
$to_name = null, $from = null, $from_name = null, $file_attachment = null, $mode_smtp = 
null, $template_path = _PS_MAIL_DIR_, $die = false, $id_shop = null, $bcc = null, $reply_to 
= null)

In general, the arguments are self-descriptive. If we would like to send this Order Confirmation e-mail 
to someone else, we just need to copy the previous code and set the fifth argument ($to) to the e-mail of our 
new recipient. (Listing 4-25)

Listing 4-25. New Recipient Added

if (Validate::isEmail($this->context->customer->email)) {
            Mail::Send((int)$order->id_lang,
                       'order_conf',
                         Mail::l('Order confirmation', (int)$order->id_lang),
                       $data,
                       $this->context->customer->email,
                         $this->context->customer->firstname.' '.$this->context-> 

customer->lastname,
                       null,
                       null,
                       $file_attachement,
                       null, _PS_MAIL_DIR_, false, (int)$order->id_shop
       );
if (Validate::isEmail($this->context->customer->email)) {
            Mail::Send((int)$order->id_lang,



Chapter 4 ■ Classes and Controllers

150

                       'order_conf',
                         Mail::l('Order confirmation', (int)$order->id_lang),
$data,
                       'arnaldo.skywalker@gmail.com',
$this->context->customer->firstname.' '.$this->context->customer->lastname,
                       null,
                       null,
                       $file_attachement,
                       null, _PS_MAIL_DIR_, false, (int)$order->id_shop
       );

By changing $this->context->customer->email to the e-mail of the new recipient, we can now send 
him the same confirmation e-mail that customers received after purchasing on the website.

4-7. Getting a Product Price
Problem
You want to get the price of a certain product.

Solution
The product price can be obtained using the static function getPriceStatic() found in classes/
Product.php.

Remember PrestaShop is based on the MVC (Model-View-Controller) design pattern so, in this case, 
the classes folder represents the Models, the controllers folder represents the Controllers, and everything in 
themes represents the Views.

Another solution is to use the method getPrice() of the Product class in Product.php. this approach 
would require an instance object.

How It Works
The getPriceStatic() function has the signature in Listing 4-26.

Listing 4-26. getPriceStatic() Signature

/**
     * Returns product price
     *
     * @param int      $id_product            Product id
     * @param bool     $usetax                With taxes or not (optional)
     * @param int|null $id_product_attribute  Product attribute id (optional).
     *     If set to false, do not apply the combination price impact.
     *     NULL does apply the default combination price impact.
     * @param int      $decimals    Number of decimals (optional)
     * @param int|null $divisor    Useful when paying many time without fees (optional)
     * @param bool    $only_reduc  Returns only the reduction amount
     * @param bool     $usereduc     Set if the returned amount will include reduction
     * @param int      $quantity      Required for quantity discount application  

(default value: 1)



Chapter 4 ■ Classes and Controllers

151

     * @param bool     $force_associated_tax   DEPRECATED - NOT USED Force to apply the 
associated tax.

     *               Only works when the parameter $usetax is true
     * @param int|null $id_customer  Customer ID (for customer group reduction)
     * @param int|null $id_cart      Cart ID. Required when the cookie is not accessible
     *               (e.g., inside a payment module, a cron task...)
     * @param int|null $id_address   Customer address ID. Required for price (tax included)
     *            calculation regarding the guest localization
     * @param null      $specific_price_output If a specific price applies regarding the 

previous parameters,
     *         this variable is filled with the corresponding SpecificPrice object
     * @param bool     $with_ecotax  Insert ecotax in price output.
     * @param bool     $use_group_reduction
     * @param Context  $context
     * @param bool     $use_customer_price
     * @return float   Product price
     */
    public static function getPriceStatic($id_product, $usetax = true, $id_product_attribute 
= null, $decimals = 6, $divisor = null, $only_reduc = false, $usereduc = true, $quantity = 
1, $force_associated_tax = false, $id_customer = null, $id_cart = null, $id_address = null, 
&$specific_price_output = null, $with_ecotax = true, $use_group_reduction = true, Context 
$context = null, $use_customer_price = true)

Every parameter is shown in the method details section (at the top) as @param followed by its type and 
description. (Listing 4-27)

Listing 4-27. Product Price Obtained on a Product with id 11 and applyingprice Reduction

$price = Product::getPriceStatic(
11,
            $usetax,
            $id_product_attribute,
            $decimals,
            $divisor,
            $only_reduc,
true,
            $quantity,
            $force_associated_tax,
            $id_customer,
            $id_cart,
            $id_address,
            $specific_price_output,
            $with_ecotax,
            $use_group_reduction,
            $context,
            $use_customer_price
        );

One interesting parameter is the bool $usereduc. It allows us to either get the product price with 
reductions applied or not.



Chapter 4 ■ Classes and Controllers

152

The final approach is to use the instance method getPrice(), as shown in Listing 4-28.

Listing 4-28. getPrice() Signature

/**
    * Get product price
    * Same as static function getPriceStatic, no need to specify product id
    *
    * @param bool $tax With taxes or not (optional)
    * @param int $id_product_attribute Product attribute id (optional)
    * @param int $decimals Number of decimals (optional)
    * @param int $divisor Util when paying many time without fees (optional)
    * @return float Product price in euros
    */
     public function getPrice($tax = true, $id_product_attribute = null, $decimals = 6, 

$divisor = null, $only_reduc = false, $usereduc = true, $quantity = 1)

As mentioned, before being able to use this function, we require an object instance. (Listing 4-29)

Listing 4-29. Getting Price on a Product with id 11

// instance of a product with id = 11
$product = new Produc(11);
// get the price using taxes
$product_price = $product->getPrice(true);

In Listing 4-29, we obtained the instance of a product with id 11 and later got its price using the 
getPrice() method applying taxes. We’ll see more on these functions and their parameters in the following 
chapters.

4-8. Getting Product Name and Quantity
Problem
You want to get a product’s name and quantity.

Solution
In order to get a product name and quantity, we can use the getProductName() and getQuantity() static 
functions of the Product class found in the classes/Product.php file.

How It Works
The getProductName() has the signature shown in Listing 4-30.



Chapter 4 ■ Classes and Controllers

153

Listing 4-30. getProductName() Signature

/**
     * Gets the name of a given product, in the given lang
     *
     * @since 1.5.0
     * @param int $id_product
     * @param int $id_product_attribute Optional
     * @param int $id_lang Optional
     * @return string
*/
public static function getProductName($id_product, $id_product_attribute = null, $id_lang = 
null)

To obtain the name, we must provide the product id; that’s the only mandatory parameter. The $id_
product_attribute and $id_lang is an optional parameter. (Listing 4-31)

Listing 4-31. Getting Name of Product with id 13

// Gets product with id 13 name in the current language
$name = Product::getProductName(13);

In order to obtain the quantity, we use the static function getQuantity(). (Listing 4-32)

Listing 4-32. getQuantity() Signature

/**
    * Get available product quantities
    *
    * @param int $id_product Product id
    * @param int $id_product_attribute Product attribute id (optional)
    * @return int Available quantities
    */
     public static function getQuantity($id_product, $id_product_attribute = null, $cache_is_

pack = null)

Listing 4-33 shows how to get quantities for a given product id.

Listing 4-33. Getting Quantities from a Product with id 13 and Combination id 2

// Gets quantity for the specific combination2 of a product with id 13
$quantity = Product::getQuantity(13, 2);

There’s another function for obtaining product quantities, which is getRealQuantity(). This function 
considers a specific warehouse being defined as a parameter.

4-9. Getting Product Categories and Features
Problem
You want to get product categories and features.



Chapter 4 ■ Classes and Controllers

154

Solution
In order to get product categories, we can use the static function getProductCategories(), which 
can be found in the classes/Product.php file. To get product features, we can use the static function 
getFrontFeaturesStatic() also from Product.php.

How It Works
The getProductCategories() function has the signature shown in Listing 4-34.

Listing 4-34. getProductCategories () Signature

/**
     * getProductCategories return an array of categories which this product belongs to
     *
     * @return array of categories
     */
public static function getProductCategories($id_product = '')

As we can see, the only parameter required is the product id. (Listing 4-35)

Listing 4-35. Getting Categories of Product with id 13

// Getting categories in the current language
$categories = Product::getProductCategoriesFull(13, $this->context->language->id);

In order to obtain features, we can use the static function getFrontFeaturesStatic (). (Listing 4-36)

Listing 4-36. getFrontFeaturesStatic () Signature

/*
    * Select all features for a given language
    *
    * @param $id_lang Language id
    * @return array Array with feature's data
    */
    public static function getFrontFeaturesStatic($id_lang, $id_product)

The code in Listing 4-37 shows how to obtain features for a given product id.

Listing 4-37. Getting Features from a Product with id 13 in the Current Language

// Gets featuresfor a product with id 13
$features = Product::getFrontFeaturesStatic($this->context->language->id, 13);

We can also obtain features and categories on an instance product using the class methods 
getFrontFeatures() and getCategories().



Chapter 4 ■ Classes and Controllers

155

4-10. Getting Order Total
Problem
You want to get the order total.

Solution
The order total is calculated in a very important method named getOrderTotal() of the Cart class found in 
classes/Cart.php file.

How It Works
The getOrderTotal() function has the signature shown in Listing 4-38.

Listing 4-38. getOrderTotal() function in Cart.php

/**
    * This function returns the total cart amount
    *
    * Possible values for $type:
    * Cart::ONLY_PRODUCTS
    * Cart::ONLY_DISCOUNTS
    * Cart::BOTH
    * Cart::BOTH_WITHOUT_SHIPPING
    * Cart::ONLY_SHIPPING
    * Cart::ONLY_WRAPPING
    * Cart::ONLY_PRODUCTS_WITHOUT_SHIPPING
    * Cart::ONLY_PHYSICAL_PRODUCTS_WITHOUT_SHIPPING
    *
    * @param bool $withTaxes With or without taxes
    * @param int $type Total type
    * @param bool $use_cache Allow using cache of the method CartRule::getContextualValue
    * @return float Order total
    */
     public function getOrderTotal($with_taxes = true, $type = Cart::BOTH, $products = null, 

$id_carrier = null, $use_cache = true)

The first argument indicates whether taxes should be included in the total. The $type variable acts as a 
filtering mechanism where Cart::BOTH indicates shipping and wrapping costs will be included in the total. 
Other Cart alternatives values are self-descriptive. The $products variable indicates the list of products that 
belong to the order, $id_carrier indicates the carrier associated with the order, and $use_cache indicates 
whether to use or not the cache of the CartRule::getContextualValue method. (Listing 4-39)

Listing 4-39. Saving Order Total in a Variable

$total_products = $this->getOrderTotal(false, Cart::BOTH);



Chapter 4 ■ Classes and Controllers

156

This method is used by payment modules and PS Back Office throughout the shopping process to 
obtain different totals depending on the value of the Cart variable. We’ll see more of it in Chapter 5.

Summary
In this chapter, we examined classes and controllers in PrestaShop; the chapter recipes demonstrated how 
the modification of these PS core files allows us to change the Back Office and the front end. In Chapter 5, 
we´ll describe how to transform PS into a booking system.

http://dx.doi.org/10.1007/978-1-4842-2574-5_5
http://dx.doi.org/10.1007/978-1-4842-2574-5_5


157© Arnaldo Pérez Castaño 2017 
A. P. Castaño, PrestaShop Recipes, DOI 10.1007/978-1-4842-2574-5_5

CHAPTER 5

Booking System

Booking systems are very common nowadays. We usually find them on touristic websites where customers 
might book a car for several days, a flight from one city to another, a hotel room for a couple of nights, or any 
other tourism-related service.

In this type of mechanism, you can have the final payment divided into two parts: a deposit paid on the 
website and the remaining payment paid after customers obtain the requested service. In a booking system, 
you may need to check whether a given product is available from a specific date range or you may need to 
check whether it is available at all.

In this chapter, we’ll examine various recipes that will show you how to transform your PrestaShop 
website into a booking system. The customizations we’ll explain make use of PS capacities and, in some 
cases, extend them. You’ll learn the following:

•	 How to include a deposit payment for booking products

•	 How to change the pattern of your links

•	 How to improve SEO by starting a blog related to your products and services

•	 How to create your own hook

•	 How to add a configuration link to your module

•	 How to create a YouTube module

•	 How to configure your PS site using SQL queries during module installation

•	 How to create a module for sending e-mail notifications after order confirmation

•	 How to add more information to order e-mail notifications

•	 How to change CSS styles through a module

 ■ Note  PrestaShop includes all the facilities for easily transforming itself into a booking system.



ChaPter 5 ■ Booking SyStem

158

5-1. Include a Deposit Payment for Booking Products
Problem
Include a deposit payment for booking products and services.

Solution
In order to solve this problem, we’ll use PS price reduction system, shown in Figure 5-1, to obtain a deposit 
payment and a second payment at the moment customers actually obtain their service or product.

When we use price reduction in PS, we visually obtain, as Figure 5-1 illustrates, two prices in the 
product box: a real price to be paid on the website and a second price, which is the old price not paid 
through the website anymore.

Logically, this is exactly what we need. It’s not visually displayed the way we want, but it has all the 
elements required: payment on the site (booking deposit) plus another payment shown below (price for the 
product when it’s obtained).

 ■ Note  We can have price reduction for products in PS through specific prices found in the product edit page 
and through cart rules found in Price Rules->Cart Rules.

Figure 5-1. Box showing product price reduction



ChaPter 5 ■ Booking SyStem

159

How It Works
To create a product price reduction, we go to PS Back Office following the path Catalog->Products and edit 
a product.

In the Prices tab, we’ll find a Specific Prices section, as illustrated in Figure 5-2.

In this section, we can click the Add a new specific price button to display a panel where we can add 
price reductions.

A price reduction can be added for a certain combination, currency, country, customer, date 
availability, a given product number, and so on. The reduction can be in percentage or currency units 
(dollars, euros, pounds, for example) as depicted in Figure 5-3.

Figure 5-2. Specific Prices section in Prices tab on product edit page

Figure 5-3. Specific Prices section in Prices tab on product edit page



ChaPter 5 ■ Booking SyStem

160

The product price can also be changed in this section for some of the previously mentioned attributes 
(currency, quantity, and so on), or we can stick to the base price.

Once we add a specific price, we end up with a product box as the one we have seen on Figure 5-1. All 
that remains now is to change that view to make it look like we are having a deposit payment plus a second 
payment after the service or product has been obtained.

5-2. Changing the Product View to Display Deposit Payment
Problem
You have added a specific price for a certain product and you want to display it as a deposit payment.

Solution
In order to complete this recipe, we’ll need to edit the product.tpl file found in your current theme to 
change what we see in Figure 5-4 to something that resembles a deposit payment.

Thus, the solution would be to delete the reduction box showing “-20%” and, in general, transform this 
view into a deposit payment view.

How It Works
In themes/your_theme/product.tpl file, locate around line 268, a p HTML element with id reduction_
percent. (Listing 5-1)

Listing 5-1. Section of product.tpl File to Be Edited

<p id="reduction_percent" {if !$product->specificPrice || $product->specificPrice.reduction_
type != 'percentage'} style="display:none;"{/if}>
        <span id="reduction_percent_display">
         {if $product->specificPrice &&$product->specificPrice.reduction_type == 

'percentage'}-{$product->specificPrice.reduction*100}%{/if}
        </span>
</p>

Figure 5-4. Price displayed for product with reduction or discount



ChaPter 5 ■ Booking SyStem

161

The previous code should be modified into the one shown in Listing 5-2.

Listing 5-2. Modificationof product.tpl Contents

<p {if true || !$product->specificPrice || $product->specificPrice.reduction_type != 
'percentage'} style="display:none;"{/if}>
        <span id="reduction_percent_display">
         {if $product->specificPrice && $product->specificPrice.reduction_type == 

'percentage'}-{$product->specificPrice.reduction*100}%{/if}
        </span>
</p>

We simply took away the id with all of its related styles and set a true expression in the if statement to 
force it to always be true and avoid displaying the p HTML element. Analogously, you can do the same with 
the element with id reduction_amount; Figure 5-5 illustrates the result.

Above the HTML element we just edited, locate another paragraph with class our_price_display and 
add the “Deposit” text at the end, as shown in Listing 5-3.

Listing 5-3. Adding Deposit Text

<p class="our_price_display" itemprop="offers" itemscope itemtype="http://schema.org/Offer">
         {if $product->quantity > 0}<link itemprop="availability" href="http://schema.org/

InStock"/>{/if}
{if $priceDisplay >= 0 && $priceDisplay <= 2}
         <span id="our_price_display" itemprop="price">{convertPrice price=$productPrice} 

</span>
<!--{if $tax_enabled  && ((isset($display_tax_label) && $display_tax_label == 1) || 
!isset($display_tax_label))}
{if $priceDisplay == 1}{l s='tax excl.'}{else}{l s='tax incl.'}{/if}
{/if}-->
        <meta itemprop="priceCurrency" content="{$currency->iso_code}" />
        {hook h="displayProductPriceBlock" product=$product type="price"}
        {/if}
        Deposit
</p>

Figure 5-5. Price box without percent reduction



ChaPter 5 ■ Booking SyStem

162

Now that we have everything set up regarding the deposit payment, let’s modify the last price. Using 
the CSS Editing module that we have been using in this book, change the #old_price styles, as shown in 
Listing 5-4.

Listing 5-4. Styles for #old_price Paragraph\

#old_price {
    padding-bottom: 15px;
    font-size: 27px;
   text-decoration: none;
    display: inline-block;
    font-family: "Open Sans",sans-serif;
    line-height: 23px;
    color: black;
}

The final result is shown in Figure 5-6.

In this recipe, we learned how to visually adapt the price reduction or discount system that PS 
incorporates to adjust it into a deposit system.

 ■ Note  you will probably have to delete the product percent discount box also from other views. you can 
always use the browser inspector to find the code associated to the discount box and the .tpl file where the 
code can be found.

5-3. Calculating the Deposit Value in the Cart
Problem
You want to calculate the deposit value to eventually display it in the Cart Summary.

Solution
In order to solve this problem, we’ll need to modify the getOrderTotal() method of the important Cart 
class found in classes/Cart.php. Remember this is the method where the total amount to be paid is 
calculated; thus, it’s used throughout the ordering and checkout process and by payment modules (bank 
wire, PayPal, Stripe, and so on.).

Figure 5-6. Deposit price and balance due



ChaPter 5 ■ Booking SyStem

163

To start, let’s open the Cart.php file and locate the getOrderTotal() method.

How It Works
At the beginning of the Cart class, you will stumble on the next variable declarations, as shown in Listing 5-5.

Listing 5-5. Constant Variable Declarations around Line 144 of Cart.php File

const ONLY_PRODUCTS = 1;
const ONLY_DISCOUNTS = 2;
const BOTH = 3;
const BOTH_WITHOUT_SHIPPING = 4;
const ONLY_SHIPPING = 5;
const ONLY_WRAPPING = 6;
const ONLY_PRODUCTS_WITHOUT_SHIPPING = 7;
const ONLY_PHYSICAL_PRODUCTS_WITHOUT_SHIPPING = 8;

These variables are used to obtain different amounts depending on different conditions. For further 
information, refer to Chapter 4, where we detail this method.

We’ll include three constant variables to the previous ones. (Listing 5-6)

Listing 5-6. Constant Variables Added to Cart Class

const ONLY_PRODUCTS = 1;
    const ONLY_DISCOUNTS = 2;
    const BOTH = 3;
    const BOTH_WITHOUT_SHIPPING = 4;
    const ONLY_SHIPPING = 5;
    const ONLY_WRAPPING = 6;
    const ONLY_PRODUCTS_WITHOUT_SHIPPING = 7;
    const ONLY_PHYSICAL_PRODUCTS_WITHOUT_SHIPPING = 8;
const ONLY_DUE = 9;
const ONLY_DEPOSIT = 10;
const ONLY_DEPOSIT_DUE = 11;

These variables will be used in this recipe and in the next two to filter the type of order total you want.
If you only want to obtain the deposit payment, you would filter by ONLY_DEPOSIT. If you need to get the 

balance due, you would filter by the ONLY_DEPOSIT variable, and if you want to get them both, you activate 
the ONLY_DEPOSIT_DUE variable.

Now, in the first lines of the getOrderTotal() method, find the declaration of the array in Listing 5-7.

Listing 5-7. In This Array, We Add the New Constant Variables.

$array_type = array(
                        Cart::ONLY_PRODUCTS,
                        Cart::ONLY_DISCOUNTS,
                        Cart::BOTH,
                        Cart::BOTH_WITHOUT_SHIPPING,
                        Cart::ONLY_SHIPPING,
                        Cart::ONLY_WRAPPING,
                        Cart::ONLY_PRODUCTS_WITHOUT_SHIPPING,
                        Cart::ONLY_PHYSICAL_PRODUCTS_WITHOUT_SHIPPING,

http://dx.doi.org/10.1007/978-1-4842-2574-5_4


ChaPter 5 ■ Booking SyStem

164

                  Cart::ONLY_DEPOSIT,
                  Cart::ONLY_DUE,
                  Cart::ONLY_DEPOSIT_DUE,
                );

To be able to get our deposit payment, we need to edit the next loop, which is part of the 
getOrderTotal() method, as illustrated in Listing 5-8.

Listing 5-8. For Each Loop Inside, getOrderTotal() Method in Cart Class

foreach ($products as $product) {
            // products refer to the cart details

            if ($virtual_context->shop->id != $product['id_shop']) {
                $virtual_context->shop = new Shop((int)$product['id_shop']);
            }

            if ($ps_tax_address_type == 'id_address_invoice') {
                $id_address = (int)$this->id_address_invoice;
            } else {
                $id_address = (int)$product['id_address_delivery'];
            } // Get delivery address of the product from the cart
            if (!$address_factory->addressExists($id_address)) {
                $id_address = null;
            }

                       // The $null variable below is not used,
            // but it is necessary to pass it to getProductPrice because
            // it expects a reference.
            $null = null;
            $price = $price_calculator->getProductPrice(
                (int)$product['id_product'],
                $with_taxes,
                (int)$product['id_product_attribute'],
                6,
                null,
                false,
                true,
                $product['cart_quantity'],
                false,
                (int)$this->id_customer ? (int)$this->id_customer : null,
                (int)$this->id,
                $id_address,
                $null,
                $ps_use_ecotax,
                true,
                $virtual_context
            );

        $address = $address_factory->findOrCreate($id_address, true);



ChaPter 5 ■ Booking SyStem

165

if ($with_taxes) {
                 $id_tax_rules_group = Product::getIdTaxRulesGroupByIdProduct((int)$product['

id_product'], $virtual_context);
                 $tax_calculator = TaxManagerFactory::getManager($address, $id_tax_rules_

group)->getTaxCalculator();
            } else {
                $id_tax_rules_group = 0;
            }

            if (in_array($ps_round_type, array(Order::ROUND_ITEM, Order::ROUND_LINE))) {
                if (!isset($products_total[$id_tax_rules_group])) {
                    $products_total[$id_tax_rules_group] = 0;
                }
            } elseif (!isset($products_total[$id_tax_rules_group.'_'.$id_address])) {
                $products_total[$id_tax_rules_group.'_'.$id_address] = 0;
            }

            switch ($ps_round_type) {
                case Order::ROUND_TOTAL:
                     $products_total[$id_tax_rules_group.'_'.$id_address] += $price * 

(int)$product['cart_quantity'];
                    break;

                case Order::ROUND_LINE:
                    $product_price = $price * $product['cart_quantity'];
                     $products_total[$id_tax_rules_group] += Tools::ps_round($product_price, 

$compute_precision);
                    break;

                case Order::ROUND_ITEM:
                default:
                     $product_price = /*$with_taxes ? $tax_calculator->addTaxes($price) : 

*/$price;
                     $products_total[$id_tax_rules_group] += Tools::ps_round($product_price, 

$compute_precision) * (int)$product['cart_quantity'];
                    break;
            }
}

In the previous loop, each product in the Cart is processed and its price acquired for the order 
total. It is in this code fragment where we need to insert the logic for calculating the deposit and balance 
due payments. In the case that concerns this recipe, the deposit, we will do nothing. Remember that 
in consistency with our philosophy, the reduced price matches the deposit and that’s exactly what the 
getOrderTotal() method will return.

5-4. Calculating the Balance Due Value in the Cart
Problem
You want to calculate the balance due value to eventually display it in the Cart Summary.



ChaPter 5 ■ Booking SyStem

166

Solution
To obtain the balance due, we’ll edit the getOrderTotal() method presented in the last recipe. Specifically, 
we’ll edit the foreach statement shown in Listing 5-8.

How It Works
Right before the code shown in Listing 5-8, in the getOrderTotal() method of the Cart class create a new 
variable $balance_due and initialize it to 0. Then edit the foreach as shown in Listing 5-9.

Listing 5-9. Foreach Statement in getOrderTotal() Method Modified to Calculate Balance Due Value

// Balance Due
                $balance_due = 0;

        foreach ($products as $product) {
            // products refer to the cart details

            if ($virtual_context->shop->id != $product['id_shop']) {
                $virtual_context->shop = new Shop((int)$product['id_shop']);
            }

            if ($ps_tax_address_type == 'id_address_invoice') {
                $id_address = (int)$this->id_address_invoice;
            } else {
                $id_address = (int)$product['id_address_delivery'];
            } // Get delivery address of the product from the cart
            if (!$address_factory->addressExists($id_address)) {
                $id_address = null;
            }

                       // The $null variable below is not used,
            // but it is necessary to pass it to getProductPrice because
            // it expects a reference.
            $null = null;
            $price = $price_calculator->getProductPrice(
                (int)$product['id_product'],
                $with_taxes,
                (int)$product['id_product_attribute'],
                6,
                null,
                false,
                true,
                $product['cart_quantity'],
                false,
                (int)$this->id_customer ? (int)$this->id_customer : null,
                (int)$this->id,
                $id_address,
                $null,
                $ps_use_ecotax,
                true,



ChaPter 5 ■ Booking SyStem

167

                $virtual_context
            );

                        // Balance Due per product
                        $balance_due_product = $price_calculator->getProductPrice(
                (int)$product['id_product'],
                $with_taxes,
                (int)$product['id_product_attribute'],
                6,
                null,
                false,
                false,
                $product['cart_quantity'],
                false,
                (int)$this->id_customer ? (int)$this->id_customer : null,
                (int)$this->id,
                $id_address,
                $null,
                $ps_use_ecotax,
                true,
                $virtual_context
            );

                        // Get product price
                        $balance_due_product *= $product['cart_quantity'];
                        $balance_due += $balance_due_product;

                        $address = $address_factory->findOrCreate($id_address, true);

            if ($with_taxes) {
                 $id_tax_rules_group = Product::getIdTaxRulesGroupByIdProduct((int)$product 

['id_product'], $virtual_context);
                 $tax_calculator = TaxManagerFactory::getManager($address, $id_tax_rules_

group)->getTaxCalculator();
            } else {
                $id_tax_rules_group = 0;
            }

            if (in_array($ps_round_type, array(Order::ROUND_ITEM, Order::ROUND_LINE))) {
                if (!isset($products_total[$id_tax_rules_group])) {
                    $products_total[$id_tax_rules_group] = 0;
                }
            } elseif (!isset($products_total[$id_tax_rules_group.'_'.$id_address])) {
                $products_total[$id_tax_rules_group.'_'.$id_address] = 0;
            }

            switch ($ps_round_type) {
                case Order::ROUND_TOTAL:
                     $products_total[$id_tax_rules_group.'_'.$id_address] += $price * 

(int)$product['cart_quantity'];
                    break;



ChaPter 5 ■ Booking SyStem

168

                case Order::ROUND_LINE:
                    $product_price = $price * $product['cart_quantity'];
                     $products_total[$id_tax_rules_group] += Tools::ps_round($product_price, 

$compute_precision);
                    break;

                case Order::ROUND_ITEM:
                default:
                     $product_price = /*$with_taxes ? $tax_calculator->addTaxes($price) : 

*/$price;
                     $products_total[$id_tax_rules_group] += Tools::ps_round($product_price, 

$compute_precision) * (int)$product['cart_quantity'];
                    break;
            }
        }

Let’s examine the new lines added to the foreach statement in Listing 5-10.

Listing 5-10. Balance Due Obtained Using getProductPrice() Function

// Balance Due per product
                       $balance_due_product = $price_calculator->getProductPrice(
                (int)$product['id_product'],
                $with_taxes,
                (int)$product['id_product_attribute'],
                6,
                null,
                false,
                false,
                $product['cart_quantity'],
                false,
                (int)$this->id_customer ? (int)$this->id_customer : null,
                (int)$this->id,
                $id_address,
                $null,
                $ps_use_ecotax,
                true,
                $virtual_context
            );

First, we obtain the balance due value calling the getProductPrice() function passing false as value 
of the seventh argument (usereduc), that is, to get the price without discount or reduction so we will end up 
exactly with the balance due according to the philosophy of our booking system, which relies on product 
specific prices and PS discount system. (Listing 5-11)

Listing 5-11. Accumulating Balance Due Total for Each Product in Cart in $balance_due Variable

$balance_due_product *= $product['cart_quantity'];
$balance_due += $balance_due_product;



ChaPter 5 ■ Booking SyStem

169

After obtaining the balance due of a product added to the cart, we multiply it by the quantity ordered; 
that will give us the total balance due of a product. For each product, sum that value to the $balance_due 
variable and in the end we’ll have the total balance due.

Almost at the end of the getOrderTotal() method and to return the balance due total, we should have 
the code shown in Listing 5-12.

Listing 5-12. Returning Balance Due

if ($type == Cart::ONLY_DUE) {
        return Tools::ps_round((float)$balance_due, $compute_precision);
}

return Tools::ps_round((float)$order_total, $compute_precision);

In the next recipe, we’ll describe the last modification required in the getOrderTotal() method.

5-5. Obtaining Deposit Payment Plus Balance Due
Problem
You want to obtain the value that represents the deposit payment plus the balance due of these products in 
our booking system.

Solution
In order to solve this problem, we’ll add another modification to the getOrderTotal() method of the Cart 
class.

How It Works
We’ll use the Cart::ONLY_DEPOSIT_DUE variable for filtering and returning the deposit plus balance due 
whenever that constant is submitted as argument of the getOrderTotal() method.

The modification would be in the end of the method, as shown in Listing 5-13.

Listing 5-13. Returning Balance Due Plus Deposit Value

if ($type == Cart::ONLY_DUE_DEPOSIT) {
                 return Tools::ps_round((float)$balance_due + (float)$order_total,  

$compute_precision);
                }

                return Tools::ps_round((float)$order_total, $compute_precision);
    }

Now that we have everything settled in the Cart class we can start analyzing in the following recipes how 
to display this new information we just added in the Cart Summary.



ChaPter 5 ■ Booking SyStem

170

5-6. Getting Deposit and Balance Due Values into Cart 
Summary
Problem
You want to add the deposit and balance due values into the Cart Summary.

Solution
To solve this problem, we’ll edit the classes/Cart.php file and more specifically the getSummaryDetails() 
method.

How It Works
In the getSummaryDetails() method, all Smarty variables used in the Cart Summary are calculated. The first 
lines of the method are shown in Listing 5-14.

Listing 5-14. First Lines of getSummaryDetails() Method

public function getSummaryDetails($id_lang = null, $refresh = false)
        {
                $context = Context::getContext();
                if (!$id_lang)
                        $id_lang = $context->language->id;

                $delivery = new Address((int)$this->id_address_delivery);
                $invoice = new Address((int)$this->id_address_invoice);

                // New layout system with personalization fields
                $formatted_addresses = array(
                        'delivery' => AddressFormat::getFormattedLayoutData($delivery),
                        'invoice' => AddressFormat::getFormattedLayoutData($invoice)
                );

                $base_total_tax_inc = $this->getOrderTotal(true);
                $base_total_tax_exc = $this->getOrderTotal(false);

$total_tax = $base_total_tax_inc - $base_total_tax_exc;

We’ll change the value associated with the $base_total_tax_inc and $base_total_tax_exc 
variables in Listing 5-15.

Listing 5-15. New Balues for $base_total_tax_inc and $base_total_tax_exc Variables

$base_total_tax_inc = $this->getOrderTotal(true, Cart::ONLY_DEPOSIT_DUE);
$base_total_tax_exc = $this->getOrderTotal(false);

The $base_total_tax_inc variable represents the total price of the product or service (deposit + 
balance due). If you want to avoid having any tax involved, you can comment the $total_tax = $base_
total_tax_inc - $base_total_tax_exc line and set $total_tax to 0.



ChaPter 5 ■ Booking SyStem

171

Now locate the $summary array declaration and edit it as shown in Listing 5-16 to add the total_due and 
total_deposit Smarty variables.

Listing 5-16. Smarty Variables for Cart Summary

$summary = array(
            'delivery' => $delivery,
            'delivery_state' => State::getNameById($delivery->id_state),
            'invoice' => $invoice,
            'invoice_state' => State::getNameById($invoice->id_state),
            'formattedAddresses' => $formatted_addresses,
            'products' => array_values($products),
            'gift_products' => $gift_products,
            'discounts' => array_values($cart_rules),
            'is_virtual_cart' => (int)$this->isVirtualCart(),
            'total_discounts' => $total_discounts,
            'total_discounts_tax_exc' => $total_discounts_tax_exc,
            'total_wrapping'=> $this->getOrderTotal(true, Cart::ONLY_WRAPPING),
            'total_wrapping_tax_exc' => $this->getOrderTotal(false, Cart::ONLY_WRAPPING),
            'total_shipping' => $total_shipping,
            'total_shipping_tax_exc' => $total_shipping_tax_exc,
            'total_products_wt' => $total_products_wt,
            'total_products' => $total_products,
            'total_price' => $base_total_tax_inc,
            'total_tax' => $total_tax,
            'total_price_without_tax' => $base_total_tax_exc,
             'is_multi_address_delivery' => $this->isMultiAddressDelivery() || ((int)

Tools::getValue('multi-shipping') == 1),
             'free_ship' =>!$total_shipping && !count($this->getDeliveryAddressesWithoutCarri

ers(true, $errors)),
            'carrier' => new Carrier($this->id_carrier, $id_lang),
                'total_due' => $this->getOrderTotal(true, Cart::ONLY_DUE),
                'total_deposit' => $this->getOrderTotal(true, Cart::ONLY_DEPOSIT)
        );

Once we complete this recipe, we’ll have the Smarty variables declared in Listing 5-16 available from 
every template file related to the Cart Summary.

5-7. Displaying Deposit Payment and Balance Due in the 
Cart Summary
Problem
You want to display the deposit payment and balance due in the Cart Summary.

Solution
In Recipe 5-6, we were able to associate the deposit payment and balance due values with Smarty variables 
that are submitted to the Cart Summary template files; now we just need to find a place in the .tpl files to 
put those variables.



ChaPter 5 ■ Booking SyStem

172

How It Works
In your current theme folder, locate the shopping-cart.tpl file; this is the file where the table representing 
the Cart Summary is created. We’ll edit it to incorporate the deposit and balance due payments.

Modify the first 50 lines of shopping-cart.tpl to make it look like a reservations summary, as shown in 
Listing 5-17.

Listing 5-17. Modifying Cart Summary Text into Reservations Summary Text

{capture name=path}{l s='Your Reservations'}{/capture}

<h1 id="cart_title" class="page-heading">{l s='Reservations summary'}
        {if !isset($empty) && !$PS_CATALOG_MODE}
                <span class="heading-counter">{l s='You have reserved:'}
                        <span id="summary_products_quantity">{$productNumber} {if 

$productNumber == 1}{l s='product'}{else}{l s='products'}{/if}</span>
                </span>
        {/if}
</h1>

{if isset($account_created)}
        <p class="alert alert-success">
                {l s='Your account has been created.'}
        </p>
{/if}

{assign var='current_step' value='summary'}
{include file="$tpl_dir./order-steps.tpl"}
{include file="$tpl_dir./errors.tpl"}

{if isset($empty)}
         <p class="alert alert-warning">{l s='You have no reservations.'}</p>
{elseif $PS_CATALOG_MODE}
        <p class="alert alert-warning">{l s='This site has not accepted your new order.'}</
p>
{else}

Now locate a table HTML element with id cart_summary and edit its <thead> tag content so it includes 
Deposit and Balance Due columns, as shown in Listing 5-18.

Listing 5-18. Adding Balance Due and Deposit Columns in Reservations Summary

<table id="cart_summary" class="table table-bordered {if $PS_STOCK_MANAGEMENT}stock-
management-on{else}stock-management-off{/if}">
        <thead>
                <tr>
                <th class="cart_product first_item">{l s='Tour/Car'}</th>
                <th class="cart_description item">{l s='Description'}</th>
                        {if $PS_STOCK_MANAGEMENT}
                        {assign var='col_span_subtotal' value='3'}
                        <th class="cart_avail item text-center">{l s='Availability'}</th>
                        {else}



ChaPter 5 ■ Booking SyStem

173

                        {assign var='col_span_subtotal' value='2'}
                        {/if}
                <th class="cart_unit item text-right">{l s='Balance Due'}</th>
                <th class="cart_unit item text-right">{l s='Reservation Deposit'}</th>
                <th class="cart_quantity item text-center">{l s='Qty'}</th>
                <th class="cart_delete last_item">&nbsp;</th>
                <th class="cart_total item text-right">{l s='Total'}</th>
                </tr>
        </thead>

Next, we’ll modify the last part of the tfoot tag of the cart-summary table to add rows in the 
Reservations Summary for detailing balance due and deposit payments, as shown in Listing 5-19.

Listing 5-19. Adding Total Balance Due and Total Deposit Rows in Reservations Summary

{* Deposit Due *}
                <tr class="cart_total_price">
                <td colspan="{$col_span_subtotal}" class="total_price_container text-right">
                        Total Deposit
                </td>
                <td colspan="2" class="price">
        <span id="total_deposit">{displayPrice price=$total_deposit}</span>
                </td>
        </tr>
        {* Balance Due *}
        <tr class="cart_total_price">
        <td colspan="{$col_span_subtotal}" class="total_price_container text-right">
                Total Due
        </td>
        <td colspan="2" class="price">
                <span id="total_due">{displayPrice price=$total_due}</span>
        </td>
</tr>
        <tr class="cart_total_price">
                <td colspan="{$col_span_subtotal}" class="total_price_container text-right">
                <span>{l s='Total'}</span>
<div class="hookDisplayProductPriceBlock-price">
{hook h="displayCartTotalPriceLabel"}
</div>
        </td>
                                        {if $use_taxes}
                                                 <td colspan="2" class="price" id="total_

price_container">
                <span id="total_price">{displayPrice price=$total_price}</span>
                                               </td>
                                       {else}
                        <td colspan="2" class="price" id="total_price_container">
                                                <span id="total_price">{displayPrice 

price=$total_price_without_tax}</span>
                                               </td>
                                       {/if}
                                </tr>
                        </tfoot>



ChaPter 5 ■ Booking SyStem

174

In order to add the balance due value per product, we must edit the shopping-cart-product-line.tpl 
file; this is where all rows describing products in the Cart Summary are generated. (Listing 5-20)

Listing 5-20. First Lines of shopping-cart-product-line.tpl File Where Balance Due Has Been Added to 
Product Row

<tr id="product_{$product.id_product}_{$product.id_product_attribute}_{if $quantityDisplayed 
> 0}nocustom{else}0{/if}_{$product.id_address_delivery|intval}{if !empty($product.
gift)}_gift{/if}" class="cart_item{if isset($productLast) && $productLast && 
(!isset($ignoreProductLast) || !$ignoreProductLast)} last_item{/if}{if isset($productFirst) 
&& $productFirst} first_item{/if}{if isset($customizedDatas.$productId.$productAttrib
uteId) AND $quantityDisplayed == 0} alternate_item{/if} address_{$product.id_address_
delivery|intval} {if $odd}odd{else}even{/if}">
        <td class="cart_product">
                 <a href="{$link->getProductLink($product.id_product, $product.link_rewrite, 

$product.category, null, null, $product.id_shop, $product.id_product_
attribute, false, false, true)|escape:'html':'UTF-8'}"><img src="{$link-
>getImageLink($product.link_rewrite, $product.id_image, 'small_default') 
|escape:'html':'UTF-8'}" alt="{$product.name|escape:'html':'UTF-8'}"  
{if isset($smallSize)}width="{$smallSize.width}" height="{$smallSize.
height}" {/if} /></a>

        </td>
        <td class="cart_description">
                {capture name=sep} : {/capture}
                {capture}{l s=' : '}{/capture}
                 <p class="product-name"><a href="{$link->getProductLink($product.id_product, 

$product.link_rewrite, $product.category, null, null, $product.id_shop, 
$product.id_product_attribute, false, false, true)|escape:'html':'UTF-
8'}">{$product.name|escape:'html':'UTF-8'}</a></p>

                         {if $product.reference}<small class="cart_ref">{l s='SKU'}{$smarty.
capture.default}{$product.reference|escape:'html':'UTF-8'}</small>{/if}

                 {if isset($product.attributes) && $product.attributes}<small><a 
href="{$link->getProductLink($product.id_product, $product.link_
rewrite, $product.category, null, null, $product.id_shop, $product.
id_product_attribute, false, false, true)|escape:'html':'UTF-
8'}">{$product.attributes|@replace: $smarty.capture.sep:$smarty.capture.
default|escape:'html':'UTF-8'}</a></small>{/if}

        </td>
        {if $PS_STOCK_MANAGEMENT}
              <td class="cart_avail"><span class="label{if $product.quantity_available  

<= 0 && isset($product.allow_oosp) && !$product.allow_oosp} label-danger{elseif 
$product.quantity_available <= 0} label-warning{else} label-success{/if}"> 
{if $product.quantity_available <= 0}{if isset($product.allow_oosp) && 
$product.allow_oosp}{if isset($product.available_later) && $product.available_
later}{$product.available_later}{else}{l s='In Stock'}{/if}{else}{l s='Out of 
stock'}{/if}{else}{if isset($product.available_now) && $product.available_now}
{$product.available_now}{else}{l s='In Stock'}{/if}{/if}</span>{if !$product.
is_virtual}{hook h="displayProductDeliveryTime" product=$product}{/if}</td>

        {/if}
         <td class="balance-due text-right">{displayPrice price=$product.price_without_

specific_price}</td>



ChaPter 5 ■ Booking SyStem

175

Notice that we are taking the price without specific price or reduction as the balance due. That fits 
perfectly with the booking system approach followed throughout this chapter; the final result can be seen in 
Figure 5-7.

We are almost done, but there’s a point we haven’t covered yet: the AJAX component in the Cart 
Summary. When you click the minus and plus signs next to the delete button, all values (deposit, balance 
due, total) should be updated. This is accomplished through AJAX calls.

To synchronize the AJAX calls with the changes we have made, we’ll need to edit the your_theme/js/
cart-summary.js file. Open it and find the updateCartSummary() function.

Within its body, around line 962, we’ll modify the final lines of the function to set the values for the 
balance due and deposit payments, as shown in Listing 5-21.

Listing 5-21. Setting Values for Deposit and Balance Due Payments in cart-summary.js file

// Cart summary
         $('#summary_products_quantity').html(nbrProducts + ' ' + (nbrProducts > 1 ? 

txtProducts : txtProduct));
        if (priceDisplayMethod !== 0)
                 $('#total_product').html(formatCurrency(json.total_products, currencyFormat, 

currencySign, currencyBlank));
        else
                 $('#total_product').html(formatCurrency(json.total_products_wt, 

currencyFormat, currencySign, currencyBlank));
         $('#total_price').html(formatCurrency(json.total_price, currencyFormat, 

currencySign, currencyBlank));
         $('#total_due').html(formatCurrency(json.total_due, currencyFormat, currencySign, 

currencyBlank));
         $('#total_deposit').html(formatCurrency(json.total_deposit, currencyFormat, 

currencySign, currencyBlank));
         $('#total_price_without_tax').html(formatCurrency(json.total_price_without_tax, 

currencyFormat, currencySign, currencyBlank));

Figure 5-7. Deposit and balance due values displayed in Reservations Summary



ChaPter 5 ■ Booking SyStem

176

         $('#total_tax').html(formatCurrency(json.total_tax, currencyFormat, currencySign, 
currencyBlank));

        $('.cart_total_delivery').show();
        if (json.total_shipping > 0)
        {
                if (priceDisplayMethod !== 0)
                         $('#total_shipping').html(formatCurrency(json.total_shipping_tax_

exc, currencyFormat, currencySign, currencyBlank));
                else
                         $('#total_shipping').html(formatCurrency(json.total_shipping, 

currencyFormat, currencySign, currencyBlank));
        }
        else
        {
                if (json.carrier.id != null || json.free_ship)
                {
                        $('#total_shipping').html(freeShippingTranslation);
                        if (json.is_virtual_cart)
                               $('.cart_total_delivery').hide();
                }
                if (!hasDeliveryAddress)
                        $('.cart_total_delivery').hide();
        }

        if (json.total_wrapping > 0)
        {
                 $('#total_wrapping').html(formatCurrency(json.total_wrapping, 

currencyFormat, currencySign, currencyBlank));
                $('#total_wrapping').parent().show();
        }
        else
        {
                 $('#total_wrapping').html(formatCurrency(json.total_wrapping, 

currencyFormat, currencySign, currencyBlank));
                $('#total_wrapping').parent().hide();
        }
}

Now when we add or remove products from the cart, we’ll see that the deposit and balance due values 
are updated correctly.



ChaPter 5 ■ Booking SyStem

177

5-8. Detailing Balance Due in Order Confirmation E-mail
Problem
You want to detail the balance due value in Order Confirmation e-mails.

Solution
In order to solve this problem, we’ll edit the PaymentModule class contained in the file of the same name, 
classes/PaymentModule.php.

How It Works
Open the PaymentModule.php file and locate the validateOrder() method. Around line 383, add the line 
shown in Listing 5-22.

Listing 5-22. Line Added to validateOrder() Method

$balance_due = $this->context->cart->getOrderTotal(false, Cart::ONLY_DUE);

Now, find the $data array and add at the beginning the $balance_due variable, as shown in Listing 5-23.

Listing 5-23. Balance Due Value Added to $data Array

$data = array(
                        '{firstname}' => $this->context->customer->firstname,
                                                '{balance_due}' => $balance_due,
'{lastname}' => $this->context->customer->lastname,
                        '{email}' => $this->context->customer->email,
                        '{delivery_block_txt}' => $this->_getFormatedAddress($delivery, "\n"),
                        '{invoice_block_txt}' => $this->_getFormatedAddress($invoice, "\n"),
                         '{delivery_block_html}' => $this->_getFormatedAddress($delivery, 

'<br />', array(
                            'firstname'    => '<span style="font-weight:bold;">%s</span>',
                            'lastname'    => '<span style="font-weight:bold;">%s</span>'
                        )),

To conclude, we visit PS Back Office and go to Localization->Translations and then select Type of 
Translation as “Email templates translations,” theme as your_theme, and language as the current language of 
your store. Select the order_conf template and edit it (Figure 5-8).



ChaPter 5 ■ Booking SyStem

178

The modification can be seen in Figure 5-8. We simply added a Balance Due text followed by the 
variable and we added to the $data array of the validateOrder() method in PaymentModule.php file. You 
may feel free to detail the balance due anywhere you want in the order_conf template; the value will be 
displayed in the confirmation e-mail.

Summary
In this chapter, we examined several recipes that illustrated how PrestaShop can be transformed into a 
booking system. In Chapter 5, we’ll demonstrate how it can be transformed into an events-based system.

Figure 5-8. Balance due added to Order Confirmation e-mail

http://dx.doi.org/10.1007/978-1-4842-2574-5_5


179© Arnaldo Pérez Castaño 2017 
A. P. Castaño, PrestaShop Recipes, DOI 10.1007/978-1-4842-2574-5_6

CHAPTER 6

Events-Based System

In Chapter 5, we described how to transform PrestaShop into a booking system. In this chapter, we’ll 
demonstrate how we can transform PS into an events-based system. As we did in Chapter 5, we’ll use the 
very own features that PS offers to carry out this transformation.

An event is something that occurs in time. It can be organized and scheduled, and it can involve 
different actors that can be objects, living beings, and so forth. In ordinary language, we may say that an 
event can be a ceremony, festival, party, and so on.

In this chapter, we’ll consider the creation of a scheduled event, that is, an event that will take place on a 
specific date, at a designated time, and at a determined location. Furthermore, people will be able to sign up 
for it. You will learn the following:

•	 How to create and associate a Date attribute for your events products

•	 How to sell tickets

•	 How to sell unlimited tickets

 ■ Note  PrestaShop is an extensive, adaptable content management system that you can intelligently 
customize and transform into a booking system or an events-based system. In this chapter, we will transform a 
common PS product into an events product.

6-1. Creating and Associating a Date Attribute for Your 
Events products
Problem
You want to create a Date attribute for your events products and associate it to them as combinations.

Solution
To start constructing our scheduled events product, we’ll create the necessary Date attribute to allow 
customers to select the date they would like to be at the event. Then we will associate its values to products 
using combinations.

http://dx.doi.org/10.1007/978-1-4842-2574-5_5
http://dx.doi.org/10.1007/978-1-4842-2574-5_5


ChaPter 6 ■ eventS-BaSed SyStem

180

How It Works
Go to PS Back Office and then click Catalog->Product Attributes, as shown in Figure 6-1.

On the upper right corner, click the Add New Attribute button and fill in the fields on the new page, 
putting the name you want for the new attribute; in our case, we named it Date. (Figure 6-2)

Figure 6-1. Product attributes section

Figure 6-2. Adding Date attribute



ChaPter 6 ■ eventS-BaSed SyStem

181

Once you are back on the Product Attributes page, click the Add New Value field and add the values you 
want for the Date attribute as dates (for example, Sun Feb 12th 2017 9pm). This is illustrated in Figure 6-3.

After creating the Date attribute, we just need to associate its values to our events product using 
combinations as depicted in Figure 6-4.

For that purpose, we go to PS Back Office and click Catalog->Products. We select the product that we 
would like to have as our events product and then click the Combinations tab and delete every combination 
except for those having Date as attribute.

Figure 6-3. Adding Date attribute values as dates

Figure 6-4. Date value added



ChaPter 6 ■ eventS-BaSed SyStem

182

6-2. Selling Tickets
Problem
You want to sell a limited number of tickets for your event.

Solution
In Recipe 6-1, we added combinations for the different values associated with the Date attribute. Assuming 
we have configured PS to allow orders, even when products are out of stock and after making slight 
modifications in the product.tpl file (hiding Condition text and changing “Quantity” to “Tickets”) of your 
current theme, we should end up having a product similar to the one depicted in Figure 6-5.

 ■ Note  you can configure PS to allow orders by default when a product is out of stock visiting the Back 
Office and going to Preferences->Products.

We’ll see how to easily mutate PS from a regular shop to an events-based system giving the illusion of 
having events products.

How It Works
To sell a certain number of tickets, we must edit the product’s quantities in PS Back Office (Figure 6-6). Go 
there and for each Date attribute value (combination), select the number of tickets that you would like to sell 
on that date.

Figure 6-5. Event oroduct



ChaPter 6 ■ eventS-BaSed SyStem

183

Also, change the Availability Settings to display the texts shown in Figure 6-7.

After making these simple modifications, we’ll have our events product, as we can see in Figure 6-8.

Figure 6-6. Defining quantity for each combination (date) in product edit page

Figure 6-7. Changing availability settings to show “Tickets Available” when a product is in stock and “All 
tickets sold!” in any other case

Figure 6-8. Events product



ChaPter 6 ■ eventS-BaSed SyStem

184

If customers would like to buy tickets on our site, they can easily do so. They just need to select the date 
on which they will attend the event and the number of tickets bought.

6-3. Selling Unlimited Tickets
Problem
You want to sell unlimited tickets for your event.

Solution
The solutions to this problem can be found in a combination of some of the recipes we have seen so far.

How It Works
The first solution to this problem would be to have the events product as a virtual product. As we know 
from previous recipes, that takes away quantities (tickets). You can refer to Chapter 4, where we showed 
how to enable combinations for virtual products. Remember we need combinations (Date attribute) for this 
product.

Another alternative would be to go to the Back Office following path Preferences->Products and 
disable the stock management. (Figure 6-9)

Figure 6-9. Stock management disabled

http://dx.doi.org/10.1007/978-1-4842-2574-5_4


ChaPter 6 ■ eventS-BaSed SyStem

185

Once we have no stock management, quantities on the product page will become a useless tab, as 
shown in Figure 6-10.

After making these modifications, we’ll see that we can sell as many tickets as we want for any date.

Summary
Throughout this chapter we examined, in just a few recipes, how we can easily turn PS into an events-based 
system. In Chapter 7, we will present various recipes that will give us the possibility of improving our Search 
Engine Optimization (SEO).

Figure 6-10. Quantities tab in product page after disabling stock management

http://dx.doi.org/10.1007/978-1-4842-2574-5_7


187© Arnaldo Pérez Castaño 2017 
A. P. Castaño, PrestaShop Recipes, DOI 10.1007/978-1-4842-2574-5_7

CHAPTER 7

SEO

Once you have completed the installation, configuration, and customization of your PrestaShop website,  
you can have the most amazing e-commerce business ever created. However, all the time, work, and effort 
put into this project could be in vain if people are not aware of your existence. Remember the Web is a 
gigantic network of servers and websites, and it is difficult to stand out in such a huge nest. Thus, a typical 
phase that precedes any revenue you could obtain from your online business is the marketing phase.

Search Engine Optimization (SEO) is a marketing discipline and a common practice in the e-commerce 
world today. It is represented as a set of techniques that looks for positioning a website high in the result 
pages of different search engines when people query them under certain terms and keywords. In general, 
SEO relates to the programming, design, and content of your website. When it is improved, it should increase 
your site’s traffic. Words on your web pages as well as external links pointing to your site are all aspects to be 
considered in your SEO strategy.

In this chapter, we’ll be examining various recipes for improving your SEO in PrestaShop. Some of these 
recipes represent general strategies and not only apply to PS, but to any website. You will learn the following:

•	 How to activate friendly URLs in PS

•	 How to change the pattern of your links

•	 How to improve SEO by starting a blog related to your products and services

•	 How to define SEO for your categories in PS

•	 How to define SEO for your products in PS

•	 How to generate robots.txt file

•	 How to link to social networks

•	 How to speed up PS to improve your SEO

•	 How to improve your SEO by having a responsive theme

•	 How to select the appropriate domain name

•	 How to generate the sitemap of your PS

•	 How to increase the number of links pointing at your website

 ■ Note  Choosing profitable and niche keywords is vital in SEO. You can use tools such as Google Adwords 
(keyword planner) to discover how popular or searched the keywords you intend to include in your website 
actually are.



ChAptEr 7 ■ SEO

188

7-1. How to Activate Friendly URLs in PS
Problem
You want to have friendly, pretty URLs on your PS site.

Solution
To set up the Friendly URLs option, we visit the Back Office and go to Preferences-> SEO & URLs and then 
to the SET UP URLS section. We switch the Friendly URL field to “Yes,” as shown in Figure 7-1.

The rest of the fields represent configuration issues that will allow you to define several details regarding 
your friendly URLs.

 ■ Note  Non-friendly UrLs are full of GET variables and are difficult to read (for example,  
www.havanaclassiccartour.com/index.php?id_product=30&controller=product). On the other  
hand, friendly UrLs are easy to read and remember (www.havanaclassiccartour.com/classic-convertibles/ 
30-book-classic-convertible.html).

How It Works
To understand what actions and advantages we can take when activating friendly URLs in PrestaShop, let’s 
inspect the Preferences-> SEO&URLs page.

We start by examining the SEO and URLs section (Figure 7-2), where we can define the title of each page 
and its friendly URL.

Figure 7-1. Activating Friendly URLs

http://www.havanaclassiccartour.com/index.php?id_product=30&controller=product
http://www.havanaclassiccartour.com/classic-convertibles/30-book-classic-convertible.html
http://www.havanaclassiccartour.com/classic-convertibles/30-book-classic-convertible.html


ChAptEr 7 ■ SEO

189

Usually our index page has no page title or friendly URL defined; however, it’s very important to define 
one for it. The index page should identify your business and it’s normally where the majority of business 
keywords can be found. Therefore, having a title assigned to it as well as some meta keywords and a meta 
description is a good idea. Click the Edit button next to it; the resulting page should be similar to the one 
shown in Figure 7-3. We’ll edit it.

In the SET UP URLs section where we activated the Friendly URLs option, we should also define the 
Canonical URL to “301 Moved Permanently.” Search engines tend to penalize duplicated content in your 
website. Thus, if you have both http://havanaclassiccartour.com and www.havanaclassiccartour.com, 
they are interpreted as different websites with the same content. Canonical URLs prevent duplication issues 
by making one and the other URL seem like the same.

 ■ Note  today more and more websites try to show friendly UrLs to ease the indexing process. In non-friendly 
UrLs, search engines do not add the proper weight to the correct words; thus, a diminishing of the page content 
value and ranking usually occurs.

Figure 7-2. SEO & URLs section

Figure 7-3. Editing Index page

http://havanaclassiccartour.com/
http://www.havanaclassiccartour.com/


ChAptEr 7 ■ SEO

190

7-2. Changing the Pattern of Your Links
Problem
You want to change the pattern of your links and URLs to make them friendlier or simply to add some 
keywords related to your business.

Solution
The solution to this problem lies again in the Back Office following the path Preferences-> SEO&URLs. In the 
SCHEMA OF URLs’ section, we have the possibility to define the pattern for every link related to categories, 
products, cms pages, and so on.

How It Works
To change a pattern, we need to consider the set of keywords required by each type of link, as can be seen in 
Figure 7-4.

In the categories route, for instance, we have the following definition: {id}-{rewrite}. This indicates that 
the category URL will have its id displayed followed by a hyphen and its name, as depicted in Figure 7-5. This 
should be defined in its SEO title; we’ll shortly see where to define it.

Figure 7-4. Defining URLS patterns



ChAptEr 7 ■ SEO

191

We can find available keywords for each category route below its text field (Figure 7-6). Let’s change the 
category route by adding the meta_title keyword and clicking the Save button at the bottom of the section.

We can see the change in our URL as illustrated in Figure 7-7.

Even though the id keyword must be present on the URL, we can select the location where we want to 
put it. For instance, we might decide to put it at the end of the URL, as can be seen in Figure 7-8.

Once we have saved our new change and reloaded any category page, the modification should be 
visible (Figure 7-9).

Figure 7-5. URL seen in the browser

Figure 7-6. Route to category after adding the meta_title keyword

Figure 7-7. URL for Tours category after changing the pattern

Figure 7-8. Putting id at the end of the URL



ChAptEr 7 ■ SEO

192

In this manner, you can freely change your URLs to make them friendlier and also to add keywords that 
might serve your interests.

 ■ Note  the meta_title for the tours category is in reality “havana Classic Car tour, Malecon, Cigar, Mob, 
hemingway tours.” Spaces between words are automatically replaced by a hyphen.

7-3. Improving SEO by Starting a Blog Related to Your 
Products and Services
Problem
You want to improve your SEO by adding high-quality content on a blog related to your products or services.

Solution
Content is “the king” in the world of marketing and SEO. For search engines, content represents everything 
on a web page: links, body content, images, meta tags, and so on. Most e-commerce websites focus on 
offering products and services, but sometimes forget to provide useful and well-written content. Search 
engines actually love fresh content; content generated on a regular basis makes them see activity, and that 
goes in favor of your site’s rank.

 ■ Note  In a blog, you don’t sell your products directly; you sell them indirectly by producing valuable content 
that gets people interested. this valuable content could be achieved by creating guides, resolving doubts, 
answering questions, providing tips, and so on. the idea is to generate debate and traffic and indirectly get 
people to the store.

How It Works
Creating a blog on PrestaShop depends basically on your hosting service. What you would do in PS is simply 
create a link in the top menu to your blog’s domain.

Figure 7-9. URL with id at the end



ChAptEr 7 ■ SEO

193

To add a blog link to our top menu, we go to Modules and Services and search the Top Horizontal Menu 
module (Figure 7-10).

In the module’s configuration page, we simply need to go to the ADD A NEW LINK section and add a 
new link named Blog. Its link would be your blog’s URL, as illustrated in Figure 7-11.

Once added, you simply need to put the new link in the desired position with the rest of the links in the 
top menu.

 ■ Note  the blog you create could be a Wordpress blog. Most hosting services provide an easy installation 
to this popular CMS. You just need to install it on a subdomain; if your domain is havanaclassiccartour.com, 
then your blog’s domain could be blog.havanaclassiccartour.com.

7-4. Defining SEO for Your Categories in PS
Problem
You want to define meta_title and meta_description for your categories to improve your SEO.

Solution
To define SEO features for our categories, we first need to access the category we want to configure. In the PS 
Back Office, go to Catalog-> Categories and click the category that you want to edit (Figure 7-12).

Figure 7-10. Top horizontal menu

Figure 7-11. Adding new link to horizontal menu



ChAptEr 7 ■ SEO

194

Figure 7-12. Categories page

How It Works
In our case, we are editing the Tours category, so once you access the edit page, look for every field with 
the “Meta” prefix. You should find three right away: “Meta title,” “Meta description,” and “Meta keywords” 
(Figure 7-13).

In the Meta fields, you should write something that describes your product or service category, always 
respecting the number of characters imposed. The Friendly URL field defines the URL to be used for the 
category if Friendly URL is activated in your PS site.

 ■ Note  remember the Meta title, Meta Description, and Meta Keywords field can be used in your UrLs 
when defining their schema under Preferences-> SEO&URLs.

Figure 7-13. Editing category page



ChAptEr 7 ■ SEO

195

7-5. Defining SEO for Your Products in PS
Problem
You want to define meta_title and meta_description for your products to improve your SEO.

Solution
To access the SEO tab of our products, we go to the Back Office and follow the path Catalog->Products 
and then click Edit on the product in which we want to define SEO features. Finally, we click SEO on the left 
panel in the product edit page.

How It Works
In the SEO tab, we’ll find three fields: Meta title, Meta description, and Friendly URL, as shown in 
Figure 7-14.

In the Meta title field for a product, the first keywords we write should be the ones we try to position, 
the ones that appropriately represent our business. Also, the text we put there shouldn’t be similar to the 
product’s category title.

The description is usually an extension of the title, and it should be attractive to customers and include 
the keywords we want people and search engines to read. Again, we can’t go beyond the character limit for 
each field, so we must be direct and concise in every text.

The Friendly URL field allows you to define the URL that will be used for this product if you have 
activated the Friendly URL option in the Back Office.

Figure 7-14. Product edit page



ChAptEr 7 ■ SEO

196

 ■ Note  the meta description text is the one that appears on the Google Search results page right below your 
shop’s link. It’s important to keep in mind that we must provide original content for both the Meta title and Meta 
description fields. If we copy their texts from some external source, we could be adding duplicating content to 
our website, and search engines do not appreciate duplicated content.

7-6. Generating robots.txt File
Problem
You want to generate the robots.txt file for your PS site.

Solution
The Robot Exclusion Protocol, represented by the robots.txt file, is a method for avoiding the inclusion of 
information you want or think should be private on search results. The robots.txt file will act as a request 
mechanism, asking certain robots to not pay attention to specific files and directories of your site during 
their search.

Including this file in your PS package root can be useful if you have directories and files whose content 
might not properly classify the purpose or intention of your business.

How It Works
To generate the robots.txt file in PS, we visit the Back Office and go to Preferences-> SEO&URLs. At the 
end, we’ll see the ROBOTS FILE GENERATION section (Figure 7-15).

When we click the Generate robots txt file button, a new file will be generating at the root of our PS 
package. In case we already have one there, it will be overwritten.

The first 30 lines of the file will look like the lines shown in Figure 7-16.

Figure 7-15. Robots file generation section



ChAptEr 7 ■ SEO

197

Every line preceded by a “#” character is a comment and will not have any effect when processed. The 
User-agent line defines the robots for which the rules below apply. The “*” character indicates “All.” As a 
result, in the previous case the rules will apply for every robot that visits your PS site.

The Allow and Disallow directives indicate the files that can be accessed and the ones that are private 
or prohibited. The Disallow /*?orderby= directive, for example, specifies that no robot can access an URL 
that includes ?orderby=. Remember the “*” applies for everything, so the directive would prohibit all of the 
following:

/products?orderby=name,/categories?orderby=name, etc.

In the robots.txt file, you could have different rules for various robots:

User-agent: MyBot

Disallow:

User-agent: *

Disallow: /

Figure 7-16. Robots file



ChAptEr 7 ■ SEO

198

In the last example, we are allowing a robot named MyBot to search through our entire website. Any 
other robot will not be allowed to search our website.

 ■ Note  the directives User-agent: * combined with Disallow: / would be applied to every robot, 
prohibiting access to every file stored in the root folder.

7-7. Linking to Social Networks
Problem
You want to have your PS site linked to different social networks accounts that you created for your business.

Solution
Social media is one of the most successful ways for getting people to know about the products and services 
that you offer at your store. Not all social networks will be practical for your products or services, so you must 
always select those that are appropriate and create a unique strategy for each (remember search engines 
don’t appreciate duplicated content).

By default, links to social accounts in PrestaShop can be found at the footer (Figure 7-17).

Figure 7-17. Social network links in the footer



ChAptEr 7 ■ SEO

199

These links can be customized in PS and their configuration can be achieved in the Back Office 
following the path Modules and Services-> Theme Configurator, as illustrated in Figure 7-18.

Locate a text named “Display links to your store’s social accounts (Twitter, Facebook, etc.),” and make 
sure the switch is set to Yes. Then click the Configure button below.

How It Works
Once we click the Configure button, we’ll find a list of social networks that PS includes by default 
(Figure 7-19).

Figure 7-18. Theme Configurator module



ChAptEr 7 ■ SEO

200

Finally, you can go one text field at a time when setting URLs for your social networks. In case you don’t 
have an account or don’t wish to show it in the row of social networks links in the footer, simply leave that 
field empty as we can see that occurs with Vimeo, Pinterest, or Instagram in the previous example.

 ■ Note  there’s a shorter way to configure your social network links in the Back Office. Find the Social 
Networking Block module and click the Configure button; it will take you to the same page we saw at the end of 
this recipe, where we can define an UrL for each social network.

Figure 7-19. Social networks links



ChAptEr 7 ■ SEO

201

7-8. Speeding Up PS to Improve SEO
Problem
You want to speed up your PS site to improve your SEO.

Solution
A very important feature when positioning your website is its page-loading speed. Fast-load page is not only 
good for SEO as it delivers a positive customer experience, but it also increases the chances of obtaining 
revenue. PS incorporates various performance improvements that we can take advantage of in order to 
obtain a higher page loading speed.

How It Works
In the Back Office, we go to Advanced Parameters->Performance. In the Smarty section, we switch the 
Cache option to Yes and we set Template Compilation to Never recompile template files, as shown in 
Figure 7-20.

In the CCC (Combine, Compress, and Cache) section (Figure 7-21), switch every option to Yes; this 
should significantly decrease the loading time of your page.

Figure 7-20. Activating cache for Smarty



ChAptEr 7 ■ SEO

202

Finally, go to the end, locate the Caching section, and activate the Use of Cache as depicted in 
Figure 7-22.

After having activated these options, you should start to notice that your website loads pages a lot faster. 
The main reason behind this accelerated speed is the cache.

A web cache mechanism consists in temporarily saving processed files (.css, .js, images, and so on) in 
memory (hard disk) so the next time they are required, their loading process can be completed easily and in 
less time.

Figure 7-21. Activating CCC

Figure 7-22. Activating cache



ChAptEr 7 ■ SEO

203

7-9. Improving Your SEO by Having a Responsive Theme
Problem
You want to improve your SEO.

Solution
Starting in PS 1.5, the default theme is responsive so there’s nothing to do there. If you are using PS < 1.5, 
you should try to find a responsive theme. Google likes it when your website adapts correctly to all devices, 
dimensions, and users.

How It Works
If you need to select a new responsive theme, visit the Back Office and go to Preferences-> Themes 
(Figure 7-23).

There you can select your theme and also define your icons, favicon and logos for invoices and e-mails.

Figure 7-23. Theme selector page



ChAptEr 7 ■ SEO

204

 ■ Note  You can check whether your pS theme is responsive from your pC simply by using features 
incorporated in web browsers today. In Mozilla Firefox, for instance, you can activate the responsive Design 
View on the Developer tab. this will allow you to see how your website will looks at different resolutions.

7-10. Selecting the Appropriate Domain Name
Problem
You want to improve your SEO.

Solution
The domain name you select can help you achieve a higher ranking and it should contain some of your 
most relevant keywords. This strategy is important as it’s one of the key factors that Google considers when 
positioning your website.

How It Works
If you are in the cars business, you probably would like your domain name to include car-related keywords 
somewhere. It could be something like www.havanaclassiccartour.com.

 ■ Note  In pS, you can change yours domain name in the Back Office by going to Preferences-> SEO&URLs. 
When migrating, you usually need to change the domain’s name through the database.

7-11. Generating the Sitemap of Your PS Site
Problem
You want to improve your SEO by including the sitemap.xml file in your PS package root.

Solution
A sitemap is a file where you detail the structure of your site, seeking to provide Google and other search 
engines with this information. Google bots (robots), for example, read this file in order to trace your site in a 
more intelligent way, making their access easier.

To generate your sitemap.xml file, you can install the free module Google Sitemap (Figure 7-24).

Figure 7-24. Google Sitemap module

http://www.havanaclassiccartour.com/


ChAptEr 7 ■ SEO

205

Once you have installed it, click the Configure link to start configuring it, as shown in Figure 7-25.

How It Works
For your sitemap.xml file to be linked to Google, you need to create a Google Webmaster account and set 
the URL to the file.

You also have the possibility of configuring your sitemap indicating the pages to be included and the 
update frequency of your store, as illustrated in Figure 7-26.

Figure 7-25. Google sitemap configuration page

Figure 7-26. Configuring sitemap



ChAptEr 7 ■ SEO

206

Finally, you also have the option to automatically generate your sitemap by setting up a Cron task on 
your hosting provider (Figure 7-27).

By having an XML file, you can use your sitemap to provide meta data to Google about certain content 
types included in your website (image, videos, and so on.).

7-12. Increasing the Number of Links Pointing at  
Your WebSite
Problem
You want to improve your SEO by increasing the number of links pointing at your website.

Figure 7-27. Sitemap.xml file



ChAptEr 7 ■ SEO

207

Solution
Google uses a family of ranking algorithms known as Page Rank; these algorithms assign a relevance 
number to each document indexed by a search engine. The higher our page rank is, the higher we’ll be in the 
results page.

Taking advantage of the algorithm’s insight, we can improve our ranking by trying to increase the 
number of external links that point to our website.

Registering your URL on free web directories is usually a good practice. It creates external links pointing 
at your site, and a positive result should be perceived in the long run.

How It Works
The common strategy to boost your page rank is to increase the number of links that point toward your 
website. The higher the number of websites referring to it, the higher your page rank should get.

Google considers not only the volume of links that point to you, but also the quality of those links. The 
quality of a link equals the page rank of the site that contains the link to your site. The more popular the site, 
the higher the contribution it will provide to your ranking.

For instance, let us assume that our site havanaclassicartour.com, which is a startup, has a low 
ranking and we are trying to improve it. Somehow we create links to our website on tripadvisor.com and 
lonelyplanet.com. Since both sites are very popular and definitely have a higher page rank than ours, they 
will boost our page rank and eventually move us higher in the results page (Figure 7-28).

Furthermore, creating partnerships with different stores and online businesses to create links pointing 
to our website, products, and services will also contribute positively in improving our ranking.

Summary
In this chapter, we presented different recipes that will help us improve our SEO. Chapter 8 will convey 
a simple but useful topic that must be applied when extensions or customizations are required; we are 
referring to maintenance.

Figure 7-28. Page rank situation—important pages make you important

http://dx.doi.org/10.1007/978-1-4842-2574-5_8


209© Arnaldo Pérez Castaño 2017 
A. P. Castaño, PrestaShop Recipes, DOI 10.1007/978-1-4842-2574-5_8

CHAPTER 8

Maintenance

During the development, customization, or extension phase of your PrestaShop website, you may have the 
need to create new products or complete modifications to some of your already published products.

In this chapter, we’ll examine various recipes that will show you how to appropriately modify your site 
or provide maintenance. You will learn the following:

•	 How to set PS in maintenance mode

•	 How to edit the text displayed in maintenance mode

•	 How to edit the image displayed in maintenance mode

 ■ Note  Whenever you need to edit your PS website, you should enter maintenance mode and leave part of 
your shop inaccessible.

8-1. Set PS in Maintenance Mode
Problem
You want to set PrestaShop in maintenance mode.

Solution
In order to solve this problem, we’ll visit PS Back Office and then go to Preferences->Maintenance, as 
shown in Figure 8-1.



ChaPter 8 ■ MaintenanCe

210

The page is very simple. It merely contains an Enable Shop switch button, a Maintenance IP text field, 
and an Add my IP button.

How It Works
To activate maintenance mode in our store, we must enable it by switching the Enable Shop button to 
“No” on the Maintenance page. Once disabled, we can click the Add my IP button to allow our IP address 
to access the site. Alternatively, we can add as many address as we want, all separated by commas in the 
Maintenance IP text field (Figure 8-2).

After clicking the Save button on the lower right corner, we can visit our website and verify, as depicted 
in Figure 8-3, that the maintenance mode has been indeed activated.

Figure 8-1. Maintenance page

Figure 8-2. Maintenance page



ChaPter 8 ■ MaintenanCe

211

Notice the image is out of the central box. In the next recipes, we’ll demonstrate how to edit, adjust, and 
modify the maintenance template displayed in Figure 8-3.

8-2. Edit the Text Displayed in Maintenance Mode
Problem
You want to edit the maintenance template and show a different text.

Solution
To solve this problem, we must look for the maintenance template file following path themes/your_theme/
maintenance.tpl.

How It Works
Open the maintenance.tpl file and let’s edit it; its code is extremely simple (Listing 8-1).

Listing 8-1. Code of maintenance.tpl File

<!DOCTYPE html>
<html lang="{$language_code|escape:'html':'UTF-8'}">
<head>
        <meta charset="utf-8">
        <title>{$meta_title|escape:'html':'UTF-8'}</title>
{if isset($meta_description)}
        <meta name="description" content="{$meta_description|escape:'html':'UTF-8'}">

Figure 8-3. Maintenance template displayed when accessing your website



ChaPter 8 ■ MaintenanCe

212

{/if}
{if isset($meta_keywords)}
        <meta name="keywords" content="{$meta_keywords|escape:'html':'UTF-8'}">
{/if}
        <meta name="robots" content="{if isset($nobots)}no{/if}index,follow">
        <link rel="shortcut icon" href="{$favicon_url}">
<link href="{$css_dir}maintenance.css" rel="stylesheet">
<link href='//fonts.googleapis.com/css?family=Open+Sans:600' rel='stylesheet'>
</head>
<body>
        <div class="container">
                        <div id="maintenance">
                        <div class="logo">
<img src="{$logo_url}" {if $logo_image_width}width="{$logo_image_width}"{/if} {if $logo_
image_height}height="{$logo_image_height}"{/if} alt="logo" /></div>
                        {$HOOK_MAINTENANCE}
                <div id="message">
                <h1 class="maintenance-heading">
{l s='We\'ll be back soon.'}</h1>
                         {l s='We are currently updating our shop and will be back really 

soon.'}
                        <br />
                                        {l s='Thanks for your patience.'}
                                        </div>
                                </div>
        </div>
                </div>
</body>
</html>

In case you want to display a different text, you just need to edit the div HTML element with id 
“message,” which is shown in Listing 8-1. Listing 8-2 shows the result.

Listing 8-2. Modificationof maintenance.tpl Message

<div id="message">
        <h1 class="maintenance-heading">{l s='We\'ll be back soon'}</h1>
{l s='We are currently updating Havana Classic Car Tour and we will be back really soon.'}
        <br />
        {l s='Thank you!!'}
</div>

Now, as seen in Figure 8-4, we will be able to see the result of this modification when visiting the 
website in maintenance mode.



ChaPter 8 ■ MaintenanCe

213

In the next recipe, we'll find out how to change the image shown on the maintenance page.

8-3. Edit the Image Displayed in Maintenance Mode
Problem
You want to edit the maintenance template and resize or change the image displayed.

Solution
In order to solve this problem, once again we will edit the themes/your_theme/maintenance.tpl file.

How It Works
Going back to the maintenance image shown in Figure 8-3, we can see that it was not properly centered and 
its size exceeded the frame of the box in which it was contained. We will resize it now to make it fit the box 
that contains it. Find the following div HTML element in the maintenance.tpl file shown in Listing 8-3.

Listing 8-3. Fragment of maintenance.tpl File Where img HTML Element Is Declared

<div class="logo">
             <img src="{$logo_url}" {if $logo_image_width}width="{$logo_image_width}"{/if} 

{if $logo_image_height}height="{$logo_image_height}"{/if} alt="logo" />
</div>

Modify the previous code as shown in Listing 8-4.

Listing 8-4. Fragment of maintenance.tpl File Where img HTML Element Is Declared Modified

<div class="logo">
<img src="{$logo_url}" width="400px" height="180px" alt="logo" />
</div>

After completing this edit, the image should properly fit into the box and for different resolutions, as 
shown in Figure 8-5.

Figure 8-4. New text on maintenance.tpl file



ChaPter 8 ■ MaintenanCe

214

The ideal scenario of course would be to have the width and height attributes as shown in Listing 8-5.

Listing 8-5. Width and Height Attributes of img HTML Tag

<img src="{$logo_url}" width="100%" height="auto" alt="logo" />

If you have those image properties set as shown in Listing 8-5, the image will fit properly into the box in 
any resolution.

Summary
In this chapter, we examined three recipes that allow us to properly handle our shop’s maintenance system. 
Throughout this book, we have presented many recipes that provide us with easy-to-follow guides on how to 
customize many of the wonderful features that this powerful content management system offers.

Figure 8-5. Image resize in maintenance.tpl file



215© Arnaldo Pérez Castaño 2017 
A. P. Castaño, PrestaShop Recipes, DOI 10.1007/978-1-4842-2574-5

��������� A
addCSS()functions, 81
addJS() functions, 81
Add to Cart button, 84–87
Attributes

Date attribute for events products, 179–181
module development, 38
to products without combination, 118–123

��������� B
Balance due payments, 172, 175–176
Balance due values, 170

$balance_due Variable, 168–169
calculation, 165
getOrderTotal() method, 166
getProductPrice() function, 168
statement, 166–168

Balues, 170
Booking products, 158–159
Booking systems

deposit payment, 158
touristic websites, 157

��������� C
Certificate Signing Request (CSR), 21
Certification Authority, 21
Classes and controllers, 125

combinations tab for virtual products
problem, 140
solution, 140
working, 140–147

fields to products
problem, 126
solution, 126
working, 126–130

new field in product page
problem, 137
solution, 137
working, 138–139

order confirmation e-mails
problem, 147
solution, 147
working, 148–150

order total
problem, 155
solution, 155
working, 155–156

product categories  
and features

problem, 154
solution, 154
working, 154

product edit page in  
PS Back Office

problem, 130
solution, 130
using module, 134–137
working, 130–134

product price
problem, 150
solution, 150
working, 150–152

product’s name and quantity
problem, 152
solution, 152
working, 153

Comma Separated Values (CSV), 58
Content management system (CMS), 1

��������� D
Database Management System (DBMS), 10
Deposit columns, 172
Deposit payment

booking products and services, 158
display

balance due values, 171
shopping-cart.tpl file, 172
text, 172

elements, 158
percentage/currency units, 159

Index



■ INDEX

216

plus balance due
booking system, 169
Cart class, 169
getOrderTotal() method, 169

price reduction, 159
product edit page, 159
PS price reduction system, 158

Deposit value, 162–165
Digital Signatures (DS), 20
Display deposit payment, 160, 162
displayForm() method, 92–93
Domain name, 204

��������� E
E-mail, 177–178
E-mail templates

new variables to, 103–105
problem, 100
solution, 100–101
working, 101–102

Events-based system
attribute, 179, 181
language, 179
PrestaShop, 179

��������� F
File-system module, refactoring directory digest, 69
“Form-group” div element code, 134

��������� G
getContent() method, 92–93

��������� H
Hypertext Transfer Protocol Secure (HTTPS), 20

��������� I, J, K, L
imageCheck() method, 94

��������� M, N
Model-View-Controller (MVC), 10, 125
Module development

attributes, 38
Back Office, 38
class constructor, 37
class declaration, 37
configuration

constructor, 47
displayForm() method, 48

getContent() method, 47–48
Hello World, 49
hookTop method, 49

CSS styles, 61
e-mail notifications

class constructor, 57–58
displayOrderConfirmation hook, 57
file structure, 57
getContent() and displayForm() methods, 58
hookdisplayOrderConfirmation()  

method, 59–60
install method, 58

files, 36
Helloworld.tpl Smarty file, 40
hooks

assigning Smarty variable  
HOOK_NAMEOFTHEHOOK, 44

categorization, 43
function, 44
header.tpl Template file, 44
home page, 46
hookExec() function, 44
Index.tpl template file, 46
initContent(), 45
method, 45

install and uninstall methods, 39
installation, 40
positioning, 41–42
PrestaShop package, 36
PS constant, 36
SQL queries

install() method, 56
install.sql file, 55

top hook method, 39
transplanting, 42–43

��������� O
Object Oriented Programming (OOP)  

paradigm, 125
Online payments, 35
Open System Interconnection (OSI), 21

��������� P, Q
PrestaShop (PS)

changing your shop’s domain, 14
database

backup, 18
exporting, 18
restoring/importing, 19

disabling shipping, 31–32, 34
Havana Classic Car Tour shop, 28, 30
HDE group fully created, 29
HDE shop group, 26–27

Deposit payment (cont.)



■ INDEX

217

installation
Back Office, 9
CMS, 6
database creation command, 7
database creation, phpMyAdmin, 8
database details, 5–6
FTP client FileZilla, 4
GoDaddy’s machinery, 2
hosting service, 2
MySQL console, 6
phpMyAdmin home panel, 7
steps, 5
System Configuration, 8
.zip file, 2–3

localhost, 15
local server

features, 10
MySQL, 10
PHP framework, 10
WAMP daemon icon, 11–12
WAMP home page, 13
WAMP server setup, 11
web infrastructures, 10

in maintenance mode, 209–211
image displayed, 213–214
text displayed, 211–212

migration, 19–20
multistore area, 26
multistore tree, 28
phpMyAdmin, 15
physical_uri, 16
selling services, products, 30–31
shops table, 28–29
shop’s domain, 17
tables, 16
themes (see Themes, PrestaShop)
variables, 16
virtual URL, 29
website, 209

Product Row, 174
product.tpl file, 160
Public Key Cryptography, 20
Public Key Encryption (PKE), 20

��������� R
robots.txt File, 196–197

��������� S
Search Engine Optimization (SEO)

categories, 193–194
friendly, pretty URLs, 188–189
high-quality content, 192–193
marketing discipline, 187

meta_title, 195
number of links, 206–207
pattern, 190–191
PS site, 201–202
responsive theme, 203

Serialization, 87
shopping-cart-product-line.tpl file, 174
Sitemap, 204–206
Social networks links, 198–200
SSL

certificate creation, 23
daemon panel, WAMP, 23
DS, 20
financial entities, 20
OpenSSL console, 21, 23
pass phrase removal, 22
pass phrase request, 22
PKE, 20
Private and Public Key, 20
PS, 24–26
uncomment, 23
WAMP, 21

��������� T
Testimonials module, PS

problem, 89
solution, 89–90
working, 90–95, 97–99

Themes, PrestaShop
changing font

problem, 87
solution, 87
working, 88–89

creating
problem, 64
solution, 64, 66
working, 66–68

custom fields
problem, 84
solution, 84
working, 84–87

datetimepicker to product page
problem, 77
solution, 77–78
working, 79–82, 84

e-mail templates
new variables to, 103–105
problem, 100
solution, 100–101
working, 101–102

header texts depending on product category
problem, 99
solution, 99
working, 99–100



■ INDEX

218

home page, welcome text
problem, 68
solution, 69
working, 69–71

image slider at full width
problem, 71
solution, 72–73
working, 73–77

MyAccount footer module
problem, 114
solution, 114
working, 114–116

product attributes
problem, 117
solution, 117
working, 117–118

products without combining
problem, 118
solution, 118
working, 119–123

social links module
problem, 105
solution, 105
working, 107–113

testimonials module
problem, 89
solution, 89–90
working, 90–95, 97–99

Tickets, 182–183
Total balance due, 173–174
Total Deposit Rows, 173–174
TripAdvisor link, adding, 105–114
Two-Key Cryptography, 20

��������� U
Unlimited tickets selling, 184–185

��������� V
Variables for Cart Summary, 171

��������� W, X
Welcome text in PS home page, 68–71

��������� Y, Z
YouTube module, 50–54

Themes, PrestaShop (cont.)


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Installation and Configuration
	1-1. Installing PrestaShop
	Problem
	Solution
	How It Works

	1-2. Installing Your Local Server for PS
	Problem
	Solution
	How It Works

	1-3. Changing Your Domain Name in the Database
	Problem
	Solution
	How It Works

	1-4. Backing Up and Restoring Your Database
	Problem
	Solution
	How It Works

	1-5. Migrating from One Server to Another
	Problem
	Solution
	How It Works

	1-6. Enabling SSL in your Local Server
	Problem
	Solution
	How It Works

	1-7. Enabling SSL in PrestaShop
	Problem
	Solution
	How It Works

	1-8. Sharing Customers in a Network of PrestaShop WebSites
	Problem
	Solution
	How It Works

	1-9. Selling Services instead of Products
	Problem
	Solution
	How It Works

	1-10. Disabling Shipping
	Problem
	Solution
	How It Works

	Summary

	Chapter 2: Module Development
	2-1. Create a Hello World PS Module Displayed at the Header
	Problem
	Solution
	How It Works

	2-2. Positioning Your Module
	Problem
	Solution
	How It Works

	2-3. Transplanting Your Module
	Problem
	Solution
	How It Works

	2-4. Creating Your Own Hook
	Problem
	Solution
	How It Works

	2-5. Adding a Configuration Link to Your Module
	Problem
	Solution
	How It Works

	2-6. Creating a YouTube Module
	Problem
	Solution
	How It Works

	2-7. Configuring Your PS Site Using SQL Queries during Module Installation
	Problem
	Solution
	How It Works

	2-8. Module for Sending E-mail Notifications after Order Confirmation
	Problem
	Solution
	How It Works

	2-9. Adding More Information to Order E-mail Notifications
	Problem
	Solution
	How It Works

	2-10. Changing CSS Styles through a Module
	Problem
	Solution
	How It Works

	Summary

	Chapter 3: Theme Development
	3-1. How to Create a PS Theme
	Problem
	Solution
	How It Works

	3-2. Creating a Welcome Text in Your PS Home Page
	Problem
	Solution
	How It Works

	3-3. Image Slider at Full Width
	Problem
	Solution
	How It Works

	3-4. Adding a Datetimepicker to Your Product Page
	Problem
	Solution
	How It Works

	3-5. Saving Custom Fields When Clicking the Add to Cart Button
	Problem
	Solution
	How It Works

	3-6. Changing the Font of Your PS Theme
	Problem
	Solution
	How It Works

	3-7. Testimonials Module
	Problem
	Solution
	How It Works

	3-8. Showing a Header in Product Page Depending on Product Category
	Problem
	Solution
	How It Works

	3-9. Customizing E-mail Templates
	Problem
	Solution
	How It Works

	3-10. Adding New Variables to E-mail Templates
	Problem
	Solution
	How It Works

	3-11. Modifying the Social Networking Module to Add a TripAdvisor Link
	Problem
	Solution
	How It Works

	3-12. Modifying the MyAccount Footer Module to Display Links of Interest List
	Problem
	Solution
	How It Works

	3-13. Generating Product Attributes by Adding Product Combinations
	Problem
	Solution
	How It Works

	3-14. Associating Attributes to Products without Combining
	Problem
	Solution
	How It Works

	Summary

	Chapter 4: Classes and Controllers
	4-1. Adding a View Field to the Product Class
	Problem
	Solution
	How It Works

	4-2. Adding a New Tab to Product Edit Page in PS Back Office
	Problem
	Solution
	How It Works

	4-3. Adding a New Tab to the Product Edit Page in Back Office Using a Module
	Problem
	Solution

	4-4. Displaying a New Product Field on the Product Page
	Problem
	Solution
	How It Works

	4-5. Enabling Combinations for Virtual Products
	Problem
	Solution
	How It Works

	4-6. Sending Order Confirmation Message to Various Recipients
	Problem
	Solution
	How It Works

	4-7. Getting a Product Price
	Problem
	Solution
	How It Works

	4-8. Getting Product Name and Quantity
	Problem
	Solution
	How It Works

	4-9. Getting Product Categories and Features
	Problem
	Solution
	How It Works

	4-10. Getting Order Total
	Problem
	Solution
	How It Works

	Summary

	Chapter 5: Booking System
	5-1. Include a Deposit Payment for Booking Products
	Problem
	Solution
	How It Works

	5-2. Changing the Product View to Display Deposit Payment
	Problem
	Solution
	How It Works

	5-3. Calculating the Deposit Value in the Cart
	Problem
	Solution
	How It Works

	5-4. Calculating the Balance Due Value in the Cart
	Problem
	Solution
	How It Works

	5-5. Obtaining Deposit Payment Plus Balance Due
	Problem
	Solution
	How It Works

	5-6. Getting Deposit and Balance Due Values into Cart Summary
	Problem
	Solution
	How It Works

	5-7. Displaying Deposit Payment and Balance Due in the Cart Summary
	Problem
	Solution
	How It Works

	5-8. Detailing Balance Due in Order Confirmation E-mail
	Problem
	Solution
	How It Works

	Summary

	Chapter 6: Events-Based System
	6-1. Creating and Associating a Date Attribute for Your Events products
	Problem
	Solution
	How It Works

	6-2. Selling Tickets
	Problem
	Solution
	How It Works

	6-3. Selling Unlimited Tickets
	Problem
	Solution
	How It Works

	Summary

	Chapter 7: SEO
	7-1. How to Activate Friendly URLs in PS
	Problem
	Solution
	How It Works

	7-2. Changing the Pattern of Your Links
	Problem
	Solution
	How It Works

	7-3. Improving SEO by Starting a Blog Related to Your Products and Services
	Problem
	Solution
	How It Works

	7-4. Defining SEO for Your Categories in PS
	Problem
	Solution
	How It Works

	7-5. Defining SEO for Your Products in PS
	Problem
	Solution
	How It Works

	7-6. Generating robots.txt File
	Problem
	Solution
	How It Works

	7-7. Linking to Social Networks
	Problem
	Solution
	How It Works

	7-8. Speeding Up PS to Improve SEO
	Problem
	Solution
	How It Works

	7-9. Improving Your SEO by Having a Responsive Theme
	Problem
	Solution
	How It Works

	7-10. Selecting the Appropriate Domain Name
	Problem
	Solution
	How It Works

	7-11. Generating the Sitemap of Your PS Site
	Problem
	Solution
	How It Works

	7-12. Increasing the Number of Links Pointing at Your WebSite
	Problem
	Solution
	How It Works

	Summary

	Chapter 8: Maintenance
	8-1. Set PS in Maintenance Mode
	Problem
	Solution
	How It Works

	8-2. Edit the Text Displayed in Maintenance Mode
	Problem
	Solution
	How It Works

	8-3. Edit the Image Displayed in Maintenance Mode
	Problem
	Solution
	How It Works

	Summary

	Index



