

Advances in Industrial Control

Other titles published in this series:

Digital Controller Implementation

and Fragility

Robert S.H. Istepanian and James F.

Whidborne (Eds.)

Optimisation of Industrial Processes

at Supervisory Level

Doris Sáez, Aldo Cipriano and Andrzej W.

Ordys

Robust Control of Diesel Ship Propulsion

Nikolaos Xiros

Hydraulic Servo-systems

Mohieddine Jelali and Andreas Kroll

Model-based Fault Diagnosis in Dynamic

Systems Using Identification Techniques

Silvio Simani, Cesare Fantuzzi and Ron J.

Patton

Strategies for Feedback Linearisation

Freddy Garces, Victor M. Becerra,

Chandrasekhar Kambhampati and

Kevin Warwick

Robust Autonomous Guidance

Alberto Isidori, Lorenzo Marconi and

Andrea Serrani

Dynamic Modelling of Gas Turbines

Gennady G. Kulikov and Haydn A.

Thompson (Eds.)

Control of Fuel Cell Power Systems

Jay T. Pukrushpan, Anna G. Stefanopoulou

and Huei Peng

Fuzzy Logic, Identification and Predictive

Control

Jairo Espinosa, Joos Vandewalle and

Vincent Wertz

Optimal Real-time Control of Sewer

Networks

Magdalene Marinaki and Markos

Papageorgiou

Process Modelling for Control

Benoît Codrons

Computational Intelligence in Time Series

Forecasting

Ajoy K. Palit and Dobrivoje Popovic

Modelling and Control of Mini-Flying

Machines

Pedro Castillo, Rogelio Lozano and

Alejandro Dzul

Ship Motion Control

Tristan Perez

Hard Disk Drive Servo Systems (2nd Ed.)

Ben M. Chen, Tong H. Lee, Kemao Peng

and Venkatakrishnan Venkataramanan

Measurement, Control, and

Communication Using IEEE 1588

John C. Eidson

Piezoelectric Transducers for Vibration

Control and Damping

S.O. Reza Moheimani and Andrew J.

Fleming

Manufacturing Systems Control Design

Stjepan Bogdan, Frank L. Lewis, Zdenko

Kovačić and José Mireles Jr.

Windup in Control

Peter Hippe

Nonlinear H2/Hũ Constrained Feedback

Control

Murad Abu-Khalaf, Jie Huang and

Frank L. Lewis

Practical Grey-box Process Identification

Torsten Bohlin

Control of Traffic Systems in Buildings

Sandor Markon, Hajime Kita, Hiroshi Kise

and Thomas Bartz-Beielstein

Wind Turbine Control Systems

Fernando D. Bianchi, Hernán De Battista

and Ricardo J. Mantz

Advanced Fuzzy Logic Technologies in

Industrial Applications

Ying Bai, Hanqi Zhuang and Dali Wang

(Eds.)

Practical PID Control

Antonio Visioli

(continued after Index)

ZhiWu Li • MengChu Zhou

Deadlock Resolution

in Automated Manufacturing

Systems

A Novel Petri Net Approach

123

ZhiWu Li, PhD

School of Electro-Mechanical

Engineering

Xidian University

2 South TaiBai Road

710071 Xi’an

China

MengChu Zhou, PhD

Department of Electrical and Computer

Engineering

New Jersey Institute of Technology

323 MLK Blvd.

Newark

NJ 07102-1982

USA

ISBN 978-1-84882-243-6 e-ISBN 978-1-84882-244-3

DOI 10.1007/978-1-84882-244-3

Advances in Industrial Control series ISSN 1430-9491

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2009921446

© 2009 Springer-Verlag London Limited

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as

permitted under the Copyright, Designs and Patents Act 1988, this publication may only be

reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of

the publishers, or in the case of reprographic reproduction in accordance with the terms of licences

issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms

should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of

a specific statement, that such names are exempt from the relevant laws and regulations and therefore

free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the

information contained in this book and cannot accept any legal responsibility or liability for any errors

or omissions that may be made.

Cover design: eStudio Calamar S.L., Girona, Spain

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Advances in Industrial Control

Series Editors

Professor Michael J. Grimble, Professor of Industrial Systems and Director

Professor Michael A. Johnson, Professor (Emeritus) of Control Systems and Deputy Director

Industrial Control Centre

Department of Electronic and Electrical Engineering

University of Strathclyde

Graham Hills Building

50 George Street

Glasgow G1 1QE

United Kingdom

Series Advisory Board

Professor E.F. Camacho

Escuela Superior de Ingenieros

Universidad de Sevilla

Camino de los Descubrimientos s/n

41092 Sevilla

Spain

Professor S. Engell

Lehrstuhl für Anlagensteuerungstechnik

Fachbereich Chemietechnik

Universität Dortmund

44221 Dortmund

Germany

Professor G. Goodwin

Department of Electrical and Computer Engineering

The University of Newcastle

Callaghan

NSW 2308

Australia

Professor T.J. Harris

Department of Chemical Engineering

Queen’s University

Kingston, Ontario

K7L 3N6

Canada

Professor T.H. Lee

Department of Electrical and Computer Engineering

National University of Singapore

4 Engineering Drive 3

Singapore 117576

Professor (Emeritus) O.P. Malik

Department of Electrical and Computer Engineering

University of Calgary

2500, University Drive, NW

Calgary, Alberta

T2N 1N4

Canada

Professor K.-F. Man

Electronic Engineering Department

City University of Hong Kong

Tat Chee Avenue

Kowloon

Hong Kong

Professor G. Olsson

Department of Industrial Electrical Engineering and Automation

Lund Institute of Technology

Box 118

S-221 00 Lund

Sweden

Professor A. Ray

Department of Mechanical Engineering

Pennsylvania State University

0329 Reber Building

University Park

PA 16802

USA

Professor D.E. Seborg

Chemical Engineering

3335 Engineering II

University of California Santa Barbara

Santa Barbara

CA 93106

USA

Doctor K.K. Tan

Department of Electrical and Computer Engineering

National University of Singapore

4 Engineering Drive 3

Singapore 117576

Professor I. Yamamoto

Department of Mechanical Systems and Environmental Engineering

The University of Kitakyushu

Faculty of Environmental Engineering

1-1, Hibikino,Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135

Japan

in memory of my mother,

YuQing Zhang

(ZWL)

for my family, Fang Chen, Albert and Benjamin

(MCZ)

ix

Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage

technology transfer in control engineering. The rapid development of control

technology has an impact on all areas of the control discipline. New theory, new

controllers, actuators, sensors, new industrial processes, computer methods, new

applications, new philosophies…, new challenges. Much of this development

work resides in industrial reports, feasibility study papers and the reports of

advanced collaborative projects. The series offers an opportunity for researchers

to present an extended exposition of such new work in all aspects of industrial

control for wider and rapid dissemination.

Much of the technological infrastructure of modern society is comprised of

large networked dynamical systems. These systems include transportation (road,

rail, air), energy networks (gas, electricity, oil), resource networks (water supply,

wastewater disposal) and information networks (the Internet, information systems

for transportation). Integrated with these are the primary industries that take raw

material inputs and produce refined outputs like steel, paper, petroleum products,

power and so on. The outputs of the primary industries supply secondary

industries that manufacture both complex and simple products ranging from

aircraft and automobiles, to computers, consumer white goods, food and

pharmaceutical products. These are all process and manufacturing areas where

control engineering plays an essential role.

The control communities approach to the modelling, analysis and design

problems of industrial processes and networks has been threefold. Firstly,

methods for continuous-time systems have been developed progressively since the

1940s and are now very well established but even these methods are still evolving

especially in the nonlinear systems area. Secondly, there has been the rise of

methods for discrete-event dynamical systems; this has often used ideas first

devised by the computer science community. Finally, since about the 1980s, the

idea of a hybrid system approach has gained credence and this paradigm is still

under development.

In the Advances in Industrial Control monograph series and the Advanced

Textbooks in Control and Signal Processing series, we have sought to feature

x Series Editors’ Foreword

titles that cover all aspects of this growth of the control field. For example, the

modelling and analysis of discrete-event processes involves the challenging issues

of resource allocation, logical decision-making, timed-event activity, and

constraint handling. Within the Advanced Textbooks in Control and Signal

Processing series, many of the latest developments in this field have been

captured in Modeling and Control of Discrete-event Dynamical Systems by

Branislav Hrúz end MengChu Zhou (ISBN 978-1-84628-872-2, 2007). This book

is particularly relevant here because it contains an excellent introduction to the

modelling and analysis tools of Petri nets, which have been used by various

authors to solve some of the discrete, logical and continuous modelling, analysis

and design problems of advanced industrial processes.

One entry to the Advances in Industrial Control series has been Modelling and

Analysis of Hybrid Supervisory Systems by Emilia Villani, Paulo E. Miyagi, and

Robert Valette (ISBN 978-1-84628-650-6, 2007). This reported a new technique

that built on the capabilities of Petri nets and captured the realistic behaviour of

large and small complex mixed dynamical discrete and continuous industrial

systems. The method was demonstrated on three complex industrial examples, a

heating, ventilation, and air conditioning system, an aircraft landing system and a

cane-sugar production plant.

Continuing with the emphasis on solving real industrial control and

supervisory control problems, this entry to Advances in Industrial Control by

ZhiWu Li and MengChu Zhou tackles the deadlock problem using the formalism

of Petri nets. It is an exhaustive text for this area of research and proposes new

solutions for a long-standing problem. The reader who already has some

familiarity with Petri nets and the associated analysis techniques will benefit

directly; however, the inclusion of an introductory chapter on Petri nets makes

this book self-contained. It can be usefully supplemented by reading the Petri net

chapters in the above-mentioned Hrúz and Zhou textbook. The penultimate

chapter of Deadlock Resolution in Automated Manufacturing Systems also

compares a range of deadlock prevention policies and many readers interested in

automated manufacturing will find this a useful source of ideas and further

reading. The Editors of the Advances in Industrial Control series welcome this

book as a valuable addition to the growing literature on these important, complex

and large-scale industrial problems.

Industrial Control Centre M.J. Grimble

Glasgow M.A. Johnson

Scotland, UK

2008

Preface

The rapid evolution of computing, communication, control, and sensor technologies

has brought about the proliferation of new man-made dynamic systems, mostly tech-

nological and often highly complex. Examples around us are air traffic control sys-

tems; automated manufacturing systems; computer and communication networks;

embedded and networked systems; and software systems. The activity in these sys-

tems is governed by operational rules designed by humans and their dynamics is

often driven by asynchronous occurrences of discrete events. This class of dynamic

systems is therefore called discrete-event (dynamic) systems.

Based on finite-state automata and formal languages, the seminal work by Ra-

madge and Wonham in the early 1980s aims at providing a comprehensive and

structural treatment of the modeling and control of discrete-event systems (DESs).

The results in this area are gradually shaped and lead to supervisory control theory

(SCT). SCT considers a DES as a generator of a formal language. Its behavior can

be controlled by a supervisor that prevents event occurrences in order to satisfy a

given specification.

Due to its generality, SCT is a paradigm that bridges the two worlds of control

theory and computer science. In the latter, there exists a well-established Petri net

community. As a natural and alternative modeling formalism, Petri nets are widely

used for DES modeling and control. Their structural properties have been success-

fully exploited for the design of supervisors for supervisory control problems. Sig-

nificant progress in this direction was made over the last two decades. The results

obtained so far deal mainly with the safety of a plant, i.e., avoidance of dangerous

or forbidden conditions given in a control specification. Liveness in Petri nets is an

important behavioral property that leads to the safety of the supervised plant. It im-

plies the freedom of deadlock–a highly undesired situation that an automated system

must completely avoid. This property is equivalent to the non-blockingness in SCT.

SCT is independent of the specific representation. That is to say, it is independent

of a specific implementation technology.

A variety of theoretical results and computational algorithms have been devel-

oped in the literature to assess the liveness of certain classes of Petri nets. Most of

these results are based on the fact that the liveness of a Petri net is closely related

xi

xii Preface

to the satisfiability of certain predicates on siphons. As a set of place elements, a

siphon is a structural object in Petri nets. This relation between liveness and siphons

becomes strong and apparent when we investigate the practical DES including a va-

riety of resource allocation systems in a contemporary technological domain. Con-

sequently, the siphon-based characterization of liveness and liveness-enforcing su-

pervision for DESs modeled with Petri nets is usually considered to be one of the

most interesting developments in the last decade from both theoretical and practical

points of view.

However, the power of siphon-based liveness-enforcing approaches is degraded

and deteriorated as the number of siphons grows quickly beyond practical limits and

in the worst case grows exponentially fast with respect to the Petri net size. They

suffer from the computational complexity problem since it is known that in general

the complete siphon enumeration in a Petri net is NP-complete. Furthermore, they

usually lead to a much more structurally complex liveness-enforcing Petri net super-

visor than the plant net model that is originally built. This book tries to show how

an elementary siphon-based methodology tackles these problems.

The book is intended for researchers, graduate students, and engineers who are

interested in the control problems arising from manufacturing, transportation, work-

flow systems, communication, computer networks, complex software, and chemical

industry. It is also appropriate for the students in automatic control, computer sci-

ence, and applied mathematics and can be used as a supplementary textbook in the

courses on Petri net theory and applications as well as the supervisory control of

DESs.

Nevertheless, we try to maintain as a goal the presentation of a detailed discus-

sion of the fundamental aspects of the related theory used throughout this book and

hope to give readers a sufficiently solid foundation for their own advanced work

and further study of the literature on this subject, it is highly desired that readers

are familiar with the basics of linear algebra, set theory, and (integer) linear pro-

gramming. In this sense, this book is self-contained. However, it is not intended

to be an introductory textbook on Petri net theory. Being already familiar with net

theory is hardly necessary to open this book but surely helpful if readers know its

preliminaries.

Following the introduction in Chap. 1, the basics of Petri nets are presented in

Chap. 2, which is used throughout this book. Explanatory examples are given to

illustrate the concepts so that readers can understand the book without the prior

knowledge of general Petri net theory. The concept of elementary and dependent

siphons in a net is proposed in Chap. 3. As a natural extension to the concept of ele-

mentary siphons, Chap. 4 presents a novel monitor implementation to enforce gen-

eralized mutual exclusion constraints (GMECs). Chap. 5 presents a number of dead-

lock prevention policies that are developed on the basis of elementary siphons. The

role of elementary siphons is fully shown in Chap. 6 by investigating the existence

of a maximally permissive (optimal) liveness-enforcing monitor-based Petri net su-

pervisor for a flexible manufacturing system. A survey and comparison of a variety

of deadlock prevention policies in the literature are presented in Chap. 7. The com-

parison is conducted from the following points of view: computational complexity,

Preface xiii

structural complexity, and behavior permissiveness. The last chapter concludes this

book by summarizing the results in the literature and presenting some interesting

and open problems as well as some guidelines to tackle them.

Attached to the end of every chapter is a reference bibliography, and a glossary

and a complete index in the final part, which should facilitate readers in using this

book.

Readers of this book can learn the basics of Petri nets, siphon-based characteriza-

tion of liveness, the theory of elementary siphons, and deadlock resolution methods

and strategies for automated manufacturing systems. They can also learn a number

of deadlock prevention policies developed on the basis of elementary siphons. They

can finally master the concept of elementary siphons and related methods in design-

ing structurally simple liveness-enforcing monitor-based Petri net supervisors.

Xidian University, China ZhiWu Li

New Jersey Institute of Technology, USA MengChu Zhou

August 2008

Acknowledgments

We are very grateful to Professor W. M. Wonham, Department of Electrical and

Computer Engineering, University of Toronto, Professor M. D. Jeng, Department

of Electrical Engineering, National Taiwan Ocean University, Professor X. L. Xie,

INRIA, France, Professor Y. S. Huang, Department of Aeronautical Engineering,

Chung Cheng Institute of Technology, National Defense University (Taiwan), Pro-

fessor M. Uzam, Niǧde Üniversitesi, Professor N. Q. Wu, Department of Mecha-

tronics Engineering, Guangdong University of Technology, Professor Y. Chao, De-

partment of Management and Information Science, National Cheng Chi University,

L. Feng, KTH-Royal Institute of Technology, and F. Lewis, The University of Texas

at Arlington, for their valuable comments and suggestions to our research.

We would like to express our sincere gratitude and appreciation to Professor M.

Shpitalni for hosting the first author of this book as a visiting professor from Febru-

ary 2007 to February 2008 in the Laboratory for CAD & Life-cycle Engineering,

Department of Mechanical Engineering, Technion-Israel Institute of Technology.

The first author would like to wholeheartedly thank his wife, TongLing Feng,

and his son, BuZi Li, for their superhuman patience and sacrifice, and consistent en-

couragement. They have graciously endured many long nights and lonely weekends

while he was immersed in his research.

A tribute is due to the unceasing efforts of the numerous investigators in this

area, whose scientific contributions are directly responsible for the creation of this

book. Among them are K. Barkaoui, Y. Chao, J. Ezpeleta, M. P. Fanti, A. Giua,

Y. S. Huang, M. V. Iordache, M. D. Jeng, K. Lautenbach, F. Lewis, J. Park, S. A.

Reveliotis, E. Roszkowska, F. G. Tricas, M. Uzam, N. Q. Wu, X. L. Xie, and K. Y.

Xing.

Finally, the authors would like to thank the following students: A. R. Wang, H.

S. Hu, M. Zhao, N. Wei, M. M. Yan, D. Liu, C. F. Zhong, M. Qin, G. Y. Liu, and Y.

F. Hou. We appreciate their hard work in this area, particularly during the difficult

times that we had in past years.

This work was in part supported by the National Nature Science Foundation of

China under Grant No. 60228004, 60474018, and 60773001, the Scientific Research

Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education,

xv

xvi Acknowledgments

P. R. China, under Grant No. 2004-527, the Laboratory Foundation for the Returned

Overseas Chinese Scholars, the Ministry of Education, P. R. China, under Grant

No. 030401, Chang Jiang Scholars Program, the Ministry of Education, P. R. China,

the National Research Foundation for the Doctoral Program of Higher Education,

the Ministry of Education, P. R. China, under Grant No. 20070701013, Technion-

Xidian Academic Exchange Program, “863” High-tech Research and Development

Program of China, under Grant No. 2008AA04Z109, and the New Jersey Commis-

sion on Science and Technology.

Contents

Abbreviations . xxi

1 Introduction . 1

1.1 Background . 1

1.2 Literature Review . 3

1.3 Outline of the Book . 9

1.4 Bibliographical Remarks . 10

Problems . 10

References . 10

2 Petri Nets . 17

2.1 Introduction . 17

2.2 Formal Definitions . 17

2.3 Structural Invariants . 25

2.4 Siphons and Traps . 27

2.5 Subclasses of Petri Nets . 33

2.6 Petri Nets and Automata . 34

2.7 Plants, Supervisors, and Controlled Systems . 36

2.8 Bibliographical Remarks . 37

Problems . 38

References . 40

3 Elementary Siphons of Petri Nets . 45

3.1 Introduction . 45

3.2 Equivalent Siphons . 46

3.3 Elementary and Dependent Siphons . 49

3.4 Controllability of Dependent Siphons in Ordinary Petri Nets 50

3.5 Controllability of Dependent Siphons in Generalized Petri Nets 61

3.6 An Elementary Siphon Identification Algorithm 68

3.7 Existence of Dependent Siphons . 71

3.8 Bibliographical Remarks . 73

xvii

xviii Contents

Problems . 73

References . 74

4 Monitor Implementation of GMECs . 77

4.1 Introduction . 77

4.2 Generalized Mutual Exclusion Constraints . 78

4.3 Elementary and Dependent Constraints . 79

4.4 Implicit Enforcement of Dependent Constraints 82

4.5 Application to Deadlock Prevention . 90

4.6 Some Further Results About S4R Nets . 98

4.7 Identification of Elementary Constraints . 101

4.8 Bibliographical Remarks . 102

Problems . 102

References . 103

5 Deadlock Control Based on Elementary Siphons 107

5.1 Introduction . 107

5.2 Some Application Subclasses of Petri Nets . 107

5.3 An MIP-Based Deadlock Detection Method . 116

5.4 A Classical Deadlock Prevention Policy . 119

5.5 An Elementary Siphon-Based Deadlock Prevention Policy 125

5.6 An MIP-Based Deadlock Prevention Policy . 132

5.7 Deadlock Prevention in S4R . 134

5.8 Bibliographical Remarks . 148

Problems and Discussions . 149

References . 154

6 Optimal Liveness-Enforcing Supervisors . 159

6.1 Background . 159

6.2 Optimal Supervisor Design by the Theory of Regions 160

6.3 Existence of an Optimal Liveness-Enforcing Supervisor 166

6.4 Synthesis of Optimal Supervisors . 178

6.5 An Example . 182

6.6 Bibliographical Remarks . 185

185

References . 188

7 Comparison of Deadlock Prevention Policies . 191

7.1 Introduction . 191

7.2 Applications of Deadlock Prevention Methods to a Case Study 192

7.2.1 Combination of Deadlock Prevention and Avoidance 192

7.2.2 Modification of Initial Markings of Monitors 194

7.2.3 Deadlock Prevention via Proper Configuration of Initial

Markings . 195

7.2.4 A Selective Siphon Control Policy . 197

7.2.5 Deadlock Prevention by Complete Siphon Enumeration 198

Problems .

Contents xix

7.2.6 Two-Stage Deadlock Control . 199

7.2.7 Two-Stage Deadlock Control with Elementary Siphons 200

7.2.8 A Policy Based on Elementary Siphons 201

7.2.9 An Iterative Policy Based on Elementary Siphons 202

7.2.10 A More Permissive Policy Based on Elementary Siphons . . . 203

7.2.11 A Policy of Polynomial Complexity . 204

7.2.12 An Iterative Deadlock Prevention Policy 206

7.2.13 An Optimal Deadlock Prevention Policy Based on Theory

of Regions . 207

7.2.14 A Suboptimal Deadlock Prevention Policy 208

7.2.15 An Optimal Policy Based on Complete Siphon Enumeration 210

7.3 Analysis of Deadlock Prevention Methods . 211

7.3.1 Reachability-Graph-Based Policies . 212

7.3.2 Complete-Siphon-Enumeration-Based Policies 213

7.3.3 Partial-Siphon-Enumeration-Based Policies 213

7.3.4 Exponential Complexity and NP-Hardness 214

7.4 Bibliographical Remarks . 215

Problems . 215

References . 216

8 Conclusions and Future Research . 223

Problems . 225

References . 226

Symbols . 231

Index . 235

Abbreviations

AMG Augmented marked graph

cs-property Controlled-siphon property

DES Discrete-event system

ERCN Extended resource control net

ES3PR Extended S3PR

FBM First-met bad marking

FMS Flexible manufacturing system

GMEC Generalized mutual exclusion constraint

LPP Linear programming problem

LS3PR Linear S3PR

MIP Mixed integer programming

P-invariant Place invariant

PNR Process nets with resources

PPN Production Petri net

PRT-circuit Perfect resource transition circuit

RCN Resource control net

SCT Supervisory control theory

S2LSPR Systems of simple linear sequential processes with resources

S2P Simple sequential process

S3PGR2 System of simple sequential processes with general resource requirements

S2PR Simple sequential process with resources

S3PR System of simple sequential processes with resource

S4R System of sequential systems with shared resources

T-invariant Transition invariant

WS3PSR Weighted system of simple sequential processes with several resources

xxi

Chapter 1

Introduction

Abstract This chapter first, from a historical viewpoint, shows why Petri nets are a

widely used mathematical tool to investigate supervisory control of discrete-event

systems, particularly for the deadlock analysis and control of automated manufactur-

ing systems. The advantages and disadvantages of three major deadlock resolution

strategies in the context of resource allocation systems, which are deadlock detec-

tion and recovery, deadlock avoidance, and deadlock prevention, are analyzed. A

number of subclasses of Petri nets that can model various automated manufacturing

systems are listed. Then, it reviews the existing deadlock prevention policies in the

literature for automated manufacturing systems. The policies are qualitatively eval-

uated and compared briefly from computational complexity, supervisor complexity,

and behavioral permissiveness. Finally, it outlines the book.

1.1 Background

A discrete-event system (DES) is a dynamical system that evolves according to

asynchronous occurrences of discrete events. The examples of DES in the real

world include a variety of man-made systems such as flexible manufacturing sys-

tems, complex computer programs, computer networks, communication systems,

unmanned urban traffic systems, and workflow systems. A DES has a discrete set of

states that may take symbolic values rather than real numbers. State transitions in

these systems occur at asynchronous discrete instants of time in response to events,

which may also take symbolic values. Usually, the relationships between state tran-

sitions and events cannot be described by differential or difference equations.

DES is a growing area that utilizes many interesting mathematical models and

techniques. A DES is usually studied at two different levels: logical and perfor-

mance levels. The models of the former are used to describe qualitative properties

and control the sequences of events in a DES. The timing of event occurrences is ig-

nored. At this level, typical problems are the avoidance of forbidden states or event

sequences for the purpose of deadlock avoidance or liveness enforcement. The per-

1

2 1 Introduction

formance models deal with quantitative properties and aim to control the temporal

behavior of a DES. In this case, the typical problems include the satisfaction of tim-

ing constraints, scheduling, and, particularly, optimization of some key performance

criteria of a DES, for example, the production rate of a manufacturing system.

At the logical level, the most interesting and original approach to the control of

a DES is supervisory control theory (SCT). The seminal theory by P. J. Ramadge

and W. M. Wonham [65–67] considers a DES as a generator of a formal language.

Its behavior can be controlled by a supervisor that prevents event occurrences in

order to satisfy a control specification. SCT aims at providing a comprehensive and

general framework that can deal with the control of DES represented by automata. It

is concerned with a qualitative treatment with a control flavor of the discrete world.

In DES literature, a system to be controlled is usually called a plant. If it is mod-

eled with a Petri net, the resultant Petri net is called a plant (Petri) net model. It is

likely that the behavior of a plant may violate some constraints that must be enforced

to the system. As a result, a plant often needs to be controlled by an external agent

such that it behaves as one desires. A supervisor is referred to the external agent of

a system to be controlled. Consequently, the plant model and its supervisor together

are called a controlled system or controlled net if both take the form of Petri nets.

The framework proposed by Ramadge and Wonham is highly flexible with re-

spect to the choice of models. The state space representation can be totally unstruc-

tured as in an automaton, or it can be structured as in a vector space, or it can be any

combination thereof. Due to the fact that the state space of a Petri net is structured as

a vector, Petri nets are widely used as a formalism in DES control theory. As stated

in [9], the popularity of Petri nets as a formalism for the modeling and control of

DES can be additionally attributed to the following reasons.

First, the well-established Petri net community that mainly consists of computer

scientists has developed a large family of Petri net models across many disciplines.

Different classes of Petri nets can represent different types of DES. Specifically,

place/transition nets can be used to represent the logical level of a DES. Determin-

istic timed event graphs, a subclass of Petri nets, are equivalent to (max,+)-linear

systems. More general timed deterministic and stochastic Petri nets can be used for

performance evaluation. High-level nets can offer a compact model for complex

systems. Hybrid nets can represent hybrid systems that involve both discrete and

continuous processes. Generalized stochastic Petri nets can model general Marko-

vian processes, which play a key role in stochastic optimization in DES. It is shown

that the family of Petri nets developed in the literature can be used for simulation,

control, verification, performance analysis, scheduling, and optimization.

Second, Petri nets can be used in all stages starting from modeling to control

implementation. For example, Grafcet, a design paradigm of control programs for

programmable logical controllers, is usually considered as a variation of Petri nets.

Both plant and supervisor models can be represented with Petri nets. This feature

can greatly facilitate modeling, open-loop system analysis and synthesis, control

implementation, and closed-loop system analysis and evaluation.

1.2 Literature Review 3

Third, related computation can be made less extensive by fully utilizing the struc-

tural information of Petri nets. Also, Petri nets have a set of systematic mathematical

analysis tools employing linear matrix algebra.

Last but not least, the research results using Petri nets as a formalism to deal

with the modeling and control problems of DES over the past decades are very

fruitful. Although the decision power of a Petri net is not unlimited, a good variety

of DES control problems can be effectively and efficiently solved in a Petri net

formalism [59]. For example, Petri nets have proved to be very successful in dealing

with the forbidden-state problem, an important class of control specifications in

supervisory control of DES. The achievements made by Petri net researchers in

this area, however, in our own opinion, result partially from the supervisory control

theory initialized by Ramadge and Wonham. In fact, many ideas in Petri net domain

are borrowed from their theory, and most of research on Petri nets for DES has

strongly been influenced by their supervisory control paradigm.

The facts mentioned above indicate that Petri nets are increasingly becoming

an important and fully-fledged mathematical model to investigate the modeling and

control of DES. In a Petri net formalism, liveness is an important property of system

safety, which is equivalent to the non-blockingness in Ramadge and Wonham’s su-

pervisory control framework. Liveness implies the absence of global or local dead-

lock situations in a system.

A variety of theoretical results and computational algorithms have been devel-

oped in the literature to assess the liveness of certain classes of Petri nets. The live-

ness assessment can be performed by verifying the satisfiability of certain predicates

on siphons, a well-known structural object in Petri nets. One of the most interesting

past developments is the use of such structural objects to derive liveness-enforcing

(Petri net) supervisors for DES.

However, the power of the siphon-based liveness-enforcing approaches is de-

graded and deteriorated by the fact that siphons’ number in a Petri net grows quickly

beyond practical limits and often grows exponentially with respect to the net size.

They suffer from the computational complexity problem since it is known that in

general the complete siphon enumeration in a Petri net is NP-complete. Further-

more, they usually lead to a much more structurally complex liveness-enforcing

supervisor than the plant net model that is originally built. This book attempts to

show (1) how Petri nets can be used to deal with deadlock control problems and

(2) how the new concept of elementary siphons in a Petri net improves the existing

deadlock control policies.

1.2 Literature Review

Deadlocks have been extensively investigated in computer operating systems [2,13,

27–30, 32, 40, 60, 63, 74]. In general, they are an undesirable situation in a resource

allocation system. Their occurrence implies the stoppage of the whole or partial sys-

tem operation. In a production system, for example, deadlocks and related blocking

4 1 Introduction

phenomena often cause unnecessary costs such as long downtime and low utiliza-

tion of some critical and expensive resources, and may lead to catastrophic results in

highly automated systems, e.g., semiconductor manufacturing systems. Therefore,

it is necessary to develop an effective control policy to make sure that deadlocks

never occur in these systems. Over the last two decades, a great deal of research has

been focused on solving deadlock problems in DES, resulting in a wide variety of

approaches. This section is not intended to present a comprehensive overview of the

deadlock control approaches in the literature. We instead concentrate on the most

closely related approaches that are developed based on Petri nets.

The methods derived from a Petri net formalism for dealing with deadlocks either

preclude the possibility of deadlock occurrence by breaking some necessary condi-

tions for a deadlock to arise or detect and resolve a deadlock when it occurs. Gener-

ally, these deadlock resolution methods are classified into three strategies: deadlock

detection and recovery [49,85], deadlock avoidance [1,5,22,34,35,80,82–84], and

deadlock prevention [19, 23, 24, 47, 52, 87].

• A deadlock detection and recovery approach permits the occurrence of dead-

locks. When a deadlock occurs, it is detected and then the system is put back

to a deadlock-free state, by simply reallocating the resources. The efficiency of

this approach depends upon the response time of the implemented algorithms

for deadlock detection and recovery. In general, these algorithms require a large

amount of data and may become complex when several types of shared resources

are considered [1].

• In deadlock avoidance, at each system state an on-line control policy is used

to make a correct decision to proceed among the feasible evolutions. The main

purpose of this approach is to keep the system away from deadlock states. Ag-

gressive methods usually lead to higher resource utilization and throughput, but

do not totally eliminate all deadlocks for some cases. In such cases if a deadlock

arises, suitable recovery strategies are still required [49, 80, 85]. Conservative

methods eliminate all unsafe states and deadlocks, and often some good states,

thereby degrading the system performance. On the other hand, they are intended

to be easy to implement.

• Deadlock prevention is considered to be a well-defined problem in DES liter-

ature. It is usually achieved by using an off-line computational mechanism to

control the request for resources to ensure that deadlocks never occur. The goal

of a deadlock prevention approach is to impose constraints on a system to prevent

it from reaching deadlock states. In this case, the computation is carried out off-

line in a static way and once the control policy is established, the system can no

longer reach undesirable deadlock states. A major advantage of deadlock preven-

tion algorithms is that they require no run-time cost since problems are solved in

system design and planning stages. The major criticism is that they tend to be too

conservative, thereby reducing the resource utilization and system productivity.

In the early work of Petri nets as a DES formalism, deadlock prevention is

achieved by configuring proper initial markings under which a plant Petri net model

is live. This idea can be originally traced back to the seminal works of Zhou

1.2 Literature Review 5

and DiCesare in the 1990s [88–90]. In the last decade, a fair amount of work

in this direction has been done by Jeng, Xie, Chu, Peng, Chung, and Barkaoui

[6, 12, 41–46, 94]. The liveness of a Petri net model is tied to the absence of emp-

tiable siphons. An emptiable siphon is a set of places whose marking becomes null

during the net evolution and remains so in the subsequent markings. Most recent

work in this direction utilizes this fact to analyze and control deadlocks in a DES.

One of the distinguishing features of Ramadge and Wonham’s supervisory con-

trol framework is that there is a distinct boundary between a plant to be supervised

and its supervisor such that the control implementation can be independent of the

specific technology. Unfortunately, this boundary is not clearly shown in the work

that was done in the early days of Petri nets as a DES formalism. In a deadlock

resolution domain, the situation was changed after the seminal work of Ezpeleta et

al. [19] and Lautenbach et al. [51], where liveness is enforced by adding monitors,

also called control places, to prevent siphons from being emptied. This implies that

both a plant and its supervisor are unified in a Petri net formalism. In addition, the

significance of their work lies in the fact that a plant and its supervisor are suc-

cessfully separated so that control implementation technology for the latter can be

independently developed.

The success of separating a plant and its supervisor in a Petri net formalism

becomes a spur that attracts much attention. Xing et al. [87] develop a deadlock pre-

vention policy for a class of Petri nets, which is called Production Petri Nets, where

the plant net model consists of resource places and production sequences. A dead-

lock structure is defined, which consists of a set of transitions. The set of resources

used in the output places of the transition set is equal to the set of resources used

in the input places of the transition set. The system is led to a deadlock state if the

number of resources used by the deadlock structure equals the capacity of the re-

source. A control policy is accordingly developed by adding monitors, ensuring that

for each involved resource, the deadlock structure always demands less resources

than that the system has. Furthermore, the policy is minimally restrictive, i.e., it is

optimal or maximally permissive.

As gradually recognized, the work by Ezpeleta et al. [19] suffers from a number

of problems: application coverage, behavior permissiveness, computational com-

plexity, and structural complexity. First of all, the policy in [19] can deal with only

S3PR, a class of Petri nets. It cannot model a manufacturing system with assem-

bly and disassembly operations since an S3PR is composed of state machines and

resources and a state machine cannot represent assembly and disassembly opera-

tions. Second, the policy, in a general case, cannot lead to a maximally permissive

supervisor. Third, the development of the policy depends on the complete siphon

enumeration of a plant model. Such enumeration is expensive or impossible if the

size of the plant is large since the number of siphons in a net grows exponentially

fast with respect to the net size [18, 50]. The structural complexity problem of the

supervisor results from the fact that for each strict minimal siphon in the plant net

model, a monitor has to be added to prevent it from being emptied. The years fol-

lowing 1995 have seen a great deal of attention focused on these problems.

6 1 Introduction

Many extensions to S3PR nets have subsequently been proposed, which can be

used to model more general automated flexible manufacturing systems (FMS).

• AMG (augmented marked graphs) [12]: An augmented marked graph is a Petri

net mainly composed of two sets of places: operation places and resource places.

The resultant net obtained by removing resource places and their related arcs is

a marked graph.

• LS3PR (linear system of simple sequential processes with resources) [20]: Strictly

speaking, an LS3PR is not an extended but a restrictive version of an S3PR. Their

difference is that a special constraint is imposed on the state machines in an

LS3PR. A state machine in it does not contain choices at internal states that are

not the idle states. Note that idle states represent job requests.

• ES3PR (extended S3PR) [37]: Defined by Huang et al., an ES3PR is an ordinary

Petri net resulting from adding a set of resource places to a set of process nets

that are state machines. An S3PMR [38], from its definition, is equivalent to an

ES3PR in [37].

• ES3PR (extended S3PR) [77]: Composed of a set of state machines plus a set of

resource places, this type of ES3PR nets is more general than that defined in [37]

since it may contain arcs from transitions to resource places with their weights

perhaps being greater than one.

• WS3PSR (weighted system of simple sequential processes with several re-

sources) [76]: It is composed of state machines and resources. The usage of

resources guarantees that they are neither destroyed nor created, i.e., conserva-

tiveness. In this sense, a WS3PSR is a generalized Petri net.

• S4R (system of sequential systems with shared resources) [1]: An S4R is com-

posed of a set of state machines plus a set of resource places. Compared with

other classes of Petri nets that contain state machines, its usage of resources is

almost arbitrary and requires only conservativeness.

• S4PR [78]: An S4PR is equivalent to an S4R [1]. Both are developed indepen-

dently.

• S3PGR2 (system of simple sequential processes with general resource require-

ments) [62]: An S3PGR2 is also equivalent to an S4R.

• S∗PR [21]: This class of nets is a generalization of previously introduced classes

that are composed of state machines. It properly includes S4R.

• RCN (resource control nets)-merged nets [44]: An RCN-merged net includes

S3PR and some of augmented marked graphs.

• ERCN (extended resource control nets)-merged nets [86]: An ERCN-merged net

includes RCN-merged nets and some of augmented marked graphs.

• ERCN∗-merged nets [46]: An ERCN∗-merged net includes ERCN-merged nets

and some of augmented marked graphs.

• PNR (process nets with resources) [45]: A PNR is larger than the class of S3PR,

augmented marked graphs, and some of ERCN-merged nets.

• G-tasks [6]: A G-task is composed of acyclic state machines and a set of resource

places. The resources can be arbitrarily used as long as their conservativeness is

preserved.

1.2 Literature Review 7

• G-systems [94]: A G-system is the most general one among all the mentioned

classes. It can properly contain each of the above classes. A G-system can model

assembly (synchronization) and disassembly (splitting) operations in an FMS.

These classes can model various resource allocation systems. Their deadlock

control policies are developed according to the relationship between liveness and

siphons.

As known, the limited behavior permissiveness is a flaw in the notable deadlock

prevention policy in [19]. Huang et al. claim that the deadlock prevention policy

developed in [36] for S3PR is in general more permissive than the one in [19]. This

statement is not formally proved. Actually, in the opinion of the authors of this book,

it may not be possible to develop a formal proof. The statistical investigation does

support such a claim [36].

Huang’s policy consists of two stages and performs the synthesis of a supervisor

in an iterative way. The first stage, called siphon control, adds monitors to the plant

model such that all the siphons in the plant are controlled. The siphon control stage is

optimal or maximally permissive in the sense that no good states are removed due to

the addition of monitors. In fact, the control of a siphon in this stage is implemented

by enforcing a generalized mutual exclusion constraint (GMEC).

The second stage aims at making the newly generated siphons controlled, which

result from the addition of the monitors in the first stage. To accelerate the conver-

gence rate, the output arcs of the monitors added in the second stage point to only

the source transitions of the plant model.

Sometimes termed optimality, maximal permissiveness is also an important pa-

rameter of a supervisor. In Ramadge and Wonham’s approach, the existence and

synthesis of an optimal non-blocking supervisor for a DES has been well addressed

in a finite automaton and formal language paradigm. The existence of a synthesis

approach for an optimal liveness-enforcing supervisor remains open until the work

in [3, 26, 79]. By using the theory of regions [3] that can derive pure Petri nets from

an automaton-based model, Uzam [79] develops an optimal liveness-enforcing su-

pervisor synthesis method on the condition that such a supervisor exists. However, it

is difficult to understand and use. Later, by using plain and popular linear algebraic

notions, Ghaffari et al. [26] explore the conditions on the existence of an optimal

supervisor that is maximally permissive, and develop a methodology to synthesize

it.

These “explicit” approaches that need to generate the reachability graph of a

Petri net require memory and time at least proportional to the number of reachable

markings. Thus they are applicable to fairly small systems only. That is to say, a

plant net model has to be small-sized. Also, its initial marking must be so small that

its reachability set is limited to the computer’s memory and processing capability.

As a result, the computational efficiency is the Achilles’ heel of methods of this

kind since the complete state enumeration is needed. This is not surprising since

the theory of regions is a method to derive Petri nets from an existing automaton

model. The work in [57] develops an optimal net supervisor design method that is

based on the theory of regions. Its efficiency is improved by reducing the number of

inequality systems that are used to separate events from some unsafe states.

8 1 Introduction

Computational complexity has been a major problem when a deadlock preven-

tion policy is developed [2, 61]. For a class of Petri nets, S3PGR2, Park and Rev-

eliotis [62] propose a deadlock prevention policy that, originally developed under

a finite-state automaton paradigm, is polynomial. Additional deadlock avoidance

policies that are of polynomial-time complexity are presented in [21, 34]. They are

not optimal in general.

Due to the inherent characteristics of Petri nets, the development of a polynomial-

time algorithm to design a liveness-enforcing monitor-based supervisor is by no

means an easy task. An efficient way of improving the computational efficiency

of a siphon-based deadlock prevention policy is the introduction of the MIP-based

deadlock detection method pioneered by Chu and Xie [12]. It was first used by

Huang et al. in [36] to design a liveness-enforcing supervisor such that the complete

siphon enumeration is successfully avoided. In this sense, this deadlock prevention

policy enjoys high computational efficiency compared with the existing ones in the

literature at that time. The MIP-based deadlock detection method is then used in [54]

and [56].

A liveness-enforcing monitor-based supervisor derived from siphons reaches its

high structural complexity when the number of siphons is large. This problem, hav-

ing been recognized for a long time, has remained open for many years. By fully

utilizing the structural information in a Petri net, the work by Li and Zhou proposes

the concepts of elementary and dependent siphons in a Petri net [53, 55]. Siphons

in a Petri net can be divided into elementary and dependent ones. The latter can

be further distinguished by strongly and weakly dependent siphons with respect to

elementary ones. It is shown that the number of the elementary siphons in a net

is bounded by the smaller of place and transition counts. Moreover, a dependent

siphon can be controlled by properly supervising the number of tokens that can stay

at its elementary siphons.

The results concerning elementary siphons mentioned above can be naturally

applied to most of the siphon-based deadlock prevention policies in the literature.

For example, monitors can be added for elementary siphons only. The controllability

of a dependent siphon can be ensured by properly supervising the initial number of

tokens in the monitors that are added to its elementary siphons. That is to say, it

is possible that we do not need to explicitly add a monitor for a dependent siphon

any more. This is fully shown in [53] by an FMS example. In theory, the size of

a supervisor that is computed by using elementary siphons is as a result less than

that of the plant. Note that the method in [53] does not lower the computational

complexity and improve the behavior permissiveness compared with the policy in

[19]. On the positive side, it does lower the structural complexity of the supervisor

notably.

It is worth noting that there is an established tool inside Petri net theory, which

can be used to remove redundant monitors from a liveness-enforcing supervisor.

It is called implicit places [14, 25, 68, 73]. Implicit places have the property that

their addition to or removal from a net system does not change its behavior, i.e., an

implicit place represents redundancy. In fact, the concept of implicit places has been

proposed for many years before the existence of the structural complexity problem

1.3 Outline of the Book 9

of a liveness-enforcing monitor-based supervisor. Unfortunately, no work in this

direction is found in the literature except for [58].

For a dozen of years, we have witnessed that the results are much enriched in the

area of liveness-enforcing supervisory control that is based on a Petri net formalism.

On the other hand, many interesting problems remain unsolved, particularly the

four above-mentioned hurdles, i.e., application scope, behavioral permissiveness,

computational efficiency, and supervisor’s structural complexity. This monograph

represents the important research results that can be used to overcome these hurdles.

1.3 Outline of the Book

This monograph is intended to present a Petri net approach to deadlock resolution

of automated manufacturing systems. It focuses on the role of elementary siphons

of Petri nets in the development of a supervisor subject to liveness and other control

requirements. It is outlined as follows.

Chapter 2 introduces the basics of Petri nets as well as the necessary notations

used throughout this book. It also includes a brief comparison between Petri nets

and automata.

Chapter 3 first defines the concepts of elementary and dependent siphons in Petri

nets. Then, important results on elementary siphons such as their number in a net and

the controllability of a dependent siphon are presented. The material in this chapter

facilitates understanding of the development of deadlock prevention policies that are

based on elementary siphons. Simple examples are given to illustrate these results.

Chapter 4 first presents a novel monitor implementation of a set of generalized

mutual exclusion constraints that are divided into elementary and dependent ones, as

motivated by the concept of elementary siphons. Conditions are then derived under

which a dependent constraint is implicitly enforced. The constraint enforcement

method is applied to a deadlock prevention policy developed in [62].

Chapter 5 introduces a well-established deadlock prevention policy via typical

examples in the literature, and then shows the application of elementary siphons

to the design of structurally simple liveness-enforcing monitor-based supervisors.

The significance of elementary siphons is fully demonstrated. A few novel deadlock

control strategies are accordingly presented.

For a class of Petri nets, Chap. 6 explores the existence and synthesis method of

a liveness-enforcing monitor-based supervisor such that the controlled (net) system

is maximally permissive on the assumption that all transitions are controllable and

observable.

Chapter 7 presents and compares the existing deadlock prevention policies for

flexible manufacturing systems via a case study. The comparison is conducted from

the following points of view: computational complexity, structural complexity, and

the behavior permissiveness.

10 1 Introduction

Chapter 8 concludes this book by presenting and discussing a number of open

and interesting problems in the field of DES control using a Petri net formalism and

their relations with other DES formalisms.

1.4 Bibliographical Remarks

Before 1990, the work that used Petri nets as a formalism to deal with deadlock

problems in DES was owing to E. Roszkowska [4, 70, 71]. However, Petri nets re-

ceived more and more attention from academia and industry only after the publica-

tion of the research in [5, 80, 88].

There are several survey papers and books that investigate the supervisory control

problems of DES using Petri nets: [31, 39, 59, 69]. The paper [23] is a tutorial that

surveys the deadlock control approaches in the literature. The edited volume [93]

is the first comprehensive book that is dedicated to deadlock resolution methods in

various computer-integrated systems. Other significant books published in the area

of Petri nets and manufacturing automation include [8,15–17,64,81,90–92]. For the

general problems of DES, the reader is referred to [7, 10, 11, 33, 48, 72, 75].

Problems

1.1. Some supervisory control problems are investigated and well addressed in the

Ramadge–Wonham framework but this is not the case in a Petri net domain, e.g.,

the problems involving controllability and observability of events and decentral-

ized control. Analyze and discuss the reasons from the development history of DES

modeling and control theory. Reader can refer to [9].

References

1. Abdallah, I.B., ElMaraghy, H.A. (1998) Deadlock prevention and avoidance in FMS: A Petri

net based approach. International Journal of Advanced Manufacturing Technology, vol.14,

no.10, pp.704–715.
2. Araki, T., Sugiyama, Y., Kasami, T., Okui, J. (1977) Complexity of the deadlock avoidance

problems. In Proc. 2nd IBM Symposium on the Mathematical Foundations of Computer Sci-

ence, pp.229–252.
3. Badouel, E., Darondeau, P. (1998) Theory of regions. Lectures on Petri Nets I: Basic Models,

Lecture Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.), pp.529–

586.
4. Banaszak, Z., Roszkowska, E. (1988) Deadlock avoidance in pipeline concurrent processes.

Podstawy Sterowania (Foundations of Control), vol.18, no.1, pp.3–17.
5. Banaszak, Z., Krogh, B.H. (1990) Deadlock avoidance in flexible manufacturing systems

with concurrently competing process flows. IEEE Transactions on Robotics and Automation,

vol.6, no.6, pp.724–734.

References 11

6. Barkaoui, K., Chaoui, A., Zouari, B. (1997) Supervisory control of discrete event systems

based on structure theory of Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cyber-

netics, pp.3750–3755.

7. Ben-Naoum, L., Boel, R., Bongaerts, L., De Schutter, B., Peng, Y., Valckenaers, P., Van-

dewalle, J., Wertz, V. (1995) Methodologies for discrete event dynamic systems: A survey.

Journal A, vol.36, no.4, pp.3–14.

8. Bogdan, S., Lewis, F.L., Kovacic, Z., Mireles, J. (2006) Manufacturing Systems Control De-

sign. London: Springer.

9. Cao, X.R., Cohen, G., Giua, A., Wonham, W.M., Van Schuppen, J.H. (2002) Unity in di-

versity, diversity in unity: Retrospective and prospective views on control of discrete event

systems. Journal of Discrete Event Dynamic Systems: Theory and Applications, vol.12, no.3,

pp.253–264.

10. Cassandras, C.G., Lafortune, S. (1999) Introduction to Discrete Event Systems. Boston, MA:

Kluwer.

11. Cassandras, C.G., Lafortune, S. (2008) Introduction to Discrete Event Systems. Springer.

12. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical

programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.

13. Coffman, E.G., Elphick, M.J., Shoshani, A. (1971) System deadlocks. ACM Computing Sur-

veys, vol.3, no.2, pp.67–78.

14. Colom, J.M., Silva, M. (1989) Improving the linearly based characterization of P/T nets. In

Proc. 10th Int. Conf. on Applications and Theory of Petri Nets, G. Rozenberg (Ed.), Lecture

Notes in Computer Science, vol.483, pp.113–145.

15. David R., Alla, H. (1992) Petri Nets and Grafcet. Englewood Cliffs, NJ: Prentice-Hall.

16. Desrocher, A.A., AI-Jaar, R.Y. (1995) Applications of Petri Nets in Manufacturing Systems:

Modeling, Control, and Performance Analysis. Piscataway, NJ: IEEE Press.

17. DiCesare, F., Harhalakis, G., Porth, J.M., Vernadat, F.B. (1993) Practice of Petri Nets in

Manufacturing. Chapman and Hall.

18. Ezpeleta, J., Couvreur, J.M., Silva, M. (1993) A new technique for finding a generating family

of siphons, traps, and st-components: Application to colored Petri nets. In Advances in Petri

Nets, Lecture Notes in Computer Science, vol.674, G. Rozenberg (Ed.), pp.126–147.

19. Ezpeleta, J., Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy

for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11,

no.2, pp.173–184.

20. Ezpeleta, J., Garcı́a-Vallés, F., Colom, J.M. (1998) A class of well structured Petri nets for

flexible manufacturing systems. In Proc. 19th Int. Conf. on Applications and Theory of Petri

Nets, Lecture Notes in Computer Science, vol.1420, J. Desel and M. Silva (Eds.), pp.64–83.

21. Ezpeleta, J., Tricas, F., Garcı́a-Vallés, F., Colom, J.M. (2002) A banker’s solution for dead-

lock avoidance in FMS with flexible routing and multiresource States. IEEE Transactions on

Robotics and Automaton, vol.18. no.4, pp.621–625.

22. Ezpeleta, J., Recalde, L. (2004) A deadlock avoidance approach for non-sequential resource

allocation systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34,

no.1, pp.93–101.

23. Fanti, M.P., Zhou, M.C. (2004) Deadlock control methods in automated manufacturing sys-

tems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.5–22.

24. Fanti, M.P., Zhou, M.C. (2005) Deadlock control methods in automated manufacturing sys-

tems. In Deadlock Resolution in Computer-Integrated Systems, New York: Marcel Dekker,

pp.1–22.

25. Garcı́a-Vallés, F., Colom, J.M. (1999) Implicit places in net systems. In Proc. 8th Int. Work-

shop on Petri Nets and Performance Models, pp.104–113.

26. Ghaffari, A., Rezg, N., Xie, X.L. (2003) Design of a live and maximally permissive Petri

net controller using the theory of regions. IEEE Transactions on Robotics and Automation,

vol.19, no.1, pp.137–142.

27. Gligor, V., Shattuck, S. (1980) On deadlock detection in distributed systems. IEEE Transac-

tions on Software Engineering, vol.6, no.5, pp.435–440.

12 1 Introduction

28. Gold, E.M. (1978) Deadlock predication: Easy and difficult cases. SIAM Journal of Comput-

ing, vol.7, no.3, pp.320–336.

29. Haberman, A. (1969) Prevention of system deadlocks. Communications of the ACM, vol.12,

no.7, pp.373–377.

30. Hack, M.H.T. (1972) Analysis of Production Schemata by Petri Nets. Master Thesis, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts, USA.

31. Holloway, L.E., Krogh, B.H., Giua, A. (1997) A survey of Petri net methods for controlled

discrete event systems. Discrete Event Dynamic Systems: Theory and Applications, vol.7,

no.2, pp.151–190.

32. Holt, R. (1972) Some deadlock properties of computer systems. ACM Computing Surveys,

vol.4, no.3, pp.179–196.

33. Hruz, B., Zhou, M.C (2007) Modeling and Control of Discrete-Event Dynamic Systems: With

Petri Nets and Other Tools. London: Springer.

34. Hsieh, F.S., Chang, S.C. (1994) Dispatching-driven deadlock avoidance controller synthesis

for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.10,

no.2, pp.196–209.

35. Hsieh, F.S. (2004) Fault-tolerant deadlock avoidance algorithm for assembly processes. IEEE

Transactions Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.65–79.

36. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L. (2001) Deadlock prevention policy based on

Petri nets and siphons. International Journal of Production Research, vol.39, no.2, pp.283–

305.

37. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L. (2001) A deadlock prevention policy for

flexible manufacturing systems using siphons. In Proc. IEEE Int. Conf. on Robotics and Au-

tomation, pp.541–546.

38. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, D.H. (2006) Siphon-based deadlock prevention

policy for flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cyber-

netics, Part A, vol.36, no.6, pp.2152–2160.

39. Iordache, M.V. (2003) Methods for the Supervisory Control of Concurrent Systems Based on

Petri Net Abstractions. Doctoral Dissertation, University of Notre Dame.

40. Isloor, S.S., Marsland, T.A. (1980) The deadlock problem: An overview. Computer, vol.13,

no.9, pp.58–77.

41. Jeng, M.D., DiCesare, F. (1993) A review of synthesis techniques for Petri nets with ap-

plications to automated manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.23, no.1, pp.301–312.

42. Jeng, M.D., DiCesare, F. (1995) Synthesis using resource control nets for modeling shared-

resource systems. IEEE Transactions on Robotics and Automation, vol.11, no.3, pp.317–327.

43. Jeng, M.D. (1997) A Petri net synthesis theory for modeling flexible manufacturing systems.

IEEE Transactions on Systems, Man and Cybernetics, Part B, vol.27, no.2, pp.169–183.

44. Jeng, M.D., Xie, X.L. (1999) Analysis of modularly composed nets by siphons. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part A, vol.29, no.4, pp.399–406.

45. Jeng, M.D., Xie, X.L., Peng, M.Y. (2002) Process nets with resources for manufacturing

modeling and their analysis. IEEE Transactions on Robotics and Automation, vol.18, no.6,

pp.875–889.

46. Jeng, M.D., Xie, X.L., Chung, S.L. (2004) ERCN* merged nets for modeling degraded be-

havior and parallel processes in semiconductor manufacturing systems. IEEE Transactions

on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.102–112.

47. Jeng, M.D., Xie, X.L. (2005) Deadlock detection and prevention of automated manufactur-

ing systems using Petri nets and siphons. In Deadlock Resolution in Computer-Integrated

Systems, M. C. Zhou and M. P. Fanti (Eds.), pp.233-281, New York: Marcel Dekker.

48. Kumar, R. Garg, V. (1995) Modeling and Control of Logical Discrete Event Systems. Boston,

MA: Kluwer.

49. Kumaran, T.K., Chang, W., Cho, H., Wysk, R.A. (1994) A structured approach to deadlock

detection, avoidance and resolution in flexible manufacturing systems. International Journal

of Production Research, vol.32, no.10, pp.2361–2379.

References 13

50. Lautenbach, K. (1987) Linear algebraic calculation of deadlocks and traps. In Concurrency

and Nets, K. Voss, H. J. Genrich and G. Rozenberg (Eds.), pp.315–336.

51. Lautenbach, K., Ridder, H. (1993) Liveness in bounded Petri nets which are covered by T-

invariants. In Proc. 13th Int. Conf. on Applications and Theory of Petri Nets, Lecture Notes in

Computer Science, vol.815, R. Valette (Ed.), pp.358–375.

52. Lautenbach, K., Ridder, H. (1996) The linear algebra of deadlock avoidance–a Petri net

approach. No.25-1996, Technical Report, Institute of Software Technology, University of

Koblenz-Landau, Koblenz, Germany.

53. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to dead-

lock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.34, no.1, pp.38–51.

54. Li, Z.W., Zhou, M.C. (2006) Two-stage method for synthesizing liveness-enforcing super-

visors for flexible manufacturing systems using Petri nets. IEEE Transactions on Industrial

Informatics, vol.2, no.4, pp.313–325.

55. Li, Z.W., Zhou, M.C. (2006) Clarifications on the definitions of elementary siphons of Petri

nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.36, no.6, pp.1227–

1229.

56. Li, Z.W., Hu, H.S., Wang, A.R. (2007) Design of liveness-enforcing supervisors for flexible

manufacturing systems using Petri nets. IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C, vol.37, no.4, pp.517–526.

57. Li, Z.W., Zhou, M.., Jeng, M.D. (2008) A maximally permissive deadlock prevention policy

for FMS based on Petri net siphon control and the theory of regions. IEEE Transactions on

Automation Science and Engineering, vol.5, no.1, pp.182–188.

58. Li, Z.W. (2009) On systematic methods to remove redundant monitors from liveness-

enforcing net supervisors. To appear in Computer and Industrial Engineering.

59. Moody, J.O., Antsaklis, P.J. (1998) Supervisory Control of Discrete Event Systems Using Petri

Nets. Boston, MA: Kluwer.

60. Newton, G. (1979) Deadlock prevention, detection, and resolution: An annotated bibliogra-

phy. ACM SIGOPS Operating Systems Review, vol.13, no.2, pp.33–44.

61. Pablo, J., Colom, J.M. (2006) Resource allocation systems: Some complexity results on the

S4PR class. In Proc. IFIP International Federation for Information Processing, Lecture Notes

in Computer Science, vol.4229, E. Najm et al. (Eds.), pp.323–338.

62. Park, J., Reveliotis, S.A. (2001) Deadlock avoidance in sequential resource allocation systems

with multiple resource acquisitions and flexible routings. IEEE Transactions on Automatic

Control, vol.46, no.10, pp.1572–1583.

63. Peterson, J.L., Silberschatz, A. (1985) Operating System Concepts. Reading, MA: Addison-

Wesley.

64. Porth, J.M., Xie, X.L. (1996) Petri Nets, A Tool for Design and Management of Manufactur-

ing Systems. New York: John Wiley & Sons.

65. Ramadge, P., Wonham, W.M. (1987) Supervisory control of a class of discrete event pro-

cesses. SIAM Journal on Control and Optimization, vol.25. no.1, pp.206–230.

66. Ramadge, P., Wonham, W.M. (1987) Modular feedback logic for discrete event systems.

SIAM Journal on Control and Optimization, vol.25, no.5, pp.1202–1218.

67. Ramadge, P., Wonham, W.M. (1989) The control of discrete event systems. Proceedings of

the IEEE, vol.77, no.1, pp.81–89.

68. Recalde, L., Teruel, E., Silva, M., (1997) Improving the decision power of rank theorems. In

Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.3768–3773.

69. Reveliotis, S.A. (2005) Real-time Management of Resource Allocation Systems: A Discrete

Event Systems Approach. New York: Springer.

70. Roszkowska, E., Wojcik, R. (1993) Problems of process flow feasibility in FAS. In CIM in

Process and Manufacturing Industries, Oxford: Pergamon Press, pp.115–120.

71. Roszkowska, E., Jentink, J. (1993) Minimal restrictive deadlock avoidance in FMSs. In Proc.

European Control Conf., J. W. Nieuwenhuis, C. Pragman, and H. L. Trentelman, (Eds.), vol.2,

pp. 530–534.

14 1 Introduction

72. Silva, M., Teruel, E. (1996) A systems theory perspective of discrete event dynamic sys-

tems: The Petri net paradigm. In Symposium on Discrete Events and Manufacturing Systems,

IMACS Multiconference, P. Borne, J. C. Gentina, E. Craye, and S. El Khattabi, (Eds.), Lille,

France, pp.1–12.

73. Silva, M., Teruel, E., Colom, J.M. (1998) Linear algebraic and linear programming techniques

for the analysis of place/transition net systems. In Lectures on Petri Nets I: Basic Models,

Lectures Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.), pp.309–

373.

74. Singhal, M. (1989) Deadlock detection in distributed systems. IEEE Computer, vol.22, no.11,

pp.37–48.

75. Thistle, J.G. (1996) Supervisory control of discrete event systems. Mathematical and Com-

puter and Modeling, vol.23, no.11–12, pp.25–53.

76. Tricas, F., Martinez, J. (1995) An extension of the liveness theory for concurrent sequential

processes competing for shared resources. In Proc. IEEE Int. Conf. on Systems, Man, and

Cybernetics, pp.3035–3040.

77. Tricas, F., Garcı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (1998) A structural approach to the

problem of deadlock prevention in processes with shared resources. In Proc. 4th Workshop

on Discrete Event Systems, pp.273–278.

78. Tricas, F., Garcı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (2000) An iterative method for dead-

lock prevention in FMS. In Proc. 5th Workshop on Discrete Event Systems, R. Boel and

G.Stremersch (Eds.), pp.139–148.

79. Uzam, M. (2002) An optimal deadlock prevention policy for flexible manufacturing systems

using Petri net models with resources and the theory of regions. International Journal of

Advanced Manufacturing Technology, vol.19, no.3, pp.192–208.

80. Viswanadham, N., Narahari, Y., Johnson, T. (1990) Deadlock prevention and deadlock

avoidance in flexible manufacturing systems using Petri net models. IEEE Transactions on

Robotics and Automation, vol.6, no.6, pp.713–723.

81. Viswanadham, N., Narahari, Y. (1992) Performance Modelling of Automated Manufacturing

Systems. Englewood Cliffs, NJ: Prentice Hall.

82. Wu, N. Q. (1999) Necessary and sufficient conditions for deadlock-free operation in flexible

manufacturing systems using a colored Petri net model. IEEE Transactions on Systems, Man,

and Cybernetics, Part C, vol.29, no.2, pp.192–204.

83. Wu, N.Q., Zhou, M.C. (2001) Avoiding deadlock and reducing starvation and blocking in

automated manufacturing systems. IEEE Transactions on Robotics and Automation, vol.17,

no.5, pp.658–669.

84. Wu, N.Q., Zhou, M.C. (2005) Modeling and deadlock avoidance of automated manufacturing

systems with multiple automated guided vehicles. IEEE Transactions on Systems, Man, and

Cybernetics, Part B, vol.35, no.6, pp.1193–1202.

85. Wysk, R.A., Yang, N.S., Joshi, S. (1994) Resolution of deadlocks in flexible manufacturing

systems: avoidance and recovery approaches. Journal of Manufacturing Systems, vol.13, no.2,

pp.128–138.

86. Xie, X.L., Jeng, M.D. (1999) ERCN-merged nets and their analysis using siphons. IEEE

Transactions on Robotics and Automation, vol.15, no.4, pp.692–703.

87. Xing, K.Y., Hu, B.S., Chen, H.X. (1996) Deadlock avoidance policy for Petri-net modelling

of flexible manufacturing systems with shared resources. IEEE Transactions on Automatic

Control, vol.41, no.2, pp.289–295.

88. Zhou, M.C., DiCesare, F. (1991) Parallel and sequential exclusions for Petri net modeling for

manufacturing systems. IEEE Transactions on Robotics and Automation, vol.7, no.4, pp.515–

527.

89. Zhou, M.C., DiCesare, F. (1992) A hybrid methodology for synthesis of Petri nets for manu-

facturing systems. IEEE Transactions on Robotics and Automation, vol.8, no.3, pp.350–361.

90. Zhou, M.C., DiCesare, F. (1993) Petri Net Synthesis for Discrete Event Control of Manufac-

turing Systems. Boston, MA: Kluwer.

91. Zhou, M.C. (Ed.) (1995) Petri Nets in Flexible and Agile Automation. Norwell, MA: Kluwer.

References 15

92. Zhou, M.C., Venkatesh, K. (1998) Modelling, Simulation and Control of Flexible Manufac-

turing Systems: A Petri Net Approach. Singapore: World Scientific.

93. Zhou, M.C., Fanti, M.P. (Eds.) (2005) Deadlock Resolution in Computer-Integrated Systems.

New York: MarcelDekker.

94. Zouari, B., Barkaoui, K. (2003) Parameterized supervisor synthesis for a modular class of

discrete event systems. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.1874–

1879.

Chapter 2

Petri Nets

Abstract This chapter presents a mathematical treatment of Petri nets, including

their formal definitions, structural and behavioral properties such as invariants,

siphons, traps, reachability graphs, and state equations that are necessary to under-

stand the subjects presented in this book. A number of important subclasses of Petri

nets are introduced such as state machines and marked graphs. They are essential

for the development of manufacturing-oriented Petri net models and the deadlock

control strategies. The basics of automata are also covered in this chapter to facil-

itate the reader to understand well the deadlock prevention policy based on theory

of regions. The concepts of a plant model, supervisor, and controlled system are

defined.

2.1 Introduction

Though Petri nets and automata lack the full modeling and decision power of Tur-

ing machines, they still rank the top popular modeling tools for DES. As for Petri

nets, this is partially attributed to their capability to provide the simple, direct, faith-

ful, and convenient graphical representation of DES. Moreover, the well-established

set of mathematical approaches employing linear matrix algebra makes them par-

ticularly useful for the modeling, analysis, and control of DES [44]. This chapter

presents a mathematical treatment of Petri net theory. It is fundamental for under-

standing of the ideas presented in the following chapters.

2.2 Formal Definitions

A Petri net is a directed bipartite graph. It consists of two components: a net struc-

ture and an initial marking. A net (structure) contains two sorts of nodes: places and

transitions. There are directed arcs from places to transitions and directed arcs from

17

18 2 Petri Nets

transitions to places in a net. Places are graphically represented by circles and transi-

tions by boxes or bars. A place can hold tokens denoted by black dots, or a positive

integer representing their number. The distribution of tokens over the places of a

net is called a marking that corresponds to a state of the modeled system. The ini-

tial token distribution is hence called the initial marking. Let N denote the set of

non-negative integers and N+ the set of positive integers.

Definition 2.1. A generalized Petri net (structure) is a 4-tuple N = (P, T , F , W)
where P and T are finite, non-empty, and disjoint sets. P is the set of places and

T is the set of transitions with P∪ T �= /0 and P∩ T = /0. F ⊆ (P× T)∪ (T ×P)
is called a flow relation of the net, represented by arcs with arrows from places to

transitions or from transitions to places. W : (P×T)∪ (T ×P) → N is a mapping

that assigns a weight to an arc: W (x,y) > 0 iff (x,y)∈ F , and W (x,y) = 0 otherwise,

where x,y ∈ P∪T .

Definition 2.2. A marking M of a Petri net N is a mapping from P to N. M(p)
denotes the number of tokens in place p. A place p is marked by a marking M iff

M(p) > 0. A subset S ⊆ P is marked by M iff at least one place in S is marked by M.

The sum of tokens of all places in S is denoted by M(S), i.e., M(S) = ∑p∈S M(p). S

is said to be empty at M iff M(S) = 0. (N,M0) is called a net system or marked net

and M0 is called an initial marking of N.

We usually describe markings and vectors using a multiset (bag) or formal sum

notation for economy of space. As a result, ∑p∈P M(p)p is used to denote vector M.

For instance, a marking that puts four tokens in place p2 and two tokens in place p4

only in a net with P = {p1–p6} is denoted by 4p2 +2p4 instead of (0,4,0,2,0,0)T .

In general, (N,M0) is directly called a net where there is no confusion. N =
(P,T,F,W) is called an ordinary net, denoted by N = (P,T,F), if ∀ f ∈ F,W (f) =
1. Note that ordinary and generalized Petri nets have the same modeling power.

The only difference is that the latter may have improved modeling efficiency and

convenience for some systems. For convenience, (P,T,F,W,M0) is sometimes used

to denote a marked net. It is also called a net system.

Example 2.1. Figure 2.1a shows a simple Petri net with P = {p1–p5}, T = {t1–t3},

F = {(p1, t1), (t3, p1), (p2, t2), (t1, p2), (p3, t3), (t2, p3), (p4, t2), (t3, p4), (p5, t1),
(p5, t2),(t3, p5)}, W (p1, t1)=W (t3, p1)=W (p2, t2)=W (t1, p2)=W (p3, t3)=W (t2,

p3) = W (p4, t2) = W (t3, p4) = W (p5, t1) = 1, W (p5, t2) = 2, and W (t3, p5) = 3.

Places are graphically represented by circles and transitions are represented by

boxes. It is clear that the net is not ordinary because of the multiplicity of arcs

(p5, t2) and (t3, p5).
Each of places p1 and p5 has three tokens, denoted by three black dots or num-

ber 3 inside. Place p4 holds two tokens and there is no token in p2 and p3. This

token distribution leads to the initial marking of the net with M0 = 3p1 +2p4 +3p5.

The net’s alternative graphical representation is given in Fig 2.1b, where multiple

arcs are replaced with an arc with its weight and multiple tokens in a place can be

replaced by a corresponding number for the sake of simplicity. For example, the

number of tokens in place p1 is denoted by number 3.

2.2 Formal Definitions 19

p 1

p 5

p 3 p 4

p 2

t 1

t 3

t 2

(a)

p 1

p 5

p 3 p 4

p 2

t 1

t 3

t 2
2

3

(b)

3

Fig. 2.1 A Petri net (N,M0) with M0 = 3p1 +2p4 +3p5 represented by (a) multiplicity of arcs and

(b) weight of arcs

Definition 2.3. Let x ∈ P ∪ T be a node of net N = (P,T,F,W). The preset of

x is defined as •x = {y ∈ P∪T |(y,x) ∈ F}. While the postset of x is defined as

x• = {y ∈ P∪T |(x,y) ∈ F}. This notation can be extended to a set of nodes as fol-

lows: given X ⊆ P∪T , •X = ∪x∈X
•x, and X• = ∪x∈X x•. Given place p, we denote

max{W (p, t) | t ∈ p•} by maxp• .

For t ∈ T , p ∈•t is called an input place of t and p ∈ t• is called an output place

of t. For p ∈ P, t ∈•p is called an input transition of p and t ∈ p• is called an output

transition of p.

Example 2.2. In Fig. 2.1a, we have •t1 = {p1, p5}, •t2 = {p2, p4, p5}, t•2 = {p3},

t•3 = {p1, p4, p5}, •p3 = {t2}, p•3 = {t3}, •p5 = {t3}, and p•5 = {t1, t2}. Let S =
{p3, p5}. Then, •S = •p3 ∪ •p5 = {t2, t3} and S• = p•3 ∪ p•5 = {t1, t2, t3}. It is easy to

see that maxp•
5
= 2 and ∀p ∈ P\{p5}, maxp• = 1.

Definition 2.4. A transition t ∈ T is enabled at a marking M iff ∀p ∈•t, M(p) ≥
W (p, t). This fact is denoted by M[t〉. Firing it yields a new marking M′ such that

∀p ∈ P, M′(p) = M(p)−W (p, t)+W (t, p), as denoted by M[t〉M′. M′ is called an

immediately reachable marking from M. Marking M′′ is said to be reachable from M

if there exists a sequence of transitions σ = t0t1 · · · tn and markings M1,M2, · · ·, and

Mn such that M[t0〉M1[t1〉M2 · · ·Mn[tn〉M′′ holds. The set of markings reachable from

M in N is called the reachability set of Petri net (N,M) and denoted by R(N,M).

Example 2.3. In Fig. 2.2a, t1 is enabled at initial marking M0 = 3p1 + 2p4 + 3p5

since •t1 = {p1, p5}, M0(p1) = 3 > W (p1, t1) = 1, and M0(p5) = 3 > W (p5, t1) = 1.

Firing t1 leads to M1 with M1(p1) = M0(p1)−W (p1, t1)+W (t1, p1) = 2, M1(p2) =
M0(p2)−W (p2, t1)+W (t1, p2) = 1, M1(p3) = M0(p3)−W (p3, t1)+W (t1, p3) = 0,

20 2 Petri Nets

p 1

p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

t 1 f i r e s
p 1

p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

t 3 f i r e s t 1 f i r e s t 2 f i r e s

p 1

p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

p 1
p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

(a)

(d) (c)

(b)

t 1 f i r e s

p 1
p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

(e)

Fig. 2.2 The evolution of a Petri net: (a) (N,M0), (b) (N,M1), (c) (N,M2), (d) (N,M3), and (e)

(N,M4)

M1(p4) = M0(p4)−W (p4, t1)+W (t1, p4) = 2, and M1(p5) = M0(p5)−W (p5, t1)+
W (t1, p5) = 2, as shown in Fig 2.2b.

In marking M1, both t1 and t2 are enabled. Firing t2 at M1 leads to M2 as shown

in Fig. 2.2c. Firing t1 at M1 leads to M3 as shown in Fig. 2.2d. Only t1 is enabled

at M3. Figure 2.2e is the net after t1 fires at M3 and corresponds to M4. At M2,

only t3 is enabled. Firing it leads back to M0. As a result, the reachability set of the

net in Fig. 2.2a is R(N,M0) = {M0,M1,M2,M3,M4}, where M0 = 3p1 +2p4 +3p5,

2.2 Formal Definitions 21

M1 = 2p1 + p2 + 2p4 + 2p5, M2 = 2p1 + p3 + p4, M3 = p1 + 2p2 + 2p4 + p5, and

M4 = 3p2 +2p4. Note that at M4, no transition is enabled.

Definition 2.5. A Petri net (N,M0) is safe if ∀M ∈ R(N,M0), ∀p ∈ P, M(p) ≤ 1 is

true. It is bounded if ∃k ∈ N+, ∀M ∈ R(N,M0), ∀p ∈ P, M(p) ≤ k. It is said to be

unbounded if it is not bounded. A net N is structurally bounded if it is bounded for

any initial marking.

Note that a net is bounded iff its reachability set has a finite number of elements.

The reachability set of a net (N,M0) can be expressed by a reachability graph. A

reachability graph is a directed graph whose nodes are markings in R(N,M0) and

arcs are labeled by the transitions of N. An arc from M1 to M2 is labeled by t iff

M1[t〉M2.

Example 2.4. Figure 2.3 shows the reachability graph of the Petri net depicted in

Fig. 2.2a. The net is bounded and its reachability graph is finite.

M 0 = 3 p 1 + 2 p 4 + 3 p 5

t 1
M 1 = 2 p 1 + p 2 + 2 p 4 + 2 p 5

t 2 t 1

M 2 = 2 p 1 + p 3 + p 4

M 3 = p 1 + 2 p 2 + 2 p 4 + p 5

t 1

M 4 = 3 p 2 + 2 p 4

t 3

Fig. 2.3 The reachability graph of net (N,M0) shown in Fig 2.2a

Definition 2.6. A net N = (P,T,F,W) is pure (self-loop free) iff ∀x,y ∈ P ∪ T ,

W (x,y) > 0 implies W (y,x) = 0.

Definition 2.7. A pure net N = (P,T,F,W) can be represented by its incidence ma-

trix [N], where [N] is a |P|× |T | integer matrix with [N](p, t) = W (t, p)−W (p, t).
For a place p (transition t), its incidence vector, a row (column) in [N], is denoted

by [N](p, ·) ([N](·, t)).

According to the definition, it is easy to see the physical meanings of an ele-

ment in an incidence matrix of a Petri net N. Specifically, [N](p, t) indicates that

p receives (loses) |[N](p, t)| tokens if [N](p, t) > 0 ([N](p, t) < 0) after t fires. The

number of tokens in p does not change if [N](p, t) = 0 after t fires. Vector [N](p, ·)
shows the token variation in p with respect to the firing of each transition once

in the net N. Let S ⊆ P be a subset of places in net N. [N](S, ·) is used to denote

∑p∈S[N](p, ·).

22 2 Petri Nets

Example 2.5. The incidence matrix of the net in Fig. 2.1a is shown below:

[N] =

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 1

1 −1 0

0 1 −1

0 −1 1

−1 −2 3

⎞

⎟

⎟

⎟

⎟

⎠

.

[N](p1, t1) = −1 implies that p1 loses a token after firing t1. [N](p1, t3) = 1 in-

dicates that p1 gets a token after t3 fires. [N](p1, t2) = 0 means that the number of

tokens in p1 does not change after t2 fires. Note that [N](p5, ·) = (−1, −2, 3). It

implies that firing t1 removes one token from p5, firing t2 removes two tokens from

p5, and firing t3 deposits three tokens into p5.

Let S = {p3, p5}. [N](S, ·) = [N](p3, ·)+[N](p5, ·) = (−1, −1, 2). It indicates that

firing t1 or t2 removes one token from S, and firing t3 puts two tokens into S.

It is important to note that the change of the number of tokens in a place p caused

by firing some transition t does not depend on the current marking. Instead, it is

completely determined by the structure of a net. In this sense, the incidence ma-

trix suffices to characterize the relative change of tokens for every place when a

transition fires.

The incidence matrix [N] of a net N can be naturally divided into two parts

[N]+ and [N]− according to the token flow by defining [N] = [N]+ − [N]−, where

[N]+(p, t) = W (t, p) and [N]−(p, t) = W (p, t) are called input (incidence) matrix

and output (incidence) matrix, respectively. Note that the input and output matrices

can completely describe a net structure, but it is not the case for incidence matri-

ces in general. Two nets that have the same incidence matrices may have different

net structures. This case likes an expression a− b = c− d but a = c and b = d are

not necessarily true. However, if there are no self-loops in a Petri net, its incidence

matrix can completely determine its structure.

Example 2.6. For the net in Fig. 2.1a, its input matrix and output matrix are as fol-

lows:

[N]+ =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1

1 0 0

0 1 0

0 0 1

0 0 3

⎞

⎟

⎟

⎟

⎟

⎠

, [N]− =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0

0 1 0

0 0 1

0 1 0

1 2 0

⎞

⎟

⎟

⎟

⎟

⎠

.

Accordingly, the enabling condition of a transition t can be rewritten as M ≥
[N]−(·, t).

Definition 2.8. Given a Petri net (N,M0), t ∈ T is live under M0 iff ∀M ∈ R(N,M0),
∃M′ ∈ R(N,M), M′[t〉. (N,M0) is live iff ∀t ∈ T , t is live under M0. (N,M0) is dead

under M0 iff ∄t ∈ T , M0[t〉. (N,M0) is deadlock-free (weakly live or live-locked) iff

∀M ∈ R(N,M0), ∃t ∈ T , M[t〉.

2.2 Formal Definitions 23

Definition 2.9. Petri net (N,M0) is quasi-live iff ∀t ∈ T , there exists M ∈ R(N,M0)
such that M[t〉 holds.

A live Petri net guarantees deadlock-freedom no matter what firing sequence is

chosen but the converse is not true. However, this property is costly to verify.

Example 2.7. The net shown in Fig. 2.4a is deadlock-free since transitions t1 and t2
are live, while the net in Fig 2.4b is live since all transitions are live. The net in Fig.

2.2e is dead since no transition is enabled under the current marking M4.

(a)

t 1

 p 3

p 1

t 2

 p 2

t 3

 2

 (b)

t 2

t 3

t 1

 p 3

 p 2

p 1

 p 4

Fig. 2.4 Two Petri nets: (a) is deadlock-free and (b) is live

Definition 2.10. Let N = (P,T,F,W) be a net and σ be a finite sequence of tran-

sitions. The Parikh vector of σ is −→σ : T → N which maps t in T to the num-

ber of occurrences of t in σ . Define −→t1 = (1,0, . . . ,0)T , −→t2 = (0,1,0, . . . ,0)T , and
−→tk = (0,0, . . . ,0,1)T assuming k = |T |.

Example 2.8. Let σ1 = t1t3t2t4t5t2 and σ2 = t1 be two sequences of transitions of

some net N with |T | = 6. Their Parikh vectors are −→σ1 = (1, 2, 1, 1, 1, 0)T and −→σ2 =
(1, 0, 0, 0, 0, 0)T , respectively. Clearly, we have −→σ2 = −→t1 = (1, 0, 0, 0, 0, 0)T . For

the transition sequence σ = t1t1t1 in the net shown in Fig. 2.1a, −→σ = (3, 0, 0)T .

It is trivial that for each transition t, we have [N](·, t) = [N]−→t . Note that M[t〉M′

leads to M′ = M +[N](·, t). Consequently, if M[t〉M′, we have M′ = M +[N]−→t . For

an arbitrary finite transition sequence σ such that M[σ〉M′, we have

M′ = M +[N]−→σ . (2.1)

Equation 2.1 is called the state equation of a Petri net (N,M), which presents

an algebraic description of the marking change in a Petri net. In other words, it

is a compact way to express the interrelation between markings and numbers of

transition occurrences in a transition sequence. Such a linear algebraic expression is

24 2 Petri Nets

very helpful because it allows one to apply the concepts and results of linear algebra

to the domain of Petri nets.

Any reachable marking fulfils the state equation but the converse is not true. In

this sense, the state equation provides a necessary condition for a marking M to be

reachable from an initial marking M0. That is to say, if marking M is reachable from

M0, the state equation M = M0 + [N]−→σ must have a vector solution for σ with its

components in N. Conversely, if the marking equation is not soluble, marking M is

not reachable from M0.

Example 2.9. In Fig. 2.1a, σ = t1t1t1 is a firable transition sequence with −→σ = (3, 0,

0)T . From Fig. 2.2d, we have M0[σ〉M4, which can be verified by (2.1) as follows:

M0 +[N]−→σ =

⎛

⎜

⎜

⎜

⎜

⎝

3

0

0

2

3

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 1

1 −1 0

0 1 −1

0 −1 1

−1 −2 3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎝

3

0

0

⎞

⎠ =

⎛

⎜

⎜

⎜

⎜

⎝

3

0

0

2

3

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

−3

3

0

0

−3

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0

3

0

2

0

⎞

⎟

⎟

⎟

⎟

⎠

= M4.

Let σ = t1t2t3. It is a firable transition sequence with −→σ =(1, 1, 1)T . From Fig.

2.2, we have M0[σ〉M0 that can be verified by (2.1) as follows.

M0 +[N]−→σ =

⎛

⎜

⎜

⎜

⎜

⎝

3

0

0

2

3

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 1

1 −1 0

0 1 −1

0 −1 1

−1 −2 3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎝

1

1

1

⎞

⎠ =

⎛

⎜

⎜

⎜

⎜

⎝

3

0

0

2

3

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

0

0

0

0

0

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

3

0

0

2

3

⎞

⎟

⎟

⎟

⎟

⎠

= M0.

Definition 2.11. Let (N,M0) be a net system. Its linearized reachability set by using

the state equation over the real numbers is defined as RS(N,M0) = {M|M = M0 +
[N]Y,M ≥ 0,Y ≥ 0}.

We have R(N,M0) ⊆ RS(N,M0) since the state equation does not check whether

there is a sequence of intermediate markings such that some transition sequence σ is

actually firable. The markings in RS(N,M0)\R(N,M0) are called spurious markings

(with respect to the state equation).

Although the reachability set derived from the state equation may contain spuri-

ous markings, in some cases its linear description facilitates the analysis of a Petri

net.

For example, the verification of predicate min{M(S)|M ∈ R(N,M0)} ≥ k1 is dif-

ficult due to a potentially huge number of reachable markings in R(N,M0), where S

is a subset of places and k1 is a non-negative integer. However, the minimal number

of tokens holding by S in RS(N,M0) can be found by solving the following linear

programming problem (LPP):

MIN M(S)
s.t.

M = M0 +[N]Y

2.3 Structural Invariants 25

M ≥ 0

Y ≥ 0

It is known that an LPP can be solved in polynomial time. Let k2 be a feasible

solution of the above LPP. Obviously, we have k2 ≤ min{M(S)|M ∈ R(N,M0)}. If

k1 ≤ k2, one gets k1 ≤ k2 ≤ min{M(S)|M ∈ R(N,M0)}, leading to the truth of this

predicate. Certainly, if k1 > k2, one cannot give a definite answer to the truth of this

predicate.

Example 2.10. S = {p1, p3, p4} is a set of places in the net shown in Fig 2.5, where

M0 = p3. A question is whether S can be always marked. By solving an LPP, we

have min{M(S)|M = M0 + [N]Y , M ≥ 0, Y ≥ 0} = 1. This leads to the fact that S

can never be emptied, i.e., under any reachable marking, there is at least one place

that is marked.

t 3

t 2

t 1

t 4 p 5

 p 4 p 3

 p 2

 p 1

Fig. 2.5 A Petri net (N,M0)

2.3 Structural Invariants

One important feature of Petri nets is that their structural properties can be obtained

by linear algebraic techniques [13,18,42]. These properties that depend on only the

topological structure of a Petri net and are independent of the initial marking are

called invariants. Invariants are an important means for analyzing the behavior of a

Petri net from a structural viewpoint.

Definition 2.12. A P-vector is a column vector I : P → Z indexed by P and a T -

vector is a column vector J : T → Z indexed by T , where Z is the set of integers.

We denote column vectors where every entry equals 0(1) by 0(1). IT and [N]T

are the transposed versions of vector I and matrix [N], respectively. A P(T)-vector

is non-negative if no element in it is negative.

Definition 2.13. P-vector I is called a P-invariant (place invariant) iff I �= 0 and

IT [N] = 0T . T -vector J is called a T -invariant (transition invariant) iff J �= 0 and

[N]J = 0.

26 2 Petri Nets

Definition 2.14. P-invariant I is a P-semiflow if every element of I is non-negative.

||I|| = {p|I(p) �= 0} is called the support of I. ||I||+ = {p|I(p) > 0} denotes the

positive support of P-invariant I and ||I||− = {p|I(p) < 0} denotes the negative

support of I. I is called a minimal P-invariant if ||I|| is not a superset of the support

of any other one and its components are mutually prime.

Definition 2.15. T -invariant J is a T -semiflow if every element of J is non-negative.

||J|| = {t|J(t) �= 0} is called the support of J. ||J||+ = {t|J(t) > 0} denotes the

positive support of T -invariant J and ||J||− = {t|J(t) < 0} denotes the negative

support of J. J is called a minimal T -invariant if ||J|| is not a superset of the support

of any other one and its components are mutually prime.

Note that a set of numbers is mutually prime if their common divisor is one. For

example, 4, 7, and 16 are mutually prime. But 4, 6, and 16 are not since 2 is their

common divisor. A P-invariant corresponds to a set of places whose weighted token

count is a constant for any reachable marking. It follows immediately from the state

equation.

Theorem 2.1. Let (N,M0) be a net with P-invariant I and M be a reachable marking

from M0. Then

IT M = IT M0.

A fundamental property of a T -invariant follows immediately from the state

equation.

Theorem 2.2. Let (N,M0) be a net with a transition sequence σ such that M0[σ〉M.

M = M0 iff −→σ is a T -invariant of N.

Note that for a specific marked net, the existence of a T -invariant does not imply

that there exists a transition sequence whose Parikh vector is the T -vector such that it

is firable and its firing leads the net from the initial marking back to it. Furthermore,

it is easy to see that any linear combination of P(T)-invariants of a net is still a

P(T)-invariant of the net.

Property 2.1. If I is a P-semiflow of a net, •||I|| = ||I||•.

Example 2.11. In the net shown in Fig. 2.1a, there are three minimal P-invariants:

I1 = p1 + p2 + p3, I2 = p3 + p4, and I3 = p2 + 3p3 + p5, since ∀i ∈ {1,2,3},

IT
i [N]=0T . ∀M ∈ R(N,M0), IT

1 M = IT
1 M0 = M0(p1)+ M0(p2)+ M0(p3) = 3. This

indicates that the token count in places p1, p2, and p3 keeps three under any reach-

able marking, which can be verified from the reachability graph, which is identical

with the one shown in Fig 2.3.

The net has a unique T -invariant J = t1 + t2 + t3 and the transition sequence

σ = t1t2t3 is firable. As a result, M0[t1〉M1[t2〉M2[t3〉M0.

Since I1 and I2 are P-invariants, I = I1−I2 = p1 + p2− p4 is a P-invariant as well.

Note that I is not a P-semiflow due to its negative component. Moreover, one can

get ||I1|| = {p1, p2, p3}, ||I||+ = {p1, p2}, and ||I||− = {p4}. It is easy to see that
•||I1|| =• p1 ∪• p2 ∪• p3 = {t3}∪{t1}∪{t2} = {t1, t2, t3} and ||I1||• = p1

• ∪ p2
• ∪

p3
• = {t1}∪{t2}∪{t3} = {t1, t2, t3}. ||I1||• =• ||I1|| will not be surprising since I1

is a P-semiflow.

2.4 Siphons and Traps 27

A Petri net is strongly connected if ∀x,y ∈ P∪T , there is a sequence of nodes x,

a, b, . . ., c, y such that (x,a), (a,b), . . ., (c,y) ∈ F , where {a,b, . . . ,c} ⊆ P∪T . A

string x1 . . .xn is called a path of N iff ∀i ∈ Nn−1, xi+1 ∈ x•i , where ∀x ∈ {x1, · · ·, xn},

x ∈ P∪T . An elementary path from x1 to xn is a path whose nodes are all different

(except, perhaps, x1 and xn). A path x1 · · ·xn is called a circuit iff it is an elementary

path and x1 = xn.

The liveness of a Petri net is close to its connectedness. A result is given in [17]:

Each connected net with a live and bounded marking is strongly connected. A result

that establishes a bridge between strong connectedness and invariants is given as

follows owing to [18]:

Theorem 2.3. Each connected net with a positive place invariant and positive tran-

sition invariant is strongly connected.

2.4 Siphons and Traps

P-invariants that can be derived from the state equation of a Petri net are marking

invariants. The token count in their corresponding places stays constant, i.e., the in-

variant law associated with a P-invariant holds for any reachable marking. In a Petri

net, siphons and traps are also structural objects that involve marking invariants.

However, the invariant laws associated with them do not hold under any reachable

marking, but once they become true they remain true for any subsequently reachable

markings. A siphon remains empty once it loses all tokens. A trap remains marked

once it has any token in it. Siphons and traps have been extensively investigated and

used for the structural analysis of a Petri net. They also play an important role in the

liveness analysis of a net, particularly in ordinary ones.

Definition 2.16. A non-empty set S ⊆ P is a siphon iff •S ⊆S•. S ⊆ P is a trap iff

S•⊆•S. A siphon (trap) is minimal iff there is no siphon (trap) contained in it as a

proper subset. A minimal siphon S is said to be strict if •S � S•.

Property 2.2. Let S1 and S2 are two siphons (traps). Then, S1 ∪S2 is a siphon (trap).

Example 2.12. In the net shown in Fig. 2.1a, S1 = {p1, p2, p3}, S2 = {p4, p3}, S3 =
{p2, p3, p5}, and S4 = {p3, p5} are siphons, among which S1, S2, and S4 are minimal

since the removal of any place from each of these sets leads to the fact that the

resultant set is not a siphon any more. Note that •S1 = S•1, •S2 = S•2, and •S3 = S•3.

S1, S2, and S3 are also traps. By •S4 = {t2, t3} and S•4 = {t1, t2, t3}, we have •S4 ⊂ S4
•.

S4 = {p3, p5} is therefore a strict minimal siphon.

Corollary 2.1. If I is a P-semiflow, then ||I|| is both a siphon and trap.

Note that the converse of Corollary 2.1 is not true since a P-invariant depends on

not only the topological structure of a net but also the weights attached to the arcs.

However, a siphon or trap depends on the topological structure only. For example,

28 2 Petri Nets

S = {p1, p2} in Fig. 2.6 is both a siphon and trap. However, it is not the support of

a P-semiflow. In this sense, the converse of Corollary 2.1 is true in the domain of

ordinary nets.

 p 2 t 1 p 1 t 2
 2

Fig. 2.6 A siphon and trap in a net without P-semiflow

If a siphon contains the support of a P-semiflow and the support is initially

marked, then it can never be emptied. In addition, traps and siphons have the fol-

lowing marking invariant laws.

Property 2.3. Let M∈R(N,M0) be a marking of net (N,M0) and S a trap. If M(S) >
0, then ∀M′ ∈ R(N,M), M′(S) > 0.

This property implies that once a trap is marked under a marking, it is always

marked under the subsequent markings that are reachable from the current one.

Property 2.4. Let M∈R(N,M0) be a marking of net (N,M0) and S a siphon. If

M(S) = 0, then ∀M′ ∈ R(N,M), M′(S) = 0.

Property 2.4 indicates that once a siphon loses all its tokens, it remains unmarked

under any subsequent markings that are reachable from the current marking. An

empty siphon S causes that no transition in S• is enabled. Due to the definition

of siphons, all transitions connected to S can never be enabled once it is emptied.

The transitions are therefore dead, leading to the fact that the net containing these

transitions is not live.

As a result, deadlock-freedom and liveness of a Petri net are closely related to its

siphons, which is shown by the following known results [16].

Theorem 2.4. Let (N,M0) be an ordinary net and Π the set of its siphons. The net

is deadlock-free if ∀S ∈ Π , ∀M ∈ R(N,M0), M(S) > 0.

This theorem states that an ordinary Petri net is deadlock-free if no (minimal)

siphon eventually becomes empty.

Theorem 2.5. Let (N,M) be an ordinary net that is in a deadlock state. Then, {p ∈
P|M(p) = 0} is a siphon.

This result means that if an ordinary net is dead, i.e., no transition is enabled,

then the unmarked places form a siphon.

Example 2.13. The net shown in Fig. 2.7a is a famous example as first discussed by

Zhou et al. [61, 62] and later by Chu and Xie [12] and many other researchers [6].

It has four minimal siphons S1 = {p1, p2, p3, p4}, S2 = {p3, p5}, S3 = {p2, p4, p6},

2.4 Siphons and Traps 29

and S4 = {p4, p5, p6}. S1, S2 and S3 are also traps that are initially marked. Note that

S4 is a strict minimal siphon since •S4 = {t2, t3, t4} and S4
• = {t1, t2, t3, t4}, leading

to the truth of •S4 � S4
•.

In Fig. 2.7a, σ = t1t2t1 is a firable transition sequence whose firing leads to a

new marking as shown in Fig. 2.7b. The net in Fig. 2.7b is dead since no transition

is enabled in the current marking. The unmarked places p1, p4, p5, and p6 form a

siphon S = {p1, p4, p5, p6} that is not minimal since it contains S4. The emptiness

of S disables every transition in S• such that no transition in this net is enabled. As

a result, the net is dead.

Based on Theorem 2.5, we can achieve the following results.

p 1

t 2

t 3

t 1

 p 3

 p 2

 p 5

t 4

 p 4

 p 6 p 1

t 2

t 3

t 1

 p 3

 p 2

 p 5

t 4

 p 4

 p 6 p 1

t 2

t 3

t 1

 p 3

 p 2

 p 5

t 4

 p 4

 p 6

 p 7

(a) (c) (b)

Fig. 2.7 (a) A Petri net [61], (b) a dead marking, and (c) a controlled siphon

Corollary 2.2. A deadlocked ordinary Petri net contains at least one empty siphon.

Corollary 2.3. Let N = (P,T,F,W) be a deadlocked net under marking M. Then, it

has at least one siphon S such that ∀p ∈ S, ∃t ∈ p• such that W (p, t) > M(p).

Definition 2.17. A siphon S is said to be controlled in a net system (N,M0) iff ∀M ∈
R(N,M0), M(S) > 0.

Clearly, any siphon that contains a marked trap is controlled since it can never be

emptied. In an ordinary Petri net, a siphon that is controlled does not imply a dead-

lock. This is not the case in a generalized Petri net. For example, there are two min-

imal siphons in the generalized Petri net shown in Fig 2.4a. They are S1 = {p1, p3}
and S2 = {p2}. Both of them can never be unmarked. However, the insufficient num-

ber of tokens in S2 disables t3. In fact, t3 is a dead transition in the net. Hence, the net

is not live even though each siphon is always marked. Chapter 3 shows that a siphon

in a generalized Petri net does not lead to dead transitions if it is max-controlled [4].

30 2 Petri Nets

For a siphon that can be emptied in a net, some external control mechanism can

be exerted on the net such that it becomes controlled. In Fig. 2.7a, S4 is a strict

minimal siphon whose emptiness leads to the deadlock of the net. To prevent S4

from being unmarked, a place p7 is added with •p7 = {t3} and p•7 = {t1}, as shown

in Fig. 2.7c. The initial marking of p7 is one. Such an additional place is called a

monitor or control place in terms of its role. In Fig. 2.7c, the addition of p7 leads

to an extra minimal siphon S5 = {p2, p3, p7} that is a marked trap. As a result, no

siphon can be emptied in the net and it is deadlock-free (actually, live). This example

motivates one to explore the mechanism to make a siphon controlled by adding a

monitor.

When we talk about siphon control, we are usually concerned with minimal

siphons since the controllability of a minimal siphon implies that of those containing

it.

A natural problem is to decide whether a set of places S in a Petri net is a minimal

siphon. It is shown in [2] that the decision can be done in polynomial time with

complexity O(m2 +mn2), where m = |S•| and n = |S|.

Definition 2.18. Let N = (P,T,F,W) be a Petri net with PX ⊆ P and TX ⊆ T . NX =
(PX ,TX ,FX ,WX) is called a subnet generated by PX ∪TX if FX = F ∩ [(PX ×TX)∪
(TX ×PX)] and ∀ f ∈ FX , WX (f) = W (f).

Property 2.5. Let S be a minimal siphon in a net N. The subnet generated by S∪ •S

is strongly connected.

The following definition is from [12, 32].

Definition 2.19. Siphon S in an ordinary net system (N,M0) is invariant-controlled

by P-invariant I under M0 iff IT M0 > 0 and ∀p ∈ P\S, I(p) ≤ 0, or equivalently,

IT M0 > 0 and ||I||+ ⊆ S.

If S is controlled by P-invariant I under M0, S cannot be emptied, i.e., ∀M ∈
R(N,M0), S is marked under M.

Example 2.14. In Fig. 2.7c, one can verify that I1 = p3 + p5, I2 = p2 + p4 + p6, and

I3 = p2 + p3 + p7 are P-invariants. As a result, I = I1 + I2 − I3 = p4 + p5 + p6 − p7

is a P-invariant as well. It is easy to see that siphon S4 = {p4, p5, p6} is controlled

by P-invariant I since ||I||+ = {p4, p5, p6} = S4 and IT M0 = M0(p4) + M0(p5) +
M0(p6)−M0(p7) = 2−1 = 1 > 0. The controllability of S4 = {p4, p5, p6} implies

that of siphon S = {p1, p4, p5, p6} that is not minimal. Note that •S4 = {t2, t3, t4}.

The subset generated by S4∪•S4 is shown in Fig. 2.8. It is clearly strongly connected

since S4 = {p4, p5, p6} is a minimal siphon.

In essence, the controllability of siphon S by adding a monitor is ensured by

the fact that the number of tokens leaving S is limited by a marking invariant law

imposed on the Petri net, which is implemented by a P-invariant whose support

contains the monitor.

In order to test whether a siphon S is controlled by a P-invariant I, it is sufficient

to solve the following system of linear homogeneous inequalities and equations:

2.4 Siphons and Traps 31

t 2

t 3

 p 5

t 4

 p 4

 p 6

Fig. 2.8 A subnet generated by a minimal siphon and its preset

IT [N] = 0T

IT M0 > 0

I(p) ≤ 0, ∀p ∈ P\S

For the above system, the existence of a solution can be proved through Phase I

of the simplex algorithm applied to the following LPP:

maximize 0T I

s. t.

IT [N] = 0T

IT M0 > 0

I(p) ≤ 0, ∀p ∈ P\S

Phase I of the simplex algorithm computes a basic feasible solution of the set of

constraints of the LPP if it exists.

An empty or insufficiently marked siphon in a Petri net can cause some transi-

tions not to be enabled. A siphon in an ordinary Petri net can be made invariant-

controlled as defined above. The case in a generalized Petri net is much more com-

plicated and is treated as follows.

Definition 2.20. Let (N,M0) be a net system and S be a siphon of N. S is said to be

max-marked at a marking M ∈ R(N,M0) iff ∃p ∈ S such that M(p) ≥ maxp• .

Definition 2.21. A siphon is said to be max-controlled iff it is max-marked at any

reachable marking.

Definition 2.22. (N,M0) satisfies the maximal cs-property (maximal controlled-

siphon property) iff each minimal siphon of N is max-controlled.

The following results are owing to [4]. In case of no confusion, maximal cs-

property is called cs-property for the sake of simplification.

Property 2.6. If (N,M0) satisfies the cs-property, it is deadlock-free.

32 2 Petri Nets

Property 2.7. If (N,M0) is live, it satisfies the cs-property.

A siphon satisfying the max-controlled property can be always marked suffi-

ciently to allow firing a transition once at least. In order to check and use the cs-

property, Barkaoui et al. [4] propose the conditions to determine whether a given

siphon is max-controlled.

Proposition 2.1. Let (N,M0) be a Petri net and S be a siphon of N. If there ex-

ists a P-invariant I such that ∀p ∈ (||I||− ∩ S), maxp• = 1, ||I||+ ⊆ S and IT M0 >

∑p∈S I(p)(maxp• −1), then S is max-controlled.

Example 2.15. Figure 2.9a shows a generalized net and I1 = p2 + p6 and I2 =
p2 +3p3 + p5 are its two P-invariants. Trivially, I = I2 − I1 = 3p3 + p5 − p6 is also

a P-invariant. Let S = {p3, p5} be a set of places. Since •S ⊂ S•, S is a strict mini-

mal siphon. Next we show that it is max-controlled by P-invariant I. It is clear that

||I||−∩S = /0 and ||I||+ = S. We then check the truth of IT M0 > ∑p∈S I(p)(maxp• −
1). IT M0 = M0(p5) + 3M0(p3) − M0(p6) = 3 − 1 = 2. ∑p∈S I(p)(maxp• − 1) =
I(p3)(maxp•3 − 1)+ I(p5)(maxp•

5
− 1). Considering maxp•3 = 1 and maxp•

5
= 2, we

have ∑p∈S I(p)(maxp• −1) = 1. Therefore, IT M0 > ∑p∈S I(p)(maxp• −1) and S is

max-controlled. Figure 2.9b shows the reachability graph of the net in Fig. 2.9a.

p 1

p 5

p 3

p 4

p 2

t 1

t 3

t 2
2

3

p 6

(a)

M 0 = 3 p 1 + 2 p 4 + 3 p 5 + p 6

t 1

M 1 = 2 p 1 + p 2 + 2 p 4 + 2 p 5

t 2

M 2 = 2 p 1 + p 3 + p 4 + p 6

t 3

(b)

Fig. 2.9 A max-controlled siphon in a net (N,M0) (a) Petri net model and (b) reachability graph

By comparing the net in Fig. 2.9a with Fig 2.1a as well as their reachability

graphs as shown in Fig. 2.9b and Fig. 2.3, respectively, one concludes that the addi-

tion of p6 removes two markings M3 and M4 in Fig. 2.3: one is a deadlock marking

and the other is a marking that inevitably leads the system to deadlock.

Remark 2.1. The number of siphons (minimal siphons) grows fast with respect to the

size of a Petri net and in the worst case grows exponentially with a net size. However,

many deadlock control approaches depend on the complete or partial enumeration

of siphons in a plant net model [23, 33, 34, 40, 50–52, 58, 59]. It is well known that

the complete siphon enumeration is time-consuming. Extensive studies have been

2.5 Subclasses of Petri Nets 33

conducted on the siphon computation, leading to a variety of methods [1,14,22,31,

35, 53, 54]. A recent work [15] by Cordone et al. claims that their proposed siphon

computation method can find more than 2×107 siphons in less than one hour.

2.5 Subclasses of Petri Nets

There are a number of interesting subclasses of ordinary Petri nets. The reasons that

they are interesting are twofold. First, they play an important role in the develop-

ment of certain application of Petri nets [11, 12]. Second, some relevant analysis

problems in these classes can be solved in polynomial time [3,21,36]. For example,

the problem of deciding whether a free-choice Petri net is live and bounded can be

solved in O(nm) [21], where n and m are the number of places and transitions of the

net, respectively. In turn, many analysis problems of live and bounded free-choice

nets are also shown to have polynomial time complexity [16].

Definition 2.23. A Petri net N = (P,T,F) is called a state machine iff ∀ t ∈ T , |•t|=
|t•| = 1.

In a state machine, each transition has exactly one input place and exactly one

output place. Each transition allows tokens to flow from one place to another. Mul-

tiple transitions may allow tokens to flow from their respective places to the same

place. In addition, a single token in a place p enables all transitions in p•. Firing any

of them disables the others. This is called a conflict. Note that all finite automata

can be described as the state machines of Petri nets.

Theorem 2.6. A state machine (N,M0) is live iff N is strongly connected and M0

marks at least one place.

Definition 2.24. A Petri net N = (P,T,F) is said to be a marked graph iff ∀p ∈ P,

|•p| = |p•| = 1.

In a marked graph, each place has exactly one input transition and exactly one

output transition. A transition may have multiple input places and output places. In

this sense, a marked graph allows concurrent and synchronization structure. A state

machine admits no synchronization and a marked graph allows no conflict.

Theorem 2.7. A marked graph (N,M0) is live iff M0 places at least one token on

each circuit in N.

Definition 2.25. A Petri net is a free-choice net iff ∀p1, p2 ∈P, p•1∩ p•2 �= /0⇒|p•1|=
|p•2| = 1.

In a free-choice net, every arc from a place is either a unique outgoing arc or

a unique incoming arc to a transition. A free-choice net allows both conflict and

synchronization, i.e., state machines and marked graphs fall under the class of free-

choice nets.

34 2 Petri Nets

Theorem 2.8. A free-choice net (N,M0) is live iff every siphon in it contains a

marked trap.

Definition 2.26. A Petri net is an extended free-choice net iff ∀p1, p2 ∈ P, p•1∩ p•2 �=
/0 ⇒ p•1 = p•2.

Definition 2.27. A Petri net is an asymmetric choice net iff ∀p1, p2 ∈ P, p•1 ∩ p•2 �=
/0 ⇒ p•1 ⊆ p•2 or p•2 ⊆ p•1.

Theorem 2.9. An asymmetric choice net (N,M0) is live if (but not only if) every

siphon in N contains a marked trap.

Example 2.16. Figure 2.10 shows some subclasses of Petri nets.

(a)

(f) (c)

(e)

(d)

(b)

Fig. 2.10 Subclasses of Petri nets: (a) a state machine but not marked graph, (b) a marked graph

but not state machine, (c) a free-choice net, (d) an extended free-choice net, (e) an asymmetric net,

and (f) a Petri net

2.6 Petri Nets and Automata

Since the reachability graph of a Petri net is an automaton, this section presents

some basics of finite-state automata [26], which are helpful to understand what is

presented in this book.

2.6 Petri Nets and Automata 35

Definition 2.28. A (deterministic) finite-state automaton is a 5-tuple G = (Q, Σ , δ ,

q0, Qm), where Q is a finite set of states, Σ is a finite alphabet of symbols that we

refer to as event labels, δ : Q×Σ the (partial) transition function, q0 the initial state,

and Qm ⊆ Q the set of marker states.

δ is a partial function since δ (q,α) may not be defined for all (q,α) ∈ Q×Σ .

When δ (q,α) is defined, it implies that ∃ q′ ∈ Q and α ∈ Σ , the occurrence of event

α transits the automaton from states q to q′.

 q 2

b

 q 1 q 0 a , b

a a

b

Fig. 2.11 An automaton

The operation of a finite-state automaton is always illustrated in a state diagram.

Graphically, the initial state is marked with an input arrow and the marker states

are denoted by double circles. For instance, Figure 2.11 shows an automaton G,

where Q = {q0,q1,q2}, Σ = {a,b}, the initial state is q0, Qm = {q1}, δ (q0,b) = q0,

δ (q0,a) = q1, δ (q1,b) = q1, δ (q1,a) = q2, δ (q2,a) = q1, and δ (q2,b) = q1.

The behavior of a system modeled by an automaton can be characterized by the

language that the automaton speaks, i.e., a set of sequences of symbols of events

from Σ , which are physically possible. For example, σ = abab is a possible se-

quence of events in the automaton in Fig. 2.11. The set of all finite sequences over

Σ is denoted by Σ ∗, which includes the empty string whose length is zero and which

is denoted by ε .

Definition 2.29. A labeled Petri net is a net with a labeling function l : T →
2Σ ∪{ε}, where Σ is the set of events and ε is a null event. A net is said to be

free-labeled if each transition t ∈ T is labeled by a single event a ∈ Σ and different

transitions bear different labels.

The reachability graph of a free-labeled Petri net corresponds to a deterministic

automaton. A finite automaton can easily be converted into a labeled Petri net by

inserting a transition that is labeled by the symbol between two connected states.

The states in the automaton are differently numbered by places. Figure 2.12 is the

equivalent labeled Petri net of the automaton depicted in Fig. 2.11.

For supervisory control of DES in a Petri net formalism, we are more concerned

with a free-labeled Petri net representation. Unfortunately, it is shown that not all

finite automata admit a free-labeled Petri net representation. It remains unanswered

what finite automata do have a free-labeled Petri net realization. Figure 2.13 shows

two finite automata that have no such realizations.

36 2 Petri Nets

b

b p 3

b

 p 2 p 1

aa

a

Fig. 2.12 The equivalent labeled Petri net of a finite automaton (a) Petri net A and (b) Petri net B

c

 b
a

a
b a

(a)

a

cd

b

(b)

Fig. 2.13 Two finite automata without Petri net realizations

2.7 Plants, Supervisors, and Controlled Systems

In traditional supervisory control theory of DES, a system to be controlled is called

a plant or a plant net model if Petri nets are used as a formalism. The external

agent that forces the system to behave to satisfy given control specifications and

requirements is usually called a supervisor. In a Petri net formalism, a supervisor

is a Petri net that usually consists of a set of monitors, sometimes called control

places, and a set of transitions of the plant net model. There are no places of the

plant model in its supervisor. The role of the monitors in a supervisor is to supervise

the plant such that its behavior satisfies the control specifications. The compound of

a plant net model and its Petri net supervisor is called the controlled (net) system

of the plant, whose behavior does not violate the given control specifications and

requirements. To formally define a controlled system, it is necessary to first define

a class of compositions of two Petri nets via shared transitions. This composition is

also called synchronous synthesis of Petri nets.

Definition 2.30. Let (N1, M1) and (N2, M2) be two nets with Ni = (Pi, Ti, Fi, Wi),
i = 1,2, satisfying P1 ∩P2 = /0. (N,M) with N = (P,T,F,W) is said to be a syn-

chronous synthesis net resulting from the merge of (N1,M1) and (N2,M2), denoted

by (N1,M1)⊗ (N2,M2), iff

1. P = P1 ∪P2

2. T = T1 ∪T2

3. F = F1 ∪F2

4. W (f) = Wi(f) if f ∈ Fi, i = 1,2
5. M(p) = Mi(p) if p ∈ Pi, i = 1,2.

2.8 Bibliographical Remarks 37

Definition 2.31. Let (N1,M1), (N2,M2), . . ., and (Nk,Mk) be k nets satisfying Pi ∩
Pj = /0, ∀i, j ∈ Nk, i �= j. The synchronous synthesis of the k Petri nets (N1,M1),

(N2,M2), . . ., and (Nk,Mk) is defined as (N,M) = (Nk,Mk)⊗ (⊗k−1
i=1 (Ni,Mi)).

In a Petri net formalism, a supervisor is a Petri net that usually consists of a set

of monitors and a set of transitions, which is a subset of the set of transitions in the

plant net model. The controlled system is the synchronous synthesis of a plant net

model and its supervisor via shared transitions.

Definition 2.32. Let (Np,Mp) with Np = (P,T,F,W) be a plant model and (Nsup,

Msup) with Nsup = (PV ,TV ,FV ,WV) its supervisor, where P∩PV = /0 and TV ⊆ T .

The controlled system of the plant model is (Np,Mp)⊗ (Nsup,Msup).

Example 2.17. The Petri net shown in Fig. 2.14a is a plant model. The control spec-

ification is that the number of tokens in place p2 is not greater than one at any

reachable marking. The net depicted in Fig. 2.14b is a supervisor that can imple-

ment this control specification, where p3 is a monitor, PV = {p3}, and TV = {t1, t2}.

Figure 2.14c shows the controlled system that can be obtained by synchronous syn-

thesis of the nets in Fig. 2.14a, b. It is easy to verify that the number of tokens in p2

can never be greater than one.

p 3

t 1

t 2

(b)

p 1 p 2

t 1

t 2

(a)

p 1 p 3 p 2

t 1

t 2

(c)

Fig. 2.14 (a) a plant net model, (b) the supervisor, and (c) the controlled system

2.8 Bibliographical Remarks

All the material covered in this chapter can be found in standard books [16, 39,

43] and survey papers [37, 38]. A good paper on siphons is [2], which presents an

effective characterization of minimal siphons and traps from the viewpoint of graph

theory. The algorithms calculating siphons and traps can be found in [5,9,10,14,15,

22, 29, 31, 48, 54, 57, 60]. For a general introduction to the subclasses of Petri nets,

we refer readers to [37]. Good surveys of Petri nets from a system theory view can

be found in [24, 46].

38 2 Petri Nets

For a more extensive discussion of the original framework of DES supervisory

control based on formal languages and automata, we refer readers to the tutorial

surveys, papers and books [7, 8, 25, 27, 30, 41, 49].

Problems

2.1. It is known that the siphons are closely related to the deadlock or the existence

of dead transitions in a Petri net. Suppose that (N,M0) is a net without siphons. Is it

live? Results can be found in [55].

2.2. INA [47] is a widely used tool that supports the behavioral and structural anal-

ysis of Petri nets. Let us define the size of a net (N,M0) as ||N || = |P|+ |T |+
∑p∈P M0(p). By using INA, compute the reachability graphs for a number of Petri

nets with different sizes 5, 10, 20, . . ., and 100, and observe the relationship between

the CPU-time and the size of a Petri net.

2.3. Figure 2.15 shows the reduced version of the reachability graph of the net in

Fig. 2.1a. It is clear that M4 is a deadlock marking and M3 is a marking that definitely

leads the system to a deadlock state. These are “bad” states , which the system is

not allowed to enter. M1 is called a dangerous marking since, at this marking, the

system may enter M3 if supervisory control is not properly imposed.

Therefore, M0, M1, and M2 form the good behavior of the system. An intuitive

idea is to design an online supervisor that supervises the system such that if the

system reaches M1, it disables t1 and directs the system to M2.

Combining with the results for Problem 2.2, discuss the disadvantages of this

intuitive control idea. Try to implement this idea by some programming language

and check the size of the problem that can be processed by your computer.

 M 0

 M 4

 M 3 M 2

 M 1

 t 1

 t 1

 t 1

 t 3

 t 2

Fig. 2.15 A reachability graph

2.8 Bibliographical Remarks 39

2.4. Prove Corollary 2.3.

2.5. Find and compare the strict minimal siphons in Fig 2.16a, b. Change the ini-

tial markings of places p1 and p4 and verify the liveness of the two nets by INA.

This verification may find an interesting problem about deadlocks and siphons in a

generalized Petri net.

p 1

p 3

p 2

t 3

t 2

p 5

p 6

t 6

t 4

t 5 1 5

t 1

1 5

p 4 p 8

p 7

6

4
2

4

4

4

4

2

(a)

p 1

p 3

p 2

t 3

t 2

p 5

p 6

t 6

t 4

t 5 1 5

t 1

1 5

p 4 p 8

p 7

6

4

(b)

Fig. 2.16 Two Petri nets (a) a generalized one and (b) an ordinary one

2.6. The reachability graph of a Petri net (N,M0) can be constructed using the fol-

lowing algorithm that terminates in a finite number of steps if its reachability set is

finite. Starting with M0, all the enabled transitions can be fired. These firings can

lead to new markings that may enable other transitions. Taking each of the new

markings as a new root, we can recursively generate all the reachable markings. The

following reachability graph generation algorithm can be found in [37, 39].

Algorithm 2.1 Reachability graph

1: The root node is M0. This node has initially no label.

2: while There are nodes with no label do

3: Consider a node M with no label.

4: (a) For each transition t enabled at M:

5: Let M′ = M +[N](·, t).
6: if There does not exist a node M′ in the graph then

7: Add it.

8: Add an arc t from M to M′.
9: end if

10: (b) Label the node M “old”.

11: end while

12: Remove all labels from nodes.

Implement the algorithm in a programming language and find the reachability

graphs for all the Petri nets in Chap. 2 and those used in Problem 2.2. Check the

40 2 Petri Nets

maximal size of a reachability graph that your computer can process in reasonable

time. Compare the CPU-times needed by your program and INA.

Let M, M′ ∈ R(N,M0) be two reachable markings of a Petri net (N,M0) with

N = (P,T,F,W). M is said to cover M′ if M ≥ M′, i.e., ∀p ∈ P, M(p) ≥ M′(p).
For an unbounded Petri net, its reachability graph can grow indefinitely. To re-

duce and keep the size of the graph finite, a special symbol ω is usually introduced,

which represents a number of tokens that can be made arbitrarily large. For any

finite integer a, ω is subject to the following four rules:

a ≤ ω ,

ω ≤ ω ,

ω +a = ω ,

ω −a = ω .

By using the above notations, a special graph called a coverability graph can be

constructed using the algorithm stated in [19]. If there is no symbol ω in a graph, it is

also a reachability graph. A coverability graph is finite and contains every reachable

marking from an initial marking M0, which is either explicitly represented by a node,

or is covered by a node through the use of ω . For details, the reader can be referred

to [19] and [37].

Additional work related to the check of liveness of unbounded Petri nets can be

found in [20, 28, 45, 56]. The liveness analysis problem of generalized unbounded

Petri nets remains open.

References

1. Abdallah, I.B., ElMaraghy, H.A., ElMekkawy, T. (1997) A logic programming approach for

finding minimal siphons in S3PR nets applied to manufacturing systems. In Proc. IEEE Int.

Conf. on Systems, Man, and Cybernetics, pp.1710–1715.
2. Barkaoui, K., Lemaire, B. (1989) An effective characterization of minimal deadlocks and

traps in Petri nets based on graph theory. In Proc. 10th Int. Conf. on Applications and Theory

of Petri Nets, pp.1–21.
3. Barkaoui, K., Minoux, M. (1992) A polynomial time graph algorithm to decide liveness of

some basic classes of Petri nets. In Proc. 13th Int. Conf. on Applications and Theory of Petri

Nets, Lecture Notes in Computer Science, vol.616, pp.62–75.
4. Barkaoui, K., Pradat-Peyre, J.F. (1996) On liveness and controlled siphons in Petri nets. In

Proc. 17th Int. Conf. on Applications and Theory of Petri Nets Lecture Notes in Computer

Science, vol.1091, pp.57–72.
5. Boer, E.R., Murata, T. (1994) Generating basis siphons and traps of Petri nets using the sign

incidence matrix. IEEE Transactions on Circuits and Systems I–Fundamental Theory and

Applications, vol.41, no.4, pp.266–271.
6. Bogdan, S., Lewis, F.L., Kovacic, Z., Mireles, J. (2006) Manufacturing Systems Control De-

sign. London: Springer.
7. Cassandras, C.G., Lafortune, S. (1999) Introduction to Discrete Event Systems. Boston, MA:

Kluwer.
8. Cassandras, C.G., Lafortune, S. (2008) Introduction to Discrete Event Systems. Springer.
9. Chao, D.Y. (2006) Computation of elementary siphons in Petri nets for deadlock control.

Computer Journal, vol.49, no.4, pp.470–479.
10. Chao, D.Y. (2006) Searching strict minimal siphons for SNC-based resource allocation sys-

tems, Journal of Information Science and Engineering, vol.23, no.3, pp.853–867.

References 41

11. Cheung, K.S. (2004) New characterization for live and reversible augmented Petri nets. In-

formation Processing Letters, vol.92, no.5, pp.239–243.

12. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical

programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.

13. Colom, J.M., Campos, J., Silva, M. (1990) On liveness analysis through linear algebraic tech-

niques. In Proc. of Annual General Meeting of ESPRIT Basic Research Action 3148 Design

Methods Based on Nets DEMON.

14. Cordone, R., Ferrarini, L., Piroddi, L. (2003) Some results on the computation of minimal

siphons in Petri nets. In Proc. 42nd IEEE Conf. on Decision and Control, pp.3754–3759.

15. Cordone, R., Ferrarini, L., Piroddi, L. (2005) Enumeration algorithms for minimal siphons in

Petri nets based on place constraints. IEEE Transactions on Systems, Man and Cybernetics,

Part A, vol.35, no.6, pp.844–854.

16. Desel, J., Esparza, J. (1995) Free Choice Petri Nets. London: Cambridge University Press.

17. Desel, J., Reisig, W. (1998) Place/transition Petri nets. In Lectures on Petri Nets I: Basic

Models, Lecture Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.),

pp.122–174.

18. Desel, J. (1998) Basic linear algebraic techniques for place/transition nets. In Lectures on

Petri Nets I: Basic Models, Lecture Notes in Computer Science, vol.1491, W. Reisig and G.

Rozenberg (Eds.), pp.257–308.

19. Desrocher, A.A., AI-Jaar, R.Y. (1995) Applications of Petri Nets in Manufacturing Systems:

Modeling, Control, and Performance Analysis, Piscataway, NJ: IEEE Press.

20. Ding, Z.J., Jiang, C.J., Zhou, M.C. (2008) Deadlock checking for one-place unbounded Petri

nets based on modified reachability trees. IEEE Transactions on Systems, Man, and Cyber-

netics, Part B, vol.38, no.3, pp.881–882.

21. Esparza, J., Silva, M. (1992) A polynomial-time algorithm to decide liveness of bounded free

choice nets. Theoretical Computer Sciences, vol.102, no.1, pp.185–205.

22. Ezpeleta, J., Couvreur, J.M., Silva, M. (1993) A new technique for finding a generating family

of siphons, traps, and st-components: Application to colored Petri nets. In Advances in Petri

Nets, Lecture Notes in Computer Science, vol.674, G. Rozenberg (Ed.), pp.126–147.

23. Ezpeleta, J, Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy

for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11,

no.2, pp.173–184.

24. Giua, A., Seatzu, C. (2007) A systems theory view of Petri nets. In Advances in Control

Theory and Applications, Lecture Notes in Control and Information Science, vol.353, C.

Bonivento et al. (Eds.), pp.99–127.

25. Holloway, L.E., Krogh, B.H., Giua, A. (1997) A survey of Petri net methods for controlled

discrete event systems. Discrete Event Dynamic Systems: Theory and Applications, vol.7,

no.2, pp.151–190.

26. Hopcroft, J.E., Motwani, R., Ullman, J.D. (2000) Introduction to Automata Theory, Lan-

guages, and Computation, 2nd ed., New York: Addison-Wesley.

27. Hruz, B., Zhou, M.C (2007) Modeling and Control of Discrete-Event Dynamic Systems: With

Petri Nets and Other Tools. London: Springer.

28. Jeng, M.D, Peng, M.Y. (1999) Augmented reachability trees for 1-place-unbounded general-

ized Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.29, no.2,

pp.173–183.

29. Jeng, M.D., Peng, M.Y., Huang, Y.S. (1999) An algorithm for calculating minimal siphons

and traps in Petri nets. International Journal of Intelligent Control and Systems, vol.3, no.3,

pp.263–275.

30. Kumar, R. Garg, V. (1995) Modeling and Control of Logical Discrete Event Systems. Boston,

MA: Kluwer.

31. Lautenbach, K. (1987) Linear algebraic calculation of deadlocks and traps. In Concurrency

and Nets, K. Voss, H. J. Genrich and G. Rozenberg (Eds.), pp.315–336.

32. Lautenbach, K., Ridder, H. (1993) Liveness in bounded Petri nets which are covered by T-

invariants. In Proc. 13th Int. Conf. on Applications and Theory of Petri Nets, Lecture Notes in

Computer Science, vol.815, R. Valette (Ed.), pp.358–375.

42 2 Petri Nets

33. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to dead-

lock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.34, no.1, pp.38–51.

34. Li, Z.W., Wei, N. (2007) Deadlock control of flexible manufacturing systems via invariant-

controlled elementary siphons of Petri nets. International Journal of Advanced Manufactur-

ing Technology, vol.33, no.1–2, pp.24–35.

35. Li, Z.W., Zhou, M.C. (2008) On siphon computation for deadlock control in a class of Petri

nets. IEEE Transactions on Systems, Man, and Cybernetics, A., vol.38, no.3, pp.667–679.

36. Minoux, M., Barkaoui, K. (1990) Deadlocks and traps in Petri nets as horn-satisfiability solu-

tions and some related polynomially solvable problems. Discrete Mathematics, vol.29, no.2–

3, pp.195–210.

37. Murata, T. (1989) Petri nets: Properties, analysis, and applications. Proceedings of the IEEE,

vol.77, no.4, pp.541–580.

38. Peterson, J.L. (1977) Petri nets. Computing Surveys, vol.9, no.3, pp.223–252.

39. Peterson, J.L. (1981) Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ:

Prentice-Hall.

40. Piroddi, L., Cordone, R., Fumagalli, I. (2008) Selective siphon control for deadlock preven-

tion in Petri nets, IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 38, no.

6, pp.1337–1348.

41. Ramadge, P., Wonham, W.M. (1989) The control of discrete event systems. Proceedings of

the IEEE, vol.77, no.1, pp.81–89.

42. Recalde, L., Teruel, E., Silva, M., (1998) On linear algebraic techniques for liveness analysis

of P/T systems. Journal of Circuits, Systems, and Computers, vol.8, no.1, pp.223–265.

43. Reisig, W. (1985) Petri Nets: An Introduction. New York: Springer.

44. Reutenauer, C. (1990) The Mathematics of Petri Nets. Translated by I. Varig, Englewood

Cliffs, NJ: Prentice-Hall.

45. Ru, Y., Wu, W.M., Hadjicostis, C.N. (2006) Comments on “A modified reachability tree ap-

proach to analysis of unbounded Petri nets”. IEEE Transactions on Systems, Man, and Cy-

bernetics, Part B, vol.36, no.5, p.1210.

46. Silva, M., Teruel, E. (1996) A systems theory perspective of discrete event dynamic systems:

The Petri net paradigm. In P. Borne, J. C. Gentina, E. Craye, and S. El Khattabi, (Eds.),

Symposium on Discrete Events and Manufacturing Systems, IMACS Multiconference, Lille,

France, pp.1–12.

47. Starke, P. H. (2003) INA: Integrated Net Analyzer. http://www2.informatik.hu-berlin.de/∼star

ke/ina.html.

48. Tanimoto, S., Yamauchi, M., Watanabe, T. (1996) Finding minimal siphons in general Petri

nets. IEICE Transactions on Fundamentals, vol.E79-A, no.11, pp.1817–1824.

49. Thistle, J.G. (1996) Supervisory control of discrete event systems. Mathematical and Com-

puter and Modeling, vol.23, no.11–12, pp.25–53.

50. Tricas, F., Garacı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (1998) A partial approach to the prob-

lem of deadlocks in processes with resources. Research Report, GISI-RR-97-05, Departa-

mento de Informática e Ingenierı́a de Sistemas, Universidad de Zaragoza, Spain.

51. Tricas, F., Garcı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (1998) A structural approach to the

problem of deadlock prevention in processes with shared resources. In Proc. 4th Workshop

on Discrete Event Systems, pp.273–278.

52. Tricas, F., Ezpeleta, J. (1999) A Petri net solution to the problem of deadlocks in systems of

processes with resources. In Proc. IEEE Int. Conf. on Emerging Technologies and Factory

Automation, pp.1047–1056.

53. Tricas, F., Ezpeleta, J. (2003) Some results on siphon computation for deadlock prevention in

resource allocation systems modeled with Petri nets. In Proc. IEEE Int. Conf. on Emerging

Technologies and Factory Automation, pp.322–329.

54. Tricas, F., Ezpeleta, J. (2006) Computing minimal siphons in Petri net models of resource

allocation systems: A parallel solution. IEEE Transactions on Systems, Man, and Cybernetics,

Part A, vol.36, no.3, pp.532–539.

References 43

55. Tsuji, K., Murata, T. (1993) On reachability conditions for unrestricted Petri nets. In Proc.

IEEE Int. Symp. on Circuits and Systems, pp.2713–2716.

56. Wang, F.Y., Gao, Y.Q., Zhou, M.C. (2004) A modified reachability tree approach to analy-

sis of unbounded Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part B,

vol.34, no.1, pp.303–308.

57. Watanabe, T., Yamauchi, M., Tanimoto, S. (1998) Extracting siphons containing specified set

of places in Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.142–

147.

58. Xing, K.Y., Hu, B.S., Chen, H.X. (1996) Deadlock avoidance policy for Petri-net modelling

of flexible manufacturing systems with shared resources. IEEE Transactions on Automatic

Control, vol.41, no.2, pp.289–295.

59. Xing, K.Y., Hu, B.S. (2005) Optimal liveness Petri net controllers with minimal structures for

automated manufacturing systems. In Proc. IEEE Int. Conf. on Systems, Man and Cybernet-

ics, pp.282–287.

60. Yamauchi, M., Watanabe, T. (1999) Algorithms for extracting minimal siphons containing

specified places in a general Petri net. IEICE Transactions on Fundamentals, vol.E82-A,

no.11, pp.2566–2575.

61. Zhou, M.C., DiCesare, F. (1991) Parallel and sequential exclusions for Petri net modeling for

manufacturing systems. IEEE Transactions on Robotics and Automation, vol.7, no.4, pp.515–

527.

62. Zhou, M.C., DiCesare, F. (1993) Petri Net Synthesis for Discrete Event Control of Manufac-

turing Systems. Boston, MA: Kluwer.

Chapter 3

Elementary Siphons of Petri Nets

Abstract This chapter first presents the concepts of poor, rich, and equivalent

siphons and the related invariant-control theory. It then discusses elementary and

dependent siphons in a Petri net, which play a key role in the development of struc-

turally simple liveness-enforcing (Petri net) supervisors. Dependent siphons are fur-

ther divided into strongly and weakly dependent ones. Next, a more general result

on the control of a siphon is given. Later, it is shown that the controllability of a de-

pendent siphon can be ensured by supervising its elementary siphons via properly

setting their control depth variables. For well-initially-marked Petri nets that cover

most of the manufacturing-oriented Petri net models in the literature, it is shown that

strongly and weakly dependent siphons have identical controllability conditions. Fi-

nally, an elementary siphon identification algorithm for a deadlock control purpose

is presented.

3.1 Introduction

This chapter presents the concept of elementary and dependent siphons in a Petri

net as well as their controllability. Elementary siphons are a special class of struc-

tural objects. Their development is motivated by the observation that the change of

the number of tokens in a siphon linearly depends on the token variation of a set of

other siphons. It is shown that a dependent siphon can be implicitly controlled by

properly supervising the number of tokens staying in its elementary siphons. Ele-

mentary siphons play an important role in the development of deadlock prevention

approaches that lead to structurally simple liveness-enforcing monitor-based super-

visors.

45

46 3 Elementary Siphons of Petri Nets

3.2 Equivalent Siphons

In this section, we present the concept of equivalent siphons.

Definition 3.1. Let S ⊆ P be a subset of places of Petri net N = (P,T,F,W). P-

vector λS is called the characteristic P-vector of S iff ∀p ∈ S, λS(p) = 1; otherwise

λS(p) = 0.

Definition 3.2. ηS = [N]T λS is called the characteristic T -vector of S, where [N]T is

the transpose of incidence matrix [N].

By the above definitions, ηT
S = ∑p∈S[N](p, ·) is trivially true. The physical im-

plication of the T -vector of a subset of places is clear: ηS(t) > 0 means that ηS(t)
tokens are put into S after t fires; ηS(t) = 0 indicates that the number of tokens in S

does not change after t fires; and ηS(t) < 0 implies that |ηS(t)| tokens are removed

from S after t fires.

p 1

p 3

t 4

t 3

p 4

p 2

p 6

p 5 p 7

t 2

t 1

Fig. 3.1 A Petri net (N,M0)

Example 3.1. Let S1 = {p1−p4}, S2 = {p2, p4, p6}, S3 = {p4−p6}, and S4 = {p4,

p6, p7} be subsets of places of the Petri net shown in Fig. 3.1. We have λS1
=

p1 + p2 + p3 + p4 (i.e., the space-saving version of vector (1 1 1 1 0 0 0)T), λS2
=

p2 + p4 + p6, λS3
= p4 + p5 + p6, and λS4

= p4 + p6 + p7. We have ηS1
= 0T and

ηS2
= 0T . This is not surprising since both λS1

and λS2
are P-semiflows. Firing a

transition does not change their token count. In addition, it is easy to verify that

ηS3
= ηS4

= −t1 + t3. Firing t1 removes a token from S3 and S4, respectively, while

firing t3 adds a token to S3 and S4, respectively.

More specifically, take S3 = {p4, p5, p6} as an example. Firing t1 removes a token

from p6 and does not change the number of tokens in p4 and p5. Therefore, S3 loses

3.2 Equivalent Siphons 47

a token if t1 fires. Firing t2 removes a token from p5 and puts a token into p6, keeping

the constant number of tokens in S3. Firing t3 removes a token from p6, and puts a

token into p4 and p5, respectively, and thereby S3 gains a token. Firing t4 removes a

token from p4 and puts a token into p6, thus keeping the token count in S3 constant.

These facts are well reflected by ηS3
= −t1 + t3.

Definition 3.3. Let S1 and S2 be two siphons in a net. S1 and S2 are said to be

equivalent, denoted by S1
∼= S2, if ηS1

= ηS2
.

Definition 3.4. Let Π be a set of siphons in a net. 〈S〉 ⊆ Π is called a set of

equivalent siphons if (1) S ∈ 〈S〉, (2) ∀S′, S′′ ∈ 〈S〉, ηS′ = ηS′′ , and (3) ∀S′ ∈ 〈S〉,
∀S′′ ∈ Π\〈S〉, ηS′ �= ηS′′ .

Proposition 3.1. Let R = {(S′,S′′) | S′,S′′ ∈ 〈S〉}. Thus R is an equivalent relation-

ship on 〈S〉.

Proof. We have to prove that R is reflexive, symmetric, and transitive. It is easy to

see that ∀S∇,S′, and S′′ ∈ 〈S〉, one can get (a) ηS∇ = ηS∇ , (b) ηS∇ = ηS′ ⇒ ηS′ = ηS∇ ,

and (c) ηS∇ = ηS′ ∧ηS′ = ηS′′ ⇒ ηS∇ = ηS′′ . Hence, this proposition holds. ⊓⊔

It is easy to see that 〈S〉 is an equivalent class of Π .

Corollary 3.1. Let S and S′ ∈ Π be two siphons of a net. We have (1)〈S〉 �= /0 and

〈S〉 ⊆ Π ; (2)〈S〉= 〈S′〉 if (S,S′) ∈ R; (3)〈S〉∩〈S′〉= /0 if (S,S′) /∈ R; (4)∪S∈Π 〈S〉=
Π ; (5) Let π be the set of equivalent classes of the elements in Π . π is a partition

of Π .

In what follows, 〈S〉 is used to denote a set of equivalent siphons in net system

(N,M0), which contains the siphon S.

Example 3.2. The net shown in Fig. 3.2 is a Petri net (not strongly connected). S1 =
{p1}, S2 = {p2}, S3 = {p3}, S4 = {p4}, and S5 = {p5} are minimal siphons with

ηS1
= ηS2

= ηS3
= −t1 and ηS4

= ηS5
= −t2 − t3. Therefore, S1, S2, and S3 are

equivalent. So are S4 and S5. These equivalent relationships lead to the fact that

〈S1〉 = 〈S2〉 = 〈S3〉 = {S1,S2,S3} and 〈S4〉 = 〈S5〉 = {S4,S5}.

Take another example from Fig. 3.1. Consider siphons S3 = {p4, p5, p6} and

S4 = {p4, p6, p7}. S3 and S4 are equivalent since their characteristic T -vectors are

identical.

 p 2

t 1

p 1

t 3 t 2

 p 5 p 4 p 3

Fig. 3.2 A Petri net (N,M0) with equivalent siphons

48 3 Elementary Siphons of Petri Nets

Definition 3.5. Let 〈S〉 be a set of equivalent siphons in a Petri net (N,M0). Siphon

S′ ∈ 〈S〉 is said to be token-poor in 〈S〉 if ∄S′′ ∈ 〈S〉 such that M0(S
′′) < M0(S

′) holds.

It is called token-rich otherwise.

A token-poor siphon holds the smallest number of tokens at initial marking M0

among a set of equivalent siphons. Clearly, among these equivalent siphons, all

token-poor siphons have the same token count at M0.

Theorem 3.1. M0(S
′) = M0(S

′′) if siphons S′ and S′′ are token-poor in 〈S〉.
If siphons S1 and S2 are both token-rich in 〈S〉, M0(S1) = M0(S2) is not necessar-

ily true. Recalling that a siphon is said to be controlled if it is always marked at any

reachable marking, we immediately have the following result.

Theorem 3.2. A token-rich siphon is controlled.

Proof. If S is token-rich, there must exist a siphon S′ ∈ 〈S〉 such that ηS′ = ηS and

M0(S) > M0(S
′) are true. Hence, firing any transition removes the same number of

tokens from S and S′. Let M ∈ R(N,M0) be any reachable marking. We have two

subcases: M(S′) > 0 and M(S′) = 0.

If M(S′) > 0, then M(S) > M(S′) > 0. Thus S is marked.

If M(S′) = 0, then M(S) = M0(S)−M0(S
′) > 0. It is easy to see, in this case, that

at any reachable marking M, no output transitions of S′ can be enabled and fire to

remove tokens from S and S′. Thus S remains to be marked. ⊓⊔
Theorem 3.3. Let S′ and S′′ be two token-poor siphons in 〈S〉. S′ is controlled iff S′′

is controlled.

Proof. Assume that S′ and S′′ are token-poor siphons in (N,M0), where N =
(P,T,F,W). Therefore, they have the identical characteristic T -vector and the same

number of initial tokens. ∀t ∈ T , the number of tokens removed from S′ equals that

from S′′ if t fires. The controllability of S′ means that the least number of tokens in

S′ is greater than 0. Hence, the least number of tokens staying in S′′ is also greater

than 0. S′′ is therefore controlled.

Similarly, we can prove that S′ is controlled if S′′ is so. ⊓⊔
Theorem 3.4. If a token-poor siphon in 〈S〉 is controlled, all siphons in 〈S〉 are

controlled.

Theorem 3.4 indicates that the controllability of a token-poor siphon in 〈S〉 is

sufficient for that of all others in 〈S〉.
Example 3.3. In Fig. 3.2, S1 = {p1} and S3 = {p3} are token-poor and S2 = {p2}
is token-rich since M0(S1) = M0(S3) = 2, and M0(S2) = 3. S2 is controlled due to

Theorem 3.2 since it remains marked even if S1 and S3 are emptied. Also, ∀M ∈
R(N,M0), if M(S1) > 0, then M(S3) > 0 and M(S2) > 0 hold.

The concept of equivalent siphons is essential to the identification of the set of

elementary siphons in a net system for deadlock control purposes. The motivation

to propose the concept of elementary siphons is to control dependent siphons by

explicitly controlling their elementary siphons only.

3.3 Elementary and Dependent Siphons 49

3.3 Elementary and Dependent Siphons

Theorems 3.3 and 3.4 show the controllability relations among equivalent siphons.

The concept of elementary and dependent siphons [20, 21] reveals the relations

among siphons belonging to different sets of equivalent siphons.

Definition 3.6. Let N = (P,T,F,W) be a net with |P| = m, |T | = n and Π = {S1,S2,

. . ., Sk} be a set of siphons of N (m,n,k ∈N+). Let λSi
(ηSi

) be the characteristic

P(T)-vector of siphon Si, i∈Nk. [λ]k×m = [λS1
|λS2

| · · · |λSk
]T and [η]k×n = [λ]k×m×

[N]m×n = [ηS1
|ηS2

| · · · |ηSk
]T are called the characteristic P- and T -vector matrices

of the siphons in N, respectively.

Definition 3.7. Let ηSα , ηSβ
, . . ., and ηSγ ({α,β , . . . ,γ} ⊆ Nk) be a linearly inde-

pendent maximal set of matrix [η]. Then ΠE = {Sα , Sβ , . . ., Sγ} is called a set of

elementary siphons in N.

Definition 3.8. S /∈ ΠE is called a strongly dependent siphon if ηS = ∑Si∈ΠE
aiηSi

,

where ai ≥ 0.

Definition 3.9. S /∈ ΠE is called a weakly dependent siphon if ∃A,B ⊂ ΠE , such that

A �= /0, B �= /0, A∩B = /0, and ηS=∑Si∈A aiηSi
−∑Si∈B aiηSi

, where ai > 0.

Let Γ +(S) = ∑Si∈A aiηSi
and Γ −(S) = ∑Si∈B aiηSi

for a weakly dependent siphon

S. We have ηS = Γ +(S)−Γ −(S). If S is strongly dependent, we define Γ −(S) = 0.

Definition 3.10. Dependent siphons S1 and S2 are said to be quasi-equivalent iff

Γ +(S1) = Γ +(S2).

Lemma 3.1. The number of elements in any set of elementary siphons in net N

equals the rank of [η].

Let ΠE denote a set of the elementary siphons in a Petri net. Since the rank of [η]
is at most the smaller of |P| and |T |, Lemma 3.1 leads to the following important

conclusion.

Theorem 3.5. |ΠE | ≤ min{|P|, |T |}.

This result indicates that the number of elementary siphons in a Petri net is

bounded by the smaller of place count and transition count.

Let S be a (strongly or weakly) dependent siphon. In sequel, if ηS can be linearly

represented by elementary siphons’ characteristic T -vectors ηS1
, ηS2

, . . ., and ηSn

with non-zero coefficients, we say that S1, S2, . . ., and Sn are the elementary siphons

of S. Let Π be the set of siphons in which we are interested given a net, and ΠD be

the set of dependent ones within the scope of Π . Obviously, we have Π = ΠE ∪ΠD.

Example 3.4. The Petri net shown in Fig. 3.3(a) has 10 minimal siphons: S1 = {p5,

p9, p12, p13}, S2 = {p4, p6, p13, p14}, S3 = {p6, p9, p12−p14}, S4 = {p2, p15},

S5 = {p7, p11}, S6 = {p1−p3, p5−p7}, S7 = {p4, p8-p10}, S8 = {p3, p9, p12},

50 3 Elementary Siphons of Petri Nets

S9 = {p4, p5, p13}, and S10 = {p6, p8, p14}. Each S4−S10 is both a siphon and trap.

Such a siphon cannot be emptied once it is initially marked. Now we consider the

strict minimal siphons S1, S2, and S3. We have

λS1
= p5 + p9 + p12 + p13,

λS2
= p4 + p6 + p13 + p14,

λS3
= p6 + p9 + p12 + p13 + p14,

ηS1
= −t2 + t3 − t9 + t10,

ηS2
= −t3 + t4 − t8 + t9,

ηS3
= −t2 + t4 − t8 + t10.

Accordingly, [λ] and [η] are shown as follows:

[λ] =

⎛

⎝

0 0 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 0 1 0 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 1 0 0 1 1 1 0

⎞

⎠ ,

[η] =

⎛

⎝

0 −1 1 0 0 0 0 0 −1 1 0

0 0 −1 1 0 0 0 −1 1 0 0

0 −1 0 1 0 0 0 −1 0 1 0

⎞

⎠ .

It is easy to verify that ηS3
= ηS1

+ηS2
and the rank of [η] is two, i.e., rank([η]) =

|ΠE |= 2. This means that there are two elementary siphons. If S1 and S2 are selected

as elementary siphons, S3 is a strongly dependent one. If S1 and S3 are selected

as elementary ones, S2 becomes weakly dependent. If S2 and S3 are selected as

elementary ones, S1 is weakly dependent.

3.4 Controllability of Dependent Siphons in Ordinary Petri Nets

This section mainly focuses on the development of conditions under which a de-

pendent siphon can be always marked if their elementary ones are controlled. The

results presented are useful in the design of liveness-enforcing net supervisors for

resource allocation systems.

Invariant-based siphon control is a well-established technique in the literature.

The concept of general-invariant-controlled siphons is an extension to the known

results in [9, 15, 19, 32].

Let (N,M0) be a net system. S is a siphon and I is a P-invariant of N, where

S∩ ||I||+ �= /0 and S∩ ||I||− = /0. Let S∩ ||I||+ = A, ||I||+\S = B, and ||I||− = C.

Clearly, we have ||I|| = ||I||+ ∪||I||− = A∪B∪C.

Definition 3.11. S is called general-invariant-controlled if

IT M0 −max{∑
p∈B

I(p)M(p)}+min{∑
p∈C

|I(p)|M(p)} > 0,

3.4 Controllability of Dependent Siphons in Ordinary Petri Nets 51

p 1

p 5

p 3

t 4

t 3

p 6

t 5

p 7

p 4

p 9

t 1 1

t 9

t 1 0

p 8

p 2

t 6

5

p 1 1

t 1

t 2

3

p 1 0

p 1 5

p 1 4

p 1 3

p 1 2

t 8

t 7

p 1

p 5

p 3

t 4

t 3

p 6

t 5

p 7

p 4

p 9

t 1 1

t 9

t 1 0

p 8

p 2

t 6

5

p 1 1

t 1

t 2

3

p 1 0

p 1 5

p 1 4

p 1 3

p 1 2

t 8

t 7

t 6
t 1

t 9
t 8

V S 2

t 8

t 1

V S 1 t 6

t 1 0 t 3

(b)

(a)

Fig. 3.3 (a) A Petri net (N1,M1) and (b) its augmented net (N2,M2)

52 3 Elementary Siphons of Petri Nets

where M ∈ R(N,M0).

Theorem 3.6. If siphon S is general-invariant-controlled, it is controlled.

Proof. Clearly, we have ||I||= A∪B∪C. ∀M ∈ R(N,M0), IT M = IT M0. As a result,

we have

∑
p∈A

I(p)M(p)+ ∑
p∈B

I(p)M(p)+ ∑
p∈C

I(p)M(p) = IT M0.

∑
p∈A

I(p)M(p) = IT M0 − ∑
p∈B

I(p)M(p)− ∑
p∈C

I(p)M(p)

= IT M0 − ∑
p∈B

I(p)M(p)+ ∑
p∈C

|I(p)|M(p)

≥ IT M0 −max{∑
p∈B

I(p)M(p)}+min{∑
p∈C

|I(p)|M(p)} > 0.

It is easy to see that

∑
p∈A

I(p)M(p) > 0 ⇒ M(S) > 0.

As a result, we have M(S) > 0 if

IT M0 −max{∑
p∈B

I(p)M(p)}+min{∑
p∈C

|I(p)|M(p)} > 0.

⊓⊔

If a siphon is general-invariant-controlled by a P-invariant, it cannot be emptied,

i.e., ∀M ∈ R(N,M0), it is marked under M. A general-invariant-controlled siphon in

an ordinary net system does not imply a potential deadlock.

Due to a possibly large number of reachable markings in a net system (N,M0),
in general, it is difficult to solve max{∑p∈B I(p)M(p)} and min{∑p∈C |I(p)|M(p)}
since their solution requires the complete marking enumeration of (N,M0). Define

mB = max{∑
p∈B

I(p)M(p)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0}

and

mC = min{∑
p∈C

|I(p)|M(p)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0},

3.4 Controllability of Dependent Siphons in Ordinary Petri Nets 53

where [N] is the incidence matrix and M and Y are vectors of real numbers. From

the basic theory of Petri nets, any reachable marking fulfils the state equation but

the converse is not true. Hence, we have

mB ≥ max{∑
p∈B

I(p)M(p)|M ∈ R(N,M0)},

and

mC ≤ min{∑
p∈C

|I(p)|M(p)|M ∈ R(N,M0)}.

Corollary 3.2. S is controlled if

IT M0 −mB +mC > 0.

Proof. It is known that

mB ≥ max{∑
p∈B

I(p)M(p)}

and

mC ≤ min{∑
p∈C

|I(p)|M(p)}.

Hence, IT M0 −mB +mC > 0 implies the truth of

IT M0 −max{∑
p∈B

I(p)M(p)}+min{∑
p∈C

|I(p)|M(p)} > 0.

⊓⊔

The problem to find mB and mC is an LPP and can be solved in polynomial

time [26, 30]. As shown in [9], imposing integrity constraints to M and Y as it is

usually done in the literature significantly increases the computational complexity.

If B = ||I||+ \ S = /0, then ||I||+ ⊆ S. This immediately leads to the following

result.

Corollary 3.3. If ||I||+ \S = /0, S is controlled if either

IT M0 +min{∑
p∈C

|I(p)|M(p)} > 0

or

IT M0 +mC > 0.

54 3 Elementary Siphons of Petri Nets

Corollary 3.4. If ||I||+ \S = /0, S is controlled if IT M0 > 0.

Proof. Since min{∑p∈C |I(p)|M(p)} ≥ 0, IT M0 > 0 leads to the truth of

IT M0 +min{∑
p∈C

|I(p)|M(p)} > 0.

By Corollary 3.3, S is controlled. ⊓⊔

The concept of general-invariant-controlled siphons is useful to develop control-

lability conditions for dependent siphons since it is more general than invariant-

controlled siphons defined in Definition 2.19.

Let

Mmin(S) = min{M(S)|M ∈ R(N,M0)} (3.1)

and

Mmax(S) = max{M(S)|M ∈ R(N,M0)}. (3.2)

The linear dependency of the T -vector of a dependent siphon on those T -

vectors of its elementary siphons reveals the relationship between its and their token

changes. That is to say, the number of tokens in a dependent siphon can be controlled

by supervising the token flow in its elementary siphons.

Without loss of generality, we assume that in a Petri net (N,M0), a strongly de-

pendent S satisfies ηS = ∑n
i=1 aiηSi

, ai > 0, i ∈ Nn, and a weakly dependent siphon

S satisfies ηS = ∑n
i=1 aiηSi

−∑m
j=n+1 a jηS j

, ai > 0, i ∈ Nm. Concerning the control-

lability of a dependent siphon, we have the following results.

Theorem 3.7. A weakly dependent siphon S is controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j)). (3.3)

Proof. Since

ηS =
n

∑
i=1

aiηSi
−

m

∑
j=n+1

a jηS j
,

we have

λ T
S [N] =

n

∑
i=1

aiλ
T
Si

[N]−
m

∑
j=n+1

a jλ
T
S j

[N],

i.e.,

3.4 Controllability of Dependent Siphons in Ordinary Petri Nets 55

(λS −
n

∑
i=1

aiλSi
+

m

∑
j=n+1

a jλS j
)T [N] = 0T .

Let I = λS −∑n
i=1 aiλSi

+ ∑m
j=n+1 a jλS j

. There are hence two subcases: (a) I is a

P-invariant and (b) I = 0.

First we consider that

I = λS −
n

∑
i=1

aiλSi
+

m

∑
j=n+1

a jλS j

is a P-invariant of N. ∀M ∈ R(N,M0), we have IT M = IT M0. Therefore, the follow-

ing equation holds by noting M(S′) = λ T
S′M, ∀S′ ∈ Π , M ∈ R(N,M0).

M(S)−
n

∑
i=1

aiM(Si)+
m

∑
j=n+1

a jM(S j) = M0(S)−
n

∑
i=1

aiM0(Si)+
m

∑
j=n+1

a jM0(S j).

(3.4)

From (3.4), we have:

M(S) = M0(S)−
n

∑
i=1

aiM0(Si)+
n

∑
i=1

aiM(Si)+
m

∑
j=n+1

a jM0(S j)−
m

∑
j=n+1

a jM(S j).

(3.5)

Obviously, S is controlled, i.e., M(S) > 0 if

M0(S) >
n

∑
i=1

aiM0(Si)−
n

∑
i=1

aiM(Si)−
m

∑
j=n+1

a jM0(S j)+
m

∑
j=n+1

a jM(S j). (3.6)

Noticing ∀M ∈ R(N,M0), Mmin(S) ≤ M(S) and Mmax(S) ≥ M(S), (3.6) is true if

the following inequality holds.

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j)). (3.7)

As a result, S is controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j)).

Second, we consider the case of I = 0. ∀M ∈ R(N,M0), the following equation is

true.

M(S)−
n

∑
i=1

aiM(Si)+
m

∑
j=n+1

a jM(S j) = 0.

56 3 Elementary Siphons of Petri Nets

Thus, one concludes that M(S) > 0 if

n

∑
i=1

aiM(Si)−
m

∑
j=n+1

a jM(S j) > 0.

Since

M0(S)−
n

∑
i=1

aiM0(Si)+
m

∑
j=n+1

a jM0(S j) = 0,

M(S) > 0 if

M0(S)−
n

∑
i=1

aiM0(Si)+
m

∑
j=n+1

a jM0(S j)+
n

∑
i=1

aiM(Si)−
m

∑
j=n+1

a jM(S j) > 0.

i.e.,

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j)).

Subcases (a) and (b) lead to the truth of the theorem.

⊓⊔

Corollary 3.5. A strongly dependent siphon S is controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si)).

Definition 3.12. (N,M0) is said to be well-initially-marked iff ∀S ∈ Π , Mmax(S) =
M0(S).

This definition indicates that a siphon in a well-initially-marked Petri net has the

maximal number of tokens at the initial marking. For example, the net in Fig. 3.3(a)

is well-initially-marked.

Corollary 3.6. Let (N,M0) be a well-initially-marked net system. A (strongly or

weakly) dependent siphon S is controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si)).

Proof. It follows immediately due to Corollary 3.5 if S is a strongly dependent

siphon.

Let S be a weakly dependent siphon. From Theorem 3.7, it is controlled if

3.4 Controllability of Dependent Siphons in Ordinary Petri Nets 57

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j)).

Since ∀S ∈ Π , Mmax(S) = M0(S), we have

m

∑
j=n+1

a j(M0(S j)−Mmax(S j)) = 0.

This leads to the truth of the corollary.

⊓⊔

The condition (∀S ∈ Π , Mmax(S) = M0(S)) in a well-initially-marked net is rea-

sonable and meaningful in practice. As far as the authors know, this is true for

application-oriented Petri net subclasses in the literature, which can model flexible

manufacturing systems, e.g., PPN [2], augmented marked graphs [9], S3PR [11],

L-S3PR [12], S4R [1], S4PR [28], ES3PR [14], WS3PSR [27], S∗PR [13], PNR

[17], RCN-merged nets [16], ERCN-merged nets [31], ERCN∗-merged nets [18],

S2LSPR [24], S3PGR2 [25], G-task [4], and G-system [33]. However, the verifica-

tion of the well-initially-markedness seems a formidable job given an arbitrary Petri

net.

By Theorem 3.7, in order to verify the controllability of a dependent siphon,

we need to compute Mmin(S) and Mmax(S), S ∈ ΠE . Mmin(S) and Mmax(S) can be

obtained by solving problems (3.1) and (3.2), respectively. Due to a large number of

reachable markings, Mmin(S) and Mmax(S) are difficult to find. For this, we consider

Mmin(S) and Mmax(S) defined as follows by relaxing M and Y to any non-negative

real numbers.

Let

Mmin(S) = min{M(S)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0}

and

Mmax(S) = max{M(S)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0}.

Obviously, we have

Mmin(S) ≤ Mmin(S)

and

Mmax(S) ≥ Mmax(S).

Corollary 3.7. A weakly dependent siphon S is controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j)).

58 3 Elementary Siphons of Petri Nets

Proof. Since

Mmin(S) ≤ Mmin(S)

and

Mmax(S) ≥ Mmax(S),

it is easy to see that

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j))

implies the truth of

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j)).

⊓⊔
Corollary 3.8. A strongly dependent siphon S is controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si)).

Proof. It follows immediately from Corollary 3.5 by considering Mmin(S)≤Mmin(S).
⊓⊔

Corollary 3.9. Let (N,M0) be a well-initially-marked net. A (strongly or weakly)

dependent siphon S is controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si)).

Proof. It follows immediately from Corollary 3.6 by considering Mmin(S)≤Mmin(S).
⊓⊔

Corollary 3.9 is very useful when we deal with a subclass of Petri nets modeling

manufacturing systems. Corollaries 3.7–3.9 can be employed to verify whether a

dependent siphon is controlled. To use them, in the worst case, we need to solve

2|ΠE | LPP to find Mmin(S) and Mmax(S).
Define

D1 = min{
n

∑
i=1

aiM(Si)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0}

3.4 Controllability of Dependent Siphons in Ordinary Petri Nets 59

and

D2 = max{
m

∑
j=n+1

a jM(S j)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0}.

Next we present weaker conditions under which a dependent siphon can be con-

trolled.

Corollary 3.10. A weakly dependent siphon S is controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−D1 −
m

∑
j=n+1

a jM0(S j)+D2.

Proof. From (3.6), S is controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−
n

∑
i=1

aiM(Si)−
m

∑
j=n+1

a jM0(S j)+
m

∑
j=n+1

a jM(S j).

Note that

D1 = min{
n

∑
i=1

aiM(Si)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0} ≤
n

∑
i=1

aiM(Si)

and

D2 = max{
m

∑
j=n+1

a jM(S j)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0} ≥
m

∑
j=n+1

a jM(S j).

As a result, the truth of

M0(S) >
n

∑
i=1

aiM0(Si)−D1 −
m

∑
j=n+1

a jM0(S j)+D2

implies that of

M0(S) >
n

∑
i=1

aiM0(Si)−
n

∑
i=1

aiM(Si)−
m

∑
j=n+1

a jM0(S j)+
m

∑
j=n+1

a jM(S j).

⊓⊔

Corollary 3.11. Let S be a strongly dependent siphon in a net system (N,M0). S is

controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−D1.

60 3 Elementary Siphons of Petri Nets

Corollary 3.12. Let S be a (weakly or strongly) dependent siphon in a well-initially-

marked net (N,M0). S is controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−D1.

The controllability condition stated in Corollary 3.10 is weaker than that in

Corollary 3.7. However, its usage requires the computation of D1 and D2 for all de-

pendent siphons, which is time-consuming since the number of dependent siphons

is exponential with respect to the size of a net. For practical purposes, we can first

use Corollary 3.7 to verify the controllability of a dependent siphon. If it is not

controlled due to Corollary 3.7, Corollary 3.10 can be then employed. Our experi-

mental studies show that most controlled dependent siphons satisfy the condition in

Corollary 3.7.

Example 3.5. It is easy to verify that in net (N2,M2) as shown in Fig. 3.3(b), I1 =
p5− p7− p8 + p9 + p12 + p13−VS1

and I2 =−p3 + p4 + p6− p7 + p13 + p14−VS2
are

P-invariants of N2. Clearly, S1 = {p5, p9, p12, p13} is invariant-controlled by I1 since

{p|I1(p) > 0}= S1 and IT
1 M2 = M2(S1)−M2(p7)−M2(p8)−M2(VS1

) = 2−1 > 0,

where M2 is an initial marking. Likewise, S2 is controlled by P-invariant I2. Now we

check the controllability of S3, a strongly dependent siphon with respect to S1 and

S2 with ηS3
= ηS1

+ηS2
.

By solving LPP, we have Mmin(S1) = Mmin(S2) = 1. Note that M2(S1) = 2,

M2(S2) = 2, M2(S3) = 3, and ∑2
i=1(M2(Si)−Mmin(Si)) = 2. Due to Corollary 3.9,

S3 is controlled.

Remark 3.1. Compared with Fig. 3.3(a), places VS1
and VS2

in Fig. 3.3(b) are used to

constrain the firing of transitions associated with siphons S1 and S2 respectively such

that Mmin(S1) = Mmin(S2) = 1, leading to the satisfaction of inequality M2(S3) >

∑2
i=1(M2(Si)−Mmin(Si)).
When designing a liveness-enforcing supervisor for a plant, emptiable minimal

siphons in the plant model can be divided into elementary and dependent ones. Then

we can make the elementary siphons properly controlled by using an active siphon

control method, e.g., adding extra places like VS1
and VS2

in Fig. 3.3(b). Therefore,

the dependent siphons can be implicitly controlled. In other words, if a plant Petri

net model contains emptiable siphons, it is possible for us to control only those

elementary ones. Since the number of elementary siphons is much smaller than

that of dependent siphons in most of large Petri nets, the concept of elementary

siphons can provide an effective way to prevent a large number of siphons from

being emptied by controlling only a small number of them.

3.5 Controllability of Dependent Siphons in Generalized Petri Nets 61

3.5 Controllability of Dependent Siphons in Generalized Petri

Nets

This section discusses the controllability of dependent siphons in a generalized Petri

net. Let (N,M0) be a net system and S be a siphon of N. As stated in Chap. 2, S is

said to be max-marked at a marking M iff ∃p ∈ S such that M(p) ≥ maxp• . It is

said to be max-controlled iff it is max-marked at any reachable marking. (N,M0)
satisfies the cs-property iff each minimal siphon of N is max-controlled [3].

The cs-property is an important concept in liveness-enforcement to a generalized

Petri net. A siphon satisfying the max-controlled property can be always marked

sufficiently to allow firing a transition at least once. In order to check and use the

cs-property, Barkaoui et al. [3] propose the conditions to determine whether a given

siphon is max-controlled as stated in Proposition 2.1.

Lemma 3.2. Let S be a siphon in net (N,M0) and M ∈ R(N,M0) be a marking. S is

max-marked under M if M(S) > ω(S), where ω(S) = ∑p∈S(maxp• −1).

Proof. Let S = {p1, p2, . . . , pn}. By contradiction, suppose that S is not max-

marked. This implies that ∀i ∈ Nn, M(pi) ≤ maxp•i −1. Therefore, we have

n

∑
i=1

M(pi) ≤
n

∑
i=1

(maxp•i −1),

i.e.,

M(S) ≤ ∑
p∈S

(maxp• −1),

which contradicts

M(S) > ∑
p∈S

(maxp• −1).

⊓⊔

This lemma plays an important role in developing the controllability condition

for dependent siphons in a generalized Petri net.

Example 3.6. The net shown in Fig. 3.4 is a generalized Petri net with three strict

minimal siphons S1 = {p3, p6, p9, p13, p14}, S2 = {p2, p5, p10, p12, p13}, and S3 =
{p3, p6, p10, p12-p14}. Thus, we have ω(S1) = 0, ω(S2) = 1, and ω(S3) = 1.

Without loss of generality, we assume that in a Petri net (N,M0), a strongly de-

pendent S satisfies ηS = ∑n
i=1 aiηSi

, ai > 0, i ∈Nn, and a weakly dependent siphon S

satisfies ηS = ∑n
i=1 aiηSi

−∑m
j=n+1 a jηS j

, ai > 0, i ∈ Nm. Concerning the controlla-

bility of a dependent siphon in generalized Petri nets, we have the following results.

62 3 Elementary Siphons of Petri Nets

p 3

p 1 1

p 1 2
p 1

p 7

p 1 0

p 8

p 9

p 6

p 5

p 4

p 2

p 1 4

p 1 3

p 1 5

t 1

t 9

t 1 2

 t 1 1

t 1 0

t 6

t 7

t 8

t 5

t 4

t 3

t 2

p 1 6

p 1 7

2

2

2

1 0 1 0

Fig. 3.4 A generalized Petri net (N,M0)

Theorem 3.8. A strongly dependent siphon S is max-controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−
n

∑
i=1

aiMmin(Si)+ω(S).

Proof. Due to

ηS =
n

∑
i=1

aiηSi
,

we have

λ T
S [N] =

n

∑
i=1

aiλ
T
Si

[N].

As a result,

(λS −
n

∑
i=1

aiλSi
)T [N] = 0T .

Let

I = λS −
n

∑
i=1

aiλSi
.

3.5 Controllability of Dependent Siphons in Generalized Petri Nets 63

I = 0 or I is a P-invariant of N. According to the proof of Theorem 3.7, this

theorem is true in the case of I = 0. Next we consider that I is a P-invariant of N.

∀M ∈ R(N,M0), IT M = IT M0. Therefore, we have

M0(S)−
n

∑
i=1

aiM0(Si) = M(S)−
n

∑
i=1

aiM(Si),

M(S) = M0(S)−
n

∑
i=1

aiM0(Si)+
n

∑
i=1

aiM(Si),

and

M(S) ≥ M0(S)−
n

∑
i=1

aiM0(Si)+
n

∑
i=1

aiMmin(Si).

Note that

M0(S) >
n

∑
i=1

aiM0(Si)−
n

∑
i=1

aiMmin(Si)+ω(S).

It implies the truth of

M0(S)−
n

∑
i=1

aiM0(Si)+
n

∑
i=1

aiMmin(Si) > ω(S).

Hence, M(S) > ω(S). By Lemma 3.2, S is max-marked under M. Therefore,

∀M ∈ R(N,M0), S is max-marked under M. In other words, S is max-controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−
n

∑
i=1

aiMmin(Si)+ω(S).

⊓⊔

Example 3.7. There are three strict minimal siphons in Fig. 3.4. It is easy to verify

that S3 is a strongly dependent siphon with ηS3
= ηS1

+ηS2
.

In Fig. 3.5, we have Mmin(S1) = Mmin(S2) = 2. Considering that M1(S1) = 5,

M1(S2) = 4, M1(S3) = 7, and ω(S3) = 1, M1(S3) > ∑2
i=1(M1(Si)− Mmin(Si)) +

ω(S3) holds. As a result, S3 is max-controlled in Fig. 3.5 due to the existence of

monitors VS1
and VS2

.

For the controllability of a weakly dependent siphon in a net system (N,M0), we

have the following results.

Theorem 3.9. A weakly dependent siphon S is max-controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j))+ω(S).

64 3 Elementary Siphons of Petri Nets

V S 2

t 1

t 9

t 1 1

t 6

t 2

2

2

2

V S 1
t 1

t 9

t 1 0

t 7

t 3

p 3

p 1 1

p 1 2
p 1

p 7

p 1 0

p 8

p 9

p 6

p 5

p 4

p 2

p 1 4

p 1 3

p 1 5

t 1

t 9

t 1 2

 t 1 1

t 1 0

t 6

t 7

t 8

t 5

t 4

t 3

t 2

p 1 6

p 1 7

2

2

2

1 0 1 0

Fig. 3.5 A max-controlled siphon in a generalized Petri net (N1,M1)

Proof. Since

ηS =
n

∑
i=1

aiηSi
−

m

∑
j=n+1

a jηS j
,

we have

λ T
S [N] =

n

∑
i=1

aiλ
T
Si

[N]−
m

∑
j=n+1

a jλ
T
S j

[N],

and

(λS −
n

∑
i=1

aiλSi
+

m

∑
j=n+1

a jλS j
)T [N] = 0T .

Let

I = λS −
n

∑
i=1

aiλSi
+

m

∑
j=n+1

a jλS j
.

We have that I = 0 or I is a P-invariant of N. According to the proof of Theorem

3.7, this theorem is true in the case of I = 0. Next we consider that I is a P-invariant

of N.

3.5 Controllability of Dependent Siphons in Generalized Petri Nets 65

∀M ∈ R(N,M0), IT M = IT M0. We have

M(S)−
n

∑
i=1

aiM(Si)+
m

∑
j=n+1

a jM(S j)

= M0(S)−
n

∑
i=1

aiM0(Si)+
m

∑
j=n+1

a jM0(S j). (3.8)

From (3.8), we have

M(S) = M0(S)−
n

∑
i=1

ai(M0(Si)−M(Si))+
m

∑
j=n+1

a j(M0(S j)−M(S j)). (3.9)

Clearly, the following inequality is true.

M(S)≥ M0(S)−
n

∑
i=1

ai(M0(Si)−Mmin(Si))+
m

∑
j=n+1

a j(M0(S j)−Mmax(S j)). (3.10)

From

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j))+ω(S),

we have

M0(S)−
n

∑
i=1

ai(M0(Si)−Mmin(Si))+
m

∑
j=n+1

a j(M0(S j)−Mmax(S j)) > ω(S). (3.11)

From (3.10) and (3.11), we have M(S) > ω(S) implying that S is max-marked

under M. Since M is any marking in R(N,M0), S is max-controlled. ⊓⊔

Corollary 3.13. A dependent siphon S in a well-initially-marked net (N,M0) is max-

controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))+ω(S).

Proof. It is trivial if S is strongly dependent. Let S be weakly dependent in (N,M0).
Due to Theorem 3.9, S is max-controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j))+ω(S).

66 3 Elementary Siphons of Petri Nets

By Definition 3.12, ∀S ∈ Π , Mmax(S) = M0(S). As a result,

m

∑
j=n+1

a j(M0(S j)−Mmax(S j)) = 0.

The controllability condition of a weakly dependent siphon coincides with that

of a strongly dependent one. ⊓⊔

Corollary 3.14. A strongly dependent siphon S is max-controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−
n

∑
i=1

aiM
min(Si)+ω(S).

Proof. Since Mmin(S) ≤ Mmin(S),

M0(S) >
n

∑
i=1

aiM0(Si)−
n

∑
i=1

aiM
min(Si)+ω(S)

⇒ M0(S) >
n

∑
i=1

aiM0(Si)−
n

∑
i=1

aiMmin(Si)+ω(S).

⊓⊔

Corollary 3.15. A weakly dependent siphon S is max-controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))−
m

∑
j=n+1

a j(M0(S j)−Mmax(S j))+ω(S).

Corollary 3.16. A dependent siphon S in a well-initially-marked net system is max-

controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))+ω(S).

From the above discussion, in order to verify the controllability of dependent

siphons, ∀i ∈ N|ΠE |, we need to compute Mmin(Si) and Mmax(Si) for Si. In the worst

case, we have to solve 2|ΠE | LPP, where |ΠE | is bounded by the structural size of a

net.

Recalling that

D1 = min{
n

∑
i=1

aiM(Si)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0}

3.5 Controllability of Dependent Siphons in Generalized Petri Nets 67

and

D2 = max{
m

∑
j=n+1

a jM(S j)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0},

we present a weaker condition under which a dependent siphon can be max-

controlled.

Corollary 3.17. A weakly dependent siphon S is max-controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−D1 −
m

∑
j=n+1

a jM0(S j)+D2 +ω(S).

Proof.

M0(S) >
n

∑
i=1

aiM0(Si)−D1 −
m

∑
j=n+1

a jM0(S j)+D2 +ω(S)

implies the truth of

M0(S)−
n

∑
i=1

aiM0(Si)+D1 +
m

∑
j=n+1

a jM0(S j)−D2 > ω(S). (3.12)

∀M ∈ R(N,M0), (3.4) leads to the truth of

M(S) = M0(S)−
n

∑
i=1

aiM0(Si)+
n

∑
i=1

aiM(Si)+
m

∑
j=n+1

a jM0(S j)−
m

∑
j=n+1

a jM(S j).

(3.13)

By the definitions of D1 and D2, ∀M ∈ R(N,M0), we have

D1 ≤
n

∑
i=1

aiM(Si)

and

D2 ≥
m

∑
j=n+1

a jM(S j).

As a result,

M(S) ≥ M0(S)−
n

∑
i=1

aiM0(Si)+D1 +
m

∑
j=n+1

a jM0(S j)−D2.

Considering (3.12), we have ∀M ∈ R(N,M0), M(S) > ω(S). S is hence max-

controlled. ⊓⊔

68 3 Elementary Siphons of Petri Nets

Corollary 3.18. A strongly dependent siphon S is max-controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−D1 +ω(S).

Corollary 3.19. A dependent siphon S in a well-initially-marked net (N,M0) is max-

controlled if

M0(S) >
n

∑
i=1

aiM0(Si)−D1 +ω(S).

A max-controlled siphon may satisfy Corollaries 3.17–3.19 but does not satisfy

Theorem 3.9 and its related corollaries. However, the computation of D1 (D2) for

all dependent siphons is expensive since in the worst case their number remains to

be exponential with respect to the size of a net.

Corollary 3.20. ω(S) = 0 if S is a minimal siphon in an ordinary net.

Proof. We claim that ∀p∈ S, maxp• = 1. To prove this, we need to show that ∀p∈ S,

p• �= /0. By contradiction, we suppose that ∃p ∈ S, p• = /0. Then ∀t ∈ •p, ∃p′ ∈ S,

t ∈ (p′)• since S is a siphon. As a result, we have •(S\{p}) ⊆ •S ⊆ S• = (S\{p})•.

S\{p} is a siphon as well, which contradicts the minimality of S. In other words,

∀p ∈ S, maxp• = 1 is true. Hence, we have ω(S) = 0. ⊓⊔

The controllability results of dependent siphons in an ordinary Petri net are given

by Theorem 3.7 and the corollaries induced from it. They can also be derived from

those in generalized nets by ω(S) = 0 if the considered siphon S is minimal.

3.6 An Elementary Siphon Identification Algorithm

According to the definition of elementary siphons, their set is generally not unique

in a given net structure unless its [η] is a row full-rank matrix. Our investigation

reveals that, in order to prevent deadlocks from occurring, it is crucial to choose a

proper set of elementary siphons in a net system. For deadlock control purposes,

an algorithm is presented in this section to determine elementary siphons within

the scope of a given set of siphons Π that is not necessarily the set of all minimal

siphons of a net. They are chosen such that the resulting dependent siphons can

be easily marked sufficiently. When choosing elementary siphons, we should try

to minimize the right sides of the controllability conditions such as those stated

in Theorems 3.7 and 3.9, and their related corollaries. As a result, the number of

tokens in an elementary siphon at an initial marking should be as small as possible.

We present an algorithm below to identify such a set of elementary siphons.

3.6 An Elementary Siphon Identification Algorithm 69

Let Π be a set of interesting minimal siphons in a Petri net (N,M0). Suppose that

Π has n sets of equivalent siphons 〈Sα
1 〉-〈Sα

n 〉. ∀i ∈ Nn, a token-poor siphon Si is

selected from 〈Sα
i 〉. Clearly, |ΠE | ≤ n and ΠE can be found from these n token-poor

siphons. Without loss of generality, let Π = {S1,S2, . . . ,Sn}. Note that the control-

lability of a token-poor siphon implies that of its equivalent siphons.

Algorithm 3.1 Identification of elementary siphons for deadlock control

Input: Π = {S1,S2, . . . ,Sn}
Output: ΠE , a set of elementary siphons

1: Find [η] from Π
2: Compute rank([η]), m := rank([η])
3: Compute the initial number in tokens of siphons in Π and get a marking se-

quence M0(S1),M0(S2), . . ., and M0(Sn)
4: By the merge sort algorithm, sort the marking sequence to be M0(Sk1

), M0(Sk2
),

. . ., and M0(Skn
) in an ascending order, where {k1,k2, . . . ,kn} = Nn

5: for j = 1 to n do

6: χ j := ηSk j

7: end for

8: ΠE := {Sk1
}

9: A := [χ1]
T

10: i := 2

11: while (m �= 1) do

12: for i = 2 to n do

13: AE := [AT |χi]
T

14: ΠE := ΠE ∪{S|ηS = χi}
15: while (rank(AE) �= m) do

16: if rank(AE)− rank(A) = 0 then

17: ΠE := ΠE \{S|ηS = χi}
18: i := i+1

19: else

20: A := AE

21: i := i+1

22: end if

23: end while

24: i := n+1

25: end for

26: end while

27: Output ΠE

We explain this algorithm as follows. If there is only one minimal siphon in Π ,

it is certainly elementary and this algorithm can terminate at once. Suppose that

at some step, rank(AE) < m since rank(AE) > m is impossible and rank(AE) = m

leads to the termination of this algorithm. We need to check the ranks of AE and

A. If rank(AE) = rank(A), then the siphon corresponding to χi is dependent on the

siphons in ΠE resulting from the last step, i.e., it cannot be put into ΠE and be-

come elementary. If rank(AE) �= rank(A), it indicates rank(AE) > rank(A) since

70 3 Elementary Siphons of Petri Nets

rank(AE) < rank(A) is impossible by matrix A’s construction in the algorithm. This

implies that the siphon corresponding to χi is elementary. This process is repeated

until rank(AE) = m. In this case, we assign i to be n+1 so that the algorithm termi-

nates at once.

Example 3.8. In Fig. 3.3(a), there are three strict minimal siphons S1, S2, and S3

with M1(S1) = M1(S2) = 2 and M1(S3) = 3. It is easy to find that m, the number

of elementary siphons, is two. Then, we have an ascending order sequence M1(S1),
M1(S2), and M1(S3). S1 is first put into ΠE . Next we process S2. Clearly, ηS2

is

linearly independent of the characteristic T -vector of the siphon in ΠE (ηS2
�= ηS1

).

As a result, S2 is put into ΠE . Now we have ΠE = {S1,S2}. Since |ΠE | = m = 2,

the algorithm terminates and outputs ΠE = {S1,S2}. It is certain that ηS3
is linearly

dependent on the characteristic T -vectors of the siphons in ΠE . Siphon S3 is in fact

a strongly dependent siphon with ηS3
= ηS1

+ηS2
.

Next we discuss its complexity. The complexity of the merge sort algorithm for

a sequence with n elements is O(n lgn). In addition, we have to compute the ranks

of matrices A and AE . However, as variable i indicates, the number of times of

computing rank(A) and rank(AE) is bounded by n. The number of rows (columns)

of A or AE is bounded by |P| (|T |). It is known that the complexity of computing the

rank of a k×m matrix is O(km2) based on the singular value decomposition method.

Thus, the complexity of the algorithm is O(2n|P||T |2 +n lgn), which is independent

of initial markings for a given net structure.

The development of this algorithm is motivated by the observation that differ-

ent sets of elementary siphons usually lead to liveness-enforcing supervisors with

different permissive behavior if elementary siphons are explicitly controlled only by

some particular deadlock prevention policies in the literature. The algorithm outputs

such a set of elementary siphons that the resultant supervisors have more permissive

behavior.

To informally illustrate this, we take the controllability of a strongly dependent

siphon as an example. Let S be a strongly dependent siphon with ηS = ∑n
i=1 aiηSi

in an ordinary Petri net (N,M0). It is shown that S is controlled if M0(S) >

∑n
i=1 ai(M0(Si)−Mmin(Si)). Note that a larger Mmin(Si) results in more restrictive

behavior. As a result, to easily guarantee the inequality for the controllability of

siphon S, we want, for all i ∈ Nn, M0(Si) to be as small as possible. Otherwise, we

have to enlarge Mmin(Si).
For the net in Fig. 3.3(a), its initial marking is M1 = 5p1 + 3p10 + p11 + p12 +

p13 + p14 + p15. By the proposed elementary siphon identification algorithm, we

have ΠE = {S1,S2}. Using the siphon control approach proposed in [11] to control

elementary siphons only, we can have a liveness-enforcing supervisor that allows the

controlled system to have 28 permissive reachable states, as shown in Fig. 3.3(b). If

S1 and S3 (S2 and S3) are selected to be elementary siphons, the controlled system

has 28 (28) reachable states as well.

However, for the same net structure (depicted in Fig. 3.3(a)) with initial mark-

ing M1 = 6p1 + 4p10 + p11 + p12 + 2p13 + p14 + p15, the algorithm outputs ΠE =
{S1,S2} as the set of elementary siphons, which leads to a controlled system that has

3.7 Existence of Dependent Siphons 71

110 reachable states. If S1 and S3 (S2 and S3) are selected to be elementary siphons,

controlled system has 96 (96) reachable states only.

3.7 Existence of Dependent Siphons

This section focuses on the existence of dependent siphons within Π of a Petri net

from the algebraic point of view. Note that Π is not necessarily the set of all minimal

siphons of a Petri net N.

Theorem 3.10. There is no dependent siphon in Π if [η] derived from Π is a row

full-rank matrix.

Proof. This is trivial since all siphons are elementary ones in this case. ⊓⊔

The next result presents a necessary condition for the existence of a set of ele-

mentary siphons such that all other siphons are strongly dependent in Π .

Without loss of generality, suppose that Π = {S1, S2, . . ., Sn} and [η] = [η1|η2| · · ·
|ηn]

T , where ∀i, j ∈ Nn, ηi �= η j. Let m = rank([η]), K = {ηi|ηi cannot be linearly

represented by the other vectors in [η] with non-negative coefficients only}, k =
|K|, and r be the rank of the matrix consisting of all vectors in K.

Theorem 3.11. If there is a set of elementary siphons such that all other siphons in

Π are strongly dependent on them, then k = m = r.

Proof. Suppose that [η] has the following form, where ηα , ηβ , . . ., and ηγ corre-

spond to the set of elementary siphons {Sα ,Sβ , . . . ,Sγ}.

[η] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ηT
α

ηT
β
...

ηT
γ

ηT
u

ηT
v
...

ηT
w

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

All other siphons corresponding to ηu, ηv, . . ., and ηw are strongly depen-

dent ones. Clearly, we have {α,β , . . . ,γ} ∩ {u,v, . . . ,w} = /0 and {α,β , . . . ,γ} ∪
{u,v, . . . ,w} = Nn.

By the definition of strongly dependent siphons, ∀i ∈ {u,v, . . . ,w}, we have

ηi = ∑ j∈{α,β ,...,γ} a jη j, where a j ≥ 0. This implies two facts: (1) rank([η]) depends

on ηα , ηβ , . . ., and ηγ only; and (2) ∀η ∈ {ηα ,ηβ , . . . ,ηγ}, η cannot be linearly

represented by ηu, ηv, . . ., and ηw with non-negative coefficients only (note that in

[η] = [η1|η2| · · · |ηn]
T , ∀i �= j,ηi �= η j).

72 3 Elementary Siphons of Petri Nets

Since {Sα ,Sβ , . . . ,Sγ} is a set of elementary siphons, ηα , ηβ , . . ., and ηγ are

linearly independent. That is to say, ∀η ∈ {ηα ,ηβ , . . . ,ηγ}, η cannot be linearly

represented by the vectors in {ηα ,ηβ , . . . ,ηγ}\{η}, not to speak of using non-

negative coefficients. In conclusion, each of ηα , ηβ , . . ., and ηγ cannot be lin-

early represented by other vectors in [η] with non-negative coefficients. This implies

K = {ηα ,ηβ , . . . ,ηγ} and |{α,β , . . . ,γ}| = k. Since ηα , ηβ , . . ., and ηγ are linearly

independent, we have k = r.

As known, ∀i ∈ Nn\{α , β , . . ., γ}, ηi can be linearly represented by ηα , ηβ , . . .,
and ηγ with non-negative coefficients. Therefore, m equals the rank of the matrix

consisting of ηα , ηβ , . . ., and ηγ . Note that ηα , ηβ , . . . and ηγ are linearly indepen-

dent. We have m = |{α,β , . . . ,γ}| = k. Considering k = r, we have k = m = r.

⊓⊔

Example 3.9. For the net in Fig. 3.3(a), we have ηS3
= ηS1

+ηS2
implying that there

is no weakly dependent siphon if S1 and S2 are chosen to be elementary siphons.

ηS1
cannot be linearly represented by the two others with non-negative coefficients

only. Neither can ηS2
. Therefore, k = 2. Since ηS1

�= ηS2
and rank([η]) = 2, we have

k = m = r = 2.

Corollary 3.21. If k �= m, there is no such a set of elementary siphons that all other

siphons are strongly dependent.

Consider a case where there are four siphons S1 − S4 in a net with ηS1
+

ηS2
=ηS3

+ ηS4
. Clearly, we have k = 4 since ∀i ∈ {1,2,3,4}, ηSi

cannot be repre-

sented by others with non-negative coefficients. However, m = 3 since ηS1
, ηS2

, ηS3
,

and ηS4
are linearly dependent. That is to say, there must exist a weakly dependent

siphon whatever siphons are chosen to be elementary ones.

A natural question is to ask whether ηi can be linearly represented by η1, η2,

. . ., ηi−1, ηi+1, . . ., and ηn with non-negative coefficients. This can be answered by

solving the following LPP, where X is an (n−1)-dimensional vector:

maximize 0T X (3.14)

s.t.

[η i]X = ηT
i

X ≥0

where [η i] = [η1|η2| · · · |ηi−1|ηi+1| · · · |ηn]. Note that if n vectors η1, η2, . . ., and ηn

are linearly dependent, solution X = 0 is impossible. As a result, problem (3.14)

has either a feasible solution or none. The reason to maximize 0T X in the above

problem is just to find the feasible solution when it exists.

Based on the above results, an intuitively sufficient condition under which there

exists a set of elementary siphons such that all others are strongly dependent can be

derived.

Suppose that [η] = [η1|η2| · · · |ηn]
T is known. Find K = {η |η cannot be linearly

represented by other vectors in [η] with non-negative coefficients} by using LPP

(3.14). Let K′ = {η1,η2, . . . ,ηn}\K. As stated previously, k = |K|, m = rank([η]),
and r be the rank of the matrix consisting of all vectors in K. Check whether every

3.8 Bibliographical Remarks 73

vector in K′ can be linearly represented by vectors in K with non-negative coeffi-

cients. If this is true and k = m = r, we can conclude that the siphons corresponding

to the vectors in K form the set of elementary siphons such that all other ones are

strongly dependent. Certainly, if |K| = m and the vectors in K are linearly indepen-

dent, by Definition 3.7, {S|ηS ∈ K} is a set of elementary siphons. Hence, we have

the following result.

Corollary 3.22. If k = m = r and every vector in K′ = {η1,η2, . . . ,ηn} \K can be

linearly represented by those in K with non-negative coefficients, then {S|ηS ∈ K}
is the set of elementary siphons such that all other siphons are strongly dependent.

3.8 Bibliographical Remarks

The material of this chapter consists mainly of results of elementary and depen-

dent siphons in ordinary and generalized Petri nets. Most of them can be found

in [20–23]. The concept of elementary and dependent siphons is due to [21]. For a

class of Petri nets called LS3PR (linear system of simple sequential processes with

resources), an algorithm with polynomial complexity is developed in [29] to find the

number of elementary siphons without the complete siphon enumeration. By using

the concepts of handles and bridges [10], Chao proposes some novel methods to

compute a set of elementary siphons for S3PR [5, 8] and BS3PR [7].

Problems

3.1. It is shown in the literature that the max-controllability of siphons in a general-

ized Petri net is too conservative [6]. Discuss the possibility to relax the conditions

in the cs-property. This relaxation can be significant even in some subclasses of Petri

nets.

3.2. Suppose that in a Petri net there exists a set of elementary siphons such that

all others are strongly dependent. Develop an algorithm that identifies such a set

of elementary siphons. Trivially, there are at most n!/(m!(n−m)!) different sets of

elementary siphons, where n = |Π | and m = |ΠE |. They can be checked one by one.

Discuss the existence of other efficient algorithms to find such a set of elementary

siphons.

3.3. Develop an algorithm to find a set of elementary siphons that minimize the

number of resultant weakly dependent siphons in a Petri net. Then, discuss its time

complexity provided that all siphons are known.

74 3 Elementary Siphons of Petri Nets

References

1. Abdallah, I.B., ElMaraghy, H.A. (1998) Deadlock prevention and avoidance in FMS: A Petri

net based approach. International Journal of Advanced Manufacturing Technology, vol.14,

no.10, pp.704–715.

2. Banaszak, Z., Krogh, B.H. (1990) Deadlock avoidance in flexible manufacturing systems

with concurrently competing process flows. IEEE Transactions on Robotics and Automation,

vol.6, no.6, pp.724–734.

3. Barkaoui, K., Pradat-Peyre, J.F. (1996) On liveness and controlled siphons in Petri nets. In

Proc. 17th Int. Conf. on Applications and Theory of Petri Nets Lecture Notes in Computer

Science, vol.1091, pp.57–72.

4. Barkaoui, K., Chaoui, A., Zouari, B. (1997) Supervisory control of discrete event systems

based on structure theory of Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cyber-

netics, pp.3750–3755.

5. Chao, D.Y. (2006) Computation of elementary siphons for deadlock control. The Computer

Journal, vol.49, no.4, pp.470–479.

6. Chao, D.Y. (2007) Max′-controlled siphons for liveness of S3PGR2. IET Control Theory and

Applications, vol.1, no.4, pp.933–936.

7. Chao, D.Y. (2007) A graphic-algebraic computation of elementary siphons of BS3PR. Journal

of Information Science and Engineering, vol.23 no.6, pp.1817–1831.

8. Chao, D.Y. (2007) Incremental approach to computation of elementary siphons for arbitrary

S3PR. IET Control Theory and Applications, vol.2, no.2, pp.168–179.

9. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical

programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.

10. Esparza, J., Silva, M. (1990) Circuits, handles, bridges, and nets. In Advances in Petri Nets

1990, Lecture Notes in Computer Science, vol.483, G. Rozenberg (Ed.), pp.210–242.

11. Ezpeleta, J, Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy

for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11,

no.2, pp.173–184.

12. Ezpeleta, J., Garcı́a-Vallés, F., Colom, J.M. (1998) A class of well structured Petri nets for

flexible manufacturing systems. In Proc. 19th Int. Conf. on Applications and Theory of Petri

Nets, Lecture Notes in Computer Science, vol.1420, J. Desel and M. Silva (Eds.), pp.64–83.

13. Ezpeleta, J., Tricas, F., Garcı́a-Vallés, F., Colom, J.M. (2002) A banker’s solution for dead-

lock avoidance in FMS with flexible routing and multiresource states. IEEE Transactions on

Robotics and Automaton, vol.18. no.4, pp.621–625.

14. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L. (2001) A deadlock prevention policy for

flexible manufacturing systems using siphons. In Proc. IEEE Int. Conf. on Robotics and Au-

tomation, pp.541–546.

15. Iordache, M.V., Moody, J.O., Antsaklis, P.J. (2002) Synthesis of deadlock prevention supervi-

sors using Petri nets. IEEE Transactions on Robotics and Automation, vol.18, no.1, pp.59–68.

16. Jeng, M.D., Xie, X.L. (1999) Analysis of modularly composed nets by siphons. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part A, vol.29, no.4, pp.399–406.

17. Jeng, M.D., Xie, X.L., Peng, M.Y. (2002) Process nets with resources for manufacturing

modeling and their analysis. IEEE Transactions on Robotics and Automation, vol.18, no.6,

pp.875–889.

18. Jeng, M.D., Xie, X.L., Chung, S.L. (2004) ERCN* merged nets for modeling degraded be-

havior and parallel processes in semiconductor manufacturing systems. IEEE Transactions

on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.102–112.

19. Lautenbach, K., Ridder, H. (1996) The linear algebra of deadlock avoidance–a Petri net

approach. No.25-1996, Technical Report, Institute of Software Technology, University of

Koblenz-Landau, Koblenz, Germany.

20. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to dead-

lock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.34, no.1, pp.38–51.

References 75

21. Li, Z.W., Zhou, M.C. (2006) Clarifications on the definitions of elementary siphons of Petri

nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.36, no.6, pp.1227–

1229.

22. Li, Z.W., Zhao, M. (2008) On controllability of dependent siphons for deadlock prevention in

generalized Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.38,

no.2, pp.369–384.

23. Li, Z.W., Zhou, M.C. (2008) Control of elementary and dependent siphons of Petri nets and

their application. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.38, no.1,

pp.133–148.

24. Park, J., Reveliotis, S.A. (2000) Algebraic synthesis of efficient deadlock avoidance policies

for sequential resource allocation systems. IEEE Transactions on Robotics and Automation,

vol.16, no.2, pp.190–195.

25. Park, J., Reveliotis, S.A. (2001) Deadlock avoidance in sequential resource allocation systems

with multiple resource acquisitions and flexible routings. IEEE Transactions on Automatic

Control, vol.46, no.10, pp.1572–1583.

26. Schrijver, A. (1998) Theory of Linear and Integer Programming. New York: John Wiley &

Sons.

27. Tricas, F., Martinez, J. (1995) An extension of the liveness theory for concurrent sequential

processes competing for shared resources. In Proc. IEEE Int. Conf. on Systems, Man, and

Cybernetics, pp.3035–3040.

28. Tricas, F., Garcı́a-Vallès, F., Colom, J.M., Ezpeleta, J. (2000) An iterative method for dead-

lock prevention in FMSs. In Proc. 5th Workshop on Discrete Event Systems, R. Boel and G.

Stremersch (Eds.), pp.139–148.

29. Wang, A.R., Li, Z.W., Jia, J.Y., Zhou, M.C. (2009) An effective algorithm to find elemen-

tary siphons in a class of Petri nets. To appear in IEEE Transactions on Systems, Man, and

Cybernetics, Part A.

30. Winston, W.L., Venkataramanan, M. (2002) Introduction to Mathematical Programming. Bel-

mont CA: Duxbury Resource Center.

31. Xie, X.L., Jeng, M.D. (1999) ERCN-merged nets and their analysis using siphons. IEEE

Transactions on Robotics and Automation, vol.15, no.4, pp.692–703.

32. Yamalidou, E., Moody, J.O., Antsaklis, P.J. (1996) Feedback control of Petri nets based on

place invariants. Automatica, vol.32, no.1, pp.15–28.

33. Zouari, B., Barkaoui, K. (2003) Parameterized supervisor synthesis for a modular class of

discrete event systems. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.1874–

1879.

Chapter 4

Monitor Implementation of GMECs

Abstract This chapter first presents a method to handle a class of important supervi-

sory control specifications in discrete-event systems, generalized mutual exclusion

constraints, which is considered to be a natural extension to elementary siphons.

A set of generalized mutual exclusion constraints is divided into elementary and

dependent ones. The latter can be implicitly enforced by explicitly enforcing their

elementary constraints via properly setting the control depth variables of the former.

It is shown that this method usually leads to a structurally simple Petri net supervisor

given a set of constraints. Then, it is applied to the design of a liveness-enforcing

(Petri net) supervisor for a generalized Petri net that can model a large class of

automated manufacturing systems. Finally, an elementary constraint identification

algorithm is discussed.

4.1 Introduction

This chapter considers the problem of forbidden-state specifications that can be rep-

resented by generalized mutual exclusion constraints (GMECs). A GMEC is de-

fined as a condition that limits a weighted sum of tokens contained in a subset

of places [9, 10, 30, 37] and includes both sequential and parallel mutual exclu-

sions [46,47]. Many constraints that deal with exclusions between states and events

can be transformed into GMECs [27].

As one of the most common types of control specifications, GMECs have been

used in the optimal control of chemical processes [44], coordination of AGVs [30],

specifications of manufacturing constraints [37], batch processing [42], and supervi-

sory control of railway networks [11]. They are also important for the representation

of deadlock prevention and liveness specifications [14, 18, 40, 41].

The enforcement of a GMEC is usually done by adding to a plant model a con-

troller that takes the form of a single place called a monitor with arcs going to and

coming from the plant transitions [1–5, 9, 30, 37, 38, 45]. The monitor synthesis is

shown to be maximally permissive and very efficient from the computational point

77

78 4 Monitor Implementation of GMECs

of view if all transitions in a plant model are assumed to be controllable, i.e., each

transition can be prevented from firing by an external control agent. In the case that a

conjunction of GMECs has to be imposed, a monitor for each GMEC is needed [9].

If a GMEC is imposed to a plant in presence of uncontrollable transitions [3], the

GMEC has to be transformed into another constraint. The monitor derived from the

new constraint may still yield a maximally permissive supervisor. Under some con-

ditions, the maximally permissive control law is a disjunction of GMECs [31–33].

The control specification stated as a disjunction of GMECs is considered by Basile

et al. in [3]. The more complicated and hybrid control specifications consisting of

GMECs and Parikh vectors are considered in [27, 37, 38] when there exist uncon-

trollable and unobservable transitions in a plant.

The complexity of enforcing a GMEC to a plant with uncontrollable transitions

is enhanced. To enforce it to such a plant, we may need to prevent it from reach-

ing a superset of the forbidden markings. The superset contains all those markings

from which a forbidden state may be reached by firing a sequence of uncontrollable

transitions.

Although GMECs have been extensively investigated in the literature, insuffi-

cient attention has been focused on a systematic approach that can minimize the

number of additional monitors for a given set of GMECs. It is usually taken for

granted that the number of monitors is propositional to the number of GMECs that

are to be enforced. Motivated by the concept of elementary siphons [34, 35], the

constraints in a set of GMECs are divided into elementary and dependent ones. This

chapter explores the conditions under which a dependent constraint can be implic-

itly imposed by properly imposing its elementary constraints to the plant. This can

often lead to a structurally simple Petri net supervisor. It is also useful in simplify-

ing the structure of the liveness-enforcing (Petri net) supervisors resulting from an

efficient deadlock prevention policy in which liveness requirements are represented

as a set of GMECs [40].

The seminal work in this area is by Giua et al. [9, 10], where the concepts of

redundancy, equivalence, and simplification of GMECs are proposed, which can be

decided by solving LPPs. What is presented in this chapter aims to generalize and

extend the related results in the literature. Specifically, conditions are developed

under which a dependent constraint is implicitly enforced.

4.2 Generalized Mutual Exclusion Constraints

The following results are mainly from [9] and [37].

Definition 4.1. Let (N,M0) be a net system with place set P. A GMEC in N is

defined as a set of legal markings M (l,b) = {M ∈ N|P||lT M ≤ b}, where l is a

non-negative P-vector and b ∈ N is called the constraint constant.

The markings in N|P| that are not in M (l,b) are called forbidden markings with

respect to constraint (l,b). In a GMEC (l,b) with l = a1 p1 +a2 p2 + · · ·+an pn, it is

4.3 Elementary and Dependent Constraints 79

denoted by (l,b) ≡ a1M(p1)+ a2M(p2)+ · · ·+ anM(pn) ≤ b, where ∀i ∈ Nn, ai is

a positive integer.

Example 4.1. (l,b) is a GMEC in Petri net (N,M0) with l = (2 0 3 1 0)T and b = 4.

The GMEC can be denoted by 2M(p1)+3M(p3)+M(p4) ≤ 4.

Definition 4.2. A set of GMECs (L,B) with L = [l1|l2| · · · |lm] and B =(b1,b2, . . . ,bm)
defines a set of legal markings M (L,B) = {M ∈ N|P||LT M ≤ B} = ∩m

i=1M (li,bi).

Definition 4.3. A GMEC (l,b) is redundant with respect to a set of marking M ⊆
N|P| if M ⊆ M (l,b). It is redundant with respect to a net (N,M0) if R(N,M0) ⊆
M (l,b). A set of GMEC is redundant with respect to (N,M0) if each constraint is

redundant with respect to it.

Proposition 4.1. A GMEC (l,b) is redundant with respect to (N,M0) if the following

LPP has an optimal solution x∗ < b+1:

x = max lT M

s.t.

M = M0 +[N]Y
M,Y ≥ 0.

Definition 4.4. Two sets of GMECs (L1,B1) and (L2,B2) are equivalent with respect

to (N,M0) if R(N,M0)∩M (L1,B1) = R(N,M0)∩M (L2,B2).

The equivalence of two sets of GMECs can be verified by the same approach em-

ployed to check redundancy. It hence follows that (L1,B1) and (L2,B2) are equiv-

alent with respect to (N,M0) if (L1,B1) is redundant with respect to R(N,M0)∩
M (L2,B2) and (L2,B2) is redundant with respect to R(N,M0)∩M (L1,B1).

Example 4.2. Consider the Petri net (N,M0) and its reachability graph as shown

in Fig. 4.1a and Fig. 4.1b, respectively. Let (l1,b1) and (l2,b2) be two GMECs

with (l1,b1)≡ M(p2) ≤ 2 and (l2,b2)≡ M(p2)+M(p3) ≤ 2 and M = {p1 +2p4 +
2p5, p2 + p4 +2p5, p3 +2p4 + p5} be a set of markings. It can be verified that both

(l1,b1) and (l2,b2) are redundant with respect to M . Furthermore, they are also

redundant with respect to the net (N,M0) in Fig. 4.1(a).

4.3 Elementary and Dependent Constraints

In this section, elementary and dependent constraints in a set of GMECs are defined

according to their linear dependency of the characteristic T -vectors.

Definition 4.5. li is called the characteristic P-vector of constraint (li,bi) in LT M ≤
B.

Definition 4.6. ηi = [N]T li is called the characteristic T -vector of (li,bi) in LT M ≤
B.

80 4 Monitor Implementation of GMECs

p 4

p 1

p 3

p 2

p 5

t 1

t 3

t 2

(a)

M 0 = p 1 + 2 p 4 + 2 p 5

M 1 = p 2 + p 4 + 2 p 5

M 2 = p 3 + 2 p 4 + p 5

t 3

t 2

t 1

(b)

Fig. 4.1 (a) A Petri net (N,M0) and (b) its reachability graph R(N,M0)

Example 4.3. (l1,b1)≡M(p1)+M(p7)≤ 6, (l2,b2)≡M(p2)+M(p6)≤ 6, (l3,b3)≡
M(p3)+M(p5)+M(p6)≤ 7, (l4,b4)≡M(p2)+M(p4)+M(p7)≤ 10, and (l5,b5)≡
M(p3)+M(p5)+M(p6)+M(p7)≤ 14 are a set of GMECs that are enforced to the

plant shown in Fig. 4.2. We have η1 = −t1 + t4, η2 = t2 − t3, η3 = t1 − t2 + t4,

η4 = −2t1 + t2 −3t3 + t4, and η5 = −t3 +2t4.

p 1

p 5

p 4

t 3

t 2

t 1

t 4

p 6 p 7

p 3

p 2

Fig. 4.2 A Petri net

Definition 4.7. Let (L,B) be a set of GMECs with n constraints. [η] = [η1|η2| · · · |ηn]
T

is called the characteristic T -vector matrix of the set of GMECs.

4.3 Elementary and Dependent Constraints 81

Example 4.4. For the set of GMECs enforced to the plant shown in Fig. 4.2 in Ex-

ample 4.3, its characteristic T -vector matrix is

[η] =

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 0 1

0 1 −1 0

1 −1 0 1

−2 1 −3 1

0 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎠

.

Definition 4.8. Let ηα , ηβ , . . ., and ηγ ({α,β , . . . ,γ} ⊆ Nn) be a linearly indepen-

dent maximal set of matrix [η]. Then LE = {(lα ,bα),(lβ ,bβ), . . . ,(lγ ,bγ)} is called

a set of elementary constraints in (L,B).

Definition 4.9. (l,b) �∈ LE is called a strongly dependent constraint if η = ∑(li,bi)∈LE

aiηi, where ai ≥ 0.

Definition 4.10. (l,b) �∈ LE is called a weakly dependent constraint if there ex-

ist non-empty sets L1, L2 ⊂ LE such that L1 ∩ L2 = /0 and η = ∑(li,bi)∈L1 aiηi −
∑(l j ,b j)∈L2 a jη j, where ai,a j > 0.

If (l,b) is a strongly dependent constraint with respect to l1 − ln, i.e., η =

∑n
i=1 aiηi, (l1,b1) − (ln,bn) are called the elementary constraints of (l,b). Simi-

larly, (l′,b′) ∈ L1 ∪L2 is called an elementary constraint of (l,b) if (l,b) is weakly

dependent.

Let (L,B) be a set of GMECs that are enforced to a Petri net (N,M0) with N =
(P,T,F,W). Concerning the number of elementary constraints in (L,B), we have the

following important results.

Theorem 4.1. |LE | is equal to rank([η]), where rank([η]) is the rank of [η].

Proof. It follows immediately from the definition of elementary constraints. ⊓⊔

Theorem 4.2. |LE | ≤ min{|P|, |T |}.

Proof. Since [η] = LT [N], we have rank([η])≤min{rank(L),rank([N])}. It implies

that rank([η]) ≤ rank([N]). Hence |LE | ≤ min{|P|, |T |} is true. ⊓⊔

This result indicates that the number of elementary constraints in a set of GMECs

that are enforced to a Petri net is bounded by the smaller of its place and transition

counts.

Example 4.5. In Example 4.3, the five GMECs enforced to the Petri net shown in

Fig. 4.2 lead to η5 = η1 +η2 +η3. It is easy to verify rank([η]) = 4, indicating that

there are four elementary and one dependent constraints. If LE = {(l1,b1), (l2,b2),
(l3,b3), (l4,b4)} is selected as elementary constraints, (l5,b5) is strongly dependent.

If LE = {(l1,b1),(l2,b2), (l4,b4), (l5,b5)} is selected, (l3,b3) is weakly dependent.

82 4 Monitor Implementation of GMECs

4.4 Implicit Enforcement of Dependent Constraints

This section focuses on the conditions under which a dependent constraint is im-

plicitly enforced by properly enforcing its elementary constraints. First a method

from [9] that enforces a GMEC by adding a monitor is reviewed.

Let (l,b) be a GMEC enforced to a plant (N,M0) with N = (P,T,F,W) such that

M0 satisfies the constraint (l,b), i.e., lT M0 ≤ b.

Definition 4.11. Let (NS,MS
0) be the resultant net with the addition of monitor V

such that [NS](V, ·) = −lT [N], ∀p ∈ P, MS
0 (p) = M0(p), and MS

0 (V) = b− lT M0.

Proposition 4.2. Monitor V implements constraint (l,b), i.e., ∀M ∈ R(NS, MS
0),

lT M ≤ b, and minimally restricts the behavior of (NS,MS
0) in the sense that it pre-

vents only transition firings that yield forbidden markings.

Example 4.6. Suppose that V1 is the monitor that enforces (l1,b1) ≡ M(p1) +
M(p7) ≤ 6 to the Petri net shown in Fig. 4.2. We have

[N](V1, ·) = −lT
1 [N] = −

(

1 0 0 0 0 0 1
)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −1 1 0

−1 0 −1 1

−1 −1 0 1

0 0 −1 −1

1 −1 0 1

1 1 0 −1

−1 1 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

1 0 0 −1
)

and MS
0 (V1) = b1− lT

1 M0 = 6−4 = 2, as shown in Fig. 4.3. Similarly, we can derive

the following monitors V2 − V5:

[NS](V2, ·) = −t2 + t3,

[NS](V3, ·) = −t1 + t2 − t4,

[NS](V4, ·) = 2t1 − t2 +3t3 − t4,

[NS](V5, ·) = t3 −2t4,

MS
0 (V2) = b2 − lT

2 M0 = 2,

MS
0 (V3) = b3 − lT

3 M0 = 2,

MS
0 (V4) = b4 − lT

4 M0 = 4,

MS
0 (V5) = b5 − lT

5 M0 = 6.

According to Proposition 4.2, they implement all the constraints and minimally

restrict the net behavior.

Next a parameterized constraint enforcement approach is proposed, which plays

an important role in the development of the condition under which a dependent

constraint is implicitly enforced.

Proposition 4.3. Given a constraint (l,b), the incidence vector of its monitor [NS](V, ·)
is defined in Definition 4.11. ∀M ∈ R(NS,MS

0), lT M ≤ b if MS
0 (V) = b− lT M0 −ξ ,

where 0 ≤ ξ ≤ b− lT M0.

4.4 Implicit Enforcement of Dependent Constraints 83

p 1

p 5

p 4

t 3

t 2

t 1

t 4

p 6 p 7

p 3

p 2

V 1

t 1 t 4

t 3

t 2

V 2

V 3
t 1

t 2 t 4

V 4

V 5

t 2 t 3

t 1

t 4

t 3 t 4

6

4

2

3

2

Fig. 4.3 A controlled system (NS,MS
0)

Proof. Since 0 ≤ ξ ≤ b− lT M0, ∀M ∈ R(N,M0), lT M ≤ b−ξ ≤ b. That is to say,

any reachable marking in (NS,MS
0) satisfies the constraint (l,b). ⊓⊔

Similarly to the control depth variable of a siphon in [34], ξ is called the control

depth variable of a constraint (l,b). For (l1,b1) ≡ M(p1)+ M(p7) ≤ 6 in Fig. 4.2,

ξ1 = 1 means that MS
0 (V1) = 1.

Let (l,b) be a GMEC to (N,M0). We define

Ml
max = max{lT M|M ∈ R(N,M0)} (4.1)

and

Ml
min = min{lT M|M ∈ R(N,M0)}. (4.2)

Example 4.7. The Petri net shown in Fig. 4.2 has 11 reachable states. For (l1,b1),

(l2,b2), and (l3,b3), it is easy to find that M
l1
max = 5, M

l1
min = 3, M

l2
max = 5, M

l2
min = 3,

M
l3
max = 8, and M

l3
min = 4.

Theorem 4.3. Let (l,b) be a strongly dependent constraint with η = ∑n
i=1 aiηi and

l �= ∑n
i=1 aili. (l,b) is redundant with respect to (N,M0) if

lT M0 −
n

∑
i=1

ail
T
i M0 +

n

∑
i=1

aiM
li
max ≤ b.

84 4 Monitor Implementation of GMECs

Proof. Since

η =
n

∑
i=1

aiηi,

we have

lT [N] =
n

∑
i=1

ail
T
i [N].

It is easy to see that

(l −
n

∑
i=1

aili)
T [N] = 0T .

Since l �= ∑n
i=1 aili, we conclude that

l −
n

∑
i=1

aili

is a P-invariant of N.

This implies that ∀M ∈ R(N,M0),

(l −
n

∑
i=1

aili)
T M = (l −

n

∑
i=1

aili)
T M0. (4.3)

From (4.3), we have

lT M = lT M0 −
n

∑
i=1

ail
T
i M0 +

n

∑
i=1

ail
T
i M (4.4)

and

lT M ≤ lT M0 −
n

∑
i=1

ail
T
i M0 +

n

∑
i=1

aiM
li
max.

Clearly, lT M ≤ b is true if

lT M0 −
n

∑
i=1

ail
T
i M0 +

n

∑
i=1

aiM
li
max ≤ b. (4.5)

⊓⊔
Example 4.8. As stated previously, (l5,b5) ≡ M(p3)+ M(p5)+ M(p6)+ M(p7) ≤
14 in Fig. 4.2 is a strongly dependent constraint with respect to (l1,b1), (l2,b2), and

(l3,b3) with η5 = η1 +η2 +η3. We have

lT
5 M0 = M0(p3)+M0(p5)+M0(p6)+M0(p7) = 8,

lT
1 M0 = M0(p1)+M0(p7) = 4,

lT
2 M0 = M0(p2)+M0(p6) = 4,

4.4 Implicit Enforcement of Dependent Constraints 85

lT
3 M0 = M0(p3)+M0(p5)+M0(p6) = 5,

M
l1
max = 5,

M
l2
max = 5,

M
l3
max = 8.

Considering b5 = 14, we have lT
5 M0 − ∑3

i=1 ail
T
i M0 + ∑3

i=1 aiM
li
max < b5. As a

result, (l5,b5) ≡ M(p3)+ M(p5)+ M(p6)+ M(p7) ≤ 14 is redundant with respect

to the Petri net in Fig. 4.2.

Theorem 4.4. Let (l,b) be a strongly dependent constraint with η = ∑n
i=1 aiηi and

l = ∑n
i=1 aili in a Petri net (N,M0). (l,b) is redundant with respect to (N,M0) if

n

∑
i=1

aibi ≤ b.

Proof. ∀M ∈ R(N,M0), we have lT M = ∑n
i=1 ail

T
i M ≤ ∑n

i=1 aibi ≤ b. This result is

true. ⊓⊔
Example 4.9. Suppose that there is a set of GMECs (l1,b1) ≡ M(p2) ≤ 2, (l2,b2) ≡
M(p3) ≤ 1, and (l3,b3) ≡ 2M(p2) + M(p3) ≤ 10 for the Petri net shown in Fig.

4.4(a). Their corresponding monitors are shown in Fig. 4.4(b). The fact l3 = 2l1 + l2
can be verified. Clearly, we have 2b1 + b2 < b3 and thus conclude that (l3,b3) is

redundant.

p 1

p 2

t 2

t 1

p 3

t 3

5

 (b)

1 0

2

V 1

V 3

V 2

p 1

p 2

t 2

t 1

p 3

t 3

5

 (a)

Fig. 4.4 (a) a plant (N,M0) and (b) the controlled system (NS,MS
0)

Theorem 4.5. Let (l,b) be a weakly dependent GMEC with η = ∑n
i=1 aiηi−∑m

j=1 a jη j

and l �= ∑n
i=1 aili − ∑m

j=1 a jl j in a plant (N,M0). It is redundant with respect to

(N,M0) if

lT M0 −
n

∑
i=1

ail
T
i M0 +

m

∑
j=1

a jl
T
j M0 +

n

∑
i=1

aiM
li
max −

m

∑
j=1

a jM
l j

min ≤ b.

86 4 Monitor Implementation of GMECs

Proof. Since

η =
n

∑
i=1

aiηi −
m

∑
j=1

a jη j (4.6)

we have

(l −
n

∑
i=1

aili +
m

∑
j=1

a jl j)
T [N] = 0T , (4.7)

indicating that

l −
n

∑
i=1

aili +
m

∑
j=1

a jl j

is a P-invariant of N.

As a result, ∀M ∈ R(N,M0),

lT M0 −
n

∑
i=1

ail
T
i M0 +

m

∑
j=1

a jl
T
j M0 = lT M−

n

∑
i=1

ail
T
i M +

m

∑
j=1

a jl
T
j M,

i.e.,

lT M = lT M0 −
n

∑
i=1

ail
T
i M0 +

m

∑
j=1

a jl
T
j M0 +

n

∑
i=1

ail
T
i M−

m

∑
j=1

a jl
T
j M.

It is easy to see that

lT M ≤ lT M0 −
n

∑
i=1

ail
T
i M0 +

m

∑
j=1

a jl
T
j M0 +

n

∑
i=1

aiM
li
max −

m

∑
j=1

a jM
l j

min.

Hence, lT M ≤ b can be obtained from

lT M0 −
n

∑
i=1

ail
T
i M0 +

m

∑
j=1

a jl
T
j M0 +

n

∑
i=1

aiM
li
max −

m

∑
j=1

a jM
l j

min ≤ b.

⊓⊔

Theorem 4.6. Let (l,b) be a weakly dependent GMEC with η = ∑n
i=1 aiηi− ∑m

j=1

a jη j and l = ∑n
i=1 aili −∑m

j=1 a jl j. It is redundant with respect to (N,M0) if

n

∑
i=1

aibi −
m

∑
j=1

a jb j ≤ b.

4.4 Implicit Enforcement of Dependent Constraints 87

Proof. Similar to the proof of Theorem 4.4. ⊓⊔

Note that in [9], the redundancy of a GMEC such as (l3,b3)≡ 2M(p2)+M(p3)≤
10 in Example 4.9 can be verified by solving an LPP, as stated in Proposition 4.1.

It is clear that the computational complexity of Theorem 4.3 to decide the redun-

dancy of a dependent constraint is worse than Proposition 4.1 since the complete

state enumeration is needed in Theorem 4.3. However, it is shown next that the re-

dundancy of all dependent GMECs can be determined by solving 2|LE | LPPs only,

where |LE | ≤ min{|P|, |T |}.

Let (l,b) be a GMEC in a Petri net (N,M0). We define

Ml
MAX = max{lT M|M = M0 +[N]Y,M ≥ 0,Y ≥ 0} (4.8)

and

Ml
MIN = min{lT M|M = M0 +[N]Y,M ≥ 0,Y ≥ 0}. (4.9)

Clearly, we have

Ml
MAX ≥ Ml

max (4.10)

and

Ml
MIN ≤ Ml

min (4.11)

It is trivial that (4.8) and (4.9) can be found in polynomial time by solving LPPs.

In Fig. 4.2, it is easy to find that M
l1
MAX = 5, M

l2
MAX = 5, M

l3
MAX = 8, M

l1
MIN = 3,

M
l2
MIN = 3, and M

l3
MIN = 4.

Corollary 4.1. Let (l,b) be a strongly dependent constraint with η = ∑n
i=1 aiηi and

l �= ∑n
i=1 aili in (N,M0). (l,b) is redundant with respect to (N,M0) if

lT M0 −
n

∑
i=1

ail
T
i M0 +

n

∑
i=1

aiM
li
MAX ≤ b.

Proof. It follows immediately from Theorem 4.3 and (4.10). ⊓⊔

Corollary 4.2. Let (l,b) be a weakly dependent GMEC in Petri net (N,M0) with

η = ∑n
i=1 aiηi−∑m

j=1 a jη j and l �= ∑n
i=1 aili−∑m

j=1 a jl j. It is redundant with respect

to (N,M0) if

lT M0 −
n

∑
i=1

ail
T
i M0 +

m

∑
j=1

a jl
T
j M0 +

n

∑
i=1

aiM
li
MAX −

m

∑
j=1

a jM
l j

MIN ≤ b.

Corollaries 4.1 and 4.2 indicate that the redundancy of (weakly and strongly)

dependent constraints can be decided provided that M
li
MAX and M

li
MIN are known,

88 4 Monitor Implementation of GMECs

where i ∈ N|LE |. That is to say, due to the two corollaries, the redundancy of de-

pendent constraints can be decided by solving 2|LE | LPPs no matter how many

dependent constraints in a set of GMECs. However, as stated in Proposition 4.1, the

verification of the redundancy of each GMEC needs to solve an LPP.

A parameterized approach is next presented for a dependent constraint (l,b) with

η = ∑n
i=1 aiηi that can be implicitly enforced to a plant (N,M0) by properly setting

the control depth variables of its elementary constraints. The implicit enforcement

of (l,b) implies that it is redundant with respect to the augmented net with additional

monitors (NS,MS
0).

Theorem 4.7. Let (l,b) be a strongly dependent constraint of Petri net (N,M0) with

η = ∑n
i=1 aiηi and l �= ∑n

i=1 aili. ∀i ∈ Nn, (li,bi) is enforced by adding a monitor

Vi with its control depth variable ξi, as stated in Proposition 4.3. Then, (l,b) is

implicitly enforced to (N,M0) if

n

∑
i=1

aiξi ≥ (lT M0 −b)+
n

∑
i=1

ai(bi − lT
i M0).

Proof. According to Theorem 4.3, (l,b) is implicitly enforced if

lT M0 −
n

∑
i=1

ail
T
i M0 +

n

∑
i=1

aiM
li
max ≤ b.

By Proposition 4.3, ∀i ∈ Nn, if a monitor Vi is added such that (li,bi) is enforced

with MS
0 (Vi) = bi− lT

i M0−ξi, we have M
li
max = bi−ξi. As a result, (l,b) is implicitly

enforced if

lT M0 −
n

∑
i=1

ail
T
i M0 +

n

∑
i=1

ai(bi −ξi) ≤ b,

i.e.,

n

∑
i=1

aiξi ≥ (lT M0 −b)+
n

∑
i=1

ai(bi − lT
i M0).

⊓⊔

Example 4.10. Suppose that (l5,b5) ≡ M(p3) + M(p5) + M(p6) + M(p7) ≤ 9 is a

GMEC in Fig. 4.2. As is known, η5 = η1 +η2 +η3. It is not redundant with respect

to its elementary constraints (l1,b1), (l2,b2), and (l3,b3). However, it can be made

redundant if setting the control depth variables by ∑3
i=1 ξi ≥ (lT

5 M0 − b5) + (b1 −
lT
1 M0)+(b2− lT

2 M0)+(b3− lT
3 M0), where b5 = 9, lT

5 M0 = 8, b1 = 6, b2 = 6, b3 = 7,

lT
1 M0 = 4, lT

2 M0 = 4, and lT
3 M0 = 5. That is to say, (l5,b5) ≡ M(p3) + M(p5) +

M(p6)+M(p7)≤ 9 is redundant if ∑3
i=1 ξi ≥ (8−9)+(6−4)+(6−4)+(7−5) =

5. Specifically, let ξ1 = ξ2 = 2 and ξ3 = 1. (l5,b5) ≡ M(p3) + M(p5) + M(p6) +
M(p7) ≤ 9 is redundant if (l1,b1), (l2,b2), and (l3,b3) are enforced by monitors V1,

4.4 Implicit Enforcement of Dependent Constraints 89

V2, and V3 with MS
0 (V1) = b1 − ξ1 − lT

1 M0 = 0, MS
0 (V2) = b2 − ξ2 − lT

2 M0 = 0, and

MS
0 (V3) = b3 −ξ3 − lT

3 M0 = 1.

Theorem 4.8. Let (l,b) be a strongly dependent constraint of Petri net (N,M0) with

η = ∑n
i=1 aiηi and l = ∑n

i=1 aili, where ηi = [N]T li. ∀i ∈ Nn, (li,bi) is enforced by

adding a monitor Vi with its control depth variable ξi, as stated in Proposition 4.3.

(l,b) is implicitly enforced if

n

∑
i=1

ai(bi −ξi) ≤ b.

Proof. It follows from Theorem 4.4 and Proposition 4.3. ⊓⊔

Theorem 4.9. Let (l,b) be a weakly dependent constraint in a Petri net (N,M0) with

η = ∑n
i=1 aiηi −∑m

j=1 a jη j and l �= ∑n
i=1 aili −∑m

j=1 a jl j. ∀i ∈ Nn, (li,bi) is enforced

by adding a monitor Vi with control depth variable ξi according to Proposition 4.3.

(l,b) is implicitly enforced to (N,M0) if

n

∑
i=1

aiξi ≥ (lT M0 −b)+
n

∑
i=1

ai(bi − lT
i M0)+

m

∑
j=1

a jl
T
j M0.

Proof. Due to Theorem 4.5, (l,b) is implicitly enforced if

lT M0 −
n

∑
i=1

ail
T
i M0 +

m

∑
j=1

a jl
T
j M0 +

n

∑
i=1

aiM
li
max −

m

∑
j=1

a jM
l j

min ≤ b. (4.12)

From Proposition 4.3, we have M
li
max = bi −ξi and M

l j

min ≥ 0. As a result,

lT M0 −
n

∑
i=1

ail
T
i M0 +

m

∑
j=1

a jl
T
j M0 +

n

∑
i=1

ai(bi −ξi) ≤ b (4.13)

implies the truth of (4.12).

From (4.13), we have

n

∑
i=1

aiξi ≥ (lT M0 −b)+
n

∑
i=1

ai(bi − lT
i M0)+

m

∑
j=1

a jl
T
j M0.

⊓⊔

Theorem 4.10. Let (l,b) be a weakly dependent constraint to a Petri net (N,M0)
with η = ∑n

i=1 aiηi − ∑m
j=1 a jη j and l = ∑n

i=1 aili − ∑m
j=1 a jl j. ∀i ∈ Nn, (li,bi) is

enforced by adding a monitor Vi with control depth variable ξi according to Propo-

sition 4.3. It is implicitly enforced to (N,M0) if

n

∑
i=1

ai(bi −ξi)−
m

∑
j=1

a jb j ≤ b.

90 4 Monitor Implementation of GMECs

4.5 Application to Deadlock Prevention

This section presents the application of the methods presented in this chapter to a

deadlock prevention policy developed by Park and Reveliotis in [40]. It is shown

that these methods may reduce the structural complexity of the liveness-enforcing

supervisor for a class of Petri nets, S3PGR2. It stands for system of simple sequential

processes with general resource requirements. As stated in Chap. 1, an S3PGR2 is

equivalent to an S4R. For simplicity, we use S4R to denote the class of Petri nets in

the rest of this book.

Definition 4.12. A well-marked S4R net is a marked Petri net N = (P,T,F,W) with

initial marking M0 such that:

1. P = PA ∪P0 ∪PR, where PA = ∪n
j=1PA j

is called the set of operation places such

that PAi
∩PA j

= /0, ∀i �= j, P0 = ∪n
i=1{p0

i } is called the set of idle places with

P0 ∩PA = /0, and PR = {r1,r2, · · · ,rm} is called the set of resource places such

that (P0 ∪PA)∩PR = /0.

2. T = ∪n
j=1Tj, and ∀i �= j, Ti ∩Tj = /0.

3. W = WA ∪WR, where WA : ((PA ∪P0)×T)∪ (T × (PA ∪P0)) → {0,1} such that

∀ j �= i, ((PA j
∪{p0

j})×Ti)∪(Ti×(PA j
∪{p0

j}))→{0}, and WR : (PR×T)∪(T ×
PR) → N.

4. ∀ j ∈ Nn, the subnet N j derived from PA j
∪{p0

j}∪Tj is a strongly connected state

machine such that every circuit contains p0
j .

5. ∀r ∈PR, there exists a unique P-semiflow Ir such that ||Ir||∩PR = {r}, ||Ir||∩P0 =
/0, ||Ir||∩PA �= /0, and Ir(r) = 1. Furthermore, PA = (∪r∈PR

||Ir||)\PR.

6. N is pure and strongly connected.

7. ∀p ∈ PA, M0(p) = 0; ∀r ∈ PR, M0(r) ≥ maxp∈||Ir ||Ir(p); and ∀p0
j ∈ P0, M0(p0

j) ≥
1.

From its definition, an S4R is equivalent to an S4PR. The following result about

the rank of the incidence matrix of an S4R is from [43].

Theorem 4.11. Let N = (PA ∪P0 ∪PR,T,F,W) be an S4R. Then, rank([N]) = |PA|.

For an S4R, Park and Reveliotis [40] develop a deadlock prevention policy that is

of polynomial complexity. The liveness requirements in an S4R are represented by

a set of GMECs that can be implemented by a set of monitors. The policy considers

a system that is formally defined by a set of resources R = {ri|i ∈ Nm} and a set

of jobs J = {J j| j ∈ Nn}. Each resource type ri has a capacity Ci ∈ N+. Each job

type J j is defined by a set of operations {p jk|k ∈ Nλ j
,λ j ∈ N+}, which is partially

ordered through a set of precedence constraints. Each job operation p jk is associated

with a conjunctive resource allocation requirement, formally expressed by an m-

dimensional vector ap jk
, with ap jk

[i], i ∈ Nm, indicating how many units of resource

ri are required to support the operation execution. Such a system can be modeled by

a class of Petri nets, namely S4R, that is more general than S3PR [8]. Let (N,M0)

4.5 Application to Deadlock Prevention 91

denote an S4R, where N = (P0 ∪PA ∪PR,T,F,W) and P0 (PA; PR) is the set of idle

(operation; resource) places.

Let P0 = {p10, p11}, PA = {p1, p2, p3, p4, p5, p6}, and PR = {r1, r2, r3}. The

Petri net shown in Fig. 4.5 is an S4R that is the model of an FMS that can produce

two job types J1 and J2 with J1 = {p1, p2, p3} and J2 = {p4, p5, p6}. There are

three resources r1, r2, and r3 in the system. Furthermore, we have C1 = 3, C2 = 2,

and C3 = 1. An operation place that has no subsequent processing stage is called a

terminal operation. For example, p3 and p6 are terminal operation places.

p 1

 p 3

p 6

 p 4

p 5 p 2

r1

p 1 1

p 1 0

r3

r2

t 1
t 8

t 7

t 6

t 5 t 4

t 3

t 2 3

2

2

2

Fig. 4.5 An S4R (N,M0)

Note that each resource place r corresponds to a minimal P-semiflow Ir. As a

result, we have three minimal P-semiflows that are associated with resources. They

are

Ir1
= r1 + p1 +3p2 + p6,

Ir2
= r2 + p2 +2p5 +2p6,

Ir3
= r3 + p3 + p4.

A minimal P-semiflow Ir associated with the resource place r shows the opera-

tion places whose execution requires resource r and how many units of resource r

are needed to support the operation execution. Hence, the conjunctive resource re-

quirements of operations can be easily obtained as follows: ap1
= (1,0,0)T , ap2

=
(3,1,0)T , ap3

= (0,0,1)T , ap4
= (0,0,1)T , ap5

= (0,2,0)T , and ap6
= (1,2,0)T .

Let oi ≡ O(ri), O : R → Nm be any partial order imposed on the resource set R.

Given p ∈ PA, let ρmax
p = max{oi|ap[i] > 0, i ∈ Nm} and ρmin

p = min{oi|ap[i] > 0, i ∈
Nm}. Also, let Lp = {q|q ∈ (p•)•∩PA∧ρmax

q = minv∈(p•)•∩PA
ρmax

v }. By convention,

Lp = /0 if (p•)•∩P0 �= /0. Then:

1. The neighborhood set Np of p ∈ PA is defined by Np = {p}∪{q|q ∈ ∪v∈LpNv ∧
ρmin

p ≤ ρmax
q }.

92 4 Monitor Implementation of GMECs

2. The adjusted resource allocation requirement âp for p ∈ PA under partial order

O() (resource ordering) is given by âp[i] = max{aq[i]|q ∈ Np} if oi ≥ ρmin
p ; oth-

erwise âp[i] = 0, ∀i ∈ Nm.

3. The policy-imposed constraint on the system operation is expressed by the re-

quirement that no resource is over-allocated with respect to the adjusted opera-

tion requirements specified by âp[i].

Consider the net shown in Fig. 4.5 under the resource order o1 = 2, o2 = 3, and

o3 = 1. Note that different resource orderings may lead to different sets of GMECs

[39]. The neighborhood sets associated with the operation places p ∈ PA can be

computed starting from the terminal operation places in the partially ordered sets

that correspond to the job types in the system, and proceeding backward. For job

type J1, we have

• ρmax
p3

= 1, ρmin
p3

= 1, Lp3
= /0 by (p•3)

•∩P0 �= /0, and Np3
= {p3};

• ρmax
p2

= 3, ρmin
p2

= 2, Lp2
= {p3}, Np2

= {p2};

• ρmax
p1

= 2, ρmin
p1

= 2, Lp1
= {p2}, and Np1

= {p1, p2}.

For job type J2, we have

• ρmax
p6

= 3, ρmin
p6

= 2, Lp6
= /0 by (p•6)

•∩P0 �= /0, and Np6
= {p6};

• ρmax
p5

= 3, ρmin
p5

= 3, Lp5
= {p6}, and Np5

= {p5, p6};

• ρmax
p4

= 1, ρmin
p4

= 1, Lp4
= {p5}, and Np4

= {p4, p5, p6}.

The adjusted resource allocation requirements can be found as follows:

âp1
=

⎛

⎝

3

1

0

⎞

⎠, âp2
=

⎛

⎝

3

1

0

⎞

⎠, âp3
=

⎛

⎝

0

0

1

⎞

⎠, âp4
=

⎛

⎝

1

2

1

⎞

⎠, âp5
=

⎛

⎝

0

2

0

⎞

⎠, âp6
=

⎛

⎝

1

2

0

⎞

⎠.

By imposing on the operation places a set of linear inequality constraints that are

implemented by monitors, the supervised system has no deadlock states, implying

that liveness is ensured. The set of inequality constraints takes the form of

Âp ·MP ≤ fp (4.14)

where the column vector in Âp corresponding to an operation place p is âp, vector

MP is the restriction of marking M to operation places, and fp is the capacity vector

of resources, i.e., fp(i) = Ci, i ∈ N|R|.
For the net shown in Fig. 4.5, we have

⎛

⎝

3 3 0 1 0 1

1 1 0 2 2 2

0 0 1 1 0 0

⎞

⎠ ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M(p1)
M(p2)
M(p3)
M(p4)
M(p5)
M(p6)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≤

⎛

⎝

3

2

1

⎞

⎠ .

4.5 Application to Deadlock Prevention 93

By extending Âp and MP, the liveness control requirements stated in (4.14) can

be described as

Â ·M ≤ fp (4.15)

where Â is derived from Âp by adding zero column vectors that correspond to idle

and resource places and M is any marking in R(N,M0). It is easy to see that (4.15)

is a typical set of GMECs (Â, fp).
For the net in Fig. 4.5, its liveness requirement represented by Â ·M ≤ fp takes

the following specific form, where we assume that the places are ordered in the

incidence matrix according to the sequence 〈p1, p2, p3, p4, p5, p6, p10, p11, r1, r2,

r3〉. Figure 4.6 shows the controlled system of the S4R in Fig. 4.5.

⎛

⎝

3 3 0 1 0 1 0 0 0 0 0

1 1 0 2 2 2 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

⎞

⎠ ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M(p1)
M(p2)
M(p3)
M(p4)
M(p5)
M(p6)
M(p10)
M(p11)
M(r1)
M(r2)
M(r3)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≤

⎛

⎝

3

2

1

⎞

⎠ .

If we can distinguish redundant constraints imposed on the plant, a structurally

simple liveness-enforcing supervisor may be found. To demonstrate this, a flexi-

ble manufacturing example is investigated. Its liveness-enforcing supervisor is first

computed by the deadlock prevention policy in [40]. Then, we show how a simpler

supervisor is synthesized.

Example 4.11. Figure 4.7 is the Petri net model of an FMS. It consists of nine re-

source places R1−R9, two idle places p1 and p6, and seven operation places p2−p5

and p7−p9. The Petri net is an S4R that contains two processes with operation sets

P1 = {p2, p3, p4, p5} and P2 = {p7, p8, p9}. The resource capacity vector is fp = (1

1 1 3 4 1 3 3 2)T . The conjunctive resource requirements of operations are

ap2
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0

0

0

1

0

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ap3
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

1

0

0

1

0

1

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ap4
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

0

1

0

1

1

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ap5
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

1

0

0

0

1

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

94 4 Monitor Implementation of GMECs

p 1

 p 3

p 6

 p 4

p 5 p 2

r1

p 1 1

p 1 0

r3

r2

t 1 t 8

t 7

t 6

t 5 t 4

t 3

t 2
3

2

2

2

V 1
t 1

t 3

t 8

t 7

t 6

t 5 3

3

V 2 t 1 t 8

t 5 t 3

2

2

t 3

t 4 t 5

t 6 V 3

Fig. 4.6 The controlled system of the S4R in Fig. 4.5

ap7
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

1

1

0

0

0

0

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ap8
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

1

0

0

0

0

0

1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ap9
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0

0

0

0

0

0

1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Under the resource order o1 = 1, o2 = 1, o3 = 1, o4 = 3, o5 = 4, o6 = 1, o7 = 3,

o8 = 3, and o9 = 3, we have

âp2
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

1

1

1

1

1

1

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, âp3
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

1

1

1

1

1

1

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, âp4
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

0

1

0

1

1

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, âp5
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

1

0

0

0

1

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

4.5 Application to Deadlock Prevention 95

âp7
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

1

1

1

0

0

0

1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, âp8
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

1

0

0

0

0

0

1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, âp9
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0

0

0

0

0

0

1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

t 1

t 2

t 3

t 4

t 5

t 6

p 1

p 2

p 3

p 4
p 5

R 5

R 6

t 1 0

t 9

p 9

p 8

t 8

p 7

t 7

p 6

R 8

R 9

R 1

R 2

R 3

R 4

R 7

4 5

4

Fig. 4.7 The Petri net model (N,M0) of an FMS

From Âp = [âp2
|âp3

|âp4
|âp5

|âp7
|âp8

|âp9
], the liveness control specifications are

represented by a set of GMECs, i.e., Â ·M ≤ fp, or,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

·M ≤

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

1

1

3

4

1

3

3

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

96 4 Monitor Implementation of GMECs

The monitors that implement the above set of GMECs are shown in Table 4.1.

For each resource, a monitor is added, i.e., there are a total of nine monitors due to

the deadlock prevention policy in [40] for the Petri net model.

Table 4.1 Monitors added using the policy in [40]

VS MS
0 (·) Preset Postset VS MS

0 (·) Preset Postset

V1 1 t2, t10 t1, t7 V2 1 t3, t5, t9 t1, t7
V3 1 t3, t6, t8 t1, t7 V4 3 t4, t5, t8 t1, t7
V5 4 t3, t5 t1 V6 1 t4, t5 t1
V7 3 t4, t6 t1 V8 3 t10 t7
V9 2 t9 t7

Notice that there are seven operation places. According to Theorem 4.11, the

rank of the incidence matrix of the Petri net model is seven. As a result, there are at

most seven elementary constraints in the set of GMECs. To facilitate the discussion,

the set of GMECs is rewritten as follows:

(l1,b1) ≡ M(p2)+M(p7)+M(p8)+M(p9) ≤ 1,

(l2,b2) ≡ M(p2)+M(p3)+M(p7)+M(p8) ≤ 1,

(l3,b3) ≡ M(p2)+M(p3)+M(p5)+M(p7) ≤ 1,

(l4,b4) ≡ M(p2)+M(p3)+M(p4)+M(p7) ≤ 3,

(l5,b5) ≡ M(p2)+M(p3) ≤ 4,

(l6,b6) ≡ M(p2)+M(p3)+M(p4) ≤ 1,

(l7,b7) ≡ M(p2)+M(p3)+M(p4)+M(p5) ≤ 3,

(l8,b8) ≡ M(p7)+M(p8)+M(p9) ≤ 3,

(l9,b9) ≡ M(p7)+M(p8) ≤ 2.

Accordingly, we have

[η] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 0 0 0 0 1 0 0 −1

1 0 −1 0 −1 0 1 0 −1 0

1 0 −1 0 0 −1 1 −1 0 0

1 0 0 −1 −1 0 1 −1 0 0

1 0 −1 0 −1 0 0 0 0 0

1 0 0 −1 −1 0 0 0 0 0

1 0 0 −1 0 −1 0 0 0 0

0 0 0 0 0 0 1 0 0 −1

0 0 0 0 0 0 1 0 −1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The rank of [η] is seven, implying that there are seven elementary and two de-

pendent constraints. Let LE = {(l1,b1), (l2,b2), (l3,b3), (l4,b4), (l6,b6), (l8,b8),
(l9,b9)}. We have η5 = η2 − η9, and η7 = −η2 + η3 − η4 + 2η6 + η9. Next we

check the redundancy of the dependent constraints.

By solving LPP, we have

M
l1
MAX = 3,

M
l2
MAX = 3,

4.5 Application to Deadlock Prevention 97

M
l3
MAX = 3,

M
l4
MAX = 4,

M
l6
MAX = 3,

M
l8
MAX = 3,

M
l9
MAX = 2,

∀i ∈ {1,2, . . . ,9}, M
li
MIN = 0.

For (l5,b5) with η5 = η2 −η9, by Corollary 4.2 we need to verify that

lT
5 M0 − lT

2 M0 + lT
9 M0 +M

l2
MAX −M

l9
MIN ≤ b5.

Since lT
5 M0 = lT

2 M0 = lT
9 M0 = M

l9
MIN = 0, M

l2
MAX = 3, and b5 = 4, we conclude

that (l5,b5) is redundant and V5 can be removed from the supervisor of the FMS.

For (l7,b7) with η7 = −η2 + η3 −η4 + 2η6 + η9, by Corollary 4.2 we need to

verify that

lT
7 M0 + lT

2 M0 − lT
3 M0 + lT

4 M0 −2lT
6 M0 − lT

9 M0 +M
l3
MAX

+ 2M
l6
MAX +M

l9
MAX −M

l2
MIN −M

l4
MIN ≤ b7.

Since lT
7 M0 = lT

2 M0 = lT
3 M0 = lT

4 M0 = lT
6 M0 = lT

9 M0 = M
l2
MIN = M

l4
MIN = 0,

M
l3
MAX = M

l6
MAX = 3, M

l9
MAX = 2, and b7 = 3, we conclude that (l7,b7) is not re-

dundant and V7 cannot be removed.

In summary, a simplified supervisor (NS,MS
0) with monitors V1, V2, V3, V4, V6, V7,

V8, and V9 can be obtained. By Proposition 4.1, it can also be verified that (l2,b2),
(l4,b4), (l7,b7), (l8,b8), and (l9,b9) are redundant with respect to (NS,MS

0).
Although the structurally simplified liveness-enforcing supervisor contains the

monitors that implement the elementary constraints whose characteristic T -vectors

are linearly independent, and only one monitor that implements the dependent con-

straint, there may still exist implicit monitors whose removal does not change the

behavior of the supervised system or the monitors whose removal keeps the liveness

of the supervised system but with more resultant permissive behavior. This can be

demonstrated by the same manufacturing example. By solving the following LPP:

x2 = max{lT
2 M}

s.t.

M = MS′
0 +[NS′]Y,M,Y ≥ 0

we have x∗2 = 1, where NS′ is the net resulting from removing V2 and related arcs

from NS and MS′
0 is the initial marking of NS′. Thus, we claim that (l2,b2) is redun-

dant due to x∗2 < b2 +1.

In fact, it is easy to verify that monitors V3 and V6 can also be removed by using

MIP-based deadlock detection method [6]. Their removal can lead to a more per-

missive supervisor. Note that the removal of V3 and V6 is legal for the purpose of

98 4 Monitor Implementation of GMECs

deadlock controls, i.e., the resultant system remains live. However, the removal of

monitors by the MIP-based method may violate the GMECs represented by (4.15).

Specifically, the supervisor with monitors V1, V3, and V6 has 11 reachable states

and the one only with V1 has 24 reachable states.

4.6 Some Further Results About S4R Nets

S4R represents an important subclass of Petri nets that can model a large class of

FMSs. In this section, the redundancy decision conditions of a dependent constraint

in an S4R stated by Corollaries 4.1 and 4.2 and their related results can be simplified

by the fact that its operation places are unmarked at the initial marking. In what

follows, (N,M0) is used to represent an S4R where there is no confusion.

Corollary 4.3. Let (l,b) be a strongly dependent constraint with η = ∑n
i=1 aiηi and

l �= ∑n
i=1 aili in (N,M0). (l,b) is redundant if

n

∑
i=1

aiM
li
MAX ≤ b.

Proof. By Corollary 4.1, this follows from the fact that (∪n
i=1||li||)∪(||l||)⊆ PA and

∀p ∈ PA, M0(p) = 0. ⊓⊔

Corollary 4.4. Let (l,b) be a weakly dependent constraint in (N,M0) with η =

∑n
i=1 aiηi −∑m

j=1 a jη j and l �= ∑n
i=1 aili −∑m

j=1 a jl j . It is redundant if

n

∑
i=1

aiM
li
MAX ≤ b.

Proof. From Corollary 4.2, it is redundant if

lT M0 −
n

∑
i=1

ail
T
i M0 +

m

∑
j=1

a jl
T
j M0 +

n

∑
i=1

aiM
li
MAX −

m

∑
j=1

a jM
l j

MIN ≤ b.

According to the definition of an S4R, ∀p ∈ PA, M0(p) = 0. We have lT M0 =

∑n
i=1 ail

T
i M0 = ∑m

j=1 a jl
T
j M0 = ∑m

j=1 a jM
l j

MIN = 0. Hence, this result is true. ⊓⊔

This result indicates that in an S4R the redundancy of a weakly dependent

constraint has nothing to do with ∑m
j=1 a jη j. Consequently, if (l,b) is (weakly or

strongly) dependent, its redundancy depends on (l1,b1), (l2,b2), . . ., and (ln,bn)
only. Furthermore, we have the following results.

Corollary 4.5. Let (l,b) be a strongly dependent constraint in (N,M0) with η =

∑n
i=1 aiηi and l �= ∑n

i=1 aili. (l,b) is redundant if

4.6 Some Further Results About S4R Nets 99

n

∑
i=1

aiM
li
max ≤ b.

Proof. It is true by Theorem 4.3 since ∀p ∈ ||l||∪ (∪n
i=1||li||), M0(p) = 0. ⊓⊔

Corollary 4.6. Let (l,b) be a weakly dependent constraint in (N,M0) with η =

∑n
i=1 aiηi −∑m

j=1 a jη j and l �= ∑n
i=1 aili −∑m

j=1 a jη j. (l,b) is redundant if

n

∑
i=1

aiM
li
max ≤ b.

Corollary 4.7. Let (l,b) be a strongly dependent constraint in (N,M0) with η =

∑n
i=1 aiηi and l �= ∑n

i=1 aili. ∀i ∈ Nn, monitor Vi is added to enforce (li,bi). (l,b) is

implicitly enforced if

n

∑
i=1

aibi ≤ b.

Proof. After Vi is added, (li,bi) is hence enforced. The resultant net with these mon-

itors V1 − Vn is denoted by (NS,MS
0). This indicates the truth of bi ≥ M

li
max, where

M
li
max = max{lT

i M|M ∈ R(NS,MS
0)}. ∑n

i=1 aibi ≤ b implies ∑n
i=1 aiM

li
max ≤ b. ⊓⊔

Corollary 4.8. Let (l,b) be a weakly dependent constraint in (N,M0) with η =

∑n
i=1 aiηi −∑m

j=1 a jη j and l �= ∑n
i=1 aili −∑m

j=1 a jl j. ∀i ∈ Nn, monitor Vi is added

such that (li,bi) is enforced. (l,b) is implicitly enforced if

n

∑
i=1

aibi ≤ b.

Proof. It follows immediately from Corollary 4.6. ⊓⊔
Example 4.12. For the FMS example in Fig. 4.7, (l5,b5) is weakly dependent with

η5 = η2−η9. Suppose that V2 is added to enforce (l2,b2). Then, (l5,b5) is implicitly

enforced since b2 < b5. Furthermore, (l7,b7) is weakly dependent with η7 =−η2 +
η3 −η4 +2η6 +η9. Suppose that V3, V6 and V9 are added to enforce (l3,b3), (l6,b6)
and (l9,b9), respectively. However, (l7,b7) is not implicitly enforced since b3 +
2b6 +b9 > b7.

In summary, for a set of GMECs to be enforced to (N,M0) for deadlock control

purpose by the policy in [40], the redundancy of a dependent constraint can be sim-

ply determined by the truth of an inequality. From the computational point of view,

the methodology proposed in this section is much more efficient. Next a parameter-

ized and more general result concerning the redundancy of a dependent constraint

is shown.

100 4 Monitor Implementation of GMECs

Theorem 4.12. Let (l,b) be a weakly or strongly dependent constraint in (N,M0).
It is redundant if

n

∑
i=1

aiξi ≥
n

∑
i=1

aibi −b.

Proof. It follows from Corollaries 4.5, 4.6–4.8. ⊓⊔

This result indicates that a dependent constraint can be made redundant by prop-

erly setting the control depth variables of elementary constraints even if ∑n
i=1 aibi ≤

b is not true.

Let (L,B) be a set of GMECs in (N,M0), (li,bi), i ∈ Nn, be elementary con-

straints, and (l j,b j), j ∈ {n+1,n+2, . . . ,m}, be dependent constraints. The control

depth variables of the elementary constraints can be decided by solving the follow-

ing LPP once monitors V1 − Vn are explicitly added:

min
n

∑
i=1

ξi

s.t.

n

∑
i=1

aiξi ≥
n

∑
i=1

aibi −b j,ai ≥ 0, j = n+1,n+2, . . . ,m.

0 ≤ ξi ≤ bi.

The existence of an optimal solution indicates that a set of GMECs can be en-

forced by using a set of monitors that are explicitly added for elementary constraints

whose number is bounded by the smaller of place and transition counts.

Example 4.13. For the FMS example in Fig. 4.7, the control depth variables of the

elementary constraints can be decided by solving the following LPP:

min x = ξ1 +ξ2 +ξ3 +ξ4 +ξ6 +ξ8 +ξ9

s.t.

ξ2 ≥ b2 −b5 = −3,

ξ3 +2ξ6 +ξ9 ≥ b3 +2b6 +b9 −b7 = 2,

0 ≤ ξ1 ≤ b1, 0 ≤ ξ2 ≤ b2, 0 ≤ ξ3 ≤ b3, 0 ≤ ξ4 ≤ b4,

0 ≤ ξ6 ≤ b6, 0 ≤ ξ8 ≤ b8, 0 ≤ ξ9 ≤ b9,

b1 = 1, b2 = 1, b3 = 1, b4 = 3, b5 = 4, b6 = 1, b7 = 3, b8 = 3, and b9 = 2.

This problem has an optimal solution x∗ = 1, implying that the control depth

variable ξ1 = ξ2 = ξ3 = ξ4 = ξ8 = ξ9 = 0, and ξ6 = 1. That is to say, all dependent

constraints are redundant if monitors are added for the elementary constraints with

their control depth variables being zero except ξ6.

4.7 Identification of Elementary Constraints 101

4.7 Identification of Elementary Constraints

The results in Sect. 4.6 indicate that the redundancy conditions of a dependent con-

straint (l,b) are easily satisfied when b is large and bi (i∈Nn) is small, where (l1,b1)
− (ln,bn) are the elementary constraints of (l,b). This section develops an algorithm

to identify a set of elementary constraints such that the redundancy condition of a

dependent constraint is easily satisfied without increasing the control depth vari-

ables of its elementary constraints. Let (N,M0) be a Petri net with N = (P,T,F,W).
Without loss of generality, we assume that any two vectors in [η] are not identical.

Algorithm 4.1 Identification of elementary constraints

Input: (L,B) = {(li,bi)|i ∈ Nn}
Output: LE , a set of elementary constraints

1: Find [η] from (L,B)
2: m := rank([η])
3: By the merge sort algorithm, sort the sequence b1, b2, · · ·, and bn to be bk1

, bk2
,

. . ., and bkn
in an ascending order, where {k1,k2, . . . ,kn} = Nn

4: for j = 1 to n do

5: χ j := ηk j

6: end for

7: LE := {(lk1
,bk1

)}
8: A := [χ1]

T

9: i := 2

10: while (m �= 1) do

11: for i = 2 to n do

12: AE := [AT |χi]
T

13: LE := LE ∪{(l,b)|η = χi}
14: while (rank(AE) �= m) do

15: if rank(AE)− rank(A) = 0 then

16: LE := LE \{(l,b)|η = χi}
17: i := i+1

18: else

19: A := AE

20: i := i+1

21: end if

22: end while

23: i := n+1

24: end for

25: end while

26: Output LE

This algorithm is similar to the one that identifies a set of elementary siphons in

Sect. 3.6 of Chap. 3. The complexity of this algorithm is O(2n|P||T |2 +n lgn).

Example 4.14. For the set of GMECs in the FMS example in Sect. 4.6, this algo-

rithm outputs LE = {(l1,b1),(l2,b2),(l3,b3),(l4,b4),(l6,b6),(l8,b8),(l9,b9)}.

102 4 Monitor Implementation of GMECs

4.8 Bibliographical Remarks

As an important class of control specifications in the supervisory control of DES,

linear inequality constraints are first studied in [32]. They are also extensively in-

vestigated in a Petri net formalism. The work along this direction can be found

in [3,4,9,12,13,30,36,38]. Recent tutorials and survey papers are presented by Ior-

dache and Antsaklis [25, 27]. A good reference is the book by Moody and Antsak-

lis [37]. The work in [7] develops a systematic method to minimize the set of mon-

itors for forbidden-state problems in safe Petri nets.

Problems

4.1. Let (l1,b1) ≡ M(p2) + M(p6) ≤ 4, (l2,b2) ≡ M(p3) + M(p5) ≤ 4, (l3,b3) ≡
M(p2)+M(p3)+M(p5)+M(p6) ≤ 6, (l4,b4) ≡ 3M(p3)+2M(p4) ≤ 8, (l5,b5) ≡
M(p2) + M(p4) + M(p6) ≤ 5, (l6,b6) ≡ 3M(p2) + 4M(p5) ≤ 12, and (l7,b7) ≡
M(p2)+ M(p5)+ M(p6)+ M(p7) ≤ 10 be a set of GMECs to the Petri net shown

in Fig. 4.8.

1. Find a set of elementary constraints by the algorithm in Sect. 4.7;

2. Try to find a set of control depth variables of the elementary constraints under

which dependent constraints are implicitly enforced;

3. Discuss the condition under which the dependent constraints cannot be implicitly

enforced by adding monitors for elementary constraints only.

p 1

t 2

t 3

t 1

 p 3

 p 2

t 4

 p 4

 p 1 0

8

t 7

t 6

t 8

 p 8

 p 7

 p 6

t 5

 p 5

 p 1 1

 p 9

8

Fig. 4.8 A Petri net (N,M0)

References 103

4.2. Extend the results in this chapter to a Petri net with uncontrollable and unob-

servable transitions. The reader is referred to the work by Giua, Moody, and Ior-

dache [9, 29, 36–38].

4.3. Discuss the possibility of applying the results in this chapter to other classes

of control specifications such as constraints involving firing vectors and time, and

disjunction of inequality constraints. These control specifications are extensively

investigated by Iordache et al. [14–28].

References

1. Basile, F., Chiacchio, P., Giua, A. (1998) Supervisory control of Petri nets based on subopti-

mal monitor places. In Proc. IEE Int. Workshop on Discrete Event Systems, pp.85–87.

2. Basile, F., Chiacchio, P. (2001) Optimal Petri net monitor design. In Synthesis and Contorl of

Discrete Event Systems,B. Cailaud, X. Xie, Ph. Darondeau, and L. Lavagno (Eds.), Boston,

MA: Kluwer, pp.141–154.

3. Basile, F., Carbone, C., Chiacchio, P. (2003) Petri net controllers to enforce disjunction of

GMECs. In Proc. IEEE Int. Conf. on Robotics and Automation, pp.1440–1445.

4. Basile, F., Chiacchio, P., Giua, A. (2006) Suboptimal supervisory control of Petri nets in

presence of uncontrollable transitions via monitor places. Automatica, vol.42, no.6, pp.995–

1004.

5. Basile, F., Chiacchio, P., Giua, A. (2007) An optimization approach to Petri net monitor de-

sign. IEEE Transactions on Automatic Control, vol.52, no.2, pp.306–311.

6. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical

programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.

7. Dideban, A., Alla, H. (2007) Determination of minimal sets of control places for safe Petri

nets. In Proc. American Control Conference, New York City, USA, pp.4975–4980.

8. Ezpeleta, J, Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy

for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11,

no.2, pp.173–184.

9. Giua, A., DiCesare, F., Silva, M. (1992) Generalized mutual exclusion constraints on nets

with uncontrollable transitions. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics,

pp.974–979.

10. Giua, A., DiCesare, F., Silva, M. (1993) Petri net supervisors for generalized mutual exclusion

constraints. In Proc. 12th IFAC World Congress, pp.267–270.

11. Giua, A. Seatzu, C. (2001) Supervisory control of railway networks with Petri nets. In Proc.

40th IEEE Int. Conf. on Decision and Control, pp.5004–5009.

12. Holloway, L.E., Krogh, B.H. (1990) Synthesis of feedback control logic for a class of con-

trolled Petri nets. IEEE Transactions on Automatic Control, vol.35, no.5, pp.514–523.

13. Holloway, L.E., Krogh, B.H. (1992) On closed-loop liveness of discrete-event systems un-

der maximally permissive control. IEEE Transactions on Automatic Control, vol.37, no.5,

pp.692–697.

14. Iordache, M.V., Moody, J.O., Antsaklis, P.J. (2000) Method for the synthesis of deadlock pre-

vention controllers in systems modeled by Petri nets. In Proc. American Control Conference,

pp.3167–3171.

15. Iordache, M.V., Antsaklis, P.J. (2001) T-liveness enforcement in Petri nets based on structural

net properties. In Proc. IEEE Conf. on Decision and Control, pp.4984–4989.

16. Iordache, M.V., Moody, J.O., Antsaklis, P.J. (2001) A method for the synthesis of liveness

enforcing supervisors in Petri nets. In Proc. American Control Conference, pp.4943–4948.

17. Iordache, M.V., Antsaklis, P.J. (2002) Synthesis of supervisors enforcing general linear vector

constraints in Petri nets. In Proc. American Control Conference, pp.154–159.

104 4 Monitor Implementation of GMECs

18. Iordache, M.V., Moody, J.O., Antsaklis, P.J. (2002) Synthesis of deadlock prevention supervi-

sors using Petri nets. IEEE Transactions on Robotics and Automation, vol.18, no.1, pp.59–68.

19. Iordache, M.V., Antsaklis, P.J. (2003) Design of T-Liveness enforcing supervisors in Petri

nets. IEEE Transactions on Automatic Control, vol.48, no.11, pp.1962–1974.

20. Iordache, M.V., Antsaklis, P.J. (2003) Synthesis of supervisors enforcing general linear con-

straints in Petri nets. IEEE Transactions on Automatic Control, vol.48, no.11, pp.2036–2039.

21. Iordache, M.V., Antsaklis, P.J. (2003) Decentralized control of Petri nets with constraint trans-

formations. In Proc. American Control Conference, pp.314–319.

22. Iordache, M.V., Antsaklis, P.J. (2003) Admissible decentralized control of Petri nets. In Pro.

American Control Conference, pp.332–337.

23. Iordache, M.V. (2003) Methods for the Supervisory Control of Concurrent Systems Based on

Petri Net Abstractions. Doctoral Dissertation, University of Notre Dame.

24. Iordache, M.V., Antsaklis, P.J. (2004) Resilience to failures and reconfigurations in the super-

vision based on place invariants. In Proc. American Control Conference, pp.4477–4482.

25. Iordache, M.V., Antsaklis, P.J. (2004) Supervision based on place invariants: A survey. Tech-

nical Report of the ISIS Group, ISIS-2004-003, University of Notre Dame.

26. Iordache, M.V., Antsaklis, P.J. (2005) A structural approach to the enforcement of language

and disjunctive constraints. In Proc. American Control Conference, pp.3920–3925.

27. Iordache, M.V., Antsaklis, P.J. (2006) Supervision based on place invariants: A survey. Dis-

crete Event Dynamic Systems: Theory and Applications, vol.16, no.4, pp.451–492.

28. Iordache, M.V., Antsaklis, P.J. (2006) Decentralized supervision of Petri nets. IEEE Transac-

tions on Automatic Control, vol.51, no.2, pp.376–381.

29. Iordache, M.V., Antsaklis, P.J. (2006) Supervisory Control of Concurrent Systems: A Petri

Net Structural Approach. Berlin: Springer.

30. Krogh, B.H., Holloway, L.E. (1991) Synthesis of feedback control logic for discrete manu-

facturing systems. Automatica, vol.27, no.4, pp.641–645.

31. Li, Y., Wonham, W.M. (1993) Control of vector discrete-event systems. I. The base model.

IEEE Transactions on Automatic Control, vol.38, no.8, pp.1214–1227.

32. Li, Y., Wonham, W.M. (1994) Control of vector discrete-event systems. II. Controller synthe-

sis. IEEE Transactions on Automatic Control, vol.39, no.3, pp.512–531.

33. Li, Y., Wonham, W.M. (1995) Concurrent vector discrete-event systems. IEEE Transactions

on Automatic Control, vol.40. no.4, pp.628–638.

34. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to dead-

lock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.34, no.1, pp.38–51.

35. Li, Z.W., Zhou, M.C. (2006) Clarifications on the definitions of elementary siphons of Petri

nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.36, no.6, pp.1227–

1229.

36. Moody, J.O., Lemmon, M.D., Antsaklis, P.J. (1996) Supervisory control of Petri nets with un-

controllable and unobservable transitions. In Proc. 35th IEEE Conf. on Control and Decision,

pp.4433–4438.

37. Moody, J.O., Antsaklis, P.J. (1998) Supervisory Control of Discrete Event Systems Using Petri

Nets. Boston, MA: Kluwer.

38. Moody, J.O., Antsaklis, P.J. (2000) Petri net supervisors for DES with uncontrollable and

unobservable transitions. IEEE Transactions on Automatic Control, vol.45, no.3, pp.462–476.

39. Park, J. (2000) Structural analysis and control of resource allocation systems using Petri nets.

PhD thesis, Georgia Institute of Technology, Atlanta, GA.

40. Park, J., Reveliotis, S.A. (2001) Deadlock avoidance in sequential resource allocation systems

with multiple resource acquisitions and flexible routings. IEEE Transactions on Automatic

Control, vol.46, no.10, pp.1572–1583.

41. Reveliotis, S.A. (2007) Implicit siphon control and its role in the liveness-enforcing super-

vision of sequential resource allocation systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.37, no.3, pp.319–328.

42. Tittus, M., Egardt, B. (1999) Hierarchical supervisory control for batch processes. IEEE

Transactions on Control System Technology, vol.7, no.5, pp.542–554.

References 105

43. Tricas, F. (2003) Deadlock Analysis, Prevention and Avoidance in Sequential Resource Allo-

cation Systems, Ph.D Dissertation, University of Zaragoza, Spain.

44. Yamalidou, E., Kantor, J. (1991) Modeling an optimal control of discrete-event chemical

processes using Petri nets. Computers and Chemical Engineering, vol.15, no.7, pp.503–519.

45. Yamalidou, E., Moody, J.O., Antsaklis, P.J. (1996) Feedback control of Petri nets based on

place invariants. Automatica, vol.32, no.1, pp.15–28.

46. Zhou, M.C., DiCesare, F. (1991) Parallel and sequential exclusions for Petri net modeling for

manufacturing systems. IEEE Transactions on Robotics and Automation, vol.7, no.4, pp.515–

527.

47. Zhou, M.C., DiCesare, F. (1993) Petri Net Synthesis for Discrete Event Control of Manufac-

turing Systems. Boston, MA: Kluwer.

Chapter 5

Deadlock Control Based on Elementary Siphons

Abstract This chapter first reviews a classical deadlock prevention policy for au-

tomated manufacturing systems, which is usually considered to be the first that uti-

lizes structural theory of Petri nets to design a liveness-enforcing (Petri net) super-

visor. To reduce the computational complexity to design deadlock-free supervisors,

a mixed-integer-programming based deadlock detection method is presented. Then,

a number of deadlock prevention policies are introduced by using the controllabil-

ity results of elementary and dependent siphons, which are applicable to ordinary

and generalized Petri net models. This chapter shows that the deadlock prevention

policies based on elementary siphons can reduce the computational and structural

complexity and improve the behavioral permissiveness of the liveness-enforcing

monitor-based supervisors. Importantly, some interesting or open problems in this

area are listed at the end of this chapter.

5.1 Introduction

This chapter presents a number of deadlock prevention policies. They are based on

the concepts of strict minimal and elementary siphons. They can be applied to the

deadlock resolution in resource allocation systems that are modeled with ordinary

and generalized Petri nets. First, we review the seminal work [16] in this area. It

develops a deadlock control policy that prevents strict minimal siphons from being

unmarked by adding monitors for them. Then, a number of deadlock prevention

approaches by using elementary siphons are presented.

5.2 Some Application Subclasses of Petri Nets

This section defines a number of subclasses of Petri nets, which can model real-life

automated flexible manufacturing systems, a typical and important class of resource

107

108 5 Deadlock Control Based on Elementary Siphons

allocation systems in the contemporary technical domain. The policies presented

in this chapter can be applied to them. First a class of Petri nets called S3PR is

defined [16]. It stands for system of simple sequential processes with resources.

Definition 5.1. Let (N1,M1) and (N2,M2) be two Petri nets with N1 =(P1,T1,F1,W1)
and N2 = (P2,T2,F2,W2), where P1 ∩ P2 = PC �= /0 and T1 ∩ T2 = /0. (N,M) with

N = (P,T,F,W) is said to be the resultant net of composing (N1,M1) and (N2,M2)
via the set of shared places PC iff (1) P = P1 ∪P2, T = T1 ∪ T2, F = F1 ∪F2, and

W (x,y) = Wi(x,y) if (x,y) ∈ Fi, i = 1,2; and (2) ∀p ∈ P1 \PC, M(p) = M1(p),
∀p ∈ P2 \PC, M(p) = M2(p), and ∀p ∈ PC, M(p) = max{M1(p),M2(p)}.

The two nets N1 and N2 satisfying P1 ∩P2 = PC �= /0 and T1 ∩T2 = /0 in Definition

5.1 are said to be composable via shared places. Their composition is denoted by

N1 ◦N2.

Example 5.1. Two nets (N1,M1) and (N2,M2) are shown in Fig. 5.1a and Fig. 5.1b,

respectively, where P1 = {p1−p4, p9−p11}, T1 = {t1−t4}, P2 = {p5−p11}, and

T2 = {t5−t8}. Since P1 ∩P2 = {p9, p10, p11} and T1 ∩T2 = /0, (N1,M1) and (N2,M2)
are composable. As shown in Fig. 5.1(c), the net resulting from the composition

of (N1,M1) and (N2,M2) is denoted by (N,M) where P = P1 ∪ P2 = {p1−p11},

T = T1 ∪ T2 = {t1−t8}, M(p1) = M1(p1) = 10, M(p2) = M1(p2) = 0, M(p3) =
M1(p3) = 0, M(p4) = M1(p4) = 0, M(p5) = M2(p5) = 10, M(p6) = M2(p6) = 0,

M(p7) = M2(p7) = 0, M(p8) = M2(p8) = 0, M(p9) = max{M1(p9),M2(p9)} = 2,

M(p10) = max{M1(p10),M2(p10)} = 2, and M(p11) = max{M1(p11),M2(p11)} =
3.

Definition 5.2. A simple sequential process (S2P) is a Petri net N =(PA∪{p0},T,F)
where (1) PA �= /0 is called the set of operation places; (2) p0 �∈ PA is called the idle

process place; (3) N is a strongly connected state machine; and 4) every circuit of N

contains place p0.

Definition 5.3. A simple sequential process with resources (S2PR) is a Petri net

N = ({p0}∪PA ∪PR,T,F) such that:

1. The subnet generated by X = PA ∪{p0}∪T is an S2P.

2. PR �= /0 and (PA ∪{p0})∩PR = /0.

3. ∀p ∈ PA, ∀t ∈•p, ∀t ′ ∈ p•, ∃rp ∈ PR, •t ∩PR = t ′•∩PR = {rp}.

4. The following statements are verified: (a) ∀r ∈ PR, ••r∩PA = r•• ∩PA �= /0 and

(b) ∀r ∈ PR, •r∩ r• = /0.

5. ••(p0)∩PR = (p0)••∩PR = /0.

Note that •r represents place r’s input transitions. ••r = ∪t∈•r
•t is the set of all

input places of all input transitions of place r. Similarly, r•• = ∪t∈r•t
• represents

the set of all output places of all output transitions of place r. For example, in Fig.

5.1(c), •p9 = {t2, t8} and ••p9 =•t2 ∪ •t8 = {p2, p10, p8}. p•9 = {t1, t7} and p••9 =
t•1 ∪ t7

• = {p2, p10, p8}. Clearly, ••p9 = p••9 .

5.2 Some Application Subclasses of Petri Nets 109

(b)

p 9 p 2

p 4

p 3

p 1 1

p 1 0

t 1

t 2

t 3

t 4

p 1

(a)

p 5

p 9 p 8

p 6

p 7

p 1 1

p 1 0

 t 5

t 8

 t 7

t 6

1 0 1 0

p 9

p 2

p 4

p 3

p 1 1

p 1 0

t 1

t 2

t 3

t 4

p 1

(c)

p 5

p 8

p 6

p 7

 t 5

t 8

 t 7

t 6

1 0 1 0

Fig. 5.1 (a) A Petri net (N1,M1), (b) a Petri net (N2,M2), and (c) the composed net (N,M)

Definition 5.4. Let N = (PA ∪{p0}∪PR,T,F) be an S2PR. An initial marking M0

is called an acceptable initial marking for N iff (1) M0(p0) ≥ 1, (2) M0(p) = 0,

∀p ∈ PA, and (3) M0(r) ≥ 1, ∀r ∈ PR. An S2PR with such a marking is said to be

acceptably marked.

Example 5.2. The net shown in Fig. 5.2(a) is an S2P, where p0 is the idle process

place and PA = {p1−p6} is the set of operation places. It is easy to verify that the

net is a strongly connected state machine.

110 5 Deadlock Control Based on Elementary Siphons

The net (N2,M2) depicted in Fig. 5.2(b) is an S2PR extending from the S2P in Fig.

5.2(a), where PR = {p7−p12} is the set of resource places. It meets the conditions

in Definitions 5.3 and 5.4. Hence, (N2,M2) is an S2PR with an acceptable initial

marking.

p 3

p 1

p 0

p 6

p 5

p 4

p 2

t 1

t 6

t 7

t 8

t 5

t 4

t 3

t 2

(a)

p 3

p 1

p 0

p 6

p 5

p 4

p 2

t 1

t 6

t 7

t 8

t 5

t 4

t 3

t 2

p 8

p 1 0

p 9

p 1 1

p 1 2

p 7

(b)

1 0 1 0

Fig. 5.2 (a) An S2P (N1,M1) with a state machine structure, (b) an S2PR (N2,M2) with an accept-

able initial marking

Definition 5.5. A system of S2PR, called S3PR for short, is defined recursively as

follows:

1. An S2PR is an S3PR.

2. Let Ni = (PAi
∪{p0

i }∪PRi
,Ti,Fi), i∈ {1,2}, be two S3PR such that (PA1

∪{p0
1})∩

(PA2
∪{p0

2}) = /0, PR1
∩PR2

= PC �= /0, and T1 ∩T2 = /0. Then, the net N = (PA ∪
P0 ∪ PR,T,F) resulting from the composition of N1 and N2 via PC defined as

follows: (1) PA = PA1
∪PA2

, (2) P0 = {p0
1}∪ {p0

2}, (3) PR = PR1
∪PR2

, (4) T =
T1 ∪T2, and (5) F = F1 ∪F2 is also an S3PR.

In the sequel, an S3PR N composed of n S2PR N1-Nn, denoted by N = ©n
i=1Ni,

is defined as follows: N = N1 if n = 1; N = (©n−1
i=1 Ni) ◦Nn if n > 1. Ni is used to

denote the S2P from which the S2PR Ni is formed. Transitions in (P0)• are called

source transitions that represent the entry of raw materials when a manufacturing

system is modeled with an S3PR.

5.2 Some Application Subclasses of Petri Nets 111

Definition 5.6. Let N be an S3PR. (N,M0) is called an acceptably marked S3PR iff

one of the following statements is true:

1. (N,M0) is an acceptably marked S2PR.

2. N = N1 ◦N2, where (Ni,M0i
) is an acceptably marked S3PR and

a. ∀i ∈ {1,2}, ∀p ∈ PAi
∪{p0

i }, M0(p) = M0i
(p).

b. ∀i ∈ {1,2}, ∀r ∈ PRi
\PC, M0(r) = M0i

(r).
c. ∀r ∈ PC, M0(r) = max{M01

(r),M02
(r)}.

Example 5.3. The net (N1,M1) shown in Fig. 5.1(a) is an S3PR if p1 is an idle pro-

cess place, p2−p4 are operation places, and p9−p11 are resource places. Likewise,

(N2,M2) shown in Fig. 5.1(b) is an S3PR if p5 is an idle process place, p6−p8 are

operation places, and p9−p11 are resource places. Since they have common resource

places, they are composable. Their composition leads to an S3PR (N,M), as shown

in Fig. 5.1(c). Since one can verify that it meets the conditions in Definition 5.6, the

net in Fig. 5.1(c) is an acceptably marked S3PR.

In what follows, when we talk about an S3PR, it is assumed to be acceptably

marked unless otherwise stated. For example, the net shown in Fig. 5.3 is an S3PR

if P0 = {p1, p10}, PR = {p11−p15}, and others are operation places. Specifically, we

have PA1
= {p2, p3, p5 − p7} and PA2

= {p4, p8, p9}. It is easy to verify that (N,M0)
is acceptably marked.

p 1

p 5

p 3

t 4

t 3

p 6

t 5

p 7

p 4

p 9

t 1 1

t 9

t 1 0

p 8

p 2

t 6

5

p 1 1

t 1

t 2

3

p 1 0

p 1 5

p 1 4

p 1 3

p 1 2

t 8

t 7

Fig. 5.3 An S3PR net (N,M0)

Let S be a strict minimal siphon in an S3PR N = (PA ∪P0 ∪PR, T , F). Ezpeleta

et al. [16] show that S does not contain idle places but consists of operation and

112 5 Deadlock Control Based on Elementary Siphons

resource places only. As a result, S can be represented by SA∪SR, where SR = S∩PR

and SA = S\SR, i.e., SA = S∩PA.

Definition 5.7. For r ∈ PR, H(r) = ••r∩PA, the operation places that use r, is called

the set of holders of r. Let [S] = (∪r∈SRH(r))\S. [S] is called the complementary set

of siphon S.

Suppose that S = {r1,r2, p2, p3} is a strict minimal siphon in an S3PR, where r1

and r2 are resource places, and p2 and p3 are operation places. If H(r1) = {p1, p2}
and H(r2) = {p3, p4}, then we have complementary set [S] = ({p1, p2}∪{p3, p4})\
S = {p1, p4}.

The concept of the complementary set of a siphon plays an important role in the

development of the deadlock prevention policy in [16]. Intuitively, the complemen-

tary set of a siphon is a set of operation places that use the resources in it but are

excluded from it. That is to say, the operation places in the complementary set com-

pete for the limited resources with those in the siphon. When the tokens initially

staying in the resource places of a siphon are completely held or “stolen” by the

places in its complementary set, the siphon is emptied. As is known, if a siphon

has no token, it remains free of tokens in the subsequent reachable markings. The

transitions in its postset are completely disabled, leading to deadlocks.

It is shown in [16] that a strict minimal siphon S in an S3PR can be emptied and

|S∩ SR| > 1 is true. That is to say, a strict minimal siphon in an S3PR contains at

least two resource places.

Property 5.1. Let N = ©n
i=1Ni = (P0 ∪PA ∪PR,T,F) be an S3PR consisting of n

simple sequential processes and S be a siphon in N.

1. Any p ∈ PAi
is associated with a minimal P-semiflow Ip with support ||Ip|| =

PAi
∪{p0

i }.

2. Any resource r ∈ PR is associated with a minimal P-semiflow Ir such that ||Ir||=
{r}∪H(r).

3. ∀p ∈ [S], ∃r ∈ SR, p ∈ H(r) and ∀r′ ∈ PR\{r}, p /∈ H(r′).
4. [S]∪S is the support of a P-semiflow of N.

5. [S] = ∪n
i=1[S]i, where [S]i = [S]∩PAi

.

Example 5.4. Consider the S3PR in Fig. 5.3, where p0
1 = p1, PA1

= {p2, p3, p5, p6,

p7}, p0
2 = p10, and PA2

= {p4, p8, p9}. Clearly, S1 = {p5, p9, p12, p13} is a strict min-

imal siphon. It does not contain idle places. Let S1 = SA
1 ∪SR

1 . We have SA
1 = {p5, p9}

and SR
1 = {p12, p13}. Let σ = t1t2t8t9 and M0[σ〉M1. Siphon S1 is emptied under

marking M1 = 4p1 + p3 + p4 +2p10 + p11 + p14 + p15. Place p12 is a resource place

with H(p12) = {p3, p9}. Place p13 is a resource place with H(p13) = {p4, p5}. Com-

plementary set [S1] = H(p12)∪H(p13)\S1={p3, p9, p5, p4}\S1={p3, p4}. Specifi-

cally, [S1] = [S1]
1 ∪ [S1]

2, where [S1]
1 = {p3} and [S1]

2 = {p4}. The minimal P-

invariants associated with idle place p1 and resource place p12 are Ip1
= p1 + p2 +

p3 + p5 + p6 + p7 and Ip12
= p3 + p9 + p12, respectively.

5.2 Some Application Subclasses of Petri Nets 113

Note that ∀p ∈ PA ∪P0 (∀r ∈ PR), ||Ip|| (||Ir||) is a minimal siphon and trap that

is initially marked. Let Π be the set of strict minimal siphons in an S3PR. The

following result is from [16], indicating that an S3PR is live iff there is no siphon

that can be emptied.

Theorem 5.1. An S3PR (N,M0) is live iff ∀M ∈ R(N,M0), ∀S ∈ Π , M(S) > 0.

Next a more general class of Petri nets than S3PR nets is introduced. It is first

proposed in [25] and called ES3PR. It stands for extended S3PR.

Definition 5.8. An ES3PR is an ordinary connected self-loop-free Petri net N =
©n

i=1Ni = (P,T,F) where:

1. Ni = (PAi
∪{p0

i }∪PRi
,Ti,Fi), i ∈ Nn.

2. P = PA ∪P0 ∪PR is a partition such that (1) PA = ∪n
i=1PAi

is called the set of

operation places, where ∀i, j ∈ Nn, i �= j, PAi
�= /0 and PAi

∩PA j
= /0; (2) P0 =

∪n
i=1{p0

i } is called the set of idle places; (3) PR = {r1,r2, . . . ,rm|m ∈ N+} is

called the set of resource places.

3. T = ∪n
i=1Ti is called the set of transitions, where ∀i, j ∈ Nn, i �= j, Ti �= /0 and

Ti ∩Tj = /0.

4. ∀i ∈ Nn, the subnet Ni generated by PAi
∪{p0

i }∪Ti is a strongly connected state

machine such that every circuit of the state machine contains idle place p0
i .

5. ∀r ∈ PR, there exists a unique minimal P-semiflow Ir ∈ N|P| such that {r} =
||Ir||∩PR, P0 ∩||Ir|| = /0, PA ∩||Ir|| �= /0, and ∀p ∈ ||Ir||, Ir(p) = 1.

6. PA = ∪r∈PR
(||Ir||\{r}).

Definition 5.9. An initial marking M0 is acceptable for an ES3PR N = (PA ∪P0 ∪
PR,T,F) iff (1) ∀i ∈ Nn, M0(p0

i) > 0; (2) ∀p ∈ PA, M0(p) = 0; and (3) ∀r ∈ PR,

M0(r) > 0.

From their definitions, the difference between S3PR and ES3PR is that the usage

of the resources in the latter is more flexible than that in the former. Specifically,

each operation place in an S3PR needs one resource only. However, an operation

place in an ES3PR may need two or more resources.

Theorem 5.2. Let (N,M0) be an ES3PR. It is live iff no siphon can become empty.

The net shown in Fig. 5.4 is an ES3PR in which p2–p9 are operation places that

are initially unmarked, p1 and p10 are idle places, and the others are resource places.

It is not an S3PR. It is live since no siphon can be emptied during its evolution.

As a generalization of S3PR and ES3PR in [25] and [50], respectively, the defi-

nition of the class of systems of sequential systems with shared resources (S4R) is

given in [1, 3]. It allows multiple arcs between a resource place and transition. The

represented net models fall into the generalized Petri net class. However, an S4R

cannot model a manufacturing system with assembly and disassembly operations

since it is composed of a set of state machines where no synchronization structure

is allowed.

114 5 Deadlock Control Based on Elementary Siphons

p 1

p 5

p 3

t 4

t 3

p 6

t 5

p 7

p 4

p 9

t 1 1

t 9

t 1 0

p 8

p 2

t 6

5

p 1 1

t 1

t 2

3

p 1 0

p 1 5

p 1 4

p 1 3

p 1 2

t 8

t 7

t 6
t 1

t 9 t 8

V S 2

t 8

t 1

V S 1 t 6

t 1 0 t 3

Fig. 5.4 An ES3PR (N,M0)

Definition 5.10. An S4R is a generalized connected self-loop-free Petri net N =
©n

i=1Ni = (P,T,F,W) where:

1. Ni = (PAi
∪{p0

i }∪PRi
,Ti,Fi,Wi), i ∈ Nn.

2. P = PA ∪P0 ∪PR is a partition such that (1) PA = ∪n
i=1PAi

is called the set of

operation places, where ∀i, j ∈ Nn, i �= j, PAi
�= /0 and PAi

∩PA j
= /0; (2) P0 =

∪n
i=1{p0

i } is called the set of idle places; (3) PR = ∪n
i=1PRi

= {r1,r2, · · · ,rm|m ∈
N+} is called the set of resource places.

3. T = ∪n
i=1Ti is called the set of transitions, where ∀i, j ∈ Nn, i �= j, Ti �= /0 and

Ti ∩Tj = /0.

4. ∀i ∈ Nn, the subnet Ni generated by PAi
∪{p0

i }∪Ti is a strongly connected state

machine such that every circuit of the state machine contains idle place p0
i .

5. ∀r ∈ PR, there exists a unique minimal P-semiflow Ir ∈ N|P| such that {r} =
||Ir||∩PR, P0 ∩||Ir|| = /0, PA ∩||Ir|| �= /0, and Ir(r) = 1.

6. PA = ∪r∈PR
(||Ir||\{r}).

Definition 5.11. An initial marking M0 is acceptable for an S4R N = (PA ∪ P0 ∪
PR,T,F,W) iff (1) ∀i ∈ Nn, M0(p0

i) > 0; (2) ∀p ∈ PA, M0(p) = 0; and (3) ∀r ∈ PR,

M0(r) ≥ max{Ir(p)|p ∈ PA}.

Example 5.5. The net shown in Fig. 4.5 is an S4R, where Ir1
= r1 + p1 +3p2 + p6 is

the minimal P-semiflow associated with resource r1. An acceptable initial marking

M0 needs to satisfy M0(r1) ≥ 3.

5.2 Some Application Subclasses of Petri Nets 115

The class of Petri nets defined above is alternatively named to be S4PR [51] by

different researchers. The following result from [1] concerns the liveness of an S4R.

Theorem 5.3. [1] Let (N,M0) be a marked S4R net. It is live iff it satisfies the

max-cs property 1.

Theorem 5.4. [1, 51] Let S be a strict minimal siphon in an S4R N = (PA ∪P0 ∪
PR,T,F,W). Then S = SR ∪SA satisfies S∩PR = SR �= /0 and S∩PA = SA �= /0.

Before the presentation of the complementary set of a siphon in a generalized

Petri net, a brief theory of multisets is given in order to recognize well the role

of the complementary sets of siphons in the development of deadlock prevention

policies for generalized Petri nets that are used to model automated manufacturing

systems. A multiset is a generalization of the concept of a set.

Definition 5.12. A multiset Ω , over a non-empty set A, is a mapping Ω : A → N+,

which we represent as a formal sum ∑a∈A Ω(a).a.

In multiset Ω , non-negative integer Ω(a) is the coefficient of element a ∈ A,

indicating the number of occurrences of a in Ω . It is said that a ∈ A belongs to

Ω , denoted by a ∈ Ω , if Ω(a) > 0. It does not belong to Ω , denoted by a �∈ Ω ,

if Ω(a) = 0. Let ΩMS denote the set of all multisets over A and Ω1 and Ω2 be two

multisets in ΩMS. The basic operations on multisets are union, intersection, addition,

and difference, which are defined as follows.

Definition 5.13. Ω1 ∪Ω2 := ∑a∈A max{Ω1(a),Ω2(a)}.a.

Definition 5.14. Ω1 ∩Ω2 := ∑a∈A min{Ω1(a),Ω2(a)}.a.

Definition 5.15. Ω1 +Ω2 := ∑a∈A(Ω1(a)+Ω2(a)).a.

Definition 5.16. Ω1 −Ω2 := ∑a∈A(Ω1(a)− (Ω1 ∩Ω2)(a)).a.

A multiset without any element is denoted by /0 as an empty set. A multiset

becomes a set if the multiplicity of every element is one.

Example 5.6. Ω1 = a+b, Ω2 = 2a+b+c, and Ω3 = 3a+2c are three multisets over

A = {a,b,c}. We have Ω1 ∪Ω2 = 2a+b+ c, Ω1 ∪Ω3 = 3a+b+2c, Ω1 ∩Ω3 = a,

Ω2 ∩Ω3 = 2a + c, Ω1 + Ω2 = 3a + 2b + c, Ω1 −Ω2 = /0, Ω3 −Ω1 = 2a + 2c, and

Ω3 −Ω2 = a+ c.

Definition 5.17. Let r be a resource place and S be a strict minimal siphon in an

S4R. The holder of resource r is defined as the difference of two multisets Ir and r:

H(r) = Ir − r. As a multiset, T h(S) = ∑r∈SR H(r)−∑r∈SR,p∈SA Ir(p).p is called the

complementary set of siphon S.

1 This result is unfortunately not correct since the max-cs property is found to be a sufficient but

not necessary condition for the liveness of an S4R. For details, the reader can be referred to [8],

where the controllability condition of siphons in a generalized Petri net is relaxed by introducing

the concept of max’-controlled siphons.

116 5 Deadlock Control Based on Elementary Siphons

Definition 5.18. ||T h(S)||= {p|p ∈∪r∈SRH(r), p /∈ S} is called the support of com-

plementary set T h(S) of siphon S.

It is easy to see that ||T h(S)|| ⊆ PA is true. Let ||T h(S)||i = ||T h(S)|| ∩PAi
; we

have ||T h(S)||=∪n
i=1||T h(S)||i. Let ∑p∈||T h(S)|| hS(p)p denote T h(S). Clearly, hS(p)

indicates that siphon S loses hS(p) tokens if the number of tokens in p increases by

one. hS(p) is called the risk coefficient of place p.

Example 5.7. The net shown in Fig. 5.5 is an S4R if p0
1 = p7, p0

2 = p11, PA1
= {p1–

p6}, PA2
= {p8–p10}, PR1

= {p12–p15}, and PR2
= {p12–p14}. It has three strict

minimal siphons:

S1 = {p3, p6, p9, p13, p14},

S2 = {p2, p5, p10, p12, p13},

S3 = {p3, p6, p10, p12, p13, p14}.

We have

Ip12
= 2p1 + p10 + p12,

Ip13
= p2 + p5 + p9 + p13,

Ip14
= p3 + p6 + p8 + p14,

Ip15
= p4 + p15,

H(p12) = 2p1 + p10,

H(p13) = p2 + p5 + p9,

H(p14) = p3 + p6 + p8.

Furthermore, the complementary sets and their supports of siphons S1–S3 are:

T h(S1) = (H(p13)+H(p14))− (p3 + p6 + p9) = p2 + p5 + p8,

T h(S2) = (H(p12)+H(p13))− (p2 + p5 + p10) = 2p1 + p9,

T h(S3) = ∑14
i=12 H(pi)− (p3 + p6 + p10) = 2p1 + p2 + p5 + p8 + p9,

||T h(S1)|| = {p2, p5, p8},

||T h(S2)|| = {p1, p9},

||T h(S3)|| = {p1, p2, p5, p8, p9}.

For T h(S2), we have the risk coefficients of p1 and p9 are hS2
(p1) = 2 and

hS2
(p9) = 1, respectively. It is easy to see that two tokens are removed from S2

(in fact from p12) if the number of tokens in p1 increases by one.

Note that where there is no confusion, we often use [S] to denote the set of places

in ‖T h(S)‖ as well as T h(S) for convenience and clarity.

5.3 An MIP-Based Deadlock Detection Method

Let (N,M) be an ordinary net with N = (P,T,F) and S be the maximal empty siphon

at M, i.e., ∀p /∈ S, M(p)> 0. As shown in [9], finding S in N is the solution of

a mixed-integer-programming (MIP) problem. ∀p /∈ S, let vp = 1 and ∀t /∈ S•, let

zt = 1.

It is easy to see that any p with vp = 1 and any t with zt = 1 are removed from

the net. Since S is a siphon, we have that ∀t ∈ p•, vp = 0 implies zt = 0 and ∀p ∈ t•,

zt = 1 implies the truth of vp = 1. This leads to

5.3 An MIP-Based Deadlock Detection Method 117

p 1

t 1

t 2

t 3

t 4

t 5

t 6

t 7

t 8

p 2

p 3

p 4

p 5

p 6

p 7

t 1 2

t 1 1

t 1 0

p 1 0

p 9

t 9

p 8

p 1 1

p 1 5

p 1 2 2

2

2

p 1 3

p 1 4

1 0

1 0

Fig. 5.5 An S4R (N,M0)

zt ≥ ∑
p∈•t

vp −|•t|+1,∀t ∈ T, (5.1)

vp ≥ zt ,∀(t, p) ∈ F, (5.2)

vp,zt ∈ {0,1}. (5.3)

For a structurally bounded net, we have

vp ≥ M(p)/π(p),∀p ∈ P (5.4)

where π(p) = max{M(p)|M = M0 + [N]Y,M ≥ 0,Y ≥ 0} is the structural bound

of place p. As shown in [9], the maximal unmarked siphon can be determined

by the following MIP problem and there exist siphons unmarked in (N,M0) iff

GMIP(M0) < |P|:

GMIP(M0) = min ∑
p∈P

vp

s.t. constraints (5.1)–(5.4) and

M = M0 +[N]Y,M ≥ 0,Y ≥ 0.

118 5 Deadlock Control Based on Elementary Siphons

Although an MIP problem is NP-hard, case studies in [9] show that its computa-

tional efficiency is relatively insensitive to the initial marking.

Theorem 5.5. Let (N,M0) be a Petri net with N = (P,T,F). There is no emptiable

siphon if GMIP(M0) = |P|.

Example 5.8. For the net in Fig. 2.7(a), its deadlock can be detected by solving the

following MIP problem:

MIN VP1+VP2+VP3+VP4+VP5+VP6

SUBJECT TO

ZT1-VP1-VP6≥-1 // ZTi denotes zti

ZT2-VP2-VP5≥-1 // VPi denotes vpi

ZT3-VP3-VP6≥-1

ZT4-VP4≥0

VP1-ZT4≥0

VP6-ZT4≥0

VP2-ZT1≥0

VP3-ZT2≥0

VP6-ZT2≥0

VP5-ZT3≥0

VP4-ZT3≥0

2VP1-MP1≥0 // MPi denotes M(pi)
VP2-MP2≥0

VP3-MP3≥0

VP4-MP4≥0

VP5-MP5≥0

VP6-MP6≥0

MP1+Y1-Y4=2 // Yi denotes yi

MP2-Y1+Y2=0

MP3-Y2+Y3=0

MP4-Y3+Y4=0

MP5+Y2-Y3=1

MP6+Y1+Y3-Y2-Y4=1

END

INT VP1

INT VP2

INT VP3

INT VP4

INT VP5

INT VP6

INT ZT1

INT ZT2

INT ZT3

INT ZT4

Note that the above source code follows the syntax of Lindo [38], where “int x”

indicates variable x ∈ {0,1}. Lindo gives a feasible solution Z=2 with VP2=VP3=1

5.4 A Classical Deadlock Prevention Policy 119

and VP1=VP4=VP5=VP6=0. It means that there is a siphon S = {p1, p4, p5, p6}
that can be emptied. When its initial marking changes to be M0 = p1 + p5 + p6 from

M0 = 2p1 + p5 + p6, we have z = 6, the number of places, indicating that no siphon

can be emptied.

5.4 A Classical Deadlock Prevention Policy

This section mainly introduces the deadlock prevention policy proposed by Ezpeleta

et al. in [16]. It develops a systematic method to establish a liveness-enforcing su-

pervisor for an S3PR by adding monitors for its strict minimal siphons such that

they are prevented from being unmarked. The work in [16] is usually considered to

be one of the most significant contributions in deadlock control area using a Petri

net formalism [21].

Before the presentation of the policy, some notations are first introduced in order

that the readers can understand it well. It should be stressed that many monitor-

based deadlock prevention policies in the literature are motivated by the seminal

work in [16] and [29].

Let N = (P,T,F) be an S2P with idle process place p0. The length of a path

(circuit) in a Petri net is defined as the number of its nodes. The support of a path

(circuit) is the set of its nodes.

• Let C be a circuit of N and x and y be two nodes of C . Node x is said to be

previous to y iff there exists a path in C from x to y, the length of which is greater

than one and does not pass over the idle process place p0. This fact is denoted by

x <C y.

• Let x and y be two nodes in N. Node x is said to be previous to y in N iff there

exists a circuit C such that x <C y. This fact is denoted by x <N y.

• Let x and A ⊆ P∪T be a node and a set of nodes in N, respectively. Then x <N A

iff there exists a node y ∈ A such that x <N y and A <N x iff there exists a node

y ∈ A such that y <N x.

Example 5.9. In the net N in Fig. 5.3, C = p1t1 p7t2 p3t3 p5t4 p6t5 p1 is a circuit and

EP(p7, p6) = p7t2 p3t3 p5t4 p6 is a path in C . The support of EP(p7, p6) is {p7, t2,

p3, t3, p5, t4, p6} and the support of C is {p1, t1, p7, t2, p3, t3, p5, t4, p6, t5}. Clearly,

we have p7 <C p6 and p7 <N p6.

The following notations are also useful in the establishment of a deadlock preven-

tion policy. Mathematically, given a set A, the power set (or powerset) of A, written

as 2A, is the set of all subsets of A. Note that Π is used to denote the set of strict

minimal siphons in an S3PR (N,M0). First the definitions of the sets of downstream

and upstream siphons of a transition are given.

Definition 5.19. Let ∆+(t) (∆−(t)) denote the set of downstream (upstream) siphons

of a transition t and PS denote the adjoint set of a siphon S in an S3PR N =
©n

i=1Ni = (P0 ∪PA ∪PR,T,F).

120 5 Deadlock Control Based on Elementary Siphons

1. ∆+ : T → 2Π is a mapping defined as follows: If t ∈ Ti, then ∆+(t) = {S ∈
Π |t <Ni

[S]i}. If S ∈ ∆+(t) then the set [S]i is reachable from t, i.e., there exists

a path in Ni leading from t to an operation place p ∈ PAi
that is not included in S

but uses a resource of S, where [S] = ∪n
i=1[S]i, PA = ∪n

i=1PAi
, and [S]i = [S]∩PAi

.

2. ∆− : T → 2Π is a mapping defined as follows: If t ∈ Ti, then ∆−(t) = {S ∈
Π |[S]i <Ni

t}.

3. ∀i ∈ Nn, ∀S ∈ Π , P i
S = [S]i ∪{p ∈ PAi

|p <Ni
[S]i}, and PS = ∪n

i=1P
i
S.

Example 5.10. Take the net shown in Fig. 5.3 as an example. There are three

strict minimal siphons S1 = {p5, p9, p12, p13}, S2 = {p4, p6, p13, p14}, and S3 =
{p6, p9, p12, p13, p14}. Their complementary sets are [S1] = {p3, p4}, [S2] = {p5, p8},

and [S3] = {p3, p4, p5, p8}, respectively. We have downstream siphons ∆+(t1) =
∆+(t2) = ∆+(t8) = {S1,S2,S3}, ∆+(t3) = {S2,S3}, and ∆+(t4) = ∆+(t10) = /0.

Similarly, upstream siphons include ∆−(t1) = ∆−(t2) = ∆−(t6) = ∆−(t7) = /0,

∆−(t3) = {S1}, and ∆−(t4) = ∆−(t5) = {S1,S2,S3}.

We have adjoint sets PS1
= P1

S1
∪P2

S1
= ({p3} ∪ {p7})∪ ({p4} ∪ {p8}) =

{p3, p4, p7, p8}, PS2
= P1

S2
∪P2

S2
= ({p5}∪{p7, p3})∪{p8} = {p7, p3, p5, p8},

and PS3
= P1

S3
∪P2

S3
= ({p3, p5}∪ p7)∪{p4, p8} = {p7, p3, p5, p4, p8}.

Definition 5.20. Let (N,M0) be an S3PR with N = ©n
i=1Ni = (PA ∪P0 ∪PR,T,F).

The net (NV ,M0V) = (PA ∪P0 ∪PR ∪PV ,T,F ∪FV ,M0V) is the controlled system of

(N,M0) iff:

1. PV = {VS|S ∈ Π} is a set of monitors such that there exists a bijective mapping

between Π and PV .

2. FV = F1
V ∪F2

V ∪F3
V , where

F1
V = {(VS, t)|S ∈ ∆+(t), t ∈ P0•},

F2
V = {(t,VS)|t ∈ [S]•,S /∈ ∆+(t)},

F3
V = ∪n

i=1{(t,VS)|t ∈ Ti \P0•,S /∈ ∆−(t),• t ∩PAi
⊆ P i

S, t ≮ [S]i}.

3. M0V is defined as follows: (1) ∀p ∈ PA ∪P0 ∪PR, M0V (p) = M0(p) and (2) ∀VS ∈
PV , M0V (VS) = M0(S)−1.

Theorem 5.6. (NV ,M0V) is live [16].

Example 5.11. For the net shown in Fig. 5.3, three monitors are needed to prevent

three strict minimal siphons from being emptied. We first take S1 = {p5, p9, p12, p13}
as an example. Since P0 = {p1, p10}, we have P0• = {t1, t8}. As a result, {(VS1

, t1),
(VS1

, t8)} ⊆ F1
V .

Due to [S1] = {p3, p4}, [S1]
• = {t3, t10}. Note that S1 /∈ ∆+(t3) and S1 /∈ ∆+(t10).

We have {(t3,VS1
),(t10,VS1

)} ⊆ F2
V .

Next let us find the arcs related to VS1
in F3

V . Let

Tα = (T1 \P0•)∪ (T2 \P0•),
Tβ = {t|S1 /∈ ∆−(t), t ∈ T},

Tγ = {t|•t ∩PA1
⊆ P1

S}∪{t|•t ∩PA2
⊆ P2

S},

5.4 A Classical Deadlock Prevention Policy 121

Tδ = {t|t ≮ [S1]
1}∪{t|t ≮ [S1]

2}.

We have

Tα = {t2 − t7, t9 − t11},

Tβ = {t1, t2, t6 − t9},

Tγ = {t2, t3, t6, t9, t10},

Tδ = {t3 − t7, t10, t11}.

It is easy to see that Tα ∩Tβ ∩Tγ ∩Tδ = {t6}. Consequently, (t6,VS1
) ∈ F3

V .

For siphons S2 and S3, monitors VS2
and VS3

can be added with {(VS2
, t1), (VS2

, t8),
(VS3

, t1), (VS3
, t8)}⊆F1

V , {(t4,VS2
), (t9,VS2

), (t4,VS3
), (t10,VS3

)}⊆F2
V , and {(t6,VS2

),
(t6,VS3

)} ⊆ F3
V . The controlled system for (N,M0) is shown in Fig. 5.6.

p 1

p 5

p 3

t 4

t 3

p 6

t 5

p 7

p 4

p 9

t 1 1

t 9

t 1 0

p 8

p 2

t 6

5

p 1 1

t 1

t 2

3

p 1 0

p 1 5

p 1 4

p 1 3

p 1 2

t 8

t 7

t 6
t 1

t 9 t 8

V S 2

t 8

t 1

V S 1 t 6

t 1 0
t 3 t 1 0

t 8

t 1

V S 3 t 6

t 4

Fig. 5.6 The controlled system of (N,M0)

According to Theorem 5.6, the net in Fig. 5.6 is live. ⊓⊔

Remark 5.1. For a strict minimal siphon S, this policy ensures that the maximal

number of tokens held by PS is not more than M0(S). Since [S] ⊆ PS, S cannot

be emptied if a monitor VS is added for it. For example, S1 = {p5, p9, p12, p13} is

a strict minimal siphon with M0(S1) = 2. Its monitor guarantees that the maximal

number of tokens held in PS1
is M0(S1)−1 = 1.

Next we present an FMS example to illustrate the deadlock prevention policy.

This FMS is extensively investigated in the literature [6, 7, 16, 24, 30–33, 52, 54].

Particularly, in a recent survey paper [36], this FMS is exploited as a benchmark

example to compare a variety of deadlock prevention policies in the literature.

122 5 Deadlock Control Based on Elementary Siphons

Example 5.12. A flexible manufacturing cell as shown in Fig. 5.7 has four machine

tools M1 − M4. Each machine tool can hold two parts at the same time. Also the cell

contains three robots R1 − R3 and each of them can hold one part. Parts enter the

cell through three loading buffers I1 − I3, and leave the cell through three unloading

buffers O1 − O3. Three part types J1 − J3 are produced. The machine tools perform

operations on raw parts and the robots deal with the movements of parts.

M 1

M 2

M 3

M 4

R 1

R 2

R 3

I 1

I 2

I 3

O 3

O 2

O 1

J 1 M 2

J 2 M 4 M 3

J 3

M 3 M 4

M 1 M 2

Fig. 5.7 The layout of a flexible manufacturing cell

• R1 handles part movements from I3 to M1, I3 to M3, and M3 to O2.

• R2 handles part movements from M1 to M2, M4 to M3, M3 to M4, I1 to M2,

and M2 to O1.

• R3 handles part movements from I2 to M4, M2 to O3, and M4 to O3.

• M1 performs operations on J3.

• M2 performs operations on J1 and J3.

• M3 performs operations on J2 and J3.

• M4 performs operations on J2 and J3.

The production routes of the parts are as follows:

• J1: I1 → R2 → M2 → R2 → O1;

• J2: I2 → R3 → M4 → R2 → M3 → R1 → O2;

• J3: I3 → R1 → M1 → R2 → M2 → R3 → O3 or

I3 → R1 → M3 → R2 → M4 → R3 → O3.

5.4 A Classical Deadlock Prevention Policy 123

The flexible manufacturing cell contains global and local deadlocks if it is not

properly supervised. Suppose that the system is in the scenario that M4 is fully

occupied by machining two J3-type raw parts and R3 picks up a J2-type raw part

and tries to upload M4. The processes to produce J2 and J3 remain indefinitely

blocked since no further operations on them can be performed. That is to say, the

system is in a local deadlock state.

While, if the system is in such a state that M4 is fully occupied by machining

two J3-type raw parts, R3 has picked up a J2-type raw part from I2 and is trying to

upload M4, M2 is fully occupied by machining two J1-type raw parts, and R2 has

downloaded a J3-type part from M1 and is trying to upload M2, it will enter a global

deadlock state. In this case, the whole system will be completely blocked.

The system can be modeled with Petri nets. Its model (N,M0) is shown in Fig.

5.8. The physical meaning of each place is explained in Table 5.1. Let T1 = {t11 −
t14}, T2 = {t15 − t20}, and T3 = {t1 − t10}. This model belongs to S3PR where p1,

p5, and p14 are idle process places, p20 − p26 are resource places, and the others are

operation places. The occurrence of system deadlocks corresponds to the existence

of unmarked siphons in the model. They can be successfully prevented by properly

supervising the siphons in their net model.

There are 18 strict minimal siphons in the Petri net model of the flexible man-

ufacturing cell. These siphons, their complementary sets, and their corresponding

monitors are shown in Tables 5.2 − 5.4, respectively.

Next S1 = {p10, p18, p22, p26}, S3 = {p2, p4, p8, p13, p17, p21, p26}, and S5 =
{p2, p4, p8, p10, p17, p21, p22, p26} are taken as examples to show the way of adding

monitors to prevent them from being unmarked.

According to the definition of the complementary set of a siphon, we have

[S1] = (H(p22)∪H(p26))\S1 = ({p10, p19}∪{p13, p18})\S1 = {p13, p19}, [S3] =
({p2, p4, p8, p12, p17} ∪ {p13, p18}) \ S3 = {p12, p18}, and [S5] =({p2, p4, p8, p12,

p17}∪{p10,p19}∪{p13, p18})\S5 = {p12, p13, p18, p19}.

Since P0 = {p1, p5, p14}, we have P0• = {t1, t11, t15}. {S1,S3,S5} ⊆ ∆+(t1),
{S1,S3,S5} ⊆ ∆+(t15), and ∀S ∈ {S1,S3,S5}, S /∈ ∆+(t11). This leads to {(VS1

, t1),
(VS1

, t15), (VS3
, t1), (VS3

, t15),(VS5
, t1),(VS5

, t15)} ⊆ F1
V .

From [S1] = {p13, p19}, [S1]
• = {t10, t16}. It is clear that S1 /∈ ∆+(t10) and

S1 /∈∆+(t16). Therefore, {(t10,VS1
),(t16,VS1

)}⊆F2
V . From [S3] = {p12, p18}, [S3]

• =
{t9, t17}. It is clear that S3 /∈∆+(t9) and S3 /∈∆+(t17). Therefore, {(t9,VS3

), (t17,VS3
)}

⊆ F2
V .

The case of S5 is slightly different from S1 and S3. From [S5] = {p12, p13, p18,

p19}, we have [S5]
• = {t9, t10, t16, t17}. However, S5 ∈ ∆+(t9), S5 ∈ ∆+(t16), S5 /∈

∆+(t10), and S5 /∈ ∆+(t17). As a result, {(t10,VS5
),(t17,VS5

)} ⊆ F2
V .

In order to determine the set of additional arcs in F3
V for VS1

, VS3
, and VS5

, we first

find PS1
, PS3

, and PS5
.

PS1
= P1

S1
∪P2

S1
∪P3

S1
, where P i

S1
= [S1]

i ∪{p ∈ PAi
|p <Ni

[S1]
i}, i = 1,2,3.

It is easy to see that [S1]
1 = /0, [S1]

2 = {p19}, [S1]
3 = {p13}, {p∈PA1

|p <N1
[S1]

1}=

/0, {p ∈ PA2
|p <N2

[S1]
2} = /0, and {p ∈ PA3

|p <N3
[S1]

3} = {p6, p11, p12}. Hence

PS1
= {p13, p19, p6, p11, p12}.

124 5 Deadlock Control Based on Elementary Siphons

p 6

t 1

t 2

t 3

t 4

t 7

t 8

t 9

p 7

p 8

p 1 1

p 1 2

t 5 t 1 0

p 9 p 1 3

t 6

p 5

t 1 1

t 1 2

t 1 3

p 2

p 3

p 4

t 1 4

t 2 0

t 1 9

t 1 8

p 1 5

p 1 6

p 1 7

t 1 7

t 1 6

p 1 8

p 1 9

t 1 5

p 1 4

I 2 / O 2

p 2 0

R 1

p 1

I 1 / O 1

p 1 0

p 2 1

R 2

p 2 2

R 3

p 2 3

M 1

p 2 4

M 2

p 2 5

M 3

p 2 6

M 4

I 3 / O 3

3

1 1

7

Fig. 5.8 The Petri net model (N,M0) of a flexible manufacturing cell

∀t ∈ T1 \P0•, •t ∩ PA1
⊆ P1

S1
is not true since •t ∩ PA1

�= /0 but P1
S1

= /0.

∀t ∈ T2 \P0•, S1 ∈ ∆−(t). That is to say, there does not exist a transition t ∈
(T1 \P0•)∪ (T2 \P0•) such that (t,VS1

) ∈ F3
V . Next we check the transitions in

T3 \P0•, which satisfy the conditions in F3
V .

From {t|t ∈ T3 \ P0•,S1 /∈ ∆−(t)} = {t2, t3, t4, t5, t7, t8, t9}, {t|t ∈ T3 \ P0•,• t ∩
PA3

⊆ P3
S1
} = {t2, t7, t8, t9, t10}, and {t|t ∈ T3 \P0•, t ≮ [S1]

3} = {t2, t3, t4, t5, t6, t10},

we conclude (t2,VS1
) ∈ F3

V .

Similarly, we have (t2,VS3
) ∈ F3

V , (t2,VS5
) ∈ F3

V , and ∀t �= t2, (t,VSi
) /∈ F3

V , where

i = 1, 3, 5.

The initial marking of these monitors is M0V (VS1
) = 2, M0V (VS3

) = 2, and

M0V (VS5
) = 3. The monitors for other siphons can be accordingly determined as

shown in Table 5.4. The resultant net with 18 monitors, i.e., the controlled system,

is denoted by (NV ,M0V), and is live with 6,287 reachable states.

5.5 An Elementary Siphon-Based Deadlock Prevention Policy 125

Table 5.1 Meanings of the places in the net model shown in Fig. 5.8

p1: Raw materials in I1 available

p2: R2 uploads M2

p3: M2 machining

p4: R2 downloads M2 and puts finished parts in O1

p5: Raw materials in I3 available

p6: R1 uploads M1 or M3

p7: M1 machining

p8: R2 downloads M1 and uploads M2

p9: M2 machining

p10: R3 downloads M2 or M4 and put finished parts in O3

p11: M3 machining

p12: R2 downloads M3 and uploads M4

p13: M4 machining

p14: Raw materials in I2 available

p15: R1 downloads M3 and puts finished parts in O2

p16: M3 machining

p17: R2 downloads M4 and uploads M3

p18: M4 machining

p19: R3 uploads M4

p20: R1 available

p21: R2 available

p22: R3 available

p23: M1 available

p24: M2 available

p25: M3 available

p26: M4 available

Table 5.2 Strict minimal siphons in the model (N,M0), where * means the corresponding siphons

are dependent ones

S Places S Places

S1 p10, p18, p22, p26 S2 p4, p9, p12, p17, p21, p24

S3 p2, p4, p8, p13, p17, p21, p26 S4 p2, p4, p8, p12, p16, p21, p25

S∗5 p2, p4, p8, p10, p17, p21, p22, p26 S∗6 p4, p9, p12, p16, p21, p24, p25

S∗7 p4, p9, p13, p17, p21, p24, p26 S∗8 p2, p4, p8, p13, p16, p21, p25, p26

S9 p4, p10, p17, p21, p22, p24, p26 S∗10 p4, p9, p13, p16, p21, p24, p25, p26

S∗11 p2, p4, p8, p10, p16, p21, p22, p25, p26 S12 p2, p4, p8, p12, p15, p20, p21, p23, p25

S∗13 p4, p10, p16, p21, p22, p24, p25, p26 S∗14 p4, p9, p12, p15, p20, p21, p23, p24, p25

S∗15 p2, p4, p8, p13, p15, p20, p21, p23, p25, p26 S∗16 p4, p9, p13, p15, p20, p21, p23−p26

S∗17 p2, p4, p8, p10, p15, p20−p23, p25, p26 S∗18 p4, p10, p15, p20−p26

5.5 An Elementary Siphon-Based Deadlock Prevention Policy

The policy proposed in [16] indicates that the number of additional monitors equals

that of strict minimal siphons in an S3PR. That is to say, the size of the resultant

liveness-enforcing supervisor is in theory exponential with respect to the plant net

size since the number of strict minimal siphons grows in a general case exponen-

tially with respect to the net size. It implies that the supervisor is much more struc-

turally complex than the plant model originally built.

126 5 Deadlock Control Based on Elementary Siphons

Table 5.3 The complementary sets of the strict minimal siphons

[S] Places [S] Places

[S1] p13, p19 [S2] p2, p3, p8

[S3] p12, p18 [S4] p11, p17

[S5] p12, p13, p18, p19 [S6] p2, p3, p8, p11, p17

[S7] p2, p3, p8, p12, p18 [S8] p11, p12, p17, p18

[S9] p2, p3, p8, p9, p12, p13, p18, p19 [S10] p2, p3, p8, p11, p12, p17, p18

[S11] p11, p12, p13, p17, p18, p19 [S12] p6, p7, p11, p16, p17

[S13] p2, p3, p8, p9, p11, p12, p13, p17−p19 [S14] p2, p3, p6, p7, p8, p11, p16, p17

[S15] p6, p7, p11, p12, p16, p17, p18 [S16] p2, p3, p6, p7, p8, p11, p12, p16, p17, p18

[S17] p6, p7, p11, p12, p13, p16−p19 [S18] p2, p3, p6, p7, p8, p9, p11−p13, p16−p19

Table 5.4 Monitors for the model (N,M0)

Monitor M0V (·) Preset Postset Monitor M0V (·) Preset Postset

VS1
2 t2, t10, t16 t1, t15 VS2

2 t4, t7, t13 t1, t11

VS3
2 t2, t9, t17 t1, t15 VS4

2 t2, t8, t18 t1, t15

VS5
3 t2, t10, t17 t1, t15 VS6

4 t4, t8, t13, t18 t1, t11, t15

VS7
4 t4, t9, t13, t17 t1, t11, t15 VS8

4 t2, t9, t18 t1, t15

VS9
5 t5, t10, t13, t17 t1, t11, t15 VS10

6 t4, t9, t13, t18 t1, t11, t15

VS11
5 t2, t10, t18 t1, t15 VS12

5 t3, t8, t19 t1, t15

VS13
7 t5, t10, t13, t18 t1, t11, t15 VS14

7 t4, t8, t13, t19 t1, t11, t15

VS15
7 t3, t9, t19 t1, t15 VS16

9 t4, t9, t13, t19 t1, t11, t15

VS17
8 t3, t10, t19 t1, t15 VS18

10 t5, t10, t13, t19 t1, t11, t15

Motivated by the need to reduce the structural complexity of the liveness-

enforcing supervisor resulting from the policy in [16], the concept of elementary

siphons is developed in [30]. This section presents an improved deadlock preven-

tion policy for an S3PR, which is based on the concept of elementary siphons. First

strict minimal siphons are divided into elementary and dependent ones. Monitors

are added for the elementary siphons only and the controllability of a dependent

siphon is ensured by properly supervising its elementary siphons. If a dependent

siphon cannot be implicitly controlled by using the monitors for elementary siphons

only, a monitor is added for it.

In the deadlock prevention policy in [16], the addition of monitor VS puts its

corresponding siphon S under control. In what follows, (NV ,M0V) is used to denote

a controlled system for a plant S3PR (N,M0).

Lemma 5.1. Let S and VS be a siphon and its corresponding monitor, respectively.

Then ∀M ∈ R(NV ,M0V), the following invariant relation holds:

M(VS)+
n

∑
i=1

M(P i
S) = M0V (VS).

Consider ∪n
i=1P

i
S = PS and ∀i �= j, P i

S∩P
j

S = /0, the token invariant relation in

Lemma 5.1 can be rewritten as M(VS)+M(PS) = M0V (VS). It is the token invariant

5.5 An Elementary Siphon-Based Deadlock Prevention Policy 127

relation that ensures the controllability of a strict minimal siphon such that it can

never be emptied under any reachable marking in (NV ,M0V).

Example 5.13. In Example 5.12, VS1
is the monitor for S1 = {p10, p18, p22, p26} with

M0V (VS1
) = 2 and PS1

= {p13, p19, p6, p11, p12}. Lemma 5.1 indicates that ∀M ∈
R(NV ,M0V), M(VS)+ M(p13)+ M(p19)+ M(p6)+ M(p11)+ M(p12) = 2. Hence,

the maximal number of tokens staying at [S1] = {p13, p19} is not greater than 2, i.e.,

∀M ∈ R(NV ,M0V), M(p13)+M(p19) ≤ 2.

Recall the meanings of the complementary set of a siphon in an S3PR, which

contains operation places only. The places in a complementary set compete for re-

sources with the operation places in a siphon. When the complementary set holds

all the tokens initially marked in a siphon, the siphon is emptied and remains so for-

ever, leading to occurrences of dead transitions. On the contrary, if at any reachable

marking the maximal number of tokens held by the places in the complementary set

is not greater than the number of tokens initially marked in it, the siphon can never

be emptied.

For siphon S1 = {p10, p18, p22, p26} with M0V (S1) = M0(S1) = 3 and [S1] =
{p13, p19}, we conclude that S1 can never be emptied due to the addition of mon-

itor VS1
that keeps M(p13)+ M(p19) ≤ 2, ∀M ∈ R(NV ,M0V). It is easy to see that

min{M(S1)|M ∈ R(NV ,M0V)} = M0(S1)−M0V (VS1
) = 1.

Proposition 5.1. Let VS be a monitor for siphon S in (NV ,M0V). Then VS +∑p∈PS
p

is a P-semiflow of NV .

Proof. Let I denote P-vector VS +∑p∈PS
p. We need to show IT [NV] = 0T . IT [NV] =

[NV](VS, ·) + ∑p∈PS
[NV](p, ·) = [NV](VS, ·) + [NV](PS, ·) = [NV](VS, ·) + ∑n

i=1[NV]

(P i
S, ·), where n is the number of subnets by which the plant S3PR (N,M0) is com-

posed.

Since P i
S is a subset of places in state machine Ni, ∀t ∈ Ti, [N](P i

S, t) =
[NV](P i

S, t) is −1, 0, or 1. Note that ∀i, j ∈ Nn(i �= j), Ti ∩Tj = /0. We have ∀t ∈ T ,

[NV](PS, t) is −1, 0, or 1.

By the way of adding monitors in Definition 5.20, ∀t ∈ T , [NV](PS, t) = 1 im-

plies [NV](VS, t) = −1 and [NV](PS, t) = −1 implies [NV](VS, t) = 1. Therefore,

∀t ∈ T , [NV](VS, t) + [NV](PS, t) = 0, indicating that IT [NV] = 0T . We conclude

that VS +∑p∈PS
p is a P-semiflow of NV . ⊓⊔

Next, for a siphon S, a parameter ξS, called the control depth variable of the

siphon, is introduced in order to establish a method to ensure the controllability of

a dependent siphon by properly supervising its elementary ones.

Proposition 5.2. Let VS be a monitor computed by Definition 5.20 for a siphon

S in an S3PR (N,M0). S is controlled if M0V (VS) = M0(S)− ξS where 1 ≤ ξS ≤
M0(S)−1.

Proof. By Lemma 5.1, ∀M ∈ R(NV ,M0V), M(VS) + M(PS) = M0V (VS), where

PS = ∪n
i=1P

i
S.

128 5 Deadlock Control Based on Elementary Siphons

M(PS) = M0(S)−ξS −M(VS).

Since M(VS) ≥ 0, M(PS) ≤ M0(S)−ξS is true. By [S] ⊆ PS, we have

M([S]) ≤ M0(S)−ξS. (5.5)

According to the definition of the complementary set of a siphon, [S]∪ S is the

support of a P-semiflow of N. It is also a P-semiflow of NV . Consequently, ∀M ∈
R(NV ,M0V), M([S])+M(S) = M0(S) = M0V (S), leading to the truth of

M(S) = M0(S)−M([S]). (5.6)

Consider (5.5) and (5.6); M(S) ≥ M0(S)− (M0(S)−ξS), i.e.,

M(S) ≥ ξS ≥ 1.

This implies that at any reachable marking in R(NV ,M0V), S can never be un-

marked. ⊓⊔

Increasing ξS intends to tighten the control of siphon S, which may degrade the

control performance from the behavior permissiveness point of view. Specifically,

a large ξS implies that some good (safe) states are possibly removed from the con-

trolled system.

Corollary 5.1. Let S be a siphon in an S3PR and VS be its monitor defined in Propo-

sition 5.2. In (NV ,M0V), Mmin(S) = ξS.

The relation between the controllability of elementary siphons and that of depen-

dent ones can be established by means of the results in Chap. 3. To demonstrate this,

let us first consider the Petri net in Fig. 5.3. There are three strict minimal siphons:

S1 = {p5, p9, p12, p13}, S2 = {p4, p6, p13, p14}, and S3 = {p6, p9, p12, p13, p14}. It

is verified that the rank of its characteristic T -vector matrix of these siphons equals

two, indicating that there are two elementary siphons. The third one is dependent

with ηS3
= ηS1

+ηS2
if S1 and S2 are selected to be elementary ones. In other words,

ΠE = {S1,S2} implies ΠD = {S3}.

Suppose that VS1
and VS2

are added for S1 and S2 with control depth variables ξS1

and ξS2
, respectively. Let (NV ,M0V) denote the resultant net with VS1

and VS2
. We

then check the controllability of S3 in (NV ,M0V). According to Corollary 3.5, S3 is

controlled if

M0V (S3) > M0V (S1)+M0V (S2)−Mmin(S1)−Mmin(S2).

i.e.,

M0V (S3) > M0V (S1)+M0V (S2)−ξS1
−ξS2

.

It is easy to see that M0V (S1) = M0(S1) = 2, M0V (S2) = M0(S2) = 2, and

M0V (S3) = M0(S3) = 3. The controllability condition is true if ξS1
= ξS2

= 1. This

Hence, we have

5.5 An Elementary Siphon-Based Deadlock Prevention Policy 129

indicates that S3 is controlled if S1 and S2 are controlled by adding monitors VS1
and

VS2
with ξS1

= ξS2
= 1, respectively. This also implies that we do not need to add a

monitor for S3 since it has been implicitly controlled due to the controllability of its

elementary siphons.

Note that the controllability condition in Corollary 3.5 is sufficient but not nec-

essary. To illustrate this, consider a dependent siphon S5 = {p2, p4, p8, p10, p17,

p21, p22, p26} in the net shown in Fig. 5.8 as an example. It is easy to ver-

ify that ηS5
= ηS1

+ ηS3
, indicating that S5 is a strongly dependent siphon with

respect to S1 and S3. Suppose that two monitors VS1
and VS3

are added with

ξS1
= ξS3

= 1 to prevent S1 and S3 from being emptied, respectively. Clearly,

M0V (S5) = M0V (S1)+M0V (S3)−ξS1
−ξS3

when ξS1
= ξS3

= 1. On one hand, either

ξS1
= 2 or ξS3

= 2 will surely guarantee the controllability of S5. On the other hand,

S5 is shown below to be controlled even if ξS1
= ξS3

= 1.

Let (NV ,M0V) denote the net that has monitors VS1
and VS3

with ξS1
= ξS3

= 1. By

Mmin(S5) = min{M(S5)|M = M0V +[NV]Y,M ≥ 0,Y ≥ 0}, we have Mmin(S5) = 1.

As a result, S5 cannot be emptied in (NV ,M0V) even if ξS1
= ξS3

= 1. That is to say,

we do not need to enlarge any siphon control depth variable in this particular case.

Motivated by the facts stated above, a deadlock prevention algorithm based on

the concept of elementary siphons is proposed as follows.

Algorithm 5.1 An improved deadlock prevention policy

Input: an S3PR (N,M0)
Output: a controlled system (NV ,M0V)

find Π , ΠE and ΠD

/* ΠD = {SD1,SD2, . . . ,SDn} and ΠE = {S1,S2, . . . ,Sm} */

add monitors VS1
−VSm for S1−Sm, where ∀i ∈ Nm, ξSi

= 1.

i := 1

/* check the controllability of dependent siphons */

repeat

if SDi is controlled by Corollary 3.5 or Mmin
0V (SDi) > 0 then

i := i+1

else

add a monitor VSDi
for SDi with ξSDi

= 1

i := i+1

end if

until i ≥ n+1

output (NV ,M0V)

This deadlock control policy aims to make a dependent siphon controlled by

setting unit the control depth variables of its elementary siphons. When a dependent

siphon cannot be controlled by its elementary siphons with their unit control depth

variables, a monitor is added for it.

Example 5.14. There are 18 strict minimal siphons in the net shown in the Fig. 5.8.

By the elementary siphon identification algorithm, we have ΠE = {S1,S2,S3,S4,S9,

S12} and ΠD = {S5, S6, S7, S8, S10, S11, S13, S14, S15, S16, S17, S18}. The character-

130 5 Deadlock Control Based on Elementary Siphons

istic T -vector relation between elementary and dependent siphons is shown in Table

5.5.

Table 5.5 The characteristic T -vector relation between dependent and elementary siphons

S∗ η relationship S∗ η relationship

S5 ηS5
= ηS1

+ηS3
S6 ηS6

= ηS2
+ηS4

S7 ηS7
= ηS2

+ηS3
S8 ηS8

= ηS3
+ηS4

S10 ηS10
= ηS2

+ηS3
+ηS4

S11 ηS11
= ηS1

+ηS3
+ηS4

S13 ηS13
= ηS4

+ηS9
S14 ηS14

= ηS2
+ηS12

S15 ηS15
= ηS3

+ηS12
S16 ηS16

= ηS2
+ηS3

+ηS12

S17 ηS17
= ηS1

+ηS3
+ηS12

S18 ηS18
= ηS9

+ηS12

The controllability of siphon S6 depends on whether M0(S6)> M0(S2)+M0(S4)−
ξS2

−ξS4
is true. Since M0(S6) = 5, M0(S2) = 3, and M0(S4) = 3, S6 is controlled if

monitors VS2
and VS4

are added when ξS2
= ξS4

= 1.

The controllability of S16 depends on the truth of M0(S16) > M0(S2)+M0(S3)+
M0(S12)−ξS2

−ξS3
−ξS12

. By M0(S16)= 10, M0(S2)= 3, M0(S3)= 3, and M0(S12)=
6, this inequality holds when ξS2

= ξS3
= ξS12

= 1.

By Algorithm 5.1, it is easy to see that all dependent siphons are controlled by

adding six monitors for the elementary siphons only with each siphon control depth

variable being unit. That is to say, the addition of six monitors leads to a liveness-

enforcing supervisor for the Petri net model of the FMS. Furthermore, the supervisor

results in the same permissive behavior with the one due to the deadlock prevention

policy in [16].

The number of monitors resulting from Algorithm 5.1 may be greater than that

of elementary siphons. When the inequality concerning the controllability of a de-

pendent siphon is not true, or it is not controlled by solving the corresponding LPP,

a monitor needs to be added for it. As a result, the number of monitors resulting

from Algorithm 5.1 is in theory exponential with respect to the net size.

A natural and fascinating problem is to find a liveness-enforcing supervisor with

monitors that are added for elementary siphons only. The control of a dependent

siphon is ensured by properly setting the control depth variables of its elementary

siphons. If this is achieved, the size of the resulting controlled system is limited to

2n, where n is the size of the plant Petri net model.

Theorem 5.7. Let (N,M0) be an S3PR and (NV ,M0V) be the net resulting from

adding monitors for m elementary siphons only by Definition 5.20. (NV ,M0V) is

a controlled system with m monitors if the following LPP has a feasible solution:

min
m

∑
i=1

ξSi

s.t.

5.5 An Elementary Siphon-Based Deadlock Prevention Policy 131

M0(SD j) >
m

∑
i=1

ai(M0(Si)−ξSi
), j = 1,2, . . . ,n,

1 ≤ ξSi
≤ M0(Si)−1, i = 1,2, . . . ,m,

where ΠD = {SD j| j = 1,2, . . . ,n} and ΠE = {Si|i = 1,2, . . . ,m}.

Proof. If the LPP has a feasible solution, it means that all dependent siphons are

controlled by properly setting the control depth variables of the elementary siphons.

Furthermore, the elementary siphons can be controlled by the monitors. As a result,

(NV ,M0V) is a controlled system with liveness. ⊓⊔

Example 5.15. For the Petri net shown in Fig. 5.8, monitors VS1
−VS4

, VS9
, and VS12

are added. By solving the following LPP:

z = min{
4

∑
i=1

ξSi
+ξS9

+ξS12
}

s.t.

M0(S5) > M0(S1)+M0(S3)−ξS1
−ξS3

,

M0(S6) > M0(S2)+M0(S4)−ξS2
−ξS4

,

M0(S7) > M0(S2)+M0(S3)−ξS2
−ξS3

,

M0(S8) > M0(S3)+M0(S4)−ξS3
−ξS4

,

M0(S10) > M0(S2)+M0(S3)+M0(S4)−ξS2
−ξS3

−ξS4
,

M0(S11) > M0(S1)+M0(S3)+M0(S4)−ξS1
−ξS3

−ξS4
,

M0(S13) > M0(S4)+M0(S9)−ξS4
−ξS9

,

M0(S14) > M0(S2)+M0(S12)−ξS2
−ξS12

,

M0(S15) > M0(S3)+M0(S12)−ξS3
−ξS12

,

M0(S16) > M0(S2)+M0(S3)+M0(S12)−ξS2
−ξS3

−ξS12
,

M0(S17) > M0(S1)+M0(S3)+M0(S12)−ξS1
−ξS3

−ξS12
,

M0(S18) > M0(S9)+M0(S12)−ξS9
−ξS12

,

1 ≤ ξS1
≤ M0(S1)−1,

1 ≤ ξS2
≤ M0(S2)−1,

1 ≤ ξS3
≤ M0(S3)−1,

1 ≤ ξS4
≤ M0(S4)−1,

1 ≤ ξS9
≤ M0(S9)−1,

1 ≤ ξS12
≤ M0(S12)−1.

an optimal solution z∗ = 7 with ξS1
= 2, ξS2

= 1, ξS3
= 1, ξS4

= 1, ξS9
= 1, and ξS12

=
1 is found. This leads to M0V (VS1

) = 1, M0V (VS2
) = 2, M0V (VS3

) = 2, M0V (VS4
) = 2,

M0V (VS9
) = 5, and M0V (VS12

) = 5. However, the obtained supervisor may be more

restrictive than the one in Example 5.12 due to a larger control depth variable of S1.

Specially, the number of reachable states of the controlled system in Example 5.12

is 6,287 and that in this example leads to 3,506 reachable states only.

132 5 Deadlock Control Based on Elementary Siphons

5.6 An MIP-Based Deadlock Prevention Policy

The deadlock prevention policies in [16] and in Sect. 5.5 depend on the complete

siphon enumeration of a plant Petri net model. Its computation is expensive since

the number of siphons grows fast with respect to the net size. For example, INA

[49], a popular Petri net analysis tool, is used to find all minimal siphons in a net

with 72 places and 64 transitions, the computation in a personal computer aborts

due to memory overflow after several days [33]. This section introduces a deadlock

prevention policy that combines the concept of elementary siphons and MIP-based

deadlock detection method. More importantly, the complete siphon enumeration

is avoided, leading to better computational efficiency. The following results play

an important role in the establishment of the efficient deadlock prevention policy

in [33].

Proposition 5.3. Let (NV ,M0V) be the net resulting from adding monitors for siphons

to an S3PR (N,M0) by the approach in [16]. Then (NV ,M0V) is an ES3PR.

Corollary 5.2. An ES3PR (NV ,M0V) is live iff no siphon in it can become empty.

Corollary 5.3. An ES3PR (NV ,M0V) is live iff GMIP(M0V) = |PA ∪P0 ∪PR ∪PV |,
where PV is the set of monitors.

The idea underlying the deadlock prevention policy presented in this section pro-

ceeds in an iterative way that can be stated as follows. First, the MIP-based dead-

lock detection method is applied to a plant S3PR net model (N,M0). If no unmarked

siphon can be derived, it indicates that (N,M0) itself is live since no siphon can be-

come empty. If not, an unmarked maximal siphon S∗ is hence obtained. By using

the minimal siphon extraction approach in [34], a minimal siphon S1 from S∗ is then

derived. Let Π = {S1}.

The MIP-based method is applied to (N,M0) with a constraint M([S1])≤ M0(S1)
−1, ∀M ∈ R(N,M0). If no unmarked maximal siphon can be found, S1 is the only

siphon that can be emptied in (N,M0). It is then controlled by adding monitor VS1

according to Definition 5.20 and the resultant net (NV ,M0V) is live. Otherwise, we

derive a strict minimal siphon S2 and Π is updated by putting S2 into it. Accordingly,

a constraint M([S2]) ≤ M0(S2)−1 is generated for the next iteration.

Suppose that at some step, a minimal siphon Si is found. We have Π = {S1,

S2, . . ., Si} and constraint M([Si]) ≤ M0(Si)−1. The MIP-based deadlock detec-

tion method is applied again to (N,M0) with constraints M([S1]) ≤ M0(S1)−1,

M([S2])≤M0(S2)−1, . . ., and M([Si])≤M0(Si)−1. This process proceeds until no

unmarked siphon can be found and a set of minimal siphons Π is finally obtained.

With the set of siphons Π , Algorithm 5.1 can be used to compute the monitors of

the supervisor for (N,M0). Note that in general, Π computed in this way is not nec-

essarily the set of all strict minimal siphons in (N,M0). Even if Π happens to be the

set of all strict minimal siphons in (N,M0), it can be computed efficiently through

the MIP-based deadlock detection and minimal siphon extraction method, particu-

larly, when a large net model is dealt with. We summarize the deadlock detection

and siphon extraction algorithm as follows.

5.6 An MIP-Based Deadlock Prevention Policy 133

Algorithm 5.2 Strict minimal siphon extraction

Input: an S3PR (N,M0) with N = (PA ∪P0 ∪PR,T,F)
Output: Π

Π := /0

repeat

if GMIP(M0) < |PA|+ |P0|+ |PR| then

find a maximal unmarked siphon S∗

derive a minimal siphon S from S∗

generate constraint M(S) ≤ M0(S)−1 for further iteration

Π := Π ∪{S}
end if

until GMIP(M0) = |PA|+ |P0|+ |PR|
output Π

Theorem 5.8. Algorithm 5.2 can always terminate. When it terminates, the control

of siphons in Π by Definition 5.20 leads to a liveness-enforcing supervisor and the

controlled system (NV ,M0V) is live.

Proof. If there is no emptiable siphon in (N,M0), the algorithm outputs Π = /0 in

the first iteration. Suppose that there are k strict minimal siphons in (N,M0) and at

some step, a siphon Si is derived. The constraint M([Si]) ≤ M0(Si)−1 ensures that

in the next iteration Si cannot be derived again, that is, a new siphon may be found

in the next iteration. The algorithm terminates after at most k iterations.

Suppose that Π = {S1,S2, . . . ,Sm} (m ≤ k) when the algorithm terminates. The

termination also implies that there is no siphon that can be emptied in (N,M0) under

the constraints M([S1]) ≤ M0(S1)−1, M([S2]) ≤ M0(S2)−1, . . ., and M([Sm]) ≤
M0(Sm)−1. ∀S ∈ Π , a monitor VS is added by Definition 5.20, which imple-

ments the constraint M([S]) ≤ M0(S)−1. By Theorem 5.6, the controlled system

(NV ,M0V) with m monitors is live. ⊓⊔

Example 5.16. Consider the net shown in Fig. 5.3. The MIP-based deadlock detec-

tion method is applied to it. A maximal emptiable siphon S∗ = {p5, p6, p9, p12, p13,
p14} can be distinguished, from which a minimal siphon S1 = {p5, p9, p12, p13} with

M0(S1) = 2 is derived. We have Π = {S1}.

A constraint M([S1])≤ M0(S1)−1 is considered in the next iteration. We can get

a maximal emptiable siphon S∗ = {p4, p6, p9, p12, p13, p14}, from which a minimal

siphon S2 = {p4, p6, p13, p14} is derived.

The MIP-based deadlock detection method is applied to (N,M0) under the con-

straints M([S1]) ≤ M0(S1)−1 and M([S2]) ≤ M0(S2)−1. It is shown GMIP(M0) =
15, indicating that if S1 and S2 are controlled, there is no emptiable siphon in

(N,M0). Hence, we have Π = {S1,S2}.

By Algorithm 5.1, two monitors VS1
and VS2

are added to (N,M0) to make S1 and

S2 controlled, respectively. The resultant net as shown in Fig. 5.4 is the controlled

system that is live.

134 5 Deadlock Control Based on Elementary Siphons

5.7 Deadlock Prevention in S4R

This section introduces a deadlock prevention policy for a class of generalized Petri

nets, S4R. It stands for a system of sequential systems with shared resources, as

defined in Definition 5.10. First an important result concerning the number of the

elementary siphons in an S4R is given.

Theorem 5.9. Let N = ©n
i=1Ni = (P0 ∪ PA ∪ PR,T,F,W) be an S4R and NES the

number of its elementary siphons. Then, NES ≤ |PA|.

Proof. It is known NES ≤ rank([N]). As a result, if one can prove rank([N]) = |PA|,
the conclusion is certainly true.

Let Ni = (PAi
∪{p0

i }∪PRi
,Ti,Fi,Wi) and N′

i denote the resultant net after all re-

source places in PRi
are removed from Ni. Since ∀i ∈ Nn, N′

i is a strongly con-

nected state machine, we have rank([N′
i]) = |PAi

|. In incidence matrix [Ni], the

row that models a resource r in net Ni is linear combinations of the rows of

the idle place and the operation places that do not use resource r. We trivially

have rank([Ni]) = rank([N′
i]) = |PAi

|. Noticing that ∀i �= j, PAi
∩PA j

= /0, we have

rank([N]) = ∑n
i=1 rank([Ni]) = ∑n

i=1 |PAi
| = |PA| and conclude NES ≤ |PA|. ⊓⊔

To establish a deadlock prevention policy for S4R, the following notations are

also useful. Note that Π is used to denote a set of strict minimal siphons in an

S4R. For convenience, [S] is used to denote the set of places in the complementary

set T h(S) of siphon S in an S4R, as stated at the end of Sect. 5.2. As a multiset,

T h(S) can be represented by ∑p∈[S] hS(p)p. For example, S is a siphon in some net

with T h(S) = 3p1 +2p4 + p6. We have [S] = {p1, p4, p6}, hS(p1) = 3, hS(p4) = 2,

hS(p6) = 1, and ∀p �∈ {p1, p4, p6}, hS(p) = 0.

• ∆+ : T → 2Π is a mapping defined as follows: ∀t ∈ Ti, ∆+(t) = {S ∈ Π |t <Ni

[S]i}. If S ∈ ∆+(t) then the set [S]i is reachable from t, i.e., there exists a path in

Ni leading from t to an operation place p ∈ PAi
that is not included in S but uses

a resource of S.

• ∆− : T → 2Π is a mapping defined as follows: ∀t ∈ Ti, ∆−(t) = {S ∈ Π |[S]i <Ni

t}.

• ∀i ∈ Nn, ∀S ∈ Π , P i
S = [S]i ∪{p ∈ PAi

|p <Ni
[S]i}, and PS = ∪n

i=1P
i
S.

Example 5.17. There are three strict minimal siphons in the net shown in Fig.

5.5. They are S1 = {p3, p6, p9, p13, p14}, S2 = {p2, p5, p10, p12, p13}, and S3 =
{p3, p6, p10, p12−p14} with [S1] = {p2, p5, p8}, [S2] = {p1, p9}, and [S3] = {p1,

p2, p5, p8, p9}. The S4R is composed of two subnets. Let PA1
= {p1−p6} and

PA2
= {p8−p10}.

P1
S1

= {p2, p5} ∪ {p1} = {p1, p2, p5} and P2
S1

= [S1]
2 = {p8}. As a result,

we have PS1
= {p1, p2, p5, p8}. Similarly, PS2

= {p1, p8, p9} and PS3
= [S3] =

{p1, p2, p5, p8, p9}.

Let S be a siphon in an S4R that is composed of n state machines. A non-negative

P-vector kS for S is constructed. Without loss of generality, it is assumed that ∀i ∈

5.7 Deadlock Prevention in S4R 135

Nl , [S]i �= /0, ∀ j ∈ Nn\Nl , [S] j = /0, where Nl ⊆ Nn. Define Bi
S = {p|p ∈ [S]i,∄p′ ∈

[S]i, p <Ni
p′}. For siphon S3 = {p3, p6, p10, p12−p14} in Fig. 5.5, we have B1

S3
=

{p2, p5} and B2
S3

= {p9}. For siphon S5 = {p2, p4, p8, p10, p17, p21, p22, p26} in the

Petri net shown in Fig. 5.8, [S5] = {p12, p13, p18, p19}. As a result, BS5
= B1

S5
∪B2

S5
∪

B3
S5

= {p13, p18}, where B1
S5

= /0, B2
S5

= {p18}, and B3
S5

= {p13}.

Definition 5.21. A P-vector kS for a siphon S in an S4R is constructed as follows:

∀p /∈ PS, kS(p) := 0

∀p ∈ [S], kS(p) := hS(p)
i := 1

repeat

∀p ∈ Bi
S, αp := max{hS(p),hS(p′)|p′ <Ni

p, p′ ∈ [S]i}
∀px ∈ {p|p ∈ Bi

S}∪{p′|p′ <Ni
p, p′ ∈ [S]i}, kS(px) := αp

∀py ∈ {p′′|p′′ <Ni
p, p ∈ Bi

S, p′′ ∈ PS \ [S]i}, kS(py) := αp

∀pz ∈ ∩pw∈Bi
S
{p|p ∈ PS \ [S]i, p <Ni

pw}, kS(pz) := max{kS(p)|p ∈ Bi
S}

i := i+1

until i ≥ l +1

To further illustrate the computation of kS for siphon S in an S4R, we take the net

shown in Fig. 5.9 (without place VS) as an example, where PA j
= {p1, p2, . . . , p9, . . .}

and PA j+1
= {p11, p12, p13, p14, . . .}. Suppose that S is a siphon with T h(S) = 3p5 +

2p8 + p9 + 4p13. Clearly, we have [S] = {p5, p8, p9, p13}, hS(p5) = 3, hS(p8) = 2,

hS(p9) = 1, hS(p13) = 4, and ∀p �∈ [S], hS(p) = 0.

It is easy to verify that PS = P
j

S ∪P
j+1

S = {p1−p5, p7−p9} ∪ {p11−p13}.

Note that [S] j = {p5, p8, p9} and [S] j+1 = {p13}. We have B
j
S = {p5, p9} and B

j+1
S =

{p13}.

For p5 ∈ B
j
S, we have

αp5
:= 3,

kS(p5) := 3,

kS(p1) := 3, kS(p2) := 3, kS(p3) := 3, and kS(p4) := 3.

For p9 ∈ B
j
S, we have

αp8
:= 2,

kS(p8) := 2, kS(p9) := 2.

kS(p1) := 2, kS(p2) := 2, and kS(p7) := 2.

For p13 ∈ B
j+1
S , we have αp13

:= 4,

kS(p13) := 4,

kS(p11) := 4 and kS(p12) := 4.

By {p|p ∈ P
j

S \ [S] j, p <N j
p5}∩{p|p ∈ P

j
S \ [S] j, p <N j

p9} = {p1, p2} and

max{kS(p5), kS(p9)} = hS(p5) = 3, we have

kS(p1) := 3 and kS(p2) := 3.

In summary, we have kS(p1) = kS(p2) = kS(p3) = kS(p4) = kS(p5) = 3, kS(p7) =
kS(p8) = kS(p9) = 2, and kS(p11) = kS(p12) = kS(p13) = 4. ∀p /∈ PS, kS(p) = 0.

136 5 Deadlock Control Based on Elementary Siphons

p 0
j + 1

p 1 1

4 3

 p 1 3

p 1

p 3

 p 5

p 7

 p 9

p 0
j

p 1 4

p 1 2

p 8 p 4

p 2

4

3 2

V S

Fig. 5.9 S is a siphon with T h(S) = 3p5 +2p8 + p9 +4p13

Example 5.18. There are three strict minimal siphons S1 = {p3, p6, p9, p13, p14},

S2 = {p2, p5, p10, p12, p13}, and S3 = {p3, p6, p10, p12, p13, p14} in the net shown

in Fig. 5.5 with PS1
= {p1, p2, p5, p8}, PS2

= {p1, p8, p9} and PS3
= {p1, p2,

p5, p8, p9}.

For S1, ∀p /∈ PS1
, kS1

(p) = 0. kS1
(p1) = kS1

(p2) = kS1
(p5) = kS1

(p8) = 1.

For S2, T h(S2) = p9 +2p1. ∀p /∈PS2
, kS2

(p) = 0. We have kS2
(p8) = kS2

(p9) = 1

and kS2
(p1) = 2.

For S3, T h(S3) = 2p1 + p2 + p5 + p8 + p9. ∀p /∈ PS3
, kS3

(p) = 0. kS3
(p8) =

kS3
(p9) = 1, and kS3

(p1) = kS3
(p2) = kS3

(p5) = 2.

Next a parameterized siphon control approach is presented by adding a monitor

such that a siphon is max-controlled [1, 3–5, 35, 58].

Proposition 5.4. Let S be a strict minimal siphon in an S4R net (N,M0), where

N = (P0 ∪PA ∪PR,T,F,W). A monitor VS is added to (N,M0) by the enforcement

that gS = kS +VS is a P-invariant of the resultant net system (NV ,M0V), where NV =
(P0 ∪PA ∪PR ∪{VS},T,F ∪FV ,W ∪WV); ∀p ∈ P0 ∪PA ∪PR, M0V (p) = M0(p). Let

5.7 Deadlock Prevention in S4R 137

fS = ∑r∈SR Ir −gS and M0V (VS) = M0(S)−ξS (ξS ∈ N+). Then S is max-controlled

if ξS > ∑p∈S fS(p)(maxp•−1) and M0V (VS) ≥ maxVS
• .

Proof. Considering gS = kS +VS and fS = ∑r∈SR Ir − gS, we have fS = ∑r∈SR Ir −
kS −VS. Since ∑r∈SR Ir and gS are P-invariants of NV , fS is hence a P-invariant of

NV . Note that PS ⊆ PA. Hence, we have ∀p ∈ PS, M0V (p) = M0(p) = 0.

∑p∈P0∪PA∪PR∪{VS} fS(p)M0V (p)

= ∑p∈S fS(p)M0V (p)−∑p∈PS
kS(p)M0V (p)−M0V (VS)

≥ M0V (S)−∑p∈PS
kS(p)M0V (p)−M0V (VS)

= M0V (S)− (M0V (S)−ξS)
= ξS.

Considering ξS > ∑p∈S fS(p)(maxp•−1), we conclude that

∑p∈P0∪PA∪PR∪{VS} fS(p)M0V (p) > ∑p∈S fS(p)(maxp•−1).

From the definition of fS, it is true that || fS||−∩S = /0. Then we have || fS||+ = S.

S is hence max-controlled due to Proposition 2.1. ⊓⊔

Similarly, ξS is called the control depth variable of siphon S. Clearly, we have

∑p∈S fS(p)(maxp•− 1) < ξS < M0(S). Consider the siphon S with T h(S) = 3p5 +
2p8 + p9 +4p13 in Fig. 5.9, we have kS = 3p1 +3p2 +3p3 +3p4 +3p5 +2p7 +2p8 +
2p9 +4p11 +4p12 +4p13. Let VS be the monitor such that kS +VS is a P-invariant of

the resultant net. According to Proposition 5.4, VS is shown in Fig. 5.9.

It is worthy of noting that in Proposition 5.4 M0V (VS) ≥ maxVS
• is not necessary

for the controllability of siphon S. However, its truth ensures that the transitions in S•

can fire at least once. This is demonstrated by the S4R net shown in Fig. 5.10(a). The

siphon S = {p3, p5, p6} can lead the net to a deadlock state if it is not supervised.

By Proposition 5.4, we have gS = p2 +VS, ∑r∈SR Ir = p2 +2p3 +2p5 + p6, fS =
2p3 + 2p5 + p6 −VS. Note that ∑p∈S fS(p)(maxp•− 1) = 1 since maxp•

6
= 2. As a

result, ξS > 1, leading to ξS ≥ 2. This means M0V (VS) = 0 when ξS = 2, as shown in

Fig. 5.10(b). However, the addition of monitor VS introduces an empty siphon and

trap {p2,VS}, leading to the disablement of transition t1 and the loss of liveness of

the controlled system as shown in Fig. 5.10(b). That is to say, Proposition 5.4 fails

to compute a correct monitor to control the siphon in this net.

This example shows that the siphon control approach via adding monitors as

stated in [58] does not always lead to live transitions of an S4R, a subclass of G-

systems that are investigated in [58]. However, Fig. 5.10(c) depicts a live controlled

system for the net in Fig. 5.10(a), which can be found by intuition and observa-

tion. In this sense, the siphon control approach stated in [58] cannot be applied to

arbitrary S4R nets and G-systems.

Example 5.19. Let us consider siphon S1 = {p3, p6, p9, p13, p14} in the net shown in

Fig. 5.5. By Definition 5.21, we have kS1
= p1 + p2 + p5 + p8. As a result, gS1

=
kS1

+VS1
= p1 + p2 + p5 + p8 +VS1

. Noticing that

∑
r∈SR

1

Ir = Ip13
+ Ip14

= p2 + p5 + p9 + p13 + p3 + p6 + p8 + p14,

138 5 Deadlock Control Based on Elementary Siphons

p 1

p 2

t 2

t 1

p 3

t 3

t 5

p 5 p 4

p 6

t 4 2 2

2 p 1

p 2

t 2

t 1

p 3

t 3

t 5

p 5 p 4

p 6

t 4 2 2

2

(a) (b)

V S

p 1

p 2

t 2

t 1

p 3

t 3

t 5

p 5 p 4

p 6

t 4 2 2

2

(c)

V S

Fig. 5.10 Max-controlled siphon and its controllability

we have

fS1
= p3 + p6 + p9 + p13 + p14 − p1 −VS1

.

According to Proposition 5.4, fS1
is a P-invariant of NV . Let ξS1

= 2. Clearly, we

have

ξS1
> ∑

p∈S1

fS1
(p)(maxp• −1) = 0.

S1 is hence max-controlled by adding monitor VS1
with M0V (VS1

) = 3. The result-

ing net is shown in Fig. 5.11. Similarly, S2 and S3 are max-controlled by monitors

VS2
and VS3

, respectively, with ξS2
= 2, ξS3

= 2, M0V (VS2
) = 2, and M0V (VS3

) = 5.

This means that Proposition 5.4 can compute monitors for the example.

In an S4R, the controllability of a dependent siphon can also be ensured by prop-

erly supervising its elementary siphons. To achieve this, Corollary 3.16 is useful.

5.7 Deadlock Prevention in S4R 139

t 1

t 2

t 3

t 4

t 5

t 6

t 7

t 8

p 1

p 2

p 3

p 4

p 5

p 6

p 7

t 1 2

t 1 1

t 1 0

p 1 0

p 9

t 9

p 8

p 1 2

p 1 3

p 1 4

p 1 5

2

2

2

t 1

t 3
t 7

t 1 0

t 9

V S 1

1 0

1 0

p 1 1

t 6

t 1 1
t 1

t 2

t 9

V S 2

2

2

2

t 1 1 t 1

t 3

t 7 t 9

V S 3 5

2

2
2

Fig. 5.11 Three siphons are max-controlled by monitors

Theorem 5.10. Let (N,M0) be an S4R and S be a strongly dependent siphon with

ηS = ∑n
i=1 aiηSi

, where S1 − Sn are the elementary siphons of S. S is max-controlled

if:

1. (N,M0) is extended by adding n monitors VS1
− VSn such that S1 − Sn are max-

controlled, respectively, due to Proposition 5.4;

2. ∑n
i=1 aiξSi

> ∑n
i=1 aiM0(Si)+∑p∈S(maxp•−1)−M0(S), where ∀i∈Nn, ∑p∈Si

fSi
(p)

(maxp• −1) < ξSi
< M0(Si);

3. Mmin(Si) ≥ ξSi
, ∀i ∈ Nn.

Proof. By Corollary 3.16, S is max-controlled if

M0(S) >
n

∑
i=1

ai(M0(Si)−Mmin(Si))+ω(S),

where ω(S) = ∑p∈S(maxp• −1).

Considering that ∀i ∈ Nn, Mmin(Si)≥ ξSi
if monitor VSi

is added to make Si max-

controlled, S is max-controlled if ∑n
i=1 aiξSi

> ∑n
i=1 aiM0(Si)+ ∑p∈S(maxp• − 1)−

M0(S). ⊓⊔

140 5 Deadlock Control Based on Elementary Siphons

Theorem 5.11. Let (N,M0) be an S4R and S be a weakly dependent siphon with

ηS = ∑n
i=1 aiηSi

−∑n+m
j=n+1 a jηS j

, where S1−Sn+m are the elementary siphons of S. S

is max-controlled if:

1. (N,M0) is extended by adding n monitors VS1
−VSn such that S1−Sn are max-

controlled, respectively, due to Proposition 5.4;

2. ∑n
i=1 aiξSi

> ∑n
i=1 aiM0(Si)+∑p∈S(maxp•−1)−M0(S), where ∑p∈Si

fSi
(p) (maxp•

−1) < ξSi
< M0(Si);

3. Mmin(Si) ≥ ξSi
, ∀i ∈ Nn.

Proof. Since an S4R is well-initially-marked, the controllability of a weakly depen-

dent siphon depends on ∑n
i=1 aiηSi

only. That is, its controllability depends on S1-Sn

only. Therefore, this result is true. ⊓⊔

Example 5.20. In the net shown in Fig. 5.5, S3 is a strongly dependent siphon with

ηS3
= ηS1

+ ηS2
. According to Lemma 3.2, we have ω(S1) = 0, ω(S2) = 1, and

ω(S3) = 1.

Suppose that two monitors VS1
and VS2

are added to make S1 and S2 max-

controlled, respectively. In order to ensure the controllability of S3, by Theorem

5.10, we should have ξS1
+ξS2

> M0(S1)+M0(S2)−M0(S3)+∑p∈S3
(maxp• −1) =

5 + 4− 7 +(maxp•12
− 1) = 2 + 1 =3, i.e., ξS1

+ ξS2
> 3. Considering constraints

0 < ξS1
< M0(S1) = 5 and 1 < ξS2

< M0(S2) = 4, let ξS1
= ξS2

= 2. This leads to

the fact that S3 satisfies the max cs-property. Accordingly, we have M0V (VS1
) = 3

and M0V (VS2
) = 2, as shown in Fig. 5.11.

Next a deadlock prevention policy is presented for an S4R. Its output depends on

the applicability of Proposition 5.4.

Algorithm 5.3 Deadlock prevention for S4R

Input: An S4R (N,M0)
Output: a controlled system (NV ,M0V) with liveness or “undecided”

ΠE := {Si|Si is an elementary siphon of N}
ΠD := {SD j|SD j is a dependent siphon of N}
i := 1

f lag := 0

repeat

add VSi
to (N,M0) to make Si max-controlled by Proposition 5.4 with M0V (VSi

)=
M0(Si)−ξSi

, where ξSi
= ∑p∈Si

fSi
(p)(maxp•−1)+1

if M0V (VSi
) < maxV •

Si
then

f lag := 1

end if

until i ≥ |ΠE |+1

j := 1

repeat

if SD j is max-controlled with respect to its elementary siphons then

j := j +1

else

5.7 Deadlock Prevention in S4R 141

add monitor VD j for SD j

if M0V (VD j) < maxV •
D j

then

f lag := 1

end if

j := j +1

end if

until j ≥ |ΠD|+1

if flag=1 then

Output “Undecided”

else

Output (NV ,M0V)
end if

This algorithm first adds monitors for the elementary siphons. The addition of

monitor VD j for a dependent siphon SD j depends on its controllability under the

control depth variables of its elementary siphons. Obviously, it cannot always lead

to a controlled system with liveness since the siphon control method that is based

on the max-cs property does not work for arbitrary S4R nets. That is to say, this

algorithm can generate a controlled system with liveness for some particular S4R

nets.

Theorem 5.12. Algorithm 5.3 always terminates and its termination gives a liveness-

enforcing supervisor and a controlled system (NV ,M0V) if for any monitor V ,

M0V (V) ≥ maxV • .

Its proof is left as an exercise for the reader.

The existence of a liveness-enforcing supervisor with monitors added for the

elementary siphons can be decided by solving the following LPP:

min{
|ΠE |
∑
i=1

ξSi
} (5.7)

s.t.

n

∑
i=1

aiξSi
>

n

∑
i=1

aiM0(Si)+ω(S)−M0(S),∀S ∈ ΠD,

∑
p∈Si

fSi
(p)(maxp•−1) < ξSi

≤ M0(Si)−1,∀i ∈ N|ΠE |,

M0V (VSi
) ≥ maxV •

Si
,M0V (VSi

) = M0(Si)−ξSi
,∀i ∈ N|ΠE |.

If LPP (5.7) has a feasible solution and ∀i ∈ N|ΠE |, Mmin(Si) ≥ ξSi
, it implies

that there exists a liveness-enforcing supervisor with monitors that are added for the

elementary siphons only.

142 5 Deadlock Control Based on Elementary Siphons

Example 5.21. Consider an FMS with its layout shown in Fig. 5.12 and production

routes in Fig. 5.13. It consists of four robots R1−R4 and three machines M1−M3.

Each of R1−R3 can hold one product and R4 can hold three products every time.

Machines M1 can process two products and each of M2 and M3 can process three

products every time. There are three loading buffers I1−I3 and three unloading

buffers O1−O3 to load and unload the FMS. There are three raw product types,

namely J1, J2, and J3, to be processed. For these raw product types the produc-

tion cycles are shown in Fig. 5.13 in which r/r′ means a conjunctive requirement

of resources r and r′ in some operation. According to the production cycles, a raw

product J1 is taken from I1 by R1 and R2 and put in M1. After being processed by

M1, it is then moved to M3 by R4. Finally, after being processed by M3, it is pro-

cessed by M2 and R3 and then moved to O1. A raw product J2 is taken from I2 and

processed by M2 and R4, and then processed by M2 only. After being processed

by M2, it is then moved from M2 to O2 by R4. A raw product J3 is taken from I3,

processed by M3 and R3, and then by M3 and R4. After that, it is then processed by

M1. Finally, after being processed by M1 it is moved from M1 to O3 by R1 and R2

sequentially.

M 1

M 2

 R 1

 I 1 O 3

 R 2

 I 2

 R 4

 O 2

M 3

 R 3

 I 3 O 1

Fig. 5.12 An FMS layout

Figure 5.14 shows the net model of the FMS that may use a multiset of resources

at a processing step. The system net is an S4R where P0 = {p8, p12, p20}, PA1
=

{p1−p7}, PA2
= {p9−p11}, PA3

= {p13−p17}, PR1
= {p18, p19, p21−p25}, PR2

=
{p24, p25}, and PR3

= {p18, p19, p21−p24}. Places p21, p25, p22, p18, p19, p23 and

p24 denote M1, M2, M3, R1, R2, R3, and R4, respectively. Initially, it is assumed

5.7 Deadlock Prevention in S4R 143

I 1
M 1 R 4

M 1 R 4

J 1 : R 1 / R 2 M 3 M 2 / R 3 O 1

J 2 : I 2 M 2 / R 4 M 2 R 4 O 2

J 3 : I 3 M 3 / R 3 M 3 / R 4 M 1 R 1 R 2 O 3

Fig. 5.13 The production routings of an FMS

t 1

t 2

t 3

t 4

t 5

t 6

t 7

t 8

t 9

t 1 0

t 1 1

t 1 2

t 1 3

t 1 4

t 1 5

t 1 6

t 1 7

t 1 8

t 1 9

p 1

p 2

p 3

p 4

p 5

p 6

p 7
p 8

I 1 / O 1

p 9

p 1 0

p 1 1

p 1 2

I 2 / O 2

p 1 3

p 1 4

p 1 5

p 1 6

p 1 7

p 2 0

I 3 / O 3

p 1 8

R 1

p 1 9

R 2

p 2 1

M 1

p 2 2

M 3

2

2

2

2

2

p 2 3

R 3

p 2 4

R 4

2

2

p 2 5 M 2

1 0

1 0
1 0

Fig. 5.14 The Petri net model (N,M0) of an FMS

that there are no parts in the system. M0(p8) = M0(p12) = M0(p20) = 10 represents

the maximal number of concurrent jobs that can be processed for part types J1, J2,

and J3, respectively.

The net system contains deadlocks. There are 17 strict minimal siphons as shown

below, among which S1−S6 are elementary and S7−S17 are strongly dependent:

S1 = {p2, p6, p17−p19, p21},

S2 = {p2, p6, p16, p18, p21},

144 5 Deadlock Control Based on Elementary Siphons

S3 = {p5, p9, p11, p14, p22, p24, p25},

S4 = {p5, p9, p11, p14, p22−p24},

S5 = {p4, p9, p11, p14, p22, p24},

S6 = {p3, p7, p9, p11, p15, p21, p24},

S7 = {p5, p9, p11, p17−p19, p21, p22, p24, p25},

S8 = {p5, p9, p11, p16, p18, p21, p22, p24, p25},

S9 = {p5, p9, p11, p15, p21, p22, p24, p25},

S10 = {p5, p9, p11, p17−p19, p21−p24},

S11 = {p5, p9, p11, p16, p18, p21−p24},

S12 = {p5, p9, p11, p15, p21−p24},

S13 = {p4, p9, p11, p17−p19, p21, p22, p24},

S14 = {p4, p9, p11, p16, p18, p21, p22, p24},

S15 = {p4, p9, p11, p15, p21, p22, p24},

S16 = {p3, p7, p9, p11, p17−p19, p21, p24},

S17 = {p3, p7, p9, p11, p16, p18, p21, p24}.

This system contains seven resources, leading to seven minimal P-semiflows:

Ip18
= p1 + p16 + p18,

Ip19
= p1 + p17 + p19,

Ip21
= p2 + p6 + p15 + p21,

Ip22
= 2p4 +2p13 +2p14 + p22,

Ip23
= p5 + p13 + p23,

Ip24
= p3 + p7 + p9 + p11 + p14 + p24,

Ip25
= p5 +2p9 +2p10 + p25.

Note that M0(p18) = 1, M0(p19) = 1, M0(p21) = 2, M0(p22) = 3, M0(p23) = 1,

M0(p24) = 3, and M0(p25) = 3. The number of tokens in each siphon under the

initial marking can be easily computed.

Six monitors VS1
−VS6

are respectively added for S1 − S6. We take the control of

S3 = {p5, p9, p11, p14, p22, p24, p25} as an example.

We have T h(S3) = p3 + 2p4 + p7 + 2p10 + 2p13 and PS3
= P1

S3
∪P2

S3
∪P3

S3
,

where P1
S3

= {p1, p2, p3, p4, p6, p7}, P2
S3

= {p9, p10}, and P3
S3

= {p13}. Accord-

ingly, we have kS3
(p1) = kS3

(p2) = kS3
(p3) = kS3

(p6) = kS3
(p7) = kS3

(p4) = 2,

kS3
(p9)= kS3

(p10)= 2, and kS3
(p13)= 2. ∀p∈PR∪P0∪{p5, p11, p14, p15, p16, p17},

kS3
(p) = 0. As a result, gS3

= kS3
+VS3

= 2p1 +2p2 +2p3 +2p4 +2p6 +2p7 +2p9 +
2p10 +2p13 +VS3

.

By

∑r∈SR
3

Ir = Ip22
+ Ip24

+ Ip25
= (2p4 +2p13 +2p14 + p22)+(p9 + p11 + p3 + p7 +

p14 + p24)+(2p9 +2p10 + p5 + p25),
we have

fS3
= ∑r∈SR

3
Ir−gS3

= p5 + p9 + p11 +3p14 + p22 + p24 + p25−VS3
−2p1−2p2−

p3 −2p6 − p7.

Clearly, || fS3
||−∩S3 = /0 and || fS3

||+ = S3 are true. Considering

M0(S3) = M0(p22)+M0(p24)+M0(p25) = 9

and

ω(S3) = ∑p∈S fS3
(maxp• −1) = (maxp•22

−1)+(maxp•
25
−1) = 2,

5.7 Deadlock Prevention in S4R 145

we have 2 < ξS3
< 9. In an analogous way, monitors VS1

, VS2
, VS4

, VS5
, and VS6

can

be accordingly added to the plant net model. The controlled system is denoted by

(NV ,M0V) as shown in Fig. 5.15. The details concerning the control of elementary

siphons are given as follows:

(1) S1:

∑r∈SR
1

Ir = 2p1 + p2 + p6 + p15 + p16 + p17 + p18 + p19 + p21;

T h(S1) = 2p1 + p15 + p16;

kS1
= 2p1 + p13 + p14 + p15 + p16;

gS1
= 2p1 + p13 + p14 + p15 + p16 +VS1

;

fS1
= p2 + p6 + p17 + p18 + p19 + p21 −VS1

− p13 − p14;

M0V (VS1
) = 4−ξS1

;

0 < ξS1
≤ 3.

(2) S2:

∑r∈SR
2

Ir = p1 + p2 + p6 + p15 + p16 + p18 + p21;

T h(S2) = p1 + p15;

kS2
= p1 + p13 + p14 + p15;

gS2
= p1 + p13 + p14 + p15 +VS2

;

fS2
= p2 + p6 + p16 + p18 + p21 −VS2

− p13 − p14;

M0V (VS2
) = 3−ξS2

;

0 < ξS2
≤ 2.

(3) S3:

∑r∈SR
3

Ir = p3 +2p4 + p5 + p7 +3p9 +2p10 + p11 +2p13 +3p14 + p22 + p24 + p25;

T h(S3) = p3 +2p4 + p7 +2p10 +2p13;

kS3
= 2p1 +2p2 +2p3 +2p4 +2p6 +2p7 +2p9 +2p10 +2p13;

gS3
= 2p1 +2p2 +2p3 +2p4 +2p6 +2p7 +2p9 +2p10 +2p13 +VS3

;

fS3
= p5 + p9 + p11 +3p14 + p22 + p24 + p25 −VS3

−2p1 −2p2 − p3 −2p6 − p7;

M0V (VS3
) = 9−ξS3

;

2 < ξS3
≤ 8.

(4) S4:

∑r∈SR
4

Ir = p3 +2p4 + p5 + p7 + p9 + p11 +3p13 +3p14 + p22 + p23 + p24;

T h(S4) = p3 +2p4 + p7 +3p13;

kS4
= 2p1 +2p2 +2p3 +2p4 +2p6 +2p7 +3p13;

gS4
= 2p1 +2p2 +2p3 +2p4 +2p6 +2p7 +3p13 +VS4

;

fS4
= p5 + p9 + p11 +3p14 + p22 + p23 + p24 −VS4

−2p1 −2p2 − p3 −2p6 − p7;

M0V (VS4
) = 7−ξS4

;

1 < ξS4
≤ 6.

(5) S5:

∑r∈SR
5

Ir = p3 +2p4 + p7 + p9 + p11 +2p13 +3p14 + p22 + p24;

T h(S5) = p3 + p7 +2p13;

kS5
= p1 + p2 + p3 + p6 + p7 +2p13;

gS5
= p1 + p2 + p3 + p6 + p7 +2p13 +VS5

;

fS5
= 2p4 + p9 + p11 +3p14 + p22 + p24 −VS5

− p1 − p2 − p6;

M0V (VS5
) = 6−ξS5

;

1 < ξS5
≤ 5.

146 5 Deadlock Control Based on Elementary Siphons

(6) S6:

∑r∈SR
6

Ir = p2 + p3 + p6 + p7 + p9 + p11 + p14 + p15 + p21 + p24;

T h(S6) = p2 + p6 + p14;

kS6
= p1 + p2 + p6 + p13 + p14;

gS6
= p1 + p2 + p6 + p13 + p14 +VS6

;

fS6
= p3 + p7 + p9 + p11 + p15 + p21 + p24 −VS6

− p1 − p13;

M0V (VS6
) = 5−ξS6

;

0 < ξS6
≤ 4.

Table 5.6 shows the controllability of all dependent siphons by Theorem 5.10.

Algorithm 5.3 adds six monitors for the elementary siphons with ξS1
= 1, ξS2

= 1,

ξS3
= 3, ξS4

= 2, ξS5
= 2, and ξS6

= 4, which can ensure the controllability of all

dependent siphons. Accordingly, we have M0V (VS1
) = 3, M0V (VS2

) = 2, M0V (VS3
)

= 6, M0V (VS4
) = 5, M0V (VS5

) = 4 and M0V (VS6
) = 1, as shown in Fig. 5.15.

Table 5.6 Controllability of dependent siphons

Siphon T -vector relationship Controllability

S7 ηS7
= ηS1

+ηS3
+ηS6

ξS1
+ξS3

+ξS6
> 7

S8 ηS8
= ηS2

+ηS3
+ηS6

ξS2
+ξS3

+ξS6
> 7

S9 ηS9
= ηS3

+ηS6
ξS3

+ξS6
> 5

S10 ηS10
= ηS1

+ηS4
+ηS6

ξS1
+ξS4

+ξS6
> 6

S11 ηS11
= ηS2

+ηS4
+ηS6

ξS2
+ξS4

+ξS6
> 6

S12 ηS12
= ηS4

+ηS6
ξS4

+ξS6
> 4

S13 ηS13
= ηS1

+ηS5
+ηS6

ξS1
+ξS5

+ξS6
> 6

S14 ηS14
= ηS2

+ηS5
+ηS6

ξS2
+ξS5

+ξS6
> 6

S15 ηS15
= ηS5

+ηS6
ξS5

+ξS6
> 4

S16 ηS16
= ηS1

+ηS6
ξS1

+ξS6
> 2

S17 ηS17
= ηS2

+ηS6
ξS2

+ξS6
> 2

Alternatively, a set of control depth variables of the elementary siphons can be

found by solving the following LPP:

z = min{
6

∑
i=1

ξSi
}

s.t.

ξS1
+ξS3

+ξS6
> 7,

ξS2
+ξS3

+ξS6
> 7,

ξS3
+ξS6

> 5,

ξS1
+ξS4

+ξS6
> 6,

ξS2
+ξS4

+ξS6
> 6,

ξS4
+ξS6

> 4,

ξS1
+ξS5

+ξS6
> 6,

ξS2
+ξS5

+ξS6
> 6,

ξS5
+ξS6

> 4,

ξS1
+ξS6

> 2,

5.7 Deadlock Prevention in S4R 147

t 1

t 2

t 3

t 4

t 5

t 6

t 7

t 8

t 9

t 1 0

t 1 1

t 1 2

t 1 3

t 1 4

t 1 5

t 1 6

t 1 7

t 1 8

t 1 9

p 1

p 2

p 3

p 4

p 5

p 6

p 7
p 8

I 1 / O 1

p 9

p 1 0

p 1 1

p 1 2

I 2 / O 2

p 1 3

p 1 4

p 1 5

p 1 6

p 1 7

p 2 0

I 3 / O 3

p 1 8

R 1

p 1 9

R 2

p 2 1

M 1

p 2 2

M 3

2

2

2

2

2

p 2 3

R 3

p 2 4

R 4

2

2

p 2 5 M 2

t 2

t 1 8
2

t 1 4

t 1 4

1 0

1 0

1 0

t 7

t 1 t 1 7

V S 2

t 2 t 1 4

t 1 t 1 5
V S 5

t 9 t 1 4

t 4

2

2

4 t 1 t 1 6

V S 6

t 8 t 1 4

t 3

t 7

t 1

t 1 4

V S 1 2
2

3

t 5

t 1

t 1 5
V S 4 2

2
3

3

5

t 1

t 1 0

t 1 2
t 5

t 1 5
2

2 2

2

2
2

V S 3

6

Fig. 5.15 The controlled system (NV ,M0V)

ξS2
+ξS6

> 2,

0 < ξS1
≤ M0(S1)−1,

0 < ξS2
≤ M0(S2)−1,

2 < ξS3
≤ M0(S3)−1,

1 < ξS4
≤ M0(S4)−1,

1 < ξS5
≤ M0(S5)−1,

0 < ξS6
≤ M0(S6)−1,

M0(S1)−ξS1
≥ maxV •

S1
,

M0(S2)−ξS2
≥ maxV •

S2
,

M0(S3)−ξS3
≥ maxV •

S3
,

148 5 Deadlock Control Based on Elementary Siphons

M0(S4)−ξS4
≥ maxV •

S4
,

M0(S5)−ξS5
≥ maxV •

S5
,

M0(S6)−ξS6
≥ maxV •

S6
,

maxV •
S1

= 2,

maxV •
S2

= 1,

maxV •
S3

= 2,

maxV •
S4

= 3,

maxV •
S5

= 2,

maxV •
S6

= 1,

M0(S1) = 4,

M0(S2) = 3,

M0(S3) = 9,

M0(S4) = 7,

M0(S5) = 6,

M0(S6) = 5.

Solving the above LPP gives an optimal solution z∗ = 13 with ξS1
= 1, ξS2

= 1,

ξS3
= 3, ξS4

= 2, ξS5
= 2, and ξS6

= 4. Also, it is easy to verify that ∀i∈{1,2, . . . ,6},

Mmin(Si)≥ ξSi
. This leads to M0V (VS1

) = 3, M0V (VS2
) = 2, M0V (VS3

) = 6, M0V (VS4
)

= 5, M0V (VS5
) = 4 and M0V (VS6

) = 1. As a result, a live controlled system with six

monitors can be obtained by solving LPP.

Remark 5.2. It is found by Chao [8] that max-cs property is rather conservative.

That is to say, a siphon that is not max-controlled does not necessarily lead to dead

transitions. A new concept called max’-controlled siphons is accordingly developed.

However, the way of adding a monitor such that a siphon is max’-controlled is not

presented. In this sense, making a siphon max’-controlled via the addition of a mon-

itor remains open. ⊓⊔

5.8 Bibliographical Remarks

Deadlock is a major issue that must be addressed in contemporary resource allo-

cation systems. Deadlocks and related blocking phenomena not only degrade the

productivity of a system but also lead to catastrophic results in some highly au-

tomated systems, e.g., semiconductor manufacturing systems [17]. Their efficient

handling becomes a necessary condition for a system to gain high throughput and

safety. This is the reason why this problem is extensively investigated in the litera-

ture, particularly within the area of flexible manufacturing systems [14, 21, 56, 57].

Deadlock is first addressed by computer scientists [10, 22, 23, 26, 48]. Some im-

portant results about deadlocks in Petri nets are obtained by Commoner in 1972 [13].

Handling deadlock prevention in manufacturing dates back to 1990 due to the sem-

inal work by Roszkowska and Viswanadham et al. [2, 43–46, 55]. The last two

decades have seen much effort for deadlock control in flexible manufacturing [15].

5.8 Bibliographical Remarks 149

The work of Fanti and Zhou [17] surveys a variety of deadlock control ap-

proaches that are based on graph theory, automata, and Petri nets in the literature.

A survey and comparison of Petri net-based deadlock prevention policies for FMS

can be found in [36]. Also readers are referred to the books [28] and [42].

Problems and Discussions

5.1. For an S3PR, the existence of a liveness-enforcing supervisor with monitors

that are added for elementary siphons only depends on the presence of a feasible

solution to the following LPP:

min
m

∑
i=1

ξSi
(5.8)

s.t.

M0(SD j) >
m

∑
i=1

(M0(Si)−ξSi
), j = 1,2, . . . ,n,

1 ≤ ξSi
≤ M0(Si)−1, i = 1,2, . . . ,m,

where ΠD = {SD j| j = 1,2, . . . ,n} and ΠE = {Si|i = 1,2, . . . ,m} are the sets of de-

pendent and elementary siphons, respectively.

Can it be proved that LPP (5.8) definitely has a feasible solution for an S3PR

with acceptable initial markings?

5.2. Design a liveness-enforcing supervisor for the net shown in Fig. 5.8 by the

deadlock prevention policy presented in Sect. 5.6.

5.3. The net (N,M0) shown in Fig. 5.16 is the model of an FMS consisting of four

machine tools and two robots. Two types of parts can be produced in this system. It

is an S3PR where p1 and p8 are idle process places, p14−p19 are resource places,

and the others are operation places.

1. Find all the strict minimal siphons.

2. By the elementary siphon identification algorithm, compute the set of elementary

siphons. Check whether there exists a liveness-enforcing supervisor by explicitly

controlling its elementary siphons only.

3. According to the definition of the elementary siphons in a Petri net, they are not

unique. Suppose that a net has n siphons and rank([η]) = m. We can at most find

n!/(m!(n − m)!) different sets of elementary siphons. By using this example,

compare the permissive behavior of the supervisors resulting from controlling

different sets of elementary siphons.

150 5 Deadlock Control Based on Elementary Siphons

t 1

t 2 t 3

t 4
t 5

t 6

t 7

t 8 t 9

t 1 0

t 1 1

t 1 2

t 1 3

t 1 4

p 1

p 2

p 3

p 4

p 5

p 6

p 7

p 8

p 9

p 1 0

p 1 1

p 1 2

p 1 3

p 1 4

M 1

p 1 5

M 2

p 1 6

M 3

p 1 7

M 4

p 1 8

R 1

p 1 9

R 2

6

6

Fig. 5.16 An S3PR net (N,M0)

5.4. The development of a deadlock prevention policy without the complete siphon

enumeration of a plant Petri net model can be first traced to the work by Huang et

al. [24] in which an algorithm that extracts a strict minimal siphon from an unmarked

maximal siphon is proposed. However, the algorithm is problematic. The corrections

are given in [34].

The deadlock prevention policy in [24] consists of two phases: siphon control

and control-induced siphon control. However, in each control phrase, the concept of

elementary siphons is not considered. Design a novel deadlock control policy based

on the policy in [24] by considering the existence of elementary siphons in each

phrase. Take the nets shown in Figs. 5.8 and 5.16 as examples.

5.5. One of the most important contributions in the development of deadlock control

strategies is due to Park and Reveliotis. In [40], a deadlock prevention policy is

proposed for S4R, which is of polynomial complexity. By this deadlock prevention

policy, design a liveness-enforcing supervisor for the net shown in Fig. 5.5.

5.6. Iterative siphon control for deadlock prevention is a good but old idea. A ba-

sic iterative siphon control approach [27, 39] for plant net model (N,M0) can be

generalized as follows:

i := 0

Π (0) = /0

N(0) := N

M(0) := M0

5.8 Bibliographical Remarks 151

i := i+1

Find the set Π (i) of minimal siphons of N(i−1) not belonging to ∪i−1
k=0Π (k)

repeat

Implement on (N(i−1),M(i−1)) the set of GMECs [20] {λ T
S M ≥ 1,∀S ∈ Π (i)}

and denote the resultant net by (N(i),M(i))
i := i+1

Find the set Π (i) of minimal siphons of N(i−1) not belonging to ∪i−1
k=0Π (k)

until Π (i) = /0

output (N(i),M(i))

Using the iterative siphon control scheme mentioned above, design a liveness-

enforcing supervisor for the net shown in Fig. 5.8. It is worth noting that this algo-

rithm is effective if at each iteration step, the net that is handled is ordinary. In the

process of iterations, a generalized net may be produced. We refer the reader to the

work in [27,29], and [41] to complete the iteration for this example. Decide whether

an optimal liveness-enforcing supervisor can be found.

5.7. Implicit places [11, 12, 18, 19, 47] are a class of elements in a Petri net whose

removal does not change the behavior of the Petri net. For example, the deadlock

prevention policy proposed in [16] computes 18 monitors for the Petri net model

shown in Fig. 5.8. By considering the elementary siphons, however, the addition of

six monitors for the elementary siphons can lead to a live controlled system. Both

nets with the different number of monitors have the same behavior. Identify the

implicit places from the net that has 18 monitors and compare with the one that

has six monitors. The readers are suggested to pay attention to the computational

complexity of identifying implicit places and controllability decision of dependent

siphons [37].

5.8. The redundancy problem of the monitors that are added for siphon control is

also noticed by Iordache, Moody, and Antsaklis. Use the redundant monitor identifi-

cation method proposed in [27] to decide whether the monitors in the live controlled

system resulting from the deadlock prevention policy in [16] can be removed.

5.9. A redundant monitor identification method is proposed in [53] by using the

complete state enumeration. Discuss its pros and cons.

5.10. Compare the computational burden by using INA [49] and the MIP-based

deadlock detection method [9] to find all the strict minimal siphons in differently

sized S3PR nets. Supposedly, the superiority of the MIP-based deadlock detection

method is more and more evident as a net size grows.

5.11. By Definitions 5.19 and 5.20, the deadlock prevention policy developed in [16]

guarantees that, at any reachable marking, the token count in the adjoint set of a

siphon does not exceed the initial number of tokens marked in the siphon. To be

formal, the policy ensures that ∀S ∈ Π , ∀M ∈ R(N,M0), M(PS) ≤ M0(S)−1. That

is to say, deadlocks in an S3PR can be prevented by enforcing the following set of

GMECs by monitors: (L,B) = {(li,bi)|li = ∑p∈PSi
p,bi = M0(Si)−1}.

152 5 Deadlock Control Based on Elementary Siphons

By using the results presented in Chap. 4, a set of monitors that are added for

elementary constraints only may enforce all GMECs in the set.

The Petri net (N,M0) in Fig. 5.3 is an S3PR if P0 = {p1, p10}, PR = {p11, p12, p13,
p14, p15}, and others are operation places. There are three strict minimal siphons

S1 = {p5, p9, p12, p13}, S2 = {p4, p6, p13, p14}, and S3 = {p6, p9, p12, p13, p14}.

The adjoint sets of the three siphons are PS1
= {p3, p4, p7, p8}, PS2

= {p3, p5,

p7, p8}, and PS3
= {p3, p4, p5, p7, p8}.

1. List the set of GMECs for this Petri net to implement the deadlock prevention

policy in [16].

2. Find a monitor solution in which only elementary constraints are explicitly con-

trolled.

3. Compare the two supervisors found by this GMEC-based method and the policy

in [16].

4. Check whether there exist implicit places in the supervisor that is computed by

the GMEC-based method.

5. By the MIP-based deadlock detection method, check whether there exist redun-

dant monitors whose removal keeps the liveness of the resultant net systems.

p 5

p 1 4

p 1 3

p 1 5

p 8

p 7

p 6

p 1 1

p 1 2

t 1 2

p 1

p 1 0

p 9

p 4 p 3

p 2

p 1 6

t 1 1

t 1 0

t 9

t 8

t 6

t 7

t 5

t 4

t 3

t 2

t 1

Fig. 5.17 An S3PR net (N,M0)

5.12. Redo (1)−(5) of Problem 5.11 for the Petri net model of the FMS in Example

5.12.

5.8 Bibliographical Remarks 153

5.13. Let S1 = {p5, p9, p10, p11, p12, p13}, S2 = {p3, p4, p9, p10, p11, p12}, S3 =
{p2, p3, p9, p10, p11}, and S4 = {p5, p7, p12, p13}. Construct an S3PR N such that

Π = {S1,S2,S3,S4} is the set of strict minimal siphons of N. Verify whether the net

shown in Fig. 5.18 is such an S3PR.

5.14. Let S1 = {p5, p9, p10, p11, p12, p13, p16}, S2 = {p5, p8, p11, p12, p13, p16}, S3 =
{p2, p9, p10, p11}, and S4 = {p5, p7, p12, p13}. Construct an S3PR N such that Π =
{S1,S2,S3,S4} is the set of strict minimal siphons of N. Verify whether the net shown

in Fig. 5.17 is such an S3PR.

5.15. Let S1 = {p1, p2,r1,r2} and S2 = {p3, p4,r2,r3,r4}. Find an S3PR N = (P0 ∪
PA ∪PR,T,F) such that ΠE = {S1,S2}, where {p1−p4} ⊆ PA and {r1−r4} ⊆ PR.

5.16. Let ΠE = {Si|i ∈ Nn}. Develop an algorithm that can construct an S3PR N =
(P0 ∪PA ∪PR,T,F) such that ΠE is a set of elementary siphons of N.

p 5

p 1 4

p 1 3

p 1 5

p 8

p 7

p 6

p 1 1

p 1 2

p 1

p 1 0

p 9

p 4 p 3

p 2

t 1 2

t 1 1

t 1 0

t 9

t 8

t 6

t 7

t 5

t 4

t 3

t 2

t 1

Fig. 5.18 An S3PR net (N,M0)

5.17. Properly set parameters w1−w12, x, y, and z for the net in Fig. 5.19 such that

its liveness is independent from the non-zero initial markings d1 and d2 of places p4

and p5, respectively.

5.18. Prove Theorem 5.12. Hint: We refer the reader to the proof of Theorem VI.I

in [16].

154 5 Deadlock Control Based on Elementary Siphons

p 4

p 5

p 7

p 6

p 1 0

p 1 1

t 5

t 6

t 7

p 1

p 9
p 8

p 3

p 2

t 8

t 4

t 3

t 2

t 1

z

x

y

w 1 0

w 1 1 w 9

w 8

w 7

w 6

w 5

w 3

w 4 w 2

w 1

w 1 2

d 1 d 2

Fig. 5.19 An S4R net (N,M0)

References

1. Abdallah, I.B., ElMaraghy, H.A. (1998) Deadlock prevention and avoidance in FMS: A Petri

net based approach. International Journal of Advanced Manufacturing Technology, vol.14,

no.10, pp.704–715.

2. Banaszak, Z., Roszkowska, E. (1988) Deadlock avoidance in pipeline concurrent processes.

Podstawy Sterowania (Foundations of Control), vol.18, no.1, pp.3–17.

3. Barkaoui, K., Abdallah, I.B. (1996) Analysis of a resource allocation problem in FMS using

structure theory of Petri nets. In Proc. 1st Int. Workshop on Manufacturing and Petri Nets,

pp.62–76.

4. Barkaoui, K., Pradat-Peyre, J.F. (1996) On liveness and controlled siphons in Petri nets. In

Proc. 17th Int. Conf. on Applications and Theory of Petri Nets Lecture Notes in Computer

Science, vol.1091, pp.57–72.

5. Barkaoui, K., Chaoui, A., Zouari, B. (1997) Supervisory control of discrete event systems

based on structure theory of Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cyber-

netics, pp.3750–3755.

6. Chao, D.Y. (2006) An incremental approach to extracting minimal bad siphons, International

Journal of Information Science and Engineering, vol.23, no.1, pp.203–214.

7. Chao, D.Y. (2006) Computation of elementary siphons for deadlock control. The Computer

Journal, vol.49, no.4, pp.470–479.

8. Chao, D.Y. (2007) Max′-controlled siphons for liveness of S3PGR2. IET Control Theory and

Applications, vol.1, no.4, pp.933–936.

9. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical

programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.

10. Coffman, E.G., Elphick, M.J., Shoshani, A. (1971) Systems deadlocks. ACM Computing Sur-

veys, vol.3, no.2, pp.67–78.

11. Colom, J.M., Silva, M. (1989) Improving the linearly based characterization of P/T nets. In

Proc. 10th Int. Conf. on Applications and Theory of Petri Nets, G. Rozenberg (Ed.), Lecture

Notes in Computer Science, vol.483, pp.113–145.

12. Colom, J.M., Campos, J., Silva, M. (1990) On liveness analysis through linear algebraic tech-

niques. In Proc. of Annual General Meeting of ESPRIT Basic Research Action 3148 Design

Methods Based on Nets DEMON.

References 155

13. Commoner, F. (1972) Deadlocks in Petri nets. Report CA-7206-2311, Massachusetts Com-

puter Associates, Wakefield, Massachusetts.

14. D’souza, K.A., Khator, S.K. (1994) A survey of Petri nets in automated manufacturing sys-

tems control. Computers in Industry Engineering, vol.24, no.1, pp.5–16.

15. D’souza, K.A., Khator, S.K. (1997) System reconfiguration to avoid deadlocks in automated

manufacturing systems. Computers in Industry Engineering, vol.32, no.2, pp.455–465.

16. Ezpeleta, J., Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy

for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11,

no.2, pp.173–184.

17. Fanti, M.P., Zhou, M.C. (2004) Deadlock control methods in automated manufacturing sys-

tems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.5–22.

18. Garcı́a-Vallés, F., Colom, J.M. (1999) Implicit places in net systems. In Proc. 8th Int. Work-

shop on Petri Nets and Performance Models, pp.104–113.

19. Garcı́a-Vallés, F., Colom, J.M. (2002) Checking redundancy in supervisory control. A com-

plexity result. In Proc. 15th IFAC World Congress on Automatic Control.

20. Giua, A., DiCesare, F., Silva, M. (1992) Generalized mutual exclusion constraints on nets

with uncontrollable transitions. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics,

pp.974–979.

21. Giua, A., Seatzu, C. (2007) A systems theory view of Petri nets. In Advances in Control

Theory and Applications, Lecture Notes in Control and Information Science, vol.353, C.

Bonivento et al. (Eds.), pp.99–127.

22. Gold, E.M. (1978) Deadlock predication: Easy and difficult cases. SIAM Journal of Comput-

ing, vol.7, no.3, pp.320–336.

23. Haberman, A. (1969) Prevention of system deadlocks. Communications of the ACM, vol.12,

no.7, pp.373–377.

24. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S. L. (2001) Deadlock prevention policy based on

Petri nets and siphons. International Journal of Production Research, vol.39, no.2, pp.283–

305.

25. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L. (2001) A deadlock prevention policy for

flexible manufacturing systems using siphons. In Proc. IEEE Int. Conf. on Robotics and Au-

tomation, pp.541–546.

26. Isloor, S.S., Marsland, T.A. (1980) The deadlock problem: An overview. Computer, vol.13,

no.9, pp.58–77.

27. Iordache, M.V., Moody, J.O., Antsaklis, P.J. (2002) Synthesis of deadlock prevention supervi-

sors using Petri nets. IEEE Transactions on Robotics and Automation, vol.18, no.1, pp.59–68.

28. Iordache, M.V., Antsaklis, P.J. (2006) Supervisory Control of Concurrent Systems: A Petri

Net Structural Approach. Berlin: Springer.

29. Lautenbach, K., Ridder, H. (1996) The linear algebra of deadlock avoidance−a Petri net

approach. No.25-1996, Technical Report, Institute of Software Technology, University of

Koblenz-Landau, Koblenz, Germany.

30. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to dead-

lock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.34, no.1, pp.38–51.

31. Li, Z.W., Uzam, M., Zhou, M.C. (2004) Comments on “Deadlock prevention policy based

on Petri nets and siphons”. International Journal of Production Research, vol.42, no.24,

pp.5253–5254.

32. Li, Z.W., Zhou, M.C. (2006) Two-stage method for synthesizing liveness-enforcing super-

visors for flexible manufacturing systems using Petri nets. IEEE Transactions on Industrial

Informatics, vol.2, no.4, pp.313–325.

33. Li, Z.W., Hu, H.S., Wang, A.R. (2007) Design of liveness-enforcing supervisors for flexible

manufacturing systems using Petri nets. IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C, vol.37, no.4, pp.517–526.

34. Li, Z.W., Liu, D. (2007) A correct minimal siphons extraction algorithm from a maximal

unmarked siphon of a Petri net. International Journal of Production Research, vol.45, no.9,

pp.2163–2167.

156 5 Deadlock Control Based on Elementary Siphons

35. Li, Z.W., Zhao, M. (2008) On controllability of dependent siphons for deadlock prevention in

generalized Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.38,

no.2, pp.369–384.

36. Li, Z.W., Zhou, M.C. (2008) A survey and comparison of Petri net-based deadlock preven-

tion policies for flexible manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part C, vol.38, no.2, pp.172–188.

37. Li, Z.W. (2009) On systematic methods to remove redundant monitors from liveness-

enforcing net supervisors. To appear in Computer and Industrial Engineering.

38. Lindo, Premier Optimization Modeling Tools, http://www.lindo.com/.

39. Moody, J.O., Antsaklis, P.J. (1998) Supervisory Control of Discrete Event Systems Using Petri

Nets. Boston, MA: Kluwer.

40. Park, J., Reveliotis, S.A. (2001) Deadlock avoidance in sequential resource allocation systems

with multiple resource acquisitions and flexible routings. IEEE Transactions on Automatic

Control, vol.46, no.10, pp.1572–1583.

41. Piroddi, L., Cordone, R., Fumagalli, I. (2008) Selective siphon control for deadlock preven-

tion in Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A. vol. 38, no.

6, pp.1337–1348.

42. Reveliotis, S.A. (2005) Real-time Management of Resource Allocation Systems: A Discrete

Event Systems Approach. New York: Springer.

43. Roszkowska, E. (1990) Deadlock avoidance in concurrent compound pipeline processes,

Archives of Theoretical and Engineering Informatics, vol.2, no.3–4, pp. 227–242.

44. Roszkowska, E. (1991) Application of Petri nets to the modelling and efficiency evaluation

of FMS, Ph.D. thesis (in Polish), Report 4/91, Institute of Engineering Cybernetics, Wroclaw

University of Technology, Poland.

45. Roszkowska, E., Wojcik, R. (1993) Problems of process flow feasibility in FAS. In CIM in

Process and Manufacturing Industries, Oxford: Pergamon Press, pp.115–120.

46. Roszkowska, E., Jentink, J. (1993) Minimal restrictive deadlock avoidance in FMSs. In Proc.

European Control Conf., J. W. Nieuwenhuis, C. Pragman, and H. L. Trentelman, Eds., vol.2,

pp. 530–534.

47. Silva, M., Teruel, E., Colom, J.M. (1998) Linear algebraic and linear programming techniques

for the analysis of place/transition net systems. In Lectures on Petri Nets I: Basic Models,

Lectures Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.), pp.309–

373.

48. Singhal, M. (1989) Deadlock detection in distributed systems. IEEE Computer, vol.22, no.11,

pp.37–48.

49. Starke, P.H. (2003) INA: Integrated Net Analyzer. http://www2.informatik.hu-berlin.de/
∼starke/ina.html.

50. Tricas, F., Garcı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (1998) A structural approach to the

problem of deadlock prevention in processes with shared resources. In Proc. 4th Workshop

on Discrete Event Systems, pp.273–278.

51. Tricas, F., Garcı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (2000) An iterative method for dead-

lock prevention in FMSs. In Proc. 5th Workshop on Discrete Event Systems, R. Boel and

G.Stremersch (Eds.), pp.139–148.

52. Uzam, M., Zhou, M.C. (2006) An improved iterative synthesis method for liveness enforcing

supervisors of flexible manufacturing systems. International Journal of Production Research,

vol.44, no.10, pp.1987–2030.

53. Uzam, M., Li, Z.W., Zhou, M.C. (2007) Identification and elimination of redundant control

places in Petri net based liveness enforcing supervisors of FMS. International Journal of

Advanced Manufacturing Technology, vol.35, no.1–2, pp.150–168.

54. Uzam, M., Zhou, M.C. (2007) An iterative synthesis approach to Petri net based deadlock

prevention policy for flexible manufacturing systems. IEEE Transactions on Systems, Man,

and Cybernetics, Part A, vol.37, no.3, pp.362–371.

55. Viswanadham, N., Narahari, Y., Johnson, T. (1990) Deadlock prevention and deadlock

avoidance in flexible manufacturing systems using Petri net models. IEEE Transactions on

Robotics and Automation, vol.6, no.6, pp.713–723.

References 157

56. Wu, N.Q. (1999) Necessary and sufficient conditions for deadlock-free operation in flexible

manufacturing systems using a colored Petri net model. IEEE Transactions on Systems, Man,

and Cybernetics, Part C, vol.29, no.2, pp.192–204.

57. Wu, N.Q., Zhou, M.C. (2001) Avoiding deadlock and reducing starvation and blocking in

automated manufacturing systems. IEEE Transactions on Robotics and Automation, vol.17,

no.5, pp.658–669.

58. Zouari, B., Barkaoui, K. (2003) Parameterized supervisor synthesis for a modular class of

discrete event systems. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.1874–

1879.

Chapter 6

Optimal Liveness-Enforcing Supervisors

Abstract This chapter considers the design of optimal, i.e., maximally permissive,

liveness-enforcing (Petri net) supervisors for automated manufacturing systems. It

first reviews a deadlock prevention policy that is based on theory of regions, which is

optimal. Then, based on the elementary siphon theory, sufficient conditions are pre-

sented under which there exists an optimal liveness-enforcing supervisor for a class

of Petri nets, S3PR (system of simple sequential processes with resources). A syn-

thesis method of such a supervisor is given if it exists. This chapter also shows that

an optimal liveness-enforcing supervisor can be computed in polynomial time if all

the siphons in an S3PR are elementary. Moreover, there exists an optimal liveness-

enforcing supervisor if the capacity of every resource is greater than one.

6.1 Background

The quality of a deadlock prevention policy can be shown by evaluating its resultant

controlled net system from a number of aspects. Usually, in addition to its structural

complexity, behavior permissiveness is one of the most important criteria in evalu-

ating the performance of a liveness-enforcing (Petri net) supervisor. In supervisory

control theory [22], the existence and synthesis approach of an optimal, i.e., max-

imally permissive, supervisor for a discrete-event system is well addressed in the

framework of formal languages and finite-state automata. When the control speci-

fication languages are controllable, the resultant automaton serves as a maximally

permissive supervisor by properly trimming the automaton that represents the be-

havior of a plant. Its computational complexity depends on the complete state enu-

meration. Results on the existence and synthesis of a liveness-enforcing marking-

based supervisor are reported by Sreenivas in [24–26]. It is shown that the existence

of a liveness-enforcing marking-based supervisor is undecidable for an arbitrary

Petri net. In case of bounded Petri nets, it is decidable. However, the decision pro-

cedure requires the KM-tree of a Petri net, which is basically the reachability graph

of the net.

159

160 6 Optimal Liveness-Enforcing Supervisors

The theory of regions [2, 9] can be used to synthesize pure Petri nets from

automaton-based models and is an important method for supervisory control of

discrete-event systems. By using the theory of regions, Uzam [28] develops an

optimal liveness-enforcing supervisor synthesis method for FMS. Later, in terms

of plain and popular linear algebra notions, Ghaffari et al. [11] explore the suffi-

cient and necessary conditions on the existence of a liveness-enforcing supervisor

that is optimal, and develop a methodology to synthesize such a supervisor. The

most attractive advantage of these approaches is that such an optimal supervisor can

be always obtained if it exists. This chapter explores the existence of an optimal

liveness-enforcing supervisor, M ∗ for short, for S3PR nets in terms of elementary

siphons through pure structural analysis.

6.2 Optimal Supervisor Design by the Theory of Regions

Deadlock prevention or liveness enforcement is a special class of forbidden state

problems that are typical in supervisory control of discrete-event systems. In a Petri

net formalism, MF is usually used to denote the set of markings for which control

specifications do not hold in a Petri net (N,M0). Set MF is also called the set of

forbidden markings. The markings in it are hence unsafe [14]. To find a Petri net

supervisor for the given control specifications, the objective is to determine a set of

monitors that, once added to a given plant net model, prevent the whole system from

reaching these states. For example, the GMECs in Chap. 4 are also a typical class

of forbidden state problems.

Definition 6.1. The set ML of legal or admissible markings is the maximal set of

reachable markings such that (1) ML∩MF = /0, and (2) it is possible to reach initial

marking M0 from any legal marking without leaving ML.

By Definition 6.1 we have ML = R(N,M0)\MF . Let Rc be the reachability graph

containing all legal markings for the given control specification in a plant Petri net

model (N,M0). It is clear that every element in ML can be found in Rc and every

node in Rc is an element in ML. At any marking in ML, the system cannot be led

outside ML. A marking in ML is called dangerous if an unsafe marking (in MF) can

be possibly reached due to improper firing of an enabled transition. To solve the con-

trol problem, one has to identify the set of state/event separation instances (or mark-

ing/transition separation instances in net terminology) from an admissible marking

to a non-admissible one. The additional monitors are used to prevent these transi-

tions from occurring in order to keep the state space of the controlled system in the

set of legal markings. Formally, the set of marking/transition separation instances

that the supervisor has to disable is Ω = {(M, t)|M[t〉M′∧M ∈ML∧M′ /∈ML}, where

M is a dangerous marking and M′ is bad. Let MD be the set of dangerous markings.

Clearly, we have MD = {M|M ∈ ML ∧∃t ∈ T , ∋M[t〉M′∧M′∈MF}.

An optimal supervisor is the one that ensures the reachability of all markings in

ML and forbids all marking/transition separation instances in Ω . An algorithm is

6.2 Optimal Supervisor Design by the Theory of Regions 161

proposed in [11], which is of polynomial complexity with respect to the number of

states in the reachability graph of a plant net model. It can give legal behavior Rc,

ML, Ω , MD, and the set of transitions leading outside Rc.

Next we illustrate the above concepts. Let us consider an FMS with two machine

tools M1 and M2, each of which can process only one part at a time, and one robot

R that can hold one part at a time. Parts enter the FMS through input/output buffers

I1/O1 and I2/O2. The system can repeatedly produce two part-types J1 and J2. The

production sequences are J1: M1→R→M2 and J2: M2→R→M1.

p 2

 p 4

p 8

 p 6

p 7 p 3

p 9

p 5
p 1

p 1 1

p 1 0

t 1 t 8

t 7

t 6

t 5 t 4

t 3

t 2

I 2 / O 2 I 1 / O 1

Fig. 6.1 The Petri net model (N,M0) of an FMS

Figure 6.1 shows the Petri net model, denoted by (N,M0), of the system, where

tokens in p1 and p5 indicate the maximal number of parts of J1 and J2, which can

be concurrently processed in the system, p2, p3, p4, p6, p7, and p8 represent the op-

erations on J1 and J2, and p9−p11 denote the availability of M1, R, and M2, respec-

tively. Its reachability graph is shown in Fig. 6.2 given M0 = 3p1 +3p5 + p9 + p10 +
p11.

In the reachability graph of a Petri net, markings are generally categorized into

four classes in the sense of deadlock control: deadlock, bad, dangerous, and good

markings. A deadlock one means a dead system state by which no successive mark-

ing is followed. A bad one is the one that has subsequent markings, from which the

initial marking cannot be reached. A dangerous one can reach a good, bad or dead-

lock one depending on supervisory control. It is a node of the maximal strongly

connected component containing the initial marking and its son nodes are either

bad or deadlock ones. Good markings are the ones except deadlock, bad, and dan-

gerous ones. Good and dangerous markings are included in the maximal strongly

connected component containing the initial marking and bad and deadlock ones are

not included in the component.

162 6 Optimal Liveness-Enforcing Supervisors

In Fig. 6.2, M13 and M14 are deadlock and M4, M8, and M9 are bad, while M1, M2,

M3, M5, M6, and M11 are dangerous. All the other markings are hence good. The set

of good and dangerous markings in R(N0,M0), denoted by ML, should constitute

the maximum legal behavior if a supervisory controller is optimally designed.

M 0

M 1 M 2 M 3 M 5 M 4

M 6 M 7

M 8 M 9

M 1 0 M 1 1

M 1 2
M 1 3 M 1 4

M 1 5

M 1 6 M 1 7

M 1 8 M 1 9

t 1

t 2

t 4 t 5

t 6

t 7

t 8

t 4

t 4

t 4

t 1

t 1

t 3

t 3

t 5

t 5

t 5

t 5

t 5

t 1

t 7

t 2

t 1

t 8

t 8

t 8 t 6

t 5

t 1

t 1 t 2 t 6

t 1 t 5

g o o d m a r k i n g

d a n g e r o u s m a r k i n g

b a d m a r k i n g

d e a d l o c k m a r k i n g

Fig. 6.2 The reachability graph of the Petri net (N,M0)

As stated previously, a marking/transition separation instance has the form of

(M, t), where M is a dangerous marking, and t is a transition whose firing results

in marking M[t〉, which is a bad or deadlock marking. In Fig. 6.2, we have Ω =
{(M1, t5), (M2, t1), (M3, t5), (M5, t1), (M6, t5), (M11, t1)}.

The theory of regions is proposed for the synthesis of pure nets from given finite

transition systems [2], which can be adopted to synthesize the liveness-enforcing

supervisor for a plant net model [11].

Given a plant model (N,M0) of a system with n transitions to control and its Rc,

the theory of regions designs a monitor pm and then adds it to the original Petri net

for each marking/transition separation instance (M, t) such that t is disabled at M.

Let (Nα ,Mα
0) be the resultant net with monitors. We need to compute Mα

0 (pm) and

[Nα](pm,T).
Note that it shall be ensured that the addition of pm does not exclude the markings

in Rc, which implies that pm has to satisfy the following reachability condition (6.1)

and circuit equation (6.2):

M(pm) = Mα
0 (pm)+ [Nα](pm, ·)−→Γ M ≥ 0,∀M ∈ ML (6.1)

6.2 Optimal Supervisor Design by the Theory of Regions 163

where ΓM is any non-oriented path in Rc from M0 to M, and
−→
Γ M is the counting vec-

tor of the path ΓM , which denotes the algebraic sum of all occurrences of transitions

in ΓM .

Consider any non-oriented circuit γ in Rc. Applying the state equation to the

nodes in γ and summing them up give the following circuit equation:

∑
t∈T

[Nα](pm, t) ·−→γ [t] = 0,∀γ ∈ C (6.2)

where −→γ [t] denotes the algebraic sum of all occurrences of t in γ and C is the set of

non-oriented circuits in Rc. −→γ is called the counting vector of γ . Note that different

circuits in Rc may have the same circuit equation when their counting vectors are

identical.

Furthermore, the addition of pm necessarily forbids the firing of t for mark-

ing/transition separation instance (M, t). That is to say, M(pm)+ [Nα](pm, t) ≤−1.

Thanks to M(pm) = Mα
0 (pm)+[Nα](pm, ·)−→Γ M , for every separation instance (M, t),

we have the marking/transition separation equation

Mα
0 (pm)+ [Nα](pm, ·)−→Γ M +[Nα](pm, t) ≤−1. (6.3)

We now use Figs. 6.1 and 6.2 to illustrate the above procedure.

Example 6.1. In Fig. 6.2, we have Ω = {(M1, t5), (M2, t1), (M3, t5), (M5, t1), (M6, t5),
(M11, t1)}. First consider (M1, t5). We need to find a monitor pm1 to achieve this

marking/transition separation. Note that Mα
0 (pm1) ≥ 0 is trivial and for simplic-

ity, let x = Mα
0 (pm1) and xi = [Nα](pm1, ti), where i ∈ {1,2, . . . ,8}. ML has a to-

tal of 15 markings, i.e., ML = {M0−M3, M5−M7, M10−M12, M15−M19}. Also,

different circuits in Fig. 6.2 may have the same circuit equations. For example,

M0t1M1t2M3t3M7t4M0 and M12t2M16t1M18t4M6t3M12 are two circuits. It is easy to

verify that they have the same circuit equations.

For (M1, t5), we have the following reachability condition equations (6.4)−(6.18),

two circuit equations (6.19) and (6.20), and marking/transition separation equation

(6.21).

x ≥ 0, (6.4)

x+ x1 ≥ 0, (6.5)

x+ x1 + x2 ≥ 0, (6.6)

x+ x1 + x2 + x1 ≥ 0, (6.7)

x+ x1 + x2 + x3 ≥ 0, (6.8)

x+ x1 + x2 + x3 + x1 ≥ 0, (6.9)

x+ x1 + x2 + x3 + x1 + x2 ≥ 0, (6.10)

x+ x1 + x2 + x3 + x1 + x2 + x1 ≥ 0, (6.11)

x+ x5 ≥ 0, (6.12)

x+ x5 + x6 ≥ 0, (6.13)

164 6 Optimal Liveness-Enforcing Supervisors

x+ x5 + x6 + x5 ≥ 0, (6.14)

x+ x5 + x6 + x7 ≥ 0, (6.15)

x+ x5 + x6 + x7 + x5 ≥ 0, (6.16)

x+ x5 + x6 + x7 + x5 + x6 ≥ 0, (6.17)

x+ x5 + x6 + x7 + x5 + x6 + x5 ≥ 0, (6.18)

x1 + x2 + x3 + x4 = 0, (6.19)

x5 + x6 + x7 + x8 = 0, (6.20)

x+ x1 + x5 ≤−1. (6.21)

Solving inequalities (6.4)−(6.21), we get x = 1, x1 =−1, x2 = 1, x5 =−1, x6 = 1,

and x3 = x4 = x7 = x8 = 0. Hence monitor pm1 is accordingly added, as shown in

Fig. 6.3, to the original Petri net.

p 2

 p 4

p 8

 p 6

p 7 p 3

p 9

p 5 p 1

p 1 1

p 1 0

t 1

t 7

t 6

t 5 t 4

t 3

t 2

I 2 / O 2 I 1 / O 1

p m 1

p m 3

p m 2

t 8

Fig. 6.3 A controlled system (Nα ,Mα
0)

Now we deal with marking/transition separation instance (M2, t1). It is obvious

to see that the reachability and circuit equations for all marking/transition separation

instances are the same, i.e., (6.4)−(6.20), in this example. When we deal with a new

marking/transition separation instance, what we shall do is just to replace (6.21)

with the corresponding separation equation. The separation equation for (M2, t1)
happens to be (6.21) as well. Hence we can say that pm1 has implemented (M2, t1)
as well. Similarly, we can find monitor pm2 that implements (M3, t5) and (M6, t5)
and monitor pm3 that implements (M5, t1) and (M11, t1). Consequently, the resultant

controlled system with three monitors is live, as shown in Fig. 6.3.

6.2 Optimal Supervisor Design by the Theory of Regions 165

Note that although the number of monitors to add is theoretically at most equal

to, practically much smaller than, the number of marking/transition separation in-

stances in the reachability graph of a Petri net, the number of the sets of inequalities

that we have to solve is actually equal to that of marking/transition separation in-

stances. This is so since we do not know whether a monitor can implement two

or more marking/transition separation instances until all the sets of inequalities are

already solved.

For example, there are 20 reachable markings in Fig. 6.2, where two of them

are deadlock markings and six are dangerous markings. Hence there are six mark-

ing/transition separation instances. We know that three monitors actually implement

all these six marking/transition separation instances only after we have solved all the

six sets of inequalities. This is one of the major disadvantages of the method.

The next result from [11] indicates the existence of an optimal liveness-enforcing

supervisor. A controlled system is said to be optimal if it results from the syn-

chronous synthesis of a plant net model and an optimal supervisor. For example,

the controlled net system shown in Fig. 6.3 is optimal since the supervisor with

three monitors is optimal.

Theorem 6.1. There exists an optimal liveness-enforcing supervisor for a plant

Petri net model (N,M0) iff there exist a set of monitors that implement all mark-

ing/transition separation instances of (N,M0).

Corollary 6.1. R(Nα ,Mα
0) = {M|M is a marking in Rc} = ML if (Nα ,Mα

0) is an

optimal controlled system for (N,M0).

Remark 6.1. The synthesis methods of optimal liveness-enforcing supervisors in

[11] and [28] need the complete state enumeration of a plant net model, whose

computation is expensive or impossible when we deal with either a large-sized net

model, or a small-sized one with a large initial marking. The work of Ghaffari et

al. [11] shows that, in general, the existence of an optimal liveness-enforcing su-

pervisor M ∗ can be determined by first generating the reachability graph, and then

solving an LPP for each marking/transition separation instance. Unfortunately, the

number of LPPs that need to be solved is in theory exponential with respect to the

size of the plant net and the initial marking. Worst of all, the number of constraints

in such an LPP is in theory exponential with respect to the net size and the initial

marking. Although an LPP can be solved in polynomial time, the complexity of

the supervisor synthesis approach based on the theory of regions makes it actually

impractical.

The next section presents the existence conditions and synthesis method of an op-

timal liveness-enforcing supervisor for a class of Petri nets, S3PR, by pure structural

analysis.

166 6 Optimal Liveness-Enforcing Supervisors

6.3 Existence of an Optimal Liveness-Enforcing Supervisor

In what follows, N = (P0 ∪PA ∪PR,T,F) is used to denote an S3PR where there is

no confusion. We suppose that N is composed of n subnets Ni’s, which is denoted

by N = ©n
i=1Ni. Accordingly, we have PA = ∪n

i=1PAi
.

Proposition 6.1. Let S be a strict minimal siphon in N. If p ∈ SA, then rp ∈ S, where

rp denotes the resource place that is required by the operation represented by p.

Proof. We prove it by contradiction. Let pk ∈ S∩PAi
such that rpk

/∈ S. Then ∃tk ∈ Ti,

tk∈•pk. Since pk ∈ S and S is a siphon, we have tk∈•S. Therefore, tk must be in S•.

Note that rpk
/∈ S and each operation place needs only one resource in N. We have

∃pk−1 ∈ PAi
∩S, tk ∈ p•k−1. Thus, we have two cases (a) rpk−1

/∈ S and (b) rpk−1
∈ S.

(a) rpk−1
/∈ S.

In this case, there exists tk−1 ∈ Ti such that tk−1∈•pk−1. Since pk−1 ∈ S and S is

a siphon, we have tk−1 ∈•S. Therefore, tk−1 must be in S•. Note that rpk−1
/∈ S

and each operation place needs only one resource in N. We have ∃pk−2 ∈ PAi
∩S,

tk−1 ∈ p•k−2, leading to two subcases depending on whether or not rpk−2
∈ S is

true. Without loss of generality, in this case, we assume that rpk−2
, rpk−3

, · · · do

not belong to siphon S. The case that S contains resource places rpk−2
, rpk−3

, · · ·
is considered in (b).

The same reasoning is applied to rpk−2
, rpk−3

, · · ·, and rp1
. Finally, we have p1 ∈

S∩PAi
, rp1

�∈ S, t1∈•p1, and t1 ∈ (p0
i)

•. Since t1 must be in S• and rp1
is not in S,

we conclude that p0
i ∈ S is true. This contradicts the fact that ∀S (a strict minimal

siphon) ∈ Π , ∀p ∈ P0, p /∈ S, where Π is the set of strict minimal siphons in N.

(b) rpk−1
∈ S.

In this case, ∃tk+1 ∈ Ti, ∃pk+1 ∈ PAi
such that tk+1 ∈ p•k ∩ •pk+1. Without loss

of generality we assume that tk+1 is not a sink transition of the S3PR. We hence

have two subcases. (b.1) tk+1 /∈•
S and (b.2) tk+1 ∈•S.

(b.1) tk+1 /∈•
S: tk+1 /∈•

S implies that •(S \{pk}) ⊆ •S ⊆ S• \{tk+1} = (S \{pk})•,

leading to the fact that S is not minimal.

(b.2) tk+1 ∈•S: It is easy to see that ∃rpk+1
∈ PR such that tk+1 ∈ rpk+1

•. Depending

on rpk+1
, we hence have two subcases (b.2.1) rpk+1

/∈ S and (b.2.2) rpk+1
∈ S.

(b.2.1) rpk+1
/∈ S and tk+1 ∈•S imply pk+1 ∈ S. The same reasoning about pk

can be applied to pk+1, similar to Case (a). Here we assume that re-

source places rpk+2
, rpk+3

, . . . do not belong to S. Finally, we have S =

PAi
∪{p0

i }∪{rpk−1
}. This contradicts the minimality of S.

(b.2.2) rpk+1
∈ S and tk+1 ∈•S lead to pk+1 ∈ S. As a result, in this case, we have

the following facts: pk−1 ∈ S, rpk−1
∈ S, pk+1 ∈ S, rpk+1

∈ S, and pk ∈ S.

We are led to infer •(S \{pk}) =• S ⊆ S• = (S \{pk})•. This implies that

S\{pk} is a siphon, which contradicts the minimality of S.

It is easy to see that rp must be a shared resource place. If rp is unshared, then

{p,rp} is a siphon included in S, which contradicts its minimality. ⊓⊔

6.3 Existence of an Optimal Liveness-Enforcing Supervisor 167

Property 6.1. [3,7] Let S be a minimal siphon in a Petri net. The subnet GS derived

from S∪ •S is strongly connected.

Corollary 6.2. Let S be a strict minimal siphon in N. ∃t ∈•S, |t•∩S| = 2 with t•∩
S = {r, p}, where r ∈ PR, p /∈ H(r), and p ∈ PA.

Proof. A strict minimal siphon in an S3PR contains at least two resource places and

a number of operation places. Without loss of generality, we assume S = {r,rp, . . .,
p, . . .}. By Proposition 6.1, ∀p ∈ S ∩PA, ∃rp ∈ PR, rp ∈ S and p ∈ H(rp). From

Property 6.1, the subnet derived from S∪•S is strongly connected. That is to say, for

any two nodes x1 and x2 in GS, there exists a directed path from x1 to x2. Let t be

an input transition of p. Clearly, t ∈ rp
• is true, as shown in Fig. 6.4. There exists a

resource place r such that t ∈•r since otherwise r and rp are not strongly connected.

Hence, we have t•∩S = {r, p}. Since p ∈ H(rp), we conclude p �∈ H(r). ⊓⊔

p

t

 r p

 r

Fig. 6.4 A subnet of GS derived from S∪•S

Corollary 6.2 indicates that {r, p} ⊆ S. From Proposition 6.1, there exists a re-

source r′ ∈ S such that p ∈ H(r′) is true. As a result, any strict minimal siphon in an

S3PR contains at least two resource places. The following result is from [15].

Theorem 6.2. Let S be a strongly dependent siphon in an S3PR N with ηS =

∑n
i=1 aiηSi

. Then ∀i ∈ Nn, ai = 1.

A multiset is useful in the synthesis of an optimal liveness-enforcing supervisor

for an S3PR. In this chapter, the complementary set of a siphon in an S3PR is treated

as a multiset. We have the following results.

Corollary 6.3. Let S0 be a strongly dependent siphon with ηS0
= ηS1

+ ηS2
in N.

Then (1) SR
0 = SR

1 ∪SR
2 and (2) [S0] = [S1]+ [S2].

Proof. (1) can be easily proved by contradiction. We next prove (2). ∀i ∈ {0,1,2},

λSi∪[Si] is a P-semiflow. As a result, we have (λS0∪[S0] − λS1∪[S1] − λS2∪[S2])
T [N] =

0T . That is to say, (λS0
− λS1

− λS2
)T [N] + (λ[S0] − λ[S1] − λ[S2])

T [N] = 0T . Since

168 6 Optimal Liveness-Enforcing Supervisors

ηS0
= ηS1

+ηS2
, we have (λ[S0]−λ[S1]−λ[S2])

T [N] = 0T . Let ρ = λ[S0]−λ[S1]−λ[S2].

Since ||ρ|| ⊆ PA is a subset of operation places and the support of any P-invariant of

N contains either a resource place or an idle place, ρ is not a P-invariant of N. We

hence have λ[S0] −λ[S1] −λ[S2] = 0, which implies the truth of this corollary. ⊓⊔

Proposition 6.2. Let S0, S1, S2 ∈ Π be strict minimal siphons in N. If ηS0
= ηS1

+
ηS2

, then SR
1,2 �= /0, SR

1\SR
2 �= /0, and SR

2\SR
1 �= /0, where SR

1,2 = SR
1 ∩SR

2 .

Proof. Let S be a strict minimal siphon, T in
S = {t ∈ S•||t• ∩ S| > |•t ∩ S|}, T out

S =
{t ∈ S•||t•∩S| < |•t ∩S|}, and T

equ
S = {t ∈ S•||t•∩S| = |•t ∩S|}. Clearly, we have

S• = T in
S ∪T out

S ∪T
equ

S .

By contradiction, we suppose that SR
1 ∩SR

2 = /0. By Proposition 6.1, p ∈ S implies

rp ∈ S, where S is a strict minimal siphon. Hence, we have SA
1 ∩SA

2 = /0, i.e., S1∩S2 =
/0. By Corollary 6.2, we have T in

S1
∩T in

S2
= /0, T out

S1
∩T out

S2
= /0, and T

equ
S1

∩T
equ

S2
= /0.

Therefore, ηS0
= ηS1

+ηS2
means the truth of S0 = S1∪S2, which contradicts the

minimality of siphon S0. This leads to SR
1,2 = SR

1 ∩SR
2 �= /0.

Next we prove SR
1 \SR

2 �= /0 and SR
2 \SR

1 �= /0. By contradiction, suppose that SR
1 ⊆

SR
2 . By SR

0 = SR
1 ∪SR

2 , we have SR
0 = SR

2 , leading to S0 = S2 and furthermore ηS0
= ηS2

.

Since S1 is a strict minimal siphon, ηS1
�=0. As a result, ηS0

= ηS2
contradicts the

known result. Therefore, SR
1 ⊆ SR

2 is not true, i.e., SR
1 \SR

2 �= /0. Similarly, SR
2 \SR

1 �= /0

can be shown. ⊓⊔

Corollary 6.4. Let S0 be a strongly dependent siphon with ηS0
= ∑n

i=1 ηSi
in N. Then

[S0] = [S1]+ [S2]+ · · ·+[Sn].

Proof. Similar to the proof of Corollary 6.3. ⊓⊔

Example 6.2. The Petri net shown in Fig. 6.5(a) has three strict minimal siphons:

S1 = {p5, p9, p12, p13}, S2 = {p4, p6, p13, p14}, and S3 = {p6, p9, p12, p13,

p14}. We have λS1
= p5 + p9 + p12 + p13, λS2

= p4 + p6 + p13 + p14, λS3
= p6 +

p9 + p12 + p13 + p14, ηS1
= −t2 + t3 − t9 + t10, ηS2

= −t3 + t4 − t8 + t9, and ηS3
=

−t2 + t4 − t8 + t10. It is easy to verify that ηS3
= ηS1

+ ηS2
, and NES = 2, which

means that there are two elementary siphons. Note that |SR
1 |= |SR

2 |= 2 and |SR
3 |= 3.

Accordingly, S1 and S2 are elementary siphons and S3 is a strongly dependent one.

In addition, [S1] = {p3, p4}, [S2] = {p5, p8}, and [S3] = {p3, p4, p5, p8}. If they are

treated to be multisets, we have [S3] = [S1]+ [S2]. ⊓⊔

Corollary 6.5. Let S0 be a weakly dependent siphon in a Petri net with ηS0
=

∑n
i=1 ηSi

−∑m
j=n+1 ηS j

. Then [S0]+([Sn+1]+[Sn+2]+ · · ·+[Sm]) = [S1]+[S2]+ · · ·+
[Sn].

As a typical class of control specifications in supervisory control of discrete-

event systems, generalized mutual exclusion constraints (GMECs) play an important

role in the synthesis of an optimal liveness-enforcing supervisor for an S3PR. Their

definitions [12] are recalled.

6.3 Existence of an Optimal Liveness-Enforcing Supervisor 169

p 1

p 5

p 3

t 4

t 3

p 6

t 5

p 7

p 4

p 9

t 1 1

t 9

t 1 0

p 8

p 2

t 6

p 1 1
t 1

t 2

p 1 0

p 1 5

p 1 4

p 1 3

p 1 2

t 8

t 7

t 9
t 8

V S 2

t 9

V S 1

t 1 0
t 3

p 1

p 5

p 3

t 4

t 3

p 6

t 5

p 7

p 4

p 9

t 1 1

t 9

t 1 0

p 8

p 2

t 6

p 1 1

t 1

t 2

p 1 0

p 1 5

p 1 4

p 1 3

p 1 2

t 8

t 7

 (a)

 (b)

t 2
t 1 0

t 8

t 2 V S 3

t 4

t 3

6

4

6

4

Fig. 6.5 (a) An S3PR (N,M0) and (b) its controlled system (Nα ,Mα
0)

Definition 6.2. A single GMEC (l,b) in a net system, with place set P, defines a set

of legal markings M (l,b) = {M ∈ N|P||lT M ≤ b}, where l : P → N is a P-vector

and b ∈ N+ is a constant.

170 6 Optimal Liveness-Enforcing Supervisors

Proposition 6.3. Let S ∈ Π be a strict minimal siphon in an S3PR (N,M0) with

its complementary set [S]. A monitor VS is added such that ∑p∈[S] p +VS be a P-

semiflow of the resultant net (Nα ,Mα
0), where ∀p ∈ PA ∪P0 ∪PR, Mα

0 (p) = M0(p),
and Mα

0 (VS) = M0(S)−ξS (ξS ∈ N+). S is controlled if 1 ≤ ξS ≤ M0(S)−1.

Proof. Since ∑p∈S p + ∑p∈[S] p is a P-semiflow of N, it is a P-semiflow of Nα as

well. ∀M ∈ R(Nα ,Mα
0), we have

M(S)+M([S]) = Mα
0 (S) = M0(S

R) = M0(S). (6.22)

Monitor VS is added such that ∑p∈[S] p +VS is a P-semiflow of Nα . This means

that ∀M ∈ R(Nα ,Mα
0),

M(VS)+M([S]) = Mα
0 (VS) = M0(S)−ξS. (6.23)

Equation 6.23 implies

max{M([S])|M ∈ R(Nα ,Mα
0)} = M0(S)−ξS. (6.24)

Consider (6.22) and (6.24), as well as 1 ≤ ξS ≤ M0(S)− 1; We have, ∀M ∈
R(Nα ,Mα

0), M(S) ≥ M0(S)− (M0(S)−ξS) = ξS ≥ 1. S is hence controlled. ⊓⊔

The control of siphon S in Proposition 6.3 is equivalent to the enforcement of a

GMEC (l,b) to (N,M0), where l = ∑p∈[S] p and b = M0(S)− ξS. This implies that

the maximal number of tokens in [S] is not greater than M0(S)−ξS, i.e., the minimal

number of tokens in S is ξS. Since ξS ≥ 1, S can never be emptied.

For example, S1 = {p5, p9, p12, p13} is a strict minimal siphon in the net shown

in Fig. 6.5(a), with its complementary set [S1] = {p3, p4}. To prevent S1 from being

emptied, monitor VS1
can be added by Proposition 6.3 with 1 ≤ ξS1

≤ 2. As shown

in Fig. 6.5(b), VS1
is computed with ξS1

= 1, where VS1
+ p3 + p4 is a P-semiflow.

Corollary 6.6. In Proposition 6.3, [Nα](VS, ·) = ηT
S .

Proof. The addition of VS leads to an incidence vector [Nα](VS, ·) in [Nα]. Let LVS

denote [Nα](VS, ·). We hence have

[Nα] =

(

[N]
LVS

)

.

Let I1 = ∑p∈S p + ∑p∈[S] p, I2 = VS + ∑p∈[S] p, and I3 = I1 − I2. Clearly, I3 =

∑p∈S p−VS = λS −VS is a P-invariant of Nα . From IT
3 [Nα] = 0T , one has λ T

S [N]−
LVS

= 0T , which implies the truth of this corollary. ⊓⊔

In Fig. 6.5(b), [Nα](VS1
, ·) = −t2 + t3 − t9 + t10 = ηS1

.

Corollary 6.7. (Nα ,Mα
0) is an ES3PR.

6.3 Existence of an Optimal Liveness-Enforcing Supervisor 171

Proof. Suppose that there are n monitors VS1
, VS2

, · · ·, and VSn in (Nα ,Mα
0). The

resulting net from deleting all monitors and their related arcs from (Nα ,Mα
0) is

(N,M0). ∀i ∈ Nn, VSi
is added such that VSi

+[Si] is a P-semiflow IVSi
of Nα . Note

that each element in IVSi
is either one or zero and [Si] is a subset of operation places.

In this sense, VSi
behaves as a resource place in (Nα ,Mα

0). By the definition of

ES3PR, this corollary is true. ⊓⊔

Corollary 6.8. In Proposition 6.3, ξS = 1 implies that monitor VS is a GMEC im-

plementation of (λ[S],M0(S)−1).

Proof. Note that ∑p∈S p + ∑p∈[S] p is a P-semiflow of (N,M0). In order to keep

S always marked at any reachable marking, the number of tokens contained in

its complementary set [S] at any reachable marking should be less than M0(S),
i.e., ∀M ∈ R(N,M0), M([S]) < M0(S). As a GMEC [12], (λ[S],M0(S)−1) can be

implemented by an additional monitor VS with Mα
0 (VS) = (M0(S)− 1)− λ T

[S]M0.

Considering that ∀p ∈ [S], p ∈ PA, we have M0([S]) = λ T
[S]M0 = 0, leading to

Mα
0 (VS) = M0(S)−1. ⊓⊔

Corollary 6.9. The addition of VS for S with ξS = 1 minimally restricts the behavior

of (Nα ,Mα
0).

Proof. It immediately follows from Proposition 2 in [12]. ⊓⊔

Corollary 6.9 indicates that the addition of VS prevents only the transition firings

that the yield forbidden markings that do not satisfy the GMEC (λ[S],M0(S)−1).

Theorem 6.3. Let S be a strongly dependent siphon in an S3PR (N,M0) with ηS =
ηS1

+ ηS2
. Monitors VS1

and VS2
are added by Proposition 6.3, which leads to an

augmented net system (Nα ,Mα
0). Then Sc = ({VS1

,VS2
}∪ [S1]∪ [S2])\P1,2 is a strict

minimal siphon in Nα , where P1,2 = {p ∈ [S1]∪ [S2]|∀t ∈ p•, |•t ∩ ({VS1
} ∪ [S1]∪

{VS2
}∪ [S2])| = 2}.

Proof. It is known that ∀i∈{1,2}, Di = {VSi
}∪ [Si] is a minimal siphon and trap that

is initially marked in (Nα ,Mα
0). Therefore, D1 ∪D2 = {VS1

,VS2
}∪ [S1]∪ [S2] is also

a siphon but clearly not minimal. We claim that (D1 ∪D2)\P1,2 is a strict minimal

siphon. By P1,2 ⊆ [S1]∪ [S2], Sc contains VS1
and VS2

. Furthermore, the strictness of

Sc is ensured by removing P1,2 from D1 ∪D2. We need to show that Sc is a minimal

siphon.

Note that ηS = −η[S], ηS1
= −η[S1], and ηS2

= −η[S2]. ηS = ηS1
+ ηS2

implies

η[S] = η[S1] +η[S2].

Let T 1
α = {t|η[S](t) > 0}, T 2

α = {t|η[S](t) = 0}, and T 3
α = {t|η[S](t) < 0}. Let

T A
α = {t ∈ T 2

α |η[S1](t) �= 0,η[S2](t) �= 0} and T B
α = {t ∈ T 2

α |η[S1](t) = 0,η[S2](t) = 0}.

According to the definition of an S3PR and Proposition 6.3, we have T A
α = {t|t ∈

T, |•t ∩ (D1 ∪D2)| = 2}. As a result, the removal of P1,2 from D1 ∪D2 does not

change the postset of D1∪D2, i.e., (D1∪D2)
• = ((D1∪D2)\P1,2)

• = S•c . Consider-

ing that •Sc ⊆•(D1 ∪D2) = (D1 ∪D2)
• = S•c , we conclude that Sc is a siphon. Next

172 6 Optimal Liveness-Enforcing Supervisors

its minimality is shown by the fact that the removal of any place p makes Sc \{p} a

non-siphon. Two subcases are considered: (a) p is an operation place and (b) p is a

monitor.

(a) Without loss of generality, suppose that p ∈ [S1]. ∀t ∈ p•, |•t ∩ Sc| = 1. Ob-

viously, t ∈ S•c but the removal of p falsifies t ∈ •Sc. Therefore, the removal of any

operation place p leads to the fact that Sc \{p} is not a siphon any more.

(b) Without loss of generality, suppose that p = VS1
. It is proved with the aid

of Fig. 6.6 showing a general case in which p1 ∈ Sc and VS1
∈ Sc. It is easy to see

that p2 /∈ Sc since otherwise we have |•t1 ∩Sc| = 2. Clearly, we have t1 ∈ •Sc since

t1 ∈ •p1 and p1 ∈ Sc. However, the removal of VS1
falsifies t1 ∈ S•c .

From the two subcases, Sc is minimal. In summary, Sc is a strict minimal siphon

that contains VS1
and VS2

. ⊓⊔

p 2

t 1

p 1 V S 1

Fig. 6.6 The case of removing a monitor from Sc

A siphon that contains monitors is called a control-induced siphon. For example,

there are three strict minimal siphons S1, S2, and S3 with ηS3
= ηS1

+ ηS2
in Fig.

6.5(a). The addition of VS1
and VS2

leads to a strict minimal siphon {p4, p5, VS1
,

VS2
} in the net depicted in Fig. 6.5(b).

Theorem 6.4. Let S be a strongly dependent siphon in an S3PR (N,M0) with ηS =
ηS1

+ ηS2
. Monitors VS, VS1

, and VS2
are added by Proposition 6.3. The augmented

net system is denoted by (Nα ,Mα
0). Sc cannot be emptied if M0(S

R
1,2) > ξS1

+ξS2
−

ξS, where Sc is the strict minimal siphon containing VS1
and VS2

as stated in Theorem

6.3.

Proof. Note that VS + ∑p∈[S] p, VS1
+ ∑p∈[S1] p, and VS2

+ ∑p∈[S2] p are P-invariants

of Nα . By [S] = [S1] + [S2] and SR = SR
1 ∪ SR

2 , Sc cannot be emptied if Mα
0 (VS) <

Mα
0 (VS1

)+Mα
0 (VS2

).
∀i ∈ {1,2}, Mα

0 (VSi
) = M0(Si)−ξSi

= M0(S
R
i \SR

1,2)+M0(S
R
1,2)−ξSi

. We have

6.3 Existence of an Optimal Liveness-Enforcing Supervisor 173

Mα
0 (VS1

) = M0(S
R
1\SR

1,2)+M0(S
R
1,2)−ξS1

, (6.25)

Mα
0 (VS2

) = M0(S
R
2\SR

1,2)+M0(S
R
1,2)−ξS2

. (6.26)

(6.25)+(6.26)⇒ Mα
0 (VS1

)+Mα
0 (VS2

)= M0(S
R
1\SR

1,2)+M0(S
R
2\SR

1,2)+2M0(S
R
1,2)

−ξS1
− ξS2

⇒ Mα
0 (VS1

) + Mα
0 (VS2

) = [M0(S
R
1\SR

1,2) + M0(S
R
2\SR

1,2) + M0(S
R
1,2)] +

M0(S
R
1,2)−ξS1

−ξS2
.

Since Mα
0 (VS)+ ξS = M0(S) = M0(S

R
1\SR

1,2)+ M0(S
R
2\SR

1,2)+ M0(S
R
1,2), one can

have

Mα
0 (VS1

)+Mα
0 (VS2

) = Mα
0 (VS)+M0(S

R
1,2)+ξS −ξS1

−ξS2
.

M0(S
R
1,2) > ξS1

+ξS2
−ξS implies the truth of Mα

0 (VS) < Mα
0 (VS1

)+Mα
0 (VS2

). ⊓⊔

Example 6.3. There are three strict minimal siphons S1, S2, and S3 in the net

shown in Fig. 6.5(a), where SR
1,2 = {p13} and M0(S

R
1,2) = M0(p13) = 2. Accord-

ingly, three monitors VS1
, VS2

, and VS3
are added as shown in Fig. 6.5(b), where

ξS1
= ξS2

= ξS3
=1. M0(S

R
1,2) = M0(p13) = 2 > ξS1

+ ξS2
− ξS3

means that siphon

Sc = {p4, p5,VS1
,VS2

} cannot be emptied in (Nα ,Mα
0).

Corollary 6.10. In (Nα ,Mα
0), any siphon that contains VS1

and VS2
is controlled if

M0(S
R
1,2) > ξS1

+ξS2
−ξS.

Proof. M0(S
R
1,2) > ξS1

+ξS2
−ξS implies the truth of Mα

0 (VS) < Mα
0 (VS1

)+Mα
0 (VS2

).
Note that VS + ∑p∈[S] p, VS1

+ ∑p∈[S1] p, and VS2
+ ∑p∈[S2] p are P-invariants of

Nα and [S] = [S1] + [S2]. Thus, Mα
0 (VS) < Mα

0 (VS1
) + Mα

0 (VS2
) implies that any

reachable marking in (Nα ,Mα
0) cannot unmark both VS1

and VS2
. That is to say,

∀M ∈ R(Nα ,Mα
0), M({VS1

,VS2
}) > 0. As a result, any siphon containing VS1

and

VS2
cannot be unmarked. ⊓⊔

A siphon is said to be optimally controlled if the addition of its monitor does not

exclude any legal behavior of the plant model. In an S3PR (N,M0), if the control

of a siphon S by adding a monitor VS is considered to be a GMEC problem (∀M ∈
R(N,M0),M([S]) ≤ M0(S)−1), it is optimally controlled when ξS = 1.

It is trivial that Theorems 6.3, 6.4 and Corollary 6.10 are true even if S1 and S2

are not elementary siphons.

Corollary 6.11. (1) S, S1, and S2 are optimally controlled if ξS = ξS1
= ξS2

= 1. (2)

Sc is optimally controlled if (i) M0(S
R
1,2) > 1 and (ii) ξS = ξS1

= ξS2
= 1.

Proof. (1) If ξS = ξS1
= ξS2

= 1, the control of S, S1, and S2 is a GMEC problem.

(2) According to Theorem 6.4 and Corollary 6.9, ξS = ξS1
= ξS2

= 1 leads to the

optimal controllability of Sc. ⊓⊔

Definition 6.3. T -vector η = ηS1
+ ηS2

in an S3PR (N,M0) is said to be optimally

controlled if:

1. S1 and S2 are optimally controlled;

2. Any control-induced siphon containing VS1
and VS2

is optimally controlled;

174 6 Optimal Liveness-Enforcing Supervisors

3. If there exists a siphon S ∈ Π such that ηS = ηS1
+ ηS2

, then S is optimally

controlled.

Example 6.4. In Fig. 6.5(a), we have M0(S
R
1,2) = 2 > 1. As a result, all the siphons

in the net in Fig. 6.5(b) are optimally controlled, i.e., ηS3
= ηS1

+ ηS2
is optimally

controlled.

Let η [n] = ∑n
i=1 ηSi

, where ∀i ∈ Nn, Si ∈ ΠE .

Definition 6.4. The optimal controllability of η [n] is recursively defined as follows:

1. η [2] is optimally controlled if T -vector ηS1
+ηS2

is optimally controlled, as stated

in Definition 6.3.

2. η [i+1] = η [i] +ηSi+1
is optimally controlled if

a. η [i] is optimally controlled;

b. Si+1 is optimally controlled;

c. If ∃S ∈ Π such that ηS = η [i+1], S is optimally controlled and any siphon

containing VS and VSi+1
is optimally controlled.

Next we discuss the optimal controllability of the T -vector of a weakly dependent

siphon S with ηS = ∑n
i=1 ηSi

−∑m
j=n+1 ηS j

. Since an S3PR is well-initially-marked,

the controllability of S is independent from Γ −(S) = ∑m
j=n+1 ηS j

. Let η = ∑n
i=1 ηSi

=
ηS +∑m

j=n+1 ηS j
.

Definition 6.5. ηS = ∑n
i=1 ηSi

− ∑m
j=n+1 ηS j

is optimally controlled if both η =

∑n
i=1 ηSi

and η = ηS +∑m
j=n+1 ηS j

are optimally controlled.

The optimal controllability of ηS = ∑n
i=1 ηSi

−∑m
j=n+1 ηS j

implies that S, S1 −
Sm, and the ones containing two or more monitors in {VS,VS1

− VSm} are optimally

controlled.

Corollary 6.12. Let (N,M0) be an S3PR. ∀i ∈ N|Π |, a monitor VSi
is added for Si ∈

Π by Proposition 6.3 and the resultant net is denoted by (Nα ,Mα
0). If ΠE = Π , any

minimal siphon containing VSi
is controlled in (Nα ,Mα

0).

Proof. First, all strict minimal siphons in (N,M0) are controlled due to the addi-

tion of monitors. ∀i ∈ N|Π |, VSi
+ ∑p∈[Si] p is a minimal P-semiflow, implying that

{VSi
}∪ [Si] is a minimal siphon and trap that is marked at Mα

0 . We claim that no

strict minimal siphon in Nα contains two or more monitors. This is proved by con-

tradiction.

First, suppose that in Nα there is a strict minimal siphon Sα = {VS1
,VS2

}∪ SA
α ,

where SA
α ⊆ PA is a subset of operation places in N. Furthermore, we have SA

α ⊆
[S1]∪ [S2] since otherwise Sα is not a siphon.

∀i∈ {1,2}, let Di = {VSi
}∪ [Si], P1,2 = {p∈ [S1]∪ [S2]|∀t ∈ p•, |•t∩(D1 ∪D2)|=

2}, and E = SA
α ∪P1,2. Clearly, E = [S1]∪ [S2] or, equivalently, E = [S1]+ [S2].

6.3 Existence of an Optimal Liveness-Enforcing Supervisor 175

Let S = ∪p∈E ||Irp || \E, where rp ∈ PR is a resource place with p ∈ H(rp) and Irp

is a minimal P-semiflow associated with resource place rp in N. If S is a minimal

siphon in N, then E is its complementary set, i.e., [S] = E.

Similar to the proof of Theorem 6.3, it can be shown that S is a strict minimal

siphon in N with [S] = [S1]+ [S2]. This leads to η[S] = η[S1] + η[S2]. Since ∀S′ ∈ Π
in N, ηS′ = −η[S′], we have ηS = ηS1

+ηS2
, implying that S is a strongly dependent

siphon with respect to strict minimal siphons S1 and S2. This contradicts ΠE = Π in

N.

In summary, we conclude that if ΠE = Π in N, Nα does not have a strict minimal

siphon containing two monitors. The cases involving more monitors can be similarly

proved. ⊓⊔
Theorem 6.5. Let (N,M0) be an S3PR. ∀S ∈ Π , a monitor VS is added by Proposi-

tion 6.3 with ξS = 1, and the resultant net is denoted by (Nm,Mm
0). (Nm,Mm

0) is an

optimal controlled system for (N,M0) if ΠE = Π .

Proof. By Corollary 6.12, ΠE = Π in (N,M0) leads to the fact that the addition of

monitors used to control siphons in (N,M0) cannot lead to new emptiable siphons

in (Nm,Mm
0). Proposition 2 in [12] indicates that monitor VS minimally restricts the

behavior of (Nm,Mm
0), in the sense that it disables only transitions whose firings

yield forbidden marking M such that λ T
[S]M > M0(S)−1 holds. As a result, if ΠE =

Π in (N,M0), its siphons are therefore optimally controlled, which leads to the truth

of this corollary. ⊓⊔
Example 6.5. The net shown in Fig. 6.7 is an S3PR in which p1 and p6 are idle

places, p11 − p15 are resource places, and the others are operation places. The net

has two strict minimal siphons S1 = {p5, p12, p14} and S2 = {p7, p13, p15} that are

independent, i.e., both are elementary siphons. Hence, there exists an optimal con-

trolled system resulting from adding two monitors VS1
and VS2

for S1 and S2, respec-

tively, as shown in Fig. 6.8.

Theorem 6.6. An M ∗ of an S3PR can be computed in polynomial time if ΠE = Π .

Proof. As shown in [18], a resource circuit in an S3PR can derive a place set that

is either a strict minimal siphon or a minimal siphon that is also an initially marked

trap. Let N = (P0 ∪PA ∪PR,T,F) denote an S3PR with ΠE = Π . According to the

properties of an S3PR, each idle or resource place is associated with a minimal

siphon that is also an initially marked trap. We conclude that the number of minimal

siphons in N is |P0|+ |PR|+ |Π |, not greater than |P0|+ |PR|+ min{|P0|+ |PA|+
|PR|, |T |}.

Consider the directed graph GN = (V,E) derived from N: (1) V = PR, and (2) let

r,r′ ∈ PR; there is an edge in E from r to r′ iff r• ∩ •r′ �= /0. By the definition of a

resource circuit [18], finding a resource circuit in net N is equivalent to finding a

cycle in GN [21], and this can be done in O(|PR|+ |P•
R ∩ •PR|) time [8].

Let m = |P0|+ |PR|+min{|P0|+ |PA|+ |PR|, |T |} and n = |PR|+ |P•
R ∩•PR|. In the

worst case Π can be found in O(mn) time that is polynomial with respect to the size

of N.

176 6 Optimal Liveness-Enforcing Supervisors

p 2

 p 4 p 8

 p 6

p 7

p 3 p 9

p 5

p 1

p 1 1

p 1 0

t 1 t 1 0

t 9

t 8

t 7 t 4

t 3

t 2

p 1 2

t 5

p 1 5 p 1 4 p 1 3

t 6

Fig. 6.7 An S3PR (N,M0) without dependent siphons

p 2

 p 4 p 8

 p 6

p 7

p 3 p 9

p 5

p 1

p 1 1
p 1 0

t 1 t 1 0

t 9

t 8

t 7 t 4

t 3

t 2

p 1 2

t 5 t 6

p 1 5 p 1 4

p 1 3

V S 2 V S 1

Fig. 6.8 An optimal controlled system for (N,M0)

6.3 Existence of an Optimal Liveness-Enforcing Supervisor 177

For each siphon S, VS can be computed by Mα
0 (VS) = M0(S)−1 and [Nα](VS, ·) =

ηT
S . Thus, the complexity of finding an M ∗ is O(m2n). ⊓⊔

Theorems 6.5 and 6.6 present the existence and computational complexity of M ∗

when there are no dependent siphons in an S3PR.

Theorem 6.7. Let (N,M0) be an S3PR. For each strict minimal siphon S, a mon-

itor VS is added to (N,M0) and the resultant net system is denoted by (Nm,Mm
0).

(Nm,Mm
0) is an optimal controlled system for (N,M0) if each siphon in (Nm,Mm

0) is

optimally controlled.

Proof. This result follows due to the optimal controllability of the siphons in

(Nm,Mm
0). ⊓⊔

Definition 6.6. Let S be a strongly (weakly) dependent siphon with ηS = ∑n
i=1 ηSi

(ηS = ∑n
i=1 ηSi

−ηm
j=n+1ηS j

) in N. ∀i ∈ Nn (∀i ∈ Nm), ηSi
is called a component of

ηS.

Definition 6.7. An elementary siphon is said to be essential if its T-vector is not a

component of the T-vector of any dependent siphon.

Corollary 6.13. Let N = (PA ∪P0 ∪PR,T,F) be an S3PR with initial marking M0

and Π e
E the set of essential siphons. There exists an MP if ∀S ∈ Π \Π e

E , ∀r ∈ S,

M0(r) ≥ 2.

Proof. Any siphon in Π e
E can be optimally controlled. ∀S1,S2 ∈Π \Π e

E , SR
1 ∩SR

2 �= /0

implies the truth of M0(S
R
1,2) ≥ 2. As a result, Proposition 6.3 ensures the optimal

controllability of siphons in the resulting net, and thus M ∗ exists. ⊓⊔

Example 6.6. As stated previously, all siphons in the net shown in Fig. 6.5(b) are

optimally controlled, which leads to the fact that it is an optimal controlled system

for the net model in Fig. 6.5(a). Specifically, the plant net model in Fig. 6.5(a) has

188 reachable states, 168 of which are permissive states from the deadlock control

point of view. That is to say, an M ∗ should lead to 168 reachable states in an optimal

controlled system. It is easy to verify by using INA [27] that the net in Fig. 6.5(b)

does so.

To illustrate the deadlock control of an S3PR with weakly dependent siphons, we

consider the net shown in Fig. 6.9. It has four emptiable minimal siphons S1 = {p4,

p12 − p15}, S2 = {p4, p11, p14, p15}, S3 = {p5, p11, p14 − p16}, and S4 = {p5, p12

− p16}. It is easy to find that ηS4
+ηS2

= ηS1
+ηS3

. We have ηS4
= ηS1

+ηS3
−ηS2

,

implying that S4 is weakly dependent if S1, S2, and S3 are selected as elementary

siphons.

The controllability of S4 does not depend on that of S2. First we add monitors

VS1
, VS3

, and VS4
, respectively. Note that SR

1 ∩ SR
3 = SR

1,3 = {p14, p15} and hence

M0(S
R
1,3) = 2. The addition of VS1

, VS3
, and VS4

guarantees the optimal controllability

of S1, S3, and VS4
, respectively, with ξS1

= ξS3
= ξS4

= 1. Then, we add a monitor

VS2
for S2 with ξS2

= 1.

178 6 Optimal Liveness-Enforcing Supervisors

p 1

p 1 4 p 1 3 p 1 6

t 1

p 1 5

p 6

p 1 2 p 1 1 p 1 0 p 9 p 8 p 7

p 5 p 4 p 3 p 2

t 1 2 t 1 1 t 1 0 t 9 t 8 t 7 t 6

t 5 t 4 t 3 t 2

4

4

Fig. 6.9 An S3PR (N,M0) with a weakly dependent siphon

Table 6.1 The monitors added for the plant net in Fig. 6.9

Monitor Mm
0 (·) Preset Postset

VS1
2 t3, t11 t1, t7

VS2
1 t3, t10 t2, t7

VS3
2 t4, t10 t2, t6

VS4
3 t4, t11 t1, t6

Considering M0(S
R
2,4) = M0(S

R
1,3) = M0(p14) + M0(p15) = 2 > 1, we conclude

that T -vectors η = ηS1
+ ηS3

and η = ηS2
+ ηS4

are optimally controlled. These

monitors are shown in Table 6.1. By Theorem 6.7, the addition of the monitors leads

to an M ∗ for the plant model in Fig. 6.9. It can be verified that the plant model has

99 reachable states and its M ∗ leads to 77 ones.

6.4 Synthesis of Optimal Supervisors

This section develops an algorithm to synthesize an optimal liveness-enforcing su-

pervisor M ∗ and the controlled system (Nm,Mm
0) for an S3PR (N,M0) when such a

supervisor exists. With the aid of the MIP-based deadlock detection method [7], this

synthesis algorithm enjoys high computational efficiency. It generates an optimal

controlled system with liveness represented by (Nm,Mm
0) or reports “Undecided”.

The latter means that the algorithm cannot sufficiently decide whether there exists

an M ∗ for a plant model (N,M0).

Algorithm 6.1 Synthesis of an M ∗

Input: an S3PR plant model (N,M0)
Output: (Nm,Mm

0) or “Undecided”

6.4 Synthesis of Optimal Supervisors 179

N1 := N

M1 := M0

L := |PA|+ |P0|+ |PR|
ΠE := /0

ΠD := /0

Π := /0

PV := /0

flag a := 1

flag b := 1

while (GMIP(M1) < L and flag b = 1) do

find a maximal unmarked siphon Smax

ΠSmax := {S|S is a minimal siphon derived from Smax and ∀p ∈ S, p �∈ PV}
find a siphon S from ΠSmax\Π such that ∀S′ ∈ ΠSmax , |S′R| ≥ |SR|
Π := Π ∪{S}
if S is elementary with respect to ΠE then

ΠE := ΠE ∪{S}
add monitor VS for S by Proposition 6.3 with ξS = 1

PV := PV ∪{VS}
L := L+1

the augmented net is denoted by (Nm,Mm
0)

N1 := Nm

M1 := Mm
0

else

ΠD := ΠD ∪{S}
add monitor VS for S by Proposition 6.3 with ξS = 1

if ηS is optimally controlled then

PV := PV ∪{VS}
L := L+1

the augmented net is denoted by (Nm,Mm
0)

N1 := Nm

M1 := Mm
0

else

flag a := 0

flag b := 0

end if

end if

end while

if (flag a = 1) then

Nm := N1

Mm
0 := M1

output (Nm,Mm
0)

else

output “Undecided”

end if

180 6 Optimal Liveness-Enforcing Supervisors

This algorithm can synthesize an M ∗ for a plant S3PR model (N,M0) if some

conditions are satisfied. Note that if there is no emptiable siphon in the plant, (N,M0)
itself can be considered to be optimally controlled already. An intuitive but naive

algorithm to synthesize such a supervisor is first to compute the set of strict minimal

siphons Π in (N,M0). Then, a monitor VS is added for each siphon S in Π with ξS =
1. For each dependent siphon, if its T -vector is optimally controlled, the intuitive

algorithm can output an M ∗. Note that the number of additional monitors exactly

equals that of strict minimal siphons in (N,M0), i.e., |PV | = |Π |, which is in theory

exponential with respect to the size of N.

The naive algorithm suffers from two problems: computational complexity and

structure complexity. For example, as shown in [16], it takes more than 6 hours to

compute all 169 strict minimal siphons in an S3PR with 68 places and 54 transitions

by using INA [27]. However, it takes 178 CPU seconds only for the MIP-based

deadlock detection method to find 24 strict minimal siphons among the 169, where

Lindo [19] is used to solve the MIP problems. The high efficiency of the MIP-based

method is also fully shown in [7] by case studies.

The structural complexity of a supervisor is usually measured by the number of

monitors. The intuitive algorithm adds exactly |Π | monitors. However, the potential

redundancy of some monitors motivates us to develop a method to systematically

remove them.

Algorithm 6.2 Structural reduction of M ∗

Input: (Nm,Mm
0), an optimal controlled system

Output (NRm,MRm
0), a structurally reduced controlled system

suppose that PV = {VSi
|i ∈ Nn} is the set of monitors

L := |PA|+ |P0|+ |PR|+ |PV |
N1 := Nm

M1 := Mm
0

i := 1

while (i ≤ n) do

remove VSi
and its related arcs from (N1,M1)

denote the resultant net as G = (N2,M2)
if GMIP(M2) = L−1 then

L := L−1

N1 := N2

M1 := M2

i := i+1

PV := PV\{VSi
}

else

i := i+1

end if

end while

NRm := N1

MRm
0 := M1

output (NRm,MRM
0)

6.4 Synthesis of Optimal Supervisors 181

Algorithm 6.2 can sufficiently distinguish monitors whose removal does not

change the liveness property of the optimal controlled system computed by Algo-

rithm 6.1. It depends on the order in which monitors are taken into consideration.

Furthermore it requires that all monitors are generated first. Note that a redundancy

test algorithm for monitors is also proposed in [30], which needs the complete state

enumeration.

To illustrate the supervisor synthesis and reduction algorithms, the net in Fig.

6.5(a) is taken as an example.

Example 6.7. Applying the MIP-based deadlock detection method to the net shown

in Fig. 6.5(a), we can first obtain a maximal unmarked siphon Smax = {p5, p6, p9, p12

− p14} from which a strict minimal siphon S1 = {p5, p9, p12, p13} with M0(S1) = 3

is derived. It is easy to see that [S1] = {p3, p4}. By Proposition 6.3, a monitor VS1
is

added such that VS1
+ p3 + p4 is a P-invariant of the resultant net that is denoted by

(Nα ,Mα
0) with ξS1

= 1 and Mα
0 (VS1

) = 2, as shown in Fig. 6.5(b).

The MIP-based deadlock detection method is applied to (Nα ,Mα
0) and we can

obtain a maximal unmarked siphon Smax = {p4, p6, p9, p12 − p14, VS1
}. From Smax,

we can derive a minimal siphon S2 = {p4, p6, p13, p14} with [S2] = {p5, p8}. Since

ηS1
and ηS2

are linearly independent, we add monitor VS2
. The resultant net system,

as shown in Fig. 6.5(b), is denoted by (Nα ,Mα
0), where Mα

0 (VS2
) = 2.

The same method is applied to (Nα ,Mα
0). A maximal unmarked siphon Smax =

{p4, p6, p9, p12 − p14, VS1
, VS2

} is detected, from which a strict minimal siphon S3 =
{p6, p9, p12 − p14} is found. The fact ηS3

= ηS1
+ηS2

indicates that S3 is a strongly

dependent siphon. A monitor VS3
is added with ξS3

= 1. The resultant net is denoted

by (Nα ,Mα
0). Clearly, we have Mα

0 (VS3
) = 3. Since M0(S

R
1,2) = M0(p13) = 2 > 1,

ηS3
= ηS1

+ ηS2
is optimally controlled. When the MIP-based deadlock detection

method is applied to G = (Nα ,Mα
0) that has three monitors, we have GMIP(Mα

0) =
18, implying that no unmarked siphon can be derived. As a result, the net shown in

Fig. 6.5(b) is an optimal controlled system for the plant model in Fig. 6.5(a).

For this example, Algorithm 6.2 indicates that the removal of any monitor de-

teriorates the liveness of the controlled system. Hence, we have the monitor set

PV = {VS1
,VS2

,VS3
}. By Π = {S1,S2,S3}, we conclude |PV | = |Π |.

Remark 6.2. A hybrid policy that combines deadlock prevention and avoidance is

developed in [1, 4], and [6], respectively. It consists of two stages. First, a monitor

VS is added by Proposition 6.3 for each strict minimal siphon S with ξS = 1 on

condition that all strict minimal siphons in a plant net model (N,M0) are known.

Then, the exertion of an online deadlock avoidance policy depends on whether the

net (Nα ,Mα
0) resulting from the first stage contains deadlocks, which is verified via

computing the existence of emptiable siphons in (Nα ,Mα
0).

A two-stage deadlock prevention policy is developed in [13]. The first stage adds

monitors to plant model (N,M0) such that no siphons in it can be unmarked, leading

to an augmented net (Nα ,Mα
0). The second stage, control-induced siphon control,

becomes necessary via adding monitors if (Nα ,Mα
0) contains deadlocks, which is

verified by solving an MIP problem.

182 6 Optimal Liveness-Enforcing Supervisors

The deadlock control strategy presented in [5] is also of two stages. The first is

identical to those proposed in [1,4], and [6], leading to an augmented net (Nα ,Mα
0).

The second stage aims to eliminate deadlocks in (Nα ,Mα
0) by properly modifying

the initial markings of the monitors added in the first stage. Likewise, the second

stage is put into execution provided that (Nα ,Mα
0) contains deadlocks, which is

verified by finding the emptiable siphons in it.

The two-stage policies mentioned above suffer from the siphon computation

problem in the augmented net (Nα ,Mα
0) resulting from the first stage. As is known,

the number of siphons in a net is exponential with respect to its size. Since each

strict minimal siphon needs a monitor to add to prevent it from being emptied or

insufficiently marked, in theory, the size of (number of the monitors in) (Nα ,Mα
0)

is exponential with respect to the size of (N,M0). Therefore, siphon computation in

(Nα ,Mα
0) is time-consuming or impossible by the above methods in the case of a

large-sized plant model.

However, the results in this chapter indicate that once ΠE = Π in an S3PR plant

model is true, the first stage of these two-stage policies can result in an M ∗, leading

to the fact that the second stage is no longer needed.

6.5 An Example

This section presents an example that is a modified version of the FMS investigated

in [10].

Example 6.8. The Petri net (N,M0) shown in Fig. 6.10 is an S3PR where P0 =
{p1}∪ {p5}∪ {p14} = {p1, p5, p14}, PA = PA1

∪PA3
∪PA2

= {p2 − p4}∪ {p6 −
p13} ∪ {p15 − p19}, PR = {p20 − p26}, and M0 = 10p1 + 15p5 + 15p14 + p20 +
2p21 + p22 +2p23 +2p24 +2p25 +2p26.

The MIP-based deadlock detection method is applied to (N,M0). A maxi-

mal unmarked siphon Smax = {p4, p8 − p12, p15, p17, p18, p20 − p26} can be

found. Using the minimal siphon extraction algorithm [17], a minimal siphon S1 =
{p10, p18, p22, p26} can be derived from Smax. By Definition 5.7, [S1] = {p13, p19}.

Due to Proposition 6.3, a monitor VS1
is added such that VS1

+ p13 + p19 is a

P-invariant of the resultant net that is denoted by (N1,M1) with ξS1
= 1, where

M1(VS1
) = M0(S1) − 1 = 3 − 1 = 2. We hence have ΠE = {S1}, ΠD = /0, and

Π = {S1}.

The MIP-based deadlock detection method is applied to (N1, M1). We can find a

maximal unmarked siphon Smax = {p4, p8 − p10, p12, p15 − p17, p20 − p26, VS1
}.

A minimal siphon S2 = {p4, p9, p12, p17, p21, p24} can be derived. Since [S2] =
{p2, p3, p8}, monitor VS2

is accordingly added and the resultant net is denoted by

(N1,M1). As a result, one gets M1(VS2
) = M0(S2)−ξS2

= M0(S2)−1 = 3. Noticing

that ηS1
and ηS2

are linearly independent, we have ΠE = {S1,S2}, ΠD = /0, and

Π = {S1,S2}.

Similarly, we can derive strict minimal siphons S3 = {p2, p4, p8, p13, p17, p21,

p26} and S4={p2, p4, p8, p12, p16, p21, p25}. Note that ηS1
, ηS2

, ηS3
, and ηS4

are lin-

6.5 An Example 183

p 6

t 1

t 2

t 3

t 4

t 7

t 8

t 9

p 7

p 8

p 1 1

p 1 2

t 5
t 1 0

p 9 p 1 3

t 6

p 5

t 1 1

t 1 2

t 1 3

p 2

p 3

p 4

t 1 4

t 2 0

t 1 9

t 1 8

p 1 5

p 1 6

p 1 7

t 1 7

t 1 6

p 1 8

p 1 9

t 1 5

p 1 4

I 2 / O 2

p 2 0

R 1

p 1

I 1 / O 1

p 1 0

p 2 1

R 2

p 2 2

R 3

p 2 3

M 1

p 2 4

M 2

p 2 5

M 3

p 2 6

M 4

I 3 / O 3
1 5

1 0
1 5

Fig. 6.10 An S3PR (N,M0)

early independent. We have ΠE = {S1,S2,S3,S4}, ΠD = /0, and Π = {S1,S2,S3,S4}.

Monitors VS3
and VS4

are added with ξS3
= ξS4

= 1 and the resultant net system is

denoted by (N1,M1).
The next strict minimal siphon that can be derived is S5 = {p2, p4, p8, p10, p17,

p21, p22, p26}. It is easy to verify that ηS5
= ηS1

+ηS3
and S5 is a strongly dependent

siphon with respect to S1 and S3. Noticing M0(S
R
1,3) = M0(p26) = 2 > 1, a monitor

VS5
is added with ξS5

= 1. Therefore, ηS5
= ηS1

+ηS3
is optimally controlled.

The other strict minimal siphons derived and controlled are shown in Table 6.2

where dependent siphons are marked by stars. Linear relationships among the T -

vectors of the dependent and elementary siphons are shown in Table 6.3.

To further illustrate the proposed optimal supervisor synthesis approach, we take

dependent siphon S16 as an example, where ηS16
= ηS2

+ ηS3
+ ηS12

. Let Sα = S7

and Sβ = S12. Note that ηS7
= ηS2

+ ηS3
and M0(S

R
2,3) = M0(p21) = 2 > 1. Thus,

ηS7
= ηS2

+ηS3
is optimally controlled when VS7

, VS2
, and VS3

are added with ξS7
=

ξS2
= ξS3

= 1.

Now we deal with ηS16
= ηSα + ηSβ

. It is easy to verify that M0(S
R
α,β) =

M0(p21) = 2 > 1, indicating that ηS16
= ηSα +ηSβ

is optimally controlled if moni-

tor VS12
is added with ξS12

= 1. The optimal controllability of the T -vectors of other

184 6 Optimal Liveness-Enforcing Supervisors

Table 6.2 Strict minimal siphons found in the plant net model (N,M0)

S Places S Places

S1 p10, p18, p22, p26 S2 p4, p9, p12, p17, p21, p24

S3 p2, p4, p8, p13, p17, p21, p26 S4 p2, p4, p8, p12, p16, p21, p25

S∗5 p2, p4, p8, p10, p17, p21, p22, p26 S∗6 p4, p9, p12, p16, p21, p24, p25

S∗7 p4, p9, p13, p17, p21, p24, p26 S∗8 p2, p4, p8, p13, p16, p21, p25, p26

S9 p4, p10, p17, p21, p22, p24, p26 S∗10 p4, p9, p13, p16, p21, p24−p26

S∗11 p2, p4, p8, p10, p16, p21, p22, p25, p26 S12 p2, p4, p8, p12, p15, p20, p21, p23, p25

S∗13 p4, p10, p16, p21, p22, p24, p25, p26 S∗14 p4, p9, p12, p15, p20, p21, p23−p25

S∗15 p2, p4, p8, p13, p15, p20, p21, p23, p25, p26 S∗16 p4, p9, p13, p15, p20, p21, p23−p26

S∗17 p2, p4, p8, p10, p15, p20−p23, p25, p26 S∗18 p4, p10, p15, p20 − p26

Table 6.3 T -vectors of the derived dependent and elementary siphons

S∗ η relationship S∗ η relationship

S5 ηS5
= ηS1

+ηS3
S6 ηS6

= ηS2
+ηS4

S7 ηS7
= ηS2

+ηS3
S8 ηS8

= ηS3
+ηS4

S10 ηS10
= ηS2

+ηS3
+ηS4

S11 ηS11
= ηS1

+ηS3
+ηS4

S13 ηS13
= ηS9

+ηS4
S14 ηS14

= ηS2
+ηS12

S15 ηS15
= ηS3

+ηS12
S16 ηS16

= ηS2
+ηS3

+ηS12

S17 ηS17
= ηS1

+ηS3
+ηS12

S18 ηS18
= ηS9

+ηS12

dependent siphons can be accordingly verified, implying that there exists an M ∗ for

the net shown in Fig. 6.10. The monitors are shown in Table 6.4.

Table 6.4 Monitors leading to an M ∗ for the net in Fig. 6.10 where VS10
and VS16

are redundant

and can be removed via Algorithm 6.2

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t10, t16 t9, t15 VS2

3 t4, t13 t3, t11

VS3
3 t9, t17 t8, t16 VS4

3 t8, t18 t7, t17

VS5
4 t10, t17 t8, t15 VS6

5 t4, t8, t13, t18 t3, t7, t11, t17

VS7
5 t4, t9, t13, t17 t3, t8, t11, t16 VS8

5 t9, t18 t7, t16

VS9
6 t5, t10, t13, t17 t3, t8, t11, t15 VS10

7 t4, t9, t13, t18 t3, t7, t11, t16

VS11
6 t10, t18 t7, t15 VS12

6 t3, t8, t19 t1, t17

VS13
8 t5, t10, t13, t18 t3, t7, t11, t15 VS14

8 t4, t8, t13, t19 t1, t11, t17

VS15
8 t3, t9, t19 t1, t16 VS16

10 t4, t9, t13, t19 t1, t11, t16

VS17
9 t3, t10, t19 t1, t15 VS18

11 t5, t10, t13, t19 t1, t11, t15

By Algorithm 6.2, VS10
and VS16

can be removed sequentially. As a result, for

the net shown in Fig. 6.10, an M ∗ exists and consists of 16 monitors. Specifically,

INA [27] indicates that the plant model in Fig. 6.10 has 108,105 reachable states, in

which 11,696 are bad and deadlock states and 96,409 are good and dangerous states.

Addition of the 16 or 18 monitors shown in Table 6.4 leads to an optimal controlled

system with the 96,409 reachable states.

It is easy to find that there exists an M ∗ for the S3PR net structure in Fig. 6.10 if

M0(p21) ≥ 2 and M0(p26) ≥ 2.

6.7 Problems 185

Note that, in this FMS, if each of R1−R3 can hold one part only and M1−M4

can process two parts at a time, Algorithm 6.1 outputs “Undecided”, indicating that

we cannot synthesize an M ∗ for such a system by the proposed methods in Sect.

6.4. The outcome “Undecided” does not imply that there does not definitely exist an

M ∗. Take the net in Fig. 6.5(a) as an example. When M0(p13) = 1, Algorithm 6.1

cannot sufficiently decide whether there exists an M ∗ for it. However, an M ∗ can

be synthesized by the theory of regions.

6.6 Bibliographical Remarks

The theory of regions is first used to synthesize an optimal monitor-based liveness-

enforcing supervisor for FMS modeled with Petri nets by Uzam in [28]. Briefly,

Ghaffari et al. interpret it in a Petri net formalism by using plain and popular lin-

ear algebraic notions to design an optimal supervisor under liveness requirements.

Recognizing its drawback, a hybrid approach that combines it with siphon control

is proposed in [18] to reduce the number of marking/transition separation instances.

Recent work has been done by Reveliotis et al. in which the theory of regions is

used to design reversibility-enforcing supervisors for bounded Petri nets [23]. Sim-

ilar work is performed by Xing et al. in [31]. The results in this chapter, however,

are more general than that in [31]. Moreover, redundant monitors can be identified

and removed.

Problems

6.1. Use the theory of regions to design an optimal liveness-enforcing supervisor for

the nets shown in Fig. 2.7(a), and Fig. 6.1 with M0(p10) = 2.

6.2. Explore the initial marking condition under which there exists an optimal

liveness-enforcing supervisor for the net structure shown in Fig. 5.16.

6.3. There are two S3PR (N1,M01) and (N2,M02). Their INA files are shown be-

low. Find their strict minimal siphons. Distinguish the elementary and dependent

siphons. Discuss the existence of optimal liveness-enforcing supervisors for them.

Note that in each of the two nets, p1, p7, and p13 are idle places, p19−p24 are re-

source places, and others are operation places.

INA description file of (N1,M01):
P M PRE , POST

1 5 6 , 1

2 0 1 , 2

3 0 2 , 3

4 0 3 , 4

5 0 4 , 5

186 6 Optimal Liveness-Enforcing Supervisors

6 0 5 , 6

7 5 12 , 7

8 0 7 , 8

9 0 8 , 9

10 0 9 , 10

11 0 10 , 11

12 0 11 , 12

13 5 18 , 13

14 0 13 , 14

15 0 14 , 15

16 0 15 , 16

17 0 16 , 17

18 0 17 , 18

19 1 11 17 , 10 16

20 1 10 , 9

21 1 6 9 16 , 5 8 15

22 1 2 4 12 14 , 1 3 11 13

23 1 15 , 14

24 1 3 5 8 18 , 2 4 7 17

INA description file of (N2,M02):
P M PRE , POST

1 5 6 , 1

2 0 1 , 2

3 0 2 , 3

4 0 3 , 4

5 0 4 , 5

6 0 5 , 6

7 5 12 , 7

8 0 7 , 8

9 0 8 , 9

10 0 9 , 10

11 0 10 , 11

12 0 11 , 12

13 5 18 , 13

14 0 13 , 14

15 0 14 , 15

16 0 15 , 16

17 0 16 , 17

18 0 17 , 18

19 1 6 , 5

20 1 5 10 12 18 , 4 9 11 17

21 1 14 17 , 13 16

22 1 4 9 , 3 8

23 1 3 8 11 16 , 2 7 10 15

24 1 2 15 , 1 14

6.7 Problems 187

6.4. A correct computation of siphons in the nets in Problem 6.3 and Fig. 6.9 indi-

cates that they contain no strongly dependent siphons. A careful inspection of these

nets shows that for any weakly dependent siphon S with ηS = ∑n
i=1 ηSi

−∑m
j=n+1 ηS j

,

one has ∀i, j ∈Nm, |Si∩S j| ≥ 2. Consequently, each of the three nets has an optimal

liveness-enforcing supervisor. Motivated by these facts, a natural conjecture is: If

an S3PR has no strongly dependent siphons, there exists an M ∗ for it. Can it be

proved? If not, please find a counter-example.

6.5. There are a number of subclasses of Petri nets such as ES3PR and S4R that are

more general than S3PR. Investigate the existence of an optimal liveness-enforcing

supervisor for them.

For example, the Petri net shown in Fig. 6.11 is an S4R in which p1 and p4

are idle places, p7 and p8 are resources, and the others are operation places. S =
{p3, p6, p7, p8} is a minimal siphon with its complementary set p2 + p5. Note that

M1 = 2p1 + p2+2p4 + p5 + p7 + p8 is a dead marking but M2 = p1 +2p2 +3p4 +
2p8 and M3 = 3p1 + p4 + 2p5 + 2p7 are not. From either M2 or M3, there exists a

firable transition sequence leading the system to the initial marking. Try to compute

a set of monitors whose addition eliminates the reachability of M1 but keeps M2 and

M3 to be reachable in the resulting supervisor.

Suppose that a forbidden marking can be transformed into a set of GMEC. The

existence of an optimal supervisor is equivalent to a problem of finding a set of mon-

itors that exactly enforce a set of GMEC. The solvability of this problem implies the

existence of an optimal supervisor. Readers are recommended to tackle this problem

from the viewpoint of enforcing a set of GMEC.

p 2 p 6

p 5 p 3

p 7

p 4 p 1

 p 8

t 1 t 6

t 5

t 4 t 3

t 2

2

2

2

2

Fig. 6.11 An S4R (N,M0)

6.6. The Petri net shown in Fig. 6.12 is an S4R model of an FMS, taken from [20].

There are two part types, namely J1 and J2, to be processed. The idle places are p10

and p20 and the resource places are p31, p32, and p33. The set of operation places

PA = {p11−p15, p21−p24}. It is easy to verify by using INA that the plant net model

has 363 reachable states among which 40 states are bad. In this sense, an optimal

188 6 Optimal Liveness-Enforcing Supervisors

controlled system should have 323 reachable states. Try to use the theory of regions

to check the existence of an optimal liveness-enforcing supervisor for the plant net

model. Note that a finite-state automaton cannot always find a label-free Petri net

implementation.

p 1 0

p 1 5

p 1 4

t 7

t 6

p 1 2

p 1 3

t 3

p 3 1

t 2

t 4

t 5

p 1 1

t 1

2

p 2 4

t 1 3

p 2 2

p 2 3

t 1 0

t 9

t 1 1

t 1 2

 p 2 1

t 8

p 2 0

2

4

3
2

p 3 2

p 3 3

R 1

R 3

R 2

2

Fig. 6.12 An S4R (N,M0)

Suppose that there does not exist an optimal monitor-based liveness-enforcing

supervisor given a plant net model. Develop an algorithm to find such a supervisor

Sup that there does not exist another supervisor Sup′ that is more permissive than

Sup. About this problem, the reader is referred to [29] in which a nearly optimal

supervisor is computed by an iterative deadlock state elimination method. However,

it is not formally proved that in a general case the proposed deadlock prevention

policy can always find the best supervisor when an optimal one does not exist.

References

1. Abdallah, I.B., ElMaraghy, H.A. (1998) Deadlock prevention and avoidance in FMS: A Petri

net based approach. International Journal of Advanced Manufacturing Technology, vol.14,

no.10, pp.704–715.

2. Badouel, E., Darondeau, P. (1998) Theory of regions. Lectures on Petri Nets I: Basic Models,

Lecture Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.), pp.529–

586.

3. Barkaoui, K., Lemaire, B. (1989) An effective characterization of minimal deadlocks and

traps in Petri nets based on graph theory. In Proc. 10th Int. Conf. on Application and Theory

of Petri Nets, pp.1–21.

References 189

4. Barkaoui, K., Abdallah, I.B. (1994) An efficient deadlock avoidance control policy in FMS

using structural analysis of Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cyber-

netics, vol.1, pp.525–530.

5. Barkaoui, K., Abdallah, I.B. (1995) A deadlock prevention method for a class of FMS. In

Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, vol.5, pp.4119–4124.

6. Barkaoui, K., Abdallah, I.B. (1995) Deadlock avoidance in FMS based on structural theory

of Petri nets. In Proc. INRIA/IEEE Symposium on Emerging Technologies and Factory Au-

tomation, vol.2, pp.499–510.

7. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical

programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L. (1992) Introduction to Algorithms. The MIT

Press/McGraw-Hill.

9. Darondeau, P. (2000) Region based synthesis of P/T-nets and its potential applications. In

Pro. 20th Int. Conf. on Applications and Theory of Petri Nets, Lecture Notes in Computer

Science, vol.1825, pp.16–23.

10. Ezpeleta, J, Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy

for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11,

no.2, pp.173–184.

11. Ghaffari, A., Rezg, N., Xie, X.L. (2003) Design of a live and maximally permissive Petri

net controller using the theory of regions. IEEE Transactions on Robotics and Automation,

vol.19, no.1, pp.137–142.

12. Giua, A., DiCesare, F., Silva, M. (1992) Generalized mutual exclusion constraints on nets

with uncontrollable transitions. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics,

vol.2, pp.974–979.

13. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L. (2001) Deadlock prevention policy based on

Petri nets and siphons. International Journal of Production Research, vol.39, no.2, pp.283–

305.

14. Lawley, M.A., Reveliotis, S.A. (2001) Deadlock avoidance for sequential resource alloca-

tion systems: Hard and easy cases. International Journal of Flexible Manufacturing Systems,

vol.13, no.4, pp.385–404.

15. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to dead-

lock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.34, no.1, pp.38–51.

16. Li, Z.W., Zhou, M.C. (2006) Two-stage method for synthesizing liveness-enforcing super-

visors for flexible manufacturing systems using Petri nets. IEEE Transactions on Industrial

Informatics, vol.2, no.4, pp.313–325.

17. Li, Z.W., Liu, D. (2007) A correct minimal siphons extraction algorithm from a maximal

unmarked siphon of a Petri net. International Journal of Production Research, vol.45, no.9,

pp.2163–2167.

18. Li, Z.W., Zhou, M.C., Jeng, M.D. (2008) A maximally permissive deadlock prevention policy

for FMS based on Petri net siphon control and the theory of regions. IEEE Transactions on

Automation Science and Engineering, vol.5, no.1, pp.182–188.

19. Lindo, Premier Optimization Modeling Tools, http://www.lindo.com/.

20. Park, J., Reveliotis, S.A. (2001) Deadlock avoidance in sequential resource allocation systems

with multiple resource acquisitions and flexible routings. IEEE Transactions on Automatic

Control, vol.46, no.10, pp.1572–1583.

21. Paton, K. (1969) An algorithm for finding a fundamental set of cycles of a graph. Communi-

cations of the ACM, vol.12, no.9, pp.514–518.

22. Ramadge, P., Wonham, W.M. (1989) The control of discrete event systems. Proceedings of

the IEEE, vol.77, no.1, pp.81–89.

23. Reveliotis, S.A., Choi, J.Y. (2006) Designing reversibility-enforcing supervisors of polyno-

mial complexity for bounded Petri nets through the theory of regions. In Proc. 27th Int. Conf.

on Applications and Theory of Petri Nets and Other Models of Concurrency, Lecture Notes

in Computer Science, vol.4024, S. Donatelli and P. S. Thiagarajan (Eds.), pp.322–341.

190 6 Optimal Liveness-Enforcing Supervisors

24. Sreenivas, R.S. (1997) On Commoner’s liveness theorem and supervisory policies that en-

force liveness in free-choice Petri nets. Systems Control Letters, vol.31, no.1, pp.41–48.

25. Sreenivas, R.S. (1997) On the existence of supervisory control policies that enforce liveness

in discrete-event dynamic systems modeled by controlled Petri nets. IEEE Transactions on

Automatic Control, vol.42, no.7, pp.928–945.

26. Sreenivas, R.S. (1999) On supervisory policies that enforce liveness in completely controlled

Petri nets with directed cut-places and cut-transitions. IEEE Transactions on Automatic Con-

trol, vol.44, no.6, pp.1221–1225.

27. Starke, P.H. (2003) INA: Integrated Net Analyzer. http://www2.informatik.hu-berlin.de/
∼starke/ina.html.

28. Uzam, M. (2002) An optimal deadlock prevention policy for flexible manufacturing systems

using Petri net models with resources and the theory of regions. International Journal of

Advanced Manufacturing Technology, vol.19, no.3, pp.192–208.

29. Uzam, M., Zhou, M.C. (2006) An improved iterative synthesis method for liveness enforcing

supervisors of flexible manufacturing systems. International Journal of Production Research,

vol.44, no.10, pp.1987–2030.

30. Uzam, M., Li, Z.W., Zhou, M.C. (2007) Identification and elimination of redundant control

places in Petri net based liveness enforcing supervisors of FMS. International Journal of

Advanced Manufacturing Technology, vol.35, no.1–2, pp.150–168.

31. Xing, K.Y., Hu, B.S. (2005) Optimal liveness Petri net controllers with minimal structures for

automated manufacturing systems. In Proc. IEEE Int. Conf. on Systems, Man and Cybernet-

ics, pp.282–287.

Chapter 7

Comparison of Deadlock Prevention Policies

Abstract This chapter, through a typical case study, reviews and compares a vari-

ety of Petri net-based deadlock prevention policies reported in the literature. Their

comparison is done in terms of a resultant supervisor’s structural complexity, behav-

ior permissiveness, and computational complexity. This comparison study should

help engineers to choose a suitable method for their industrial application cases. It

is concluded that when behavior permissiveness is not a major concern, a policy

with polynomial complexity should be the best choice for industrial-size automated

systems. If the online computational cost is not a problem, an optimal deadlock

prevention policy should be the best choice of industrial engineers. The deadlock

prevention policies that use partial siphon enumeration achieve a good balance be-

tween the behavior permissiveness and computational complexity.

7.1 Introduction

Over the last two decades, a great deal of research has been focused on solving

deadlock problems in resource allocation systems such as computer communica-

tion systems, workflow systems, and flexible manufacturing systems, resulting in a

wide variety of approaches. Deadlock prevention is considered to be a well-defined

problem in discrete-event systems literature, which is usually achieved by using an

off-line computational mechanism to control the request for resources to ensure that

deadlocks never occur. The goal of a deadlock prevention approach is to impose

constraints on a system to prevent it from reaching deadlock states. In this case,

the computation is carried out off-line in a static way and once the control policy

is established, the system can no longer reach undesirable deadlock states. A ma-

jor advantage of deadlock prevention algorithms is that they require no run-time

cost since problems are solved in system design and planning stages. Due to its ad-

vantage over deadlock detection and recovery, and deadlock avoidance, deadlock

prevention based on a Petri net formalism has received an enormous amount of at-

tention in the literature. This chapter intends, through a typical case study, to review

191

192 7 Comparison of Deadlock Prevention Policies

and compare a variety of Petri net-based deadlock prevention policies reported in

the literature. Their comparison is done in terms of structural complexity, behavior

permissiveness, and computational complexity. This comparison study should help

engineers to choose a suitable method for their industrial application cases.

7.2 Applications of Deadlock Prevention Methods to a Case

Study

The deadlock prevention policies that are investigated in this chapter are shown in

Table 7.1. This section presents the supervisors for the FMS example in Sect. 5.4 by

these deadlock prevention policies.

Table 7.1 Deadlock prevention policies

Researchers Policy notation Applicable nets

Abdallah and ElMaraghy [1] AE-policy S4R

Barkaoui and Abdallah [2] B1-policy G-system

Barkaoui et al. [5] B2-policy S3PR

Piroddi et al. [77] P-policy Petri nets

Ezpeleta et al. [19] E-policy S3PR

Huang et al. [36] H1-policy S3PR

Huang [38] H2-policy S3PR

Li and Zhou [57] L1-policy S3PR

Li et al. [63] L2-policy S3PR

Li and Zhou [61] L3-policy S3PR

Park and Reveliotis [73] PR-policy S4R

Tricas et al. [89] T-policy S4R

Uzam [92] U1-policy Petri nets

Uzam and Zhou [95] U2-policy Petri nets

Xing and Hu [101] X-policy S3PR

The Petri net model of an FMS depicted in Fig. 5.8 is used to conduct the case

study. It contains 18 strict minimal siphons shown in Table 7.2 again to facilitate

the reader’s understanding of these policies where a dependent one is marked with

a star. Note that in the following tables in this chapter, monitor VSi
or Vi does not

necessarily correspond to siphon Si since some policies do not need to explicitly

control the siphons in Table 7.2.

7.2.1 Combination of Deadlock Prevention and Avoidance

Abdallah and ElMaraghy [1] propose a deadlock control method, AE-policy for

short, for S4R nets that are more general than S3PR. This policy combines deadlock

7.2 Applications of Deadlock Prevention Methods to a Case Study 193

Table 7.2 Strict minimal siphons in the case study (“*” means a dependent siphons after S1, S4,

S10, and S16−S18 are selected as elementary ones)

S Places S Places

S1 p10, p18, p22, p26 S∗2 p4, p10, p15, p20−p26

S∗3 p4, p10, p16, p21, p22, p24, p25, p26 S4 p4, p10, p17, p21, p22, p24, p26

S∗5 p4, p9, p13, p15, p20, p21, p23−p26 S∗6 p4, p9, p13, p16, p21, p24, p25, p26

S∗7 p4, p9, p13, p17, p21, p24, p26 S∗8 p4, p9, p12, p15, p20, p21, p23, p24, p25

S∗9 p4, p9, p12, p16, p21, p24, p25 S10 p4, p9, p12, p17, p21, p24

S∗11 p2, p4, p8, p10, p15, p20−p23, p25, p26 S∗12 p2, p4, p8, p13, p15, p20, p21, p23, p25, p26

S∗13 p2, p4, p8, p10, p16, p21, p22, p25, p26 S∗14 p2, p4, p8, p13, p16, p21, p25, p26

S∗15 p2, p4, p8, p10, p17, p21, p22, p26 S16 p2, p4, p8, p13, p17, p21, p26

S17 p2, p4, p8, p12, p15, p20, p21, p23, p25 S18 p2, p4, p8, p12, p16, p21, p25

prevention and avoidance strategies. It consists of two stages. First, a monitor VS is

added for each strict minimal siphon S in a plant Petri net model (N,M0) by the en-

forcement that [S]∪{VS} is the support of a P-semiflow of the augmented net system

(Nα ,Mα
0), where Mα

0 (VS) = M0(S)−1. In some cases, the first stage of AE-policy

cannot eliminate deadlock states completely. When the occurrences of deadlocks

remain possible in (Nα ,Mα
0), an on-line controller that uses a dynamic resource al-

location policy is employed such that the evolution of (Nα ,Mα
0) can never enter an

unsafe state that inevitably leads the system to deadlock.

For the net system in Fig. 5.8, 18 monitors are added due to AE-policy and their

initial marking, presets and postsets are shown in Table 7.3.

Table 7.3 Monitors added using AE-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t10, t16 t9, t15 VS2

10 t5, t10, t13, t19 t1, t11, t15

VS3
7 t5, t10, t13, t18 t3, t7, t11, t15 VS4

5 t5, t10, t13, t17 t3, t8, t11, t15

VS5
9 t4, t9, t13, t19 t1, t11, t16 VS6

6 t4, t9, t13, t18 t3, t7, t11, t16

VS7
4 t4, t9, t13, t17 t3, t8, t11, t16 VS8

7 t4, t8, t13, t19 t1, t11, t17

VS9
4 t4, t8, t13, t18 t3, t7, t11, t17 VS10

2 t4, t13 t3, t11

VS11
8 t3, t10, t19 t1, t15 VS12

7 t3, t9, t19 t1, t16

VS13
5 t10, t18 t7, t15 VS14

4 t9, t18 t7, t16

VS15
3 t10, t17 t8, t15 VS16

2 t9, t17 t8, t16

VS17
5 t3, t8, t19 t1, t17 VS18

2 t8, t18 t7, t17

After the monitors are added, the augmented net system (Nα ,Mα
0) contains dead-

locks. As a result, the second stage is necessary for this example. Similar to AE-

policy, a hybrid (prevention and avoidance) deadlock control approach is proposed

by Barkaoui et al. [3].

Remark 7.1. The number of the monitors added in the first stage is equal to that

of the strict minimal siphons in a plant model. Unfortunately, the number of such

siphons in an S3PR is theoretically exponential with respect to its size. This im-

plies that in the first stage of AE-policy the number of the additional monitors is

exponential with respect to the size of a plant model.

194 7 Comparison of Deadlock Prevention Policies

Remark 7.2. In AE-policy, the existence of deadlocks in (Nα ,Mα
0) is confirmed by

verifying the presence of strict minimal siphons in it. This means that one has to

find them in (Nα ,Mα
0), which becomes more time-consuming if in the first stage

the concept of elementary siphons is not adopted. However, whether the second

stage of AE-policy is necessary can be decided by pure structural analysis as stated

in Chap. 6.

Remark 7.3. Chapter 6 also presents some conditions under which the first stage

of this policy leads to an optimal liveness-enforcing supervisor. Furthermore, when

the second stage is necessary, the concept of elementary siphons can be applied in

the first stage, leading to a structurally simple intermediate Petri net. This would

facilitate the siphon computation in the second stage. For the example investigated

in this chapter, the first stage needs six monitors that are added for the elementary

siphons with each siphon control variable being one. In this case, the dependent

siphons in the plant model are implicitly controlled.

7.2.2 Modification of Initial Markings of Monitors

Barkaoui and Abdallah [2] develop a deadlock prevention method, called B1-policy

for short, for S3PR nets, which consists of two stages. The strict minimal siphons in

a plant S3PR are distinguished by basic strict minimal siphons and dependent strict

minimal siphons. Its first stage is identical to that of AE-policy. When the deadlock-

freedom or liveness in the augmented net system is not guaranteed, the second stage

tries to modify the initial markings of the additional monitors added for dependent

strict minimal siphons according to the proposed rules. Table 7.4 shows the monitors

due to this policy for the example.

Table 7.4 Monitors added using B1-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t10, t16 t9, t15 VS2

9 t5, t10, t13, t19 t1, t11, t15

VS3
6 t5, t10, t13, t18 t3, t7, t11, t15 VS4

5 t5, t10, t13, t17 t3, t8, t11, t15

VS5
8 t4, t9, t13, t19 t1, t11, t16 VS6

5 t4, t9, t13, t18 t3, t7, t11, t16

VS7
3 t4, t9, t13, t17 t3, t8, t11, t16 VS8

6 t4, t8, t13, t19 t1, t11, t17

VS9
3 t4, t8, t13, t18 t3, t7, t11, t17 VS10

2 t4, t13 t3, t11

VS11
8 t3, t10, t19 t1, t15 VS12

6 t3, t9, t19 t1, t16

VS13
5 t10, t18 t7, t15 VS14

3 t9, t18 t7, t16

VS15
3 t10, t17 t8, t15 VS16

2 t9, t17 t8, t16

VS17
5 t3, t8, t19 t1, t17 VS18

2 t8, t18 t7, t17

Remark 7.4. Note that B1-policy may be problematic since it cannot lead to a

liveness-enforcing supervisor for this example. This policy needs further investi-

gation. Similar to AE-policy, the first stage of B1-policy can lead to an optimal

liveness-enforcing supervisor under some conditions as presented in Chap. 6.

7.2 Applications of Deadlock Prevention Methods to a Case Study 195

7.2.3 Deadlock Prevention via Proper Configuration of Initial

Markings

The places in a manufacturing-oriented Petri net model are usually distinguished

by idle, operation, and resource places [15], as done in augmented marked graphs

[13], S3PR [19], L-S3PR [20], S4R [1], S4PR [89], WS3PSR [87], PNR [44], RCN-

merged nets [43], ERCN-merged nets [100], ERCN∗-merged nets [45], S3PGR2

[73], G-task [5], and G-system [106]. Given a system with a fixed resource capacity,

contrary to the monitor-based deadlock control methods, the Petri net model can

be built by properly configuring the initial markings of its idle places such that the

model itself is live. This idea can be traced back to the seminal works of Zhou,

DiCesare, and Jeng in 1990s [40, 41, 103–105]. In the last decade, a fair amount

of work in this direction has been done by Jeng and Xie [13, 43–45] in which the

liveness of a plant model is tied to the non-existence of emptiable siphons. Chao [11]

develops a maximal class of Petri nets, called non-virtual (NV) nets. An NV net is

live iff there is no siphon that can become empty.

Motivated by the work mentioned above, Barkaoui et al. [5,106] propose a dead-

lock prevention method, called B2-policy for short. It can derive a set of expressions

about the initial markings of the idle and resource places in a G-system, under which

all siphons are max-controlled and the net system itself is live or non-blocking. Since

S3PR nets are a subclass of G-systems, B2-policy can be applied to an S3PR.

For an S3PR (N,M0), B2-policy first computes Π , the set of strict minimal

siphons in N. ∀S ∈ Π , its controllability is ensured by constructing a P-invariant

zS such that zT
S M0 > 0 and ||zS||+ ⊆ S. zS is computed as follows:

zS = gS −θShS,

gS = ∑r∈SR Ir,

hS = ∑p∈[S] Ip,

θS = maxp∈[S]∩||hS||gS(p),
where Ir is the minimal P-semiflow associated with resource place r, [S] is the com-

plementary set of siphon S, and Ip is the minimal P-semiflow associated with oper-

ation place p. Ip’s support consists of idle and operation places but does not contain

resource places.

Since every operation needs only one resource to perform, it is easy to prove that

in an S3PR ∀S ∈ Π , θS = 1. For example, S1 = {p10, p18, p22, p26} is a siphon in our

case study net. We have

Ip22
= p22 + p10 + p19,

Ip26
= p26 + p13 + p18,

gS1
= Ip22

+ Ip26
= p22 + p10 + p19 + p26 + p13 + p18,

[S1] = {p13, p19},

hS1
= ∑13

i=5 pi +∑19
i=14 pi,

zS1
= p22 + p26 −∑9

i=5 pi −∑12
i=11 pi −∑17

i=14 pi.

Considering that ∀p ∈ PA, M0(p) = 0, we have that S1 is controlled if zT
S1

M0 > 0,

i.e., M0(p22) + M0(p26)−M0(p5)−M0(p14) > 0. In summary, the controllability

196 7 Comparison of Deadlock Prevention Policies

of the 18 strict minimal siphons is shown by (7.1)−(7.18), where for economy of

space, we use µi to denote M0(pi) where there is no confusion.

S1 : µ22 + µ26 −µ5 −µ14 > 0, (7.1)

S2 : µ20 + µ21 + µ22 + µ23 + µ24 + µ25 + µ26 −µ1 −µ5 −µ14 > 0, (7.2)

S3 :µ21 + µ22 + µ24 + µ25 + µ26 −µ1 −µ5 −µ14 > 0, (7.3)

S4 : µ21 + µ22 + µ24 + µ26 −µ1 −µ5 −µ14 > 0, (7.4)

S5 : µ20 + µ21 + µ23 + µ24 + µ25 + µ26 −µ1 −µ5 −µ14 > 0, (7.5)

S6 : µ21 + µ24 + µ25 + µ26 −µ1 −µ5 −µ14 > 0, (7.6)

S7 : µ21 + µ24 + µ26 −µ1 −µ5 −µ14 > 0, (7.7)

S8 : µ20 + µ21 + µ23 + µ24 + µ25 −µ1 −µ5 −µ14 > 0, (7.8)

S9 : µ21 + µ24 + µ25 −µ1 −µ5 −µ14 > 0, (7.9)

S10 : µ21 + µ24 −µ1 −µ5 > 0, (7.10)

S11 : µ20 + µ21 + µ22 + µ23 + µ25 + µ26 −µ5 −µ14 > 0, (7.11)

S12 : µ20 + µ21 + µ23 + µ25 + µ26 −µ5 −µ14 > 0, (7.12)

S13 : µ21 + µ22 + µ25 + µ26 −µ5 −µ14 > 0, (7.13)

S14 : µ21 + µ25 + µ26 −µ5 −µ14 > 0, (7.14)

S15 : µ21 + µ22 + µ26 −µ5 −µ14 > 0, (7.15)

S16 : µ21 + µ26 −µ5 −µ14 > 0, (7.16)

S17 : µ20 + µ21 + µ23 + µ25 −µ5 −µ14 > 0, (7.17)

S18 : µ21 + µ25 −µ5 −µ14 > 0. (7.18)

When each of the places modeling robots contains one token and each of the

places representing machine tools has two tokens, the initial marking of idle places

in this example, which satisfies (7.1)−(7.18), is M0(p1) = M0(p5) = M0(p14) = 1.

As a result, the live initial marking derived by B2-policy is M0 = p1 + p5 + p14 +
p20 + p21 + p22 +2p23 +2p24 +2p25 +2p26. The number of reachable states under

this marking is 166.

Similar to B2-policy, the live initial marking configuration approaches proposed

by Chu, Xie, and Jeng [13, 43, 44, 100] fall under this class of deadlock prevention

policies.

Remark 7.5. Although B2-policy does not need to add monitors to the original

plant net model, the permissive behavior in the controlled system is considerably

restricted. Specifically, the maximally permissive supervisor of this example has

21,581 reachable states as seen in the next subsection. B2-policy, however, only

leads to 166 reachable states. That is to say, only 0.77% of maximally permissive

behavior is preserved. We can conclude that this policy is rather conservative com-

pared with the others.

7.2 Applications of Deadlock Prevention Methods to a Case Study 197

Remark 7.6. The number of liveness requirement constraints derived from B2-

policy is equal to that of the strict minimal siphons in an S3PR. As a result, this

number grows rapidly and in the worst case grows exponentially with respect to the

size of a net model. However, there may exist redundant liveness requirement con-

straints whose removal does not influence the liveness condition. For example, the

truth of (7.16) immediately leads to that of (7.15) due to µ22 > 0 (M0(p22) > 0).
Specifically, (7.1), (7.7)−(7.10), (7.16), and (7.18) are essential for the example and

then the others become redundant with respect to them.

7.2.4 A Selective Siphon Control Policy

The deadlock prevention policy, called P-policy for short, proposed by Piroddi et

al. in [77] is performed in an iterative way. At each step, it needs the complete

siphon enumeration. Siphons are divided into essential and dominated ones. The

controllability of an essential siphon implies that of its dominated siphons. An es-

sential siphon is distinguished by solving a set-covering problem that is known to

be NP-hard. It is shown that in general P-policy cannot lead to an optimal liveness-

enforcing supervisor. For the Petri net example, however, it gives an optimal super-

visor whose corresponding optimal controlled system has 21,581 reachable states.

The monitors are shown in Table 7.5.

Table 7.5 Monitors added using P-policy

VS Mα
0 (·) Preset Postset

VS1
2 t10, t16 t9, t15

VS2
5 t5, t10, t13, t17 t3, t8, t11, t15

VS3
2 t4, t13 t3, t11

VS4
2 t9, t17 t8, t16

VS5
2 t8, t18 t7, t17

VS6
5 t3, t8, t19 t1, t17

VS7
3 t10, t17 t8, t15

VS8
5 2t8, t18 2t7, t16

VS9
17 t3, t5, t8,2t10, t17,2t19 2t1, t9,2t15, t18

VS10
12 3t8, t10,2t18 4t7,2t15

VS11
27 t3,2t5, t8,3t10, t13, t18,2t19 3t1, t9, t11,3t15

VS12
27 t3,2t5, t9,2t10, t13, t17,3t19 3t1, t11,3t15, t18

VS13
8 t5,2t8, t13, t18 t3,2t7, t11, t15

Remark 7.7. At each iterative step, P-policy requires:

1. The complete enumeration of all minimal siphons.

2. The generation of all dominated markings.

3. The solution of a set-covering problem.

198 7 Comparison of Deadlock Prevention Policies

In theory, the computational complexity of each task mentioned above is expo-

nential with respect to the size of a Petri net. However, it is claimed in [77] that:

1. An efficient siphon computation is proposed in [16] that can deal with a Petri net

with more than 2×107 strict minimal siphons in a reasonable time.

2. The dominated markings can be found by solving an integer LPP whose size is

usually very small or zero if only few essential siphons are found.

3. In practice, the set-covering problem is extremely small, and can be efficiently

solved by using a mixed-integer-programming (MIP) solver.

P-policy assumes that the original Petri nets are ordinary. In some iterative step,

the intermediate nets may become generalized. In this case, an intermediate net is

transformed into an ordinary [47] or PT-ordinary one [39]. Then siphon control is

performed. Finally, an inverse transformation is necessary.

7.2.5 Deadlock Prevention by Complete Siphon Enumeration

The work by Ezpeleta et al. [19] is usually considered to be the first one that designs

monitor-based liveness-enforcing supervisors for FMS via the structural analysis of

Petri nets. Their deadlock prevention approach, E-policy for short, first computes Π ,

the set of strict minimal siphons in an S3PR (N,M0). Then, ∀S ∈ Π , a monitor VS is

added such that any output arc of VS points to the source transitions of the plant net

model, which ensures the non-existence of emptiable strict minimal siphons in the

augmented net system (Nα ,Mα
0) and leads to a liveness-enforcing supervisor. Table

7.6 shows the monitors due to this policy for the example. The resultant controlled

system has 6,287 reachable states with 18 monitors and 106 arcs.

Table 7.6 Monitors added using E-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t2, t10, t16 t1, t15 VS2

2 t2, t8, t18 t1, t15

VS3
5 t3, t8, t19 t1, t15 VS4

2 t4, t7, t13 t1, t11

VS5
4 t4, t8, t13, t18 t1, t11, t15 VS6

7 t4, t8, t13, t19 t1, t11, t15

VS7
2 t2, t9, t17 t1, t15 VS8

4 t2, t9, t18 t1, t15

VS9
7 t3, t9, t19 t1, t15 VS10

4 t4, t9, t13, t17 t1, t11, t15

VS11
6 t4, t9, t13, t18 t1, t11, t15 VS12

9 t4, t9, t13, t19 t1, t11, t15

VS13
3 t2, t10, t17 t1, t15 VS14

5 t2, t10, t18 t1, t15

VS15
8 t3, t10, t19 t1, t15 VS16

5 t5, t10, t13, t17 t1, t11, t15

VS17
7 t5, t10, t13, t18 t1, t11, t15 VS18

10 t5, t10, t13, t19 t1, t11, t15

Remark 7.8. As is gradually recognized, E-policy suffers from a number of prob-

lems: structural complexity, behavior permissiveness, and computational complex-

ity. First of all, the number of additional monitors is equal to that of strict min-

imal siphons. That is to say, the structural complexity of the supervisor is expo-

nential with respect to the size of a plant net model. Second, this policy is rather

7.2 Applications of Deadlock Prevention Methods to a Case Study 199

conservative. The supervisor resulting from E-policy for the example leads only

to 6,287/21,581 = 29.13% of maximally permissive behavior. Finally, it needs

complete siphon enumeration whose computation is time-consuming or impossi-

ble when the size of a plant is large. The subsequent deadlock control policies in the

literature aim to address these problems.

Remark 7.9. It can be verified that some additional monitors in the controlled system

obtained by E-policy can be removed, while the liveness of the resultant net system

is preserved. Before the development of elementary siphons, fortunately, there is

an established tool inside Petri net theory, which can be used to remove redundant

places from a Petri net. These redundant places are called implicit places [32,78,85],

which have the property that their addition to or removal from a net system does

not change its behavior, i.e., an implicit place is redundant from the viewpoint of

system behavior. However, the condition to decide the implicitness of a monitor in

a net supervisor seems more difficult to meet than the one based on the elementary

siphon theory (a formal proof has not been found yet). That is to say, an additional

monitor can be removed by the elementary siphon-based methodology, but it does

not satisfy the condition of an implicit place developed in [78] and [85].

7.2.6 Two-Stage Deadlock Control

As is well known, the number of siphons in a Petri net grows rapidly and in the

worst case grows exponentially with respect to its size. In theory, the number of

strict minimal siphons in an S3PR is also exponential with respect to its size. Hence,

their computation is expensive. Motivated by this well-recognized fact, Huang et

al. [36] propose a two-stage deadlock prevention policy, called H1-policy for short,

in which the complete siphon enumeration of a plant S3PR model is avoided.

H1-policy proceeds in an iterative way. At each step, the MIP-based deadlock

detection method that is first proposed in [13] is used to find a maximal emptiable

siphon in an S3PR (N,M0), from which a strict minimal siphon, denoted by S, is de-

rived. A monitor VS is added for S by the enforcement that [S]∪{VS} is the support of

a P-semiflow of the augmented net system, as done in AE-policy. The siphon iden-

tification and monitor addition are performed iteratively until no siphons in (N,M0)
can be emptied. Then, the first stage terminates. This termination leads to an aug-

mented net system (Nα ,Mα
0).

The existence of deadlocks in (Nα ,Mα
0) is verified by computing its strict mini-

mal siphons, as done in AE-policy and B1-policy. If (Nα ,Mα
0) has deadlock states,

the second stage is initiated. Similarly, the MIP-based deadlock detection method is

used to find a strict minimal siphon. Then a monitor is added to make it controlled.

However, the siphon control method in the second stage of H1-policy is different

from the one in the first. Any output arc of the monitors added in the second stage

points to the source transitions of the plant model, as done in E-policy. Since the

monitors added in the second stage cannot lead to problematic siphons any more,

the second stage can converge rapidly with respect to the elimination of deadlock

200 7 Comparison of Deadlock Prevention Policies

states. Note that a siphon is said to be problematic if its insufficient markedness

(being empty in the case of ordinary Petri nets) is tied to a deadlock.

For the example, as shown in Table 7.7, H1-policy adds 15 monitors in the first

stage and only one monitor in the second stage, which result in a liveness-enforcing

supervisor, leading to 12,656 reachable states in the controlled system [58]. Note

that VS∗ is added for siphon S∗ = {p10, p16, p22, p25, p26,VS16
,VS18

} in the second

stage.

Table 7.7 Monitors added using H1-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t10, t16 t9, t15 VS4

5 t5, t10, t13, t17 t3, t8, t11, t15

VS6
6 t4, t9, t13, t18 t3, t7, t11, t16 VS7

4 t4, t9, t13, t17 t3, t8, t11, t16

VS8
7 t4, t8, t13, t19 t1, t11, t17 VS9

4 t4, t8, t13, t18 t3, t7, t11, t17

VS10
2 t4, t13 t3, t11 VS11

8 t3, t10, t19 t1, t15

VS12
7 t3, t9, t19 t1, t16 VS13

5 t10, t18 t7, t15

VS14
4 t9, t18 t7, t16 VS15

3 t10, t17 t8, t15

VS16
2 t9, t17 t8, t16 VS17

5 t3, t8, t19 t1, t17

VS18
2 t8, t18 t7, t17 VS∗ 7 t2, t5,2t10,2t17 2t1,2t15

Remark 7.10. H1-policy is the first one that does not need the complete siphon enu-

meration, which can lead to more permissive behavior than E-policy. It is worthy to

note that the permissive behavior of the resultant supervisor depends on the siphons

controlled in the second stage. This is to say, selecting different siphons in the sec-

ond stage to control may lead to the supervisors with different permissive behavior,

as shown in the next subsection.

Remark 7.11. For an S3PR, the second stage of H1-policy in general leads to a gen-

eralized Petri net supervisor, whose liveness is ensured by the max-controllability

of its siphons. Furthermore, it is clear that under some conditions the first stage of

H1-policy can lead to an optimal liveness-enforcing supervisor. These conditions,

for example, include the absence of dependent siphons in an S3PR plant model.

7.2.7 Two-Stage Deadlock Control with Elementary Siphons

Recognizing the possible existence of dependent siphons in a Petri net model and

their role in deadlock prevention, Huang [38] proposes a deadlock prevention pol-

icy, called H2-policy for short, for S3PR nets, which is an improved version of H1-

policy. The major difference of the two policies lies in their first stages. The first

stage of H2-policy finds the set of elementary siphons in an S3PR net model pro-

vided that all strict minimal siphons are known. Then, a monitor is added for each

elementary siphon. Compared with H1-policy, this implies that fewer monitors are

needed in the first stage of H2-policy. Table 7.8 shows the monitors due to H2-policy

for the example.

7.2 Applications of Deadlock Prevention Methods to a Case Study 201

In Table 7.8, VS1
, VS4

, VS10
, and VS16

−VS18
are the monitors added in the first stage.

This is not surprising since there are only six elementary siphons in the example. As

in H1-policy, the second stage of H2-policy adds one monitor only. The supervisor

due to the additional monitors in Table 7.8 leads to 16,425 reachable states. The

permissive behavior of the two supervisors resulting from H1- and H2-policies is

different. This is caused by the fact that the siphon controlled in the second stage of

H1-policy is different from the one of H2-policy.

Table 7.8 Monitors added using H2-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t10, t16 t9, t15 VS4

5 t5, t10, t13, t17 t3, t8, t11, t15

VS10
2 t4, t13 t3, t11 VS16

2 t9, t17 t8, t16

VS17
5 t3, t8, t19 t1, t17 VS18

2 t8, t18 t7, t17

VS∗ 8 2t2,2t10,3t18 2t1,3t15

Remark 7.12. Although H2-policy in general can lead to a structurally simple su-

pervisor by considering the existence of elementary siphons in a plant model, the

complete siphon enumeration becomes necessary again, which increases the com-

putational complexity of this policy. However, the first stage of H2-policy can be

improved, avoiding complete siphon enumeration, by the following steps:

1. Find a maximal unmarked siphon by the MIP-based deadlock detection ap-

proach, from which a strict minimal siphon S is derived.

2. If S is elementary, add VS for it; otherwise, check the controllability of S. If it is

not controlled, add a monitor for it.

3. Repeat the above two steps until all siphons in (N,M0) are controlled.

Such an improved H2-policy has the same computational complexity with H1-

policy, but in general it leads to a supervisor with less additional monitors.

Remark 7.13. In theory, it cannot be claimed that H2-policy is more permissive than

H1-policy although it is true for the example. The permissive behavior of the super-

visor due to H1(H2)-policy depends on the siphons controlled in its second stage.

That is to say, if the siphons controlled in the second stage are identical, the resultant

supervisors lead to the same permissive behavior.

7.2.8 A Policy Based on Elementary Siphons

According to E-policy, the number of additional monitors in the supervisor of an

S3PR is, in theory, exponential with respect to its size. That is to say, E-policy

needs too many monitors when the size of a plant is large. To address this issue,

Li and Zhou propose the concept of elementary and redundant siphons [57]. Redun-

dant siphons are later renamed as dependent siphons [62]. In an S3PR, a dependent

202 7 Comparison of Deadlock Prevention Policies

siphon can be implicitly controlled by properly supervising its related elementary

siphons.

For the example in this case study, the work in [57] shows that dependent siphons

can never be emptied when we add monitors for elementary siphons only. As a re-

sult, the elementary siphon-based supervisor of the example has six monitors only

that are shown in Table 7.9. The corresponding controlled system has 6,287 reach-

able states.

Table 7.9 Monitors added using L1-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t2, t10, t16 t1, t15 VS2

2 t4, t7, t13 t1, t11

VS3
2 t2, t9, t17 t1, t15 VS4

2 t2, t8, t18 t1, t15

VS5
5 t5, t10, t13, t17 t1, t11, t15 VS6

5 t3, t8, t19 t1, t15

Remark 7.14. In general cases, L1-policy can lead to a structurally simple liveness-

enforcing supervisor. However, it suffers from the computational complexity and

behavior permissiveness issues as in E-policy. Both need the complete siphon enu-

meration and have the same permissive behavior.

7.2.9 An Iterative Policy Based on Elementary Siphons

By using a small number of additional monitors, L1-policy can lead to a liveness-

enforcing supervisor for an S3PR, which leads to the same permissive behavior as

E-policy. L1-policy suffers from two problems: computational complexity and re-

stricted behavior. The development of L2-policy in [63] aims to address these two

problems.

First, the MIP-based deadlock detection method is applied to a plant S3PR net

model, leading to a maximal unmarked siphon on condition that the plant model

itself is not live. From the maximal unmarked siphon, a strict minimal siphon S

is derived. If S is an elementary siphon, then a monitor is added such that S is

controlled by the siphon control approach in E-policy. If S is dependent with respect

to the elementary siphons that are already found, its controllability is ensured by

properly setting the control depth variables of its elementary siphons. That is to say,

we do not need to explicitly add monitors for dependent siphons in L2-policy.

The process of siphon identification and control proceeds iteratively until, at

some step, the MIP-based deadlock detection method indicates that all siphons in the

augmented net system (Nα ,Mα
0) are controlled. The absence of emptiable siphons

in (Nα ,Mα
0) implies its liveness. Table 7.10 shows the monitors due to L2-policy

for the example. The controlled system has 6,331 reachable states.

Remark 7.15. L2-policy improves the computational complexity of L1-policy by

avoiding the complete siphon enumeration. In summary, this policy leads to a su-

pervisor with a small number of monitors via partial siphon enumeration.

7.2 Applications of Deadlock Prevention Methods to a Case Study 203

Table 7.10 Monitors added using L2-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t2, t10, t16 t1, t15 VS2

2 t4, t7, t13 t1, t11

VS3
2 t2, t9, t17 t1, t15 VS4

2 t2, t8, t18 t1, t15

VS5
5 t5, t10, t13, t17 t1, t11, t15

7.2.10 A More Permissive Policy Based on Elementary Siphons

Although L2-policy does not need complete siphon enumeration, the behavior of

the resultant supervisor is quite restricted since the output arcs of the additional

monitors point to the source transitions that represent the entry of raw parts of the

system modeled by an S3PR.

The deadlock prevention approach proposed in [61], called L3-policy for short,

is in fact an improved version of L2-policy by the observation that, in many cases,

a liveness-enforcing supervisor can be obtained even if the output arcs of the mon-

itors point to non-source transitions. L3-policy consists of two stages: (1) siphon

identification and control, and (2) rearranging the output arcs of the monitors.

By the MIP-based deadlock detection method, L3-policy first finds an elementary

siphon without complete siphon enumeration. Then, a monitor is added such that it

is controlled by the siphon control approach in E-policy.

This process is performed iteratively until the MIP-based deadlock detection

method shows that there are no emptiable siphons in the augmented net, denoted

by (Nβ ,M
β
0), i.e., the net is live.

The second stage of L3-policy is to rearrange the output arcs of the monitors in

(Nβ ,M
β
0). This is done by making the arcs point to the transitions that are as far

away from the source transitions as possible provided that this arrangement does

not lead to emptiable siphons. Table 7.11 shows the monitors due to L3-policy for

the FMS example. The supervisor leads to 15,999 reachable states.

Table 7.11 Monitors added using L3-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t10, t16 t9, t15 VS2

2 t4, t13 t3, t11

VS3
2 t9, t17 t8, t15 VS4

2 t8, t18 t7, t15

VS5
5 t5, t10, t13, t17 t3, t8, t11, t15 VS6

5 t3, t8, t19 t1, t15

Remark 7.16. L3-policy aims to improve E-policy from the viewpoint of computa-

tional complexity, behavior permissiveness, and structural complexity. From both

theoretical and practical standpoints, this policy seems to simultaneously address

these issues in a reasonable way.

204 7 Comparison of Deadlock Prevention Policies

7.2.11 A Policy of Polynomial Complexity

Ideally, due to performance considerations, a deadlock prevention policy should be

developed such that the behavior of the controlled system is as permissive as possi-

ble. However, it has been formally established that, in general, the implementation of

an optimal (maximally permissive) deadlock control policy is an NP-hard problem.

This is so for the class of Petri nets considered in this case study. As stated previ-

ously, researchers have used the MIP-based deadlock detection method to derive a

number of deadlock prevention policies without the complete siphon enumeration.

However, the deadlock control methods that are based on either complete or par-

tial siphon enumeration are computationally expensive in theory. Although the case

study in [13] and [61] shows that the MIP-based method is encouraging when it is

applied to large systems, solving an MIP problem is, after all, NP-hard in theory.

Accordingly, it is significant, from both practical and theoretical standpoints, to

develop a suboptimal but computationally efficient deadlock prevention policy for a

system. The work by Park and Reveliotis [73] falls under this class. A key advantage

and distinguished characteristic of the deadlock prevention policy in [73], PR-policy

for short, with respect to the similar attempts existing in the literature is that PR-

policy is of polynomial complexity.

PR-policy considers a system that is formally defined by a set of resources R =
{ri|i ∈ Nm} and a set of jobs J = {J j| j ∈ Nn}. Each resource type ri has a capacity

Ci ∈ N+. Each job type J j is defined by a set of operations {p jk|k ∈ Nλ j
,λ j ∈ N+},

which is partially ordered through a set of precedence constraints. Each job opera-

tion p jk is associated with a conjunctive resource allocation requirement, formally

expressed by an m-dimensional vector ap jk
, with ap jk

[i], i ∈ Nm, indicating how

many units of resource ri are required to support the operation execution. Such a

system can be modeled by a class of Petri nets, S4R that is more general than S3PR.

Let (N,M0) denote an S4R, where N = (P0 ∪PA ∪PR,T,F,W), and P0 (PA; PR) is

the set of idle (operation; resource) places. In order to fully understand its idea, the

policy is reviewed as follows although it has been presented in Chap. 4.

Let oi ≡ O(ri), O : R → Nm be any partial order imposed on the resource set R.

Given p ∈ PA, let ρmax
p = max{oi|ap[i] > 0, i ∈ Nm} and ρmin

p = min{oi|ap[i] > 0, i ∈
Nm}. Also, let Lp = {q|q ∈ p•• ∩ PA ∧ ρmax

q = minv∈p••∩PA
ρmax

v }. By convention,

Lp = /0 if p••∩P0 �= /0. Then:

1. The neighborhood set Np of p ∈ PA is defined by Np = {p}∪{q|q ∈ ∪v∈LpNv ∧
ρmin

p ≤ ρmax
q }.

2. The adjusted resource allocation requirement âp for p ∈ PA under partial order

O() (resource ordering) is given by âp[i] = max{aq[i]|q ∈ Np} if oi ≥ ρmin
p ; oth-

erwise âp[i] = 0, ∀i ∈ Nm.

3. The policy-imposed constraint on the system operation is expressed by the re-

quirement that no resource is over-allocated with respect to the adjusted opera-

tion requirements specified by âp[i].

The liveness requirements of a system can be represented by the inequality con-

straints taking the form of

7.2 Applications of Deadlock Prevention Methods to a Case Study 205

Âp ·MP ≤ fp

where the column vector in Âp corresponding to an operation place p is âp, vector

MP is the restriction of marking M to the operation places, and fp is the capacity

vector of the resources, i.e., fp(i) = Ci, i ∈ N|R|.
The behavior of the supervisor depends on the selected resource ordering. A

method to find an optimal resource ordering is proposed such that the resultant su-

pervisor is as permissive as possible. For the example investigated in this chapter,

the resource ordering that we select is o1 = 1, o2 = 1, o3 = 1, o4 = 2, o5 = 2, o6 = 2,

and o7 = 2.

The conjunctive resource requirements of the operations are as follows:

ap2
= (0,1,0,0,0,0,0)T , ap3

= (0,0,0,0,1,0,0)T , ap4
= (0,1,0,0,0,0,0)T ,

ap6
= (1,0,0,0,0,0,0)T , ap7

= (0,0,0,1,0,0,0)T , ap8
= (0,1,0,0,0,0,0)T ,

ap9
= (0,0,0,0,1,0,0)T , ap10

= (0,0,1,0,0,0,0)T , ap11
= (0,0,0,0,0,1,0)T ,

ap12
= (0,1,0,0,0,0,0)T , ap13

= (0,0,0,0,0,0,1)T , ap15
= (1,0,0,0,0,0,0)T ,

ap16
= (0,0,0,0,0,1,0)T , ap17

= (0,1,0,0,0,0,0)T , ap18
= (0,0,0,0,0,0,1)T ,

ap19
= (0,0,1,0,0,0,0)T .

In this net, three job types are distinguished: J1 = {p2, p3, p4}, J2 = {p6, p7, p8,

p9, p10, p11, p12, p13}, and J3 = {p15, p16, p17, p18, p19}. Under the resource order-

ing o1 = 1, o2 = 1, o3 = 1, o4 = 2, o5 = 2, o6 = 2,and o7 = 2, first, we obtain

ρmax
p2

= ρmin
p2

= 1, ρmax
p3

= ρmin
p3

= 2, ρmax
p4

= ρmin
p4

= 1, ρmax
p6

= ρmin
p6

= 1,

ρmax
p7

= ρmin
p7

= 2, ρmax
p8

= ρmin
p8

= 1, ρmax
p9

= ρmin
p9

= 2, ρmax
p10

= ρmin
p10

= 1,

ρmax
p11

= ρmin
p11

= 2, ρmax
p12

= ρmin
p12

= 1, ρmax
p13

= ρmin
p13

= 2, ρmax
p15

= ρmin
p15

= 1,

ρmax
p16

= ρmin
p16

= 2, ρmax
p17

= ρmin
p17

= 1, ρmax
p18

= ρmin
p18

= 2, ρmax
p19

= ρmin
p19

= 1.

The Lp sets on the stages of job type J1 are: Lp4
= /0, Lp3

= {p4}, and Lp2
= {p3}.

The Lp sets on the stages of job type J2 are: Lp10
= /0, Lp13

= {p10}, Lp12
= {p13},

Lp11
= {p12}, Lp9

= {p10}, Lp8
= {p9}, Lp7

= {p8}, and Lp6
= {p7, p11}.

The Lp sets on the stages of job type J3 are: Lp15
= /0, Lp16

= {p15}, Lp17
= {p16},

Lp18
= {p17}, and Lp19

= {p18}.

The neighborhood sets on the stages of job type J1 are: Np4
= {p4}, Np3

= {p3},

and Np2
= {p2, p3}.

The neighborhood sets on the stages of job type J2 are: Np10
= {p10}, Np13

=
{p13}, Np12

= {p12, p13}, Np11
= {p11, p13}, Np9

= {p9}, Np8
= {p8, p9}, Np7

=
{p7, p9}, and Np6

= {p6, p7, p9, p11, p13}.

The neighborhood sets on the stages of job type J3 are: Np15
= {p15}, Np16

=
{p16}, Np17

= {p16, p17}, Np18
= {p16, p18}, and Np19

= {p16, p18, p19}.

Once the stage neighborhood sets are computed, the stage adjusted resource al-

location requirements are found directly as follows:

206 7 Comparison of Deadlock Prevention Policies

âp2
= (0,1,0,0,1,0,0)T , âp3

= (0,0,0,0,1,0,0)T , âp4
= (0,1,0,0,0,0,0)T ,

âp6
= (1,0,0,1,1,1,1)T , âp7

= (0,0,0,1,1,0,0)T , âp8
= (0,1,0,0,1,0,0)T ,

âp9
= (0,0,0,0,1,0,0)T , âp10

= (0,0,1,0,0,0,0)T , âp11
= (0,0,0,0,0,1,1)T ,

âp12
= (0,1,0,0,0,0,1)T , âp13

= (0,0,0,0,0,0,1)T , âp15
= (1,0,0,0,0,0,0)T ,

âp16
= (0,0,0,0,0,1,0)T , âp17

= (0,1,0,0,0,1,0)T , âp18
= (0,0,0,0,0,1,1)T ,

âp19
= (0,0,1,0,0,1,1)T .

Thus the modified set of linear inequality constraints expressed by state vector

can be shown below:

Âp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1

0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (7.19)

Table 7.12 shows the monitors for the example due to PR-policy. The correspond-

ing controlled system has 2,480 reachable states.

Table 7.12 Monitors added using PR-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

V1 1 t2, t7, t20 t1, t19 V2 1 t4, t9, t12, t14, t18 t3, t8, t11, t13, t17

V3 1 t6, t16 t5, t10, t15 V4 2 t3, t7 t1
V5 2 t5, t7, t13 t1, t11 V6 2 t2, t8, t19 t1, t15

V7 2 t2, t10, t17 t1, t15

Remark 7.17. Although this policy is not optimal, as far as the authors of this

book know, it is the first polynomial algorithm to design a monitor-based liveness-

enforcing supervisor for S3PR. The supervisor computed by PR-policy is not neces-

sarily optimal in structure. That is to say, there may exist redundant monitors whose

removal keeps the liveness of the resultant net system, as stated in Chap. 4. For ex-

ample, monitor V3 is certainly redundant since it has the same incidence vector and

initial marking with resource place p22 in the original plant net model.

7.2.12 An Iterative Deadlock Prevention Policy

Deadlock control in an iterative way is an old and intuitive idea. The latest iterative

deadlock prevention policy, called T-policy for short, is reported by Tricas et al.

[90, 91]. Similar approaches can be found in the literature [5, 7, 36, 39, 89, 106].

T-policy deals with S4R nets that are more general than S3PR. The policy dis-

tinguishes siphons in an S4R by good and bad ones. The insufficient markedness of

7.2 Applications of Deadlock Prevention Methods to a Case Study 207

the latter is closely related to potential deadlocks. At each iteration, a bad siphon S

is obtained by solving an integer LPP, and then a monitor VS is accordingly added

such that S is max-controlled [4,8,107]. The iterative process proceeds until no bad

siphons exist in the resultant net system.

For the example, this policy detects and controls S1, S4, S10, S16, S17, S18, S∗ =
{p2, p4, p8, p10, p17, p21, p22,VS1

,VS16
}, and S∗∗ = {p2, p3, p8, p9, p12, p13, p16,

p17, VS4
, VS17

} sequentially. After the eight siphons are controlled, the resultant net

system is live.

Table 7.13 shows the additional monitors due to T-policy for the example. The

process terminates after eight iterations. The resultant controlled system has 14,850

reachable states.

Table 7.13 Monitors added using T-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

VS1
2 t10, t16 t9, t15 VS4

5 t5, t10, t13, t17 t3, t8, t11, t15

VS10
2 t4, t13 t3, t11 VS16

2 t9, t17 t8, t16

VS17
5 t3, t8, t19 t1, t17 VS18

2 t8, t18 t7, t17

V ∗
S 5 t9, t10, t16, t17 2t8,2t15 V ∗∗

S 3 t3, t8, t17 t1, t15

Remark 7.18. In theory, T-policy is still NP-complete since the siphon controlled in

each iteration is found by solving an integer LPP. The number of additional monitors

and the permissive behavior of the resultant supervisor of a plant net model are

unknown in advance, which depend on the siphons identified and controlled at each

iteration.

7.2.13 An Optimal Deadlock Prevention Policy Based on Theory of

Regions

The permissive behavior is one of the most important criteria in evaluating the per-

formance of a liveness-enforcing or non-blocking supervisor. In terms of the theory

of regions, Uzam [92] develops an optimal liveness-enforcing supervisor synthesis

method, called U1-policy for short. Details of this policy can be found in Chap. 6.

The plant model of the FMS example has 26,750 reachable states, 21,581 of

which are legal, i.e., either good or dangerous states. There are 5,299 elements in

Ω , the set of marking/transition separation instances. This implies that we have to

solve 5,299 LPPs. This policy can in theory lead to an optimal liveness-enforcing

supervisor that results in 21,581 reachable states in the controlled system since such

a supervisor exists from P-policy [77].

Remark 7.19. U1-policy (as well as the one proposed in [34]) can be considered

the only strategy to design an optimal monitor-based supervisor although, due to

the inherent complexity, it is computationally too expensive. In theory, |Ω | is also

208 7 Comparison of Deadlock Prevention Policies

exponential with respect to the size of a plant model. In practice, we have to solve

|Ω | LPPs, which is clearly infeasible for either a sizable net or a small net with a

sizable initial marking.

7.2.14 A Suboptimal Deadlock Prevention Policy

The application of the theory of regions to deadlock prevention is widely extended

after the work in [92] and [34]. The deadlock prevention methods proposed in [93]

and [96] are claimed to require less computational cost to obtain the monitors. They

proceed in an iterative way. At each iteration, a marking called first-met bad mark-

ing (FBM) is identified from the reachability graph of a Petri net model. An FBM is

such a marking in MF that there exists a father node of it in ML. Then, a monitor is

added to prevent the marking from being reached via a well-established invariant-

based control approach [102]. Uzam and Zhou’s method, called U2-policy for short,

in [95] can be considered as an improved version of the deadlock control approaches

in [93] and [96]. The improvement is made since (1) Petri net reduction techniques

are used to simplify a net model so as to find the reachability graph with less compu-

tational overhead; and (2) a simplification for the invariant-based control approach is

proposed. For convenience of discussion, U2-policy is briefly presented as follows:

Input: a plant model G

Output: controlled system G′

Step 1. i := 1.

Step 2. Obtain a reduced net model Gi from G by using reduction techniques.

Step 3. Compute the reachability graph RGi for Gi.

Step 4. If Gi is live then G′ := Gi; go to Step 8.

Step 5. Find a first-met bad marking FBMi in Gi.

Step 6. Add monitor Vi by defining a P-invariant such that FBMi can never be

reached; denote the resultant net system by G.

Step 7. i := i+1; go to Step 2.

Step 8. Output controlled system G′.
For the example in the case study, the monitors computed by U2-policy are shown

in Table 7.14 after 19 iterations. The corresponding supervisor leads to 21,562

reachable states in the controlled system, and only 0.088% (21,581 − 21,562 =
19 out of 21,581) of the maximally permissive behavior is lost.

Remark 7.20. The significance of U2-policy deserves careful considerations from

the standpoint of computational complexity. It is well known that the computation

of a reachability graph is of exponential complexity. As indicated in [34], given the

reachability graph of a plant net model, the computation of a monitor is polynomial.

That is to say, U1-policy needs to compute the reachability graph only once and

solve |Ω | LPP, while, in U2-policy, at each iteration, one has to compute a reacha-

bility graph until all FBM are excluded in the resultant net system. Let k denote the

number of FBM in a net system. We conclude that in theory the number of times of

7.2 Applications of Deadlock Prevention Methods to a Case Study 209

Table 7.14 Monitors added using U2-policy

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

V1 2 t13 t11 V2 2 t4, t13 t3, t12

V3 2 t8, t18 t7, t17 V4 2 t9, t17 t8, t16

V5 3 t8, t17 t7, t16 V6 2 t10, t16 t9, t15

V7 4 t9, t17 t7, t15 V8 3 t10, t17 t8, t15

V9 4 t8, t10, t17 t7, t9, t15 V10 5 t5, t13, t17 t4, t11, t15

V11 5 t3, t8, t19 t1, t17 V12 5 t5, t13, t17 t3, t12, t15

V13 6 t5, t8, t13, t17 t4, t7, t11, t15 V14 5 t5, t10, t13, t17 t4, t9, t11, t15

V15 6 t5, t8, t13, t17 t3, t7, t12, t15 V16 5 t5, t10, t13, t17 t3, t9, t12, t15

V17 9 t5, t8, t10, t17, t19 t1, t9, t15, t18 V18 9 t3, t5, t8, t10, t18 t1, t4, t9, t15

V19 9 t3, t5, t9, t17, t19 t1, t4, t15, t18

computing reachability graphs in U2-policy is equal to k + 1, where k is in theory

exponential with respect to the size of a net model. To summarize, the complexity

of U2-policy is in theory much worse than that of U1-policy. In practice, different

FBM may have common monitor solutions under which they can never be reached.

As a result, the number of times to compute reachability graphs in U2-policy is

(much) smaller than k + 1. In addition, we do notice that some improvements have

been made in U2-policy. However, they cannot significantly reduce its computa-

tional complexity in theory. To summarize, we are led to infer the following points

concerning the two policies:

1. In theory, U1-policy needs to compute the reachability graph only once and to

solve |Ω | LPPs. U2-policy needs to compute the reachability graphs k +1 times,

where k is the number of FBM in MF . |Ω | and k have the same order of magni-

tude, which, in theory, are exponential with respect to the size of a net.

2. In practice, both of them first compute the reachability graph of a plant. Then,

U1-policy has to solve |Ω | LPPs in order to decide whether different mark-

ing/transition instances have the common monitor solutions. While, the number

of times to compute reachability graphs in U2-policy may be small due to the

fact that different FBMs often have common monitor solutions. The practical ex-

amples even suggest that it is exponentially smaller than k as each FBM often

represents the first one that leads to a large portion of bad markings. Its control

means this portion’s control.

In theory U1-policy as well as the one proposed in [34], in which the reachability

graph of a plant net model needs to be computed only once, remains to be an elegant

strategy in designing a liveness-enforcing supervisor with maximally permissive be-

havior (provided that such a supervisor exists). However, in practice, the superiority

of the one over the other remains open. Compared with U1-policy, U2-policy seems

promising when we deal with a net in which |Ω | is large but the state space is small.

However, it is taken for granted that a small state space of a plant net model usually

has a small |Ω |. In this scenario, intuitively, U2-policy is computationally better

than U1-policy. More work is needed to compare them by the study of examples

whose state spaces range from being small to large.

210 7 Comparison of Deadlock Prevention Policies

7.2.15 An Optimal Policy Based on Complete Siphon Enumeration

For S3PR nets, the deadlock prevention policy, called X-policy for short, proposed

by Xing and Hu in [101] aims, by structural analysis, to develop a liveness-enforcing

supervisor with maximally permissive behavior and a minimized number of addi-

tional monitors.

The concepts of perfect resource transition circuits (PRT-circuits) and their satu-

rated states are proposed. A saturated PRT-circuit implies the existence of circular

wait that is tied to deadlock states. The liveness of an S3PR net is characterized by

the fact that no PRT-circuit can reach a saturated state at any reachable marking of

the system.

Starting from PRT-circuits, elementary maximal PRT-circuits and center re-

sources are accordingly defined. A center resource has a capacity of one and is

contained in the resource sets of at least two elementary maximal PRT-circuits. The

following facts are claimed [101]:

1. For an S3PR without center resources, an optimal liveness-enforcing supervisor

can be obtained by computing a set of monitors.

2. An S3PR net model with center resources can be reduced to a simple one SPN(r)

by removing center resources according to a set of rules. An optimal liveness-

enforcing supervisor PC(r) can be found for SPN(r). The composition of PC(r)

and SPN(r) can derive a supervisory policy ρ under which the system is live.

3. Each elementary maximal PRT-circuit can be used to derive a strict minimal

siphon and vice versa.

4. X-policy needs the complete siphon enumeration and hence is of exponential

complexity.

For an elementary maximal PRT-circuit θ with its resource place set R[θ], a

monitor pθ is added by the siphon control approach of AE-policy with Mα
0 (pθ) =

M0(R[θ])−1.

The example has a center resource R2(p21). The reduced Petri net model resulting

from removing p21 is shown in Fig.7.1. Table 7.15 shows the monitors of PC(r) for

the reduced net model SPN(r) of the example. A supervisory policy derived from

the synchronous synthesis of PC(r) and SPN(r) can lead to the controlled system

that has 16,276 reachable states.

Table 7.15 Monitors added using X-policy in PC(r)

VS Mα
0 (·) Preset Postset VS Mα

0 (·) Preset Postset

V1 2 t10, t16 t8,9, t15 V2 3 t8,9, t17,18 t7, t16

V3 4 t10, t17,18 t7, t15 V4 9 t5, t10, t19 t1, t15

Remark 7.21. The rationality of X-policy is worthy of being further investigated

when a plant net model contains center resources although it is theoretically correct

that the removal of the center resources can lead to an optimal supervisor.

7.3 Analysis of Deadlock Prevention Methods 211

p 1 p 3

p 5

p 6

p 7

p 9

p 1 0

p 1 1

p 1 3

p 1 4

p 1 5

p 1 6

p 1 8

p 1 9

p 2 0

p 2 2

p 2 3

p 2 4

p 2 5

p 2 6

t 1

t 2

t 3 , 4

t 5

t 6

t 7

t 8 , 9

t 1 0

t 1 1 , 1 2

t 1 3 , 1 4

t 1 5

t 1 6

t 1 7 , 1 8

t 1 9

t 2 0

M 1

M 2

M 3

M 4

R 1

R 3

I 1 / O 1 I 2 / O 2

I 3 / O 3

7

1 1

3

Fig. 7.1 The reduced Petri net model SPN(r) of the example

Remark 7.22. While X-policy guarantees the optimality of deadlock control for

S3PR without center resources, some S3PR with center resources may also be opti-

mally controlled. For example, the net depicted in Fig. 6.9 has center resources but

an optimal liveness-enforcing supervisor can be found by computing four monitors

for the strict minimal siphons.

7.3 Analysis of Deadlock Prevention Methods

Table 7.16 summarizes the performance of the supervisors resulting from the poli-

cies recounted in the last section. The first column lists the policies and the second

denotes the number of reachable states of the corresponding supervisor. The third

and fourth columns show the number of the additional monitors and arcs, respec-

tively. The fifth (sixth) indicates whether the complete siphon (state) enumeration is

necessary in a policy (“
√

” means “yes” and “×” means “no”). The seventh column

exhibits the computational complexity. We do not present here the specific computa-

tion time of these policies for this example since the necessary computation required

by each of them can be finished within a few seconds or, at most, a few minutes (ex-

cept for U1-policy) in a personal computer. Note that for the example in this case

study the monitors and arcs due to U1-policy can be computed with commercial

212 7 Comparison of Deadlock Prevention Policies

software packages. No results of this case example are found in the literature by

using U1-policy.

Table 7.16 Performance analysis and comparison

Policy

in the

literature

No.

reach.

states

No.

add.

monitors

No.

add.

arcs

Complete

siphon

enumeration

Complete

reach.

graph

Computational

Complexity

AE-policy × 18 104
√ × exponential

B1-policy × 18 104
√ × exponential

B2-policy 166 0 0
√ × exponential

P-policy 21,581 13 82
√ × exponential

E-policy 6,287 18 106
√ × exponential

H1-policy 12,656 16 88 × × NP-hard

H2-policy 16,425 7 34
√ × exponential

L1-policy 6,287 6 32
√ × exponential

L2-policy 6,331 5 27 × × NP-hard

L3-policy 15,999 6 29 × × NP-hard

PR-policy 2,480 7 38 × × polynomial

T-policy 14,850 8 40 × × NP-hard

U1-policy 21,581 × × × √
exponential

U2-policy 21,562 19 112 × √
exponential

X-policy 15,098 4 17
√ × exponential

The performance analysis of the policies is carried out by considering the follow-

ing three criteria: behavior permissiveness, computational complexity, and structural

complexity.

7.3.1 Reachability-Graph-Based Policies

U1- and U2-policies fall under this class of deadlock prevention methods. The su-

pervisors derived from them can usually have maximally permissive behavior if

such supervisors exist. Since the computation of the reachability graph for a plant

net model is necessary, these policies are of exponential complexity. The number

of additional monitors is, in theory, equal to that of marking/transition separation

instances or that of FBMs. Although, as indicated by the case study, different mark-

ing/transition separation instances or FBMs can have common monitor solutions, as

far as the authors know, there is no formal proof indicating that in practice the num-

ber of monitors is polynomial with respect to the size of the plant. These policies

cannot deal with a large-sized net with a large initial marking due to the state explo-

sion problem [14, 17]. By INA [86], we have tried to find the reachability graph for

an S3PR net model with 68 places and 54 transitions. The computation was carried

out on a Toshiba notebook with 1.7 GHz processor speed and 512 M of memory

under the Windows XP operating system. After having generated 1,764,263 states

in more than six days, the computation aborted due to memory overflow.

7.3 Analysis of Deadlock Prevention Methods 213

It is worthy of note that symbolic techniques based on binary decision dia-

grams [9, 10] have emerged as an efficient strategy for the reachability analysis and

computation of Petri nets [71,74,75]. These methods are expected to be used in the

resolution of deadlocks in FMSs in the future.

7.3.2 Complete-Siphon-Enumeration-Based Policies

As a structural object, siphons are extensively used in the analysis and control of

deadlocks in resource allocation systems [15, 42, 79–82], leading to a large number

of siphon-based deadlock control strategies [59,64–66,88]. In this chapter, AE-, B1-

, B2-, P-, E-, H2-, L1-, and X-policies fall under the class of deadlock prevention

methods that need the complete siphon enumeration of a plant net model.

In general, a siphon-based deadlock prevention policy cannot lead to a maxi-

mally permissive liveness-enforcing supervisor except for the nets with particular

structures or initial markings. Siphons in a Petri net are a purely structural object

whose computation is independent of markings. However, it is well known that their

number grows fast and in the worst case grows exponentially with respect to the size

of a net [18,46]. It seems that siphon-based methods can deal well with the deadlock

problems in a small net structure with any initial marking. In this sense, a siphon-

based method, compared with the ones based on reachability graphs, behaves much

better from the standpoint of computational complexity.

For the example investigated in this chapter, it is easy to see that the structure of

a supervisor can be simplified if the elementary siphons are taken into account when

one designs a deadlock prevention policy. An elegant result concerning elementary

siphon theory is that a dependent siphon can be controlled by properly supervising

its elementary siphons. This implies that, in theory, monitors can be added for el-

ementary siphons only. Since the number of the elementary siphons is bounded by

the smaller of place and transition counts, it can be concluded that an elementary

siphon-based deadlock prevention policy can usually lead to a structurally simple

liveness-enforcing supervisor.

7.3.3 Partial-Siphon-Enumeration-Based Policies

In theory, behavior permissiveness of a supervisor does not depend on whether or

not a policy needs complete siphon enumeration. From the case study, a deadlock

prevention policy that needs partial siphon enumeration may lead to a supervisor

with more permissive behavior and simplified net structure. H1-, L2-, L3-, PR-,

and T-policies belong to this class of methods. From the standpoint of performance

of the supervisors, these policies make a favorable balance between computational

complexity and behavior permissiveness. For example, as shown in [61], it takes

more than 6 hours to compute all 169 strict minimal siphons in an S3PR with 68

214 7 Comparison of Deadlock Prevention Policies

places and 54 transitions by using INA. However, L3-policy just needs to compute

24 strict minimal siphons and to control 13 of them, taking 178 seconds only, where

Lindo [68] is used to solve the MIP problems. Except the PR-policy, which is of

polynomial complexity, most deadlock prevention policies requiring no complete

siphon enumeration need to solve MIP problems, which is NP-hard. However, the

experimental study of many cases shows that PR-policy is over-conservative.

7.3.4 Exponential Complexity and NP-Hardness

Except PR-policy [73], which is of polynomial-time, other existing deadlock pre-

vention policies need either the (partial or complete) siphon enumeration or reach-

ability graph. A policy is classified into the class with exponential complexity if it

needs the complete siphon enumeration or reachability graph. As is well-known, the

number of siphons in a Petri net grows in the worst case exponentially with respect

to its size and the size of reachability graph grows exponentially with the size of the

net as well as initial markings. A policy is of NP-hard complexity if it involves the

solution of an MIP problem.

Recognizing the inefficiency and intractability of computing the complete siphon

enumeration and reachability graph for a Petri net, the MIP-based method [13] is a

fast deadlock detection approach for structurally bounded nets whose deadlocks are

tied to unmarked siphons. Although an MIP problem is NP-hard and is difficult to

solve [33], the case study conducted by Chu and Xie [13] shows that its compu-

tational efficiency is relatively insensitive to the initial marking and it seems to be

much more efficient than the classical complete state or siphon enumeration meth-

ods.

H1-, L2-, L3-, and T-policies use the MIP-based deadlock detection method to

avoid the complete siphon enumeration. In each of these policies, the number of

times of solving MIP problems is in theory exponential with respect to the size of a

net [88]. In practice, the number of the iteration steps is in general much smaller than

that of deadlock states since different deadlock states may share a common monitor

solution, which leads to the relatively high efficiency of these deadlock prevention

policies.

Remark 7.23. When behavior permissiveness is not a major concern, PR-policy

should be the best choice for industrial-size automated systems as it is the only

deadlock prevention approach in the literature with polynomial complexity. If the

off-line computational cost is not a problem and the computation is feasible, U1- or

U2-policies should be the first choice of industrial engineers. The deadlock preven-

tion policies that use partial siphon enumeration achieve a good balance between

the behavior permissiveness and computational complexity [84].

Remark 7.24. A natural extension to the current work is to improve the computa-

tional efficiency of deadlock prevention methods that are based on the theory of

7.4 Bibliographical Remarks 215

regions [83]. Future work can also focus on the development of elementary siphon-

based deadlock control methods. As a conjecture, if a polynomial algorithm is de-

veloped to find a set of elementary siphons for a particular class of Petri nets [97], it

is possible that we can develop a number of polynomial deadlock control methods

for the net class, which are supposed to be more permissive than PR-policy.

7.4 Bibliographical Remarks

Most of the material in this chapter is from the recent work [67]. It is hard to com-

pare, from a theoretical point of view or by a formal proof, the behavior permis-

siveness of two deadlock prevention strategies if both of them are not optimal. As

a result, experimental study seems to be an effective way to find an answer to this

problem. It is a time-consuming and tedious task since we need a fair number of

Petri nets generated randomly.

The paper by Fanti and Zhou [29] compares the deadlock control approaches

for automated manufacturing systems under different formalisms such as Petri nets,

graph theory [12, 22–30, 98, 99], automata [69], and the combination of these for-

malisms [48–56,70,76,94]. Not much work except [6,21,31,35,37,60,72] is found

in the literature to compare different deadlock control strategies for FMS.

Problems

7.1. Design liveness-enforcing supervisors for S3PR shown in Fig. 5.3 by the dead-

lock prevention policies in Sect. 7.2. Compare the resultant supervisors in terms of

structural complexity, computational cost, and permissive behavior. Note that an op-

timal liveness-enforcing supervisor of the Petri net model should lead to a controlled

system that has 60 reachable states.

7.2. Design liveness-enforcing supervisors for S3PR shown in Fig. 5.16 by the dead-

lock prevention policies in Sect. 7.2. Compare the resultant supervisors in terms of

structural complexity, computational cost, and permissive behavior. Note that an

optimal controlled system should have 205 reachable states.

7.3. Design liveness-enforcing supervisors for S3PR shown in Fig. 6.7 by the dead-

lock prevention policies in Sect. 7.2. Compare the resultant supervisors in terms of

structural complexity, computational cost, and permissive behavior. Note that an op-

timal controlled system of the Petri net model should have 48 reachable states. A fact

can be easily observed that some of the policies lead to optimal liveness-enforcing

supervisors.

7.4. Design a liveness-enforcing supervisor for S3PR shown in Fig. 6.7 by P-policy

proposed in [77].

216 7 Comparison of Deadlock Prevention Policies

7.5. As seen in Subsect. 7.2.5, E-policy adds 18 monitors for the FMS example in

this chapter. Find the implicit places in the controlled system.

References

1. Abdallah, I.B., ElMaraghy, H.A. (1998) Deadlock prevention and avoidance in FMS: A Petri

net based approach. International Journal of Advanced Manufacturing Technology, vol.14,

no.10, pp.704–715.
2. Barkaoui, K., Abdallah, I.B. (1995) A deadlock prevention method for a class of FMS. In

Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.4119–4124.
3. Barkaoui, K., Abdallah, I.B. (1995) Deadlock avoidance in FMS based on structural theory

of Petri nets. In Proc. INRIA/IEEE Symposium on Emerging Technologies and Factory Au-

tomation, pp.499–510.
4. Barkaoui, K., Pradat-Peyre, J.F. (1996) On liveness and controlled siphons in Petri nets. In

Proc. 17th Int. Conf. on Applications and Theory of Petri Nets Lecture Notes in Computer

Science, vol.1091, pp.57–72.
5. Barkaoui, K., Chaoui, A., Zouari, B. (1997) Supervisory control of discrete event systems

based on structure theory of Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cyber-

netics, pp.3750–3755.
6. Barkaoui, K., Chaoui, A., Benamara, R. (1997) The performance of alternative strategies for

dealing with deadlocks in FMS. In Proc. 6th Int. Conf. on Emerging Technologies and Factory

Automation, pp.281–286.
7. Barkaoui, K., Petrucci, L. (1998) Structural analysis of workflow nets with shared resources.

In Proc. Workshop on Workflow Management: Net-based Concepts, Models, Techniques and

Tools, pp.82–95.
8. Barkaoui, K., Couvreur, J.M., Klai, K. (2005) On the equivalence between liveness and

deadlock-freeness in Petri nets. In Proc. 26th Int. Conf. on Applications and Theory of Petri

Nets and Other Models of Concurrency, Lecture Notes in Computer Science, vol.3536, pp.90–

107.
9. Bryant, R.E. (1986) Graph-based algorithms for Boolean function manipulation. IEEE Trans-

actions on Computers, vol.35, no.8, pp.677–691.
10. Bryant, R.E. (1992) Symbolic boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys, vol.24, no.3, pp.293–318.
11. Chao, D.Y. (2006) Maximal class of weakly live nets without emptiable siphons. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B, vol.36, no.6, pp.1332–1341.
12. Cho, H., Kumaran, T.K., Wysk, R.A. (1995) Graph-theoretic deadlock detection and reso-

lution for flexible manufacturing systems. IEEE Transactions on Robotics and Automation,

vol.11, no.3, pp.413–421.
13. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical

programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.
14. Ciardo, G. (2004) Reachability set generation for Petri nets: can brute force be smart? In Proc.

25th Int. Conf. on Applications and Theory of Petri Nets, Lecture Notes in Computer Science,

vol.3099, pp.17–34.
15. Colom, J.M. (2003) The resource allocation problem in flexible manufacturing systems. In

Proc. Int. Conf. on Applications and Theory of Petri Nets, W. van der Aalst and E. Best

(Eds.), Lecture Notes in Computer Science, vol. 2679, pp.23–35.
16. Cordone, R., Ferrarini, L., Piroddi, L. (2005) Enumeration algorithms for minimal siphons in

Petri nets based on place constraints. IEEE Transactions on Systems, Man and Cybernetics,

Part A, vol.35, no.6, pp.844–854.
17. Esparza, J. (1998) Decidability and complexity of Petri net problems – an introduction. In

Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer Science, vol.1491, G.

Rozenberg and W. Reisig (Eds.), pp.374–428.

References 217

18. Ezpeleta, J., Couvreur, J.M., Silva, M. (1993) A new technique for finding a generating family

of siphons, traps, and st-components: Application to colored Petri nets. In Advances in Petri

Nets, Lecture Notes in Computer Science, vol.674, G. Rozenberg (Eds.), pp.126–147.

19. Ezpeleta, J, Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy

for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11,

no.2, pp.173–184.

20. Ezpeleta, J., Garcı́a-Vallés, F., Colom, J.M. (1998) A class of well structured Petri nets for

flexible manufacturing systems. In Proc. 19th Int. Conf. on Applications and Theory of Petri

Nets, Lecture Notes in Computer Science, vol.1420, J. Desel and M. Silva (Eds.), pp.64–83.

21. Fanti, M.P., Maione, B., Mascolo, S., Turchiano, B. (1996) Performance of deadlock avoid-

ance algorithms in flexible manufacturing systems. Journal of Manufacturing Systems, vol.15,

no.3, pp.164–178.

22. Fanti, M.P., Maione, B., Mascolo, S., Turchiano, B. (1997) Event-based feedback control

for deadlock avoidance in flexible production systems. IEEE Transactions on Robotics and

Automation, vol.13, no.3, pp.347–363.

23. Fanti, M.P., Maione, B., Turchiano, B. (2000) Comparing digraph and Petri net approaches to

deadlock avoidance in FMS. IEEE Transactions on Systems, Man, and Cybernetics, Part B,

vol.30, no.5, pp.783–798.

24. Fanti, M.P., Maione, B., Turchiano, B. (2001) Distributed event-control for deadlock avoid-

ance in automated manufacturing systems. International Journal of Production Research,

vol.39, no.9, pp.1993–2021.

25. Fanti, M.P., Turchiano, B. (2001) Deadlock avoidance in automated guided vehicle systems.

In Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol.2,

pp.1017–1022.

26. Fanti, M.P. (2002) Event-based controller to avoid deadlock and collisions in zone-control

AGVS. International Journal of Production Research, vol.40, no.6, pp.1453–1478.

27. Fanti, M.P., Maione, B., Turchiano, B. (2002) Design of supervisors to avoid deadlock in

flexible assembly systems. International Journal of Flexible Manufacturing Systems, vol.14,

no.2, pp.157–175.

28. Fanti, M.P. (2004) Deadlock resolution strategy for automated manufacturing systems includ-

ing conjunctive resource service. IEEE Transactions on Systems, Man, and Cybernetics, Part

A, vol.34, no.1, pp.80–92.

29. Fanti, M.P., Zhou, M.C. (2004) Deadlock control methods in automated manufacturing sys-

tems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.5–22.

30. Fanti, M.P., Zhou, M.C. (2005) Deadlock control methods in automated manufacturing sys-

tems. In Deadlock Resolution in Computer-Integrated Systems, New York: Marcel Dekker,

pp.1–22.

31. Ferrarini, L., Piroddi, L. (2005) The effect of modeling and control techniques on the man-

agement of deadlocks in FMS. In Deadlock Resolution in Computer-Integrated System, M.

C. Zhou and M. P. Fanti, (Eds)., New York: Marcel Dekker, pp.407–444.

32. Garcı́a-Vallés, F., Colom, J.M. (1999) Implicit places in net systems. In Proc. 8th Int. Work-

shop on Petri Nets and Performance Models, pp.104–113.

33. Garey, M.R., Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory of

NP-Completeness. New York: W. H. Freeman.

34. Ghaffari, A., Rezg, N., Xie, X.L. (2003) Design of a live and maximally permissive Petri

net controller using the theory of regions. IEEE Transactions on Robotics and Automation,

vol.19, no.1, pp.137–142.

35. Hosack, B., Mahmoodi, F., Mosier, C.T. (2003) A comparison of deadlock avoidance policies

in flexible manufacturing systems. International Journal of Production Research, vol.41, no.

13, pp.2991–3006.

36. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S. L. (2001) Deadlock prevention policy based on

Petri nets and siphons. International Journal of Production Research, vol.39, no.2, pp.283–

305.

218 7 Comparison of Deadlock Prevention Policies

37. Huang, Y.S., Lin, J.H., Hsu, C.N., (2004) Comparison of deadlock prevention policies in

FMS based on Petri nets siphons. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics,

pp.4867–4872.

38. Huang, Y.S. (2007) Design of deadlock prevention supervisors for FMS using Petri nets.

International Journal of Advanced Manufacturing Technology, vol.35, no.3–4, pp.349–362.

39. Iordache, M.V., Moody, J.O., Antsaklis, P.J. (2002) Synthesis of deadlock prevention supervi-

sors using Petri nets. IEEE Transactions on Robotics and Automation, vol.18, no.1, pp.59–68.

40. Jeng, M.D., DiCesare, F. (1995) Synthesis using resource control nets for modeling shared-

resource systems. IEEE Transactions on Robotics and Automation, vol.11, no.3, pp.317–327.

41. Jeng, M.D. (1997) A Petri net synthesis theory for modeling flexible manufacturing systems.

IEEE Transactions on Systems, Man and Cybernetics, Part B, vol.27, no.2, pp.169–183.

42. Jeng, M.D., Peng, M.Y., Huang, Y.S. (1999) An algorithm for calculating minimal siphons

and traps in Petri nets. International Journal of Intelligent Control and Systems, vol.3, no.3,

pp.263–275.

43. Jeng, M.D., Xie, X.L. (1999) Analysis of modularly composed nets by siphons. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part A, vol.29, no.4, pp.399–406.

44. Jeng, M.D., Xie, X.L., Peng, M.Y. (2002) Process nets with resources for manufacturing

modeling and their analysis. IEEE Transactions on Robotics and Automation, vol.18, no.6,

pp.875–889.

45. Jeng, M.D., Xie, X.L., Chung, S.L. (2004) ERCN* merged nets for modeling degraded be-

havior and parallel processes in semiconductor manufacturing systems. IEEE Transactions

on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.102–112.

46. Lautenbach, K. (1987) Linear algebraic calculation of deadlocks and traps. In Concurrency

and Nets, K. Voss, H. J. Genrich and G. Rozenberg (Eds.), pp.315–336.

47. Lautenbach, K., Ridder, H. (1996) The linear algebra of deadlock avoidance – a Petri net

approach. No.25-1996, Technical Report, Institute of Software Technology, University of

Koblenz-Landau, Koblenz, Germany.

48. Lawley, M.A., Reveliotis, S.A., Ferreira, P.M. (1997) Design guidelines for deadlock-

handling strategies in flexible manufacturing systems. International Journal of Flexible Man-

ufacturing Systems, vol.9, no.1, pp.5–30.

49. Lawley, M.A., Reveliotis, S.A., Ferreira, P.M. (1998) Flexible manufacturing system struc-

tural control and the neighborhood policy, part 2. Generalization, optimization, and efficiency.

IIE Transactions, vol.29, no.10, pp.889–899.

50. Lawley, M.A., Reveliotis, S.A., Ferreira, P.M. (1998) A correct and scalable deadlock avoid-

ance policy for flexible manufacturing systems. IEEE Transactions on Robotics and Automa-

tion, vol.14, no.5, pp.796–809.

51. Lawley, M.A., Reveliotis, S.A., Ferreira, P.M. (1998) Flexible manufacturing system struc-

tural control and the neighborhood policy, part 1. Correctness and Scalability. IIE Transac-

tions, vol.29, no.10, pp.877–887.

52. Lawley, M.A., Reveliotis, S.A., Ferreira, P.M. (1998) The application and evaluation of

banker’s algorithm for deadlock-free buffer space allocation in flexible manufacturing sys-

tems. International Journal of Flexible Manufacturing Systems, vol.10, no.1, pp.73–100.

53. Lawley, M.A. (1999) Deadlock avoidance for production systems with flexible routing. IEEE

Transactions on Robotics and Automation, vol.15, no.3, pp.497–509.

54. Lawley, M.A. (2000) Integrating flexible routing and algebraic deadlock avoidance policies

in automated manufacturing systems. International Journal of Production Research, vol.38,

no.13, pp.2931–2950.

55. Lawley, M.A., Reveliotis, S.A. (2001) Deadlock avoidance for sequential resource alloca-

tion systems: Hard and easy cases. International Journal of Flexible Manufacturing Systems,

vol.13, no.4, pp.385–404.

56. Lawley, M.A., Sulistyono, W. (2002) Robust supervisory control policies for manufacturing

systems with unreliable resources. IEEE Transactions on Robotics and Automation, vol.18,

no.3, pp.346–359.

References 219

57. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to dead-

lock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.34, no.1, pp.38–51.

58. Li, Z.W., Uzam, M., Zhou, M.C. (2004) Comments on “Deadlock prevention policy based

on Petri nets and siphons”. International Journal of Production Research, vol.42, no.24,

pp.5253–5254.

59. Li, Z.W., Zhou, M.C. (2005) Elementary siphon of Petri nets for effective deadlock control in

flexible manufacturing systems. In Deadlock Resolution in Computer-Integrated Systems, M.

C. Zhou and M. P. Fanti (Eds.), New York: Marcel Dekker, pp. 309–348.

60. Li, Z.W., Zhou, M.C. (2005) Comparison of two deadlock prevention methods for different-

size flexible manufacturing systems. International Journal of Intelligent Control and Systems,

vol.10, no.3, pp.235–243.

61. Li, Z.W., Zhou, M.C. (2006) Two-stage method for synthesizing liveness-enforcing super-

visors for flexible manufacturing systems using Petri nets. IEEE Transactions on Industrial

Informatics, vol.2, no.4, pp.313–325.

62. Li, Z.W., Zhou, M.C. (2006) Clarifications on the definitions of elementary siphons of Petri

nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.36, no.6, pp.1227–

1229.

63. Li, Z.W., Hu, H.S., Wang, A.R. (2007) Design of liveness-enforcing supervisors for flexible

manufacturing systems using Petri nets. IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C, vol.37, no.4, pp.517–526.

64. Li, Z.W., Zhou, M.C., Uzam, M. (2007) Deadlock control policy for a class of Petri nets

without complete siphon enumeration. IET Control Theory and Applications, vol.1, no.6,

pp.1594–1605.

65. Li, Z.W., Zhang, J, Zhao, M. (2007) Liveness-enforcing supervisor design for a class of gen-

eralized Petri net models of flexible manufacturing systems. IET Control Theory and Appli-

cations, vol.1, no.4, pp.955–967.

66. Li, Z.W., Sheptalni, M. (2009) A smart deadlock prevention policy for flexible manufacturing

systems using Petri nets. To appear in IET Control Theory and Applications.

67. Li, Z.W., Zhou, M.C. (2008) A survey and comparison of Petri net-based deadlock preven-

tion policies for flexible manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part C, vol.38, no.2, pp.172–188.

68. Lindo, Premier Optimization Modeling Tools, http://www.lindo.com/.

69. Ma, C., Wonham, W.M. (2005) Nonblocking Supervisory Control of State Tree Structures.

Berlin: Springer.

70. Maione, G., DiCesare F. (2005) Hybrid Petri net and digraph approach for deadlock pre-

vention in automated manufacturing systems. International Journal of Production Research,

vol.43, no.24, pp.5131–5159.

71. Miner, A.S., Ciardo, G. (1999) Efficient reachability set generation and storage using deci-

sion diagrams. In Proc. Int. Conf. on Application and Theory of Petri Nets, Lecture Notes in

Computer Science, vol.1639, pp.6–25.

72. Mohan, S., Yalcin, A., Khator, S. (2004) Controller design and performance evaluation

for deadlock avoidance in automated flexible manufacturing cells. Robotics and Computer-

Integrated Manufacturing vol.20, no.6, pp.541–551.

73. Park, J., Reveliotis, S.A. (2001) Deadlock avoidance in sequential resource allocation systems

with multiple resource acquisitions and flexible routings. IEEE Transactions on Automatic

Control, vol.46, no.10, pp.1572–1583.

74. Pastor, E., Cortadella, J., Pena, M.A. (1999) Structural methods to improve the symbolic

analysis of Petri nets. In Proc. Int. Conf. on Application and Theory of Petri Nets, Lecture

Notes in Computer Science, vol.1639, pp.26–45.

75. Pastor, E., Cortadella, J., Roig, O. (2001) Symbolic analysis of bounded Petri nets. IEEE

Transactions on Computers, vol.50, no.5, pp.432–448.

76. Pinzon, L.E., Hanisch, H.M., Jafari, M.A., Boucher, T. (1999) A comparative study of syn-

thesis methods for discrete event controllers. Formal Methods in System Design, vol.15, no.2,

pp.123–167.

220 7 Comparison of Deadlock Prevention Policies

77. Piroddi, L., Cordone, R., Fumagalli, I. (2008) Selective siphon control for deadlock preven-

tion in Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 38, no.

6, pp.1337–1348.

78. Recalde, L., Teruel, E., Silva, M., (1997) Improving the decision power of rank theorems. In

Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.3768–3773.

79. Reveliotis, S.A. (2002) Liveness enforcing supervision for sequential resource allocation sys-

tems: state of the art and open issues. In Synthesis and Control of Discrete Event Systems, B.

Caillaud, X. L. Xie, P. Darondeau, and L. Lavagno (Eds.), Boston, MA: Kluwer, pp.203–212.

80. Reveliotis, S.A. (2003) On the siphon-based characterization of liveness in sequential re-

source allocation systems. In Proc. Int. Conf. on Applications and Theory of Petri Nets,

Lecture Notes in Computer Science, vol.2679, W. M. P. van der Aalst and E. Best (Eds.),

pp.241–255.

81. Reveliotis, S.A. (2005) On the siphon-based characterization of liveness and liveness-

enforcing supervision for sequential resource allocation systems. In Deadlock Resolution in

Computer-Integrated Systems, pp.283–307, New York: Marcel Dekker.

82. Reveliotis, S.A. (2005) Real-time Management of Resource Allocation Systems: A Discrete

Event Systems Approach, New York: Springer.

83. Reveliotis, S.A., Choi, J.Y. (2006) Designing reversibility-enforcing supervisors of polyno-

mial complexity for bounded Petri nets through the theory of regions. In Proc. 27th Int. Conf.

on Applications and Theory of Petri Nets and Other Models of Concurrency, Lecture Notes

in Computer Science, vol.4024, S. Donatelli and P. S. Thiagarajan (Eds.), pp.322–341.

84. Reveliotis, S.A., Roszkowska, E., Choi, J.Y. (2007) Generalized algebraic deadlock avoidance

policies for sequential resource allocation systems. IEEE Transactions on Automatic Control,

vol.52, no.12, pp.2345–2350.

85. Silva, M., Teruel, E., Colom, J.M. (1998) Linear algebraic and linear programming techniques

for the analysis of place/transition net systems. In Lectures on Petri Nets I: Basic Models,

Lectures Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.), pp.309–

373.

86. Starke, P.H. (2003) INA: Integrated Net Analyzer. http://www2.informatik.hu-berlin.de/
∼starke/ina.html.

87. Tricas, F., Martinez, J. (1995) An extension of the liveness theory for concurrent sequential

processes competing for shared resources. In Proc. IEEE Int. Conf. on Systems, Man, and

Cybernetics, pp.3035–3040.

88. Tricas, F., Colom, J.M., Ezpeleta, J. (1997) A solution to the problem of deadlocks in concur-

rent systems using Petri nets and integer linear programming. Research Report, RR-GISI-06,

Departamento de Informática e Ingenierı́a de Sistemas, Universidad de Zaragoza, Spain.

89. Tricas, F., Garcı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (2000) An iterative method for dead-

lock prevention in FMSs. In Proc. 5th Workshop on Discrete Event Systems, R. Boel and G.

Stremersch (Eds.), pp.139–148.

90. Tricas, F., Garcı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (2005) Using linear programming and

the Petri net structure for deadlock prevention in sequential resource allocation systems. XIII

Jornadas de Concurrencia y Sistemas Distribuidos, pp.65–77.

91. Tricas, F., Garcı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (2005) A Petri net structure-based

deadlock prevention solution for sequential resource allocation systems. In Proc. IEEE Int.

Conf. on Robotics and Automation, pp.271–277.

92. Uzam, M. (2002) An optimal deadlock prevention policy for flexible manufacturing systems

using Petri net models with resources and the theory of regions. International Journal of

Advanced Manufacturing Technology, vol.19, no.3, pp.192–208.

93. Uzam, M., Zhou, M.C. (2004) Iterative synthesis of Petri net based deadlock prevention pol-

icy for flexible manufacturing systems. In Proc. IEEE Int. Conf. on Systems, Man, and Cy-

bernetics, pp.4260–4265.

94. Uzam, M., Wonham, W.M. (2006) A hybrid approach to supervisory control of discrete event

systems coupling RW supervisors to Petri nets. International Journal of Advanced Manufac-

turing Technology, vol.28, no.7–8, pp.747–760.

References 221

95. Uzam, M., Zhou, M.C. (2006) An improved iterative synthesis method for liveness enforcing

supervisors of flexible manufacturing systems. International Journal of Production Research,

vol.44, no.10, pp.1987–2030.

96. Uzam, M., Zhou, M.C. (2007) An iterative synthesis approach to Petri net based deadlock

prevention policy for flexible manufacturing systems. IEEE Transactions on Systems, Man,

and Cybernetics, Part A, vol.37, no.3, pp.362–371.

97. Wang, A.R., Li, Z.W., Jia, J.Y., Zhou, M.C. (2009) An effective algorithm to find elemen-

tary siphons in a class of Petri nets. To appear in IEEE Transactions on Systems, Man, and

Cybernetics, Part A.

98. West, D. B. (2001) Introduction to Graph Theory. Pearson Education Inc.

99. Wysk, R.A., Yang, N.S., Joshi, S. (1991) Detection of deadlocks in flexible manufacturing

cells. IEEE Transactions on Robotics and Automation, vol.7, no.6, pp.853–859.

100. Xie, X.L., Jeng, M.D. (1999) ERCN-merged nets and their analysis using siphons. IEEE

Transactions on Robotics and Automation, vol.15, no.4, pp.692–703.

101. Xing, K.Y., Hu, B.S. (2005) Optimal liveness Petri net controllers with minimal structures

for automated manufacturing systems. In Proc. IEEE Int. Conf. on Systems, Man and Cyber-

netics, pp.282–287.

102. Yamalidou, E., Moody, J.O., Antsaklis, P.J. (1996) Feedback control of Petri nets based on

place invariants. Automatica, vol.32, no.1, pp.15–28.

103. Zhou, M.C., DiCesare, F. (1991) Parallel and sequential exclusions for Petri net modeling for

manufacturing systems. IEEE Transactions on Robotics and Automation, vol.7, no.4, pp.515–

527.

104. Zhou, M.C., DiCesare, F. (1992) A hybrid methodology for synthesis of Petri nets for manu-

facturing systems. IEEE Transactions on Robotics and Automation, vol.8, no.3, pp.350–361.

105. Zhou, M.C., DiCesare, F. (1993) Petri Net Synthesis for Discrete Event Control of Manufac-

turing Systems. Boston, MA: Kluwer.

106. Zouari, B., Barkaoui, K. (2003) Parameterized supervisor synthesis for a modular class of

discrete event systems. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.1874–

1879.

107. Zouari, B. (2006) A structure causality relation for liveness characterisation in Petri nets.

Journal of Universal Computer Science, vol.12, no.2, pp.214–232.

Chapter 8

Conclusions and Future Research

Abstract This chapter concludes the book by providing a number of interesting

problems in the area of deadlock prevention for automated manufacturing systems,

which is based on Petri nets. These problems include the development of deadlock

prevention methods by considering the existence of uncontrollable and unobserv-

able transitions in a plant model, polynomial algorithms to find a set of elementary

siphons in a Petri net, and the analysis of elementary Petri net subclasses such as

free-choice nets by using elementary siphon theory. System productivity compari-

son of different strategies by considering time factor in a Petri net model represents

an important research area.

As a formal modeling tool, Petri nets are increasingly becoming a popular math-

ematical formalism to investigate the modeling, control, analysis, and performance

evaluation of a discrete-event system [2, 4–6, 15–23, 27, 51, 58]. Petri net theory has

been one of the most interesting and hot topics in the area of computer science. They

also find wide application in contemporary technical systems. The systems around

us can be communication protocols, computer networks, traffic systems, distributed

database, software, production systems [56], C3I (command, control, communica-

tion, and intelligence), Internet web services, social services, and even logistics se-

curity systems and workflow [24–26,52,57,65–69]. Petri nets are employed by many

academic researchers and engineers as a mathematical framework to investigate the

deadlock control problems in a variety of resource allocation systems that are a the-

oretical abstract of real-world discrete-event systems. Particularly, Petri nets have

become a popular and effective tool for the design and management of modern au-

tomated manufacturing systems [3, 7–9, 12, 14, 31–39, 42, 43, 46–49, 53–55, 59–64,

71–73, 76, 80–84].

The work conducted in the last two decades shows that the siphon-based charac-

terization dominates among the methodologies that deal with the deadlock analysis

and control of resource allocation systems [50]. Traditionally, a deadlock prevention

policy can be evaluated by a number of performance criteria: structural complexity,

behavioral permissiveness, and computational complexity. That is to say, a perfect

liveness-enforcing supervisor is the one that has a simple control structure, is op-

223

224 8 Conclusions and Future Research

timal, and can be computed without prohibitive computational cost. Unfortunately,

such a perfect supervisor does not exist in a general large-scale case.

The development of elementary siphons of Petri nets is motivated by the need to

explore the avenue of simplifying the structure of the Petri net supervisors resulting

from the existing deadlock control policies in the literature. In essence, by using a

small space linear with system size, the concept of elementary siphons aims to char-

acterize the whole net structure information related to the deadlock control purpose.

The supervisory control problem of a discrete-event system in a Petri net formalism

is to establish a mechanism that is implemented through properly controlling the fir-

ing of transitions such that the controlled system satisfies the control specifications.

In this sense, the characteristic T -vector matrix gives a global characterization for

a given control requirement. Due to the linear dependency of the T -vectors, a basis

of the matrix, to some extent, carries the information of the control specifications.

As a result, it is not surprising that the concept of elementary siphons can be eas-

ily extended to the monitor-based implementation of a set of generalized mutual

exclusion constraints.

Although many important contributions have been made in recent years, dead-

lock prevention and avoidance are still an open research area. In the case of very

large-scale systems, most existing approaches suffer one or more problems such

as structural complexity, behavioral permissiveness, and computational complex-

ity [44].

The motivation of elementary siphons is just to tackle the structural complexity

problem of the supervisors. In theory, it cannot definitely improve the behavioral

permissiveness and computational complexity. However, all existing deadlock con-

trol approaches based on siphons can be greatly improved if the concept of ele-

mentary siphons is fully considered during the deadlock analysis and siphon control

process.

To end this chapter as well as this book, the following problems deserve further

consideration.

• The theory of elementary siphons of Petri nets indicates that their number is

bounded by the smaller of place and transition counts. Moreover, the controlla-

bility of dependent siphons can be implicitly ensured by explicitly supervising

its elementary siphons. These facts naturally inspire one to explore the possibil-

ity of (1) the development of a polynomial algorithm to find a set of elementary

siphons in a Petri net and (2) providing a formal proof that dependent siphons

are implicitly controlled if the elementary siphons are controlled by explicitly

adding monitors. This may lead to a deadlock-free or liveness-enforcing super-

visor computed in polynomial time.

• At present, most work on handling deadlock problems arising in discrete-event

systems by using Petri net techniques does not account for uncontrollable and

unobservable transitions within the plant models. However, uncontrollable and

unobservable events (or transitions in a Petri net formalism) are a standard feature

in the supervisory control framework based on automata [45].

• The existence and synthesis of an optimal liveness-enforcing supervisor remain

noteworthy although this problem can be decided by the theory of regions [13]. In

8 Conclusions and Future Research 225

this direction, the known results through structural but not enumeration analysis

are concerned with PPN [74] and S3PR [75] only.

• For a number of Petri net subclasses that can model manufacturing systems, their

liveness conditions are established through a set of inequalities with respect to

the initial markings of its resource and idle places [1, 34, 83]. In theory, each in-

equality is associated with a strict minimal siphon, leading to the fact that the

number of inequalities is exponential with respect to the size of the plant Petri

net model. A potential extension to the concept of elementary siphons is to re-

duce such inequalities by considering the existence of redundant or dependent

constraints.

• At present, the interests of elementary siphons have focused on the application-

oriented Petri net subclasses. Interesting work includes their application to such

subclasses as free-choice nets and asymmetric choice nets. Specifically, the char-

acterization of their behavioral properties based on elementary siphons is an in-

teresting problem.

• Deadlock prevention is a pessimistic approach in which the possibility of a dead-

lock is broken statically at the price of restricting the concurrency of the plant.

However, once a deadlock prevention policy is established for a plant, the con-

trolled system can never reach deadlock states without online decision time. On

the contrary, a deadlock avoidance policy [11,70] takes an online decision proce-

dure that examines each resource allocation request to ensure that it cannot lead

to a deadlock. Deadlock avoidance usually leads to a high throughout [77–79] but

requires maintaining the global or local state enumeration. For a given system to

be controlled, it is significant for the engineers to choose a deadlock control pol-

icy that results in high productivity rate. The throughput comparison between

deadlock prevention and avoidance strategies is also an interesting area.

• Timed discrete-event systems and their supervisory control are an interesting re-

search topic. The system productivity must be measured when time is introduced.

They will inevitably involve various scheduling and planning methods. Integra-

tion of two sets of methodologies for industrial systems represents a very impor-

tant research and development area.

Problems

8.1. A transition in a plant is said to be uncontrollable if its firing cannot be inhib-

ited by an external action. It is called unobservable if its firing cannot be directly

measured. A Petri net supervisor cannot have any connections to an unobservable

transition, thus all unobservable transitions are implicitly uncontrollable [41]. In the

deadlock prevention policy developed by Ezpeleta et al. [10], all output arcs of the

additional monitors point to the source transitions that are included in the postset

of idle places. As a result, the source transitions in general should be controllable

and observable. This is true in practice as they often represent the entry of a job into

a system. The deadlock prevention policy in [28] consists of two phases. The first

226 8 Conclusions and Future Research

is to make every siphon S in the plant controlled by the enforcement that VS + [S]
is a P-semiflow of the resultant net through the addition of monitor VS. The second

phase aims to control the control-induced siphons by monitors, in which the output

arcs of the monitors point to the source transitions so that the iterative control pro-

cess converges as fast as possible. For an S3PR under the deadlock prevention policy

in [28], develop an algorithm to identify the transitions that must be controllable.

8.2. Discuss the existence of an algorithm finding the transitions that are con-

trollable in an S3PR (N,M0), under which there exists an optimal monitor-based

liveness-enforcing supervisor. For other subclasses of Petri nets, discuss the exis-

tence of such an algorithm.

8.3. Most of the deadlock prevention policies in the literature do not consider the

existence of uncontrollable and unobservable transitions in a plant. Improve the

deadlock control approaches in [28–30], and [40] by considering the existence of

uncontrollable transitions in the plant models.

References

1. Barkaoui, K., Chaoui, A., Zouari, B. (1997) Supervisory control of discrete event systems

based on structure theory of Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cyber-

netics, pp.3750–3755.

2. Ben-Naoum, L., Boel, R., Bongaerts, L., De Schutter, B., Peng, Y., Valckenaers, P., Van-

dewalle, J., Wertz, V. (1995) Methodologies for discrete event dynamic systems: A survey.

Journal A, vol.36, no.4, pp.3–14.

3. Bogdan, S., Lewis, F.L., Kovacic, Z., Mireles, J. (2006) Manufacturing Systems Control De-

sign. London: Springer.

4. David, R., Hassane, A. (1994) Petri nets for modeling of dynamic systems-A survey. Auto-

matica, vol.30, no.2, pp.175–202.

5. David, R. (1995) Grafcet: A powerful tool for specification of logical controllers. IEEE Trans-

actions on Control Systems Technology, vol.3, no.3, pp.253–268.

6. David, R., Hassane, H. (2004) Discrete, Continuous, and Hybrid Petri Nets. Berlin: Springer.

7. DiCesare, F., Harhalakis, G., Porth, J.M., Vernadat, F.B. (1993) Practice of Petri Nets in

Manufacturing. Chapman and Hall.

8. Dotoli, M., Fanti, M.P. (2004) Coloured timed Petri net model for real-time control of auto-

mated guided vehicle systems. International Journal of Production Research, vol.42, no.9,

pp.1787–1814.

9. Dotoli, M., Fanti, M.P. (2007) Deadlock detection and avoidance strategies for automated

storage and retrieval systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C,

vol.37, no.4, pp.541–552.

10. Ezpeleta, J, Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy

for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11,

no.2, pp.173–184.

11. Ferrarini L., Maroni, M. (1998) Deadlock avoidance control for manufacturing systems with

multiple capacity resources. International Journal of advanced manufacturing Technology,

vol.14, no.4, pp.729–736.

12. Gebraeel, N.Z., Lawley, M.A. (2001) Deadlock detection, prevention, and avoidance for au-

tomated tool sharing systems. IEEE Transactions on Robotics and Automation, vol.17, no.3,

pp.342–356.

References 227

13. Ghaffari, A., Rezg, N., Xie, X.L. (2003) Design of a live and maximally permissive Petri

net controller using the theory of regions. IEEE Transactions on Robotics and Automation,

vol.19, no.1, pp.137–142.

14. Girault, C., Valk, R. (Eds). (2003) Petri Nets for Systems Engineering: A Guide to Modeling,

Verification, and Applications. Berlin: Springer.

15. Giua, A. (1992) Petri nets as discrete event models for supervisory control. Ph.D Dissertation,

Rensselaer Polytechnic Institute, Troy, New York.

16. Giua, A., DiCesare, F., Silva, M. (1992) Generalized mutual exclusion constraints on nets

with uncontrollable transitions. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics,

pp.974–979.

17. Giua, A., DiCesare, F. (1992) On the existence of Petri net supervisors. In Proc. 31st IEEE

Conf. on Decision and Control, pp.3380–3385.

18. Giua, A., DiCesare, F. (1993) A class of Petri nets with a convex reachability set. In Proc.

IEEE Int. Conf. on Robotics and Automation, pp.578–583.

19. Giua, A., DiCesare, F., Silva, M. (1993) Petri net supervisors for generalized mutual exclusion

constraints. In Proc. 12th IFAC World Congress, pp.267–270.

20. Giua, A., DiCesare, F. (1994) Blocking and controllability of Petri nets in supervisory control.

IEEE Transactions on Automatic Control, vol.39, no.4, pp.818–823.

21. Giua, A., DiCesare, F. (1994) Petri net structural analysis for supervisory control. IEEE Trans-

actions on Robotics and Automation, vol.10, no.2, pp.185–195.

22. Giua, A. Seatzu, C. (2001) Supervisory control of railway networks with Petri nets. In Proc.

40th IEEE Int. Conf. on Decision and Control, pp.5004–5009.

23. Giua, A., Seatzu, C. (2007) A systems theory view of Petri nets. In Advances in Control

Theory and Applications, Lecture Notes in Control and Information Science, vol.353, C.

Bonivento et al. (Eds.), pp.99–127.

24. Hee, K.V., Sidorova, N., Voorhoeve, M. (2003) Soundness and separability of workflow nets

in the stepwise refinement approach. In Proc. 24th Int. Conf. on Applications and Theory of

Petri Nets, Lectures Note in Computer Science, vol.2679, W. M. P. van der Aalst and E. Best

(Eds.), pp.337–356.

25. Hee, K.V., Sidorova, N., Voorhoeve, M. (2004) Generalised soundness of workflow nets is

decidable. In Proc. 25th Int. Conf. on Applications and Theory of Petri Nets, Lecture Notes in

Computer Science, vol.3099, J. Cortadella and W. Reisig (Eds.), pp.197–216.

26. Hee, K.V., Serebrenik, A., Sidorova, N., Voorhoeve, M. (2005) Soundness of resource-

constrained workflow nets. In Proc. 27th Int. Conf. on Applications and Theory of Petri Nets,

Lecture Notes in Computer Science, vol.3536, G. Ciardo and P. Darondeau (Eds.), pp.250–

267.

27. Hruz, B., Zhou, M.C (2007) Modeling and Control of Discrete-Event Dynamic Systems: With

Petri Nets and Other Tools. London: Springer.

28. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L. (2001) Deadlock prevention policy based on

Petri nets and siphons. International Journal of Production Research, vol.39, no.2, pp.283–

305.

29. Huang, Y.S. (2007) Design of deadlock prevention supervisors for FMS using Petri nets.

International Journal of Advanced Manufacturing Technology, vol.35, no.3–4, pp.349–362.

30. Huang, Y.S. (2007) Deadlock prevention for flexible manufacturing systems in sequence re-

source allocation systems. Journal of Information Science and Engineering, vol.23, no.1,

pp.215–231.

31. Jeng, M.D., DiCesare, F. (1993) A review of synthesis techniques for Petri nets with ap-

plications to automated manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part A, vol.23, no.1, pp.301–312.

32. Jeng, M.D., DiCesare, F. (1995) Synthesis using resource control nets for modeling shared-

resource systems. IEEE Transactions on Robotics and Automation, vol.11, no.3, pp.317–327.

33. Jeng, M.D. (1997) A Petri net synthesis theory for modeling flexible manufacturing systems.

IEEE Transactions on Systems, Man and Cybernetics, Part B, vol.27, no.2, pp.169–183.

228 8 Conclusions and Future Research

34. Jeng, M.D., Peng, M.Y., Huang, Y.S. (1999) An algorithm for calculating minimal siphons

and traps in Petri nets. International Journal of Intelligent Control and Systems, vol.3, no.3,

pp.263–275.

35. Jeng, M.D., Huang, Y.S. (1999) Petri nets for modeling and analysis of manufacturing sys-

tems with local operation cycles. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics,

pp.793–797.

36. Jeng, M.D., Xie, X.L. (1999) Analysis of modularly composed nets by siphons. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part A, vol.29, no.4, pp.399–406.

37. Jeng, M.D., DiCesare, F., Xie, X.L. (2000) Corrections to “Synthesis using resource control

nets for modeling shared-resource systems”. IEEE Transactions on Robotics and Automation,

vol.16, no.2, pp.202–203.

38. Jeng, M.D., Xie, X.L. (2001) Modeling and analysis of semiconductor manufacturing systems

with degraded behavior using Petri nets and siphons. IEEE Transactions on Robotics and

Automation, vol.17, no.5, pp.576–588.

39. Lewis, F., Gurel, A., Bogdan, S., Doganalp, A., Pastravanu, O. (1998) Analysis of dead-

lock and circular waits using a matrix model for flexible manufacturing systems. Automatica,

vol.34, no.9, pp.1083–1100.

40. Li, Z.W., Zhou, M.C. (2006) Two-stage method for synthesizing liveness-enforcing super-

visors for flexible manufacturing systems using Petri nets. IEEE Transactions on Industrial

Informatics, vol.2, no.4, pp.313–325.

41. Moody, J.O., Antsaklis, P.J. (1998) Supervisory Control of Discrete Event Systems Using Petri

Nets. Boston, MA: Kluwer.

42. Moore, K.E., Gupta, S.M. (1996) Petri net models of flexible manufacturing systems: A sur-

vey. International Journal of Production Research, vol.34, no.11, pp.3001–3035.

43. Narahari, Y., Viswanadham, N. (1985) A Petri net approach to the modelling and analysis of

flexible manufacturing systems. Annals of Operations Research, vol.3, no.8, pp.449–472.

44. Pablo, J., Colom, J.M. (2006) Resource allocation systems: Some complexity results on the

S4PR class. In Proc. IFIP International Federation for Information Processing, Lecture Notes

in Computer Science, vol.4229, E. Najm et al. (Eds.), pp.323–338.

45. Ramadge, P., Wonham, W.M. (1989) The control of discrete event systems. Proceedings of

the IEEE, vol.77, no.1, pp.81–89.

46. Recalde, L., Silva, M., Ezpeleta, J., Teruel, E. (2004) Petri nets and manufacturing systems:

An examples-driven tour. In Lectures on Concurrency and Petri Nets: Advances in Petri Nets,

Lecture Notes in Computer Science, vol.3098, J. Desel, W. Reisig, and G. Rozenberg (Eds.),

pp.742–788.

47. Reveliotis, S.A., Ferreira, P.M. (1997) Deadlock avoidance policies for automated manufac-

turing cells. IEEE Transactions on Robotics and Automation, vol.12, no.6, pp.845–857.

48. Reveliotis, S.A., Lawley, M.A., Ferreira, P.M. (1997) Polynomial-complexity deadlock avoid-

ance policies for sequential resource allocation systems. IEEE Transactions on Automatic

Control, vol.42, no.10, pp.1344–1357.

49. Reveliotis, S.A., Lawley, M.A., Ferreira, P.M. (2001) Structural control of large-scale flexibly

automated manufacturing systems. In The Design of Manufacturing Systems, C. T. Leondes

(Ed.), pp.4-1-4-34. CRC Press.

50. Reveliotis, S.A. (2003) On the siphon-based characterization of liveness in sequential re-

source allocation systems. In Proc. Int. Conf. on Applications and Theory of Petri Nets,

Lecture Notes in Computer Science, vol.2679, W. M. P. van der Aalst and E. Best (Eds.),

pp.241–255.

51. Roszkowska, E. (2004) Supervisory control for deadlock avoidance in compound processes,

IEEE Trans. on Syst., Man, Cybern., Part A, vol.34, no.1, pp.52–64.

52. Salimifard, K., Wright, M. (2001) Petri net-based modelling of workflow systems: An

overview. European Journal of Operational Research, vol.134, no.3, pp.664–676.

53. Silva, M., Valette, R. (1990) Petri nets and flexible manufacturing. In Proc. Int. Conf. on Ap-

plications and Theory of Petri Nets, Lecture Notes in Computer Science, vol.424, G. Rozen-

berg (Ed.), pp.374–417.

References 229

54. Silva, M. (1993) Introducing Petri nets. In Practice of Petri Nets in Manufacturing, pp.1–62,

Chapman & Hall.

55. Silva, M., Teruel, E. (1997) Petri nets for the design and operation of manufacturing systems.

European Journal of Control, vol.3, no.3, pp.182–199.

56. Silva, M., Teruel, E., Valette, R., Pingaud, H. (1998) Petri nets and production systems. In

Lectures in Petri Nets II: Applications, Lecture Notes in Computer Science, vol.1492, G.

Rozenberg and W. Reisig (Eds.), Springer, pp.85–124.

57. Tiplea, F.L., Marinescu, D.C. (2005) Structural soundness of workflow nets is decidable.

Information Processing Letters, vol.96, no.2, pp.54–58.

58. Tsitsiklis, J.N. (1986) On the control of discrete-event dynamic systems. International Jour-

nal of Control, vol.42, no.2, pp.475–491.

59. Valette, R., Courvoisier, M., Mayeux, D. (1982) Control of flexible production systems and

Petri nets. In Proc. Application of Theory of Petri nets, Informatik-Fachberichte, no.66,

pp.264–277.

60. Valette, R., Courvoisier, M., Demmou, H., Bigou, J.M., Desclaux, C. (1985) Putting Petri nets

to work for controlling flexible manufacturing systems. In Proc. IEEE Int. Symp. on Circuits

and Systems, Kyoto, Japan, pp.929–932.

61. Valette, R. (1987) Nets in production systems. In Petri Nets: Applications and Relationships

to Other Models of Concurrency, Lecture Notes in Computer Science, vol.255, Springer,

pp.191–217.

62. Valette, R., Cardoso, J., Atabakhone, H., Courvoisier, M., Lemaire, T. (1988) Petri nets and

production rules for decision levels in FMS control. In Proc. 12th IMACS World Congress on

Scientific Computation, Paris, Juillet, pp.522–524.

63. Valette, R. (1989) Monitoring manufacturing systems by means of Petri nets with imprecise

markings. In Proc. IEEE Int. Symp. on Intelligent Control, Albany, NY, pp.233–238.

64. Vattle, R. (1997) Some issues about Petri net application to manufacturing and process su-

pervisory control. In Lecture Notes in Computer Science, vol.1248, P. Azéma and G. Balbo

(Eds.), pp.23–41.

65. Van der Aalst, W.M.P. (1996) Structural characterization of sound workflow nets. Computer

Science Report 96/23, Eindhoven University of Technology.

66. Van der Aalst, W.M.P. (1997) Verification of workflow nets. In Lecture Notes in Computer

Science, vol.1248, P. Azema and G. Balbo (Eds.), pp.407–426.

67. Van der Aalst, W.M.P. (1998) The application of Petri nets to workflow management. Journal

of Circuits, Systems, and Computers, vol.8, no.1, pp.21–66.

68. Van der Aalst, W.M.P. (2000) Workflow verification: Finding control-flow errors using Petri-

net-based techniques. In Lecture Notes in Computer Science, vol.1806, W. M. P. van der Alst,

et al. (Eds.), pp.162–183.

69. Van der Aalst, W.M.P., Van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters,

A.J.M.M. (2003) Workflow mining: A survey of issues and approaches. Data and Knowledge

Engineering vol.47, no.2, pp.237–267.

70. Viswanadham, N., Narahari, Y., Johnson, T. (1990) Deadlock prevention and deadlock

avoidance in flexible manufacturing systems using Petri net models. IEEE Transactions on

Robotics and Automation, vol.6, no.6, pp.713–723.

71. Viswanadham, N., Narahari, Y. (1992) Performance Modelling of Automated Manufacturing

Systems. Englewood Cliffs, NJ: Prentice Hall.

72. Wu, N.Q., Zhou, M.C. (2007) Deadlock resolution in automated manufacturing systems with

robots. IEEE Transactions on Automation Science and Engineering, vol.4, no.3, pp.474–480.

73. Wu, N.Q., Zhou, M.C. Zhou, Li, Z.W. (2008) Resource-oriented Petri net for deadlock avoid-

ance in flexible assembly systems. IEEE Transactions on System, Man, and Cybernetics, Part

A, vol.38, no.1, pp.56–69.

74. Xing, K.Y., Hu, B.S., Chen, H.X. (1996) Deadlock avoidance policy for Petri-net modelling

of flexible manufacturing systems with shared resources. IEEE Transactions on Automatic

Control, vol.41, no.2, pp.289–295.

230 8 Conclusions and Future Research

75. Xing, K.Y., Hu, B.S. (2005) Optimal liveness Petri net controllers with minimal structures for

automated manufacturing systems. In Proc. IEEE Int. Conf. on Systems, Man and Cybernet-

ics, pp.282–287.

76. Xing, K.Y., Zhou, M.C., Liu, H.X., Tian, F. (2009) Optimal Petri net-based polynomial-

complexity deadlock avoidance policies for automated manufacturing systems. To appear in

IEEE Transactions on Systems, Man, and Cybernetics, Part A.

77. Zhang, W., Judd, R.P., Deering, P. (2004) Necessary and sufficient conditions for deadlocks

in flexible manufacturing systems based on a digraph model. Asian Journal of Control, vol.6,

no.2, pp.217–228.

78. Zhang, W., Judd, R.P. (2007) Deadlock avoidance for flexible manufacturing systems with

choices based on digraph. Asian Journal of Control, vol.9, no.2, pp.111–120.

79. Zhang, W., Judd, R.P. (2008) Deadlock avoidance algorithm for flexible manufacturing sys-

tems by calculating effective free space of circuits. International Journal of Production Re-

search, vol.46, no.13, pp.3441–3457.

80. Zhou, M.C., DiCesare, F., Rudolph, D. (1992) Design and implementation of a Petri net

supervisor for a flexible manufacturing system. Automatica, vol.28, no.6, pp.1199–1208.

81. Zhou, M.C. (1998) Modeling, analysis, simulation, scheduling, and control of semiconductor

manufacturing systems: A Petri net approach. IEEE Transactions on Semiconductor Manu-

facturing, vol.11, no.3, pp.333–357.

82. Zhou, M.C., Venkatesh, K. (1998) Modelling, Simulation and Control of Flexible Manufac-

turing Systems: A Petri Net Approach. Singapore: World Scientific.

83. Zouari, B., Barkaoui, K. (2003) Parameterized supervisor synthesis for a modular class of

discrete event systems. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.1874–

1879.

84. Zurawski, R., Zhou, M.C. (1994) Petri nets and industrial applications: A tutorial. IEEE

Transactions on Industrial Electronics, vol.41, no.6, pp.567–583.

Symbols

2X The power set of set X

b A non-negative integer

B The vector of the constraint constants of a set of GMECs

EP(x1,xn) An elementary path from x1 to xn

F Flow relation of a Petri net

H(r) The set of holders using resource r

I a P-vector or P-invariant

||I|| = {p ∈ P|I(p) �= 0} The support of P-vector I

||I||+ = {p ∈ P|I(p) > 0} The positive support of P-vector I

||I||− = {p ∈ P|I(p) < 0} The negative support of P-vector I

l A P-vector

(l,b) A generalized mutual exclusion constraint (GMEC)

(L,B) A set of GMECs

maxp• max{W (p, t)|t ∈ p•}
M A marking of a Petri net

M(p) The number of tokens in place p under marking M

M0 An initial marking of a Petri net

M = M0 +[N]−→σ The state equation of Petri net (N,M0)
Mmin(S) min{M(S)|M ∈ R(N,M0)}
Mmax(S) max{M(S)|M ∈ R(N,M0)}
Mmin(S) min{M(S)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0}
Mmax(S) max{M(S)|M = M0 +[N]Y,M ≥ 0,Y ≥ 0}
M[t〉 t is enabled under marking M

M ∗ An optimal monitor-based liveness-enforcing supervisor

MF The set of forbidden markings

ML The set of legal markings

M (l,b) The set of legal markings defined by GMEC (l,b)
N+ = {1,2, · · ·} The set of positive integers

N = {0,1,2, · · ·} The set of non-negative integers

Nk Set of k-dimensional non-negative integer vectors

Nk {1,2, . . . ,k}

231

232 Symbols

N a Petri net (structure)

(N,M0) a (marked) Petri net

[N] the incidence matrix of Petri net N

[N](p, ·) incidence vector of place p in Petri net N

[N](·, t) incidence vector of transition t in Petri net N

Ni(N j) a Petri net

Ni ◦N j composition of nets Ni and N j via shared places

Ni ⊗N j synchronous synthesis of Ni and N j via shared transitions

p a place in a Petri net

p0 an idle process place

p0
i the ith idle process place

P0 the set of idle process places

PA the set of operation (activity) places

PR the set of resource places

PV the set of monitors

P the set of places of a Petri net

(P,T,F,W) a generalized Petri net

(P,T,F) an ordinary Petri net

PS the adjoint set of a siphon S

R(N,M0) the set of reachable markings of (N,M0)
RS(N,M0) the linearized reachability set of (N,M0)
rank(A) the rank of matrix A

S a (minimal) siphon

SR the set of resource places in siphon S

SA the set of operation places in siphon S

[S] complementary set of siphon S

〈S〉 a set of equivalent siphons

t a transition

T the set of transitions of a Petri net

T h(S) complementary set of S in the form of multisets

VS monitor for siphon S

V (Vi) a monitor

W (P×T)∪ (T ×P) → N
W (x,y) the weight of arc (x,y)
•x = {y ∈ P∪T | (y,x) ∈ F} the preset of node x ∈ P∪T

x• = {y ∈ P∪T | (x,y) ∈ F} the postset of node x ∈ P∪T
•X = ∪x∈X

•x the preset of set X ⊆ P∪T

X• = ∪x∈X x• the postset of set X ⊆ P∪T

X(Z) a set

|X | the cardinality of a set X

X \Z {x|x ∈ X ,x /∈ Z} (set difference)

Z the set of integers

Z+ the set of non-negative integers

Π the set of minimal siphons in a net

ΠE the set of elementary siphons in Π

Symbols 233

ΠD the set of dependent siphons in Π
π(p) structural bound of place p

ξS the control depth variable of siphon S

∆+(t) downstream siphons of a transition t

∆−(t) upstream siphons of a transition t

λS the characteristic P-vector of S

ηS = [N]T λS the characteristic T -vector of S

[η] the characteristic T -vector matrix

[λ] the characteristic P-vector matrix

σ a transition sequence
−→σ the Parikh vector of transition sequence σ
−→σ (t) the number of times that t appears in σ

Index

admissible marking, 160

AE-policy, 192

arc, 17

asymmetric choice net, 34

augmented marked graph, 6

automaton, 34

B1-policy, 192

B2-policy, 192

bad marking, 161

behavior permissiveness, 5

blocking, 3

bounded, 21

characteristic P-vector, 46

characteristic P-vector matrix, 49

characteristic T -vector, 46

characteristic T -vector matrix, 49

circuit, 27

circuit equation, 162

complementary set, 112

complete siphon enumeration, 3

complete state enumeration, 7

computational complexity, 5

conflict, 33

control depth variable, 83, 127

control place, 30

control specification, 2, 77

control-induced siphon, 150

controllability, 45

cs-property, 31

cycle, 175

dangerous marking, 161

deadlock avoidance, 4

deadlock detection and recovery, 4

deadlock marking, 161

deadlock prevention, 4

deadlock state, 28

deadlock-free, 22

deadlock-freedom, 194

dependent constraint, 79

dependent siphon, 45

deterministic automaton, 35

discrete-event system, 1

downstream siphon, 119

E-policy, 192

elementary constraint, 79

elementary siphon, 45

emptiable siphon, 5, 60

enabled, 19

equivalence of GMECs, 78

equivalent siphon, 47

ERCN∗-merged net, 6

ERCN-merged net, 6

ES3PR (extended S3PR), 6

essential siphon, 197

extended free-choice net, 34

feasible solution, 25, 130

finite-state automaton, 35

flexible manufacturing system, 1

flow relation, 18

forbidden marking, 78, 175

forbidden state problem, 160

formal language, 38

free-choice net, 33

free-labeled Petri net, 35

G-system, 7

G-taks, 6

generalized mutual exclusion constraints, 77

generalized Petri net, 18

235

236 Index

GMEC, 77

good marking, 161

H2-policy, 192

holder, 112

Identification of elementary siphons, 69

idle place, 90

implicit place, 151

INA, 38

incidence matrix, 21

incidence vector, 21

initial marking, 17

input matrix, 22

invariant, 25

invariant-controlled siphon, 30

L1-policy, 192

L2-policy, 192

L3-policy, 192

labeled Petri net, 35

legal marking, 160

linear programming problem, 24

live, 22

liveness, 3

liveness condition, 197

liveness-enforcing, 3

liveness-enforcing net supervisor, 50

marked graph, 33

marked net, 18

marked trap, 29

marker states, 35

marking, 18

marking/transition separation instance, 160

max-controlled, 31

max-marked, 31

maximal unmarked siphon, 133

maximally permissive, 5

minimal P-invariant, 26

minimal P-semiflow, 112, 113

minimal siphon, 27

MIP-based deadlock detection method, 116

mixed integer programming, 116

monitor, 30, 36

negative support, 26

net system, 18

non-blocking, 7

non-blockingness, 3

NP-hard, 118, 197

operation place, 90

optimal, 5

optimal controllability, 174, 177

optimal liveness-enforcing Petri net supervisor,

160

optimally controlled, 173

optimally controlled siphon, 173

ordinary net, 18

output matrix, 22

P-policy, 192

P-semiflow, 26

P-vector, 25

Parikh vector, 23

path, 27

Petri net, 17

place, 17

place count, 49

place invariant, 25

plant, 2

plant net model, 3

PNR (process nets with resources), 6

polynomial, 8

polynomial complexity, 90, 150, 161

polynomial time, 25, 53

positive support, 26

postset, 19

PR-policy, 192

preset, 19

PT-ordinary, 198

pure net, 21

quasi-live, 23

RCN-merged net, 6

reachability condition, 162

reachability graph, 21

reachability set, 19

reachable marking, 7, 24

redundancy of GMECs, 78

redundant constraints, 93

redundant monitor, 152

redundant siphon, 201

resource allocation system, 50

resource circuit, 175

resource place, 90

S3PGR2 (system of simple sequential

processes with general resource

requirements), 6

S3PMR, 6

S3PR, 5, 108

S4PR, 6

S4R (system of sequential systems with shared

resources), 6

S∗PR, 6

Index 237

safe, 21

SCT-supervisory control theory, 2

self-loop free, 21

set covering problem, 197

set of forbidden markings, 160

set of GMECs, 78

simple path, 27

simple sequential process, 108

simple sequential process with resources, 108

simplex algorithm, 31

simplification of GMECs, 78

siphon, 27

source transition, 110

state equation, 23

state machine, 33

state space, 2

strict minimal siphon, 27

strongly connected, 30

strongly connected state machine, 108

strongly dependent constraint, 81

strongly dependent siphon, 49

structural bound, 117

structural complexity, 5

structurally bounded, 21

structurally simple liveness-enforcing

monitor-based net supervisor, 45

subnet, 30

supervisor, 2

support, 26

synchronization, 33

T-invariant, 25

T-policy, 192

T-semiflow, 26

T-vector, 25

theory of regions, 160

token, 18

token count, 26

token-poor siphon, 48

token-rich siphon, 48

transition, 17

transition count, 49

transition function, 35

trap, 27

Turing machine, 17

U1-policy, 192

U2-policy, 192

unbounded, 21

uncontrollable transitions, 78

unobservable transitions, 78

upstream siphon, 119

weakly dependent constraint, 81

weakly dependent siphon, 49

well-initially-marked, 56

WS3PR (weighted system of simple sequential

processes with several resources), 6

X-policy, 192

Other titles published in this series (continued):

Soft Sensors for Monitoring and Control

of Industrial Processes

Luigi Fortuna, Salvatore Graziani,

Alessandro Rizzo and Maria G. Xibilia

Adaptive Voltage Control in Power Systems

Giuseppe Fusco and Mario Russo

Advanced Control of Industrial Processes

Piotr Tatjewski

Process Control Performance Assessment

Andrzej W. Ordys, Damien Uduehi

and Michael A. Johnson (Eds.)

Modelling and Analysis of Hybrid

Supervisory Systems

Emilia Villani, Paulo E. Miyagi

and Robert Valette

Process Control

Jie Bao and Peter L. Lee

Distributed Embedded Control Systems

Matjaž Colnarič, Domen Verber

and Wolfgang A. Halang

Precision Motion Control (2nd Ed.)

Tan Kok Kiong, Lee Tong Heng

and Huang Sunan

Optimal Control of Wind Energy Systems

Iulian Munteanu, Antoneta Iuliana Bratcu,

Nicolaos-Antonio Cutululis and Emil

Ceangӽ

Identification of Continuous-time Models

from Sampled Data

Hugues Garnier and Liuping Wang (Eds.)

Model-based Process Supervision

Arun K. Samantaray and Belkacem

Bouamama

Diagnosis of Process Nonlinearities and

Valve Stiction

M.A.A. Shoukat Choudhury, Sirish L.

Shah, and Nina F. Thornhill

Magnetic Control of Tokamak Plasmas

Marco Ariola and Alfredo Pironti

Real-time Iterative Learning Control

Jian-Xin Xu, Sanjib K. Panda

and Tong H. Lee

Model Predictive Control Design

and Implementation Using MATLAB®

Liuping Wang

Fault-tolerant Flight Control

and Guidance Systems

Guillaume Ducard

Publication due May 2009

Design of Fault-tolerant Control Systems

Hassan Noura, Didier Theilliol,

Jean-Christophe Ponsart and Abbas

Chamseddine

Publication due June 2009

Predictive Functional Control

Jacques Richalet and Donal O’Donovan

Publication due June 2009

Advanced Control and Supervision

of Mineral Processing Plants

Daniel Sbárbaro and René del Villar (Eds.)

Publication due July 2009

Stochastic Distribution Control

System Design

Lei Guo and Hong Wang

Publication due August 2009

Detection and Diagnosis of Stiction

in Control Loops

Mohieddine Jelali and Biao Huang (Eds.)

Publication due October 2009

Active Braking Control Design for Road

Vehicles

Sergio M. Savaresi and Mara Tanelli

Publication due November 2009

