Basic Statistics
 and Epidemiology
 a practical guide

Antony Stewart
Foreword by Klim McPherson

Basic Statistics and Epidemiology

A practical guide

Antony Stewart
Senior Lecturer in Public Health
School of Health
University of Wolverhampton

Radcliffe Medical Press Ltd
18 Marcham Road
Abingdon
Oxon OX14 1AA
United Kingdom

www.radcliffe-oxford.com

The Radcliffe Medical Press electronic catalogue and online ordering facility. Direct sales to anywhere in the world.
(C) 2002 Antony Stewart

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the copyright owner.

Every attempt has been made to ensure that the information provided in this book is correct at the time of printing. This does not diminish the requirement to exercise judgement, and neither the publishers nor the author can accept responsibility for its use in practice.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.
ISBN 1857755898

Contents

Foreword V
Preface vi
Acknowledgements vii
1 What are statistics? 1
2 Populations and samples 3
3 Random sampling 7
4 Presenting data 11
5 Frequencies, percentages, proportions and rates 15
6 Types of data 19
7 Mean, median and mode 23
8 Centiles 27
9 Standard deviation 29
10 Standard error 33
11 Normal distribution 35
12 Confidence intervals 39
13 Probability 43
14 Hypothesis tests and P-values 47
15 The t-test 51
16 Parametric and non-parametric tests 57
17 Correlation and regression 59
18 Chi-squared test 61
19 Statistical power and sample size 67
20 What is epidemiology? 69
21 Bias and confounding 71
22 Measuring disease frequency 75
23 Measuring association in epidemiology 83
24 Prevalence studies 91
25 Questionnaires 93
26 Cohort studies 99
27 Case-control studies 103
28 Randomised controlled trials 107
29 Screening 113
Glossary of terms 121
Appendix 1 Statistical tables 123
Appendix 2 Exercises 129
Appendix 3 Answers to exercises 135
References 143
Further reading 145
Index 147

Foreword

Understanding about risks to people's health and their relationships with aspects of life is increasingly an essential part of daily life. New reports, new potential hazards and possibilities for prevention arise all the time. What do they mean, can they be reliable, and how can we know? We are all increasingly getting to grips with the essential elements of epidemiological methods and it is happening anyway to us all.

What is an odds ratio and how do we interpret such a thing? How is it measured or estimated? What makes a good study and what do we look out for to detect rubbish or bias in epidemiology? Is the third generation pill better or worse than its predecessors? Why do I need a mammography test? What good is it doing? How can we manipulate relative risks from one study to another and from one risk factor to another? Why incidence and not prevalence? And how do we measure variation? What assumptions might we be making? Is this questionnaire going to give reliable answers for the purpose intended? All this and more in a readable and logical form is presented in this book. Clearly, as a basic text it is invaluable but for the lay reader who wants to know the elements of epidemiological method, it will be very useful too. The more earnest even have a selection of examples to work through, with answers given.

In the end, a better life free of disease depends a lot on us all being able to avoid the avoidable determinants of illness - possibly 40 years before the risk is even appreciable. All that will depend on us knowing the consequences of not doing so. That is Basic Statistics and Epidemiology.

Klim McPherson
Professor of Public Health Epidemiology
Medical Research Council
Department of Social Medicine
University of Bristol
March 2002

Preface

I am often asked questions such as 'What is a P-value?', 'Why are confidence intervals used?', 'How is a cohort study carried out?' or 'What is the difference between prevalence and incidence?'.

Many of us find these theories hard to grasp quickly. Textbooks often aim for a 'simple' approach, but no single method suits everyone's preferred learning style. Some go too deep, while others just do not strike a chord. The examples that are used in the text may be irrelevant to the reader's field of work.

This guide is offered as an alternative primer in basic statistics and epidemiology and their practical use. The topics and examples are relevant to all healthcare professionals and students, as well as those involved in public health, epidemiology, healthcare evaluation, clinical audit and clinical effectiveness. The theories are illustrated by practical examples. Although formulae are shown, full step-by-step instructions are provided for most calculations.

Relatively plain language is used, assuming no prior statistical knowledge. The book is aimed at people who want to understand the main points, with minimum fuss. Indeed, the avoidance of too much detail and too many theories is a prime objective.

After working through this guide, you may wish to use other books to enhance your knowledge. A selection of useful publications is listed in the Further reading section. You can also test your knowledge and understanding by working through some of the exercises at the end of the book. These are followed by fully worked out answers, so that you can check how well you have done.

Acknowledgements

I would like to thank several friends and colleagues who kindly read and commented on the draft of this book prior to publication, including Rowena Clayton, Hugh Coolican, Professor Klim McPherson, Tim Marshall, Mark Myatt, Dr Elizabeth Reeves and Sue Wardle. Thanks are also due to the MSc Child Health students at Warwick University as well as BSc and MSc Public Health students at Wolverhampton University who kindly read and commented on drafts of this book.

Special thanks go to David Goda, Dr Jammi Rao and Professor Nick Spencer for invaluable support, advice and friendship, and also to Jocelyn Murray, for valuable comments and for suggesting that I should publish this book.
I am grateful to the following organisations and individuals who have kindly granted permission to reproduce their material in this book: Dr Mike Wall and South Staffordshire Health Authority (Figure 4.1), Dr Sam Ramaiah and Walsall Health Authority (Figure 4.2), the British Medical Journal (Figure 4.3; Tables 23.3 and 23.4), the Journal of the Royal Society for the Promotion of Health (Figure 12.1; Table 18.1), Professor Liam Donaldson and Petroc Press (Figures 26.1 and 27.1), the UK National Screening Committee (the screening criteria in Chapter 29) and Professor Douglas Altman and Chapman \& Hall Publishers (the statistical tables in Appendix 1).

This book is dedicated to Jenny, Katie and Michael, my mother Edith, and to the memory of my father, Jozef Stewart (1918-84).

1

What are statistics?

1 Antibiotics reduce the duration of viral throat infections by 1-2 days.
2 Five per cent of women aged $30-49$ consult their GP each year with heavy menstrual bleeding.
3 At our health centre, 50 patients were diagnosed with angina last year.
(after Rowntree, 1981)
The above quotes may be fact or fallacy, but they are familiar examples of statistics. We use statistics every day, often without realising it. Statistics as an academic study has been defined as follows:

The science of assembling and interpreting numerical data (Bland, 2000)

The discipline concerned with the treatment of numerical data derived from groups of individuals (Armitage et al., 2001).

The term data refers to 'items of information', and is plural. When we use statistics to describe data, they are called descriptive statistics. All of the above three examples are descriptive.

However, as well as just describing data, statistics can be used to draw conclusions or to make predictions about what may happen in other subjects. This can apply to small groups of people or objects, or to whole populations. A population is a complete set of people or other subjects which can be studied. A sample is a smaller part of that population. For example, 'all the smokers in the UK^{\prime} can be regarded as a population. In a study on smoking, it would be almost impossible to study every single smoker. We might therefore choose to study a smaller group of, say, 1000 smokers. These 1000 smokers would be our sample.

When we are using statistics to draw conclusions about a whole population using results from our samples, or to make predictions of what will happen, they are called inferential statistics. Statements 1 and 2 on page 1 are examples of inferential statistics. It is important to recognise that when we use statistics in this way, we never know exactly what the true results in the population will be. For example, we shall never know how often every woman consults her GP (these data are not routinely collected in primary care at present), but we can draw a conclusion that is based on a sample of data.

A statistic is a quantity calculated from a sample, which describes a particular feature. Statistics are always estimates. The true quantities of the population (which are rarely known for certain) are called parameters.

Different types of data and information call for different types of statistics. Some of the commonest situations are described on the following pages.

Before we go any further, a word about the use of computers and formulae in statistics. There are several excellent computer software packages (as well as calculators) that can perform statistical calculations more or less automatically. Some of the software packages are available free of charge, while some cost well over $£ 1000$. Each package has its own merits, and careful consideration is required before deciding which one to use. These packages can avoid the need to work laboriously through formulae, and are especially useful when one is dealing with large samples. However, care must be taken when interpreting computer outputs, as will be demonstrated later by the example in Chapter 6. Also, computers can sometimes allow one to perform statistical tests that are inappropriate. For this reason, it is vital to understand factors such as the following:

- which statistical test should be performed
- why it is being performed
- what type of data are appropriate
- how to interpret the results.

Several formulae appear on the following pages, some of which look fairly horrendous. Don't worry too much about these - you may never actually need to work them out by hand. However, you may wish to work through a few examples in order to get a 'feel' for how they work in practice. Working through the exercises in Appendix 2 will also help you. Remember, though, that the application of statistics and the interpretation of the results obtained are what really matter.

Populations and samples

It is important to understand the difference between populations and samples. You will remember from the previous chapter that a population can be defined as every subject in a country, a town, a district or other group being studied. Imagine that you are conducting a study of postoperative infection rates in a hospital during 1999. The population for your study (called the target population) is everyone in that hospital who underwent surgery during 1999. Using this population, a sampling frame can be constructed. This is a list of every person in the population from whom your sample will be taken. Each individual in the sampling frame is usually assigned a number, which can be used in the actual sampling process.

If thousands of operations have been performed during 1999, there may not be time to look at every case history. It may therefore only be possible to look at a smaller group (e.g. 200) of these patients. This smaller group is a sample.

Remember that a statistic is a value calculated from a sample, which describes a particular feature. It is always an estimate of the true value.

If we take a sample of 100 patients who underwent surgery during 1999, we might find that 7 patients developed a postoperative infection. However, a different sample of 100 patients might identify 11 postoperative infections, and yet another might find 8 infections. We shall almost always find such differences between samples, and these are called sampling variations.

When undertaking a scientific study, the aim is usually to be able to generalise the results to the population as a whole. Therefore we need a sample that is representative of the population. Going back to our example
of postoperative infections, it is rarely possible to collect data on everyone in a population. Methods therefore exist for collecting sufficient data to be reasonably certain that the results will be accurate and applicable to the whole population. The random sampling methods that are described in the next chapter are among those used to achieve this.

Thus we usually have to rely on a sample for a study, because it may not be practicable to collect data from everyone in the population. A sample can be used to estimate quantities in the population as a whole, and to calculate the likely accuracy of the estimate.

Many sampling techniques exist, and these can be divided into nonrandom and random techniques. In random sampling (also called probability sampling), everyone in the sampling frame has an equal probability of being chosen. This approach aims to make the sample more representative of the population from which it is drawn. There are several methods of random sampling, some of which are discussed in the next chapter. Non-random sampling (also called non-probability sampling) does not have these aims, but is usually easier and more convenient to perform.

Convenience or opportunistic sampling is the crudest type of nonrandom sampling. This involves selecting the most convenient group available (e.g. using the first 20 colleagues you see at work). It is simple to perform, but is unlikely to result in a sample that is either representative of the population or replicable.
A commonly used non-random method of sampling is quota sampling, in which a pre-defined number (or quota) of people who meet certain criteria are surveyed. For example, an interviewer may be given the task of interviewing 25 women with toddlers in a town centre on a weekday morning, and the instructions may specify that seven of these women should be aged under 30 years, ten should be aged between 30 and 45 years, and eight should be aged over 45 years. While this is a convenient sampling method, it may not produce results that are representative of all women with children of toddler age. For instance, the above example will systematically exclude women who are in full-time employment.

As well as using the correct method of sampling, there are also ways of calculating a sample size that is appropriate. This is important, since increasing the sample size will tend to increase the accuracy of your estimate, while a smaller sample size will usually decrease the accuracy. Furthermore, the right sample size is essential to enable you to detect a statistically significant effect, if one exists. Statistical significance is discussed in Chapter 14 of this book. The appropriate sample size can be calculated using one of several formulae, according to the type of study and the type of data being collected. The basic elements of sample size calculation (although not the actual formulae) are discussed in Chapter 19.

Sample size calculation should generally be left to a statistician or someone with a good knowledge of the requirements and procedures involved. If statistical significance is not essential, a sample size of between 50 and 100 may suffice for many purposes.

Random sampling

Random selection of samples is another important issue. In random sampling, everyone in the sampling frame has an equal probability of being chosen. For a sample to be truly representative of the population, a random sample should be taken. Random sampling can also help to minimise bias. Bias can be defined as an effect that produces results which are systematically different from the true values (see Chapter 21).

For example, imagine that you are conducting a study on hypertension. You have 300 hypertensive patients, and want to find out what proportion have had their blood pressure checked in the last year. You might make a list of all of these patients, and decide to examine the records of the first 50 patients on the list. If most of them are found to have received blood pressure checks, are the other 250 patients likely to be similar? Furthermore, what if someone accuses you of 'fixing' the sample by only selecting patients who you know have received a blood pressure check? If you use a random sampling system, such doubts can be minimised.

There are many different random sampling systems, but one simple method is to use a random number table (these can be purchased) or a computer program to produce a random number list to select the sample. Free programs, such as Epi Info (Dean et al., 1995) can generate a random number list. For example, if you want a random sample of 50 from a population of 300 , you could list all 300 subjects and assign a number to each. Then use the numbers on the random number list, which match the numbers you have assigned. This produces a simple random sample. Generating 50 random numbers from 300 produces a list like the one shown in Table 3.1.

Multi-stage sampling can also be used. For example, in a study of university students in the UK, it would be difficult to obtain a complete list of all students. Even if such a list was available, the sheer number of students would be difficult to manage. To overcome this problem,

Table 3.1: Random number list showing 50 random numbers

8	12	14	22	24	27	33	37	49
55	67	78	79	93	95	98	104	108
113	116	125	128	129	133	138	143	158
163	167	169	171	173	176	184	193	203
212	218	219	221	224	225	230	232	249
264	272	273	283	285				

multi-stage sampling could involve first selecting a simple random sample of all UK universities (first stage), and then a simple random sample of student names could be drawn from each selected university (second stage). This approach saves time, as it avoids the need to study every university. Additional stages can be added to multi-stage sampling. For example, after randomly selecting the universities (first stage), a simple random sample of each university's Faculties could be taken (second stage), and then a simple random sample of students within each Faculty (third stage). Although multi-stage sampling can provide better focus and save resources, it will yield less precise results than would be obtained by taking a simple random sample from a complete list of all UK university students.

Cluster sampling is similar to multi-stage sampling, except that all of the subjects in the final-stage sample are investigated. In the three-stage example described above, the randomly selected Faculties would be regarded as clusters, and all students within these Faculties would be studied.

It can be useful to employ stratified sampling to randomly select subjects from different strata or groups. Imagine a study designed to examine possible variations in healthcare between Asian and non-Asian patients. A random sample of patients on a list would almost certainly produce very few Asian patients, as most localities have a low proportion of Asian residents. In such a case, we could stratify our sample by dividing patients into Asian and non-Asian subjects, and then take a random sample of each.

A less random but nevertheless useful approach is to use a systematic sampling scheme. In this method, a number is assigned to every record, and then every nth record is selected from a list. For example, if you want to systematically select 50 of your 300 patients with angina, the procedure would be as follows.

1 Obtain a list of all 300 patients with angina (this is your sampling frame).
2 As $300 / 50=6$, you will be taking every 6th patient.

3 Choose a number randomly between 1 and 6 as a starting point.
4 Take every 6 th patient thereafter (e.g. if your starting point is 4 , you will take patient numbers $4,10,16,22,28,34$, etc.).

By doing this, you are using the list rather than your own judgement to select the patients. Look at the list carefully before you start selecting. For example, choosing every tenth patient in a list of married couples may well result in every selected person being male or every selected person being female (Donaldson and Donaldson, 2000).

For randomised controlled trials (see Chapter 28), random number tables can also be used to allocate patients to treatment groups. For example, the first number in the table can be allocated to the first patient, the second number to the second patient, and so on. Odd numbers may be allocated to treatment group A, and even numbers to treatment group B. Other methods include subjects being randomly allocated to treatment groups by opening sealed envelopes containing details of the treatment category.

4

Presenting data

A variety of graph styles can be used to present data. The most commonly used types of graph are pie charts, bar diagrams, histograms and scattergrams.

The purpose of using a graph is to tell others about a set of data quickly, allowing them to grasp the important characteristics of the data. In other words, graphs are visual aids to rapid understanding. It is therefore important to make graphs as simple and easy to understand as possible. The use of 'three-dimensional' and other special effects can detract from easy and accurate understanding. Such approaches should therefore be avoided altogether, or used with great care. Also, omitting ' 0 ' from a scale can make the graph misleading. Some examples of graphs are shown below.

Figure 4.1: Total expenditure on services by South Staffordshire Health Authority during the period 1998-99. Adapted from South Staffordshire Health Authority (1999).

The graph in Figure 4.1 is known as a pie chart, because it depicts each category as a slice of pie, with the size of each slice varying according to its proportion of the whole pie. This can be useful for comparing individual categories with the total. The pie chart in Figure 4.1 shows the proportion of expenditure on various health services in relation to expenditure as a whole. It is easy to see that almost half of all expenditure is on inpatients, while Accident and Emergency services account for only 2\% of total spending.

Figure 4.2: Estimated number of racial harassment incidents in Walsall, based on application of the Policy Studies Institute fourth national survey of ethnic minorities findings on racial harassment in Walsall's population: 1991 census. Source: Walsall Health Authority (2000).

Figure 4.2 shows an example of a bar diagram. In this example, the size of each block represents the frequency recorded for the category concerned. Bar diagrams are useful for comparing one category with others. In the bar diagram shown in Figure 4.2, we can see the number of racial harassment incidents in Walsall, allowing the number of incidents in one ethnic minority group to be compared with that in another.

Figure 4.3: Age distribution of patients presenting with myelodysplastic syndrome in Bournemouth 1981-90. Adapted from Oscier (1997).

The graph shown in Figure 4.3 is called a histogram. Histograms are bar diagrams, where the areas (i.e. height and width) of the bars are proportional to the frequencies in each group. These are especially useful for frequency distributions of grouped data (e.g. age groups, grouped heights, grouped blood measurements). For example, if you use age groups of equal range (e.g. 21-30, 31-40, 41-50 years, etc.), then the width of each bar is equal, and if the $21-30$ years age group has a frequency of 30 , while the 31-40 years age group has a frequency of 60 , then the former group is exactly half the height of the latter. The histogram in Figure 4.3 shows the frequency distribution of patients presenting with myelodysplastic syndrome in a given period, with the patients grouped into 5-year blocks.

(x)
Figure 4.4: Example of a scatterplot.
An example of a scatterplot is shown in Figure 4.4. In a scatterplot, two measurements (also called variables) are each plotted on separate axes. The variable on the (horizontal) x-axis is usually called the independent variable, and the variable on the (vertical) y-axis is usually called the dependent variable. You can usually tell which variable is dependent on the other by considering which variable could have been caused by which other variable. In Figure 4.4, the weight of an adult patient can depend on (or be caused by) his or her height, whereas height cannot be dependent on (or caused by) weight.

Frequencies, percentages, proportions and rates

Suppose we ask a sample of 30 teenagers each to tell us how old they are. The list of their ages is shown in Table 5.1:

	Table 5.1:																		List of ages from a sample of teenagers
15	14	16	15	17	14	16	17	14	18										
19	16	17	14	13	15	14	16	16	19										
19	18	14	17	14	16	15	17	15	17										

This is all very well, but when the data are presented in this way, it is difficult to make sense of them quickly. For example, how many of the teenagers are old enough to drive? How many of them are old enough to purchase alcohol legally? Are there more 15-year-olds than 16-year-olds in this group? From the listing above, it is difficult to answer these questions. Individual ages need to be picked out and counted up every time we want to answer such a question.

A summary of the data can make things easier. What if we count up how often each individual age is recorded, and write this down? Then we can look at the count each time we need to know something about these ages. In Table 5.2, the ages are sorted into numerical order, and the number of times each age is recorded is written at the side.

It is now easy to see how often each age occurs. We can quickly tell that 11 teenagers are old enough to drive (the legal age is 17 years in the UK),

Table 5.2:	Frequency distribution of age
Age (years) Number of times recorded 13 14 1 15 7 16 5 17 6 18 6 19 2	

five can legally purchase alcohol (the legal age is 18 years in the UK) and there are more 16 -year-olds $(n=6)$ than 15 -year-olds ($n=5$).

The number of times that something occurs is known as its frequency. For example, the frequency of 14 -year-olds in our sample is 7 , and the frequency of 18 -year-olds is 2 . Table 5.2 shows the ages and their frequencies, and is called a frequency distribution. It shows how the ages are distributed in this sample.

In the frequency distribution in Table 5.3, the frequencies are added up and percentages added (in this example, the percentages are rounded up to the nearest whole per cent). This is a common way of presenting a frequency distribution.

The percentages indicate the proportion of times that a particular age is recorded. Proportions can be expressed as decimals or multiplied by 100 and expressed as percentages.

For example, if 15 out of 30 teenagers are aged 18 years, then the proportion is $0.50(15 / 30=0.50)$ or the percentage is $50 \%(0.50 \times 100=50)$.

Table 5.3: showing totals and percentages		
Age	Frequency distribution of age, also	
13	Frequency	$\%$
14	1	3
15	7	23
16	5	17
17	6	20
18	6	20
19	2	7
Total	3	10

Note that in statistics, we normally use the symbol '/' for division, instead of' \div '.
If 20 of the teenagers are aged 18 years, then the proportion is 0.67 ($20 / 30=0.666$ or 0.67 to 2 decimal places) or $67 \%(0.67 \times 100=67)$.

In Table 5.3 above, 5 of the 30 teenagers are aged 15 years. The proportion is $0.17(5 / 30=0.1666$ or 0.17 to 2 decimal places), and the percentage is $17 \%(0.17 \times 100=17)$.
In the above calculations, we have sometimes rounded numbers to 2 decimal places. For example, if we use a calculator to work out $20 / 30$, it will probably display ' 0.6666666 ' - it has displayed 7 numbers after the decimal point. This is called displaying to 7 decimal places. To show this as 3 decimal places, we round the third digit after the decimal point $u p$ to the nearest whole number. Thus when displaying 0.6666666 to 3 decimal places, 0.667 is nearer to the real value than is 0.666 . In other words, if the last digit is 5 or more, we round up to the next whole number. If we want to round 1.222 to 2 decimal places, 1.22 is nearer to the true value than is 1.23 . So if the last digit is 4 or less, we round down to the nearest number.

Proportions or percentages are more useful than frequencies when we want to compare numbers of events in two or more groups of unequal size. For example, suppose that we want to compare the number of industrial accidents in the workforces of two different companies. In company A, there have been 37 accidents among a total of 267 workers. In company B, 45 accidents have occurred among a total of 385 workers. At which company are workers more likely to have an accident? On the face of it, company B has experienced more accidents, but it also employs more workers. Unless you are very good at mental arithmetic, it is difficult to answer the question. Let us work it out using proportions:

- company A had 37 accidents among 267 workers - the proportion of accidents is $0.139(37 / 267)$
- company B had 45 accidents among 385 workers - the proportion of accidents is $0.117(45 / 385)$.

Therefore even though company A's workforce had fewer accidents, it is statistically the more dangerous place to work, as it had a higher proportion of accidents. When we use proportions to describe the number of events, they can be called rates. In this example, therefore, the accident rate in company A is 0.139 (or 13.9%) and that in company B is 0.117 (or 11.7%).

Types of data

At this stage, it is worth mentioning the need to recognise different types of data. For example, we could ask people to give us information about how old they are in one of two ways. We could ask them to tell us how old they are in whole years (i.e. their age last birthday). Alternatively, we could ask them to tell us to which of several specified age bands they belong (e.g. 20-24, 25-29, 30-34 years, etc.). Although these two methods tell us about the age of the respondents, hopefully you can see that the two types of data are not the same!

Data can be classified as either categorical or numerical.

Categorical data

This refers to data that are arranged into separate categories. Categorical data are also called qualitative data.

If there are only two possible categories (e.g. female or male), the data are said to be dichotomous. If there are more possible categories (e.g. a range of several age groups or ethnic minority groups), the data may be described as nominal.

Categories can sometimes be placed in order. In this case they are called ordinal data. For example, a questionnaire may ask respondents how happy they are with the quality of catering in hospital, the choices may be very happy, quite happy, unhappy or very unhappy. Other examples of ordinal data include positions in hospital league tables, and tumour stages. Because the data are arranged both in categories and in order, ordinal data provide more information than categories alone.

Numerical data

For this type of data, numbers are used instead of categories. Numerical data are also called quantitative data.

There are three levels (scales) of numerical data. These are presented in order according to how much information they contain.

In discrete data, all values are clearly separate from each other. Although numbers are used, they can only have a certain range of values. For example, age last birthday is usually a whole number (e.g. 22 or 35 , rather than 22.45 or 35.6 , etc.). Other examples of discrete data include the number of operations performed in one year, or the number of newly diagnosed asthma cases in one month. It is usually acceptable to analyse discrete data as if they were continuous. For example, it is reasonable to calculate the mean number (see Chapter 7) of total knee replacement operations that are performed in a year.

The next two scales are regarded as continuous - each value can have any number of values in between, depending on the accuracy of measurement (for example, there can be many smaller values in between a height of 2 metres and a height of 3 metres, e.g. 2.2 or 2.57 or 2.9678765). Continuous data can also be converted into categorical or discrete data. For example, a list of heights can be converted into grouped categories, and temperature values in degrees Centigrade (measured to one or more decimal places) can each be converted to the nearest whole degree Centigrade.

In interval data, values are separated by equally spaced intervals (e.g. weight, height, minutes, degrees Centigrade). Thus the difference (or interval) between 5 kg and 10 kg , for example, is exactly the same as that between 20 kg and 25 kg . As interval data allow us to tell the precise interval between any one value and another, they give more information than discrete data. Interval data can also be converted into categorical or discrete data. For example, a list of temperature measurements in degrees Centigrade can be placed in ordered categories or grouped into dichotomous categories of 'afebrile' (oral temperature below $37^{\circ} \mathrm{C}$) or 'febrile' (oral temperature of $37^{\circ} \mathrm{C}$ or more).

Ratio data are similar to interval scales, but refer to the ratio of two measurements and also have a true zero. Thus weight in kilograms is an example of ratio data (20 kg is twice as heavy as 10 kg , and it is theoretically possible for something to weigh 0 kg). However, degrees centigrade cannot be considered to be a ratio scale $\left(20^{\circ} \mathrm{C}\right.$ is not, in any meaningful way, twice as warm as $10^{\circ} \mathrm{C}$, and the degrees Centigrade scale extends below $0^{\circ} \mathrm{C}$). Ratio data are also interval data.

Sometimes people get different types of data confused - with alarming
results. The following is a real example (although the numbers have been changed to guarantee anonymity). As part of a study, a researcher asks a group of 70 pregnant women to state which of a range of age groups they belong to. These are entered into a table as shown in Table 6.1.

Table 6.1:									Table of age groups
Title given to age group	1	2	3	4	5	6	7		
Age group (years)	≤ 16	$17-21$	$22-26$	$27-31$	$32-36$	$37-41$	≥ 42		
Frequency	1	5	18	24	13	7	2		

The researcher wants to enter the data into a computerised analysis program, and to ensure ease of data entry, he decides to give each group a numerical title (so that, when entering the data, he can simply press ' 3 ' for someone who is in the ' $22-26$ ' years age group, for example). Unfortunately, he does not notice that the program assumes that the numerical titles represent continuous data. It therefore treats the age groups as if they were actual ages, rather than categories. Being busy with other matters, the researcher does not notice this in the program's data analysis output. In his report, he states that the mean age of the pregnant women is 4.03 years! Of course, the most frequently recorded age group (27-31 years), also called the mode (see Chapter 7), is the correct measure for these data. Treating categorical data as if they were continuous can thus produce very misleading results and is therefore dangerous. Clearly, great care needs to be taken to ensure that data are collected and analysed correctly.

7

Mean, median and mode

Means, medians and modes are methods of measuring the central tendency of a group of values - that is, the tendency for values in a group to gather around a central or 'average' value which is typical of the group.

Mean

It can be very useful to summarise a group of numerical values by finding their average value. The mean gives a rough idea of the size of the values that you are dealing with, without having to look at every one of them. The mean (or to use its proper name, the arithmetic mean) is another term for the 'average'.

Consider the $\mathrm{HbA} 1_{\mathrm{c}}$ (the percentage of glycosolated haemoglobin circulating in the blood) values for patients with diabetes, shown in the frequency distribution in Figure 7.1. It also shows the median and mode, which are discussed later in this chapter.

The formula for calculating the mean is:
$\sum x / n$.
Add up (\sum) all of the values (x) and divide by the number of values observed (n).

Figure 7.1: Frequency distribution of $\mathrm{HbA} 1_{\mathrm{c}}$ values.
To calculate a mean:
1 add up every value in your group (call this result A)
2 count how many values are observed in the group (call this result B)
3 divide result A by result B .
In the example in Figure 7.1 above:
1 the sum of all of the $\mathrm{HbA} 1_{\mathrm{c}}$ values listed $=180.6$
2 the number of values observed $=27$
$3180.6 / 27=6.69$ (or 6.7 if we use one decimal place).
The mean is usually represented by \bar{x} (called ' x-bar') for samples, and μ (called ' $m u$ ') for populations.

Remember that, when writing the mean, it is good practice to refer to the unit measured. In this case, it is an $H b A 1_{c}$ value of 6.7%.

Note that many calculators will work out the mean in a single process, without having to go through the steps outlined above.

The mean can be misleading if there are any extreme values in a group of numbers. For example, the mean of the group 1, 2, 3, 2, 4, 5, 19 is 5.1. The value 19 is an extreme value, since it is far higher than any of the other numbers in the group. Since only one of the values in the group is actually 5.1 or greater, the mean is not representative of the group. In this case, the median may provide a better representation.

Median

This is the middle value of an ordered sample of numerical values. To calculate the median:

1 arrange all of the recorded values in order of size
2 find the middle value.
If we arrange the following numbers in numerical order, we obtain:

$$
1,2,2,3,4,5,19 .
$$

The median is 3 .
In the above example, the median is much more representative of the group than the mean (5.1). Extreme values do not affect the median, and the median value is usually typical of the data.

If there is an even number of values, use the mean of the two middle values:

$$
19,24,26,30,31,34 .
$$

The median is $(26+30) / 2=28$.
The median $\mathrm{HbA1}_{\mathrm{c}}$ value in Figure 7.1 is 5.8 - there are 13 values below and 13 values above it.

Mode

The mode is the value which occurs most often in a group. This can be a group of either numbers or categories.

In Figure 7.1, the $\mathrm{HbA1}_{\mathrm{c}}$ value 5.0 is recorded more often than any other age (three times in all), and so it is the mode of that group.

For example, if you want to know the most frequently used health promotion clinic (e.g. 'smoking cessation', 'weight loss', 'well woman', 'well man', etc.) at a primary care surgery, count up the attendance at each clinic over a specific period, and find the one with the highest attendance.

If there are two modes in a group of numbers, the group is described as bimodal. The mode is easy to determine, and requires no calculation. It is usually typical of the data used. Because the mode only records the most popular value, the others are not taken into account. The mode is therefore not affected by extreme values.

The mode can be used for categorical data where the mean and median are not appropriate (e.g. as in the example shown in Table 6.1).

Centiles

Although the median is the middle value in a group of ordered numbers, it provides no information about the range of values, or how the values are grouped around the median. The range uses only the highest and lowest values, which may be extreme values. As we have already found when discussing the mean, extreme values may provide a misleading representation of the central tendency of the group. One approach is to effectively ignore a percentage of values at each end of the group, and to concentrate on the central area, where the majority of values are likely to lie.

Centiles allow us to describe the central range of a group of numbers. They are often expressed as the 25th and 75th centiles, although it is possible to calculate centiles of any value (e.g. 3rd and 97th centiles. Centiles are also referred to as percentiles.

The 25 th centile is also called the first quartile. It is the point which separates the lower quarter of the numbers in a group, in the same way as the median separates the upper half. The 50th centile is also called the second quartile, and is equivalent to the median. The 75th centile is also called the third quartile, and is the point that separates the upper quarter of the numbers.
The interquartile range is the distance between the 25th and 75th centiles, and is calculated by simply subtracting the 25th centile from the 75th centile. It provides an indication of how much variation (or spread) there is between the first and third quartiles. It ignores the values below the first quartile and above the third quartile.

For example, suppose that a group of patients has the following cholesterol values (in $\mathrm{mmol} / \mathrm{L}$):

$$
3.5,3.5,3.6,3.7,4.0,4.1,4.3,4.5,4.7,4.8,5.2,5.7,6.1,6.3,6.3
$$

The 25th centile is 3.7 . The 50th centile (median) is 4.5 . The 75th centile is 5.7. The interquartile range is: $(5.7=3.7)=2.0$.

This means that there is a variation of $2.0 \mathrm{mmol} / \mathrm{L}$ between the first and third quartiles, and a range of $3.5-6.3 \mathrm{mmol} / \mathrm{L}$. A second group of patients may have an interquartile range of $0.9 \mathrm{mmol} / \mathrm{L}$, indicating less variation. Even if the first and last values in the second group are very extreme (e.g. 3.0 and 9.0 , respectively), these will not affect the interquartile range, which concentrates on the central area of values.

9

Standard deviation

We have seen that the interquartile range indicates the variation of data where the median is the measure of central tendency. Standard deviation is used where this measure is the mean. It indicates the difference between a group of values and their mean, taking all of the data into account. Although this means that it may be influenced by extreme values, the standard deviation plays an important role in many tests of statistical significance (which will be described in later chapters). The larger the standard deviation, the more the values differ from the mean, and therefore the more widely they are spread out.

For example, one small group of patients in a particular outpatient clinic may wait for a mean time of 11 minutes to be seen by a doctor, and the standard deviation from the mean for this group is 5.701. Individual waiting times vary widely - from 7 minutes up to 21 minutes. There is wide variation between these waiting times, and they are quite widely spread out from their mean. These waiting times are therefore heterogeneous or dissimilar.

On another day, another group of patients from the same clinic may also have a mean waiting time of 11 minutes, but their standard deviation is 0.707. This is much less than the first group's standard deviation of 5.701. Looking at this group's actual waiting times, it can be seen that they only vary from 10 to 12 minutes. Waiting times for the second group are more homogeneous - that is, the data are more similar to each other. They are less widely spread out around their mean than the first group.

Let us look at the actual waiting times recorded for each group, as shown in Table 9.1.

You can see that the data in Group 1 are much more spread out than those in Group 2. This difference in standard deviations can be explained by the fact that, although most patients in Group 1 waited a very short time, one patient had to wait for a long time (21 minutes). Although this

Table 9.1: Waiting times and standard deviation for each patient group

Group	Time 1	Time 2	$\begin{gathered} \text { Time } \\ 3 \end{gathered}$	Time 4	Time 5	Mean	Standard deviation
1	10	7	8	9	21	11	5.701
2	11	11	10	11	12	11	0.707

one 'outlier' waiting time is not representative of the whole group, it has a large effect on the overall results, and it strongly affects the mean and standard deviation. Several patients from Group 2 actually waited longer than Group 1 patients, although the difference between the waiting times in Group 2 is very slight.

Although the abbreviations $S D$ or s.d. are used to represent standard deviation generally, s is used to represent standard deviation for samples, and σ is used to represent standard deviation for populations.

The most usual formula for standard deviation is as follows:

$$
\sqrt{\sum(x-\bar{x})^{2} /(n-1)}
$$

where $x=$ individual value, $\bar{x}=$ sample mean and $n=$ number of values.
The above equation is only suitable for a sample (or population estimate). This will usually be the case, since we rarely know the true population value (which in this case is the mean).

The following steps are used to work out a standard deviation.
1 Find the mean of the group.
2 Subtract this from every value in the group individually - this shows the deviation from the mean, for every value.
3 Work out the square (x^{2}) of every deviation (that is, multiply each deviation by itself, e.g. $5^{2}=5 \times 5=25$) - this produces a squared deviation for every value.
4 Add up all of the squared deviations.
5 Add up the number of observed values, and subtract 1 .
6 Divide the sum of squared deviations by this number, to produce the sample variance.
7 Work out the square root of the variance.
If you have to work out a standard deviation by hand, it is helpful to use a grid like the one shown in Table 9.2. We can use this to work out the standard deviation of the data for Group 1 from Table 9.1.

Table 9.2:							Grid showing preliminary calculations for standard deviation
Value number	Time (a)	Mean time (b)	Deviation from the mean $(a-b)$	Squared deviation $(a-b)^{2}$			
1	10	11	-1	1			
2	7	11	-4	16			
3	8	11	-3	9			
4	9	11	-2	4			
5	21	11	10	100			

1 We already know the mean is 11 (see page 30).
2 Subtract each time value from the mean. Note each result in the 'Deviation from the mean' column.
3 Multiply each deviation by itself, and write each result in the 'Squared deviation' column (e.g. $-4^{2}=-4 \times-4=16$) (note that multiplying minus numbers produces positive ones).
4 Adding all of the squared deviations $(1+16+9+4+100)$ gives a value of 130 .
5 There are five separate values in the group. Subtract 1, and you get 4 .
6 Divide the sum of squared deviations by 4 , to produce the variance ($130 / 4=32.5$).
7 Use a calculator to determine the square root of the variance (32.5) - that is $\sqrt{32.5}=5.701$.

Of course, calculating standard deviation by hand like this is not practical if you have a large number of values. Moreover, the mean is unlikely to be a whole number as it is in the above example. Calculators and computer programs are an invaluable aid to this process, and are readily available.

Other uses of standard deviation are discussed under normal distribution (see Chapter 11).

10

Standard error

Standard error (or s.e.) is another term for the standard deviation of a sampling distribution (or frequency distribution of samples), rather than just a sample. You may remember from Chapter 2 that a value found from one sample may be different to that from another sample - this is called sampling variation. For example, if we took a large number of samples of a particular size from a population and recorded the mean for each sample, we could calculate the standard deviation of all their means - this is called the standard error. Because it is based on a very large number of (theoretical) samples, it should be more precise and therefore smaller than the standard deviation.

Standard error is used in a range of applications, including hypothesis testing and the calculation of confidence intervals (which are discussed in later chapters).

The most frequently used calculations are described below.

Comparing a sample mean with a population mean (for large samples)

$$
\text { s.e. }=s / \sqrt{n}
$$

Divide the standard deviation (s) by the square root of the number of values in the sample.

To calculate the standard error, follow the steps listed below.
1 Calculate the standard deviation of the sample mean.
2 Count the number of observed values.
3 Find the square root of this sum.
4 Divide the standard deviation by this number.

Using the table of $\mathrm{HbA} 1_{c}$ values in Figure 7.1 in Chapter 7, we can calculate the standard error as follows.

1 The standard deviation is 2.322 (not shown in Chapter 7).
2 The number of observed values $=27$.
3 The square root of $27=5.196$.
4 Divide the standard deviation (2.322) by $5.196=0.447$.
You can see that the standard error is very much smaller than the standard deviation.

Comparing two sample means (for large samples)

$$
\text { s.e. }=\sqrt{\frac{s_{1}^{2}+s_{2}^{2}}{n_{1}+n_{2}}}
$$

where: $s_{1}=$ standard deviation for sample $1, s_{2}=$ standard deviation for sample $2, n_{1}=$ sample size 1 and $n_{2}=$ sample size 2.

Let us work through the stages of this formula.
1 Square the first sample standard deviation (s_{1}).
2 Divide it by the first sample size (n_{1}) - note the result, and call it 'result 1'.
3 Square the second sample standard deviation (s_{2}).
4 Divide it by the second sample size (n_{2}) - note this result, and call it 'result 2'.
5 Add results 1 and 2.
6 Find the square root of this number - this is the standard error.

Single proportion (for large samples)

$$
\text { s.e. }=\sqrt{\frac{p(1-p)}{n}}
$$

where $p=$ proportion and $n=$ sample size.
There are different formulae for calculating standard error in other situations (e.g. for comparing proportions in two independent groups, where the sample size is large), and these are covered by several other texts.

Standard error formulae for small samples are presented in Chapter 15.

11

Normal distribution

If we take a large sample of men or women, measure their heights, and plot them on a frequency distribution, the distribution will almost certainly obtain a symmetrical bell-shaped pattern that looks something like the one shown in Figure 11.1.

This is known as the normal distribution (also called the Gaussian distribution). The least frequently recorded heights lie at the two extremes of the curve. It can be seen that very few women are extremely short or extremely tall. An outline of the normal distribution curve is drawn around the frequency distribution, and is a reasonably good fit to the shape of the distribution. With a larger sample size, the pattern of the frequency distribution will usually follow this shape more closely.

Figure 11.1: Distribution of a sample of values of women's heights.

Figure 11.2: Examples of positive and negative skew.

In practice, many biological measurements follow this pattern, making it possible to use the normal distribution to describe many features of a population.

It must be emphasised that some measurements do not follow the symmetrical shape of the normal distribution, and can be positively skewed or negatively skewed. For example, more of the populations of developed Western countries are becoming obese. If a large sample of such a population's weights was to be plotted on a graph similar to that in Figure 11.1, there would be an excess of heavier weights which might form a similar shape to the 'negatively skewed' example in Figure 11.2. The distribution will therefore not fit the symmetrical pattern of the normal distribution. You can tell whether the skew is positive or negative by looking at the shape of the plotted data, as shown in Figure 11.2.

Furthermore, the shape may be symmetrical but different to the normal distribution.

The normal distribution is shown in Figure 11.3. You can see that it is split into two equal and identically shaped halves by the mean. The

Figure 11.3: The normal distribution.
standard deviation indicates the size of the spread of the data. It can also help us to determine how likely it is that a given value will be observed in the population being studied. We know this because the proportion of the population that is covered by any number of standard deviations can be calculated.

For example:

- 68.27% of all values lie within plus or minus $(\pm) 1$ standard deviation (either 1 standard deviation below the mean or 1 standard deviation above it)
- 95.45% of all values lie within ± 2 standard deviations of the mean
- 99.73% of all values lie within ± 3 standard deviations of the mean.

It is useful to know that 95% of all values lie within 1.96 standard deviations, and 99% of all values lie within 2.58 standard deviations.
The proportions of values below and above a specified value (e.g. the mean) can be calculated, and are known as tails. We shall discuss these in Chapter 14.

It is possible to calculate the probability that a value in any particular range will occur. The normal distribution is useful in a number of applications, including confidence intervals (see Chapter 12) and hypothesis testing (see Chapter 14).

As well as the normal distribution, a number of other distributions are important, including the following

- the t-distribution - for small samples (usually below 30) (see Chapter 15 on t-tests)
- the binomial distribution - for dichotomous data (e.g. result can only be 0 or 1; yes or no)
- the Poisson distribution - for rare events that occur randomly in a large population.
The t - and binomial distributions resemble the normal distribution when large samples are used.

12

Confidence intervals

Although we can calculate a sample mean, we never know exactly where the population mean is. Confidence intervals are used to estimate how far away the population mean is likely to be, with a given degree of certainty. This technique is called estimation, and the term 'confidence interval' is often abbreviated to c.i. or CI. Conventionally, 95% confidence intervals are used, although they can be calculated for 99% or any other value.

Figure 12.1 shows diastolic blood pressure measurements taken from a sample of 92 patients with diabetes. The mean diastolic blood pressure is 82.696 mmHg , with a standard error of 1.116 . A 95% confidence interval will indicate a range above and below 82.696 mmHg in which the population mean will lie, with a 95% degree of certainty. In other words, a ' 95% confidence interval' is the interval which will include the true population value in 95% of cases.

The formula for calculating a 95% confidence interval for a sample mean (large samples) is:

$$
\bar{x} \pm(1.96 \times \text { s.e. })
$$

where $\bar{x}=$ sample mean and s.e. $=$ standard error.
This formula is suitable for samples of around 30 or larger, where data are on the interval or ratio scale, and are normally distributed.

Note that numbers in this section are calculated to three decimal places.
To calculate a 95% confidence interval (large samples), follow the steps listed below.

1 Calculate the sample mean, the standard deviation and hence the standard error (s.e.).
2 Multiply the s.e. by 1.96, and note this result (call it result 1).
3 Add result 1 to the sample mean, and note this sum (call it sum a).

Diastolic	Frequency	
blood pressure (mmHg)	1	
50	1	
60	11	
64	11	
66	11	
70	115	
72	1	
78	2	Mean $=82.696$
80	133	Sample size (n) $=92$
84	1 3	Standard deviation $=10.701$ Standard error $=1.116$
85	1	
88	2	
90	l 14	
93	11	
94	1	
95	4	
100	110	
110	1	
Total	92	

Figure 12.1: Frequency distribution of diastolic blood pressure in a sample of patients with diabetes. (Source: Unpublished data from Stewart and Rao 2000.)

4 Take result 1 away from the sample mean, and note this sum (call it sum b).
5 The confidence interval is written as:

```
95% c.i. = (sample mean) ((sum a) }->(\mathrm{ sum b)).
```

Let us work through this using the diastolic blood pressure readings in Figure 12.1.

1 The sample mean is 82.696 ; the standard error (s.e.) is 1.116 (remember that the standard error is calculated as $10.701 / \sqrt{92}$.
2 s.e. $\times 1.96=1.116 \times 1.96=2.187$.
$382.696+2.187=84.883$.
$482.696-2.187=80.509$.
595% c.i. is $82.696(80.509 \rightarrow 84.883)$.
In the above example, although the sample mean is 82.696 , there is a 95% probability that the population mean lies between 80.509 and 84.883 . In this case, the range is not particularly wide, indicating that the population mean is unlikely to be far away. It should therefore be reasonably representative of patients with diabetes, so long as the sample was
randomly selected. Increasing the sample size will usually result in a narrower confidence interval.

To calculate a 99% confidence interval, use 2.58 instead of 1.96 (this is the number of standard deviations which contain 99% of all the values of the normal distribution). Although a 99% confidence interval will give greater certainty, the intervals will be wider.

In the above example, we have calculated a confidence interval for a single mean, based on a fairly large sample. Confidence intervals can be calculated for other circumstances, some of which are listed below.

- 95% c.i. for difference between two sample means - large samples:

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm(1.96 \times \text { s.e. })
$$

(see s.e. formula for comparing two sample means (large samples) in Chapter 10)

- 95% c.i. for a single proportion (p) - large samples:

$$
p \pm(1.96 \times \text { s.e. })
$$

(see s.e. formula for single proportion (large samples) in Chapter 10).
There are different formulae for calculating confidence intervals and standard error in other situations (e.g. for comparing proportions in two independent groups, where the sample size is large), and these are covered by several other texts.

- For small samples:

$$
\bar{x} \pm t \times \text { s.e. }
$$

(also see Chapter 15 on t-tests).

13

Probability

Probability is a mathematical technique for predicting outcomes. It predicts how likely it is that specific events will occur.

Probability is measured on a scale from 0 to 1.0 as shown in Figure 13.1.
For example, when one tosses a coin, there is a 50% chance of obtaining a head. Note that probabilities are usually expressed in decimal format 50% becomes $0.5,10 \%$ becomes 0.1 and 5% becomes 0.05 . The probability of obtaining a head when a coin is tossed is therefore 0.5 .

A probability can never be more than 1.0 , nor can it be negative.
There is a range of methods for calculating probability for different situations.

Figure 13.1: The scale of probability.

To calculate the probability (P) of a single event (A) happening

For example, to find the probability of throwing a six on a die:

$$
\text { formula: } \begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\frac{\text { the number of possible events }}{\text { the number of possible equally likely outcomes }} \\
\mathrm{P}(\mathrm{~A}) & =\frac{\text { the number of sixes on the die }}{\text { the number of sides on the die }} \\
& =\frac{1}{6}=0.1667 \text { (or } 16.67 \% \text {) }
\end{aligned}
$$

To calculate the probability of event (A) and event (B) happening (independent events)

For example, if you have two identical packs of cards (pack A and pack B), what is the probability of drawing the ace of spades from both packs?

Formula: $\quad \mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$

$$
\begin{aligned}
& \mathrm{P}(\text { pack } \mathrm{A})=1 \text { card, from a pack of } 52 \text { cards }=1 / 52=0.0192 \\
& \mathrm{P}(\text { pack } \mathrm{B})=1 \text { card, from a pack of } 52 \text { cards }=1 / 52=0.0192 \\
& \mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B})=0.0192 \times 0.0192=0.00037
\end{aligned}
$$

This is called the rule of multiplication.
In the above example, events A and B are independent of each other. This means that one event happens regardless of the other, and its outcome is not related to the other.

Sometimes probabilities are conditional, which means that one probability relies on another having already happened.

To calculate the probability of event (A) and event (B) happening (conditional events)

What is the probability of drawing the ace of spades and the queen of clubs consecutively from a single pack of cards?

$$
\text { Formula: } \quad \mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B} \mid \mathrm{A})
$$

where ($B \mid A$) means

$$
\text { [} B \text { given that } \mathrm{A} \text { has happened] }
$$

We already know that the probability of drawing the ace of spades from a pack of 52 cards is $1 / 52=0.0192$, so $P(\mathrm{~A})=0.0192$.

The chances of now drawing the queen of clubs are a little higher, because one less card is left in the pack, so the probability $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ is now $1 / 51=0.0196$.

$$
\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=(1 / 52) \times(1 / 51)=0.0192 \times 0.0196=0.0004
$$

Probabilities can be mutually exclusive. This means that one event prevents another event from happening. For example, throwing a die once will result in either a 1 , or a 2 , or a 3 , or a 4 , or a 5 , or a 6 - but only one number can be obtained. Therefore throwing a 5 rules out any other number. In such cases, the rule of addition is used.

To calculate the probability of either event (A) or event (B) happening (where the events are mutually exclusive)

For example, what is the probability of throwing either a six or a five on a die:

$$
\begin{aligned}
\text { Formula: } & \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \\
& \mathrm{P}(\mathrm{~A})=0.1667 \\
& \mathrm{P}(\mathrm{~B})=0.1667 \\
& \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})=0.1667+0.1667=0.333 \text { (or } 33.3 \% \text {) }
\end{aligned}
$$

This is called the rule of addition or the additive rule.

To calculate the probability of either event (A) or event (B) happening (where the events are not mutually exclusive)

Suppose that a local study finds that 90% of people aged over 60 years in Epitown suffer from at least one common cold during a one-year period, and 20% suffer from heartburn at least once. What is the probability that
any person over 60 years of age will suffer from either common cold or heartburn? We shall assume that common cold and heartburn occur independently of each other.

Using the rule of addition produces a probability of $0.9+0.2$, which is equal to 1.1. This cannot be correct, since we already know that a probability can never be more than 1.0 .

In this situation, we use a different formula:

$$
\begin{aligned}
& P(A)+P(B)-P(\text { both }) \\
& \mathrm{P}(\mathrm{~A})=0.9 \text { (common cold) } \\
& P(B)=0.2 \text { (heartburn) } \\
& P(\text { both })=0.9 \times 0.2=0.18 \\
& \text { (since we are assuming that they are independent). } \\
& \text { So } P(A)+P(B)-P(\text { both })=(0.9+0.2)-0.18 \\
& =1.1-0.18 \\
& =0.92 \text { (or } 92 \% \text {) }
\end{aligned}
$$

In this example, then, there is a probability of 0.92 (or 92%) that any person aged over 60 years in Epitown will suffer from either common cold or heartburn during a one-year period.

14

Hypothesis tests and P-values

A hypothesis is an unproved theory that is formulated as a starting point for an investigation - for example, 'patients who take drug A will have better outcomes than those who take drug B' or 'drug A is better than drug B'. The hypothesis that 'drug A is better than drug B ' is often written as H_{1}.

For every hypothesis there is a null hypothesis. In the above scenarios, the null hypothesis is that 'the outcomes of patients taking drug A will be no different to those of patients who take drug B' or that 'drug A is no better than drug B^{\prime}. Scientific experiments tend to adopt a somewhat sceptical attitude, and normally use the null hypothesis to try to disprove the real hypothesis. The null hypothesis is often written as H_{0}.

If drug A proves to be significantly better than drug B, the null hypothesis $\left(H_{0}\right)$ is rejected, and the alternative hypothesis $\left(H_{1}\right)$ is accepted.

Hypotheses are sometimes referred to as one-tailed or two-tailed. As described in Chapter 11, the normal distribution is split in half by the mean. The proportions of values under and above a specified value (e.g. the mean) can be calculated. These are known as tails. The term one-tailed refers to the distribution either under or above a specified value. The term two-tailed refers to the whole distribution, both under and above the specified value. In a two-tailed hypothesis, we want to find out whether there will actually be a difference between the two treatments, but we do not state which way it will go (e.g. 'drug A will be better or worse than drug B^{\prime}. In a one-tailed hypothesis, we are interested in the direction of any difference (e.g. 'drug A is better than drug B'). The two-tailed hypothesis is usually most appropriate.

The problem is how much better does the difference or size of effect need to be in order to reach the level of statistical significance? In
practice, we assess the probability that the effect we found (or a more extreme effect) would have occurred if the null hypothesis were true. If the probability is low, it follows that the effect may be due to the effectiveness of the treatment - or possibly some other cause. In order to make this assessment, we need to calculate a test statistic and use this to determine the probability (expressed as a P-value). This process is called hypothesis testing.

At this point, it is useful to go back to the idea of the normal distribution and standard deviations. Remember that, in a normal distribution, 95% of all values fall within 1.96 standard deviations and 99% of them fall within 2.58 standard deviations.

If the value of a result is more than 1.96 standard deviations of the hypothetical or population mean value, its probability of occurring is less than 5%. Remembering (from Chapter 13) that probabilities are usually expressed as decimals, its probability is written as $P<0.05$ ($<$ means 'less than'). If the value is more than 2.58 standard deviations away from the mean, its probability of occurring (if the H_{0} is true) is less than 1%. Its probability is therefore $P<0.01$. Probabilities of <0.05 or <0.01 are generally regarded as being the thresholds of statistical significance.

For many studies, a P-value of less than 0.05 is regarded as significant. For other more critical studies (e.g. treatment trials), significance may only be assigned when the P-value is <0.01.

Our test statistic for comparing a sample mean with a hypothetical mean is calculated using the following relatively simple equation:

$$
(\bar{x}-\mu) / \text { s.e. }
$$

where \bar{x} is the sample mean, μ is the hypothetical mean presumed in the H_{0} and s.e. is the standard error of the observed value.

This test uses the normal distribution, and is thus called the normal test. It is also called the z-test.

Note: the above formula should only be used for large samples - see Chapter 15 on t-tests if the sample size is small.
The equation calculates the number of standard deviations that separate the hypothetical mean from the sample mean, and expresses this as something called a z-score (or normal score). The z-score is the test statistic that is used in the normal test. The larger the z-score, the smaller the probability of the null hypothesis being true.

The final step is to look up this z-score in a normal distribution table (either one-tailed or two-tailed, depending on the hypothesis) in order to obtain a P-value. An example of a normal distribution table for two-tailed hypotheses is provided in Appendix 1.

We know that 95% of all values under the normal distribution are
contained within 1.96 standard deviations of the mean, and 99% of values are contained within 2.58 standard deviations. If the z-score is more than 1.96 , we instantly know that the probability is less than 5%, and its P-value will therefore be <0.05. If the z-score is more than 2.58 , the probability is less than 1%, and its P-value will therefore be <0.01.

The steps for the first equation on page $48(x-\mu) /$ s.e. are as follows.
1 Calculate the sample mean and standard error.
2 Subtract the hypothetical mean from the sample mean (ignore any minus values, since we are only interested in the difference between the two means).
3 Divide the result by the standard error to produce a z-score.
4 Look down each column of the normal distribution table in Appendix 1 to find your z-score, and then read across to obtain the P-value (e.g. for a z-score of 0.37 , the P-value is 0.7114).

Many statistical computer programs produce P-values automatically, and it is possible that you will never actually need to calculate one.

Using the table of diastolic blood pressure readings in Chapter 12, we calculate a P-value as follows.

Suppose the population mean diastolic blood pressure in patients with diabetes is believed to be 84 mmHg .

1 The sample mean is 82.696 and the standard error is 1.116 .
$282.696-84=1.304$ (ignoring the minus value).
3 1.304/1.116 = 1.17.
$4 z=1.17$; in a two-tailed normal distribution table, look up 1.17 in the left-hand column, and then read across to find the P-value. The P-value $=0.2420$, which is not significant. The null hypothesis (in this case, that there is no difference between the sample and the population) is not rejected. In fact, this sample could have come from a population with a mean blood pressure of 84 mmHg .

Now imagine that the diastolic blood pressures were taken from a group of men who have hypertension, and who have received a new antihypertensive drug in a certain clinic. We shall also assume that the population mean diastolic blood pressure in hypertensive men (whose blood pressure is either controlled or kept at a safe level by conventional drugs) aged $30-45$ years who attend hypertension clinics is in fact $86 \mathrm{mmHg}((82.696-86) / 1.116)=3.304 / 1.116=2.96$.

The z-score is now 2.96. The two-tailed normal distribution table gives a P-value of 0.0031 . Thus the probability of this result being obtained if the null hypothesis (that there is no difference between the treatments) were true is very low. In this case, the null hypothesis will be rejected, and the
alternative hypothesis (that there is a difference) will be accepted. It may be concluded that this drug is either highly effective, or that the result may have been influenced by another factor. Such factors could include problems with the sampling/randomisation process, differences between groups of patients receiving the treatments (either at the start of the study or with regard to patient management during the study) or the deliberate 'fiddling' of results.

It is worthwhile using a certain amount of common sense when interpreting P-values. A P-value of 0.6672 is certainly not significant, but a value of 0.0524 should not necessarily be dismissed just because it is slightly higher than the threshold. However, a P-value of 0.0524 will always be referred to and reported as non-significant.

A P-value of less than our chosen threshold of significance does not prove the null hypothesis to be true - it merely demonstrates insufficient evidence to reject it. There is always an element of uncertainty when using a P-value to decide whether or not to reject the null hypothesis.

When interpreting a P-value, two different types of possible error should be recognised:

- type 1 error - rejecting a true null hypothesis, and accepting a false alternative hypothesis
- type 2 error - not rejecting a false null hypothesis.

It is also worth remembering that a statistically significant result is not necessarily clinically significant. For example, a reduction in the mean diastolic blood pressure from 115 mmHg to 110 mmHg in a large sample of adults may well produce a P-value of <0.05. However, a diastolic blood pressure of 110 mmHg is still well above what is considered to be a healthy level.

Although P-values are routinely calculated, there is a strength of feeling that confidence intervals may be a better way of testing hypotheses, since they show an estimate of where the true value actually lies. If a confidence interval does not include the hypothetical mean, this indicates significance. When reporting results, it is good practice to quote both P-values and confidence intervals.

There are different formulae for calculating z-scores in other situations (e.g. differences between proportions), and these are covered by several other texts.

15

The t-test

The previous methods of calculating confidence intervals and performing hypothesis testing are only suitable if the sample size is large. However, in some circumstances only small samples are available. For these purposes, a 'small' sample is usually considered to be 30 or less.

A different distribution - the t-distribution (also known as Student's t-distribution, after WS Gossett, whose pseudonym was 'Student') - is used if the sample size is small. The t-distribution has a similarly shaped curve to the normal distribution, but is more widely spread out and flatter. The degree of spread and flatness changes according to the sample size. If the sample size is very large, the t-distribution becomes virtually identical to the normal distribution.

For the use of the t-test to be valid, the data should be normally distributed. Although the test is described as 'robust', meaning that it can withstand moderate departures from normality, severely skewed data are unsuitable. For two-sample tests, the standard deviations should also be roughly equal.

If you are in doubt as to whether the degree of skewedness of your data violates these conditions, statistical methods exist to assess this. There are also methods of transforming skewed data to make them more 'normal'. One alternative method for dealing with skew is to use a non-parametric test (see Chapter 16). For small samples, the Wilcoxon signed-rank test can be used instead of the paired t-test, and the Wilcoxon rank-sum test or Mann-Whitney U-test can be used instead of the unpaired t-test. These methods are covered by many more detailed texts.

The calculation of the t-statistic (t) is a little different to the calculation of z. It takes the level of significance (e.g. 0.05, 0.01) into account, together with degrees of freedom (d.f.) which are based on sample size. Don't worry too much about the theory behind degrees of freedom.

Degrees of freedom are calculated as follows:

$$
n-1 \text { for a one-sample test }
$$

where $n=$ sample size

$$
\left(n_{1}-1\right)+\left(n_{2}-1\right) \text { for a two-sample test }
$$

where $n_{1}=$ sample size for group 1 and $n_{2}=$ sample size for group 2 .
The steps for performing a t-test are as follows.
1 Work out the standard error and t-statistic for the required test.
2 Calculate the appropriate d.f.
3 Using the t-distribution table (see Appendix 1), look up the d.f. value in the left-hand column.
4 Read across this row, until the nearest values to the left and right of your t-statistic can be seen.
5 Your P-value will be less than the P-value at the top of the column to the left of your t-statistic and greater than the P-value at the top of the column to its right (e.g. a t-statistic of 2.687 with 6 d.f. falls in between 2.447 and 3.143 . The nearest value to its left is 2.447 ; the P-value at the top of this column is 0.05 . The P-value for your t-statistic will therefore be less than 0.05 , and is written $P<0.05$. If your t-statistic is 1.325 with 6 d.f., there is no column to its left, so the P-value will be greater than the column to its right, and is therefore >0.2).

There are a number of different t-test formulae which are used in different situations, as described below.

One-sample t-test

This test compares a sample mean with a population mean.

$$
t=(\bar{x}-\mu) / \text { s.e. }
$$

where $\bar{x}=$ sample mean, $\mu=$ population mean and s.e. $=$ standard error of sample mean.

$$
\text { d.f. }=n-1
$$

where $n=$ sample size .

$$
\text { s.e. }=s / \sqrt{n}
$$

where $s=$ standard deviation of sample mean and $n=$ sample size.

BMI value	Frequency
21	1
22	1
26	1
29	1
30	2
31	1
32	1
33	1
35	1
$--\cdots$	
Total	10

Mean $=28.9$
SD $=4.581$
Figure 15.1: Frequency distribution of BMI from a sample of patients in primary care.

95\% Confidence intervals - one-sample t-test

$$
\bar{x} \pm t_{0.05} \times \text { s.e. }
$$

where $t_{0.05}=$ value on t-distribution table in 0.05 column (two-tailed), corresponding to appropriate d.f.

For example, suppose that a group of 14 GP surgeries are running healthy eating groups to help patients to lose weight. At the start, each patient has their height measured and is weighed, and their body mass index (BMI) is calculated. The mean BMI is roughly the same for patients at each GP surgery. After six months, each patient is weighed and their BMI is recorded again. One surgery is interested to find out how successful its patients have been in losing weight, compared with the whole group. The BMI values of its patients are shown in Figure 15.1.

The mean BMI for the 14 surgeries as a whole is 26.2 (this is a precisely known population value), compared with 28.9 for this surgery. It looks as if this surgery's patients have been less successful, but has their performance been significantly different? Let us find out, by performing a onesample t-test.

The steps are as follows.
1 Work out the standard error (n is $10 ; s$ is $4.581 ; \sqrt{10}=3.162$): $4.581 / 3.162=1.449$. The sample mean minus the population mean $=28.9-26.2=2.7$. To work out the t-statistic: $2.7 / 1.449=1.863$ (to three decimal places here).

2 Calculate the degrees of freedom (d.f.): $10-1=9$.
$3-5$ Using the t-distribution table, look up d.f. $=9$, and then read across this row. Our t-statistic is in between 1.833 and 2.262. Reading up the columns for these two values shows that the corresponding twotailed P-value is less than 0.1 but greater than 0.05 , and is therefore not significant.

The null hypothesis (in this case, that there is no difference between the BMI values in this GP surgery and the group as a whole) is not rejected.

To calculate a 95% confidence interval, the steps are as follows.
1 Note the sample mean, standard error and degrees of freedom.
2 Find the value in the two-tailed t-distribution table in the 0.05 column, corresponding to the degrees of freedom.
3 Multiply this value by the standard error, and note the result (call it result 1).
4 Add result 1 to the mean, and note this sum (call it sum a).
5 Subtract result 1 from the mean, and note this sum (call it sum b).
6 The confidence interval is written as:
95% c.i. $=($ sample mean $)(($ sum $a) \rightarrow($ sum $b))$.
Using the above example, the steps are as follows.
1 The sample mean is 28.9 , the standard error is 1.449 and there are 9 degrees of freedom.
2 In the t-distribution table in Appendix 1, find degrees of freedom $=9$, and then read along the line until you come to the 0.05 column - the value is 2.262 .
3 Multiply 2.262 by the standard error $(2.262 \times 1.449=3.278)$ (result 1$)$.
$428.9+3.278=32.178$ (sum a).
$528.9-3.278=25.622($ sum $b)$.
695% c.i. $=28.9(25.622 \rightarrow 32.178)$.
Note that the confidence interval includes the mean of the group as a whole (26.2). This supports the null hypothesis that there is no difference between the BMI values.

Paired \boldsymbol{t}-test

This test is used to assess the difference between two paired measurements. It tests the null hypothesis that the mean of the difference is zero. In this case, data are naturally paired or matched (e.g. weight measurements
from the same subjects at a 6-month interval or data relative to twins or couples).

The value that we analyse for each pair is the difference between the two measurements.

$$
t=\bar{x} / \mathrm{s} . \mathrm{e} .
$$

where $\bar{x}=$ mean of the differences and s.e. $=$ standard error of the differences.

$$
\text { d.f. }=n-1
$$

where $n=$ sample size.

$$
\text { s.e. }=s / \sqrt{n}
$$

where $s=$ standard deviation of the differences and $n=$ sample size.

95\% Confidence intervals - paired t-test

$$
\bar{x} \pm t_{0.05} \times \text { s.e. }
$$

where $t_{0.05}=$ value on t-distribution table in 0.05 column (two-tailed), corresponding to appropriate d.f.

Two-sample (unpaired) t-test

This is used where data are collected from groups which are unrelated, such as the length at one year of a group of infants who were breastfed, compared with a group who were not breastfed.

$$
t=\left(\bar{x}_{1}-\bar{x}_{2}\right) / \text { s.e. pooled }
$$

where $\bar{x}_{1}=$ mean from group 1 and $\bar{x}_{2}=$ mean from group 2 .

$$
\text { d.f. }=\left(n_{1}-1\right)+\left(n_{2}-1\right)
$$

where $n_{1}=$ sample size for group 1 and $n_{2}=$ sample size for group 2 . s.e. pooled $=$ see below.

Calculating standard deviation and standard error for the two-sample t-test

If the standard deviations are not appreciably different, use the 'pooled' standard error:

$$
\text { s.e. pooled }=\sqrt{\frac{s \text { pooled }^{2}}{n_{1}}+\frac{s \text { pooled }^{2}}{n_{2}}}
$$

where s pooled is calculated in the formula below, $n_{1}=$ sample size 1 and $n_{2}=$ sample size 2.

To calculate a 'pooled' standard deviation:

$$
s \text { pooled }=\sqrt{\frac{\left[s_{1}^{2}\left(n_{1}-1\right)\right]+\left[s_{2}^{2}\left(n_{2}-1\right)\right]}{\left(n_{1}+n_{2}\right)-2}}
$$

where $s_{1}=$ standard deviation $1, s_{2}=$ standard deviation $2, n_{1}=$ sample size 1 and $n_{2}=$ sample size 2 .
If the standard deviations and/or sample sizes are appreciably different, it is advisable to consult a statistician or someone with advanced statistical skills.

95\% Confidence intervals - two-sample (unpaired) t-test

$$
\bar{x}+t_{0.05} \times \text { s.e. pooled }
$$

where $t_{0.05}=$ value on t-distribution table in 0.05 column (two-tailed), corresponding to appropriate d.f.

Parametric and non-parametric tests

People often ask about the difference between parametric and nonparametric tests. We introduced the concept of parameters early in the book - these are measures of a population, rather than of a sample. Used in this context, the term refers to the 'population' of the normal distribution. Parametric tests are performed if a normal distribution can be assumed. Remember that the t-test also requires an underlying normal distribution.

However, if the data are clearly not normally distributed, non-parametric tests can be used. These are also known as distribution-free tests, and they include the following:

- Wilcoxon signed-rank test - replaces the paired t -test
- Mann-Whitney U-test or Wilcoxon rank-sum test - replaces the unpaired t-test
- Chi-squared $\left(\chi^{2}\right)$ test - for categorical data
- Kolmogorov-Smirnov two-sample test - compares two frequency distributions.

The Chi-squared test is described in Chapter 18. The other tests are covered by several other statistical textbooks (see Further reading).

17

Correlation and regression

Correlation and linear regression

Various statistical methods exist for investigating the association between variables. These include the χ^{2}-test (used for investigating the presence of an association with categorical data - described in the next chapter), correlation coefficients (which assess the strength of association with interval or ratio data) and linear regression (which uses one variable to predict another). The last two methods are not discussed further in the basic guide, but an understanding of them can be gained from other texts.

Analysis of variance

The statistical tests we have explored so far compare just two statistics with each other. However, sometimes it is useful to compare a larger number of groups. For example, you may want to examine the weights of infants at 1 year of age, in order to assess whether their weight is influenced by any of several types of milk that they have received since birth. If the different types of milk are called formula $1,2,3,4$ and 5 , respectively, and breast milk, the comparisons shown in Table 17.1 would be possible.

If you perform a separate z - or t-test for each possible combination, you will need to do 15 separate tests. As well as being very time-consuming, performing repeated tests is likely to produce significant results which are

Table 17.1: Possible combinations for five different types of formula milk compared with breast milk

| Formula 1; |
| :---: | :---: | :---: | :---: | :---: |
| Formula 2 | Formula 3 | Formula 4 | Formula 5 | breast milk |

Formula 2; Formula 2; Formula 2; Formula 2; Formula 3;
Formula 3 Formula 4 Formula 5 Breast milk Formula 4

Formula 3;	Formula 3;	Formula 4;	Formula 4;	Formula 5;
Formula 5	Breast milk	Formula 5	Breast milk	Breast milk

false. A P-value of 0.05 or less would be expected from 5% (1 in 20) of all tests performed, even if there were no real differences (Kirkwood, 1988). This frequency is increased if repeated tests are performed. In other words, you have a very great risk of making a type 1 error - that is, of rejecting a true null hypothesis and accepting a false alternative hypothesis.

A technique called analysis of variance (or ANOVA) allows several groups to be compared, and indicates whether any significant differences exist between them. Again, the details of ANOVA are not covered by this basic guide.

18

Chi-squared test

So far we have looked at hypothesis tests for continuous variables, from which summary statistics such as means and medians can be calculated. However, when we have only categorical data, means and medians cannot be obtained. For example, it is not possible to calculate the mean of a group of colours.

The Chi-squared test (Chi is pronounced ' ki^{\prime}, as in 'kind' and is normally written as χ^{2}) overcomes this problem, allowing hypothesis testing for categorical data. For example, we may wish to determine whether passive smokers are more likely to develop circulatory disease than those who are not exposed to smoke. In this example, passive smoking is the exposure and circulatory disease is the outcome. The chisquared test is a non-parametric test.

A good way to start examining the data is to present them in an $r \times c$ table (row \times column), also known as a cross-classification or contingency table). Data are presented in cells, arranged in rows (horizontal) and columns (vertical). These often appear in the form of a 2×2 table (so

Table 18.1: Example of a 2×2 table
Outcome present?

		Yes	No	Total
Exposure taken place?	Yes	a	b	$a+b$
	No	c	d	$c+d$
	Total	$a+c$	$b+d$	$a+b+c+d$

called because it shows two exposures and two outcomes). An example of a 2×2 table is shown in Table 18.1.

If there are more than two categories of either exposure or outcome, then the number of columns or rows is increased, and the table is called a $2 \times n$ table. More categories can be used if required, in an $r \times c$ (row \times column) table.

The Chi-squared test only works when frequencies are used in the cells. Data such as proportions, means or physical measurements are not valid. This test is used to detect an association between data in rows and data in columns, but it does not indicate the strength of any association.

The Chi-squared test is more accurate when large frequencies are used all of the expected frequencies should be more than 1 , and at least 80% of the expected frequencies should be more than 5 . If these conditions are not met, the Chi-squared test is not valid and therefore cannot be used. If the Chi-squared test is not valid and a 2×2 table is being used, Fisher's exact test can sometimes be utilised (the formula for this test is not covered in this basic guide, but many computer programs will automatically calculate it if sufficiently small expected frequencies are detected within a 2×2 table). If there are more than two rows and/or columns, it may be possible to regroup the data so as to create fewer columns. Doing this will increase the cell frequencies, which may then be large enough to meet the requirements. For example, if you have four age groups ($0-7,8-14$, 15-21 and 22-28 years), it might be reasonable to combine these to produce two age groups ($0-14$ and $15-28$ years). However, regrouping data into fewer categories is a compromise, as the precision that is allowed by having so many categories will be reduced.

The test statistic is calculated by taking the frequencies that are actually observed (O) and then working out the frequencies which would be expected (E) if the null hypothesis was true. The hypothesis $\left(H_{1}\right)$ will be that there is an association between the variables, and the null hypothesis $\left(H_{0}\right)$ will be that there is no association between the variables.

The expected frequencies are calculated as follows:

row total \times column total
 grand total

The expected frequency for each cell can be calculated using a 2×2 table as follows:

$$
\begin{array}{ll}
\text { cell a: } & {[(a+b) \times(a+c) / \text { total }]} \\
\text { cell b: } & {[(a+b) \times(b+d) / \text { total }]} \\
\text { cell c: } & {[(a+c) \times(c+d) / \text { total }]} \\
\text { cell d: } & {[(b+d) \times(c+d) / \text { total }]}
\end{array}
$$

These are then compared using this formula, to produce the χ^{2} statistic:

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

where $O=$ observed frequencies and $E=$ expected frequencies.
Degrees of freedom (d.f.) are calculated using the following formula:

$$
\text { d.f. }=(r-1) \times(c-1)
$$

where $r=$ number of rows and $c=$ number of columns.
The greater the difference between the observed and expected frequencies, the less likely it is that the null hypothesis is true.

Let us look at an example using some real data, as shown in Table 18.2. A study asks whether Asians with diabetes receive worse treatment in primary care than non-Asians with diabetes. This is important, since Asians are more likely to develop diabetes than non-Asians. A number of variables are studied, including whether patients with diabetes have received an $\mathrm{HbA} 1_{\mathrm{c}}$ test within the previous year (we mentioned $\mathrm{HbA} 1_{\mathrm{c}}$ in Chapter 7), as this is a valuable indicator of how successfully diabetes is being controlled. Having the test performed regularly is important, and is therefore a valid indicator of healthcare quality in diabetes. We can calculate that $64.6 \%(128 / 198)$ of Asians received the check, compared with 74.7% ($430 / 576$) of non-Asians. Therefore we know that a lower proportion of Asian patients were checked, but is there a significant association between ethnicity and receiving the check? Our null hypothesis is that there is no association between ethnicity and receiving an $\mathrm{HbA1}{ }_{\mathrm{c}}$ check.

Table 18.2: Frequencies for $\mathrm{HbA1}_{\mathrm{c}}$ testing by ethnic group (Source: adapted from Stewart and Rao, 2000)

HbA1 ${ }_{c}$ test done?

	Yes	No	Total	
	Asian	128 (a)	70 (b)	198 $(a+b)$
Ethnicity of patient	Non-Asian	430 (c)	146 (d)	576 $(c+d)$
	Total	558 $(a+c)$	216 $(b+d)$	774 $(a+b+c+d)$

The frequencies for Asian/non-Asian patients with diabetes are assembled in a 2×2 table and tabulated against the frequencies in each group of patients who have/have not received the $\mathrm{HbA} 1_{c}$ test, as shown in Table 18.2.

To calculate χ^{2}, use the following steps.
1 Work out the degrees of freedom (d.f.).
2 Work out the expected frequencies in each of cells $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d - or more if it is a larger table.
3 For each cell, subtract the expected frequency from the observed frequency $(O-E)$.
4 For each cell, square the above result $(O-E)^{2}$.
5 For each cell, divide this number by the expected frequency $\left[(O-E)^{2} / E\right]$.
6 Add up the results for each cell - this gives you the χ^{2} statistic.
7 Using the χ^{2} distribution table in Appendix 1, look up the d.f. value in the left-hand column.
8 Read across this row until the nearest values to the left and right of your χ^{2} statistic can be seen.
9 Your P-value will be less than the P-value at the top of the column to the left of your χ^{2} statistic and greater than the P-value at the top of the column to its right. (For example, a χ^{2} statistic of 6.128 with 2 d.f. falls in between 5.991 and 7.824. The nearest value to its left is 5.991; the P-value at the top of this column is 0.05 . The P-value for your χ^{2} statistic will therefore be less than 0.05 , and is written $P<0.05$. If your χ^{2} statistic is 2.683 with 2 d.f., there is no column to its left, so the P-value will be greater than the column to its right, and is therefore >0.2)

Using the data for the Asian diabetes study, let us work out χ^{2}.
1 There are two rows and two columns:

$$
(r-1) \times(c-1)=(2-1) \times(2-1)=1 \times 1, \text { so d.f. }=1 .
$$

2 Work out the expected frequencies for each cell (to 2 decimal places in this example):

$$
\text { cell a: } \quad \begin{aligned}
{[(a+b) \times(a+c) / \text { total }] } & =(198 \times 558) / 774 \\
& =110484 / 774=142.74 \\
\text { cell b: } \quad[(a+b) \times(b+d) / \text { total }] & =(198 \times 216) / 774 \\
& =42768 / 774=55.26
\end{aligned}
$$

$$
\text { cell c: } \begin{aligned}
{[(a+c) \times(c+d) / \text { total }] } & =(558 \times 576) / 774 \\
& =321408 / 774=415.26
\end{aligned}
$$

cell d: $[(b+d) \times(c+d) /$ total $]=(216 \times 576) / 774$

$$
=124416 / 774=160.74
$$

3-5 It is helpful to construct a grid to aid the following calculations, as shown in Table 18.3.
6 The sum of all of the $\left(O-E^{2} / E\right)$ results is $7.32-$ this is the χ^{2} statistic.
7 On the χ^{2} distribution table in Appendix 1, look along the row for d.f. $=1$.

8 Look along the row to find the values to the left and right of the χ^{2} statistic - it lies in between 6.635 and 10.827 .
9 Reading up the columns for these two values shows that the corresponding P-value is less than 0.01 but greater than 0.001 - we can therefore write the P-value as $P<0.01$.

Thus there is strong evidence to reject the null hypothesis, and we may conclude that there is an association between being Asian and receiving an $\mathrm{HbA} 1_{c}$ check. Asian patients are significantly less likely to receive an $\mathrm{HbA} 1_{c}$ check, and appear to receive a poorer quality of care in this respect.

Table 18.4: \quad Grid showing calculations for the χ^{2} statistic with Yates' correction

	O	E (step 2)	$[\|(O-E)\|-0.5]$ (step 3)	$[\|(O-E)\|-0.5]^{2}$ (step 4)	$\left[(\|(O-E)\|-0.5)^{2} / E\right]$ (step 5)
a	128	142.74	14.24	202.78	1.42
b	70	55.26	14.24	202.78	3.67
c	430	415.26	14.24	202.78	0.49
d	146	160.74	14.24	202.78	1.26
Total	774				6.84

The χ^{2} formula is made more conservative by subtracting 0.5 from the product of $(O-E)$ at stage 3 . We can ignore any minus numbers in the product of $(O-E)$, and it is thus written as $(|O-E|)$. This becomes $[|(O-E)|-0.5]$, and is known as Yates' correction (also called a continuity correction). It is especially important to use this when frequencies are small. Note that Yates' correction can only be used for 2×2 tables. If Yates' correction is applied to the above data, we obtain the following result, as shown in Table 18.4.

Thus $\chi^{2}=6.84$, which still gives a P-value of <0.01. However, this is closer to the 0.01 value than the previous χ^{2} of 7.32 . The significance is therefore slightly reduced.

19

Statistical power and sample size

As discussed in Chapter 14, when interpreting a P-value, two types of error should be recognised:

- type 1 error - rejecting a true null hypothesis, and accepting a false alternative hypothesis. The probability of making a type 1 error is called alpha (α).
- type 2 error - not rejecting a false null hypothesis. The probability of making a type 2 error is called beta (β), and it will depend on the effect size.

The significance level is the probability of making a type 1 error (α), and it is usually set at 5% (0.05).

The power of a study is the probability of rejecting a false null hypothesis, so it is $1-\beta$. This is usually expressed as a percentage.

Statistical power is used in the calculation of sample size. As sample size increases, so does the ability to reject a false null hypothesis. Beta is often set at 20%, so the power $(1-\beta)$ is 80%. The calculation of sample size takes into account α, β and the size of the effect considered to be clinically significant.

The actual sample size calculation formulae for various situations are discussed in other texts (see Further reading).

In the first half of this book, we have discussed the main types of data and basic statistical analysis that are used in healthcare. If there is anything that you are unsure about, now might be a good time to go back and re-read the particular section in which it appears.

If you are ready to continue, the second half of the book deals with epidemiology. Here we shall explore a range of methods, including those that will help you to measure the amount of disease in groups of people, to search for possible causes of disease and death, and to try to improve survival by undertaking screening to identify an illness before the symptoms even develop.

20

What is epidemiology?

Epidemiology is the study of how often diseases occur in different groups of people, and why (Coggon et al., 1997). Medicine often asks 'why has this person got this disease?' and 'what is the best way of treating them?'. However, epidemiology asks broader questions such as 'what kind of people get this disease?', 'why do they get it when others don't?' and 'how can we find out what is generally the best way of treating people with this disease?' (Department of Public Health and Epidemiology, 1999).

Epidemiology can be used to formulate strategies for managing established illness, as well as for preventing further cases. An epidemiological investigation will usually involve the selection of a sample from a population. This is discussed in Chapters 2 and 3.

People who have a disease or condition that is being studied are generally referred to as cases. People without the disease are called noncases. Epidemiological studies known as case-control studies (see Chapter 27) compare groups of cases with non-cases. Cohort studies (see Chapter 26) compare groups of people who have been exposed to a particular risk factor for a disease with other groups who have not been exposed in this way. When these types of comparisons are made, the non-cases or non-exposed individuals are referred to as controls. In these types of study, the groups are called study groups.

Randomised controlled trials (see Chapter 28) often compare a group of people who are receiving a certain treatment with another group who are receiving a different treatment or even a 'dummy' treatment called a placebo. In randomised controlled trials, the groups are usually called treatment arms.

A number of techniques exist for measuring disease and evaluating results. Some of these are explained in this basic guide, together with definitions of a range of epidemiological terms.

21

Bias and confounding

Bias

Epidemiological studies try to provide accurate answers to questions such as 'what is the prevalence of smoking in this district's population?' or 'what is the additional risk of liver cancer due to previous hepatitis B infection?'. It is almost certain that the estimates which are obtained are different to the real prevalence or the real risk. This error in estimating the true effect is caused by two sources of error - random and systematic error. Random errors will always occur from time to time (e.g. an investigator records a temperature measurement incorrectly, or allocates a patient to treatment group A when they were supposed to be in treatment group B), but have no particular pattern. Systematic errors happen when the errors are arising more uniformly (e.g. a certain investigator's temperature readings are regularly higher than those made by other investigators, or the mean age of patients in one treatment group is considerably higher than that in another group). Features of a study that produce systematic error are generally referred to as bias.
Bias is an undesirable feature of study design that tends to produce results which are systematically different from the real values. It can apply to all types of study, and it usually occurs due to faults in the way in which a study is planned and carried out. In some circumstances, bias can make the results of a study completely unreliable.

It is very difficult to avoid bias completely. However, it is possible to limit any problems by seeking out and eliminating potential biases as early as possible. The ideal time to do this is during the planning stages of
a study. If detected at a later stage, biases can sometimes (but not always) be reduced by taking them into account during data analysis and interpretation. In particular, studies should be scrutinised to detect bias. Errors in data analysis can also produce bias, and should be similarly sought out and dealt with. The main types of bias are selection bias and information bias.

Selection bias

Selection bias occurs as a result of errors in identifying the study population. It can occur due to factors such as the following.

- Systematically excluding or over-representing certain groups - this is called sampling bias. For example, a study designed to estimate the prevalence of smoking in a population may select subjects for interview in a number of locations, including a city centre. If the interviews are only conducted on weekdays, the study is likely to under-represent people who are in full-time employment, and to include a higher proportion of those who are unemployed, off work or mothers with children.
- Systematic differences in the way in which subjects are recruited into different groups for a study - this is called allocation bias. For example, a study may fail to use random sampling - the first 20 patients who arrive at a clinic are allocated to a new treatment, and the next 20 patients are allocated to an existing treatment. However, the patients who arrive early may be fitter or wealthier, or alternatively the doctor may have asked to see the most seriously ill patients first.
- Missed responders or non-responders - this is called responder bias. For example, a study may send questionnaires to members of the control group. If these subjects are from a different social class to the cases, there may be differences in the proportion of responses that are received. Furthermore, controls who are non-cases may see little point in responding.

Information bias

This is caused by systematic differences in data collection, measurement or classification. Some common causes of information bias include the following.

- People suffering from a disease may have spent more time thinking of possible links between their past behaviour and their disease than nonsufferers - this is known as recall bias. It may result in systematic
differences between cases and controls. Cases may therefore report more exposure to possible hazards.
- Some subjects may exaggerate or understate their responses, or deny that they engage in embarrassing or undesirable activities - this is called social acceptability bias.
- Medical records may contain more information on patients who are 'cases' - this is called recording bias.
- Interviewers may phrase questions differently for different subjects, or write down their own interpretations of what subjects have said - this is called interviewer bias.
- In studies that follow up subjects at intervals, people from certain groups may tend to be lost to follow-up, or a disproportionate number of exposed subjects may be lost to follow-up compared with non-exposed subjects - this is called follow-up bias.
- Patients may be systematically misclassified as either having disease or exposure, and will thus produce misclassification bias.
- Some groups may give different responses. For example, older people of lower social class may be less likely to express dissatisfaction with a health-related service.
- Investigators may look more closely at exposed patients, to try to find the presence of a disease, or they may be more attentive to certain types of subjects.

Confounding

Confounding occurs when a separate factor (or factors) influences the risk of developing a disease, other than the risk factor being studied. To be a confounder, the factor has to be related to the exposure, and it also has to be an independent risk factor for the disease being studied.

For example, if a study assesses whether high alcohol consumption is a risk factor for coronary heart disease, smoking is a confounding factor (also called a confounder) (see Figure 21.1). This is because smoking is known to be related to alcohol consumption, and it is also a risk factor for coronary heart disease.

Age and sex are also common causes of confounding, as well as factors such as ethnicity and smoking. For example, we know that mortality is higher in old people, men tend to die earlier than women, AfricanCaribbean people are at increased risk of developing hypertension, and

Figure 21.1: An example of confounding (after Lilienfeld and Stolley 1994).
people who smoke are much more likely than non-smokers to develop diseases such as lung cancer and coronary heart disease.

The best way to deal with a possible confounding factor is to eliminate its effect from the study. Methods to achieve this include the following.

- Randomisation - ensuring that samples are randomly selected (see Chapter 3).
- Matching - in case-control studies (see Chapter 27), controls are matched to cases at the start of the study, according to particular characteristics which are known to be present in cases (e.g. age, sex, smoking, ethnic group, etc.).
- Stratified analysis - dividing subjects into groups at the analysis stage (e.g. by sex, age group, smokers/non-smokers) and analysing on this basis. In the above study on high alcohol consumption and coronary heart disease, it is important to ascertain whether heavy drinkers who also smoke are more likely to develop coronary heart disease. An excess of coronary heart disease among this group of heavy drinkers and smokers will indicate that smoking is acting as a confounder.

Measuring disease frequency

As stated previously, people who have a disease or condition being studied are generally referred to as cases. People without the disease are called non-cases.

The terms mortality and morbidity are also used in many epidemiological studies. Mortality refers to death from a disease. Morbidity means the situation of living with a disease, and it is often measured in terms of incidence and prevalence. It is important to distinguish between these two terms, which are often used incorrectly.

Incidence

This is the number of new cases in a particular time period. For example, the incidence of lung cancer during 1997 means the number of newly diagnosed cases of lung cancer during that year. It is calculated as follows:

number of new cases in a given time period
 person years at risk during same time period

Person years at risk means the total amount of time (in years) that each member of the population being studied (or study population) is at risk of the disease during the period of interest. In practice, we often do not know the exact number of person years at risk, so a proxy measure such as the mid-year population, total list size, etc., can be used.

Prevalence

This is defined as the proportion of current cases in a population at a given point in time. For example, the prevalence of angina in the UK is the proportion of people in the UK who are currently living with diagnosed angina. It is usually called the point prevalence, and is calculated as follows:
number of cases in the population at a given point in time
total population at the same point in time
Rates of incidence, prevalence and mortality are sometimes described as crude or specific.

Crude rates

The crude rate refers to the number of occurrences for a whole population. It is often expressed as a rate per 1000 members of the population, but can be expressed per 10000 or per 100000 - for example, 'The total annual death rate in town X was 11 per 1000^{\prime}. This is convenient, since there is only one figure to deal with.

To calculate a crude death rate, simply divide the number of deaths in a given time period by the number in the population in the same time period, and then multiply the result by 1000 (for rates per 1000) or 100000 (for rates per 100000), etc. If the time period is a particular year (e.g. 1999), then the mid-year population estimate should be used. Some examples of crude death rates, and their calculation are shown in Table 22.1.

However, with regard to crude rates it should be remembered that each population is likely to have a different age/sex structure. Therefore crude

	Table 22.1:	Grid showing calculations for crude death rates		
Example	Number of deaths (a)	Population (b)	Crude death rate (to four decimal places)	Crude death rate per 100 000 $(a / b) \times 100000$
1	18	2300	0.0078	780
2	2	8600	0.0002	20
3	16	18800	0.0009	90
4	14	22300	0.0006	60
5	46	26700	0.0017	170

death rates should not be used for making like-for-like comparisons between populations.

Specific rates

It is often more beneficial to subdivide crude rates into specific rates for age and sex. This is especially useful because the occurrence of many diseases varies with age and sex.

Specific rates can take the form of sex-specific rates (giving rates for males and females separately) or age-specific (quoting rates in specific age bands, e.g. 0-4, 5-14, 15-24 years, etc.) or age/sex-specific rates (giving rates for males aged 0-4, 5-14 years, etc. and females aged 0-4, 5-14 years, etc). Although these rates provide more information than crude rates, they are more onerous to evaluate because it is necessary to compare each group. This is especially problematic if there are many groups.

For specific rates, a crude rate is calculated for each group, allowing the rates for each group to be compared.

In the example shown in Table 22.2, age-specific death rates are calculated for deaths of children in three age groups. It is immediately obvious that there are more deaths in the <1 year group. This would not have been apparent from crude rates alone. Indeed, the overall crude death rate for this group of children is 170 per 100000 , as shown in example 5 in Table 22.1.

The incidence of lung cancer increases with age, and men are generally at higher risk than women. A comparison of crude lung cancer incidence rates may indicate little change over a period of 30 years. However, by using age- and sex-specific rates it might be found that the incidence of lung cancer is decreasing in younger men, while it is increasing in older women. This might prompt further investigation into the underlying reasons for these differences.

	Table 22.2:	Grid showing calculations for age-specific death rates		
Age group (years)	Number of deaths $($ a $)$	Population (b)	Crude death rate (to four decimal places) $)$	Crude death rate per 100 $(a / b) \times 10000$
<1	25	2476	0.0101	1010
$1-4$	17	7523	0.0023	230
$5-14$	4	16701	0.0002	20
Total	46	26700		

As a further example, it was discovered that crude mortality rates for two seaside towns were very different. These rates were higher in Bournemouth than in Southampton. This might have suggested that Bournemouth was a more unhealthy place in which to live. However, when the deaths were divided into age-specific groups, it became evident that more people in Bournemouth died after the age of 65 years. Further investigation revealed that Bournemouth contained a higher proportion of pensioners and was often used as a place of retirement. The excess deaths could therefore be attributed to the more elderly population in Bournemouth, rather than to any 'unhealthy' factors (Coggon et al., 1997).

Standardisation

As was discussed earlier, it can be unwise to draw firm conclusions from crude rates. Specific rates can provide more accurate and meaningful data, but the results are time-consuming to interpret. One way of overcoming this problem is to use a standardised rate. This adjusts for differences in age and sex structures between the populations, allowing straightforward comparisons to be made. Although age is normally used in this process, other factors (e.g. ethnic group, etc.) can also be employed. A single statistic is produced, allowing comparisons between populations to be made easily.

Standardisation can be calculated using either direct or indirect methods. Both compare a specific study population with a 'standard population' (often England and Wales, although other populations can be used). This is usually carried out for one sex only, or for both sexes individually.

Direct standardisation

In this method, the number of deaths per 10000 (or per 1000, per 100000 , etc.) for each group in the study population is multiplied by the proportion of individuals in each age group within the standard population. This produces the expected number of deaths that would have been experienced by the standard population if it had the same death rate as the study population. The resulting values for each age group are then added together to produce an age-standardised death rate per 10000.

Let us work through the fictional example shown in Table 22.3.

Table 22.3: Mortality from bowel cancer in women aged 50-65 years, during 1999 in Mediwell

Age group (years)	Bowel cancer deaths per 10000 women in Mediwell	Proportion of women aged 50-65 years in standard population (A)	Expected deaths $(A \times B)$
		(B)	
$50-55$	4.1	0.381	1.562
$56-60$	8.5	0.332	2.822
$61-65$	28.4	0.287	8.151
Total			12.535

The following steps can be used.
1 For each age group, multiply the number of deaths per 10000 in the study population (A) by the proportion in the standard population (B). This gives the expected number of deaths $(\mathrm{A} \times \mathrm{B})$ for each age group
2 Add up the expected deaths. This is the standardised death rate per 10000.

Using the data in Table 22.3, we can work out the age-standardised death rate per 10000 for women aged between 50 and 65 years in Mediwell.

1 For each age group, multiply the number of bowel cancer deaths per 10000 (A) by the proportion of women in the standard population (B). The result is shown in column ($\mathrm{A} \times \mathrm{B}$), and is the expected number of deaths.
2 Add up the expected deaths to obtain the age-standardised death rate per 10000 - this is 12.535 .

This figure could be compared with an age-standardised death rate in another area. The neighbouring town of Stediwell may have an agestandardised death rate of 15.6 per 10000 for bowel cancer deaths in women aged $50-65$ years. It is clear that Mediwell has the lower agestandardised rate.

Age-standardised rates for particular local populations can be directly compared with each other. However, it should be remembered that agespecific rates are not always available for local populations, and may in any case be too small to allow accurate estimates to be made.

Indirect standardisation

This is the most commonly used method. It yields more stable results than direct standardisation for small populations or small numbers of events.

The figure produced by this method is called the standardised mortality ratio or SMR.

Death rates for age groups (or other groups) in the standard population are multiplied by the population of the same groups in the study population. This produces an 'expected' number of deaths representing what the number of deaths in the study population would have been, if that population had the same death rates as the standard population. The observed (or actual) number of deaths in the study population is then divided by the total expected number and multiplied by 100 . This produces an SMR. The standard population always has an SMR of 100, with which the SMR of the study population can be compared. The SMR figure is actually a percentage. This means that if the study population's SMR is 130 , its death rate is 30% higher than that of the standard population. If the study population's SMR is 86 , then its death rate is 14% lower than that of the standard population.

At this point, it may be helpful to try a worked example of SMR calculation, as shown in Table 22.4.

The formula for calculating an SMR is:

$$
\text { SMR }=\frac{\text { observed deaths }}{\text { expected deaths }} \times 100
$$

The stages involved in calculating an SMR are as follows.
1 For each age group, multiply the death rates in the standard population (A) by the number of subjects in the study population (B), and call the result $\mathrm{A} \times \mathrm{B}$. This gives the number of expected deaths in the study population.
2 Add up the expected deaths and call this result E .
3 Add up all of the observed deaths in the study population and call this result O .

Table 22.4: Mortality from all causes in men aged 30-59 years, during 1999

Age group (years)	Observed deaths in Mediwell	Death rates for males in the standard population (A)	Population of males aged 30-59 years in Mediwell (B)	Expected deaths of males in Mediwell, based on males in standard population $(A \times B)$
$30-39$	34	0.00096	27000	25.92
$40-49$	82	0.0027	24700	66.69
$50-59$	171	0.0072	21400	154.08
Total	$287(O)$			246.69 (E)

4 Divide the total number of observed deaths (O) by the total number of expected deaths (E).
5 Multiply the result of O/E by 100 to obtain the SMR.
To calculate the SMR for deaths in men aged 30-59 years in Mediwell, the following steps are involved.
1 For each age group, multiply the death rates in the standard population (A) by the number of subjects in the study population (B) to obtain the number of expected deaths in the study population. The result is shown in column $(\mathrm{A} \times \mathrm{B})$ above.
2 Add up the expected deaths. The total number is 246.69 (E).
3 Add up all of the observed deaths in the study population. The total number is $287(\mathrm{O})$.
4 Divide the total number of observed deaths (O) by the total number of expected deaths (E). This is $287 / 246.69=1.1634$.
5 Multiply the result of O/E by 100 . This is $1.1634 \times 100=116.34$ or 116 .
It can therefore be seen that the age-standardised death rate in Mediwell is 116 - that is, 16% higher than that of the standard population of 100.

An SMR should only be compared with the standard population of 100 . Therefore SMRs for two or more local populations should not be directly compared with each other.

It is possible to calculate confidence intervals for SMRs. The formula for a 95% confidence interval is as follows:

$$
\begin{aligned}
& \text { SMR } \pm 1.96 \times \text { s.e. } \\
& \text { s.e. }=\left(\frac{\sqrt{O}}{\mathrm{E}}\right) \times 100
\end{aligned}
$$

where $\mathrm{O}=$ observed and $\mathrm{E}=$ expected values.
(Source: Bland, 2000)
If the confidence interval does not include 100, we can be 95% confident that the SMR differs significantly from that of the standard population.

Let us calculate confidence intervals for the previous example. We know that the SMR is $116, \mathrm{O}=287$ and $\mathrm{E}=246.69$.

1 Calculate the square root $(\sqrt{ })$ of $\mathrm{O}-$ this is 16.941 .
2 Therefore s.e. $=(16.941 / 246.69) \times 100=0.069 \times 100=6.9$.
$31.96 \times$ s.e. $=1.96 \times 6.9=13.524$.
495% c.i. $=116 \pm 13.524=116(102.476 \rightarrow 129.524)$ or to the nearest whole numbers 116 ($102 \rightarrow 130$).

We can see that the confidence interval does not include 100, and we can therefore be 95% confident that the SMR differs significantly from that of the standard population.

A hypothesis test can also be performed to test the null hypothesis that the SMR for the study population $=100$ (or in other words, it is the same as that of the standard population, which is always 100). The following formula is used to produce a z-score (see Chapter 14):

$$
z=(\mathrm{O}-\mathrm{E}) / \sqrt{\mathrm{E}}
$$

(Source: Bland, 2000)
Using the previous example again, we can perform a hypothesis test as follows.

1 Work out the observed value (O) minus the expected (E) $=287-246.69=40.31$.
2 Find the square root of $E=\sqrt{ } E=\sqrt{ } 246.69=15.706$.
$3 z=40.31 / 15.706=2.567$.
4 Look down each column of the normal distribution table in Appendix 1 to find the z-score (the nearest z-score to 2.567 in the table is 2.57), and then read across to obtain the P-value. The P-value is 0.0102 , which is significant.

We can therefore reject the null hypothesis that the SMR for the study population $=100$, and use the alternative hypothesis that the SMR is significantly different from that of the standard population.

23

Measuring association in epidemiology

A number of measures are used to compare the rates of a particular disease experienced by people who have been exposed to a risk factor for that disease and those who have not. For example, if we suspect that smoking is a risk factor for angina, how much more prevalent is angina among those who smoke than among those who do not?

The most popular measures of association are absolute risk, relative risk, odds ratio, attributable risk, population attributable risk and number needed to treat.

A 2×2 table can be useful for calculating some measures of association. As we have already seen in Chapter 18 , this splits data up into a number of cells, as shown in Table 23.1.

Table 23.1: A 2×2 table for risk
Disease present?

		Yes	No	Total
	Yes	a	b	$a+b$
Exposed to risk factor?	No	c	d	$c+d$
	Total	$a+c$	$b+d$	$a+b+c+d$

This 2×2 table shows:

- how many patients had a particular disease (cells $a+c$)
- how many did not have the disease $(b+d)$
- how many were exposed to a particular risk factor $(a+b)$
- how many were not exposed to that risk factor $(c+d)$
- how many had the disease, and were exposed to the risk factor (a)
- how many did not have the disease, but were exposed to the risk factor (b)
- how many had the disease, but were not exposed to the risk factor (c)
- how many did not have the disease, and were not exposed to the risk factor (d)
- the total number of subjects $(a+b+c+d)$.

Absolute risk

This is the probability of having a disease, for those individuals who were exposed to a risk factor. It is calculated as follows:

$$
\frac{\text { number of cases of disease in those exposed }}{\text { number of individuals exposed }}
$$

When using a 2×2 table, absolute risk can be calculated as $a /(a+b)$.
An example is shown in Table 23.2.
In the example in Table 23.2, if 90 people were exposed to a risk factor, and 20 of them develop a particular disease, their absolute risk is $20 / 90=0.22$ or 22%.

Table 23.2: A 2×2 table example for calculating absolute risk

> Disease present?

Absolute risk is of limited practical use, because it takes no account of the risk in those individuals who have not been exposed to the risk factor.

Relative risk

Relative risk (or $R R$) indicates the risk of developing a disease in a group of people who were exposed to a risk factor, relative to a group who were not exposed to it.

It is calculated as follows:

$$
\text { relative risk }=\frac{\text { disease incidence in exposed group }}{\text { disease incidence in non-exposed group }}
$$

- If $R R=1$, there is no association between the risk factor and the disease.
- If $R R>1$, there is an increased risk of developing the disease, if one is exposed to the risk factor (e.g. disease $=$ lung cancer; risk factor $=$ smoking). It suggests that exposure to the risk factor may cause the disease.
- If $\mathrm{RR}<1$, there is a decreased risk of developing the disease, if one is exposed to the risk factor (e.g. disease $=$ colon cancer; risk factor $=$ eating fresh fruit and vegetables). It suggests that exposure to the risk factor may protect against the disease.

When using a 2×2 table like the one in Table 23.1, relative risk can be calculated as

$$
\frac{a / a+b}{c / c+d}
$$

Let us work out a relative risk from a real study. Are women who are undergoing in-vitro fertilisation more likely to suffer a miscarriage in the first trimester if they have bacterial vaginosis? The data are shown in Table 23.3.

$$
\begin{aligned}
\mathrm{RR} & =\frac{\text { proportion of disease in exposed group }}{\text { proportion of disease in non-exposed group }} \\
& =\frac{(a / a+b)}{(c / c+d)}=\frac{22 / 61}{27 / 146}=\frac{0.361}{0.185}=0.361 / 0.185=1.95 .
\end{aligned}
$$

This study reports that women who are undergoing in-vitro fertilisation are nearly twice (1.95 times) as likely to suffer a miscarriage in the first trimester if they have bacterial vaginosis.

Table 23.3: A 2×2 table showing miscarriage in first trimester and bacterial vaginosis status for women undergoing in-vitro fertilisation. (Adapted from Ralph et al., 1999.)

Miscarriage in first trimester (disease)

	Yes	No	Total		
	Yes	22 (a)	39 (b)		
Bacterial vaginosis (risk factor)	No	27 (c)	61 $(a+b)$		
	Total	119 (d)	146 $(c+d)$		
$(a+c)$					158
:---:					
$(b+d)$					

Attributable risk

Attributable risk or $A R$ is the excess risk of developing a disease in those who have been exposed to a risk factor compared with those who have not.

Attributable risk is especially useful for making decisions for individuals. For example, how much more likely is an individual to develop liver cirrhosis if he or she drinks heavily?

Attributable risk is calculated as follows:
disease incidence in exposed group - disease incidence in non-exposed group
or, using a 2×2 table: $(a / a+b)-(c / c+d)$.
An attributable risk of 0 indicates that there is no excess risk from exposure. In the previous relative risk example (see page 85), the attributable risk of miscarriage in the first trimester to having bacterial vaginosis is calculated as $(22 / 61)-(27 / 146)=0.361-0.185=0.176$. This figure can be multiplied by 1000 to obtain the excess number of first-trimester miscarriages in women with bacterial vaginosis, which can be attributed to having bacterial vaginosis - this is 176 per 1000. Patients experiencing such events should perhaps be offered help in finding coping strategies, in order to minimise the stressful effects involved. Attributable risk should not be calculated for casecontrol studies (see Chapter 27).

Population attributable risk

This assesses how much of a disease in the population can be attributed to exposure. It is sometimes abbreviated to $P A R$.

Population attributable risk is essentially the total disease incidence in the population, minus the incidence in those who have not been exposed to the risk factor. It can be useful to public health practitioners in deciding whether to take steps to control the spread of a disease to which the population is exposed. Population attributable risk should not be calculated for case-control studies.

Odds ratio

In case-control studies (see Chapter 27), we retrospectively find people who have already developed a disease and find controls who do not have the disease but who are otherwise similar. Unfortunately, this means that we do not know how many people were exposed to a risk factor for the disease but did not develop it. For this reason, we cannot assume that our sample is representative of the true population. In these circumstances, the odds ratio (or $O R$) is used. The odds ratio figure is interpreted in the same way as relative risk.

The odds ratio is calculated as follows:

$$
\text { odds ratio }=\frac{\text { odds that subjects with disease have been exposed to risk factor }}{\text { odds that subjects without disease have been exposed to risk factor }}
$$

Using a 2×2 table, the odds ratio can be calculated as

$$
\frac{a / c}{b / d}
$$

For example, is there a relationship between adverse life events and breast cancer?' The data are shown in Table 23.4.

$$
\begin{aligned}
\mathrm{OR} & =\frac{\text { odds of subjects with disease being exposed to risk factor }}{\text { odds of subjects without disease being exposed to risk factor }} \\
& =\frac{(a / c)}{(b / d)}=\frac{19 / 22}{15 / 63}=\frac{0.864}{0.238}=0.864 / 0.238=3.63
\end{aligned}
$$

This study reports that women who have experienced greatly threatening life events in the past five years are 3.63 times more likely to develop breast cancer than those who have not.

Table 23.4: A 2×2 table showing breast cancer and greatly threatening life events for women aged $20-70$ years undergoing biopsy for a suspicious breast lesion (adapted from Chen et al., 1995)

	Breast cancer (disease)			
		Yes	No	Total
At least one greatly threatening life event in the previous 5 years (risk factor)	Yes	19 (a)	15 (b)	$\begin{gathered} 34 \\ (a+b) \end{gathered}$
	No	$\begin{aligned} & 22 \\ & (c) \end{aligned}$	63 (d)	$\begin{gathered} 85 \\ (c+d) \end{gathered}$
	Total	$\begin{gathered} 41 \\ (a+c) \end{gathered}$	$\begin{gathered} 78 \\ (b+d) \end{gathered}$	$\begin{gathered} 119 \\ (a+b+c+d) \end{gathered}$

Number needed to treat

If a new treatment seems to be more effective than an existing one, the number needed to treat (abbreviated to NNT) can indicate how much better that treatment really is. This technique is often used when analysing the results of randomised controlled trials (see Chapter 28).

Number needed to treat is a measurement of a new treatment's effectiveness, compared with that of an existing treatment. It represents the number of patients who will need to receive the new treatment, in order to produce one additional successful cure or other desirable outcome. NNT may also be regarded as a measure of clinical effort expended in order to help patients to avoid poor outcomes, and is concerned with clinical significance rather than statistical significance (Sackett et al., 1997).

Unlike some statistical techniques, there is no 'threshold of significance' with number needed to treat. Judgement needs to be based on factors such as the NNT value, likely benefits, costs or comparisons with other NNT values. If the NNT is small, the new treatment is likely to be worthwhile. If the NNT is large, the new treatment may not be so effective, and careful thought should be given to its implementation. When evaluating expensive treatments, a small NNT may indicate that consideration should be given to adopting the expensive treatment, especially if the disease concerned is relatively rare (however, this is a value judgement - a life saved from a common disease is just as valuable).

When calculating NNT, we also find a figure called the absolute risk reduction (ARR). This represents the additional percentage of cures
obtained by using the new treatment, compared with the existing treatment. In other words, by using the new treatment you are reducing the patient's risk of not being cured by this percentage.

For example, suppose that 624 out of 807 children with meningitis survive when treated with drug A, while 653 out of 691 children survive when a new drug, drug B, is used.

The number needed to treat indicates how many patients would need to receive the new drug B in order to prevent one additional death (or to produce one additional survivor).

To calculate the number needed to treat, follow these steps.
1 Find the percentage of patients who had the desired outcome in the existing treatment group (a).
2 Find the percentage of patients who had the desired outcome in the new treatment group (b).
3 Subtract b from a to obtain the absolute risk reduction.
4 Divide 100 by this figure, to obtain the number needed to treat.
In the above example:

$$
\begin{aligned}
& \text { desired outcome = survival } \\
& \text { existing treatment group }(a)=\operatorname{drug~A} \\
& \text { new treatment group }(b)=\operatorname{drug} B .
\end{aligned}
$$

1 Percentage of patients who survived on drug $\mathrm{A}=624 / 807 \times 100=77.3 \%$.
2 Percentage of patients who survived on drug $B=653 / 691 \times 100=94.5 \%$.
$3 b-a=17.2$. This shows that the absolute risk reduction is 17.2%.
$4100 / 17.2=5.8$. This is usually rounded up to the nearest whole number (i.e. 6).

This shows that six children with meningitis would need to receive the new drug B in order to prevent one additional death. Because the number needed to treat is small, this is almost certainly worth doing. The absolute risk reduction is 17.2%, showing that patients on drug B are 17.2% less likely to die than if they took drug A.

Causality

Finding an association between the presence of disease and a certain risk factor does not necessarily mean that exposure to the risk factor has caused the disease. Other possible factors and potential causes should be identified and eliminated, including chance findings, biases and confounders.

Cohort and case-control studies (see Chapters 26 and 27) are normally used to investigate causality, but cannot necessarily prove its existence.

If causality is suspected, the following questions can help to determine the strength of evidence.
1 Dose-response - is there an association between the incidence of disease and the amount of exposure to the risk factor?
2 Strength - are subjects who have been exposed to the risk factor much more likely to develop the disease than unexposed subjects?
3 Disease specificity - does the risk factor apply only to the disease being studied?
4 Time relationship - did exposure to the risk factor occur before the disease developed?
5 Biological plausibility - is what we know about the relationship between the risk factor and disease consistent with what is already known about their biology?
6 Consistency - have other investigators working with other populations at other times observed similar results?
7 Experimental evidence - do randomised controlled trials show that an intervention can 'cause' outcomes such as increased survival or decreased disease?

24

Prevalence studies

Prevalence studies are conducted in order to examine the prevalence of a particular condition at a certain point in time. Also referred to as crosssectional studies, they frequently take the form of surveys.

They are often conducted at local level, and are useful for investigating disease trends over time, as well as for health service planning. Although prevalence studies are sometimes used to investigate causality, other study designs such as cohort and case-control studies (discussed in Chapter 26 and 27) are generally more suitable. Prevalence studies are not very useful for examining diseases which have a short duration. These are comparatively quick and easy to carry out, and are useful for situations where no suitable routinely collected data are available.

As an example, a district may be interested in finding out how many people with coronary heart disease (CHD) reside there. A prevalence study could therefore be commissioned to ascertain the prevalence of CHD. Questions could be asked about the presence of diagnosed CHD, plus areas such as diet, smoking, quality of life, family history of CHD, stroke or diabetes, satisfaction with medical services and opinions about future services. The results could be used to plan future CHD services in the district, allowing health professionals to consider whether current services are appropriate and sufficient. A further prevalence study could be carried out at a later date to investigate whether the prevalence of CHD in the district is changing. A survey to establish levels of depression among students could be used to determine whether additional counselling services and other forms of student support might be useful. A study designed to establish the prevalence of taking regular exercise could be used as part of the planning for a local health promotion programme.

Methods for identifying subjects require careful consideration. Electoral rolls or health authority records are often used for this purpose. Potential biases should be identified and steps taken to minimise their effect. Be
aware that individuals may choose not to respond, and there may be systematic differences between the kind of people who respond, and those who do not.

The method of sampling therefore needs to be well planned, and all groups who may have the condition being studied should be included. While non-random sampling can be used, randomised sampling is preferable, as this is more likely to be representative of the population as a whole. Sampling techniques are discussed in Chapters 2 and 3.

The actual questionnaire or data collection instrument and the way in which it will be administered should also be carefully chosen and worded. This is discussed in the next chapter.

Some advantages and disadvantages of prevalence studies

Advantages
Comparatively cheap and quick.
Fairly simple to carry out and
analyse.

Useful for healthcare planning and investigating trends over time.

Useful when routine data are not available.

Disadvantages
Not useful for conditions which have a short duration.

Not the first choice for investigating causality.
Sampling and data collection need great care.

25

Questionnaires

This is a subject which is often considered to be simple, but in practice questionnaires can be difficult to do well. Furthermore, a badly designed questionnaire can completely undermine the results of a study. It is vitally important to consider what information should be collected and how it can best be obtained. The following points should be borne in mind.

Planning

Plan everything very carefully. Make sure that everyone involved knows exactly what they should be doing. Think carefully about what information you need to collect, and then consider how this can best be achieved. Make a draft of the tables and reports you would like to produce, and if necessary work backwards towards the data you need to collect. Decide how the questionnaire will be administered - for example, will you send it through the post, ask people to fill it in on your premises or use telephone or face-to-face interviews?

Content

Make sure that the data collected can be analysed. For example, do not ask for dates of birth when you really want to know age (many computer databases can convert dates of birth to ages, but if you will be analysing the data manually, by collecting dates you will waste precious time converting to ages manually). Do not collect unnecessary data, but avoid collecting so little data that useful conclusions cannot be drawn. Try to strike a suitable balance.

Produce questionnaires and data collection forms in a clear and methodical way. Consider how the data will be analysed. You may wish to use' 'yes/no' answers, Likert scales and answer selections in preference to open questions, which can be time-consuming and difficult to analyse.

Remember to keep questionnaires as short as possible. People tend to discard questionnaires that are too long or which look too complicated. Aim for no more than one or two sides of A4 paper if possible.

A better response will usually be obtained if you include a paragraph explaining why the survey is being conducted, and how the information will be used.

Use clear, simple wording, but try to avoid sounding patronising. Minimise the possibility of questions being misunderstood (e.g. the question of 'are you male or female?' may generate 'yes' answers).

Avoid leading questions (e.g. 'do you agree that our clinic provides an excellent service?'), or the results will be inaccurate and credibility will be compromised.

Start by asking a simple question that is designed to capture the interest of the respondent. For example, avoid beginning with a question such as 'what do you think the hospital's priorities for the next year should be?'. People often react well to the fact that you are taking an interest in them, so it is usually advisable to begin by asking about areas such as their age, gender and occupation. Having said this, it is important to be careful not to put people off by asking too many personal questions at the start.

Piloting

Carry out a short 'dry run' before sending out the first real questionnaire. Ask a number of friends and colleagues to fill it in first. Even if the questionnaire is inappropriate for them, the results may well reveal bugs and other design problems. Try analysing the data from the pilot, too. It is much easier to make changes at this stage. Starting with a pilot can save you a great deal of pain later - ignore this advice at your peril!

Distribution and completion

Consider this topic carefully, because the choice of method could crucially affect the level of response.

Postal questionnaires allow subjects plenty of time to complete the forms, in the comfort of their own home. However, it should be
remembered that postal questionnaires may achieve a response rate of 25% or less. They are also expensive, because you need to cover the cost of postage to the patient, plus the cost of a stamped addressed envelope. If the questionnaires are numbered, personalised or contain a patient ID, you will be able to work out who has failed to respond, and thus have an opportunity to send a reminder. This not only presents problems of extra cost, but can also potentially compromise confidentiality.

If patients are asked to complete and hand in the form before they leave your premises, a much better response rate can be achieved. Choose this option if possible, and consider making someone available to help patients to fill in the form. Make sure that you have a supply of pens available, too. Interviews can be time consuming and expensive, especially if the interviewer has to visit the subject's home. Telephone interviews are more impersonal, but are less costly in terms of time and money.

When using interviewers, ensure that they all receive training in how to administer the questionnaire. For example, they should be aware that each question should be delivered in the same way by each interviewer. Furthermore, interviewers should not ask leading questions or attempt to interpret answers for respondents. Failure to administer the questionnaire correctly will result in bias (see Chapter 21).

Questions

A range of different types of question are available, including the following.

Fill-in answer

Example: How old are you? \qquad years

Yes/No
Example: Do you feel that the physiotherapist has spent long enough with you? (Tick one box)

No

Selection of answers

Example: How long did you have to wait in the clinic before you were seen by the physiotherapist? (Tick one box)

Less than 10 minutes
Between 10 minutes and half an hour
Over half an hour

Likert scales

This is a method of answering a question by selecting one of a range of numbers or responses (e.g. $1=$ excellent, $2=$ good, $3=$ fair, $4=$ bad, $5=$ very bad) in preference to open questions which can yield large amounts of text that is time-consuming and difficult to analyse.

Example: How do you rate the overall service you received at the physiotherapy clinic? (Tick one box)
\square Excellent $\quad \square$ Good $\quad \square$ Fair $\quad \square$ Bad $\quad \square$ Very bad
Likert scales can have either an even or an odd number of responses. Using an odd number gives respondents the chance to opt for the middle ground (e.g. a choice of excellent/good/fair/bad/very bad allows them to say that they are neither happy nor unhappy, by choosing 'fair'). Using an even number avoids this option, compelling them to go either one way or the other. You need to decide which approach is best for a particular situation.

Open questions

These can provide much more detailed and precise information than other types of question, but they are difficult to analyse. Asking 70 people to tell you about problems they encountered with the service from your department will probably result in most responses being worded differently. Furthermore, some responders may make several separate points in the same answer. You can, of course, group the responses into categories (e.g. 'receptionist was rude - 3 ', 'no toilet facilities - 5 ', 'long waiting times 10^{\prime}, etc.), but you then risk misinterpreting some responses, which can result in bias.

Example: If you encountered any problems with our service, please state them below:

Confidentiality

It is good practice to emphasise confidentiality. Reassure patients that their future medical care will not be affected by their response. If you need to incorporate a patient name or ID on the form, explain that this is being done to aid the administration of possible reminders, and that it will not affect confidentiality.

Finally, remember that questionnaires (particularly those dealing with patient satisfaction) are sometimes regarded as 'happy-sheets'. Respondents tend to err on the side of 'happiness', possibly because they do not want to upset anyone or they are concerned about receiving poor treatment in the future. Phrase your questionnaire with this in mind (e.g. by adding a section that stresses confidentiality and/or anonymity), in order to maximise your chances of securing accurate and honest answers).

26

nonor stunies

Whereas prevalence studies aim to describe how much disease is present at a particular point in time, cohort and case-control studies aim to explore what may have caused the disease in the first place.

The first type of study to investigate disease causality is the cohort study (also called the longitudinal or prospective study). A number of subjects (the study cohort) are divided into two groups, namely those who have been exposed to a risk factor and those who have not. The risk factor will be an exposure which is suspected of causing a particular disease. At the beginning of the study, members of the study cohort have similar characteristics and do not appear to have the disease.

Subjects in the study cohort are followed up over a period of time. The information that is collected on exposure to the risk factor can then be analysed in order to ascertain how many subjects, both exposed and not exposed, develop the disease. If there is an excess of disease in the exposed group, it might be possible to draw conclusions as to whether exposure to the risk factor is causal.

A cohort study is usually conducted prospectively (looking forward in time), and over a long period. Retrospective versions (looking back in time) can also be conducted, and are common in occupational epidemiology and disease outbreak investigations.

Figure 26.1 shows how a prospective cohort study works.
Suppose that you want to conduct a cohort study to evaluate whether drinking more than five cups of coffee per day in pregnancy leads to fetal abnormalities. First, the local hospital (or better still, a number of hospitals) could provide a list of all newly pregnant women, who could be invited to participate in the study. Information could be sought on many factors, including smoking, alcohol consumption, various dietary aspects, exercise, family history of fetal abnormalities, ethnic group and, of course, the number of cups of coffee consumed per day. Some of this

Figure 26.1: Cohort study. After Donaldson and Donaldson (2000).
information could be used to control for confounding. The women would then be followed up, in order to determine how many give birth to babies with fetal abnormalities. If a high number of mothers with abnormal babies had drunk more than five cups of coffee per day (and there were no significant trends in other factors under observation which might explain the abnormalities), then it might be possible to link excess coffee drinking with fetal abnormalities.

Of course, great care needs to be taken in the design of the study, sample selection and analysis of data. It is vital to look out for possible sources of bias and confounding, and to allow for these.

Subjects

Always think carefully about the aims of the study, and what types of subjects should be chosen. Members of the study cohort should be similar, apart from their exposure to the risk factor. Subjects must not have the disease of interest at the start of the study, and it is important that no population groups are systematically missed. In the previous example, the study cohort is made up of pregnant women. Other studies might use cohorts composed of workers in a certain industry, people in a specific age group or residents in a particular location.

Data collection

In the study design, thought should be given to the right method of data collection. Would a questionnaire suffice, or should interviews involving specially trained staff be conducted? Will clinical investigations be
necessary? Data should be collected on other factors or characteristics which might have a bearing on the outcome. It is vital to be as clear as possible about what these are, before the study begins, as it may be impossible to collect them at a later stage. The same items of data should be collected for both groups, so that like-for-like comparisons can be made.

Follow-up

Because cohort studies are usually conducted over a period of time (sometimes several years), they are prone to follow-up bias. The followup stage of the study therefore requires careful planning. An agreement needs to be reached on how often follow-up should take place. It may be necessary to follow up at regular intervals, or only at the end of the study. If the disease of interest has a long latent period, a long follow-up period will be needed. Subjects may move away, die, or be lost in other ways. Investigators, too, may move on to other jobs, so that continuity is lost. A strategy for tracing subjects should therefore be carefully drawn up, and a plan agreed for investigators to effectively 'hand over' all details of data, methodologies and other information if they leave the study.

Data analysis

Relative risk should be used in a cohort study to assess the likelihood of developing the disease in subjects who have been exposed to the risk factor, relative to those who have not been exposed to it. Attributable and population-attributable risks can also be calculated, and the Chi-squared test can be employed. However, care needs to be taken when interpreting results, as a strong association does not necessarily indicate a causal relationship. The criteria for causality described in Chapter 23 should also be used.

Some advantages and disadvantages of cohort studies

Advantages
Allow outcomes to be explored over time.

The incidence of disease in both exposed and non-exposed groups can be measured.

Useful for rare exposures.
Can examine the effects of more than one exposure.
More representative of the true population than case-control studies (see Chapter 27).

Disadvantages
Can take a very long time to complete.
Diseases with long latent periods may need many years of follow-up.

Not so useful for rare diseases.
Can be very expensive.

Careful follow-up of all subjects is vital.

27

Case-control studies

The aim of a case-control study is to assess whether historical exposure to one or more risk factors in people who have a disease is comparable to that in people who do not have the disease. By making this comparison, it may be possible to establish whether exposure to the particular risk factor caused the disease in question, and to examine any interrelationships.

Case-control studies are generally easier and quicker to complete than cohort studies. However, they are prone to certain biases. Whereas cohort studies are usually prospective (looking forward in time), case-control studies are retrospective (looking back in time).

In a case-control study, a number of cases are assembled, consisting of subjects who already have a known disease. In addition, a number of controls are gathered who do not have the disease, but who are similar in other respects. Both groups are then investigated in order to ascertain whether they were exposed to a particular risk factor. If an excess of the 'cases' have been exposed to the risk factor, then it might be possible that exposure to the risk factor caused the disease.

Figure 27.1 shows how a case-control study works.
For example, suppose that you wish to investigate whether eating fresh fruit and vegetables protects against colorectal cancer. This study is a little different to other examples, as it investigates a protective effect rather than a causal one. Nevertheless, the basic principles are the same. First, a number of patients who had developed colorectal cancer would be selected, as well as a group of subjects who did not have colorectal cancer, but who were similar in other respects. Both groups would be investigated in order to determine whether their diets had included regular amounts of fresh fruit and vegetables, and for how long. If an association was found between cases and controls in the proportion who ate fruit and vegetables regularly, it might be possible to establish that

Figure 27.1: Case-control study. After Donaldson and Donaldson (2000).
regular consumption of fresh fruit and vegetables has a protective effect against colorectal cancer.

Subjects

Two types of subjects need to be identified, namely cases and controls. At the outset, it may be useful to agree explicit criteria on what type of patients should be regarded as cases. For example, in a study of patients with diabetes, it would be important to decide whether 'cases' are patients with insulin-dependent diabetes mellitus (IDDM) or non-insulin-dependent diabetes mellitus (NIDDM), or both. It also needs to be decided whether cases should be selected from the population as a whole, or from certain groups (e.g. based on ethnicity, age or gender). The next stage is to determine how these cases can be identified. It is best to use newly diagnosed (incident) cases if possible.
Controls should be similar to the cases in every respect other than actually having the disease. Selection bias can occur if there are systematic differences in the way in which cases and controls are recruited into the study. If the study is being conducted on hospital patients, then hospitalbased patients without the disease should be selected as controls. If cases are population based, then population-based controls should be used. It can be easier and cheaper to use hospital patients, as a better response can be achieved, and recall bias is minimised. However, problems may be encountered with different exposures being experienced in different hospitals. Furthermore, patients in hospital are ill, and so may not represent the population as a whole. It may sometimes be desirable to use more than one control group if there is uncertainty about the relationship between disease and exposure.

If large differences exist with regard to the age or sex structure of the cases and controls, this could seriously affect the accuracy of any comparisons that are made between them. In order to make the groups
more comparable and help to reduce confounding, it is often desirable to match each case to one or more controls. It is usual to match cases to controls with regard to age, sex and possibly other factors, according to the design of the study. However, it is unwise to match on too many factors, as this may artificially alter the characteristics of the subjects who are selected.

Data collection

In a case-control study, data are collected by surveying subjects (usually by interview) or collecting information from medical records.

Recall bias is a particular problem in case-control studies. For example, patients who have a disease are more likely to recall exposures than patients who have not. Interviews should be structured, asking exactly the same questions of all patients. However, the fact that data are collected retrospectively means that there is likely to be a certain amount of inaccuracy in the information provided by both groups.

When examining medical records, it is important to remember that data on certain risk factors may be more likely to have been recorded in cases than in controls (e.g. alcohol consumption in patients with liver cirrhosis).

If any cases have died or cannot be interviewed for some other reason, it may be possible to collect data from their friends or relatives. Potential biases should be identified and taken into account.

Data analysis

The odds ratio should normally be used in a case-control study. The Chisquared test can also be employed. However, care needs to be taken when interpreting results, as a strong association does not necessarily indicate a causal relationship. The criteria for causality described in Chapter 23 should also be used.

Some advantages and disadvantages of case-control studies

| Advantages |
| :--- | :--- |
| Quicker and cheaper to conduct |
| than cohort studies. |\quad| $\begin{array}{l}\text { Disadvantages } \\ \text { Data are retrospective and } \\ \text { therefore prone to both selection } \\ \text { and information biases. }\end{array}$ |
| :--- |
| Allow investigation of more than |
| one risk factor. | \(\left.\begin{array}{l}Difficult to establish the time

between exposure and

development of disease.\end{array}\right\}\)| Especially suitable for rare |
| :--- |
| diseases. | | Subjects do not usually represent |
| :--- |
| the population as a whole, so |
| incidence rates cannot be |
| calculated. |

28

Randomised controlled trials

Whereas cohort and case-control studies aim to establish what has caused a disease, randomised control trials (also called $R C T s$) are conducted in order to examine the effectiveness of a particular intervention. These are also referred to as comparative or experimental studies or clinical trials. Groups of subjects are recruited by being randomly selected to receive a particular intervention or treatment. RCTs are usually conducted in order to compare the effectiveness of a specific treatment against one or more others. They may also be used for preventional (or prophylactic) interventions.

For example, imagine that you wish to compare the effectiveness of a new anti-cancer drug with a current treatment. A group of patients would be randomly assigned to receive the new drug (group A), and the remainder would be given an existing drug (group B). Detailed records would be maintained on factors such as length of survival, side-effects experienced and quality of life. At the end of the trial, the results for group A would be compared with those for group B, and conclusions would be drawn as to which drug was the most effective one.

Usually two groups of subjects are studied - those who receive the treatment of interest and those who do not. However, some trials use three or more groups. Very often, a new treatment will be compared with an existing one, or even with a non-treatment called a placebo. A placebo is effectively a dummy treatment which appears to be real. Some RCTs are said to be blind. This means that the patients do not know whether they have been allocated to the group receiving a new treatment, or an old one, or a placebo. A double-blind RCT is one in which neither the patients nor the medical staff know which intervention has been allocated. The practice
of blinding reduces the likelihood of patients' outcomes being influenced by their expectation that a new treatment is better or worse, and excludes the possibility of medical staff managing patients differently if they know that a certain therapy is being given, whether or not they actually realise it.
In some trials, subjects will receive one intervention for a certain period, and then be changed over to another intervention. This can be useful when treatment is subjective rather than curative (e.g. for short-term symptom relief), and is known as a cross-over trial. Although this is unusual in RCTs, it is also possible to match pairs of patients on certain characteristics (e.g. age, sex, tumour staging, disease on left- or right-hand side).

Multi-centre trials involve studying subjects at more than one site. They will increase the sample size, and are especially useful when insufficient numbers of subjects can be found at a single site to meet the calculated sample size required.

Unless it is very large, it is unlikely that a single randomised controlled trial will be able to demonstrate efficacy adequately. The evidence will be stronger if more than one RCT obtains similar results. Meta-analysis can be performed in order to summarise the results of several trials. These aim to 'pool together' the results of trials (provided that it is appropriate to do so). As the results of all of the included trials are taken into account, a better overall picture of an intervention's efficacy is obtained. An important drawback of meta-analyses is that no effort has necessarily been made to find every study on the intervention of interest, resulting in bias. For instance, if journals are more likely to publish trials which demonstrate positive outcomes, the results of negative trials will be overlooked, resulting in a misleading impression of true efficacy (this is an example of a bias that has not previously been mentioned, called publication bias). Furthermore, important elements such as the quality of studies, quality of life and cost-effectiveness are not normally evaluated. Systematic reviews attempt to overcome these problems by systematically seeking out all studies (published, unpublished, abandoned and in progress). As well as summarising results, systematic reviews usually evaluate the quality of studies together with quality of life and cost-effectiveness. For this reason, systematic reviews are currently considered to be the 'gold standard' of clinical evidence.

Study design

Before commencing an RCT, it is important to agree on explicit eligibility criteria for deciding what types of subjects are to be included (based on the characteristics of the disease and the subjects to be studied). If only those
patients who are most likely to benefit from the treatment are selected, it should be remembered that they will not represent the whole population of patients with that particular disease. A decision should also be made as to what will constitute the end of the trial (e.g. changes in subjects' condition, death or other physical status). A strict and detailed protocol should be drawn up which describes the exact features of the trial, the outcomes to be recorded, the treatments and controls to be used, how these will be used, and what records will be kept. Once the trial starts, subjects in both treatment and control groups are followed up until the end-point is reached. It is likely that an RCT will need a large sample of subjects. The actual sample size required should be calculated. This is done using formulae which are not included in this basic text, although the basic elements of sample size calculation are discussed in Chapter 19.

Ethical issues should be carefully considered at the planning stage. Subjects should not be exposed to known or potential hazards. It may be unacceptable to withhold treatment from subjects in a control group (e.g. it is obviously unethical not to treat patients who have been diagnosed with cancer). Codes of practice such as those set out in the Treaty of Helsinki and others published by various organisations provide guidelines for dealing with ethical issues. It will almost certainly be necessary to seek approval from one or more Local Research Ethics Committees (LRECs) before commencing a trial. Potential subjects should always be told about the wish to enter them into the trial, and given full details on how the trial will be conducted. Subjects should be informed and their written consent obtained before they are randomised into treatment groups.

If one treatment proves to be significantly superior before the agreed end-point is reached, the trial is sometimes stopped, although the decision as to whether to stop is complex and is best taken by experts.

Subjects

The sample of subjects should be representative of the population as a whole.

Before entering the trial, subjects are randomly allocated to a particular treatment arm. This aims to ensure that their personal characteristics have no influence over the treatment arm to which they are allocated. Random number tables are often used to allocate patients to treatment groups. For example, the first number in the table can be allocated to the first patient, the second number to the second patient, and so on. Odd numbers may be allocated to treatment group A, and even numbers to treatment group B.

The outcomes of patients who are given a particular treatment are compared with those of patients in one or more control groups.

If small numbers of patients are involved, or if there are many prognostic factors affecting how individual patients will respond (e.g. age, sex, ethnicity), it may be desirable to use stratified allocation. This method involves randomising separately for each prognostic factor. A technique called block randomisation (also known as restricted randomisation) can be used to ensure that there are equal numbers of subjects in each treatment arm throughout all stages of recruitment. This is achieved by randomising subjects in small blocks. For example, randomisation could be carried out in blocks of six subjects at a time, where three subjects receive treatment A and three receive treatment B.

Randomisation is essential, as it aims to remove bias introduced by patients' individual characteristics. This makes it more likely that only the effect of the treatment will influence the results. The process also helps to reduce allocation bias in the selection of subjects (e.g. preventing a clinician from selecting only healthier patients to receive a new treatment). Randomisation controls for known and, more importantly, unknown confounders if the sample size is large enough.

Once subjects have been allocated to a particular group, they should be analysed as part of that group - regardless of whether they comply with their treatment or leave the trial. This is known as being analysed on an intention-to-treat basis. This means that data are analysed according to how the subjects were originally intended to be treated. If subjects who refuse to accept the experimental treatment are given (and analysed on) an alternative treatment, this will result in bias and will reduce the power of the trial's results.

Data collection

Data need to be collected at agreed points throughout the trial. It is advisable to check patient compliance with any treatments given, including placebos. Information will be needed about many factors, including any side-effects of treatment.

Data analysis

For continuous data: hypothesis tests, confidence intervals.
For categorical data: Chi-squared test, relative risk and number needed to treat.

For other outcome variables (e.g. trials of independent groups, paired or matched studies, cross-over trials), different methods exist which are not described in this basic guide.

Some advantages and disadvantages of randomised controlled trials

Advantages
Allows effectiveness of a new treatment to be evaluated.

Provides strong evidence of effectiveness.

Less prone to confounding than other study designs.

Disadvantages
Expensive and complicated to perform.
Patients may refuse treatment -non-compliance can affect results.
A large sample size is needed.
Careful attention to ethical issues is needed.

Informed patient consent is essential.

Screening

Screening is performed in order to identify whether people have a disease for which they currently have no symptoms. Screening is not performed to diagnose illness. Instead, it aims to improve the outcomes of those who are affected, by detecting a disease before its symptoms have developed. If the disease can be diagnosed and treated at an early stage, illness and mortality can be reduced.
A screening test should be able to detect disease in the period between the time when it can be detected using a screening test and the time when symptoms develop.

In practice, screening tests are never completely accurate. There will always be a number of false-positive results (in which the test indicates that a subject has the disease when in reality they do not). False-negative results can also occur (in which the test indicates that there is no disease present, when in reality the subject does have the disease). A good screening test should keep false-positive and false-negative results to an absolute minimum.

Since 1996, all new screening programmes have to be reviewed by the UK National Screening Committee (NSC) before they can be introduced in the UK. Every proposed new screening programme is reviewed against a set of 19 criteria (see page 114), including the disease, the test, treatment options and effectiveness and the acceptability of the screening programme. The criteria are based on those first formulated by the World Health Organization (Wilson and Jungner, 1968), but have been updated to take into account current evidence-based standards and concerns about adverse effects. The findings of up-to-date research are used to ensure that the proposed screening test is both effective and cost-effective. Expert groups and patient representatives also form part of the process.

Nevertheless, many people have unrealistically high expectations of screening programmes. There is often a dangerous misconception that a
negative test result guarantees that no disease is present. Moreover, if a screening programme does not fulfil all of the criteria, it could do more harm than good (e.g. if patients were expected to undergo a test which had a risk of serious side-effects, or if the test was unreliable).

The UK National Screening Committee's criteria for appraising the viability, effectiveness and appropriateness of a screening programme

All of the following criteria should be met before screening for a condition is initiated.

The condition

1 The condition should be an important health problem.
2 The epidemiology and natural history of the condition, including development from latent to declared disease, should be adequately understood and there should be a detectable risk factor or disease marker, and a latent period or early symptomatic stage.
3 All of the cost-effective primary prevention interventions should have been implemented as far as is practicable.

The test

4 There should be a simple, safe, precise and validated screening test.
5 The distribution of test values in the target population should be known, and a suitable cut-off level should be defined and agreed.
6 The test should be acceptable to the population.
7 There should be an agreed policy on the further diagnostic investigation of individuals with a positive test result, and on the choices available to those individuals.

The treatment

8 There should be an effective treatment or intervention for patients identified through early detection, with evidence of early treatment leading to better outcomes than late treatment.
9 There should be agreed evidence-based policies covering which
individuals should be offered treatment, and the appropriate treatment to be offered.
10 Clinical management of the condition and patient outcomes should be optimised by all healthcare providers prior to participation in a screening programme.

The screening programme

11 There must be evidence from high-quality randomised controlled trials that the screening programme is effective in reducing mortality or morbidity.
Where screening is aimed solely at providing information to allow the person being screened to make an 'informed choice' (e.g. Down's syndrome, cystic fibrosis carrier screening), there must be evidence from high-quality trials that the test accurately measures risk. The information that is provided about the test and its outcome must be of value and readily understood by the individual being screened.
12 There should be evidence that the complete screening programme (test, diagnostic procedures, treatment/intervention) is clinically, socially and ethically acceptable both to health professionals and to the public.
13 The benefit from the screening programme should outweigh the physical and psychological harm (caused by the test, diagnostic procedures and treatment).
14 The opportunity cost of the screening programme (including testing, diagnosis, treatment, administration, training and quality assurance) should be economically balanced in relation to expenditure on medical care as a whole (i.e. value for money).
15 There must be a plan for managing and monitoring the screening programme and an agreed set of quality assurance standards.
16 Adequate staffing and facilities for testing, diagnosis, treatment and programme management should be made available prior to the commencement of the screening programme.
17 All other options for managing the condition should have been considered (e.g. improving treatment, providing other services), to ensure that no more cost-effective interventions could be introduced or current interventions increased within the resources available.
18 Evidence-based information explaining the consequences of testing, investigation and treatment should be made available to potential participants to assist them in making an informed choice.
19 Public pressure both to widen the eligibility criteria for reducing the screening interval and to increase the sensitivity of the testing process
should be anticipated. Decisions about these parameters should be scientifically justifiable to the public.
(Reproduced with permission of the UK National Screening Committee, 2000)

National programmes in the UK include screening for breast cancer, cervical cancer, plus antenatal and neonatal conditions. There is currently some debate concerning whether programmes should be established for diseases such as colon cancer and prostate cancer. Other screening takes place in various settings, e.g. eye tests for certain patients with disabilities, urine dip-stick, tests for diabetes, over 75 checks and blood pressure checks.

Evaluating the accuracy of screening tests

A screening test can be evaluated using a 2×2 table, as shown in Table 29.1. It shows:

- how many subjects with a positive result actually have the disease (true positive) (cell a)
- how many subjects with a positive result do not have the disease (false positive) (b)
- how many subjects have a positive result $(a+b)$
- how many subjects have a negative result $(c+d)$
- how many subjects with a negative result actually have the disease (false negative) (c)
- how many subjects with a negative result do not have the disease (true negative) (d)
- how many subjects actually have the disease $(a+c)$
- how many subjects do not have the disease $(b+d)$
- the total number of subjects $(a+b+c+d)$.

Table 29.1: A 2×2 table for evaluating a screening test

	Disease status			
		Present	Absent	Total
Result of screening test	Positive	a True positive	b False positive	$a+b$
	Negative	False negative	True negative	$c+d$
	Total	$a+c$	$b+d$	$a+b+c+d$

There are a number of ways to measure the accuracy of a screening test. The most commonly used methods are described below.

Sensitivity

This is the proportion of subjects who really have the disease, and who have been identified as diseased by the test.

The formula for calculating sensitivity is $a /(a+c)$.

Specificity

This is the proportion of subjects who really do not have the disease, and who have been identified as non-diseased by the test.

The formula for calculating specificity is $d /(b+d)$.
Sensitivity and specificity both indicate how accurately the test can detect whether or not a subject has the disease (this is known as the test's validity).

Positive predictive value (PPV)

This is the probability that a subject with a positive test result really has the disease.

The formula for calculating PPV is $a /(a+b)$.

Negative predictive value (NPV)

This is the probability that a subject with a negative test result really does not have the disease.

The formula for calculating NPV is $d /(c+d)$.

Prevalence

This is the proportion of diseased subjects in a screened population (also called the pre-test probability), and it is the probability of having the disease before the screening test is performed. It can be especially useful when evaluating screening tests for groups of people who may have different prevalences (e.g. different genders, age groups or ethnic groups).

The formula for calculating prevalence in screening is $(a+c) /(a+b+c+d)$.

Table 29.2: A 2×2 table for evaluating a diabetic retinopathy screening test
Diabetic retinopathy

	Present	Absent	Total
	Positive	3200 (a)	1400 (b)
Result of Screening test	Negative	150 (c)	29000 (d)
	Total	3300 3350 $(a+c)$	30400 $(b+d)$
	Tota	29150 $(a+b+c+d)$	

Suppose that a new screening test has been developed for diabetic retinopathy. We carry out a study to find out how effective it is in a population of 33750 patients with diabetes, all aged over 55 years. The results shown in Table 29.2 are produced. Let us use these data to evaluate the test.

- Sensitivity $=a /(a+c)=3200 / 3350=0.9552=96 \%$.

This means that 96% of subjects who actually have diabetic retinopathy will be correctly identified by the test. This result indicates that only 4% of subjects with diabetic retinopathy will be wrongly identified as being disease-free.

- Specificity $=d /(b+d)=29000 / 30400=0.9539=95 \%$.

This means that 95% of subjects who do not have diabetic retinopathy will be correctly identified by the test. This result indicates that only 5% of subjects without the disease will be wrongly identified as having diabetic retinopathy.

- Positive predictive value $=a /(a+b)=3200 / 4600=0.6957=70 \%$.

This means that there is a 70% chance that someone who tests positive does have diabetic retinopathy. This is poor, as there is a 30% chance that someone with a positive test result is actually disease-free.

- Negative predictive value $=d /(c+d)=29000 / 29150=0.9949=99 \%$.

This means that there is a 99% chance that someone who tests negative does not have diabetic retinopathy. This is good, as there is only a 1% chance that someone with a negative test result will actually have the disease.

- Prevalence $=(a+c) /(a+b+c+d)=3350 / 33750=0.0993=10 \%$.

This means that 10% of the screened population have diabetic retinopathy.

We can conclude that although this screening test appears to be generally very good, the disappointing positive predictive value of only 70% would limit its overall usefulness.

We have now reached the end of this basic guide to statistics and epidemiology. Hopefully, you will have grasped the main elements of these topics, and you may feel ready to gain a deeper understanding by reading some of the books listed in the Further reading section on page 145. If you work in the field of healthcare, you may even be able to start using your new knowledge in a practical way.

However, before doing this, it might be useful to work through the exercises in Appendix 2. These cover quite a lot of the theories included in this book, and are followed by a full answer guide in Appendix 3.

Any comments that you may have about this book are most welcome. Please contact the author via email at contact.us@radcliffemed.com.

Glossary of terms

Term	Definition
x	A measurement or variable
\bar{x}	Sample mean (called ' x-bar')
χ^{2}	Chi-squared value (from the Chi-squared distribution)
Σ	Add together all of the following values (called 'sigma')
μ	Population mean (called 'mu')
V	Square root
σ	Standard deviation for populations
\pm	Plus or minus
$/$	Divide by (same as ' \div ')
\leq	Less than or equal to
\geq	More than or equal to
$<$	Less than
$>$	More than
α	Type 1 error (or 'alpha error')
β	Type 2 error (or 'beta error')
AR	Attributable risk (or absolute risk)
ARR	Absolute risk reduction
CI or c.i.	Confidence interval
d.f.	Degrees of freedom
N or n	Sample size
NNT	Number needed to treat
NPV	Negative predictive value
OR	Odds ratio
P or p	Probability or significance value
p	Observed proportion
PAR	Population attributable risk
PPV	Positive predictive value
RCT	Randomised controlled trial

RR	Relative risk
s	Standard deviation for samples
SD or s.d.	Standard deviation
SE or s.e.	Standard error
SMR	Standardised mortality ratio
t	t-value (from the t-distribution)
z	Test statistic used in the normal test

Appendix 1

Statistical tables

Normal distribution: two-tailed areas
(Altman, 1991)

z	P	z	P	z	p	z	P
0.00	1.0000						
0.01	0.9920	0.31	0.7566	0.61	0.5419	0.91	0.3628
0.02	0.9840	0.32	0.7490	0.62	0.5353	0.92	0.3576
0.03	0.9761	0.33	0.7414	0.63	0.5287	0.93	0.3524
0.04	0.9681	0.34	0.7339	0.64	0.5222	0.94	0.3472
0.05	0.9601	0.35	0.7263	0.65	0.5157	0.95	0.3421
0.06	0.9522	0.36	0.7188	0.66	0.5093	0.96	0.3371
0.07	0.9442	0.37	0.7114	0.67	0.5029	0.97	0.3320
0.08	0.9362	0.38	0.7039	0.68	0.4965	0.98	0.3271
0.09	0.9283	0.39	0.6965	0.69	0.4902	0.99	0.3222
0.10	0.9203	0.40	0.6892	0.70	0.4839	1.00	0.3173
0.11	0.9124	0.41	0.6818	0.71	0.4777	1.01	0.3125
0.12	0.9045	0.42	0.6745	0.72	0.4715	1.02	0.3077
0.13	0.8966	0.43	0.6672	0.73	0.4654	1.03	0.3030
0.14	0.8887	0.44	0.6599	0.74	0.4593	1.04	0.2983
0.15	0.8808	0.45	0.6527	0.75	0.4533	1.05	0.2937
0.16	0.8729	0.46	0.6455	0.76	0.4473	1.06	0.2891
0.17	0.8650	0.47	0.6384	0.77	0.4413	1.07	0.2846
0.18	0.8572	0.48	0.6312	0.78	0.4354	1.08	0.2801
0.19	0.8493	0.49	0.6241	0.79	0.4295	1.09	0.2757
0.20	0.8415	0.50	0.6171	0.80	0.4237	1.10	0.2713
0.21	0.8337	0.51	0.6101	0.81	0.4179	1.11	0.2670
0.22	0.8259	0.52	0.6031	0.82	0.4122	1.12	0.2627
0.23	0.8181	0.53	0.5961	0.83	0.4065	1.13	0.2585
0.24	0.8103	0.54	0.5892	0.84	0.4009	1.14	0.2543
0.25	0.8026	0.55	0.5823	0.85	0.3953	1.15	0.2501
0.26	0.7949	0.56	0.5755	0.86	0.3898	1.16	0.2460
0.27	0.7872	0.57	0.5687	0.87	0.3843	1.17	0.2420
0.28	0.7795	0.58	0.5619	0.88	0.3789	1.18	0.2380
0.29	0.7718	0.59	0.5552	0.89	0.3735	1.19	0.2340
0.30	0.7642	0.60	0.5485	0.90	0.3681	1.20	0.2301

z	P	z	P	z	P	z	P
1.21	0.2263	1.61	0.1074	2.01	0.0444	2.41	0.0160
1.22	0.2225	1.62	0.1052	2.02	0.0434	2.42	0.0155
1.23	0.2187	1.63	0.1031	2.03	0.0424	2.43	0.0151
1.24	0.2150	1.64	0.1010	2.04	0.0414	2.44	0.0147
1.25	0.2113	1.65	0.0989	2.05	0.0404	2.45	0.0143
1.26	0.2077	1.66	0.0969	2.06	0.0394	2.46	0.0139
1.27	0.2041	1.67	0.0949	2.07	0.0385	2.47	0.0135
1.28	0.2005	1.68	0.0930	2.08	0.0375	2.48	0.0131
1.29	0.1971	1.69	0.0910	2.09	0.0366	2.49	0.0128
1.30	0.1936	1.70	0.0891	2.10	0.0357	2.50	0.0124
1.31	0.1902	1.71	0.0873	2.11	0.0349	2.51	0.0121
1.32	0.1868	1.72	0.0854	2.12	0.0340	2.52	0.0117
1.33	0.1835	1.73	0.0836	2.13	0.0332	2.53	0.0114
1.34	0.1802	1.74	0.0819	2.14	0.0324	2.54	0.0111
1.35	0.1770	1.75	0.0801	2.15	0.0316	2.55	0.0108
1.36	0.1738	1.76	0.0784	2.16	0.0308	2.56	0.0105
1.37	0.1707	1.77	0.0767	2.17	0.0300	2.57	0.0102
1.38	0.1676	1.78	0.0751	2.18	0.0293	2.58	0.0099
1.39	0.1645	1.79	0.0735	2.19	0.0285	2.59	0.0096
1.40	0.1615	1.80	0.0719	2.20	0.0278	2.60	0.0093
1.41	0.1585	1.81	0.0703	2.21	0.0271	2.61	0.0091
1.42	0.1556	1.82	0.0688	2.22	0.0264	2.62	0.0088
1.43	0.1527	1.83	0.0672	2.23	0.0257	2.63	0.0085
1.44	0.1499	1.84	0.0658	2.24	0.0251	2.64	0.0083
1.45	0.1471	1.85	0.0643	2.25	0.0244	2.65	0.0080
1.46	0.1443	1.86	0.0629	2.26	0.0238	2.66	0.0078
1.47	0.1416	1.87	0.0615	2.27	0.0232	2.67	0.0076
1.48	0.1389	1.88	0.0601	2.28	0.0226	2.68	0.0074
1.49	0.1362	1.89	0.0588	2.29	0.0220	2.69	0.0071
1.50	0.1336	1.90	0.0574	2.30	0.0214	2.70	0.0069
1.51	0.1310	1.91	0.0561	2.31	0.0209	2.71	0.0067
1.52	0.1285	1.92	0.0549	2.32	0.0203	2.72	0.0065
1.53	0.1260	1.93	0.0536	2.33	0.0198	2.73	0.0063
1.54	0.1236	1.94	0.0524	2.34	0.0193	2.74	0.0061
1.55	0.1211	1.95	0.0512	2.35	0.0188	2.75	0.0060
1.56	0.1188	1.96	0.0500	2.36	0.0183	2.76	0.0058
1.57	0.1164	1.97	0.0488	2.37	0.0178	2.77	0.0056
1.58	0.1141	1.98	0.0477	2.38	0.0173	2.78	0.0054
1.59	0.1118	1.99	0.0466	2.39	0.0168	2.79	0.0053
1.60	0.1096	2.00	0.0455	2.40	0.0164	2.80	0.0051
2.81	0.0050	2.91	0.0036	3.10	0.00194		
2.82	0.0048	2.92	0.0035	3.20	0.00137		
2.83	0.0047	2.93	0.0034	3.30	0.00097		
2.84	0.0045	2.94	0.0033	3.40	0.00067		
2.85	0.0044	2.95	0.0032	3.50	0.00047		
2.86	0.0042	2.96	0.0031	3.60	0.00032		
2.87	0.0041	2.97	0.0030	3.70	0.00022		
2.88	0.0040	2.98	0.0029	3.80	0.00014		
2.89	0.0039	2.99	0.0028	3.90	0.00010		
2.90	0.0037	3.00	0.0027	4.00	0.00006		

The t-distribution (Altman, 1991)

Degrees of freedom	Two-tailed probability (P)					
	0.2	0.1	0.05	0.02	0.01	0.001
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31.599
3	1.638	2.353	3.182	4.541	5.841	12.924
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.869
6	1.440	1.943	2.447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.408
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
11	1.363	1.796	2.201	2.718	3.106	4.437
12	1.356	1.782	2.179	2.681	3.055	4.318
13	1.350	1.771	2.160	2.650	3.012	4.221
14	1.345	1.761	2.145	2.624	2.977	4.140
15	1.341	1.753	2.131	2.602	2.947	4.073
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	1.740	2.110	2.567	2.898	3.965
18	1.330	1.734	2.101	2.552	2.878	3.922
19	1.328	1.729	2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2.528	2.845	3.850
21	1.323	1.721	2.080	2.518	2.831	3.819
22	1.321	1.717	2.074	2.508	2.819	3.792
23	1.319	1.714	2.069	2.500	2.807	3.768
24	1.318	1.711	2.064	2.492	2.797	3.745
25	1.316	1.708	2.060	2.485	2.787	3.725
26	1.315	1.706	2.056	2.479	2.779	3.707
27	1.314	1.703	2.052	2.473	2.771	3.690
28	1.313	1.701	2.048	2.467	2.763	3.674
29	1.311	1.699	2.045	2.462	2.756	3.659
30	1.310	1.697	2.042	2.457	2.750	3.646
31	1.309	1.696	2.040	2.453	2.744	3.633
32	1.309	1.694	2.037	2.449	2.738	3.622
33	1.308	1.692	2.035	2.445	2.733	3.611
34	1.307	1.691	2.032	2.441	2.728	3.601
35	1.306	1.690	2.030	2.438	2.724	3.591
36	1.306	1.688	2.028	2.434	2.719	3.582
37	1.305	1.687	2.026	2.431	2.715	3.574
38	1.304	1.686	2.024	2.429	2.712	3.566
39	1.304	1.685	2.023	2.426	2.708	3.558
40	1.303	1.684	2.021	2.423	2.704	3.551
41	1.303	1.683	2.020	2.421	2.701	3.544
42	1.302	1.682	2.018	2.418	2.698	3.538
43	1.302	1.681	2.017	2.416	2.695	3.532
44	1.301	1.680	2.015	2.414	2.692	3.526
45	1.301	1.679	2.014	2.412	2.690	3.520

Degrees of freedom	Two-tailed probability (P)					
	0.2	0.1	0.05	0.02	0.01	0.001
	0.300	1.679	2.013	2.410	2.687	3.515
46	1.300	1.678	2.012	2.408	2.685	3.510
47	1.299	1.677	2.011	2.407	2.682	3.505
48	1.299	1.677	2.010	2.405	2.680	3.500
49	1.299	1.676	2.009	2.403	2.678	3.496
50	1.298	1.675	2.008	2.402	2.676	3.492
51	1.298	1.675	2.007	2.400	2.674	3.488
52	1.298	1.674	2.006	2.399	2.672	3.484
53	1.297	1.674	2.005	2.397	2.670	3.480
54	1.673	2.004	2.396	2.668	3.476	
55	1.297	1.673	2.003	2.395	2.667	3.473
56	1.297	1.672	2.002	2.394	2.665	3.470
57	1.296	1.672	2.002	2.392	2.663	3.466
58	1.296	1.671	2.001	2.391	2.662	3.463
59	1.294	1.667	1.994	2.390	2.660	3.460
60	1.292	1.664	1.990	2.381	2.648	3.435
70	1.291	1.662	1.987	2.374	2.639	3.416
80	1.290	1.660	1.984	2.368	2.632	3.402
90	1.289	1.659	1.982	2.361	2.626	3.390
100	1.289	1.658	1.980	2.358	2.621	3.317
110	1.288	1.657	1.978	2.355	2.614	3.373
120	1.288	1.656	1.977	2.353	2.611	3.367
130	1.287	1.655	1.976	2.351	2.609	3.357
140						
150						

The Chi-squared (χ^{2}) distribution (Altman, 1991)

Degrees of freedom	Two-tailed probability (P)					
	0.2	0.1	0.05	0.02	0.01	0.001
1	1.642	2.706	3.841	5.412	6.635	10.827
2	3.219	4.605	5.991	7.824	9.210	13.815
3	4.642	6.251	7.815	9.837	11.345	16.268
4	5.989	7.779	9.488	11.668	13.277	18.465
5	7.289	9.236	11.070	13.388	15.086	20.517
6	8.558	10.645	12.592	15.033	16.812	22.457
7	9.803	12.017	14.067	16.622	18.475	24.322
8	11.030	13.362	15.507	18.168	20.090	26.125
9	12.242	14.684	16.919	19.679	21.666	27.877
10	13.442	15.987	18.307	21.161	23.209	29.588
11	14.631	17.275	19.675	22.618	24.725	31.264
12	15.812	18.549	21.026	24.054	26.217	32.909
13	16.985	19.812	22.362	25.472	27.688	34.528
14	18.151	21.064	23.685	26.873	29.141	36.123
15	19.311	22.307	24.996	28.259	30.578	37.697
16	20.465	23.542	26.296	29.633	32.000	39.252
17	21.615	24.769	27.587	30.995	33.409	40.790
18	22.760	25.989	28.869	32.346	34.805	42.312
19	23.900	27.204	30.144	33.687	36.191	43.820
20	25.038	28.412	31.410	35.020	37.566	45.315
21	26.171	29.615	32.671	36.343	38.932	46.797
22	27.301	30.813	33.924	37.659	40.289	48.268
23	28.429	32.007	35.172	38.968	41.638	49.728
24	29.553	33.196	36.415	40.270	42.980	51.179
25	30.675	34.382	37.652	41.566	44.314	52.620

Appendix 2

Exercises

Exercise 1

You are a manager at a large general hospital. A consultant oncologist has approached you to suggest that the hospital allows the use of a costly new drug for the treatment of breast cancer. She refers to a recently published study of the drug. In the study, patients were randomised to receive either the new drug or a standard treatment. Mortality was recorded within the first year and then in the subsequent two years. The authors calculated a relative risk for mortality for the new drug compared with standard treatment.

The results of the study showed the relative risk of death in the first year to be 0.75 when comparing the new drug with standard treatment. The relative risk for death up to three years was 0.82 .
a What is a relative risk and how is it calculated?
b Interpret the above relative risk values.
c List up to three other aspects you might wish to consider before deciding whether or not to allow the use of the new drug.

Exercise 2

The results of a trial show that patients from a clinic who were taking a new antihypertensive drug had a mean diastolic blood pressure of 79.2 mmHg (SE 1.9), while the mean diastolic blood pressure for patients in the same clinic (from data collected over the past ten years) who were receiving standard treatment was 83.7 mmHg .
a Calculate a z-score and a P-value for these results.
b Is the difference between the two mean blood pressures statistically significant?
c Explain why or why not.
d Calculate a 95% confidence interval for the mean blood pressure with the new drug.
e How would you interpret the results in the light of this?
f Briefly discuss whether you think that P-values are more useful than confidence intervals.

Exercise 3

A total of 109 men were studied in order to investigate a possible association between alcohol consumption and gastric cancer. Two groups of patients were studied. One group of men who had been newly diagnosed with gastric cancer at three general hospitals was compared with another group randomly selected from male patients who had attended a range of surgical outpatient clinics during the same period. Each patient was asked about their history of alcohol consumption, and was categorised according to their weekly alcohol consumption. High alcohol consumption was defined as more than 28 units per week.
a What type of study was this?
b What are the advantages of this type of study?
c What are the disadvantages of this type of study?
d What confounding factors might be present?
It was found that 35 men had consumed more than 28 units of alcohol per week. A total of 54 men had gastric cancer, 22 of whom had a high alcohol intake.
e Construct a suitable table displaying the results of this study.
f What is the most appropriate measure of association for this situation?
g Calculate the measure of association for this study.
h Interpret this result.
i Does this study prove that high alcohol consumption causes gastric cancer?

Exercise 4

Over lunch one day, a cardiologist colleague tells you that he is concerned that several of his patients who are taking a brand new drug for
hyperlipidaemia are at increased risk of developing non-Hodgkin's lymphoma. He says that several of his patients on another treatment (with certain similarities, which was introduced five years ago) have developed lymphoma, and he is concerned that patients who are taking the new preparation may suffer a similar fate. There is no trial evidence to support this claim, from either before or since the time when the new drug was licensed. Your colleague is interested in conducting some type of study to monitor his own patients who will be taking this new drug over the next couple of years, and he asks your advice about what to do.
a Suggest a suitable type of study to investigate this.
b What are the advantages of this type of study?
c What problems might you experience with this type of study?
d What confounding factors might you encounter?
e How could you minimise the effect of these?
f When you have data from the study, what measure of association would you normally use?
g Explain what this measure of association means.
h What method might you use to examine the level of statistical significance?
i If a strong association and/or statistical significance is reached, would this mean that the new drug causes lymphoma? How can causal relationships be established?

Exercise 5

You are working for the health authority in a district called Wellsville, where the Director of Public Health is concerned that the death rate for females aged 35-64 years seems to be very high. You have been asked to investigate this.

You have access to local population figures and data on death rates in the standard population. All data are available categorised into age groups of 35-44, 45-54 and 55-64 years. These data are shown below. You also know that the total number of deaths for women aged 35-64 years in Wellsville is 482.

You decide to apply death rates for three women's age groups in the standard population to the age structure for local women in the same age groups, in order to produce a standardised measure of death.

Age-specific death rates for all women in standard population

Age group (years)	Death rate
$35-44$	0.00076
$45-54$	0.0032
$55-64$	0.0083

Population of women aged 35-64 years in Wellsville

Age group (years)	Population
$35-44$	32000
$45-54$	27400
$55-64$	23900

a What type of standardisation is described here?
b Use the above data to work out the total number of expected deaths in Wellsville, and state these for each of the three age groups.
c Calculate an appropriate standardised death rate measure for Wellsville.
d What is this measure called?
e What conclusions can you draw from this with regard to the local death rate?
f Work out a 95% confidence interval around this measure. What conclusions can you draw from this?
g Perform a test of statistical significance on the measure. What does this actually test with regard to the standardised death rate measure you have calculated? What is the z-score? Does this appear to be statistically significant?
h Does the result obtained from (g) change your conclusions? Why or why not?

Exercise 6

A recent study compared postoperative infection rates for a standard orthopaedic procedure with those for a new procedure. The study protocol claimed that roughly equal numbers of patients from 20 preoperative assessment clinics were to be randomly allocated either the new treatment or the standard procedure.
a What type of study is described here?
b What are the main advantages of this type of study?

In each clinic, the first 20 patients received the new treatment, while the next 20 patients were allocated the standard procedure.
c Comment on this allocation procedure.
d What effect might this allocation procedure have on the results of the study?

The results of the study showed that 48 out of 200 patients who underwent the standard procedure developed an infection, while 32 out of 200 patients who received the new procedure developed an infection.
e Calculate an appropriate measure of association for the above results.
f What is your interpretation of this?
g What test could you use to find out whether the association was statistically significant?
h Calculate the appropriate test statistic and P-value.
i Calculate the number needed to treat.
j What does the figure for the number needed to treat that you have calculated mean?
k Taking your previous answers into account, do you feel that the new procedure is really better than the standard procedure?

Exercise 7

Your local health authority has been approached by a manufacturer who has developed a simple screening test for prostate cancer. The test involves taking a sample of blood which is sent away to the local district hospital's pathology department, and results are available within five working days. Each test costs $£ 6.87$. The health authority is considering offering this test to all male residents aged over 50 years as part of a screening programme, and has asked you to advise them on whether or not to adopt it.

You contact the manufacturer to request data on its efficacy, and you duly receive an unpublished paper containing the following table.

Prostate cancer?

		Yes	No	Total
	Positive	572	67	639
Result of test	Negative	29	4983	5012
	Total	601	5050	5651

a Calculate the sensitivity of the test. What does this mean?
b Calculate its specificity. What does this mean?
c Calculate its positive predictive value. What does this mean?
d Calculate its negative predictive value. What does this mean?
e What do you think of the accuracy of this test?
f How does it match up to each of the four criteria for a screening test?
g Would you recommend that your health authority adopts this screening programme and test?

Appendix 3

Answers to exercises

Exercise 1

a A relative risk (or RR) indicates the risk of developing a disease in a group of people who were exposed to a risk factor, relative to a group who were not exposed to it.
It is calculated as follows:

$$
R R=\frac{\text { disease incidence in exposed group }}{\text { disease incidence in non-exposed group }}
$$

Or, using a 2×2 table:

$$
\frac{a / a+b}{c / c+d}
$$

b The relative risks mean that patients who are receiving the new drug are less likely to die at 1 and 3 years. Mortality was reduced by 25% in the first year and by 18% at up to 3 years.
c These could include looking for other studies on the same drug, to check whether they showed different results. Better still, look for a meta-analysis or systematic review, which would combine the results of other studies to produce an overall (and more precise) result. Find out whether any new trials are expected to begin or end in the near future. Is longer-term follow-up planned for any studies? What side-effects are associated with the new drug? Have economic considerations such as cost-effectiveness and quality of life been studied?

Exercise 2

a $z=(\bar{x}-\mu) /$ s.e. $=(79.2-83.7) / 1.9=2.37$.
Using the normal distribution table, a z-score of 2.37 produces a P-value of 0.0178 .
b The difference between the two mean values is statistically significant.
c Because the P-value is less than 0.05 (<0.05 being the usual threshold of statistical significance).
d 95% c.i. $=\bar{x} \pm 1.96 \times$ s.e. $=79.2 \pm(1.96 \times 1.9)$

$$
=79.2 \pm 3.72=75.5 \rightarrow 82.9 \text { (to one decimal place). }
$$

e The confidence interval shows that the true diastolic blood pressure in the population lies between 75.5 and 82.9 , with 95% confidence. The confidence interval is quite narrow. The upper limit does not quite reach the mean for patients receiving standard treatment (83.7), but comes quite close to it. Some caution is therefore suggested.
f P-values only show whether a result is statistically significant, whereas confidence intervals show where the true value lies in the population with 95% confidence, and also indicate significance if the limits do not cross the value with which the sample value is being compared. The confidence interval arguably gives more information; it is useful to present it in combination with a P-value.

Exercise 3

a This is a case-control study.
b It is quicker and cheaper than a cohort study, especially suitable for rare diseases, allows investigation of more than one risk factor, and is useful for diseases with long latent periods.
c The data are retrospective, so are prone to both selection and information biases. It is difficult to establish the time between exposure and development of disease. Subjects do not usually represent the population as a whole, so incidence rates cannot be calculated, and it is not possible to examine the relationships between one possible cause and several diseases.
d Confounding factors include age, diet, ethnic group, smoking and socio-economic class.

Gastric cancer?

f Odds ratio.
g Odds ratio $=(a / c) /(b / d)=(22 / 32) /(13 / 42)=0.6875 / 0.3095=2.22$.
h Men with alcohol consumption of over 28 units per week are 2.22 times more likely to develop gastric cancer than those whose weekly consumption is 28 units or less.
i No. It is possible that other factors may have been responsible for the gastric cancer, so more research is needed to establish causality.

Exercise 4

a Cohort study.
b It allows outcomes to be explored over time, the incidence of disease in both exposed and non-exposed groups can be measured, it is useful for rare exposures, it can examine the effects of more than one exposure, and it is more representative of the true population than case-control studies.
c It can take a very long time to complete, diseases with long latent periods may need many years of follow-up, it is not so useful for rare diseases, it can be very expensive, and careful follow-up of all subjects is vital.
d Possible confounders include age, sex, ethnic group, smoking status and socio-economic status.
e Use stratification, matching and random selection of subjects.
f Relative risk is normally used.
g The risk of developing a disease in a group of people who were exposed to a risk factor, relative to a group who were not exposed to it.
h Methods of examining statistical significance include hypothesis (e.g. normal test or t-tests) and Chi-squared tests.
i Not necessarily - the disease could be caused by other factors, and this
possibility merits further investigation. If other possible factors and potential causes can be eliminated (including chance findings, biases and confounders), the presence of the following can provide strong evidence of causality: dose-response, strength, disease specificity, time relationship, biological plausibility and consistency (see Chapter 23).

Exercise 5

a Indirect standardisation.
b $35-44$ years $\quad(0.00076 \times 32000)=24.32$
$45-54$ years $\quad(0.0032 \times 27400)=87.68$
$55-64$ years $\quad(0.0083 \times 23900)=198.37$
Expected number of deaths $=24.32+87.68+198.37=310.37$.
c $\mathrm{SMR}=$ (observed deaths/expected deaths) $\times 100$
Observed deaths $=482 \quad$ Expected deaths $=310.37$
Therefore SMR $=(482 / 310.37) \times 100=155$.
d Standardised mortality ratio or SMR.
e The Wellsville death rate is 55% higher than that of the standard population.
f First calculate the standard error (s.e.) for the SMR, and then work out the confidence interval:
SMR $\pm 1.96 \times$ s.e.

$$
\text { s.e. }=\left(\frac{\sqrt{O}}{\mathrm{E}}\right) \times 100
$$

where $\mathrm{O}=$ observed deaths and $\mathrm{E}=$ expected deaths.
So

$$
\text { s.e. }=\left(\frac{\sqrt{482}}{310.37}\right) \times 100=\left(\frac{21.954}{310.37}\right) \times 100=7.073 .
$$

95% c.i. $=155 \pm(1.96 \times 7.073)=155 \pm 13.863$.
95% c.i. $155(141.137 \rightarrow 168.863)$ or, using whole numbers, $155(141 \rightarrow 169)$.
The confidence interval does not span 100 and is arguably not too wide. The Wellsville SMR appears to differ significantly from that of the standard population.

$$
\begin{aligned}
\operatorname{gz} & =(\mathrm{O}-\mathrm{E}) / \sqrt{\mathrm{E}})=(482-310.37) / \sqrt{310.37}=(482-310.37) / 17.617 \\
& =171.63 / 17.617=9.74
\end{aligned}
$$

This tests the null hypothesis that the SMR for Wellsville $=100$. Using the normal distribution table, a z-score of 9.74 produces a P-value of <0.00006 (the highest z-value covered by the normal distribution
table in this book is 4.00), which is significant. We can reject the null hypothesis that Wellsville's $\operatorname{SMR}=100$, and thus the alternative hypothesis that the SMR is different.
h No. The 95% confidence interval also indicates significance.

Exercise 6

a This is a randomised controlled trial (RCT).
b It allows the effectiveness of a new treatment to be evaluated, it provides strong evidence of effectiveness, and it is less prone to confounding than other study designs.
c Possible biases include the following. The patients were not randomly allocated - using the first 20 patients is biased, as these patients could have arrived first because they were least ill or most ill, they could have been private patients, or they could have arrived early because they used hospital transport due to inability to travel independently. Selecting patients in this way means that they could have been systematically different to the controls.
d This could invalidate the results of the trial - this ' RCT^{\prime} is not randomised!
e
Infection?

	Yes	No	Total
	New	32 (a)	168 (b)
Which procedure?	Standard	48 $(a+b)$	
(c)	152 (d)	200 $(c+d)$	
	Total	80 $(a+c)$	320 $(b+d)$

The appropriate measure is relative risk.

$$
\mathrm{RR}=\frac{a / a+b}{c / c+d}=\frac{32 / 200}{48 / 200}=\frac{0.16}{0.24}=0.67 .
$$

f Patients undergoing the new procedure are 33% less likely to get a postoperative infection than those undergoing the standard procedure.
g Chi-squared test.
h Work out the expected frequencies for each cell:
cell $a: \quad[(a+b) \times(a+c) /$ total $]=(200 \times 80) / 400=40$.
cell $b: \quad[(a+b) \times(b+d) /$ total $]=(200 \times 320) / 400=160$.
cell $c: \quad[(a+c) \times(c+d) /$ total $]=(80 \times 200) / 400=40$.
cell $d: \quad[(b+d) \times(c+d) /$ total $]=(320 \times 200) / 400=160$.

	O	E	$(O-E)$	$\left(O-E^{2}\right)$	$\left[\left(O-E^{2}\right) / E\right]$
a	32	40	-8	64	1.60
b	168	160	8	64	0.40
c	48	40	8	64	1.60
d	152	160	-8	64	0.40
Total	400				4.00

The value of χ^{2} is 4.0 and d.f. $=1$. Use the Chi-squared distribution table to look up the P-value. The P-value is <0.05, which is statistically significant.
To work out χ^{2} with Yates' correction:

	O	E	$[\|(O-E)\|-0.5]$	$[\|(O-E)\|-0.5]^{2}$	$\left[(\|(O-E)\|-0.5)^{2} / E\right]$
a	32	40	7.5	56.25	1.41
b	168	160	7.5	56.25	0.35
c	48	40	7.5	56.25	1.41
d	152	160	7.5	56.25	0.35
Total	400				3.52

Using Yates' correction produces a χ^{2} value of 3.52. P is now >0.05, which is not statistically significant.
i $\mathrm{NNT}=24 \%-16 \%=8 \% .100 / 8=12.5$ or 13 (rounded to nearest whole number).
j Around 13 patients will need to be treated with the new procedure in order to prevent one additional infection.
k The new procedure does not appear to be significantly better than the standard procedure. Although $R R=0.67$, representing a 33% reduction in risk, the Chi-squared test with Yates' correction is not significant. The NNT is fairly high. Also remember that treatment allocation was not random.

Exercise 7

a Sensitivity $=a /(a+c)=572 / 601=0.952$ or 95.2%. This is the proportion of subjects who really have the disease, and who have been identified as diseased by the test.
b Specificity $=d /(b+d)=4983 / 5050=0.987$ or 98.7%. This is the proportion of subjects who really do not have the disease, and who have been identified as disease-free by the test.
c $\operatorname{PPV}=a /(a+b)=572 / 639=0.895$ or 89.5%. This is the probability that a subject with a positive test result really does have the disease.
$\mathrm{d} \mathrm{NPV}=d /(c+d)=4983 / 5012=0.994$ or 99.4%. This is the probability that a subject with a negative test result really does not have the disease.
e The overall accuracy is good, although the PPV is only $89.5 \% ; 100 \%$ cannot be realistically achieved; false-positives and false negatives are low.
f It seems to be simple, safe and acceptable. The health authority has not commented on the distribution of test values and cut-off levels, or agreed a policy on further investigations of subjects with a positive result or what their choices might be - these items require agreement and clarification. However, the low PPV could indicate problems with precision. Also see answer to (g) below.
g Although the test sounds reasonable on the basis of the study provided, further evidence is required before the screening programme should be adopted. The study supplied by the manufacturer is unpublished - this may indicate that it has not been considered to be of high enough quality for publication. It would be worthwhile searching for other published and unpublished material, and seeking further details from the manufacturer. The test should be compared with alternative screening programmes. Even if strong evidence of the test's accuracy is established, the health authority will of course need to consider all of the UK National Screening Committee's criteria and make the appropriate arrangements before implementing the programme.

This page intentionally left blank

Feferences

Altman DG (1991) Practical Statistics for Medical Research. Chapman \& Hall, London.
Armitage P, Matthews JNS and Berry G (2001) Statistical Methods in Medical Research (4e). Blackwell Scientific Publications, Oxford.
Bland M (2000) An Introduction to Medical Statistics (3e). Oxford University Press, Oxford.
Chen CC, David AS, Nunnerley H et al. (1995) Adverse life events and breast cancer: case-control study. BMJ. 311: 1527-30.
Coggon D, Rose G and Barker DJP (1997) Epidemiology for the Uninitiated (4e). BMJ Publications, London.
Dean AG, Dean JA, Coulombier Det al. (1995) Epi Info, Version 6: a word-processing, database and statistics program for public health on IBM-compatible microcomputers. Centers for Disease Control and Prevention, Atlanta, GA (this program is free, and can be downloaded from the Internet at http://www.cdc.gov/epiinfo/).
Department of Public Health and Epidemiology (1999) Epidemiological Methods 1999. Department of Public Health and Epidemiology, University of Birmingham, Birmingham.
Donaldson RJ and Donaldson LJ (2000) Essential Public Health (2e). Petroc Press, Newbury.
Kirkwood B (1988) Essentials of Medical Statistics. Blackwell Scientific Publications, Oxford.
Lilienfeld DE and Stolley PD (1994) Foundations of Epidemiology (3e). Oxford University Press, Oxford.
Oscier DG (1997) ABC of clinical haematology: the myelodysplastic syndromes. BMJ. 314: 883-6.
Ralph SG, Rutherford AJ and Wilson JD (1999) Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study. BMJ. 319: 220-3.
Rowntree D (1981) Statistics Without Tears: a primer for non-mathematicians. Penguin, Harmondsworth.

Sackett DL, Richardson WS, Rosenberg W et al. (1997) Evidence-Based Medicine: how to practise and teach EBM. Churchill Livingstone, Edinburgh.
South Staffordshire Health Authority (1999) Melting the Iceberg: changing the burden of disease in South Staffordshire. The Annual Report of the Director of Public Health. South Staffordshire Health Authority, Stafford.
Stewart A and Rao JN (2000) Do Asians with diabetes in Sandwell receive inferior primary care? A retrospective cohort study. I R Soc Promotion Health. 120: 248-54.
UK National Screening Committee (2000) Second Report of the UK National Screening Committee. Department of Health, London (also available at http://www.nsc.nhs.uk).
Walsall Health Authority (2000) Towards Well-Being: mental health in Walsall. The 2000 Annual Report of the Director of Public Health Medicine. Walsall Health Authority, Walsall.
Wilson JMG and Jungner G (1968) Principles and Practice of Screening for Disease. Public Health Paper Number 34. World Health Organization, Geneva.

Further reading

Altman DG (1991) Practical Statistics for Medical Research. Chapman \& Hall, London.
Armitage P, Matthews JNS and Berry G (2001) Statistical Methods in Medical Research (4e). Blackwell Scientific Publications, Oxford.
Barker DJP, Cooper C and Rose GR (1998) Epidemiology in Medical Practice (5e). Churchill Livingstone, Edinburgh.
Barker DJP and Hall AJ (1991) Practical Epidemiology. Churchill Livingstone, Edinburgh.
Bland M (2000) An Introduction to Medical Statistics (3e). Oxford University Press, Oxford.
Bowers D (1996) Statistics From Scratch: an introduction for health care professionals. John Wiley \& Sons, Chichester.
Bowers D (1997) Statistics Further From Scratch: for health care professionals. John Wiley \& Sons, Chichester.
Campbell MJ and Machin D (1999) Medical Statistics: a commonsense approach (2e). John Wiley \& Sons, Chichester.
Coggon D, Rose G and Barker DJP (1997) Epidemiology for the Uninitiated (4e). BMJ Publications, London.
Diamond I and Jefferies J (2001) Beginning Statistics: an introduction for social sciences. Sage Publications, London.
Donaldson RJ and Donaldson LJ (2000) Essential Public Health (2e). Petroc Press, Newbury.
Farmer R, Miller D and Lawrenson R (1996) Lecture Notes on Epidemiology and Public Health Medicine (4e). Blackwell Scientific Publications, Oxford.
Freedman D, Pisani R, Purves R and Adhikari A (1991) Statistics (2e). WW Norton, New York.
Hennekens CH and Buring JE (1987) Epidemiology in Medicine. Lippincott Williams \& Wilkins, Philadelphia, PA.
Kirkwood B (1988) Essentials of Medical Statistics. Blackwell Scientific Publications, Oxford.

Lilienfeld DE and Stolley PD (1994) Foundations of Epidemiology (3e). Oxford University Press, Oxford.
McNeil D (1996) Epidemiological Research Methods. John Wiley \& Sons, Chichester. Rose G (1992) The Strategy of Preventive Medicine. Oxford University Press, Oxford. Rothman KJ and Greenland S (1998) Modern Epidemiology. Lippincott Williams \& Wilkins, Philadelphia, PA.
Rowntree D (1981) Statistics Without Tears: a primer for non-mathematicians. Penguin, Harmondsworth.
Sackett DL, Richardson WS, Rosenberg W et al. (1997) Evidence-Based Medicine: how to practise and teach EBM. Churchill Livingstone, Edinburgh.
Swinscow TDV (1997) Statistics at Square One (9e). BMJ Publications, London.

Index

α (alpha) errors 67
absolute risk 84-5
absolute risk reduction (ARR) 88-9
additive rule, probability 45,46
allocation bias 72, 110
allocation, stratified 110
alpha (α) errors 67
alternative hypotheses $\left(\mathrm{H}_{1}\right)$ 47-50
analysis of variance (ANOVA) 59-60
AR see attributable risk
ARR see absolute risk reduction
association
Chi-squared test 62-6
measuring 83-90
variables 62-6
attributable risk (AR) 86-7
average 23-5
β (beta) errors 67
bar diagrams 12-13
beta (β) errors 67
bias 71-3
allocation 72,110
case-control studies 103
defined 7
follow-up 73
information 72-3
interviewer 73
misclassification 73
publication 108
questionnaire 95
recall 72-3
recording 73
responder 72
sampling 72
selection 72
social acceptability 73
bimodal groups 25
binomial distribution 37
biological plausibility, causality strength of evidence 90
blind RCTs 107-8
block randomisation, RCTs 110
χ^{2} (Chi-squared) test $57,61-6$
case-control studies 105
tables 127
case-control studies 103-6
advantages 106
bias 103
causality 89-90
data analysis 105
data collection 105
disadvantages 106
epidemiology 69
OR 87-8
subjects 104-5
cases 69,75
case-control studies 103, 104-5
categorical data, cf. numerical data 19-21
causality 89-90
centiles 27-8
central tendency 23-5
Chi-squared (χ^{2}) test 57, 61-6
case-control studies 105
tables 127
CI; c.i. see confidence intervals
clinical trials see randomised controlled trials
cluster sampling 8
cohort studies 99-102
advantages 102
causality 89-90
data analysis 101
data collection 100-1
disadvantages 102
epidemiology 69,99
follow-up 101
subjects 100
comparative studies see randomised controlled trials
computers 2
caveats 21
random number list 7,8
see also software
conclusions, drawing 1,2
conditional probabilities 44-5
confidence intervals (CI; c.i.) 33, 39-41
one-sample t-test 53-4
paired t-test 55
two-sample (unpaired) t-test 56
confidentiality, questionnaires 97
confounding 73-4
consistency, causality strength of evidence 90
continuity correction 65-6
continuous data 20-1
controls
case-control studies 103, 104-5
RCTs 109-10
convenience sampling 4
correlation 59-60
cross-over trials 108
cross-sectional studies 91-2
crude rates, incidence/prevalence/ mortality 76-7

data

categorical cf. numerical 19-21
continuous 20-1
defined 1
dichotomous 19
discrete 20
heterogeneous 29-31
homogeneous 29-31
interval 20
nominal 19
ordinal 19
presenting 11-13, 15-17
ratio 20
skewed $36-7$
types 19-21
data analysis
case-control studies 105
cohort studies 101
errors 72
RCTs 110-11
data collection
case-control studies 105
cohort studies $100-1$
RCTs 110
decimal places, rounding 17
degrees of freedom (d.f.) 51-2, 54
dependent variables 13
descriptive statistics 1
d.f. see degrees of freedom
dichotomous data 19
direct standardisation 78-9
discrete data 20
disease specificity, causality strength of evidence 90
distribution-free tests 57
distribution types 36-7
dose-response, causality strength of evidence 90
double-blind RCTs 107-8
eligibility criteria, RCTs 108-9
Epi Info software 7
epidemiology 69-70
association, measuring 83-90
case-control studies 69
cohort studies 69,99
errors
data analysis 72
random 71
systematic 71
types 50,67
see also standard error
estimates, samples 3-4
estimation, confidence intervals 39
ethical issues, RCTs 109
evidence
screening programmes 115
strength 90
systematic reviews 108
exclusivity, probability 45-6
exercises 129-34
answers 135-41
experimental studies see randomised controlled trials
false-positive/false-negative results, screening 113, 116
Fisher's exact test 62
follow-up bias 73
follow-up, cohort studies 101
frames, sampling 3
frequencies $15-17$
Chi-squared test 62
frequency distribution 16-17, 39-41
further reading 145-6

Gaussian distribution see normal distribution
glossary 121-2
graphs, styles 11-13
heterogeneous data 29-31
histograms 12-13
homogeneous data 29-31
hypothesis testing 33, 47-50
incidence
cf. prevalence 75-6
rates 76-8
independent probabilities 44
independent variables 13
indirect standardisation 79-82
inferential statistics 1
defined 2
information bias 72-3
intention-to-treat analysis, RCTs 110
interquartile ranges 27-8
interval data 20
interviewer bias 73

Kolmogorov-Smirnov two-sample test 57

Likert scales, questionnaires 96
linear regression 59-60
Local Research Ethics Committees (LRECs) 109
longitudinal studies see cohort studies
LRECs see Local Research Ethics Committees
$\mu(\mathrm{mu})$, mean, populations 24
Mann-Whitney U-test 57
matching, confounding elimination method 74
mean 23-5
comparing sample means 33-4
median 23-5
meta-analysis, RCTs 108
misclassification bias 73
mode 23-5
morbidity 75
mortality 75
crude rates 76-7
direct standardisation 78-9
SMR 79-82
$\mathrm{mu}(\mu)$, mean, populations 24
multi-centre trials 108
multi-stage sampling 7-8
mutually exclusive probabilities 45
National Screening Committee (NSC) 113-16
negative predictive value (NPV), screening 117-18
NNT see number needed to treat
nominal data 19
non-cases 69, 75
non-parametric tests 57
non-random sampling 4
normal distribution 35-7
tables 123-4
normal test, z-scores 48-50
NPV see negative predictive value
NSC see National Screening Committee
null hypotheses $\left(\mathrm{H}_{0}\right)$ 47-50
number needed to treat (NNT) 88-9
number tables, random 7, 8
numerical data, cf. categorical data 19-21
odds ratio (OR) 87-8
case-control studies 105
one-sample t-test 52-4
one-tailed hypotheses 47-50
open questions, questionnaires 96
opportunistic sampling 4
OR see odds ratio
ordinal data 19
P-values, probability 47-50
paired t-test 54-5

PAR see population attributable risk parameters, defined 2
parametric tests 57
percentages 15-17
proportions as 16-17
percentiles 27-8
pie charts 11, 12
placebos
randomised controlled trials 69
RCTs 107
Poisson distribution 37
population attributable risk (PAR) 87
populations 2, 3-5
defined 1,3
positive predictive value (PPV), screening 117-18
pre-test probability, screening 117-18
predictions 1
presenting data $11-13,15-17$
prevalence
cf. incidence 75-6
rates 76-8
screening 117-18
studies 91-2
probability 43-6
probability sampling see random sampling
proportions 15-17
prospective studies 103
see also cohort studies
publication bias 108
qualitative data see categorical data
quantitative data see numerical data
quartiles 27-8
questionnaires 93-7
bias 95
completion 94-5
confidentiality 97
content 93-4
distribution 94-5
Likert scales 96
open questions 96
piloting 94
planning 93
questions 95-6
quota sampling 4
random error 71
random sampling 4, 7-9
random number tables 7, 8,9
randomisation, confounding elimination method 74
randomised controlled trials (RCTs) 107-11
advantages 111
data analysis $110-11$
data collection 110
disadvantages 111
epidemiology 69
random number tables 9
study design 108-9
subjects 109-10
ranges, group 27-8
rates 15-17
ratio data 20
RCTs see randomised controlled trials
recall bias 72-3
recording bias 73
references 143-4
regression 59-60
relative risk (R R) 85-6
representative sampling 3-4
responder bias 72
restricted randomisation, RCTs 110
retrospective studies 103
see also case-control studies
risk
absolute 84-5
AR 86-7
ARR 88-9
PAR 87
RR 85-6
rounding, decimal places 17
RR see relative risk
rule of addition, probability 45, 46
rule of multiplication, probability 44
σ (sigma), standard deviation, populations 30
Σ (sigma), sum 23-4
s, standard deviation, samples 30
samples/sampling 3-5
bias 72
cluster 8
convenience 4
defined 1,2
distribution 33
estimates 3-4
frames 3
means, comparing 33-4
multi-stage 7-8
opportunistic 4
quota 4
random 4, 7-9
representative 3-4
size $4-5,48,67$
stratified 8
systematic 8-9
variance $30-1$
variations 3
scatterplots 13
screening 113-19
accuracy, evaluating 116-19
criteria, NSC 113-16
SD; s.d. see standard deviation
s.e. see standard error
selection bias 72
sensitivity, screening 117-18
sigma (σ), standard deviation, populations 30
sigma (Σ), sum 23-4
significance, statistical 47-50
simple random sampling 7
size
sample 4-5, 48, 67
unequal group 17
skewed data 36-7
SMR see standardised mortality ratio
social acceptability bias 73
software 2
Epi Info 7
random number list 7,8
see also computers
specific rates, incidence/prevalence/ mortality 77-8
specificity, screening 117-18
standard deviation (SD; s.d.) 29-31
two-sample (unpaired) t-test 55-6
standard error (s.e.) 33-4, 53-4
defined 33
two-sample (unpaired) t-test 55-6
standardisation 78-82
direct 78-9
indirect 79-82
standardised mortality ratio (SMR) 79-82
statistical power, and sample size 67
statistical significance 47-50
statistical tables 123-7
statistics, defined 1-2
stratified allocation, RCTs 110
stratified analysis, confounding elimination method 74
stratified sampling 8
strength, causality strength of evidence 90
Student's t-distribution see t-distribution
surveys 91-2
systematic error 71
systematic reviews, clinical evidence 108
systematic sampling 8-9
t-distribution 37, 51-6
tables 125-6
t-test 51-6
one-sample 52-4
paired 54-5
two-sample (unpaired) 55-6
tables
random number $7,8,9$
statistical 123-7
time relationship, causality strength of evidence 90
treatment arms
epidemiology 69
RCTs 109-10
two-sample (unpaired) t-test 55-6
two-tailed areas, tables, normal distribution 123-4
two-tailed hypotheses 47-50
type 1 errors; type 2 errors; 50,67
unequal group size 17
variables
association 62-6
dependent/independent 13
variance
ANOVA 59-60
sampling 30-1
see also standard deviation
variations, sampling 3

Wilcoxon rank-sum test 57
Wilcoxon signed-rank test 57
x-bar, mean, samples 24
Yates' correction 65-6
z-scores, normal test 48-50

