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Foreword

Understanding about risks to people's health and their relationships with
aspects of life is increasingly an essential part of daily life. New reports,
new potential hazards and possibilities for prevention arise all the time.
What do they mean, can they be reliable, and how can we know? We are
all increasingly getting to grips with the essential elements of
epidemiological methods and it is happening anyway to us all.

What is an odds ratio and how do we interpret such a thing? How is it
measured or estimated? What makes a good study and what do we look
out for to detect rubbish or bias in epidemiology? Is the third generation
pill better or worse than its predecessors? Why do I need a mammography
test? What good is it doing? How can we manipulate relative risks from
one study to another and from one risk factor to another? Why incidence
and not prevalence? And how do we measure variation? What assump-
tions might we be making? Is this questionnaire going to give reliable
answers for the purpose intended? All this and more in a readable and
logical form is presented in this book. Clearly, as a basic text it is
invaluable but for the lay reader who wants to know the elements of
epidemiological method, it will be very useful too. The more earnest even
have a selection of examples to work through, with answers given.

In the end, a better life free of disease depends a lot on us all being able
to avoid the avoidable determinants of illness - possibly 40 years before
the risk is even appreciable. All that will depend on us knowing the
consequences of not doing so. That is Basic Statistics and Epidemiology.

Klim McPherson
Professor of Public Health Epidemiology

Medical Research Council
Department of Social Medicine

University of Bristol
March 2002



Preface

I am often asked questions such as 'What is a P-value?', 'Why are
confidence intervals used?', 'How is a cohort study carried out?' or
'What is the difference between prevalence and incidence?'.

Many of us find these theories hard to grasp quickly. Textbooks often
aim for a 'simple' approach, but no single method suits everyone's
preferred learning style. Some go too deep, while others just do not
strike a chord. The examples that are used in the text may be irrelevant
to the reader's field of work.

This guide is offered as an alternative primer in basic statistics and
epidemiology and their practical use. The topics and examples are relev-
ant to all healthcare professionals and students, as well as those involved
in public health, epidemiology, healthcare evaluation, clinical audit and
clinical effectiveness. The theories are illustrated by practical examples.
Although formulae are shown, full step-by-step instructions are provided
for most calculations.

Relatively plain language is used, assuming no prior statistical know-
ledge. The book is aimed at people who want to understand the main
points, with minimum fuss. Indeed, the avoidance of too much detail and
too many theories is a prime objective.

After working through this guide, you may wish to use other books to
enhance your knowledge. A selection of useful publications is listed in the
Further reading section. You can also test your knowledge and under-
standing by working through some of the exercises at the end of the book.
These are followed by fully worked out answers, so that you can check
how well you have done.

Antony Stewart
March 2002
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What are statistics?

1 Antibiotics reduce the duration of viral throat infections by 1-2
days.

2 Five per cent of women aged 30-49 consult their GP each year with
heavy menstrual bleeding.

3 At our health centre, 50 patients were diagnosed with angina last
year.

(after Rowntree, 1981)

The above quotes may be fact or fallacy, but they are familiar examples of
statistics. We use statistics every day, often without realising it. Statistics as
an academic study has been defined as follows:

The science of assembling and interpreting numerical data (Bland,
2000)

The discipline concerned with the treatment of numerical data
derived from groups of individuals (Armitage et al., 2001).

The term data refers to 'items of information', and is plural. When we use
statistics to describe data, they are called descriptive statistics. All of the
above three examples are descriptive.

However, as well as just describing data, statistics can be used to
draw conclusions or to make predictions about what may happen in other
subjects. This can apply to small groups of people or objects, or to whole
populations. A population is a complete set of people or other subjects
which can be studied. A sample is a smaller part of that population. For
example, 'all the smokers in the UK' can be regarded as a population. In a
study on smoking, it would be almost impossible to study every single
smoker. We might therefore choose to study a smaller group of, say, 1000
smokers. These 1000 smokers would be our sample.
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When we are using statistics to draw conclusions about a whole
population using results from our samples, or to make predictions of
what will happen, they are called inferential statistics. Statements 1 and 2 on
page 1 are examples of inferential statistics. It is important to recognise that
when we use statistics in this way, we never know exactly what the true
results in the population will be. For example, we shall never know how
often every woman consults her GP (these data are not routinely collected
in primary care at present), but we can draw a conclusion that is based on
a sample of data.

A statistic is a quantity calculated from a sample, which describes a
particular feature. Statistics are always estimates. The true quantities of
the population (which are rarely known for certain) are called parameters.

Different types of data and information call for different types of
statistics. Some of the commonest situations are described on the
following pages.

Before we go any further, a word about the use of computers and
formulae in statistics. There are several excellent computer software
packages (as well as calculators) that can perform statistical calculations
more or less automatically. Some of the software packages are available
free of charge, while some cost well over £1000. Each package has its own
merits, and careful consideration is required before deciding which one to
use. These packages can avoid the need to work laboriously through
formulae, and are especially useful when one is dealing with large
samples. However, care must be taken when interpreting computer
outputs, as will be demonstrated later by the example in Chapter 6.
Also, computers can sometimes allow one to perform statistical tests
that are inappropriate. For this reason, it is vital to understand factors
such as the following:

• which statistical test should be performed
• why it is being performed
• what type of data are appropriate
• how to interpret the results.

Several formulae appear on the following pages, some of which look fairly
horrendous. Don't worry too much about these - you may never actually
need to work them out by hand. However, you may wish to work through
a few examples in order to get a 'feel' for how they work in practice.
Working through the exercises in Appendix 2 will also help you.
Remember, though, that the application of statistics and the interpretation
of the results obtained are what really matter.



Populations and
samples

It is important to understand the difference between populations and
samples. You will remember from the previous chapter that a population
can be defined as every subject in a country, a town, a district or other
group being studied. Imagine that you are conducting a study of post-
operative infection rates in a hospital during 1999. The population for
your study (called the target population) is everyone in that hospital who
underwent surgery during 1999. Using this population, a sampling frame
can be constructed. This is a list of every person in the population from
whom your sample will be taken. Each individual in the sampling frame is
usually assigned a number, which can be used in the actual sampling
process.

If thousands of operations have been performed during 1999, there may
not be time to look at every case history. It may therefore only be possible
to look at a smaller group (e.g. 200) of these patients. This smaller group is
a sample.

Remember that a statistic is a value calculated from a sample, which
describes a particular feature. It is always an estimate of the true value.

If we take a sample of 100 patients who underwent surgery during
1999, we might find that 7 patients developed a postoperative
infection. However, a different sample of 100 patients might identify 11
postoperative infections, and yet another might find 8 infections. We shall
almost always find such differences between samples, and these are called
sampling variations.

When undertaking a scientific study, the aim is usually to be able to
generalise the results to the population as a whole. Therefore we need a
sample that is representative of the population. Going back to our example
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of postoperative infections, it is rarely possible to collect data on everyone
in a population. Methods therefore exist for collecting sufficient data to be
reasonably certain that the results will be accurate and applicable to the
whole population. The random sampling methods that are described in
the next chapter are among those used to achieve this.

Thus we usually have to rely on a sample for a study, because it may not
be practicable to collect data from everyone in the population. A sample can
be used to estimate quantities in the population as a whole, and to calculate
the likely accuracy of the estimate.

Many sampling techniques exist, and these can be divided into non-
random and random techniques. In random sampling (also called prob-
ability sampling), everyone in the sampling frame has an equal prob-
ability of being chosen. This approach aims to make the sample more
representative of the population from which it is drawn. There are
several methods of random sampling, some of which are discussed in
the next chapter. Non-random sampling (also called non-probability
sampling) does not have these aims, but is usually easier and more
convenient to perform.

Convenience or opportunistic sampling is the crudest type of non-
random sampling. This involves selecting the most convenient group
available (e.g. using the first 20 colleagues you see at work). It is simple
to perform, but is unlikely to result in a sample that is either representative
of the population or replicable.

A commonly used non-random method of sampling is quota sampling,
in which a pre-defined number (or quota) of people who meet certain
criteria are surveyed. For example, an interviewer may be given the task
of interviewing 25 women with toddlers in a town centre on a weekday
morning, and the instructions may specify that seven of these women
should be aged under 30 years, ten should be aged between 30 and 45
years, and eight should be aged over 45 years. While this is a convenient
sampling method, it may not produce results that are representative of
all women with children of toddler age. For instance, the above example
will systematically exclude women who are in full-time employment.

As well as using the correct method of sampling, there are also ways of
calculating a sample size that is appropriate. This is important, since
increasing the sample size will tend to increase the accuracy of your
estimate, while a smaller sample size will usually decrease the accuracy.
Furthermore, the right sample size is essential to enable you to detect a
statistically significant effect, if one exists. Statistical significance is
discussed in Chapter 14 of this book. The appropriate sample size can
be calculated using one of several formulae, according to the type of study
and the type of data being collected. The basic elements of sample size
calculation (although not the actual formulae) are discussed in Chapter 19.
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Sample size calculation should generally be left to a statistician or some-
one with a good knowledge of the requirements and procedures involved.
If statistical significance is not essential, a sample size of between 50 and
100 may suffice for many purposes.



Random sampling

Random selection of samples is another important issue. In random
sampling, everyone in the sampling frame has an equal probability of
being chosen. For a sample to be truly representative of the population, a
random sample should be taken. Random sampling can also help to
minimise bias. Bias can be defined as an effect that produces results
which are systematically different from the true values (see Chapter 21).

For example, imagine that you are conducting a study on hypertension.
You have 300 hypertensive patients, and want to find out what proportion
have had their blood pressure checked in the last year. You might make a
list of all of these patients, and decide to examine the records of the first 50
patients on the list. If most of them are found to have received blood
pressure checks, are the other 250 patients likely to be similar? Further-
more, what if someone accuses you of 'fixing' the sample by only selecting
patients who you know have received a blood pressure check? If you use a
random sampling system, such doubts can be minimised.

There are many different random sampling systems, but one simple
method is to use a random number table (these can be purchased) or a
computer program to produce a random number list to select the sample.
Free programs, such as Epi Info (Dean et al., 1995) can generate a random
number list. For example, if you want a random sample of 50 from a
population of 300, you could list all 300 subjects and assign a number to
each. Then use the numbers on the random number list, which match the
numbers you have assigned. This produces a simple random sample.
Generating 50 random numbers from 300 produces a list like the one
shown in Table 3.1.

Multi-stage sampling can also be used. For example, in a study of
university students in the UK, it would be difficult to obtain a complete
list of all students. Even if such a list was available, the sheer number
of students would be difficult to manage. To overcome this problem,
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Table 3.1: Random number list showing 50

8
55
113
163
212
264

12
67
116
167
218
272

14
78
125
169
219
273

22
79
128
171
221
283

24
93
129
173
224
285

27
95
133
176
225

random numbers

33
98
138
184
230

37
104
143
193
232

49
108
158
203
249

multi-stage sampling could involve first selecting a simple random
sample of all UK universities (first stage), and then a simple random
sample of student names could be drawn from each selected university
(second stage). This approach saves time, as it avoids the need to study
every university. Additional stages can be added to multi-stage sampling.
For example, after randomly selecting the universities (first stage), a
simple random sample of each university's Faculties could be taken
(second stage), and then a simple random sample of students within
each Faculty (third stage). Although multi-stage sampling can provide
better focus and save resources, it will yield less precise results than
would be obtained by taking a simple random sample from a complete list
of all UK university students.

Cluster sampling is similar to multi-stage sampling, except that all of the
subjects in the final-stage sample are investigated. In the three-stage
example described above, the randomly selected Faculties would be
regarded as clusters, and all students within these Faculties would be
studied.

It can be useful to employ stratified sampling to randomly select subjects
from different strata or groups. Imagine a study designed to examine
possible variations in healthcare between Asian and non-Asian patients. A
random sample of patients on a list would almost certainly produce very
few Asian patients, as most localities have a low proportion of Asian
residents. In such a case, we could stratify our sample by dividing patients
into Asian and non-Asian subjects, and then take a random sample of
each.

A less random but nevertheless useful approach is to use a systematic
sampling scheme. In this method, a number is assigned to every record,
and then every nth record is selected from a list. For example, if you want
to systematically select 50 of your 300 patients with angina, the procedure
would be as follows.

1 Obtain a list of all 300 patients with angina (this is your sampling
frame).

2 As 300/50 = 6, you will be taking every 6th patient.
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3 Choose a number randomly between 1 and 6 as a starting point.
4 Take every 6th patient thereafter (e.g. if your starting point is 4, you will

take patient numbers 4, 10, 16, 22, 28, 34, etc.).

By doing this, you are using the list rather than your own judgement to
select the patients. Look at the list carefully before you start selecting. For
example, choosing every tenth patient in a list of married couples may
well result in every selected person being male or every selected person
being female (Donaldson and Donaldson, 2000).

For randomised controlled trials (see Chapter 28), random number
tables can also be used to allocate patients to treatment groups. For
example, the first number in the table can be allocated to the first patient,
the second number to the second patient, and so on. Odd numbers may be
allocated to treatment group A, and even numbers to treatment group B.
Other methods include subjects being randomly allocated to treatment
groups by opening sealed envelopes containing details of the treatment
category.



Presenting data

A variety of graph styles can be used to present data. The most
commonly used types of graph are pie charts, bar diagrams, histograms
and scattergrams.

The purpose of using a graph is to tell others about a set of data quickly,
allowing them to grasp the important characteristics of the data. In other
words, graphs are visual aids to rapid understanding. It is therefore
important to make graphs as simple and easy to understand as possible.
The use of 'three-dimensional' and other special effects can detract from
easy and accurate understanding. Such approaches should therefore be
avoided altogether, or used with great care. Also, omitting '0' from a scale
can make the graph misleading. Some examples of graphs are shown below.

Figure 4.1: Total expenditure on services by South Staffordshire Health
Authority during the period 1998-99. Adapted from South Staffordshire

Health Authority (1999).
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The graph in Figure 4.1 is known as a pie chart, because it depicts each
category as a slice of pie, with the size of each slice varying according to its
proportion of the whole pie. This can be useful for comparing individual
categories with the total. The pie chart in Figure 4.1 shows the proportion
of expenditure on various health services in relation to expenditure as a
whole. It is easy to see that almost half of all expenditure is on inpatients,
while Accident and Emergency services account for only 2% of total
spending.

Figure 4.2: Estimated number of racial harassment incidents in Walsall,
based on application of the Policy Studies Institute fourth national survey of
ethnic minorities findings on racial harassment in WalsalPs population:

1991 census. Source: Walsall Health Authority (2000).

Figure 4.2 shows an example of a bar diagram. In this example, the size of
each block represents the frequency recorded for the category concerned.
Bar diagrams are useful for comparing one category with others. In the bar
diagram shown in Figure 4.2, we can see the number of racial harassment
incidents in Walsall, allowing the number of incidents in one ethnic
minority group to be compared with that in another.

hFigure 4.3: Age distribution of patients presenting with myelodysplastic
syndrome in Bournemouth 1981-90. Adapted from Oscier (1997).



Presenting data • 13

The graph shown in Figure 4.3 is called a histogram. Histograms are
bar diagrams, where the areas (i.e. height and width) of the bars are
proportional to the frequencies in each group. These are especially useful
for frequency distributions of grouped data (e.g. age groups, grouped
heights, grouped blood measurements). For example, if you use age
groups of equal range (e.g. 21-30, 31-40, 41-50 years, etc.), then the
width of each bar is equal, and if the 21-30 years age group has a
frequency of 30, while the 31^40 years age group has a frequency of 60,
then the former group is exactly half the height of the latter. The histogram
in Figure 4.3 shows the frequency distribution of patients presenting with
myelodysplastic syndrome in a given period, with the patients grouped
into 5-year blocks.

Figure 4.4: Example of a scatterplot.

An example of a scatterplot is shown in Figure 4.4. In a scatterplot, two
measurements (also called variables) are each plotted on separate axes. The
variable on the (horizontal) x-axis is usually called the independent variable,
and the variable on the (vertical) y-axis is usually called the dependent
variable. You can usually tell which variable is dependent on the other by
considering which variable could have been caused by which other
variable. In Figure 4.4, the weight of an adult patient can depend on (or
be caused by) his or her height, whereas height cannot be dependent on (or
caused by) weight.



Frequencies,
percentages,
proportions and rates

Suppose we ask a sample of 30 teenagers each to tell us how old they are.
The list of their ages is shown in Table 5.1:

Table 5.1

15
19
19

14
16
18

16
17
14

I : List of ages from a sample of teenagers

15
14
17

17
13
14

14
15
16

16
14
15

17
16
17

14
16
15

18
19
17

This is all very well, but when the data are presented in this way, it is
difficult to make sense of them quickly. For example, how many of the
teenagers are old enough to drive? How many of them are old enough to
purchase alcohol legally? Are there more 15-year-olds than 16-year-olds in
this group? From the listing above, it is difficult to answer these questions.
Individual ages need to be picked out and counted up every time we want
to answer such a question.

A summary of the data can make things easier. What if we count up
how often each individual age is recorded, and write this down? Then we
can look at the count each time we need to know something about these
ages. In Table 5.2, the ages are sorted into numerical order, and the
number of times each age is recorded is written at the side.

It is now easy to see how often each age occurs. We can quickly tell that
11 teenagers are old enough to drive (the legal age is 17 years in the UK),
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Table 5.2: Frequency distribution of age

Age Number of times recorded
(years)

13 1
14 7
15 5
16 6
17 6
18 2
19 3

five can legally purchase alcohol (the legal age is 18 years in the UK) and
there are more 16-year-olds (n = 6) than 15-year-olds (n = 5).

The number of times that something occurs is known as its frequency.
For example, the frequency of 14-year-olds in our sample is 7, and the
frequency of 18-year-olds is 2. Table 5.2 shows the ages and their
frequencies, and is called a frequency distribution. It shows how the ages
are distributed in this sample.

In the frequency distribution in Table 5.3, the frequencies are added up
and percentages added (in this example, the percentages are rounded up to
the nearest whole per cent). This is a common way of presenting a
frequency distribution.

The percentages indicate the proportion of times that a particular age is
recorded. Proportions can be expressed as decimals or multiplied by 100
and expressed as percentages.

For example, if 15 out of 30 teenagers are aged 18 years, then the
proportion is 0.50 (15/30 = 0.50) or the percentage is 50% (0.50 x 100 = 50).

Table 5.3: Frequency distribution of age, also
showing totals and percentages

Age Frequency %

13
14
15
16
17
18
19

Total

1
7
5
6
6
2
3

30

3
23
17
20
20
7
10

100
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Note that in statistics, we normally use the symbol '/'for division, instead o/'-f-'.

If 20 of the teenagers are aged 18 years, then the proportion is 0.67
(20/30 = 0.666 or 0.67 to 2 decimal places) or 67% (0.67 x 100 = 67).

In Table 5.3 above, 5 of the 30 teenagers are aged 15 years. The
proportion is 0.27 (5/30 = 0.1666 or 0.17 to 2 decimal places), and the
percentage is 27% (0.17 x 100 = 17).

In the above calculations, we have sometimes rounded numbers to 2
decimal places. For example, if we use a calculator to work out 20/30, it will
probably display '0.6666666' - it has displayed 7 numbers after the
decimal point. This is called displaying to 7 decimal places. To show
this as 3 decimal places, we round the third digit after the decimal point up
to the nearest whole number. Thus when displaying 0.6666666 to 3
decimal places, 0.667 is nearer to the real value than is 0.666. In other
words, if the last digit is 5 or more, we round up to the next whole number.
If we want to round 1.222 to 2 decimal places, 1.22 is nearer to the true
value than is 1.23. So if the last digit is 4 or less, we round down to the
nearest number.

Proportions or percentages are more useful than frequencies when we
want to compare numbers of events in two or more groups of unequal size.
For example, suppose that we want to compare the number of industrial
accidents in the workforces of two different companies. In company A,
there have been 37 accidents among a total of 267 workers. In company B,
45 accidents have occurred among a total of 385 workers. At which
company are workers more likely to have an accident? On the face of it,
company B has experienced more accidents, but it also employs more
workers. Unless you are very good at mental arithmetic, it is difficult to
answer the question. Let us work it out using proportions:

• company A had 37 accidents among 267 workers - the proportion of
accidents is 0.139 (37/267)

• company B had 45 accidents among 385 workers - the proportion of
accidents is 0.117 (45/385).

Therefore even though company A's workforce had fewer accidents, it is
statistically the more dangerous place to work, as it had a higher
proportion of accidents. When we use proportions to describe the
number of events, they can be called rates. In this example, therefore,
the accident rate in company A is 0.139 (or 13.9%) and that in company B is
0.117 (or 11.7%).



Types of data

At this stage, it is worth mentioning the need to recognise different types
of data. For example, we could ask people to give us information about
how old they are in one of two ways. We could ask them to tell us how old
they are in whole 'years (i.e. their age last birthday). Alternatively, we
could ask them to tell us to which of several specified age bands they
belong (e.g. 20-24, 25-29, 30-34 years, etc.). Although these two methods
tell us about the age of the respondents, hopefully you can see that the two
types of data are not the same!

Data can be classified as either categorical or numerical.

Categorical data

This refers to data that are arranged into separate categories. Categorical
data are also called qualitative data.

If there are only two possible categories (e.g. female or male), the data
are said to be dichotomous. If there are more possible categories (e.g. a
range of several age groups or ethnic minority groups), the data may be
described as nominal.

Categories can sometimes be placed in order. In this case they are called
ordinal data. For example, a questionnaire may ask respondents how
happy they are with the quality of catering in hospital, the choices may
be very happy, quite happy, unhappy or very unhappy. Other examples
of ordinal data include positions in hospital league tables, and tumour
stages. Because the data are arranged both in categories and in order,
ordinal data provide more information than categories alone.
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Numerical data

For this type of data, numbers are used instead of categories. Numerical
data are also called quantitative data.

There are three levels (scales) of numerical data. These are presented in
order according to how much information they contain.

In discrete data, all values are clearly separate from each other. Although
numbers are used, they can only have a certain range of values. For
example, age last birthday is usually a whole number (e.g. 22 or 35, rather
than 22.45 or 35.6, etc.). Other examples of discrete data include the
number of operations performed in one year, or the number of newly
diagnosed asthma cases in one month. It is usually acceptable to analyse
discrete data as if they were continuous. For example, it is reasonable to
calculate the mean number (see Chapter 7) of total knee replacement
operations that are performed in a year.

The next two scales are regarded as continuous - each value can have
any number of values in between, depending on the accuracy of measure-
ment (for example, there can be many smaller values in between a height
of 2 metres and a height of 3 metres, e.g. 2.2 or 2.57 or 2.9678765).
Continuous data can also be converted into categorical or discrete data.
For example, a list of heights can be converted into grouped categories,
and temperature values in degrees Centigrade (measured to one or more
decimal places) can each be converted to the nearest whole degree
Centigrade.

In interval data, values are separated by equally spaced intervals (e.g.
weight, height, minutes, degrees Centigrade). Thus the difference (or
interval) between 5kg and 10kg, for example, is exactly the same as
that between 20 kg and 25 kg. As interval data allow us to tell the precise
interval between any one value and another, they give more information
than discrete data. Interval data can also be converted into categorical or
discrete data. For example, a list of temperature measurements in degrees
Centigrade can be placed in ordered categories or grouped into
dichotomous categories of 'afebrile' (oral temperature below 37°C) or
'febrile' (oral temperature of 37°C or more).

Ratio data are similar to interval scales, but refer to the ratio of two
measurements and also have a true zero. Thus weight in kilograms is an
example of ratio data (20kg is twice as heavy as 10kg, and it is
theoretically possible for something to weigh Okg). However, degrees
centigrade cannot be considered to be a ratio scale (20°C is not, in any
meaningful way, twice as warm as 10°C, and the degrees Centigrade scale
extends below 0°C). Ratio data are also interval data.

Sometimes people get different types of data confused - with alarming
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results. The following is a real example (although the numbers have been
changed to guarantee anonymity). As part of a study, a researcher asks a
group of 70 pregnant women to state which of a range of age groups they
belong to. These are entered into a table as shown in Table 6.1.

Table 6.1 : Table of age groups

Title given to 1
age group

2 3 4 5 6 7

Age group <16 17-21 22-26 27-31 32-36 37-41 >42
(years)

Frequency 1 5 18 24 13 7 2

The researcher wants to enter the data into a computerised analysis
program, and to ensure ease of data entry, he decides to give each
group a numerical title (so that, when entering the data, he can simply
press '3' for someone who is in the '22-26' years age group, for example).
Unfortunately, he does not notice that the program assumes that the
numerical titles represent continuous data. It therefore treats the age
groups as if they were actual ages, rather than categories. Being busy
with other matters, the researcher does not notice this in the program's
data analysis output. In his report, he states that the mean age of the
pregnant women is 4.03 years! Of course, the most frequently recorded
age group (27-31 years), also called the mode (see Chapter 7), is the correct
measure for these data. Treating categorical data as if they were continu-
ous can thus produce very misleading results and is therefore dangerous.
Clearly, great care needs to be taken to ensure that data are collected and
analysed correctly.



Mean, median and
mode

Means, medians and modes are methods of measuring the central tendency
of a group of values - that is, the tendency for values in a group to gather
around a central or 'average' value which is typical of the group.

Mean

It can be very useful to summarise a group of numerical values by finding
their average value. The mean gives a rough idea of the size of the values
that you are dealing with, without having to look at every one of them.
The mean (or to use its proper name, the arithmetic mean) is another term
for the 'average'.

Consider the HbAlc (the percentage of glycosolated haemoglobin
circulating in the blood) values for patients with diabetes, shown in the
frequency distribution in Figure 7.1. It also shows the median and mode,
which are discussed later in this chapter.

The formula for calculating the mean is:

£*/»•
Add up (53) all of the values (x) and divide by the number of values observed (h).
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Figure 7.1: Frequency distribution of HbA1c values.

To calculate a mean:

1 add up every value in your group (call this result A)
2 count how many values are observed in the group (call this result B)
3 divide result A by result B.

In the example in Figure 7.1 above:

1 the sum of all of the HbAlc values listed = 180.6
2 the number of values observed = 27
3 180.6/27 = 6.69 (or 6.7 if we use one decimal place).

The mean is usually represented by x (called 'x-bar'} for samples, and \i
(called 'mu'} for populations.

Remember that, when writing the mean, it is good practice to refer to
the unit measured. In this case, it is an HbAlc value of 6.7%.

Note that many calculators will work out the mean in a single process,
without having to go through the steps outlined above.

The mean can be misleading if there are any extreme values in a group of
numbers. For example, the mean of the group 1, 2, 3, 2, 4, 5,19 is 5.1. The
value 19 is an extreme value, since it is far higher than any of the other
numbers in the group. Since only one of the values in the group is actually
5.1 or greater, the mean is not representative of the group. In this case, the
median may provide a better representation.
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Median

This is the middle value of an ordered sample of numerical values. To
calculate the median:

1 arrange all of the recorded values in order of size
2 find the middle value.

If we arrange the following numbers in numerical order, we obtain:

1, 2, 2, 3, 4, 5, 19.

The median is 3.
In the above example, the median is much more representative of the

group than the mean (5.1). Extreme values do not affect the median, and
the median value is usually typical of the data.

If there is an even number of values, use the mean of the two middle
values:

19, 24, 26, 30, 31, 34.

The median is (26 -f 30)/2 = 28.
The median HbAlc value in Figure 7.1 is 5.8 - there are 13 values below

and 13 values above it.

Mode

The mode is the value which occurs most often in a group. This can be a
group of either numbers or categories.

In Figure 7.1, the HbAlc value 5.0 is recorded more often than any other
age (three times in all), and so it is the mode of that group.

For example, if you want to know the most frequently used health
promotion clinic (e.g. 'smoking cessation', 'weight loss', 'well woman',
'well man', etc.) at a primary care surgery, count up the attendance at each
clinic over a specific period, and find the one with the highest attendance.

If there are two modes in a group of numbers, the group is described as
bimodal. The mode is easy to determine, and requires no calculation. It is
usually typical of the data used. Because the mode only records the most
popular value, the others are not taken into account. The mode is therefore
not affected by extreme values.

The mode can be used for categorical data where the mean and median
are not appropriate (e.g. as in the example shown in Table 6.1).



Gentiles

Although the median is the middle value in a group of ordered numbers, it
provides no information about the range of values, or how the values are
grouped around the median. The range uses only the highest and lowest
values, which may be extreme values. As we have already found when
discussing the mean, extreme values may provide a misleading repres-
entation of the central tendency of the group. One approach is to effectively
ignore a percentage of values at each end of the group, and to concentrate
on the central area, where the majority of values are likely to lie.

Gentiles allow us to describe the central range of a group of numbers.
They are often expressed as the 25th and 75th centiles, although it is
possible to calculate centiles of any value (e.g. 3rd and 97th centiles.
Centiles are also referred to as percentiles.

The 25th centile is also called the first quartile. It is the point which separates
the lower quarter of the numbers in a group, in the same way as the median
separates the upper half. The 50th centile is also called the second quartile, and
is equivalent to the median. The 75th centile is also called the third quartile,
and is the point that separates the upper quarter of the numbers.

The interquartile range is the distance between the 25th and 75th centiles,
and is calculated by simply subtracting the 25th centile from the 75th
centile. It provides an indication of how much variation (or spread) there
is between the first and third quartiles. It ignores the values below the first
quartile and above the third quartile.

For example, suppose that a group of patients has the following
cholesterol values (in mmol/L):

3.5, 3.5, 3.6, 3.7, 4.0, 4.1, 4.3, 4.5, 4.7, 4.8, 5.2, 5.7, 6.1, 6.3, 6.3

The 25th centile is 3.7. The 50th centile (median) is 4.5. The 75th
centile is 5.7. The interquartile range is: (5.7 = 3.7) = 2.0.
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This means that there is a variation of 2.0mmol/L between the first and
third quartiles, and a range of 3.5-6.3 mmol/L. A second group of patients
may have an interquartile range of 0.9 mmol/L, indicating less variation.
Even if the first and last values in the second group are very extreme (e.g.
3.0 and 9.0, respectively), these will not affect the interquartile range,
which concentrates on the central area of values.



Standard deviation

We have seen that the interquartile range indicates the variation of data
where the median is the measure of central tendency. Standard deviation
is used where this measure is the mean. It indicates the difference between
a group of values and their mean, taking all of the data into account.
Although this means that it may be influenced by extreme values, the
standard deviation plays an important role in many tests of statistical
significance (which will be described in later chapters). The larger the
standard deviation, the more the values differ from the mean, and
therefore the more widely they are spread out.

For example, one small group of patients in a particular outpatient clinic
may wait for a mean time of 11 minutes to be seen by a doctor, and the
standard deviation from the mean for this group is 5.701. Individual
waiting times vary widely - from 7 minutes up to 21 minutes. There is
wide variation between these waiting times, and they are quite widely
spread out from their mean. These waiting times are therefore hetero-
geneous or dissimilar.

On another day, another group of patients from the same clinic may also
have a mean waiting time of 11 minutes, but their standard deviation is
0.707. This is much less than the first group's standard deviation of 5.701.
Looking at this group's actual waiting times, it can be seen that they only
vary from 10 to 12 minutes. Waiting times for the second group are more
homogeneous - that is, the data are more similar to each other. They are less
widely spread out around their mean than the first group.

Let us look at the actual waiting times recorded for each group, as
shown in Table 9.1.

You can see that the data in Group 1 are much more spread out than
those in Group 2. This difference in standard deviations can be explained
by the fact that, although most patients in Group 1 waited a very short
time, one patient had to wait for a long time (21 minutes). Although this
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Table 9.1 : Waiting times and standard deviation for each patient group

Group

1
2

Time
1

10
11

Time
2

7
11

Time
3

8
10

Time
4

9
11

Time
5

21
12

Mean

11
11

Standard
deviation

5.701
0.707

one 'outlier' waiting time is not representative of the whole group, it has a
large effect on the overall results, and it strongly affects the mean and
standard deviation. Several patients from Group 2 actually waited longer
than Group 1 patients, although the difference between the waiting times
in Group 2 is very slight.

Although the abbreviations SD or s.d. are used to represent standard
deviation generally, s is used to represent standard deviation for samples,
and a is used to represent standard deviation for populations.

The most usual formula for standard deviation is as follows:

where x = individual value, x = sample mean and n = number of values.
The above equation is only suitable for a sample (or population estimate).

This will usually be the case, since we rarely know the true population
value (which in this case is the mean).

The following steps are used to work out a standard deviation.

1 Find the mean of the group.
2 Subtract this from every value in the group individually - this shows

the deviation from the mean, for every value.
3 Work out the square (x2) of every deviation (that is, multiply each

deviation by itself, e.g. 52 = 5 x 5 = 25) - this produces a squared
deviation for every value.

4 Add up all of the squared deviations.
5 Add up the number of observed values, and subtract 1.
6 Divide the sum of squared deviations by this number, to produce the

sample variance.
7 Work out the square root of the variance.

If you have to work out a standard deviation by hand, it is helpful to use a
grid like the one shown in Table 9.2. We can use this to work out the
standard deviation of the data for Group 1 from Table 9.1.
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Table 9

Value
number

1
2
3
4
5

.2: Grid

Time
(a)

10
7
8
9

21

showing preliminary calculations for standard deviation

Mean time
(b)

11
11
11
11
11

1 We already know the mean is 11 (see
2 Subtract each time value from the

Deviation from
the mean
(a-b)

-1
-4
-3
-2
10

page 30).
mean. Note each

Squared
deviation
(a-bf

1
16
9
4

100
Total = 130

result in the
'Deviation from the mean' column.

3 Multiply each deviation by itself, and write each result in the 'Squared
deviation' column (e.g. -42 = — 4 x -4 = 16) (note that multiplying
minus numbers produces positive ones).

4 Adding all of the squared deviations (1 + 16 + 9 + 4 + 100) gives a
value of 130.

5 There are five separate values in the group. Subtract 1, and you get 4.
6 Divide the sum of squared deviations by 4, to produce the variance

(130/4 = 32.5).
7 Use a calculator to determine the square root of the variance (32.5) - that

is v
/325 = 5.701.

Of course, calculating standard deviation by hand like this is not practical
if you have a large number of values. Moreover, the mean is unlikely to be
a whole number as it is in the above example. Calculators and computer
programs are an invaluable aid to this process, and are readily available.

Other uses of standard deviation are discussed under normal
distribution (see Chapter 11).



Standard error

Standard error (or s.e.) is another term for the standard deviation of a
sampling distribution (or frequency distribution of samples), rather than
just a sample. You may remember from Chapter 2 that a value found from
one sample may be different to that from another sample - this is called
sampling variation. For example, if we took a large number of samples of a
particular size from a population and recorded the mean for each sample,
we could calculate the standard deviation of all their means - this is
called the standard error. Because it is based on a very large number of
(theoretical) samples, it should be more precise and therefore smaller than
the standard deviation.

Standard error is used in a range of applications, including hypothesis
testing and the calculation of confidence intervals (which are discussed in
later chapters).

The most frequently used calculations are described below.

Comparing a sample mean with a population
mean (for large samples)

Divide the standard deviation (s) by the square root of the number of
values in the sample.

To calculate the standard error, follow the steps listed below.

1 Calculate the standard deviation of the sample mean.
2 Count the number of observed values.
3 Find the square root of this sum.
4 Divide the standard deviation by this number.
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Using the table of HbAlc values in Figure 7.1 in Chapter 7, we can
calculate the standard error as follows.

1 The standard deviation is 2.322 (not shown in Chapter 7).
2 The number of observed values = 27.
3 The square root of 27 = 5.196.
4 Divide the standard deviation (2.322) by 5.196 = 0.447.

You can see that the standard error is very much smaller than the standard
deviation.

Comparing two sample means
(for large samples)

where: Si = standard deviation for sample 1, $2 = standard deviation for
sample 2, n\ — sample size 1 and n^ = sample size 2.

Let us work through the stages of this formula.

1 Square the first sample standard deviation (s\).
2 Divide it by the first sample size (n\) - note the result, and call it

'result 1'.
3 Square the second sample standard deviation (52).
4 Divide it by the second sample size (^2) - note this result, and call it

'result 2'.
5 Add results 1 and 2.
6 Find the square root of this number - this is the standard error.

Single proportion (for large samples)

where p = proportion and n — sample size.

There are different formulae for calculating standard error in other
situations (e.g. for comparing proportions in two independent groups,
where the sample size is large), and these are covered by several other
texts.

Standard error formulae for small samples are presented in Chapter 15.



Normal distribution

If we take a large sample of men or women, measure their heights, and
plot them on a frequency distribution, the distribution will almost
certainly obtain a symmetrical bell-shaped pattern that looks something
like the one shown in Figure 11.1.

This is known as the normal distribution (also called the Gaussian
distribution). The least frequently recorded heights lie at the two extremes
of the curve. It can be seen that very few women are extremely short or
extremely tall. An outline of the normal distribution curve is drawn around
the frequency distribution, and is a reasonably good fit to the shape of the
distribution. With a larger sample size, the pattern of the frequency
distribution will usually follow this shape more closely.

Figure 11.1: Distribution of a sample of values of women's heights.
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Positively skewed data Negatively skewed data

Figure 11.2: Examples of positive and negative skew.

In practice, many biological measurements follow this pattern, making it
possible to use the normal distribution to describe many features of a
population.

It must be emphasised that some measurements do not follow the
symmetrical shape of the normal distribution, and can be positively skewed
or negatively skewed. For example, more of the populations of developed
Western countries are becoming obese. If a large sample of such a
population's weights was to be plotted on a graph similar to that in
Figure 11.1, there would be an excess of heavier weights which might
form a similar shape to the 'negatively skewed' example in Figure 11.2.
The distribution will therefore not fit the symmetrical pattern of the
normal distribution. You can tell whether the skew is positive or negative
by looking at the shape of the plotted data, as shown in Figure 11.2.

Furthermore, the shape may be symmetrical but different to the normal
distribution.

The normal distribution is shown in Figure 11.3. You can see that it is
split into two equal and identically shaped halves by the mean. The

Figure 11.3: The normal distribution.
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standard deviation indicates the size of the spread of the data. It can also
help us to determine how likely it is that a given value will be observed in
the population being studied. We know this because the proportion of the
population that is covered by any number of standard deviations can be
calculated.

For example:

• 68.27% of all values lie within plus or minus (±) 1 standard deviation
(either 1 standard deviation below the mean or 1 standard deviation
above it)

• 95.45% of all values lie within ± 2 standard deviations of the mean
• 99.73% of all values lie within ±3 standard deviations of the mean.

It is useful to know that 95% of all values lie within 1.96 standard deviations, and
99% of all values lie within 2.58 standard deviations.

The proportions of values below and above a specified value (e.g. the
mean) can be calculated, and are known as tails. We shall discuss these in
Chapter 14.

It is possible to calculate the probability that a value in any particular
range will occur. The normal distribution is useful in a number of
applications, including confidence intervals (see Chapter 12) and
hypothesis testing (see Chapter 14).

As well as the normal distribution, a number of other distributions are
important, including the following

• the t-distribution - for small samples (usually below 30) (see Chapter 15
on Mests)

• the binomial distribution - for dichotomous data (e.g. result can only be 0
or 1; yes or no)

• the Poisson distribution - for rare events that occur randomly in a large
population.

The t- and binomial distributions resemble the normal distribution when
large samples are used.



Confidence intervals

Although we can calculate a sample mean, we never know exactly where
the population mean is. Confidence intervals are used to estimate how
far away the population mean is likely to be, with a given degree of
certainty. This technique is called estimation, and the term 'confidence
interval' is often abbreviated to c.i. or CI. Conventionally, 95% con-
fidence intervals are used, although they can be calculated for 99% or
any other value.

Figure 12.1 shows diastolic blood pressure measurements taken from a
sample of 92 patients with diabetes. The mean diastolic blood pressure is
82.696 mmHg, with a standard error of 1.116. A 95% confidence interval
will indicate a range above and below 82.696 mmHg in which the population
mean will lie, with a 95% degree of certainty. In other words, a '95%
confidence interval' is the interval which will include the true population
value in 95% of cases.

The formula for calculating a 95% confidence interval for a sample mean
(large samples) is:

where x = sample mean and s.e. = standard error.
This formula is suitable for samples of around 30 or larger, where data are on

the interval or ratio scale, and are normally distributed.
Note that numbers in this section are calculated to three decimal places.
To calculate a 95% confidence interval (large samples), follow the steps

listed below.

1 Calculate the sample mean, the standard deviation and hence the
standard error (s.e.).

2 Multiply the s.e. by 1.96, and note this result (call it result 1).
3 Add result 1 to the sample mean, and note this sum (call it sum a).



40 • Basic statistics and epidemiology

Figure 12.1: Frequency distribution of diastolic blood pressure in a
sample of patients with diabetes. (Source: Unpublished data from Stewart

and Rao 2000.)

4 Take result 1 away from the sample mean, and note this sum (call it
sum b).

5 The confidence interval is written as:

95% c.i. = (sample mean) ((sum a) —> (sum b)).

Let us work through this using the diastolic blood pressure readings in
Figure 12.1.

1 The sample mean is 82.696; the standard error (s.e.) is 1.116 (remember
that the standard error is calculated as 10.701/\/92.

2 s.e. x 1.96 = 1.116x1.96 = 2.187.
3 82.696 + 2.187 = 84.883.
4 82.696-2.187 = 80.509.
5 95% c.i. is 82.696 (80.509 -» 84.883).

In the above example, although the sample mean is 82.696, there is a 95%
probability that the population mean lies between 80.509 and 84.883. In this
case, the range is not particularly wide, indicating that the population
mean is unlikely to be far away. It should therefore be reasonably
representative of patients with diabetes, so long as the sample was
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randomly selected. Increasing the sample size will usually result in a
narrower confidence interval.

To calculate a 99% confidence interval, use 2.58 instead of 1.96 (this is
the number of standard deviations which contain 99% of all the values of
the normal distribution). Although a 99% confidence interval will give
greater certainty, the intervals will be wider.

In the above example, we have calculated a confidence interval for a
single mean, based on a fairly large sample. Confidence intervals can be
calculated for other circumstances, some of which are listed below.

• 95% c.i. for difference between two sample means - large samples:

(see s.e. formula for comparing two sample means (large samples) in
Chapter 10)

• 95% c.i. for a single proportion ( p ) - large samples:

(see s.e. formula for single proportion (large samples) in Chapter 10).

There are different formulae for calculating confidence intervals and
standard error in other situations (e.g. for comparing proportions in two
independent groups, where the sample size is large), and these are
covered by several other texts.

• For small samples:

(also see Chapter 15 on Mests).



Probability

Probability is a mathematical technique for predicting outcomes. It
predicts how likely it is that specific events will occur.

Probability is measured on a scale from 0 to 1.0 as shown in Figure 13.1.
For example, when one tosses a coin, there is a 50% chance of obtaining

a head. Note that probabilities are usually expressed in decimal format -
50% becomes 0.5,10% becomes 0.1 and 5% becomes 0.05. The probability
of obtaining a head when a coin is tossed is therefore 0.5.

A probability can never be more than 1.0, nor can it be negative.
There is a range of methods for calculating probability for different

situations.

Figure 13.1: The scale of probability.
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To calculate the probability (P) of a single
event (A) happening

For example, to find the probability of throwing a six on a die:

the number of possible events
formula: P(A) =

P(A) =

the number of possible equally likely outcomes

the number of sixes on the die
the number of sides on the die

= - = 0.1667 (or 16.67%)
6

To calculate the probability of event (A) and
event (B) happening (independent events)

For example, if you have two identical packs of cards (pack A and pack B),
what is the probability of drawing the ace of spades from both packs?

Formula: P(A) x P(B)

P(pack A) = 1 card, from a pack of 52 cards = 1/52 = 0.0192

P(pack B) = 1 card, from a pack of 52 cards = 1/52 = 0.0192

P(A) x P(B) = 0.0192 x 0.0192 = 0.00037

This is called the rule of multiplication.
In the above example, events A and B are independent of each other. This

means that one event happens regardless of the other, and its outcome is
not related to the other.

Sometimes probabilities are conditional, which means that one
probability relies on another having already happened.

To calculate the probability of event (A) and
event (B) happening (conditional events)

What is the probability of drawing the ace of spades and the queen of clubs
consecutively from a single pack of cards?

Formula: P(A) x P(B | A)
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where (B A) means

[B given that A has happened]

We already know that the probability of drawing the ace of spades from a
pack of 52 cards is 1/52 = 0.0192, so P(A) =0.0192.

The chances of now drawing the queen of clubs are a little higher,
because one less card is left in the pack, so the probability P(B | A) is now
1/51 = 0.0196.

P(A) x P(B A) = (1/52) x (1/51) = 0.0192 x 0.0196 = 0.0004

Probabilities can be mutually exclusive. This means that one event prevents
another event from happening. For example, throwing a die once will
result in either a 1, or a 2, or a 3, or a 4, or a 5, or a 6 - but only one number
can be obtained. Therefore throwing a 5 rules out any other number. In
such cases, the rule of addition is used.

To calculate the probability of either event (A)
or event (B) happening (where the events are
mutually exclusive)

For example, what is the probability of throwing either a six or a five on a
die:

Formula: P(A) + P(B)

P(A) = 0.1667

P(B) = 0.1667

P(A) + P(B) = 0.1667 + 0.1667 = 0.333 (or 33.3%)

This is called the rule of addition or the additive rule.

To calculate the probability of either event (A)
or event (B) happening (where the events are
not mutually exclusive)

Suppose that a local study finds that 90% of people aged over 60 years in
Epitown suffer from at least one common cold during a one-year period,
and 20% suffer from heartburn at least once. What is the probability that
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any person over 60 years of age will suffer from either common cold or
heartburn? We shall assume that common cold and heartburn occur
independently of each other.

Using the rule of addition produces a probability of 0.9 + 0.2, which is
equal to 1.1. This cannot be correct, since we already know that a
probability can never be more than 1.0.

In this situation, we use a different formula:

P(A) + P(B) - P(both)

P(A) = 0.9 (common cold)

P(B) = 0.2 (heartburn)

P (both) = 0.9 x 0.2 = 0.18

(since we are assuming that they are independent).

So P(A) + P(B) - P(both) = (0.9 + 0.2) - 0.18

= 1.1-0.18

- 0.92 (or 92%)

In this example, then, there is a probability of 0.92 (or 92%) that any person
aged over 60 years in Epitown will suffer from either common cold or
heartburn during a one-year period.



Hypothesis tests and
P-values

A hypothesis is an unproved theory that is formulated as a starting point for
an investigation - for example, 'patients who take drug A will have better
outcomes than those who take drug B' or 'drug A is better than drug B'.
The hypothesis that 'drug A is better than drug B' is often written as HI .

For every hypothesis there is a null hypothesis. In the above scenarios, the
null hypothesis is that 'the outcomes of patients taking drug A will be no
different to those of patients who take drug B' or that 'drug A is no better
than drug B'. Scientific experiments tend to adopt a somewhat sceptical
attitude, and normally use the null hypothesis to try to disprove the real
hypothesis. The null hypothesis is often written as HQ.

If drug A proves to be significantly better than drug B, the null
hypothesis (Ho) is rejected, and the alternative hypothesis (Hi) is accepted.

Hypotheses are sometimes referred to as one-tailed or two-tailed. As
described in Chapter 11, the normal distribution is split in half by the
mean. The proportions of values under and above a specified value (e.g. the
mean) can be calculated. These are known as tails. The term one-tailed
refers to the distribution either under or above a specified value. The term
two-tailed refers to the whole distribution, both under and above the
specified value. In a two-tailed hypothesis, we want to find out whether
there will actually be a difference between the two treatments, but we do
not state which way it will go (e.g. 'drug A will be better or worse than
drug B'. In a one-tailed hypothesis, we are interested in the direction of any
difference (e.g. 'drug A is better than drug B'). The two-tailed hypothesis is
usually most appropriate.

The problem is how much better does the difference or size of effect
need to be in order to reach the level of statistical significance? In
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practice, we assess the probability that the effect we found (or a more extreme
effect) would have occurred if the null hypothesis were true. If the probability
is low, it follows that the effect may be due to the effectiveness of the
treatment - or possibly some other cause. In order to make this
assessment, we need to calculate a test statistic and use this to determine
the probability (expressed as a P -value). This process is called hypothesis
testing.

At this point, it is useful to go back to the idea of the normal distribution
and standard deviations. Remember that, in a normal distribution, 95% of
all values fall within 1.96 standard deviations and 99% of them fall within
2.58 standard deviations.

If the value of a result is more than 1.96 standard deviations of the
hypothetical or population mean value, its probability of occurring is less
than 5%. Remembering (from Chapter 13) that probabilities are usually
expressed as decimals, its probability is written as P < 0.05 (< means less
than'). If the value is more than 2.58 standard deviations away from the
mean, its probability of occurring (if the H0 is true) is less than 1%. Its
probability is therefore P<0.01. Probabilities of <0.05 or <0.01 are
generally regarded as being the thresholds of statistical significance.

For many studies, a P-value of less than 0.05 is regarded as significant.
For other more critical studies (e.g. treatment trials), significance may only
be assigned when the P-value is < 0.01.

Our test statistic for comparing a sample mean with a hypothetical
mean is calculated using the following relatively simple equation:

where x is the sample mean, p, is the hypothetical mean presumed in the HO
and s.e. is the standard error of the observed value.

This test uses the normal distribution, and is thus called the normal test.
It is also called the z-test.

Note: the above formula should only be used for large samples - see Chapter 15 on
t-tests if the sample size is small.

The equation calculates the number of standard deviations that separate
the hypothetical mean from the sample mean, and expresses this as
something called a z-score (or normal score). The z-score is the test statistic
that is used in the normal test. The larger the z-score, the smaller the
probability of the null hypothesis being true.

The final step is to look up this z-score in a normal distribution table
(either one-tailed or two-tailed, depending on the hypothesis) in order to
obtain a P-value. An example of a normal distribution table for two-tailed
hypotheses is provided in Appendix 1.

We know that 95% of all values under the normal distribution are
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contained within 1.96 standard deviations of the mean, and 99% of values
are contained within 2.58 standard deviations. If the z-score is more than
1.96, we instantly know that the probability is less than 5%, and its P-value
will therefore be < 0.05. If the z-score is more than 2.58, the probability is
less than 1%, and its P-value will therefore be < 0.01.

The steps for the first equation on page 48 (x — /i)/s.e. are as follows.

1 Calculate the sample mean and standard error.
2 Subtract the hypothetical mean from the sample mean (ignore any

minus values, since we are only interested in the difference between the
two means).

3 Divide the result by the standard error to produce a z-score.
4 Look down each column of the normal distribution table in Appendix 1

to find your z-score, and then read across to obtain the P-value (e.g. for a
z-score of 0.37, the P-value is 0.7114).

Many statistical computer programs produce P-values automatically, and
it is possible that you will never actually need to calculate one.

Using the table of diastolic blood pressure readings in Chapter 12, we
calculate a P-value as follows.

Suppose the population mean diastolic blood pressure in patients with
diabetes is believed to be 84 mmHg.

1 The sample mean is 82.696 and the standard error is 1.116.
2 82.696 - 84 = 1.304 (ignoring the minus value).
3 1.304/1.116 = 1.17.
4 z = 1.17; in a two-tailed normal distribution table, look up 1.17 in the

left-hand column, and then read across to find the P-value. The
P-value = 0.2420, which is not significant. The null hypothesis (in this
case, that there is no difference between the sample and the population)
is not rejected. In fact, this sample could have come from a population
with a mean blood pressure of 84 mmHg.

Now imagine that the diastolic blood pressures were taken from a group
of men who have hypertension, and who have received a new anti-
hypertensive drug in a certain clinic. We shall also assume that the
population mean diastolic blood pressure in hypertensive men (whose
blood pressure is either controlled or kept at a safe level by conventional
drugs) aged 30-45 years who attend hypertension clinics is in fact
86mmHg ((82.696 - 86)/1.116) = 3.304/1.116 = 2.96.

The z-score is now 2.96. The two-tailed normal distribution table gives a
P-value of 0.0031. Thus the probability of this result being obtained if the
null hypothesis (that there is no difference between the treatments) were
true is very low. In this case, the null hypothesis will be rejected, and the
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alternative hypothesis (that there is a difference) will be accepted. It may
be concluded that this drug is either highly effective, or that the result may
have been influenced by another factor. Such factors could include prob-
lems with the sampling/randomisation process, differences between
groups of patients receiving the treatments (either at the start of the
study or with regard to patient management during the study) or the
deliberate 'fiddling' of results.

It is worthwhile using a certain amount of common sense when
interpreting P-values. A P-value of 0.6672 is certainly not significant, but
a value of 0.0524 should not necessarily be dismissed just because it is
slightly higher than the threshold. However, a P-value of 0.0524 will
always be referred to and reported as non-significant.

A P-value of less than our chosen threshold of significance does not
prove the null hypothesis to be true - it merely demonstrates insufficient
evidence to reject it. There is always an element of uncertainty when using
a P-value to decide whether or not to reject the null hypothesis.

When interpreting a P-value, two different types of possible error
should be recognised:

• type I error - rejecting a true null hypothesis, and accepting a false
alternative hypothesis

• type 2 error - not rejecting a false null hypothesis.

It is also worth remembering that a statistically significant result is not
necessarily clinically significant. For example, a reduction in the mean
diastolic blood pressure from 115mmHg to HOmmHg in a large sample
of adults may well produce a P-value of < 0.05. However, a diastolic blood
pressure of HOmmHg is still well above what is considered to be a
healthy level.

Although P-values are routinely calculated, there is a strength of feeling
that confidence intervals may be a better way of testing hypotheses, since
they show an estimate of where the true value actually lies. If a confidence
interval does not include the hypothetical mean, this indicates signifi-
cance. When reporting results, it is good practice to quote both P-values
and confidence intervals.

There are different formulae for calculating z-scores in other situations
(e.g. differences between proportions), and these are covered by several
other texts.



The Mest

The previous methods of calculating confidence intervals and performing
hypothesis testing are only suitable if the sample size is large. However, in
some circumstances only small samples are available. For these purposes,
a 'small' sample is usually considered to be 30 or less.

A different distribution - the t-distribution (also known as Student's
^-distribution, after WS Gossett, whose pseudonym was 'Student') - is
used if the sample size is small. The ^-distribution has a similarly shaped
curve to the normal distribution, but is more widely spread out and flatter.
The degree of spread and flatness changes according to the sample size. If
the sample size is very large, the t-distribution becomes virtually identical
to the normal distribution.

For the use of the Mest to be valid, the data should be normally
distributed. Although the test is described as 'robust', meaning that it
can withstand moderate departures from normality, severely skewed data
are unsuitable. For two-sample tests, the standard deviations should also
be roughly equal.

If you are in doubt as to whether the degree of skewedness of your data
violates these conditions, statistical methods exist to assess this. There are
also methods of transforming skewed data to make them more 'normal'.
One alternative method for dealing with skew is to use a non-parametric
test (see Chapter 16). For small samples, the Wilcoxon signed-rank test can
be used instead of the paired Mest, and the Wilcoxon rank-sum test or
Mann-Whitney LT-test can be used instead of the unpaired Mest. These
methods are covered by many more detailed texts.

The calculation of the ^-statistic (£) is a little different to the calculation of
z. It takes the level of significance (e.g. 0.05, 0.01) into account, together
with degrees of freedom (d.f.) which are based on sample size. Don't worry
too much about the theory behind degrees of freedom.
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Degrees of freedom are calculated as follows:

n — \ for a one-sample test

where n = sample size

(HI - 1) 4- (n2 — 1) for a two-sample test

where n\ — sample size for group 1 and n^ — sample size for group 2.

The steps for performing a f-test are as follows.

1 Work out the standard error and ^-statistic for the required test.
2 Calculate the appropriate d.f.
3 Using the ^-distribution table (see Appendix 1), look up the d.f. value in

the left-hand column.
4 Read across this row, until the nearest values to the left and right of

your f-statistic can be seen.
5 Your P-value will be less than the P-value at the top of the column to the

left of your i-statistic and greater than the P-value at the top of the
column to its right (e.g. a f-statistic of 2.687 with 6 d.f. falls in between
2.447 and 3.143. The nearest value to its left is 2.447; the P-value at the
top of this column is 0.05. The P-value for your t-statistic will therefore
be less than 0.05, and is written P < 0.05. If your ^-statistic is 1.325 with 6
d.f., there is no column to its left, so the P-value will be greater than the
column to its right, and is therefore > 0.2).

There are a number of different Mest formulae which are used in different
situations, as described below.

One-sample f-test

This test compares a sample mean with a population mean.

where x = sample mean, // = population mean and s.e. = standard error
of sample mean.

where n = sample size.

where s = standard deviation of sample mean and n = sample size.
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Figure 15.1: Frequency distribution of BMI from a sample of patients in
primary care.

95% Confidence intervals - one-sample Mest

where fo.os = value on ^-distribution table in 0.05 column (two-tailed),
corresponding to appropriate d.f.

For example, suppose that a group of 14 GP surgeries are running
healthy eating groups to help patients to lose weight. At the start, each
patient has their height measured and is weighed, and their body mass
index (BMI) is calculated. The mean BMI is roughly the same for
patients at each GP surgery. After six months, each patient is weighed
and their BMI is recorded again. One surgery is interested to find out
how successful its patients have been in losing weight, compared
with the whole group. The BMI values of its patients are shown in
Figure 15.1.

The mean BMI for the 14 surgeries as a whole is 26.2 (this is a precisely
known population value), compared with 28.9 for this surgery. It looks as
if this surgery's patients have been less successful, but has their perform-
ance been significantly different? Let us find out, by performing a one-
sample Mest.

The steps are as follows.

1 Work out the standard error (n is 10; s is 4.581; vlO = 3.162):
4.581/3.162 = 1.449. The sample mean minus the population
mean = 28.9 - 26.2 = 2.7. To work out the f-statistic: 2.7/1.449 = 1.863
(to three decimal places here).
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2 Calculate the degrees of freedom (d.f.): 10 - 1 = 9.
3-5 Using the ^-distribution table, look up d.f. = 9, and then read across

this row. Our ^-statistic is in between 1.833 and 2.262. Reading up the
columns for these two values shows that the corresponding two-
tailed P-value is less than 0.1 but greater than 0.05, and is therefore
not significant.

The null hypothesis (in this case, that there is no difference between the
BMI values in this GP surgery and the group as a whole) is not rejected.

To calculate a 95% confidence interval, the steps are as follows.

1 Note the sample mean, standard error and degrees of freedom.
2 Find the value in the two-tailed ^-distribution table in the 0.05 column,

corresponding to the degrees of freedom.
3 Multiply this value by the standard error, and note the result (call it

result 1).
4 Add result 1 to the mean, and note this sum (call it sum a).
5 Subtract result 1 from the mean, and note this sum (call it sum b).
6 The confidence interval is written as:

95% c.i. = (sample mean) ((sum a) —> (sum b}).

Using the above example, the steps are as follows.

1 The sample mean is 28.9, the standard error is 1.449 and there are 9
degrees of freedom.

2 In the ^-distribution table in Appendix 1, find degrees of freedom = 9,
and then read along the line until you come to the 0.05 column - the
value is 2.262.

3 Multiply 2.262 by the standard error (2.262 x 1.449 = 3.278) (result 1).
4 28.9 + 3.278- 32.178 (sum a).
5 28.9 -3.278 = 25.622 (sum b).
6 95% c.i. = 28.9 (25.622 -> 32.178).

Note that the confidence interval includes the mean of the group as a
whole (26.2). This supports the null hypothesis that there is no difference
between the BMI values.

Paired f-test

This test is used to assess the difference between two paired measure-
ments. It tests the null hypothesis that the mean of the difference is zero. In
this case, data are naturally paired or matched (e.g. weight measurements
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from the same subjects at a 6-month interval or data relative to twins or
couples).

The value that we analyse for each pair is the difference between the two
measurements.

where x = mean of the differences and s.e. = standard error of the
differences.

where n — sample size.

where s = standard deviation of the differences and n = sample size.

95% Confidence intervals - paired Mest

where £0.05 = value on ^-distribution table in 0.05 column (two-tailed),
corresponding to appropriate d.f.

Two-sample (unpaired) Mest

This is used where data are collected from groups which are unrelated,
such as the length at one year of a group of infants who were breastfed,
compared with a group who were not breastfed.

where x\ = mean from group 1 and X2 = mean from group 2.

where n\ = sample size for group 1 and nz = sample size for group 2.

s.e. pooled = see below.

Calculating standard deviation and standard error for
the two-sample Mest
If the standard deviations are not appreciably different, use the 'pooled'
standard error:
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where s pooled is calculated in the formula below, n\ = sample size 1 and
H2 = sample size 2.

To calculate a 'pooled' standard deviation:

where si = standard deviation 1, $2 = standard deviation 2, n\ — sample
size 1 and n2 = sample size 2.

If the standard deviations and/or sample sizes are appreciably different, it
is advisable to consult a statistician or someone with advanced statistical
skills.

95% Confidence intervals - two-sample (unpaired)
t-test

where ^o.os — value on ^-distribution table in 0.05 column (two-tailed),
corresponding to appropriate d.f.



Parametric and
non-parametric tests

People often ask about the difference between parametric and non-
parametric tests. We introduced the concept of parameters early in the
book - these are measures of a population, rather than of a sample. Used
in this context, the term refers to the 'population' of the normal distribu-
tion. Parametric tests are performed if a normal distribution can be
assumed. Remember that the t-test also requires an underlying normal
distribution.

However, if the data are clearly not normally distributed, non-parametric
tests can be used. These are also known as distribution-free tests, and they
include the following:

• Wilcoxon signed-rank test - replaces the paired t-test
• Mann-Whitney U-test or Wilcoxon rank-sum test - replaces the unpaired

i-test
• Chi-squared (x2) test -for categorical data
• Kolmogorov-Smirnov two-sample test - compares two frequency

distributions.

The Chi-squared test is described in Chapter 18. The other tests are
covered by several other statistical textbooks (see Further reading).



Correlation and
regression

Correlation and linear regression

Various statistical methods exist for investigating the association between
variables. These include the ^-test (used for investigating the presence of
an association with categorical data - described in the next chapter),
correlation coefficients (which assess the strength of association with interval
or ratio data) and linear regression (which uses one variable to predict
another). The last two methods are not discussed further in the basic
guide, but an understanding of them can be gained from other texts.

Analysis of variance

The statistical tests we have explored so far compare just two statistics
with each other. However, sometimes it is useful to compare a larger
number of groups. For example, you may want to examine the weights of
infants at 1 year of age, in order to assess whether their weight is
influenced by any of several types of milk that they have received since
birth. If the different types of milk are called formula 1, 2, 3, 4 and 5,
respectively, and breast milk, the comparisons shown in Table 17.1 would
be possible.

If you perform a separate z- or Mest for each possible combination, you
will need to do 15 separate tests. As well as being very time-consuming,
performing repeated tests is likely to produce significant results which are
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Table 17.1: Possible combinations for five different types of formula milk
compared with breast milk

Formula 1; Formula 1; Formula 1; Formula 1; Formula 1;
Formula 2 Formula 3 Formula 4 Formula 5 breast milk

Formula 2; Formula 2; Formula 2; Formula 2; Formula 3;
Formula 3 Formula 4 Formula 5 Breast milk Formula 4

Formula 3; Formula 3; Formula 4; Formula 4; Formula 5;
Formula 5 Breast milk Formula 5 Breast milk Breast milk

false. A P-value of 0.05 or less would be expected from 5% (1 in 20) of all
tests performed, even if there were no real differences (Kirkwood, 1988).
This frequency is increased if repeated tests are performed. In other
words, you have a very great risk of making a type 1 error - that is, of
rejecting a true null hypothesis and accepting a false alternative
hypothesis.

A technique called analysis of variance (or ANOVA) allows several
groups to be compared, and indicates whether any significant differences
exist between them. Again, the details of ANOVA are not covered by this
basic guide.



Chi-squared test

So far we have looked at hypothesis tests for continuous variables, from
which summary statistics such as means and medians can be calculated.
However, when we have only categorical data, means and medians
cannot be obtained. For example, it is not possible to calculate the mean
of a group of colours.

The Chi-squared test (Chi is pronounced 'ki', as in 'kind' and is
normally written as x2) overcomes this problem, allowing hypothesis
testing for categorical data. For example, we may wish to determine
whether passive smokers are more likely to develop circulatory disease
than those who are not exposed to smoke. In this example, passive
smoking is the exposure and circulatory disease is the outcome. The chi-
squared test is a non-parametric test.

A good way to start examining the data is to present them in an r x c
table (row x column), also known as a cross-classification or contingency
table). Data are presented in cells, arranged in rows (horizontal) and
columns (vertical). These often appear in the form of a 2 x 2 table (so

Table 18.1: Example of a 2 x 2 table

Outcome present?

Exposure
taken place?

Yes

No

Total

Yes

a

c

a + c

No

b

d

b+d

Total

a + b

c+c/

a+b+c+d



62 • Basic statistics and epidemiology

called because it shows two exposures and two outcomes). An example of
a 2x2 table is shown in Table 18.1.

If there are more than two categories of either exposure or outcome,
then the number of columns or rows is increased, and the table is called
a 2 x n table. More categories can be used if required, in an r x c
(row x column) table.

The Chi-squared test only works when frequencies are used in the cells.
Data such as proportions, means or physical measurements are not valid.
This test is used to detect an association between data in rows and data in
columns, but it does not indicate the strength of any association.

The Chi-squared test is more accurate when large frequencies are used -
all of the expected frequencies should be more than 1, and at least 80% of
the expected frequencies should be more than 5. If these conditions are not
met, the Chi-squared test is not valid and therefore cannot be used. If the
Chi-squared test is not valid and a 2 x 2 table is being used, Fisher's exact
test can sometimes be utilised (the formula for this test is not covered in
this basic guide, but many computer programs will automatically calcu-
late it if sufficiently small expected frequencies are detected within a 2 x 2
table). If there are more than two rows and/or columns, it may be possible
to regroup the data so as to create fewer columns. Doing this will increase
the cell frequencies, which may then be large enough to meet the
requirements. For example, if you have four age groups (0-7, 8-14,
15-21 and 22-28 years), it might be reasonable to combine these to
produce two age groups (0-14 and 15-28 years). However, regrouping
data into fewer categories is a compromise, as the precision that is allowed
by having so many categories will be reduced.

The test statistic is calculated by taking the frequencies that are actually
observed (O) and then working out the frequencies which would be expected
(E) if the null hypothesis was true. The hypothesis (Hi) will be that there is
an association between the variables, and the null hypothesis (Ho) will be
that there is no association between the variables.

The expected frequencies are calculated as follows:

row total x column total
grand total

The expected frequency for each cell can be calculated using a 2 x 2 table
as follows:

cell a: [(a + b) x (a + c)/total]

cellb: [(fl + fe) x (b + d)/total]
cell c: [(a + c) x (c + d)/total]
celld: [(b + d) x (c + d)/total]
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These are then compared using this formula, to produce the x2 statistic:

where O = observed frequencies and E = expected frequencies.

Degrees of freedom (d.f.) are calculated using the following formula:

d.f. = (r-l}x(c-l)

where r = number of rows and c = number of columns.

The greater the difference between the observed and expected
frequencies, the less likely it is that the null hypothesis is true.

Let us look at an example using some real data, as shown in Table 18.2.
A study asks whether Asians with diabetes receive worse treatment in
primary care than non- Asians with diabetes. This is important, since
Asians are more likely to develop diabetes than non- Asians. A number
of variables are studied, including whether patients with diabetes have
received an HbAlc test within the previous year (we mentioned HbAlc in
Chapter 7), as this is a valuable indicator of how successfully diabetes is
being controlled. Having the test performed regularly is important, and is
therefore a valid indicator of healthcare quality in diabetes. We can
calculate that 64.6% (128/198) of Asians received the check, compared
with 74.7% (430/576) of non-Asians. Therefore we know that a lower
proportion of Asian patients were checked, but is there a significant
association between ethnicity and receiving the check? Our null hypo-
thesis is that there is no association between ethnicity and receiving an
HbAlc check.

Table 18.2: Frequencies for HbA1c testing by ethnic group (Source: adapted
from Stewart and Rao, 2000)

HbA1r test done?

Ethnicity of
patient

Asian

Non-Asian

Total

Yes

128
(a)

430
(c)

558
(a+c)

No

70
(b)

146
(d)

216
(b+d)

Total

198
(a +b)

576
(c+d)

774
(a + b+c+d)
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The frequencies for Asian /non- Asian patients with diabetes are
assembled in a 2 x 2 table and tabulated against the frequencies in each
group of patients who have/have not received the HbAlc test, as shown in
Table 18.2.

To calculate x2/ use the following steps.

1 Work out the degrees of freedom (d.f.).
2 Work out the expected frequencies in each of cells a, b, c and d - or more

if it is a larger table.
3 For each cell, subtract the expected frequency from the observed

frequency (O — E).
4 For each cell, square the above result (O - E)2.
5 For each cell, divide this number by the expected frequency

[(0-E)2/E].
6 Add up the results for each cell - this gives you the %2 statistic.
7 Using the %2 distribution table in Appendix 1, look up the d.f. value in

the left-hand column.
8 Read across this row until the nearest values to the left and right of your

X2 statistic can be seen.
9 Your P-value will be less than the P-value at the top of the column to

the left of your x2 statistic and greater than the P-value at the top of
the column to its right. (For example, a x2 statistic of 6.128 with 2 d.f.
falls in between 5.991 and 7.824. The nearest value to its left is 5.991;
the P-value at the top of this column is 0.05. The P-value for your x2

statistic will therefore be less than 0.05, and is written P < 0.05. If your
X2 statistic is 2.683 with 2 d.f., there is no column to its left, so the
P-value will be greater than the column to its right, and is therefore

Using the data for the Asian diabetes study, let us work out %2.

1 There are two rows and two columns:

(r - 1) x (c - 1) = (2 - 1) x (2 - 1) = 1 x 1, so d.f. = 1.

2 Work out the expected frequencies for each cell (to 2 decimal places in
this example):

cell a: [(a + b) x (a + c)/total] = (198 x 558)/774
= 110484/774 = 142.74

cell b: [(a + b)x(b + d) /total] = (198 x 216)/774
= 42768/774 = 55.26



Chi-squared test • 65

Table 18.3: Grid showing calculations for the x2 statistic

a
b
c
d
Total

0

128
70

430
146
774

E
(step 2)

142.74
55.26

415.26
160.74

(0-E)
(step 3)

-14.74
14.74
14.74

-14.74

(0-E2)
(step 4)

217.27
217.27
217.27
217.27

[(0-E2)/E]
(step 5)

1.52
3.93
0.52
1.35
7.32

cell c: [(a + c) x (c + d)/total] = (558 x 576)/774
= 321408/774 = 415.26

cell d: [(b + d) x (c + d)/total] = (216 x 576)/774
= 124416/774 = 160.74.

3-5 It is helpful to construct a grid to aid the following calculations, as
shown in Table 18.3.

6 The sum of all of the (O - E2/E) results is 7.32 - this is the x2 statistic.
7 On the x2 distribution table in Appendix 1, look along the row for

d.f. = 1.
8 Look along the row to find the values to the left and right of the %2

statistic - it lies in between 6.635 and 10.827.
9 Reading up the columns for these two values shows that the corre-

sponding P-value is less than 0.01 but greater than 0.001 - we can
therefore write the P-value as P < 0.01.

Thus there is strong evidence to reject the null hypothesis, and we may
conclude that there is an association between being Asian and receiving
an HbAlc check. Asian patients are significantly less likely to receive an
HbAlc check, and appear to receive a poorer quality of care in this
respect.

Table 18.4: Grid showing calculations for the %2 statistic with Yates' correction

a
b
c
d
Total

0

128
70

430
146
774

E
(step 2)

142.74
55.26

415.26
160.74

[|(O- E)| - 0.5
(step 3)

14.24
14.24
14.24
14.24

] [|(0-E)|-0.5]2 [(
(step 4)

202.78
202.78
202.78
202.78

|(O-E)|-0.5)2/E]
(step 5)

1.42
3.67
0.49
1.26
6.84
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The x2 formula is made more conservative by subtracting 0.5 from the
product of (O — E) at stage 3. We can ignore any minus numbers in the
product of (O — E), and it is thus written as (|O — E|). This becomes
[|(O — E)| — 0.5], and is known as Yates' correction (also called a continuity
correction). It is especially important to use this when frequencies are
small. Note that Yates' correction can only be used for 2 x 2 tables. If Yates'
correction is applied to the above data, we obtain the following result, as
shown in Table 18.4.

Thus x2 = 6.84, which still gives a P-value of <0.01. However, this is
closer to the 0.01 value than the previous x2 °f 7.32. The significance is
therefore slightly reduced.



Statistical power and
sample size

As discussed in Chapter 14, when interpreting a P-value, two types of
error should be recognised:

• type 1 error - rejecting a true null hypothesis, and accepting a false
alternative hypothesis. The probability of making a type 1 error is called
alpha (a).

• type 2 error - not rejecting a false null hypothesis. The probability of
making a type 2 error is called beta (/?), and it will depend on the effect
size.

The significance level is the probability of making a type 1 error (a), and it
is usually set at 5% (0.05).

The power of a study is the probability of rejecting a false null
hypothesis, so it is 1 - /3. This is usually expressed as a percentage.

Statistical power is used in the calculation of sample size. As sample
size increases, so does the ability to reject a false null hypothesis. Beta is
often set at 20%, so the power (1 - /?) is 80%. The calculation of sample
size takes into account a, j3 and the size of the effect considered to be
clinically significant.

The actual sample size calculation formulae for various situations are
discussed in other texts (see Further reading).
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In the first half of this book, we have discussed the main types of data and basic
statistical analysis that are used in healthcare. If there is anything that you are
unsure about, now might be a good time to go back and re-read the particular
section in which it appears.

If you are ready to continue, the second half of the book deals with epidemiology.
Here we shall explore a range of methods, including those that will help you to
measure the amount of disease in groups of people, to search for possible causes of
disease and death, and to try to improve survival by undertaking screening to
identify an illness before the symptoms even develop.



What is
epidemiology?

Epidemiology is the study of how often diseases occur in different
groups of people, and why (Coggon et al., 1997). Medicine often asks
'why has this person got this disease!' and 'what is the best way of
treating them!'. However, epidemiology asks broader questions such
as 'what kind of people get this disease!', 'why do they get it when others
don't!' and 'how can we find out what is generally the best way of
treating people with this disease!' (Department of Public Health and
Epidemiology, 1999).

Epidemiology can be used to formulate strategies for managing
established illness, as well as for preventing further cases. An epidemio-
logical investigation will usually involve the selection of a sample from a
population. This is discussed in Chapters 2 and 3.

People who have a disease or condition that is being studied are
generally referred to as cases. People without the disease are called non-
cases. Epidemiological studies known as case-control studies (see Chapter
27) compare groups of cases with non-cases. Cohort studies (see Chapter 26)
compare groups of people who have been exposed to a particular risk factor
for a disease with other groups who have not been exposed in this way.
When these types of comparisons are made, the non-cases or non-exposed
individuals are referred to as controls. In these types of study, the groups
are called study groups.

Randomised controlled trials (see Chapter 28) often compare a group of
people who are receiving a certain treatment with another group who are
receiving a different treatment or even a 'dummy' treatment called a
placebo. In randomised controlled trials, the groups are usually called
treatment arms.



70 • Basic statistics and epidemiology

A number of techniques exist for measuring disease and evaluating
results. Some of these are explained in this basic guide, together with
definitions of a range of epidemiological terms.



Bias and
confounding

Bias

Epidemiological studies try to provide accurate answers to questions such
as 'what is the prevalence of smoking in this district's population?' or
'what is the additional risk of liver cancer due to previous hepatitis B
infection?'. It is almost certain that the estimates which are obtained are
different to the real prevalence or the real risk. This error in estimating the
true effect is caused by two sources of error - random and systematic error.
Random errors will always occur from time to time (e.g. an investigator
records a temperature measurement incorrectly, or allocates a patient to
treatment group A when they were supposed to be in treatment group B),
but have no particular pattern. Systematic errors happen when the errors
are arising more uniformly (e.g. a certain investigator's temperature
readings are regularly higher than those made by other investigators, or
the mean age of patients in one treatment group is considerably higher
than that in another group). Features of a study that produce systematic
error are generally referred to as bias.

Bias is an undesirable feature of study design that tends to produce
results which are systematically different from the real values. It can apply
to all types of study, and it usually occurs due to faults in the way in
which a study is planned and carried out. In some circumstances, bias can
make the results of a study completely unreliable.

It is very difficult to avoid bias completely. However, it is possible to
limit any problems by seeking out and eliminating potential biases as
early as possible. The ideal time to do this is during the planning stages of
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a study. If detected at a later stage, biases can sometimes (but not always)
be reduced by taking them into account during data analysis and
interpretation. In particular, studies should be scrutinised to detect bias.
Errors in data analysis can also produce bias, and should be similarly
sought out and dealt with. The main types of bias are selection bias and
information bias.

Selection bias
Selection bias occurs as a result of errors in identifying the study
population. It can occur due to factors such as the following.

• Systematically excluding or over-representing certain groups - this is
called sampling bias. For example, a study designed to estimate the
prevalence of smoking in a population may select subjects for interview
in a number of locations, including a city centre. If the interviews are
only conducted on weekdays, the study is likely to under-represent
people who are in full-time employment, and to include a higher
proportion of those who are unemployed, off work or mothers with
children.

• Systematic differences in the way in which subjects are recruited into
different groups for a study - this is called allocation bias. For example, a
study may fail to use random sampling - the first 20 patients who arrive
at a clinic are allocated to a new treatment, and the next 20 patients are
allocated to an existing treatment. However, the patients who arrive
early may be fitter or wealthier, or alternatively the doctor may have
asked to see the most seriously ill patients first.

• Missed responders or non-responders - this is called responder bias. For
example, a study may send questionnaires to members of the control
group. If these subjects are from a different social class to the cases,
there may be differences in the proportion of responses that are
received. Furthermore, controls who are non-cases may see little point
in responding.

Information bias
This is caused by systematic differences in data collection, measurement
or classification. Some common causes of information bias include the
following.

• People suffering from a disease may have spent more time thinking of
possible links between their past behaviour and their disease than non-
sufferers - this is known as recall bias. It may result in systematic
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differences between cases and controls. Cases may therefore report
more exposure to possible hazards.
Some subjects may exaggerate or understate their responses, or deny
that they engage in embarrassing or undesirable activities - this is
called social acceptability bias.
Medical records may contain more information on patients who are
'cases' - this is called recording bias.
Interviewers may phrase questions differently for different subjects, or
write down their own interpretations of what subjects have said - this is
called interviewer bias.
In studies that follow up subjects at intervals, people from certain
groups may tend to be lost to follow-up, or a disproportionate
number of exposed subjects may be lost to follow-up compared with
non-exposed subjects - this is called follow-up bias.
Patients may be systematically misclassified as either having disease or
exposure, and will thus produce misclassification bias.
Some groups may give different responses. For example, older people
of lower social class may be less likely to express dissatisfaction with a
health-related service.
Investigators may look more closely at exposed patients, to try to find
the presence of a disease, or they may be more attentive to certain types
of subjects.

Confounding

Confounding occurs when a separate factor (or factors) influences the risk
of developing a disease, other than the risk factor being studied. To be a
confounder, the factor has to be related to the exposure, and it also has to
be an independent risk factor for the disease being studied.

For example, if a study assesses whether high alcohol consumption is a
risk factor for coronary heart disease, smoking is a confounding factor (also
called a confounder) (see Figure 21.1). This is because smoking is known to
be related to alcohol consumption, and it is also a risk factor for coronary
heart disease.

Age and sex are also common causes of confounding, as well as factors
such as ethnicity and smoking. For example, we know that mortality is
higher in old people, men tend to die earlier than women, African-
Caribbean people are at increased risk of developing hypertension, and
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Figure 21.1: An example of confounding (after Lilienfeld and Stolley
1994).

people who smoke are much more likely than non-smokers to develop
diseases such as lung cancer and coronary heart disease.

The best way to deal with a possible confounding factor is to eliminate
its effect from the study. Methods to achieve this include the following.

• Randomisation - ensuring that samples are randomly selected (see
Chapter 3).

• Matching - in case-control studies (see Chapter 27), controls are matched
to cases at the start of the study, according to particular characteristics
which are known to be present in cases (e.g. age, sex, smoking, ethnic
group, etc.).

• Stratified analysis - dividing subjects into groups at the analysis stage
(e.g. by sex, age group, smokers/non-smokers) and analysing on this
basis. In the above study on high alcohol consumption and coronary
heart disease, it is important to ascertain whether heavy drinkers who
also smoke are more likely to develop coronary heart disease. An excess
of coronary heart disease among this group of heavy drinkers and
smokers will indicate that smoking is acting as a confounder.



Measuring disease
frequency

As stated previously, people who have a disease or condition being studied are
generally referred to as cases. People without the disease are called non-cases.

The terms mortality and morbidity are also used in many epidemiological
studies. Mortality refers to death from a disease. Morbidity means the
situation of living with a disease, and it is often measured in terms of
incidence and prevalence. It is important to distinguish between these two
terms, which are often used incorrectly.

Incidence

This is the number of new cases in a particular time period. For example,
the incidence of lung cancer during 1997 means the number of newly
diagnosed cases of lung cancer during that year. It is calculated as
follows:

number of new cases in a given time period
person years at risk during same time period

Person years at risk means the total amount of time (in years) that each
member of the population being studied (or study population] is at risk of
the disease during the period of interest. In practice, we often do not know
the exact number of person years at risk, so a proxy measure such as the
mid-year population, total list size, etc., can be used.
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Prevalence

This is defined as the proportion of current cases in a population at a given
point in time. For example, the prevalence of angina in the UK is the
proportion of people in the UK who are currently living with diagnosed
angina. It is usually called the point prevalence, and is calculated as follows:

number of cases in the population at a given point in time
total population at the same point in time

Rates of incidence, prevalence and mortality are sometimes described as
crude or specific.

Crude rates

The crude rate refers to the number of occurrences for a whole population.
It is often expressed as a rate per 1000 members of the population, but can
be expressed per 10000 or per 100000 - for example, The total annual
death rate in town X was 11 per 1000'. This is convenient, since there is
only one figure to deal with.

To calculate a crude death rate, simply divide the number of deaths in a
given time period by the number in the population in the same time
period, and then multiply the result by 1000 (for rates per 1000) or 100 000
(for rates per 100 000), etc. If the time period is a particular year (e.g. 1999),
then the mid-year population estimate should be used. Some examples of
crude death rates, and their calculation are shown in Table 22.1.

However, with regard to crude rates it should be remembered that each
population is likely to have a different age/sex structure. Therefore crude

Table 22.1: Grid showing calculations for crude death rates

Example Number of deaths Population Crude death rate Crude death
(a) (b) (to four decimal places) rate per 100000

(alb) x 100000

1
2
3
4
5

18
2

16
14
46

2300
8600

18800
22300
26700

0.0078
0.0002
0.0009
0.0006
0.0017

780
20
90
60

170
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death rates should not be used for making like-for-like comparisons
between populations.

Specific rates

It is often more beneficial to subdivide crude rates into specific rates for age
and sex. This is especially useful because the occurrence of many diseases
varies with age and sex.

Specific rates can take the form of sex-specific rates (giving rates for
males and females separately) or age-specific (quoting rates in specific age
bands, e.g. 0-4, 5-14, 15-24 years, etc.) or age/sex-specific rates (giving
rates for males aged CM:, 5-14 years, etc. and females aged 0—4,5-14 years,
etc). Although these rates provide more information than crude rates, they
are more onerous to evaluate because it is necessary to compare each
group. This is especially problematic if there are many groups.

For specific rates, a crude rate is calculated for each group, allowing the
rates for each group to be compared.

In the example shown in Table 22.2, age-specific death rates are
calculated for deaths of children in three age groups. It is immediately
obvious that there are more deaths in the < 1 year group. This would not
have been apparent from crude rates alone. Indeed, the overall crude death
rate for this group of children is 170 per 100000, as shown in example 5 in
Table 22.1.

The incidence of lung cancer increases with age, and men are generally
at higher risk than women. A comparison of crude lung cancer incidence
rates may indicate little change over a period of 30 years. However, by
using age- and sex-specific rates it might be found that the incidence of
lung cancer is decreasing in younger men, while it is increasing in older
women. This might prompt further investigation into the underlying
reasons for these differences.

Table 22.2: Grid showing calculations for age-specific death rates

Age group
(years)

<1
1-4
5-14
Total

Number of deaths Population Crude death rate Crude death
(a) (b) (to four decimal places) rate per 100000

(alb) x 1 00 000

25
17
4

46

2476
7523

16701
26700

0.0101
0.0023
0.0002

1010
230
20
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As a further example, it was discovered that crude mortality rates for
two seaside towns were very different. These rates were higher in
Bournemouth than in Southampton. This might have suggested that
Bournemouth was a more unhealthy place in which to live. However,
when the deaths were divided into age-specific groups, it became
evident that more people in Bournemouth died after the age of 65
years. Further investigation revealed that Bournemouth contained a
higher proportion of pensioners and was often used as a place of
retirement. The excess deaths could therefore be attributed to the
more elderly population in Bournemouth, rather than to any 'unhealthy'
factors (Coggon et al, 1997).

Standardisation

As was discussed earlier, it can be unwise to draw firm conclusions
from crude rates. Specific rates can provide more accurate and mean-
ingful data, but the results are time-consuming to interpret. One way of
overcoming this problem is to use a standardised rate. This adjusts for
differences in age and sex structures between the populations, allowing
straightforward comparisons to be made. Although age is normally
used in this process, other factors (e.g. ethnic group, etc.) can also be
employed. A single statistic is produced, allowing comparisons between
populations to be made easily.

Standardisation can be calculated using either direct or indirect
methods. Both compare a specific study population with a 'standard
population' (often England and Wales, although other populations can
be used). This is usually carried out for one sex only, or for both sexes
individually.

Direct standardisation
In this method, the number of deaths per 10000 (or per 1000, per
100000, etc.) for each group in the study population is multiplied by
the proportion of individuals in each age group within the standard
population. This produces the expected number of deaths that would
have been experienced by the standard population if it had the same
death rate as the study population. The resulting values for each age
group are then added together to produce an age-standardised death rate
per 10000.

Let us work through the fictional example shown in Table 22.3.
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Table 22.3: Mortality from bowel cancer in women aged 50-65 years, during
1999 in Mediwell

Age group
(years)

50-55
56-60
61-65
Total

Bowel cancer deaths
per 10000 women

in Mediwell
(A)

4.1
8.5

28.4

Proportion of
women aged 50-65 years

in standard population
(B)

0.381
0.332
0.287

Expected deaths
(AxB)

1.562
2.822
8.151

12.535

The following steps can be used.

1 For each age group, multiply the number of deaths per 10000 in the
study population (A) by the proportion in the standard population (B).
This gives the expected number of deaths (A x B) for each age group

2 Add up the expected deaths. This is the standardised death rate per
10000.

Using the data in Table 22.3, we can work out the age-standardised death
rate per 10 000 for women aged between 50 and 65 years in Mediwell.

1 For each age group, multiply the number of bowel cancer deaths per
10 000 (A) by the proportion of women in the standard population (B).
The result is shown in column (A x B), and is the expected number of
deaths.

2 Add up the expected deaths to obtain the age-standardised death rate
per 10000 - this is 12.535.

This figure could be compared with an age-standardised death rate in
another area. The neighbouring town of Stediwell may have an age-
standardised death rate of 15.6 per 10000 for bowel cancer deaths in
women aged 50-65 years. It is clear that Mediwell has the lower age-
standardised rate.

Age-standardised rates for particular local populations can be directly
compared with each other. However, it should be remembered that age-
specific rates are not always available for local populations, and may in
any case be too small to allow accurate estimates to be made.

Indirect standardisation
This is the most commonly used method. It yields more stable results than
direct standardisation for small populations or small numbers of events.
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The figure produced by this method is called the standardised mortality ratio
or SMR.

Death rates for age groups (or other groups) in the standard population
are multiplied by the population of the same groups in the study
population. This produces an 'expected' number of deaths representing
what the number of deaths in the study population would have been, if
that population had the same death rates as the standard population. The
observed (or actual) number of deaths in the study population is then
divided by the total expected number and multiplied by 100. This
produces an SMR. The standard population always has an SMR of 100,
with which the SMR of the study population can be compared. The SMR
figure is actually a percentage. This means that if the study population's
SMR is 130, its death rate is 30% higher than that of the standard
population. If the study population's SMR is 86, then its death rate is
14% lower than that of the standard population.

At this point, it may be helpful to try a worked example of SMR
calculation, as shown in Table 22.4.

The formula for calculating an SMR is:

observed deaths
SMR = ——— x 100

expected deaths

The stages involved in calculating an SMR are as follows.

1 For each age group, multiply the death rates in the standard population
(A) by the number of subjects in the study population (B), and call the
result A x B. This gives the number of expected deaths in the study
population.

2 Add up the expected deaths and call this result E.
3 Add up all of the observed deaths in the study population and call this

result O.

Table 22.4: Mortality from all causes in men aged 30-59 years, during 1999

Age group Observed deaths Death rates for Population of males Expected deaths
(years) in Mediwell males in the aged 30-59 years of males in

standard in Mediwell Mediwell, based on
population (B) males in standard

(A) population
(AxB)

30-39
40-49
50-59
Total

34
82

171
287 (O)

0.00096
0.0027
0.0072

27000
24700
21400

25.92
66.69

154.08
246.69 (E)
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4 Divide the total number of observed deaths (O) by the total number of
expected deaths (E).

5 Multiply the result of O/E by 100 to obtain the SMR.

To calculate the SMR for deaths in men aged 30-59 years in Mediwell, the
following steps are involved.

1 For each age group, multiply the death rates in the standard population
(A) by the number of subjects in the study population (B) to obtain the
number of expected deaths in the study population. The result is shown
in column (A x B) above.

2 Add up the expected deaths. The total number is 246.69 (E).
3 Add up all of the observed deaths in the study population. The total

number is 287 (O).
4 Divide the total number of observed deaths (O) by the total number of

expected deaths (E). This is 287/246.69 = 1.1634.
5 Multiply the result of O/E by 100. This is 1.1634 x 100 = 116.34 or 116.

It can therefore be seen that the age-standardised death rate in Mediwell is
116 - that is, 16% higher than that of the standard population of 100.

An SMR should only be compared with the standard population of 100.
Therefore SMRs for two or more local populations should not be directly
compared with each other.

It is possible to calculate confidence intervals for SMRs. The formula for
a 95% confidence interval is as follows:

where O = observed and E = expected values. (Source: Bland, 2000)

If the confidence interval does not include 100, we can be 95% confident
that the SMR differs significantly from that of the standard population.

Let us calculate confidence intervals for the previous example. We know
that the SMR is 116, O = 287 and E = 246.69.

1 Calculate the square root (yO of O - this is 16.941.
2 Therefore s.e. = (16.941/246.69) x 100 = 0.069 x 100 = 6.9.
3 1.96 x s.e. = 1.96x6.9 = 13.524.
4 95% c.i. = 116 ± 13.524 = 116 (102.476 -> 129.524) or to the nearest whole

numbers 116 (102 -> 130).

We can see that the confidence interval does not include 100, and we can
therefore be 95% confident that the SMR differs significantly from that of
the standard population.
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A hypothesis test can also be performed to test the null hypothesis that
the SMR for the study population = 100 (or in other words, it is the same as
that of the standard population, which is always 100). The following
formula is used to produce a z-score (see Chapter 14):

(Source: Bland, 2000)

Using the previous example again, we can perform a hypothesis test as
follows.

1 Work out the observed value (O) minus the expected
(E) = 287-246.69 = 40.31.

2 Find the square root of E = /E = /Z46.69 = 15.706.
3 z = 40.31/15.706-2.567.
4 Look down each column of the normal distribution table in Appendix 1

to find the z-score (the nearest z-score to 2.567 in the table is 2.57), and
then read across to obtain the P-value. The P-value is 0.0102, which is
significant.

We can therefore reject the null hypothesis that the SMR for the study
population = 100, and use the alternative hypothesis that the SMR is
significantly different from that of the standard population.



Measuring
association in
epidemiology

A number of measures are used to compare the rates of a particular
disease experienced by people who have been exposed to a risk factor for
that disease and those who have not. For example, if we suspect that
smoking is a risk factor for angina, how much more prevalent is angina
among those who smoke than among those who do not?

The most popular measures of association are absolute risk, relative risk,
odds ratio, attributable risk, population attributable risk and number needed to
treat.

A 2 x 2 table can be useful for calculating some measures of association.
As we have already seen in Chapter 18, this splits data up into a number of
cells, as shown in Table 23.1.

Table 23.1: A 2 x 2 table for risk

Disease present?

Exposed to
risk factor?

Yes

No

Total

Yes

a

c

a + c

No

b

d

b + d

Total

a + b

c + d

a+b+c+d
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This 2 x 2 table shows:

• how many patients had a particular disease (cells a + c)
• how many did not have the disease (b + d)
• how many were exposed to a particular risk factor (a + b)
• how many were not exposed to that risk factor (c + d)
• how many had the disease, and were exposed to the risk factor (a)
• how many did not have the disease, but were exposed to the risk factor

(b)
• how many had the disease, but were not exposed to the risk factor (c)
• how many did not have the disease, and were not exposed to the risk

factor (d)
• the total number of subjects (a + b + c + d).

Absolute risk

This is the probability of having a disease, for those individuals who were
exposed to a risk factor. It is calculated as follows:

number of cases of disease in those exposed
number of individuals exposed

When using a 2 x 2 table, absolute risk can be calculated as a/(a + b}.
An example is shown in Table 23.2.
In the example in Table 23.2, if 90 people were exposed to a risk factor,

and 20 of them develop a particular disease, their absolute risk is
20/90 = 0.22 or 22%.

Table 23.2: A 2 x 2 table example for calculating absolute risk

Disease present?

Exposed to
risk factor?

Yes

No

Total

Yes

20
(a)

16
(c)

36
(a + c)

No

70
(b)

94

(CO

164
(b + d)

Total

90
(a + fr)

110
(c + d)

200
(a + b + c + d)
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Absolute risk is of limited practical use, because it takes no account of
the risk in those individuals who have not been exposed to the risk
factor.

Relative risk

Relative risk (or RR) indicates the risk of developing a disease in a group of
people who were exposed to a risk factor, relative to a group who were not
exposed to it.

It is calculated as follows:

, . . . disease incidence in exposed group
relative risk = — : :

 £ ^ —
disease incidence in non-exposed group

• If RR = 1, there is no association between the risk factor and the disease.
• If RR > 1, there is an increased risk of developing the disease, if one is

exposed to the risk factor (e.g. disease = lung cancer; risk factor =
smoking). It suggests that exposure to the risk factor may cause the
disease.

• If RR < 1, there is a decreased risk of developing the disease, if one is
exposed to the risk factor (e.g. disease = colon cancer; risk factor =
eating fresh fruit and vegetables). It suggests that exposure to the risk
factor may protect against the disease.

When using a 2 x 2 table like the one in Table 23.1, relative risk can be
calculated as

Let us work out a relative risk from a real study. Are women who are
undergoing in-vitro fertilisation more likely to suffer a miscarriage in the
first trimester if they have bacterial vaginosis? The data are shown in
Table 23.3.

proportion of disease in exposed group
RR =

proportion of disease in non-exposed group

(a/a + b) 22/61 0.361
(c/c + d) 27/146 0.185

= 0.361/0.185-1.95.

This study reports that women who are undergoing in-vitro fertilisation are
nearly twice (1.95 times) as likely to suffer a miscarriage in the first trimester if
they have bacterial vaginosis.
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Table 23.3: A 2 x 2 table showing miscarriage in first trimester and bacterial
vaginosis status for women undergoing in-vitro fertilisation. (Adapted from Ralph

etal., 1999.)

Miscarriage in first trimester (disease)

Bacterial
vaginosis

(risk factor)

Yes

No

Total

Yes

22
(a)

27
(c)

49
(a + c)

No

39
(b)

119
(d)

158
(b + d)

Total

61
(a + b)

146
(c + d)

207
(a + b + c + d)

Attributable risk

Attributable risk or AR is the excess risk of developing a disease in those
who have been exposed to a risk factor compared with those who have
not.

Attributable risk is especially useful for making decisions for indi-
viduals. For example, how much more likely is an individual to develop
liver cirrhosis if he or she drinks heavily?

Attributable risk is calculated as follows:

disease incidence in exposed group — disease incidence in non-exposed group

or, using a 2 x 2 table: (a/a + b) — (c/c + d).

An attributable risk of 0 indicates that there is no excess risk from
exposure. In the previous relative risk example (see page 85), the
attributable risk of miscarriage in the first trimester to having bacterial
vaginosis is calculated as (22/61)-(27/146) = 0.361-0.185 - 0.176.
This figure can be multiplied by 1000 to obtain the excess number
of first-trimester miscarriages in women with bacterial vaginosis,
which can be attributed to having bacterial vaginosis - this is 176
per 1000. Patients experiencing such events should perhaps be offered
help in finding coping strategies, in order to minimise the stressful
effects involved. Attributable risk should not be calculated for case-
control studies (see Chapter 27).
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Population attributable risk

This assesses how much of a disease in the population can be attributed to
exposure. It is sometimes abbreviated to PAR.

Population attributable risk is essentially the total disease incidence in
the population, minus the incidence in those who have not been exposed
to the risk factor. It can be useful to public health practitioners in deciding
whether to take steps to control the spread of a disease to which the
population is exposed. Population attributable risk should not be
calculated for case-control studies.

Odds ratio

In case-control studies (see Chapter 27), we retrospectively find people
who have already developed a disease and find controls who do not have
the disease but who are otherwise similar. Unfortunately, this means that
we do not know how many people were exposed to a risk factor for the
disease but did not develop it. For this reason, we cannot assume that our
sample is representative of the true population. In these circumstances, the
odds ratio (or OR) is used. The odds ratio figure is interpreted in the same
way as relative risk.

The odds ratio is calculated as follows:

odds that subjects with disease have been exposed to risk factor
Odds ratlO = — : : — : : : £ T—

odds that subjects without disease have been exposed to risk factor

Using a 2 x 2 table, the odds ratio can be calculated as

For example, is there a relationship between adverse life events and
breast cancer?' The data are shown in Table 23.4.

_ odds of subjects with disease being exposed to risk factor
odds of subjects without disease being exposed to risk factor

_ ( « / c ) _ 19/22 0.864
- W) ~ W63 = 0238 ~ °'864/a238 = 3'63

This study reports that women who have experienced greatly threatening life
events in the past five years are 3.63 times more likely to develop breast cancer
than those who have not.
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Table 23.4: A 2 x 2 table showing breast cancer and greatly threatening life
events for women aged 20-70 years undergoing biopsy for a suspicious breast

lesion (adapted from Chen et a/., 1995)

Breast cancer (disease)

At least one greatly
threatening life event

in the previous
5 years (risk factor)

Yes

No

Total

Yes

19
(a)

22
(c)

41
(a + c)

No

15
(b)

63

(CO

78
(b + d)

Total

34
(a + b)

85
(c+of)

119
(a + b + c + d)

Number needed to treat

If a new treatment seems to be more effective than an existing one, the
number needed to treat (abbreviated to NNT) can indicate how much better
that treatment really is. This technique is often used when analysing the
results of randomised controlled trials (see Chapter 28).

Number needed to treat is a measurement of a new treatment's effect-
iveness, compared with that of an existing treatment. It represents the
number of patients who will need to receive the new treatment, in order to
produce one additional successful cure or other desirable outcome. NNT
may also be regarded as a measure of clinical effort expended in order to
help patients to avoid poor outcomes, and is concerned with clinical
significance rather than statistical significance (Sackett et al., 1997).

Unlike some statistical techniques, there is no 'threshold of significance'
with number needed to treat. Judgement needs to be based on factors such
as the NNT value, likely benefits, costs or comparisons with other NNT
values. If the NNT is small, the new treatment is likely to be worthwhile. If
the NNT is large, the new treatment may not be so effective, and careful
thought should be given to its implementation. When evaluating expen-
sive treatments, a small NNT may indicate that consideration should be
given to adopting the expensive treatment, especially if the disease
concerned is relatively rare (however, this is a value judgement - a life
saved from a common disease is just as valuable).

When calculating NNT, we also find a figure called the absolute risk
reduction (ARR). This represents the additional percentage of cures



Measuring association in epidemiology • 89

obtained by using the new treatment, compared with the existing
treatment. In other words, by using the new treatment you are reducing
the patient's risk of not being cured by this percentage.

For example, suppose that 624 out of 807 children with meningitis
survive when treated with drug A, while 653 out of 691 children survive
when a new drug, drug B, is used.

The number needed to treat indicates how many patients would need to
receive the new drug B in order to prevent one additional death (or to
produce one additional survivor).

To calculate the number needed to treat, follow these steps.

1 Find the percentage of patients who had the desired outcome in the
existing treatment group (a).

2 Find the percentage of patients who had the desired outcome in the new
treatment group (b).

3 Subtract b from a to obtain the absolute risk reduction.
4 Divide 100 by this figure, to obtain the number needed to treat.

In the above example:

desired outcome = survival

existing treatment group (a) = drug A

new treatment group (b) — drug B.

1 Percentage of patients who survived on drug A = 624/807 x 100 = 77.3%.
2 Percentage of patients who survived on drug B = 653/691 x 100 = 94.5%.
3 b — a = 17.2. This shows that the absolute risk reduction is 17.2%.
4 100/17.2 = 5.8. This is usually rounded up to the nearest whole number

(i.e. 6).

This shows that six children with meningitis would need to receive the
new drug B in order to prevent one additional death. Because the number
needed to treat is small, this is almost certainly worth doing. The absolute
risk reduction is 17.2%, showing that patients on drug B are 17.2% less
likely to die than if they took drug A.

Causality

Finding an association between the presence of disease and a certain risk
factor does not necessarily mean that exposure to the risk factor has caused
the disease. Other possible factors and potential causes should be identi-
fied and eliminated, including chance findings, biases and confounders.
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Cohort and case-control studies (see Chapters 26 and 27) are normally
used to investigate causality, but cannot necessarily prove its existence.

If causality is suspected, the following questions can help to determine
the strength of evidence.

1 Dose-response - is there an association between the incidence of disease
and the amount of exposure to the risk factor?

2 Strength - are subjects who have been exposed to the risk factor much
more likely to develop the disease than unexposed subjects?

3 Disease specificity - does the risk factor apply only to the disease being
studied?

4 Time relationship - did exposure to the risk factor occur before the
disease developed?

5 Biological plausibility - is what we know about the relationship between
the risk factor and disease consistent with what is already known about
their biology?

6 Consistency - have other investigators working with other populations
at other times observed similar results?

7 Experimental evidence - do randomised controlled trials show that an
intervention can 'cause' outcomes such as increased survival or
decreased disease?



Prevalence studies

Prevalence studies are conducted in order to examine the prevalence of a
particular condition at a certain point in time. Also referred to as cross-
sectional studies, they frequently take the form of surveys.

They are often conducted at local level, and are useful for investigating
disease trends over time, as well as for health service planning. Although
prevalence studies are sometimes used to investigate causality, other
study designs such as cohort and case-control studies (discussed in
Chapter 26 and 27) are generally more suitable. Prevalence studies are
not very useful for examining diseases which have a short duration. These
are comparatively quick and easy to carry out, and are useful for
situations where no suitable routinely collected data are available.

As an example, a district may be interested in finding out how many
people with coronary heart disease (CHD) reside there. A prevalence
study could therefore be commissioned to ascertain the prevalence of
CHD. Questions could be asked about the presence of diagnosed CHD,
plus areas such as diet, smoking, quality of life, family history of CHD,
stroke or diabetes, satisfaction with medical services and opinions about
future services. The results could be used to plan future CHD services in
the district, allowing health professionals to consider whether current
services are appropriate and sufficient. A further prevalence study could
be carried out at a later date to investigate whether the prevalence of CHD
in the district is changing. A survey to establish levels of depression
among students could be used to determine whether additional counsel-
ling services and other forms of student support might be useful. A study
designed to establish the prevalence of taking regular exercise could be
used as part of the planning for a local health promotion programme.

Methods for identifying subjects require careful consideration. Electoral
rolls or health authority records are often used for this purpose. Potential
biases should be identified and steps taken to minimise their effect. Be
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aware that individuals may choose not to respond, and there may be
systematic differences between the kind of people who respond, and those
who do not.

The method of sampling therefore needs to be well planned, and all
groups who may have the condition being studied should be included.
While non-random sampling can be used, randomised sampling is
preferable, as this is more likely to be representative of the population
as a whole. Sampling techniques are discussed in Chapters 2 and 3.

The actual questionnaire or data collection instrument and the way in
which it will be administered should also be carefully chosen and worded.
This is discussed in the next chapter.

Some advantages and disadvantages of
prevalence studies

Advantages Disadvantages
Comparatively cheap and quick. Not useful for conditions which
-c • i • i . . j have a short duration.Fairly simple to carry out and
analyse. Not the first choice for
Useful for healthcare planning investigating causality.
and investigating trends over Sampling and data collection need
time. great care.

Useful when routine data are not
available.



Questionnaires

This is a subject which is often considered to be simple, but in practice
questionnaires can be difficult to do well. Furthermore, a badly designed
questionnaire can completely undermine the results of a study. It is vitally
important to consider what information should be collected and how it
can best be obtained. The following points should be borne in mind.

Planning

Plan everything very carefully. Make sure that everyone involved knows
exactly what they should be doing. Think carefully about what informa-
tion you need to collect, and then consider how this can best be achieved.
Make a draft of the tables and reports you would like to produce, and if
necessary work backwards towards the data you need to collect. Decide
how the questionnaire will be administered - for example, will you send it
through the post, ask people to fill it in on your premises or use telephone
or face-to-face interviews?

Content

Make sure that the data collected can be analysed. For example, do not ask
for dates of birth when you really want to know age (many computer
databases can convert dates of birth to ages, but if you will be analysing
the data manually, by collecting dates you will waste precious time
converting to ages manually). Do not collect unnecessary data, but
avoid collecting so little data that useful conclusions cannot be drawn.
Try to strike a suitable balance.
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Produce questionnaires and data collection forms in a clear and
methodical way. Consider how the data will be analysed. You may wish
to use 'yes/no7 answers, Likert scales and answer selections in preference to
open questions, which can be time-consuming and difficult to analyse.

Remember to keep questionnaires as short as possible. People tend to
discard questionnaires that are too long or which look too complicated.
Aim for no more than one or two sides of A4 paper if possible.

A better response will usually be obtained if you include a paragraph
explaining why the survey is being conducted, and how the information
will be used.

Use clear, simple wording, but try to avoid sounding patronising.
Minimise the possibility of questions being misunderstood (e.g. the
question of 'are you male or female?' may generate 'yes' answers).

Avoid leading questions (e.g. 'do you agree that our clinic provides an
excellent service?'), or the results will be inaccurate and credibility will be
compromised.

Start by asking a simple question that is designed to capture the interest
of the respondent. For example, avoid beginning with a question such as
'what do you think the hospital's priorities for the next year should be?'.
People often react well to the fact that you are taking an interest in them,
so it is usually advisable to begin by asking about areas such as their age,
gender and occupation. Having said this, it is important to be careful not
to put people off by asking too many personal questions at the start.

Piloting

Carry out a short 'dry run' before sending out the first real questionnaire.
Ask a number of friends and colleagues to fill it in first. Even if the
questionnaire is inappropriate for them, the results may well reveal bugs
and other design problems. Try analysing the data from the pilot, too. It is
much easier to make changes at this stage. Starting with a pilot can save
you a great deal of pain later - ignore this advice at your peril!

Distribution and completion

Consider this topic carefully, because the choice of method could crucially
affect the level of response.

Postal questionnaires allow subjects plenty of time to complete the
forms, in the comfort of their own home. However, it should be
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remembered that postal questionnaires may achieve a response rate of
25% or less. They are also expensive, because you need to cover the
cost of postage to the patient, plus the cost of a stamped addressed
envelope. If the questionnaires are numbered, personalised or contain a
patient ID, you will be able to work out who has failed to respond,
and thus have an opportunity to send a reminder. This not only
presents problems of extra cost, but can also potentially compromise
confidentiality.

If patients are asked to complete and hand in the form before they
leave your premises, a much better response rate can be achieved.
Choose this option if possible, and consider making someone available
to help patients to fill in the form. Make sure that you have a supply of
pens available, too. Interviews can be time consuming and expensive,
especially if the interviewer has to visit the subject's home. Telephone
interviews are more impersonal, but are less costly in terms of time and
money.

When using interviewers, ensure that they all receive training in how to
administer the questionnaire. For example, they should be aware that each
question should be delivered in the same way by each interviewer.
Furthermore, interviewers should not ask leading questions or
attempt to interpret answers for respondents. Failure to administer the
questionnaire correctly will result in bias (see Chapter 21).

Questions

A range of different types of question are available, including the
following.

Fill-in answer

Example: How old are you? years

Yes/No

Example: Do you feel that the physiotherapist has spent long enough
with you? (Tick one box)

n Yes n No
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Selection of answers

Example: How long did you have to wait in the clinic before you were
seen by the physiotherapist? (Tick one box)

O Less than 10 minutes
Q Between 10 minutes and half an hour
Q] Over half an hour

Likert scales

This is a method of answering a question by selecting one of a range of
numbers or responses (e.g. 1 = excellent, 2 = good, 3 = fair, 4 = bad,
5 = very bad) in preference to open questions which can yield large
amounts of text that is time-consuming and difficult to analyse.

Example: How do you rate the overall service you received at the
physiotherapy clinic? (Tick one box)

Q Excellent Q Good Q Fair Q Bad Q Very bad

Likert scales can have either an even or an odd number of responses.
Using an odd number gives respondents the chance to opt for the middle
ground (e.g. a choice of excellent/good/fair /bad/very bad allows them to
say that they are neither happy nor unhappy, by choosing 'fair'). Using an
even number avoids this option, compelling them to go either one way or
the other. You need to decide which approach is best for a particular
situation.

Open questions

These can provide much more detailed and precise information than other
types of question, but they are difficult to analyse. Asking 70 people to tell
you about problems they encountered with the service from your depart-
ment will probably result in most responses being worded differently.
Furthermore, some responders may make several separate points in the
same answer. You can, of course, group the responses into categories (e.g.
'receptionist was rude - 3', 'no toilet facilities - 5', 'long waiting times -
10', etc.), but you then risk misinterpreting some responses, which can
result in bias.

Example: If you encountered any problems with our service, please state
them below:
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Confidentiality

It is good practice to emphasise confidentiality. Reassure patients that
their future medical care will not be affected by their response. If you need
to incorporate a patient name or ID on the form, explain that this is being
done to aid the administration of possible reminders, and that it will not
affect confidentiality.

Finally, remember that questionnaires (particularly those dealing with
patient satisfaction) are sometimes regarded as 'happy-sheets'. Respon-
dents tend to err on the side of 'happiness', possibly because they do not
want to upset anyone or they are concerned about receiving poor
treatment in the future. Phrase your questionnaire with this in mind
(e.g. by adding a section that stresses confidentiality and/or anonymity),
in order to maximise your chances of securing accurate and honest
answers).



Cohort studies

Whereas prevalence studies aim to describe how much disease is present
at a particular point in time, cohort and case-control studies aim to
explore what may have caused the disease in the first place.

The first type of study to investigate disease causality is the cohort study
(also called the longitudinal or prospective study). A number of subjects (the
study cohort) are divided into two groups, namely those who have been
exposed to a risk factor and those who have not. The risk factor will be an
exposure which is suspected of causing a particular disease. At the
beginning of the study, members of the study cohort have similar
characteristics and do not appear to have the disease.

Subjects in the study cohort are followed up over a period of time. The
information that is collected on exposure to the risk factor can then be
analysed in order to ascertain how many subjects, both exposed and not
exposed, develop the disease. If there is an excess of disease in the exposed
group, it might be possible to draw conclusions as to whether exposure to
the risk factor is causal.

A cohort study is usually conducted prospectively (looking forward in
time), and over a long period. Retrospective versions (looking back in time)
can also be conducted, and are common in occupational epidemiology
and disease outbreak investigations.

Figure 26.1 shows how a prospective cohort study works.
Suppose that you want to conduct a cohort study to evaluate whether

drinking more than five cups of coffee per day in pregnancy leads to fetal
abnormalities. First, the local hospital (or better still, a number of
hospitals) could provide a list of all newly pregnant women, who could
be invited to participate in the study. Information could be sought on
many factors, including smoking, alcohol consumption, various dietary
aspects, exercise, family history of fetal abnormalities, ethnic group and, of
course, the number of cups of coffee consumed per day. Some of this
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Figure 26.1: Cohort study. After Donaldson and Donaldson (2000).

information could be used to control for confounding. The women would
then be followed up, in order to determine how many give birth to babies
with fetal abnormalities. If a high number of mothers with abnormal
babies had drunk more than five cups of coffee per day (and there were no
significant trends in other factors under observation which might explain
the abnormalities), then it might be possible to link excess coffee drinking
with fetal abnormalities.

Of course, great care needs to be taken in the design of the study,
sample selection and analysis of data. It is vital to look out for possible
sources of bias and confounding, and to allow for these.

Subjects

Always think carefully about the aims of the study, and what types of
subjects should be chosen. Members of the study cohort should be similar,
apart from their exposure to the risk factor. Subjects must not have the
disease of interest at the start of the study, and it is important that no
population groups are systematically missed. In the previous example, the
study cohort is made up of pregnant women. Other studies might use
cohorts composed of workers in a certain industry, people in a specific age
group or residents in a particular location.

Data collection

In the study design, thought should be given to the right method of data
collection. Would a questionnaire suffice, or should interviews involving
specially trained staff be conducted? Will clinical investigations be
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necessary? Data should be collected on other factors or characteristics
which might have a bearing on the outcome. It is vital to be as clear as
possible about what these are, before the study begins, as it may be
impossible to collect them at a later stage. The same items of data should
be collected for both groups, so that like-for-like comparisons can be
made.

Follow-up

Because cohort studies are usually conducted over a period of time
(sometimes several years), they are prone to follow-up bias. The follow-
up stage of the study therefore requires careful planning. An agreement
needs to be reached on how often follow-up should take place. It may be
necessary to follow up at regular intervals, or only at the end of the
study. If the disease of interest has a long latent period, a long follow-up
period will be needed. Subjects may move away, die, or be lost in other
ways. Investigators, too, may move on to other jobs, so that continuity is
lost. A strategy for tracing subjects should therefore be carefully drawn
up, and a plan agreed for investigators to effectively 'hand over' all
details of data, methodologies and other information if they leave the
study.

Data analysis

Relative risk should be used in a cohort study to assess the likelihood of
developing the disease in subjects who have been exposed to the risk
factor, relative to those who have not been exposed to it. Attributable and
population-attributable risks can also be calculated, and the Chi-squared
test can be employed. However, care needs to be taken when interpreting
results, as a strong association does not necessarily indicate a causal
relationship. The criteria for causality described in Chapter 23 should
also be used.
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Some advantages and disadvantages of
cohort studies

Advantages
Allow outcomes to be explored
over time.

The incidence of disease in both
exposed and non-exposed groups
can be measured.

Useful for rare exposures.

Can examine the effects of more
than one exposure.

More representative of the true
population than case-control
studies (see Chapter 27).

Disadvantages
Can take a very long time to
complete.

Diseases with long latent periods
may need many years of
follow-up.

Not so useful for rare diseases.

Can be very expensive.

Careful follow-up of all subjects is
vital.



Case-control studies

The aim of a case-control study is to assess whether historical exposure
to one or more risk factors in people who have a disease is comparable to
that in people who do not have the disease. By making this comparison,
it may be possible to establish whether exposure to the particular
risk factor caused the disease in question, and to examine any inter-
relationships.

Case-control studies are generally easier and quicker to complete than
cohort studies. However, they are prone to certain biases. Whereas cohort
studies are usually prospective (looking forward in time], case-control studies
are retrospective (looking back in time).

In a case-control study, a number of cases are assembled, consisting of
subjects who already have a known disease. In addition, a number of
controls are gathered who do not have the disease, but who are similar in
other respects. Both groups are then investigated in order to ascertain
whether they were exposed to a particular risk factor. If an excess of the
'cases' have been exposed to the risk factor, then it might be possible that
exposure to the risk factor caused the disease.

Figure 27.1 shows how a case-control study works.
For example, suppose that you wish to investigate whether eating fresh

fruit and vegetables protects against colorectal cancer. This study is a little
different to other examples, as it investigates a protective effect rather than
a causal one. Nevertheless, the basic principles are the same. First, a
number of patients who had developed colorectal cancer would be
selected, as well as a group of subjects who did not have colorectal
cancer, but who were similar in other respects. Both groups would be
investigated in order to determine whether their diets had included
regular amounts of fresh fruit and vegetables, and for how long. If an
association was found between cases and controls in the proportion who
ate fruit and vegetables regularly, it might be possible to establish that
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Figure 27.1: Case-control study. After Donaldson and Donaldson (2000).

regular consumption of fresh fruit and vegetables has a protective effect
against colorectal cancer.

Subjects

Two types of subjects need to be identified, namely cases and controls. At
the outset, it may be useful to agree explicit criteria on what type of
patients should be regarded as cases. For example, in a study of patients
with diabetes, it would be important to decide whether 'cases' are patients
with insulin-dependent diabetes mellitus (IDDM) or non-insulin-depend-
ent diabetes mellitus (NIDDM), or both. It also needs to be decided
whether cases should be selected from the population as a whole, or
from certain groups (e.g. based on ethnicity, age or gender). The next stage
is to determine how these cases can be identified. It is best to use newly
diagnosed (incident) cases if possible.

Controls should be similar to the cases in every respect other than
actually having the disease. Selection bias can occur if there are systematic
differences in the way in which cases and controls are recruited into the
study. If the study is being conducted on hospital patients, then hospital-
based patients without the disease should be selected as controls. If cases
are population based, then population-based controls should be used. It
can be easier and cheaper to use hospital patients, as a better response can
be achieved, and recall bias is minimised. However, problems may be
encountered with different exposures being experienced in different
hospitals. Furthermore, patients in hospital are ill, and so may not
represent the population as a whole. It may sometimes be desirable
to use more than one control group if there is uncertainty about the
relationship between disease and exposure.

If large differences exist with regard to the age or sex structure of the
cases and controls, this could seriously affect the accuracy of any
comparisons that are made between them. In order to make the groups
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more comparable and help to reduce confounding, it is often desirable to
match each case to one or more controls. It is usual to match cases to
controls with regard to age, sex and possibly other factors, according to
the design of the study. However, it is unwise to match on too many
factors, as this may artificially alter the characteristics of the subjects who
are selected.

Data collection

In a case-control study, data are collected by surveying subjects (usually
by interview) or collecting information from medical records.

Recall bias is a particular problem in case-control studies. For example,
patients who have a disease are more likely to recall exposures than
patients who have not. Interviews should be structured, asking exactly the
same questions of all patients. However, the fact that data are collected
retrospectively means that there is likely to be a certain amount of
inaccuracy in the information provided by both groups.

When examining medical records, it is important to remember that data
on certain risk factors may be more likely to have been recorded in cases
than in controls (e.g. alcohol consumption in patients with liver cirrhosis).

If any cases have died or cannot be interviewed for some other reason, it
may be possible to collect data from their friends or relatives. Potential
biases should be identified and taken into account.

Data analysis

The odds ratio should normally be used in a case-control study. The Chi-
squared test can also be employed. However, care needs to be taken when
interpreting results, as a strong association does not necessarily indicate a
causal relationship. The criteria for causality described in Chapter 23
should also be used.
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Some advantages and disadvantages of
case-control studies

Advantages
Quicker and cheaper to conduct
than cohort studies.

Allow investigation of more than
one risk factor.

Especially suitable for rare
diseases.

Useful for diseases with long
latent periods.

Disadvantages
Data are retrospective and
therefore prone to both selection
and information biases.

Difficult to establish the time
between exposure and
development of disease.

Subjects do not usually represent
the population as a whole, so
incidence rates cannot be
calculated.

Cannot examine the relationship
between one possible cause and
several diseases.



Randomised
controlled trials

Whereas cohort and case-control studies aim to establish what has caused
a disease, randomised control trials (also called RCTs) are conducted in order
to examine the effectiveness of a particular intervention. These are also
referred to as comparative or experimental studies or clinical trials. Groups of
subjects are recruited by being randomly selected to receive a particular
intervention or treatment. RCTs are usually conducted in order to
compare the effectiveness of a specific treatment against one or
more others. They may also be used for preventional (or prophylactic)
interventions.

For example, imagine that you wish to compare the effectiveness of a
new anti-cancer drug with a current treatment. A group of patients would
be randomly assigned to receive the new drug (group A), and the
remainder would be given an existing drug (group B). Detailed records
would be maintained on factors such as length of survival, side-effects
experienced and quality of life. At the end of the trial, the results for group
A would be compared with those for group B, and conclusions would be
drawn as to which drug was the most effective one.

Usually two groups of subjects are studied - those who receive the
treatment of interest and those who do not. However, some trials use three
or more groups. Very often, a new treatment will be compared with an
existing one, or even with a non-treatment called a placebo. A placebo is
effectively a dummy treatment which appears to be real. Some RCTs are
said to be blind. This means that the patients do not know whether they
have been allocated to the group receiving a new treatment, or an old one,
or a placebo. A double-blind RCT is one in which neither the patients nor
the medical staff know which intervention has been allocated. The practice
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of blinding reduces the likelihood of patients' outcomes being influenced
by their expectation that a new treatment is better or worse, and excludes
the possibility of medical staff managing patients differently if they know
that a certain therapy is being given, whether or not they actually realise it.

In some trials, subjects will receive one intervention for a certain period,
and then be changed over to another intervention. This can be useful when
treatment is subjective rather than curative (e.g. for short-term symptom
relief), and is known as a cross-over trial. Although this is unusual in RCTs,
it is also possible to match pairs of patients on certain characteristics (e.g.
age, sex, tumour staging, disease on left- or right-hand side).

Multi-centre trials involve studying subjects at more than one site. They
will increase the sample size, and are especially useful when insufficient
numbers of subjects can be found at a single site to meet the calculated
sample size required.

Unless it is very large, it is unlikely that a single randomised controlled
trial will be able to demonstrate efficacy adequately. The evidence will be
stronger if more than one RCT obtains similar results. Meta-analysis can be
performed in order to summarise the results of several trials. These aim to
'pool together' the results of trials (provided that it is appropriate to do
so). As the results of all of the included trials are taken into account, a
better overall picture of an intervention's efficacy is obtained. An import-
ant drawback of meta-analyses is that no effort has necessarily been made
to find every study on the intervention of interest, resulting in bias. For
instance, if journals are more likely to publish trials which demonstrate
positive outcomes, the results of negative trials will be overlooked,
resulting in a misleading impression of true efficacy (this is an example
of a bias that has not previously been mentioned, called publication bias).
Furthermore, important elements such as the quality of studies, quality of
life and cost-effectiveness are not normally evaluated. Systematic reviews
attempt to overcome these problems by systematically seeking out all
studies (published, unpublished, abandoned and in progress). As well as
summarising results, systematic reviews usually evaluate the quality of
studies together with quality of life and cost-effectiveness. For this reason,
systematic reviews are currently considered to be the 'gold standard' of
clinical evidence.

Study design

Before commencing an RCT, it is important to agree on explicit eligibility
criteria for deciding what types of subjects are to be included (based on the
characteristics of the disease and the subjects to be studied). If only those



Randomised controlled trials • 109

patients who are most likely to benefit from the treatment are selected, it
should be remembered that they will not represent the whole population
of patients with that particular disease. A decision should also be made as
to what will constitute the end of the trial (e.g. changes in subjects'
condition, death or other physical status). A strict and detailed protocol
should be drawn up which describes the exact features of the trial, the
outcomes to be recorded, the treatments and controls to be used, how
these will be used, and what records will be kept. Once the trial starts,
subjects in both treatment and control groups are followed up until the
end-point is reached. It is likely that an RCT will need a large sample of
subjects. The actual sample size required should be calculated. This is
done using formulae which are not included in this basic text, although
the basic elements of sample size calculation are discussed in Chapter 19.

Ethical issues should be carefully considered at the planning stage.
Subjects should not be exposed to known or potential hazards. It may be
unacceptable to withhold treatment from subjects in a control group (e.g.
it is obviously unethical not to treat patients who have been diagnosed
with cancer). Codes of practice such as those set out in the Treaty of
Helsinki and others published by various organisations provide guide-
lines for dealing with ethical issues. It will almost certainly be necessary to
seek approval from one or more Local Research Ethics Committees
(LRECs) before commencing a trial. Potential subjects should always be
told about the wish to enter them into the trial, and given full details on
how the trial will be conducted. Subjects should be informed and their
written consent obtained before they are randomised into treatment
groups.

If one treatment proves to be significantly superior before the agreed
end-point is reached, the trial is sometimes stopped, although the decision
as to whether to stop is complex and is best taken by experts.

Subjects

The sample of subjects should be representative of the population as a
whole.

Before entering the trial, subjects are randomly allocated to a particular
treatment arm. This aims to ensure that their personal characteristics have
no influence over the treatment arm to which they are allocated. Random
number tables are often used to allocate patients to treatment groups. For
example, the first number in the table can be allocated to the first patient,
the second number to the second patient, and so on. Odd numbers may be
allocated to treatment group A, and even numbers to treatment group B.
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The outcomes of patients who are given a particular treatment are
compared with those of patients in one or more control groups.

If small numbers of patients are involved, or if there are many
prognostic factors affecting how individual patients will respond (e.g.
age, sex, ethnicity), it may be desirable to use stratified allocation. This
method involves randomising separately for each prognostic factor. A
technique called block randomisation (also known as restricted randomisation)
can be used to ensure that there are equal numbers of subjects in each
treatment arm throughout all stages of recruitment. This is achieved by
randomising subjects in small blocks. For example, randomisation could
be carried out in blocks of six subjects at a time, where three subjects
receive treatment A and three receive treatment B.

Randomisation is essential, as it aims to remove bias introduced by
patients' individual characteristics. This makes it more likely that only the
effect of the treatment will influence the results. The process also helps to
reduce allocation bias in the selection of subjects (e.g. preventing a clinician
from selecting only healthier patients to receive a new treatment).
Randomisation controls for known and, more importantly, unknown
confounders if the sample size is large enough.

Once subjects have been allocated to a particular group, they should be
analysed as part of that group - regardless of whether they comply with
their treatment or leave the trial. This is known as being analysed on an
intention-to-treat basis. This means that data are analysed according to how
the subjects were originally intended to be treated. If subjects who refuse
to accept the experimental treatment are given (and analysed on) an
alternative treatment, this will result in bias and will reduce the power
of the trial's results.

Data collection

Data need to be collected at agreed points throughout the trial. It is
advisable to check patient compliance with any treatments given, includ-
ing placebos. Information will be needed about many factors, including
any side-effects of treatment.

Data analysis

For continuous data: hypothesis tests, confidence intervals.
For categorical data: Chi-squared test, relative risk and number
needed to treat.
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For other outcome variables (e.g. trials of independent groups, paired or
matched studies, cross-over trials), different methods exist which are not
described in this basic guide.

Some advantages and disadvantages of
randomised controlled trials

Advantages Disadvantages
Allows effectiveness of a new Expensive and complicated to
treatment to be evaluated. perform.

Provides strong evidence of Patients may refuse treatment -
effectiveness. non-compliance can affect results.

Less prone to confounding than A large sample size is needed,
other study designs. Careful attention fo e(hical i

is needed.

Informed patient consent is
essential.



Screening

Screening is performed in order to identify whether people have a disease
for which they currently have no symptoms. Screening is not performed to
diagnose illness. Instead, it aims to improve the outcomes of those who are
affected, by detecting a disease before its symptoms have developed. If the
disease can be diagnosed and treated at an early stage, illness and
mortality can be reduced.

A screening test should be able to detect disease in the period between
the time when it can be detected using a screening test and the time when
symptoms develop.

In practice, screening tests are never completely accurate. There will
always be a number of false-positive results (in which the test indicates that
a subject has the disease when in reality they do not). False-negative results
can also occur (in which the test indicates that there is no disease present,
when in reality the subject does have the disease). A good screening test
should keep false-positive and false-negative results to an absolute
minimum.

Since 1996, all new screening programmes have to be reviewed by the
UK National Screening Committee (NSC) before they can be introduced in
the UK. Every proposed new screening programme is reviewed against a
set of 19 criteria (see page 114), including the disease, the test, treatment
options and effectiveness and the acceptability of the screening pro-
gramme. The criteria are based on those first formulated by the World
Health Organization (Wilson and Jungner, 1968), but have been updated
to take into account current evidence-based standards and concerns about
adverse effects. The findings of up-to-date research are used to ensure that
the proposed screening test is both effective and cost-effective. Expert
groups and patient representatives also form part of the process.

Nevertheless, many people have unrealistically high expectations of
screening programmes. There is often a dangerous misconception that a
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negative test result guarantees that no disease is present. Moreover, if a
screening programme does not fulfil all of the criteria, it could do more
harm than good (e.g. if patients were expected to undergo a test which
had a risk of serious side-effects, or if the test was unreliable).

The UK National Screening Committee's
criteria for appraising the viability,
effectiveness and appropriateness of a
screening programme

All of the following criteria should be met before screening for a condition
is initiated.

The condition
1 The condition should be an important health problem.
2 The epidemiology and natural history of the condition, including

development from latent to declared disease, should be adequately
understood and there should be a detectable risk factor or disease
marker, and a latent period or early symptomatic stage.

3 All of the cost-effective primary prevention interventions should have
been implemented as far as is practicable.

The test
4 There should be a simple, safe, precise and validated screening test.
5 The distribution of test values in the target population should be

known, and a suitable cut-off level should be defined and agreed.
6 The test should be acceptable to the population.
7 There should be an agreed policy on the further diagnostic investiga-

tion of individuals with a positive test result, and on the choices
available to those individuals.

The treatment
8 There should be an effective treatment or intervention for patients

identified through early detection, with evidence of early treatment
leading to better outcomes than late treatment.

9 There should be agreed evidence-based policies covering which
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individuals should be offered treatment, and the appropriate
treatment to be offered.

10 Clinical management of the condition and patient outcomes should be
optimised by all healthcare providers prior to participation in a
screening programme.

The screening programme
11 There must be evidence from high-quality randomised controlled

trials that the screening programme is effective in reducing mortality
or morbidity.
Where screening is aimed solely at providing information to allow
the person being screened to make an 'informed choice' (e.g. Down's
syndrome, cystic fibrosis carrier screening), there must be evidence
from high-quality trials that the test accurately measures risk. The
information that is provided about the test and its outcome must be
of value and readily understood by the individual being screened.

12 There should be evidence that the complete screening programme
(test, diagnostic procedures, treatment/intervention) is clinically,
socially and ethically acceptable both to health professionals and to
the public.

13 The benefit from the screening programme should outweigh the
physical and psychological harm (caused by the test, diagnostic
procedures and treatment).

14 The opportunity cost of the screening programme (including testing,
diagnosis, treatment, administration, training and quality assurance)
should be economically balanced in relation to expenditure on medical
care as a whole (i.e. value for money).

15 There must be a plan for managing and monitoring the screening
programme and an agreed set of quality assurance standards.

16 Adequate staffing and facilities for testing, diagnosis, treatment and
programme management should be made available prior to the
commencement of the screening programme.

17 All other options for managing the condition should have been
considered (e.g. improving treatment, providing other services), to
ensure that no more cost-effective interventions could be introduced or
current interventions increased within the resources available.

18 Evidence-based information explaining the consequences of testing,
investigation and treatment should be made available to potential
participants to assist them in making an informed choice.

19 Public pressure both to widen the eligibility criteria for reducing the
screening interval and to increase the sensitivity of the testing process
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should be anticipated. Decisions about these parameters should be
scientifically justifiable to the public.

(Reproduced with permission of the UK National Screening
Committee, 2000)

National programmes in the UK include screening for breast cancer,
cervical cancer, plus antenatal and neonatal conditions. There is currently
some debate concerning whether programmes should be established for
diseases such as colon cancer and prostate cancer. Other screening takes
place in various settings, e.g. eye tests for certain patients with disabilities,
urine dip-stick, tests for diabetes, over 75 checks and blood pressure checks.

Evaluating the accuracy of screening tests

A screening test can be evaluated using a 2x2 table, as shown in Table
29.1. It shows:

• how many subjects with a positive result actually have the disease (true
positive) (cell a)

• how many subjects with a positive result do not have the disease (false
positive) (b)

• how many subjects have a positive result (a -f b)
• how many subjects have a negative result (c + d)
• how many subjects with a negative result actually have the disease

(false negative) (c)
• how many subjects with a negative result do not have the disease (true

negative) (d)
• how many subjects actually have the disease (a + c)
• how many subjects do not have the disease (b + d)
• the total number of subjects (a + b + c + d).

Table 29.1: A 2 x 2 table for evaluating a screening test

Disease status

Result of
screening

test

Positive

Negative

Total

Present

a
True positive

c
False negative

a + c

Absent

b
False positive

d
True negative

b + d

Total

a + b

c + d

a + b + c+ d
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There are a number of ways to measure the accuracy of a screening test.
The most commonly used methods are described below.

Sensitivity
This is the proportion of subjects who really have the disease, and who
have been identified as diseased by the test.

The formula for calculating sensitivity is a/ (a + c}.

Specificity
This is the proportion of subjects who really do not have the disease, and
who have been identified as non-diseased by the test.

The formula for calculating specificity is d/(b + d).

Sensitivity and specificity both indicate how accurately the test can detect
whether or not a subject has the disease (this is known as the test's
validity}.

Positive predictive value (PPV)
This is the probability that a subject with a positive test result really has
the disease.

The formula for calculating PPV is a/ (a -f- b).

Negative predictive value (NPV)
This is the probability that a subject with a negative test result really does
not have the disease.

The formula for calculating NPV is d/(c + d}.

Prevalence
This is the proportion of diseased subjects in a screened population (also
called the pre-test probability), and it is the probability of having the disease
before the screening test is performed. It can be especially useful when
evaluating screening tests for groups of people who may have different
prevalences (e.g. different genders, age groups or ethnic groups).

The formula for calculating prevalence in screening is
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Table 29.2: A 2 x 2 table for evaluating a diabetic retinopathy screening test

Diabetic retinopathy

Result of
screening

test

Positive

Negative

Total

Present

3200
(a)

150
(c)

3350
(a + c)

Absent

1400
W

29000
(d)

30400
(b + d)

Total

4600
(a + b)

29150
(C+Gf)

33750
(a + b + c + of)

Suppose that a new screening test has been developed for diabetic
retinopathy. We carry out a study to find out how effective it is in a
population of 33750 patients with diabetes, all aged over 55 years. The
results shown in Table 29.2 are produced. Let us use these data to evaluate
the test.

Sensitivity = a/(a + c) = 3200/3350 = 0.9552 = 96%.
This means that 96% of subjects who actually have diabetic retinopathy
will be correctly identified by the test. This result indicates that only 4%
of subjects with diabetic retinopathy will be wrongly identified as being
disease-free.
Specificity = d/(b + d} = 29000/30400 = 0.9539 = 95%.
This means that 95% of subjects who do not have diabetic retinopathy
will be correctly identified by the test. This result indicates that only 5%
of subjects without the disease will be wrongly identified as having
diabetic retinopathy.
Positive predictive value = a/(a + b)= 3200/4600 = 0.6957 = 70%.
This means that there is a 70% chance that someone who tests positive
does have diabetic retinopathy. This is poor, as there is a 30% chance that
someone with a positive test result is actually disease-free.
Negative predictive value = d/(c + d)= 29000/29150 = 0.9949 = 99%.
This means that there is a 99% chance that someone who tests negative
does not have diabetic retinopathy. This is good, as there is only a 1%
chance that someone with a negative test result will actually have the
disease.
Prevalence = (a + c)/(a + b + c + d) = 3350/33 750 = 0.0993 = 10%.
This means that 10% of the screened population have diabetic retino-
pathy.
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We can conclude that although this screening test appears to be generally
very good, the disappointing positive predictive value of only 70% would
limit its overall usefulness.

We have now reached the end of this basic guide to statistics and epidemiology.
Hopefully, you will have grasped the main elements of these topics, and you may
feel ready to gain a deeper understanding by reading some of the books listed in the
Further reading section on page 145. If you work in the field of healthcare, you
may even be able to start using your new knowledge in a practical way.

However, before doing this, it might be useful to work through the exercises in
Appendix 2. These cover quite a lot of the theories included in this book, and are
followed by a full answer guide in Appendix 3.

Any comments that you may have about this book are most welcome. Please
contact the author via email at contact.us@radcliffemed.com.



Glossary of terms

Term Definition
x A measurement or variable
x Sample mean (called 'x-bar')
X2 Chi-squared value (from the Chi-squared distribution)
S Add together all of the following values (called 'sigma')
IJL Population mean (called 'mu')
^/ Square root
<j Standard deviation for populations
± Plus or minus
/ Divide by (same as '-f-')
< Less than or equal to
> More than or equal to
< Less than
> More than
a. Type 1 error (or 'alpha error')
j3 Type 2 error (or 'beta error')
AR Attributable risk (or absolute risk)
ARR Absolute risk reduction
CI or c.i. Confidence interval
d.f. Degrees of freedom
N or n Sample size
NNT Number needed to treat
NPV Negative predictive value
OR Odds ratio
P or p Probability or significance value
p Observed proportion
PAR Population attributable risk
PPV Positive predictive value
RCT Randomised controlled trial



122 • Basic statistics and epidemiology

RR Relative risk
s Standard deviation for samples
SD or s.d. Standard deviation
SE or s.e. Standard error
SMR Standardised mortality ratio
t f-value (from the ^-distribution)
z Test statistic used in the normal test



Statistical tables

Normal distribution: two-tailed areas
(Altman, 1991)

z

0.00
0.01
0.02
0.03
0.04
0.05

0.06
0.07
0.08
0.09
0.10

0.11
0.12
0.13
0.14
0.15

0.16
0.17
0.18
0.19
0.20

0.21
0.22
0.23
0.24
0.25

0.26
0.27
0.28
0.29
0.30

P

1 .0000
0.9920
0.9840
0.9761
0.9681
0.9601

0.9522
0.9442
0.9362
0.9283
0.9203

0.9124
0.9045
0.8966
0.8887
0.8808

0.8729
0.8650
0.8572
0.8493
0.8415

0.8337
0.8259
0.8181
0.8103
0.8026

0.7949
0.7872
0.7795
0.7718
0.7642

z

0.31
0.32
0.33
0.34
0.35

0.36
0.37
0.38
0.39
0.40

0.41
0.42
0.43
0.44
0.45

0.46
0.47
0.48
0.49
0.50

0.51
0.52
0.53
0.54
0.55

0.56
0.57
0.58
0.59
0.60

P

0.7566
0.7490
0.7414
0.7339
0.7263

0.7188
0.7114
0.7039
0.6965
0.6892

0.6818
0.6745
0.6672
0.6599
0.6527

0.6455
0.6384
0.6312
0.6241
0.6171

0.6101
0.6031
0.5961
0.5892
0.5823

0.5755
0.5687
0.5619
0.5552
0.5485

z

0.61
0.62
0.63
0.64
0.65

0.66
0.67
0.68
0.69
0.70

0.71
0.72
0.73
0.74
0.75

0.76
0.77
0.78
0.79
0.80

0.81
0.82
0.83
0.84
0.85

0.86
0.87
0.88
0.89
0.90

P

0.5419
0.5353
0.5287
0.5222
0.5157

0.5093
0.5029
0.4965
0.4902
0.4839

0.4777
0.4715
0.4654
0.4593
0.4533

0.4473
0.4413
0.4354
0.4295
0.4237

0.4179
0.4122
0.4065
0.4009
0.3953

0.3898
0.3843
0.3789
0.3735
0.3681

z

0.91
0.92
0.93
0.94
0.95

0.96
0.97
0.98
0.99
1.00

1.01
1.02
1.03
1.04
1.05

1.06
1.07
1.08
1.09
1.10

1.11
1.12
1.13
1.14
1.15

1.16
1.17
1.18
1.19
1.20

P

0.3628
0.3576
0.3524
0.3472
0.3421

0.3371
0.3320
0.3271
0.3222
0.3173

0.3125
0.3077
0.3030
0.2983
0.2937

0.2891
0.2846
0.2801
0.2757
0.2713

0.2670
0.2627
0.2585
0.2543
0.2501

0.2460
0.2420
0.2380
0.2340
0.2301
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z

1.21
1.22
1.23
1.24
1.25

1.26
1.27
1.28
1.29
1.30

1.31
1.32
1.33
1.34
1.35

1.36
1.37
1.38
1.39
1.40

1.41
1.42
1.43
1.44
1.45

1.46
1.47
1.48
1.49
1.50

1.51
1.52
1.53
1.54
1.55

1.56
1.57
1.58
1.59
1.60

2.81
2.82
2.83
2.84
2.85

2.86
2.87
2.88
2.89
2.90

P

0.2263
0.2225
0.2187
0.2150
0.2113

0.2077
0.2041
0.2005
0.1971
0.1936

0.1902
0.1868
0.1835
0.1802
0.1770

0.1738
0.1707
0.1676
0.1645
0.1615

0.1585
0.1556
0.1527
0.1499
0.1471

0.1443
0.1416
0.1389
0.1362
0.1336

0.1310
0.1285
0.1260
0.1236
0.1211

0.1188
0.1164
0.1141
0.1118
0.1096

0.0050
0.0048
0.0047
0.0045
0.0044

0.0042
0.0041
0.0040
0.0039
0.0037

z

1.61
1.62
1.63
1.64
1.65

1.66
1.67
1.68
1.69
1.70

1.71
1.72
1.73
1.74
1.75

1.76
1.77
1.78
1.79
1.80

1.81
1.82
1.83
1.84
1.85

1.86
1.87
1.88
1.89
1.90

1.91
1.92
1.93
1.94
1.95

1.96
1.97
1.98
1.99
2.00

2.91
2.92
2.93
2.94
2.95

2.96
2.97
2.98
2.99
3.00

P

0.1074
0.1052
0.1031
0.1010
0.0989

0.0969
0.0949
0.0930
0.0910
0.0891

0.0873
0.0854
0.0836
0.0819
0.0801

0.0784
0.0767
0.0751
0.0735
0.0719

0.0703
0.0688
0.0672
0.0658
0.0643

0.0629
0.0615
0.0601
0.0588
0.0574

0.0561
0.0549
0.0536
0.0524
0.0512

0.0500
0.0488
0.0477
0.0466
0.0455

0.0036
0.0035
0.0034
0.0033
0.0032

0.0031
0.0030
0.0029
0.0028
0.0027

z

2.01
2.02
2.03
2.04
2.05

2.06
2.07
2.08
2.09
2.10

2.11
2.12
2.13
2.14
2.15

2.16
2.17
2.18
2.19
2.20

2.21
2.22
2.23
2.24
2.25

2.26
2.27
2.28
2.29
2.30

2.31
2.32
2.33
2.34
2.35

2.36
2.37
2.38
2.39
2.40

3.10
3.20
3.30
3.40
3.50

3.60
3.70
3.80
3.90
4.00

P

0.0444
0.0434
0.0424
0.0414
0.0404

0.0394
0.0385
0.0375
0.0366
0.0357

0.0349
0.0340
0.0332
0.0324
0.0316

0.0308
0.0300
0.0293
0.0285
0.0278

0.0271
0.0264
0.0257
0.0251
0.0244

0.0238
0.0232
0.0226
0.0220
0.0214

0.0209
0.0203
0.0198
0.0193
0.0188

0.0183
0.0178
0.0173
0.0168
0.0164

0.00194
0.00137
0.00097
0.00067
0.00047

0.00032
0.00022
0.00014
0.00010
0.00006

z

2.41
2.42
2 A3
2.44
2.45

2.46
2.47
2.48
2.49
2.50

2.51
2.52
2.53
2.54
2.55

2.56
2.57
2.58
2.59
2.60

2.61
2.62
2.63
2.64
2.65

2.66
2.67
2.68
2.69
2.70

2.71
2.72
2.73
2.74
2.75

2.76
2.77
2.78
2.79
2.80

P

0.0160
0.0155
0.0151
0.0147
0.0143

0.0139
0.0135
0.0131
0.0128
0.0124

0.0121
0.0117
0.0114
0.0111
0.0108

0.0105
0.0102
0.0099
0.0096
0.0093

0.0091
0.0088
0.0085
0.0083
0.0080

0.0078
0.0076
0.0074
0.0071
0.0069

0.0067
0.0065
0.0063
0.0061
0.0060

0.0058
0.0056
0.0054
0.0053
0.0051
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The f-distribution (Altman, 1991)

Degrees of
freedom

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

36
37
38
39
40

41
42
43
44
45

Two-tailed probability (P)

0.2

3.078
1.886
1.638
1.533
1.476

1.440
1.415
1.397
1.383
1.372

1.363
1.356
1.350
1.345
1.341

1.337
1.333
1.330
1.328
1.325

1.323
1.321
1.319
1.318
1.316

1.315
1.314
1.313
1.311
1.310

1.309
1.309
1.308
1.307
1.306

1.306
1.305
1.304
1.304
1.303

1.303
1.302
1.302
1.301
1.301

0.1

6.314
2.920
2.353
2.132
2.015

1.943
1.895
1.860
1.833
1.812

1.796
1.782
1.771
1.761
1.753

1.746
1.740
1.734
1.729
1.725

1.721
1.717
1.714
1.711
1.708

1.706
1.703
1.701
1.699
1.697

1.696
1.694
1.692
1.691
1.690

1.688
1.687
1.686
1.685
1.684

1.683
1.682
1.681
1.680
1.679

0.05

12.706
4.303
3.182
2.776
2.571

2.447
2.365
2.306
2.262
2.228

2.201
2.179
2.160
2.145
2.131

2.120
2.110
2.101
2.093
2.086

2.080
2.074
2.069
2.064
2.060

2.056
2.052
2.048
2.045
2.042

2.040
2.037
2.035
2.032
2.030

2.028
2.026
2.024
2.023
2.021

2.020
2.018
2.017
2.015
2.014

0.02

31.821
6.965
4.541
3.747
3.365

3.143
2.998
2.896
2.821
2.764

2.718
2.681
2.650
2.624
2.602

2.583
2.567
2.552
2.539
2.528

2.518
2.508
2.500
2.492
2.485

2.479
2.473
2.467
2.462
2.457

2.453
2.449
2.445
2.441
2.438

2.434
2.431
2.429
2.426
2.423

2.421
2.418
2.416
2.414
2.412

0.07

63.657
9.925
5.841
4.604
4.032

3.707
3.499
3.355
3.250
3.169

3.106
3.055
3.012
2.977
2.947

2.921
2.898
2.878
2.861
2.845

2.831
2.819
2.807
2.797
2.787

2.779
2.771
2.763
2.756
2.750

2.744
2.738
2.733
2.728
2.724

2.719
2.715
2.712
2.708
2.704

2.701
2.698
2.695
2.692
2.690

0.001

636.619
31 .599
12.924
8.610
6.869

5.959
5.408
5.041
4.781
4.587

4.437
4.318
4.221
4.140
4.073

4.015
3.965
3.922
3.883
3.850

3.819
3.792
3.768
3.745
3.725

3.707
3.690
3.674
3.659
3.646

3.633
3.622
3.611
3.601
3.591

3.582
3.574
3.566
3.558
3.551

3.544
3.538
3.532
3.526
3.520
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Degrees of
freedom

46
47
48
49
50

51
52
53
54
55

56
57
58
59
60

70
80
90

100

110
120
130
140
150

Two-tailed probability (P)

0.2

1.300
1.300
1.299
1.299
1.299

1.298
1.298
1.298
1.297
1.297

1.297
1.297
1.296
1.296
1.296

1.294
1.292
1.291
1.290

1.289
1.289
1.288
1.288
1.287

0.1

1.679
1.678
1.677
1.677
1.676

1.675
1.675
1.674
1.674
1.673

1.673
1.672
1.672
1.671
1.671

1.667
1.664
1.662
1.660

1.659
1.658
1.657
1.656
1.655

0.05

2.013
2.012
2.011
2.010
2.009

2.008
2.007
2.006
2.005
2.004

2.003
2.002
2.002
2.001
2.000

1.994
1.990
1.987
1.984

1.982
1.980
1.978
1.977
1.976

0.02

2.410
2.408
2.407
2.405
2.403

2.402
2.400
2.399
2.397
2.396

2.395
2.394
2.392
2.391
2.390

2.381
2.374
2.368
2.364

2.361
2.358
2.355
2.353
2.351

0.01

2.687
2.685
2.682
2.680
2.678

2.676
2.674
2.672
2.670
2.668

2.667
2.665
2.663
2.662
2.660

2.648
2.639
2.632
2.626

2.621
2.617
2.614
2.611
2.609

0.001

3.515
3.510
3.505
3.500
3.496

3.492
3.488
3.484
3.480
3.476

3.473
3.470
3.466
3.463
3.460

3.435
3.416
3.402
3.390

3.381
3.373
3.367
3.361
3.357
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The Chi-squared (\2) distribution
(Altman, 1991)

Degrees o
freedom

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

f

0.2

1.642
3.219
4.642
5.989
7.289

8.558
9.803

1 1 .030
12.242
13.442

14.631
15.812
16.985
18.151
19.311

20.465
21.615
22.760
23.900
25.038

26.171
27.301
28.429
29.553
30.675

Two-tailed probability (P)

0.1

2.706
4.605
6.251
7.779
9.236

10.645
12.017
13.362
14.684
15.987

17.275
18.549
19.812
21 .064
22.307

23.542
24.769
25.989
27.204
28.412

29.615
30.813
32.007
33.196
34.382

0.05

3.841
5.991
7.815
9.488

1 1 .070

12.592
14.067
15.507
16.919
18.307

19.675
21 .026
22.362
23.685
24.996

26.296
27.587
28.869
30.144
31.410

32.671
33.924
35.172
36.415
37.652

0.02

5.412
7.824
9.837

1 1 .668
13.388

15.033
16.622
18.168
19.679
21.161

22.618
24.054
25.472
26.873
28.259

29.633
30.995
32.346
33.687
35.020

36.343
37.659
38.968
40.270
41.566

0.01

6.635
9.210

1 1 .345
13.277
15.086

16.812
18.475
20.090
21 .666
23.209

24.725
26.217
27.688
29.141
30.578

32.000
33.409
34.805
36.191
37.566

38.932
40.289
41 .638
42.980
44.314

0.001

10.827
13.815
16.268
18.465
20.517

22.457
24.322
26.125
27.877
29.588

31.264
32.909
34.528
36.123
37.697

39.252
40.790
42.312
43.820
45.315

46.797
48.268
49.728
51.179
52.620
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Exercises

Exercise 1

You are a manager at a large general hospital. A consultant oncologist has
approached you to suggest that the hospital allows the use of a costly new
drug for the treatment of breast cancer. She refers to a recently published
study of the drug. In the study, patients were randomised to receive either
the new drug or a standard treatment. Mortality was recorded within the
first year and then in the subsequent two years. The authors calculated a
relative risk for mortality for the new drug compared with standard
treatment.

The results of the study showed the relative risk of death in the first year
to be 0.75 when comparing the new drug with standard treatment. The
relative risk for death up to three years was 0.82.

a What is a relative risk and how is it calculated?
b Interpret the above relative risk values.
c List up to three other aspects you might wish to consider before

deciding whether or not to allow the use of the new drug.

Exercise 2

The results of a trial show that patients from a clinic who were taking a
new antihypertensive drug had a mean diastolic blood pressure of
79.2 mmHg (SE 1.9), while the mean diastolic blood pressure for patients
in the same clinic (from data collected over the past ten years) who were
receiving standard treatment was 83.7 mmHg.
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a Calculate a z-score and a P-value for these results.
b Is the difference between the two mean blood pressures statistically

significant?
c Explain why or why not.
d Calculate a 95% confidence interval for the mean blood pressure with

the new drug.
e How would you interpret the results in the light of this?
f Briefly discuss whether you think that P-values are more useful than

confidence intervals.

Exercise 3

A total of 109 men were studied in order to investigate a possible association
between alcohol consumption and gastric cancer. Two groups of patients
were studied. One group of men who had been newly diagnosed with
gastric cancer at three general hospitals was compared with another group
randomly selected from male patients who had attended a range of surgical
outpatient clinics during the same period. Each patient was asked about
their history of alcohol consumption, and was categorised according to their
weekly alcohol consumption. High alcohol consumption was defined as
more than 28 units per week.

a What type of study was this?
b What are the advantages of this type of study?
c What are the disadvantages of this type of study?
d What confounding factors might be present?

It was found that 35 men had consumed more than 28 units of alcohol per
week. A total of 54 men had gastric cancer, 22 of whom had a high alcohol
intake.

e Construct a suitable table displaying the results of this study,
f What is the most appropriate measure of association for this situation?
g Calculate the measure of association for this study,
h Interpret this result.
i Does this study prove that high alcohol consumption causes gastric

cancer?

Exercise 4

Over lunch one day, a cardiologist colleague tells you that he is concerned
that several of his patients who are taking a brand new drug for
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hyperlipidaemia are at increased risk of developing non-Hodgkin's
lymphoma. He says that several of his patients on another treatment
(with certain similarities, which was introduced five years ago) have
developed lymphoma, and he is concerned that patients who are taking
the new preparation may suffer a similar fate. There is no trial evidence
to support this claim, from either before or since the time when the new
drug was licensed. Your colleague is interested in conducting some type
of study to monitor his own patients who will be taking this new drug
over the next couple of years, and he asks your advice about what to
do.

a Suggest a suitable type of study to investigate this.
b What are the advantages of this type of study?
c What problems might you experience with this type of study?
d What confounding factors might you encounter?
e How could you minimise the effect of these?
f When you have data from the study, what measure of association

would you normally use?
g Explain what this measure of association means,
h What method might you use to examine the level of statistical

significance?
i If a strong association and/or statistical significance is reached, would

this mean that the new drug causes lymphoma? How can causal
relationships be established?

Exercise 5

You are working for the health authority in a district called Wellsville,
where the Director of Public Health is concerned that the death rate for
females aged 35-64 years seems to be very high. You have been asked to
investigate this.

You have access to local population figures and data on death rates in
the standard population. All data are available categorised into age
groups of 35̂ 14, 45-54 and 55-64 years. These data are shown below.
You also know that the total number of deaths for women aged 35-64
years in Wellsville is 482.

You decide to apply death rates for three women's age groups in the
standard population to the age structure for local women in the same age
groups, in order to produce a standardised measure of death.
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Age-specific death rates for all women in standard population

Age group (years) Death rate
35-44 0.00076
45-54 0.0032
55-64 0.0083

Population of women aged 35-64 years in Wellsville

Age group (years) Population
35^4 32000
45-54 27400
55-64 23900

a What type of standardisation is described here?
b Use the above data to work out the total number of expected deaths in

Wellsville, and state these for each of the three age groups,
c Calculate an appropriate standardised death rate measure for

Wellsville.
d What is this measure called?
e What conclusions can you draw from this with regard to the local death

rate?
f Work out a 95% confidence interval around this measure. What

conclusions can you draw from this?
g Perform a test of statistical significance on the measure. What does this

actually test with regard to the standardised death rate measure you
have calculated? What is the z-score? Does this appear to be statistically
significant?

h Does the result obtained from (g) change your conclusions? Why or
why not?

Exercise 6

A recent study compared postoperative infection rates for a standard
orthopaedic procedure with those for a new procedure. The study
protocol claimed that roughly equal numbers of patients from 20
preoperative assessment clinics were to be randomly allocated either the
new treatment or the standard procedure.

a What type of study is described here?
b What are the main advantages of this type of study?
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In each clinic, the first 20 patients received the new treatment, while the
next 20 patients were allocated the standard procedure.

c Comment on this allocation procedure.
d What effect might this allocation procedure have on the results of the

study?

The results of the study showed that 48 out of 200 patients who underwent
the standard procedure developed an infection, while 32 out of 200
patients who received the new procedure developed an infection.

e Calculate an appropriate measure of association for the above results.
f What is your interpretation of this?
g What test could you use to find out whether the association was

statistically significant?
h Calculate the appropriate test statistic and P-value.
i Calculate the number needed to treat,
j What does the figure for the number needed to treat that you have

calculated mean?
k Taking your previous answers into account, do you feel that the new

procedure is really better than the standard procedure?

Exercise 7

Your local health authority has been approached by a manufacturer who
has developed a simple screening test for prostate cancer. The test involves
taking a sample of blood which is sent away to the local district hospital's
pathology department, and results are available within five working days.
Each test costs £6.87. The health authority is considering offering this test
to all male residents aged over 50 years as part of a screening programme,
and has asked you to advise them on whether or not to adopt it.

You contact the manufacturer to request data on its efficacy, and you
duly receive an unpublished paper containing the following table.

Prostate cancer?

Result of
test

Positive

Negative

Total

Yes

572

29

601

No

67

4983

5050

Total

639

5012

5651
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a Calculate the sensitivity of the test. What does this mean?
b Calculate its specificity. What does this mean?
c Calculate its positive predictive value. What does this mean?
d Calculate its negative predictive value. What does this mean?
e What do you think of the accuracy of this test?
f How does it match up to each of the four criteria for a screening test?
g Would you recommend that your health authority adopts this screening

programme and test?
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Answers to exercises

Exercise 1

a A relative risk (or RR) indicates the risk of developing a disease in a
group of people who were exposed to a risk factor, relative to a group
who were not exposed to it.

It is calculated as follows:

_ disease incidence in exposed group
disease incidence in non-exposed group

Or, using a 2x2 table:

b The relative risks mean that patients who are receiving the new drug
are less likely to die at 1 and 3 years. Mortality was reduced by 25% in
the first year and by 18% at up to 3 years.

c These could include looking for other studies on the same drug, to
check whether they showed different results. Better still, look for a
meta-analysis or systematic review, which would combine the results of
other studies to produce an overall (and more precise) result. Find out
whether any new trials are expected to begin or end in the near future.
Is longer-term follow-up planned for any studies? What side-effects are
associated with the new drug? Have economic considerations such as
cost-effectiveness and quality of life been studied?
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Exercise 2

a z = (x- At)/s.e. = (79.2 - 83.7)/1.9 = 2.37.
Using the normal distribution table, a z-score of 2.37 produces a P-value
of 0.0178.

b The difference between the two mean values is statistically significant.
c Because the P-value is less than 0.05 (< 0.05 being the usual threshold of

statistical significance).
d 95% c.i.=x± 1.96 x s.e. = 79.2 ± (1.96 x 1.9)

= 79.2 ± 3.72 = 75.5 -> 82.9 (to one decimal place).
e The confidence interval shows that the true diastolic blood pressure in

the population lies between 75.5 and 82.9, with 95% confidence. The
confidence interval is quite narrow. The upper limit does not quite
reach the mean for patients receiving standard treatment (83.7), but
comes quite close to it. Some caution is therefore suggested.

f P-values only show whether a result is statistically significant, whereas
confidence intervals show where the true value lies in the population
with 95% confidence, and also indicate significance if the limits do not
cross the value with which the sample value is being compared. The
confidence interval arguably gives more information; it is useful to
present it in combination with a P-value.

Exercise 3

a This is a case-control study.
b It is quicker and cheaper than a cohort study, especially suitable for rare

diseases, allows investigation of more than one risk factor, and is useful
for diseases with long latent periods.

c The data are retrospective, so are prone to both selection and informa-
tion biases. It is difficult to establish the time between exposure and
development of disease. Subjects do not usually represent the popula-
tion as a whole, so incidence rates cannot be calculated, and it is not
possible to examine the relationships between one possible cause and
several diseases.

d Confounding factors include age, diet, ethnic group, smoking and
socio-economic class.



Appendix 3 • 137

Gastric cancer?

High alcohol
consumption

Positive

Negative

Total

Yes

22
(a)

32
(c)

54

No

13
(b)

42
(d)

55

Total

35

74

109

f Odds ratio.
g Odds ratio = (a/c)/(b/d) = (22/'32)/'(13/42) - 0.6875/0.3095 = 2.22.
h Men with alcohol consumption of over 28 units per week are 2.22 times

more likely to develop gastric cancer than those whose weekly con-
sumption is 28 units or less.

i No. It is possible that other factors may have been responsible for the
gastric cancer, so more research is needed to establish causality.

Exercise 4

a Cohort study.
b It allows outcomes to be explored over time, the incidence of disease in

both exposed and non-exposed groups can be measured, it is useful for
rare exposures, it can examine the effects of more than one exposure,
and it is more representative of the true population than case-control
studies,

c It can take a very long time to complete, diseases with long latent
periods may need many years of follow-up, it is not so useful for rare
diseases, it can be very expensive, and careful follow-up of all subjects
is vital,

d Possible confounders include age, sex, ethnic group, smoking status
and socio-economic status.

e Use stratification, matching and random selection of subjects,
f Relative risk is normally used,
g The risk of developing a disease in a group of people who were exposed

to a risk factor, relative to a group who were not exposed to it.
h Methods of examining statistical significance include hypothesis

(e.g. normal test or Mests) and Chi-squared tests,
i Not necessarily - the disease could be caused by other factors, and this
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possibility merits further investigation. If other possible factors and
potential causes can be eliminated (including chance findings, biases
and confounders), the presence of the following can provide strong
evidence of causality: dose-response, strength, disease specificity, time
relationship, biological plausibility and consistency (see Chapter 23).

Exercise 5

a Indirect standardisation.
b 35-44 years (0.00076 x 32 000) - 24.32

45-54 years (0.0032 x 27 400) = 87.68
55-64 years (0.0083 x 23 900) = 198.37
Expected number of deaths = 24.32 + 87.68 + 198.37 = 310.37.

c SMR = (observed deaths /expected deaths) x 100
Observed deaths = 482 Expected deaths = 310.37
Therefore SMR = (482/310.37) x 100 - 155.

d Standardised mortality ratio or SMR.
e The Wellsville death rate is 55% higher than that of the standard

population.
f First calculate the standard error (s.e.) for the SMR, and then work out

the confidence interval:
SMR ±1. 96 x s.e.

where O = observed deaths and E = expected deaths.
So

95% c.i. = 155 ± (1.96 x 7.073) = 155 ± 13.863.
95% c.i. 155 (141.137 -> 168.863) or, using whole numbers, 155 (141 -> 169).
The confidence interval does not span 100 and is arguably not too wide.
The Wellsville SMR appears to differ significantly from that of the
standard population.

g z = (O - E)/VE) = (482 - 310.37)/v
/310.37 = (482 - 310.37)/17.617

= 171.63/17.617 - 9.74.
This tests the null hypothesis that the SMR for Wellsville = 100.
Using the normal distribution table, a z-score of 9.74 produces a P-value
of < 0.00006 (the highest z-value covered by the normal distribution
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table in this book is 4.00), which is significant. We can reject the null
hypothesis that Wellsville's SMR = 100, and thus the alternative
hypothesis that the SMR is different,

h No. The 95% confidence interval also indicates significance.

Exercise 6

a This is a randomised controlled trial (RCT).
b It allows the effectiveness of a new treatment to be evaluated, it

provides strong evidence of effectiveness, and it is less prone to
confounding than other study designs.

c Possible biases include the following. The patients were not randomly
allocated - using the first 20 patients is biased, as these patients could
have arrived first because they were least ill or most ill, they could have
been private patients, or they could have arrived early because they
used hospital transport due to inability to travel independently. Select-
ing patients in this way means that they could have been systematically
different to the controls.

d This could invalidate the results of the trial - this 'RCT' is not
randomised!

e
Infection?

Which
procedure?

New

Standard

Total

Yes

32
(a)

48
(c)

80
(a + c)

No

168
(b)

152
(d)

320
(b + d]

Total

200
(a + b)

200
(c + rf)

400
(a + b + c + of)

The appropriate measure is relative risk.

00 a/a + b 32/200
KK =

0.16
O24

= 0.67.
c/c + d 48/200

f Patients undergoing the new procedure are 33% less likely to get a
postoperative infection than those undergoing the standard procedure,

g Chi-squared test.
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h Work out the expected frequencies for each cell:

cell a: [(a + b) x (a + c)/total] = (200 x 80)/400 = 40.
cell b: [(a + b ) x ( b + d)/total] - (200 x 320)/400 = 160.
cell c. [(a + c) x (c + d)/total] = (80 x 200)/400 - 40.
cell d: [(b + d) x (c + d)/total] = (320 x 200)/400 = 160.

a
b
c
d
Total

O

32
168
48
152
400

E

40
160
40
160

(0-E)

-8
8
8
-8

(0-E2)

64
64
64
64

[(0 - E2)/E]

1.60
0.40
1.60
0.40
4.00

The value of %2 is 4.0 and d.f. = 1. Use the Chi-squared distribution table
to look up the P-value. The P-value is < 0.05, which is statistically
significant.
To work out 2 with Yates' correction:

a
b
c
d
Total

O

32
168
48
152
400

E [|

40
160
40
160

(0-E

7
7
7
7

^ i n RI [n ~ U-°J I

5
5
5
5

(0-E)

56
56
56
56

I-0-5]2 [(|

25
25
25
25

(0-E)|

1
0
1
0
3

-0.5)2/E]

41
35
41
35
52

Using Yates' correction produces a %2 value of 3.52. P is now > 0.05, which
is not statistically significant.

i NNT = 24% -16% = 8%. 100/8 = 22.5 or 13 (rounded to nearest whole
number).

j Around 13 patients will need to be treated with the new procedure in
order to prevent one additional infection.

k The new procedure does not appear to be significantly better than the
standard procedure. Although RR = 0.67, representing a 33% reduction
in risk, the Chi-squared test with Yates' correction is not significant. The
NNT is fairly high. Also remember that treatment allocation was not
random.
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Exercise 7

a Sensitivity = a/(a + c)= 572/601 = 0.952 or 95.2%. This is the proportion
of subjects who really have the disease, and who have been identified as
diseased by the test.

b Specificity = d/(b + d) = 4983/5050 = 0.987 or 98.7%. This is the propor-
tion of subjects who really do not have the disease, and who have been
identified as disease-free by the test.

c PPV = a/(a + b)= 572/639 = 0.895 or 89.5%. This is the probability that
a subject with a positive test result really does have the disease.

d NPV = d/(c + d)= 4983/5012 = 0.994 or 99.4%. This is the probability
that a subject with a negative test result really does not have the disease.

e The overall accuracy is good, although the PPV is only 89.5%; 100%
cannot be realistically achieved; false-positives and false negatives are
low.

f It seems to be simple, safe and acceptable. The health authority has not
commented on the distribution of test values and cut-off levels, or
agreed a policy on further investigations of subjects with a positive
result or what their choices might be - these items require agreement
and clarification. However, the low PPV could indicate problems with
precision. Also see answer to (g) below.

g Although the test sounds reasonable on the basis of the study provided,
further evidence is required before the screening programme should be
adopted. The study supplied by the manufacturer is unpublished - this
may indicate that it has not been considered to be of high enough
quality for publication. It would be worthwhile searching for other
published and unpublished material, and seeking further details from
the manufacturer. The test should be compared with alternative screen-
ing programmes. Even if strong evidence of the test's accuracy is
established, the health authority will of course need to consider all of
the UK National Screening Committee's criteria and make the
appropriate arrangements before implementing the programme.
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a (alpha) errors 67
absolute risk 84-5
absolute risk reduction (ARR) 88-9
additive rule, probability 45, 46
allocation bias 72, 110
allocation, stratified 110
alpha (a) errors 67
alternative hypotheses (Hi) 47-50
analysis of variance (ANOVA) 59-60
AR see attributable risk
ARR see absolute risk reduction
association

Chi-squared test 62-6
measuring 83-90
variables 62-6

attributable risk (AR) 86-7
average 23-5

(3 (beta) errors 67
bar diagrams 12-13
beta (/3) errors 67
bias 71-3

allocation 72, 110
case-control studies 103
defined 7
follow-up 73
information 72-3
interviewer 73
misclassification 73
publication 108
questionnaire 95
recall 72-3
recording 73
responder 72

sampling 72
selection 72
social acceptability 73

bimodal groups 25
binomial distribution 37
biological plausibility, causality strength

of evidence 90
blind RCTs 107-8
block randomisation, RCTs 110

X2 (Chi-squared) test 57, 61-6
case-control studies 105
tables 127

case-control studies 103-6
advantages 106
bias 103
causality 89-90
data analysis 105
data collection 105
disadvantages 106
epidemiology 69
OR 87-8
subjects 104-5

cases 69, 75
case-control studies 103, 104-5

categorical data, cf. numerical data 19-21
causality 89-90
centiles 27-8
central tendency 23-5
Chi-squared (%2) test 57, 61-6

case-control studies 105
tables 127

CI; c.i. see confidence intervals
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clinical trials see randomised controlled
trials

cluster sampling 8
cohort studies 99-102

advantages 102
causality 89-90
data analysis 101
data collection 100-1
disadvantages 102
epidemiology 69, 99
follow-up 101
subjects 100

comparative studies see randomised
controlled trials

computers 2
caveats 21
random number list 7, 8
see also software

conclusions, drawing 1, 2
conditional probabilities 44-5
confidence intervals (CI; c.i.) 33, 39^1

one-sample t-test 53-4
paired f-test 55
two-sample (unpaired) Mest 56

confidentiality, questionnaires 97
confounding 73-4
consistency, causality strength of evidence

90
continuity correction 65-6
continuous data 20-1
controls

case-control studies 103,104-5
RCTs 109-10

convenience sampling 4
correlation 59-60
cross-over trials 108
cross-sectional studies 91-2
crude rates, incidence/prevalence/

mortality 76-7

data
categorical cf. numerical 19-21
continuous 20-1
defined 1
dichotomous 19
discrete 20
heterogeneous 29-31
homogeneous 29-31
interval 20
nominal 19

ordinal 19
presenting 11-13, 15-17
ratio 20
skewed 36-7
types 19-21

data analysis
case-control studies 105
cohort studies 101
errors 72
RCTs 110-11

data collection
case-control studies 105
cohort studies 100-1
RCTs 110

decimal places, rounding 17
degrees of freedom (d.f.) 51-2, 54
dependent variables 13
descriptive statistics 1
d.f. see degrees of freedom
dichotomous data 19
direct standardisation 78-9
discrete data 20
disease specificity, causality strength of

evidence 90
distribution-free tests 57
distribution types 36-7
dose-response, causality strength of

evidence 90
double-blind RCTs 107-8

eligibility criteria, RCTs 108-9
Epi Info software 7
epidemiology 69-70

association, measuring 83-90
case-control studies 69
cohort studies 69, 99

errors
data analysis 72
random 71
systematic 71
types 50, 67
see also standard error

estimates, samples 3-4
estimation, confidence intervals 39
ethical issues, RCTs 109
evidence

screening programmes 115
strength 90
systematic reviews 108

exclusivity, probability 45-6
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exercises 129-34
answers 135-41

experimental studies see randomised
controlled trials

false-positive /false-negative results,
screening 113, 116

Fisher's exact test 62
follow-up bias 73
follow-up, cohort studies 101
frames, sampling 3
frequencies 15-17

Chi-squared test 62
frequency distribution 16-17, 39—41

further reading 145-6

Gaussian distribution see normal
distribution

glossary 121-2
graphs, styles 11-13

heterogeneous data 29-31
histograms 12-13
homogeneous data 29-31
hypothesis testing 33, 47-50

incidence
cf. prevalence 75-6
rates 76-8

independent probabilities 44
independent variables 13
indirect standardisation 79-82
inferential statistics 1

defined 2
information bias 72-3
intention-to-treat analysis, RCTs 110
interquartile ranges 27-8
interval data 20
interviewer bias 73

Kolmogorov-Smirnov two-sample test 57

Likert scales, questionnaires 96
linear regression 59-60
Local Research Ethics Committees

(LRECs) 109
longitudinal studies see cohort studies
LRECs see Local Research Ethics

Committees

p, (mu), mean, populations 24
Mann-Whitney (J-test 57
matching, confounding elimination

method 74
mean 23-5

comparing sample means 33-4
median 23-5
meta-analysis, RCTs 108
misclassification bias 73
mode 23-5
morbidity 75
mortality 75

crude rates 76-7
direct standardisation 78-9
SMR 79-82

mu (//), mean, populations 24
multi-centre trials 108
multi-stage sampling 7-8
mutually exclusive probabilities 45

National Screening Committee (NSC)
113-16

negative predictive value (NPV),
screening 117-18

NNT see number needed to treat
nominal data 19
non-cases 69, 75
non-parametric tests 57
non-random sampling 4
normal distribution 35-7

tables 123-4
normal test, z-scores 48-50
NPV see negative predictive value
NSC see National Screening Committee
null hypotheses (H0) 47-50
number needed to treat (NNT) 88-9
number tables, random 7, 8
numerical data, cf. categorical data 19-21

odds ratio (OR) 87-8
case-control studies 105

one-sample f-test 52-4
one-tailed hypotheses 47-50
open questions, questionnaires 96
opportunistic sampling 4
OR see odds ratio
ordinal data 19

P-values, probability 47-50
paired f-test 54-5
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PAR see population attributable risk
parameters, defined 2
parametric tests 57
percentages 15-17

proportions as 16-17
percentiles 27-8
pie charts 11, 12
placebos

randomised controlled trials 69
RCTs 107

Poisson distribution 37
population attributable risk (PAR) 87
populations 2, 3-5

denned 1, 3
positive predictive value (PPV), screening

117-18
pre-test probability, screening 117-18
predictions 1
presenting data 11-13, 15-17
prevalence

cf. incidence 75-6
rates 76-8
screening 117-18
studies 91-2

probability 43-6
probability sampling see random sampling
proportions 15-17
prospective studies 103

see also cohort studies
publication bias 108

qualitative data see categorical data
quantitative data see numerical data
quartiles 27-8
questionnaires 93-7

bias 95
completion 94-5
confidentiality 97
content 93̂ 1
distribution 94-5
Likert scales 96
open questions 96
piloting 94
planning 93
questions 95-6

quota sampling 4

random error 71
random sampling 4, 7-9

random number tables 7, 8, 9

randomisation, confounding elimination
method 74

randomised controlled trials (RCTs)
107-11

advantages 111
data analysis 110-11
data collection 110
disadvantages 111
epidemiology 69
random number tables 9
study design 108-9
subjects 109-10

ranges, group 27-8
rates 15-17
ratio data 20
RCTs see randomised controlled trials
recall bias 72-3
recording bias 73
references 143-4
regression 59-60
relative risk (RR) 85-6
representative sampling 3-4
responder bias 72
restricted randomisation, RCTs 110
retrospective studies 103

see also case-control studies
risk

absolute 84-5
AR 86-7
ARR 88-9
PAR 87
RR 85-6

rounding, decimal places 17
RR see relative risk
rule of addition, probability 45, 46
rule of multiplication, probability 44

a (sigma), standard deviation, populations
30

£ (sigma), sum 23^4
s, standard deviation, samples 30
samples/sampling 3-5

bias 72
cluster 8
convenience 4
defined 1, 2
distribution 33
estimates 3-4
frames 3
means, comparing 33—4
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multi-stage 7-8
opportunistic 4
quota 4
random 4, 7-9
representative 3-4
size 4-5, 48, 67
stratified 8
systematic 8-9
variance 30-1
variations 3

scatterplots 13
screening 113-19

accuracy, evaluating 116-19
criteria, NSC 113-16

SD; s.d. see standard deviation
s.e. see standard error
selection bias 72
sensitivity, screening 117-18
sigma (a), standard deviation, populations

30
sigma (E), sum 23-4
significance, statistical 47-50
simple random sampling 7
size

sample 4-5, 48, 67
unequal group 17

skewed data 36-7
SMR see standardised mortality ratio
social acceptability bias 73
software 2

Epi Info 7
random number list 7, 8
see also computers

specific rates, incidence/prevalence/
mortality 77-8

specificity, screening 117-18
standard deviation (SD; s.d.) 29-31

two-sample (unpaired) f-test 55-6
standard error (s.e.) 33-4, 53̂ 1

defined 33
two-sample (unpaired) f-test 55-6

standardisation 78-82
direct 78-9
indirect 79-82

standardised mortality ratio (SMR) 79-82
statistical power, and sample size 67
statistical significance 47-50
statistical tables 123-7
statistics, defined 1-2
stratified allocation, RCTs 110

stratified analysis, confounding
elimination method 74

stratified sampling 8
strength, causality strength of evidence 90
Student's ^-distribution see ̂ -distribution
surveys 91-2
systematic error 71
systematic reviews, clinical evidence 108
systematic sampling 8-9

f-distribution 37, 51-6
tables 125-6

f-test 51-6
one-sample 52-4
paired 54-5
two-sample (unpaired) 55-6

tables
random number 7, 8, 9
statistical 123-7

time relationship, causality strength of
evidence 90

treatment arms
epidemiology 69
RCTs 109-10

two-sample (unpaired) f-test 55-6
two-tailed areas, tables, normal

distribution 123-4
two-tailed hypotheses 47-50
type 1 errors; type 2 errors; 50, 67

unequal group size 17

variables
association 62-6
dependent/independent 13

variance
ANOVA 59-60
sampling 30-1
see also standard deviation

variations, sampling 3

Wilcoxon rank-sum test 57
Wilcoxon signed-rank test 57

x-bar, mean, samples 24

Yates' correction 65-6

z-scores, normal test 48-50
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